
HIGH-SPEED LOW-POWER MODULAR ARITHMETIC FOR

ELLIPTIC CURVE CRYPTOSYSTEMS BASED ON THE

RESIDUE NUMBER SYSTEM

by

Shahzad Asif

Dissertation submitted in fulfilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Engineering
Faculty of Science and Engineering

Macquarie University
Sydney, Australia

December 2016

Copyright c© 2016 Shahzad Asif

All Rights Reserved

STATEMENT OF CANDIDATE

I certify that the work in this thesis has not previously been submitted for a

degree nor has it been submitted as part of the requirements for a degree to any

other university or institution other than Macquarie University.

I also certify that the thesis is an original piece of research and it has been written

by me.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

.

Shahzad Asif

Dedicated to

Hannan,

and

My parents, and my wife for their ongoing support and prayers.

ACKNOWLEDGMENTS

First of all I would like to thank my supervisor Dr Yinan Kong for his endless

support and encouragement throughout my PhD candidature. His continuous

encouragement, guidance, and feedback helped me to achieve the milestones in

an efficient manner. I am also thankful to my fellow group members for their

friendly discussion and appreciation. I wish to thank Selim Hossain for his help

in the design and testing of proposed ECC architectures.

I express my sincere gratitude to Professor Joachim Rodrigues of the Depart-

ment of Electrical and Information Technology (EIT) of Lund University, Sweden

for providing me the opportunity to work under his guidance for the ASIC fab-

rication. His valuable feedback on my work greatly improved the quality of my

research work. I am thankful for the digital ASIC research team at Lund Uni-

versity for their friendly and valuable discussions on my work and in general.

My special thanks to Oskar Andersson for his continuous help and discussion in

chip tapeout and measurement. I would like to thank Niras C.V. and Babak

Mohammadi for their help in ASIC measurement. I am very grateful to ST

Microelectronics for their financial support for the ASIC fabrication.

I am grateful to Dr Keith Imrie for his feedback and valuable comments on

my thesis. I am thankful to the staff in the Department of Engineering for their

support. Finally, I would like to acknowledge Macquarie University for award-

ing me an International Macquarie University Research Excellence Scholarship

(iMQReS).

ABSTRACT

This thesis presents designs and hardware implementations of modular arith-

metic for elliptic curve point multiplication (ECPM). The aim is to speed up ellip-

tic curve cryptography (ECC) architectures and optimise their power consump-

tion. Improvements are made in existing algorithms, and conventional number

systems are replaced by residue number systems (RNS) to achieve a high speed

for basic arithmetic operations. The proposed ECPM architectures are generic

and can be scaled for different key sizes; the hardware implementations in this

work are for 256-bit ECPM over prime field Fp.

ECPM architectures are optimised in two ways. Firstly, three different hard-

ware architectures are developed for the implementation of an efficient modular

multiplier (MM). These architectures, named parallel, serial, and serial-parallel,

offer a trade-off between area and delay. The performance of the proposed MM

architectures is compared, based on their ASIC (Application Specific Integrated

Circuit) and FPGA (Field Programmable Gate Array) implementation results.

Moreover, the feasibility of serial MM architecture for practical implementation

is proved by its ASIC fabrication using 65 nm CMOS technology. The measure-

ment results for the fabricated chip show that the proposed MM is better than

other state-of-the-art MM architectures.

Secondly, two ECPM architectures, named multi-key ECPM and single-key

ECPM, are proposed; they differ in terms of throughput and hardware com-

xii

plexity. Multi-key ECPM provides a high throughput by processing twenty one

keys simultaneously within deep pipeline stages. Single-key ECPM attempts to

optimise the hardware cost by resource sharing. Power optimisation techniques

are employed to reduce the power consumption of the single-key ECPM. The

proposed architectures are implemented on FPGA and ASIC platforms and the

results are analysed to discuss the suitability of the proposed ECPM architectures

for different applications.

Contents

Table of Contents xiii

List of Figures xxi

List of Tables xxv

List of Publications xxvii

1 Introduction 1

1.1 Motivation for this Research . 3

1.2 Objectives of this Research . 4

1.3 Thesis Outline . 4

2 Background 7

2.1 Introduction . 7

2.2 Residue Number System . 8

2.2.1 Arithmetic Operations in the RNS 9

2.2.2 The Chinese Remainder Theorem 10

2.2.3 RNS Moduli Set Selection . 11

2.2.4 Scaling in the RNS . 12

2.2.5 Modular Reduction in RNS . 12

xiii

xiv Contents

2.3 Modular Multipliers . 13

2.3.1 Overview of Existing Modular Multiplication Architectures in Bi-

nary Number System . 13

2.3.2 Overview of Existing Modular Multiplication Architectures in Residue

Number System . 16

2.4 Elliptic Curve Point Multiplication . 18

2.4.1 Mathematical Background . 18

2.4.2 Elliptic Curve Parameters over Fp on Koblitz Curve 22

2.4.3 Overview of Existing ECPM Architectures in Binary Number Sys-

tem over Fp . 22

2.4.4 Overview of Existing ECPM Architectures in Residue Number System 24

3 Counter-Based Wallace Multipliers 29

3.1 Introduction . 29

3.2 Wallace Multipliers . 29

3.3 High-Speed Counters . 31

3.3.1 7:3 Counter . 31

3.3.2 6:3 Counter . 32

3.3.3 5:3 Counter . 32

3.3.4 4:3 Counter . 34

3.3.5 3:2 Counter (Full Adder) and 2:2 Counter (HA) 35

3.4 Proposed Counter-Based Wallace Multipliers 36

3.4.1 Architecture-1 − Maximum Usage of Counters 40

3.4.2 Architecture-2 − Reduced Utilisation of 2:2 Counters 40

3.4.3 Architecture-3 − Reduced Utilisation of 2:2 and 3:2 Counters . . . 43

3.4.4 Architecture-4 − Reduced Utilisation of 2:2, 3:2, and 4:3 Counters . 45

3.4.5 Architecture-5 − Reduced Utilisation of 2:2, 3:2, 4:3, and 5:3 Counters 47

Contents xv

3.4.6 Architecture-6 − Reduced Utilisation of 2:2, 3:2, 4:3, 5:3, and 6:3

Counters . 47

3.4.7 Architecture-7 − Maximum Utilisation of 3:2 Counters 50

3.4.8 Final Adder Design . 52

3.4.9 Interconnection Complexity Analysis of Proposed Architectures . . 55

3.5 Proposed Booth-Encoded Wallace Multiplier 56

3.6 Reference Multiplier . 59

3.7 Implementation of the Proposed Architectures 63

3.7.1 Functional Verification . 63

3.7.2 Synthesis Tool . 63

3.7.3 Power Analysis . 65

3.8 Analysis and Comparison of Synthesis Results 65

3.8.1 CBW Multipliers (Architectures 1−7) 65

3.8.2 Wallace, Booth-Wallace, CBW, and Booth-CBW Multipliers 68

3.9 Summary of Results . 72

4 Modular Multiplier Using Sum of Residues in RNS 73

4.1 Introduction . 73

4.2 The Modular Reduction within RNS Channels 74

4.2.1 The Barrett Modular Reduction Algorithm 74

4.2.2 Bound Deduction . 76

4.3 The RNS Modular Multiplication Algorithm 78

4.3.1 Moduli Selection . 79

4.3.2 Sum of Residues Reduction in the RNS 80

4.3.3 Approximation of α . 81

4.3.4 Bound Deduction . 85

4.3.5 The New RNS Modular Multiplication Algorithm 86

xvi Contents

4.3.6 Proposed RNS Moduli and Pre-computed Values 91

4.3.7 A Design Example . 94

4.3.8 Complexity Analysis . 97

4.4 Proposed Architectures . 101

4.4.1 Parallel Architecture . 101

4.4.2 Serial Architecture . 103

4.4.3 Serial-Parallel Architecture . 107

4.5 Implementation of the Proposed Architectures 109

4.5.1 FPGA Implementation . 109

4.5.2 ASIC Implementation . 112

4.5.3 Power Analysis . 112

4.6 Analysis and Comparison of Results . 113

4.7 Summary of Results . 117

5 Chip Fabrication for RNS-based Modular Multiplier 119

5.1 Serial Modular Multiplier . 119

5.1.1 Design Modification . 119

5.1.2 Design of Test Bench . 121

5.1.3 Buffer Selection . 123

5.2 Chip Tapeout . 125

5.2.1 Synthesis using Synopsys Design Compiler 125

5.2.2 Place and Route using Cadence Encounter 127

5.2.3 Power Analysis . 130

5.2.4 Chip Tapeout Using Cadence Virtuoso 130

5.2.5 Chip Layout Screenshot . 136

5.3 Chip Measurement . 136

5.3.1 Fabricated Chip . 140

Contents xvii

5.3.2 Measurement Setup . 140

5.3.3 Observation of Results . 141

5.4 Analysis and Comparison of Results . 142

5.4.1 ASIC Measurement Results . 142

5.4.2 Comparison with State-of-the-art 142

5.5 Summary of Results . 149

6 Elliptic Curve Point Multiplication 151

6.1 Introduction . 151

6.2 Modular Reduction using Sum of Residues 153

6.2.1 Serial Architecture of Modular Reduction 153

6.2.2 Serial-Parallel Architecture of Modular Reduction 156

6.3 RNS Modular Subtraction . 156

6.4 Elliptic Curve Point Doubling in Jacobian Coordinates 160

6.4.1 Optimisation – Elimination of Unnecessary Modular Reductions . . 162

6.4.2 RNS Subtraction - Modified for Larger Inputs 165

6.4.3 Elliptic Curve Point Doubling Implementation 166

6.5 Elliptic Curve Point Addition in Jacobian Coordinates 168

6.5.1 Optimisation – Elimination of Unnecessary Modular Reductions . . 169

6.5.2 Elliptic Curve Point Addition Implementation 173

6.6 Elliptic Curve Point Multiplication – Multi-Key Based on Serial Modular

Reduction . 175

6.6.1 Cycles for One Iteration of Multi-Key ECPM 177

6.6.2 Invalid inputs for ECPA . 179

6.6.3 Clock Cycles for Multi-Key ECPM 180

6.7 Elliptic Curve Point Multiplication - Single-Key With Resource Sharing . . 181

6.7.1 Sub-Modules of Single-Key ECPM Architecture 183

xviii Contents

6.7.2 Area Optimisation – Reordering of Operations in ECPD and ECPA 188

6.7.3 Delay Optimisation - Merging ECPD and ECPA 191

6.7.4 Area Optimisation – Reordering of Merged ECPD-ECPA to Reduce

Concurrent Modular Reductions . 193

6.7.5 Power Optimisation – Switching Off Idle Components 195

6.7.6 Block Diagram of Optimised Single-Key ECPM Architecture 195

6.7.7 Clock Cycles for Single-Key ECPM Based on Serial Modular Re-

duction . 196

6.7.8 Clock Cycles for Single-Key ECPM Based on Serial-Parallel Mod-

ular Reduction . 198

6.8 Hardware Implementation and Analysis of Results 199

6.8.1 FPGA Implementations of Proposed ECPM Architectures 199

6.8.2 ASIC Implementations of Proposed ECPM Architectures 202

6.9 Summary of Results . 204

7 Conclusions and Future Work 207

7.1 Conclusions . 207

7.2 Future Research Directions . 212

A TCL Scripts for Counter-Based Wallace Multiplier 215

A.1 TCL script for Synthesis in Design Compiler 215

A.2 TCL Script for Power Analysis in Prime Time 218

B TCL Scripts for Modular Multipliers 219

B.1 Pipelined Parallel Modular Multiplier . 219

B.1.1 TCL script for Synthesis in Design Compiler 219

B.1.2 TCL Script for Power Analysis in Prime Time 223

B.2 Non-Pipelined Parallel Modular Multiplier 223

Contents xix

B.2.1 TCL script for Synthesis in Design Compiler 223

B.2.2 TCL Script for Power Analysis in Prime Time 227

C Scripts for Chip Fabrication of Serial Modular Multiplier 229

C.1 Synthesis in Design Compiler . 229

C.2 Multiple Power Domains Using Common Power Format (CPF) 232

C.3 Location of Pads (pads.io) . 234

C.4 Floorplan, Power Planning, and Placement 236

C.5 Clock Tree Synthesis (CTS) . 240

C.6 Routing and Verification . 241

C.7 SKILL scripts . 243

D TCL Scripts for Elliptic Curve Point Multiplication Architectures 245

D.1 Multi-key ECPM Based on Serial Modular Reduction 245

D.1.1 TCL script for Synthesis in Design Compiler 245

D.1.2 TCL Script for Power Analysis in Prime Time 249

D.2 Single-Key ECPM Based on Serial-Parallel Modular Reduction 249

D.2.1 TCL script for Synthesis in Design Compiler 249

D.2.2 TCL Script for Power Analysis in Prime Time 253

E FPGA Platforms Used in the Implementations 255

F List of Acronyms 257

References 260

List of Figures

1.1 Classical example of public-key cryptography 2

2.1 Point Doubling and Point Addition on Elliptic Curve [1] 19

3.1 Block diagram of Wallace multipliers . 30

3.2 6:3 Counter . 33

3.3 5:3 Counter . 34

3.4 4:3 Counter . 35

3.5 Circuit Diagrams of 3:2 and 2:2 Counters 36

3.6 Dot Diagram of 16× 16 CBW Multiplier - Architecture-1 41

3.7 Dot Diagram of 16× 16 CBW Multiplier - Architecture-2 42

3.8 Dot Diagram of 16× 16 CBW Multiplier - Architecture-3 44

3.9 Dot Diagram of 16× 16 CBW Multiplier - Architecture-4 46

3.10 Dot Diagram of 16× 16 CBW Multiplier - Architecture-5 48

3.11 Dot Diagram of 16× 16 CBW Multiplier - Architecture-6 49

3.12 Dot Diagram of 16× 16 CBW Multiplier - Architecture-7 51

3.13 Block diagram of radix-4 Booth encoding 57

3.14 Illustration of an 8-bit Radix-4 Booth Encoder 60

3.15 Dot Diagram of 16× 16 Reference Multiplier 61

3.16 Area and energy results of proposed CBW architectures 66

xxi

xxii List of Figures

3.17 Normalised energy dissipation of proposed and reference multipliers 71

4.1 Barrett modular reduction within RNS channels 75

4.2 RNS modular multiplication flow chart of Algorithm 6 90

4.3 Highly Parallel Architecture of RNS MM 102

4.4 Serial Architecture of RNS MM . 106

4.5 RNS-based modular multiplier chip layout 108

4.6 4-Channel Serial-Parallel Architecture of RNS MM 111

5.1 Block diagram of the fabricated design of modular multiplier 120

5.2 Circuit diagram of the fabricated design of modular multiplier 122

5.3 Test bench for post-layout simulation of modular multiplier 124

5.4 Simulation waveform of selected I/O buffer for modular multiplier chip . . 126

5.5 Schematic of the top cell of modular multiplier chip from Virtuoso 132

5.6 Symbol of top cell of modular multiplier chip from Virtuoso 133

5.7 Schematic of power supply pads for modular multiplier chip 134

5.8 Modified symbol of top cell of modular multiplier chip 135

5.9 Final schematic of top cell of modular multiplier chip 137

5.10 Screenshot of the modular multiplier chip layout after tiling 138

5.11 Screenshot of the modular multiplier chip layout with I/O labels 139

5.12 Microphotograph of the fabricated chip of modular multiplier 140

5.13 Measurement setup for fabricated chip of modular multiplier 141

5.14 Observation of measurement results of modular multiplier chip in Logic

Analyzer . 143

5.15 Frequency, energy, and power consumption of modular multiplier chip at

different voltage levels . 144

List of Figures xxiii

6.1 General block diagram of elliptic curve point multiplication in Jacobian

coordinates . 152

6.2 Serial architecture of modular reduction 155

6.3 Serial-parallel architecture of modular reduction 158

6.4 Architecture of ECPD in Jacobian coordinates 161

6.5 Optimised architecture of ECPD in Jacobian coordinates 163

6.6 Architecture of ECPA in Jacobian coordinates 170

6.7 Optimised architecture of ECPA in Jacobian coordinates 171

6.8 Multi-Key architecture of ECPM in Jacobian coordinates 176

6.9 Optimised architectures of ECPD and ECPA 182

6.10 Single-key ECPM architecture in Jacobian coordinates 184

6.11 Control unit for single-key ECPM . 188

6.12 Optimised and reordered architectures of ECPD and ECPA 190

6.13 Combined and re-ordered ECPD and ECPA architectures 192

6.14 Final optimisation of combined ECPD and ECPA architectures 194

6.15 Optimised single-key ECPM architecture in Jacobian coordinates 197

List of Tables

2.1 Existing modular multipliers in binary number system 15

2.2 Existing modular multipliers in residue number system 17

2.3 NIST-recommended domain parameters over F256 on Koblitz Curve [2] . . 23

2.4 Existing ECPM architectures in binary number system over F256 25

2.5 Existing RNS-based ECPM designs over F256 27

3.1 Comparison of reduction stages for traditional and counter-based Wallace

multipliers . 39

3.2 Total wires in top module of the proposed CBW multipliers 56

3.3 Radix-4 Booth Encoding Values . 58

3.4 Total Reduction Stages for Wallace and Counter-Based Wallace Multipliers 62

3.5 Synthesis parameters for Synopsys DC . 64

3.6 Synthesis results of proposed and reference multiplier implementations . . 69

4.1 Maximum possible N against w in new RNS modular multiplication 92

4.2 Proposed RNS moduli set for a dynamic range of 560 bits 94

4.3 Pre-computed parameters for Algorithm 5 and Algorithm 6 95

4.4 Complexity analysis of the proposed architecture 98

4.5 Number of w -bit modular multiplications in the considered RNS MM Al-

gorithms . 100

xxv

xxvi List of Tables

4.6 Synopsys Design Compiler parameters used for the synthesis of modular

multiplier architectures . 113

4.7 Synthesis results of proposed modular multiplier implementations on 90

nm CMOS . 114

4.8 Post-place&route results of proposed modular multiplier implementations

on Virtex-6 and Virtex-7 FPGA . 116

5.1 Different operating modes of the modular multiplier chip 121

5.2 Chip measurement results of the proposed modular multiplier 145

5.3 Comparison of proposed modular multiplier with state-of-the-art modular

multiplication architectures . 147

6.1 Post-place&route results of proposed ECPM implementations on Virtex-6

and Virtex-7 FPGA . 200

6.2 Synthesis results of proposed ECPM implementations on 90 nm CMOS . . 203

E.1 Virtex-6 and Virtex-7 FPGA Details used in this research [3, 4] 256

List of Publications

Publications where the author appeared as first author.

• S. Asif, S. Hossain, Y. Kong, “High-throughput multi-key elliptic curve cryptosys-

tem based on residue number system”, IET Computers and Digital Techniques (sub-

mitted).

• S. Asif, Y. Kong, “Highly parallel modular multiplier for elliptic curve cryptography

in residue number system”, Circuits, Systems, and Signal Processing, pp. 1–25,

2016.

• S. Asif, Y. Kong, “Analysis of different architectures of counter based Wallace multi-

pliers”, International Conference on Computer Engineering and Systems (ICCES),

pp. 139-144, 23-24 December 2015, Cairo, Egypt.

• S. Asif, Y. Kong, “Design of an algorithmic Wallace multiplier using high speed

counters”, International Conference on Computer Engineering and Systems (IC-

CES), pp. 133-138, 23-24 December 2015, Cairo, Egypt.

• S. Asif, Y. Kong, “Performance analysis of Wallace and radix-4 Booth-Wallace mul-

tipliers”, Electronic System Level Synthesis Conference (ESLsyn), pp.17-22, 10-11

June, 2015, San Francisco, USA.

xxvii

xxviii Chapter 0. List of Publications

• S. Asif and Y. Kong, “Low-area Wallace multiplier”, VLSI Design, vol. 2014, Article

ID 343960, 6 pages, 2014.

Publications where the author is not the first author in the paper.

• Y. Kong, S. Asif, M. A. U. Khan, “Modular multiplication using the core function

in the residue number system”, Applicable Algebra in Engineering, Communication

and Computing, pp. 1-16, vol. 27, no. 1, 2015.

Chapter 1

Introduction

Since the advent of computers and the Internet, the security of confidential information

has been a huge concern. The information is most vulnerable during transmission over

the Internet, during which anyone with adequate expertise can steal this information. In

order to ensure secure data transmission two major techniques are used, steganography

and cryptography. Both of these techniques have been in use (with different names)

since long before the invention of computers, but the following text discusses these in the

context of computing applications.

In steganography, the secret message is concealed within another message, where the

messages can be in the form of text file, image, or video. The message which is used to

hide the secret message is selected in such a way that it does not attract any attention,

to avoid scrutiny. Messages protected in this way rely on the assumption that no one

tries to check for any hidden messages, and therefore this technique is not suitable for

transmissions where all messages are scrutinised.

In cryptography, the secret message is encrypted in such a way that retrieval of the

original message is almost impossible. Cryptography does not try to hide the fact that a

secret message is transmitted, instead it relies on the strength of an encryption algorithm

1

2 Chapter 1. Introduction

to ensure that the message cannot be decrypted without the necessary information. Hence

this method is more suitable for highly sensitive data transmission.

Cryptography is divided into two major categories: 1) Symmetric-key cryptography,

2) Public-key cryptography. In symmetric-key cryptography, the same key is used for

encryption and decryption of a message, whereas public-key cryptography uses a set of

interrelated keys called private key and public key. In public-key cryptography, the public

key is used to encrypt the message whereas decryption is performed by the private key. A

public key is available publicly and anyone can use it to encrypt a message intended for

the person who has the private key corresponding to that specific public key. A private

key – which must remain secret – is used to decrypt the message. A classical example of

public-key cryptography is shown in Fig. 1.1.

Figure 1.1: Classical example of public-key cryptography

Elliptic curve cryptography (ECC) is one of the most widely used public-key cryp-

tosystems due to its high level of security while still using a smaller key than the other

1.1. Motivation for this Research 3

public-key cryptosystems. The standard curves and key size of ECC systems has been

standardised by IEEE [5], ANSI [6], and NIST [7]. Various methods are developed to

improve the speed of existing ECC algorithms. Among the proposed methods, the use of

residue number systems (RNS) in the construction of ECC architectures has gained pop-

ularity due to the high-speed nature of arithmetic operations in RNS. In an RNS, a large

number is represented as a set of small independent numbers, and arithmetic operations

are performed concurrently on all the numbers, resulting in fast processing of results.

This thesis makes a contribution to the existing literature by proposing a number

of hardware architectures to perform high-speed low-power ECC based on an RNS. The

implementation results of the proposed architectures are analysed in detail along with the

suitability of the architectures for different applications.

1.1 Motivation for this Research

The need for high-throughput cryptosystems is undeniable as they are required in a num-

ber of applications where thousands of encryptions are performed per second, e.g. banking

and email servers. These systems make little effort to reduce the power consumption due

to the availability of an unlimited power supply. On the other hand, power consumption

is a major issue in portable applications which operate on the limited capacity of batteries

e.g. personal digital assistants (PDAs), mobile phones, tablets, laptops, etc. Cryptog-

raphy is used in these applications for secure transmission of sensitive data, e.g. online

banking, emails, online shopping, etc.

Since its invention in 1985, ECC has become increasingly popular in many computing

applications due to its high efficiency. Nowadays, ECC has replaced the other public-

key cryptosystems in many applications including smart cards, ATMs, EFTPOS, online

banking, mobile phones, email servers, banking servers, etc., so the development of high-

4 Chapter 1. Introduction

speed low-power ECC architectures is of great importance.

Most of the existing research is focused on reducing the delay of the ECC algorithms,

with little focus on power consumption. In digital systems, a decrease in delay usually

results in an increased power consumption due to the techniques used for delay reduction.

Therefore, a suitable metric for analysis of the overall performance of digital systems is

a product of delay and power (PDP) which represents the energy dissipation to perform

a given operation. In this research, several hardware architectures are proposed for high-

speed ECC with optimised power consumption.

1.2 Objectives of this Research

The most frequent and time-consuming operation in ECC is elliptic curve point multi-

plication (ECPM) and therefore the existing research aims to reduce the delay of this

operation. The objective of this thesis is to improve the efficiency of ECPM in terms of

speed and power consumption. Firstly, a number of architectures are developed for high-

speed modular multiplication by using an RNS. These modular multipliers are then used

in the construction of ECPM architectures. Detailed analysis is performed to optimise

the proposed architectures in terms of delay, area, and power consumption.

1.3 Thesis Outline

This thesis is organised as follows:

• Chapter 2: Background

This chapter provides the necessary background required to understand the devel-

opment of the proposed algorithms and architectures. The theory of residue number

systems (RNS) and some mathematical operations are briefly discussed along with

1.3. Thesis Outline 5

the benefits and drawbacks of an RNS. A brief literature review is given for binary

and RNS-based modular multipliers as well as important results from the existing

literature. The theory of elliptic curves and their use in elliptic curve cryptography

(ECC) is explained, and the mathematical theory of elliptic curve operations in

elliptic curve point multiplication (ECPM) is discussed. The use of different coor-

dinate systems in ECC is discussed and the ECC standard used in the proposed

architectures is provided. Finally, an overview of the existing ECPM architectures

in binary and RNS is provided.

• Chapter 3: Counter-Based Wallace Multipliers

This chapter discusses the importance of Wallace multipliers for high-speed appli-

cations. The specific focus is on counter-based Wallace (CBW) multipliers and

incorporation of Booth encoding to speed up the multiplication. Different archi-

tectures for CBW multipliers are proposed and a detailed analysis is performed to

analyse the benefits and drawbacks of different architectures. Furthermore, a generic

algorithm is developed to construct high-speed CBW multipliers of any size. The

performance of CBW and Booth-encoded CBW multipliers are compared to show

that the use of Booth encoding degrades the performance of Wallace multipliers.

• Chapter 4: Modular Multipliers Using Sum of Residues in RNS

This chapter discusses the development of a modular multiplication (MM) algorithm

based on a sum of residues. The existing MM algorithm is improved and three

variants of the algorithm are proposed. Criteria for the selection of an RNS moduli

set are established and a 40-channel RNS moduli set is proposed for 256-bit modular

multiplication. Three hardware architectures – parallel, serial, and serial-parallel –

are proposed and their implementation on FPGA and ASIC platforms is discussed.

Finally, synthesis results of proposed architectures are analysed for timing, area,

6 Chapter 1. Introduction

and power consumption.

• Chapter 5: Chip Fabrication for RNS-based Modular Multiplier

In this chapter, the chip fabrication is presented for the RNS-based serial MM archi-

tecture which was proposed in Chapter 4. The serial MM architecture of Chapter

4 is modified and test circuitry is added to enable on-chip verification of the fabri-

cated ASIC. A brief description of the chip tapeout procedure is provided along with

information on the EDA (electronic design automation) tools used in the process.

Finally, the measurement of the fabricated ASIC is explained and measurement

results are discussed in detail.

• Chapter 6: Elliptic Curve Point Multiplication

This chapter presents the proposed architectures for elliptic curve point multipli-

cation (ECPM). The MM architectures of Chapter 4 are modified to construct

modular reduction architectures (modulus operation) which are then used in the

implementation of elliptic curve point doubling (ECPD) and elliptic curve point

addition (ECPA). We propose a new multi-key ECPM architecture which uses deep

pipelining to process 21 keys simultaneously. To the best of our knowledge this is

the first implementation of a multi-key ECPM architecture. Furthermore, a single-

key ECPM architecture is proposed which optimises the hardware cost by resource

sharing. The proposed architectures are implemented on FPGA and ASIC plat-

forms and results for timing, area, and power consumption are discussed in detail

to highlight the benefits of the proposed architectures.

• Chapter 7: Thesis Conclusion and Future Work

This chapter concludes the thesis and discuss the possibilities for further enhance-

ment of this work.

Chapter 2

Background

2.1 Introduction

With the swift growth of secure transactions over the network and associated appliances,

the demand for data security has increased rapidly in recent days. For these applications,

public-key cryptography (PKC) such as elliptic curve cryptography (ECC) [8] and Rivest-

Shamir-Adleman (RSA) [9] plays a vital role to pass the secured information among

different devices.

The RSA cryptography was first invented in 1977 and is based on the factoring prob-

lem. In a valid RSA public key, the RSA modulus M is a product of two distinct odd

prime numbers p and q. The major operation in the RSA encryption algorithm is the

modular exponentiation that dominates the overall complexity of the RSA system. The

modular exponentiation in the RSA is performed by repeated modular multiplications

therefore a large number of architectures are proposed for the efficient modular multipli-

cation architectures suitable for RSA [10–13]. The large key size of the RSA makes it less

suitable for hardware implementations specially where the area is of major concern. The

better choice for area-constrained applications is the ECC.

7

8 Chapter 2. Background

The ECC was first proposed by N. Koblitz and V. Miller in the mid 80s. It is progres-

sively becoming a more attractive alternative in the past few years to traditional RSA

cryptosystems, because ECC can provide the same level of security as the traditional

RSA cryptosystem with significantly smaller keys and area. Besides, less memory and

hardware resources are required to implement ECC [14–16]. High-performance finite-field

modular arithmetic (FFMA), for example modular addition, subtraction, and multipli-

cation algorithms with hardware architectures over a prime field, are mandatory for an

efficient ECC processor (ECP). In addition, smaller FFMA operations are required in data

communication systems to encrypt data by using ECCs, enabling potentially higher data

rates at a much lower implementation cost. These attractive features make ECC very

popular for resource-constrained environments such as smart cards, credit cards, pagers,

personal digital assistants (PDAs), and cellular phones.

ECC relies on complex mathematical problems to ensure that the data cannot be

decrypted by intruders. Various architectures have been developed for hardware imple-

mentation of ECC. In recent years, a number of research papers implemented ECC using

the residue number system (RNS), which is famous for high-speed arithmetic for addition,

subtraction, and multiplication. Since the most frequent operation in ECC is modular

multiplication, implementation of RNS-based modular multipliers is essential to imple-

ment ECC based on an RNS. This chapter provides the mathematical background of RNS

and ECC as well as a brief literature review of modular multipliers and ECC architectures.

2.2 Residue Number System

The use of residue number systems (RNS) in public-key cryptography has become increas-

ingly popular over the past few years due to their ability to perform high-speed arithmetic

operations on large numbers. In RNS, a large integer is represented by a set of smaller

2.2. Residue Number System 9

residue integers. The concept of representing a number by the multiple-residue represen-

tation was first introduced by the Chinese mathematician Sun Tsu more than 1500 years

ago [17].

The RNS is a non-positional number system and is defined by a set of N co-prime

positive integers, called a moduli set:

m = {m0, m1, . . . , mN−1}. (2.1)

The size (number of bits) of each modulus mi is also called the channel width of the RNS.

Within the RNS there is a unique representation of all integers in the range [0, D − 1]

where D is the range of the RNS, known as the dynamic range, and can be computed by

Equation (2.2) [18].

D =
n−1
∏

i=0

mi (2.2)

A positive integer A in the RNS can be expressed as: A = {a0, a1, . . . , aN−1} where

ai = (A mod mi). (2.3)

Two other values that are commonly used in RNS computations are Di and 〈D
−1
i 〉mi

.

Di = D/mi, and 〈D
−1
i 〉mi

is its multiplicative inverse such that 〈Di ×D−1
i 〉mi

= 1.

2.2.1 Arithmetic Operations in the RNS

Arithmetic operations in the RNS can be classified into two main categories:

• The simple operations, e.g. addition, subtraction, and multiplication.

• The complex operations, e.g. division, modulus, magnitude comparison, and sign

detection.

10 Chapter 2. Background

Suppose that the RNS representations of A and B are given as A = {a0, a1, . . . , aN−1}

and B = {b0, b1, . . . , bN−1}, respectively. The simple arithmetic operations on A and B

can be performed by processing all channels concurrently:

C = {〈a0 · b0〉m0
, 〈a1 · b1〉m1

, . . . , 〈aN−1 · bN−1〉mN−1
} (2.4)

where (·) represents addition, subtraction, or multiplication.

The primary advantage of an RNS is the ability to perform parallel operations on all

channels to perform fast addition, subtraction, or multiplication for large numbers. Since

there is no carry propagation between channels the use of an RNS significantly decreases

the delay of simple arithmetic operations for large numbers [17, 19].

The second category of arithmetic operations, mentioned as complex operations, in-

cludes division, modulus, magnitude comparison, and sign detection. Equation (2.4) does

not hold for the complex operations, therefore special algorithms are required to perform

these operations in RNS. Little research has been done on RNS-based division [20, 21],

magnitude comparison [22], and sign detection [23–25]. Since these operations are not re-

quired for elliptic curve cryptosystems, a detailed review of these operations is not carried

out.

The most frequent operation in elliptic curve cryptosystems is the modulus operation,

more commonly known as modular reduction in the existing literature. Modular reduction

is discussed briefly in Section 2.2.5. RNS-based modular reduction is widely studied in the

context of modular multiplication for ECC and RSA cryptosystems. A detailed discussion

of modular multiplication is presented in Section 2.3.

2.2.2 The Chinese Remainder Theorem

The Chinese remainder theorem (CRT) is the most important part of the residue number

system. It assures us of the unique representation of each number within the dynamic

2.2. Residue Number System 11

range of an RNS [17, 26]. The CRT is also very useful in the reverse conversion (RNS to

binary) as well as other useful operations. The CRT is defined by

X =

〈

N−1
∑

i=0

Di〈D
−1
i xi〉mi

〉

D

(2.5)

whereD is the dynamic range of the RNS defined by the moduli setm = {m0, m1, . . . , mN−1}

and xi is the ith value of X in the RNS. Di = D/mi, and D−1
i is the modular inverse of

Di such that 〈Di ×D−1
i 〉m−i = 1.

