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SYMBOLS

a speed of sound at a point in the transition

ay upstream speed of sound

as downstream speed of sound

B magnetic field vector at a point in the flow

Bi magnitude of upstream (undisturbed) magnetic field vector taken to be in the z-y plane
By magnitude of downstream (disturbed) magnetic field vector in the z-y plane

|Br| magnitude of transverse magnetic field component in a switch-on shock

B magnetic field component in the direction normal to the upstream plane of the shock
B, magnetic field component in the y direction at a point in the shock transition

By1  upstream y magnetic field component

By,  downstream y magnetic field component

B, magnetic field component in the z direction at a point in the shock transition
b1 upstream Alfven speed

c speed of light in a vacuum

Cy specific heat at a constant volume

D downstream stationary point in the By — B, phase plane

D12 downstream point for a fast shock

D13  downstream point for an intermediate 1 — 3 shock
D14  downstream point for an intermediate 1 — 4 shock
D23 downstream point for an intermediate 2 — 3 shock
D24 downstream point for an intermediate 2 — 4 shock

D34 downstream point for a slow shock

f1 constant mass flux per unit area through the shock

fo constant momentum flux per unit area in the z direction through the shock

f3 constant momentum flux per unit area in the y direction through the shock

fa constant momentum flux per unit area in the z direction through the shock

f5 constant proportional to the electric field component in the y direction through the shock
fe constant proportional to the electric field component in the z direction through the shock
fr constant of energy flux per unit area through the shock

kij coefficients of cubic equation for downstream sound speed

lij coeflicients of sextic equation for downstream flow speed

m; coefficients for calculation of Jouget speed

P fluid pressure at a point in the shock transition

P1 upstream fluid pressure

P2 downstream fluid pressure

q ratio of downstream fluid pressure to upstream fluid pressure

R radicand in the ODEs, the locus of points on the supersonic/subsonic boundary; rotational discontinuity
r ratio of downstream mass density to upstream mass density, called the compression ratio
As change in entropy per unit mass, called change in specific entropy

U upstream stationary point in the By — B, phase plane

u fluid velocity vector at a point in the flow

Ug fluid velocity component normal to the upstream plane of the shock in the z direction

Uyl upstream z velocity flow component, called upstream normal flow velocity or upstream shock speed
uze  downstream z velocity flow component
Uy fluid velocity component in the y direction

Uy2 downstream y velocity flow component



Uy
Vefl
Veil
Vf1

’Uf2

P1
P2

fluid velocity component in the z direction

upstream speed for equisonic downstream speeds for a fast shock

upstream speed for equisonic downstream speeds for an intermediate shock

upstream fast magnetohydrodynamic wave speed, called upstream fast speed

downstream fast magnetohydrodynamic wave speed, called downstream fast speed

upstream intermediate magnetohydrodynamic wave speed, called upstream intermediate speed
downstream intermediate magnetohydrodynamic wave speed

upstream Jouget speed, maximum value of u,; to produce an intermediate shock

upstream slow magnetohydrodynamic wave speed, called upstream slow speed

downstream slow magnetohydrodynamic wave speed

geometric mean of upstream and downstream normal flow speeds, called the parametric speed
direction perpendicular to the upstream shock plane making an angle 6; with the upstream magnetic field
position along x axis taken as positive from upstream point towards the downstream point

x divided by n

direction perpendicular to X such that upstream and downstream fields are in the X — Y plane
direction perpendicular to both X and Y directions according to the right hand convention

ratio of normal velocity component of shock to the speed of sound

plasma beta, ratio of gas pressure to magnetic pressure

upstream value of plasma beta

ratio of specific heats at a constant pressure to a constant volume, also called the adiabatic index
magnetic diffusivity

angle between the normal to the plane of the shock (2 direction) and the upstream magnetic field direction
kinematic viscosity

ratio of magnetic diffusivity to kinematic viscosity, reciprocal of the magnetic Prandtl number
mass density at a point in the shock transition

upstream mass density

downstream mass density

step-off angle into B, — B, phase plane measured from positive B, axis, allowing a degree of freedom
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Abstract

This thesis presents results of a study of the steady state structure of slow, intermediate and
fast magnetohydrodynamic (MHD) shocks in the case where energy dissipation is due to resistive
heating of the fluid and the upstream Alfven speed is greater than the sound speed. A new
parametric solution of the jump conditions is given and the various shock families are shown to
be determined by the presence and number of stationary points in the magnetic field phase plane
and the speed of sound. It is shown that there are 14 types of MHD shock structure contained
in 12 families with the “switch-on” shock being the limiting case of a fast and intermediate shock
combination. The thesis proceeds as follows. First, the background to the MHD shock structure
problem is given. The equations for resistive MHD are then presented in the normal incidence frame
for the steady state and the jump conditions relating the upstream and downstream states are then
given in conventional and parametric form. The classification of shocks in terms of the MHD signal
speeds is then described. The MHD equations yield a pair of ODEs in the transverse components of
B, allowing the shock transition to be represented as a trajectory in the B,- B, plane. The magnetic
field phase plane is then used to show the emergence of families of shocks, with different families
of intermediate shocks found to have 0, 1 or 2 degrees of freedom in their internal structure. The
multiplicity arises due to the possibility of an entropy increasing gas dynamic jump inside them
from a supersonic to subsonic state across which the magnetic field components do not change.
An original analysis is presented of the smooth passage of an intermediate shock from a supersonic
to a subsonic state at a special point known as the transonic transition point. The final chapter
gives a table of the shocks possible in resistive MHD, presents a calculation of the effect of fluid
viscosity on the structure of a shock and gives details of a preliminary study of shock stability using
an eigenvalue analysis. The calculations in this thesis confirm that intermediate shocks have the
requisite number of degrees of freedom in their structure to be stable according to the hypothesis of
Wu (J. Geophys. Res., 95: 8149, 1990) which had cast doubt on the original view that intermediate

shocks are structurally unstable.
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1 Introduction

Magnetic fields and conducting fluids pervade the Universe. Violent disturbances abound in the Uni-
verse. The combination of violent disturbances, conducting fluids and magnetic fields produces mag-
netohydrodynamic shock waves which carry energy through the local region. Whether on a star or in
the region of influence of a star the coupling of magnetic fields and hydrodynamic fields via magneto-
tohydrodynamics (MHD) determines the physical processes occurring. Examples include the dynamics

of solar flares, the Earth’s bow shock, the solar wind termination shock and supernova shock waves.

Roberts [1] states that the study of magnetohydrodynmics began with the prediction by Hannes Alfven
of the waves now carrying his name. Electromagnetism and hydrodynamics developed separately and
the concept of an Alfven wave, at first predicted in an incompressible perfectly conducting fluid, was
met with suspicion. Falthamar [2] states that Enrico Fermi said “of course such waves could exist”
and Alfven said “the next day everybody in the physics community said of course”. The application of
MHD to a compressible conducting fluid and the deduction of three characteristic disturbance speeds,

the slow, intermediate and fast speeds was first done by Herlofson [3].

The application of the laws of physics to shock waves in a conducting fluid in a magnetic field be-
gan with the work of de Hoffmann and Teller [4] who applied the conservation of mass, momentum,
energy and magnetic flux to connect the fluid properties on each side of a discontinuity in a magnetised
fluid in the case where the fluid is a perfect conductor. Relative to the undisturbed magnetic field, par-
allel, perpendicular and oblique disturbances were considered. In this model, ideal MHD, dissipative
processes in the fluid were not explicitly considered and so the spatial transition of the flow variables
between the undisturbed and disturbed states, i.e. the structure of the shock, was not considered.
The study of MHD shocks with reference to possible astrophysical applications began with Helfer [5]
who applied the condition of infinite conductivity to the problem of calculating the magnetic field and
velocity distributions in a gas modelled on the Sun’s chromosphere and inner corona and found results

that matched observed values in prominence studies.

Two sections follow. The first presents the relevance of the magnetohydrodynamic (MHD) shock

structure problem in physics and the second section outlines previous studies of MHD shock structure.
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1.1 Motivation

The purpose of this research is to present stationary shock structures in the case where the upstream
Alfven speed is greater than the sound speed. There are two reasons for doing this. Firstly, to deter-
mine the possible transitions produced by a given set of upstream parameters to determine if degrees
of freedom are possible in the shock transition or if the transition is unique. Secondly, to provide a
basis for the future examination of the stability of each shock structure to small perturbations as the

degrees of freedom in a structure will have a crucial role in determining stability.

A MHD shock is the transition between two states in a conducting fluid in which a magnetic field
is present when the fluid is subjected to a disturbance travelling at a speed greater than one of the
characteristic speeds in the fluid. In a magnetised fluid these are the slow and fast magneto-acoustic
speeds, commonly called the fast and slow speeds, and the intermediate speed. This thesis determines
the possible variation in the flow variables through an MHD shock between the steady upstream (undis-
turbed) state to a second steady state, the downstream state. There are three types of MHD shocks,
fast, slow and intermediate shocks. Emphasis will be placed on intermediate shocks, these being shocks
that occur when a multiplicity of shock transitions are possible for given pre-shock conditions, either
two intermediate shocks alone or two intermediate shocks and a fast shock. In this case of multiplicity

two or three downstream steady states are possible respectively from the same upstream state.

Roberts [6] comments that “recent research has led to an amusing reversal of ideas” with regards
to the physical nature of MHD shocks. This refers to a possible change in viewpoint from the earlier
idea proposed by Russian authors [7] and [8] of intermediate shocks being “non-evolutionary” meaning
non-surviving due to them being unstable to small perturbations. This was prompted by the works of
Wu [9] who found surviving intermediate shocks in numerical simulations and the reported observations
of intermediate shocks in Voyager I data by Chao et al. [10] and Voyager 2 data by Feng [11]. Feng
et. al. [12] reported an intermediate shock in data recorded by Wind and the Advanced Composition
Ezplorer (ACE). Steinolfson and Hundhausen [13] demonstrated the formation of both types of in-
termediate shocks in numerical simulations in idealised conditions expected to occur in coronal mass

ejections. This motivates an examination of the nature of MHD shocks.
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1.2 Previous Studies of MHD Shock Structure

The literature on MHD shocks is extensive and in this section an outline of some previous works on

MHD shock structure will be given.

The first work to determine a shock structure in MHD was that of Marshall [14] who calculated shock
structures for a perpendicular shock, this being the case when the upstream magnetic field and velocity
vectors are parallel and perpendicular to the shock plane respectively. Shock profiles were calculated
by numerical integration of first order ODEs for the cases of high and low electrical conductivity the

transition width being calculated in each case.

Whitham [15] gave the structure equations for a perpendicular shock with dissipation due to finite
electrical conductivity and included the cases where the downstream flow speed is equal to and less
than the speed of sound. The passage to the subsonic state in these cases causes the shock velocity
to have a discontinuous first spatial derivative as viscosity was not included in the ODE to smooth
the transition. Shock profiles were sketched in each case. The gas dynamic jump in velocity to the

subsonic state is described in §4.2.

The monograph of Anderson [16] provided the first analysis of shock structure allowing for dissipation
coeflicients in viscosity, electrical conductivity and thermal conductivity. Properties of integral curves
coming from singular points of the ODEs in the solution plane were determined using an eigenvector
approach allowing their general features to be sketched. The ODEs were not integrated numerically, in-
stead the shock structure was described qualitatively. The conclusion was that only fast and slow shocks
exist independently of the dissipation coefficients with intermediate shocks having steady structures

only for certain values of the three dissipation coefficients and being unstable to small perturbations.

Bickerton et al. [17] provide an analysis giving shock profiles with dissipation due to viscosity and
electrical resistivity. The method of solution of their coupled ODEs is not given and it is stated that
fast, slow, switch-on and intermediate shocks 2 — 3 shocks have a unique structure, a result in accord
with the calculations presented later in later chapters. Their approach uses critical Mach numbers
to designate the condition for occurrence of each shock type and it is stated that non-unique shock
structures are structurally unstable. Justification of the stability assertion is not given. The authors
quote a result attributed to Anderson that the 1 — 3 shock structure is at first expansive, meaning
undergoing a decline in mass density after leaving the upstream state, and then becoming compressive
for the remainder of the transition. The calculations presented in this thesis find that initial density
expansions are possible in both 1 — 3 and 1 — 4 shocks with 1 — 4 shocks sometimes exhibiting an

expansion just before the downstream point.

Dixon and Woods [18] integrated a system of ODEs for a fast oblique shock including both viscos-
ity and electrical and thermal conductivities. The aim was to compare their numerical profiles with
experimental results. The dissipative coefficients were adjusted in an attempt to match a laboratory
experimental profile of a fast perpendicular shock obtained by Robson and Sheffield [19]. Increasing the
dissipation coefficients tended to dampen the magnetic field components more than observed experi-
mentally, the authors considering that the mismatch of theory and experiment being due to a paucity

of experimental data.

The next stage in the study of MHD shock structure was concerned with the study of intermediate

shocks, these being shocks where the downstream transverse magnetic field is in the opposite direction
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to its upstream direction. For reference purposes, the magnetic field vectors in an intermediate shock
are shown in Figure 1 in §2.1. Fast and slow shocks, where the downstream magnetic field strength
is respectively greater and less than the upstream value, both have their upstream and downstream
transverse magnetic field components in the same direction. Intermediate shocks were considered to
be unphysical or non-evolutionary due to them being unstable to small perturbations. Akhiezer et al.
[20] used a wave counting argument to determine survivability of the shock. In brief, in ideal MHD
6 outgoing characteristic waves were needed to carry applied perturbations away from the shock, this

allowing “evolutionarity” of the shock.

C. C. Wu in [21] and subsequent works started a new approach to the understanding of the nature and
stability of intermediate shocks following the detection of a surviving one-dimensional intermediate
shock structure in a one-dimensional Navier-Stokes MHD code. Previous thinking, based on the evolu-
tionarity arguments of Russian authors using the hyperbolic nature of the MHD equations, predicted
that most intermediate shocks were unphysical as all but one of these crossed two characteristic MHD
propagation speeds. After calculating intermediate shock trajectories Wu subsequently suggested that
intermediate shocks have free parameters, or degrees of freedom, in their structure. The degrees of
freedom allow an intermediate shock transition to reach the downstream state by a number of routes
and Wu stated that effectively this allows an intermediate shock to absorb small perturbations by
adjusting its internal structure. Wu provided a number of numerical examples of the structure of
intermediate shocks determined using a simplified set of equations based on the CKB (Cohen-Kulsrud-
Burgers) equation as first proposed by Kennel et al. [22]. The CKB equation applies in the limit of
weak nonlinearity and weak dissipation. This thesis calculates the structure of an intermediate shock
in every possible case where the upstream Alfven speed is greater than the sound speed, this being
the case that is most astrophysically relevant and supports a greater variety of shock types. It will be
shown in Chapter 3 that intermediate shock formation is extremely limited when the upstream speed

of sound is greater than the Alfven speed.

Coppi et. al. [23] further raised the question of the physical reality of intermediate shocks. They
proposed that the equations of ideal MHD are not hyperbolic in nature as previously thought and this
might allow shocks to cross more than one characteristic speeds in the flow allowing the possibility
of intermediate shocks. They also stated that without dissipative terms the structure of the shock,
meaning the spatial transition from the upstream to the downstream state, is not known and stabil-
ity arguments “remain conjectures”. To provide groundwork for future studies the authors provided
graphical solutions using cubic equations for the jump conditions in several cases where multiple down-
stream shock states are possible. A more comprehensive analysis of the calculation of jump conditions
is presented in §2.3.1 and a new method is given in §2.4 known as the parametric solution that allows
multivalued plots to be drawn with greater computational ease than in the conventional approach of

following the roots of a cubic.

Hau and Sonnerup [24] presented a detailed analysis of intermediate shock structure using three mag-
netic field hodograms. Hodograms are plots of B, versus B, through a shock, these being the transverse
magnetic field components. The values of B, and B, were determined by numerically solving two first
order ODEs for a range of initial conditions. The transition from a supersonic upstream state to a
downstream subsonic state was stated to be achieved by a gas dynamic jump or by a purely smooth
resistive transition through a transonic point. The conditions for the latter transition were not given.
In this thesis the conditions for the smooth transition through the transonic point are described in §4.3

and are shown graphically in §3.2 with numerical integration through the transonic point giving the
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smooth shock structures presented in §7.2.2 and §7.6.3.

Hada [25] stated that questions of evolutionarity and structure cannot be separated in the case of
intermediate shocks and gave reasoning for the survivability of intermediate shocks to small pertur-
bations. Shock structures were not calculated. It was stated that conventional arguments for the
break up of intermediate shocks were based on an ideal MHD system and that when dissipation is
included due to ohmic heating resistive wave modes appear which have no counterpart in ideal MHD.
A perturbation given to the shock can be expressed as a sum of the resistive modes. To produce a
uniquely defined system, and thus allow the amplitude of the outgoing wave modes to be determined,
a constraint was introduced involving minimising the rate of entropy production, this principle being

justified as the resistive wave modes dampen completely over the shock transition scale length.

Falle and Komarissov [26] stated that it was “well known” that intermediate shocks were unphysi-
cal and stated that another solution could arise in the original calculations of Wu [21] in which the
intermediate shock was replaced by a slow shock and an Alfven wave. It was stated that the interme-
diate shock solution only arose due to the 180° rotation of the direction of the upstream transverse

magnetic field component through the shock.

Inoue and Inutsuka [27] furthered the use of resistive modes near the shock approach of Hada [25]
by proposing a method in which a small perturbation was added to the steady state shock structure
and the resulting differential equations were linearised giving 13 first order differential equations for
the spatial variations of the perturbed quantities. The presence of resistive modes, a feature absent in
ideal MHD, allowed a unique determination of the perturbed solutions suggesting that intermediate
shocks may appear in physical systems. In Chapter 9 of this thesis the approach of Inoue and Inutsuka

is used in a preliminary analysis of the stability of an intermediate shock.

Takahashi and Yamada in two papers [28] and [29] present details of the solutions of the equations of
ideal MHD in several situations using a specially written solver. In the first paper the “regular” and
“non-regular” solutions of the ideal MHD problem are presented. These are slow and fast shocks and
intermediate shocks respectively. Attention is given to a non-regular case previously noted by Brio
and Wu [30] that was always realised in numerical simulations. The jump conditions of ideal MHD are
given with plots included showing the downstream values in terms of the Mach number. As dissipative
processes are not included in the calculations shock structures from the upstream to the downstream
state are not given. The second paper presents the equations for the jump conditions with plots with
v = % of the downstream values versus the Mach number. Details of the solver are presented and its
use in searching for downstream solutions of the MHD shock problem is given. It is indicated that the
solver is a powerful tool for finding shock solutions that may be “missed” by conventional approaches
and these could have a role in the overall stability problem for MHD shocks. As in the first paper
dissipative terms are not included and structures giving the transition in the flow variables between
the disturbed and undisturbed states are not given. The phase plane and its role in showing the pres-
ence of degrees of freedom in shock structures is not given. The non-regular surviving shock observed
in simulations corresponds to an intermediate shock with one degree of freedom in its structure. A
detailed analysis of intermediate shock structures, including the effects of Ohmic heating, is presented
in Chapter 7 of this thesis.

In summary, the nature of MHD intermediate shocks has had a mixed history. Initially thought
to be unphysical due to arguments based on ideal MHD systems with no dissipative mechanisms such

16



as ohmic heating, a number of arguments were proposed for the physical nature of intermediate shocks,
the turning point being the work of Wu [21] who found that intermediate shocks have internal degrees
of freedom, Hau and Sonnerup [24] who gave a study using phase plane analysis and Inoue and Inutsuka

[27] who provided a formulation to test shock stability in terms of ODEs.

To determine the physical reality of intermediate shocks it is necessary to determine their steady
state structure and apply a perturbation to this structure. This thesis sets out to determine the steady
state structure of each possible type of intermediate shock in the case where the upstream Alfven speed
is greater than the upstream sound speed and energy dissipation is due to ohmic heating. This is done
using a phase plane analysis to map out possible shock transitions and numerical integration of two
first order ODEs to determine the shock structure. These computed structures lay the groundwork for
further analysis on the stability of each shock structure, a preliminary example of which is given in
Chapter 9.

17



2 The Equations of Resistive MHD

This chapter presents the equations of resistive MHD that describe the structure of shock fronts. In
general three dissipative processes may occur in MHD due to the fluid’s viscosity, thermal conductivity
and electrical conductivity. The coefficients for these processes determine the structure of the shock.
In this thesis structure will be analysed taking electrical resistance as the sole dissipative process. The

starting point are the fundamental MHD equations given by, for example, Landau et al.[31] .

A possible overarching question is why the dissipative effects due to electrical heating are discussed
at length in this thesis and not those due to fluid viscosity. The dilute interstellar medium is charac-
terised by a small resistivity and a large viscosity. The MHD equations for the resistivity-viscosity case
consist of five coupled ODEs in five variables whereas the resistivity case involves two variables. The
two variable case is suitable for analysis using the phase plane method described in Chapter 4. A five
variable problem in the general case would require additional dimensions in the phase analysis, adding
considerable complexity to the problem. The final chapter presents a two variable case where viscosity
is included, this being a perpendicular shock. In this case the results show that the presence of fluid
viscosity does not have a major effect on the shock profile, its presence allowing a continuous passage
of the fluid from a supersonic to subsonic state. In the absence of viscosity this passage is allowed by

an entropy increasing gasdynamic jump.

To set the scene for a study of resistive MHD shocks it is timely to first mention gasdynamic shocks,
often called hydrodynamic shocks. The theory of these shocks is given in Zel’dovich and Raizer [32] .
When a large disturbance travels through a fluid in the absence of a magnetic field at a speed greater
than that of sound the transition between the initial and final fluid states is known as a gas dynamic
shock. In the absence of a magnetic field there is only one characteristic speed at which small vibrations
can be transmitted through the fluid, this being the speed of sound. The speed of small vibrations of
fluid particles is independent of any reference direction and so there is only one possible “type” of gas
dynamic shock regardless of the speed of the shock. The strength of a gasdynamic shock depends on
the ratio of the specific heats of the fluid and the ratio of the shocked to unshocked densities of the
fluid. In a gasdynamic shock the gas enters the reference frame of the shock with a supersonic speed
and leaves it subsonically. When a magnetic field is present there are three characteristic speeds in the
fluid each depending on the angle between the magnetic field and the normal to the plane of the shock.
In this situation there are three “types” of shock that can occur and both supersonic to supersonic and

subsonic to subsonic transitions can occur for certain parameter ranges.

2.1 Resistive MHD

The MHD equations express conservation of mass, momentum, magnetic flux and energy. The first of

these is the equation of continuity, expressing conservation of mass

V-(pu)—k%zﬂ. (1)

The next equation is the Navier-Stokes equation for a magneto-fluid, which in Gaussian units is

ou JxB
- . = — . 2
p(@t +u Vu) Vp + . (2)
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On neglecting the displacement current density term in the Ampere-Maxwell equation this becomes

0 1
p((;:+u-Vu>:—Vp+M(VxB)xB. (3)

The equation expressing conservation of magnetic flux, expressed through the induction equation,
is 5B
rr VB +V x (ux B). (4)

In the last equation 7 is the magnetic diffusivity

02

= dno’

where ¢ is the electrical conductivity of the fluid, which is assumed to be constant.

The equation expressing conservation of energy is [31]

2 (1 2 p 1 2 1 2 P 1 n

(= P B =V | E P ;) B)- I B)| .

Y <29|u| +7—1+87r‘ | \% (2p|u| +’y—1)u+47r x (u x B) in x (V x B)
(6)

Here + is the adiabatic index for the gas, being the ratio of the specific heat of the gas at constant

pressure to the specific heat at constant volume. For a monatomic gas v = % and for a diatomic gas
7

T=5 -

The unshocked fluid state is referred to as the upstream state and the shocked fluid state is termed the
downstream state. A shock is the transition of the flow variables from the upstream to the downstream
states. In the calculations that follow the upstream state is taken to be to the left and the downstream
state is on the right. The direction of increasing z is from the upstream state towards the downstream
state. As viewed from the unshocked fluid, the disturbance is coming from the right towards the left.
In order to calculate the shock structure it is convenient to use a reference frame, called the shock
reference frame, in which the shock is stationary and the unshocked gas approaches from the left. The
normal incidence frame will be employed with the axes chosen such that the upstream shock front lies
in the y — z plane with the upstream fluid velocity perpendicular to this plane and directed along the
positive x axis. The y axis is aligned such that the upstream magnetic field lies in the = — y plane.
Values of the flow variables can later be found in the rest reference frame by a Galilean transforma-
tions. The normal incidence frame has the advantage that only one upstream velocity component is
used, producing a slight simplification of the flow equations. The upstream state fluid velocity has the
symbol uz1, with by choice u,; and u,; both being zero in this reference system. The downstream
state fluid velocity components are ug2 and wu,o , with u,2 being zero as it will later be seen that w»
is proportional to B,o which is zero as the magnetic field components remain in the x — y plane at the

downstream state. This is shown in Figure 1.

2.2 The Plane Parallel Steady State Equations

The steady shock structure equations are found by putting all derivatives with respect to ¢, y and z
equal to zero. The magnetic field components B, and B, are then functions of x. Since V- B = 0, the

magnetic field component perpendicular to the shock plane, B, is unchanged through the shock.

In the stationary state all flow quantities only depend on z and the equations representing

conservation of mass, momentum, magnetic flux and energy become respectively
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By1 /
Shock Plane (Dashed)

—-———»B'); """""""""""""""""" BX X {—‘VB !

By2

4
Y i
Upstream unshocked state % i Downstream shocked state

Magnetic Field Components (Black) are Bx, By1 (upstream) and Bx, By2 (downstream). Bx is constant through the shock

Flow Velocity Components (Blue) are Ux1 (upstream), Ux2 and Uy2 (downstream)

Figure 1: Magnetic field and fluid flow velocity vectors for a MHD shock. Vectors are shown for an
intermediate shock where B, and u, reverse direction; for fast and slow shocks these vectors do not
change direction.

du dB
puwTy wij 9)
du, dB,
pumT = Dy dr (10)
d*B, d
a2 T dr (Bauy — Byug) (11)
d’B, d
"z = I (Byuy — Boug), (12)

and
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1
——B, (Byuy + Byu, + Byu,) — WA <B

u, (B + B, + B?)

dB,

Y dx

ddiz) .

