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Abstract 

 

Shrubs, short multi-stemmed species, are an important plant growth form that can 

play a key role in biogeochemical cycles, stability of soil and prevention of soil and 

water erosion, provision of forage for livestock, and are a source of wood and non-

woody products and foodstuff for many populations. However, there is a lack of 

knowledge regarding the influence of environmental variables on shrub distributions, 

and shrubland remains undefined as a plant functional type in most global vegetation 

models.  

Broadly, the goal of my thesis was to assess relationships between the 

distribution of Australian shrubland and shrub species and environmental properties, 

specifically climate and soil characteristics. The objectives of my thesis were three-

fold. I initially assessed how the climate envelope of shrubland differed from other 

major vegetation types (forest, woodland, grassland) as well as differences between 

the six major shrubland classes (Acacia, Chenopod, Heathland, Mallee, Tall 

shrublands, “other” shrublands). Using generalized linear models I found that 

shrublands separate from other major vegetation types along a seasonal soil 

moisture gradient, with shrublands being the dominant vegetation type in areas with 

lower moisture.  

I then used MaxEnt, a species distribution model, to assess drivers of the 

distributions of 29 shrub species that together represented dominant members of 

each of the six shrubland classes. In particular, I sought to determine whether the 

inclusion of soil characteristics, along with climate variables, improved models of 

species distributions. I found that whilst models calibrated with soil and climate were 
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not significantly more powerful than those calibrated with only climate variables, for 

some species projections of the distribution of suitable habitat differed substantially 

across these models. This led to regional differences in projected species richness, 

highlighting the value of exploring a broader range of predictor variables when 

developing models, rather than relying solely on climate.   

Finally, I examined spatial changes to the distribution of suitable habitat for the 

29 shrub species that may occur due to climate change. Given uncertainty in the 

direction of future precipitation changes, I compared distribution patterns that may 

result under a hot, dry future versus a warm, wet future. In general, the size of 

suitable habitat was projected to decline for most species, with greater contractions 

in central and western regions of Australia and some extensions in temperate 

regions. Importantly, for some species the direction and magnitude of projected 

changes varied between models calibrated with only climate variables versus those 

calibrated with climate and soil variables. The net impact of this meant that different 

regional patterns in species richness may be projected as a result of model 

calibration and future climate scenario. 

This thesis has identified the climate envelopes of shrublands and dominant 

Australian shrub species; highlighted the importance of considering soil properties 

when modelling plant species distributions; demonstrated potential impacts of climate 

change and how patterns of species richness may vary depending on whether the 

future is warm and wet or hot and dry; and revealed uncertainty in projections of 

future suitable habitat that may occur due to selection of predictor variables. 
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Chapter 1: Introduction 

__________________________________________________ 

 

What is a shrub? This is not a straight forward question to answer. The word ‘shrub’ 

does not have a strict botanical meaning: some studies do not distinguish between 

shrubs and trees, some consider shrubs to be the functional equivalent of trees, only 

smaller (Hickler et al., 2006; Woodward et al., 1998). Others regard shrubs as a 

distinct growth form (Meng et al., 2009). This confusion may partly stem from the fact 

that some plant species are able to grow as trees or shrubs, depending upon 

environmental circumstances. For example, Ceanothus and Manzanita genera have 

many species that can be either shrubs or small trees (Litman & Nakamura, 2007). 

Generally, however, shrubs are defined as perennial woody plants of relatively low 

height and with several base stems (e.g. Meng et al., 2009; Zeng, 2010).  

Shrublands can be classified as regions where shrubs cover more than 30% 

of the ground (Shmida, 1985; DEWR, 2007), and are found within many of the 

world’s climate zones. The most extensive shrublands occupy arid and semi-arid 

regions (Sala et al., 1989) in the southwest of North America, Middle East, Central 

Asia, southern South America, and South Africa and central of Australia. Temperate 

or Mediterranean shrublands include those in the Mediterranean Basin (Mooney, 

1981), northern China (Zeng et al., 2008) and eastern Australia (ESCAVI, 2003). 

Boreal shrublands are located in northern Asia and North America, and high 

elevation areas such as the Tibetan Plateau (Zeng, 2010).  

Shrubs and shrublands provide a number of key ecosystem functions and 

services. As one of the main isoprene emitters shrubs can alter air chemistry and 

influence ozone quantity (Pfister et al., 2008). Dust can be an aerosol precursor 

(Prentice et al., 2007) and dust swept from arid regions can be substantially reduced 
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by coverage of shrubs (Engelstaedter, 2003) which protect the soil surface from 

erosion to a greater extent than grasses do (Tegen et al., 2002; Urban et al., 2009). 

Shrubs can also sink substantially more atmospheric carbon, thereby reducing 

carbon pollution, compared to grasses (Burrows et al., 1998) - more practically, it has 

been suggested that roadside shrubs could be convenient urban sinks for carbon 

pollution (Lavelle, 2014) .  

Other economic benefits of shrubs include their provision of forage for 

livestock during times when herbaceous fodder is not available (Dynes & Schlink, 

2002), thereby benefiting rangeland grazing enterprises (Auken, 2000; Asner et al., 

2004). Activity of soil micro-organisms and deposition of nutrients beneath shrubs 

leads to positive plant–soil feedbacks (Daryanto et al., 2013). For instance, shrub 

encroachment can result in greater soil carbon and nitrogen concentration  (Brantley 

& Young, 2010; Eldridge et al., 2011) and a decline in soil pH (Eldridge et al., 2011): 

this may enhance ecological productivity and economic development potential in 

areas occupied by shrubs (Eldridge et al., 2011).  

On a local scale, shrubs can also alter microclimate and influence the 

composition of communities. For instance, encroachment of the shrub 

Leptospermum scoparium in the herb-rich woodland in southern Australia has 

reduced understory species richness (Price & Morgan, 2008). Those authors found 

that shading caused by this species has resulted in higher soil moisture and lower 

light intensity beneath the shrub canopy, reducing germination of understory herbs. 

As such, shifts in the distributions of shrubs in response to climate or environmental 

changes may have major economic and environmental ramifications. 
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Drivers of the distribution of shrubs: climate and soil 

Distribution of plant species including shrubs and shrubland ecosystems has strong 

ties to biology, ecology, climatology, and soil. As for other vegetation types, on large 

spatial scales the distribution of shrubs is primarily controlled by climate, and this 

control operates at different levels of biological organisation, ranging from species 

(Peterson, 2001) to biomes (Wang et al., 2013). Plants need water to grow and 

energy to use this water. Variation in shrub species assemblages along climatic 

gradients has been found to be associated with physiological processes affected by 

temperature and moisture (Stephenson 1990). Shrubs possess a number of 

mechanisms that enable them to dominate environments with low moisture by 

lowering their cost of growth and increasing water use efficiency (Smith et al., 1997; 

Wilson, 1998; Reynolds et al., 1999).  

The root system of shrubs develops deeper than that of grasses (Burgess, 

1995) and can extract soil water from a larger area than their crown size 

(Kummerow, 1981). Deeper roots enable shrubs to obtain most of their water from 

deep within the soil profile, while grasses are dependent on water from the upper soil 

layers (Sala et al., 1989). These mechanisms enable shrubs to survive harsh 

conditions such as drought, wind erosion, overgrazing and sand burial (Li et al., 

2009). 

Soil provides physical support, water and essential nutrients for plants, as well 

as habitat for micro-organisms whose activity may enhance soil characteristics and, 

therefore, sustain plant growth. In temperate and arid regions, shrubs usually occupy 

shallow, coarse and infertile soils (Groves, 1994; Burke et al., 1998). It has been 

hypothesised that trees may be absent from areas with extremely infertile and sandy 

soils, as these soils may reduce the opportunities for inoculation of tree roots with 

mycorrhizal organisms (Burrell, 1969).  
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Shrubs and climate change 

Globally, a broad range of taxa spanning terrestrial, marine and freshwater 

environments will need to respond to anthropogenic climate change (IPCC 2014).  

The primary responses of shrubs include a) declines in cover and mortality, b) range 

expansion or encroachment and c) woody thickening. 

While some shrub species can tolerate severe and prolonged drought, as 

demonstrated in the Mediterranean (Ogaya et al., 2011), declining precipitation 

across the semi-arid savannah of Southern Africa has driven a decline in shrub cover 

(Tews et al., 2006). Conversely, higher temperatures have contributed to increased 

mortality of dominant woody species including shrubs and the establishment of 

annual grasses in deserts of North America (WDFW, 2011) and in southern Texas 

(Archer et al., 1988) to the benefit of grasses.  

Shrub expansion or encroachment has been reported across different 

ecosystems and can result in enormous changes in ecosystem functioning, for 

example in African savanna (e.g. O’Connor & Crow, 1999; Roques et al., 2001), 

North American semi-arid grassland (Van Auken, 2014), and in woodlands in 

Australia’s east (Eldridge et al., 2011) and south (Price & Morgan, 2008) as well as 

its semi-arid savanna (Fensham et al., 2005). It is in boreal zones however, where 

the climate fingerprint on shrubs is most evident, with a growing body of literature 

documenting range expansion of shrub species (e.g. Sturm et al., 2001; Tape et al., 

2006; Post et al., 2009; Naito & Cairns, 2015)  

While increases in the abundance of shrubs or range margin shifts have been 

related to direct climate impacts, such as warmer temperature and shifts in 

precipitation (e.g. Eamus & Palmer, 2007; Taylor & Kumar, 2013) indirect factors 

such as elevated CO2 may play a role in increasing the distribution of evergreen 
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vegetation, including shrubs, across Australia (Macinnis-Ng et al., 2011), particularly 

those in semi-arid grasslands (Morgan et al., 2007) Other studies, however, have 

connected woody thickening to anthropogenic disturbances within the environment 

(Daryanto et al., 2013; Norman et al., 2014; Silva et al., 2014).  

To date, few dynamic global vegetation models have included shrubs as a 

distinct plant functional type (although see models modified by Cox, 2001; Zeng et 

al., 2008; Dallmeyer et al., 2011). This is partly due to the lack of knowledge 

regarding the role of climate in defining shrubland distribution. Thus, if 

parameterisation of shrublands in a vegetation modelling context was explicitly 

defined, more confidence could be placed in projections of global vegetation types 

and the impacts of climate change and disturbances.             

 

Australian shrubs and shrubland ecosystems 

As on other continents, Australian shrub species are a key environmental and 

economic resource. For example, among the most widespread vegetation 

communities in Australia are Acacia shrublands dominated by Mulga (Acacia aneura) 

and Mallee shrublands dominated by Eucalyptus species. These play a valuable role 

in enhancing biodiversity, supporting remnant populations of a broad number of 

animal species, and are important for ecotourism and conservation (DEWR, 2007). 

Consequently, the study of climate and soil dynamics is crucial to our ability to 

understand the distribution of shrubs and shrublands, and their potential responses 

to climate change. To date, the inclusion of soil variables in modelling studies and 

assessments of the relative importance of soil versus climate variables in driving 

species distributions has been limited. The objective of this thesis, therefore, was to 

explore relationships between climate, soil and the distribution of Australian 
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shrublands and shrub species (note that this thesis often refers to particular 

Australian states and territories, for which a map is provided in Appendix 1).  

In the second chapter, I assessed the distribution of shrubland as a vegetation 

class. My key goals were to a) identify climate variables associated with the cover of 

shrubland as a major vegetation type, and of six classes of shrubland; b) identify the 

climate space occupied by shrubland, compared to other major vegetation types, and 

each shrubland class, and c) use Generalized Linear Models (GLMs) to predict the 

distribution of shrubland and shrubland classes across Australia.  

In Chapter 3 I focused on dominant shrubland species rather than 

ecosystems. This chapter explored how climate and the physical and chemical 

properties of soil influence the distribution of species. Specifically, I assessed 

whether the inclusion of soil characteristics in conjunction with climate variables 

increased the predictive power of models of the distributions of 29 native Australian 

shrub species. I hypothesised that, given the importance of soil in controlling the 

distributions of plants, models calibrated with both soil and climate variables would 

have higher accuracy (from the perspective of predictive power and elological 

relevance of the predictions), compared to those calibrated with only climate 

variables or only soil variables.  

The key focus on Chapter 4 was climate change and how the distributions of 

species targeted in Chapter 3 may be altered under contrasting future climate 

scenarios. To further explore uncertainty in the output of species distribution models, 

I assessed how projections of suitable habitat may diverge when two sets of models 

(one calibrated with climate and soil variables and the other with only climate 

variables) are projected onto scenarios of future climate change. 

The final chapter provides the key findings of this thesis and discusses 

implications and directions for future research. 
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Chapter 2: Defining the climate envelopes of Australian 

shrublands 

__________________________________________________ 

Introduction 

Shrublands are one of the most common vegetation types in Australia, occupying ~ 

two and a half million square kilometres—almost a third of the land area of the 

continent (DEWR, 2007). Shrublands are mostly distributed across the southern-

central to western regions of Australia, as well as parts of the south-east. The 

National Vegetation Information System, which defines vegetation type based on 

growth form, height and cover of dominant vegetation within strata, regards “shrubs” 

(multi-stemmed species) as the dominant growth form in Shrublands (ESCAVI, 

2003). Five major classes of shrubland are recognised within Australia, with a sixth 

class comprising mixed communities not aligned to the other five (ESCAVI, 2003).  

Both in Australia and globally, climate determines the distribution of shrubland 

at broad spatial scales. In particular, gradients of temperature and moisture separate 

shrubland from other major vegetation types (i.e. forests, woodlands, grasslands) 

(Box, 1995). For instance, while forests and woodlands inhabit regions of high water 

availability in Australia, most shrubland communities occupy arid and semi-arid 

regions generally characterised by mean annual precipitation < 250 mm and 250 – 

800 mm, respectively, although some shrubland classes (such as Heathland and Tall 

Closed Shrubland) occur in wetter, temperate regions of the country (Stern et al., 

1999; Butt, 2004). 

Grasslands dominated by perennial grasses also occur in Australia’s arid and 

semi-arid regions (DEWR, 2007), though shrubs are able to compete with grass 
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species in these ecosystems due to their efficient use of low or irregular moisture 

(Mooney, 1981; Burgess, 1995; Sandra & Marcelo, 1997; Smith et al., 1997; 

Reynolds et al., 1999). Shrubs have deeper roots than grasses, enabling them to 

extract water from deeper soil layers, and therefore access moisture during periods 

of low rainfall (Burgess, 1995). In contrast, the shallow roots of many grass species 

prevents access to moisture held in deeper soil layers (Burgess, 1995), thereby 

limiting their growth in summer. Furthermore, relative to grasses, shrubs display 

higher rates of photosynthesis and respiration during the growing season (the period 

of maximal physiological activity and growth) (Reynolds et al., 1999). Shrubs also 

minimise energetic costs by reducing productivity outside their growing season, such 

as during drought (Oleson et al., 2004); lowering photosynthetic activity; and 

producing relatively small leaves (Smith et al., 1997).  

While several studies have addressed general responses of shrub species or 

shrubland, in Australia and overseas, to climate and climate change (Sandra & 

Marcelo, 1997; Fitzpatrick et al., 2008; Altamirano et al., 2010; Zeng, 2010; Munson 

et al., 2011; Sardans et al., 2013), there remains a general lack of understanding of 

the climatic factors that characterise Australian shrubland as a major vegetation type, 

and the six classes of shrubland.  

The aims of this Chapter, therefore, were to a) identify climate variables 

associated with the cover of shrubland as a major vegetation type, and of each class 

of shrubland; b) identify the climate space occupied by shrubland, compared to other 

major vegetation types, and each shrubland class, and c) use Generalized Linear 

Models (GLMs) to predict the distribution of shrubland and shrubland classes across 

Australia.  
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Methods 

Vegetation Data 

The distribution of vegetation types was obtained from the National Vegetation 

Information System, NVIS (ESCAVI, 2003). This database contains information on 

the floristic, structural and growth form characteristics of Australian extant native 

vegetation, collected at field survey sites and from remote sensing across all states 

and territories. Its foundation is an information hierarchy in which the dominance of a 

specific taxon/species is indicated by its relative biomass in each stratum or sub-

stratum of a vegetation type. Thousands of distinct vegetation types have been 

identified and collated in the NVIS database. To develop continental scale gridded 

datasets NVIS aggregated the extant vegetation types into 23 major native 

vegetation groups (MVGs) (DEWR, 2007), which can broadly be defined as 

shrubland, forest, woodland or grassland, along with other land cover types (e.g. 

non-vegetation and non-native vegetation) (version 4.1; DSEWPaC, 2012). 

Shrubland is divided into six classes: Acacia shrublands; Chenopod shrublands, 

samphire shrublands and forblands; Heathlands; Mallee woodlands and shrublands; 

Low closed forests and tall closed shrublands; and Other shrublands. These will 

hereafter be referred to as “Acacia”, “Chenopods”, “Heathlands”, “Mallee”, “Tall 

shrubland”, and “Other”. A more detailed classification consisting of 83 major 

vegetation subgroups (MVS) has also been developed; of which 25 are shrubland or 

a combination of open woodland and sparse shrubland (Table 2.1).  

 

Aggregation of MVGs 

I downloaded extant MVG and MVS gridded NVIS data at a spatial resolution of ~ 1 

km (version 4.1). These data were converted to polygon layers using ArcGIS v10.1 

(ESRI Inc., 2010) in order to reduce errors resulting from the way in which NVIS 
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aggregated MVS’s into MVGs. Under this aggregation approach a MVG polygon may 

have consisted of more than one MVS, and the composition of these may not be 

immediately obvious from the title of the MVG. For instance, within Acacia shrubland, 

there are pockets of other MVSs that are actually classified as subtypes of forests, 

woodlands or grasslands. Therefore, to obtain more accurate representations of 

climate envelopes, I reclassified MVS polygons and recreated MVG classes, as 

described in Table 2.1. This process resulted in slight spatial differences between my 

classification of the six shrubland classes and the original shrubland MVGs (see 

Appendix 2.1 Figure A2.1). Finally, I placed each MVS into one of four broad 

vegetation groups: shrubland, forest, woodland, and grassland (Table 2.1). 

 

 

Table 2.1 Major Vegetation Subgroups (MVS) as defined by the National Vegetation Information 

System  (DEWR, 2007) were aggregated into four broad vegetation types or a ‘mask’ layer. Within 

Shrubland, associated MVSs were further classified into six classes.  