2.2.3 RNS Moduli Set Selection

The selection of an efficient RNS moduli set is very important for the performance of the

complete system [26]. An RNS moduli set is usually represented as {m0, m1, . . . , mN−1},

where each modulus mi is co-prime to all other moduli:

GCD(mi, mj) = 1 where (i 6= j) (2.6)

The selection of an appropriate moduli set is a case-specific problem and varies for

different applications [27]. The most widely investigated RNS moduli set consists of three

moduli {2n− 1, 2n, 2n +1}. Most of the existing literature focuses on RNS moduli sets in

special formats [28–37]:

• (2n − 1, 2n, 2n + 1)

• (2n − 3, 2n − 1, 2n, 2n + 1, 2n + 3)

• (2n − 1, 2n, 2n−1 − 1, 2n−1 + 1)

• (2n − 1, 2n, 2n + 1, 2n+1 − 1)

• (2n, 2n − 1, 2n + 1, 2n−1 − 1)

• (2n − 1, 2n, 2n + 1, 2n+1 + 1)

12 Chapter 2. Background

• {2n+1, 2n − 1, 2n + 1, 2n + 2(n+1)/2 + 1, 2n − 2(n+1)/2 + 1}

• {ra, rb − 1, rc + 1}

The moduli in the form of 2n, 2n − 1, etc. enable fast computation of modulus

operations using simple algorithms. The disadvantage of these special moduli sets is their

limited dynamic range for small values of n. For example, to achieve a dynamic range of

64 bits n needs to be at least 22 for the RNS moduli set {2n − 1, 2n, 2n + 1}.

It is possible to achieve a higher dynamic range by using small channel widths (size

of each modulus) and increasing the number of channels (number of moduli). This kind

of RNS moduli set is used in [38–40]; it increases the speed of addition, subtraction, and

multiplication within each channel due to the small channel width. Since the moduli are

not a power of 2, the algorithm for modulus operations may become more complex.

2.2.4 Scaling in the RNS

The term “scaling” in an RNS is used for a division of a number by a constant value.

Scaling is usually represented as

Y =

⌊

X

k

⌋

. (2.7)

Scaling of a number is a frequent operation in applications related to Digital Signal

Processing (DSP) [41,42]. A wide range of scaling algorithms are proposed in the existing

literature to suit different applications [43–49]. Fortunately, cryptographic algorithms do

not require scaling, therefore we did not investigate scaling algorithms in detail.

2.2.5 Modular Reduction in RNS

Modular reduction (or the mod operation) in RNS is a computationally complex operation

because Equation (2.4) does not hold true for this operation. For example, if A and B are

2.3. Modular Multipliers 13

two integers and their RNS representations are {a0, ai, . . . , aN−1} and {b0, bi, . . . , bN−1},

respectively, for an RNS defined by moduli set {m0, mi, . . . , mN−1}, then the modular

reduction performed in individual RNS channels does not give the same result as a modular

reduction of integers A and B:

A mod B 6= {〈a0 mod b0〉m0
, 〈a1 mod b1〉m1

, . . . , 〈aN−1 mod bN−1〉mN−1
}. (2.8)

Hence, several algorithms have been proposed in the literature to perform modular

reduction in an RNS. Modular reduction is most commonly studied in the context of

modular multiplication, which is a fundamental operation in public-key cryptosystems.

A brief overview of modular multipliers follows, and Chapter 4 presents the proposed

RNS-based modular multiplication architecture.

2.3 Modular Multipliers

Modular multiplication Z = (A × B) mod M is the most frequently used operation in

ECC, therefore the development of high-speed modular multipliers is imperative to speed

up ECC. This section briefly discusses the existing modular multiplier architectures in

binary and RNS.

2.3.1 Overview of Existing Modular Multiplication Architec-

tures in Binary Number System

A comprehensive literature review of binary modular multipliers is out of the scope of this

work, therefore only a brief overview of the key algorithms of modular multiplication is

provided. Existing research on modular multipliers in a binary number system provides a

wide range of algorithms and implementation strategies [10,50–64]. Most of the techniques

for modular multiplication are based on Montgomery modular multiplication, proposed

14 Chapter 2. Background

by P. L. Montgomery in 1985 [65]. Montgomery modular multiplication, commonly called

Montgomery multiplication, performs a complete modular multiplication in n iterations,

where n is the word length of the operands. Each iteration consists of two addition and

shift operations. Improvements to Montgomery multiplication are proposed in [66–73].

An analysis of different Montgomery multipliers is presented in [52].

Another widely used method for modular multiplication is the Barrett algorithm [74],

which was proposed by Paul Barrett in 1987. The Barrett algorithm uses pre-computations

to avoid the division algorithm and requires only two multiplications and one subtraction

along with shift operations. A detailed investigation of Barrett and Montgomery mul-

tipliers is done by J. F. Dhem [75, 76]. A fast interleaved modular multiplier based on

Barrett and Montgomery techniques is proposed in [58].

A novel technique is proposed in [77] which combines the advantages of interleaved

modular multiplication [51] and Montgomery multiplication. This technique splits the

multiplier into two partitions and process both partitions in parallel. One partition of

the multiplier is processed by Montgomery multiplication whereas interleaved modular

multiplication is used to process the second partition of the multiplier. This partitioning

method, named Bipartite Modular Multiplication (BMM), is further improved by same

authors in [78] and the results of ASIC implementation are presented. Inspired by BMM, a

tripartite modular multiplication is proposed in [79] which uses Karatsuba’s algorithm [80]

to speed up the multiplications. Another method that uses partitioning is proposed in [81],

and splits the multiplier into k partitions and uses Montgomery multiplication to process

all the partitions concurrently. This work is extended in [82], where a detailed analysis

of the partitioning method is provided. Furthermore the results for the delay and power

consumption of ASIC implementations are provided. Table 2.1 lists some high-speed

modular multiplication architectures.

2.3. Modular Multipliers 15

Table 2.1: Existing modular multipliers in binary number system

Design Size Platform Clock Time (µs/MM) Area

(bits) Cycles @ f (MHz)

Kuang [59] 512 0.13 µm CMOS 417000 0.780@534.7 0.314 mm2

Kaihara [78] 256 0.35 µm CMOS 69 0.850@81.4 3.288 mm2

Neto [82] 256 90 nm CMOS 43 0.850@50.0 0.560 mm2

McIvor [56] 256 Virtex-2 32 0.81@39.5 11992 Slices

Javeed [63] 256 Virtex-6 128 0.77@166.0 5.3k LUTs

Javeed [83] 256 Virtex-6 66 0.930@71.0 5657 Slices

Alrimeih [84] 256 Virtex-6 8 0.080@100.0 8.4k Slices

Zervakis [12] 1024 90 nm CMOS 70 0.103@680.3 266.2k Gates

Rahimzadeh [61] 256 Virtex-5 128 0.303@422.0 1042 Slices

Gong [72] 256 Cyclone-3 3 0.100@30.4 23.4k Slices

Kuang [64] 1024 90 nm CMOS 880 3.520@250.0 0.498 mm2

16 Chapter 2. Background

2.3.2 Overview of Existing Modular Multiplication Architec-

tures in Residue Number System

RNS-based modular arithmetic is extensively studied and several architectures are pro-

posed in the literature [85–95]. A number of RNS-based modular multiplication methods

are proposed based on Montgomery multiplication [65] which performs one reduction at

each iteration of the multiplication. An RNS Montgomery algorithm was proposed in [86]

which uses a mixed-radix representation [19] to incorporate Montgomery multiplication

in an RNS. An improved version of this algorithm was proposed in [96] by eliminating the

need for a mixed-radix system (MRS) and using the technique of [97] to approximate the

MRS digits of a given RNS number. The speed of this algorithm was further improved

in [98] by performing parallel RNS calculations based on the algorithms in [99]. The

major complexity of these algorithms is the conversion of an RNS number to an auxiliary

RNS base, commonly known as base extension. A detailed investigation of efficient RNS

bases for base conversion is presented in [100].

Several papers investigate RNS modular multiplication in the context of modular ex-

ponentiation in RSA cryptography [101–107]. An RNS-based modular exponentiation

(ME) for RSA is proposed in [102] with the focus of improving the base extension part of

the RNS Montgomery algorithm. Further improvements to this algorithm and hardware

architecture are presented in [108]. The work of [102] is used in [109] for the hardware

implementation of a fully RNS-based RSA architecture. Similarly, the work in [103] uses

the RNS Montgomery algorithm for a complete RSA implementation. This algorithm

requires two base extensions, which is very similar to the work of [110] and [102], however

the work in [103] employs two different techniques for first and second base extensions,

allowing more freedom for optimisation. An improvement to this algorithm was proposed

in [111] to construct a hardware architecture of an RNS-based modular multiplier. A mod-

2.3. Modular Multipliers 17

Table 2.2: Existing modular multipliers in residue number system

Design Size Platform Clock Time (µs/MM) Area

(bits) Cycles @ f (MHz)

Gandino [113] 512 45 nm CMOS 80 0.090@892.8 1.29 mm2

Tong-jie [111] 256 0.18 µm CMOS 49 0.20@250.0 200000 Gates

Bigou [117] 192 Virtex-5 58 0.295@196.0 1447 Slices

Bigou [117] 38 Virtex-5 58 0.467@124.0 2256 Slices

ified ME algorithm for RNS is proposed in [112] which uses pre-computations to reduce

the number of multiplications in the ME algorithm. A detailed analysis of RNS-based

modular exponentiation is presented in [113] and a number of hardware architectures are

proposed. Several papers use RNS-based modular multiplication in the implementation

of Elliptic Curve Cryptography (ECC) [40, 114–116].

The work in [117] uses a special RNS-friendly prime to propose an RNS-based modular

multiplication without increasing the dynamic range of the RNS to more than the field

bit width, i.e. the size of prime p. This algorithm uses two RNS bases similarly to the

work in [103, 110], however the size of each RNS base is n/2 instead of n, which is the

major advantage of this algorithm.

Modular multiplication in an RNS can also be performed using the Barrett algo-

rithm [74] as proposed in [118] and [95]. Another alternative is the use of the RNS core

function [119] to construct an RNS-based modular multiplier [120]. Table 2.2 gives the

implementation results for existing RNS-based modular multipliers.

18 Chapter 2. Background

2.4 Elliptic Curve Point Multiplication

The use of elliptic curves in public-key cryptography was first introduced in 1985 by Neal

Koblitz [121] and Victor Miller [8]. ECC has been extensively studied during the last

two decades and a wide range of algorithms and architectures are proposed. This section

briefly discusses the mathematical background of ECC and standards, along with a brief

study of the existing literature with a focus on RNS-based ECC architectures.

2.4.1 Mathematical Background

Elliptic Curves

Let p be a prime number and Fp a set of integers modulo p. An elliptic curve E over Fp

can be defined by a simplified Weierstrass equation as follows:

y2 = x3 + ax+ b, (2.9)

where a, b ∈ Fp and satisfy the relation 4a3 + 27b2 6≡ 0 (mod p). A pair (x, y), where

x, y ∈ Fp, is a point on the elliptic curve if x and y satisfy Equation (2.9). The set of all

points on E is represented by E(Fp) [1]. A special point, called the point at infinity ∞,

is also a part of E(Fp). The addition of two points (P0 and P1) on an elliptic curve is

called point addition where P0 6= P1. The specific addition of a point to itself (P0+P0) is

achieved by a separate function, known as point doubling. An example of point addition

and point doubling on elliptic curves is shown in Fig. 2.1.

Point addition and point doubling can be performed by the chord-and-tangent rule [1].

In Fig. 2.1(a) the double of a point P is obtained by taking a tangent line at point P and

extending this line until it intersects at another point on the elliptic curve. The mirror

point of this intersection is the double of P and is denoted as R in Fig. 2.1(a). The mirror

point is obtained by drawing a vertical line. Similarly, the addition of two points P and

2.4. Elliptic Curve Point Multiplication 19

(a) Point Doubling (R = P + P) (b) Point Addition (R = P +Q)

Figure 2.1: Point Doubling and Point Addition on Elliptic Curve [1]

Q on an elliptic curve is performed by drawing a line that connects P and Q. The third

intersection of this line is obtained by extending this line, and the mirror point of this

third intersection is found by drawing a vertical line as can be seen in Fig. 2.1(b). This

example also explains the reason for a separate method, point doubling, to compute the

addition of a point to itself.

Algebraic equations for point addition and point doubling can be derived from the

geometric descriptions. Let P = (x1, y1), then point doubling 2P = (x3, y3) can be

computed by

x3 =

(

3x2
1 + a

2y1

)2

− 2x1

y3 =

(

3x2
1 + a

2y1

)

(x1 − x3)− y1

(2.10)

Similarly, the point addition of two points P = (x1, y1) and Q = (x2, y2), where P 6= Q,

20 Chapter 2. Background

can be computed by

x3 =

(

y2 − y1
x2 − x1

)2

− x1 − x2

y3 =

(

y2 − y1
x2 − x1

)

(x1 − x3)− y1

(2.11)

Point Doubling and Point Addition in Jacobian Projective Coordinates

Equations (2.10) and (2.11) for point doubling and point addition require a modular in-

version, which is a very complex operation in hardware. This inversion can be avoided by

the use of projective coordinates. A detailed analysis of variants of projective coordinates

can be found in [1]. This work uses a Jacobian projective coordinate system due to its

efficient point formulae [122]. Point P = (X, Y, Z) in Jacobian projective coordinates

corresponds to the affine point P = (X
Z2 ,

Y
Z3) where Z 6= 0. Hence the Weierstrass equa-

tion for an elliptic curve over a finite field (Equation (2.9)) can be written for Jacobian

coordinates as follows:

Y 2 = X3 + aXZ4 + bZ6 (2.12)

Point doubling of a point P = (X1, Y1, Z1) in Jacobian coordinates is given by 2P =

(X3, Y3, Z3) and can be computed by the following formulae: [122]

X3 = α2 − 2β

Y3 = α(β −X3)− 8Y 4
1

Z3 = 2Y1Z1

(2.13)

where α = 3X2
1 + aZ4

1 and β = 4X1Y
2
1 .

Similarly the point addition equation from [122] is written as follows:

X3 = α2 − β3 − 2Z2
2X1β

2

Y3 = α(Z2
2X1β

2 −X3)− Z3
2Y1β

3

Z3 = Z1Z2β

(2.14)

where α = Z3
1Y2 − Z3

2Y1 and β = Z2
1X2 − Z2

2X1.

2.4. Elliptic Curve Point Multiplication 21

Elliptic Curve Discrete Logarithm Problem

Elliptic curve cryptography is based on the Elliptic Curve Discrete Logarithm Problem

(ECDLP) which states that, for two given points P and Q on an elliptic curve, such that

Q = [k]P , it is computationally not feasible to compute [k] if the size of k is large, e.g.,

256-bit [123]. ECC can be broadly divided into two categories, ECC over prime field Fp

and ECC over binary field F2n . The algorithms and design strategies for ECC over a prime

field are completely different and more complex than for ECC over a binary field [115].

This work investigates the implementation of ECC over a prime field with emphasis on

RNS-based implementations.

Let E be an elliptic curve defined over Fp, and let P be a point in E(Fp). Let an

integer n be the order of P which means that there are n points in the elliptic curve

E(Fp). Then the subgroup of E(Fp) is

〈P 〉 = {∞, P, 2P, 3P, . . . , (n− 1)P}

The point P with order n and the prime value p are publicly available. The private key

k is selected from the interval [1, n−1] and used to compute the public key Q as Q = kP .

Note that the private key k is an integer whereas the public key Q is a point on the

elliptic curve. The computation of Q = kP is called point multiplication and a number

of algorithms exist for this [123]. The binary method algorithm − also known as double-

and-always-add − is employed in this work due to its minimum memory requirements.

The binary method algorithm for point multiplication [123] is given in Algorithm 1.

The point multiplication of Algorithm 1 requires n−1 point doublings and m−1 point

additions, where n is the size of k in bits and m is the number of 1s in k.

22 Chapter 2. Background

Algorithm 1 Binary method for elliptic curve point multiplication [123]

Require: Initial point P , n-bit private key k

Ensure: Q = [k]P

1: Q←∞

2: for j = (n− 1)→ 0 do

3: Q← [2]Q

4: if kj = 1 then

5: Q← Q+ P

6: end if

7: end for

8: return Q

2.4.2 Elliptic Curve Parameters over Fp on Koblitz Curve

ECC implementations use the standard values of different parameters according to the

recommendations of the National Institute of Standards and Technology (NIST), which is

a non-regulatory federal agency in the United States. This work uses standard parameters

for 256-bit ECC using a Koblitz curve. Table 2.3 lists the parameter values − prime p,

coordinates (x, y) for initial point P , order n of the elliptic curve − that we use in this

research.

2.4.3 Overview of Existing ECPM Architectures in Binary Num-

ber System over Fp

Hardware implementation of ECPM over a prime field Fp using the binary number sys-

tem has been studied for many years and a number of high-speed architectures are pro-

posed [14, 15, 124–132]. This section briefly discusses some of the major ECPM architec-

tures and reports their implementation results.

2.4. Elliptic Curve Point Multiplication 23

Table 2.3: NIST-recommended domain parameters over F256 on Koblitz Curve [2]

P(256): p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

p = 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFE FFFFFC2F

n = 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6

AF48A03B BFD25E8C D0364141

x = 0x79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB

2DCE28D9 59F2815B 16F81798

y = 0x483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448

A6855419 9C47D08F FB10D4B8

The first hardware architecture for ECPM over Fp was introduced by G. Orlando [124]

and uses high-radix Montgomery multiplication and pre-computations for their imple-

mentation. The major drawback of this architecture is the high memory requirement.

Satoh [14] proposed a dual-field (F2m and Fp) ECPM architecture based on double-and-

always-add algorithm. The Montgomery multiplication in this design is improved by the

use of a Wallace tree, however the high complexity of modular inversion prevents this

architecture from achieving high speed. The performance of this architecture can be im-

proved by the modular inversion proposed in [56]. Similarly, the work in [130, 133, 134]

implemented dual-field ECPM architectures.

Some architectures use systolic arithmetic units to speed up ECPM [125–127]. The

major issue in these architectures is the efficient utilisation of the systolic array. Similarly,

the work in [129] aims to improve point addition and point doubling by using concurrent

modular multiplications. This architecture uses several hardware components of modular

24 Chapter 2. Background

multipliers and a scheduling algorithm to perform parallel modular multiplications.

The programmable ECPM architecture proposed in [135] is able to work with all five

NIST primes p of sizes 192, 224, 256, 384, and 521 bits. An external software-based

control unit is used in this implementation and Montgomery multiplications are replaced

by regular multiplication followed by fast modular reduction based on the algorithms in [7].

Similarly, the architecture in [15] also uses the multiply-then-reduce method instead of an

integrated modular multiplication scheme. This architecture perform 192-bit and 224-bit

ECC based on a redundant signed digit (RSD) representation. A further improvement to

this architecture is proposed by the same authors in [132].

The ECPM architecture in [136] is constructed by using the division and inversion

architectures of [137]. This work was improved by the same authors in [138] by efficient

utilisation of modular arithmetic units. Table 2.4 reports the implementation results of

some major ECPM implementations.

2.4.4 Overview of Existing ECPM Architectures in Residue Num-

ber System

A completely RNS-based ECPM was first proposed by Dimitrios Schinianakis in [38, 39]

using a 20-channel RNS moduli set where each channel is of 33 bits, giving a dynamic

range of 660 bits. This architecture relies on this large dynamic range to avoid the

modular reductions involved in point addition and point doubling and instead uses simple

RNS operations (addition, subtraction, multiplication) to compute point addition or point

doubling. The modular multiplication within RNS channels was performed using Horner’s

rule [142]. The modular reduction of the complete RNS number is performed after a

complete point addition or point doubling operation in each iteration. This paper was

extended by the same authors in [40] where ECC was implemented for 160-bit, 192-bit,

224-bit, and 256-bit prime curves. The RNS moduli set used for these implementations

2.4. Elliptic Curve Point Multiplication 25

Table 2.4: Existing ECPM architectures in binary number system over F256

Design Size Platform Clock Avg. Time Area

(bits) Cycles (ms/ECPM)@f(MHz)

McIvor [56] 256 Virtex-2 151.4k 3.86@39.5 15755 Slices

Chen [127] 256 0.13 µm CMOS 562.0k 1.01@556.0 122k Gates

Laue [129] 160 Virtex-2 1282.7k 12.70@101.0 1806 Slices

Lai [130] 256 0.13 µm CMOS 252.1k 1.21@208.0 197.0k Gates

Ananyi [135] 256 Virtex-2 366.0k 6.10@60.0 20.8k Slices

Ghosh [136] 256 Virtex-4 331.1k 7.70@43.0 20.1k Slices

Ghosh [136] 256 0.13µm CMOS 331.1k 3.01@110.0 167.5k Gates

Ghosh [138] 256 Virtex-4 337.7k 9.38@36.0 11.9k Slices

Marzouqi [15] 256 Virtex-5 442.2k 6.63@66.7.0 10.2k Slices

Ma [139] 256 Virtex-5 110.6k 0.38@291.0 1725 Slices

Alrimeih [131] 256 Virtex-6 98.0k 0.98@100.0 11.2k Slices

Lee [140] 256 90 nm CMOS 165.1k 0.76@217.0 1.12 mm2

Loi [141] 256 Virtex-5 992.6k 3.95@251.3 1980 Slices

Loi [141] 256 Virtex-4 1001k 5.50@182.0 7020 Slices

Marzouqi [132] 256 Virtex-5 361.6k 2.26@160.0 34.6k LUTs

26 Chapter 2. Background

has a dynamic range of 840 bits. The choice of an 840-bit dynamic range was based

on simulation in Mathematica and no mathematical equations are provided. Further

improvement on this work was done in [116], which uses RNS Montgomery multiplication

to perform modular arithmetic for point doubling and point addition (Equations (2.13)

and (2.14)). Similar work is proposed in [143], which uses RNS Montgomery multiplication

and RNS base conversions in the computation of ECPM. This work aims to improve the

efficiency by using the special RNS moduli set of [144].

A significant contribution towards RNS-based ECC is the work of Guillermin [115]

who uses the Kawamura method [102] to implement an RNS-based ECPM over Fp. The

architecture of [102] is improved by using deep pipelining and replacing RAM by general-

purpose registers. FPGA implementation results for 160-bit, 192-bit, 256-bit, 384-bit, and

512-bit elliptic curves are presented, which provides a good reference point for comparison

of future implementations. The work in [145] presents a detailed investigation of RNS-

based cryptography.

Some recent publications propose RNS-based RSA and ECC implementations on

Graphic Processing Units (GPUs) [146–148]. The analysis of these architectures, as well

as lattice-based cryptography [149], is out of the scope of this work. Table 2.5 lists the

existing RNS-based ECPM architectures.

2.4. Elliptic Curve Point Multiplication 27

Table 2.5: Existing RNS-based ECPM designs over F256

Design Size Platform Clock Avg. Time Area

(bits) Cycles (k) (ms/ECPM)@f (MHz)

Esmaeildoust [116] 256 Virtex-E 118.3 3.41@34.70 28.3k LUT

Esmaeildoust [116] 256 Virtex-2 Pro 29.6 0.59@50.20 28.7k LUT

Guillermin [115] 256 Stratix-II 106.9 0.68@157.2 9.2k ALM

Schinianakis [40] 256 Virtex-E 156.8 3.95@39.70 32.7k LUT

Lim [114] 256 Xtensa LX2.1 2197.3 440@5.00 50k LUT

Wei [150] 256 0.13 µm CMOS 791.1 3.2@250.0 306k gates

28 Chapter 2. Background

Chapter 3

Counter-Based Wallace Multipliers

3.1 Introduction

Multipliers are integral part of public-key cryptosystems which spent a large computation

time in performing modular multiplications. Multipliers are extensively studied over the

past few decades due to their use in a wide range of applications including signal processing

and cryptography. A detailed analysis of all multiplier architectures is out of scope of this

work. The focus of this chapter is counter-based Wallace (CBW) multipliers which are

considered as one of the fastest multiplier architectures. The CBW aims to improve the

performance of the architecture by employing multi-input adders (also called counters) in

the construction of the reduction tree. The counters in this work use fast circuitry to add

7, 6, 5, or 4 1-bit inputs altogether.

3.2 Wallace Multipliers

Wallace tree multipliers – or simply Wallace multipliers – are proposed by C. S. Wallace

in 1964 [151]. The operation of Wallace multiplier is divided in three steps as shown in

the Fig. 3.1.

29

30 Chapter 3. Counter-Based Wallace Multipliers

Final Adder

Reduction Tree

Partial Products Generator

Figure 3.1: Block diagram of Wallace multipliers

The partial product tree in the original Wallace tree multiplier is divided into groups

where each group consists of three rows [151]. Then the addition is performed in every

column using Full Adders (FAs) and Half Adders (HAs). This process is repeated until

the tree is reduced to two rows.

A large number of papers have been published in the literature to improve the perfor-

mance of the Wallace multiplier. A Booth-encoded based Wallace multiplier is proposed

in [152] which uses Booth-encoding to generate the partial products. However we will

show in this chapter that the use of Booth encoding does not guarantee a reduction in

delay. The work in [153] proposes to reduce the complexity of the traditional Wallace tree

by reducing the number of half adders in the reduction process. This strategy allows the

modified architecture to have less area as compared to the Wallace multiplier while the

speed of the both multipliers is same due to the same stages in the reduction process.

A number of architectures aims to improve the speed by the use of high speed counters

in Wallace tree reduction process. The architecture in [154] uses a technique similar to

Wallace reduction [151] to compute the sum of N inputs where all the inputs have the same

weight. The architecture computes the 1s in the columns by using only the full adders. A

modified form of this architecture is presented in [155] where counters are implemented

3.3. High-Speed Counters 31

by Ripple Carry Adders (RCAs) and FAs. The designs in [156] uses multiplexer based

4:2 and 5:2 compressors to perform the addition. However the paper does not address

the construction of large multipliers. A number of circuits are described in [157] for the

construction of 4:2 and 5:2 compressors using full-custom design. Similarly, [158] presented

a detailed investigation of the existing 4:2 and 5:2 compressors as well as proposal of new

circuits using CMOS transistors. However there is a lack of generic algorithm which can

be used to construct large Counter-Based Wallace (CBW) multipliers.

3.3 High-Speed Counters

The proposed CBW multipliers require 4:3, 5:3, 6:3, and 7:3 counters along with the

traditional half adder and full adder. The 7:3 counter of [159] is used due to its simple

and fast circuit. The circuits for the remaining counters − 6:3, 5:3, and 4:3 − are devised

based on the carry look-ahead principle which uses generate and propagate signals to

avoid the carry propagation. Since the focus of this chapter is on multipliers and not on

counters, a detailed analysis is not performed to optimise the counter circuits. Details of

the counter circuits are discussed in the following sections.

3.3.1 7:3 Counter

7:3 counter circuits are extensively studied in the literature and a number of high-speed

architectures are proposed. The 7:3 counter of [159] is selected for the proposed CBW

multiplier due to its high-speed operation. Equation (3.1) gives the boolean functions for

Sum, Cout1, and Cout2 for the 7:3 counter.

Sum = [(A⊕ B)⊕ (C ⊕D)]⊕ [(E ⊕ F)⊕G]

Cout1 = (w1⊕ w2)⊕ w3

Cout2 = (w1.w2) + ((w1⊕ w2).w3)

(3.1)

32 Chapter 3. Counter-Based Wallace Multipliers

where

w1 = A.B + C.D + ((A+B).(C +D))

w2 = [((E + F).G+ E.F)]

w3 = [A.B.C.D + ((A⊕ B)⊕ (C ⊕D))].[(E ⊕ F)⊕G]

3.3.2 6:3 Counter

The circuit of the 6:3 counter is designed based on the concept of generate and propagate

signals used in carry look-ahead adders. These signals are used to speed up the carry

computation required for each column of an adder. Here propagate and generate signals

are primarily used to reduce the load on the primary inputs. The circuit diagram of the

6:3 counter is given in Fig. 3.2. The critical path of the 6:3 counter consists of 2 2-input

XOR gates, 1 3-input XOR gate, and 1 2-input AND gate.

The propagate and generate functions for the 6:3 counter are given as follows:

P0 = A⊕B P1 = C ⊕D P2 = E ⊕ F

G0 = A.B G1 = C.D G2 = E.F

(3.2)

Boolean functions for Sum, Cout1, and Cout2 are given in Equation (3.3).

Sum = P0 ⊕ P1 ⊕ P2

Cout1 = (P0.P1 ⊕ P0.P2 ⊕ P1.P2)⊕ (G0 ⊕G1 ⊕G2)

Cout2 = (G0.G1 + G0.G2 +G1.G2) + ((P0.P1).G2)

+ ((P0.P2).G1) + ((P1.P2).G0)

(3.3)

3.3.3 5:3 Counter

The circuit of the 5:3 counter is similar to that of the 6:3 counter and has the same critical

path as can be seen in Fig. 3.3.

3.3. High-Speed Counters 33

PG Block

A B

Cout1 SumCout2

C D E

G0 G1 G2 P2P0 P1

F

G2 G1 G0

Figure 3.2: 6:3 Counter

34 Chapter 3. Counter-Based Wallace Multipliers

H3

PG Block

E

A B

Cout1 SumCout2

C D E

G0 G1 H0 H1 H2H3 P0 P1

Figure 3.3: 5:3 Counter

The propagate (P0 and P1) and generate (G0 and G1) signals for the 5:3 counter are

the same as for the 6:3 counter. Some additional signals (H0, H1, H2, and H3) are used to

reduce the load on the primary inputs. The 5:3 counter is implemented by Equation (3.4).

Sum = P0 ⊕ P1 ⊕ E

Cout1 = (G0 ⊕G1 ⊕H0)⊕ (H1 ⊕H2)⊕ ((P0.P1)⊕H3)

Cout2 = (G0.G1 +G0.H2) + (G0.H3) + (G1.H0 +G1.H1)

(3.4)

where

H0 = A.E, H1 = B.E, H2 = C.E, H3 = D.E

3.3.4 4:3 Counter

The 4:3 counter is easier to construct that the 5:3 counter and has a critical path of only

2 2-input XOR gates. The circuit diagram of the 4:3 counter is given in Fig. 3.4.

3.3. High-Speed Counters 35

Cout1 Sum

A B C D

Cout2

Figure 3.4: 4:3 Counter

The Boolean function for the 4:3 counter is given in Equation (3.5).

Sum = P0 ⊕ P1

Cout1 = (P0.P1) + (G0.G1) + (G0.G1)

Cout2 = G0.G1

(3.5)

3.3.5 3:2 Counter (Full Adder) and 2:2 Counter (HA)

The 3:2 and 2:2 counters, commonly known as Full Adder (FA) and Half Adder (HA), are

extensively studied and a wide range of circuits is available. As mentioned earlier in this

section the focus of this research is not on counters, therefore existing circuits of 3:2 and

2:2 counters are used. The circuit diagram of 3:2 and 2:2 counters is shown in Fig. 3.5.

The Boolean equations of 3:2 and 2:2 counters are given by Equation (3.6) and Equa-

36 Chapter 3. Counter-Based Wallace Multipliers

(a) 3:2 Counter (Full Adder) (b) 2:2 Counter (Half Adder)

Figure 3.5: Circuit Diagrams of 3:2 and 2:2 Counters

tion (3.7), respectively.

Sum = A⊕ B ⊕ C

Cout = (A.B) + (B.C) + (A.C)

(3.6)

Sum = A⊕ B

Cout = A.B

(3.7)

3.4 Proposed Counter-Based Wallace Multipliers

Counter-Based Wallace (CBW) multipliers use high-speed counters to improve the Wal-

lace reduction tree. The counters used for this purpose are 7:3, 6:3, 5:3, and 4:3 along

with the Full Adder (FA) and Half Adder (HA).

This section discusses the design of the proposed Counter-Based Wallace (CBW) mul-

tiplier. The partial-product tree in CBW is re-adjusted in the form of a reverse pyramid

as suggested by [153] then the reduction is performed using the counters discussed in

Section 3.3. The use of the proposed high-speed counters made it possible for the CBW

multiplier to reduce the partial-product tree in fewer stages than the traditional Wallace

3.4. Proposed Counter-Based Wallace Multipliers 37

multipliers. Now we will develop the equations to compute the maximum number of

rows in each stage of the CBW multiplier and the total stages required for the reduction

process of an N ×N multiplier. In the subsequent discussion the rows and columns of a

dot diagram follows the conventions used in the existing literature similarly to the work

in [153].

The first stage of an N × N multiplier has N rows. We need to find the maximum

number of rows in subsequent stages until only two rows are left. Assume that the

maximum number of rows in stagei−1 is 16, and there are an equal number of rows in each

column. In order to perform the reduction at column c, we use two 7:3 counters which

can add the elements in 14 rows i.e. each 7:3 counter computes 7 rows. The remaining

two rows are reduced by using a 2:2 counter. This process reduced the rows in column c

from 16 to 3. Similarly, columns c − 1 and c − 2 are reduced by using two 7:3 and one

2:2 counter. The three counters used at column c− 1 produce three Cout1 bits which are

added to column c of stagei. This increases the number of rows in column c of stagei

from 3 to 6. The two 7:3 counters at column c− 2 will produce two Cout2 bits which are

also added to column c of stagei. Hence, the number of rows in column c of stagei will

increase from 6 to 8.

It can be seen from the above example that the 2:2 counter at column c − 2 does

not produce a Cout2 bit so it has no effect on column c. The compression is performed

mainly by using 7:3 counters; the other counters are used only if the number of rows in a

column is not a factor of seven. There will be one unprocessed row if the number of rows

in column c is equal to (n× 7) + 1, where n is a positive integer.

Based on the observations of the above example, the number of rows in stagei can be

calculated by adding the following values:

1. Total number of counters at column c and c− 1 of stagei−1.

2. Number of proposed counters (7:3, 6:3, 5:3, and 4:3) at column c− 2 of stagei−1.

38 Chapter 3. Counter-Based Wallace Multipliers

3. Number of unprocessed rows at column c of stagei−1.

Maximum number of rows for stagei can be calculated by using Equation (3.8).

Ri = 3×

⌊

Ri−1

7

⌋

+ S + C1 + C2 (3.8)

The values for S, C1, and C2 are obtained from Equations (3.9a), (3.9b), and (3.9c),

respectively.

S =

0, if (Ri−1 mod 7) = 0

1, if (Ri−1 mod 7) = 1, 2, 3, 4, 5, 6

(3.9a)

C1 =

0, if (Ri−1 mod 7) = 0, 1

1, if (Ri−1 mod 7) = 2, 3, 4, 5, 6

(3.9b)

C2 =

0, if (Ri−1 mod 7) = 0, 1, 2, 3

1, if (Ri−1 mod 7) = 4, 5, 6

(3.9c)

The total stages for an N ×N multiplier can be computed using Algorithm 2.