The equations (7)-(13) are integrated once with respect to x to obtain the following conserved

quantities:
PUy = flv
By + B2
yT +p+ fiug = fo,
T
B, B,
- + fiuy = f3,
B,.B,
= + fluz = f47
47
dB
Byua: - Basuy -n dSCy = f5a
dB
B u, — Byu, -n d = = fﬁa
T
and

1 2 2 2 YPUz Ug (B’l% + Bg) Ba: (Byuy + Bzuz)
51 <“z+“y+uz)+7f1+ A Ar

_
47

(

dB,
Y dx

dB,
B,—/=
+ dx

(15)

(16)

(18)

(19)

) e

In equations (14)-(20) f1, fo, fs, fa, [5, f6 and f7 are determined by the upstream conditions and are

constant through the shock. These respectively express conservation of mass flux, momentum flux, the

y and z components of the electric field and energy flux through the shock. Together with the compo-

nent of the magnetic field perpendicular to the plane of the shock, B, these 8 constants determine the

transition from the upstream to the downstream state. In this chapter the seven constants are used

for notational convenience to avoid equations becoming too cluttered. The constants will be related

to specific properties of the fluid in Chapter 3. As the magnetic field and flow velocity components in

the upstream state lie in the x — y plane, the constants f; and fg are both zero.

We now show that the equations (14)-(20) can be reduced to a pair of coupled ODEs in B, and

B..
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Equations (15), (16) and (17) can be used to determine p, u, and u, in terms of the magnetic field

components and the normal flow velocity component u,:

B + B?
P:f2—f1Uz—7y87T ) (21)
1 B, B,
w=1 (4 B2 (22)
B, B,
2 . 2
U I, (23)
Equations (18)-(20) become
dB, B, B, B
—Y = Buy — — Y) — fs, 24
U yU 7 <f3 + i ) 5 (24)
dB, B’B,
= DUz — = ) 25
d 47Tf1 ( )
and u, is given by
1 2 2y Uz (B; + Bg) 1 2 B} 2 2
= 1— —(2—7) —2—== — —-—= (B:+B
Qflum( 71> +771 'YfQ ( ’7) S 2f1 3 167‘(2( y+ z)
n dBy dB,
_ Y+ B, = 26
4 ( Y dx * dx Ir (26)

respectively.

dB dB,
Equations (24), (25), (26) become on eliminating u, and solving for d—y and 7
x x

8mn (v + 1)f1% =87 (v+1)(fsBs+ f1f5) — By {7 (Bi +B2)+2[(y+1)B: — 4y fo]}

+ B,{ (B, + B2) +4[(y* — 1) B — 47y’ f2|(B, + B2) + 2v°B.B?
+ 321 (7% = 1) (f3 By + f1 f5) By+ 642 [y f2+ (42 —1)(f3 —2f1f7)] }2,
(27)

and

dB.
dx
+ B.{¥* (B + Bi) +4[(+* — 1) B2 — 47y’ f2](B; + B2) + 2vy°B.B?

+ 321 (v = 1) (faBs + fufs) B+ 64m° [ f5+(3* = 1) (fi-2f1f7)] }2.
(28)

8mn (v +1) fi—— = —B. {7 (B, + B2) + 2[(y + 1) B — 4772 }
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dB.,
dzx

dB
Equations (24), (25) and (26) become on eliminating Txy and

1602 (v +1) 2 5 4nvfy
-1 oo

(By + B2 — 8nf2) ux—Bi (B; + B2) =81 By (B, fs+f1f5)—167* (f35 — 2f1f7) = 0.
(29)

The simultaneous numerical solution of equations (27) and (28), using the upstream conditions, gives
the variation of B, and B, through the shock. Equation (29) then determines the flow velocity u, at
each particular point in the shock and the fluid density and pressure can be found using equations (14)

and (21) respectively.

Equation (29) defines a cubic surface in B, - B, - u, space. For given values of B, and B, there
are at most two different values of u, due to the quadratic form of (29) in u, . It will be shown in
§4.1 that the two values of u, correspond to supersonic (u, > a) and subsonic (u, < a) flow, where a
is the speed of sound in the fluid for the particular values of B, and B, and the upstream conditions,
given by a = % . This allows the insertion of a gasdynamic jump within the shock, the location of

the jump being a degree of freedom in the structure of the shock.
Derivatives of uy

In §4.3 it will be shown that a continuous shock structure between supersonic and subsonic states
is possible for certain upstream parameter ranges. This type of transition requires analysis of the
higher order spatial derivatives of the normal shock velocity component, up to the fourth order. The

du
first derivative, TE , is obtained by differentiating (29) with respect to .
x

4 fy 9 9 duy, 5 Amyfi dB,
1) fruz B + BZ — — —2{B,[B2 — 2] + 47 (B,
47‘—’7.}01 de
— 2B.[B? - - =0.
(B2 - 2 T =0 (30)
Replacing the magnetic field derivatives in (30) using equations (24) and (25) gives
M (B2 4 BY) +8 1 dus, 1 (p2yp?)(B2_4 1)B2—4
4 87 2
+ ————— (Byfs + B —1)B2 — 21 (2y — 1) fiug| + — (Bafs + = 0.
77('7_1>f1( f3+ fifs) y[(7 ) B; (2v ) f1 ] 77f1( fa+ f1fs)

(31)

d
Equation (31) can be written as with % as the subject
x

S’ ff [87 (v + 1) frug + (By + B2 = 87fy)] CZ; = (B + B2) (B} — A fruy) [Amyfrus — (v = 1) BY]
8T (Befy + fifs) [2m (27 = 1) frue — (v = 1) B By = 167° (y = 1) (Bafs + fif5)* . (32)

Taking the speed of sound to be given by a = @, equations (14) and (15) allow equation (32) to be
\ »
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written as

2_ 2
641y £ (a ux) duy

Uy dxr

= (By + B?) (B} — 47 fiu) [(v — 1) BE — 47y frue]

+87 (Bofs + fufs) [( = 1) B = 2w (2y = 1) fiua) By +167° (y = 1) (Bofs + fufs)*. (33)

The second derivative of the normal shock velocity component is obtained by differentiating equa-
tion (29) twice with respect to x and replacing the first and second derivatives of the magnetic field

components using equations (24) and (25),

2

d Uy duz ?
16m*m° 7 [87(y + 1) frua + 7 (By + BZ = 87fo)] —— = —128 (v + ) n’m" fi ( dx)

b 872 (B3 + B2) (37— 1) B2 — 12y fuuwa] + 47 (37— 1) (Bufs + fifs) By} o

+ (B2 + B2) (B2 — dnfrug)” [(v — 1) B2 — 4y frug) + 87 (Bofs + fufs) (B2 — dmfrug)

x [(v = 1) B2 — (4y — 1) nfiug| By +167% (Byfs + fifs)” [(v — 1) B2 — 2(2y — 1) 7 fru,] -
(34)
The third derivative of the shock velocity is found by differentiating equation (29) three times with
respect to x and replacing the first, second and third derivatives of the magnetic field components

using equations (24) and (25),

d3u du
82mn* fi (87 (v + 1) frug + (By + BZ = 8nf)] 7 = —167°n* fi{ 48x°nff (v +1) —=
d?u,
— [(4y = 1) B = 167 fiug| (By + B2) — 47w (4y — 1) (Bof3 + f1f5) By } —

2
— 1927*n*~ (B; + B?) (i;f;) —8mnfT{ 3 (B2 —4n fiug) [(2v — 1) B2 — 877 f1us] (B; + B?)

duy
dx

— (B2 —4nfrug) { (B2 + B2) (B2 — 4 fiug)” [(v — 1) B2 — 47y frug | +4m (B, fat+ f1.f3){ (B2 — 4 fru,)

x[2(y=1)B: —nfi (87— Vug| By +4n(Bofs + f1fs) [(v = 1) BZ = fi (4y — D ug]} }. (35)

+ 21(Byfs + f1fs) [(17y — 8) B2 — 4 (17y — 3) fiug)| By + 87 (5v — 2) (Bofs + f1.f5)* }

The fourth derivative, found in a similar manner, is

d*u,,
6470 £ [87(y + 1) frug + v (B + B2 — 8 f)] — = 32r'n® fi{ (Bi+B2) [(5y — 1) BY — 20wy fiug]

o duy

3
+47T (57 - 1) (Bzf?) + f1f5)By - 6471—2 ('7+ 1) 77f1 E }d Y -

dx3

2
153675 (v + 1) f9 iy
Y\ da2?

=32m% fi{(By + B2) {(B; — 4r fiue) [(57 = 2) B = 20my fru] + 4%%#%%} +7(Bzf3 + f1fs)

d2

Ug
dx?

x[(29y — 11) BZ — 4w (297 — 4) fiug] By + 120 (3y — 1) (Bo fs + f1f5)°}
2
FAm P £ (B + B2) (5 — 1) B2 = 20m ] + 20 (28 =) (B + 1), ()
~8n2f2{~2 (B2 + B2) (B2 — dn fiug)” [(57 — 3) B2 — 20m frug] — m(Bofs + f1f5) (B2 — 4r fru,)

duy

x[(657 — 37) B2 — 4 (657 — 6) fius) By — 47 (By f3 + f1f5)?[(257 — 13) B2 — 207 (57 — 1) fluw]}a

24



+ (Bg — 47rf1uz)2 {(Bg + Bg) (Bg — 47rf1uz)2 [(’}/ — 1) Bi—47T’}/f1uz]+27T(Bmf3+f1f5) (Bi — 47rf1ux)

x[4(y = 1) B = 7 (167 — 1) fiug] By + 8% (B fs + f1f5)*[2 (v = 1) B — 7 (87 — 1) frus]}.  (36)

2.3 The Jump Conditions

Jump conditions relate the upstream and downstream values of the flow variables. In this section
the conventional approach is presented where the downstream mass density, flow speed and magnetic
field are related to the upstream properties by cubic equations. T'wo special cases must be considered
separately: the parallel shock, where the upstream magnetic field is parallel to the velocity vector, and
the perpendicular shock, where the upstream magnetic field is perpendicular to the velocity vector.
For a parallel shock, B, = By, By1 = 0 with 6, = 0°, for a perpendicular shock, B, = 0, By1 = B
with #; = 90°, where 6, is the angle between the normal to the plane of the shock and the upstream
magnetic field vector given by B, = Bj cos ;. This section is therefore divided into subsections pre-

senting the oblique, parallel and perpendicular jump conditions.

2.3.1 Oblique Shock

This subsection derives the jump conditions for the case where the upstream magnetic field is neither
parallel nor perpendicular to the shock normal. The distinction is necessary to avoid division in the
algebraic manipulation by the term (rch - 47rp1ug261) that is zero in the case of a parallel shock and
(By2 — Byir) that is zero in the case of a perpendicular shock.

At the upstream and downstream states in the steady state the MHD flow variables are all con-
stant. The relationships between the upstream and downstream values of the flow variables denoted
By — 0,48 =0, B,; =0, B,y =0,

by By1,uz1,p1,p1 and By, ug2, Uy2, p2, p2 are found by putting
uy1 =0 and u,e = 0 with u,, = 0 in equations (14) to (20):

P1Uz1 = P2Uz2, (37)

B2 B2

yl 2 y2 2

_ D2 : 38
- +p1+ prug, . + D2+ pauy, (38)

B.B,,  B.Byp»
_ _ oty 39
4 4 + P2Uz2ly2 ( )
Byluxl = By2ux2 - BxuyZa (40)

[ gl B} 1 2 2 Y B BBy

5Ptz T S qPrtar + 74; Uzl = 5 P2Ua2 (tzs + uys) + S P2l + 74; Ugs — 747;/ Uy2.  (41)

Equations (37) to (41) are known as the jump conditions and can be used to predict the possible
downstream values produced by a shock transition for a given set of upstream values By, uz1, p1,P1
and v (assumed constant). The magnetic diffusivity n does not affect the downstream values as it
enters the equations as a multiplier of the magnetic field derivatives and so only determines the length

scale of the transition.
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The first relationship is the connection between the upstream values and the downstream to up-

stream mass density ratio r, defined by r = E—f ,

B} [p1 (v = 1) (B2 + Bjy) uzy + 2ypi B2 | r® — pruly { B [16myp1 + (v + 1) (B + By, )]

+drpruzy [(v = 2) By +2 (v — 1) Bi] Yo + dmpfug, (2 (v + 1) B + 7 (B} + 8mp1)
+ dmpy (v = Dudy Jr = 167% (7 + 1) plul, = 0. (42)

Equation (42) is a cubic equation in r and so may have one real solution or three real solutions.
Each value of r corresponds to a particular type of shock depending on its transverse downstream

magnetic field component By, which is found from the upstream values from

Bjy+(v—1)BuBly+{B2 +~ B — By, — 81 (p1 + pruzy) ]|} By2 — (v + 1) (B2 — 8mpruiy) By = 0.
(43)

This can be expressed using the integration constants f; and f, as
By + (v=1)ByuBly + [(v+ 1) B2 =87 f2] Bya — (v + 1) (B2 — 87 fitug1) Byy = 0. (44)

The relationship between By, 7, ug1, p1 and By is

(B2 = dmpre,)

B, =B . 45
v = B B ron, ) 19)
The downstream normal flow speed u,o in terms of the upstream values can be found from
167° (v + 1) plud,udy — AmpTul, 2(v+1) B2+~ (B§1 + 87p1) + 4mpr (v — 1) Uil] U2y
+ prugt { B [16mypr + (v +1) (B + Bjy)] + dnpruzy [(v = 2) By +2 (v — 1) B ] } e
— BI[2ypiBE + (v = 1) p1 (B + Bjy) uzy] = 0. (46)
The relationship between uzq1, r and ugo is
Ug1
o = —=. 47
Us2 = — (47)

The relationship between the downstream fluid pressure, p, and the upstream fluid pressure p; is

found by eliminating w1, ugz2 and uys from equations (37)-(40),

(By2 — Byl)
8

2(r—1)B2

B B, —
2 T By = By

P2 =p1— (48)

The relationship between the upstream and downstream pressures, densities and transverse magnetic

field components is found by eliminating .1, ug2,u,2 and B, from equations (37)-(41)

L‘Hfr + (ByZ*Byl)2 r—1)—=1
o T (49)




Equation(49) indicates that the maximum value of the density ratio of the downstream and upstream

. +1 . .
states is Ll’ since vy > 1, »r > 1 and %’;’ > 1. The pressure ratio of the downstream to upstream

states is not limited in value due to its dependence on the square of the difference of the downstream
and upstream transverse magnetic field components. Equations (48)-(49) are suitable for the numerical
computation of the pressure ratio. Equation (49) can be expressed in a form that separates the gas
dynamic and magnetic terms. This form has been given names such as the shock adiabatic or the

Hugoniot relationship,

(B2 —Bp)’ _, -
8w v=1)(r—1)

— P2 —DP1- (50)

The relationship between the downstream speed of sound and the upstream values, found by elim-
inating pa, uy2 and Bys from (37)-(41) and using as = , /% is a cubic equation in a3, the coefficients
k; being listed in Table 2 given in Appendix A,

k6ag + k4a§ + k‘gag + ko = 0. (51)

The relationship between the downstream flow speed and the downstream sound speed is a sextic

2

equation in u3,,

the coefficients [; being listed in Table 3 given in Appendix B,

llgui% + lloui% + lguig + l6u22 + l4ui2 + lQUiQ + 1y =0. (52)

Equation (52) can be used to find when u,o = ao. This is of significance as an increase in the upstream
flow speed may cause the downstream flow to change from supersonic to subsonic and (46) can be
used to determine the upstream shock speed where this change occurs. In this thesis points where
the downstream sound and normal shock speed points are equal will be called equisonic points, the
upstream shock speed at these points having the symbols ve;1 and vey1, the first of these applying to
an intermediate shock, the second to a fast shock. In general, in an oblique shock model that only
includes dissipation due to electrical heating through the introduction of a resistivity factor into the
equations a continuous shock structure in both transverse magnetic field and flow velocity components
is only possible when the upstream and downstream states are both supersonic or subsonic, otherwise
a hydrodynamic jump must occur at some point in the flow. The exception to this rule is flow through
a unique transonic flow point, where the sound speed equals the normal shock velocity and the normal
shock velocity derivatives of first and higher orders are the same on the supersonic and subsonic sides
of the transition point. The domain of upstream normal flow speeds for which a smooth transonic flow
point exists depends on the values of the equisonic points. For a given set of upstream conditions, two
unique transonic points can exist provided vej1 < uz1 < ves1. Appendix B also contains plots of as
versus ugo obtained using (52) with the numerical value of the equisonic speed being determined by
a root finding method and the associated upstream speed being found by solving the cubic (46) for
uz1 with (51) being used to select the correct solution. The upstream parameters used in the plots are

those considered in shock structure calculations in Chapters 5, 6 and 7.

The Jouget Point
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Another important point in the shock transition is the Jouget point as designated by Kulikovskii et
al.[33], where the upstream flow speed has a local maximum turning point with respect to the down-
stream normal flow speed, so that %—Z = 0. The upstream flow speed at the Jouget point will be given
the symbol v;;. Differentiating (46) with respect to ug9, placing the derivative equal to zero and then

eliminating u,o using (46) gives the following quartic equation in 0?1

mgvfl + mﬁvfl + mw?l + mgvfl + mg =0, (53)
where
ms = 2567 (7= 1) pi [4(y = 1) B2 = (v 2)" B |,
me = 10247y (v = 1) pim [6 (v=1)B; = (v-2)° 351} —1287°p{[4 (27 +1) (v — 1)* B}
~2(y = 1) (y+1) (4 — 67 +10) B2B2, — (v —2)* (y* —v —4) B, ],
my = 10247y pip} [12 (v=1)B} = (v-2)° BZJ — 256m°ypip1[6 (v —1) 3y +1) B,
—(y+1) (3% — 11y + 18) B2B2, + (v — 2)* By | + 167%p3[ 247 (v* — 1) BS
—2 (37" — 18y + 592 + 18y — 24) B2, B2 — 2 (3v* — 104® + 57° + 67 — 24) B2B}},
*72 (v - 2)2 BSl s
my = 81921y’ p1 B2p? — 5121°4%p1 B2pt [129B2 — (v + 1) (v + 2) B, ] + 647°yp1p1 B}
X [6(v+1) (37— 1) By + (=37* +4° — 10y = 30) B2B;, + 27 (7* + 2) By,
—8mp1B7 (Bl + Byy) [4(2y — 1) (v +1)* Bi=2(y+1) (v* = 39> = 6) BB}, +7° (—7* +v — 2) By,
mo = —20487°y°pi B} + 647°y*pi By [12 (v + 1) BZ — (v* + 107 + 1) B, ]
~16myp1 B [6 (v + 1) BE = (7+1) (72 + 7+ 10) BEBZ + (42 + 47+ 1) By |

+(v+1)? B [4(y+1) B2 —42B%] (B2 + B%)”.

The Jouget point is of significance as, given a set of upstream conditions ai, b1, v, p1 and 6y, it
is the maximum velocity point in the upstream flow domain where intermediate shocks can be pro-
duced. At the Jouget point the downstream slow MHD wave speed equals the downstream normal flow
speed and it is the point in the intermediate shock domain where the maximum increase in specific
entropy occurs measured from the upstream state. The upstream flow speed at the Jouget point is the

largest positive solution of (53).

Entropy

To determine if a shock transition can occur between two states the entropy change of the fluid per
unit mass is examined. Across the shock there is an increase in entropy due to the increase in internal
energy per unit mass of the fluid. The jump in entropy per unit mass between the upstream and

downstream states is given by Jones [34] as

~
As=c,In [pQ <p1) } , (54)
P1 \p2
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where ¢, is the specific heat of the fluid at a constant volume. The pressure and density ratios can be
expressed in terms of the upstream and downstream transverse magnetic field components using (48)

so that (54) can be written in terms of the upstream variables and By

As 1 B, 47 p1 Bou?,
— =In{14+—— B}, - Boy + | 5= —2) (B: — 4mpyul —vIn Lk
co { 87p1 { v2 (By2 ( moriz) | [ B2(Bys — By1) + dmp1 By,

(55)

Replacing By using (45) allows (54) to be expressed in terms of the upstream variables and po

1
= B B2 -2 B 2 B2
o n{pgpl(prg “anph2, )2 [ [p1 yluwl( Tpruty) + Ba(pr + pruiy)|ps + piBaul,

x (B} + By, + 8m(p1 + pruzy)|ps + 2mpiug, [4B2 + By, + 8 (py + pruzy)|pe — 1672 pfud,] }—vIn <p1>'
(56)

Equations (55) and (56) can be expanded in terms of AB, and Ap where AB, = By, — B, and
Ap = ps — p1. The results to the second order are

2 B2 2 (.2, Bf 2
As 7 [al dmpi Ml (al +dmp U:ﬂ)] ABy i B2yl Bi + ABg, —2u2; | +af
Cy aju?, B,1 Smpiatul, |V "\ arp, T dmpy el !
B2 B2 AB2
+4mp <47rp1 — u} ) me (af +yugy) +udy (af — 2aTu, — ’Yui1)} } Bilya (57)
A w2 ( Bl _ 2 ) A ) ,
sy | Y \dmpy — Yt P, YUz a
= || L s (12 - o)
v “ <47‘rp1 - uzl) 1| 16m2p2 (47{;1 = u%)
B2 (a3 9 5 o B2 ? /242 Ap?
- = (2 —-16 L g2 w2 ) -k B 1y = 58
1rpy (7 +uzq | T p1 I pr Uz 5 + Uy uy By} +ay P (58)

Although of limited computational use due to the slow convergence of the logarithmic expansion,
the series expansions can be applied for small changes to determine the entropy increase. The expan-

sion in terms of Ap is valid provided u2, # 4 , this being the square of the upstream intermediate
speed.

Entropy increase is a necessary condition for a shock between two states, whether upstream and

downstream or along the internal structure of a shock, and can be expressed as

Y
(”) <Pz (59)
P1 p1
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Pressure and Density Ratios for Shocks

The combination of the jump conditions (37) to (41) and (59) determines the region in the ¢ —r plane,
where ¢ is the pressure ratio and r is the density ratio, allowing a shock transition. Figure 2 shows the
allowable values for ¢ and r according to each of the equations of MHD and entropy increase. Figure
2a shows the allowable region for transitions according to the jump conditions alone as expressed in
(50), traditionally this equation being known as the MHD Hugoniot, for v = g being the adiabatic
index of a monatomic gas. Using these conditions alone it is seen that transitions could be in an area
with r < 1. Figure 2b shows the allowable region for transitions according to (59). Figure 2¢ shows the
combination of the entropy and MHD jump conditions. Points within the shaded region R represent a
shock transition. The last diagram shows that MHD shocks have a mass density ratio increase between

their upstream and downstream states, Z—f > 1, with an accompanying increase in gas pressure, Z—f > 1.

Eliminating u,2, uze and uz from the jump conditions (37) to (41) gives two equations in terms
of v, 01, p1, g and r for B, and By, provided 6; # 90°:

tan 6, [72 +7r (2 + tan? 01)} Bg — By (72 + 2r + tan® 01) Bi — rtanf; [B;Q + 8mp1 (¢ — 1)] B,
+Bys [Bgy + 8mp1 (¢ — 1)] =0, (60)
(v — 1) tan 6y sec® 01 [1 — 2r® + cos 20| B2 — (v — 1) sec® 0 [1 — 2r® + cos 26, | By, B2

+2tan 6y [(y — 1) Biy 4+ 8nyp1r (¢ — )] Bo — 2By2 [(y — 1) By + 8myp1 (¢ — )] = 0.  (61)

Eliminating By from (60) and (61) gives a quadratic equation in B2

{1-=v—q(y+ ) +rly+1+q(y =D} (v = 1)% (r — 1) sec* 61 B2 + dapy (v — 1) (r — 1) sec? 6y
><{[vq—(v—Q)(q—1)7"—77“2]2—[2—61(2+7—7T)—7(7”—1)(7"—2)]2008291}35

+64m*p {1y —q(y+ D) +r[y+1+q(y - D} —qg+v(r - 1)*=0. (62)

Values of B, and By, can be found by determining the points of intersection of the contours in (60) and
(61) using a root finding method or by solving the quadratic equation (62) to find B, and then using
(50) to determine two possible values of By due to the (Bys — By1)2 term in the Hugoniot equation.
Equation (45) is then used to determine wu, for each B, Bys combination. The jump conditions (38)

to (41) are then used to determine the consistent set of solutions {B,, uz1, Bya}-

The presence of equal roots in the quadratic equation (62) is found by setting its discriminant equal

to zero. This gives two equations

Y =1)(r—2) -2

O e (©3)
Ar=1)[~14+qg—ry(r=D]2@=r) —(r=1)(g+1) (r=D+[r(v=2) (g—1) +7 (r* — ¢)]* tan® 6,
(64)
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Equation (63) is the curve C; inside the shaded region in Figure 2c, which has the asymptote r = 1+ %
When (63) is placed in the jump conditions (37) to (41) after eliminating uy2, ug2, ug1 and Bys we ob-
8TYP1

y(1—r)+2
magnetic field depending on «y, p; and r alone.

tain By = . This indicates that at each point on C there is one value of the upstream

Equation (64) describes a curve to the right of the shaded region in Figure 2¢ for 6; > 0°. For §; = 0°
the locus described by (64) is Cy. Each point on Cy has one value of B, associated with it, the values
of By1 and Bys both being zero at each point. Points on Cs are found by placing §; = 0° in (64). The
first square bracket when placed equal to zero gives (r, q) points outside of R. When the second square

bracket is placed equal to zero it represents the gas dynamic Hugoniot relationship, found by placing

g(y+1)+v-1
q(y=1)+vy+1°

this being the gas dynamic Hugoniot curve. As ¢ — oo, 1 — :Yy—ﬂ For 6; = 0°, By; = 0 and the

By and By both zero in (50). The equation of the gas dynamic dashed boundary is r =

solution of (60) and (61) in this case gives rise to a non zero solution for By, within R known as a
switch-on shock. Specific details of the gas dynamic shock and MHD switch-on shock are given in the

next subsection.