 

Broad vegetation type Vegetation major subgroup (MVS) 

      
Shrubland   

      

  Mallee woodland & 
shrubland 

Mallee with either a) open shrubby, b) dense shrubby or c) tussock grass 
understorey, or d) hummock grass  

   Open mallee woodlands & sparse mallee shrubland with either a) open shrubby, 
b) dense shrubby or c) tussock grass understorey, or d) hummock grass 

     

  Acacia woodland & 
shrubland 

Acacia (+/- low) open woodlands & sparse shrubland and either a) +/- tussock 
grass, b) with shrubby understorey, c) chenopods or d) hummock grass 

   Mulga (Acacia aneura) open woodlands & sparse shrubland and either a) +/- 
tussock grass or b) with hummock grass 

   Mulga (A. aneura) woodlands and either a) +/- tussock grass and +/- forbs or b) 
shrubland with hummock grass 

   Other Acacia tall open shrubland & shrubland 

     

  Low closed forests or 
tall closed shrubland 

Low closed forest or tall closed shrubland (including Acacia, Melaleuca & 
Banksia) 

     

  Heathland Heath or other sparse shrublands & sparse heathlands 

     

  Chenopods & 
samphire shrubland 

Saltbush and/or Bluebush shrubland 
Mixed chenopod, samphire +/- forbs 
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  Other shrubland Lignum shrubland & wetlands 
Melaleuca shrubland & open shrubland 
Other shrubland 
Regrowth or modified shrubland 

      
Forest Brigalow (Acacia harpophylla) forests and woodlands 

Callitris forests and woodlands 
Casuarina and Allocasuarina forests and woodlands 

 
    Cool temperate rainforest 

Dry rainforest or vine thickets 
Warm temperate rainforest 

 
    Eucalyptus (+/- tall) open forest with dense broad-leaved &/or tree-fern 

understorey (wet sclerophyll) 

    Eucalyptus open forests with a) grassy or b) shrubby understorey 

    Eucalyptus tall open forests & open forests with ferns, herbs, sedges, rushes or 
wet tussock grasses 
Eucalyptus tall open forest with a fine-leaved shrubby understorey 

     
Forests & woodlands that are  a) Leptospermum, b) Melaleuca open,  c) Other 
Acacia, or d) Other 

     
Regrowth or modified forests & woodlands 

     
Tropical Eucalyptus forest & woodlands with either a) tall annual grassy 
understorey 
Tropical mixed species forests and woodlands 
Tropical or sub-tropical rainforest 

     
Unclassified forest 

      
Woodland Banksia woodlands; Callitris open woodlands 

    Casuarina/Allocasuarina open woodlands with a) hummock grass, b) tussock 
grass, c) chenopod shrub or d) shrubby understorey 

     
Eucalyptus low open woodlands with a) hummock or b) tussock grass, or c) 
shrubby understorey 

    Eucalyptus open woodlands with either a) grassy or b) shrubby understorey 

    Eucalyptus woodlands with either a) hummock grass or b) tussock grass 
understorey, or c) ferns, herbs, sedges, rushes or wet tussock grassland; or with 
understorey that is a) chenopod or samphire or b) shrubby 

    Eucalyptus (+/- low) open woodlands with a chenopod or samphire understorey 

    Melaleuca open woodlands 

      
Grassland Blue grass (Dicanthium) & tall bunch grass (Chrysopogon) tussock grasslands; 

Hummock grasslands; Mitchell grass (Astrebla) tussock grasslands 

    Other grasslands; Temperate tussock grasslands; Wet tussock grassland with 
herbs, sedges or rushes, herblands or ferns; Other tussock grasslands 

    Regrowth or modified graminoids 

    Saline or brackish sedgelands or grasslands; sedgelands, rushes or reeds 

      
Mask Boulders/rock with algae, lichen or scattered plants, or alpine feldmarks; 

Naturally bare, sand, rock, claypan, mudflat 

    Freshwater, dams, lakes, lagoons or aquatic plants 

    Salt lakes & lagoons; Sea, estuaries (includes seagrass); Mangroves 

    Cleared, non-native vegetation, buildings; Unclassified native vegetation; 
Unknown/No data 

 

 

Climate data 

I generated average monthly values of precipitation, maximum and minimum 

temperature, solar radiation and evaporation (averaged over the period 1970 – 1999) 
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from ANUCLIM (version 6.1, Xu & Hutchinson, 2011, 2013) at a spatial resolution of 

5 km. Using this dataset, I calculated a number of variables that have a physiological 

impact on plants, and which may influence the distribution of shrubland (Table 2.2):  

 Temperature: mean annual temperature (MAT); mean temperature of 

the coldest (MTCO) and warmest month (MTWA); degree days above 0°C (GDD0) 

and 5°C (GDD5); photosynthetically active radiation during the period with 

temperatures above 0°C (PAR0) (following Klassen & Bugbee, 2005; Gallego-Sala et 

al., 2010). 

 Precipitation: mean annual precipitation (MAP); mean winter (Austral 

winter = June, July, August; Pw) and summer (Austral summer = December, January, 

February; PS) precipitation; concentration of seasonal precipitation (P(conc)) whereby 

higher values indicate that precipitation is restricted to part of the year while lower 

values indicate it is scattered throughout the year (Kelley et al., 2013);  

 Moisture: Moisture Index (MI), calculated as the ratio of MAP to total 

annual equilibrium evapotranspiration (EET), where EET is calculated following 

Wang et al., (2013); the Cramer-Prentice  index of plant-available moisture ( = 

AET/EET, where AET is actual evapotranspiration) (Prentice et al., 1993); mean 

winter (w)  and summer alpha (s); summer precipitation index (SPI) which was 

calculated as:  

    
        
 
 

   
 
 

  

where Pi is the fraction of annual precipitation falling in month i, θi is the angle 

of month i (defined as January = 0˚, February = 30˚, ..., December = 330˚), and 

summation is over n = 12 months. In the Southern Hemisphere, SPI will be 

positive when precipitation is concentrated in summer and negative when it is 

concentrated in winter. This variable is similar to the ‘standardised precipitation index’ 
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published by WMO (2012). The latter, however, can be applied to different sets of 

months whereas SPI is calculated for summer months only.  

Other variables that may be important in delimiting the distribution of 

shrubland include soil depth and water holding capacity. I obtained soil moisture data 

from the Australian Water Availability Project (AWAP: Raupach et al., 2009, 2012). 

AWAP combines measurements and models to produce water fluxes and soil 

moisture variables across Australia, at ~ 5 km resolution, for two soil depths (layer 1 

= 0 - 0.5 m; layer 2 = 0.5 - 1.5 m depth). I used AWAP data to calculate an additional 

nine soil moisture variables for the period 1970 - 1999. These were: mean annual soil 

moisture of layer 1 (SM1) and layer 2 (SM2); mean annual difference between these 

layers (SM1-2); mean winter and summer soil moisture for layer 1 (SM1(w) and SM1(s), 

respectively) and layer 2 (SM2(w); SM2(s)); and mean difference between soil layers 1 

and 2 in winter (SM1-2(w)) and summer (SM1-2(s)). Values of these two variables will be 

positive when moisture availability is higher in layer 1 than layer 2, and negative 

when it is higher in layer 2 than layer 1 (Table 2.2).  

 

Identifying climate variables and fitting models  

My first goal was to identify the climate variables controlling the distribution of 

shrubland relative to other major vegetation types and of each shrubland class. I 

used ArcGIS (ESRI Inc., 2010) to overlay the reclassified MVG polygon layer to a 5 

km grid matching the resolution of the climate data. I then calculated the proportional 

cover of each of the four major vegetation types (shrubland, grassland, forest, 

woodland), for each 5 km cell. Grid cells that did not contain native vegetation, or 

consisted of water bodies (see Table 2.1), were masked and removed, leaving 

295,210 cells containing data on native vegetation. Values for each climate variable 

were extracted at each of these cells. 



Table 2.2 Climate variables derived from ANUCLIM (Hutchinson & Xu, 2010), indicated with an 

asterisk,  and AWAP (Raupach et al., 2012), as well as method of calculation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable  Abbreviation Method or reference  

Mean annual temperature (°C) * MAT  

Mean temperature of the coldest month (°C) * MTCO Gallego-Sala et al., (2010) 

Mean temperature of the warmest month (°C) * MTWA Gallego-Sala et al. (2010) 

Total photosynthetically active radiation during 

the growing season, for days with temperature 

above 0°C (mol photon m−² ) * 

PAR0 Klassen & Bugbee, (2005); 

Gallego-Sala et al. (2010) 

Accumulated growing degree days above 0°C * GDD0 Gallego-Sala et al. (2010) 

Accumulated  growing degree days above 5°C * GDD5 Gallego-Sala et al. (2010) 

Mean annual precipitation (mm) * MAP  

Mean summer precipitation  (mm) * Ps Austral summer =  
December, January,  
February 

Mean winter precipitation (mm)  * Pw Austral winter = June, July, 
August 

Summer precipitation index * SPI I.C. Prentice, pers. comm 

Concentration of seasonal precipitation * P(conc) Kelley et al., (2013) 

Moisture Index (dimensionless)  * MI Prentice et al., (1993) 

Cramer-Prentice  index (dimensionless)   *  Prentice et al. (1993) 

Mean summer alpha (dimensionless)   * s Austral Summer  

Mean winter alpha (dimensionless)   * w Austral Winter 

Mean annual soil moisture of layer 1 (mm) SM1  

Mean annual soil moisture of layer 2 (mm) SM2  

Mean annual difference between two soil layers  SM1-2 SM1 – SM2 

Mean soil moisture in summer (layer 1) (mm) SM1(s) Austral Summer 

Mean soil moisture in winter (layer 1) (mm) SM1(w) Austral Winter 

Mean soil moisture in summer (layer 2) (mm) SM2(s) Austral Summer 

Mean soil moisture in winter (layer 2) (mm) SM2(w) Austral Winter 

Mean difference between soil layers 1 and 2 in 

summer  

SM1-2(s) SM1(s) – SM2(s) 

Mean difference between soil layers 1 and 2 in 

winter  

SM1-2(w) SM1(w) – SM2(w) 



Canonical Correspondence Analysis was used to explore relationships 

between bioclimatic variables and vegetation type (CCA, Ter Braak & Prentice, 

1998), with the Akaike Information Criterion (AIC, Akaike, 1974) using a forward  

stepwise model selection algorithm to select the most important bioclimatic variables.  

Next, I extracted percent grid cover for the six shrubland classes from each 

grid cell predicted by a GLM ensemble (described below) to contain shrubland as a 

major vegetation type. This resulted in 85,834 grid cells used in the analysis. Again, 

CCA was used to identify which of 24 bioclimatic variables were associated with each 

shrubland class, and separate GLMs for each class were developed to predict their 

potential distributions.   

Following the methodology of Wang et al., (2013), GLMs (Müller, 2004) were 

constructed for each of the four vegetation categories and six shrubland classes 

separately, with the dependent variable being the proportion of each grid cell covered 

by a given vegetation type or Shrubland class (“proportional grid cover”). Univariate 

models with linear and quadratic terms were initially fitted using the bioclimatic 

variables identified through CCA as the most important. I assumed a binomial 

distribution to errors of the model, and used the logit link function. I then excluded 

any terms with coefficients that were not significant at P < 0.05, and quadratic terms 

with response curves lacking realism (i.e., U-shaped curves rather than Gaussian-

shaped unimodal curves (Wang et al., 2013) which represent more realistic (sigmoid) 

responses to climate predictors). Unrealistic response curves reflect incorrect 

physiological relationships between plants and climate predictors (Austin, 2007). 

Finally, I fitted final models by relating the fitted probabilities to observed proportions. 

For this step I used a simple linear calibration for each vegetation/shrubland type by 

applying a linear regression to the predicted probability of a given vegetation type to 

its observed proportion. Then, I inverted that regression relationship to find a 
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weighting factor to the predicted probabilities, and excluded all negative values by 

setting them to zero. These final predicted probabilities were related to each 

vegetation/shrubland type in each grid cell by selecting the highest predicted 

probabilities after weighting. 

I used the final models to predict the proportional grid cover of each of the 

major vegetation types and shrubland classes within each grid cell. That is, following 

(Wang et al., 2013), I used a simple linear calibration to relate the GLM-predicted 

probabilities to observed proportional grid cover. The regression relationship was 

inverted to obtain a weighting factor to be applied to the predicted values. Negative 

predicted values were set to 0 and values > 1 were set to 1. The parameter values 

for the final models are listed in Tables A2.1 and A2.2, respectively, in the Appendix 

2.1. 

 

Mapping and assessing goodness of fit 

To assess the agreement between observed and projected distributions, I combined 

projections for the four vegetation types into a single map, where the vegetation type 

within a given grid cell was that which had the highest predicted proportional grid 

cover. I refer to these as “ensemble GLMs”. The resulting map was compared to the 

observed proportional grid cover map (created in the same manner as predicted 

proportional grid cover, by aggregating the NVIS subtypes according to Table 1). 

Agreement was assessed using Cohen’s kappa statistic (Cohen, 1960; Prentice et 

al., 1992), the values of which range from 0 to 1, where zero indicates that similarities 

are most likely obtained by chance while 1 indicates complete agreement between 

two maps. Generally, kappa > 0.55 are accepted as ‘good’ (see Monserud & 

Leemans, 1992). Cross tabulation was used to compare observed and predicted 

values within different vegetation types and Shrubland classes. 
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Analyses were performed with the R software v 2.2-1 (R Core Team 2012) 

using the vegan package (Oksanen et al., 2013).  

 

Results 

Identifying climate variables associated with the distribution of Shrublands 

The CCA biplot (Figure 2.1) illustrates relationships between the four vegetation 

types and climatic gradients in Australia. The first and second axes explain 56% and 

29% of variation across the climate variables, respectively (for scores of the two axes 

see Appendix 2.1, Table A2.3). Annual and seasonal moisture variables, such as , 

MAP, SM1, s, and SM1(s), are aligned to the first axis, while temperature and energy 

variables, particularly PAR0, GDD0, GDD5 and MAT and summer precipitation 

variables such as SPI and P(conc), are aligned on the second axis. Across a gradient 

from high to low moisture (left to right along axis 1) major vegetation groups transition 

from forest, to woodland, and then grassland and shrubland. Similarly, along a 

gradient of high to low temperature (bottom to top along axis 2) vegetation shifts from 

grassland, woodland, forest, then shrubland.  

Based on AIC analysis the four variables, , SPI, s, and PAR0, were most 

important for determining the distribution of the four vegetation types. Correlation 

coefficients between these variables were < 0.8 which further supported their 

selection.  
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Figure 2.1 CCA biplot of four vegetation types (shrubland, forest, woodland, grassland), and 24 

climatic variables. See Table 2.1 for full names of climate variables. CCA1 axis represents a 

gradient of moisture availability increasing from right to left. CCA2 axis represents a 

temperature gradient, increasing from the bottom upwards. 

The response curves of GLMs of the four major vegetation types show that the 

proportional grid cover of shrubland vegetation type rapidly declines as  increases 

(Figure 2.2). There is also a negative relationship between grid cover of shrubland 

and SPI and PAR0. Proportional cover of grassland increases the more rainfall is 

concentrated in summer, but shows unrealistic responses to  and PAR0. Cover of 

grassland declines with s while shrubland increases. While there is little association 

between proportion of forest cover and  or PAR0, higher coverage of woodland is 

associated with intermediate values of both of these variables. Forest and woodland 

also differ in their response to SPI: forest cover is greater in areas where rainfall is 
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concentrated in winter, while woodland is associated with summer concentration 

(Figure 2.2). 

 

 

Figure 2.2 Response curves of 

major vegetation types (forest, 

grassland, shrubland, and 

woodland) generated by 

generalized linear models. The four 

variables are:   = Cramer-Prentice 

 index; PAR0 = photosynthetically 

active radiation during the period 

with temperature above 0°C; SPI = 

summer precipitation index; s = 

mean summer .  

 

 

 

 

 

 

 

 

 

 

What are the climate envelopes of individual shrubland classes? 

The relationship between six shrubland classes and climate in Australia is shown in 

Figure 2.3. The first and second axes explain 38% and 37% of variation across the 
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shrubland classes, respectively (for axes scores see Appendix 2.1, Table A2.4). The 

shrubland classes are separated along the first axis on the basis of temperature and 

energy (e.g. MAT PAR0, GDD0, MTWA) and summer moisture availability (e.g. s, 

Ps). The second axis is based primarily on different measures of seasonal and 

annual soil moisture availability (e.g. SM1(s), SM1(w), SM2). Along the gradient of high 

to low temperature, shrubland classes shift from Acacia, Chenopods, Other 

shrubland, Mallee, Tall shrubland, and then Heathland. Similarly, along the gradient 

of high to low moisture availability, shrubland transitions from Heathland, Tall 

shrubland, Other shrubland, Mallee, Acacia, then Chenopods.  

Based on AIC analysis, the two moisture variables,  and SM1-2(s), and the 

variable PAR0, were selected as the most important for determining the distribution of 

different shrubland classes. Correlation coefficients between these three variables 

were also low (< 0.45) which further supported their selection. 
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Figure 2.3 CCA biplot of six shrubland classes: Acacia, Chenopods; Heathland; Mallee; Other; Tall 

closed; and 24 climatic variables. See Table 2.1 for names of variables. Variables separate along the 

first axis based on temperature and energy, and the second axis mostly on moisture availability. 

 

The response curves of calibrated GLMs for the six shrubland classes 

demonstrate that coverage of Acacia shrubland is higher in regions with low  (< 0.4) 

and increases with increasing PAR0. Cover also increases with higher levels of 

moisture in deeper, compared to shallower, soils (i.e. lower SM1-2(s)). Coverage of 

chenopods declines increasing , and positively correlated with PAR0 and moisture 

in shallow soil layers. Heathlands show very low probabilities with all three predictor 

variables with an unrealistic response to PAR0. In general, Heathland cover is 

positively associated with  and moisture in shallow soil layers, and is absent from 

deeper or dry soils. Mallee coverage decreases with increasing  and PAR0 but 

increases in slightly moist deeper soil layers. Tall closed shrublands occur in 

relatively low  (0.25 – 0.35) and PAR0 (12500 – 15000) and in moister shallow soil 

layers. Coverage of Other shrublands increases with increasing  and PAR0 and has 

a non-realistic response to SM1-2(s) (Figure 2.4). 
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Figure 2.4. Response curves of six shrubland classes (Acacia, Chenopod, Heathland, Mallee, and tall 

closed) found across Australia, modelled with generalized linear models.  = Cramer-Prentice  index; 

PAR0 = Photosynthetically active radiation during the period with temperature above 0 ºC; SM1-2(s) = 

Mean difference between soil layers 1 and 2 in summer. Plots on the left are fully sized, whereas plots 

on the right show smaller section at finer probability scales.  
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Model performance 

GLM models for the first ensemble had a Kappa value of 0.7. According to 

Monserud & Leemans (1992), this indicates that the predictive power of the models 

were between “Good” to “Excellent” (Figure 2.6). 74% of grid cells were correctly 

predicted to be shrubland (Figure 2.5). The ensembled map indicates that the GLM 

correctly predicted much of the southern range of shrubland, although shrubland in 

parts of western Australia, and in scattered regions in south-western Queensland and 

the Northern Territory were incorrectly predicted to be grassland (Figure 2.6). Rarely 

was shrubland predicted to be forest (< 1%) or woodland (< 6%). Forest was poorly 

predicted, with only 38% of grid cells correct. Approximately 51% of forest was 

predicted as woodland particularly in south-eastern New South Wales/Victoria and 

Tasmania. In contrast, ~ 57% of woodland was correctly predicted with < 8% 

incorrectly classified as Forest, although regions of south-western and central 

Australia were misclassified as shrubland and grassland, respectively.  