Algorithm 2 Stages for N ×N CBW Multiplier

Require: Stages← 0, rows← N

1: while rows > 2 do

2: Stages← Stages+ 1

3: S ← ((rows mod 7) > 0)

4: C1 ← ((rows mod 7) > 1)

5: C2 ← ((rows mod 7) > 3)

6: rows← 3× ⌊rows/7⌋+ S + C1 + C2

7: end while

The number of stages for the CBW multiplier are less that for the traditional Wallace

multiplier. Table 3.1 compares the number of stages for the CBW multiplier and the

traditional Wallace multiplier for different multiplier sizes.

3.4. Proposed Counter-Based Wallace Multipliers 39

Table 3.1: Comparison of reduction stages for traditional and counter-based Wallace

multipliers

Size Number of Stages

Traditional Wallace Counter-Based Wallace

8 4 3

16 6 4

32 8 4

64 10 5

128 11 6

256 13 7

The size of the final adder for anN×N CBWmultiplier with S stages can be computed

by Equation (3.10).

Final Adder
CBW

= (2N − 1)− S (3.10)

Six different variants of the CBW multiplier are designed by using different strategies

for utilisation of the counters. The purpose of this is to analyse the effects of different

design strategies on area utilisation of the multiplier. The architectures differ in terms of

the types of counter used at various places for reduction. All the proposed architectures

perform the reduction in the same number of stages and conform to Equation (3.8) for

calculating the number of rows in each stage. The dot notation [160] is used to represent

the partial product tree in all the architectures discussed in this section as shown from

Fig. 3.6 to Fig. 3.12. The right-most column is called column 0. The counters in each

column are represented by the boxes around the dot products. The box enclosing seven,

six, five, four, three, and two dots represents 7:3, 6:3, 5:3, 4:3, 3:2, and 2:2 counters,

respectively. The stages are separated by a thick horizontal line.

40 Chapter 3. Counter-Based Wallace Multipliers

The following sections discuss the design of the proposed architectures of CBW mul-

tiplier.

3.4.1 Architecture-1 − Maximum Usage of Counters

Architecture-1 of the CBW multiplier uses all the counters in the reduction process wher-

ever possible and is not focused on area optimisation. This results in unnecessary use of

2:2 counters as can be seen in the 16×16 multiplier in Fig. 3.6.

In the first stage of Fig. 3.6, the right-most and left-most columns have only one

row therefore no reduction can be performed on these columns. The number of rows in

columns 1−5 and 25−29 is less than seven so these are reduced by 6:3 and lower counters.

The number of rows in columns 6-24 is equal or greater than seven so 7:3 counters are

used in these columns. The number of rows in columns 8-12 and 18-22 are not exact

multiples of seven, therefore the remaining dot products in these columns are compressed

by 6:3, 5:3, 4:3, 3:3, or 2:2 counters.

The same reduction process is repeated in each stage until the partial product tree is

reduced to two rows. Architecture-1 uses a large number of 2:2 counters, which are the

least efficient. Due to this inefficient use of counters Architecture-1 is expected to have

the largest area as compared to other architectures of the CBW multiplier.

3.4.2 Architecture-2 − Reduced Utilisation of 2:2 Counters

Architecture-2 of the CBW multiplier is based on the idea of a modified Wallace multiplier

in [153]. It aims to reduce the use of 2:2 counters in the reduction process. The 2:2 counters

are used only where they are necessary to satisfy the number of rows in a stage according

to Equation (3.8). The design based on this scheme has fewer 2:2 counters but the size of

the final adder [153] is increased. This increase in the size of the final adder is avoided by

allowing the use of a 2:2 counter in each stage at the right side of the partial product tree.

3.4. Proposed Counter-Based Wallace Multipliers 41

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.6: Dot Diagram of 16× 16 CBW Multiplier - Architecture-1

42 Chapter 3. Counter-Based Wallace Multipliers

The algorithm scans the partial-product tree from the right side and always performs the

reduction for the first column where the number of rows is higher than one.

Fig. 3.7 shows the dot diagram of Architecture-2 of the 16×16 CBW multiplier.

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.7: Dot Diagram of 16× 16 CBW Multiplier - Architecture-2

The first stage of Architecture-2 in Fig. 3.7 is similar to the first stage of Architecture-

1 in Fig. 3.6. The only difference is in columns 1, 8, 15, 22, and 29 where Architecture-2

does not use the 2:2 counter for reduction. There is only one 2:2 counter at column 1 in

3.4. Proposed Counter-Based Wallace Multipliers 43

the first stage of Architecture-2, used to reduce the size of the final adder.

The same reduction process is repeated in each stage until the partial product tree is

reduced to two rows. There is only one 2:2 counter at column 2 in stage2. Stage3 does

not have any 2:2 counter. Stage4 has twelve 2:2 counters, at columns 18-25 and 27-30.

These are necessary in order to satisfy Equation (3.8). Column 18 has two rows in stage4.

The 3:2 counter in column 17 produces a carry out which increases the number of rows in

column 18 from 2 to 3. A 2:2 counter must be used in column 18 to make sure that this

column has a maximum of two rows. Similarly, a 2:2 counter is used in columns 19-25

and 27-30 to keep the rows in these columns to less than three.

The area of Architecture-2 is expected to be much less than that of Architecture-1 due

to the reduced number of 2:2 counters in Architecture-2.

3.4.3 Architecture-3 − Reduced Utilisation of 2:2 and 3:2 Coun-

ters

Architecture-3 of the CBW multiplier is similar to Architecture-2 except that it attempts

to reduce the use of 2:2 and 3:2 counters in the reduction process. The 2:2 and 3:2 counters

are used only where they are necessary to satisfy the number of rows in a stage according

to Equation (3.8). Similarly to Architecture-2, the right-most column with more than one

row is always reduced in order to reduce the size of the final adder. Fig. 3.8 shows the

dot diagram of Architecture-3 of the 16×16 CBW multiplier.

The first stage of Architecture-3 in Fig. 3.8 does not have any 3:2 counter and consists

of only one 2:2 counter at the right-most column which is used to reduce the size of the

final adder. In stage2, it uses two 3:2 counters, in columns 24 and 25. This is because

there are three rows in column 24 in stage2. Columns 22 and 23 produce carry-out signals

which increases the number of rows in column 24 from 3 to 5. Since the maximum number

of rows allowed in stage3 is four a 3:2 counter is used in column 24 to keep the number of

44 Chapter 3. Counter-Based Wallace Multipliers

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.8: Dot Diagram of 16× 16 CBW Multiplier - Architecture-3

3.4. Proposed Counter-Based Wallace Multipliers 45

rows within this limit. Similarly, the 3:2 counter is required in column 25 to satisfy the

maximum number of rows in stage3.

The same reduction process is repeated in each stage until the partial product tree is

reduced to two rows. The maximum number of rows in the last stage is always three, so

only 3:2 and 2:2 counters can be used in the last stage. This strategy reduces the number

of 3:2 and 2:2 counters in Architecture-3 and results in a larger number of 7:3 counters.

3.4.4 Architecture-4 − Reduced Utilisation of 2:2, 3:2, and 4:3

Counters

Architecture-4 of the CBW multiplier tries to reduce the use of 2:2, 3:2, and 4:3 counters

in the reduction process. The 2:2, 3:2, and 4:3 counters are used only where they are

necessary to satisfy the number of rows in a stage according to Equation (3.8). The right-

most column of each stage is always reduced in order to reduce the size of the final adder.

Fig. 3.9 shows the dot diagram of Architecture-4 of the 16×16 CBW multiplier.

The first stage of Architecture-4 in Fig. 3.9 requires only one 4:3 counter as compared

to four 4:3 counters for Architecture-3. This counter, in column 20, is necessary to satisfy

the criterion of the maximum number of rows in stage2. The maximum number of rows

allowed in stage2 of the 16×16 CBW multiplier is 8. If we do not use the 4:3 counter in

column 20 of stage1 then the number of rows in this column of stage2 will be 9 which is

higher than the maximum number of rows allowed in stage2.

The same reduction process is repeated in each stage until the partial product tree

is reduced to two rows. Note that the last stage of Architecture-4 and Architecture-3 of

the 16×16 CBW multiplier are exactly the same. This is just a coincidence which might

not be present in multipliers of different sizes. Architecture-4 uses fewer 4:3 counters

than Architecture-1, Architecture-2, and Architecture-3. The number of 7:3 counters in

Architecture-4 is higher than in Architecture-1 to Architecture-3.

46 Chapter 3. Counter-Based Wallace Multipliers

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.9: Dot Diagram of 16× 16 CBW Multiplier - Architecture-4

3.4. Proposed Counter-Based Wallace Multipliers 47

3.4.5 Architecture-5 − Reduced Utilisation of 2:2, 3:2, 4:3, and

5:3 Counters

Architecture-5 of the CBW multiplier aims to reduce the use of 2:2, 3:2, 4:3, and 5:3

counters in the reduction process. The 7:3 and 6:3 counters are used whenever possible

but the rest of the counters are used only where they are necessary to satisfy the number

of rows in a stage according to Equation (3.8). Fig. 3.10 shows the dot diagram of

Architecture-5 of the 16×16 CBW multiplier.

The first stage of Architecture-5 in Fig. 3.10 has one 5:3 counter as compared to

four 5:3 counters of Architecture-4. This counter in column 19 is necessary to satisfy

the criterion of the maximum number of rows in stage2. The maximum number of rows

allowed in stage2 of the 16×16 CBW multiplier is 8. If we do not use the 5:3 counter in

column 19 of stage1 then the number of rows in this column of stage2 will be 10 which is

higher than the maximum number of rows allowed in stage2.

The same reduction process is repeated in each stage until the partial product tree

is reduced to two rows. This strategy reduces the 5:3 counters in Architecture-5 and

increases the 7:3 counters. However, this also resulted in an increased number of 4:3

counters for multipliers larger than 16×16.

3.4.6 Architecture-6 − Reduced Utilisation of 2:2, 3:2, 4:3, 5:3,

and 6:3 Counters

Architecture-6 of the CBW multiplier attempts to reduce the partial-product tree by

using only 7:3 counters. The other counters are used only where they are necessary to

satisfy the number of rows in a stage according to Equation (3.8). Fig. 3.11 shows the

dot diagram of Architecture-6 of the 16×16 CBW multiplier.

The first stage of Architecture-6 in Fig. 3.10 has two 6:3 counters as compared to four

48 Chapter 3. Counter-Based Wallace Multipliers

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.10: Dot Diagram of 16× 16 CBW Multiplier - Architecture-5

3.4. Proposed Counter-Based Wallace Multipliers 49

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.11: Dot Diagram of 16× 16 CBW Multiplier - Architecture-6

50 Chapter 3. Counter-Based Wallace Multipliers

6:3 counters in Architecture-5. The two 6:3 counters in columns 12 and 18 are necessary

to satisfy the criterion of maximum number of rows in stage2. The maximum number

of rows allowed in stage2 of the 16×16 CBW multiplier is 8. If we do not use the 6:3

counter in column 12 of stage1 then the rows in this column of stage2 will be 9 which is

higher than the maximum number of rows allowed in stage2. Similarly, the removal of

a 6:3 counter from column 18 will increase the rows from six to eleven in column 18 of

stage2.

The same reduction process is repeated in each stage until the partial-product tree

is reduced to two rows. This strategy reduces the 6:3 counters in Architecture-6 and

increases the 7:3 counters. However, it also increases the 5:3 or 4:3 counters in most

multipliers of Architecture-6.

3.4.7 Architecture-7 − Maximum Utilisation of 3:2 Counters

Architecture-7 of the CBWmultiplier is based on the intelligent use of high-speed counters.

In this, the algorithm gives preference to 3:2 counters to perform the reduction due to

the low area of 3:2 counter. The other counters are used only when they are necessary

to satisfy the number of rows in a stage according to Equation (3.8). Fig. 3.12 shows the

dot diagram of Architecture-7 of the 16×16 CBW multiplier.

It can be seen that the reduction tree of Fig. 3.8 consists mostly of 3:2 counters. The

use of 4:3 and higher counters is much less. In fact, Architecture-7 does not require any 4:3

and 6:3 counters for the 16×16 multiplier. The numbers of 7:3 and 5:3 counters are only

24 and 3, respectively, which is less than Architecture-1 and Architecture-2. Architecture-

7 is expected to have the lowest area due to the minimum use of high-speed counters as

compared to the Architecture-1 and Architecture-2.

The design of Architecture-7 is more challenging than the other architectures. The

excessive use of 3:2 counters results in more Sum bits at column c as well as more Cout1

3.4. Proposed Counter-Based Wallace Multipliers 51

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.12: Dot Diagram of 16× 16 CBW Multiplier - Architecture-7

52 Chapter 3. Counter-Based Wallace Multipliers

bits for column c + 1. Algorithm 3 is developed to calculate the number of rows in each

stage of the reduction process of Architecture-7. Algorithm 3 iteratively calculates the

type and numbers of counters for each column of a specific stage while making sure that

the maximum number of rows are not violated for the next stage.

The algorithm starts from the right side of the tree. It uses 3:2 counters at column c

of stage s for reduction. If the use of 3:2 counters results in a violation of the maximum

number of rows in stage s+1 then it removes all the 3:2 counters and adds one high-speed

counter (7:3, 6:3, 5:3, or 4:3). The most suitable counter is 7:3 if the number of rows in

column c is larger than six. The rest of the rows in column c are reduced by 3:2 counters.

If the rows in column c and column c+1 of stage s+1 still violate Equation (3.8) then the

algorithm again removes the 3:2 counters and increases the number of high-speed counters

by one. This iterative process continues until the rows in column c and column c + 1 in

stage s + 1 satisfy Equation (3.8). The same process is repeated for all the columns of

each stage.

3.4.8 Final Adder Design

The third step of the Wallace multipliers is to add the remaining two rows using a

fast adder. Some of the most widely used parallel-prefix adders used for high-speed

operations are Kogge-Stone [161], Sklansky [162], Brent-Kung [163], Han-Carlson [164],

Knowles [165], and Ladner-Fischer [166]. These adders use the same tree topology but

differ in terms of logic levels, fanout, and interconnect wires. A thorough analysis of the

parallel-prefix adders can be found in [167]. The use of a higher radix is also a well-known

technique in high-speed adder architectures [168–170]. We used the Kogge-Stone adder in

all the multipliers discussed in this chapter. Logic levels for implementation of an N -bit

Kogge-Stone adder are calculated by using Equation (3.11).

Logic Levels = ⌈log2(N)⌉ (3.11)

3.4. Proposed Counter-Based Wallace Multipliers 53

Algorithm 3 Calculate No. and Type of Counters for Stage S of N × N CBW

Multiplier Architecture

⊲ max rows is the maximum number of rows allowed in a stage.

⊲ Compressor(X) is used to represent the number of a compressor with X input bits

(e.g. Compressor(7) represents the number of 7:3 compressors).

⊲ C1 and C2 represent the numbers of Cout1 and Cout2 bits, respectively.

⊲ R represents the number of rows.

⊲ s and c are the index variables for stage and column.

Require: N,max rows

Require: Rs,c with correct values for all columns of stage S.

1: for c = 0→ 2N − 1 do

2: Push Rs,c

3: for i = 2→ 7 do

4: Compressor(i)s,c ← 0

5: end for

6: Rs+1,c ← C1s,c−1 + C2s,c−2

7: Rs+1,c+1 ← ⌊Rs,c+1/7⌋+ ((Rs,c+1 mod 7) > 0) + C2s,c−1

8: C1s,c ← C2s,c ← 0

9: Push Rs+1,c, Rs+1,c+1, C1s,c

10: Rs+1,c ← Rs+1,c + ⌊Rs,c/3⌋+ (Rs,c mod 3)

11: Compressor(3)s,c ← C1s,c ← ⌊Rs,c/3⌋

12: Rs+1,c+1 ← Rs+1,c+1 + C1s,c

13: while (Rs+1,c > max rowss+1 OR Rs+1,c+1 > max rowss+1) do

14: Pop Rs+1,c, Rs+1,c+1, C1s,c

15: Increment Rs+1,c and C1s,c

54 Chapter 3. Counter-Based Wallace Multipliers

16: if Rs,c > 3 then

17: Increment C2s,c

18: end if

19: if Rs,c > 7 then

20: Increment Compressor(7)s,c

21: Rs,c ← Rs,c − 7

22: else

23: Increment Compressor(Rs,c)s,c

24: Rs,c ← 0

25: end if

26: Push Rs+1,c, Rs+1,c+1, C1s,c

27: Rs+1,c ← Rs+1,c + ⌊Rs,c/3⌋+ (Rs,c mod 3)

28: C1s,c ← C1s,c + ⌊Rs,c/3⌋

29: Compressor(3)s,c ← ⌊Rs,c/3⌋

30: Rs+1,c+1 ← Rs+1,c+1 + C1s,c

31: end while

32: Pop Rs,c

33: end for

3.4. Proposed Counter-Based Wallace Multipliers 55

3.4.9 Interconnection Complexity Analysis of Proposed Archi-

tectures

The complexity of various architectures can be analysed in terms of total interconnecting

wires between the counters. The interconnecting wires within the counters have little

contribution to the complexity as these interconnections consist of small wires. The total

interconnection in a tree reduction can be calculated by counting the total number of

counters in each stage and multiplying this value by the number of outputs for each

counter. For example Architecture-1 of the proposed CBW in Fig. 3.4.1 consists of 27

7:3 counters, 12 6:3 counters, 8 5:3 counters, 7 4:3 counters, 29 3:2 counters, and 47 2:2

counters. The total interconnecting wires for this multiplier can be computed as follows:

Total wires = (27× 3) + (12× 3) + (8× 3) + (7× 3) + (29× 2) + (47× 2) = 314

The total numbers of interconnecting wires for all the proposed multipliers are given

in Table 3.2.

It can be seen that Architecture-7 has the highest number of wires due to the high

usage of 3:2 counters. The purpose of giving preference to 3:2 counters over 7:3 counters

is to achieve low power consumption, as 3:2 counters are most efficient in terms of power

consumption. However this increases the interconnection complexity of the architecture,

which is a major contribution to the power consumption of tree multipliers. Hence it

is difficult to state the effectiveness of this technique in terms of power consumption.

Further analysis of these architectures is discussed in Section 3.7.

The complexity of the Wallace tree in the existing literature is focused mainly on the

optimisation of the reduction stages with little emphasis on the importance of the inter-

connection [153,178]. The effect of a regular layout on the delay and power consumption

of the Wallace tree multiplier is well known however the literature does not provide any

56 Chapter 3. Counter-Based Wallace Multipliers

Table 3.2: Total wires in top module of the proposed CBW multipliers

Size
Total Wires in Top Module

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7

8 86 71 80 70 70 70 80

16 314 265 256 254 254 261 311

32 996 924 901 870 848 851 1139

64 3718 3488 3457 3380 3337 3359 4593

128 13941 13280 13232 12971 12826 12851 18447

256 53091 51456 51352 50728 50363 50269 72532

comparison of the different architectures in terms of interconnection. The work in [178]

recognizes the importance of the regular layout and proposed a Wallace multiplier with

logarithmic logic depth to provide more regular interconnection. On the other hand, we

presented a quantitative analysis of the interconnecting wires for the proposed CBW mul-

tipliers. The explicit analysis of the effect of interconnection on the power consumption

is also never discussed in the existing literature although the energy improvements for

multipliers with regular layout are presented in [178].

3.5 Proposed Booth-Encoded Wallace Multiplier

Booth encoding was originally proposed by A. D. Booth in 1950 to speedup serial multi-

plication [171]. The algorithm can also be used to implement a combinational multiplier.

Booth’s algorithm uses shift, add, and subtract operations to find the product of two

3.5. Proposed Booth-Encoded Wallace Multiplier 57

numbers. The algorithm examines adjacent pairs of bits of the multiplier to determine

which operation needs to be performed. Since this scheme uses two bits for encoding it

is called radix-2 Booth encoding.

A modification was proposed in [172] to use Booth encoding for higher-radix opera-

tions. The modified algorithm examines more than two adjacent bits of the multiplier to

determine which operation needs to be performed. In a radix-4 encoding, three adjacent

bits are considered to generate the partial product. Since then a number of variants have

been proposed in the literature to modify the Booth encoder to suit different applications.

The work in [173] presents a detailed analysis of radix-4, radix-8, radix-16, and radix-32

Booth multipliers. The radix-4 Booth encoder is the most efficient encoder as compared to

the other high-radix Booth encoders [173] due to its simple structure. The block diagram

of the radix-4 Booth encoder is shown in Fig. 3.13.

N+2N+3N+3N−1

2
1NP

+

N+1

2
NP

0P1P2P

. . .

. . .

. . .

. . .

AB

Radix-4 Booth

Encode Unit

. . .

Radix-4 Booth

Encode Unit

Radix-4 Booth

Encode Unit

0in
c

2
Nin

c
1in

c
0s1s2

N
s

2
1Ns

+

N N

N+2 N+2NN−1

3 3 3

Fixed Number

Figure 3.13: Block diagram of radix-4 Booth encoding

The radix-4 Booth encoder uses 3-bit combinations of the multiplier to perform the

58 Chapter 3. Counter-Based Wallace Multipliers

encoding [172]. In order to use Booth encoding for the unsigned multiplier an extra sign

bit needs to be calculated in the partial product generation. Table 3.3 shows the encoding

scheme used by the radix-4 Booth encoder.

Table 3.3: Radix-4 Booth Encoding Values

Inputs Outputs

En2i+1 En2i En2i−1 Partial product Sign bit

0 0 0 0 0

0 0 1 Y 0

0 1 0 Y 0

0 1 1 2Y 0

1 0 0 −2Y 1

1 0 1 −Y 1

1 1 0 −Y 1

1 1 1 −0=0 0

It can be seen from Table 3.3 that even though the multiplier is unsigned the partial

products can be negative. The negative partial products require inversion and addition of

‘1’ at the Least Significant Bit (LSB) − also known as the LSB insertion − which would

result in an irregular layout of the partial product tree. In order to have a regular layout

of the partial product tree we used the idea presented in [174] which is a modified form

of [175]. According to this scheme the impact of LSB insertion on the least-significant

bit position of the partial product tree is pre-computed (Eq. 3.12) and the potential ‘1’

is shifted to the second-least-significant position (Eq. 3.13). Furthermore, the negative

partial products need to be sign-extended in the Booth encoding. This sign-extension

3.6. Reference Multiplier 59

of the negative partial products is avoided by using the scheme proposed by Fadavi-

Ardekani [152].

PLSB = A0.(En1 ⊕ En0) (3.12)

Cin = En2.
(

En1 + En0+ A0 + En1+ A0 + En0

)

(3.13)

The partial product tree for the radix-4 Booth encoder is shown in Fig. 3.14. Note

that the partial product in Fig. 3.14 is slightly different from [174] because the design

in [174] is for a signed multiplier.

The partial-product tree generated by the radix-4 Booth encoder consists of N
2
+ 2

rows. This partial-product tree is readjusted in the form of a reverse pyramid and tree

reduction is performed using the CBW reduction architecture of Section 3.4.7. The reason

for choosing Architecture-7 for the Booth-encoded multiplier is the high usage of 3:2

counters in Architecture-7, which predicts its advantage over other architectures in terms

of area and power consumption.

3.6 Reference Multiplier

This section discusses the architecture of theWallace multiplier which is used as a reference

design. The design of [153], used as a reference design, is an area-optimised architecture

of the traditional Wallace multiplier. The delay of this architecture is approximately

the same as of traditional Wallace multiplier due to the same reduction stages. This

architecture re-adjusts the partial-product tree in the form of a reverse pyramid which

makes it easier to analyse the tree for reduction. The aim of this Wallace multiplier is to

reduce the use of half adders in the reduction process. The dot diagram of the 16× 16

Wallace multiplier for the architecture of [153] is shown in Fig. 3.15.

The maximum number of rows in a stage of Wallace multiplier can be computed by

60 Chapter 3. Counter-Based Wallace Multipliers

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

S
p

8
0

p
7
0

p
6
0

p
5
0

p
4
0

p
3
0

p
2
0

p
1
0

p
ls
b
0

S
p

8
1

p
7
1

p
6
1

p
5
1

p
4
1

p
3
1

p
2
1

p
1
1

p
ls
b
1

c
in

0

S
p

8
2

p
7
2

p
6
2

p
5
2

p
4
2

p
3
2

p
2
2

p
1
2

p
ls
b
2

c
in

1

S
p

8
3

p
7
3

p
6
3

p
5
3

p
4
3

p
3
3

p
2
3

p
1
3

p
ls
b
3

c
in

2

p
7
4

p
6
4

p
5
4

p
4
4

p
3
4

p
2
4

p
1
4

p
ls
b
4

c
in

3

0
1

0
1

0
1

1

R
1
5

R
1
4

R
1
3

R
1
2

R
1
1

R
1
0

R
9

R
8

R
7

R
6

R
5

R
4

R
3

R
2

R
1

R
0

F
igu

re
3.14:

Illu
stration

of
an

8-b
it
R
ad

ix
-4

B
o
oth

E
n
co
d
er

3.6. Reference Multiplier 61

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Figure 3.15: Dot Diagram of 16× 16 Reference Multiplier

62 Chapter 3. Counter-Based Wallace Multipliers

Table 3.4: Total Reduction Stages for Wallace and Counter-Based Wallace Multipliers

Size Number of Stages

Wallace Booth-Wallace CBW Booth-CBW

8 4 3 3 2

16 6 5 4 3

32 8 6 4 4

64 10 8 5 4

128 11 10 6 5

256 13 11 7 6

Equation (3.14):

Ri = 2×

⌊

Ri−1

3

⌋

+Ri−1 mod 3 (3.14)

The total number of stages for an N × N Wallace multiplier can be calculated by

Algorithm 4.

Algorithm 4 Stages for N ×N Wallace Multiplier

Require: Stages← 0, rows← N

1: while rows > 2 do

2: Stages← Stages+ 1

3: rows← 2× ⌊rows/3⌋+ rows mod 3

4: end while

3.7. Implementation of the Proposed Architectures 63

3.7 Implementation of the Proposed Architectures

A total of seven different multiplier architectures are proposed in this chapter, where each

architecture is implemented for six different sizes, i.e. 8, 16, 32, 64, 128, 256. Furthermore

a Booth-encoded CBW architecture is also implemented for the same word lengths. A

generic C-language program is written to generate the VHDL codes for all the multipliers.

Test benches for the multipliers are also generated by this program.

3.7.1 Functional Verification

The VHDL codes of the multipliers are verified by extensive simulation using ModelSim

SE. All the possible input combinations are applied to thoroughly test the 8-bit multipli-

ers. Since an exhaustive testing of bigger multipliers was not practical; they are tested

with random inputs applied. Galois type Linear Feedback Shift Registers (LFSRs) are

designed to generate a Pseudo-Random Binary Sequence (PRBS) of maximum cycle for

the multipliers under test [176].

3.7.2 Synthesis Tool

All the multipliers are synthesised in the Synopsys Design Compiler (DC) using 90nm

technology. The designs can be optimised for delay, power, and area by setting the

appropriate options in the DC. The designer has the option of setting the various synthesis

parameters such as fanout, wire load models, output load, interconnect strategy, and

PVT (Process, Voltage, Temperature), etc.

The TCL scripts are developed to synthesise the reference and proposed multipliers

according to the constraints set on the designs. The constraints are set to optimise the

designs for delay, power, and area. The Design Compiler tries to meet the constraints in

the following order:

64 Chapter 3. Counter-Based Wallace Multipliers

1. Timing: DC gives highest priority to the timing constraints. It is essential to

ensure that the timing constraints are met for correct operation of the design.

2. Power: The optimisation of power consumption is done in the second phase. The

DC tries to meet the power constraints as long as it does not result in violation of

the timing constraints.

3. Area: DC gives the least priority to meet the area constraints. It tries to meet the

area constraints as long as it does not violate the timing constraints.

It is possible to change the above-mentioned priority of DC if required. Since our aim

is to reduce the delay, we used the default priority scheme for optimisation. A complete

synthesis script is given in Appendix A.

In order to have a fair comparison, the same synthesis parameters are specified for all

the designs. Table 3.5 shows different parameters from the SAED 90 nm library used for

synthesis.

Table 3.5: Synthesis parameters for Synopsys DC

Parameter Value

Technology 90 nm CMOS

Libraries
SAED90nm typ lvt

SAED90nm typ hvt

Supply Voltage 1.2 V

Temperature 25◦C

Output Load 1.5 pF

Compile Effort Medium

3.8. Analysis and Comparison of Synthesis Results 65

3.7.3 Power Analysis

Design Compiler does not generate accurate results for power consumption [177], therefore

the power of the multipliers is computed by using Synopsys Prime Time. The strategy

employed to compute power consumption is outlined as follows:

Firstly, the delay information of the design is generated by Design Compiler as a SDF

(Standard Delay Format) file. Secondly, the SDF-based simulation of the synthesised

netlist is performed in ModelSim to generate the switching activity of the multipliers

while operating at the maximum possible frequency. Finally, time-based power analysis is

performed in Prime Time in the presence of the switching activity to obtain the accurate

power consumption of the design. The script for power analysis is given in Appendix A.

3.8 Analysis and Comparison of Synthesis Results

The results are divided into two subsections. Firstly, the synthesis results of the proposed

CBW architectures (Architecture-1 to Architecture-7) are presented and analysed. All

these architectures have same number of reduction stages, therefore their delay is ap-

proximately the same. Hence the analysis is focused on comparison of area and energy

consumption. Secondly, the results of the reference multiplier are compared with the

selected architecture of CBW multiplier and Booth-CBW multiplier.

3.8.1 CBW Multipliers (Architectures 1−7)

The number of stages in the proposed architectures of the CBW is the same therefore

their delay is expected to be approximately the same. This section analyses the area and

energy dissipation of these architectures.

The use of pipelining between the reduction stages is expected to result in a significant

reduction in the power consumption due to the shortening of the critical path. The

66 Chapter 3. Counter-Based Wallace Multipliers

Size of Multiplier

8 16 32 64 128 256

N
o

rm
a

lis
e

d
 A

re
a

0.9

0.95

1

1.05

Arch-1

Arch-2

Arch-3

Arch-4

Arch-5

Arch-6

Arch-7

(a) Normalised delay of Architecture-1 to Architecture-7

Size of Multiplier

8 16 32 64 128 256

N
o

rm
a

lis
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

0.5

0.75

1

1.25

1.5

Arch-1

Arch-2

Arch-3

Arch-4

Arch-5

Arch-6

Arch-7

(b) Normalised energy dissipation of Architecture-1 to Architecture-7

Figure 3.16: Area and energy results of proposed CBW architectures

3.8. Analysis and Comparison of Synthesis Results 67

pipelined architecture enables the data to be processed simultaneously in each reduction

stage and therefore the throughput of the circuit is increased.

The normalised area and energy dissipation of the proposed CBW architectures are

given in Fig. 3.16. All the values are normalised with respect to Architecture-1 according

to Equation (3.15).

Norm V alueArch−X =
Original V alueArch−X

Original V alueArch−1

(3.15)

It can be seen from Fig. 3.16(a) that the area of Architecture-7 is slightly less than

the other architectures except for the 128×128 multiplier where Architectures 2, 5, and 7

have about the same area. The maximum benefit of Architecture-7 in terms of area is for

the 16×16 multiplier where Architecture-7 has about 10% less area than Architecture-1.

Since the area difference of the proposed architectures is not significant it can be stated

that all the architectures have a similar performance in terms of area. Note that the

area of Architecture-7 was expected to be less than the others due to the high usage of

3:2 counters. However Architecture-7 requires more interconnections therefore its area

advantage is less than expected.

The energy dissipation of Architecture-7 is also expected to be less because it max-

imises the use of 3:2 counters, which are more energy-efficient than other counters. How-

ever the energy dissipation plots in Fig. 3.16 shows that the energy dissipation results do

not follow a pattern which is somewhat similar to the results of the area requirements.

These results indicate the effect of interconnections which consume a large amount of

energy.

The performance of the Wallace tree architectures also suffers from the inherent ir-

regular structure of the reduction tree [178]. The interconnection complexity in a reverse

pyramid reduction tree reduces drastically in each reduction stage because less counters

are required after each reduction [153]. The effect of this irregular structure is more promi-

nent in sub-micron CMOS technologies where interconnects have major contribution in

68 Chapter 3. Counter-Based Wallace Multipliers

the delay, area, and energy dissipation of the circuit. Due to the irregular structure of

the Wallace tree in different architectures it is hard to predict which architecture would

be efficient in terms of area, delay, and energy dissipation.

3.8.2 Wallace, Booth-Wallace, CBW, and Booth-CBW Multi-

pliers

This section presents and discusses the results of Wallace multipliers and Booth-encoded

Wallace multipliers for the reference and proposed architectures. The design of [153] is

used as a reference architecture as discussed in Section 3.6, whereas Architecture-7 of the

proposed CBW multiplier is used in the Booth-encoded CBW multiplier. The results for

delay, area, and power consumption of the proposed and reference multipliers are given

in Table 3.6.

The results of Table 3.6 show that, contrary to the popular belief, the use of Booth

encoding with Wallace reduction degrades the speed of the circuit. The use of Booth

encoding increases the delay by up to 17% and 19% in Wallace and CBW multipliers,

respectively. This is due to the small benefit of Booth encoding in terms of the number

of stages as shown in Table 3.4. The use of Booth encoding reduces only one or two

stages for a traditional Wallace multiplier, however this small advantage is cancelled out

due to the high complexity of the Booth encoding circuitry. The decrease in number of

stages by using Booth encoding with the CBW multiplier is even less as can be seen in

Table 3.4. Note that the number of stages for a 32×32 multiplier are equal in CBW and

Booth-encoded CBW multipliers. The delay of CBW and Booth-encoded CBW is up to

16% and 15% less than Wallace and Booth-Wallace multipliers, respectively, which proves

the effectiveness of the proposed architectures. Note that the proposed CBW are suitable

only for large multipliers i.e. 32×32 and larger.