For the case of §; = 90°, placing B, = 0 in the jump conditions (37) to (41) and eliminating .

and By, gives

[(@-D(r+1)—y@@+1)(r-1)]
(v=1)(r—1)

B, = 8mpy (65)

Equation (65) has a right hand side that is positive for values of ¢ and r that are in R on Figure

2c¢ and so a perpendicular shock is possible at each point in this region for given values of vy and p;.

The presence of a magnetic field allows shock transitions to occur in the region R of Figure 2c, in

the absence of a magnetic field the transitions are confined to Cs.

Given the upstream adiabatic index, sound speed, mass density and shock angle, a point in the shaded
blue region of Figure 2c not on the dashed line corresponds to two different upstream values of B,
(provided 6, # 0°&90°) each having different downstream ugo and By values but the same density
and pressure ratios. One transition is a fast shock with Bys > By; and both fields having the same
sign, the other being an intermediate or slow shock with Bys < B,;. Associated with each value of
B, is a value for u,1, the larger value of u,; is with the fast shock and the smaller value is with the

intermediate or slow shock.

At the point (2,6) on C in Figure 2c, with the upstream conditions as a; = 1, v = %, p1 = 1, the

solutions {Bjy, By1, B1, b1, uz1, By2}, to the jump conditions, where by is the upstream Alfven speed

x

VATpycost’

given by by = are at four angles that will be used later to illustrate shock structure:
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0, = 0°,{8.68322, 0, 8.68322, 2.44949, 3.4641,8.68322} , {8.68322, 0, 8.68322, 2.44949, 3.4641, —8.68322}

0, = 15°, {8.38734, 2.24738, 8.68322, 2.44949, 3.88662, 10.9306} , {8.38734, 2.24738, 8.68322, 2.44949, 2.98231, —6.43583}
0, = 37°,{6.93472,5.22569, 8.68322, 2.44949, 4.38427, 13.9089}, {6.93472, 5.22569, 8.68322, 2.44949, 2.18591, —3.45753}
0, = 90°, {0, 8.68322, 8.68322, 2.44949, 4.89898, 17.3664}, {0, —8.68322, 8.68322, 2.44949, 4.89898, —17.3664}

The first example shows that the switched on magnetic field component By can be in either the
positive or negative y direction. At points on C the switched-on By field equals in magnitude the
B, field. The second and third examples have a fast shock as their first solution and an intermediate
shock as their second. The last example indicates that a perpendicular shock can have its B,; vector

along the positive or negative y axis.

At the point (2.306,6.0574) in R in Figure 2c¢, with the upstream conditions as a; = 1, v =
p1 = 1, the solutions {By, By1, B1,b1,uz1, Bya} to the jump conditions are at these angles:

61 = 0°,{6.18087,0,6.18087,1.74359, 2.64773,4.85003} , {6.18087, 0, 6.18087, 1.74359, 2.64773, —4.85003}

61 = 15°,{5.20485, 1.39463, 5.38845, 1.52005, 2.82151, 6.24467}, {6.84824, 1.83498, 7.08982, 2, 2.4, —3.01505}

0, = 37°,{3.60315,2.71517,4.51163,1.27271,2.97671, 7.5652}, {6.7626, 5.09599, 8.4677, 2.38869, 1.88088, 0.245956 }
61 =90°,{0,3.71365, 3.71365, 1.0476, 3.08889, 8.56369}, {0, —3.71365, 3.71365, 1.0476, 3.08889, —8.56369}

b

wlot

The second example in the last group shows a fast and an intermediate shock. The structure of
this particular intermediate shock will be studied in Chapter 7. The third example shows a fast and
a slow shock. These examples show that a given point on the (r,¢) plane can be associated with all

shock types depending on the given values aq, p1,y and 6.

In the above examples non-dimensionalised units are used for the magnetic field components. The
magnetic field components are proportional to the Alfven speed. By choosing an upstream sound
speed of 1 the Alfven speed relative to the speed of sound is determined at a given point in the ¢ — r

plane.
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Figure 2: Pressure and density ratio allowed region (shown in blue) for the formation of MHD shocks

in a monatomic gas according to fluid dynamical, ée:l’ectromagnetic and entropy considerations.



2.3.2 Parallel Shock

Placing B,; = 0 in equations (37) to (41) and solving gives the following two solutions for the upstream

normal flow velocity in terms of the mass density ratio,

Ug1 = \/1b1, (66)

_ V2ra
Vity—r(y-1)’

Uzl

where by is the upstream Alfven speed defined by b; = . Equation (66) gives the speed of a

By
Vampy
MHD shock, which is determined by the upstream magnetic field strength and density. Equation (67)
gives the speed of a gas dynamic shock, its speed being independent of the upstream magnetic field
strength. The MHD shock is called a “switch-on” shock as the downstream state gains a transverse

magnetic field component given by

352 . (Uil - b%) (‘2‘1% +(v+1) b% -(v=1) Uzl)

Bz b (68)
For by > a; the condition B§2 > 0 for a switch-on magnetic field gives the mass density ratio
1) b} — 2a3
l<r< ('7‘1‘)—1% (69)

(v=1)b7 7

for the the range of upstream speeds given by

/ 1) b2 — 2a?
b] < Ugr < W (70)

For b; < ap the condition Bgz > 0 does not allow a switch-on transition as the corresponding mass

density ratio r satisfies

(v +1)b? — 2a2
—_ =< r<l1 71
(v —1)b] ()

and does not give rise to an increase in entropy across the transition as it is less than 1.

For by = a; the condition Bgz > 0 does not allow a real solution for r and so a switch-on shock

is not possible.

By placing the maximum value of r given in (69) in (67) it is seen that the maximum switch on
shock compression ratio occurs when the switch-on shock spee(% equals the gas dynamic shock speed.
By placing the maximum value of u,; given in (70) in ugze = ub—:l it is found that the MHD switch-on
shock has the same downstream speed as the gas dynamic shock at this value of u;;. This is of signifi-
cance as this is a “break point” in the formation of intermediate and fast shocks that are produced as
the angle 0 increases from 0. The MHD switch-on shock can be considered as both an intermediate

and a fast shock. This switch-on shock structure will be given in Chapter 8.
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The downstream speed of sound in the fluid due to the passage of the MHD switch-on shock is found
by combining (38) and (68)

2
2 7 (v—1) (b% - U§1) — 24} [(’Y —1)b7 — ’W?pl] 79
Ay = 2u21 . ( )

The gas dynamic shock exists for all values of u,; greater than the upstream slow MHD wave speed.
Below this speed the mass density ratio » would be less than 1 causing a decrease in entropy across
the shock meaning that the transition is not physically possible. The downstream speed of sound in
the fluid due to the passage of a gas dynamic shock is found by combining (38) and (67)

o (2] + (v —1u2y) [(1—7)af + 290l ]

as = . (73)
? (v +1)° uz,

The upstream shock speed when the downstream MHD switch-on shock speed equals the downstream

sound speed is found by using (66) and (72)

2, = 2= 0¥ —ai] + vy hat+2( - D3 (- )] (74)
v(y=1)

Equation (74) is of importance as it gives the upstream shock speed at the transition from a supersonic

to a subsonic downstream state.

2.3.3 Perpendicular Shock

The downstream values for a perpendicular shock are found by placing B, = 0 and By, = \/4mp1b; in
equations (37) to (41) . The mass density ratio is given by

(v —=2) b5 — [(v — 1) (26 + u2y) +2a3] v + [2aF + v (b + 2u2,)] 7 — (v + 1) u2, = 0. (75)

Equation (75) has a common factor of (r — 1) that after cancelling reduces to

(v = 2)07r® = [2a +90% + (v = D udy | r+ (v + 1) uz, = 0. (76)

Equation (76) has a discriminant that is greater than zero for all values of a1, b; and u,; when v = 3

or T . The two real solutions for r are opposite in sign and the perpendicular MHD shock corresponds
to the solution greater than 1 that occurs for all values of u;; greater than the fast MHD wave speed,
which when § = 90° is given by vy = \/m . Below this speed the positive solution is less than 1,
corresponding to a decrease in entropy, and so the transition is not physically possible. When b; = 0,
(76) predicts the same speed as (67), the shock being purely hydrodynamic in this case.

The MHD shock mass density ratio and its reciprocal are given by (76)
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1 2
r= sy (2t - = - Dl (- DR A+ ) @B, )
(77)
o1 2a7 + b3 + (v — 1) u? +\/[2a2+'yb2+(’y— Du2) ) +4(y+1)(2—7)b2u2
r 2(7+1)u§1 1 1 zl 1 1 xl 1%z1 |
(78)
The downstream normal flow speed u,o is the positive root of the equation
(v + D ugruzy — [2a7 + b7 + (v = 1) uy] wgo + (v — 2) bugr = 0. (79)
The transverse downstream magnetic field component is given by
Byg = ’/‘Byl, (80)

showing that By, is greater than By, and has the same sign as By;.

2
ra
The downstream sound speed is found from equation (38) using ps = pray

aQZ\/i {a%—@(ﬂ—l)—i—w(l—i)uil} (81)

When the downstream normal flow speed and sound speeds are equal the flow speed is given by the

positive real root u,s in the equation

(v +1)2uSy—(y + 1) [(v + 1) af + 2(2y — 1) 03] ulbytyd? [2 (v + 1) a? + (5 — 4) b3] uZy =01 [ya? + 2 (v — 1) b3]

(82)

When expressed in terms of u2, the discriminant of the cubic equation formed from (82) is negative,
indicating the presence of one real solution. When u,o = 0 the left hand side of the cubic equation
formed from (82) is negative and as uze — oo the left hand side — oo showing that the root of the
cubic is positive. The associated value of u,; and r are found by solving (79) for u,; and (47) for
r. The values obtained for u,; and r are greater than \/m and 1 respectively showing that this
equal speed point is present in all perpendicular shocks. This particular value u,; is significant in the

study of shock structure as it marks the transition from a supersonic to a subsonic downstream state.

Due to the comparative simplicity of the MHD equations in the case of a perpendicular shock, the
first order ODEs can be integrated through the shock in each of transverse magnetic field component,
normal flow velocity component and temperature to produce continuous structures in each of these
variables by the introduction of coefficients of resistivity, viscosity and thermal conductivity into the
equations. Continuous structures are produced whether the flow is from upstream supersonic to down-

stream supsersonic, supersonic to subsonic or equisonic.
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2.4 A Parametric Solution of the Jump Conditions

The traditional solution of the jump conditions to determine the downstream values involves the so-
lution of a cubic equation such as (43). Wardle [unpublished] proposed a parametric solution of the
jump conditions involving a parameter w that is defined to be the geometric mean of the upstream and
downstream speeds. The introduction of this parameter has the advantage that it avoids the solution
of a cubic equation and in general the plots of the flow variables appear as single valued functions of
w?, (the exception being for the switch-on shocks that occur for a range of upstream speeds in the case
when the normal to the shock is parallel to the upstream magnetic field, #; = 0 , which have w? = b?
for each value of u,;) rather than multivalued functions as when u,; is chosen as the independent
variable, aiding the visualisation of the change from one shock type to another. The parametric speed

is given by

W =y Uz Uz (83)

Equations ( 37) to (41) are rewritten replacing u,o using (83) and eliminating the downstream pressure
D2, the magnetic field component By, and the flow velocity component vys. The upstream pressure p;
and magnetic field components B, B, are expressed in terms of the upstream sound speed a;, and
Alfven speed by respectively by

_ piai

p_ ) 84
1= (84)

B, = +/4mp1by cos by, (85)
B,1 = \/4mp1by sinb;. (86)

The relationship obtained is

(w2 — b? cos? 91) [w4 —w? (a% + b%) + a?b? cos? 91]

(v — 1) (w? — b?) (w? — b3 cos? 0;) + w2b? sin? §,

u? = w? +2 (87)

The sum of the squares of the sound and Alfven speeds and the product of their squares can be expressed

in terms of the upstream fast MHD wave speed, vs1, and the upstream slow MHD wave speed v,1. Since

1

v} = 3 [a? + b3 + \/(a% +62)% — 4a2b2 cos? 91] ; (88)
1

v = > [a% + b7 — \/(a% + b%)Q — 4a7b? cos? ‘91] J (89)

therefore

vfcl + 02 = ad 4+ b3, (90)

v?lvgl = a?b? cos® 0. (91)
The third solution of the dispersion relation for the speed of small amplitude waves in ideal MHD is
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the upstream intermediate speed v;1,
Vi1 = bl COS 91. (92)

Equation (87) can be written in terms of the three upstream signal speeds v, v;1 and vy as

(w? = 02) (w? = v) (w? = o},

(v = 1) (w? = b7) (w? — v})) 4+ w?bi sin 26,

The downstream transverse magnetic field component given by (45) can be expressed in terms of

w

(uil - 01'21)

B2 =
Y (w? _01'21)

For a value of the parameter w, (87) or (93) allows the determination of u,; for a given set of upstream
conditions. The downstream values of the other flow variables can then be determined using the jump
conditions. In this thesis plots of the downstream flow variables are determined using (87) to determine
ug1 for values of w with the set of upstream values {a1, b1, p1,01}. Equation (83) is then used to
determine ugo with (94), (37), (48) and (54) being used to determine Bya, p2, p2 and As respectively.
Chapter 3 presents a panorama of downstream states for the set of shocks with upstream values {a;,
bi, v, p1,01} = {1, 2, 2 3,1, 61} with the shock angle 6, taking the values {0°,5° 15°,37°,63°,90°} .

These angles show the range of downstream states possible for the given upstream state.
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2.5 Numerical Solution of the ODEs

The structure of a shock is normally shown as a plot of a flow variable versus x,, showing the transition
from the upstream to downstream state. The transverse magnetic field components through a shock
are found by solving the autonomous ODEs (27) and (28) numerically. The normal shock velocity
component u,, mass density p, fluid pressure p and change in specific entropy As at a point in the

transition are found using the magnetic field components obtained from the numerical integration.

The numerical integration method employed for the solution of the first order ODEs in this thesis
is the Dormand-Prince Runge-Kutta 8th order variable step size method [35]. A high order variable
step size method, rather than a low order fixed step size method, was used as some applications such
as integration towards a transonic point require high accuracy. These applications are described in
Chapter 7. The code for this method was first written by the author in Fortran and this integrator has
been tested extensively over a number of years by the author in many applications in dynamical as-
tronomy such as numerical integration of asteroid and comet orbits using full planetary perturbations,
relativistic corrections and non-gravitational terms in the case of comet orbits, the accuracy of these
calculations being assessed by comparing results obtained with other integrators such as Bulirsch-Stoer
extrapolation, Gauss-Jackson and Adams multistep or with published ephemerides, agreement being to
the 6th decimal place when astronomical units are used for the distance scale. These integrations were
used to produce ephemerides of minor planets and comets for subsequent CCD astrometric observation
and report to the Minor Planet Center from 1993-2021 under the IAU station code 423 North Ryde [36].

Shock structure integrations, in most situations, start from a stationary point in the B, — B, phase
plane. The starting point is determined from examination of the phase plane vectors given in Chapter
4. As the sign convention employed in this thesis has the positive x direction from the upstream to
the downstream point, a numerical integration out of the upstream stationary point is only possible in
the direction of an outwards vector and integration out of the downstream point is only possible in the
directions of an inwards vector. For the numerical integration to leave a stationary point in the phase
plane a small step-off in |B| in the intended direction of integration is needed. The size of the step-off
is indicated with each integration. The step size was chosen to allow the profile to be proportionately
positioned in the plot. The size of the step-off does not affect the gradient of the B, —z or B, — =
profiles, a smaller step-off translating the profile in the z direction. For parametric plots, such as

B, — u,, the magnitude of the step-off does not affect the plot.
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3 Shock Classification

In this chapter the classification of MHD shocks in terms of their speed relative to the MHD signal
speeds and plots of the downstream values of the shock variables obtained using the parametric solution

will be given.

The upstream state of the gas is determined by six quantities: the sound speed ap, Alfven speed
b1, ratio of specific heats 7, mass density p;, angle between the normal to the plane of the shock and
the upstream magnetic field 6; and the upstream shock speed u,1. In set form these six will be called

the upstream parameters, {a1, b1,7, p1,61, uz1} -

The use of the five non-zero constants, f1, f2, f3, f5 and f7 allows the equations of resistive MHD to be

written in a compact form. For computational purposes, it is necessary to express the integration con-

2
stants in terms of the parameters describing the upstream state. Using p; = pl;“ , Bx = \/4mp; cos by,
By = +/4mp1sinby, B, =0, diy =0 and 95= =0 in (14) to (20) gives

f1 = prug, (95)

1 2 .. 92 pla% 2
fo= 5'011)1 sin® 61 + T + p1uzy, (96)
f3 = —p1b3 cos by sin by, (97)

f5 =1/ 47rp1b1ux1 sin 91, (98)

1

fr=-piud, +

5 p1a3Uz1 + p1b3ugy sin’ 6. (99)

v—1

The essential problem encountered in this chapter is that a given upstream shock speed can produce

zero, one, two or three possible downstream states.

Chapter Overview

The downstream shock speed u,s is found by solving the cubic equation (46). For a given upstream
speed u,1 there can be three possible values of u;5. The number of solutions for u,» that have an
associated density increase will be the number of possible downstream states. As a general overview, to
highlight the multiplicity of downstream states produced by a given upstream shock speed and angle,
Figure 3 gives a colour-coded polar representation of the number of solutions of (46) for u,s that have
an associated increase in entropy from the upstream state for the case where the upstream Alfven speed

is greater the upstream sound speed, by > a;.

The grey zone indicates that there are no possible downstream states, meaning that a shock tran-
sition cannot take place at these particular “upstream” values. The blue zone indicates that only one
downstream solution is possible at the given value of (uz1,61), transitions within the inner blue zone
being a slow shock, those in the outer blue zone being a fast shock. A point in the yellow zone allows
two possible downstream shocked states, both of these being intermediate shocks. A point in the green
zone has three possible downstream states, two intermediate shocks and a fast shock. For labelling
purposes, fast and slow shocks are identified by the symbols 1 — 2 and 3 — 4 respectively. Intermedi-
ate shocks are identified by the symbols 2 — 3, 2 — 4 and 1 — 3, 1 — 4. The superscripts designate
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the ratio of the normal shock speed to the sound speed, + indicating that a state is supersonic with
Uzo > ao and — indicating that a state is subsonic, uz2 < as. The shock nomenclature is fully described
in §3.1.

In Figure 3 the red curve is the locus of equisonic points, where the downstream sound speed equals
the downstream normal flow speed, as = u,. The upstream shock speed at points on the red equisonic
curves are designated as ve;1 and vep1 With vej1 < vep1 for an oblique shock. The v.i curve extends
between 67 = 0 and 6; = arccos ‘Z—ll, the upper limit being when the upstream sound and intermediate

speeds are equal. The v.f; curve extends from 6, = 0 to 6; = 90°.

Transonic flow points, where u, = a and % has a finite value, play a role in allowing a shock
transition to pass smoothly from a supersonic to a subsonic state, are found for upstream shock speeds

in the region between the two red curves provided u,; > a;. Details of these points will be given in §4.3.

In Figure 3 the blue curves ai,vyf1, vi1, vj1 and vs are the locus of upstream sound, fast, inter-

mediate, Jouget and slow speeds respectively for each angle in the polar plot.

The dashed lines at the magnetic field angles of 5°, 15°, 37° and 63° through a blue, yellow or green
region indicate that a shock transition can occur at the given point in the coloured region. The black
disks on the dotted lines, placed at positions to show different types of shock transitions, indicate the
upstream values setting up the B, — B, phase plane where the shock transition between the upstream

and downstream points will be computed in later chapters of this thesis using numerical integration.
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abre possible and green that three downstream states can form at the particular upstream speed value;
2L =2 see text.

a

For the case when the upstream Alfven speed is less that the upstream sound speed, b; < aj, a
much limited variety of downstream state possibilities is produced. Figure 4(a) shows the number of
downstream states when the upstream Alfven speed is one-half the upstream sound speed. Figure 4(b)
shows an enlarged portion of (a) showing the narrow yellow region where two downstream states are
possible. Three downstream shock solutions are not possible in the case where b; < a;. The reason for
this is that a switch-on shock as given by (69) cannot form when b; < a; and the switch-on structure
becomes the three downstream solution region as the shock angle is increased from zero. This will be

seen in Figures 7 and 8 in §3.2.
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As the variety of shocks possible is greater when b; > a; than when b; < aq, calculations in this
thesis, unless otherwise specified, take % = 2 with u,; being measured as a multiple of the upstream
sound speed. The upstream mass density will be taken as 1, unless otherwise specified, and the gas as

monatomic both upstream and downstream having v = g For plot labelling purposes the upstream

el with v and p; having the assumed

properties will be written in a reduced three value form of %, 01,

values of % and 1 respectively.

3.1 Shock Nomenclature in Terms of Characteristic Speeds

The shock classification nomenclature that is shown on Figures 3 and 4 was first used by Shercliff [37].
This terminology is based on the relationship between the flow speed and the three MHD signal speeds.
Upstream states are designated 1,2, 3 or 4 depending if u,1 > vy1, vi1 < U1 < vp1, Vo1 < Uzt < Vi1 and
ugz1 < V1 respectively, similarly the downstream states are designated 1, 2, 3 and 4 when uzo > vyo,
Vig < Uga < V2, Vs < Uga < V2 and uge < vy respectively. Here the subscripts f, ¢ and s indicate

fast, intermediate and slow signal speeds respectively.

Figures 5 and 6, produced using the parametric solution (83), show the downstream fast, interme-
diate, slow and normal shock speeds in orange, yellow, grey and blue respectively for the upstream
shock angles used as examples in this thesis. The upstream values of the fast, intermediate and slow

speeds are the dashed orange, green and grey vertical lines respectively.

For example, shock transitions from an upstream state with normal flow speed greater than the fast
speed to a downstream state with normal flow speed greater than the intermediate speed are termed
fast shocks as they “cross” the downstream fast speed. In Figures 5 and 6 fast shocks are the part of
the blue curve in the region to the right of the upstream fast speed, giving the first zone as 1, below the
orange downstream fast speed and above the green downstream intermediate speed, giving the second

zone as 2. Fast shocks are designated as 1 — 2 shocks.

Similarly, slow shocks have shock speeds greater than the slow speed but less than the intermedi-
ate speed, with a downstream normal flow speed less than the slow speed. In Figures 5 and 6 slow
shocks are the part of the blue curve in the region between the upstream slow and intermediate speeds,
giving the first zone as 3, below the grey downstream slow speed curve, giving the second zone as 4.

Slow shocks are designated as 3 — 4 shocks.

Shocks whose normal velocity component “crosses” the downstream intermediate speed are called
intermediate shocks. In this situation there are four possibilities; the downstream intermediate signal
speed alone is crossed (a one zone crossing), the downstream intermediate speed and the downstream
slow speed are crossed (a two zone crossing), the downstream fast and intermediate speeds are crossed
(a two zone crossing) or the downstream fast, intermediate and slow speeds are crossed (a three zone
crossing. The respective designations for these intermediate shocks are 2 -+ 3,2 — 4,1 — 3 and 1 — 4.
This classification is possible as Figures 5 and 6 show that when the upstream shock speed is equal to
the Jouget speed the downstream slow speed has the same value. This means that 2 — 4 and 1 — 4
shocks are on the lower portion of the blue flow speed curve and 2 — 3 and 1 — 3 shocks are on the

corresponding higher portion of the blue curve in the intermediate shock domain.
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To summarise, fast and slow shocks are designated as 1 — 2 and 3 — 4 respectively. Intermedi-
ate shocks can be classified as 1 — 3,1 — 4, 2 — 3 and 2 — 4. We also denote whether the flow in

each state is supersonic or subsonic by adding a superscript + or — respectively.

Plots of the downstream sound and normal shock speed versus upstream shock speed for the rep-

resentative shock angles, with each shock type classified using labels, are given in the next section.
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3.2 Shock Taxonomy in Terms of the Upstream Shock Speed

In this section the parametric solution of the jump conditions given in §2.4 will be used to generate
plots showing the downstream normal flow speed and downstream sound speed in terms of the up-
stream shock speed. The parametric solution allows considerable computational simplicity, especially
in the determination of the downstream sound speed, compared to a method based on solving a cubic
as in (51). The shock angles given are 0°,1°,5°,15°,37°,63° and 90°. The 1° shock angle plot is given to
show the emergence of the intermediate and fast shock structure as the upstream shock angle increases

from 0°.

Each plot shows the downstream sound speed as in red and the downstream normal shock veloc-
ity component w5 in blue in terms of the upstream shock speed u,1. The dashed vertical lines indicate
the upstream MHD signal speeds as in §3.1. Along a vertical line on each plot, the red and blue curve
intercepts representing the respective downstream sound and normal shock speeds for a given upstream
shock speed, f1,f2,f3,f5 and f; are constants. Each upstream speed gives a set of upstream conditions
producing a magnetic phase plane on which the f; are constant. The phase plane concept is introduced
in Chapter 4.

Dashed curved lines on the plots denote unphysical transitions where the compression ratio is less
than 1 or equivalently, as shown in §2.3.1, a decrease in specific entropy would occur across the tran-
sition making it not physically possible. The filled points indicate a change from one shock type to
another. Filled points at the intersection of the red and blue curves are the equisonic points where
Uzo = ao. Open points bracket the regions in which transonic transition points form in the magnetic

phase plane, the theory of these points being presented in §4.3.

For classification purposes, each shock type is labelled with its name, the change in the sonic na-
ture of the transition, the signs of the respective (B, B,) eigenvalues of the solutions to the linearised
ODEs near the upstream and downstream stationary points and a statement of the uniqueness of the
particular shock transition. The eigenvalue signs indicate the nature of the stationary point in the
phase plane. The combination (+,+) indicating a source point, (—,—) a sink and (4, —) or (—,+) a
saddle point. In some situations it is possible to connect the upstream and downstream states using
different paths in the numerical integration linking them so a statement of the uniqueness of its shock

transition is given at the end of the label. The phase plane is described in Chapter 4.