 

 

 

    

 

 

Figure 2.5 Results of an ensemble of four general linear models, predicting the distribution of four 

dominant vegetation types across Australia, compared to the observed dominant vegetation type. 

Each section sums to 100% and shows the proportional of cells for which the dominant vegetation 

type was predicted correctly, as well as the breakdown of incorrect predictions.  
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Figure 2.6 Observed (a) and predicted (b); distribution of the four major vegetation types (forest, 

woodland, shrubland, grassland). The observed map is based on aggregation of the NVIS data set. 

For each grid cell, the predicted vegetation type was that with the highest predicted probability based 

on four generalised linear models that used some or all of the following as predictors (refer to Table 

2.3): , PAR0, SPI, s. Predictors are defined in Table 2.2 and described in text in the Methods 

section.  

 

The ensembled model of the six shrubland classes was less successful, as 

predictive power of the GLM was only fair (Kappa: 0.4) with the distribution of mallee, 

acacia and other shrubland being over-estimated (Figure 2.8). Although Acacia and 

Chenopods were predicted quite accurately (~ 74% and 68%, respectively), and 

Mallee was reasonable (53%), the remaining classes were poorly predicted (Figures 

2.7 and 2.8). The most frequent misclassification for Acacia was as Chenopods 

(14%), and vice versa (18%). 27% of Mallee grid cells were classified as Acacia. 

Less than 20% of Tall shrublands were correctly predicted, with 48% being classified 

as Other and 24% as Mallee. Other shrubland was frequently classified as Mallee 

(22%), Acacia (23%) or Chenopods (21%). There was no agreement between 

observed and predicted distributions of Heathland. Rather, these areas were 

primarily classified as Other shrubland (49%), Mallee (36%) or Tall shrubland (20%). 

 

(b
) 

(a) 
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Figure 2.7 Results of an ensemble of six general linear models, predicting the distribution of 

shrubland classes. Each section sums to 100% and shows the proportional of cells for which 

shrubland was predicted correctly (in bold), and the breakdown of errors. Acacia = Acacia shrubland; 

Chenopods = Chenopod shrubland, samphire shrubland and forblands; Heathlands = Heathland; Tall 

= Low closed forests and tall closed shrubland; Mallee = Mallee shrubland and woodland; Other = 

other shrublands; Non-shrub = vegetation types other than shrubland.  
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Figure 2.8 Observed map (a) of aggregated MSVs representing six shrublands that are located within 

the area predicted to contain shrubland (see Figure 2.3). (b) Predicted distribution of six shrubland 

classes, based on an ensemble of six generalised linear models (GLM). Acacia (Acacia shrubland); 

Chenopods (Chenopod shrubland, samphire shrubland and forblands); Heathlands (Heathland); 

Mallee (Mallee shrubland and woodland); Other shrubland; Tall closed (Low closed forests and tall 

closed shrubland); Non-shrubland (Other vegetation types). GLMs were calibrated using , PAR0, and 

SM1-2(s) as predictors. Predictors are defined in Table 2.2 and described in text in the Methods section. 

 

Discussion 

Climate controls of Australian shrublands 

Across Australia, the four major vegetation types (shrubland, forest, woodland and 

grassland) can be separated according to their climate space, as defined by 

gradients of annual and summer soil moisture, and temperature availability. My 

analyses indicated that soil moisture is a primary factor distinguishing shrubland from 

other vegetation growth forms. Physiologically, this is explained by forest and 

woodland requiring relatively higher values of soil moisture than shrubland and 

grassland, in order to support higher levels of photosynthetic activity (Briggs et al., 

2005; Meng et al., 2009). However, while GLMs predicted the distribution of 

(a) (b) (b) (a) 



 

45 
 

shrubland relatively well, it was harder to distinguish forest from woodland (51% of 

observed forest was predicted as woodland).  

As indicated by CCA, both shrubland and grassland occur in environments 

with low annual moisture. The primary difference between these vegetation types is 

that higher shrubland occurrence is associated with higher summer soil moisture. 

This supports previous research suggesting that shrubs’ efficient use of irregular or 

low water enables them to dominate these regions (e.g. Mooney, 1981; Burgess, 

1995). Shrubs can extract rainfall more efficiently than grasses due to their deep, 

branched roots (Burgess, 1995).  

  Although other studies have suggested that seasonal moisture is a driver of 

shrubland distribution, or have commented on the ability of shrublands to utilise soil 

moisture from deep layers (Mooney, 1981; Burgess, 1995; Reynolds et al., 1999), 

this is the first study to explicitly demonstrate that deep soil moisture is an important 

predictor for shrubland classes such as Acacia and Chenopods. It is known however, 

that competition with perennial grasslands in arid regions may negatively impact the 

distribution of shrubland (Harrington, 1991). For instance, Hummock grasslands in 

central arid Australia are dominated by Triodia species (Griffin & Hodgkinson, 1986; 

DEWR, 2007). These grasses are functionally similarly to shrubs with roots reaching 

a depth of 10 m (Reid et al., 2008), enabling plants to withstand harsh conditions and 

live longer.  

Different classes of shrubland also occupy different climate space, with 

moisture availability again being the primary factor distinguishing these classes. In 

general, the climate niches of Chenopod, Acacia and Mallee shrublands differ from 

each other and from Heathlands and Tall shrublands, with the latter two occupying 

similar climate niches (based on the variables I have used). With the exception of 
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Acacia shrubland, temperature variables have little effect on the Australian 

distribution of shrubland classes.  

 

Modelling limitations 

While predicting the distribution of shrubland was a goal of this study, it was met with 

only moderate success. This may be because shrubland in general occupies a very 

wide climate niche. While mostly found in arid and semi-arid regions of central and 

southern Australia, Heathland and Tall shrubland also occur in temperate regions of 

Western Australia, Tasmania and eastern Australia. The ensemble GLM of the four 

major vegetation types did not predict shrubland to have the greatest proportional 

grid cover within Tasmania or eastern regions of the continent. Secondly, Heathland 

in Western Australia occurs in semi-arid regions in contrast to the temperate 

Heathlands of the east. Separating these communities into different categories for 

modelling may result in higher accuracy.  

Model inaccuracies may be related to two reasons: Firstly, level of NVIS data 

accuracy likely differs across states. This could occur due to incorporating non-NVIS 

data from different databases across states in order to fill spatial gaps in MVGs and 

MVSs (NSW VIS, 2008). Secondly, combining MVS of smaller vegetation 

components other than shrubs in each vegetation group may have declined the 

quality of the model prediction. For instance, Acacia shrubland was an aggregate of 

nine MVSs, most of which were classified in NVIS as open woodlands and sparse 

shrubland (Table 1). Thus, in many instances “shrubland” may constitute mixed 

communities: whether these MVSs should be excluded from Acacia shrubland and 

combined with Woodland classes requires further exploration. Similar difficulties 

occur with the class “Other Shrublands”. For the most part these consist of shrubland 
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communities that do not fit within the definitions of the other five classes, and there is 

no indication that these communities form a cohesive unit.  

Finally, factors other than climate can play important roles in defining 

shrubland distribution, diversity and composition. These include fire frequency and 

physical soil properties (Bowmana et al., 2008; Nicholas et al., 2011) and grazing 

(Tiver et al., 2008; Daryanto et al., 2013). Heathland distribution, for instance, 

appears to be strongly influenced by soil nutrient status, and in particular the 

concentration of phosphate (Specht, 1994). Similarly, soil physical and chemical 

properties, along with soil moisture, are key factors governing Chenopod distribution 

(Groves, 1994).  

 

Comparison with previous results 

Few studies have described explicit relationships between climate and the 

distribution of shrublands in Australia. However, there is an agreement between my 

findings and the NVIS (DSEWPaC, 2012) description of climatic requirements for 

shrubland, which suggests that three major climatic factors control shrubland 

distribution: annual and seasonal moisture availability, and high temperature. 

My results suggested that coverage of shrublands increases with lower soil 

moisture, while forests increase with higher α. High coverage of grassland is mostly 

associated with high temperature. This is in agreement with Barboni et al. (2004) who 

reported higher abundance of Mediterranean shrubs in low α (< 0.5) environments 

while tree abundance increased with higher α. They suggested that grasses occur 

more in regions of lowest winter temperature (i.e. higher abundances with higher 

temperature). 

My results are relatively consistent with other studies, which have also 

identified the importance of moisture in controlling shrubs and shrubland growth (e.g. 
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Harrington, 1991; Lavorel & Cramer, 1999; Dallmeyer et al., 2011). For instance, 

annual precipitation was suggested to be a vital component for predicting the global 

distribution of shrubland (Zeng et al., 2008). There is a high correlation (~ 90%) 

between the mean annual precipitation (MAP) and summer seasonal soil moisture 

variable (s), the latter of which was included in the GLMs in this Chapter.  

Cavanaugh et al. (2011) also found shrub distribution to be positively 

correlated with concentrated rainfall events and the availability of moisture in deep 

soil layers, while Harrington (1991) identified summer moisture as important for shrub 

establishment. He also noted that perennial grasses with deep roots (~ 90 cm) can 

be strong competitors to shrub species. As a consequence, unless factors such as 

overgrazing and fire suppress grassland distribution, competition with grasses may 

restrict the distribution of shrubland in semi-arid Australia (Harrington, 1991).  

Previous studies have found temperature variables to be important for defining 

the distribution of shrubland in cool climate regions. For example, mean annual 

temperature in warmest month (MTWA) was a key variable explaining cold shrubland 

distribution in China (Dallmeyer et al., 2011), mean annual temperature (MAT) for 

boreal shrubland globally (Zeng, 2010), and accumulated growing degree days 

above 0°C and above 5°C (GDD0 and GDD5 respectively) for cold and cool shrubland 

globally, along with soil moisture variables) (Prentice et al., 1992). In Australia, 

shrubland occurs mostly in semi-arid and arid regions; hence, temperature has less 

influence on shrubland distribution than moisture. However, my analyses identified 

PAR0 as one of the most important variables for the distribution of shrubland classes, 

and this is strongly correlated with MTWA and GDD.  
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Conclusions 

The major Australian vegetation types are separated along gradients of annual and 

seasonal moisture and energy, with shrubland occurring in regions that are drier 

compared with forest and woodland, and with cooler mean temperature and higher 

seasonality of soil moisture compared to grassland. I also identified summer moisture 

availability within deep soil layers as playing an important role in controlling the 

distribution of different shrubland classes, such as Acacia and Chenopod shrublands. 

These results are consistent with knowledge of shrub morphology and physiology; 

shrubs have deeper roots than grasses, enabling efficient access to soil moisture in 

environments prone to drought or low rainfall. I used models to successfully 

distinguish climate space occupied by shrublands from that occupied by other 

Australian vegetation types. However, my approach has failed to separate the 

Heathland class from the other shrubland classes. This may be due to mosaicking of 

vegetation groups within NVIS. Modelling the potential distribution of shrublands 

under current climates is an important step for understanding responses to climate 

and environmental change. 
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Appendix 2.1 

Table A2.1 Regression intercepts and coefficients of predictors for a Generalised Linear Model developed for each vegetation type. B: terms excluded due to 

lack of realism in the fitted model. All other coefficients are significant (P < 0.001). Coefficient values reflect the ascending effect of climate over plant type 

(+ve) or (-ve) sign indicates the direction of relationship between plant and climatic term.  = Cramer-Prentice  index; PAR0 = Photosynthetically active 

radiation during the period with temperature above 0  C; SPI = Summer precipitation index; s = Mean summer alpha. 

 

Vegetation type   PAR0 SPI s 

 Intercept Linear Quadratic Linear Quadratic Linear Quadratic Linear Quadratic 

Forest -12.71 10.9 -7.781 0.00 0.00 -5.76 4.29 8.28 -5.87 

Grassland 29.4 B B 0.00 0.00 7.81  -2.35  2.54 -7.34 

Shrubland -7.9 16.5 2.881 0.00 -0.01 -2.88 -0.77 6.96 -2.93 

Woodland -21.37 10.4 -11.23 0.00 0.00 0.68 1.18 6.44 -4.97 
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Table A2.2 Regression intercept and coefficients of predictors from a Generalised Linear Model developed for each shrubland class. A: terms excluded due to 

lack of statistical significance. B: terms excluded due to lack of realism in the fitted model. All other coefficients had P < 0.01,  = Cramer-Prentice  index; 

PAR0 = photosynthetically active radiation during the period with temperature above 0ºC; SM1-2(s) = Mean difference between soil layers 1 and 2 in summer. 

 

Shrubland class             PAR0 SM1-2(s) 

 Intercept Linear Quadratic Linear Quadratic Linear Quadratic 

Acacia shrubland -119.6 69.2 -156.2 0.01           -0.00 -3.53 -11.99 

Chenopods & Samphire shrubland or 
forbs 

94.29 -43.9 26.91 -0.01 0.00 -0.31 -10.58 

Heathlands 7.20 72.6 -90.34 A A 38.28 -117.6 

Low closed forests & tall closed 
shrubland  

-445.3 515 -874.9 0.05 -0.00 18.53  30.52 

Mallee woodlands and shrubland 56.87 7.21 -22.25 -0.01 0.00 6.35 -26.76 

Other shrubland -57.27 29.12 -15.12 0.01 0.00 6.53     B 
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Table A2.3 Canonical correlation analysis scores of first and second axes, (CCA1) and (CCA2) 

 respectively. CCA analysis includes 24 climate variables used to assess the distribution of four  

  major vegetation types across Australia.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable CCA1 CCA2 

MAP -0.879049 -0.08389 

MAT -0.0008103 -0.63116 

 -0.9139317 0.02258 

MTCO -0.2834318 -0.51963 

MTWA 0.3567609 -0.5511 

GDD0 -0.0024063 -0.63115 

PAR0 0.4267412 -0.52072 

SPI -0.3243638 -0.76438 

MI -0.7379797 0.02006 

w -0.2601154 0.51749 

s -0.8917799 -0.29701 

P(conc) -0.3123227 -0.72692 

Pw -0.2810469 0.31478 

Ps -0.7637128 -0.28798 

GDD5 0.0525825 -0.63852 

SM2 -0.3740945 -0.09542 

SM2(w) -0.4654793 -0.09979 

SM1(s) -0.7648624 -0.35148 

SM1(w) -0.202043 0.40993 

SM1 -0.8103176 -0.30995 

SM2(s) -0.5062768 -0.17202 

SM1-2(s) 0.3009803 0.42059 

SM1-2(w) -0.2455999 -0.18566 

SM1-2 -0.3220786 -0.17118 
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Table A2.4 Canonical correlation analysis scores of first and second axes, (CCA1) and (CCA2) 

respectively. CCA analysis includes 24 climate variables used to assess the distribution of six 

classes of shrubland in Australia.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Variable CCA1 CCA2 

MAP -0.28673 -0.493241 

MAT 0.77575 0.0404956 

 -0.60843 -0.39399 

MTCO 0.56026 -0.028315 

MTWA 0.80522 0.0297745 

GDD0 0.77539 0.040675 

PAR0 0.81828 -0.010427 

SPI 0.25382 0.3830535 

MI -0.5648 -0.410635 

w -0.53068 -0.507791 

s 0.11163 -0.003406 

P(conc) 0.70645 0.0080428 

Pw -0.30032 -0.570087 

Ps 0.38575 0.0003266 

GDD5 0.78752 0.0452366 

SM2 0.14304 0.622804 

SM2(w) 0.16851 0.5815042 

SM1(s) 0.4114 -0.154424 

SM1(w) -0.48087 -0.314967 

SM1 0.04421 -0.120893 

SM2(s) 0.15589 0.6383527 

SM1-2(s) -0.35016 -0.679685 

SM1-2(w) -0.08431 -0.674702 

SM1-2 -0.12948 -0.633181 
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Figure A2.1 Six major shrubland vegetation groups (MVGs) classified by the National Vegetation 

Information Systems (NVIS). Shrubland groups are: Acacia (Acacia shrubland); Chenopods 

(Chenopod shrubland, samphire shrubland and forblands); Heathlands (Heathland); Mallee (Mallee 

shrubland and woodland); Other shrubland; Tall closed (Low closed forests and tall closed shrubland) 

 



 

60 
 

 

 

 

 

Chapter 3 

Soil, climate or both? Which variables 

are better predictors of the distributions 

of Australian shrub species? 

 

 
 

 

 

 

 

 

 



 

61 
 

Chapter 3: Soil, climate or both? Which variables are better 

predictors of the distributions of Australian shrub species? 

___________________________________________________________________ 

 

Introduction 

Whilst not a strict botanical category, shrubs are generally regarded as low height, 

woody perennial plants with several base-stems (Zeng et al., 2008; Meng et al., 

2009). As the dominant flora in arid regions, shrubs play a key role in enhancing soil 

fertility, reducing runoff, soil loss (Pressland, 1973; Xu et al., 2008; Song et al., 

2013), dust emissions (Engelstaedter, 2003), and facilitate carbon sequestration in 

grassland ecosystems (Yashiro et al., 2010). Further, by providing fodder for 

livestock (Lefroy et al., 1992) shrubs can enhance economic returns for dryland 

farms by providing an ‘out-of-season’ food source (Monjardino et al., 2010).  