The use of Booth encoding in Wallace and CBW multipliers results in higher area for

3.8. Analysis and Comparison of Synthesis Results 69

T
ab

le
3.
6:

S
y
n
th
es
is

re
su
lt
s
of

p
ro
p
os
ed

an
d
re
fe
re
n
ce

m
u
lt
ip
li
er

im
p
le
m
en
ta
ti
on

s

S
iz
e

W
a
ll
a
c
e

B
o
o
th

-W
a
ll
a
c
e

C
B
W

B
o
o
th

-C
B
W

D
e
la
y

A
re

a
P
o
w
e
r

D
e
la
y

A
re

a
P
o
w
e
r

D
e
la
y

A
re

a
P
o
w
e
r

D
e
la
y

A
re

a
P
o
w
e
r

(n
s)

(1
0−

3
µ
m

2
)

(n
W

)
(n
s)

(1
0−

3
µ
m

2
)

(n
W

)
(n
s)

(1
0−

3
µ
m

2
)

(n
W

)
(n
s)

(1
0−

3
µ
m

2
)

(n
W

)

8
1.
85

3.
92

0.
3

1.
93

5.
55

1.
8

1.
93

4.
10

0.
2

1.
92

5.
99

1.
7

16
2.
44

15
.3
5

9.
8

2.
63

19
.0
1

11
.3

2.
59

16
.0
9

10
.4

2.
59

20
.3
0

12
.4

32
7.
73

74
.5
9

9.
8

7.
12

76
.5
4

17
.1

6.
15

75
.8
8

10
.8

6.
20

76
.8
9

16
.5

64
13
.1
1

24
5.
20

5.
2

12
.1
6

25
3.
48

17
.5

9.
29

25
3.
98

6.
3

9.
63

25
9.
85

21
.8

12
8

22
.4
0

90
0.
29

8.
4

26
.7
3

89
5.
99

14
.9

18
.8
3

95
8.
27

8.
2

22
.3
6

92
7.
49

16
.8

25
6

31
.3
7

35
01
.4
7

15
.1

37
.8
0

34
67
.4
7

28
.3

26
.1
6

37
67
.9
0

21
.4

32
.2
3

35
56
.8
1

34
.3

70 Chapter 3. Counter-Based Wallace Multipliers

smaller multiplier sizes. This is because the size of the Booth encoding circuitry is greater

than the area requirements for one reduction stage of small tree-based multipliers. It can

be seen from Table 3.6 that the area of the Booth-Wallace and Booth-encoded CBW is

less for larger multipliers (128×128 and 256×256) as compared to the Wallace and CBW,

respectively.

The power consumption of all the implemented multipliers is obtained from Synopsys

Prime Time by following the procedure mentioned in Section 3.7.3. The power consump-

tion of the CBW is higher than for the Wallace multipliers, which is expected because the

counters used in the CBW multipliers are optimised for speed. Moreover, the multipliers

that use Booth encoding in the partial-product generation consume more power than the

multipliers which use traditional AND gates for partial-product generation. The power

consumption of the Wallace and Booth-Wallace multipliers is 29% and 17% less than the

CBW and Booth-CBW multipliers.

A widely used parameter to compare the overall effectiveness of digital circuits is

the Power-Delay Product (PDP) − commonly called energy − which shows the energy

required to complete one operation. The normalised energies of the Wallace, Booth-

Wallace, CBW and Booth-CBW multipliers are shown in Fig. 3.17.

It can be seen from Fig. 3.17 that the use of Booth encoding in the Wallace and CBW

multipliers results in higher energy dissipation. The difference in energy dissipation of

the Wallace and CBW multipliers is very small. Since the delay of CBW multipliers is

significantly lower than that of Wallace multipliers we can claim that the overall perfor-

mance of CBW multipliers is better than traditional Wallace multipliers for multipliers

larger than 32×32.

3.8. Analysis and Comparison of Synthesis Results 71

Size of Multiplier

8 16 32 64 128 256

N
o
rm

a
lis

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Wallace

CBW

Booth-Wallace

Booth-CBW

Figure 3.17: Normalised energy dissipation of proposed and reference multipliers

72 Chapter 3. Counter-Based Wallace Multipliers

3.9 Summary of Results

Different architectures of counter-based Wallace (CBW) multipliers are proposed in this

chapter. The architectures are analysed for their area complexity and energy consumption.

An algorithmic CBW multiplier is proposed which is useful to construct multiplier of

variable sizes. The advantage of proposed CBW multipliers is proved by comparison with

state-of-the-art Wallace multipliers. Moreover Booth-encoded CBW (Booth-CBW) is also

implemented on ASIC. The comparison of Booth-CBW with CBW shows that, contrary

to popular belief, the use of Booth encoding degrades the speed of the Wallace multiplier.

Publications Pertaining to this Chapter

• S. Asif, Y. Kong, “Low-Area Wallace Multiplier”, VLSI Design, vol. 2014, Article

ID 343960, 6 pages, 2014.

• S. Asif, Y. Kong, “Performance analysis of Wallace and radix-4 Booth-Wallace mul-

tipliers”, Electronic System Level Synthesis Conference (ESLsyn), pp.17-22, 10-11

June, 2015, San Francisco, USA.

• S. Asif, Y. Kong, “Design of an algorithmic Wallace multiplier using high speed

counters”, International Conference on Computer Engineering and Systems (IC-

CES), pp. 133-138, 23-24 December 2015, Cairo, Egypt.

• S. Asif, Y. Kong, “Analysis of different architectures of counter based Wallace multi-

pliers”, International Conference on Computer Engineering and Systems (ICCES),

pp. 139-144, 23-24 December 2015, Cairo, Egypt.

Chapter 4

Modular Multiplier Using Sum of

Residues in RNS

4.1 Introduction

Modular multiplication (MM) is a fundamental operation in elliptic curve cryptography

(ECC) where it is used in elliptic curve point multiplication (ECPM). Therefore it is nec-

essary to improve the performance of modular multiplier in order to implement an efficient

ECC. This chapter discusses the algorithm and hardware implementation of modular mul-

tiplier based on residue number system (RNS) for 256-bit ECC. RNS is capable to perform

very fast arithmetic operations by representing a large number by several smaller values

and processing them in parallel. A brief overview of RNS is provided in Section 2.2.

Modular multiplication consists of two operations: multiplication and modulus – also

known as modular reduction. Modular multiplication is defined as

Z = (A× B) mod M (4.1)

where A, B, and M are RNS representations of 256-bit values for the proposed architec-

tures.

73

74 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

4.2 The Modular Reduction within RNS Channels

In Equation (2.4), all the operations are accomplished by performing * (addition, sub-

traction or multiplication) first and a reduction modulo a channel modulus mi second.

Compared with the modular reduction, those * operations are trivial. This section ex-

plains how the Barrett modular reduction algorithm [74] is used in our implementation

to perform this modular reduction within RNS channels.

4.2.1 The Barrett Modular Reduction Algorithm

The relationship between division and modular reduction is made explicit in Equation (4.2).

z = c mod m = c−
⌊ c

m

⌋

×m. (4.2)

where c is 2w bits, m is the w-bit modulus and ⌊x⌋ returns the largest integer smaller

than or equal to x. To differ from the large modular multiplication over the whole RNS

discussed in Section 4.3, lower-case letters are used here to imply that this is an operation

running within RNS channel mi. The Barrett algorithm, proposed for positional number

systems in [179] and [74], gives a fast computation of the division y =
⌊

c
m

⌋

as

y =
⌊ c

m

⌋

=

⌊

c
2w+v

2w+u

m

2u−v

⌋

, (4.3)

where u and v are two parameters. Furthermore, the quotient y can be estimated with

an error of at most 1 from

ŷ =

⌊

c
2w+v

⌋

⌊

2w+u

m

⌋

2u−v

 . (4.4)

The value K =
⌊

2w+u

m

⌋

is a constant and can be pre-computed.

The algorithm used in our implementation is shown in Algorithm 5 where u and v are

set to w+ 3 and -2 respectively. The reason for this will be given in the next subsections

where the bounds of the output and input of this algorithm are derived.

4.2. The Modular Reduction within RNS Channels 75

Algorithm 5 Barrett modular reduction algorithm

Require: m ⊲ RNS channel modulus

Require: u = w + 3, v = −2

Require: K =
⌊

22w+3

m

⌋

Ensure: z ≡ c mod m

1: c1 =
⌊

c
2w−2

⌋

2: c2 = c1 ×K

3: y =
⌊

c2
2w+5

⌋

4: z = c− y ×m

The architecture for Algorithm 5 is shown in Fig. 4.1.

���

���

���

� ���

����	������
��

Figure 4.1: Barrett modular reduction within RNS channels

76 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

4.2.2 Bound Deduction

Bounds on the Estimated Quotient ŷ

The estimated quotient ŷ is at most 1 less than the actual quotient y if u and v are

chosen according to [76], as shown below.

Recall y =
⌊

c
m

⌋

=

⌊

c

2w+v
2
w+u

m

2u−v

⌋

and ŷ =

⌊

⌊ c

2w+v ⌋
⌊

2
w+u

m

⌋

2u−v

⌋

, then

y ≥ ŷ >

⌊

c
2w+v

⌋

⌊

2w+u

m

⌋

2u−v
− 1

>
(c
2w+v − 1)(2

w+u

m
− 1)

2u−v
− 1

=
c

m
−

c

2w+u
−

2w+v

m
+

1

2u−v
− 1

≥
⌊ c

m

⌋

−
c

2m+u
−

2w+v

m
+

1

2u−v
− 1

⇔ y ≥ ŷ > y −
c

2w+u
−

2w+v

m
+

1

2u−v
− 1 (4.5)

because x ≥ ⌊x⌋ > x− 1 always holds for any natural x.

Because m is the w-bit modulus and c is 2w bits long,

2w−1 ≤ m ≤ 2w − 1 < 2w and 22w−1 ≤ c ≤ 22w − 1 < 22w.

Then Equation (4.5) becomes

y ≥ ŷ > y −
22n

2w+u
−

2w+v

2w−1
+

1

2u−v
− 1

⇔ y ≥ ŷ > y − (2w−u + 2v+1 + 1− 2v−u) (4.6)

If we choose u ≥ w + 1 and v ≤ −2, then 0 < 2w−u ≤ 1
2
, 0 < 2v+1 ≤ 1

2
and 0 <

2w−u − 2v−u < 1
2
. Thus, 1 < 2w−u + 2v+1 + 1− 2v−u < 2. Therefore, (4.6) becomes

y ≥ ŷ > y − 1.xx.

where 1.xx means a fractional value larger than 1.

4.2. The Modular Reduction within RNS Channels 77

Since ŷ is an integer, ŷ = y or ŷ = y− 1. That is, the maximal error on the estimated

quotient is limited to 1 by choosing u ≥ w + 1 and v ≤ −2.

Bounds on the Output ẑ

The worst-case wordlength of the estimated output ẑ will be checked below. Recall

Equation (4.2) z = c mod m = c− y ×m and that the remainder z is certainly no more

than w bits long. Now y is replaced by ŷ and (4.2) becomes

ẑ = c− ŷ ×m (4.7)

If ŷ = y, (4.7) will be the same as (4.2) and the result ẑ is at most w bits long. If ŷ = y−1,

(4.7) will be ẑ = c− (y− 1)×m = c− y×m+m = z +m. Because both z and m are w

bits long at most, the output is w+ 1 bits long at most. Consequently, the output of the

Barrett algorithm is w + 1 bits.

Bounds on the Input c

Because the output is likely to be the input of another modular multiplier or adder,

which will itself use the Barrett algorithm after a multiplication or an addition, we should

ensure that the output ẑ is w + 1 bits when there are two (w + 1)-bit multiplicands. We

will now show that this consistency exists if u and v are appropriately selected.

Since m is w bits and the product c is 2w + 2 bits long,

2w−1 ≤ m ≤ 2w − 1 < 2m (4.8)

and 22w+1 ≤ c ≤ 22w+2 − 1 < 22w+2. (4.9)

78 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

Then (4.5) becomes

y ≥ ŷ > y −
22w+2

2w+u
−

2w+v

2w−1
+

1

2u−v
− 1

⇔ y ≥ ŷ > y − (2w−u+2 + 2v+1 + 1− 2v−u). (4.10)

If we choose u− 2 ≥ w+1 i.e. u ≥ w+3 and also v ≤ −2, then (4.10) becomes the same

as (4.6):

y ≥ ŷ > y − 1.xx.

Therefore, ŷ = y or ŷ = y − 1 and the output ẑ is still w + 1 bits long in the case of a

(2w + 2)-bit input by choosing u ≥ w + 3 and v ≤ −2.

Now, ŷ ≤ y =
⌊

c
m

⌋

≤
⌊

22w+2

2w−1

⌋

= 2w+3. While m cannot be 2w+1 because it is usually

odd, ŷ < 2w+3. Therefore, the bound on the estimated quotient ŷ is w + 3 bits. In

conclusion, the bounds on the quotient, inputs and output are w + 3, 2w + 2 and w + 1

respectively. To save hardware, the parameters are suggested to be u = w+3 and v = −2

in Algorithm 5.

4.3 The RNS Modular Multiplication Algorithm

This section derives our main RNS Modular Multiplication (MM) algorithm using a sum of

residues. More upper-case variables reappear denoting large operands involved in modular

multiplication over the whole RNS. This section discusses the criteria for the selection of

the RNS moduli and presents the proposed RNS moduli-set. The derivation of the RNS

modular multiplication algorithm used in this work is discussed in detail by including all

the required mathematical equations and a working design example is included to provide

a clear understanding of the modular multiplication in the proposed RNS. The complexity

of the algorithm is analysed at the end of this section.

4.3. The RNS Modular Multiplication Algorithm 79

4.3.1 Moduli Selection

RNS moduli need to be co-prime. Hence one common practice is to select prime numbers

for the RNS moduli. Sometimes, however, a set of non-prime numbers can also be co-

prime, and therefore, RNS moduli selection becomes a case-specific problem.

In our application, RNS is used to accelerate a 256-bit modular multiplication. This

means that the binary inputs to the RNS are all 256 bits. Therefore, the dynamic range

D of the RNS should be no smaller than 512 bits so that the product of two 256-bit

numbers does not overflow.

The other rule to be considered is the even distribution of this 512-bit dynamic range

into the N moduli. The smaller the RNS channel width w, the faster the computa-

tion within the RNS and the more remarkable the advantage of RNS. Therefore, we

want w as small as possible. On the other hand, suppose that the N RNS moduli are

m0, m1, . . . , mN−1. If m0 is 16 bits and m1 is 64 bits long, the computation in the m1

channel can be much slower than in the m0 channel. Thus, in this paper, the N moduli

are selected to be the same wordlength. This means that the dynamic range of the RNS

system is evenly distributed into the N moduli.

The remaining work is to make sure that N co-prime w-bit moduli exist. For example,

suppose w = 8, N =
⌈

512
8

⌉

= 64, i.e. 64 co-prime moduli must be found within the range

from 27 = 128 to 28− 1 = 255. Because there are only 64 odd integers from 128 to 255, it

is impossible to find 64 co-prime numbers. Similar is the case when w = 9. For the case

of w = 10, a set of 81 co-prime numbers have been found within [29, 210− 1] = [512, 1023]

which are enough for the requirement of the number of moduli, N =
⌈

512
10

⌉

= 52.

Consequently, to construct an RNS system with a 512-bit dynamic range and equal

wordlength moduli, the channel width w should be at least 12 bits. On the other hand, a

lot of work in the literature has used the moduli in special forms, e.g. pseudo Mersenne

numbers [180] or in the form of 2w±1 [181]. However, from what has been discussed above,

80 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

it is almost impossible to find enough co-prime moduli in such special forms to construct

an RNS with a 512-bit dynamic range. Therefore, this work only focuses on general moduli

rather than special ones. This is also the feature of the work − that fast implementation

of modular multiplication does not have to rely on the special characteristics of the moduli

− which is shown by our proposed algorithm.

4.3.2 Sum of Residues Reduction in the RNS

To define an RNS modular reduction algorithm we start with the Chinese Remainder

Theorem (CRT) [19]. Using the CRT, an integer X can be expressed as

X =

〈

N−1
∑

i=0

Di〈D
−1
i xi〉mi

〉

D

, (4.11)

where D, Di and 〈D
−1
i 〉mi

are pre-computed constants. Defining γi = 〈D
−1
i xi〉mi

in (4.11)

yields

X =

〈

N−1
∑

i=0

γiDi

〉

D

=

N−1
∑

i=0

γiDi − αD. (4.12)

where α is an integer value. The computation of α is the major challenge in this equation

and is discussed in the subsequent subsection. Reducing this modulo the long wordlength

modulus M yields

Z =

N−1
∑

i=0

γi〈Di〉M − 〈αD〉M (4.13)

=
N−1
∑

i=0

Zi − 〈αD〉M

≡ X mod M

where Zi = γi〈Di〉M . Thus we have expressed Z ≡ X mod M as a sum of residues Zi

modulo M and a correction factor 〈αD〉M .

4.3. The RNS Modular Multiplication Algorithm 81

Note that γi = 〈D
−1
i xi〉mi

can be found using a single RNS multiplication, as 〈D−1
i 〉mi

is just a pre-computed constant. For the same reason, only one RNS multiplication is

needed for Zi = γi〈Di〉M , as 〈〈Di〉M〉mi
can be pre-computed.

In addition, to avoid negative residues in the RNS channels resulting from the sub-

traction in Equation (4.13), −〈αD〉M can be replaced by +〈−αD〉M , which in the RNS

is also a set of N pre-computed residues 〈〈−αD〉M〉mi
. This makes the last operation in

(4.13) a simple RNS addition and (4.13) becomes

Z =
N−1
∑

i=0

γi〈Di〉M + 〈−αD〉M , (4.14)

A further expansion to an expression of vectors of the pre-computed residues will make

this equation clearer:

z0

z1
...

zN−1

=
N−1
∑

i=0

〈D−1
i xi〉mi

〈〈Di〉M〉m0

〈〈Di〉M〉m1

...

〈〈Di〉M〉mN−1

+ α

〈〈−D〉M〉m0

〈〈−D〉M〉m1

...

〈〈−D〉M〉mN−1

(4.15)

4.3.3 Approximation of α

Now α becomes the only value yet to be found. Here the method provided by Kawamura

[102] is improved by decomposing its approximations, and more accuracy is achieved by

permitting exact γi.

Dividing both sides of (4.12) by D yields

α+
X

D
=

∑N−1
i=0 γiDi

D
=

N−1
∑

i=0

γi
mi

. (4.16)

Since 0 ≤ X/D < 1, α ≤
∑N−1

i=0
γi
mi

< α + 1 holds. Therefore

α =

⌊

N−1
∑

i=0

γi
mi

⌋

. (4.17)

82 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

In subsequent discussions, α̂ is used to approximate α. Firstly, an approximation of α̂ = α

or α− 1 will be given. Secondly, some extra work will exactly assure α̂ = α under certain

prerequisites.

Deduction of α̂ = α or α− 1

The first approximation is introduced here: a denominator mi in (4.17) is replaced

by 2w, where w is the RNS channel width and 2w−1 < mi ≤ 2w − 1. Then the estimate

of (4.17) becomes

α̂ =

⌊

N−1
∑

i=0

γi
2w

⌋

. (4.18)

The error incurred by this denominator’s approximation is denoted as

ǫi =
(2w −mi)

2w
. (4.19)

Then

2w =
mi

1− ǫi
. (4.20)

According to the definition of an RNS in Section 2.2, the RNS moduli are ordered

such that mi < mj for all i < j. Therefore, the largest error is

ǫ = max(ǫi) =
(2w −m1)

2w
. (4.21)

The accuracy of α̂ can be investigated:

0 ≤ γi ≤ mi − 1

⇒ 0 ≤

N−1
∑

i=0

γi
mi

< N. (4.22)

4.3. The RNS Modular Multiplication Algorithm 83

Therefore

N−1
∑

i=0

γi
2w

=

N−1
∑

i=0

γi(1− ǫi)

mi
(4.23)

=
N−1
∑

i=0

γi
mi

− ǫ
N−1
∑

i=0

γi
mi

⇒

N−1
∑

i=0

γi
2w

>

N−1
∑

i=0

γi
mi
−Nǫ. (4.24)

The last inequality holds due to Equation (4.22). If 0 ≤ Nǫ ≤ 1, then
∑N−1

i=0
γi
mi
− Nǫ >

∑N−1
i=0

γi
mi
−1. Thus

∑N−1
i=0

γi
2w

>
∑N−1

i=0
γi
mi
−1. In addition, obviously

∑N−1
i=0

γi
2w

<
∑N−1

i=0
γi
mi
.

Therefore

N−1
∑

i=0

γi
mi
− 1 <

N−1
∑

i=0

γi
2w

<

N−1
∑

i=0

γi
mi

. (4.25)

Then

α̂ =

⌊

N−1
∑

i=0

γi
2w

⌋

=

⌊

N−1
∑

i=0

γi
mi

⌋

= α, (4.26)

or

α̂ =

⌊

N−1
∑

i=0

γi
mi

⌋

− 1 = α− 1. (4.27)

when 0 ≤ Nǫ ≤ 1.

This raises the question: is it easy to satisfy the condition 0 ≤ Nǫ ≤ 1 in an RNS?

The answer is: the larger the dynamic range of the RNS, the easier. This is contrary

to most published techniques that are only applicable to RNSs with a small dynamic

range [44, 45, 182, 183].

Given 0 ≤ Nǫ ≤ 1 and ǫ = (2w−m1)
2w

, then

N − 1

N
≤

m1

2w
≤ 1, (4.28)

which means that there must be at least N co-prime numbers existing within the interval

I = [N−1
N

2w, 2w] for the use of RNS moduli.

84 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

Apart from this, it is also easy to satisfy the harsher condition 0 ≤ Nǫ ≤ 1
2
. This

requires

2N − 1

2N
≤

m1

2w
≤ 1, (4.29)

which can be derived using the process above. This will be used for further developments

in the next subsection.

The actual problem now is that α̂ could be α or α−1. From Equation (4.12), X̂ could

be X or X +D. Then two values of X mod M will result and it is difficult to tell the

correct one. Thus, α̂ needs to be the exact α.

Ensuring α̂ = α

To make sure that α̂ =
⌊

∑N−1
i=0

γi
2w

⌋

in (4.18) is equal to α instead of α−1, a correction

factor ∆ can be added to the floor function. Equation (4.18) becomes

α̂ =

⌊

N−1
∑

i=0

γi
2w

+∆

⌋

. (4.30)

Substituting Equation (4.16) into Equation (4.24) and Equation (4.25) yields

α +
X

D
−Nǫ <

N−1
∑

i=0

γi
2w

< α +
X

D
.

Adding ∆ on both sides yields

α +
X

D
−Nǫ+∆ <

N−1
∑

i=0

γi
2w

+∆ < α +
X

D
+∆. (4.31)

If ∆ ≥ Nǫ, then ∆ − Nǫ ≥ 0 and α + X
D
− Nǫ + ∆ ≥ α. If 0 ≤ X < (1 − ∆)D, then

X
D
+∆ < 1 and α + X

D
+∆ < α + 1. Hence

α <

N−1
∑

i=0

γi
2w

+∆ < α + 1. (4.32)

4.3. The RNS Modular Multiplication Algorithm 85

Therefore

α̂ =

⌊

N−1
∑

i=0

γi
2w

+∆

⌋

= α

holds. The two prerequisites obtained from the deduction above are

Nǫ ≤ ∆ < 1

0 ≤ X < (1−∆)D.

(4.33)

It has already been shown in the previous section that the first condition Nǫ < ∆ < 1 is

easily satisfied as long as ∆ is not too small. For example, ∆ could be 1
2
. The second one

is not very feasible at first sight as it requires X to be less than half the dynamic range D

in the case of ∆ = 1
2
. However, 1

2
D is just one bit shorter than D, which is a number of

over two thousand bits. Therefore, this can be easily achieved by extending D by several

bits to cover the upper bound of X . This is deduced in the following subsection. Hence

we have obtained an α̂ = α.

4.3.4 Bound Deduction

The RNS dynamic range to do a 256-bit multiplication should at least be 512 bits. How-

ever, RNS algorithms always require some redundant RNS channels. This subsection is

dedicated to confirming how many channels are actually needed for the new RNS modular

multiplication algorithm. Equation (4.14), the basis of the RNS modular multiplication

algorithm, is rewritten here:

Z =
N−1
∑

i=0

γi〈Di〉M + 〈−αD〉M . (4.14)

Note that the result Z may be greater than the modulus M and would require sub-

traction of a multiple of M to be fully reduced. Instead, the dynamic range D of the

RNS can be made large enough that the results of modular multiplications can be used

as operands for subsequent modular multiplications without overflow.

86 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

Given that γi < mi < 2w, 〈Di〉M < M and 〈αD〉M ≥ 0, then

Z =
N
∑

i=1

γi〈Di〉M − 〈αD〉M < N2wM. (4.34)

Thus, take operands A < N2wM and B < N2wM such that X = A× B < N222wM2.

According to Equation (4.33), we must ensure that X does not overflow (1−∆)D. If

it is assumed that M can be represented in h channels so that M < 2wh, then

X < N222wh+2w. (4.35)

X < (1−∆)D is required for D > 2wN−1, which will be satisfied if

N222wh+2w < (1−∆)2wN−1. (4.36)

This is equivalent to

N > 2h+ 2 +
1 + 2 log2

N
1−∆

w
. (4.37)

For example, for w ≥ 32, N < 128 and ∆ = 1
2
, it will be sufficient to choose N ≥ 2h+ 7.

Note that this bound is conservative, and fewer channels may be sufficient for a particular

RNS. This is because the bound of Z can be directly computed as

Z =

N−1
∑

i=0

γi〈Di〉M − 〈αD〉M ≤

N−1
∑

i=0

(mi − 1)〈Di〉M (4.38)

using the pre-computed RNS constants, mi and 〈Di〉M , instead of the worst-case bounds

N and M as in (4.34).

4.3.5 The New RNS Modular Multiplication Algorithm

Another Approximation

Equation (4.17) giving the exact α is rewritten here:

α =

⌊

N−1
∑

i=0

γi
mi

⌋

. (4.17)

4.3. The RNS Modular Multiplication Algorithm 87

2w has been used to approximate the denominator mi to form Equation (4.18) and Equa-

tion (4.30). Note that a numerator γi can also be simplified by being represented using

its most significant q bits, where q < w. Hence

γ̂i = 2w−q
⌊ γi
2w−q

⌋

. (4.39)

The error incurred by this numerator’s approximation is denoted as

δi =
γi − γ̂i
mi

. (4.40)

Then

γ̂i = γi − δimi. (4.41)

The largest possible error will be

δ =
2w−q − 1

m1
. (4.42)

Note that this approximation, treated as a necessary part of the computation of α in [102],

is actually not imperative. The algorithm should work fine without this approximation,

although it does simplify the computations in hardware.

Replacing γi in Equation (4.30) by γ̂i yields

α̂ =

⌊

N−1
∑

i=0

γ̂i
2w

+∆

⌋

. (4.43)

Then, Equation (4.23) becomes

N−1
∑

i=0

γ̂i
2w

=
N−1
∑

i=0

(γi − δimi)(1− ǫi)

mi

=
N−1
∑

i=0

γi(1− ǫi)

mi

−
N−1
∑

i=0

(1− ǫi)δi

≥ (1− ǫ)

N−1
∑

i=0

γi
mi
−Nδ

N−1
∑

i=0

γ̂i
2w

>
N−1
∑

i=0

γi
mi
−N(ǫ+ δ). (4.44)

88 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

This is because

0 < 1− ǫi =
mi

2w
< 1

⇒ 0 <

N−1
∑

i=0

(1− ǫi) < N, (4.45)

and

0 ≤
N−1
∑

i=0

γi
mi

< N. (4.22)

Note that the only difference between Equations (4.24) and (4.44) is that the ǫ in the

former is replaced by ǫ+ δ in the latter. Following a similar development to Section 4.3.3,

Equation (4.31) becomes

α +
X

D
−N(ǫ+ δ) + ∆ <

N−1
∑

i=0

γ̂i
2w

+∆ < α +
X

D
+∆. (4.46)

The two prerequisites in (4.33) are now

N(ǫ+ δ) ≤ ∆ < 1

0 ≤ X < (1−∆)D

(4.47)

This will again guarantee that

α̂ =

⌊

N−1
∑

i=0

γ̂i
2w

+∆

⌋

= α.

Substituting (4.39) into Equation (4.43) yields

α =

⌊

N−1
∑

i=0

⌊

γi
2w−q

⌋

2q
+∆

⌋

. (4.48)

This is the final equation used in the new algorithm to estimate α.

The Hardware Algorithm

The new sum-of-residues modular multiplication algorithm in the RNS is shown in

4.3. The RNS Modular Multiplication Algorithm 89

Algorithm 6. It computes Z ≡ A×B mod M using Equation (4.14).

Z =
N−1
∑

i=0

γi〈Di〉M + 〈−αD〉M . (4.14)

Note that, from Equation (4.17) and (4.22), α < N . Thus, 〈−αD〉M can be pre-computed

in the RNS for α = 0 . . . N − 1.

Algorithm 6 RNS modular multiplication algorithm

Require: M,N,w,∆, q, {m0, . . . , mN−1}

Require: (N2wM)2 < (1−∆)D,N((2
w
−m1)
2w

+ 2w−q
−1

m1
) ≤ ∆ < 1

Require: pre-computed table 〈D−1
i 〉mi

for i = 0, . . . , N − 1

Require: pre-computed table

〈〈Di〉M〉m0

〈〈Di〉M〉m1

...

〈〈Di〉M〉mN−1

for i = 0, . . . , N − 1

Require: pre-computed table 〈〈−αD〉M〉mi
for α = 1, . . . , N − 1 and i = 0, . . . , N − 1

Require: A < N2wM,B < N2wM

Ensure: Z ≡ A× B mod M

1: {x0, x1, . . . , xN−1} = {〈a0 × b0〉m0
, 〈a1 × b1〉m1

, . . . , 〈aN−1 × bN−1〉mN−1
}

2: γi = 〈xiD
−1
i 〉mi

for i = 0, . . . , N − 1

3: α =
⌊

∑N−1
i=0

⌊

γi
2w−q

⌋

/2q +∆
⌋

4: Yi = {〈γi×〈Di,0〉M〉m0
, 〈γi×〈Di,1〉M〉m1

, . . . , 〈γi×〈Di,N−1〉M〉mN−1
} for i = 0, . . . , N−1

5: Sumi =
∑N−1

j=0 Yj,i for i = 0, . . . , N − 1 ⊲ where Yj,i means ith channel of Yj

6: Zi = 〈Sumi + 〈〈−αD〉M〉i〉mi
for i = 0, . . . , N − 1

The flow chart of the proposed algorithm is shown in Fig. 4.2. In Fig. 4.2 thick wires

represent RNS values whereas regular wires represent binary values of up to w bits.

90 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

N RNS Multiplications in

Parallel

Addition of N+1 w-bit

values

Addition of N w-bit

values
ROM

RNS Addition

RNS Multiplication

�����

��

��

α

γ

��

��� ��	���

� �

∆

�����

RNS Multiplication

�����

Figure 4.2: RNS modular multiplication flow chart of Algorithm 6

4.3. The RNS Modular Multiplication Algorithm 91

4.3.6 Proposed RNS Moduli and Pre-computed Values

This section explains the selection of different design parameters, proposed RNS moduli

and the pre-computed values required for the implementation of Algorithm 6.

Parameter Selection

This section describes the selection of N , w, ∆, and q for the proposed design. The selec-

tion procedure can be simplified by setting q = w initially which modifies Equation (4.47)

as follows:

0 < Nǫ ≤ ∆ < 1

0 ≤ X < (1−∆)D

(4.49)

According to Equation (4.49) setting ∆ to a large value requires to increase the dy-

namic range in order to satisfy X < (1−∆)D. On the other hand a small value of ∆ can

make it difficult to satisfy the constraint Nǫ ≤ ∆. Therefore it is reasonable to set ∆ = 1
2

in order to find out maximum N against different values of w. Setting ∆ = 1
2
in the first

part of Equation 4.49 yields

0 < Nǫ ≤
1

2
(4.50)

Substituting ǫ from Equation (4.21) in the above equation gives

0 < N

(

2w −m1

2w

)

≤
1

2
(4.51)

Solving this equation for m1 gives

2w < m1 ≥
2N − 1

2N
2w (4.52)

This means there must be at least N co-prime numbers within the interval I =
[

2N−1
2N

2w, 2w
]

. A MATLAB script was written to compute maximum channels N against

92 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

Table 4.1: Maximum possible N against w in new RNS modular multiplication

w (bits) Max. N D (bits) w (bits) Max. N D (bits)

6 3 18 7 5 35

8 6 48 9 9 81

10 12 120 11 17 187

12 21 252 13 29 377

14 40 560 15 49 735

16 69 1104 17 95 1615

18 128 2304 19 180 3420

20 241 4820 21 333 6993

∗
D represents the number of bits for the dynamic range

4.3. The RNS Modular Multiplication Algorithm 93

different w to show the availability of required co-primes for a wider range. Table 4.1 lists

the maximum N for w from 6 to 19.

Since a shorter channel-width allows faster operation the minimum value of w = 14 is

selected from Table 4.1 for the required dynamic range of 512 bits. N is selected to be 40

which gives a dynamic range of 560 bits. The reason for setting N to its maximum value

is because the RNS modular multiplication algorithm does not fully reduce the output

therefore few additional bits are required to avoid overflow. Note that the values of ∆

and q are assumed to be 1
2
and w, respectively, to decide the w and N .

The second phase of the selection is to choose a smaller value for q while still satisfying

the condition set in Equation (4.47). The motivation to set q to a smaller value is a reduced

hardware for the addition in Equation (4.48). Equation (4.47) is analysed for different

values of q and the minimum value of 8 is selected for q which requires an increase in the

value of ∆. The new value of ∆ is set to 0.75 which still satisfied X < (1−∆)D. Hence

the parameters w, N , q, and ∆ are set to 14, 40, 8, and 0.75, respectively.

RNS Moduli and Pre-computed Values

Values of N (total channels) and w (channel-width) are set to 40 and 14, respectively,

from Table 4.1. This gives a dynamic range of 560 bits. Matlab script was written to

find the 40 co-prime numbers within the interval I =
[

2N−1
2N

2w, 2w
]

= [16179, 16384]. The

complete RNS moduli generated from the MATLAB script is given in the Table 4.2.

Table 4.3 lists the precomputed values required for the proposed algorithm. The overall

memory requirement to store the precomputed values is approximately 6 K Bytes. The

precomputed value Ki and 〈D
−1
i 〉mi

require 720 and 560 bits only. The major part of the

memory is used to store the precompute values 〈〈Dj〉M〉mi
and 〈〈−αD〉M〉mi

that require

approximately 2.7 K Bytes and 2.9 K Bytes, respectively.