The plots follow the change from one shock type to the next with increasing upstream speed and
the occurrence of possible multiple downstream states to be seen. For example, when the upstream
shock speed first exceeds the slow speed a 3 — 4 slow shock can be formed (provided 6; # 90°) as
the downstream to upstream mass density ratio is now greater than 1, or equivalently an increase in
specific entropy has occurred across the transition. When the upstream shock speed crosses the inter-
mediate speed two possible downstream states can form (provided 6; # 90°), these transitions being
intermediate 2 — 3 and 2 — 4 shocks, both belonging to the same family as they arise from the same
upstream conditions. When the upstream fast speed is crossed one or three downstream states can
form depending on the upstream shock angle 6. The single downstream state in this case is produced
by a 1 — 2 fast shock with three states being produced by a 1 — 2 fast, 1 —+ 3 and 1 — 4 intermediate
family of shocks.
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Important Features Shown in the Plots

Figure 7 shows the case of a parallel shock where for a certain range of upstream speeds a switch-on
downstream transverse magnetic field component is produced. For shock speeds less than the sound
speed a shock transition is not produced. For shock speeds greater than the sound speed a gas dynamic
shock is produced and for a limited range of shock speeds starting at the Alfven speed two downstream
states are produced, the second being the switch-on MHD state. Particular details are shown on the

annotations on Figure 7.

Figures 8 and 9 show the effect on the downstream normal fluid velocity component and sound speed of
increasing the angle between the normal to the plane of the shock and the magnetic field. The former
switch-on shock separates into a fast and intermediate component and the former gas dynamic shock
becomes a slow MHD shock or at higher speeds a fast MHD shock. Detailed annotations are given on

Figures 8 and 9.

Figure 10 shows the effect of an increased upstream shock angle on the downstream normal flow
speed and sound speed for a case when the Jouget speed is less than the fast equisonic speed. Three
downstream states are still possible for shock speeds between the fast and Jouget speeds. The emerging
presence of a shock speed range where the downstream normal flow curve is not continuous appears in
the vicinity of the interval between the upstream intermediate and fast speeds. A shock is not possible
on the dashed curve as the density ratio is less than one, or equivalently, a decrease in entropy would
occur. Phase plane diagrams showing the absence of shocks on dashed curve are given in §6.2.1 and

§7.1. Details of each shock type are given in the annotations on Figure 10.

Figure 11 shows the downstream normal flow velocity component and sound speed when for a cer-
tain upstream shock speed range no downstream shocked states can be produced. In this situation the
maximum possible number of downstream states for a given upstream speed is 2. The change from
three downstream states to two occurs when 6; = 26.2325°. Details of the shock types present are

given on the plot.

Figure 12 shows the effect of increasing the upstream shock angle further until all downstream shock
speeds become subsonic. This effect first occurs when 6; = 60°. The plot shows the increasing region
having no shocks and the shrinking of the shock speed range producing intermediate shocks. Further

details are given on the plot.

Figure 13 shows the case of a perpendicular shock. Only fast shocks are present as in this case

the MHD slow and intermediate speeds are both equal to zero. Details are given on the plot.
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3.3 Downstream Values in terms of the Parametric Speed Squared

By using the parametric speed squared w? (83) as the independent variable the shock quantities u,1,
Ug2, A2, T, Bya, B and f—j can be displayed as single valued functions, with one exception. The use of w?
as the independent variable is computationally easier to program to produce plots than the traditional
method of solving the cubic (42) for r for a given value of u,; and then configuring the correct ordering

of the roots in the branches on a multi-valued plot.

Figures 14 to 19 give the upstream shock speed, downstream x-velocity component, sound speed,
mass density ratio, transverse magnetic field component, ratio of gas pressure to magnetic pressure
and increase in specific entropy as functions of the square of the parametric speed for the upstream
conditions and shock angles studied in this thesis. The various shock types are given a colour code.
The colour coding used to display the various types of shocks is slow in grey, intermediate 2 — 4
in yellow, intermediate 1 — 4 in brown, intermediate 1 — 3 in green, intermediate 2 — 3 in ma-
genta and fast shocks in orange. The values plotted are the “end values” of the transition from the
starting upstream state. The internal structure of the shock representing the transition from the up-

stream to the downstream state is determined using numerical integration and is given in Chapters 5-8.

The 6; = 0° plot in Figures 14-19 are for a parallel shock, this being the case where the upstream plane
of the shock is perpendicular to the upstream shock velocity direction, this being along the X axis.
For upstream shock speeds greater than the sound speed a gas dynamic shock is produced, this being
shown by the continuous cyan-pink-dark yellow curve. This curve gives the upstream speeds according
to (67). Placing the upstream magnetic field dependent upstream speed (66) in the equation defining
the parametric speed, w? = uz1uz2, gives w? = b? . This means that the upstream speed domain given
by (70) for the production of switch-on shocks has the common parametric speed b;. The switch-on

values are represented by the vertical purple line in the 8; = 0 plots.

As the upstream shock angle 6; increases the vertical purple line “opens” to form intermediate 1 — 3,
intermediate 2 — 3 and fast shocks. The gas dynamic cyan-pink-dark yellow curve becomes MHD
slow, intermediate 2 — 4, intermediate 1 — 4 and fast shocks due to the gain in an initial upstream

B, component as the angle 6; increases.

Figure 14 allows the conversion between parametric and upstream speed. Figure 15 allows the compar-
ison of downstream sound and shock speeds, this being of use as it allows the location of the equisonic
points, where uzs = ag, to be seen. Figure 16 gives the mass density ratio across the shock, showing
speeds where a shock cannot form when Z—f < 1. Figure 17 gives the downstream transverse magnetic
field component B, in terms of the parametric speed squared. Taking B,; to be positive in sign, the
diagrams display the reversal in the direction of the downstream B, vector for intermediate shocks
and its non-reversal for slow and fast shocks. Analytically, the reversal and non-reversal can be shown
using (133) in Chapter 7. Figure 18 displays the relative value of the gas pressure p and the magnetic
pressure Jsi: for the range of parametric speeds at each shock angle. Figure 19 displays the increase in
specific entropy across a shock, with a local maximum being present at the Jouget point, this being at
the meeting of the brown and green curves for 5° and 15° or the yellow and magenta curves for 37°
and 63°.

In summary, the parametric approach allows all shock properties to be graphically displayed as single
valued functions. A disadvantage of this method is that a switch-on shock is displayed as a vertical
line. As the upstream shock speed increases the switch-on shock plot opens into a fast and intermediate
shock.
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Figure 14: Upstream shock speed in terms of parametric speed squared for %; =2and 6, =0,5,15,37,63
and 90°. Speeds in this and subsequent plots are re%%tive to the upstream sound speed. Colour indicates

the type of shock transition (see text).
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3.4 Downstream Values in terms of the Mass Density Ratio

By using the mass density ratio Z—f as the independent variable the domain on each plot is given by

1< % < %, this inequality being predicted by (49). For v = 2 this becomes 1 < fo < 4. This is
useful in showing the gas pressure ratio across the shock and the downstream transverse magnetic field

component.

The plot of ij—f Versus % was used in §2.3.1 to establish the compressive nature of a shock between
its downstream and upstream states. The placement of the various shock types on this diagram will
now be shown for given upstream conditions, the upstream shock speed u,; varying along the curves.
Figure 20 shows the gas dynamic, switch-on, slow, intermediate and fast shocks present for the up-
stream shock angles 0°, 5°, 15°, 37°, 63° and 90° for the upstream values of 2—11 =2,7= % and p; = 1.
The colour codes for the shocks are the same as in §3.3. The plots show that at a given upstream
angle 2 — 4 intermediate shocks always have a greater value of Z—f and g—’;‘ than 2 — 3 intermediate
shocks. At a given upstream shock angle and speed 1 — 4 intermediate shocks have a greater value of
% and g—f than 1 — 3 intermediate shocks. The intersection of the orange locus of points representing
fast shocks with another shock locus indicates that for a given set of upstream parameters a common
downstream density and pressure ratio can be produced by two different shock transitions, provided

01 # 90°, each having the same increase in specific entropy.

Figure 21 shows the relationship between the downstream transverse magnetic field component and the
mass density ratio for the selected shock angles. The plots display that at a given upstream angle fast
shocks have a greater value of B,s than slow shocks, 2 — 3 intermediate shocks always have a greater
value of |Byo| than 2 — 4 intermediate shocks. For a given upstream shock angle and speed, |Bys| is
greater for 1 — 3 shocks than 1 — 4 intermediate shocks. For the case of §; = 90° the relationship is

linear as predicted by (80).
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4 The By - B, Phase Plane

Shocks can be represented as trajectories By (z) versus B,(z) and this provides an efficient overview of
the relationship between shock classes. The resistive MHD structure equations are the first order ODEs
(27) and (28) with derivatives on the left only. The derivatives are functions of B, and B, and the
equations do not have an explicit dependence on the independent variable x. This allows the derivatives
at each point of the B, — B, phase plane for a given set of upstream parameters to be determined.
The stationary points in the phase plane represent the upstream (undisturbed or pre-shock) and possi-
ble downstream (disturbed or post-shock) states. MHD shocks are the transitions between stationary
points in the B, — B, plane where the first derivatives are zero. Once these are found the phase plane
can be “mapped out” by determining the possible trajectories between the stationary points. The pres-
ence, location and nature of the stationary points is determined by the set of upstream parameters {a;,
b1, 7, p1, 01, uz1 }- In later chapters the ODEs (27) and (28) will be numerically integrated, using the
upstream parameters as initial conditions, to determine the trajectory in the phase plane connecting
the stationary points. For given values of B, and B., the quadratic nature of (29) indicates that there

are two possible values of u, and it will be shown that these values lie on supersonic and subsonic sheets.

By way of example, Figure 22 is a sample phase plane with vector fields as arrows indicating the
direction of AB, and AB, for increasing values of Az, at points in the plane, the positive x direction
being from the upstream to the downstream point. The upstream and downstream stationary points
are shown as circles on the B, axis with the upstream state shown as U and the possible downstream

states labelled according to the type of shock that can come from the upstream state.

Supersonic Sheet Subsonic Sheet
1.0 Uy = upstream shock speed 1.0
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Upstream stationary point is U Downstream stationary points are D23 and D24
-1.0 Dashed circle is an unused stationary point that cannot accept trajectories from U -1.0 D23 is slightly inside the subsonic boundary
red circles are transonic points where a certain trajectory can pass smoothly from supersonic to subsonic sheet
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
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Figure 22: Sample general phase plane vector fields for a shock family with upstream point U. Station-

. - dB, . . .
ary points shown as small circles are where ——* and ‘fif = equal zero. Shocks are trajectories connecting
n n

stationary points. Dashed circle is unable to accept trajectories from U. On the supersonic sheet (left
panel) u, > a, on the subsonic sheet (right panel), u, < a, where a is the local sound speed. On
the red boundary u, = a. Sheets overlie each other with connection being by an entropy increasing
gas dynamic jump, keeping B, and B, constant, from the supersonic to the subsonic sheet or by a
particular trajectory passing through a transonic point shown as red circles.
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4.1  Supersonic and Subsonic Sheets

The significance of the sound speed in the structure of resistive MHD shocks is in the =+ sign that occurs
in the ODEs (27) and (28). To show this let a represent the ratio of the normal velocity component of

the shock to the sound speed at a point in the transition from the upstream to the downstream state

o= (100)
Taking the speed of sound as a = , /2" and using (14), equation (21) becomes

B2 + B2
B (10 L) = o

Eliminating u, from (25) and (101) gives

dB,
ol — 2(BZB£ + 47 fi dz ) ) (102)
v [B.(87f — 2B2 — BZ — B?) — 8mnf1 4]

Replacing %= in (102) using (28) gives

B2+ B?2-38 + VR
04227( TR ﬂf2) VR (103)

7<B§+B§—8ﬁf2$\/§)’

where R is the function of B, and B, inside the square root term in the ODEs (27) and (28), given by

R=~" (B, + Bi) +4[(v* - 1) B2 — 4ny* 2](B; + B2) + 2¢y*B. B2 + 321 (v* = 1) (3B + f1.f5) By

+64m2 V2 f3 + (v = D(f5 = 2/1f7))- (104)

Equation (103) shows that the positive sign before the square root gives @ > 1 with supersonic values
of u, and that the negative sign before the square root makes a < 1 the normal shock velocity being
subsonic. This classification allows the B, — B, phase plane to be considered as two overlying sheets,
the supersonic sheet, on which u, > a and the subsonic sheet on which u, < a. The common boundary
of each sheet is the locus defined by R = 0, on which u, = a. In this thesis the locus R = 0 ( with
uy = a ) is drawn in red on phase plane plots. When necessary for visual clarity, vector fields and
phase trajectories on the supersonic sheet are shown in orange and those in the subsonic sheet are in
blue. To aid visualisation in 3-D plots of the variables B, — B, — u, the supersonic surface will be

shown in yellow and the subsonic surface in blue.
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4.2 Isomagnetic Jumps

In the previous section it was shown that the B, — B, phase plane is an overlay of two sheets, su-
personic and subsonic, that have the same (B,, B,) but different u,, p and p at each overlying point.
Thermodynamically, a transition between the two sheets, keeping the magnetic field components con-
stant, is possible provided that the pre-shock state is supersonic. The transition is called by Polovin
[38] an isomagnetic jump or gas dynamic jump, the magnetic field components not changing across
the jump, the first derivatives changing in the transition according to (27) and (28) in the change
from the supersonic to the subsonic state. The non-zero constants f1,fs, f3, fs and f; are the same
on both sheets, these being determined by the upstream conditions, enabling equations (14) to (20) to
be applied to the jump. The supersonic and subsonic normal shock speeds at the phase plane point
(By,B.) are the larger and smaller roots of the quadratic (29)

v (8nfs — B2 - B?) £ VR
Uy = )
8m(y+1)f1

where R = 0 is the locus in phase space where u, = a.

(105)

For an isomagnetic transition between two states with respective normal shock speeds, pressure and

mass density values g1, p1,p1 and uge, p2, p2 equations (14) to (20) reduce to

P1rUz1 = P2Uz2, (106)
P+ pruy = p2 + pauly, (107)

1 Yy 1 5
§P1Ui1 + ﬁpluzl = inUig + ﬁpzuzz, (108)

the magnetic field derivatives in (18) and (19) causing the energy equation (20) to be written without
direct magnetic field terms, equations (106) to (108) describing a hydrodynamic shock.

Eliminating the velocity terms in (106) to (108) gives

2
atlpe g
P2 _r-ip -
p o P2 (109)
o;m
this result being the hydrodynamic case of (49).
Equation (107) can be written in terms of o = %= as
P2 14 a2 (1—’”). (110)
4! P2

When the initial state is supersonic a > 1, uz1 > ug2, p2 > p1 and from (110) ps > p;. For ;j—f > 1

and Z—f > 1 points on the gas dynamic curve Cs in Figure 2 have an increase in specific entropy in the
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transition from a supersonic to subsonic state and so are thermodynamically possible.

The mass density and fluid pressure at the magnetic phase plane point (B,, B;) are found by placing
(105) in (14) and (21). The pressure and mass density ratios respectively in terms of magnetic field

components are

p2  8mfo—B2— B2+ VR

= 111
p1 8nfo—B2—-B2—VR (1)
and
pr 1 (8nfo— By —BI) + VR 112)
p1 v (87fs — B2 —B2) - VR
The change in specific entropy across an isomagnetic jump at (B,, B;) is deduced using (54)
As | [8nfs—B) - BI+ VR v(swfz—Bj—Bg)—\/E]” 13)
— =1In .
Cy 87 fy — B2 — B2 — R |y (8nf, — B2 — B2) + VR

Figure 23 shows the increase in specific entropy in a gas dynamic jump from a supersonic state to

a subsonic state in terms of the mass density ratio r = z—f.

3.0
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- 1.5
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0.5

Figure 23: Change in specific entropy across a gas dynamic jump from a supersonic to subsonic state
in a monatomic gas.
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4.3 Transonic Flow Points

The previous section showed that a shock transition can reach a subsonic state by an isomagnetic
jump from the supersonic state. The other possible way to reach the subsonic state is via a smooth
transition in terms of By, B, u, and their derivatives and this means is only possible for a certain
set of upstream shock speeds. When u, = a the left hand side of equation (33) is equal to zero. For
a physical solution at these points the right hand side must also be equal to zero. The locus of such
points in the (B,, B,) plane is found by placing the left and right hand sides of (32) equal to zero and

eliminating u, to give the following sextic relationship in B, and B,

VBy+7[2(v+1) (2y = 1) By +97 (3B2 = 1672)] By + 87y (v +1) (27 = 1) (Befs + f1.f5) By

+ {73 [B2 (382 — 32 o) +64n™f3] + 4 (v +1)° (v = 1) By +4(2y = 1) (v + 1) B} (B2 — dnf2) } By

+87 (v +1) (Befs + f1fs) [4 (v = 1) By +7(2y = 1) (BZ = 87 f2)] By

+B? [4 (v=1)(y+1)°Bi++* (B2 - Swfg)ﬂ +2(y+1) B2 [y(2y—1) BZ (B — 87 f2) + 32n% (v — 1) f3]

+64m2 fifs (v — 1) (v + 1)° (2Bo f3 + f1f5) = 0. (114)

is of the indeterminate form %, the

du,
dx

physical value of the derivative being able to be calculated using I’Hopital’s rule.

Equation (114) gives the points in the (B, B.) plane where

Points on the common boundary of the supersonic and subsonic sheets are given by

R=0. (115)

The points on the boundary given by (115) at which (114) holds are denoted as transonic flow points,
these being the only points on the boundary where the u, derivatives have real values, allowing a

possible smooth transition to the subsonic sheet through this point.

As an example to show the determination of the position of the transonic point for a given set of
upstream parameters, Figure 24 shows the intersecting contours for the sextic (114) and the quartic
(115) for upstream conditions that will be studied in §7.6. A root finding method is used to obtain
the (By, B.) values of these transonic transition points and these are shown as red circles on the phase
plane. The phase plane (B,, B,) coordinates of the transonic transition point are shown at the bottom
left of the diagram. Two phase planes are given to show that two sets of upstream parameters can
produce the same downstream stationary points and transonic points, the upstream point swapping its
position in the B, — B, plane in each case. Each upstream point can send a different unique trajectory
through the transonic point, these being members of the 17 — 37, 17 — 4= and 1+ — 2% shock
family and the 2% — 3~ and 2+ — 4~ shock families respectively.
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Figure 24: Transonic transition points are red points on the boundary of the supersonic and subsonic
sheets (dashed red locus). These are determined numerically by finding the intersection of the sextic
dotted curve and the quartic dashed curve, the quartic being the common boundary of the sheets.
The value of d;; at each transonic point has two finite values allowing two trajectories to pass to the
subsonic sheet. For a given value of v, an identical phase plane and transonic points can be produced
for two sets of upstream parameters, one set producing a 17 — 37& 17 — 47 & 1T — 27 family and
the other a 27 — 37 & 2%¥ — 4~ family. One of the transonic values of ddL; belongs to each family.

Speeds are in terms of the upstream speed of sound.

Transonic transition points only occur for upstream shock speeds between the red equisonic curves
in Figure 3. Figure 25 shows the position of the transonic flow points, displayed as red circles, in the
B, — B, phase plane for the set of upstream parameters {1, 2, g, 1, 15°,u$1} for three values of w1,
allowing the change in the positions of the transonic points with upstream shock speed to be seen.
The green coloration represents areas in the phase plane where ddL; < 0, from (14) the green zone
corresponds to ngc > ( representing a compressive stage if the shock transition passes through these

points. The red coloration represents d;; > 0, corresponding to 3—;’ < 0, corresponding to an expansive

stage of the shock transition. The transonic points first form when the upstream shock speed equals the
equisonic intermediate speed and they progress around the boundary disappearing when the upstream
shock speed equals the downstream equisonic fast speed. Figure 25a shows an upstream shock speed
slightly greater than the equisonic intermediate speed, Figure 25b has an upstream shock speed equal
to the Jouget speed and Figure 25¢ represents an upstream shock speed slightly less than the equisonic
fast speed. For these upstream parameters {vey1, v;1, Ve }={2.28129, 2.42108, 3.2375}.

Chapter 7 will present examples of intermediate 17 — 3~ and intermediate 17 — 4~ structure with
uz1 = 2.4. These shock transitions pass through the red zone on the supersonic sheet after leaving the
upstream point and so undergo an expansive stage, or may pass through the red zone on the subsonic

sheet before reaching the downstream point in the case of a 17 — 4~ shock.
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Figure 25: Progression of transonic points in the phase plane with increasing upstream shock speed.
Speeds are in terms of the upstream speed of sound. Green represents areas where the passage is
compressive, ddTp > 0, red shows where the shock K%s an expansive stage, ddTp < 0; 2—11 =260, =15

n n



+2 {Bz

For future reference, the equation for the calculation of the first derivative of the normal shock
velocity component at the transonic transition point will now be given. The first and higher deriva-
tives at the transonic transition points are of significance as they allow the determination of the unique
shock transition from the supersonic to the subsonic sheets that passes through the transonic point. Nu-

merical values will also be given for the derivatives at the transonic points encountered in §7.2 and §7.6.

To obtain the first derivative of the normal shock velocity component at the transonic transition

poin opital’s rule is applied to the indeterminate form o , using x,, = £, giving
int I’Hopital’s rule i lied to the indeterminate f f (32 i n 2

duyg aB
32m (y+1) ff = = [(29 = 1) BY = 87y fiwe] By + 4n [(% — 1) (Bafs+ fifs) =vhi | By
n n
) dB.
+ |(2y—1)B.,B; —4nvf1 | 2B.u, = B, +W, (116)
n

where

w? = [(27 -1 Bz — 87r'yf1uz}2 (B;l + B§)+87r [(27 -1 B — 87r'yf1uz] [(2'7 — 1) (Befs+ f1fs) — vfl } 33

(=29 B2+ sy { [(1 - 20) B2 4 87
L

+87{ f1 {—4 (v+1) (B2 —4r fiug) [(v — 1) B2 — 4ny fiug | +7 [(1 — 2v) B2 + 8y fiug) B2 + 47y’ f1B. i,

+ (2’7 - 1) (Ba:f3 + f1f5) |:(27 - 1) BiBZ - 4777f1 <2Bzuw + ((jifz)] }By
n

+87 /1 { 4(y+1) (B2 —drfrug) [(y — 1) B2 — 4wy frug] + [(1 = 27) B2 + 87y fiu,] B2 + 2m2leZ§%} 5.
n
—1287° (7 + 1) i (Bafs + f1f5) [(v = 1) B2 + 27 (1 = 29) frua] %' (117)
n

Calculation of the second derivative of u, at the transonic transition point is obtained differentiating
(32) with respect to x, and applying I'Hopital’s rule twice to the indeterminate expression. A similar

lengthy procedure is followed for the third derivative.

For the set of upstream parameters {1 2, g, 1,15° 2.4} the following two sets of values are obtained

for the first three derivatives of the normal shock velocity components at the transonic transition
point, { 42, 4te, S | — [-0.3278143194, +0.2826047102, —0.1097200558} and { 4=, 4t L2 |

dx,,’ dmZ ’ dm3

{-0. 1036405795 —0. 01071224205 +0.3488002504} . The first set of derivatives will be used in §7.6.3
to show the presence of a continuous 17 — 4~ shock structure from the upstream point U on the
supersonic sheet through the transonic point to the downstream point D14 on the subsonic sheet. The
second set of transonic derivatives is associated with a unique 2% — 3~ shock structure in the same

phase plane, the upstream point now being the D12 point.

, g, 1,37°, 1.75} the sets of values obtained for the first three
derivatives of the normal shock velocity components at the transonic transition point are { figf , dd;g , dd;g =

n
{—=0.2900380969, +0.2386489913, —0.09712559249} and {—0.08781961392, +0.007298889456, +0. 07497447836} .

The first set is associated with a 1T — 4~ shock in the phase plane, its origin being an unused sta-

For the set of upstream parameters {1 2
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BZ}+87T2 [(27—1) (Bafs+ f1f5) ’Yf1 ]} ;

4B.) dB,
dzx,

dB,
dx,




tionary point in the phase plane, the second set being those of a 2% — 3~ shock in this phase plane
starting from U. The second set of derivatives will be used in §7.2.2 to show the presence of a continuous
2T — 37 shock structure from the upstream point U on the supersonic sheet through the transonic

point to the downstream point D24 on the subsonic sheet.
The first derivatives are given to high precision as these are used to calculate in succession the second

and then the third derivatives to determine the unique trajectories that pass through the transonic
point in §7.2.2 and §7.6.2.

4.4 Stationary Points as Determiners of Shock Families

legz for increasing values of x at
Y

points in the B, — B, phase plane. These plots map out the supersonic and subsonic sheets allowing

This section presents plots showing vectors giving the direction of

integration strategies to be determined in the vicinity of stationary points in the planes. The B, values

of stationary points are found by placing % =0and B, =0 in (27)

BB, +4m (2 =) (Bofs + fifs) By + [(v + 1) By — 87y fo B2 — 167 (v — 1) (f5 — 2f1f7)] B,

+8m(Byfs + fifs) [(v+ 1) B — dnyfa] By + 167° (v + 1) (B f3 + fifs)? =0. (118)

Expressing the constants in (118) in terms of the upstream density, pressure, shock speed and transverse
magnetic field component using (14) to (20) allows the upstream transverse magnetic field component
By to be factored out of (118)

(By = By1) {B2By + By1 [(v = 1) B — d7py (v — 2) ugy] By + (BZ — dmpruz){(v + 1) B — 7By,

—47 [29p1 + p1 (v — D w2y }By — (v +1) (B2 — dmpru?,)”* By} = 0. (119)

Due to the quartic nature of (119) with real coefficients, as the upstream value of B, is one solution
there can be either one other real solution or three other real solutions. The presence of stationary
points in the phase plane does not guarantee that a MHD shock transition can occur from the given
upstream state to a particular stationary point. The direction of the vector fields in the vicinity of
the stationary point determine whether a numerical integration from the upstream point with a small
step-off can reach the stationary point, or in some situations for computational ease, an integration
out of the stationary point with a small step-off can proceed in the phase plane to the upstream state.
Aside from being a numerical integration indicator, as the positive direction of x in this Thesis is
defined to be from the upstream to the downstream state, the arrows in the vector fields point in the

direction of entropy increase due to the irreversible nature of a shock.