The distribution of shrub species is strongly influenced by environmental 

conditions, such as climate, and physical and chemical soil properties (Pedley, 1979; 

Westman, 1991; Kienast et al., 1998).  Species occurring in arid to semi-arid regions 

have evolved several strategies enabling them to tolerate extended periods of lower 

precipitation and high temperature. These include small leaves (Smith et al., 1997), 

slower growth rates, and more horizontal, rather than vertical, growth (Zeng et al., 

2008). During the hot, dry season stomata may be partly closed, reducing 

transpiration, leaves may be shed (Smith et al., 1997) and physiological activity 

limited (Reynolds, 1999). Following rare rainfall event leaves may fully open (Zeng et 

al., 2008) and negative impacts of the dry season may be compensated for via 

enhanced physiology and growth (Reynolds, 1999). In addition, shrubs have a 

deeper and wider rooting system than grasses, enabling the efficient extraction of 
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water in low moisture environments (Burgess, 1995). Desert shrubs often accumulate 

their organic matter beneath their canopies, thereby enriching the nutrient pool 

horizontally, enabling these species to grow in infertile soils (Zinke, 1962; Jackson & 

Caldwell, 1993; Schlesinger et al., 1996; Burke et al., 1998). 

Shrubs occupy a substantial part of the Australian landmass, mainly in semi-

arid and arid regions which form approximately 70% of the continent. As with shrub 

species elsewhere around the globe (Song et al., 2013), both physical and chemical 

soil properties, in addition to climate, play a major role in controlling the distribution of 

shrub species and communities across Australia (Pedley, 1979). Shrubs usually 

occur on shallow, coarse and infertile soils (Groves, 1994), and are adapted to live 

on sandy soils with limited soil moisture.  

Australia’s National Vegetation Information System defines five categories of 

shrub growth forms (ESCAVI, 2003): shrubs, mallee, heath, chenopods or saltbush, 

and samphire. Shrubs, i.e. “Woody plants multi-stemmed at the base (or within 200 

mm from ground level) or if single stemmed, less than 2 m” (ESCAVI, 2003, pg 87) 

are distinguished from mallee shrubs, which are described as multi-stemmed species 

from the genus Eucalyptus which may be up to 8 m in height, and typically occur in 

subhumid and semi-arid areas. The canopy of mallee channels water down the stem 

to the soil-root interface and to depths as great as 28 m, where it is stored for 

utilisation in the dry summer (Nulsen et al., 1986), enabling mallee to survive in 

water-limited environments.  

Heath shrubs are sclerophyllous species (typically belonging to Epacridaceae, 

Myrtaceae, Fabaceae and Proteaceae), mainly occurring on nutrient-poor substrates 

in the south-eastern/western quarters of the continent. Chenopods or salt bush 

species are semi-succulent, single- or multi-stemmed members of the family 

Chenopodiaceae, which are drought and salt tolerant. These species are widespread 
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in semi-arid and arid regions mostly in southern Australia. Finally, samphire shrubs 

are primarily members of Tribe Salicornieae from the family Chenopodiaceae, and 

generally occur in environments regarded as hostile (e.g., high temperature and 

salinity, frost, waterlogged soils). Other dominant shrubs are members of the Acacia 

genus. For instance, Acacia aneura (mulga) is a key shrub species, strongly 

associated with regions of low moisture availability and light textured soils that have 

very low phosphorus content (Groves, 1994).  

 

Modelling the distributions of shrub species 

Species distribution models (SDM) are increasingly used to assess the spatial 

distribution of potentially suitable habitat for species, and how this may shift under 

different environmental conditions. These tools generally correlate species’ 

occurrence records with environmental variables, which are frequently selected from 

a common set of 19 ‘bioclimatic’ indices available in WorldClim (Hijmans et al., 

2005), and which can be attributed to Nix (1986).  

To date, relatively few SDM studies have incorporated other environmental 

variables such as soil properties, irradiance, topography and landuse (Table 3.1). 

This may partly reflect difficulties with obtaining appropriate data sets at relevant 

spatial scales, particularly with regards to soil variables that are related to plant 

functionality. However, climate variables may not be the only relevant predictors of 

species distributions (Chatfield et al., 2010; Austin & Van Niel, 2011), as plant 

survival and reproduction is dependent on light, temperature, nutrients, water, CO2, 

as well as disturbance and biotic interactions (Guisan & Zimmermann, 2000; Austin & 

Van Niel, 2011). Since incorporation of physiologically-related environmental 

variables should lead to more robust SDMs (Williams et al., 2012), greater predictive 
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power may be achieved by expanding the set of predictors to include more than 

climate. 

In this chapter I assessed the extent to which soil variables, in conjunction with 

climate, may increase the predictive power of models of the distributions of Australian 

shrub species. I used the species distribution model, MaxEnt, to predict the 

distribution of 29 shrub species, which together span the distribution of shrublands 

across the continent. MaxEnt enables models to be developed based on presence-

only data (such as that found in the Atlas of Living Australia, which was utilised for 

this study). In contrast, the approach used in my previous chapter (General Linear 

Models) requires absence data, which were unavailable for the shrub species. I 

hypothesised that the inclusion of climate and soil properties as predictor variables 

will lead to greater predictive power of SDMs, compared with models that incorporate 

only climate variables. 
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Table 3.1 Most studies using species distribution models have relied primarily on climate variables as predictors of species distributions. This table provides 

some examples of studies that have incorporated other predictor variables such as soil, radiation, and topographic characteristics. Full names of predictor 

variables are given in Table 3.3. 

Environmental predictor variables Taxa SDM Highest and lowest 
contributed variables 

Reference Region 

Dry-season moisture 
Resin phosphorus, Calcium concentration, Potassium 
concentration, Aluminum concentration, Iron concentration, Zinc 
concentration, Inorganic nitrogen concentration 

550 tree species Gaussian logistic regression Dry-season moisture and 
soil phosphorus  

Condit et al., 
2013 
 

central 
Panama 

MAT, MTCM, MTWM, MAP, Summer precipitation, winter 
precipitation, index of growing season length 
Soil texture, Total plant-available nitrogen and phosphorus, 
Saturated hydraulic conductivity, Plant available water capacity 

100 Banksia species MaxEnt  Fitzpatrick et al., 
2008 

South-west 
Australia 

MAP, MTCM, MTWM 
Solar insulation in winter & spring 
Slope angle related to soil depth 

20 species of 
coastal & chaparral 
sage shrubs 

Generalized additive (GAM), 
generalized  linear (GLM) and 
classification tree models 

Precipitation, temperature 
and topography  

Franklin, 1998 North 
America 

Elevation, Aspect, Slope, Gypsum, Lime, Available moisture, EC 
Clay, Gravel, Organic matter, pH 

Two shrub species MaxEnt Lime and elevation variables 
contributed the highest 

Hosseini et al., 
2013 

Iran 

Air saturation deficit,  
Annual integral of root zone water deficit  

33 New- Zealand 
tree species 

GAM  Leathwick & 
Whitehead, 2001 

New 
Zealand 

MAT, ISO, TS, MTCM, TAR, MTDQ, MTCQ, PWQ, PCQ, pH 
Clay content concentration, Total organic carbon,  

30 species of 
grasses and woody 
plants 

MaxEnt Temperature variables  Martinson et  
al., 2011 

North 
America 

Land use data 
Water-holding capacity, Soil texture, Percentage of clay & sand, 
CEC 
Slope, Aspect, Topographic position 
Minimum winter temperature, Degree-days with a 5.5°C 
threshold, Summer precipitation [April–September] 

30 tree species GLM Degree-days, minimum 
winter temperature and 
slope  

Meier et al., 
 2012   

Europe 

MTCM, MTWM, PDM, PWM 
Human population density 
Crop and pasture layers 
Soil type 
Vegetation cover 

3 species MaxEnt Including static variable 
(soil) with climate improved 
model performance. 

Stanton et al.,  
2012 

North 
America 

MAT, MAP 
Solar radiation 
Soil clay content, Soil pH 

584 native & not wet 
plant  species 

Regression, GAM, and MaxEnt  Summers et 
 al., 2012 

Australia 

Climate change and soil drainage One shrub species CLIMAX Climate change and soil 
drainage 

Taylor &  
Kumar, 2013 

Australia 

MAT, MDR, TS, TAR, MAP, PDM, PS,  
CEC, C:N ratio class topsoil, Organic carbon pool topsoil, 
Effective soil depth, Soil drainage class, Nitrogen % top soil, pH 
top soil, Soil production index, Textural class subsoil 

2319 woody species MaxEnt  Zhou et al.,  
2012  

China 
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Methods 

Species data 

As discussed previously, Australia’s National Vegetation Information System (NVIS, 

http://www.environment.gov.au/erin/nvis, ESCAVI, 2003) has classified vegetation 

across the continent into 23 major groups, of which six are shrublands: Acacia 

shrubland; low closed forests and tall closed shrublands; chenopod or samphire 

shrubland and forblands; mallee shrublands; heathlands; other shrublands. The most 

dominant endemic shrubs within each of these shrublands were identified from NVIS 

descriptions  (Table 3.2). For the resulting 29 species, I obtained occurrence records 

from the Atlas of Living Australia (ALA, see http://www.ala.org.au/). I removed 

records that did not contain coordinates (an average of 2% of records), were 

collected before 1960, or that were identified by ALA as ‘outlier records’ given the 

climatic envelope of the species. This resulted in an average 3,523 (± 3,214 standard 

deviation) records per species. 

 

Climate and soil data 

I obtained data for 19 bioclimatic variables at a resolution of 5 km x 5 km (Table 3.3), 

developed for the Wallace Initiative (http://wallaceinitiative.org). These data were 

derived from monthly precipitation and temperature values (covering the time period 

1976 - 2005) obtained from the Australia Water Availability Project (AWAP, Raupach 

et al., 2009, Raupach et al., 2012; http://www.bom.gov.au/jsp/awap/). They were 

converted to the bioclimatic variables using the “climates” package (VanDerWal et 

al., 2011) in R (http://www.r-project.org/).  

 

http://www.environment.gov.au/erin/nvis
http://www.ala.org.au/
http://www.bom.gov.au/jsp/awap/
http://www.r-project.org/
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Table 3.2 Dominant Australian shrub species included in this study.  

Acacia Chenopods Heathlands Mallee Tall closed Other  
Acacia aneura Atriplex angulata Epacris impressa Eucalyptus diversifolia Allocasuarina campestris Atalaya hemiglauca 

A. sclerosperma A. eardleyae  E. dumosa Leptospermum continental Eremophila freelingii 

A. tetragonophylla A. holocarpa  E. gracilis L. glaucescens Ozothamnus turbinatus 

A. victoriae A. nummularia  E. incrassata L. laevigatum  

 A. vesicaria  E. oleosa L. lanigerum  

 Maireana aphylla  E. socialis L. scoparium  

    Melaleuca ericifolia  

    M. squamea  

    M. squarrosa  

 

 

Table 3.3 19 bioclimatic variables assessed for inclusion in models of shrub distributions. 

Abbreviation Climate Variable 

MAT Annual Mean Temperature 

MDR Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

ISO Isothermality (MDR/MAT) (* 100) 

TS Temperature Seasonality (standard deviation *100) 

MTWA Maximum Temperature of Warmest Month 

MTCO Minimum Temperature of Coldest Month 

TAR Temperature Annual Range (MTWA-MTCO) 

MTWetQ Mean Temperature of Wettest Quarter 

MTDryQ Mean Temperature of Driest Quarter 

MTWQ Mean Temperature of Warmest Quarter 

MTCQ Mean Temperature of Coldest Quarter 

MAP Mean Annual Precipitation 

PWM Precipitation of Wettest Month 

PDM Precipitation of Driest Month 

PS Precipitation Seasonality (Coefficient of Variation) 

PWetQ Precipitation of Wettest Quarter 

PDryQ Precipitation of Driest Quarter 

PWQ Precipitation of Warmest Quarter 

PCQ Precipitation of Coldest Quarter 
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Soil data  

I identified 10 soil variables that reflect physical and chemical properties that 

influence soil functionality (Sauer et al., 2006; Fisher et al., 2011; Meier et al., 2012), 

and for which I could obtain data. Four variables were downloaded from the 

Australian Soil Resource Information System (ASRIS, 2011) at a resolution of ~ 1 

km. These were clay content percentage [Clay]; bulk density [BD] which reflects soil 

porosity; pH CaCl2 [pH] which reflects soil salinity; and soil water capacity [PWAC]. 

The first three relate to soil characteristics from a depth of 0 – 30 cm while the fourth 

is from 0 – 100 cm. 

Six additional variables were obtained from the Global Soil Dataset for Earth 

System Modelling (GSD; http://globalchange.bnu.edu.cn/research/soilw), at a 

resolution of ~ 1 km: organic carbon [OC]; total nitrogen [TN]; the amount of 

phosphorus using the Bray1 method [P]; electrical conductivity [EC]; cation exchange 

capacity [CEC] and base saturation [BS]. The GSD provides data for each variable at 

eight depths through the soil profile (4.5, 9.1, 16.6, 28.9, 49.3, 82.9, 138.3, 229.6 

cm). For consistency with ASRIS data, I calculated the average of the first four 

depths (i.e. to ~ 30 cm), as most nutrients are concentrated in topsoil to a depth of ~ 

20 cm (Tyler, 1996; Jobbágy & Jackson, 2001). Using ArcGIS (ESRI Inc., 2010) I 

extracted soil data from GSD to match the spatial extent of the ASRIS data. All soil 

data were then aggregated to a resolution of ~ 5 km, by calculating the mean of the 

underlying grid cells, thereby matching the resolution of the climate data. 

 

Selection of predictor variables 

The incorporation of physiologically-related environmental variables should lead to 

more robust model performance (Williams et al., 2012). Hence, I initially considered 

http://globalchange.bnu.edu.cn/research/soilw
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19 climate and 10 soil variables known to influence the distribution of shrubs, for 

inclusion in the species distribution model, MaxEnt (version 3.3.3k; Phillips et al., 

2004, 2006). The use of a large number of variables can reduce MaxEnt 

performance and cause over-fitting of the model prediction (Elith et al., 2010; 

Williams et al., 2012; Zhou et al., 2012). Therefore, I assessed correlations among 

the variables and excluded those with a Pearson’s correlation coefficient > 0.85. This 

reduced the number of climate variables to a set of five: MAT, MTWA, MAP, PWQ, 

and PCQ, which reflect annual and seasonal temperature and precipitation variables.  

Only two soil variables had a correlation coefficient > 0.85 (BS and EC). 

Hence, to further reduce the set of predictors, I ran MaxEnt (version 3.3.3k; Phillips et 

al., 2004, 2006) for all 29 shrub species using nine soil variables (i.e. excluding BS), 

to investigate the relative contribution of each variable to the models. Model settings 

were similar to the final settings described in the following section. Four variables that 

frequently contributed < 5% to the models were identified and excluded from the final 

models. The remaining variables used in the models were: pH, Clay, BD, EC, and 

OC. Combined, these reflect physical and chemical soil characteristics. 

 

Generating MaxEnt models of shrub species’ distributions 

Using the approach described below, three sets of models were calibrated for each 

species. Models referred to as VC+S were calibrated with both climate and soil 

variables; those referred to as VC were calibrated with only climate variables while VS 

models used only soil variables.  

MaxEnt is a presence only modelling approach that produces a continuous 

probability field that can be interpreted as a relative index of environmental suitability. 
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Higher values represent greater suitability of a region for the target species (Phillips 

et al., 2004, 2006).  

In place of absence data, MaxEnt contrasts characteristics of the species’ 

occurrences to other sample locations called background points. By default, the 

program selects 10,000 background locations randomly from the extent of the 

environmental layers. Resulting models, however, can be influenced by the number 

of background points (VanDerWal et al., 2009) and the extent of their climate space, 

relative to occurrence records (Elith et al., 2010; Merow et al., 2013). Hence, 

selection of background points can alter the gradient between observed and potential 

climatically suitable habitat (Chefaoui & Lobo, 2008). Because this study aimed to 

identify environmental conditions that defined the distribution of species, I selected 

background points from the occurrence records of all 29 species. This “targeted 

background” approach aims to balance biases between the focal species and the 

background records that MaxEnt requires to create the models   (Warren et al., 2008; 

Merow et al., 2013).  

Studies using MaxEnt frequently accept default values recommended by 

Philips et al., (2004, 2006). However, selection of model settings can cause 

substantial variation in the output (Syfert et al., 2013), and so should be selected to 

suit the specific research questions (Merow et al., 2013). Therefore I initially explored 

how different mathematical transformations of predictor variables (“features”) 

influenced model predictions (described in Appendix 3.2). I concluded that superior 

models were obtained when linear, quadratic, product and threshold features were 

used. The results described throughout this chapter are based on models developed 

with these features. 
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The random selection of occurrence records for model training versus testing 

can influence the resulting prediction. To reduce this bias I used the ‘cross-validation’ 

option within MaxEnt to generated five runs each species, using a different selection 

of 20% of occurrence records to test each run.  

 

Model performance 

I used two approaches to assess model performance. The area under the receiver-

operator curve (AUC) is the probability that randomly chosen presence locations are 

ranked higher than randomly chosen background points (Merow et al., 2013). High 

AUC scores indicate that the model can distinguish between presence and 

background points, and model performance is generally considered good when the 

AUC score is > 0.75 (Pearce & Ferrier, 2000; Elith et al., 2006). I assessed the 

maximum AUCTest value, which is based on the model with the highest AUC value for 

test data that is excluded from model calibration: this approach generally does not 

result in over-fitting problems that can occur when using the AUC of training data to 

select models (Warren & Seiferi, 2011). I also calculated the sample-size corrected 

Akaike Information Criteria (AICc) (Akaike 1974; Burnham & Anderson, 2002) using 

ENMTools software (version 1.4.2) (Warren & Seifert, 2011). This approach accounts 

for model complexity: some features within MaxEnt can produce numerous suitability 

functions and these models are penalised more severely by AICc (Warren & Seifert, 

2011). Currently, there is no agreed approach for evaluating model performance, 

hence different methods should be utilised. Although AUC is the most common 

measure of the performance of MaxEnt (Merow et al. 2013), AIC is suggested to be 

used in models that apply the cross-validation sampling process (Warren & Seifert, 

2011). 
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 I compared the predictive power (AUC and AICc) of the three sets of models 

(VC+S, VC, VS) using one-way ANOVAs, and applied a post-hoc analysis using 

Fisher's least significant difference (LSD) test where group variances are assumed 

equal. MaxEnt suitability scores were converted to presence/absence using the 

maximum training sensitivity plus specificity threshold (as recommended by Liu et al., 

2013). I then calculated pair-wise differences in the area of suitable habitat predicted 

by the three sets of MaxEnt models using the ArcGIS extension SDMtoolbox (Brown, 

2014). Also, I calculated species richness, i.e. sum of unique species per grid cell 

using those binary maps.  