The upper bound on the output Z is given by Equation (4.38). Exact values of

94 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

Table 4.2: Proposed RNS moduli set for a dynamic range of 560 bits

16183 16187 16189 16193 16199 16217 16223 16229

16231 16241 16243 16249 16253 16259 16267 16271

16273 16277 16279 16301 16307 16309 16319 16321

16327 16333 16337 16339 16343 16349 16351 16361

16363 16367 16369 16373 16375 16379 16381 16383

proposed RNS moduli and other parameters are used in Equation (4.38) to compute an

upper bound of 276 bits on Z. The dynamic range for the proposed RNS is 560 bits which

can easily accommodate the result of Z × Z = 552bits.

4.3.7 A Design Example

This section presents an example to illustrate the operation of the proposed Algorithm 6.

The complete moduli set used in this example is given in Table 4.2. The inputs and

precomputed values used for the algorithm are given as follows:

• moduli = [16183, 16187, ..., 16383]

• M = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 (Koblitz curve)

• N = 40, w = 14,∆ = 0.75, q = 8 (From Section 4.3.6)

• D−1
i = [1027, 13322, ..., 698]

• 〈Di〉M = {[3064, 11630, ..., 14819], [2396, 10967, ..., 6494], ..., [10399, 1229, ..., 678]}

• Ai = [11169, 1811, ..., 15]

4.3. The RNS Modular Multiplication Algorithm 95

Table 4.3: Pre-computed parameters for Algorithm 5 and Algorithm 6

i 0 1 . . . N -1

Ki K0 K1 . . . KN−1

〈D−1
i 〉mi

〈D−1
0 〉m0

〈D−1
0 〉m1

. . . 〈D−1
N−1〉mN−1

〈〈D0〉M〉m0
〈〈D0〉M〉m1

. . . 〈〈D0〉M〉mN−1

〈〈D1〉M〉m0
〈〈D1〉M〉m1

. . . 〈〈D1〉M〉mN−1

〈〈Dj〉M〉mi

. . . .

. . . .

. . . .

〈〈DN−1〉M〉m0
〈〈DN−1〉M〉m1

. . . 〈〈DN−1〉M〉mN−1

0 0 . . . 0

〈〈−D〉M〉m0
〈〈−D〉M〉m1

. . . 〈〈−D〉M〉mN−1

〈〈−2D〉M〉m0
〈〈−2D〉M〉m1

. . . 〈〈−2D〉M〉mN−1

〈〈−αD〉M〉mi

. . . .

. . . .

. . . .

〈〈−(N − 1)D〉M〉m0
〈〈−(N − 1)D〉M〉m1

. . . 〈〈−(N − 1)D〉M〉mN−1

96 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

• Bi = [6273, 5504, ..., 9258]

The steps below show the computation of the operation (A×B mod M), where each

step corresponds to the steps of Algorithm 6.

1. xi = [〈11169× 6273〉16183, 〈1811× 5504〉16187, ..., 〈15× 9258〉16383]

= [6930, 12739, ..., 7806]

2. γi = [〈6930× 1027〉16183, 〈12739× 13322〉16187, ..., 〈7806× 698〉16383]

= [12773, 4450, ..., 9432]

3. α = ⌊ (199+69+91+...+147)
28

+ 0.75⌋

= 25

4. Yi = {[〈12773× 3064〉16183, 〈12773× 11630〉16187, ..., 〈12773× 14819〉16383],

[〈4450× 2396〉16183, 〈4450× 10967〉16187, ..., 〈4450× 6494〉16383], ...,

[〈9432× 10399〉16183, 〈9432× 1229〉16187, ..., 〈9432× 678〉16383]}

Yi = {[5978, 1891, ..., 10288], [13786, 15532, ..., 15071], ..., [14388, 2036, ..., 5526]}

5. Sum = [〈5978 + 13786 + ... + 14388〉16183,

〈1891 + 15532 + ...+ 2036〉16187, ...,

〈10288 + 15071 + ... + 5526〉16383]

Sum = [9497, 15253, ..., 12845]

6. 〈−αD〉M = [13693, 3365, ..., 10031]

Z = [〈9497 + 13693〉16183, 〈15253 + 3365〉16187, ..., 〈12845 + 10031〉16383]

Z = [7007, 2431, ..., 6493]

4.3. The RNS Modular Multiplication Algorithm 97

The values of A, B, and Z are given below in the binary number system (decimal

representation) for better understanding.

A = 1157920892373161954235709850086879078532699846656405640394575840079131

29639935

B = 7645500618709024670972844945214757001688688318560178355583814354233424

2947072

Z = 2619465219992467549585156705197008821815356492891034885507922146802935

7382718268039

4.3.8 Complexity Analysis

The complexity of the proposed Algorithm 6 can be analysed as follows:

1. Step 1 of Algorithm 6 performs one RNS multiplication. This is implemented by

N w -bit multipliers followed by Barrett reduction operations implemented by Algo-

rithm 5. One Barrett reduction requires 2 w -bit multipliers and 1 w -bit subtractor.

Hence Step 1 requires 3N w -bit multipliers and N w -bit subtractors.

2. Step 2 also performs one RNS multiplication therefore the complexity of this step

is the same as for Step 1.

3. Step 3 requires two division operations which can be easily implemented by simple

right shifts because the divisor is a power of 2. These shifted values are then added

together by using Wallace reduction ofN+1 rows. The Wallace reduction is followed

by an adder to add the last two rows. Hence this step requires one Wallace reduction

of N + 1 rows and one w-bit adder.

4. Step 4 performs N RNS multiplications in parallel. Each RNS multiplication re-

quires 3N w-bit multipliers and N w-bit subtractors. Hence the overall complexity

of this step is 3N2 w-bit multipliers and N2 w-bit subtractors.

98 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

5. Step 5 performs addition on the output of Step 4, i.e. N RNS values. In parallel

fashion channel 1 of Y0, Y1, . . . , YN−1 is added together, channel 2 of Y0, Y1, . . . , YN−1

is added together, and so on. Step 5 of Algorithm 6 can be re-written as follows to

improve the clarity:

{Sum0, Sum1, . . . , SumN−1} =

{Y0,0+Y1,0+· · ·+YN−1,0, Y0,1+Y1,1+· · ·+YN−1,1, . . . , Y0,N−1+Y1,N−1+· · ·+YN−1,N−1}

Each addition is performed by using a Wallace reduction of N rows followed by one

(w + 6)-bit adder to add the last two rows. The complexity of this step is analysed

as N Wallace reductions and N (w + 6)-bit adders.

6. Step 6 of Algorithm 6 performs one RNS addition. This is implemented by N w -bit

adders followed by Barrett reductions. Thus this step requires 2N w-bit multipliers,

N w-bit adders, and N w-bit subtractors.

Based on this analysis the complexity of the proposed architecture is summarised in

Table 4.4. Note that the adders and subtractors are assumed to be of equal complexity

for simplicity of analysis.

Table 4.4: Complexity analysis of the proposed architecture

Block Type No. of Blocks Critical Path∗

w-bit Mult 3N2 + 8N 11

w-bit Add/Sub N2 + 5N + 1 6

Wallace Tree (N rows) N + 1 1

∗
Critical path is given for non-pipelined version

4.3. The RNS Modular Multiplication Algorithm 99

It can be seen from Table 4.4 that the critical path of the proposed architecture consists

of only eleven and six w-bit multipliers and adders, respectively. It is important to note

that the numbers of multipliers and adders in the critical path are independent of the

number of channels. This property allows the scaling of the proposed architecture with

very little decrease in the speed.

In order to compare the proposed architecture with other RNS-based modular multi-

pliers we evaluated the complexity in terms of w-bit modular multiplications and modular

additions, following the approach given in [95]. The step-by-step analysis of the complex-

ity is described as follows:

• Steps 1, 2: N modular multiplications are performed in parallel in these steps. Thus

a total of 2N modular multipliers are required. However the critical path consists

of only two modular multiplications.

• Step 3: Step 3 is rquired to add N+1 values using the Wallace reduction where each

value is q + 1 bits long. q is usually a few bits less than w as discussed in detail in

Section 4.3.5. Since the process is very similar to that of a multiplication (with the

exception of partial-product generation), for simplicity we evaluate the complexity

of Wallace reduction in terms of multipliers. It is reasonable to say that a Wallace

reduction of 9 (q+1 bits) columns and 41 (N +1) rows has a similar complexity to

two 15-bit (w bits) multipliers. Hence the complexity of Step 3 is estimated to be

equivalent to a 2
3
modular multiplication.

• Step 4: In this step N2 modular multiplications are performed in parallel, which

means that the delay of this step is the same as the delay of one modular multiplier.

• Step 5: Step 5 is required to add N w-bit values using the Wallace reduction. Based

on the above explanation the complexity of Wallace reduction is estimated to be

100 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

equivalent to three w-bit multipliers. Hence the complexity of Step 5 is estimated

to be equivalent to one modular multiplication.

• Step 6: This step consists of one w ×N ×N ROM and N modular additions. One

modular addition is estimated to be equivalent to 3
4
of a modular multiplication.

Table 4.5 compares the complexity of the proposed architecture with existing state-

of-the-art RNS-based modular multipliers.

Table 4.5: Number of w -bit modular multiplications in the considered RNS MM Algo-

rithms

Design Modular Multiplications

[111] 2N2 + 5N

[113] (with [102])∗ 2N2 + 6N

[113] (with [98])∗ 2N2 + 5N

[95] 4N2 + 20N + 7

Proposed Design N2 + 3N + 2

∗
512-bit design

It can be seen from Table 4.5 that the proposed design requires about one-half or one-

third the number of modular multiplications for the designs of [111] and [95], respectively.

The work in [113] proposed two different designs based on the work of [102] and [98].

Since these designs implement a 512-bit modular multiplier, a detailed analysis is required

in order to perform a fair comparison. To do this, the proposed design needs to be modified

such that it has the same dynamic range as in [113]. The dynamic range of [113] is 1055-bit

4.4. Proposed Architectures 101

with N = 33 and w = 32. Putting this value of N in Table 4.5 gives us 2N2 + 5N=2343

modular multiplications where each multiplication is 32-bit.

In order to perform a fair comparison the proposed design needs to be scaled such

that it has the same dynamic range as in [113]. This can be done by increasing the

channel width (w) and/or number of channels (N). The values of N=62 and w=18 are

proposed which increased the dynamic range to 1053-bit with very little effect on the

delay (Note that the size of each modulus is w− 1 bits as explained in Section 4.2). Thus

the proposed design requires N2 + 3N + 2=4032 modular multiplications where each

multiplication is of 18 bits. For simplicity, it is assumed that that one 18-bit modular

multiplier is equivalent to 18
32

= 0.56 of a 32-bit modular multiplier. Hence, the proposed

design requires 4032×0.56 = 2258 32-bit modular multiplications. Based on this analysis,

the complexity of the proposed design, in terms of w -bit modular multiplications and w -

bit modular additions, is 3.6% lower than that in [113].

4.4 Proposed Architectures

Three different architectures are implemented for Algorithm 6 to demonstrate the flexi-

bility of the algorithm and make an analysis of the different architectures. The trade-off

between area and delay in different architectures allows this modular multiplier to be used

in a wide range of applications. The precomputed values required for the architectures

are listed in Table 4.3.

4.4.1 Parallel Architecture

This is a direct implementation of Algorithm 6 and exhibits the highly parallel nature

of the algorithm. Fig. 4.3 shows the parallel architecture of the modular multiplier of

Algorithm 6.

102 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

�������

�����

�����

�����

�����

�	���
����������	�

����� ����� ����������

�����

�������������

������	������

�������������

������	������

�������������

������	������

�����

���

�� �� ����

���	
��� ���	
�� ���	
����

�� �� ������ �� ����

���������

γ

α

�
��
�
��

�
��
�
��

�
��
�
��

�
��
�
�	

�
��
�
�

�

α

�
��
�
�

�

���� ����

������� ��������������

�����

�����

������ ����� �������

�� �� ������ �� ����

���������

������� ������� �������

�����

�����

��
��� ��
�� ��
����

�� �� ������ �� ����

���������

������� �������

�������

�����

�����

�� �� ������ �� ����

���������

������� �������

�� �� �� �� ���� ����

�������

�����

�����

�� �� ������ �� ����

���������

������� �������

�
��
� �

��
� �

��
���X� X� X���

γ
�

γ
�

γ
���

�� �� ������ �� ����

���������

������� �������

�����

�����

�����

�
��
�
�

���� ����������

���������	��
������

������������
��������

�	���	������������	��� ���	���	����!��"	�#

�������������

������	������

�������

�	���	���������$��	��� ���	���	����!��"	�#

����������

�� �����"����� ���%������	�

�� &��
��
� &������ � ����� �����'��������!����"�

���������	��
����

������������
��������

Figure 4.3: Highly Parallel Architecture of RNS MM

4.4. Proposed Architectures 103

It can be seen in Fig. 4.3 that concurrent operations are performed on RNS channels

of short wordlength (at most w bits, the RNS channel width) within the RNS. The only

exception to this is the Wallace reduction blocks in Steps 3 and 5, which require up to

w + 6 bits to accommodate the valid result. The architecture performs the following

steps (The step numbers follow those in Algorithm 6):

• In step 1, the product X = A × B is computed within the RNS. This RNS multi-

plication involves three short-wordlength multiplications and one subtraction.

• In step 2, an RNS multiplication is performed to find γ. This corresponds to three

multiplications followed by one subtraction in the architecture of Fig. 4.3.

• Steps 3 and 4 are performed in parallel. RNS multiplications are used to compute

the Yis in step 4 while the γis are used to generate α in step 3.

• Step 5 and part of step 6 are also performed simultaneously. The sum
∑

Yi is

performed in step 5 while 〈−αD〉M is retrieved from memory in step 6.

• Finally, in the other part of step 6, Z is produced by adding 〈−αD〉M and Sum.

Hence this is a highly parallel structure with only 3 RNS multiplications, 1 Wallace

reduction tree, and 2 RNS additions in the critical path. In order to achieve a higher speed

the multi-input addition is performed by a counter-based Wallace tree (from Chapter 3)

which has less delay than the conventional Wallace tree.

4.4.2 Serial Architecture

The implementation of Algorithm 6 using a parallel architecture in Section 4.4.1 requires

a large amount of area, which limits its use in many applications. Therefore a serial archi-

tecture is developed which reduces the hardware up to N times (where N is the number

of RNS channels). This is accomplished by folding the parallel architecture N times such

104 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

that the operations are performed on one RNS channel instead of concurrent operations

on all channels. The folded architecture requires N cycles to perform one modular multi-

plication, which shows a clear trade-off between area and delay. The modified algorithm

for this architecture is given in Algorithm 7.

The pre-computed values required for Algorithm 7 are same as that of Algorithm 6.

The execution of the algorithm is divided in to two parts, where each part consists of a

for loop of N iterations. The first part starts with the initialisation of α and Sum in

Step 1 and Step 2. The subsequent five steps (Step 4 to Step 8) are part of the for loop

of N iterations, i.e. the total number of channels in the RNS moduli. Step 4 and Step

5 perform one modular multiplication in a w-bit RNS channel to calculate xi and γi. In

Step 6 shift operations are used to perform the division operations on γ, and result is

accumulated to α. Yi is computed in Step 7 by multiplying the ith channel of γ by all

channels of Di. This is the only Step in Algorithm 7 where a complete RNS multiplication

is performed in parallel. Step 8 performs N small-word-length additions in each iteration

to compute Sum. It is to be noted that no modular reduction is performed in this step,

therefore the word length of the addition increases to w + 7 to accommodate the result.

The computation of Sum and α is complete at the end of N iterations.

The second part of Algorithm 7 consists of one for loop of N iterations. The value

of 〈〈−αD〉M〉i is obtained from the ROM and added to Sumi for each RNS channel to

compute the final result Z.

The serial architecture of the modular multiplier is shown in Fig. 4.4. The area of

this architecture is expected to be about 1/N times the size of the parallel architecture.

Similarly, the delay is expected to increase by a factor of N due to additional cycles for

one modular multiplication.

The serial modular multiplier in Fig. 4.4 consists of three pipelines stages where the

third pipeline stage operates at a lower frequency, of 1/N of the original clock. The

4.4. Proposed Architectures 105

Algorithm 7 RNS modular multiplication algorithm - Serial Version

Require: M,N,w,∆, q, {m0, . . . , mN−1}

Require: (N2wM)2 < (1−∆)D,N((2
w
−m1)
2w

+ 2w−q
−1

m1
) ≤ ∆ < 1

Require: pre-computed table 〈D−1
i 〉mi

for i = 0, . . . , N − 1

Require: pre-computed table

〈〈Di〉M〉m0

〈〈Di〉M〉m1

...

〈〈Di〉M〉mN−1

for i = 0, . . . , N − 1

Require: pre-computed table 〈〈−αD〉M〉mi
for α = 1, . . . , N − 1 and i = 0, . . . , N − 1

Require: A < N2wM,B < N2wM

Ensure: Z ≡ A× B mod M

1: α = ∆

2: Sum = 〈0, 0, . . . , 0〉

3: for i = 0→ N − 1 do

4: xi = 〈ai × bi〉mi

5: γi = 〈xiD
−1
i 〉mi

6: α =
⌊

γi
2w−q

⌋

/2q + α

7: Yi = {〈γi × 〈Di,0〉M〉m0
, 〈γi × 〈Di,1〉M〉m1

, . . . , 〈γi × 〈Di,N−1〉M〉mN−1
}

8: Sum = {〈Yi,0 + Sum0〉, 〈Yi,1 + Sum1〉, . . . , 〈Yi,N−1 + SumN−1〉}

9: end for

10: for i = 0→ N − 1 do

11: Zi = Sumi + 〈〈−αD〉M〉i

12: end for

106 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

�����

��������		��

��

������

�� ��

���

�����

����������

��

�		

����

������

 !

�	
�

��������		��

������

�" �"

���

�	
�

��������		��

������

�#$" �#$"

���

�	
�

��������		��

 !

�	��

�����

���

��

������

������

���

��

��
�

�"�� �#$"

��

��

����������������

���

�� ����!"#���������������$%

%&'()

�� ��

���������������!

*+,-./+,-.

*+,-./+,-.

��

&������

�����

��

��

����

�	

 ! !

��0
��1

��2�34

��2

�

��

Figure 4.4: Serial Architecture of RNS MM

4.4. Proposed Architectures 107

different steps in the architecture are explained as follows:

An additional input start is added which is used to indicate the start of a new input

sequence. The counter is set to 0 at the arrival of a new input which is indicated by a

start input. In the first cycle Ai and Bi are multiplied followed by a modular reduction

operation according to Step 4 of Algorithm 7. In the second cycle the value of γi is

computed in pipeline stage 2 by a modular multiplication while pipeline stage 1 performs

modular multiplication on Ai and Bi. In the third cycle data has reached pipeline stage

3 which performs Steps 6, 7, and 8 of Algorithm 7. Since the pipeline registers of stage

3 operate on a slower clock no data will be passed to the final stage until Sum and α

computations are completed. At the completion of N + 3 cycles the values of Sum and

α are forwarded to the last stage which performs modular addition on each RNS channel

and produces the final result to the output sequentially. Hence the latency of the serial

modular multiplier is 43 cycles.

The serial modular multiplier is fabricated on 1 mm2 ASIC which is discussed in

detail in Chapter 5. Fig. 4.5 shows the layout of the fabricated chip using 65 nm CMOS

technology.

4.4.3 Serial-Parallel Architecture

The serial-parallel architecture is designed to demonstrate the high flexibility of Algo-

rithm 6 to suit the requirements for various applications. The serial-parallel architecture

provides a controlled balance between area and delay by selecting the degree of par-

allelism. In order to make efficient utilisation of the hardware the number of parallel

channels should be decided such that it is a factor of N .

Proposed RNS moduli consist of 40 channels therefore the degree of parallelism can

be 1, 2, 4, 5, 8, 10, 20 or 40. Selecting the parallelism degree of 1 gives the serial modular

multiplier which is discussed in the Section 4.4.2. Similarly, the parallelism degree of 40

108 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

Figure 4.5: RNS-based modular multiplier chip layout

4.5. Implementation of the Proposed Architectures 109

refers to the parallel modular multiplier where operations are performed concurrently on

all 40 channels as discussed in Section 4.4.1. The degree of parallelism is selected to be 4

to construct the serial-parallel architecture using the proposed RNS moduli. Algorithm 6

is modified to provide a clear explanation of the different steps performed in parallel. The

modified algorithm is given as Algorithm 8.

Algorithm 8 is very similar to the serial algorithm given in Algorithm 7 except that

each step of this algorithm operates concurrent operations on four RNS channels. Due to

this only N/4 iterations are required instead of N to compute one modular multiplication.

The block diagram of the serial-parallel architecture is shown in Fig. 4.6.

The serial-parallel architecture in Fig. 4.6 betters the delay of the serial architecture

by a factor of four but requires four times the area due to parallel processing on different

channels. The two inputs are fed to the system in a pair of four channels and the outputs

are available in four channels. Memory requirement for this architecture is the same as

that of the serial and parallel architectures.

4.5 Implementation of the Proposed Architectures

The VHDL codes are developed for all the proposed architectures and extensive sim-

ulations are performed in Modelsim to verify the designs. The proposed architectures

are implemented on hardware using FPGA and ASIC platforms to analyse and compare

their performance with the existing modular multipliers in the literature. The results are

obtained for delay, area, and power consumption.

4.5.1 FPGA Implementation

The FPGA platforms selected to implement the proposed architectures are Xilinx Virtex-

6 (XC6VSX475T-2-FF1759) and Virtex-7 (XC7VX485T-2-FFG1761). The structure of

110 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

Algorithm 8 RNS modular multiplication algorithm - Serial-Parallel Version

Require: M,N,w,∆, q, {m0, . . . , mN−1}

Require: (N2wM)2 < (1−∆)D,N((2
w
−m1)
2w

+ 2w−q
−1

m1
) ≤ ∆ < 1

Require: pre-computed table 〈D−1
i 〉mi

for i = 0, . . . , N − 1

Require: pre-computed table

〈〈Di〉M〉m0

〈〈Di〉M〉m1

...

〈〈Di〉M〉mN−1

for i = 0, . . . , N − 1

Require: pre-computed table 〈〈−αD〉M〉mi
for α = 1, . . . , N − 1 and i = 0, . . . , N − 1

Require: A < N2wM,B < N2wM

Ensure: Z ≡ A× B mod M

1: α = ∆

2: Sum = 〈0, 0, . . . , 0〉

3: for j = 0→ (N
4
− 1) do

4: xi = 〈ai × bi〉mi
for i = j × 4 to (j × 4) + 3

5: γi = 〈xiD
−1
i 〉mi

for i = j × 4 to (j × 4) + 3

6: α =
⌊

γi
2w−q

⌋

/2q + α for i = j × 4 to (j × 4) + 3

7: Yi = {〈γi × 〈Di,0〉M〉m0
, 〈γi × 〈Di,1〉M〉m1

, . . . , 〈γi × 〈Di,N−1〉M〉mN−1
} for i = j × 4

to (j × 4) + 3

8: Sum = {〈Yi,0 + Sum0〉, 〈Yi,1 + Sum1〉, . . . , 〈Yi,N−1 + SumN−1〉} for i = j × 4 to

(j × 4) + 3

9: end for

10: for j = 0→ (N
4
− 1) do

11: Zi = Sumi + 〈〈−αD〉M〉i for i = j × 4 to (j × 4) + 3

12: end for

4.5. Implementation of the Proposed Architectures 111

. . .

Serial Tree Adder

ROM

Barrett

K0 m0

Mul

. . .

‹‹−αD›M›mi+1

Zi+1

Barrett

zero

Barrett

K1 m1

Mul

Barrett

KN-1 mN-1

Mul

∆

. . .

Mul

Xi

Barrett

Barrett

Mul

Ai

α

Reg

Sum

Pipeline Stage 3 (operates at a frequency of 4/N of original clk)

count

Ki

Reg

Counter

Start

Reg

Reg

comp

sel

ROMD

Bi

Reg

Barrett

K0 m0

Mul

Barrett

K1 m1

Mul

Barrett

KN-1 mN-1

Mul

Barrett

K0 m0

Mul

Barrett

K1 m1

Mul

Barrett

KN-1 mN-1

Mul

.

. . .
. . .

.

. . .

. . .

. . .

Wire Interconnection
Yi+1,0 Yi+2,0 Yi+3,0 Y i,N-1Yi+1,N-1

Y i+2,N-

1
Y i+3,N-1Y i,1 Yi+1,1 Yi+2,1 Yi+3,1Yi,0

Yi,1Y i,0 Yi,N-1 Yi+1,1Yi+1,0 Yi+1,N-1 Yi+3,1Yi+3,0 Y i+3,N-1

Serial Tree Adder

zero

Serial Tree Adder

zero

. . .

. . . Serial Tree Adder

γ
i

γ
i+3

γ
i+2

γ
i+1

Zi

Add

Barrett

. . .

Reg

Zi+2

Barrett

. . .

Reg

Zi+3

Barrett

. . .

Reg

Mul

Barrett

Mul

Barrett

γ
i

Mul

Barrett

ROMDinv

X i+1

Barrett

Mul

Ai+1

Reg

Bi+1

Reg

Xi+1

Barrett

Mul

Ai+2

Reg

Bi+2

Reg

Xi+1

Barrett

Mul

Ai+3

Reg

Bi+3

Reg

ROMmROMK

Pipeline Stage 1

Ki+1 Ki+2 Ki+3

Ki Ki+1 Ki+2 Ki+3mi mi+1 mi+2 mi+3

‹‹−αD›M›mi ‹‹−αD›M›mi+2 ‹‹−αD›M›mi+3

γ
i+3

γ
i+2

γ
i+1

Add Add Add

Pipeline Stage 2

mi mi+1 mi+2 mi+3

Figure 4.6: 4-Channel Serial-Parallel Architecture of RNS MM

112 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

slices and DSP slices for both of these FPGA families is same however they are imple-

mented on different technology. Each slice consists of 4 lookup tables (LUTs), eight

flip-flops (FFs), multiplexers and some arithmetic carry logic. Each LUT in Virtex-6 and

Virtex-7 FPGA can be configured either as a one 6-input LUT or as two 5-input LUTs.

The detailed descriptions of Virtex-6 and Virtex-7 FPGAs are given in Appendix E.

The designs are synthesized with an “Optimization Goal” of Speed, and “Optimization

Effort” of Normal. Other synthesis parameters e.g. Register duplication, Max Fanout,

ROM implementation sytle, etc., are set to default values.

4.5.2 ASIC Implementation

The VHDL codes of the proposed modular multipliers are implemented on ASIC using

SAED90nm technology library in Synopsys Design Compiler. The constraints are set for

the minimum delay and compile effort was set to high. The typical corner set of the

library is used for synthesis which provides the models for average PVT (process, voltage,

temperature) variations. The synthesis options and different library parameters are listed

in the Table 4.6. The synthesis scripts for proposed parallel modular multipliers are given

in Appendix B.

4.5.3 Power Analysis

The power analysis of the synthesised designs is performed using Synopsys Prime Time

by time-based strategy.

Firstly, the delay information of the designs are generated by Design Compiler as a SDF

(Standard Delay Format) file. Secondly, the SDF-based simulations of the synthesised

netlists are performed in ModelSim to generate the switching activity of the designs at the

maximum possible frequency. Finally, time-based power analysis is performed in Prime

Time in the presence of the switching activity to obtain the accurate power consumption

4.6. Analysis and Comparison of Results 113

Table 4.6: Synopsys Design Compiler parameters used for the synthesis of modular mul-

tiplier architectures

Technology 90 nm CMOS

Library used SAED90nm typ

Supply Voltage 1.2 V

Temperature 25◦C

Output load 1.5 pF

Interconnect Model Balanced-Tree

Compile effort High

Wire load model Automatic

of the designs. The complete scripts for power analysis are given in Appendix B.

4.6 Analysis and Comparison of Results

The ASIC and FPGA implementation results for the proposed modular multipliers are

given in Table 4.7 and Table 4.8, respectively. The delay and area for ASIC implementa-

tions are based on the synthesis reports from Design Compiler whereas power consumption

is obtained from Synopsys Prime Time. FPGA results in Table 4.8 are obtained from

post-place&route reports in Xilinx ISE.

The cycle time in Table 4.7 and Table 4.8 refers to the minimum clock period required

to perform post-synthesis simulations in ModelSim. Clock Cycles are computed by adding

the number of iterations and the number of pipeline stages in the architecture. Note that

114 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

T
ab

le
4.7:

S
y
n
th
esis

resu
lts

of
p
rop

osed
m
o
d
u
lar

m
u
ltip

lier
im

p
lem

en
tation

s
on

90
n
m

C
M
O
S

D
e
sig

n
C
y
c
le

C
lo
ck

C
y
c
le
s

L
a
te
n
c
y

A
v
g
.
D
e
la
y

A
re

a
T
h
ro

u
g
h
p
u
t

P
o
w
e
r

E
n
e
rg

y
A
re

a
×
D
e
la
y

T
im

e
(Iteration

s
fo
r
o
n
e
M

M

(n
s)

+
p
ip
elin

es)
(n
s)

(n
s)

(m
m

2)
(M

b
p
s)

(
µ
W

)
(fJ

)

M
M

P
A

P
25.00

1+
2

75.00
25.0

43.02
10240

5.946
148.65

1075.5

M
M

P
A

N
72.70

1+
0

72.70
72.70

43.65
3521

8.335
605.95

3173.3

M
M

S
P
A

34.58
10+

3
449.54

345.8
6.051

740
0.915

316.27
2092.4

M
M

S
A

24.76
40+

3
1064.68

990.4
1.647

258
0.323

319.50
1631.2

M
M

P
A

P
:
M
o
d
u
la
r
M
u
ltip

lier
P
a
ra
llel

A
rch

itectu
re

(P
ip
elin

ed
)

M
M

P
A

N
:
M
o
d
u
la
r
M
u
ltip

lier
P
a
ra
llel

A
rch

itectu
re

(N
o
n
-P

ip
elin

ed
)

M
M

S
P
A
:
M
o
d
u
la
r
M
u
ltip

lier
S
eria

l-P
a
ra
llel

A
rch

itectu
re

M
M

S
A
:
M
o
d
u
la
r
M
u
ltip

lier
S
eria

l
A
rch

itectu
re

4.6. Analysis and Comparison of Results 115

the pipelined version of parallel architecture (MM PA P) requires 3 clock cycles where

each cycle is of 25 ns. Hence the latency of this architecture is 25×3 = 75 ns, however the

average delay of one modular multiplication using this architecture is only 25 ns which

is same as the cycle time. Energy of the synthesised designs is obtained by multiplying

power by average delay of one modular multiplication.

It can be seen from the Table 4.7 that the pipelined version of parallel modular multi-

plier outperforms other proposed architectures in terms of throughput, energy, and area-

delay product. This is due to the highly parallel nature of this architecture which allows it

to complete one modular multiplication only in one iteration. The non-pipelined version of

parallel architecture also has the similar latency as of pipelined parallel architecture, how-

ever its throughput is less due to the long combinational path. The power consumption of

the non-pipelined parallel architecture is also high due to the propagation of intermediate

values in the long critical path resulting in increased switching activity of the gates. The

only disadvantage of the parallel architectures is their large area requirements of approxi-

mately 43 mm2 which makes them infeasible for practical ASIC implementations. Due to

the large area requirements of the parallel architectures their performance might severely

degrade after a complete place and route due to the complex clock tree and the parasitics.

Serial-parallel and serial architectures of the proposed modular multiplier are more

suitable for practical implementations due to their low area requirements. The energy

consumption of these two architectures is approximately the same which makes them

equally suitable for low-power applications. The area-delay product of these two architec-

tures is also very similar. The serial-parallel architecture is more suitable for high-speed

applications due to its high throughput which is twice the throughput of serial architec-

ture. Similarly, the serial architecture is preferred when the area is of major concern e.g.

mobile applications.

The results of FPGA implementations of the proposed modular multipliers are re-

116 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

T
ab

le
4.8:

P
ost-p

lace&
rou

te
resu

lts
of

p
rop

osed
m
o
d
u
lar

m
u
ltip

lier
im

p
lem

en
tation

s
on

V
irtex

-6
an

d
V
irtex

-7
F
P
G
A

P
la
tfo

rm
D
e
sig

n
C
y
c
le

C
lo
ck

C
y
c
le
s

L
a
te
n
c
y

A
v
g
.
D
e
la
y

A
re

a
(A

re
a
×
D
e
la
y
)
a

T
h
ro

u
g
h
p
u
t

T
im

e
(Iteration

s
fo
r
o
n
e
M

M

(n
s)

+
p
ip
elin

es)
(n
s)

(n
s)

(S
lices,D

S
P
48E

1s)
(M

b
p
s)

V
irte

x
6

M
M

P
A

P
17.3

b
1+

2
51.9

17.3
2.0K

+
276.0K

c,
2016

1193.7
d

14798

M
M

P
A

N
57.0

b
1+

0
57.0

57.0
531+

270.5K
c,

2016
3854.6

d
4491

M
M

S
P
A

22.7
10+

3
295.1

227.0
3205,

512
727.5

1128

M
M

S
A

17.9
40+

3
769.7

716.0
1480,

128
1059.7

358

V
irte

x
7

M
M

P
A

P
16.1

b
1+

2
48.3

16.1
1.4K

+
222.2K

c,
2799

894.3
d

15900

M
M

P
A

N
52.9

b
1+

0
52.9

52.9
167+

212.2K
c,

2799
2806.3

d
4839

M
M

S
P
A

18.4
10+

3
239.2

184.0
2858,

512
525.9

1391

M
M

S
A

14.8
40+

3
636.4

592.0
1249,

128
739.4

432

M
M

P
A

P
:
M
o
d
u
la
r
M
u
ltip

lier
P
a
ra
llel

A
rch

itectu
re

(P
ip
elin

ed
)

M
M

P
A

N
:
M
o
d
u
la
r
M
u
ltip

lier
P
a
ra
llel

A
rch

itectu
re

(N
o
n
-P

ip
elin

ed
)

M
M

S
P
A
:
M
o
d
u
la
r
M
u
ltip

lier
S
eria

l-P
a
ra
llel

A
rch

itectu
re

M
M

S
A
:
M
o
d
u
la
r
M
u
ltip

lier
S
eria

l
A
rch

itectu
re

a
P
ro
d
u
ct

o
f
slices

a
n
d
av

era
g
e
d
elay

bS
y
n
th
esis

d
elay

cS
lice

reg
isters+

slice
L
U
T
s

d
N
u
m
b
er

o
f
slices

a
re

ca
lcu

la
ted

b
y

N
o
.
o
f
L
U
T
s

4

4.7. Summary of Results 117

ported in Table 4.8. It can be seen that the parallel architectures of modular multipliers

do not fit on the targeted FPGAs due to the high number of input/output (I/O) pins

of the parallel architectures. Each input of parallel modular multipliers require 600 pins

and same number of pins are required for the output. One solution to reduce the pin

count was to serialise the inputs and outputs however it was not done due to the limited

time of the project. Moreover, the large area of the parallel modular multipliers restricts

them to be used in the cryptography algorithms therefore additional work on parallel

architectures was avoided. Nevertheless, the parallel modular multipliers are a preferred

choice for applications requiring high throughput as can be seen in Table 4.8.