To gain insight into how the stationary points are determined and the possible shock transitions

between them, it is useful to express (119) in terms of ay, By1,7, p1,601 and u,1 as given by (84)-(86),

(By — By1) { By, cot® 1 By + [4mp1 (2 = 7) Byruz, + (v — 1) By,

cot? 91] B;—l—
+ (4mpyuy — le cot? ) {’yBgl +dmpy [(v— D uZy +2a3] — (v + 1) le cot? 601} B,

2
— (v +1) By (4mpruly — By cot®6y) "} = 0. (120)

(0]



For (120) to have four real solutions for B, giving four stationary points in the B, — B, plane, the
discriminant must be greater than zero. For two real solutions and two stationary points the discrimi-
nant is less than zero. The discriminant of (120) is a quartic in u2;. The inequality to determine the
domain of upstream speeds for each number of stationary points is solved numerically using a root
finding method.

Figure 26 shows the solutions to (120) for the upstream values values a1 = 1, by = 2, v = %, p1 =1
for six representative upstream shock angles. Supersonic values are shown in orange, subsonic in blue.
The horizontal line in each case represents the upstream transverse magnetic field component B,;. The
number of stationary points in the By — B, phase plane at each upstream speed is the number of verti-
cal intercepts. When the upstream speed equals the upstream slow or fast speed a double root occurs,
these two stationary points coincident on the B, axis. When the upstream speed equals the upstream
intermediate speed, four real solutions occur, two belonging to a double root. At the upstream Jouget
speed the graph has a vertical tangent with four real solutions for B, a double root occurring at the
point of tangency. At the point of vertical tangency at the lower speed four real solutions for B, also

occur, two being a double root.

A linear analysis about the upstream stationary point shows that B, and B, have the following de-
pendence on the upstream sound, slow, intermediate and fast speeds. This was given by Coroniti
[39].

dé By (uil - 9)201) (Uil - 031)

= 0B 121
dy Uy (u2) — af) v (121)

2 2
B _ (e~ ) 5 (122)
dzx,, Uyl

Equations (121) and (122) predict the nature of the upstream, or downstream stationary point using
appropriate downstream values, with the signs of the coeflicients of 6B, and JB, indicating whether
B, and B, are increasing (4) with phase plane vectors outwards, or decreasing (—) having inwards
pointing phase plane vectors, for increasing x,,. In Figures 7-13 the signs in the square brackets in the
shock labels designate the nature of the shock transition for the particular upstream and downstream

states. The first sign in brackets is that of the B, eigenvalue and the second that of the B, eigenvalue.
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5 Fast Shocks

In this chapter the structure of “stand alone” fast MHD shocks will be presented. These are fast
shocks produced by upstream speeds greater than the Jouget speed, the latter being the maximum
speed at which two downstream states can occur. In this case the MHD B, — B, phase plane has only
two stationary points, either two on the supersonic sheet or one each on the supersonic and subsonic
sheet. The structure is determined by numerical integration of the first order ODEs given in Chapter
2, which will be simplified for the case of a fast shock since B, = 0 throughout the shock. As in other
chapters investigating shock structure, the numerical method used is the eighth order Runge-Kutta
method of Dormand and Prince. As the upstream state is always supersonic the downstream state may
be supersonic or subsonic, so there are 1t — 2% and 1T — 2~ transitions. The distinction between
supersonic and subsonic transitions is determined by the presence of the equisonic point in the flow
regime where the downstream normal flow speed is equal to the downstream speed of sound. The
location of this point where the downstream normal flow and sound speed curves cross, as shown in
Figure 10 , is found by placing as = uzo in (52) and solving the resultant quintic equation in wgs.
The corresponding upstream speed u,1 is then found by solving (46). For designatory purposes, as in
earlier chapters, the supersonic state will be designated by the + superscript and the subsonic state

by the - superscript.

5.1 Fast 1T — 27 Shocks

This section presents the structure of fast supersonic to supersonic shocks in the speed domain where
intermediate shocks are not formed, the B, — B, phase plane having only two stationary points. This

will be done in two parts, presenting the structure of oblique and perpendicular fast shocks.

The oblique shock example presented here shows structures produced in the upstream speed domain
of vj1 < ug1 < vey1. For the upstream conditions a; =1, by =2, v = g, p1 =1 and 6; = 15°, as shown
on Figure 10, the Jouget speed is given by v;; = 2.42108, producing a downstream normal shock speed
of 1.11101 and downstream sound speed of 1.5998. The fast domain equisonic speed for these upstream

conditions is vef1 = 3.2375 producing a downstream normal flow speed of 1.59793.

The perpendicular shock example is for the upstream conditions a; = 1, by = 2, v = %, p1 =1
and 67 = 90°, the upstream-downstream speed relationship being shown on Figure 13. Fast supersonic
to supersonic shocks are produced in the speed domain between vy = 2.23607 and the equisonic fast

speed vep1 = 5.17456. The downstream speed at the equisonic speed is 2.15385.

5.1.1 Oblique Shock Phase Space and Shock Structure

In this subsection vector fields and shock structures will be presented for the case when only fast
shocks can form in the B, — B, plane. This occurs when the upstream shock speed is greater than the
Jouget and upstream fast speeds, the phase plane only having two stationary points between which a

transition can be made.

For the set of upstream parameters {1, 2, %, 1,15°,2.7}, Figure 27 shows the vector fields with two su-
personic stationary points, the upstream speed being less than the fast equisonic speed, u,; < 3.2375.
A trajectory in the phase plane can link with the downstream stationary point through a passage along

the By axis, the transition having zero B, component with |By2\ > |By1| and BysBy1 > 0. From Figure
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Figure 27: Phase plane vector fields having two stationary points on the supersonic sheet allowing a
unique trajectory between them, a 17 — 2% shock; % =2,0; =15° =t =27

5(c) via < ug2 < V2, the transition is designated as a supersonic to supersonic 1 — 2 shock fast shock,

or more compactly as a 17 — 21 shock.

The structure of a fast oblique shock is the variation in its flow variables By, u,,p and As between its

upstream and downstream states. The variation in the upstream transverse magnetic field component

B, is obtained by numerically integrating an autonomous first order ODE (27) for ‘;f:. The phase
plane diagram in Figure 27 shows that a linkage between the upstream stationary point U and the
downstream stationary point D12 is only possible via a passage in the direction of the vectors along
the B, axis. Numerically the linking trajectory is found by carrying out an integration along the B,
axis from a point close to the upstream source point to a point close to the downstream saddle, the

arrows giving the direction of variation in B, and B, for increasing values of .

The B, magnetic field component and the u, velocity component are both set equal to zero through

the shock transition allowing equations (15) to (20) to be written for the case of oblique fast shocks as

BZ
Sy L= 123
- +p+ fiu fo, (123)
BB
— 47Ty + fluy = f3v (]‘24)
dB
Byuy — Bguy, — nd—xy = fs, (125)

anBy

=20 = fr. (126)

¥ 1 9 1
- lpuw + EumBy — EBIByuy —
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Eliminating p,u, and ug from (123) to (126) using x; defined by x, = 7 and taking the positive

branch of the square root as the integration is only carried out on the supersonic sheet gives

aB, 1 _ _ .
T = SR T D (Befs i) VB) + By[87yfa —2(y + 1) Bl

+By\/647r2 (V2 /3 + (72 = 1) (f3 — 2f1f7)] + 327 (42 — 1) (Bofs + f1fs) By + 4[—4ny2fo + (v* — 1) B2 B2 + 2B} }.
(127)

The constants f1, fa, f3, f5 and f; are determined for the numerical integration from (95)-(99) using

the given upstream conditions.

Equation (127) was integrated numerically from the upstream point with speed of u,; = 2.7 for
the upstream conditions a; =1, by =2, v = %, p1 =1 and 6; = 15° using a step-off in B, of 4+0.001.
The mass density ratio across the shock determined using the jump conditions is 1.553. The normal
flow speed was found using (124) and (125) which was then used to calculate the gas pressure using
B2

Y
87

(123). The results of the integration, presented in four plots showing By — ug , uy — z, , %S —p/

and 22 — g are shown in Figure 28.

Co

The transverse upstream magnetic field component undergoes a monotonic increase through the shock
and the normal velocity flow component decreases monotonically through the shock. The magnetic
pressure at all points through the shock is greater than the gas pressure. The change in specific entropy
shows a monotonic increase through the shock. The dominance of the magnetic pressure over the gas
pressure that occurs in this type of shock is not entirely due to the supersonic nature of the flow. In
§5.2 on oblique supersonic to subsonic fast shocks, it will be indicated that the downstream magnetic

pressure is greater than the gas pressure for a range of speeds from the equisonic point.
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5.1.2 Perpendicular Shock Phase Space and Shock Structure

5
53
points in the B, — B, phase plane for all upstream speeds. The downstream shock and sound speeds

For the upstream parameter set {1,2, 2,1,90° u,1 } Figure 26(f) shows that there are two stationary

for this parameter set are shown in Figure 13.

Despite the existence of stationary points for all choices of u,;, shock transitions are possible only
when uz1 > vf1. For uz1 < a; the upstream stationary point is a source on the subsonic sheet and the
downstream point is a source on the supersonic sheet. From entropy and phase trajectory consider-
ations a gas dynamic jump and passage to the stationary point is not possible. For a; < uz1 < vy
both stationary points are on the supersonic sheet, the upstream point being a saddle with a negative
B, eigenvalue and positive B, eigenvalue, the downstream point being a source. Phase trajectories
from the upstream point are unable to link along the B, axis with the downstream point so a shock
transition between the two stationary points is not possible. Figure 29 shows the phase plane vectors

before a shock can form.
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Figure 29: Phase plane vector fields with two stationary points before supersonic to supersonic per-
pendicular shock formation, trajectories from U being unable to reach D, 1 < %1 < Ui g

a1’ ai
0 =90°, “=t =2
1
As the upstream shock speed increases the stationary points merge at the fast speed and swap
roles, the upstream point becoming a source in structure and the downstream point a saddle. Figure
30 shows the phase plane structure for the case when u;; < vf1, the equisonic speed in this case being

5.17456. Phase plane trajectories from U are able to link with the downstream stationary point by a
B

B
this case produces a downstream to upstream mass density ratio of 2.

passage along the B, axis, the transition being a fast shock as > 1. The upstream shock speed in
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ay
The structure of a perpendicular fast shock is found by formulating the steady state resistive MHD
equations for the special case of §; = 90° and numerically integrating the governing ODE. As the
phase plane diagram in Figure 30 only allows a transition from the upstream source to the downstream
saddle point by an integration along the B, axis the structure equations for a perpendicular shock are
found by placing B, = 0 and B, = 0 in (15) to (20)

2

By
o TPt S = fa, (128)
v

Byum —N— = f5a (129)

1 vy 1 n _ dB
iflui + - 1pu1 + EuzBi — EByd_ffy = f7. (130)

Eliminating p and u, from (128) to (130) and using z,, = 7 gives for the case of supersonic flow
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dB
8w (v+1) f17d$y =-8r(v+1) fifs —1B;
n

+ By {87rfyf2 + \/647r2 (V3f2 —2(v*—=1) fif7] + By [3271' (v2—1) f1fs — 1672 f2By + ’yQBzﬂ } .
(131)

Equation (131) was integrated numerically from the upstream point to the downstream point for
the upstream speed of u;; = 4.12311 for the upstream conditions a; = 1,b; = 2,y = g and p; = 1.
The results of the integration, started using a step-off in B, of +0.001 from the upstream stationary

point are shown in Figure 31.

Figure 31 shows the transverse magnetic field component, the rate of change of mass density, the
gas and magnetic pressure and the increase in specific entropy through the shock. All flow variables
vary smoothly from the upstream to the downstream point as the entire transition occurs on the su-
personic sheet. As the shock is classified as fast, Bys > B,1 with no change in sign. The mass density
increases through the shock and the magnetic pressure is greater than the gas pressure at all stages.
The transition is physically possible as the change in specific entropy between downstream and up-

stream is positive, its gradient being positive through the transition.
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5.2 Fast 1T — 2= Shocks

In this section the structure of fast supersonic to subsonic shocks, formed with only two stationary
points in the B, — B, phase plane, will be presented. It will be shown that the only path for the
transition between the upstream and downstream source points is by passage along the B, axis on the
supersonic sheet followed by an isomagnetic jump to the downstream point on the subsonic sheet. The
jump has an associated increase in specific entropy. As in the previous section, the presentation will

be in two parts considering the oblique and perpendicular cases.

For the the upstream conditions a; = 1, by = 2, v = %, p1 = 1 and 6, = 15° | as shown in Fig-
ure 10, the speed domain for 1t — 2~ shocks is uy; > 3.2375. For the upstream conditions a; = 1,
b =2,v= g, p1 = 1 and 0; = 90°, as shown in Figure 13, the speed domain for a 17 — 2~ shock is
Uz1 > 5.17456.

The shock structures that follow are typical, with one exception, for those in the speed domain
Ug1 > Ves1. The exception is that the downstream gas pressure is greater than the downstream magnetic
pressure for u,; > 3.72187 in the case of the oblique shock and u;; > 6.76915 for the perpendicular

shock in the cases studied here.

5.2.1 Oblique Shock Phase Space and Shock Structure

When the upstream shock speed equals the equisonic speed the previous downstream saddle becomes
a source on the subsonic sheet and the possible transonic transition point, denoted by the red disc in
Figure 27, disappears at the B, axis. Figure 32 shows the phase plane vector fields with a stationary
point on each of the supersonic and subsonic surfaces, the upstream shock speed being greater than
the fast equisonic speed. Trajectories from the upstream state can only reach the downstream source
by a phase plane passage along the B, axis followed by a gas dynamic jump to the downstream point

on the subsonic sheet.
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Figure 32: As for Fig 27, now with one stationary point on each sheet allowing a unique 17 — 2~ shock
having a gas dynamic jump to the downstream point, a 17 — 2~ shock; % =2, 6, =15°, %3”11 =34

The internal structure of the oblique fast supersonic to subsonic shock is determined using (128) to
(130) after numerically integrating (131) along the B, axis on the supersonic sheet with an isomagnetic
jump to the subsonic sheet at the downstream point. The upstream shock speed is u,; = 3.4 with
the conditions a1 = 1, by = 2, v = %, p1 = 1 and 6; = 15°. The numerical solution of (127) to
determine the variation in B, through the shock was started using a step-off of 4-0.001 in B, and was
terminated when |B, — Bys| < 1075, A gas dynamic jump occurred at the end of the integration to
the downstream state to produce the structures shown in Figure 33. The increase in the value of %5
between the pre-jump value and the downstream value is +0.000497263. For greater upstream speeds
the difference in %‘9 across the jump is greater, for example if u,; = 3.8, the difference is +0.0173081.
This is to be expected as in the limit at uz1 = ves1 the jump is at the common boundary is absent

giving As = 0.
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5.2.2 Perpendicular Shock Phase Space and Shock Structure

Figure 34 shows the phase plane for a supersonic to subsonic perpendicular shock transition with
Uzl > Ves1. The downstream stationary point is a source on the subsonic sheet, its B, eigenvalue
having reversed direction when it joined the subsonic sheet according to equation (121). Phase plane
trajectories from the upstream point can only reach the downstream point after passage along the B,
axis on the supersonic sheet followed by a gas dynamic jump to the downstream point on the subsonic
sheet. The upstream shock speed was chosen to produce a downstream to upstream mass density ratio
of 3.
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Figure 34: As for Fig 30, but with uyz1 > ves1, a perpendicular 17 — 27 shock having a gas dynamic
jump to the downstream point on the subsonic sheet; 6; = 9007“(1’—”11 = 7.54983

The variation of B, through the shock from the upstream to the downstream state for the per-
pendicular supersonic to subsonic shock is determined by the numerical integration of (131) along the
B, axis in Figure 34 from the upstream source to B, = By where an isomagnetic gas dynamic jump
occurs to the downstream source on the subsonic sheet. The upstream shock speed is 7.54983 with
upstream conditions a; = 1, by = 2, v = %, p1 = 1 and 6; = 90°. The step-off value in B, to start
the integration is +0.001 and the integration is carried out over a scaled length distance of 1.4506
before reaching the downstream point, the integration being terminated when | B, — Bys| < 1075, The
structures produced by the integration with velocity and pressure determined using equations (129)
and (128) respectively are shown in Figure 35. The change in %}S across the gas dynamic jump to the
subsonic sheet is 40.0460743. When upstream speeds closer to the equisonic speed are considered on
is smaller. If u,; = 6 the change in 22 is 4+0.00307424.

As

Figure 13, the change in A

Summary
Fast shocks occur when the shock speed is greater than the fast MHD wave speed. Fast shocks have
|By2| > |By1| with Bys x By1 > 0. The group of fast shocks considered in this chapter have two

stationary points in the phase plane, this occurring when the shock speed is greater than the Jouget

89
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speed. Fast shocks are of two types 1T — 2% and 1t — 27. Each of these has a unique structure,
the 17 — 2% being smooth supersonic flow and the 1+ — 2~ being supersonic ending with an entropy

increasing gas dynamic jump to the downstream subsonic state.

The next chapter considers the situation when two or four stationary points may be present in the

phase plane, the transitions between two of the stationary points being a slow shock.
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6 Slow Shocks

This chapter presents the phase space vectors and structures for slow shocks. Slow shocks are produced

when vy < uz1 < v;1 and 67 # 0° or 90°. The downstream state is always subsonic so the trajectories

linking the upstream and downstream points are either confined entirely to the subsonic sheet or start

with a gas dynamic jump at the upstream point to the subsonic sheet in the case of a supersonic to

subsonic slow shock. In both cases the general ODE (27) can be formulated for numerical integration

of slow shock structure by placing B, = 0 and choosing the negative branch of the square root corre-
z

sponding to the subsonic sheet. Placing z, = 0 gives for the slow shock ODE

dB 1
W: - m{—sw (v +1) (B fs + f1fs) — By + By[8mvfo — 2 (v + 1) B2

B\ [64m2 (22 + (42 — 1) (f — 21f2)] + 327 (12 — 1) (Bafs + fufs) By + 4l—4m72fo + (12 — 1) B|BE + 2B} }.
(132)

The constants f1, fo, f3, f5 and f7 are determined from (95)-(99) by the specified upstream conditions.
In Chapter 5 this was the governing ODE for fast shocks, but with the positive branch of the square

root.

6.1 Slow 3= — 4~ Shocks

This section presents the phase space and structure of a slow subsonic to subsonic shock, which is
produced when vg) < ug1 < ay for 1 # 0° and 6, # 90°.

Before giving examples of the phase space, it is informative to show the phase space at upstream
speeds slightly less than the slow MHD wave speed, the slow speed being the minimum upstream

disturbance speed to allow a transition between the upstream and downstream states.

For the set of upstream parameters {1,2, %,17 15°7ux1} the upstream slow speed is 0.955613. For
these parameters a numerical solution of (120) shows that two stationary points occur in the phase
plane when wu;; < 1.9197. Figure 36 (a) shows the B, — B, phase plane structure for an upstream
flow speed of 0.9, this being less than the value of u;; at the intersection of the extended u,o and as
curves in Figure 10, the intersection being at u,; = 0.913881. When u,; = 0.9 a stationary point is
on each sheet, upstream trajectories being unable to leave the sink directly or by a gas dynamic jump
due to the entropy change from the subsonic to supersonic sheet being negative. Figure 36 (b) shows
the phase plane when the upstream shock speed is slightly less than the upstream slow speed. Both
stationary points are on the subsonic sheet and an integral curve representing a shock transition is not

able to link the upstream and downstream points due to direction of the vector fields.
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6.1.1 Phase Space for 3= — 4~ Slow Shocks

5
’ 3
and four stationary points occur when 1.9197 < uy;; < 2.42108. The four stationary points are present

For the set of upstream parameters {1, 2,32,1,15°, uzl} two stationary points occur when u,; < 1.9197
in the interval between the vertical tangents to the downstream shock speed graph in Figure 10, the
upper limit being the upstream Jouget speed, u1. As the upstream slow and intermediate speeds for
these conditions are 0.955613 and 1.93185 respectively, two stationary points are present for most,
98.76%, of the slow shock speed domain.

Figure 37(a) shows the phase plane for the case of the upstream shock speed being slightly greater
than the slow speed so that the upstream shock speed is subsonic. The upstream stationary point is

now closer to the red subsonic boundary, inside of which the magnetic field derivatives are complex,
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the downstream stationary point being further from the boundary. Figure 37(b) shows an enlarged

view of the stationary points, the vector fields from the upstream saddle allowing a trajectory from

the saddle to the downstream sink.
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Figure 37: As for Fig 36, but for vs; < uyz1 < a1. A unique trajectory, a 3— — 4~ shock, links the

upstream and downstream states; b—ll
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6.1.2

=2, 0 = 15°, % = 0.97

Subsonic to Subsonic Slow Shock Structure from Numerical Integration

Representative slow shock structures are shown in Figure 38 for the set of upstream parameters

5
{1»27 3

1,15°,0.97}. The first order ODE (132) was solved numerically by taking a step-off from the

upstream stationary point of —1 x 107 in B, with the integration direction being along the positive

x direction. The small step-off was chosen to show the gradual change in the shock variables from the
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upstream point. The numerical integration was terminated when |B, — Bys| < 1077,

. . . . B?1B?
The results of the integration, presented in four plots showing By vs s, Uy VS @y, As g p/ : Py and

o 87
% vs x are shown in Figure 38. In the slow shock case the downstream stationary point in the phase
plane, as indicated in Figure 37 (b), is such that B,y < By, with both the same sign, the numerical
integration showing that u, is a monotonically increasing function of B,. At all stages in the shock %
and % are positive. The gas pressure undergoes a slight increase across the shock and the magnetic
pressure undergoes a slight decrease, at all stages being greater than the gas pressure. The change in

P1
transition, the difference being in the sixth decimal place at the downstream point.

specific entropy through the shock profile shows a monotonic increase due to (L)'y < pﬁl through the
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6.2 Slow 3™ — 4~ Shocks

This section presents the phase space and structure of a slow supersonic to subsonic shock, which
occurs when a; < ug; < by cosfy, by cosfy being the upstream intermediate speed, for 6; # 0° and
01 # 90°.

6.2.1 Phase Space for 3* — 4~ Slow Shocks

Figure 39 shows the phase plane structure for three shock speeds between a; and vg; where vy is
a speed slightly smaller than the intermediate speed. In this speed domain the phase plane contains
only two stationary points. The speed designated as vy is the smaller positive solution of equation
(53), the larger positive solution being the Jouget speed, v;i. In Figure 39 (a) phase trajectories in
the positive x direction are unable to leave the upstream sink in the supersonic plane, the only way
to link to the downstream point being an immediate entropy increasing gas dynamic jump from the
upstream state to the subsonic sheet with a phase trajectory leading to the downstream sink. At the
downstream point By, has the same sign as By; and |Bys| < |By1|. The supersonic boundary has a
dus has the indeterminate form of 8.

dx
These points are first present when u,; = a; and form on the B, axis at the point on the boundary

kidney bean shape with the red circles representing points where

closest to the stationary points. When the upstream speed becomes supersonic the upstream saddle of
the subsonic flow domain changes structure to a sink according to (121), the B, eigenvalue changing

direction across the upstream sound speed.

Figure 39 (b) and (c) show the effect of increasing the upstream shock speed on the phase plane
structure. As the upstream shock speed is increased the kidney bean evolves into a sideways U shape,
the U gradually enclosing the stationary points with finally the red circles meeting on the B, axis when
Uz = 1.84373 to form an annular type region enclosing the stationary points. The inner boundary of
this region in the B, — B, plane is the common boundary of the supersonic and subsonic sheets inside

of which the shock transitions occur. In the annular region the magnetic field derivatives are complex.
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sheet is followed by a trajectory to the downstream point. This unique transition is a 3+ — 4

shock. vk is the maximum shock speed to form t

b _

Figure 39: As for Fig 36, but a1 < w1 < vg1.
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The phase plane structure for upstream shock speeds slightly less than the intermediate speed v;;
5
530
occur when 1.9197 < u,; < 2.42108, this interval covering 1.24% of the slow shock speed domain in

will now be outlined. For the set of upstream parameters {1, 2,2,1, 15°,uw1} four stationary points
Figure 10. Figure 40 (a) shows the presence of the four stationary points, two of the stationary points
on the supersonic sheet not being accessible by trajectories from the upstream point. The only possible
transition is a slow shock consisting of a gas dynamic jump at the upstream point to the subsonic sheet
with the phase trajectory moving along the B, axis to the downstream point, the downstream value

By being the same sign as By with |Bya| < |By].

Figure 40 (b) shows a closer view of the supersonic stationary points, the “unused” stationary points
being a saddle and a source, both of these being unable to link with trajectories leaving the upstream
source. In terms of entropy, transitions from the upstream point to the other two stationary points
on the supersonic sheet involve a decrease in specific entropy and so are not possible. If the middle
unused stationary point is taken as the upstream state and the other unused and current upstream
state are downstream states a fast shock can occur from right to left between the former unused states.
In this case an intermediate shock links the new and former upstream states. These transitions will be

examined in the next chapter.
When the upstream shock speed excedes the upstream intermediate speed the upstream state changes

from a sink to a saddle point due to the coefficient of B, in (122) changing from — to + across the

intermediate speed.
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Figure 40: As for Fig 36 but vg; < uz1 < bycosfy. A unique transition with a gas dynamic jump from
U to the subsonic sheet followed by a trajectory to the downstream point. This unique transition is a
3" — 47 shock. 2 =2,0; = 15° %L = 1.925

When the upstream shock speed equals the upstream intermediate speed and the density ratio is
greater than 1 (45) predicts that the downstream transverse magnetic field component is zero, yielding a
switch-off shock. Equation (120) predicts that the stationary points on the By axis are {—By1,0,0, By1 }
when uz, = v;1. The first solution belongs to a rotational discontinuity for which » = 1. In this case
the transverse magnetic field component rotates through 180° across the discontinuity. One of the zero
solutions is associated with an r value less than 1, this having an entropy decrease and so not being a

viable shock transition. The other zero solution for Bys on the subsonic sheet is the downstream value
) %a
are shown in Figure 41. The switch-off shock is formed by a gas dynamic jump from the supersonic

for a switch-off shock. For the upstream parameters {1, 2,2,1,15° by cos 01} the phase plane vectors

upstream point U in the By — B, phase plane to the subsonic sheet where the phase trajectory links
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to the downstream point D.
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6.2.2 Supersonic to Subsonic Slow Shock Structure from Numerical Integration

This subsection presents the structure of a 3% — 4~ slow shock as determined by numerical integra-
tion. For the set of upstream parameters {a1,b1,~, p1, 61, us1} a slow supersonic to subsonic shock is is
produced when a1 < ugz < by cosfy, by cos 1 being the intermediate speed, for #; # 0° and 6; # 90°.

