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ABSTRACT 

Platinum-group elements (PGE) are important as petrogenetic tracers, but owing to their 

low abundances and complex behaviour they are among the least understood elements in 

geochemistry. This study investigates the mechanisms of PGE fractionation in ultramafic 

systems (komatiites, komatiitic basalts, ferro-picrites) and focuses on the role of chromite. 

Samples from a range of occurrences have been analysed to assess potential controls on 

PGE behaviour, such as geochemical affinities (Munro-type and Karasjok-type), age (2.0 

and 2.7 Ga), emplacement styles, metamorphic grade and nickel-sulphide mineralisation 

endowment and style. 

Data obtained by in-situ laser ablation ICP-MS analysis provide the first direct evidence 

that Ru can exist in solid solution in chromite with concentrations up to several hundred 

ppb. The data show that the behaviour of Ru is dominantly controlled by the sulphide-

saturation state. In systems that did not equilibrate with a sulphide liquid, chromites have 

distinctly higher Ru concentrations than chromites from systems that interacted with 

a sulphur-source during crystallisation. Carius tube digestion isotope dilution ICP-MS 

analyses of chromite separates confirm the accuracy of the in-situ study and also show 

that Ir is weakly compatible in chromite. Anomalously high Pt and Pd concentrations in 

chromite separates reflect the presence of platinum-group minerals (PGM) and suggest 

that PGM are common accessory phases in komatiites. A study of the PGE-mineralogy 

shows that PGM in komatiites can be of magmatic and post-magmatic origin and that 

they often remain undetected due to grain sizes less than 5 urn. As a consequence, the 

presence of PGE minerals has to be taken into account when whole-rock PGE signatures 

are interpreted. 

The association of Ru-poor chromites with Ni mineralisation and Ru-rich chromites with 

barren systems provides a new tool for the exploration for nickel-sulphide deposits. This 

model applies to all magma types and is independent of the age, the geochemical affinity, 

and other sample characteristics. 
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