The best design for FPGA implementation is the serial-parallel modular multiplier

which has 3 times the throughput of the serial modular multiplier. The serial-parallel

multiplier is also better than serial architecture in terms of area-delay product. Hence

we can claim that serial-parallel modular multiplier is the best architecture for FPGA

implementation.

4.7 Summary of Results

An RNS-based modular multiplication algorithm is proposed in this Chapter based on

Chinese remainder theorem. Three different hardware architectures are developed to

implement the proposed algorithm as parallel, serial, and serial-parallel form. The results

for ASIC and FPGA-based implementations of the proposed architectures are analysed

in detail to compare their performance.

Publications Pertaining to this Chapter

• S. Asif, Y. Kong, “Highly parallel modular multiplier for elliptic curve cryptography

in residue number system”, Circuits, Systems, and Signal Processing, pp. 1–25,

118 Chapter 4. Modular Multiplier Using Sum of Residues in RNS

2016.

Chapter 5

Chip Fabrication for RNS-based

Modular Multiplier

This chapter presents details of the chip fabrication and measurement results of the pro-

posed modular multiplier of Section 4.4.2.

5.1 Serial Modular Multiplier

The serial version of the proposed modular multiplier is selected for chip fabrication due to

its smaller area. This section discusses the modifications to the serial modular multiplier

of Section 4.4.2, test bench, and the design of the Input/Output (I/O) buffers.

5.1.1 Design Modification

The architecture of serial modular multiplier of Section 4.4.2 is modified to perform (A×A)

mod M to reduce the I/O count of the ASIC. Since the operation A × A is not on the

critical path, the delay of this architecture is the same as for (A×B) mod M . Secondly,

the testability of the design is improved by propagating important internal signals to the

119

120 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

output pads and using two additional inputs to select between different operating modes

of the design. The block diagram of the design is shown in Fig. 5.1. The chip is powered by

two power supplies namely V DD CORE and V DD PERI. V DD CORE is connected

to the core whereas V DD PERI provides power to the Input/Output (I/O) buffers and

chip pads.

���

������	
�� �
����	
��

��

�5������ �
�������

Modular Multiplier
���

���	����

���	����
����

Figure 5.1: Block diagram of the fabricated design of modular multiplier

In Fig. 5.1 the output Counter out is used only for test purposes whereas the output

Result out is used for test purposes as well as for the final result of the modular multipli-

cation. The two-bit signal mode selects whether the circuit is operating in normal mode

or in one of the three test modes. The selection of different modes is given in Table 5.1.

Table 5.1 provides the details of the four modes of operation control by input mode.

During normal operation the mode is set to “00” and the final result Z is passed to the

output named Result out whereas the value of α is propagated to the output named

Counter out. A correct value of α indicates correct operation of the first two pipeline

stages as well as the proper synchronisation of all pipeline registers. Therefore observation

of α in normal operation is very beneficial for chip measurement.

The first test mode (mode = 00) is used to verify the correct registering of the input

5.1. Serial Modular Multiplier 121

Table 5.1: Different operating modes of the modular multiplier chip

mode[1:0] Result out [14:0] Counter out [5:0] Operation mode

00 Ai reg count pipelined0 Test

01 Xi pipelined count pipelined1 Test

10 γi pipelined count pipelined2 Test

11 Resulti (Final result) α pipelined Normal

to the circuit as well as the valid generation of count which is responsible for the syn-

chronisation of complete design. The second test mode (mode = 01) allows us to observe

the outputs of the first pipeline stage. The third test mode (mode = 10) propagates the

results of the second pipeline register to the output. Thus, the three test modes increase

the testability of the chip by providing the intermediate results of all pipeline stages to

the outputs.

The modified circuit of the modular multiplier is shown in Fig. 5.2. The shaded area

in Fig. 5.2 represents the testing circuitry. Thick lines are used to represent RNS values

of 40 channels. This design is the same as that of Fig. 4.4 in Section 4.4.2 except for the

modifications at the input and output.

5.1.2 Design of Test Bench

Extensive simulation of the circuit was necessary in each design phase, requiring a signif-

icant amount of time, therefore it was critical to automate the testing methodology. The

most important part of automated testing is the generation of random input RNS stimuli

vectors. The random number generator developed in Section 3.7.1 is used to generate

binary input vectors which are converted to RNS values and fed to the multiplier. The

122 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

. . .

Serial Adder

ROM

α_pipelined

Barrett

K0 m0

D
-1

0 D
-1

1 D
-1

N-1

. . .

‹‹−αD›M›mi

Zi

Sum i

Barrett

‹D0›mi ‹D1›m i ‹DN-1›m i

. . .

zero

Serial Adder

Barrett

K1 m1

zero

Serial Adder

Barrett

KN-1

zero

Serial Adder

. . .

Xi

Barrett

Barrett

Ai

m0 m1

. . .
mN-1K1

. . .
KN-1K0

. . .

γ
i

Y1Y0

α

Reg

Pipeline Stage 2

Sum

Pipeline Stage 3 (operates at a frequency of 1/N of original clk)

count

Ki mi

Pipeline Stage 1

mi_pipelined2Ki_pipelined2

mi_pipelined2Ki_pipelined2

Reg

Counter

Start

Reg

Reg

Ai_reg

Xi_pipelined

Xi_pipelined

Result_out

count_pipelined0
count_pipelined1

count_pipelined2

counter_out

mode

γ
i_pipelined

γ
i_pipelined

α_pipelined

sel

Test Circuit

Critical Path

comparator

count_pipelined0

count_pipelined1

co
u

n
t_

p
ip

e
li

n
e
d

2

Ai_reg

×

×

× × ×

×
K m

Barrett

×

×

−

∆

mN-1

YN-1

Figure 5.2: Circuit diagram of the fabricated design of modular multiplier

5.1. Serial Modular Multiplier 123

next step is to convert the RNS output of the multiplier to binary which is achieved by

writing another generic RNS-to-binary converter. Since there is no support in VHDL for

modulus operation on large (512-bit) numbers, computation of the modulus was done

with extra VHDL code. Finally, the output of the modular multiplier is compared with

the calculated result and an error is asserted if the two calculated values do not match

with the output of the modular multiplier. The detailed block diagram of the test bench

is shown in Fig. 5.3.

5.1.3 Buffer Selection

The selection of suitable input/output (I/O) buffers is very important and a critical step

in the chip tapeout. Buffers are required for all the I/O ports of the chip in order to

drive the high on-chip and off-chip capacitance. The on-chip capacitance is mainly due

to the pads which have approximately 10-15 pF capacitance. The off-chip capacitance

includes the capacitance of the bonding wire (die-to-package connection), capacitance of

interconnecting wires on the board, and capacitance of measurement equipment e.g. Logic

Analyzer, Oscilloscope, etc.

The importance of strong buffers is undeniable in order to drive the load capacitance

of the verification tools such as the Logic Analyzer. On the other hand a larger buffer

also requires more power and area therefore a careful analysis of the requirement is to

be performed before choosing the I/O buffers. Furthermore, the use of a single buffer

is not recommended to drive the large load as it will degrade the signal quality of the

output [184]. Instead a two-stage configuration (two buffers in series) or a larger chain

of buffers is recommended to provide optimal results. A two-stage buffer configuration is

used for this design to avoid an excessive increase in area and power consumption.

Cadence Virtuoso is used to analyse the performance of the different buffers and their

ability to drive the output load. The circuit is simulated using the Virtuoso Analog Design

124 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

Wrapper

Testbench

���

������	
���
�����	
��

���

6������ �
�������

Modular
Multiplier

��������������

�����

789:;

�
�����

���

���

���

���

789:;<=>=?@>:?AB

789:;<=>=?@>:?AC

���

789:;<=>=?@>:?AD

���

789:;<=>=?@>:?AE

���

�
���

�� !

toRNS

fromRNS

256-bit
LFSR

"
��"

���

���

���

���

#�����
��

��$���	����
�

Comp ==

"
��"

���

���

�����

Figure 5.3: Test bench for post-layout simulation of modular multiplier

5.2. Chip Tapeout 125

Environment (ADE) by applying appropriate values for the clock period, rise and fall time

of the clock, and supply voltage. The clock period is set to 6 ns, rise and fall times are

set to 20 ps and the power supply is set to 1.2 V to analyse the output waveform of the

buffers. The capacitive load of up to 12 pF is used to model the output capacitance. The

simulation waveforms for the rise and fall times of the buffer are shown in Fig. 5.4.

The output rise and fall times are measured to be 0.68 ns and 0.45 ns, respectively, as

illustrated by the distance between V1 and V2 in Fig. 5.4.

5.2 Chip Tapeout

The chip design process (commonly known as chip tapeout) consists of design synthesis,

post-synthesis simulation, placement and routing (place&route), post-layout simulation,

post-layout power analysis, and generation of the GDS file to be sent to the foundry. Each

phase consists of several steps and requires different tools. This section provides a brief

explanation of the chip tapeout process that is used to design the modular multiplier chip.

5.2.1 Synthesis using Synopsys Design Compiler

Synthesis of the modular multiplier is performed in Synopsys Design Compiler using the 65

nm CMOS library provided by STMicroelectronics. This transistors in this cell library are

categorized in three types, low-Vth, typical-Vth, and high-Vth to satisfy the requirements

of different circuits. The nominal supply voltage for this library is 1.1 V and the area of

a 2-input NAND gate is 2.08 µm2. In this design, the cell library with low-power low-Vth

transistors is used with a compile effort of high to synthesise the design. The output load

is set to 1.5 pF. The complete synthesis script is given in Appendix C.1.

Post-synthesis simulation is performed using ModelSim to verify the design. The

switching activity of the design is stored in a VCD (Value Change Dump) file while

126 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

(a) Rise time of I/O buffer

(b) Fall time of I/O buffer

Figure 5.4: Simulation waveform of selected I/O buffer for modular multiplier chip

5.2. Chip Tapeout 127

operating at a clock period of 6 ns. This VCD file is then used in Synopsys Primetime to

estimate the power consumption of the synthesised design.

5.2.2 Place and Route using Cadence Encounter

This is the most time consuming phase of the chip tapeout and needs to be repeated several

times for optimal results by adjusting different options of the tool. In the first iteration

the typical corner of the library is used to write the scripts and meet the constraints. On

completion of the first iteration the flow is repeated using the worst corner of the library

which allows the tool to calculate the timing constraints for worst process and temperature

variations. Thus the placement and routing is performed for the worst corner, which

reduces the risks of getting setup and hold violations in the fabricated chip. The flow

consists of four major steps: design initialisation, placement, clock tree synthesis, and

routing.

Design Initialisation

The flow is started with initialisation of the design which reads in the Verilog netlist

generated by Design Compiler. The Common Power Format (CPF) flow is used to specify

two different power domains. The power domain PD CORE is used for the CORE and

connected to the supply pin V DD CORE. The second power domain PD DEFAULT ,

which is connected to the pin V DD PERI, is used for I/O buffers and pads. A separate

power supply for I/O buffers ensures an accurate power analysis of the modular multiplier

during the chip measurement. The complete script for CPF is given in Appendix C.2.

The locations of the pads are written in a file and read in during the design initiali-

sation. In order to reduce voltage fluctuations across the chip the power pads are placed

in the middle on each side of the chip. Hence a total of four V DD CORE pads and four

GND pads are used. The clk pad is placed in the middle of the top side to allow an easy

128 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

synthesis of the clock tree and helps to reduce the skew. Secondly, clk is placed between

V DD CORE and GND to avoid cross coupling. An effort is made to keep all inputs

together to allow easy interconnection with the external test equipment. The output pads

are also kept together for the same reason. The complete list of pads with their locations

is listed in Appendix C.3.

Floorplan, Power Planning and Placement

The next step is to create the floorplan and perform power planning followed by place-

ment. The synthesised area of the modular multiplier is approximately 0.5 mm2 therefore

the floorplan is set to 1mm × 1mm = 1mm2 which is the minimum size allowed for chip

fabrication. Power rings are created for V DD CORE, V DD PERI, and GND and the

vertical strips are generated followed by the insertion of I/O fillers in the pads to fill out

the gaps. The option of special route is used to connect power domains PD CORE and

PD DEFAULT to nets V DD CORE and V DD PERI, respectively. Furthermore, the

strips for GND and V DD CORE needs to be created before the placement. Finally the

placement of the design is performed by setting congestion effort to high. A high conges-

tion effort reduces the placement density and allows more routing area. The placement

of the design is followed by optimisation to fix any violations on capacitance, transitions,

and fanout. The complete scripts for these steps are given in Appendix C.4.

Clock-Tree Synthesis (CTS)

The third major step of the flow is the clock-tree synthesis (CTS) which is performed using

the automated mode. This step involves the creation of a clock-tree specification file which

contains the information of the clock to be synthesised. This file is generated in Cadence

Encounter using the createClockTreeSpec command and providing a list of buffers and

inverters that are to be used for CTS. The specification file contains information on

5.2. Chip Tapeout 129

the clock including period, maximum and minimum delay, and maximum skew. The

CTS options of optAddBuffer, useLibMaxCap, and powerAware are set to true, which

provides more flexibility to the tool to synthesise a low-power clock tree. Similarly to

placement, CTS is also followed by an optimisation to fix different design violations. An

extra step of optimisation is performed in order to fix hold violations. The complete script

for clock-tree synthesis is provided in Appendix C.5.

Routing and Verification

Finally, the routing of the design is performed using NanoRoute which is designed specifi-

cally for 180 nm or smaller process technology. NanoRoute performs signal-integrity-aware

routing which results in fewer DRC (Design Rule Check) violations. The routing is di-

vided into two phases: global routing, and detailed routing. In global routing, the design

is divided in several partitions called global routing cells (gcells). The global router tries

to find the shortest paths between gcells, however no actual connections are made during

this process. The purpose of global routing is to generate a congestion map for all the

gcells. In the detailed routing the information from the global routing is used to make

the connections and route the actual wires. The detailed routing may result in shorts or

spacing violations which are fixed by search-and-repair routing. Search-and-repair rout-

ing is run automatically by NanoRoute during the detailed routing and it fixes most of

the shorts and spacing violations. The remaining violations are fixed by the post-route

optimisation which performs a more detailed search and repair of the violations. The

complete script for routing and verification is given in Appendix C.6.

At the completion of routing the connectivity of the design is checked by the command

verifyConnectivity which ensures that all the connections are made correctly. The files

generated at the end of the flow are Verilog netlist, SDF (Standard Delay Format) file,

and GDS file. These files are used to perform post-layout simulation as well as to import

130 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

the design into Cadence Virtuoso for further processing.

5.2.3 Power Analysis

The post-layout simulation of the design is performed in ModelSim, which uses the Verilog

netlist and SDF file generated by Cadence Encounter. The design is verified by extensive

simulation while operating at time period of 6 ns. It is to be noted that the operating

frequency of the design stays the same as for post-synthesis simulation. This is due to

the low complexity of the design and the worst-case corner used for place & route of the

design. As mentioned in Section 5.2.2, the use of the worst-case corner during place &

route instructs the tool to calculate delay conservatively, which means that the design

can operate faster in normal conditions. However the post-layout simulations show that

the design does not give correct results when operating at a clock period of less than 6

ns, therefore the switching activity is obtained for simulations with a 6 ns clock period.

The power analysis is performed using Encounter in simulation-based mode which is

most accurate and requires switching activity information from the post-layout simulation.

Rail analysis is performed to analyse the voltage drop, also called IR drop due to the

relation V = IR, across the chip. The maximum voltage drop is only 3% which is

acceptable and considered as normal.

5.2.4 Chip Tapeout Using Cadence Virtuoso

The tool used for the generation of GDS file for tapeout is Cadence Virtuoso. Virtuoso is

the main Cadence tool for manual schematic and layout design as well as their simulations.

Each design in Virtuoso is stored in a library as a cell which can have different views,

e.g. schematic, layout etc. The libraries and cells are organised by the user-friendly

LibraryManager interface provided by Virtuoso.

In this work, Virtuoso is used to perform Design Rule Check (DRC), Layout vs

5.2. Chip Tapeout 131

Schematic (LVS) verification, and generation of GDS file. This process is started by

importing the design files generated by Encounter which contain schematic and layout

information. A new library is created in Virtuoso and both Verilog and GDS files are

imported into this library. The schematic of the imported design is shown in Fig. 5.5.

The symbol for the imported schematic is shown in Fig. 5.6. It can be observed that

this schematic symbol does not contain any ports for power supplies which is why it cannot

be used directly to perform LVS. This will be explained in detail in the LVS section.

Design Rule Check (DRC)

Design Rule Check (DRC) is the process of checking if the layout meets all the rules for a

specific technology. The most common design rule violations are space violations, which

means that the distance between two objects/layers is less than what is allowed by the

technology. Some other rules are minimum metal width, maximum metal length, mini-

mum density of metals, etc. These rules ensure that there are no unwanted shorts/opens

in the fabricated chip due to imperfections in the fabrication process.

Design Rule Check (DRC) is performed on the layout by using Calibre which is an

integrated tool in Cadence Virtuoso. At this point of the verification, DRC gives some

violations regarding metal density that will be resolved after placing the tiles in the layout

(also known as “Tiling”). The process of Tiling performs a detailed density check for

each metal and places the metal tiles to increase the metal density according to the DRC

requirements. A couple of DRC violations were found related to the minimum distance

between long metal wires near the pads, which are solved by manual stretching of the

metal wires so that they meet the DRC rules. A second run of DRC is performed to make

sure that the only violations are related to the metal density.

132 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

Figure 5.5: Schematic of the top cell of modular multiplier chip from Virtuoso

5.2. Chip Tapeout 133

Figure 5.6: Symbol of top cell of modular multiplier chip from Virtuoso

Layout vs Schematic (LVS)

Layout vs Schematic (LVS) is responsible for performing a thorough comparison of layout

and schematic cells to ensure that there is no difference between them. This is different

from DRC which checks only design rules whereas LVS can detect any missing connections,

unwanted connections, missing ports, etc. Since the proper functionality of the design can

be done by simulating only the Verilog (schematic) file it is critical that the GDS (layout)

file is exactly the same as that of Schematic.

LVS is considered to be one of the most challenging tasks in chip tapeout and often

consumes a significant amount of time for debugging. LVS is also performed by the

same tool Calibre as is DRC. An initial run of LVS showed several violations regarding

mismatched instances, pins, and nets. A careful analysis of the violations revealed that

the schematic does not contain the pads for power supply which was the major issue for

LVS. In order to address this issue, a new schematic cell is designed for the power supply

pads which includes four pads for GND, four pads for V DD CORE, and one pad for

V DD PERI as shown in Fig. 5.7.

The I/O ports of the pads are named exactly as they are named in the layout, which

is essential to pass the LVS check. All the ground pads are connected to one internal

port GND, whereas the power supply pads for the core are connected to the internal

port V DD CORE. The pad named PAD VDD PERI is connected to the internal

134 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

Figure 5.7: Schematic of power supply pads for modular multiplier chip

5.2. Chip Tapeout 135

port V DD PERI and is used to provide power supply to the I/O buffers and pads. All

pads contain ESD (Electrostatic Discharge) diodes to avoid damage to the chip due to

static current. The connections between all the pads in Fig. 5.7 represent the routing of

V DD PERI and GND.

The schematic imported from Encounter does not contain information for the power

supplies and instead uses inherent vdd and gnd. These inherent vdd and gnd need to

be replaced by the actual power supplies used in the design which are V DD CORE,

V DD PERI, and GND. This is achieved by adding the netset property for each cell

by using SKILL, which is a scripting language used in Cadence. SKILL scripts are used

to replace vdd and gnd of the core by V DD CORE and GND, respectively. Similarly,

another script is used to replace vdd and gnd of the I/O buffers and pads by V DD PERI

and GND, respectively. The complete SKILL scripts are given in Appendix C.7 and are

used to add netsets for vdd, vdds, gnd, and gnds as well as to add ports V DD CORE,

V DD PERI, and GND to the schematic. Here vdds and gnds represent substrate

connections for vdd and gnd, respectively. The symbol for the top cell is updated by

including the power supplies as shown in Fig. 5.8.

Figure 5.8: Modified symbol of top cell of modular multiplier chip

136 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

Finally, another schematic cell is created where the cells powerpads and top of Fig. 5.7

and Fig. 5.8, respectively, are instantiated and proper connections are made. Furthermore,

V DD CORE and GND are also connected to V DD CORE! and GND! which represent

the global wires in Cadence. This final cell, shown in the Fig. 5.9, is used to perform LVS

which completed without any errors.

Generation of GDS File

The successful completion of LVS means that the schematic and layout cells are exactly

the same, thus affirming that the functionality of the fabricated chip would be correct.

However, the design still contains some DRC violations which need to be corrected as

mentioned in Section 5.2.4. The remaining DRC violations are related to the minimum

density of the metals at different places of the die. This violation is seen when a specific

metal is sparsely used in a certain area of the chip. The process of tiling is used to resolve

this issue by placing additional tiles for each metal wherever required in order to meet

the DRC criteria. The screenshot of the top layout after the tiling is shown in Fig. 5.10.

The final run of DRC on the tiled layout gives no violation. Finally the GDS file is

generated which is sent to the foundry for fabrication.

5.2.5 Chip Layout Screenshot

Fig. 5.11 shows the layout of the chip where each pad is labelled to improve the clarity.

5.3 Chip Measurement

This section discusses the verification of the fabricated chip and analysis of power con-

sumption at different voltage levels.

5.3. Chip Measurement 137

Figure 5.9: Final schematic of top cell of modular multiplier chip

138 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

Figure 5.10: Screenshot of the modular multiplier chip layout after tiling

5.3. Chip Measurement 139

Figure 5.11: Screenshot of the modular multiplier chip layout with I/O labels

140 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

5.3.1 Fabricated Chip

The chip was fabricated by STMicroelectronics using the 65 nm CMOS process with a die

size of 1 mm × 1 mm. The low-power and low-Vth library was used for chip fabrication.

Fig. 5.12 shows a microphotograph of the fabricated chip.

�����������

��	
��

�������
����������	
��

�����	

�
�
�
��
	

Figure 5.12: Microphotograph of the fabricated chip of modular multiplier

5.3.2 Measurement Setup

A general purpose PCB (Printed Circuit Board) was available for the chip measurement.

A dual power supply was used to provide power to two power domains, V DD PERI and

V DD CORE. The power supply was also capable of measuring the current, therefore no

additional current meter was required. An Agilent 16B22A Logic Analyzer was used to

provide the test patterns to the chip and to analyse the results. The chip measurement

setup is shown in Fig. 5.13. The Logic Analyzer was capable to read the test vectors from

5.3. Chip Measurement 141

a text file and write the results to another text file. A script was written to compare the

output of the chip to the correct output, which speeded up the measurement process. The

voltage was scaled (from 0.43 V to 1.25 V) to observe the energy dissipation at different

supply voltages and to find the voltage for optimum energy dissipation.

Figure 5.13: Measurement setup for fabricated chip of modular multiplier

5.3.3 Observation of Results

The final outputs of the ASIC are produced by the multiplexer as shown in Fig. 5.2. The

absence of a register at the output causes variations in the delay of different output bits

which made the chip verification more challenging. However this issue was resolved by

operating the Logic Analyzer in asynchronous mode instead of synchronous mode. A sam-

pling interval of 2 ns was used to capture the outputs from the ASIC. This small sampling

interval resulted in some extra samples which capture incomplete results, however these

142 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

can be easily discarded by carefully observing the correct samples. It is observed that one

output pin of the result has a stuck-at-0 fault. Experiment with different samples of the

ASIC suggested that the fault is most likely to be in the ASIC or on the testing board.

However the observation of correct values on all other pins proves the correct functionality

of the fabricated ASIC. Fig. 5.14 shows a screen shot of the results captured by Logic

Analyzer.

5.4 Analysis and Comparison of Results

5.4.1 ASIC Measurement Results

Fig. 5.15(a) shows the maximum frequency and energy of the chip while operating at

different supply voltages. The design can operate at a maximum frequency of 162 MHz

at 1.2 V with an energy dissipation of approximately 1.2 nJ. By increasing the voltage to

an overdrive voltage of 1.25 V it can achieve up to 165 MHz frequency with about 1.3 nJ

energy. Reducing the voltage results in a decrease in the maximum operating frequency

and energy of the design. The minimum operation voltage for the circuit is 0.43 V where

it can operate at a maximum frequency of 2 MHz with 0.180 nJ energy dissipation.

The power consumption due to leakage and switching activity is plotted for different

voltages in Fig. 5.15(b).

The results for the proposed design are given in Table 5.2.

5.4.2 Comparison with State-of-the-art

A comparison with the existing modular multipliers is given in Table 5.3. The results in

Table 5.3 are divided into two sections. In the first group, recent binary modular multipli-

ers are presented, whereas the second part of the table provides the results for RNS-based

5.4. Analysis and Comparison of Results 143

F
ig
u
re

5.
14
:
O
b
se
rv
at
io
n
of

m
ea
su
re
m
en
t
re
su
lt
s
of

m
o
d
u
la
r
m
u
lt
ip
li
er

ch
ip

in
L
og
ic

A
n
al
y
ze
r

144 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

V
DD

 (V)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
re

q
u

en
cy

 (
M

H
z)

0

20

40

60

80

100

120

140

160

E
n

er
g

y
 (

n
J)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Frequency

Energy

(a) Maximum frequency and energy at different supply voltages

V
DD

 (V)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

P
o

w
er

 (
µ

 W
)

10
2

10
4

10
6

Dynamic Power

Leakage Power

(b) Dynamic and leakage power consumption at different supply voltages

Figure 5.15: Frequency, energy, and power consumption of modular multiplier chip at

different voltage levels

5.4. Analysis and Comparison of Results 145

T
ab

le
5.
2:

C
h
ip

m
ea
su
re
m
en
t
re
su
lt
s
of

th
e
p
ro
p
os
ed

m
o
d
u
la
r
m
u
lt
ip
li
er

V
o
lt
a
g
e

M
a
x
.

L
a
te
n
c
y

T
h
ro

u
g
h
p
u
t

D
y
n
a
m
ic

L
e
a
k
a
g
e

T
o
ta
l

T
o
ta
l

F
re
q
u
e
n
c
y

P
o
w
e
r

P
o
w
e
r

P
o
w
e
r

E
n
e
rg

y

(V
)

(M
H
z)

(µ
s)

(M
b
p
s)

(m
W

)
(µ

W
)

(m
W

)
(n
J
)

0.
43

2
20
.0
0

12
0.
35

13
.8
5

0.
36

0.
18
0

0.
45

5
8.
00

32
0.
93

15
.4
0

0.
94

0.
18
8

0.
50

12
3.
33

76
2.
62

20
.1
0

2.
64

0.
22
0

0.
60

24
1.
67

15
3

7.
23

32
.8
8

7.
26

0.
30
3

0.
70

51
0.
78

32
8

20
.3
1

52
.2
4

20
.3
6

0.
39
9

0.
80

80
0.
50

51
2

41
.9
0

80
.7
0

41
.9
8

0.
52
5

0.
90

10
3

0.
39

65
6

67
.8
0

11
9.
61

67
.9
2

0.
65
9

1.
00

12
5

0.
32

80
0

10
1.
52

17
9.
21

10
1.
70

0.
81
4

1.
10

14
2

0.
28

91
4

13
9.
00

26
4.
72

13
9.
26

0.
98
1

1.
20

16
2

0.
25

10
24

19
0.
05

38
6.
93

19
0.
44

1.
17
6

1.
25

16
5

0.
24

10
66

21
1.
53

46
6.
20

21
2.
00

1.
28
5

146 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

modular multipliers. In order to make a fair comparison only ASIC implementations of

state-of-the-art architectures are selected for both binary and RNS-based designs.

The use of different technologies in the designs makes it impossible to do a straightfor-

ward comparison, therefore each design is analysed separately in the subsequent text. It

is to be noted that all the existing designs in literature provide results based on synthesis

reports. The delay, power consumption, and area are expected to increase after the place

and route. Furthermore, the process variation can cause more degradation in the delay

and power of the fabricated chip.

The first binary modular multiplier [59] in Table 5.3 is an implementation of a 512-bit

architecture in 0.13 µm CMOS technology. The delay and area results are obtained from

synthesis reports by the Synopsys Design Compiler. The throughput of this design is

about half that of our proposed architecture. However due to differences in technology

it is hard to draw any conclusions for the delay comparison. The number of clock cycles

required for one modular multiplication are extremely large, which is the major disad-

vantage of this architecture. Since the number of clock cycles does not change with the

advancement of technology, the only way this circuit’s delay can improve on an advanced

technology is by reducing the clock cycle time. The clock period reported in the table is

1.87 ns which is not expected to improve by a large factor. Moreover, this small clock

period causes large switching activity which results in the high power consumption of

this design. The advantage of this design is its low area, however the low throughput and

extremely high energy consumption make this circuit less favourable for most applications.

One state-of-the-art binary modular multiplier is the work in [82] which uses the par-

titioning technique for the partial-product computation. The design is implemented using

90 nm CMOS technology and synthesis results are given for delay and area. The latency

of this design is about three times that of our proposed design, which is expected due

to the difference in technology. The number of clock cycles for one operation is similar

5.4. Analysis and Comparison of Results 147

T
ab

le
5.
3:

C
om

p
ar
is
on

of
p
ro
p
os
ed

m
o
d
u
la
r
m
u
lt
ip
li
er

w
it
h
st
at
e-
of
-t
h
e-
ar
t
m
o
d
u
la
r
m
u
lt
ip
li
ca
ti
on

ar
ch
it
ec
tu
re
s

D
e
si
g
n

T
y
p
e

S
iz
e

T
e
ch

n
o
lo
g
y

C
y
c
le

C
lo
ck

L
a
te
n
c
y

T
h
ro

u
g
h
p
u
t

A
re
a
/

E
n
e
rg

y
/

T
im

e
C
y
c
le
s

G
a
te

C
o
u
n
t

T
h
ro

u
g
h
p
u
t

(b
it
s)

(n
s)

(µ
s)

(M
b
p
s)

(m
m

2
)/
K

(p
J
/M

b
p
s)

K
u
an

g
[5
9]

B
in
ar
y

51
2

13
0
n
m

1.
87

41
70
00

0.
78
0

65
6

0.
31
4
/
61
.3

12
19
05
.4
9

N
et
o
[8
2]

B
in
ar
y

25
6

90
n
m

20
.0

43
0.
85

30
1

0.
56
0
/
10
1.
3

1.
10

T
on

g-
ji
e
[1
11
]

R
N
S

25
6

18
0
n
m

4.
00

49
0.
20

12
80

2.
00
0a
/2
00
.0

−

G
an

d
in
o
[1
13
]

R
N
S

51
2

45
n
m

1.
12

80
0.
09
0

56
88

1.
29
2/
−

−

P
ro
p
os
ed

R
N
S

25
6

65
n
m

6.
17

40
0.
24
7

10
37

0.
57
5b

/
27
6.
6

1.
13

a
es
ti
m
a
te
d
fr
o
m

th
e
g
a
te

co
u
n
t
o
f
2
0
0
0
0
0

b
co
re

a
re
a
a
ft
er

p
la
ce

a
n
d
ro
u
te

148 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

to that for our proposed design, therefore an implementation on 65 nm technology is ex-

pected to improve its throughput to a similar value as for the proposed design. However,

the results provided for this design are based on synthesis. A complete place and route

of the design is expected to produce a larger delay. The increase in delay and area after

place and route depends on the complexity of the architecture and is difficult to predict.

Synopsys Prime Compiler − which is integrated with Design Compiler − is used to esti-

mate the power consumption of this design. The most important parameter in Table 5.3

for comparison among different designs is the energy consumption for a throughput of 1

Mbps which allows a fair comparison. The average energy consumption of our design is

approximately the same as in [82]. However the energy dissipation of [82] is estimated

based on synthesis results which does not have any information of the interconnections

and the clock tree. Based on our experience the energy dissipation is expected to increase

by 30% after place and route. Hence the energy dissipation of the placed and routed

design of [82] is estimated to be approximately 1.43 pJ/Mbps which is 20% higher than

our proposed design. Note that the energy consumption of our ASIC is measured in the

presence of off-chip parasitics which further degrade the performance.

The designs in [111] proposed an RNS-based modular multiplier by improving on

Bajard’s work in [103]. The implementation in 0.18 µm CMOS technology shows a slightly

lower latency than our proposed design. This design requires more clock cycles than our

proposed architecture. The results for energy dissipation are missing for this design

The most recent work on RNS-based modular multiplication is done by [113] which

proposed a 512-bit architecture and its implementation on an ASIC. The larger operand

size and better technology of this architecture make it extremely difficult to perform

any comparison. Inspite of the better technology, the area of this architecture is more

than twice the area of our design, which is the major disadvantage of this architecture.

Moreover the area given in [113] includes the cell area only, without interconnection. The

5.5. Summary of Results 149

huge area of cells suggests that the design requires complex and large interconnections.

Similarly, the delay of the routing is also more prominent in deep submicron technologies.

The clock cycles in this 512-bit MM architecture are twice those of the proposed 256-bit

MM, which is as expected. The high frequency of this design allows it to achieve more

than five times the throughput rate of the proposed design. This design also does not

provide any results for the power consumption. The dynamic power consumption of this

design is expected to be high due to large high clock frequency. Furthermore, the large

area of the design means that the contribution of the leakage power will also be more

prominent.