The B, — B, phase plane vector fields are shown in Figure 39. To determine the structure by numerical
5
’» 30
with a gas dynamic jump from the supersonic upstream point to the subsonic sheet and then follows

integration the upstream parameter set {1, 2,%,1,15°, 1.5} will be used. The integration commences
the vector field to the downstream point as shown in Figure 39(a), the transition having zero B, com-
ponent. The results of the numerical solution of (132) are shown in Figure 42. The gas dynamic jump
at the upstream point greatly reduces the normal velocity component of the shock causing a large
increase in the gas pressure according to (21). An increase in the upstream shock speed has the effect
of increasing the gas pressure in the subsonic state, the downstream gas and magnetic pressures being
equal when u;; = 1.592 and the gas pressure exceeding the magnetic pressure at all subsonic stages
when u;1 > 1.694. As for the subsonic to subsonic slow shock, the change in specific entropy undergoes

a monotonic increase through the shock transition.

In terms of mass density the slow shock in this example is compressive at all stages. The gas dy-

namic jump at the upstream point arrives in a zone in the subsonic B, — B, plane where ddTp > 0, the
n

transition to D34 being through the compressive zone. Shercliff [37] states that slow shocks may have

an expansive stage, but this was never seen in the cases for b > a1 examined by the author.
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A switch-off shock has a non-zero transverse magnetic field component upstream and a zero trans-
verse magnetic field component downstream. A necessary condition for a switch-off shock is that
Uuz1 = v;1, as indicated by (45) or (94). For the set of upstream parameters {1,2,2,1,15° 2cos 15°}
the By — B, phase plane shown in Figure 41 can produce a switch-off shock when a gas dynamic jump
occurs from the upstream point to the subsonic sheet followed by passage of the phase trajectory to
the downstream point. Figure 10 shows that when u;; = v;; three values of u,o are possible. The two
largest values not corresponding to a shock solution. The largest has Bys = 0 with r < 1 with an associ-
ated specific entropy decrease. The next has By = —1 with r = 1 this being a rotational discontinuity
with downstream normal shock speed, density and pressure being the same as the upstream values.
The least of the three values of ug9 is associated with Bys = 0 and r > 1, this being a switch-off shock.

A switch-off shock is a slow shock with the downstream transverse magnetic field component being zero.

Figure 43 shows the structure of a switch-off shock determined by numerical integration of the struc-
ture ODE (132) with the upstream parameter set {1, 2, %, 1,15°,2 cos 150}. The integration in phase
space begins with a gas dynamic jump to the subsonic sheet and then proceeds directly along the B,
axis to the downstream point. The B, component undergoes a monotonic decrease towards zero, the
integration being stopped when |B,| < 1077. The gas pressure is greater than the magnetic pressure
at all stages in the shock transition after the gas dynamic jump and the change in specific entropy from
the upstream point undergoes a monotonic increase with distance through the structure along the x
axis. The change in specific entropy at the gas dynamic jump to the subsonic sheet in a switch-off

shock has the maximum value for all gas dynamic jumps in the domain a1 < uz1 < v41.

Summary

Slow shocks occur when the shock speed is between the slow MHD speed and the intermediate speed.
In slow shocks |Bys| < |By1| with Bys x By > 0. There are two distinct types of slow shock, 3= — 47,
having smooth subsonic flow throughout the transition and 3T — 4~ having an initial gas dynamic
jump followed by a smooth subsonic transition. Each type of slow shock has a unique structure. In
the slow shock speed domain additional unreachable stationary points occur in the phase plane when
the shock speed is close to the intermediate speed. One of these points corresponds to the upstream
state of an intermediate and fast shock family and familes of these shocks are considered in the next

chapter.
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7 Intermediate Shock Families

This chapter presents the B, — B, phase plane and shock transitions in this plane when four stationary
points are present in the phase plane and the upstream shock speed is greater than the intermediate
speed. The four stationary points allow multiple transitions in the phase plane creating families of

shocks possible for a given set of upstream parameters.

Intermediate shocks are defined as having their upstream normal shock velocity greater than the
upstream intermediate speed, u,; > v;1, and downstream normal velocity component less than the
downstream intermediate speed, uzo < v;2, the intermediate upstream and downstream speeds being

given by by cos 6 and bs cos 0y respectively. From (85), v;o = % , allowing (45) to be written as

By _ Lum = v (133)

2 2
By, T Uzg — Vi

Equation (133) shows that for intermediate shocks the direction of the downstream transverse magnetic

field component is the reverse of its upstream direction.

When intermediate shocks are present there are four stationary points representing potential upstream
or downstream states, one in each of states 1, 2, 3 and 4. State 1 is always supersonic and 4 is always
subsonic and depending on the choice of shock parameters there are three possibilities for states 2 and
3: both supersonic (2*,37), one supersonic and the other subsonic (27,37) or both subsonic (27,37).
Therefore the eight possible intermediate shock transitions are 2% — 3% or 2+ — 3~ or 27 — 4~ and
2= =3 or2” —4-and 1Tt = 3T or 1t =37 or 17 — 4~.

The intermediate shocks presented in this chapter exemplify the full range of intermediate shock prop-
erties and are calculated at upstream shock angles of 5°, 15°, 37° and 37° at the points indicated in
the yellow and green zones of Figure 3. The examples in this chapter will be from an upstream state
where a1 =1, by =2, v = % and p; = 1. In all numerical calculations in this chapter shock speeds

are always considered relative to the upstream speed of sound and in all numerical integrations x, = %

As intermediate shock trajectories are two dimensional in the B, — B, phase plane the thickness
of an intermediate shock in terms of z, is greater than those of a fast or slow shock. This is due to
the greater accumulation of increments of Az, between neighbouring points on the two dimensional

B, — B, phase trajectory as it travels from the upstream to the downstream point.

The intermediate shocks presented in the first three sections of this chapter are 2 — 3 and 2 — 4
shocks. In this case, for the specified upstream conditions, only two stationary points are reachable by

a trajectory from the upstream point.

The intermediate shocks presented in the last three sections of this chapter are 1 — 3 and 1 — 4
shocks. In this case three downstream points are accessible by integral curves from the given upstream

stationary point. Two of the downstream stationary points can be reached by a trajectory that forms
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an intermediate shock, either 1 — 3 or 1 — 4. The third downstream stationary point is reached by a
trajectory representing a fast shock, a 1 — 2 transition. The properties of these associated fast shocks

are the same as those presented in Chapter 5 and so are not considered here.

7.1 Intermediate 2* — 3" and Intermediate 2 — 4~ Shock Family

This section presents the B, — B, phase plane vector fields and the variation in the state variables in the
transition from the upstream state to the downstream state as determined by numerical integration.
The upstream parameter set that determines the family is {1, 2, g, 1,15°,2}, as for the slow 37 — 4~
shock in §6.2 but now the upstream speed is greater than the intermediate speed. Equation (122)

predicts that 35; changes sign around the upstream stationary point, causing the upstream sink of
the slow shock domain to becomes a saddle. A pair of trajectories trajectories can leave the upstream
state in the B, direction and link to a previously unconnected supersonic stationary point in the same
plane creating a 2% — 37 transition, or leave in the B, direction and undergo a gas dynamic jump at
any point on the supersonic sheet to the subsonic sheet the trajectory then linking to the downstream

sink as a 2t — 4~ transition.

The example given in this section uses the upstream speed at the black dot on the 15° line in the

yellow zone of Figure 3.

7.1.1 Phase Plane

Three stationary points lie on the supersonic sheet and one on the subsonic sheet. The upstream point
is a saddle allowing a connection with the negative B, value downstream saddle through the separatrix
as shown in Figure 44(a), the transition being an intermediate 2 — 3 shock. The second stationary
point with a positive value of By is a saddle and is unable to link by a phase trajectory with the

upstream point as shown in Figure 44(b), a transition from U to this point would decrease entropy.
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Figure 44: Phase plane vector fields having four stationary points allowing a unique 2+ — 3% and
a one parameter family of 2+ — 4~ intermediate shocks. First row shows the region inside the red
transonic boundary where the flow derivatives have real values. Second row is a close up view of the

region around the upstream point; % =2, 60, =15° ’;—’11 =2

7.1.2 2T — 3T Shock Structure from Numerical Integration

For the upstream parameters in §7.1.1 the autonomous system of ODEs (27)-(28) was integrated nu-
merically using the high order Dormand and Prince Runge-Kutta method from the upstream state to
the downstream state using step-off values of +0.001 in B, from the upstream point. The upstream
point is a saddle point in the B, — B, plane so there is one integral curve for +B, from the upstream
saddle to the downstream sink and one for —B,. The unique solution is along the separatrices linking

the upstream and downstream point.
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Figure 45(a) shows the variation in both magnetic field components, B, and B, through the shock.
The upstream magnetic field component B,; undergoes a monotonic decrease through the shock to

its downstream value Bys. The B, component starts and finishes at zero, reaching its maximum value
dB,
d

slightly after has its lowest value. Figure 45(b) shows the two integral curves from the upstream

n

point to the downstream point. As the right hand side of (28) is an odd function of B, the integral
curve is symmetric about the B, axis. The dashed curve shows the boundary of the supersonic sheet,

this being the locus of points where the normal flow velocity u, equals the sound speed a. Inside

dB,
dxy

45(c) shows the shock transition from the upstream point to the downstream point in terms of B, B,

this boundary the derivatives ‘fif: and are real, beyond the boundary they are complex. Figure
and u,. The surface (By, B,,u;) of points where B, and B, have real first derivatives, u, being the
corresponding normal velocity flow value, is shown with a yellow top portion representing supersonic
normal flow (u, > a) and a blue lower portion representing points where a shock transition is subsonic
(ugy < a). The 2 — 3 shock transition studied in this case is the black curve drawn on the supersonic
surface from U to D23. The other downstream stationary point, D24, is on the lower blue subsonic

surface.
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7.1.3 2%t — 4= Shock Structure from Numerical Integration

The integration of the ODEs starts in a similar manner to §7.1.2 and follows the separatrix out of the
upstream saddle on the supersonic sheet. Before reaching the D23 point on the supersonic sheet the
shock can undergo an isomagnetic jump to the subsonic sheet from where it proceeds to the sink on
the subsonic surface. In this example presented here, the gas dynamic jump from the supersonic to

the subsonic sheet is chosen to occur when B, = —3.

Figures 46a and b shows the variation in magnetic field components through the shock. Figure 46¢
shows the shock in By — B, — ug1 space, the transition passing from the upstream point on the su-
personic surface to a gas dynamic jump to the subsonic surface where the transition must pass to the
sink, the only stationary point on the subsonic surface. For the given upstream conditions and shock
speed the maximum increase in specific entropy occurs when the gas dynamic jump to the subsonic
surface occurs at the upstream point and the least when the jump occurs at the D23 stationary point
on the supersonic surface. A gas dynamic jump at the D23 point to the subsonic surface produces a

slow shock transition to the D24 point.

In terms of mass density, the shock transition in this example is compressive at all stages. If the
gas dynamic jump occurs at an angle less than 90° to the B, axis a subsonic expansive stage occurs
at the end as the trajectory tracks towards D24. D24 is at the left end of a small circular zone in the
B, — B, plane where transitions are expansive, the rest of the plane being compressive. Trajectories

approaching D24 from the left avoid the expansive stage.
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Figure 46: As for Fig 45, but for a 2+ — 4~ shock of the 27 — 37& 27 — 4~ family. In this case a
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a degree of freedom, yielding a one-parameter family of solutions.



7.2 Intermediate 2t — 3~ and Intermediate 2 — 4~ Shock Family

The example given in this section uses the upstream speed at the black dot on the 37° line in the
yellow zone of Figure 3. The 27 — 3~ shock has transonic transition points present in its phase plane,
a feature not present in the 27 — 3*phase plane. The presence of the transonic flow point allows a

smooth transition between the supersonic and subsonic sheets.

7.2.1 Phase Plane

Figure 47(a) shows the phase plane structure for the case of two stationary points on each of the su-
personic and subsonic sheets, the upstream shock speed being u,; = 1.75. The upstream saddle U can
link to the downstream subsonic saddle D23 by the separatrix passing through the red circles, which
are the transonic flow points, or U can link with the downstream subsonic sink through a gas dynamic
jump to the subsonic sheet. The remaining stationary point (dashed circle) is at lower entropy and so

is inaccessible.
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Figure 3 contains gray areas representing (u,1,60;) values where a shock transition cannot occur.

Such a gray area is encountered after passing through the yellow zone on the 37° line considered in

this section so it is instructive to consider its phase space structure.

As the upstream shock speed increases the second stationary point on the supersonic sheet approaches

U and the subsonic stationary points become closer together, the subsonic pair merging at the Jouget

speed to form a double root and then absent at higher speeds until u,; > ver1 when a subsonic sta-

tionary point appears.

When the upstream Jouget speed is less than the upstream fast speed an interval exists in which

transitions from the upstream state to a notional downstream state a decrease in specific entropy. For
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uz1 > 1.76061, both being on the supersonic sheet, the previous subsonic pair having merged at the

the upstream properties {1, 2,2,1,37°, uzl} , as shown in Figure 11, two stationary points occur when
Jouget speed. Figure 48(a) shows the supersonic and subsonic phase plane for an upstream speed
ugz1 = 2, this value being between the upstream Jouget and fast speeds. Figure 48(b) is a close up
view of the supersonic stationary points indicating that trajectories from U are unable to link with the

other stationary point.

As the upstream speed increases the supersonic stationary points approach, merging when wu,; is
the upstream fast speed. Further increase in the upstream speed transforms the upstream point to
a saddle, its B, eigenvalue changing sign according to (121). The other supersonic stationary point
also changes the direction of its B, eigenvalue at the upstream fast speed due to the changes in signal
speeds shown on Figure 6(d). A phase trajectory is now able to link the upstream source with the
downstream saddle, the transition being a supersonic fast shock. The stationary points have effectively
swapped their former roles, the upstream stationary point now being a source and the downstream

point a saddle.
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Figure 48: As for Fig 44, but with 6, = 37°. In this case there are no allowed shock transitions. This
occurring for upstream shock speeds in the interval between the Jouget speed and the fast speed when
Vi1 < Uf1.

7.2.2 27 — 3~ Shock Structure from Numerical Integration

This subsection presents the structure of the shock occurring in the transition with upstream parame-
tersa; =1,bp =2,y = %, p1 =1, 0; = 37° and u,; = 1.75. The flow velocities and sound speed for
these upstream conditions are shown on Figure 11 and the B, — B, phase space structure is shown in
Figure 47. The upstream and downstream points are both saddle points, the eigenvectors being in the
opposite direction on the downstream subsonic saddle. Transonic flow points are present in the B, — B,
plane on the supersonic boundary at (—1.974348432, £3.900167662) . The first derivatives of B, and B,
at these points are —1.974348432 and +3.900167662 respectively. The normal flow velocity at this point
and its two possible first derivatives deduced from 1’'Hopital’s rule are +1.295187638,—0.2900380969
and —0.08781961392 respectively. Numerical integration shows that the larger of the two I’Hopital first
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derivatives is appropriate for the 2+ — 3~ transition at the transonic flow point. The value applies
for the case of a 1t — 4~ transition in this phase plane where the upstream point is the “unused”

stationary point of the 2% — 3~ case.

Figure 49 shows the shock structure. In the two dimensional plots (a) and (b), a transition occur-
ring on the supersonic sheet is drawn in orange and the supersonic stage of the shock is shown in blue.
The transonic flow points, through which the transition passes smoothly with the same derivatives on
each sheet, are shown as two small red circles on the junction of the supersonic and subsonic sheets
which is shown by the red dashed boundary. In (b) the non applicable first derivative point is show as
a small gray disk and the value to which the numerical integration approaches is shown as a small red

disk at the join of the orange and blue integral curves.

The determination of the shock structure was carried out by the numerical solution of (27) and (28)
in two stages. The first stage involved an integration out of the upstream point along the B, axis
using a step-off value in B, of £0.0001B,. The integration progresses in the positive x direction from
z = 0 and follows the separatrix in B, — B, space to the transonic point. The second stage involves
integrating out of the downstream point, shown as D23 on Figure 47(b), with the same step-off. As the
eigenvectors are entering the downstream point along the B, axis the integration is carried out from
z = 0 in the negative = direction and similarly follows the unique pathway along the separatrix to the
transonic point. To obtain the functional variation of B, and B, through the shock a common distance
x from the upstream point was used. For points on the subsonic sheet the distance of the sample point
from the transonic point was added to the distance of the transonic point from the upstream point on
the supersonic sheet to give a common distance  from the upstream point. A polynomial was then

fitted to the B, and B, values in terms of the distance = from the upstream point.

Figure 49(a) shows the the relationship between the transverse components of the magnetic field.

B, is a monotonically decreasing function of x,. Figure 49(b) shows the variation in ii“;’” in terms of
E n

ug. The normal flow velocity through the shock is found by eliminating w, from (17) and (19) and

placing f4 and fg equal to zero

1 47Tf1 dBZ
= B? = 134
Ua 47rf1< =T B dmn>’ (134)

the presence of the z magnetic field component allowing the transition to pass through B, = 0, a

du,
’ ’
dx,

point is found by applying (32) to the values of By, B, and u, on each side of the transonic point. An

on each side of the transonic

property only shown by intermediate shocks. The first derivative

equivalent procedure, producing little difference in values close to the transonic point in this case, is to
apply numerical differentiation to (134). The first derivative approaches the red circle in Figure 49(b)
as the numerical integration proceeds from each stationary point. The gray circle is ignored by the
numerical integration in the case of 2 — 3~ shocks, it being the point towards which the integration
proceeds for the 1™ — 4~ shock transition in this phase plane, having the unused stationary point as
the upstream point, the upstream properties in this case being a; = 0.8988059476, b, = 1.8749690733,
vy = %, p1 = 0.7846737467, 61 = 15.9084861759° and wu,; = 2.2302262658. The (gq,r) value for this
1T — 4~ shock is (6.56905, 2.36055).
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The similarity of the phase plane in the 2 — 3~ and 17 — 3™ cases will be shown in §7.6.3 where
it will be seen that the intermediate 17 — 4~ shock can pass through the transonic point when the
phase trajectory leaves the upstream point at a particular angle. The numerical integration proceeds
towards the gray circle of its first derivative for certain angles of departure from the upstream and
downstream points, the red circle being reached by a unique integral curve which has higher order
derivatives approaching their own particular ’'Hopital values. An entropy analysis by expanding about
the transonic point in a Taylor series expansion keeping up to third order terms gives positive entropy

changes on the downstream side using the derivatives at both positions.
Figure 49(c) shows the passage of the shock in B, B, u, space as a black curve from the upstream

point U to the downstream point D23. The transonic transition point is the red disk on the junction

of the supersonic (yellow) and subsonic (blue) surfaces.
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Figure 49: As for Fig 45, but with 6; = 37° and “#* = 1.75. An intermediate 2T — 37 shock of
the 2% — 37&2% — 4~ family having a unique ppfgage along separatrices and smoothly through the
transonic transition points, shown as red circles (see text)



7.2.3 2t — 4= Shock Structure from Numerical Integration

The 27 — 4~ shock structure associated with the 2T — 37 shock in §7.2.2 is shown in Figure 50.
The numerical integration from the upstream point follows the separatrix out of the upstream saddle
point, as in the case of the 2 — 3~ shock, and undergoes a gas dynamic jump to the subsonic surface
prior to reaching the transonic flow point. In the case shown here, the jump occurs at B, = —1.13244.
On the subsonic sheet the vector field, as indicated in Figure 50(a), leads the integral curve to the

downstream sink at D24.

To reach the downstream state the 2t — 4~ shocks all involve a gas dynamic jump, either before
the integral curve reaches a stationary point on the supersonic surface, as in §7.1.3, or before the
integral curve reaches a transonic transition point, as in the example just given. The position of the

gas dynamic jump represents a degree of freedom, so 2+ — 4~ shocks are a one-parameter family.
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7.3 Intermediate 2= — 37 and Intermediate 2= — 4~ Shock Family

The example given in this section uses the upstream speed at the black dot on the 63° line in the
yellow zone of Figure 3. A transonic transition point is not present in a 2= — 3~ and 27 — 4~ family

as they are restricted to the subsonic sheet.

7.3.1 Phase Plane

5
’ 30
found on the subsonic sheet and one on the supersonic sheet as shown in Figure 51(a) . In this case

For the set of upstream parameters {1, 2 1,63°,u$1} when u,; = 0.93 three stationary points are
the upstream conditions are subsonic with phase trajectories unable to access the supersonic station-
ary point. Subsonic trajectories can link the upstream source U with the saddle D23 and the sink
D24. Figure 51(b) and (c) show a close up view of the stationary points near the subsonic boundary.
The upstream B, eigenvalue is approximately 500 times that of the B, eigenvalue producing vectors
that are pointing dominantly in the B, direction. Similarly the B, eigenvalue at the saddle D23 has

a magnitude approximately 60 times that of its B, value producing arrows with a strong B, component.

As the upstream shock speed increases the location of the supersonic stationary point shifts to in-
creasing B, and the subsonic stationary points with negative values of B, approach each other to form
a double root of (120) at the Jouget speed. As the upstream speed increases past a; (121) indicates
that the upstream stationary point becomes a saddle on the supersonic sheet and the other supersonic
stationary point gradually increases in its B, value, shock transitions not being possible during this
stage as U is a sink. When the upstream speed equals the upstream fast speed the supersonic stationary
points merge forming a double root of (120). For upstream speeds greater than the fast speed (121)
indicates that the upstream point behaves as a source and Figure 6(e) shows that the downstream
supersonic stationary point becomes a saddle, allowing a supersonic fast shock trajectory from the

upstream source to the downstream saddle.
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Figure 51: As for Fig 44, but with ; = 63° and % = 0.93. In this case there is a unique 27 — 3~
transition and a one-parameter family of 2= — 41_2§ransitions. The lower rows show expanded views

of the stationary points.




7.3.2 27 — 37 Shock Structure from Numerical Integration

5
13
B, — B, plane are a source and and a saddle respectively. A linear analysis about the upstream point

For the set of upstream parameters {1, 2,2,1,63°, 0.93} the upstream and downstream points in the
gives eigenvalues of 21.9 and 0.0435 in the B, and B, directions respectively, as a result the B, com-
ponent around the upstream point is not apparent in Figure 51b. The downstream saddle point has
B, and B, eigenvalues of 2.87 and —0.0474 respectively. As a result it is easier to integrate out of the
downstream point along the x axis in the negative direction using a small step-off in the B, direction
as the B, eigenvalue is relatively greater at the downstream point. Using a step-off of £0.001 in the B,
direction the ODEs were numerically integrated in the phase plane to produce the structures shown
in Figure 52(a) and (b). The integral curve joining the upstream and downstream points represents a
unique transition on the subsonic sheet. Figure 52(c) shows the transition from the upstream state to
the downstream state in By — B, — u, space. The subsonic surface on which the transition occurs is

shown in blue.
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Figure 52: As for Fig 45, but with #; = 63° and “j‘f = 0.93. The 2= — 3~ shocks of the 27 —
37&27 — 4~ family. Diagrams show a pair of uni% transitions from upstream source to downstream
saddle.



7.3.3 27 — 4~ Shock Structure from Numerical Integration

This subsection presents the structure of the 2= — 4~ shock. This structure is unusual as B, decreases

B,
B’U

particular case is equal to zero, a feature that is absent in other types of intermediate shocks.

shortly after leaving the upstream point, the ratio ’ being very small through the shock and in a

The 27 — 4~ transition that follows is associated with the same set of upstream conditions as that
given in the previous subsection. The B, — B, phase plane structure is shown on Figure 51. The
upstream and downstream points are a source and sink respectively. Linear analysis about these
stationary points reveals that the upstream and downstream eigenvalues are {+21.9,40.0435} and
{—0.384, —0.378} respectively. To compute the integral curve it is necessary to begin by taking a small
step-off from the upstream point at an angle to the B, axis. The angle introduces a degree of freedom
into the shock structure. The magnitude of the step-off was chosen as 0.0001 and illustrative directions

were chosen to be 95° and 180° to the positive B, axis.

The 95° step-off angle was selected to compare the variation in B, with a step-off angle of 180°
to the positive B, axis. The 180° solution follows the vector field in Figure 51a and b directly from
the upstream point U to the downstream point D24 with B, = 0 throughout the transition.

The variation in density through the shock is shown in Figure 53b. The density undergoes a compres-
sive stage to a maximum value and then an expansive stage to the downstream value. The presence of
compressive and expansive zones in the phase plane was indicated in §4.3 and shown in Figure 25 for
the case of #; = 15°. The specific entropy monotonically increases throughout the transition. Figure
53c shows the transition in By, — B, — u, space, the upstream point indicated by U being slightly inside
the junction of the subsonic and supersonic surfaces. The shock is the transition, shown as a black

line, across the blue subsonic surface to the downstream point D.

The 2= — 4~ shock has one degree of freedom, characterised here by the choice of the step-off angle

from the upstream point in the By — B, plane.
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7.4 Intermediate 17 — 37, Intermediate 17 — 4~ and Fast 1" — 2= Shock

Family

The example given in this section adopts the upstream state corresponding to the black dot on the
5° line in the green zone of Figure 3. This dot lies between the equisonic and Jouget curves in the
green zone, where all three downstream stationary points are subsonic. Since at the location of the dot
uz1 > aq, the phase plane has a supersonic upstream stationary point and three subsonic downstream
stationary points. As the black dot is outside of the region between the red equisonic curves smooth

transonic transitions do not occur.