 

Results 

Which set of variables results in higher predictive power of MaxEnt models? 

Whilst all models had AUC scores > 0.75, a one-way ANOVA indicated there were 

significant differences between the three sets of models (F(2,86) = 3.936, P = 0.023). 

Post-hoc analyses found VS models (M = 0.89, SD = 0.047) to be significantly 

different to the others, while there was no significant difference between VC (M = 

0.91, SD = 0.046) and VC+S models (M = 0.92, SD = 0.040) (Table 3.4). In contrast, 

there were no significant differences in AICc values between the three sets of models 

(F(2,86) = 0.030, P = 0.971) (Table 3.4).   

 

Table 3.4 Mean AUCTest (SD) and AICc (SD) scores of MaxEnt models calibrated with different sets of 

environmental variables. Scores were assessed with a one-way ANOVA and Fisher’s post hoc LSD 

test, for which P values are reported. 

Environmental variable set AUC  P 
 

AICc  P 
 

Climate 

   vs 

Soil 

0.91 (0.046) 
 
0.89 (0.047) 

 
0.083 

 

69,006 (74,281) 
 
68,535 (75,691) 

 
0.981 
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Climate  

   vs 

Climate & Soil 

0.91 (0.046) 
 
0.92 (0.040) 

 

0.311 

69,006 (74,281) 
 
64,643 (73,898) 

 
0.824 

Soil   

   vs 

Climate & Soil 

0.89 (0.047) 
 
0.92 (0.040) 

 

0.007 

68,535 (75,691) 
 
64,643 (73,898) 

 
0.843 

 

 

 

Visual inspection of maps generated by MaxEnt also indicated that VC+S and 

VC models resulted in more realistic predictions of potential climatically suitable 

habitat than those calibrated with only soil variables (Figure 3.1). The size of suitable 

habitat predicted by VC+S models ranged from 47,220 km² (Leptospermum 

glaucescens) to 3,767,910 km² (Atalaya hemiglauca). VC models predicted habitats 

to range from 56,280 km² (L. glaucescens) to 3,995,850 km² (A. hemiglauca) (Table 

3.6), hence, VS predictions tended to cover a smaller spatial extent and have greater 

fragmentation of suitable habitat. Maps from VC+S and VC models were similar for 

most species. Exceptions were: Acacia tetragonophylla, A. victoriae, Atriplex 

angulate (Figure 3.1F and H), A. eardleyae, Eremophila freelingii, Eucalyptus 

socialies, and Maireana aphylla.     
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Figure 3.1 MaxEnt predictions of potential suitable habitat for Acacia sclerosperma (A-D) and Atriplex 

angulata (E-H) modelled with different sets of environmental conditions. Warmer colours (red) show 

areas predicted to have higher suitability. Bright blue represents unsuitable areas. (A, E) Indicates 

occurrence records (white dots show the presence locations used for training, while violet dots show 

test locations). Remaining maps show suitable habitat derived from models calibrated with (B, F) 

climate variables only, (C, G) soil variables only and (D, H) climate and soil variables. 
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Table 3.5 Comparison of potential size of suitable habitat predicted by MaxEnt when calibrated with 

different sets of predictor variables. First column represents predicted size based on models calibrated 

with only climate variables (VC) while the remaining two columns show relative additional area 

(Expansion) or loss (Contraction) of the climate variables model (Vc) when predicted by models 

calibrated with climate and soil variables (VC+S).  

Species Suitable habitat VC (Km²) Expansion VC+S (Km²) Contraction VC+S  (Km²) 

Acacia aneura 3,638,250 168,398 109,939 

A. sclerosperma 970,350 523,417 110,722 

A. tetragonophylla 2,954,730 266,219 64,803 

A. victoriae 3,795,990 222,737 419,010 

Allocasuarina campestris 406,680 56,383 240,990 

Atalaya hemiglauca 3,995,850 142,026 170,683 

Atriplex angulata 1,301,220 212,542 509,284 

A. eardleyae 131,220 348,313 590,205 

A. holocarpa 1,107,120 66,728 271,271 

A. nummularia 2,116,380 48,204 525,041 

A. vesicaria 1,919,400 150,686 510,968 

Epacris impressa 338,670 8,751 8,360 

Eremophila freelingii 1,529,610 158,595 327,083 

Eucalyptus diversifolia 164,340 2,676 66,607 

E. Dumosa 648,240 28,778 97,972 

E. gracilis 684,360 35,724 111,383 

E. incrassate 421,770 73,704 54,669 

E. oleosa 529,380 163,226 41,408 

E. socialis 1,220,940 710,459 331,293 

Leptospermum continental 363,030 82,305 5,653 

L. glaucescens 56,280 4,330 5,593 

L. laevigatum 416,700 96,618 54,369 

L. lanigerum 266,430 15,607 8,781 

L. scoparium 94,020 25,260 601 

Maireana aphylla 1,885,710 289,585 815,257 

Melaleuca ericifolia 185,880 27,575 14,464 

M. squamea 123,450 35,063 42,911 

M. squarrosa 144930 15,757 4,481 

Ozothamnus turbinatus 57,390 30,402 55,150 

 

 

             At a continental scale patterns of species richness differed depending on 

which set of variables were used for model calibration (Figure 3.2). Highest richness 

was achieved by VS models, which predicted a total area of ~36,600 km2 to contain 

11 – 13 species (Table 3.5). However, this map also showed substantial spatial 

discontinuities (i.e. smaller contiguous areas of high richness). In contrast, VC+S 

predicted only 3,750 km2 to contain 11 – 13 species. Although broadly similar 

patterns were predicted by both VC and VC+S models, richness of shrub species was 
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higher based on VC models, particularly in central Western Australia (see region 

approximately 118 - 129º E, 25 – 28º S).  
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Figure 3.2 Richness maps of 29 shrub species based on models predicted by MaxEnt calibrated with 

(A) climate variables only, (B) soil variables only and (C) climate and soil variables. Warmer colours 

show areas with higher predicted richness.                                                                                                                                                                                        

                                                                                           

A 

B 

C 
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Contribution of climate and soil variables to models of shrub distributions  

For all 29 shrub species, climate variables contributed more to calibration of VC+S 

models than soil variables (Table 3.6). In total, contribution of climate variables 

exceeded 80% for 21 species (maximum 97.9%, L. scoparium) and was < 60% for 

only one species (52.3%, Maireana aphylla). Of the individual climate variables, 

MTWA and MAP contributed the highest percentage to models for eight and seven 

species, respectively, while PCQ contributed the most for two species. Of the soil 

variables, clay contributed > 20% to models for three species (A. angulata, A. 

nummularia, M. aphylla) while pH did so for only one species (Allocasuarina 

campestris). Neither EC nor OC contributed > 10% to the models of any species.  

 

Table 3.6 Percent contribution of the five climate variables and five soil variables used to calibrate 

MaxEnt models for 29 shrub species. Full names of variables are given in Table 3.3. For each 

species, the variable contributing the most to the model is in bold. 

Species  MTWA MAT MAP PWQ PCQ BD Clay EC OC pH 

Acacia aneura 40.3 20 9.7 1.7 18.3 0.9 5.9 0.2 0.5 2.5 

A. sclerosperma 4.5 58.8 7.5 0.9 20.9 1.3 5 0.1 0.1 1 

A. tetragonophylla 37.4 19.4 16.8 4.1 4.1 2.1 4 2.5 0.8 8.8 

A. victoriae 46.6 2.2 0.8 13.9 2.7 15 1 9.6 1.6 6.6 

Allocasuarina campestris 9.8 14.1 11.4 18 11.7 3.6 8.2 0.4 0.6 22.2 

Atalaya hemiglauca 8.1 45.8 7 27.9 7.3 0.5 0.9 0.5 0.5 1.3 

Atriplex angulata 13.6 1.2 34.5 9.1 10.5 1.1 22.7 0.5 5.2 1.6 

A. eardleyae 26.6 2.3 10.3 3 26.8 2.8 19 1.9 2.5 4.8 

A. holocarpa 29.3 10.4 35.8 6.4 2.9 2.1 11.9 0.4 0.4 0.4 

A. nummularia 3.8 3.7 14.2 8.1 33.4 1 20.1 4.3 8.8 2.6 

A. vesicaria 2.7 2.1 47.2 14.4 17.2 1.3 7.5 4.1 0.9 2.5 

Epacris impressa 10.1 69.5 15.7 1.5 0.2 0.3 0.2 0.9 1.1 0.5 

Eremophila freelingii 17.4 0.6 15.2 15 16.4 12.5 0.9 7.6 0.3 14.1 

Eucalyptus diversifolia 22.6 1.2 0.9 44.9 25.7 0.4 2.3 0.4 0.4 1.2 

E. Dumosa 8 32.4 35.6 1.7 8.8 2.5 2.8 2.8 3 2.5 

E. gracilis 17.2 14.9 20.2 30.3 1.6 5.8 2.4 1.6 4.8 1.2 

E. incrassate 4.6 23.1 13.4 33.4 7.9 0.7 6.4 6.3 0.4 3.7 

E. oleosa 12.5 20 7.1 38.1 2.9 1.6 4.9 1.7 9.1 2.1 

E. socialis 20.3 16.5 46.2 2.6 1.2 1.7 5.7 3.5 0.9 1.6 

Leptospermum continental 33.4 5.3 35.3 0.6 18.1 6.4 0 0.4 0.1 0.3 

L. glaucescens 72.2 4.1 5.8 2.5 4.9 2 4.7 1.4 1.2 1.2 

L. laevigatum 3.9 29 26.9 2.2 25.9 0.5 5.3 2.5 3.6 0.2 

L. lanigerum 22.3 58.8 9.7 0.4 0.6 2.8 1.1 1 1.5 1.8 

L. scoparium 52.4 40.4 0.6 3.1 1.4 0.9 0.1 0.4 0.3 0.5 

Maireana aphylla 25.1 3.9 10.1 7.7 5.5 0.1 39.3 0.6 1.1 6.5 

Melaleuca ericifolia 20.3 14.1 25.5 27.9 7.1 0.3 0.5 0 1.2 3 

M. squamea 28.4 2 42.8 2.3 16.1 2.5 1.5 0.6 1.4 2.4 

M. squarrosa 24.5 9 33.2 4.9 24.5 0.5 0.4 0 1.8 1.2 

Ozothamnus turbinatus 27.7 16.2 0.8 0.4 34.3 4.9 3.9 7.8 2.4 1.6 
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For VC models MTWA and MAP were the most important variables for nine 

and seven species respectively, while PCQ contributed the most to models for four 

species (Appendix 3.1 Table A3.1.1). When calibrated with soil variables only (VS), 

Clay and pH were the most important for six and five species, respectively, while OC 

contributed > 70% to the model for Epacris impressa. BD did not contribute 

substantially to any model (Appendix 3.1 Table A3.1.2).  

 

Discussion 

Species distribution models are frequently calibrated with only climate variables. But 

for plant species, does the addition of soil properties as predictors improve model 

performance? For 29 Australian shrub species, I found that a) on average models 

calibrated with both climate and soil variables (VC+S models) did not perform 

significantly better than those calibrated solely with climate variables (VC) (Table 3.4); 

b) models calibrated with only soil variables (VS) had significantly lower AUC scores 

and frequently resulted in unrealistic prediction (which unsurprising given the coarse 

spatial resolution of this study; c) for 27 species, a precipitation or temperature 

variable was the most important contributor to VC+S models (Table 3.6); and d) for 

some species the inclusion of soil properties along with climate variables resulted in 

predictions of current suitable habitat that more closely approximately the realized 

distribution, compared to models calibrated with climate variables only. As a 

consequence, at a regional scale species richness patterns were similar regardless 

of whether they were derived from VC+S or VC models, but at finer spatial scales these 

patterns may diverge substantially (Figure 3.2).  

While species richness is a convenient way to describe or compare the 

biodiversity of different areas, there are concerns that estimates of species richness 
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using combined or so-called stacked-SDMs may be over-estimated (Guisan & 

Rahbek, 2011; Hortal et al., 2012). It has been suggested that the bias may be 

corrected by linking stacked SDMs to macroecological models: however, early 

comparisons indicate that this approach has not yielded much improvement in 

reducing overestimates of richness (Calabrese, et al. 2014). The issue of how best to 

estimate richness from stacked SDMs will undoubtedly be a key area of research 

over the next few years. 

 

Climate and soil as predictors of species distributions  

To date, few studies have explicitly assessed whether the inclusion of soil variables 

increases predictive power of SDMs, although several studies have included these 

variables in model calibration (see Table 3.1). By themselves the soil variables 

included in this study did not result in biologically realistic maps of the realised 

distribution of the shrub species, with predictions frequently being fragmented or 

having abrupt boundaries (Figure 3.2C, G).  

VC+S models suggested that the distributions of Acacia and Leptospermum 

species are strongly limited by temperature, while moisture variables are key 

determinants for others, such as the saltbushes (Atriplex spp.) which inhabit arid and 

semi-arid regions of Australia. This indicates that at the scale of this study climate 

plays a greater role in defining the distribution of these shrub species than soil 

characteristics. Similarly, Martinson et al., (2011) used MaxEnt to model the 

distributions of 30 species at 10 km x 10 km spatial resolution, including shrubs, in 

arid areas of North America, using climate and soil variables. Temperature variables, 

mainly Annual Mean Temperature, contributed the most to models, with none of the 

three soil variables being the most important for any species. Soil variables, such as 
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CEC (cation exchange capacity) and texture, were also found to contribute little to 

models of the distributions of European trees (Meier et al., 2012).  

However, the VC model over-predicted the realized distribution of some shrub 

species, whereas the VC+S model provided a closer approximation (e.g. Atriplex 

angulata Figure 3.2F vs H). For these species, although climate variables contributed 

the most to the models, soil variables (mostly clay) were the second or third highest 

contributing variable. Indeed, heavy clay soils are known to be favoured by some 

Atriplex spp. such as A. angulata, A. eardleyae and A. nummularia (Cunningham et 

al., 1992). Similarly, Allocasuarina campestris occurs in gravely laterite soil which 

contains high quantities of aluminium and iron compounds and is highly affected by 

pH (Osuolale et al., 2012). For this species, pH was the highest contributing variable 

in the VC+S model.  

 

Caveats 

The accuracy of species distribution models is influenced by a number of factors, 

including a) accuracy and availability of environmental data used to calibrate the 

model, b) biases in occurrence records and c) selection of model parameters 

(Beaumont et al., 2008).  

Environmental data frequently has to be manipulated in order to be useable in 

SDMs, and this often involves converting the data to a different resolution. 

Aggregation or interpolation to a coarser or finer resolution, respectively, can alter the 

accuracy of data. In order to match the spatial resolution of the climate data, both soil 

datasets used in this study, ASRIS (Australian) and GSD (global), were aggregated 

from 1 km to 5 km. In some areas there are obvious disparities in the values of soil 

variables along state borders, potentially a result of different state agencies using 
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different classification methods. These inconsistencies may have been magnified 

when I aggregated soil data to a coarser resolution, and are apparent in the 

distribution maps for some species. For example, the maps from VS models for 

Acacia sclerosperma (Figure 3.1C) and Atriplex angulata shows clear patchiness or 

sharp boundaries at state borders, and even within states. Similarly, the species 

richness map calculated from VS models (Figure 3.2B) shows abrupt changes along 

some state borders (e.g., see Queensland and NSW border). It is worth mentioning 

the recently released Soil and Landscape Grid of Australia dataset 

(http://www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-

SoilAttributes.html), which contains 14 gridded physical and chemical soil and 

landscape attributes at high resolution (~ 90 m) and with estimates of reliability. The 

dataset is promising as it provides accurate, comprehensive nation-wide soil and 

landscape data and will be a useful option to explore in future. 

Similar interpolation and accuracy issues may also occur with climate data. 

For instance, although new high-resolution climate data (1 km) have recently become 

available (e.g. e-MAST data products; http://www.emast.org.au/), precipitation-

related variables may suffer accuracy problems when interpolating to areas with 

complex topography (ANUCLIM v 6.1 Hutchinson & Xu, 2010).  

It is also likely that patterns in climate and soil do not vary at the same spatial 

scale. For example, different mallee species (Eucalyptus) in Western Australia 

broadly occupy the same hot, dry climatic conditions. Within these climate zones, soil 

varies at a finer scale, and as such, Eucalyptus diversifolia is restricted to the 

limestone coastal dunes and cliffs while E. incrassata occurs on sand plains such as 

in South Australia (Specht, 1966). Therefore, trade-offs will occur when selecting the 

http://www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-SoilAttributes.html
http://www.clw.csiro.au/aclep/soilandlandscapegrid/ProductDetails-SoilAttributes.html
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most appropriate spatial scale and environmental variables for studies utilising 

models (Guisan & Zimmermann, 2000). 

An additional hindrance for some studies may be that predictions of a variable 

under alternative scenarios, such as climate change, may be required (e.g. see 

Chapter 4 where potential climate impacts are analysed). However, these may be 

difficult to obtain. For instance, while scenarios for the standard 19 bioclimatic 

variables included in WorldClim (Hijmans et al., 2005) and similar products are 

readily available, they may not be for less-frequently used variables. Models 

developed in Chapter 2 used a number of moisture-related indices, such as the 

Cramer-Prentice  index of plant-available moisture and soil moisture at different 

depths. Future scenarios of these variables were not available, precluding their use 

in this chapter. As such, although I found little difference between VC+S and VC 

models, an alternate set of variables that included soil moisture may have led to 

different conclusions.  

Accuracy of occurrence records and sampling biases associated with them 

may affect SDM performance (Hefley et al., 2013). To reduce the likelihood of errors I 

applied filters to the ALA records to exclude outliers, while to reduce sampling bias 

duplicate records in grid cells were removed. However, I point out that sampling 

across arid and semi-arid zones of Australia has typically been poor and very 

clumped in space and time (Haque et al., in review). Hence, although I selected 

dominant, easily-identified species for this study, it is not possible to determine 

whether their entire realized distribution has been sampled.  
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Conclusion 

This chapter demonstrates that for some shrub species, the inclusion of soil 

properties may result in more realistic predictions of the distribution of current 

potential habitat. Problems occur, however, with the use of soil data, due to historic 

inconsistencies with the measurement of soil properties across different management 

regions (such as State boundaries). I also demonstrate how maps of species 

distributions can diverge substantially depending on whether models were calibrated 

with only climate variables or with climate and soil variables – even though AUC 

scores were very similar. Of interest, then, is just how far model predictions may 

continue to diverge when applied to scenarios of future climate. This problem will be 

explored in Chapter 4. 
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Appendix 3.1 

 

Table A3.1.1 Percent contribution of the five soil properties predictor variables used in developing 

MaxEnt models of the distributions of 29 shrub species. Variables are:  Maximum Temperature of 

Warmest Month (MTWA); Mean Annual Temperature (MAT); Mean annual Precipitation (MAP); 

Precipitation of Warmest Quarter (PWQ); and Precipitation of Coldest Quarter (PCQ).  