5.5 Summary of Results

An RNS-based MM architecture is fabricated as an ASIC in 65 nm CMOS technology

and measurement results are presented. The supply voltage is scaled to observe the

energy dissipation at different voltages and find the voltage to achieve optimum energy.

A comparison with existing MM architectures indicates that the proposed architecture is

better in terms of energy dissipation.

150 Chapter 5. Chip Fabrication for RNS-based Modular Multiplier

Chapter 6

Elliptic Curve Point Multiplication

6.1 Introduction

Elliptic Curve Point Multiplication (ECPM) is the most important operation in the elliptic

curve cryptosystem. A number of algorithms exist in the literature to perform ECPM,

as discussed in Chapter 2. The proposed ECPM architecture is based on the double-

and-always-add algorithm. As the name implies, this algorithm performs point doubling

followed by point addition in each iteration. A general block diagram of the double-and-

always-add algorithm for ECPM is shown in Fig. 6.1.

In Fig. 6.1 the point doubling and point addition blocks are implemented using Weier-

strass elliptic curve equations [122] which require modular multiplication, modular addi-

tion, and modular subtraction. A modular multiplier architecture is already implemented

and discussed in Chapter 4, however a modular adder and a modular subtractor need to

be constructed. From the implementation point of view it is more feasible to construct a

separate architecture of modular reduction which can be used to reduce the result of any

arithmetic operation, e.g. subtraction, addition, or multiplication.

151

152 Chapter 6. Elliptic Curve Point Multiplication

��������������

	
�

�������������

�
�

�
�

�
�

�F

�G

�H

����������

�

�

�

�
�
�

�
�
�

�
�
�

�F

�G

�H

�F

�G

�H

��F

��G

��H

Figure 6.1: General block diagram of elliptic curve point multiplication in Jacobian coor-

dinates

6.2. Modular Reduction using Sum of Residues 153

6.2 Modular Reduction using Sum of Residues

The modular multiplication architecture from Chapter 4 is modified to construct the

modular reduction architecture which can be used to reduce the result of subtraction,

addition, or multiplication. The RNS moduli set for the proposed architectures is designed

in Section 4.3.6 with a dynamic range of 560 bits. The upper bound for the modular

multiplier algorithm is 276 bits as calculated in Section 4.3.6. This indicates that the

result of a multiplication (without modulus) requires 276 + 276 = 552 bits.

The implementation of the modular reduction architectures is performed by using both

serial and serial-parallel architectures of Section 4.4.2 and Section 4.4.3, respectively.

6.2.1 Serial Architecture of Modular Reduction

The algorithm for the serial modular reduction is given in Algorithm 9. Note that Al-

gorithm 9 is similar to Algorithm 7 except the first step of the first for loop which is

required only in Algorithm 7. Detailed explanation of different steps of Algorithm 9 is

same as given in Chapter 4.

The serial architecture of modular reduction is shown in Fig. 6.2. This architecture

is similar to the serial modular multiplier architecture of Fig. 4.4 with the exception of

the first pipeline stage. The initial RNS multiplication and the first pipeline stage are

removed, however the overall latency of an arithmetic operation followed by modular

reduction is the same as discussed in Chapter 4. The architecture uses the same RNS

moduli and pre-computed values as for the modular multiplier architecture in Chapter 4.

The second pipeline stage divides the architecture into two parts such that the first

two stages perform computation on X2i whereas the final stage computes and produces

the result of X1i (where X1 represents the first input sequence and X2 represents the

second input sequence). This is the reason that the second pipeline stage operates at

154 Chapter 6. Elliptic Curve Point Multiplication

Algorithm 9 RNS modular reduction algorithm - serial version

Require: M,N,w,∆, q, {m0, . . . , mN−1}

Require: (N2wM)2 < (1−∆)D,N((2
w
−m1)
2w

+ 2w−q
−1

m1
) ≤ ∆ < 1

Require: pre-computed table 〈D−1
i 〉mi

for i = 0, . . . , N − 1

Require: pre-computed table

〈〈Di〉M〉m0

〈〈Di〉M〉m1

...

〈〈Di〉M〉mN−1

for i = 0, . . . , N − 1

Require: pre-computed table 〈〈−αD〉M〉mi
for α = 1, . . . , N − 1 and i = 0, . . . , N − 1

Require: X < N222wM2

Ensure: Z ≡ A× B mod M

1: α = ∆

2: Sum = 〈0, 0, . . . , 0〉

3: for i = 0→ N − 1 do

4: γi = 〈xiD
−1
i 〉mi

5: α =
⌊

γi
2w−q

⌋

/2q + α

6: Yi = {〈γi × 〈Di,0〉M〉m0
, 〈γi × 〈Di,1〉M〉m1

, . . . , 〈γi × 〈Di,N−1〉M〉mN−1
}

7: Sum = {〈Yi,0 + Sum0〉, 〈Yi,1 + Sum1〉, . . . , 〈Yi,N−1 + SumN−1〉}

8: end for

9: for i = 0→ N − 1 do

10: Zi = Sumi + 〈〈−αD〉M〉i

11: end for

6.2. Modular Reduction using Sum of Residues 155

�����

��������		��

��

������

�I �I

���

�����

������J�KL

�M

�		

���M

������

N O

�	
�

��������		��

������

�P �P

���

�	
�

��������		��

������

�QRP �QRP

���

�	
�

��������		��

N O

�	��

�����

���

�M

������

��
M

�P�I �QRP

��

��

����������������

���

�� �����!"���������������#$

STUVW

XYZY

XYZY

��

%������

�����

��

����

�	

N ON O

��[
��\

��]M^_

��]

Figure 6.2: Serial architecture of modular reduction

156 Chapter 6. Elliptic Curve Point Multiplication

1/N frequency. Hence the modular reduction architecture always operates on two values

within the pipeline stages as explained in detail in Section 4.4.

6.2.2 Serial-Parallel Architecture of Modular Reduction

The algorithm for the serial-parallel modular reduction is given in Algorithm 10. Note

that Algorithm 10 is similar to Algorithm 8. The only exception is the absence of initial

multiplication of A and B in Step 4 of Algorithm 9. Detailed explanation of different

steps of Algorithm 9 is the same as given in Chapter 4.

The serial-parallel architecture of the modular reduction is shown in Fig. 6.3. This

architecture is based on the serial-parallel modular multiplier architecture of Fig. 4.6. The

pre-computed values used in this architecture are the same as provided in Chapter 4.

6.3 RNS Modular Subtraction

Subtraction in the residue number system is tricky due to the lack of support of negative

numbers in the RNS. A simple solution to this problem is to compare the two numbers

and then subtract the smaller number from the larger number, but comparison of the

two numbers is also not possible in the residue number system. This section develops

equations that can be used to perform RNS subtraction without the risk of overflow by

ensuring that the first operand of the subtraction is always larger than the value to be

subtracted. The equation for modular subtraction can be written as follows:

Sub Result = 〈A−B〉M (6.1)

where M is the 256-bit modulus, and A and B can be the 276-bit results of a modular

multiplication using the algorithm in Chapter 4.

6.3. RNS Modular Subtraction 157

Algorithm 10 RNS modular reduction algorithm - serial-parallel version

Require: M,N,w,∆, q, {m0, . . . , mN−1}

Require: (N2wM)2 < (1−∆)D,N((2
w
−m1)
2w

+ 2w−q
−1

m1
) ≤ ∆ < 1

Require: pre-computed table 〈D−1
i 〉mi

for i = 0, . . . , N − 1

Require: pre-computed table

〈〈Di〉M〉m0

〈〈Di〉M〉m1

...

〈〈Di〉M〉mN−1

for i = 0, . . . , N − 1

Require: pre-computed table 〈〈−αD〉M〉mi
for α = 1, . . . , N − 1 and i = 0, . . . , N − 1

Require: X < N222wM2

Ensure: Z ≡ A× B mod M

1: α = ∆

2: Sum = 〈0, 0, . . . , 0〉

3: for j = 0→ (N
4
− 1) do

4: γi = 〈xiD
−1
i 〉mi

for i = j × 4 to (j × 4) + 3

5: α =
⌊

γi
2w−q

⌋

/2q + α for i = j × 4 to (j × 4) + 3

6: Yi = {〈γi × 〈Di,0〉M〉m0
, 〈γi × 〈Di,1〉M〉m1

, . . . , 〈γi × 〈Di,N−1〉M〉mN−1
} for i = j × 4

to (j × 4) + 3

7: Sum = {〈Yi,0 + Sum0〉, 〈Yi,1 + Sum1〉, . . . , 〈Yi,N−1 + SumN−1〉} for i = j × 4 to

(j × 4) + 3

8: end for

9: for j = 0→ (N
4
− 1) do

10: Zi = Sumi + 〈〈−αD〉M〉i for i = j × 4 to (j × 4) + 3

11: end for

158 Chapter 6. Elliptic Curve Point Multiplication

�����

������������	

��

��

�������

�` �`

��

�����

������a�bcde

�fgh

	

�������

i j

�	
�

�������

�h �h

��

�������

�klh �klh

��

�	��

�����

��

�f

�������

��

���

���

�� ����!"#���������������$%

mnopq

&f

'������

�����

����

�	

��r

�������

�` �`

��

�������

�h �h

��

�������

�klh �klh

��

�������

�` �`

��

�������

�h �h

��

�������

�klh �klh

��

����� �����

�����

(�(�(

(�(�((�(�(

(�(�(

(�(�(

(�(�(

����������	
���	��
�

�fghs̀ �fgts` �fgus` �fsvlh�fghsvlh �fgtsvlh �fgusvlh�fsh �fghsh �fgtsh �fgush� fs`

�fsh�fs` �cwklh �fghsh�fghs` � cdewklh �fgush�fgus` �cdxwklh

������������	

��

i j

�	
�

������������	

��

i j

�	
�

�����

����� ������������	

��

i j
��
f

��
fgu

��
fgt

��
fgh

� f

	

�������

�����

���

� fgt

	

�������

�����

���

�fgu

	

�������

�����

���

��

�������

��

�������

��
f

��

�������

��rfyz

�fgh �fgt �fgu

��{��|

���������������)

&fgh &fgt &fgu �f � fgh� fgt�fgu

&f &fgh &fgt &fgu�f �fgh � fgt �fgu

������a�bc ������a�bcd} ������a�bcdx

��
fgu

��
fgt

��
fgh

������ ��� ��� ���

Figure 6.3: Serial-parallel architecture of modular reduction

6.3. RNS Modular Subtraction 159

To rule out the possibility of a negative result a multiple of M can be added to the

input A

Sub Result = 〈(A+ M̂)−B〉M (6.2)

where M̂ = βM . β is calculated such that

A+ βM ≥ B

Setting A to its minimum value in the above equation and rearranging gives us

β ≥
B

M
(6.3)

In order to find β the input B is set to the maximum value available with 276 bits

and M is set to the minimum value requiring 256 bits. Substituting these values in

Equation (6.3) gives

β ≥
2276 − 1

2255 + 1

Setting β to its minimum value will make sure that the first operand (A) of the

subtraction is always larger than the second operand (B). Hence β is calculated as

β =

⌈

Bmax

Mmin

⌉

=

⌈

2276 − 1

2255 + 1

⌉

(6.4)

Equation (6.4) also represents the lower bound on the subtraction. The upper bound

on the subtraction can be calculated by setting A and M to their maximum values; and

B to its minimum value as given in Equation (6.5).

Sub Resultmax = (Amax + βMmax)− Bmin

= [2276 − 1 + β(2256 − 1)]

(6.5)

160 Chapter 6. Elliptic Curve Point Multiplication

Substituting the value of β from Equation (6.4) in the above equation gives

Sub Resultmax = (2276 − 1) +

⌈

2276 − 1

2255 + 1

⌉

× (2256 − 1) (6.6)

The total number of bits required for the subtraction output are calculated by

Sub Resultmax = log2

(

(2276 − 1) +

⌈

2276 − 1

2255 + 1

⌉

× (2256 − 1)

)

= 278

(6.7)

The upper bound of 278 bits is well within the dynamic range and can be reduced to

276 bits by modular reduction; see Section 6.2.

6.4 Elliptic Curve Point Doubling in Jacobian Coor-

dinates

Let P = (X1, Y1, Z1) be a point in Jacobian coordinates on the elliptic curve. The point

doubling 2P = (X3, Y3, Z3) on the elliptic curve can be computed as follows:

X3 = α2 − 2β (6.8a)

Y3 = α(β −X3)− 8Y 4
1 (6.8b)

Z3 = 2Y1Z1 (6.8c)

where α = 3X2
1 + aZ4

1 , β = 4X1Y
2
1 .

The architecture of elliptic curve point doubling (ECPD) is shown in Fig. 6.4. All

the operations in Fig. 6.4 are modular operations to keep the result within the dynamic

range of the RNS. The delay elements (registers) are used to synchronise the intermediate

results. The modular square operation is shown by a different symbol for simplicity,

however it is implemented by the same architecture as the modular multiplier.

6.4. Elliptic Curve Point Doubling in Jacobian Coordinates 161

��

��

�� ��

��

��

��
��

��

�� ��

�� ��

��

��

��

��

a

α β

������

~ ���

� ��	

� ���

1
X

1
Y

1
Z

1
Z

1
Y

3
X

3
Y

3
Z

��

������	

������

�������

�������

������

�������

�������

�������

�������

Figure 6.4: Architecture of ECPD in Jacobian coordinates

162 Chapter 6. Elliptic Curve Point Multiplication

The point doubling architecture of Fig. 6.4 completes its operation in 9 logic levels and

requires 10 modular multiplications (including modular squaring), 10 modular additions,

and 3 modular subtractions. The area of this architecture is expected to be very large

due to the modular reduction in each arithmetic operation.

6.4.1 Optimisation – Elimination of Unnecessary Modular Re-

ductions

Modular reduction is used in all ECC operations (point doubling, point addition, etc.)

to make sure that the result always stay within the upper bound of the system. The

upper bound in our ECC implementation is set by the dynamic range of the proposed

RNS moduli, i.e. 560 bits, as mentioned in Section 6.2. The addition of two 276-bit

numbers produces a result of 277 bits therefore it is realised that modular reduction is

not required in every operation of the point doubling architecture as long as the result

is within the dynamic range. For example, the addition or subtraction of 276-bit values

require 277 bits which is within range and can be safely used for any other operation, e.g.

multiplication. Similarly the result of a multiplication of 276-bit values is 552 bits and can

be directly used for addition or subtraction operations without any modular reduction.

Based on this observation the optimisation of ECPD is performed by a careful analysis of

the architecture in Fig. 6.4, and all the unnecessary modular reductions are eliminated.

The optimised architecture is shown in Fig. 6.5.

The optimisation process starts at Level 1 which consists of four modular multiplica-

tions. The left-most multiplier does not require modular reduction because its output is

used only for addition. The result of this multiplier is represented in 552 bits and therefore

can be used for addition without any overflow. The results of the two multipliers in the

middle of Level 1 are fed to multipliers, therefore modular reduction is required in order

to avoid overflow. The output of the right-most multiplier is connected only to an adder

6.4. Elliptic Curve Point Doubling in Jacobian Coordinates 163

��

��

�� ��

��

��

��
��

��

�� ��

�� ��

��

��

��

��

a

α β

������

� ���

� ��	

� ���

1
X

1
Y

1
Z

1
Z

1
Y

3
X

3
Y

3
Z

��

������	

������

�������

�������

������

�������

�������

�������

�������

������

Figure 6.5: Optimised architecture of ECPD in Jacobian coordinates

164 Chapter 6. Elliptic Curve Point Multiplication

therefore it does not need modular reduction.

The left-most adder at Level 2 performs addition on two 553-bit values, therefore its

maximum result can be represented in 554 bits which is within the dynamic range of

the RNS. This result is used only for addition at Level 3, hence the modular reduction is

removed from this addition operation. The second-left-most operation at Level 2 is a mul-

tiplication whose output is connected to another multiplier, therefore modular reduction

is necessary for this multiplier. Similarly modular reduction can be avoided for the third

operation because its result is used only for addition. The right-most adder computes the

final result (Z3), therefore modular reduction is necessary for this operation.

In the absence of modular reduction the outputs of the operations at Level 3 (from

left to right) are 554 bits, 552 bits, 552 bits, and 553 bits. These results are used only

for additions at Level 4, therefore there is no need to perform modular reductions for the

operations at Level 3.

The left-most adder at Level 4 performs addition on 554-bit and 552-bit values and

therefore produces an output of 555 bits. Since this output is fed to multipliers it is

necessary to reduce this output to 276 bits by performing modular reduction. The other

two adders at Level 4 produce outputs of 553 and 554 bits which are used only for additions

and subtraction at Level 5 and Level 7. Hence modular reduction is not required for these

two addition operations.

The multiplier at Level 5 generates a 552-bit result which is used for subtraction,

therefore this multiplier does not require modular reduction. The middle and right-most

adders perform operations on 553-bit and 554-bit operands and therefore produce 554-bit

and 555-bit results, respectively. This result is used only for subtraction and addition at

Level 6, therefore modular reduction can be eliminated from these adders.

There are only five operations from Level 6 to Level 9, among which addition at Level

6 and multiplication at Level 8 do not require modular reduction whereas all the three

6.4. Elliptic Curve Point Doubling in Jacobian Coordinates 165

subtractions are followed by modular reductions. The subtractions at Level 6 and Level 9

are final outputs (X3 and Y3), so they need modular reduction, while the subtraction result

at Level 7 is used for multiplication therefore it must be reduced to 276 bits. However the

parameter (β) for the subtraction needs to be re-calculated because the upper bound on

the two inputs of the subtraction is increased from 276 bits as discussed in next section.

The optimised point doubling architecture requires only 8 modular reductions com-

pared to 23 in the non-optimised point doubling, thus it achieves an approximately 65%

hardware reduction. The latency of the optimised architecture is also reduced because

Level 3, 5, and 8 does not require modular reduction and thus operations in these levels

require less clock cycles.

6.4.2 RNS Subtraction - Modified for Larger Inputs

The correct function of the RNS subtraction (A − B) was achieved in Section 6.3 by

scaling up the first operand such that the result is always positive. The size of A and B

was assumed to be 276 bits for the solution in Section 6.3, however the point doubling

optimisation in Section 6.4.1 requires the subtractors at Level 6, 7, and 9 to operate on

larger operands. Therefore the value of β in Equation (6.4) needs to be recalculated.

In Fig. 6.5 the first inputs of the subtractors at Level 6, 7, and 9 are 552, 554, and

552 bits, respectively whereas the second inputs of these subtractors (at Level 6, 7, and

9) are 555, 276, and 555 bits. Therefore the maximum size for inputs A and B is 554

bits and 555 bits, respectively. Hence Equation (6.4) can be re-written as below with the

modified value of B.

β =

⌈

Bmax

Mmin

⌉

=

⌈

2555 − 1

2255 + 1

⌉

(6.9)

The lower bound on the subtraction is calculated by setting A and B to their minimum

and maximum values, respectively. The equation for the lower bound and Equation (6.9)

166 Chapter 6. Elliptic Curve Point Multiplication

are the same, therefore the lower bound on the subtraction is equal to the value of β.

The new maximum and minimum values of A and B are substituted in Equation (6.5)

to calculate the upper bound on subtraction.

Sub Resultmax = (Amax + βMmax)−Bmin

= [2554 − 1 + β(2256 − 1)]

(6.10)

Substituting the new value of β from Equation (6.9) in the above equation gives

Sub Resultmax = (2554 − 1) +

⌈

2555 − 1

2255 + 1

⌉

× (2256 − 1)

= 557 bits

(6.11)

The new upper bound on subtraction calculated from Equation (6.11) is 557 bits.

This upper bound is within the dynamic range of the proposed RNS moduli and can be

reduced to 276 bits by the modular reduction from Chapter 4. The upper bounds on the

first and second inputs of the subtractor are 554 and 555 bits, respectively.

6.4.3 Elliptic Curve Point Doubling Implementation

The point doubling architecture of Fig. 6.5 can be implemented using the parallel, serial,

or serial-parallel architecture of modular reduction from Chapter 4. However parallel

modular multiplier architecture requires a very large area, therefore it is practically im-

possible to use it to construct the point doubling architecture, which requires 8 modular

reductions. Hence, the implementation of point doubling is carried out using serial and

serial-parallel architectures of modular multipliers.

Using Serial Architecture of Modular Reduction

The serial modular arithmetic operations perform computation serially on each RNS chan-

nel, therefore it requires 40 cycles to complete one modular operation. The latency of

6.4. Elliptic Curve Point Doubling in Jacobian Coordinates 167

serial modular arithmetic operations is 43 cycles due to the three pipeline stages as ex-

plained in Chapter 4. The optimised point doubling architecture in Fig. 6.5 consists of

9 logic levels, therefore total number of cycles required for one point doubling can be

calculated by multiplying the number of logic levels by the number of clock cycles for one

modular operation. However, Level 3, 5, and 8 do not require any modular reduction,

therefore they require only 40 cycles instead of 43 because the pipeline stages exist only

in the modular reduction architecture. Nevertheless, they still need 40 cycles due to the

serial operation on each RNS channel. The total number of cycles for one point doubling

can be calculated by Equation (6.12).

CyclesPDBL = (43× 6) + (40× 3)

= 258 + 120 = 378

(6.12)

Furthermore, the modular reduction architecture uses positive-edge-triggered registers

at its input and output ports. This means that an additional cycle is required between

each level of the point doubling architecture to transfer the result from one level to the

next level. Hence, Equation (6.12), to compute the total number of cycles for one point

doubling operation, is updated as

CyclesPDBL = (43× 6) + (40× 3) + (9− 1)

= 258 + 120 + 8 = 386

(6.13)

Using a Serial-Parallel Architecture for Modular Reduction

The point doubling implementation using serial-parallel modular reduction is four times

as fast as serial point doubling. The serial-parallel modular reduction used in this im-

plementation operates on 4 channels concurrently and therefore it requires 10 cycles to

perform one modular operation. The latency of serial-parallel modular operations is 13

cycles due to the three pipeline stages. The number of clock cycles for the optimised point

168 Chapter 6. Elliptic Curve Point Multiplication

doubling architecture of Fig. 6.5 can be calculated by Equation (6.14).

CyclesPDBL = (13× 6) + (10× 3)

= 78 + 30 = 108

(6.14)

The serial-parallel modular reduction architecture also uses positive-edge-triggered

registers at its input and output ports. Therefore an additional cycle is required between

each level of the point doubling architecture to transfer the result of one level to the

next level. Hence, Equation (6.14), to compute the total number of cycles for one point

doubling operation, is updated as

CyclesPDBL = (13× 6) + (10× 3) + (9− 1)

= 78 + 30 + 8 = 116

(6.15)

6.5 Elliptic Curve Point Addition in Jacobian Coor-

dinates

Assume that the two points in Jacobian coordinates on the elliptic curve are represented

as P = (X1, Y1, Z1) and Q = (X2, Y2, Z2). The point addition of these two points P +Q =

(X3, Y3, Z3) is computed as

X3 = α2 − β3 − 2Z2
2X1β

2 (6.16a)

Y3 = α(Z2
2X1β

2 −X3)− Z3
2Y1β

3 (6.16b)

Z3 = Z1Z2β (6.16c)

where α = Z3
1Y2 − Z3

2Y1, β = Z2
1X2 − Z2

2X1.

The result of this point addition is valid only when P 6= 0, Q 6= 0, and P 6= Q.

The architecture of point addition is shown in Fig. 6.6. All the operations in Fig. 6.6

are modular operations to keep the results within the dynamic range of the RNS. The

6.5. Elliptic Curve Point Addition in Jacobian Coordinates 169

delay elements (registers) are used to synchronise the intermediate results. The modular

square operation is shown with a different symbol for simplicity, however it is implemented

by the same architecture as the modular multiplier.

The point addition architecture of Fig. 6.6 completes its operation in 10 logic levels and

requires 16 modular multiplications (including modular squaring), 1 modular addition,

and 6 modular subtractions. The area of this architecture is expected to be even larger

than the point doubling architecture.

6.5.1 Optimisation – Elimination of Unnecessary Modular Re-

ductions

The optimisation of the point addition architecture follows the same strategy as the point

doubling optimisation in Section 6.4.1, which is based on eliminating unnecessary modular

reductions. The arithmetic operations do not require modular reductions if they can be

safely used in further computation without the risk of overflow. For example, the left-most

multiplier at Level 3 in Fig. 6.6 produces an output of 552 bits which can be used directly -

without modular reduction - in the subtraction at Level 4. The dynamic range of 560 bits

enables the removal of modular reductions from several arithmetic operations while still

avoiding the overflow. A careful analysis is performed on the point addition architecture of

Fig. 6.6, and all unnecessary modular reductions are removed. The optimised architecture

of point addition is shown in Fig. 6.7.

The optimisation process is started from Level 1, which consists of three modular

multiplications. The results of all these multiplications are fed to the multipliers at Level 2

and 4. The upper bound on the multiplier inputs is 280 bits, therefore modular reductions

are essential at Level 1 to reduce the multiplication result from 552 bits to 276 bits. The

subsequent discussion assumes that the operations at each logic level are numbered from

left to right in order to identify different components at each logic level. For example,

170 Chapter 6. Elliptic Curve Point Multiplication

������

� ���

� ��	

� ���

��

��

�� �� �� ��

�� �� ��

��

��

��

���

��

��

��

��

��

��

��

α

β

1
X

1
Y

1
Z

1
Z

2
Y

2
Z

2
Z

2
X

3X 3Y 3Z

������	

������

�������

�������

������

�������

�������

�������

�������

������	�

Figure 6.6: Architecture of ECPA in Jacobian coordinates

6.5. Elliptic Curve Point Addition in Jacobian Coordinates 171

������

� ���

� ��	

� ���

��

��

�� �� �� ��

�� �� ��

��

��

��

���

��

��

��

��

��

��

��

α

β

1
X

1
Y

1
Z

1
Z

2
Y

2
Z

2
Z

2
X

3X 3Y 3Z

������	

������

�������

�������

������

�������

�������

�������

�������

������	�

������

Figure 6.7: Optimised architecture of ECPA in Jacobian coordinates

172 Chapter 6. Elliptic Curve Point Multiplication

at Level 6 the first operation is a subtraction, the second operation is addition, and the

third operation is multiplication.

The first and second multipliers at Level 2 are connected to the multipliers at Level

3, therefore the outputs of these multipliers must be reduced to 276 bits by modular

reduction. The output of the third multiplier at Level 2 is used only for subtraction,

hence modular reduction is not required for this component. The fourth multiplier is

connected to a subtractor as well as a multiplier, therefore modular reduction is necessary

for this operation.

The first operation at Level 3 is multiplication, which operates on two 276-bit values

and produces a result of 552 bits. Since this result is used only for subtraction, which has

an upper bound of 554 bits on the first input, modular reduction is not required for the

first multiplier at Level 3. The results of the other two operations at Level 3 are used for

multiplications, therefore their outputs must be reduced to 276 bits by modular reduction.

Similarly, modular reductions are essential for the first and second operations at Level

4. The right-most multiplication at Level 4 is the final result of the point addition (Z3),

hence it is followed by modular reduction.

Level 5 consists of three multiplications where the first multiplier is connected only

to a subtractor, therefore modular reduction can be eliminated from the first multiplier

at Level 5. The result of the second multiplier is used for subtraction and multiplication,

hence modular reduction is necessary in order to reduce the result to 276 bits. The third

multiplier at Level 5 is connected to an adder and a subtractor, therefore it does not

require modular reduction.

The results of Level 6 are used only in subtractions, therefore modular reductions can

be eliminated from all the operations at Level 6. The subtractor at Level 6 produces an

output of 557 bits according to the upper bound calculated in Section 6.4.2. The outputs

of the adder and multiplier are 553 and 552 bits, respectively.

6.5. Elliptic Curve Point Addition in Jacobian Coordinates 173

There is only one arithmetic operation at Level 7, 8, 9, and 10. Level 7 consists

of a subtractor which produces a final output of point addition (X3), therefore modular

reduction is used for this operation. Note that the first input of the subtractor at Level 7 is

557 bits, which is larger than the value used for upper bound calculation in Section 6.4.2.

In order to make sure that the subtraction result stays within the dynamic range the

upper bound needs to be calculated when the first input of the subtractor is 557 bits.

Equation (6.11) is rewritten with the modified value of 557 bits for the first input as

follows:

Sub Resultmax = log2

(

(2557 − 1) +

⌈

2555 − 1

2255 + 1

⌉

× (2256 − 1)

)

= 558 bits

(6.17)

The result of the subtraction is still within the dynamic range and can be reduced to

276 bits by modular reduction.

The result of Level 8 is used in multiplication, therefore modular reduction is required.

Level 9 consists of a multiplier which is connected to the subtractor, hence there is no

need to perform modular reduction at Level 9. Level 10 produces a final output (Y3)

hence modular reduction is required.

The optimised point addition architecture requires only 15 modular reductions instead

of 23 in the non-optimised architecture, thus achieving approximately a 34% hardware

reduction. Moreover the latency of the optimised point addition architecture is also

reduced because Level 6 and Level 9 does not require modular reduction and thus they

require less clock cycles.

6.5.2 Elliptic Curve Point Addition Implementation

Similarly to point doubling, both serial and serial-parallel architectures are implemented

for the the point addition. The clock cycles for serial and serial-parallel implementations

of the optimised point addition architecture are discussed in subsequent sections.

174 Chapter 6. Elliptic Curve Point Multiplication

Using Serial Architecture for Modular Reduction

The serial modular reduction performs computation for each RNS channel sequentially,

therefore it requires 40 cycles to complete one modular operation for the proposed RNS

moduli. The latency of serial modular reduction (following addition, subtraction, or

multiplication) is 43 cycles due to the three pipeline stages as explained in Chapter 4. The

optimised point addition architecture in Fig. 6.7 consists of 10 logic levels, therefore the

total number of cycles required for one point addition can be calculated by multiplying the

number of logic levels by the number of clock cycles for one modular operation. However

Level 6 and 9 do not require modular reduction, therefore these levels do not contain

pipeline registers. Nevertheless, 40 cycles are still required for Level 6 and Level 9 due to

the serial computation on each RNS channel. The total number of cycles for one point

addition can be calculated as follows:

CyclesPADD = (43× 8) + (40× 2)

= 344 + 80 = 424

(6.18)

Furthermore, the modular reduction architecture uses positive-edge-triggered registers

at its input and output ports. This means that an additional cycle is required between

each level of the point addition architecture to transfer the result from one level to the

next level. Therefore Equation (6.18) is updated as

CyclesPADD = (43× 8) + (40× 2) + (10− 1)

= 344 + 80 + 9 = 433

(6.19)

Using a Serial-Parallel Architecture for Modular Reduction

The serial-parallel architecture of point addition is constructed by using serial-parallel

modular reduction, which performs concurrent computation on 4 RNS channels. Thus it

requires only 10 cycles to complete one modular reduction for the proposed RNS moduli.

6.6. Elliptic Curve Point Multiplication – Multi-Key Based on Serial Modular
Reduction 175

The three pipeline stages in the modular reduction architecture allows a higher throughput

with an increased latency of 13 cycles for one input pattern. The number of clock cycles

for the optimised point addition architecture of Fig. 6.7 is calculated by Equation (6.20).

CyclesPADD = (13× 8) + (10× 2)

= 104 + 20 = 124

(6.20)

The total number of cycles is further increased due to an additional cycle between

each logic level of the point doubling architecture as explained in the previous section.

Therefore the new equation to compute the total number of cycles is

CyclesPADD = (13× 8) + (10× 2) + (10− 1)

= 104 + 20 + 9 = 133

(6.21)

6.6 Elliptic Curve Point Multiplication – Multi-Key

Based on Serial Modular Reduction

Recall Fig. 6.1, ECPM is composed of ECPD and ECPA modules along with a com-

parator and some multiplexers. The architectures of ECPD and ECPA are discussed in

Section 6.4 and Section 6.5, respectively. This architecture of ECPM is implemented

by using serial modular reduction architecture in ECPD and ECPA. This architecture

uses deep pipelining to perform operations on multiple keys simultaneously as shown in

Fig. 6.8.

The serial versions of the optimised ECPD and ECPA architectures from Section 6.4

and Section 6.5 are used to implement the point multiplication architecture. The opti-

mised point doubling consists of 23 arithmetic operations (subtraction, addition, multi-

plication) of which 8 operations require modular reduction. The optimised point addi-

tion also requires 23 arithmetic operations, however 15 of them need modular reduction,

176 Chapter 6. Elliptic Curve Point Multiplication

����������	
��������

��������������

���

����������	
��������

��	�����������

���

���

���

��

��

��

�����
���

�

�

�

�
�
�

�
�
�

�
�
�

�

�

�

�
�
�

��
��

��

. . .

. . .

. . .

�������

����������������������	����������

��������������	�����������

�����������������	������

��������������	������

. . .

. . .

��������

�������

��
��

��
��

�
�
��

��
��

Figure 6.8: Multi-Key architecture of ECPM in Jacobian coordinates

6.6. Elliptic Curve Point Multiplication – Multi-Key Based on Serial Modular
Reduction 177

therefore ECPA requires a larger area than ECPD. Consequently, the point multiplication

architecture requires 8 + 15 = 23 modular and (23 − 8) + (23 − 15) = 23 non-modular

arithmetic operations, therefore it is expected to require a certain amount of hardware.

Fig. 6.8 shows that the proposed architecture can process 21 keys simultaneously

between its pipeline stages. The ECPA and ECPD architectures consist of 10 and 9 logic

levels, respectively, which results in 19 logic levels for one iteration of point multiplication.

However additional registers are required for the synchronisation of operations at different

logic levels, which allows the architecture to accept 2 more keys during one iteration. This

can be more easily understood by calculating the number of cycles for one iteration of

point multiplication, as in the following section. In the following discussion the term

“iteration” is used to distinguish one cycle of Elliptic Curve Point Multiplication from

clock cycles, where one iteration computes one ECPD and one ECPA using several clock

cycles.

6.6.1 Cycles for One Iteration of Multi-Key ECPM

The point multiplication architecture consists of point doubling and point addition, along

with some other components. The number of cycles for point doubling and point addition

need to be calculated in order to compute the total number of cycles for one iteration of

point multiplication.

Firstly the number of cycles for serial architecture of point doubling are calculated.