7.4.1 Phase Plane

Figure 54 shows the vector fields for the upstream shock speed of 2.92. The upstream source on the su-
personic sheet allows trajectories to link with stationary points on the subsonic sheet after undergoing
gas dynamic jumps. A trajectory can link with the greater B, value stationary point by undergoing a
gas dynamic jump at the downstream point, the transition being a fast shock. Upstream trajectories
can also reach the downstream stationary points of negative B, value by undergoing a jump on the B,
axis or in the plane to join a trajectory to the sink D14, or make a jump to the separatrix linking to
the saddle at D13.

As the upstream shock speed increases the intermediate stationary points D13 and D14 merge when

U1 = v;1 the only transition thereafter possible from the upstream point being a supersonic to sub-
sonic fast shock to the D12 point.
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Figure 54: As for Fig 44, but with #; = 5° and 72—”11 = 2.92. The upstream state lies on the supersonic
sheet, with three downstream states on the subsonic sheet. There is a unique 17 — 27 shock, a
one-parameter family of 17 — 3~ shocks and a two parameter family of 17 — 4~ shocks.
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7.4.2 17 — 3~ Shock Structure from Numerical Integration

The 1T — 3~ structure is determined by a trajectory leaving the upstream point on the supersonic
sheet at an angle ¢ to the B, axis and undergoing a gas dynamic jump over the exact point where
the separatrix leads to the downstram saddle. Computationally, the structure is determined in reverse
by a simultaneous numerical integration of the ODEs (27) and (28) from the downstream D13 saddle
stationary point on the subsonic surface with a isomagnetic jump made to the supersonic surface at a
designated point on the separatrix. The eigenvalues of the first order solution about the saddle point
are {+0.219284, —0.205137} as indicated by the direction of the vector fields in Figure 54. The integra-
tion is carried out in the negative x direction with a step-off in the B, direction of size 0.0001. After the
computational jump to the supersonic state the integration proceeds in the negative direction towards
the upstream source as it is the only stationary point on the supersonic sheet. This procedure is chosen
for computational ease due to the relative difficulty of shooting numerically from the upstream point to
the exact value of the designated point on the separatrix to enable the structure to transition towards
the D13 subsonic state.

For illustrative purposes six trajectories in the B, — B, plane are presented in Figure 55. Read-
ing clockwise from left to right in Figure 55b, the first structure is when the gas dynamic jump to
the subsonic state occurs at the magnetic field values of the D13 point. This structure does not gain
a B, component during the transition. The next structure is when the jump occurs in the (By, B.)
plane at (—4, £3.20600). The next structure displayed is when the gas dynamic jump occurs at a point
closer to the subsonic boundary in the (B, B,) plane, at (2, £6.35245). In terms of structure, the last
mentioned jump is a change from a fast 1+ — 2~ shock from the upstream point to an intermediate
27 — 37 shock to D13 as given in §7.3.2. In Figure 55b the blue curve represents the phase plane
trajectory from the D12 source point to the D13 saddle point.

Intermediate 1T — 3~ shocks have one degree of freedom in their structure this being represented

by the location of the isomagnetic jump point to the separatrix leading to the downstream saddle on

the subsonic surface.
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Figure 55: As for Fig 45, but #; = 5° and % = 2.92. Five 17 — 3~ trajectories leave the upstream
point and undergo a gas dynamic jump to the s nic separatrices leading to the downstream point
D13. The angle at which the trajectories leave 2? represents a degree of freedom yielding a one-
parameter family of shock solutions.



7.4.3 1t — 4= Shock Structure from Numerical Integration

The 1T — 4~ structure in this family is determined by two free parameters, the angle at which the
phase plane trajectory leaves the upstream point, ¢, and the point on the trajectory where the gas

dynamic jump occurs to the subsonic sheet before reaching the points.

Figure 56 shows representative shock structures for ¢ values of 0,+40°,+140° and 180°. For ¢ = 0
the jump can occur in the phase plane at any point between U and D14, and for ¢ = 180° the jump
can occur between U and D12. In Figure 56 the jump points in the phase plane for these two cases
are D14 and D12. For ¢ = £40° the jumps occur in the B, — B, phase plane at (3,+2.25485) and
(5.1,44.69022) . For ¢ = +£140° the phase plane jumps are at (—3,£3.11062) and (—3.7,£3.66279) .

The numerical solution of the ODEs (27) and (28) starts from the upstream point with a step-off
of magnitude 0.0001 into the B, — B, plane. The integration is carried out in the postive x direction
as indicated by the outflowing vectors from U on the supersonic sheet in Figure 54. On reaching the
designated jump point the integration restarts on the subsonic sheet, this being done using the negative
branch of the square root in the ODEs. The profile of the magnetic field vectors in the shock transitions
is shown in Figure 56(a) where supersonic flow is shown in orange and subsonic in blue. For clarity,
only magnetic field component profiles for positive values of ¢, with B, being positive, are shown in
Figure 56(a). The tallest peak in the profile belongs to the fast shock transition from U to D12 with a
gas dynamic jump at D12 changing the shock transition to an intermediate 2~ — 4~ transition, with-
out a B, component, on the subsonic sheet. Figure 56(b) shows the B, — B, phase plane plot of the
shock transitions. Phase plane trajectories approaching the separatrix from the saddle at D13 linking
the source at D12 must undergo an isomagnetic jump to reach the sink D14 on the subsonic surface
before the separatrix is reached. The separatrix is shown as the dashed blue curve, the supersonic and

subsonic boundary is shown as the dashed red curve.
Figure 56(c) shows the shock structures in B, — B, — u, space. Trajectories reaching the blue subsonic

surface at points other than on the subsonic separatrix curve towards the D14 point. If the isomagnetic

jump is on the separatrix the transition is a 17 — 37 intermediate shock as described in §7.4.2.

130



q = 9.36527
r=2.74807

Figure 56: As for Fig 45, but with #; = 5° and 1;—”11 = 2.92 . Trajectories leave the upstream point and
undergo a gas dynamic jump to the subsonic sheet, Jumps not to a separatrix lead to the D14 point.
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The angle at which the trajectories leave U and the location of the jump give 17 — 4~ trajectories
two degrees of freedom this being a two-parameter family of shock solutions.



7.5 Intermediate 17 — 3% , Intermediate 1™ — 4~ and Fast 1™ — 2% Shock

Family

Continuing the development of the phase plane structure associated with the upstream parameter set
{1,2, %,1,15°,u£1} considered in §5.1, §5.2, §6.1, §6.2 and §7.1, this section considers the upstream
state at the first black dot in the green zone on the 15° line in Figure 3. This point is outside the
region bounded by the red equisonic curves so that a transonic transition point on the boundary of

supersonic and subsonic sheets cannot exist.

7.5.1 Phase Plane

Figure 57(a) and (b) shows phase plane structures with three and one stationary points on the super-

sonic and subsonic sheets respectively.

In Figure 57(a) the upstream shock speed, u,; = 2.2, is less than the upstream intermediate equi-
sonic speed, which in this case equals 2.28129, as shown on Figure 10. A transonic transition point
is not produced by this upstream shock speed. A fast shock trajectory along the B, axis links U
to D12. Trajectories leaving U at an angle to the B, axis can undergo a gas dynamic jump to the
subsonic sheet and link to the subsonic sink D14 as an intermediate 1* — 4~ shock. Alternatively,
upstream trajectories from U can link to the supersonic stationary point of negative B, value by a
direct path along the negative B, axis or by a trajectory in the plane that merges with the separa-

trix entering the downstream saddle. These transitions are classified as an intermediate 17 — 37 shock.

Supersonic Sheet Subsonic Sheet

Uy = 2.2

/F
/F
7
0.5 0.5 V7
s
7

IS e s eesad
Voo o s T o od

ARG S NN N SN

J ¥ S s bt e
et e e
——————— )
A OXOR R R R
NN R R R R
(AN SN CCC N

|
o
=)
B
&)
|
o
=)
\
\
\
3
NR YRR eeIe
\
**»»w»»\\\\éi//zezrrfrr-
D oA R RN R

. B o

Bz Bz

e

Bx Bx

R

———————

-0.5 -05

e S GO RE N N WY
————————————
S
P Y]
PEP PPN
AT

downstream point D13 is slightly inside the supersonic boundary

-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5
By By
Bx Bx

Figure 57: As for Fig 44, but with “=L = 2.2. Three stationary states lie on the supersonic sheet and
one on the subsonic. A unique fast shock trajectory links U and D12. Supersonic trajectories remaining
in the plane merge with the separatrix leading to D13 producing a 1+ — 3T shock. Trajectories from
U may undergo a gas dynamic jump to the subsonic sheet giving a 17 — 4~ shock.
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7.5.2 17 — 37 Shock Structure from Numerical Integration

This subsection presents 17 — 37 intermediate shock structure in the case where the upstream and
downstream states are both supersonic as shown in Figure 57. The numerical solution of the ODEs
(27) and (28) uses a step-off into the B, — B, plane of magnitude 0.0001 from the upstream point at
various angles ¢ to the positive B, axis. Figure 58(a) shows the shock profiles in B — x,, space for
step-off angles 0°, 0.1°, 180° and 359.9°. The ¢ = 0° solution follows the direct path to the downstream
saddle D12, the transition is a fast shock. The ¢ = 0.1° solution closely follows the initial path of the 0°
solution gaining a positive B, component due to the presence of the downstream saddle point causing
the integral curve to bend sharply in By, — B, — u, space following the separatrix from the saddle point
towards the downstream sink undergoing a reversal in the direction of its B, component and so forming
an intermediate 17 — 37 shock. The ¢ = 180° solution follows a direct path to the downstream sink,
not gaining a B, component over the transition, reversing the direction and increasing the magnitude
of its B, magnetic field component. The ¢ = 359.9° step-off produces the same solution, apart from

B, and v, having opposite sign, as ¢ = 0.1° as (27) is an even function in B,.

Figure 58(b) shows the paths in the B, — B, plane. The ¢ = 0.1° and ¢ = 359.9° solutions are
shown with another 32 integral curves from the upstream point with step-off angle at 11.25° incre-

ments from the positive B, axis. Figure 58(c) shows the integral curves of (b) in B, — B, — u, space.

Intermediate 17 — 3% shocks have one degree of freedom in their formation producing non-unique

structures in the transition from the upstream state to the downstream state.
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Figure 58: As for Fig 45, but ’2—111 = 2.2 . Trajectories leave U and those remaining supersonic merge
with the separatrices to reach D13. The angle at which the trajectories leave U gives these shocks one
degree of freedom yielding a one-parameter family of 17 — 3T shocks.



7.5.3 1t — 4= Shock Structure from Numerical Integration

To reach the final subsonic D14 state the shock must undergo a gas dynamic jump in which the mag-

netic field components B,, B, and B, are unchanged but u, decreases.

The numerical integration is started as in §7.5.2 and proceeds to the selected point in B, — B, super-
sonic space where the gas dynamic jump occurs to an integral curve in subsonic B, — B, space that
leads to the downstream point D14. The jump point can be at any point along the supersonic integral
curve as there is only one stationary point on the subsonic By — B, plane, introducing an additional
degree of freedom. The latter transition structurally has a shock within a shock as initial 17 — 37
shock undergoes a gas dynamic reduction in normal flow velocity and an increase in mass density and

gas pressure at the D13 point to become a slow shock to reach the final D14 state.

By way of example, the first jump point in the transition is chosen to be at B, = —0.5. Figure
59a shows the shock profile. Magnetic field profiles are shown for three values of ¢, 0.1°,180° and
359.9°. The B, structure for the first and last step-off angles are identical. The separatrix from the
saddle point D13 is shown as the dotted orange curve in Figure 59 b. All integral curves from the
upstream point except those for ¢ = 0° and ¢ = 180° approach the separatrix. At the chosen jump
point the 30 integral curves in the 11.25° increment set have not reached the separatrix and so produce

differing subsonic shock structures. This is shown on Figure 59c.

Trajectories leaving the upstream point for ¢ > 90° undergo an initial expansive stage and then

become compressive with a final expansive stage as they approach D14.

The second chosen jump point is B, = —4.5, slightly before in the B, — B, plane the D13 point
as shown in Figure 60b and c. The magnetic field profiles for three values of ¢ as shown in Figure
60a. Figure 60c shows the 32 integral curves leaving the upstream point computed at ¢ increments
of 11.25°. These integral curves approach the separatrix from the upstream saddle linking the down-
stream supersonic sink. The separatrix is shown as the dotted orange curve. At the chosen jump point
the thirty 11.25° incremental integral curves are close together and share an approximately common
subsonic passage to the D14 point as shown on Figure 60c. The magnitude of the transverse magnetic

field component decreases as the trajectory approaches the subsonic stationary point D14.

Transitions in the second example do not undergo an expansive stage as they approach the down-

stream point.
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Figure 59: As for Fig 45, but % = 2.2. Trajectories from U undergo a gas dynamic jump to the
subsonic surface and then converge on the sink D14, For ease of visualisation, all trajectories jumped
at a common B, value. The angle at which the trajectories leave U and the location of the gas dynamic
jump gives these shocks two degrees of freedom being a two-parameter 17 — 4~ family of solutions.
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Figure 60: As for Fig 59, but now the gas dynamic jump occurs near the D13 point. 1+ — 4~ trajectories
now decrease in |B,| as they approach the subsonlig,(sink D14.



7.6 Intermediate 17 — 37 , Intermediate 1™ — 4~ and Fast 1™ — 2% Shock

Family

This section considers the upstream state at the second black dot in the green zone on the 15° line in
Figure 3. For this choice, the D12 stationary point is on the supersonic sheet and D13 and D14 lie on

the subsonic sheet.

7.6.1 Phase Plane

Figure 61 shows the phase plane with the locations of the two transonic transition points indicated on
the boundary. A fast shock transition along the B, axis links U to the D12 stationary point. Oblique
trajectories can undergo a gas dynamic jump to the subsonic sheet and link with the sink as an in-
termediate 17 — 4~ shock. If the gas dynamic jump occurs at a point in the B, — B, plane on the
separatrix connecting the supersonic and subsonic saddle points after the separatrix passes through
the transonic transition point, the transition is an intermediate 17 — 3~ shock. If the gas dynamic
jump from the supersonic to the subsonic sheet occurs at the transonic flow point a smooth transition
in terms of the magnetic field derivatives occurs this being a 17 — 4~ shock. The separatrix from the
D12 saddle point on the supersonic sheet passes through the transonic point on its way to the subsonic

D13 saddle. This phase trajectory represents a 2% — 3~ shock with D12 as its upstream point as in §7.2.
The point considered in Figure 3 is close to the Jouget curve. As the upstream shock speed increases

the subsonic stationary points merge at the Jouget speed producing no subsonic stationary points for

slightly greater upstream shock speeds as shown on Figure 26(c).
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Figure 61: As for Fig 44, but 12“ = 2.4. Two stationary points are on each sheet and transonic
transition points (red 01rcles) are present. A unique fast shock links U and D12. Supersonic trajectories
can undergo a gas dynamic jump to the separatrices and reach the subsonic saddle D13 forming a one
parameter family of 17 — 3~ shocks due to the departure angle from U. Supersonic trajectories may
undergo a gas dynamic jump to the subsonic sheet and converge on the sink giving a two-parameter
family of 17 — 4~ shocks with parameters being the departure angle from U and the location of the
jump. A smooth 1T — 4~ transition can occur through the transonic transition point (see text).

7.6.2 Intermediate 17 — 3~ Shock Structure from Numerical Integration

The computed structures in this example have upstream shock angle #; = 15° and upstream shock

speed uz1 = 2.4.

To reach the subsonic D13 point the integral curve from the upstream point must undergo a gas
dynamic jump to reach the separatrix linking the supersonic D12 saddle point with the subsonic D13
saddle. The separatrix passes through the transonic transition point on the supersonic-subsonic bound-
ary. The gas dynamic jump to reach the separatrix on the subsonic sheet can occur in B, — B, space

at a point where the separatrix is on the subsonic sheet.

As a point of comparison, the phase structure in the present example is the same, with different numer-
ical values, to that of the 2+ — 3~ shock presented in §7.2. In the present example the upstream point is
the “unused” stationary point of the 2% — 3~ phase plane, the downstream fast shock stationary point
is the previous upstream point and the linking separatrix is a unique 2* — 3~ shock transition. The
separatrix represents a 27 — 37 transition with upstream values a; = 1.120434083, b; = 2.129566467,
v = %, p1 = 1.294393387, 6, = 37.12213862° and u,; = 1.854150388 with ¢ = 2.94598 and r = 1.54847.

Computationally, the first step is to determine the position of the gas dynamic jump in the B, — B,
plane. For a given step-off angle at the upstream point the phase trajectory in the B, — B, super-
sonic plane is determined by numerical integration of (27) and (28) in the positive z,, direction. The

trajectory is also computed from the D13 point using an integration in the negative x,, direction that
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starts off at 90° to the B, axis, this being the direction of the separatrix at the downstream point as
determined by the eigenvectors of the linearised solution about the downstream point. A root finding
algorithm is used to determine the B, and B, coordinates of the intersection point of the phase trajec-
tories in phase space, this being the location of the gas dynamic jump from the supersonic state to the
subsonic state. Using the upstream data in this example it was found using a shooting method that

for ¢ > 128.8° upstream phase trajectories can undergo a gas dynamic jump to the subsonic separatrix.

The step-off angle ¢ at the upstream point is chosen to be +160°, £170° and 180° and the size of
the initial step off into the B, — B, plane at each stationary point to start the integration is 0.0001.
When ¢ = £160° the gas dynamic jump is calculated to occur at (B, B,) = (—2.81898,£4.21271),
when ¢ = £170° the jump occurs at (—3.63141,4+3.07490) and when ¢ = 180° the jump is at the D13
point, (—4.33572,0) .

Figure 62(a) shows the B, and B, variation through the shock in terms of z, for the five sample
step-off angles, the supersonic and subsonic stages being shown as unbroken orange and blue lines
respectively. The dashed orange-blue line shows the limiting values of By and B, in this particular
transition. For ¢ = 180° the transition does not gain a B, component and the jump occurs when
B, equals its value at the downstream point. This is the most negative value of B, at which a jump
can occur to the subsonic state with the subsequent phase trajectory reaching a stationary point. For
example, if a jump were to occur in the phase plane at (—4.6,0), a point between the separatrix and
the transonic boundary, the change in specific entropy is +0.00525¢, but the vector fields as indicated

in Figure 61 in this region cause trajectories not to reach the stationary point.

Figure 62(b) shows the parametric plot of B, — B, for the five values of the parameter ¢. The dashed
orange curve coming from the upstream point has a smooth continuous change in its By, B, and u,
derivatives at the transonic transition point, the integral curve passing to the D14 point on the sub-
sonic sheet. The shooting method used to find the ¢ value of this trajectory matched the first, second
and third derivatives of u, on each side of the sonic point to determine the value of ¢ = 128.8°. For
values of ¢ > 128.8° integral curves from the upstream point can make a gas dynamic jump to the
subsonic separatrix and pass to the D13 point. For values of ¢ < 128.8° the trajectory leaving the
upstream point does not join to the separatrix, coming close to it in the vicinity of the transonic point.
These trajectories cannot pass through the transonic transition point as their u, derivatives are not
differentiable at the transonic point. These trajectories can only undergo a gas dynamic jump to the
subsonic surface and then join an integral curve to the D14 point. In the B, — B, plane only the
separatrix linking the saddle points and the smooth transition to the D14 point can pass through the

transonic transition point.

Figure 62(c) shows the shock transitions in B, — B, — u, space. Integral curves in the yellow su-
personic state with a ¢ value greater than that of the dashed curve from the upstream point U can
make a gas dynamic jump to the blue subsonic state at the correct point and join the unique separatrix
towards D13. The dotted curve from D12 point is the integral curve making a smooth passage through
the transonic flow point, indicated as a red circle, to the downstream stationary point D13.

The parameter ¢ gives the 17 — 3~ shock a degree of freedom in its structure as it determines the jump
point in B, — B, — u, space for each particular upstream trajectory to reach the unique separatrices

that enter the D13 stationary point.
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Figure 62: As for Fig 45, but ’Z—““ll = 2.4. Five trajectories leave the upstream point and undergo a gas
dynamic jump to the subsonic separatrices leading to D13. The angle of departure from U is a degree
of freedom giving a one-parameter family of 17 4&‘ shocks.



7.6.3 Intermediate 17 — 4= Shock Structure from Numerical Integration

To show the representative shock structures present seven values of the upstream parameter ¢ are
considered. These are £1°, +128.8°, +170° and 180°. Intermediate 1 — 4 transitions all involve an
ending in a subsonic state so an additional parameter is needed to specify the point in the B, — B,
plane where the gas dynamic jump to the subsonic state occurs. The second parameter is chosen as
a particular value of By, on the trajectory so that illustrative structures are produced. For ¢ = £1°
the jump is chosen to be at B, = 0, for ¢ = £128.8° the jump is at the transonic transition point
(—1.998811631, +4.847571811) , for ¢ = +170° it is at By, = —3.4 and for ¢ = 180° the jump is taken
to occur at B, = —3.7. The jump can occur at any point in the B, — B, plane reached by the trajectory
provided that the specific entropy change across the jump to the subsonic state is not negative. As
indicated in §7.6.2, shocks are not formed in the region in the B, — B, plane between the separatrices

and the transonic boundary.

The numerical integration of the ODEs (27) and (28) from the upstream point is carried out in the
positive x direction with an initial step-off of 0.0001 and proceeds on the supersonic sheet until the

chosen jump point to the subsonic sheet is reached.

Figure 63(a) shows the B, — x,, and B, — x,, profiles. The B, profile for ¢ = 1° approaches that of the
associated supersonic fast shock with downstream transverse magnetic field component By = 5.18344.
Due to the increasing B, component the intermediate phase trajectory approaches the separatrix from
the saddle before undergoing a gas dynamical jump to a subsonic state. The B, profile for ¢ = 128.8°
from the upstream point passes through the transonic transition point with its first, second and third
u, derivatives equal to that of a phase trajectory leaving the downstream D14 point at ¢ = 176.56°.
These trajectories were determined by “shooting” from the upstream and downstream points and com-
paring the velocity derivatives, as given by equations (32), (34), (35) and (36) on each side of the
transonic point. The “smooth” trajectory approaches the appropriate I’'Hopital derivative at the tran-
sition point. The black trajectories from the downstream and upstream points in Figures 64 and 65(a),
(b) and (c) respectively target the black dot, this being the derivative value for the smooth transition
for the 17 — 4~ transition. The grey dot represents the derivative values for the 2+ — 3~ transition

in the phase plane.

The smooth transitions through the transonic points are shown passing through the red circles in
Figure 63 (a), (b) and (c). Alternatively, the smooth transition can be computed by integrating the
first oder ODEs out of the transonic point in the negative x direction on the supersonic sheet to reach
the upstream source point and then integrating out of the transonic point in the positive direction on
the subsonic sheet to reach the downstream sink. The solutions are then joined at the transonic point.
Since the shock profiles shown in Figure 63(a) are computed with a common z scale using integrations
out of the upstream stationary point at the same step-off the first described method was used to profile
the smooth transition. Gas dynamic jumps at B, values between those of the downstream subsonic
stationary points are shown in Figure 63 (b) and (c), the trajectory on the subsonic surface being
captured by the sink at D14. As previously indicated in §7.6.2 the D13 point can only be reached by

a unique jump to the subsonic surface.
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The trajectories from the upstream point at ¢ = 180°, £170° and £128.8° pass through a region
of the phase plane where the shock is expansive after leaving the upstream point, this region being the
supersonic central red region in Figure 25b. The trajectory with ¢ = 4+1° has an expansive stage as it

passes through the subsonic red region in Figure 25b, before the trajectory reaches the D14 point.
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Figure 63: As for Fig 62 but showing trajectories undergoing a gas dynamic jump to points on the
subsonic surface other than those on a separatrix44These trajectories then converge on D14. These
trajectories have degrees of freedom in their depar]’ture angle from the upstream point and the location

of the jump point giving a two-parameter family of 17 — 4~ shocks. Also shown is the smooth
transition through the transonic transition points.
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Angles made by phase plane trajectories with the —By axis at the downstreamstream point
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8 Switch-On Shocks

This chapter presents the phase plane and structure of MHD switch-on shocks, a special case of parallel
shocks where By; = 0. The switch-on MHD shock has an upstream speed greater than the intermediate
speed and a downstream normal speed equal to the downstream intermediate speed, as shown on Figure
5 (a). The switch-on shock is the limiting case (; = 0°) of fast and intermediate shocks which emerge

as distinct with an increase in the upstream shock angle. As the switch-on shock is a precursor for the
2 _ 2
formation of fast and intermediate shocks, occurring only when 67 = 0 and b; < uy; < M{Y)l’fﬁ%l,

the switch-on shock is presented as a separate chapter in this thesis.

5
30
two stationary points occur for u,; < 2 and wu,1 > 3.60555, the solutions of (120) being double roots

For the set of upstream properties {1,2 1,0°,u11} the previously stated inequality predicts that
for B, = 0. Four stationary points occur when 2 < uy; < 3.60555, two of these being the double
root B, = 0, the other two solutions being of opposite sign representing the “switched-on” transverse
magnetic field component having symmetry in space about the x axis. The upstream shock speed and
the downstream sound and normal shock velocity component for this set of upstream properties is

shown in Figure 7.

For a1 < uz1 < by, Figure 66 shows the vector fields before the formation of the transverse switch-on
magnetic field component. The two stationary points present allow a supersonic to subsonic transition

in the form of a gas dynamic jump between the B, = 0 stationary points on both sheets.
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Figure 66: Phase plane vector fields for a parallel shock, a; < u,1 < b1, gas dynamic supersonic to

subsonic shock only possible; 2—11 =2,6,=0", 7;—’”11 =15

8.1 Switch-On Supersonic to Supersonic Shocks

When the upstream shock speed just excedes the intermediate speed the upstream point in the B, — B,
phase plane becomes a source with an associated downstream sink with a 360° ring symmetry about

the upstream point as shown in Figure 67. This reflects the axial symmetry of the upstream state about
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the shock normal. As the upstream speed increases the ring expands, the vector fields inside the ring
are directed radially outwards and between the ring and the supersonic boundary is directed radially
inwards. The governing ODE is that of the fast shock (127) with B, replaced by |Br|, representing the
magnitude of the transverse “switched-on™ magnetic field. In previous analysis of shock structure the y
axis direction was established due to the presence of the transverse upstream magnetic field component,
B,. Here, as the switch-on process occurs for parallel shocks defined by having B,; = B.; = 0, the y
direction is not pre-defined.