Species name MTWA MAT MAP PWQ PDQ 

Acacia aneura 43.5 22.8 10.6 3 20.2 

A. sclerosperma 4.8 61.6 8.9 1.3 23.3 

A. tetragonophylla 45.1 20.4 22 6 6.5 

A. victoriae 65.8 3.1 1.8 21.9 7.4 

Allocasuarina campestris 24 12.5 18.1 22.7 22.7 

Atalaya hemiglauca 9.1 46.5 8.5 27.7 8.2 

Atriplex angulata 24.9 2 41.2 19.2 12.7 

A. eardleyae 36.3 3.8 13.4 7.1 39.4 

A. holocarpa 35.8 11.4 39.9 8.9 4 

A. nummularia 7.9 4.5 24.1 16 47.4 

A. vesicaria 3.8 4.3 54.6 17.7 19.6 

Epacris impressa 10.5 70.8 16.4 2 0.3 

Eremophila freelingii 24.1 5.9 22.5 18.6 29 

Eucalyptus diversifolia 23.5 1.3 1.1 47.3 26.8 

E. dumosa 9.2 34.8 40.3 6.1 9.6 

E. gracilis 22 14.5 26 35.4 2 

E. incrassate 7.1 26.8 17 39.2 9.9 

E. oleosa 17.2 25.5 11.3 43.2 2.8 

E. socialis 22.4 18.8 51.6 5.4 1.8 

Leptospermum continental 36.6 7.4 35.5 1.4 19.2 

L. glaucescens 74.5 7.1 7.5 2.9 7.9 

L. laevigatum 5.7 32.4 29.2 3.2 29.6 

L. lanigerum 21.1 65.6 11.1 0.6 1.5 

L. scoparium 53.3 41.2 0.6 3.3 1.6 

Maireana aphylla 37.9 6.8 23.3 19.3 12.6 

Melaleuca ericifolia 20.2 15.1 27.8 30.2 6.7 

M. squamea 31.9 1.5 44.8 3.1 18.7 

M. squarrosa 24.7 9.4 35.2 5.5 25.2 

Ozothamnus turbinatus 33.7 18 2.1 0.4 45.9 
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Table A3.1.2 Percent contribution of the five soil predictor variables used developing MaxEnt models 

of the distributions of 29 shrub species. Variables are:  Bulk density (BD); Clay content percentage 

(Clay); Cation exchange capacity (CEC); Organic carbon (OC); pH CaCl2 (pH); and Electrical 

conductivity (EC).  

Species name BD CLAY ECE OC PH 

Acacia aneura 14.3 4.7 5.1 45.1 30.7 

A. sclerosperma 23.1 17.5 7.8 31.0 20.6 

A. tetragonophylla 23.4 2.7 11.4 36.2 26.3 

A. victoriae 25.8 10.8 28.9 26.0 8.6 

Allocasuarina campestris 27.9 15.0 6.5 14.4 36.1 

Atalaya hemiglauca 8.2 26.5 24.2 26.9 14.4 

Atriplex angulata 6.0 45.9 8.2 24.6 15.4 

A. eardleyae 12.6 32.8 2.2 27.8 24.5 

A. holocarpa 7.5 34.3 3.3 26.7 28.2 

A. nummularia 3.2 34.0 8.4 33.6 20.7 

A. vesicaria 14.3 17.5 21.4 3.1 43.8 

Epacris impressa 1.0 0.6 14.4 77.5 6.5 

Eremophila freelingii 22.9 11.0 30.0 2.7 33.4 

Eucalyptus diversifolia 5.0 29.7 21.1 18.5 25.6 

E. Dumosa 14.6 12.8 16.7 16.1 39.8 

E. gracilis 13.1 13.1 19.3 17.4 37.1 

E. incrassate 10.6 22.6 34.9 11.5 20.4 

E. oleosa 4.3 20.3 15.5 25.9 34.0 

E. socialis 16.5 13.2 17.2 9.1 44.0 

Leptospermum continental 23.0 1.1 18.9 31.4 25.7 

L. glaucescens 39.2 10.0 1.5 29.4 19.8 

L. laevigatum 3.5 22.7 29.2 22.7 22.0 

L. lanigerum 18.8 1.2 6.7 70.9 2.5 

L. scoparium 35.1 1.4 3.6 52.8 7.0 

Maireana aphylla 2.6 53.5 4.7 13.3 25.9 

Melaleuca ericifolia 11.7 6.9 21.0 53.0 7.4 

M. squamea 16.5 5.3 2.7 40.6 34.9 

M. squarrosa 12.0 3.7 8.0 57.8 18.5 

Ozothamnus turbinatus 14.7 11.6 31.5 37.3 4.8 
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Appendix 3.2 

Feature selection in MaxEnt 

I initially explored how different mathematical transformations of predictor variables 

(“features”) influenced the predictive power of MaxEnt predictions. These features 

are important in defining model complexity: selecting more features may result in 

complex non-linear response curves while fewer features may generate simpler 

response curves (Merow et al., 2013). In this study, I compared models calibrated 

with four feature types (all but hinge, as hinge and threshold features are well 

correlated, Elith et al., 2011) versus those calibrated with linear and quadratic 

features. These two sets of models are referred to as F1 and F2, respectively. In total, 

for each shrub species I calibrated six models, i.e. three sets of predictor variables 

(VC+S [climate and soil variables]; VC [climate variables only]; VS [soil variables only]) 

* two feature groups (F1: linear, quadratic, product and threshold; F2: linear and 

quadratic). 

Whilst all models had AUC scores > 0.75, on average those generated using 

a combination of linear, quadratic, product and threshold features (F1) resulted in 

significantly higher AUC scores than those generated with linear and quadratic 

features (F2), regardless of the predictor variables used (P < 0.05; Table A3.3). 

However, while mean AICc values were generally lower for F1 models compared to 

F2, this was not significant across the three sets of predictor variables (Table A3.4).   
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Table A3.2.1 Average AUCTest scores for two sets of MaxEnt models generated for 29 shrub species 

(standard deviations in brackets), and results of one-way ANOVA (F-stat and P value). F1, indicates 

linear, quadratic, product and threshold features used to calibrate models; F2, indicates linear and 

quadratic features used. df = 1,56. 

Environmental variable set Mean AUC F1 Mean AUC F2 F-stat P-value 

Climate 0.91 (0.046) 0.87 (0.069) 5.930 0.018 

Soil 0.89 (0.047) 0.82 (0.063) 19.630 0.000 

Climate & Soil 0.92 (0.040) 0.89 (0.054) 5.469 0.023 
 

 

 

Table A3.2.2 Average AICC scores from two sets of MaxEnt models generated for 29 shrub species 

(standard deviations in brackets), and results of one-way ANOVA (F-stat and P value). F1, indicates 

linear, quadratic, product and threshold features used to calibrate models; F2, indicates linear and 

quadratic features used. df = 1,56. 

Environmental variable set Mean AICc F1 Mean AICc F2 F-stat P-value 

Climate 69,006 (74,281) 71,258 (75,511) 0.013 0.909 

Soil 64,643 (73,898) 66,967 (75,400) 0.037 0.849 

Climate & Soil 68,535 (75,691) 72,386 (77,615) 0.014 0.906 
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Chapter 4 

Potential impacts of climate change on 

the distributions of Australian shrubs 
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Chapter 4: Potential impacts of climate change on the 

distributions of Australian shrubs 

___________________________________________________________________ 

 

Introduction 

Globally, mean annual temperature has risen 0.85 ºC (0.65 to 1.06 ºC) since 1880 

(IPCC, 2013). Precipitation patterns have shifted, however while there is 

considerable evidence of increased precipitation across Northern Hemisphere mid-

latitude land masses, trends elsewhere are not well understood (IPCC, 2013).  

Similar to global trends, mean annual temperature in Australia has increased, 

particularly over the period 1970 – 2010 (CSIRO & BOM, 2011). While annual 

precipitation has increased in the north-west of the continent (IPCC, 2013), the 

eastern and south-eastern regions have experienced prolonged drought (Tiver et al., 

2008; CSIRO & BoM, 2011), with rainfall also declining substantially in south-

western Western Australia (SoE 2011).  

Although there is international recognition that actions need to be undertaken 

to ensure that the magnitude of climate change does not exceed 2 ºC (Meinshausen 

et al., 2009), it is likely that global mean temperature will increase by 1.0 to 3.7 ºC by 

the late 21st century, relative to 1986 – 2005 (IPCC, 2013). By 2030, median 

warming across Australia is projected to be 0.7 – 1.2 ºC (relative to 1980 – 1999), 

with greater warming occurring inland than along coastal regions (CSIRO & BoM, 

2007). By 2050, best estimates suggest an increase of 1.2 – 2.2 ºC, rising to 2.2 – 

3.4 ºC by 2070 (CSIRO & BoM, 2007). Projections of precipitation vary spatially and 
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seasonally, with considerable uncertainty in many regions. By 2030, estimates of 

annual changes range from -15% to +10% in northern regions and -10% to no 

change in the south. By 2070, estimates for central, eastern and northern areas 

range from -30% to +20%, while the southwest may be faced with changes ranging 

from -30% to +5% (CSIRO and BoM, 2007). The dry end of these scenarios would 

have severe impacts on all natural and human-managed systems (Reisinger et al., 

2014). Multi-model comparisons indicate that under the most severe emission 

scenario, representative concentration pathway (RCP8.5) assumes that the 

concentration of greenhouse gas emissions (GHG) will significantly increase over 

time, resulting in a radiative forcing of 8.5 W m2 by 2100 (Riahi et al., 2011)  

(RCP8.5) there is substantial agreement on the direction and magnitude of 

precipitation changes in several regions of Australia: substantial drying in the south-

western corner of Western Australia, slight drying along south eastern Queensland, 

and higher precipitation in north-eastern Western Australia and north-western 

Northern Territory (Reisinger et al., 2014). In contrast, projections are divergent in 

north-east Queensland, north-eastern New South Wales and much of northern-

central region of Australia (Reisinger et al., 2014). 

As with taxa elsewhere, anthropogenic climate change has already had a 

discernible impact on Australia’s terrestrial and marine fauna and flora (Cabrelli et 

al., 2015). These responses include shifts in the distributions of species, changes to 

the timing of life cycle events, morphological and behavioural changes, as well as 

genetic adaptations (see reviews by Cabrelli et al., 2015 and Beaumont et al., 2015).  

Distribution shifts have also been reported for Australian shrub species. For 

example, recent encroachment of Leptospermum scoparium in southern Australia is 

suggested to have occurred due to availability of soil moisture during wet periods, 
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which enable shrub seedlings to compete with grasses  (Price & Morgan, 2008). In 

contrast, substantial mortality of Eucalyptus species across the semi-arid savanna of 

north and central Queensland has been reported because of drought (Fensham & 

Fairfax, 2003; Fensham et al., 2005). Similarly, growth of the shrub species 

Eremophila sturtii and Dodonaea viscosa subsp. angustissima have been 

suppressed in semi-arid eastern Australia due to severe drought conditions (Norman 

et al., 2014).  

        The goal of this chapter is to explore how climate change may impact the 

distributions of Australian shrub species modelled in Chapter 3. In doing so, I 

continue exploring how variation in the output of species distribution models (SDM) 

is driven by the choice of predictor variables. Although soil properties perform an 

important role in limiting the growth and distribution of shrub species, changes to 

these variables generally occur over geological time (Stanton et al., 2012). This 

contrasts to the rate at which climate is currently changing and is projected to 

change over coming decades. As discussed by Stanton et al. (2012) it is unclear 

whether static variables (i.e. soil properties) should be incorporated with dynamic 

variables (i.e. climate scenarios) in SDMs. This is because models calibrated with 

static and dynamic variables may fit current distributions well but may be ill-suited to 

projecting responses to future climate change because climate variables are given 

less weight in the model. In contrast, excluding static variables may result in models 

that are particularly sensitive to climate change. A useful comparison of these 

alternatives would be to test the ability of models to predict recent range shifts by 

calibrating them with data from the mid-20th century. Unfortunately, there are 

insufficient data to do so for Australian shrub species. Hence, I compare how the 

spatial extent of suitable habitat may diverge under future climate scenarios, when 
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SDMs are calibrated with both climate and soil variables (referred to as VC+S models) 

versus models calibrated with only climate variables (VC).  

 The objectives of this chapter therefore, were to assess:  

1. How may climate change alter the spatial distribution of suitable habitat for 29 

Australian shrub species? 

2. To what extent may projections of suitable habitat diverge when SDMs calibrated 

with climate and soil variables versus only climate variables are projected onto 

scenarios of future climate change? 

 

Methods   

Climate change scenarios 

In Chapter 3 I developed models of the distributions of 29 Australian shrub species, 

based on five climate variables: Mean annual temperature [MAT]; Mean temperature 

of warmest month [MTWA]; Mean annual precipitation [MAP]; Precipitation of 

warmest quarter [WPQ], and Precipitation of coldest quarter [CPQ]. These variables 

were derived from data developed for the Australian Water Availability Project 

(AWAP; http://www.bom.gov.au/jsp/awap/, Raupach et al., 2009; Raupach et al., 

2012), and were at a resolution of ~ 5 km.  

For the current chapter, I downloaded two climate scenarios available from 

the Wallace initiative (http://climascope.wwfus.org). This initiative developed 

downscaled scenarios of future climate based on projections from 18 global climate 

models (GCM). For each GCM, anomalies were downscaled to 5 km via a cubic 

spline interpolation (VanDerWal et al., 2011) and added to AWAP baseline data 

(1976 to 2005). The standard 19 bioclimatic variables (sensu Nix, 1986) were then 

calculated.  

http://www.bom.gov.au/jsp/awap/
http://climascope.wwfus.org/
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From the 18 GCM projections included in climascope, I selected simulations 

from two models, under a single RCP (RCP8.5). Of the four RCPs for which climate 

simulations are readily available, RCP8.5 assumes the highest increase in GHG 

emissions, and is also the pathway that is closest to the trajectory currently being 

followed (Peters et al., 2013). 

I selected scenarios projected by MIROC 3.2 medres (http:// www-

pcmdi.llnl.gov/ipcc/model_documentation/MIROC3.2_hires.pdf) and IPSL–CM4 

(http://www.ipcc-data.org/ar4/model-IPSL-CM4-change.html), specifically because 

multi-model comparisons of skill-score (i.e. how well a model captures the observed 

probability density function for temperature and precipitation variables, e.g. Evans et 

al., (2012) and Perkins et al., (2008)) found these models to have high performance 

and independency. Note, however, that there is little agreement as to the best 

method of scoring GCM performance, and models may perform well for some 

variables, across some temporal scales, and less well for others (Beaumont et al., 

2008). 

Although GCMs unanimously project temperature increases throughout this 

century, there is substantial uncertainty in the direction and magnitude of 

precipitation changes (IPCC, 2013). From a conservation or land management 

perspective it may be more informative to use scenarios that represent different, but 

plausible, futures. To summarise, for the decades centred on 2035 and 2075, IPSL 

projects MAT to increase by an average 2 ºC and 5 ºC, respectively, while MIROC 

projects a rise of 1 and 3 ºC (Appendix 4, Figure 4.1). Averaged across the continent 

IPSL projects a decline in MAP by 50 mm and 250 mm by 2035 and 2075, 

respectively, whilst MIROC projects an increase of ~75 mm (2035) and 125 mm 

http://www.ipcc-data.org/ar4/model-IPSL-CM4-change.html
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(2075) (Figure 4.1). Hence, IPSL represents a hot, dry future in contrast to MIROCs 

warm, wet future. These scenarios will be referred to as hot/dry and warm/wet. 

 

Static soil variables 

I projected two sets of SDMs developed in Chapter 3 onto the climate scenarios, 

enabling me to examine the extent to which future suitable habitat may vary, 

depending on selection of predictor variables. These were models calibrated with the 

five climate variables only (VC: Mean annual temperature [MAT]; Mean temperature 

of warmest month [MTWA]; Mean annual precipitation [MAP]; Precipitation of 

warmest quarter [WPQ], and Precipitation of coldest quarter [CPQ]) and those 

calibrated with the five climate variables in addition to five soil variables (VC+S: Clay 

content percentage [Clay]; bulk density [BD] which reflects soil porosity; pH CaCl2 

[pH] which reflects soil salinity; Electrical conductivity [ECE]; and Organic carbon 

[OC]. Combined, the soil variables reflect physical and chemical soil characteristics 

to a depth of ~ 30 cm, and were at a resolution of 5 km (see Chapter 3 for a 

description of how these variables were developed). Unlike temperature and 

precipitation, the soil variables are static, remaining constant with time.  

 

          

             

 

 



 

102 
 

Figure 4.1 Box plots of baseline and future climate scenarios across Australia, for the five climate variables used to model species distributions (Mean annual 

temperature [MAT]; Mean temperature of warmest month [MTWA]; Mean annual precipitation [MAP]; Precipitation of warmest quarter [WPQ], and 

Precipitation of coldest quarter [CPQ]).  Baseline climate was averaged over the period 1976 – 2005 (white box). Future climate scenarios were based on 

simulations from two global climate models downscaled to 5 km. IPSL (IPSL-CM4, green box) simulates a hot/dry future while MIROC (CCSR-MIROC 

medres, pink box) simulates a warm/wet future. Scenarios were for the 20-year period centred on 2035 (light colour) and 2075 (darker colour). Within each 

box, dashed lines represent the median while the boxes represent the interquartile range.  
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Generating scenarios of the future distribution of suitable habitat 

Previously, I generated models of suitable habitat for 29 Australian shrub species 

using Maximum Entropy Species Distribution Modelling Software (MaxEnt version 

3.3.3k; Phillips et al., 2004, 2006) (Chapter 3). To summarise, these models (VC and 

VC+S) used four feature types (hinge excluded), with five runs of each model 

generated using a different selection of 20% of occurrence records. In the current 

chapter, I have projected both sets of models onto four scenarios of future climate 

(i.e. from two GCMs and for two time periods, 2035 and 2075).  

MaxEnt projections were converted to binary maps representing suitable or 

unsuitable habitat for the species in question, using the ArcGIS (ESRI, 2010) 

extension, SDMtoolBox (Brown, 2014), and the R software v 2.2-1 (R Core Team 

2013) with the ‘raster’ package (Hijmans, 2015). The threshold for conversion to 

binary data was based on the value that maximised training sensitivity plus 

specificity, as recommended by Liu et al. (2013). From the binary maps I calculated 

a) size (km2) of suitable habitat under each climate scenario (current and future) and 

area of contraction (loss of currently suitable habitat) and expansion (new areas 

projected as suitable in the future), b) species richness, i.e. sum of unique species 

per grid cell and c) differences between MaxEnt projections calibrated from VC+S 

models vs VC models, for each GCM and time period.  

 

Results 

How may climate change alter the distribution of suitable habitat for Australian 

shrub species? 

For MaxEnt models calibrated with only climate variables (VC) suitable habitat for 24 

of 29 species was projected to decline in size under the warm/wet scenario for 2035 
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(Table 4.1). By 2075, contractions were projected for 22 species. Under the hot, dry 

scenario, suitable habitat for 25 and 26 species was projected to decline by 2035 and 

2075, respectively. On average, smaller changes in the size of suitable habitat were 

projected for the warm/wet scenario (2035 -9 ± 30%; 2075 -25 ± 71%) compared with 

hot/dry (2035 -21 ± 28%; 2075 -42 ± 61% Table 4.1). 

Suitable habitat for Chenopods (e.g. Atriplex eardleyae, A. nummalaria, Figure 

4.2) and Eucalyptus species was projected to contract from northern regions and to a 

greater extent under the hot/dry scenario compared to the warm/wet future. In 

contrast, suitable habitat for Acacia tetragonophylla and A. sclerosperma increased 

and shifted eastward under the hot/dry scenario, while new regions in western 

Western Australia were projected to become suitable for Maireana aphylla.  

The tall shrubs, Melaleuca ericifolia, M. squarrosa and Leptospermum 

laevigatum, were projected to have suitable habitat expand by 2075, and shift from 

eastern NSW to the southern reaches of Victoria under the warm/wet future. In the 

hot/dry scenario for 2075, these species were projected to be faced with declines in 

range size of between 49 – 74% relative to current sizes (Table 4.1). The heath 

species, Epacris impressa, was projected to lose all suitable habitat in Western 

Australia in a hot/dry future (2075). Similarly, both Eucalyptus dumosa and E. gracilis 

were projected to lose all suitable habitat in South Australia under both climate 

scenarios for 2075. Among the mallee shrubs (Eucalyptus species), almost all 

currently suitable habitat (96.9 – 99%) was projected to be unsuitable by the hot/dry 

scenario for 2075, meaning that suitable habitat in the future will not only be smaller 

but also in a different location than current. These values were slightly lower under 

warm/wet scenario (83.7 – 94.4%). Conversely, > 75% of currently suitable habitat 

was projected to remain suitable by 2075 for three species (Acacia tetragonophylla, 
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A. sclerosperma, Atalaya hemiglauca) under the hot/dry scenario, and five species 

under the warm/wet scenario (A. sclerosperma, Leptospermum laevigatum, Atalaya 

hemiglauca, Allocasuarina campestris, Maleleuca squarrosa).  

Although species richness at a continental scale was projected to decline with 

time, patterns differed under the hot/dry versus warm/wet scenarios (Figure 4.3). 

Richness of species in a hot/dry future will be highest in central-southern parts of 

Australia, with richness along the eastern and western margins of the continent 

declining. Under the warm/wet scenario, richness was projected to remain highest in 

South Australia, but decline in Western Australia and New South Wales and Victoria. 
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Figure 4.2 Projections of potential current and future suitable habitat modelled using MaxEnt, for two climate scenarios representing a hot/dry future from 

(IPSL-CM4) and a warm/wet future (CCSR-MIROC32MED) for 2035 and 2075. Maps show suitable habitat for Acacia aneura, Atriplex nummalaria and 

Eucalyptus incrassata. Warmer colours show areas projected to have higher suitability. Models were calibrated using five climate variables only (VC models). 

 

     

Acacia aneura 

Atriplex 
nummalaria 

Eucalyptus 
incrassata 

Current climate        Hot/dry 2035        Warm/wet 2035         Hot/dry 2075        warm/wet 2075 
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Table 4.1 Comparison of potential size of suitable habitat projected by MaxEnt for 29 Australian shrub species.  “Current climate” was based on models 

calibrated with climate data from 1976 – 2005. Remaining columns show size (km
2
) under future scenarios, percent of current habitat remaining suitable in the 

future (Overlap), percent of current habitat projected to be unsuitable in the future (Loss), percent of future habitat that is in new locations (Gain). The future 

scenarios represent a hot/dry future from (IPSL-CM4) and a warm/wet future (CCSR-MIROC32MED) for 2035 and 2075. Models were calibrated using five 

climate variables only (VC models). 

 

  Hot/dry scenario for 2035 Hot/dry scenario for 2075 Warm/wet scenario for 2035 Warm/wet scenario for 2075 

 
Species name 

Current 
climate 
(Km²) 

Future 

(Km²) 

Overlap 

% 

Loss 

% 

Gain 

% 

Future 

(Km²) 

Overlap 

% 

Loss 

% 

Gain % Future 

(Km²) 

Overlap 

% 

Loss 

% 

Gain 

% 

Future 

(Km²) 

Overlap 

% 

Loss 

% 

Gain 

% 

Acacia aneura 3638250 3205470 74.7 25.3 15.2 2143740 37.3 62.7 36.6 3021480 74.7 25.3 10.0 2238270 50.8 49.2 17.5 

A. sclerosperma 970350 1912710 90.3 9.7 54.2 2991210 87.2 12.8 71.7 1774170 89.3 10.7 51.2 3372840 97.7 2.3 71.9 

A. tetragonophylla 2954730 3346410 91.8 8.2 19.0 3677250 91.8 8.2 26.3 2630430 77.0 23.0 13.5 2375100 62.0 38.0 22.9 

A. victoriae 3795990 3473040 64.5 35.5 29.5 2911830 46.8 53.2 39.0 3727950 70.5 29.5 28.2 3430290 57.8 42.2 36.1 

Allocasuarina campestris 406680 446610 66.6 33.4 39.3 291840 23.0 77.0 68.0 628590 86.0 14.0 44.3 711570 78.1 21.9 55.3 

Atalaya hemiglauca 3995850 3694620 84.0 16.0 9.1 3434040 76.5 23.5 11.0 4309350 92.8 7.2 14.0 4767720 94.8 5.2 20.5 

Atriplex angulata 1301220 1025190 53.6 46.4 32.0 502740 18.6 81.4 51.8 845160 47.6 52.4 26.7 478980 24.9 75.1 32.5 

A. eardleyae 1107120 828630 53.5 46.5 28.6 365190 12.5 87.5 62.0 1014240 63.8 36.2 30.4 728010 38.1 61.9 42.0 

A. holocarpa 2116380 1802640 64.8 35.2 23.9 1245900 34.4 65.6 41.6 1621590 65.0 35.0 15.1 1017060 34.8 65.2 27.5 

A. nummularia 1919400 1383570 48.0 52.0 33.4 876030 28.1 71.9 38.3 1397550 50.0 50.0 31.3 789810 22.8 77.2 44.7 

A. vesicaria 1721070 1278660 63.0 37.0 15.3 805260 31.2 68.8 33.2 964170 51.8 48.2 7.6 345510 17.2 82.8 14.4 

Epacris impressa 338670 217920 60.2 39.8 6.4 96870 23.3 76.7 18.5 268800 76.8 23.2 3.2 126330 33.8 66.2 9.4 

Eremophila freelingii 1529610 674670 34.1 65.9 22.7 99960 1.9 98.1 71.3 764280 39.2 60.8 21.5 154470 5.6 94.4 44.1 

Eucalyptus diversifolia 164340 112380 47.3 52.7 30.9 64740 12.2 87.8 69.0 107580 53.8 46.2 17.9 48540 20.3 79.7 31.3 

E. dumosa 648240 356550 37.8 62.2 31.2 120120 1.0 99.0 94.4 505380 60.0 40.0 23.1 96990 7.0 93.0 53.2 

E. gracilis 684360 391680 42.4 57.6 25.8 135840 3.1 96.9 84.3 460950 55.8 44.2 17.2 82620 7.5 92.5 37.5 

E. incrassata 421770 250860 43.6 56.4 26.7 91950 2.1 97.9 90.2 300750 61.3 38.7 14.1 79050 16.3 83.7 12.9 

E. oleosa 529380 345930 43.3 56.7 33.8 135480 2.4 97.6 90.7 404010 58.4 41.6 23.4 147810 18.2 81.8 34.7 

E. socialis 1220940 754050 26.9 73.1 56.4 223350 1.8 98.2 89.9 1157970 49.5 50.5 47.8 518130 11.2 88.8 73.6 

Leptospermum continental 363030 219090 54.5 45.5 9.7 83580 11.3 88.7 51.0 333060 83.0 17.0 9.5 237060 50.0 50.0 23.5 

L. glaucescens 56280 42390 70.0 30.0 7.1 24210 40.2 59.8 6.6 46680 76.1 23.9 8.3 29160 46.0 54.0 11.2 

L. laevigatum 416700 336300 62.5 37.5 22.6 210870 31.5 68.5 37.8 636630 98.1 1.9 35.8 854220 96.1 3.9 53.1 

L. lanigerum 266430 155550 56.4 43.6 3.5 70020 26.1 73.9 0.8 201930 74.7 25.3 1.5 97980 36.7 63.3 0.1 

L. scoparium 94020 65850 65.7 34.3 6.2 39480 41.5 58.5 1.2 72720 71.9 28.1 7.1 42120 42.8 57.2 4.5 

Maireana aphylla 1885710 2053560 68.1 31.9 37.5 3670320 64.8 35.2 66.7 1772490 56.7 43.3 39.7 2269860 33.7 66.3 72.0 

Melaleuca ericifolia 185880 136170 41.9 58.1 42.8 47880 5.4 94.6 78.9 183750 72.8 27.2 26.4 194640 54.7 45.3 47.8 

M. squamea 123450 77610 56.0 44.0 10.9 49890 37.4 62.6 7.5 108300 69.4 30.6 20.9 87630 46.7 53.3 34.2 

M. squarrosa 144930 99570 59.0 41.0 14.1 66840 36.3 63.7 21.3 178410 86.8 13.2 29.5 172350 78.1 21.9 34.4 

Ozothamnus turbinatus 57390 42720 49.3 50.7 33.8 37890 36.2 63.8 45.2 56520 65.7 34.3 33.3 50400 44.3 55.7 49.6 
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Figure 4.3 Biodiversity maps for 29 shrub species modelled using MaxEnt. Maps are richness map of 

species are modelled onto current climate (first map) and species differences between current and two 

scenarios (hot/dry [IPSL-CM4] and warm/wet [CCSR-MIROC32MED]) for 2035 and 2075. Models 

were calibrated using five climate variables only (VC models). 
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How do projections of future distributions vary when soil properties are 

included in models? 

Under the warm/wet scenario suitable habitat for 21 of the 29 species was projected 

to decline in size by 2035 (Table 4.2). Declines continued for all 21 species under 

this scenario for 2075. While suitable habitat for six species was projected to expand 

by 2035 under the hot/dry scenario, expansions continued to occur for only three by 

2075. As with VC models, on average smaller changes in the size of suitable habitat 

were projected for the warm/wet scenario (2035 -9 ± 26%; 2075 -23 ± 64%) 

compared to the hot/dry scenario (2035 -19 ± 29%; 2075 -37 ± 64%, Table 4.2).  

  For some species, projections of range changes simulated by VC+S models 

differed in direction and magnitude from VC models. As a result, twice as many 

species were projected to experience range expansions in the VC+S models (8 

species) compared to VC models (4 species), for the warm/wet scenario. For 

instance, when soil properties were included in models, habitat suitable for Acacia 

victoriae was projected to increase under the warm/wet scenario (15.3% and 18.4% 

for 2035 and 2075, respectively, compared to the baseline period). In contrast, 

declines of 2% and 10% were projected by VC models (2035, 2075). However, for A. 

sclerosperma similar range changes were simulated by both sets of models – as 

demonstrated in Chapter 3 soil variables had little importance in defining the 

distribution of this species (see Table 3.7). Clay, however, was identified as the most 

important variable for Maireana aphylla. VC+S models compared to VC models 

simulated substantially greater increases in the size of suitable habitat (55.5% and 

20%, respectively) under future scenarios for 2075. 
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Table 4.2 Comparison of potential size of suitable habitat projected by MaxEnt for 29 Australian shrub species.  “Current climate” was based on models 

calibrated with climate data from 1976 – 2005. Remaining columns show size (km
2
) under future scenarios, percent of current habitat remaining suitable in the 

future (Overlap), percent of current habitat projected to be unsuitable in the future (Loss), percent of future habitat that is in new locations (Gain). The future 

scenarios represent a hot/dry future from (IPSL-CM4) and a warm/wet future (CCSR-MIROC32MED) for 2035 and 2075. Models were calibrated using five 

climate variables and five soil variables (VC+S models). 

  Hot/dry scenario for 2035 Hot/dry scenario for 2075 Warm/wet scenario for 2035 Warm/wet scenario for 2075 

 
Species name 

Current 
climate 
(Km²) 

Future 

(Km²) 

Overlap 

% 

Loss 

% 

Gain 

% 

Future 

(Km²) 

Overlap 

% 

Loss 

% 

Gain % Future 

(Km²) 

Overlap 

% 

Loss 

% 

Gain 

% 

Future 

(Km²) 

Overlap 

% 

Loss 

% 

Gain 

% 

Acacia aneura 3447660 2820720 69.9 30.1 14.6 1928430 35.6 64.4 36.4 2854050 74.1 25.9 10.5 2056950 48.9 51.1 18.1 
A. sclerosperma 933450 1638930 97.4 2.6 44.5 2558790 97 3 64.6 1518180 95.9 4.1 41.1 2875590 97 3 68.5 
A. tetragonophylla 2907990 3339630 95.1 4.9 17.2 3708000 95.3 4.7 25.3 2847990 85.8 14.2 12.4 2747910 74.9 25.1 20.8 
A. victoriae 3050670 3404520 74.9 25.1 32.9 2928720 58.4 41.6 39.2 3517050 80.8 19.2 29.9 3613230 70.9 29.1 40.2 
Allocasuarina campestris 367350 377190 76.1 23.9 25.8 287220 35.3 64.7 54.9 472590 92.8 7.2 27.9 491970 83.7 16.3 37.5 
Atalaya hemiglauca 3767910 3704640 89.2 10.8 9.3 3629040 83.3 16.7 13.5 4109730 93.8 6.2 14 4487700 95.7 4.3 19.6 
Atriplex angulata 807150 681810 63.8 36.2 24.4 556590 43.2 56.8 37.3 545670 55.5 44.5 17.9 357240 27.5 72.5 37.8 
A. eardleyae 1047840 917550 64.8 35.2 26 511890 28.8 71.2 41 930600 65.5 34.5 26.3 752640 43.4 56.6 39.6 
A. holocarpa 1613370 1669980 76.7 23.3 25.9 1461180 59.4 40.6 34.5 1313790 66.2 33.8 18.6 881640 35.5 64.5 35 
A. nummularia 1194360 984480 56 44 32.1 623250 38.9 61.1 25.4 806160 51.5 48.5 23.6 442440 26.4 73.6 28.7 
A. vesicaria 1287180 1104930 73.6 26.4 14.3 850860 46.6 53.4 29.5 947820 67.8 32.2 7.9 499110 35 65 9.6 
Epacris impressa 311370 200160 59.2 40.8 7.9 87840 21.4 78.6 24.1 242430 75.6 24.4 2.9 115590 34.1 65.9 8.1 
Eremophila freelingii 733350 391890 43.3 56.7 19 193860 19.1 80.9 27.7 446520 42 58 31 262680 19.2 80.8 46.4 
Eucalyptus diversifolia 151830 97560 41.8 58.2 34.9 46830 6.6 93.4 78.7 94080 50.3 49.7 18.9 42210 19.5 80.5 29.9 
E. dumosa 505500 281790 44 56 21.2 52410 1.8 98.2 82.9 379470 62.9 37.1 16.2 70890 11.1 88.9 20.7 
E. gracilis 579600 291990 42.3 57.7 15.9 46980 1.5 98.5 80.9 382650 60.5 39.5 8.4 38070 5.8 94.2 11.9 
E. incrassata 430650 259710 45.1 54.9 25.2 122220 6.2 93.8 78.1 283620 61.2 38.8 7.1 94080 19 81 13.1 
E. oleosa 643590 376860 51.1 48.9 12.7 47340 2.6 97.4 64.4 458010 66.2 33.8 7 162270 22.4 77.6 11.1 
E. socialis 1402680 701430 29 71 42 231180 4.6 95.4 72 1199730 56.3 43.7 34.2 629700 19 81 57.6 
Leptospermum continental 371910 225840 56.3 43.7 7.3 85800 13.3 86.7 42.4 338100 84.1 15.9 7.5 249120 54.7 45.3 18.4 
L. glaucescens 47220 35550 70.8 29.2 5.9 20520 39.7 60.3 8.6 39000 78.3 21.7 5.2 24030 46.8 53.2 8 
L. laevigatum 391890 316320 63 37 22 194340 32 68 35.5 585810 96.4 3.6 35.5 793950 93.7 6.3 53.7 
L. lanigerum 267300 151860 56.6 43.4 0.4 67470 25.2 74.8 0.4 209100 77.7 22.3 0.7 107880 40.3 59.7 0.1 
L. scoparium 99480 71310 64.6 35.4 9.9 42360 41.5 58.5 2.6 79650 72.7 27.3 9.2 46080 42.2 57.8 9 
Maireana aphylla 1458780 2119590 74.8 25.2 48.5 3875670 78.1 21.9 70.6 1501110 65.7 34.3 36.2 2267790 50 50 67.8 
Melaleuca ericifolia 169530 128820 45.5 54.5 40.1 45150 5.3 94.7 80.3 192270 80.8 19.2 28.8 211470 62.6 37.4 49.9 
M. squamea 92190 58290 55.8 44.2 11.7 45150 38.4 61.6 21.7 74130 71.3 28.7 11.3 53100 49.3 50.7 14.5 
M. squarrosa 139170 97230 60.9 39.1 12.8 64650 36.6 63.4 21.2 170850 88.5 11.5 27.9 165150 77.6 22.4 34.6 
Ozothamnus turbinatus 60600 41550 49.9 50.1 27.2 29430 31.8 68.2 34.6 59070 62.7 37.3 35.7 46470 39.2 60.8 48.9 
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Figure 4.4 Projections of potential current and future suitable habitat modelled using MaxEnt, for two 

climate scenarios representing a hot/dry future from (IPSL-CM4) and a warm/wet future (CCSR-

MIROC32MED) for 2035 and 2075. Maps show suitable habitat for Atriplex angulata under historical 

climates (upper column) and Maireana aphylla (lower column) modelled with different sets of 

environmental conditions. Panels A, C are based on models calibrated with climate variables only 

(Vc), while panels B, D are based on models calibrated with climate and soil variables (Vc+s). Warmer 

colours show areas projected to have higher suitability. Bright blue represents unsuitable areas.  
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Patterns of species richness are broadly similar under both climate scenarios for 

2035, but diverge by 2075 (Figure 4.5). That is, under scenarios for 2035, VC+S 

models project richness to be greatest in eastern South Australia and south-west 

Queensland/western New South Wales, although there an area of high richness in 

southern Western Australia (Figure 4.5). By 2075, areas with greatest richness under 

the warm/wet scenario are mostly in South Australia. Conversely, several small 

regions of high richness are projected under the hot/dry scenario: south-east 

Western Australia, east South Australia and central New South Wales.  