Equation (74) gives the upstream shock speed when the downstream switch-on shock speed equals the
downstream sound speed, showing that switch-on supersonic to supersonic shocks are produced in the

[(y=1)83—a3]+1 /7 [yat+2(y—1)p3 (b7 —a3)]
Y(y=1) :

upstream speed domain by < uz; < \/

For the set of upstream parameters {1, 2, %7 1,0°, uxl} Figure 67(a) and (b) show the change in the
phase plane vector field as the upstream shock speed increases within the switch-on supersonic to super-
sonic domain. The downstream gas dynamic and magnetohydrodynamic switch-on stationary points
are shown as DG and DM respectively. The switch-on stationary points first form on the supersonic
sheet when the downstream fast, Alfven and shock speeds are equal and increase in transverse |B|
value as the upstream shock speed increases. When the DM locus reaches the supersonic boundary it
changes to the subsonic sheet and, as shown in Figure 26(a), | Br| continues to increase on the subsonic
sheet before reaching its maximum value. This case is presented in the next section. Further increase
in upstream shock speed decreases the transverse |B| value finally zero when the downstream slow,
Alfven and shock speeds are equal. The MHD signal speeds in the switch-on shock domain are shown

on Figure 5(a) .

On the supersonic sheet the switch-on MHD shock transition is produced by phase plane trajecto-

ries from the source U being linked to the surrounding locus of downstream points.
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Figure 67: As for Fig 66, but when “2 = 2.05 and 2.2. Switch-on MHD supersonic to supersonic

a1
[(v=1)83—a3]+y/7 [yat+2(y—1)b3 (13 —a?)]

y(y—1) )

the dashed circle is a valid downstream state with a “switched-on” transverse magnetic field component.

shocks occur when #; = 0° and by < uz < Any point on

The integration was started at the upstream stationary point on the supersonic sheet using a step
off of in |Br| of +0.0001 in the phase plane shown in Figure 67(b). Following the direction of the

vector field, the integration proceeds along the positive = direction to the downstream point.

Figure 68 shows the shock structure for the MHD switch-on shock. The rate of increase of the trans-
verse magnetic field component with respect to the normal shock velocity is large at the upstream point
compared to an oblique fast shock. The shock normal velocity shows a monotonic decrease through the

shock and the magnetic pressure is greater than the gas pressure, the range of these pressures through
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the shock being less than the case of an oblique fast shock. The change in specific entropy undergoes

a monotonic increase from the upstream point through the transition.
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Figure 68: Variation in By, ug, p and As through a supersonic to supersonic MHD switch-on shock.
In this and the following switch-on plots z = %, = 1 and all speeds are in terms of the upstream

sound speed. In this plot % =2,0,=0° %?14 =2.2.



8.2 Switch-On Supersonic to Subsonic Shocks
—1)b2—a? 442(y—1)b3 (b3 a2 oy )
When \/ﬂ/[(’Y e a1]+\/ﬂ{[’yal+ G- Db (¥ —a)] < Ugp1<y/ % the downstream MHD stationary

y(v=1)
point is on the subsonic sheet and the switch-on transition is enabled by a phase trajectory from the

supersonic upstream point undergoing a gas dynamic jump to the subsonic sheet on the locus of down-
stream points. This is shown in Figure 69.

For the set of upstream parameters {1, 2, %,
mation of supersonic to subsonic MHD shocks is 2.71729 < u,; < 3.60555. As indicated in §8.1, the

maximum value of the switched on magnetic field component occurs when the downstream point is

1,0°, um} the upstream shock speed domain for the for-

on the subsonic sheet, slightly inside the subsonic boundary, the value being |Br|= 6.51241 occurring
when u,; = 2.91548.

Figure 69 (a) and (b) shows the change in the phase plane vectors as the upstream shock speed
increases. The vectors in the annulus change direction as the downstream locus decreases, the direc-

tion of the vectors on the subsonic sheet having reversed direction following the switch-on stage. Figure
2__ 2
70 shows the supersonic and subsonic phase plane for wg,; > 4/ Mlv)bfll%l.
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Figure 69: As for Fig 66, but when %1 = 3.0 and 3.5. Switch-on supersonic to subsonic MHD shocks

,1b2,2+ 4+2 —1)b2(b2—a2 —
occur when 6; = 0° and 2[o-DbE-ai] \/’Y[Wl (=Dt (b o) <ugp <4/ % Points on the

7(y=1)
dashed ring are valid downstream states with a “switched-on” transverse magnetic field component.
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Figure 70: As for Fig 66, but when wu,; > %.

shock is possible;

Only a gas dynamic supersonic to subsonic

The numerical solution of the ODE (127) for the upstream parameters {1 2,2 3,1,0% 3} in the phase
plane shown in Figure 69 (a) begins using a step off in |Br| of 4+0.0001 and continues on the supersonic
sheet before making a gas dynamic jump to the subsonic sheet at the subsonic stationary point. The
large increase in the gas pressure, made possible due to the reduction in normal flow speed, causes the
downstream gas pressure to be greater than the downstream magnetic pressure, this first happening

when the upstream shock speed is greater than 2.96.
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9 Summary and Discussion

The aim of the research presented in this thesis is to catalogue the various MHD shock waves that
can arise with particular reference to intermediate shocks. Intermediate shocks all have a reversal of
the direction of the transverse magnetic field component through the shock and are unusual in that in
most cases the transition linking the pre-shock and post-shocked states is not unique, having degrees
of freedom in their structure, a feature not shared by the well known and experimentally confirmed
fast and slow shocks. Intermediate shocks were at first considered unphysical, being unable to adapt
to perturbations and remain stable. The role of degrees of freedom within the structure as a means
of allowing the shock to adapt to perturbations and become surviving was presented by the works of
C.C. Wu [9] and the variety of possible transitions shown using the magnetic phase plane was given
by the pioneering work of Hau and Sonnerup [24]. The former studied MHD shock structure using a
simplified model in which some dissipative terms were not present.

This thesis attempts to clarify the rich variety of structures present in the phase plane and takes
the analysis further than that of Hau and Sonnerup by giving a more detailed description of both the
types of shocks possible and in the role of the speed of sound in determining various features in the
phase plane. An original analysis involving higher derivatives of the smooth resistive supersonic to
subsonic transition through the sonic point is presented, this being the point where the downstream
sound speed and normal flow velocity are equal and have continuous derivatives in the normal flow

velocity component.

The previous chapters presented a thorough study of the possible types of the steady shock transi-
tions that can be produced by a disturbance moving through a magnetised conducting fluid when
dissipation is due to ohmic heating. The shocks were assumed to be steady and planar and viscosity
was neglected. In the steady state the physical principles embodied in the laws of conservation of
momentum, magnetic flux and energy with ohmic heating reduce to two coupled first order ordinary
differential equations in the magnetic field components B, and B, that describe the spatial shock struc-
ture. The approach taken allows the shock structure to be represented as a trajectory in the magnetic
phase plane, this being a two dimensional (B,,, B,) representation of the pathways linking the physical
conditions existing at a given initial pre-shock stationary state and other points in the plane where the
derivatives of the flow variables are zero, these being the downstream post shocked states. The phase
plane gives a visual overview of families of shocks that appear as trajectories between stationary points
in the plane. Trajectories can link stationary points either by a smooth transition in all flow variables
and derivatives or by an entropy increasing gas dynamic jump within the transition where the normal
velocity shock component undergoes a discontinuous decrease to a lower value in the absence of fluid

viscosity.

In most situations there are only two stationary points in the magnetic phase plane, the transition
between these two states being a slow shock if the downstream transverse magnetic field component is
less than its upstream value, or a fast shock if the downstream transverse magnetic field component is
greater than its upstream value. In both slow and fast shocks the pre-shock and post shock transverse

magnetic field components are in the same direction.

In some situations there are four stationary points in the magnetic phase plane and in this case two
or three downstream states are possible with two of these being linked by an intermediate shock, the
intermediate shock being characterised by a reversal in direction of its post-shock transverse magnetic

field component relative to its pre-shock direction. Four stationary points can be found in the magnetic
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phase plane during the presence of slow shocks before the formation of a switch-off shock, the other

two stationary points being unable to receive phase trajectories.

This thesis uses phase plane diagrams to show the variety of shock structures produced in the case
where the upstream Alfven speed is greater than the upstream sound speed, this being equivalent to
[1< % , where (31 is the upstream value of the ratio of the gas pressure to the magnetic pressure. This
condition allows the emergence of the switch-on MHD shock, the progenitor of families of intermediate
and fast shocks. Twelve families of MHD shocks, containing fourteen distinct individual transitions,
obey the jump conditions with an associated entropy increase. Table 1 presents a summary of the
shock families. The list in the table is given in order of increasing upstream shock angle as displayed
in the plots in §3.2. In column 4 of the table u indicates that the phase plane transition linking the
stationary points is unique, 1 and 2 indicate that there are these numbers of degrees of freedom, mean-

ing free parameters in the set up of the phase trajectory linking the stationary points in the phase plane.

Table 1 shows that slow and fast shocks have unique internal structures and produce unique final
results. This means that a given upstream disturbance can only produce one final state after the

passage of the shock and the magnetic field, pressure and density vary uniquely as the shock passes.

According to the laws of fluid dynamics, electromagnetism and thermodynamics when conditions are
such that an intermediate shock can form there are at least two possible end states that can form.
Each end state has a different flow speed, magnetic field, pressure and density. An intermediate 2 — 3
shock, in its subsonic and supersonic forms, is unique. This means that this shock, for given starting
conditions, only has one possible end state and the magnetic field, pressure and density change in one
way only as the shock passes. The conditions that set up a 2 — 3 shock also set up a 2 — 4 shock
having a different end state and having many ways of reaching this end state by varying one parameter.
This parameter is the angle at which the trajectory leaves the upstream point on its journey towards
its downstream point. The laws of physics in some situations allow three possible end states with two
of these being associated with an intermediate shock and the other a fast shock. In this case the 1 — 3
transition is not unique, the trajectory can leave at various angles and reach the same downstream
point; the 1 — 4 transition is also not unique and has two degrees of freedom in its structure, these
being the angle at which the trajectory leaves the upstream point and the point in the phase plane

where the trajectory undergoes a gas dynamic jump to become subsonic and link with its end point.
The presence of “freedom” in the angle at which the shock trajectory leaves its upstream point and

“freedom” where the transition can undergo a gas dynamic jump to a subsonic state make intermediate

shocks non-unique in their structure.
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. . o " Degree of Freedom,
Family Stationary Points | Transitions MHD Properties
switch-on + — +
gas 1T — 4~ 3 (+4) = (=) u, Pog, < Poy,
switch-on + — —
gas 1T — 4~ 3 (+.+) = (+,) u, Py, < Py,

= - o
34 2 (+7_)_>(_7_) ua0<T;<1
+ - (*a*) — (77*) By
3T =14 2or4 jump at start u, 0 < B, <1
By2,5
u, 522 <0,
sy 4 (=) > (=) B,
2t >4~ (f’+)4)(7,7) 1’371,1<0’P223<P224
|By224| < |By223‘
u, —B“% <0,
2+ e 4 (_7 +) — (+’ _) Bq/224
2" 47 (_a +) - (_7 _) 1, <0 P223 < P224
|By224| < |BJ223‘
u, B‘J223 <0, ”223 <1
2= 3 A (+4) = (+.-) o
27 47 (+a+)*>(7af) 1’ Bz4<0P223<P224
|BU]§’24| < |39223‘
y2
1t — 92— (+’+) N (+7+) u, ﬁ > 1,P212 < P213
1i—>3’ 4 (+,+) = (+,—) 1, %<—1 P, < Py,
17— 4~ (+,+) = (=, —) By2q, Bym
2 g <0 <]
17 — 2t (+’+) N (7’+) u, By > 1,P212 < P213
1" =3t 4 (+’ +) - (_7 _) 1, Béj? <-1 P213 < P214
1+ — 47 (+7 +) — (_7 _) 2 By2qy <0 By214 <1
’ By > By2,4
Bya,.
1T — 2t (+’+) N ( ,+) u, ﬁ > 1,P212 < P213
1" —3" 4 (+7 +) - (+7 _) 1, Béi? <-1 P213 < P214
1t =4 (+,+) = (= —) 9 35314 <0, ym -1
o2t 2 (++) = (=4 u gl > 1
1+ —2- 9 (+,4) = (+,+) u, 52 > 1
jump at end

Table 1: Shock family summary table. The nature of the stationary points is given in column 3: (4, +)
indicates a source, (—, —) a sink and (4, —) or (—,+) a saddle. Column 4 gives the number of degrees
of freedom of the shock structure, u meaning unique. Also given are the upstream and downstream
transverse magnetic field components and gas pressures.
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The numerical integrations show that structures with dissipation due to ohmic heating linking the
end points of each transition are obtainable either as an entirely smooth passage or as a combination of
a smooth passage and a discontinuous entropy increasing jump. The calculations provide the ground-
work for future study of the stability of each shock transition since before the stability of a dissipative

shock transition can be investigated its steady state structure must be known.

The calculations presented here consider the case in a conducting fluid where the pre-shock Alfven
speed is greater than the sound speed. This condition is met in many astrophysical situations. As seen
by comparing Figures 3 and 4 a much greater variety of shock types arises in this case. A switch-on
shock, being the progenitor of intermediate-fast shock families, can only arise if the pre-shock Alfven

speed is greater than the sound speed.

The calculations consider the case of resistive MHD shocks, these arising when the energy dissipa-
tion in the fluid is due to ohmic heating. Other dissipative processes, such as viscous transfer and heat
conduction, have not been considered. The addition of viscosity would smooth out the gas dynamic
jump of purely resistive theory. With the inclusion of both electrical resistance and viscosity the phase
plane for fast and slow shock trajectories is formulated in terms of B, and u,, the ODES for a per-

pendicular shock becoming

dB

7Y £ 1
. f5 -+ Byug, (135)
du,  3(y—1)¢ 5 3v¢ B, 3(v+1)EA
dzx, 4 I 47 Y + 4 8w fat 8 Y (136)

where the ratio of the magnetic diffusivity to the kinematic viscosity is given as &, this ratio being
known as the reciprocal of the magnetic Prandtl number. Linearisation about the downstream point
reveals a saddle point, the eigenvectors in this case not being mutually perpendicular as in the case of
purely resistive MHD shocks. To illustrate a perpendicular shock structure with both resistive and vis-
cous dissipation present, the ODEs (135) and (136) were numerically integrated out of the downstream
point with the same magnitude step-off for three values of £ for the resistive shock considered in §5.2.2.
The results are shown in Figure 72. Figure 72(a) shows the case of a very small viscosity, the sudden
transition to the downstream value becoming a gas dynamic jump in the limit as v — 0. Figure 72(b)
shows the case of equal resistive and viscous factors, the profile smoothly stretching out and Figure
72(c) shows the case where the viscosity is much greater than the magnetic diffusivity. In summary,
the presence of viscosity in the equations controls the scale of the transition, which approaches a gas

dynamic jump as v — 0.
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An important question is the existence of intermediate shocks and the consequences of the multiplic-
ity of shock solutions. The calculations presented here show that there is one intermediate transition
type with a unique structure, the 2 — 3 shock. Kennel et. al. [40] include the 2 — 3 shock with
the 1 — 2 and 3 — 4 as physically realizable shocks. All other intermediate shock types possess
one or two internal degrees of freedom in their structure. As demonstrated in this thesis, the de-
grees of freedom manifest the angle in which the phase space integral curve leaves the upstream point

or the position in the magnetic phase plane where the hydrodynamic jump to the subsonic state occurs.

The traditional argument for the non-existence of 1 — 3, 1 — 4 and 2 — 4 shocks advanced by
early authors as detailed by Akhiezer et. al. in [20] applies to non-dissipative systems with zero shock
width. Stability was investigated by determining the response of the shock discontinuity to a distur-
bance by the seven small amplitude characteristic waves, these being the entropy wave moving with the
discontinuity and the intermediate, slow and fast magnetoacoustic waves propagating normal to the
plane of the shock. If a discontinuity responded in a determinable way by emitting a certain number of
outgoing characteristic waves in response to the perturbation it was denoted as evolutionary, meaning
that the structure survived the perturbation. Analysis of the hyperbolic system of MHD equations
showed that the number of outgoing waves for an evolutionary discontinuity is 6 in the upstream and
downstream directions. For 1 — 2 and 3 — 4 discontinuities there are 6 outgoing waves, making these
evolutionary. For 2 — 3,2 — 4, 1 — 3 and 1 — 4 discontinuities there are 6, 5, 5 and 4 outgoing waves
respectively. Jeffrey and Taniuti [41] stated that the 6 outgoing waves alone a necessary condition and
the sufficient condition involved 2 of these waves being intermediate waves. The additional restriction
made the 2 — 3 discontinuity non-evolutionary as only 1 outgoing intermediate wave was released.
Wu [42] stated that the extra degrees of freedom present in the structure of the 2 — 4, 1 — 3 and
1 — 4 transitions allows them to absorb a perturbation compensating for their deficit of outgoing
waves in the linear evolutionary theory. In this thesis the analysis of trajectories in the phase plane
and the calculation of shock structures using numerical integration show that intermediate shocks have

the requisite number of degrees of freedom in their formation to confirm Wu’s survivability requirement.

In summary, by calculating trajectories in the magnetic phase plane and computing shock structures
by the numerical solution of the differential equations of hydrodynamics and electromagnetism with
the calculation of associated entropy changes this thesis has demonstrated that the requisite number
of degrees of freedom in the structure of MHD intermediate shocks are produced, supporting the view

that intermediate shocks are physically realisable.

Particular points presented in this thesis are the use of the new parametric method to produce so-
lutions to the MHD jump conditions, the establishment of the degrees of freedom in shock structure
through the analysis of trajectories in the phase plane and a detailed analysis of the smooth passage

of a shock trajectory through the transonic point in the case of 27 — 4~ and 2+ — 3~ shocks.

The shock structures computed in this thesis provide the groundwork for ongoing stability analy-
sis. As a first step, to test the hypothesis that the extra degrees of freedom in an intermediate shock
can absorb small perturbations and produce a stable surviving shock structure a preliminary pertur-
bation analysis was performed on the 2+ — 3% intermediate shock studied in §7.1.2. The numerical
method used here is an implementation of the analytical technique given by Inoue and Inutsuka [27].
Each shock variable is expressed in the form g(z) = go(x) + 6g(x)e ™! where go(x) is the steady shock
structure, 0¢q(x) is a small perturbation in ¢(z) and w is the frequency of the perturbation. The expres-

sion for the perturbed variables is substituted in the MHD equations and terms involving dq(x)? and
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higher are neglected. The linearised equations are arranged into vector form involving a perturbation

dq(x
matrix Q(z) whose components depend on w and the steady shock structure, 3( ) = Q(z)dq(z).
i
The perturbation matrix was calculated for a range of values of w, real and complex. The eigenvalues
A; and eigenvectors v; of the matrix where calculated for each value of w and these were used to solve

for the pertubation in each variable, 6 = 3" c;v;e*®, where the ¢; are constants.

The upstream perturbation matrix has 6 positive eigenvalues and 2 zero eigenvalues. Two of these
eigenvalues have eigenvectors with components exciting perturbations along the z axis only, these de-
coupled solutions not affecting the other perturbed values. This means there are effectively 4 positive
upstream eigenvalues contributing to solutions growing out of the upstream point. The downstream
solution gave 2 positive eigenvalues and 2 zero eigenvalues. It was found that the coefficients of the
growing downstream eigenvectors were minimised when two of the upstream eigenvectors were set
equal to zero. The criterion to establish the minimisation of growth of the downstream perturbation
was the minimisation of the ratio of the sum of the squares of the downstream coefficients of growing
eigenmodes to the sum of the squares of all of the non z axis downstream coefficients. The growth ratio
was calculated for a range of constants c; and a shooting technique was used to determine c¢; for the
minimum growth ratio. It was found that w = 0, to within 0.1, gave the set of coefficients for the min-
imum growing eigenmodes, implying that the perturbed shock is steady to a small perturbation. Since
the constants were now known the perturbation dq for each variable was then numerically integrated
through the shock by solving the first order ODE. Figures 73-76 show the steady shock structure as a
firm line and the structure produced by the perturbation as a dashed line. The diagrams indicate the

response of a 27 — 3™ shock to a small perturbation in the flow variables.

Weak Intermediate 2—->3 Resistive Shock with Upstream Values 61=15°, vao1=2, vg1=1, vx1=2., £2_1.119, y:%, n=4, v=0, k=0
P1

Transition is from upstream supersonic normal flow to downstream supersonic normal flow

1.10

1.08

P 1.06

1.04

1.02

(0] 100 200 300 400 500 600

Figure 73: Steady and perturbed (dashed) upstream mass density spatial variation through a 2+ — 37
shock, w = 0.
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Weak Intermediate 2—>3 Resistive Shock with Upstream Values 61=15°, va1=2, vg1=1, vx1=2., £2_1.119, yzg, n=4, v=0, k=0
P1

Transition is from upstream supersonic normal flow to downstream supersonic normal flow

2.00

1.85

1.80

(] 100 200 300 400 500 600

Figure 74: Steady and perturbed (dashed) upstream speed spatial variation through a 2+ — 3% shock,
w =0.

Weak Intermediate 2—>3 Resistive Shock with Upstream Values 61=15°, va1=2, vg1=1, vx1=2., §2=1.1 19, y=§, n=4, v=0, k=0
1

Transition is from upstream supersonic normal flow to downstream supersonic normal flow

0.75

0.70

0.65

0.60

6] 100 200 300 400 500 600

Figure 75: Steady and perturbed (dashed) upstream pressure spatial variation through a 2% — 3T
shock, w = 0.
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Weak Intermediate 2—>3 Resistive Shock with Upstream Values 61=15°, vao1=2, vg1=1, vx1=2., £2_11 19, yzg, n=4, v=0, k=0
P1

Transition is from upstream supersonic normal flow to downstream supersonic normal flow
1.0

-1.0

0 100 200 300 400 500 600

Figure 76: Steady and perturbed (dashed) upstream magnetic field spatial variation through a 2+ — 3%
shock, w = 0.

The plots in Figures 73-76 show the presence of a node in the density and pressure structure of
the perturbed shock in its transition between its upstream and downstream perturbed states. After
thesis submission during the correction stage a shooting technique through a range of the constants
cj was used to determine the presence of other solutions. The search found that a fundamental mode
could be produced in the perturbed solution containing no nodes. In this case the density and pressure
variation both undergo a monotonic change in their passage to the downstream state. Higher order

overtones containing multiple nodes were not found in the discrete set of constants tested.
The next step is to apply the perturbation analysis of Inoue and Inutsuka [27] to the other vari-

eties of intermediate shocks to confirm that the degrees of freedom of intermediate shocks do indeed

control the stability of these structures.
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Table 2: Coefficients for Calculation of Downstream Sound Speed
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1)By,]
lig | —512m3ypiBi2(y — 1)% | 409674 (y — 1)y2pi B2 0 0
xB2—(y—2)(v*+1)B},]
l48 720487'(4 ("}/ — 1)[)‘?3;1 0 0 O
lo | O 372 — 1)2BAB2 + | —167(72 — 1)7°B%, B | —64n2" BB,
351)4 x (B2 + B;)?
lo | —p1V?(y—=1)%(y* =6y + | —16mp1(y — 1)(y —5)7* | —64n%p1y° B Bald(y — | 0
1)B3(B; + B2))* xBZ By (B; + B.,)? 1)B} + (y — 4)BZ)]
lag | 167(y — 1)piy?Ba(B: + | —647%4°piB;[2(y —1)* | 0 0
B2)?2(v=1)?B2+(y*— | xBs—(y—1)(v+7)
2y — 1)351} XBngl + (5 - 2’7)331]
lag 647r27psz§CL [2(7—1)QB§— 0 0 0
(v=1)(v*—y+4)B2B;, -
(v — 2)331]
loa | —2p17*(y—1)*BE(B2+ | 0 0 0

B’
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APPENDIX B (continued)

25+
2.0+
1.5
az
1.0+
0.5+
Equisonic Points (uxq,uy2) =(0.989914, 0.997469) (2.56274, 1.43869)\ (2.88192, 1.50994)
At first point As<0
0.0+
0.0 0.5 1.0 1.5 2.0 25

Ux2

Figure 77: Equisonic point calculation a; =1, by =2, v =32, p; =1, 6; =5°
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az

25

2.0

1.5

1.0

0.5

0.0

5
ag=1, b1=2, y=-, p1=1, 61=15°
3

Equisonic Points (uxq,uy2) =(0.913881, 0.977709) (2.28129, 1.3847) (3.2375,1.59793)
At first point As<0
0.0 0.5 1.0 1.5 2.0 25
Ux2
Figure 78: Equisonic point calculation a1 =1, by =2, v = %, p1=1,0,=15°
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APPENDIX B (continued)

(1.70521, 1.2867) (4.06376, 1.82335)

25+
20
1.5+
az
1.0+
0.5+
Equisonic Points (uyq,ux2) =(0.595319, 0.87312
At first point A$<0
0.0+
0.0 0.5 1.0

Ux2

15 2.0

Figure 79: Equisonic point calculation a1 =1, by =2, v = %, p1=1,0,=37°
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APPENDIX B (continued)

25¢
20"
15+
az
1.0+
0.5+
Equisonic Points (uyxq,0x2) = (0.90068§, 0.929659) (0.900688, 0.929659) (4.85739, 2.05712)
At fir$t two points As<0
0.0+
0.0 0.5 1.0 1.5 2.0 25

Ux2

Figure 80: Equisonic point calculation a1 =1, by =2, v = %, p1 =10, =63°
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