 Therefore to summarise, the primary difference between projections from VC 

and VC+S models for 2035, is that rather than having a broad band of high richness 

extending from Western Australia through to New South Wales (VC models, Figure 

4.3) VC+S models project two geographically separated areas of high richness: one in 

Western Australia and one in South Australia/Queensland/New South Wales (Figure 

4.5). For 2075, under the hot/dry scenario there are broad similarities to the richness 

patterns projected by VC and VC+S models, while under the warm/wet scenario 

patterns in Western Australia diverge.  
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Discussion  

 

 

Figure 4.5 Richness maps for 29 shrub species modelled using MaxEnt and projected onto current 

climate and two scenarios (hot/dry [ipsl-cm4] and warm/wet [ccsr-miroc32med]) for 2035 and 2075. 

Models were calibrated using five climate and five soil variables (VC+S models). 
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The impact of climate change on Australian shrub species 

Over the course of this century, should climate change follow a trajectory of “hot/dry”, 

regions of Australia with the highest richness of the shrub species in this study may 

contract to small areas in south-eastern Western Australia, eastern South Australia 
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and central New South Wales. However, neither the magnitude of temperature 

increases nor future precipitation patterns are certain, and should the future be one 

characterised as “warm/wet” than South Australia may harbour the largest area of 

habitat suitable for the greatest number of shrub species. Indeed, consistent with 

other studies (e.g. 100 Banksia species in south-west Western Australia (Fitzpatrick 

et al., 2008); 584 plant species across southern Australia (Summers et al., 2012)), 

the extent of suitable habitat for the majority of species was projected to decline, 

irrespective of climate scenario.  

Averaged across the continent, the hot/dry scenario projected an increase in 

temperature and decrease in precipitation compared to historical climate (1976 – 

2005). More specifically, under this scenario annual and seasonal temperature was 

projected to rise substantially in central Australia and western regions of Western 

Australia. These areas are currently inhabited by shrub species for which 

temperature variables were identified by MaxEnt as the most important, for instance 

Acacia aneura. The hot/dry scenario also projected declines in annual precipitation in 

central Australia of ~129 – 370 mm, with summer and winter rainfall projected to be 

between ~ 42 and 111 mm by 2035, respectively, and drier still by 2075. This may 

result in the elimination of suitable habitat for species inhabiting these areas, 

although for some, such as Atriplex nummularia and Eucalyptus incrassate, new 

areas in the south-east may become more suitable. Hence, although these shrubs 

can survive in high temperature environments, they are unlikely to withstand higher 

temperatures and further declines in precipitation. In this case, these species are 

located at the margins of their distributions based on their physiological tolerance of 

climatic extremes. 

In contrast, suitable habitat for shrubs under the warm/wet scenario fell into 

two categories: arid species with projected declines in habitat (e.g.  Atriplex angulata 
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and Eucalyptus oleosa) versus temperate shrubs (such as Epacris impressa) whose 

distributions in eastern Australia may expand while habitat in the west may be 

eliminated.  

Although averaged across the continent, precipitation was projected to 

increase under the warm/wet scenario, this may be insufficient to offset the impact of 

higher temperatures on shrub species. As temperature increases, water stress may 

occur causing injuries to plants (Liu et al., 2005) via increased water loss from 

transpiration. This results in lower moisture availability which may suppress the 

distribution of shrubs (Huang et al., 2011).  

 

Selection of climate scenarios 

The differences in suitable habitat under the two future climate scenarios emphasize 

the uncertainties associated with projections of future climate. The selection of 

climate scenarios for impacts assessments is an important consideration, yet there is 

little published guidance on which climate models to obtain simulations from (as 

discussed in Beaumont et al., 2008; Harris et al., 2014). Given that no single ‘best’ 

climate model exists, it is highly recommended to use simulations from multiple 

GCMs (Beaumont et al., 2008), although this may not be realistic given 

computational limitations. Scenarios may be averaged to create an ensemble, and 

while this is useful for removing some biases and reducing reliance on a single 

scenario, the ensemble may not reflect a state that could actually occur. Consider the 

two scenarios I used in this Chapter: IPSL has simulated a future where, averaged 

across the country, precipitation declines. In contrast, MIROC has projected a future 

where average MAP increases. Averaging these two scenarios, one dry (0) and the 

other wet (1), would create an ensemble that is not indicative of either model (0.5). 

Therefore, while multiple climate scenarios should be used for impacts assessments, 
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from a management and adaptation perspective it may be more informative to report 

results of contrasting futures (e.g. wet/dry) rather than averaging these. 

                  

Incorporating soil properties as predictor variables  

The addition of soil properties with climate predictor variables in MaxEnt models 

(VC+S) resulted in greater fragmentation of suitable habitat than models calibrated 

with only climate variables (VC models). This fragmentation could be a result of 

converting abiotic variables operating at different spatial scales (i.e. climate and soil) 

to the scale necessary for modelling. These results are consistent with Taylor & 

Kumar's (2013) assessment of climate change impacts on the distribution of Lantana 

camera in Queensland. The authors found a substantial reduction in the extent of 

suitable habitat for this shrub species, and greater patchiness but higher suitability, 

when soil drainage variables were included in SDM calibration.  

             Approaches for combining dynamic and static variables in SDM projections 

under future climate scenarios remains poorly investigated (Brook et al., 2009).  

However, numerous authors have recommended the inclusion of soil variables in 

these models (e.g. Fitzpatrick et al., 2008; Austin & Van Neil 2011; Martinson et al., 

2011; Meier et al., 2012; Stanton et al., 2012; Condit et al., 2013; Hosseini et al., 

2013; Taylor & Kumar, 2013).  

 

Other factors limiting the distribution of shrub species 

Although I included several precipitation variables (annual precipitation, precipitation 

of the wettest quarter and precipitation of the coldest quarter), there are other 

measures of moisture availability that may play a role in limiting the distributions of 

shrubs. For instance, the number of days without rainfall, which is projected to 

increase (CSIRO & BoM, 2007). As projections of daily data from global climate 



 

117 
 

models become more assessable to ecologists, variables representing the number of 

days before a given threshold is reached, may be useful in assessing climate 

impacts.  

Finally, there are other factors, such as grazing and fire regimes, that may 

play an important role in defining the distributions of species. Inclusion of these 

variables in the modelling approach, and separating the effect of climate and soil 

from these, may improve the reliability of results (Pearson et al., 2004).  

 

Conclusion 

My results have provided a first approximation as to the impact of climate change on 

shrub species at a national level and this approach may be useful for land 

management plans and decision-making. In general, shrub species in arid and semi-

arid regions of Australia are likely to be negatively impacted by climate change, 

particularly should a hotter and drier future occur. In contrast, temperate shrubs may 

be able to withstand slightly warmer conditions. Ultimately, however, richness of 

shrub communities may decline as the century progresses with suitable habitat 

contracting towards the southern-central regions of the continent.  

For some species combining soil properties with climate variables may result 

in more realistic simulations of climate impacts. The addition of soil properties 

provides a foundation for future studies investigating the role of abiotic factors on the 

distribution of plants.  
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Appendix 4 

 

Figure 4.1 Simulations of mean annual temperature (MAT) and precipitation (MAP) based on two 

scenarios (MIROC: warm/wet [ccsr-miroc32med]; IPSL: hot/dry [ipsl-cm4]) for twenty year periods 

centred on 2035 and 2075. 
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Chapter 5: Conclusions 

 

The goal of this thesis was to evaluate the role of environmental conditions, in 

particular climate and soil, in controlling the distribution of Australian shrublands and 

shrub species. The thesis also aimed to explore variation in projections of species 

distributions that may occur due to inclusion of soil parameters in model calibration.  

To this end, I first identified how the climate envelope of shrublands differed from 

other major vegetation groups, i.e. forest, grassland and woodland (Chapter 2), and 

differences in the climate envelopes of six recognised classes of shrubland. While 

previous studies have focused on physiological adaptations of shrubs to climate (e.g. 

Reynolds et al., 1999; Jiang & Li, 2008; Huang et al., 2011) assessment of climate 

envelopes has received much less attention. This may in part be due to 

inconsistencies in the definition of ‘shrubs’, particularly as some species are able to 

grow as trees or shrubs depending on the environmental conditions (e.g. Acacia 

aneura). Thus, this chapter represents the first assessment of the role of climate and 

soil properties in defining the distribution of different classes of shrubland. 

Chapter 2 highlighted the key role that soil moisture plays in distinguishing the 

climate envelope of shrublands from other vegetation types. Australian shrublands 

occur in regions with low moisture availability. Physiological mechanisms of shrubs, 

such as long root systems, enable them to utilise moisture stores in deep soil layers 

during hot, dry seasons (Cavanaugh et al., 2011). Although grasses can tolerate high 

temperature, they depend mainly on moisture from shallower soil layers, which 

restricts their growth during dry periods. Shrubs can also utilize water efficiently 

during the growth season by maximizing their growth rate (Reynolds et al., 1999). 

Therefore, seasonality of soil moisture along with variables such as annual soil 
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moisture and temperature in the warmest month are good predictors of distribution of 

shrublands. 

I was also able to predict the distributions of five out of six shrubland classes, 

with varying accuracy. For three classes (Acacia shrubland; Chenopod shrublands, 

samphire shrublands and forblands; Mallee woodlands and shrublands) which mainly 

inhabit arid and semi-arid regions, distributions were predicted with a reasonable 

level accuracy, according to the Kappa statistic (> 53% correctly predicted), although 

for two other classes occurring in temperate regions (Low closed forests and tall 

closed shrublands; Other shrublands) models were less accurate (20% and 32%, 

respectively, correctly predicted). Predictions for heathlands, however, were very 

poor, potentially due to the mixing of different groups of vegetation within polygons of 

extant MVG and MVS of NVIS (DSEWPaC, 2012). Modelling the potential distribution 

of shrublands under current climates is an important step for understanding 

responses to climate and environmental change. While it would be highly useful to 

project these models onto scenarios of future climate, a primary limitation was that 

scenarios were not available for all moisture-related variables. Indeed, the availability 

of environmental data is a key factor limiting climate impacts assessments. 

Although a number of studies have modelled the relationship between climate 

and particular shrub species (e.g. Altamirano et al., 2010; Sardans et al., 2013), few 

have incorporated soil properties (Condit et al., 2013) and fewer still have explicitly 

compared the relative importance of climate versus soil in defining species 

distributions (Taylor & Kumar, 2013). In Chapter 3 I used a species distribution 

model, MaxEnt, to evaluate whether models calibrated with only climate variables 

produced more accurate simulations of current suitable habitat for 29 dominant shrub 

species, than when climate and soil variables are combined, or when only soil 

variables are used. Limitations in soil datasets meant that variables had to be 
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selected from two sources, the Australian Soil Resource Information System (ASRIS: 

Wood & Auricht, 2011; http://www.asris.csiro.au) and the Global Soil Dataset for 

Earth System Modelling (GSD; http://globalchange.bnu.edu.cn/research/soilw).  

For most of the 29 species, climate variables contribute more than soil to 

defining species distributions, however for some species models, calibration with 

both climate and soil resulted in more realistic predictions of potential climatically 

suitable habitat. Soil variables were important for four species in particular: clay 

contributed > 20% to models for Atriplex angulata, A. nummularia, M. aphylla) while 

pH did so for Allocasuarina campestris. This result supports previous research that 

has documented the importance of these soil variables for these species 

(Cunningham et al., 1992; Osuolale et al., 2012). Furthermore, a promising recent 

application of SDMs is to connect them with stochastic population models to estimate 

extinction risk (Keith et al., 2008; Stanton et al., 2012). Such estimates are 

dependent on reasonable predictions of suitable habitat as a function of climate 

conditions and other parameters such as soil type. My analysis validates the 

approach of incorporating soil variables into SDMs, and I recommend that future 

studies explore the contribution of soil variables when modelling the distributions of 

plant species. 

          SDMs are frequently used to predict potential changes in species distributions 

under climate change. The degree to which climate change may impact the 

distribution of shrub species at a regional scale is unclear as most studies have 

explored areas of interest at finer scales (e.g. Summers et al., 2012; Taylor & Kumar, 

2013). Therefore, the primary goal of Chapter 4 was to estimate climate-driven 

changes in habitat suitability of shrubs at regional scales using MaxEnt.  

             Rather than projecting MaxEnt models onto an ensemble of future climate 

scenarios, I specifically identified two contrasting models which is more robust for 

http://globalchange.bnu.edu.cn/research/soilw
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interpretation than the use of ensembles. These two models had been shown to have 

high skill in simulating current conditions (Perkins et al., 2007; Evans et al., 2012). 

Compared to historical climate, MIROC (ccsr-miroc32med, http://www-

pcmdi.llnl.gov/ipcc/model_documentation/MIROC3.2_hires.pdf), projects warmer and 

wetter conditions, averaged across the continent, while IPSL (IPSL–CM4, 

http://www.ipcc-data.org/ar4/model-IPSL-CM4-change.html) projects hotter and drier 

conditions.  

            In general, most shrub species were projected to be faced with declines in the 

size of suitable habitat, regardless of climate scenario. Suitable habitat for shrubs in 

arid central-southern Australia was projected to contract to a greater extent than for 

shrub species in temperate regions in models calibrated for species versus 

vegetation types. My results provide additional support for the sensitivity of 

ecosystems in arid regions (Austin, 2011) and suggests that severe drought periods 

could suppress shrub distribution, which has been documented previously (e.g. 

Fensham et al., 2005; Norman et al., 2014). 

             An additional goal of Chapter 4 was to assess the extent of divergence in 

projections of future suitable habitat predicted when models were calibrated with only 

climate variables versus climate and soil variables. Changes in soil characteristics 

occur over geological time and are thus undetectable over the time period of 

projections of climate used in SDMs (Stanton et al., 2012). I treated soil as 

unchanging (static) variables. Approaches for combining dynamic and static variables 

in SDMs have not been well investigated (Brook et al., 2009). However, the inclusion 

of soil properties in SDMs, to assess current and future distributions, has been found 

useful in several studies (e.g. Stanton et al., 2012; Condit et al., 2013; Hosseini et al., 

2013; Taylor & Kumar, 2013). 

http://www-pcmdi.llnl.gov/ipcc/model_documentation/MIROC3.2_hires.pdf
http://www-pcmdi.llnl.gov/ipcc/model_documentation/MIROC3.2_hires.pdf
http://www.ipcc-data.org/ar4/model-IPSL-CM4-change.html
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         Addition of soil variables generally constrained the distribution of shrub species, 

and resulted in smaller changes to the size of future suitable habitat compared to 

projections from VC models. For those species for which soil characteristics strongly 

influence distribution, inclusion of these variables in models may be constructive in 

terms of management, as model outputs can help identify areas that meet a broader 

range of requirements for that species. However, it is disconcerting that for some 

species the direction and magnitude of range changes may differ depending on 

whether or not soil variables were included in model calibration. Therefore, I suggest 

calibrating models with climate and soil variables to explore their relative 

contributions, then rerunning models excluding unimportant variables. This will assist 

with reducing uncertainty in model projections. 

             Of course, plants persist in heterogeneous environments where their 

distributions are constrained not only by climate and soil properties, but also 

disturbances such as fire and grazing (Keeley et al., 2011). Frequent fires may lead 

to a more open canopy and patchy distributions in shrublands, and may prevent the 

establishment of some species, such as Acacia aneura (Bowman et al., 1995; 

Bowman et al., 2007). Fire may also facilitate the introduction of annual plants, which 

may be highly flammable and promote hotter and more frequent fires, while grazing 

may reduce cover and abundance of annuals (Liedloff et al., 2001).  

Grazing may also impact the distributions of shrub species. For instance, there 

is evidence of grazing reducing the distribution of shrubs in arid regions of southern 

Australia (Tiver et al., 2008), whereas fires and grazing have facilitated the 

establishment of shrub species (e.g., Acacia sophorae) in south-eastern coastal 

grasslands (Costello et al., 2000) to the detriment of grasses (Costello et al., 2000; 

Lunt et al., 2010). Thus, combining climate and soil data with disturbances such as 

fire and grazing may allow a greater approximation of species niches and provide 



 

129 
 

insight on how future distributions may be driven by the interaction of biotic and 

abiotic factors. Tiver et al. (2008) for instance, incorporated grazing and future 

climate scenarios in models and projected the extinction of Acacia aneura species 

within 500 years under scenarios of moderate and heavy grazing by sheep. Similarly, 

heavy grazing was projected to result in the extirpation of populations of Atriplex 

vesicaria growing along watering points (Hunt, 2001). It would therefore be highly 

useful to incorporate different land use interactions into assessments of climate 

impacts.  

             This thesis has presented a comprehensive analysis of Australian shrub 

distributions and their relationships to climatic and soil processes. Defining shrubs as 

a distinct plant functional type in dynamical vegetation models (e.g, Prentice et al., 

2007) has been hampered due to a lack of information on the climate envelope of 

shrublands. This thesis has produced explicit results based on observations of 

climate data and vegetation in Australia. This analysis can be extended to other 

continents and ecosystems, making use of widely available climate observations and 

global shrubland types and shrub species that resemble the Australian arid and 

temperate shrubs. Finally, the thesis illustrated the importance of exploring the 

contribution of soil properties when modelling species distributions, highlighting how 

SDM projections of future suitable habitat may diverge depending on the selection of 

predictor variables.  
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