The latency of one modular operation using serial architecture is calculated to be 43

cycles according to Chapter 4. The point doubling architecture consists of 9 logic levels,

therefore its latency is 43× 9 = 387 cycles. Secondly, there is an extra cycle required to

transmit the results from one level to the next level as explained in Section 6.4.3. Hence

the total number of cycles for one point doubling is

178 Chapter 6. Elliptic Curve Point Multiplication

CyclesPDBL = (43× 9) + (9− 1)

= 387 + 8 = 395

(6.22)

Secondly the number of cycles for the serial architecture of point addition is calculated

in a similar manner. Point addition requires 10 logic levels to complete one operation,

therefore the total number of cycles − including an additional cycle between levels − are

computed as

CyclesPADD = (43× 10) + (10− 1)

= 430 + 9 = 439

(6.23)

Note that the number of cycles for point doubling and point addition calculated here

are different from those calculated in Equation (6.13) in Section 6.4.3 and Equation (6.19)

in Section 6.5.2, respectively, which require fewer cycles for non-modular operations. The

non-modular operations in point doubling and point addition are modified for this ECPM

implementation by reintroducing the pipeline stages, such that the latency of non-modular

and modular operations is the same.

Lastly, four registers are inserted between point doubling and point addition to syn-

chronise the start of point addition with the contents read from the ROM and other

modules in the ECPM architecture. Furthermore, two registers are placed at the output

of the point addition to synchronise the results of the current iteration with the start of

the next iteration. The purpose of this is to achieve maximum speed by utilising each

clock cycle. The total number of clock cycles for one iteration of point multiplication can

be calculated by adding the cycles for point doubling and point addition along with the

additional delay elements used for synchronisation. This gives 395 + 439 + 4 + 2 = 840

cycles for one iteration of the point multiplication. Hence the architecture can process

840/40 = 21 keys simultaneously.

6.6. Elliptic Curve Point Multiplication – Multi-Key Based on Serial Modular
Reduction 179

The next step is to analyse the execution state for different keys at the end of one

iteration as shown in Fig. 6.8. The point addition module processes 439/40 = 10.975 keys

simultaneously, which means that it can hold the processing information of all channels

for 10 keys and the additional 439 mod 40 = 39 registers are used for the 11th Key. In

Fig. 6.8 it is shown that at the completion of one iteration the ECPA module holds all

the channels for keys 2 to 11 and almost complete information for Key 1. Channel 0 and

channel 1 of the key are already processed and stored in registers followed by the ECPA,

which allows the ECPA to start processing channel 0 of Key 12.

Similarly, the point doubling module processes 395/40 = 9.875 keys simultaneously,

which means that it can hold the processing information of all channels for 9 keys, and an

additional 395 mod 40 = 35 registers are used for the 10th Key. In Fig. 6.8 it is shown

that at the completion of one iteration the ECPD module holds all the channels for keys

13 to 21 (9 keys) as well as 35 channels of Key 12. Therefore the ECPM architecture can

process 21 keys simultaneously, where 10 keys are held in the ECPD pipeline stages and

11 keys are held in the ECPA pipeline stages.

6.6.2 Invalid inputs for ECPA

As mentioned in Section 6.5, Equation (6.16) for Elliptic Curve Point Addition does not

produce valid results when one of its inputs is 0, or if both inputs are the same. Therefore

some additional circuitry is required for proper functioning of the proposed architecture.

This extra hardware consists of one comparator and a 3:1 multiplexer as shown in Fig. 6.8.

The responsibility of the comparator is to compare the second input of the ECPA (output

of ECPD) with 0 (zero) as well as with initial point P and generate a 2-bit select signal

for the multiplexer to choose the appropriate result to be used for the next iteration. If

the ECPD output is equal to 0 then the stored value of the elliptic curve initial point

(Px, Py, Pz) is selected by the multiplexer, whereas if the ECPD output is equal to the

180 Chapter 6. Elliptic Curve Point Multiplication

elliptic curve initial point then the pre-computed value of 2P = P + P (2Px, 2Py, 2Pz) is

selected by the multiplexer for the next ECPM iteration. For all other values from ECPD,

the result of ECPA is selected by the multiplexer and forwarded for the next iteration.

6.6.3 Clock Cycles for Multi-Key ECPM

The multi-key ECPM architecture requires storage of 21 keys so that they can be used in

each iteration repeatedly. At the start of the first iteration the ECPD starts the operation

on Key 1 while the ECPA stays idle. The ECPD keeps accepting a new key after every

40 cycles, allowing its pipelined architecture to be filled in 395 cycles. The ECPD module

produces its first output after 395 cycles which is fed to the ECPA as well as stored in the

buffers. The system keeps accepting new keys until all the pipeline stages of the ECPA

and ECPD are filled. The first iteration of the ECPM is complete when 21 keys are fed

in to the system in 21× 40 = 840 cycles as explained in the previous section. At the end

of the first iteration a multiplexer is used to select the correct output of the ECPD or

ECPA based on the Most Significant Bit (MSB) of Key 1. This output is then fed back

to the ECPD to start the second iteration.

The system keeps repeating these steps for 256 iterations for a 256-bit ECPM. However

new keys are accepted only at the start of a new ECPM operation, that is, during iteration

1. These keys are stored in a circular buffer to be used repeatedly in the remaining

iterations.

Since the system performs concurrent operations on 21 keys, the number of clock cycles

are calculated for 21 point multiplications. The architecture requires 256× 840 = 215040

cycles to complete 256 iterations. Another 21 × 40 = 840 clock cycles are required to

receive the results of all 21 keys at the output. Hence, the total number of cycles to

complete 21 ECPMs is calculated as

Cycles for 21 ECPMs = (256× 840) + (21× 40) = 215880. (6.24)

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 181

6.7 Elliptic Curve Point Multiplication - Single-Key

With Resource Sharing

This architecture of ECPM is based on the optimal usage of hardware by employing the

techniques of resource sharing and re-utilising. Similarly to multi-key ECPM in Section 6.6

this architecture is also based on double-and-always-add point multiplication algorithm of

Algorithm 1; the block diagram of this algorithm is shown in Fig. 6.1. Unlike the multi-key

ECPM architecture in Section 6.6, this architecture does not use separate components for

each level of ECPD and ECPA. Instead the components used in one logic level are re-used

for computations in other logic levels. For example, the modular multipliers used in Level

1 of Fig. 6.9(a) are re-used for computing two modular multiplication in Level 2. Therefore

only 4 modular multipliers are required instead of 6. Since the hardware components are

being shared between all the logic levels, simultaneous processing in different logic levels

is not possible.

The optimised architectures of ECPD and ECPA of Fig. 6.5 and Fig. 6.7 are repro-

duced below without additional registers for easy reference.

It can be seen from Fig. 6.9 that there are at most four multipliers in any logic level of

ECPD and ECPA, however not all four multipliers require modular reduction. Similarly

the maximum numbers of additions and subtractions are analysed for point doubling and

point addition architectures to decide the optimal hardware requirements.

The maximum modular reductions required in one logic level are observed to be 3 in

Level 1, 2, and 4 of the ECPA architecture. This means that a minimum of 3 modular

reduction components need to be implemented for point multiplication. Similarly, the

maximum number of multiplications, additions, and subtractions are 4, 3, and 1, respec-

tively. Based on these values the ECPM architecture is constructed, using 3 modular

reductions (Mod), 4 RNS multiplications, 3 RNS additions, and 1 RNS subtraction. The

182 Chapter 6. Elliptic Curve Point Multiplication

��

��

�� ��

��

��

��
��

��

�� ��

�� ��

��

��

��

��

a

α β

������

� ���

� ��	

� ���

1X 1Y1Z 1Z1Y

3X 3Y 3Z

��

������	

������

�������

�������

������

�������

�������

�������

�������

������

������

� ���

� ��	

� ���

��

��

�� �� �� ��

�� �� ��

��

��

��

���

��

��

��

��

��

��

��

α

β

1X1Y 1Z1Z2Y 2Z2Z 2X

3X 3Y 3Z

������	

������

�������

�������

������

�������

�������

�������

�������

������	�

������

(a) Elliptic curve point doubling (ECPD) (b) Elliptic curve point addition (ECPA)

Figure 6.9: Optimised architectures of ECPD and ECPA

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 183

hardware is further reduced by splitting the arithmetic operations (×,+,−) and modular

reduction within RNS channels represented as “Barrett” in the proposed architecture.

Three ROM modules are used to store the RNS moduli and the pre-computed values. In

addition, a RAM is used to store the intermediate values used in later steps of the compu-

tation. The architecture is synchronised by implementing a hardwired control unit which

provides appropriate signals to various modules. The complete architecture is shown in

Fig. 6.10.

The thick lines in Fig. 6.10 represent three values for the three Jacobian coordinates

(X, Y, Z) whereas regular lines represent only one value (four channels for serial-parallel

ECPM, and one channel for serial ECPM). This architecture requires 255 iterations in-

stead of 256 to perform one point multiplication. This reduction, of one iteration, is

achieved by observing that the result of the first iteration is either 0 or P which are al-

ready known, therefore the first iteration can be skipped. The control unit simply checks

the MSB of the Key and provides 0 or P as the input of the second iteration. A brief

description of the different modules in this architecture are explained in the following

section.

6.7.1 Sub-Modules of Single-Key ECPM Architecture

The ECPM architecture of Fig. 6.10 consists of several modules which are synchronised by

the control unit. This section briefly discusses the operation of these modules. Since the

architecture of Fig. 6.10 performs ECPD (Fig. 6.9(a))and ECPA (Fig. 6.9(b)) to perform

ECPM (Fig. 6.1), the discussion in this section tries to explain the operation of each

component during one ECPM iteration.

184 Chapter 6. Elliptic Curve Point Multiplication

��
�
�
���

�
	�

���

�
��

�
�
��

��
�
�
���

�
	�

���

�
��

�
�
��

����������

�� �� ��

���	
�����	�

����

����������

��
��

����

����������

��
��

���

����

�

�

�

�

�

�

�

��

�
�
���

��
�
�
���

��
�
�
���

��
�
�
���

��

�
�
�

�
�
�

�
�
�

����

�������

��	�

���

	
�

��	�

��

�������
	���

Figure 6.10: Single-key ECPM architecture in Jacobian coordinates

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 185

Multipliers, adders, subtractors

The ECPM architecture of Fig. 6.10 requires 4 multipliers, 3 adders, and 1 subtractor,

which perform operations within RNS channels of w bits (the width of the RNS channels).

The channel width w is 14 for the proposed 40-channel RNS moduli, however the proposed

ECPM is generic and can be easily modified for a different RNS moduli set.

Input Selection Logic 1

The Input Selection Logic 1 (ISL1) receives the data from Register File, Reg, Mod, and

ROM3 and selects the correct data based on the current clock cycle in each iteration. The

values from Reg are selected only at the start of a new iteration, that is, when the system

is doing operations for Level 1 of the point doubling of Fig. 6.9. Level 1 of ECPD consists

of four multipliers therefore ISL1 provides data to the four multipliers. The left-most and

right-most multipliers at Level 1 do not require modular reduction therefore their results

are produced faster and stored in register file. Level 2 of the point doubling starts as soon

as modular reductions at Level 1 are completed.

During the processing of Level 2 of ECPD, the value from register file is selected

and forwarded to both inputs of the left-most addition module. The output of Mod1 is

forwarded to the left multiplier at Level 2. The first input of the second multiplier is X1,

which was stored in the buffers, therefore the outputs of the Register File and Mod2 are

selected for the first and second operands of the second multiplier, respectively. Similarly,

the operands of the right-most adder come from the register file. Similarly, the operands

for each component are determined based on the current logic level until the completion

of one ECPM iteration.

186 Chapter 6. Elliptic Curve Point Multiplication

Input Selection Logic 2

Input Selection Logic 2 (ISL2) selects the outputs of the multiplication, addition, or

subtraction and forwards these values to the Barrett component. The selections are made

based on the current clock cycle, similarly to ISL1.

Barrett

The purpose of the Barrett component is to compute the modulus operation on each

channel of the received inputs. This component does not require any control signals and

it needs the pre-computed values from ROM1 for its operation. The algorithm of this

component is discussed in detail in Chapter 4.

Mod

The Mod component performs modular reduction using the Sum of Residues (SoR) algo-

rithm. The algorithm and architecture of this component are discussed in Section 6.2. It

requires a pulse (start signal) as a control signal to start the modular reduction.

Store PDBL and PADD Result

The function of these two components is to select the results of the point doubling and

point addition operations and store them temporarily. These results are forwarded to

the multiplexer at the end of each iteration to select the correct value to start the next

iteration. These components also require the information of the current clock cycle which

is provided by the Control Unit.

Multiplexers

The multiplexers are used to select the correct result to be used for the next iteration or

to be forwarded to the final output. The select signal for these multiplexers is generated

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 187

by the Control Unit.

Register File

This is the critical component in the ECPM architecture and can store 9 RNS values at

one time. It stores all the intermediate results that are required in later stages (logic

levels) of the point doubling or point addition in each iteration. For example, in the

point doubling architecture the value of X1 - which is available at the start of Level 1 -

is required in Level 1 as well as in Level 2. Therefore this value needs to be stored to be

used in Level 2.

The values are stored and read on the falling and positive edges of the clock, respec-

tively. This requires the information of the current clock cycle which is provided by the

Control Unit. The Register File has four outputs which are fed to Input Selection Logic

1 (ISL1).

ROM1, ROM2, and ROM3

ROM1 contains the RNS moduli, precomputed K for the Barrett algorithm (see Algo-

rithm 5 in Chapter 4), and M̂ for modular subtraction (see Section 6.3).

ROM2 contains the precomputed values 〈D−1
i 〉mi

and 〈〈Di〉M〉mi
required in modular

reduction algorithms given in Section 6.2.

ROM3 stores the point values P1 = P1x, P1y, P1z and P2 = P2x, P2y, P2z in Jacobian

coordinates. Here P1 represents the starting point of the elliptic curve cryptosystem and

P2 is the result of point doubling for an input of P1.

Control Unit (CU)

Control Unit (CU) is responsible for synchronisation of all the components in the ECC

processor. The signals generated by the control unit are shown in Fig. 6.11.

188 Chapter 6. Elliptic Curve Point Multiplication

����������	���
��	�

����

�
�

���

�����

���

���
����	�

�
����	�

�����	�

�����

��	�

Figure 6.11: Control unit for single-key ECPM

The top three outputs in Fig. 6.11 are from counters used to keep the count of the cur-

rent iteration, clock cycle, and channel that is being processed. The fourth output Start-

Mod is the start signal for the modular reduction modules (Mod). The signal MUXsel

is used for the multiplexers, and Done is used to indicate the completion of one point

multiplication.

6.7.2 Area Optimisation – Reordering of Operations in ECPD

and ECPA

This section explains the area optimisation of the ECPD and ECPA architectures which

allows to reduce the number of components in the ECPM architecture of Fig. 6.10. This

optimisation attempts to reduce the number of operations in logic levels from 4 to 3 as

well as to use pre-computations to eliminate some operations. This optimisation also tries

to reduce the concurrent modular reductions from 3 to 2 which can result in a significant

area reduction.

The operations at each logic level are reduced from 4 to 3 in the modified ECPD and

ECPA architectures where at most 2 operations require modular reduction. This allows

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 189

us to remove one modular reduction component (Mod) and one Barrett component from

the ECPM architecture of Fig. 6.10. In addition, the multipliers are also reduced from 4

to 3.

Optimisation of ECPD by Reordering of Operations

The optimisation of the point doubling architecture aims to reduce the operations at each

level from four to three by re-ordering the operations. It can be clearly seen from the

ECPD architecture of Fig. 6.9(a) that the computation of Z3 is independent of other

operations and is performed by just one modular multiplier and one modular adder at

Level 1 and Level 2, respectively. These two components can be moved to Level 6 and

Level 7, which will reduce the operations at Level 1 and Level 2 from four to three. In

order to reduce the number of operations at Level 3 the square operation is shifted to

Level 4, which results in a shifting of all the subsequent operations dependent on this

multiplier. The modified architecture has at most three operations in each logic level as

shown in Fig. 6.12(a).

Optimisation of ECPA by Reordering of Operations

The ECPA architecture of Fig. 6.9 can be optimised by observing that Z1 is a constant

value in the architecture and therefore Z2
1 and Z3

1 can be pre-computed at design time.

This strategy enables us to remove the left-most modular multipliers at Level 1 and Level

2. The resulting architecture consists of at most 3 operations at each logic level. The

modified ECPA architecture has at most 2 modular reductions at each logic level with the

exception of Level 4. The modular reductions at Level 4 can be easily reduced by shifting

the right-most modular multiplier from Level 4 to Level 7. The modified architecture of

ECPA is shown in Fig. 6.12(b).

190 Chapter 6. Elliptic Curve Point Multiplication

��

��

�� ��

��

��

��

��

��

��

��

��

��

����

��

��

a

α β

������

� ���

� ��	

� ���

1X 1Y1Z 1Z1Y

3X 3Y 3Z

�����

������	

������

�������

�������

������

�������

�������

�������

�������

������

� ���

� ��	

� ���

��

�� �� ��

�� �� ��

��

��

��

���

��

��

��

��

��

��

��

α

β

1X

1Y

1Z
2

Y 2Z2Z 2X

3X 3Y 3Z

�����

������	

������

�������

�������

������

�������

�������

�������

�������

������	�

3

1Z

2

1Z

(a) Optimised and reordered ECPD (b) Optimised and reordered ECPA

Figure 6.12: Optimised and reordered architectures of ECPD and ECPA

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 191

6.7.3 Delay Optimisation - Merging ECPD and ECPA

Since the results of point doubling are fed directly to point addition, merging these two

architectures would provide a clear understanding of the optimisation possibilities. The

merged architecture and the re-ordering of operations to reduce the number of logic levels

are shown in Fig. 6.13.

In Fig. 6.13 the point doubling and point addition architectures are combined by

connecting the outputs of the point doubling architecture to the inputs of the point

addition architecture. It can be seen that the operations at Level 10 and Level 11 can

be shifted to Level 8 and Level 9, which perform only one operation. The re-ordering is

performed by shifting operations of Level 10 and Level 11 while keeping the maximum

operations at each level at 3.

Firstly, Level 10 is analysed for re-ordering of the operations. The left-most multiplier

at Level 10 is dependent on the output of Level 7, therefore this multiplier is shifted to

Level 8. This leaves only one multiplier at Level 10 and it is shifted to Level 13.

Secondly, the operations at Level 11 are re-ordered and consist of three multipliers.

The left-most multiplier at Level 11 depends on the outputs from Level 7 and Level 8

(after re-ordering of Level 10 operations) therefore this multiplier is shifted to Level 9.

The second multiplier at Level 11 depends only on one result from Level 6, therefore

this multiplier can be moved to Level 7, 8, or 9. Level 7 already contains 3 operations,

therefore the second multiplier of Level 11 is shifted to Level 8 resulting in a total of 3

operations at Level 8. The last multiplier at Level 11 depends on the output of Level 8,

therefore it is shifted to Level 9.

The re-ordered architecture does not have any operations at Level 10 and Level 11,

therefore these levels are removed and the subsequent levels are re-numbered. The modi-

fied architecture with fewer logic levels is shown in Fig. 6.13(b). The re-ordered operations

are shown with red outlines for clarity.

192 Chapter 6. Elliptic Curve Point Multiplication

��

��

�� ��

��

��

��

��

��

��

��

��

��

����

��

��

a

������	

������

�������

�������

������

�������

�������

�������

�������

��

�� �� ��

�� �� ��

��

��

��

���

��

��

��

��

��

��

��

������	�

������		

������	

������	�

������	�

������	

������	�

������	�

������	�

������	�

3PDBL
X

3PDBL
Y

3PDBL
Z

1PDBL
X 1PDBL

Y
1PDBL

Z 1PDBL
Z

PDBL
α PDBL

β

1PADD
Y

1PADD
Z

3

1PADD
Z

2

1PADD
Z

PADD
α

PADD
β

1PADD
X

3PADD
X 3PADD

Y 3PADD
Z

��� ��

�

�

�

�

�

�

��

��

�� ��

��

��

��

��

��

��

��

��

��

����

��

��

a

������	

������

�������

�������

������

�������

�������

�������

�������

��

��

��

��

�� �� ��

��

��

��

���

��

��

��

��

��

��

��

������	�

������		

������	

������	�

������	�

������	

������	�

������	�

3PDBL
X

3PDBL
Y

3PDBL
Z

1PDBL
X 1PDBL

Y
1PDBL

Z 1PDBL
Z

PDBL
α PDBL

β

1PADD
Y

1PADD
Z

3

1PADD
Z

2

1PADD
Z

PADD
α

PADD
β

1PADD
X

3PADD
X 3PADD

Y 3PADD
Z

� � �

�

�

�

�

�

�

(a) Initial merging (b) Re-ordered to reduce logic levels

Figure 6.13: Combined and re-ordered ECPD and ECPA architectures

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 193

6.7.4 Area Optimisation – Reordering of Merged ECPD-ECPA

to Reduce Concurrent Modular Reductions

The architecture in Fig. 6.13(b) has a uniform utilisation of the processing elements,

with exactly three operations from Level 1 to Level 13. However the concurrent modular

reductions in Level 9 and Level 11 are increased to 3 due to re-ordering of the operations.

This section uses the re-ordering technique to reduce the maximum modular reductions in

Level 9 and Level 11. The modular operations in Level 11 can be easily reduced by shifting

down the right-most multiplier, as it is not on the critical path. However the re-ordering

of the operations in Level 9 is more challenging due to their dependency. Fig. 6.13(b) is

reproduced in Fig. 6.14(a) to aid the explanation of the re-ordered operations for the final

optimised architecture.

The optimisation starts with shifting the right-most multiplier at Level 14 to Level

15. This is followed by the shifting of the right-most multiplier at Level 11 to Level 14.

Hence the modular reductions in Level 11 are reduced from 3 to 2.

The re-ordering of Level 9 operations requires the shifting of several operations at

different levels. Firstly, the adders in the middle at Level 5, 6, and 7 are shifted to Level

6, 7, and 8, respectively. Secondly, the right-most operations at Level 6, 7, 8, and 9 are

shifted upward to Level 5, 6, 7, and 8, respectively. These steps reduce the modular

reductions at Level 9 from 3 to 2, however it increases the total operations at Level 8

from 3 to 4. This is fixed by shifting the left-most multiplier at Level 8 to Level 9.

The modified architecture uses a maximum of 3 operations at each level, and at most 2

operations require modular reduction. Furthermore, Level 3, 5, 13, and 16 do not require

any modular reduction, therefore these levels require fewer clock cycles than the other

levels with modular reduction.

194 Chapter 6. Elliptic Curve Point Multiplication

��

��

�� ��

��

��

��

��

��

��

��

��

��

����

��

��

a

������	

������

�������

�������

������

�������

�������

�������

�������

��

��

��

��

�� �� ��

��

��

��

���

��

��

��

��

��

��

��

������	�

������		

������	

������	�

������	�

������	

������	�

������	�

3PDBL
X

3PDBL
Y

3PDBL
Z

1PDBL
X 1PDBL

Y
1PDBL

Z 1PDBL
Z

PDBL
α PDBL

β

1PADD
Y

1PADD
Z

3

1PADD
Z

2

1PADD
Z

PADD
α

PADD
β

1PADD
X

3PADD
X 3PADD

Y 3PADD
Z

� � �

�

�

�

�

�

�

�� �

��

�� �

�� ��

��

�

�� ��

��

��

��

��

��

��

��

��

��

��

a

�

1PDBL
X 1PDBL

Y1PDBL
Z 1PDBL

Z1PDBL
Y

3PDBL
X 3PDBL

Z

������	

������

�������

�������

������

�������

�������

�������

�������

��

�� �� ��

�

� ��

��

��

���

��

��

��

��

��

��

��

1PADD
X

1PADD
Y

1PADD
Z

3PADD
X 3PADD

Y
3PADD

Z

������	�

������		

������	

������	�

������	�

������	

������	�

������	�

�

��

��

��

2

1PADD
Z

3

1PADD
Z

3PDBL
Y

PADD
α

PADD
β

PDBL
α

PDBL
β

�

(a) Re-ordered ECPD & ECPA from Section 6.7.3 (b) Final optimised ECPD & ECPA

Figure 6.14: Final optimisation of combined ECPD and ECPA architectures

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 195

6.7.5 Power Optimisation – Switching Off Idle Components

Power consumption of the design is optimised by switching off the components when

they are not performing any operation. The most power consuming operation is modular

reduction which is performed by the component named asMod in the ECPM architecture.

The operation of the modular reduction is controlled by a start signal which indicates the

start of a new input pattern. There are some logic levels (Level 3, 5, 13, 16) in optimised

merged ECPD and ECPA of Fig. 6.14 where modular reduction is not required. Hence

modular reduction components are switched off in these levels by not providing the start

signal which reduced significant amount of energy.

Secondly, it is observed that there are some levels where only one modular reduction is

required, therefore it is desirable to switch off one of the modular reduction components.

Since both the modular reduction components are connected to same start signal, the only

possibility is to switch both components OFF or ON. To address this issue, separate start

signals are generated by the control unit to be used for modular reduction components. In

this way, one modular reduction component is turned off at Level 2, 4, 8, 12, and 17 which

saves the power consumption equivalent to that of 5 modular reduction components.

6.7.6 Block Diagram of Optimised Single-Key ECPM Architec-

ture

The optimised ECPM architecture is shown in Fig. 6.15. It requires only 2 modular re-

duction components (Mod1, Mod2), 3 Barrett components to perform modular reduction

within RNS channels, 3 w-bit multipliers, 2 w-bit adders, and 1 w-bit subtractor along

with other components explained in Section 6.7.1. The outputs of RegisterF ile are in-

creased from 4 to 6 in this optimised architecture, based on the requirement of storing

the intermediate values. The remaining components are the same as for the initial ECPM

196 Chapter 6. Elliptic Curve Point Multiplication

architecture presented at the start of this section in Fig. 6.10.

The implementation of the ECPM of Fig. 6.15 can be performed using either a se-

rial architecture or a 4-channel serial-parallel architecture of modular reduction. The

implementation details for single-key ECPM are discussed in subsequent sections.

6.7.7 Clock Cycles for Single-Key ECPM Based on Serial Mod-

ular Reduction

This implementation of ECPM of Fig. 6.15 is performed by utilising the serial modular

reduction of Fig. 6.2, which serially executes operations on each RNS channel. Firstly, the

clock cycles for one iteration need to be calculated for the combined ECPD and ECPA

architecture of Fig. 6.14(b). This architecture consists of 17 levels, of which Level 3, 5, 13,

and 16 are non-modular and they require fewer clock cycles due to the absence of pipeline

stages in the modular reduction architecture. Furthermore, the modular reduction at

Level 8 is not on the critical path, therefore Level 8 is also considered as non-modular in

terms of clock cycles. Hence the number of clock cycles for 12 modular and 5 non-modular

serial operations is to be calculated.

Serial modular reduction requires 43 clock cycles as explained in Section 4.4.2. The

non-modular operation requires 40 cycles for the serial implementation for a 40-channel

RNS moduli. Therefore the total number of clock cycles for one iteration can be calculated

as (43 × 12) + (40 × 5) + 1 = 717. Note that, unlike the architecture of the ECPM in

Section 6.6, this architecture does not require any additional clock cycles between logic

levels, however it does require one additional clock cycle between each iteration. This

additional cycle is required due to the registering of an output from one iteration to the

next. The total number of cycles to complete one point multiplication can be calculated

6.7. Elliptic Curve Point Multiplication - Single-Key With Resource Sharing 197

��
�
�
���

�
	�

���

�
�
�
�
�

��

��
�
�
���

�
	�

���

�
�
�
�
�

��

����������

�� �� ��

	�
���� ¡¢

�����

����

	�
����£

�����

��

�

�

�

�

�

�
�
���

����
�
�
���

����
�
�
���

����

����

����

�
�
�
��

�
�
�
��

��������

����

���

��������	

������

����

�
��

���

���

�����

���

����
����

��
����

�
����

���������

������
����

Figure 6.15: Optimised single-key ECPM architecture in Jacobian coordinates

198 Chapter 6. Elliptic Curve Point Multiplication

by Equation (6.25).

ECPMcycles = (717× 255) + 40 = 182875 (6.25)

where 40 cycles are required to receive the completed output of one elliptic curve point

multiplication. Note that this architecture requires 255 iterations instead of 256 because

the result of iteration 1 is either 0 or P (initial EC point) which are already known,

therefore the first iteration does not require any computation.

6.7.8 Clock Cycles for Single-Key ECPMBased on Serial-Parallel

Modular Reduction

The serial-parallel implementation of the ECPM of Fig. 6.15 is performed by utilising the

serial-parallel modular reduction of Fig. 6.3, which performs concurrent operations on 4

RNS channels. Firstly, the clock cycles for one iteration need to be calculated for the

combined ECPD and ECPA architecture of Fig. 6.14(b), which consists of 12 modular

and 5 non-modular logic levels as explained in the previous section.

Serial-parallel modular reduction requires 13 clock cycles as explained in Section 4.4.3

whereas only 10 cycles are required for the non-modular operations. Therefore the total

number of clock cycles for one iteration can be calculated as (13 × 12) + (10 × 5) + 1 =

207. Note that, unlike the architecture of the ECPM in Section 6.6 this architecture

does not require any additional clock cycles between logic levels, however it does require

one additional clock cycle between each iteration. This additional cycle is required due

to the registering of the output from one iteration to the next, similarly to the serial

implementation discussed in Section 6.7.7. The total number of cycles to complete one

point multiplication can be calculated by Equation (6.26).

ECPMcycles = (207× 255) + 10 = 52795 (6.26)

6.8. Hardware Implementation and Analysis of Results 199

where 40 cycles are required to receive the completed output of one elliptic curve point

multiplication. Similarly to serial ECPM this architecture also requires only 255 iterations

for a 256-bit ECPM.

6.8 Hardware Implementation and Analysis of Re-

sults

Both architectures of ECPM, multi-key ECPM and single-key ECPM, are implemented on

FPGA as well as on ASIC platforms. The multi-key ECPM architecture is implemented

only by using serial modular multipliers of Section 4.4.2. The single-key ECPM has two

implementations, one is implemented by using serial modular multipliers whereas the

second implementation uses serial-parallel modular multipliers. Similarly to Section 4.5

Virtex-6 and Virtex-7 FPGAs are used for FPGA implementations and 90 nm CMOS

technology is used for ASIC implementations. Synthesis parameters are also the same as

for modular multiplier implementations discussed in Section 4.5.

6.8.1 FPGA Implementations of Proposed ECPMArchitectures

Results for FPGA implementation of the proposed ECPM architectures are reported in

Table 6.1. The results for timing and area are obtained from post-place&route reports.

The number of slices and DSP slices are reported separately which makes it difficult to

compare the area of the proposed implementations. For simplicity, area-delay product is

calculated by multiplying slices by average delay of one ECPM.

The throughput of MK ECPM is 70-79% and 88-93% higher than SK ECPM SPMR

and SK ECPM SMR, respectively, for Virtex-6 and Virtex-7 implementations. The area-

delay product of MK ECPM is more than the single-key ECPM architectures for Vitex-6

implementations. The area-delay product of MK ECPM is less than single-key ECPM

200 Chapter 6. Elliptic Curve Point Multiplication

T
ab

le
6.1:

P
ost-p

lace&
rou

te
resu

lts
of

p
rop

osed
E
C
P
M

im
p
lem

en
tation

s
on

V
irtex

-6
an

d
V
irtex

-7
F
P
G
A

P
la
tfo

rm
D
e
sig

n
C
y
c
le

C
lo
ck

L
a
te
n
c
y

A
v
g
.
D
e
la
y

A
re

a
A
re

a
×
D
e
la
y

T
h
ro

u
g
h
p
u
t

T
im

e
C
y
c
le
s

fo
r
o
n
e
E
C
P
M

(n
s)

(m
s)

(m
s)

(S
lices,D

S
P
48E

1s)
(K

b
p
s)

V
irte

x
-6

M
K

E
C
P
M

39.9
215880

8.61
0.41

62561,
2016

25650
624

S
K

E
C
P
M

S
M
R

18.8
182875

3.44
3.44

7220,
259

24836
74

S
K

E
C
P
M

S
P
M
R

25.5
52795

1.35
1.35

16964,
1036

22901
190

V
irte

x
-7

M
K

E
C
P
M

22.6
215880

4.88
0.23

53829,
2799

12380
1113

S
K

E
C
P
M

S
M
R

17.5
182875

3.20
3.20

6940,
259

22208
80

S
K

E
C
P
M

S
P
M
R

20.7
52795

1.09
1.09

16611,
1036

18105
235

M
K

E
C
P
M
:
M
u
lti-k

ey
E
C
P
M

S
K

E
C
P
M

S
M
R
:
S
in
g
le-k

ey
E
C
P
M

u
sin

g
seria

l
m
o
d
u
la
r
red

u
ctio

n

S
K

E
C
P
M

S
P
M
R
:S
in
g
le-k

ey
E
C
P
M

u
sin

g
seria

l-p
a
ra
llel

m
o
d
u
la
r
red

u
ctio

n

6.8. Hardware Implementation and Analysis of Results 201

architecture for Virtex-7 implementations due to the large number of DSP slices. Hence

an FPGA with high number of DSP slices is preferred for MK ECPM implementations.

MK ECPM is suitable for applications with high-throughput requirements e.g banking

servers, email servers. etc. The throughput of the MK ECPM is comparable with different

software implementations of ECC based on the double-and-add algorithm [185]. The

work in [185] achieves the throughput of 250–1414 Kbps and 15–119 Kbps for various

implementations on Intel Core i7 and Qualcomm Snapdragon, respectively. The speed

improvement of the MK ECPM over these software implementations is -12%–98%.

Single-key ECPM architectures require less number of clock cycles and operates on

higher frequency. The latency of SK ECPM SMR and SK ECPM SPMR is 34-60% and

78-84% less than MK ECPM therefore these are more suitable for ATM machines and

EFTPOS (Electronic fund transfer at point of sale) where a low latency of the system

is most important. The low area of SK ECPM SMR makes it a preferred choice over

SK ECPM SPMR for mobile applications. The SK ECPM SPMR has 40% less delay

when compared to the state-of-the-art binary ECPM implementation in [132].

The forward and reverse conversions (binary-to-RNS and RNS-to-binary) are required

to implement the proposed RNS ECPM in practical systems and the overall processing

time is expected to increase slightly. The forward conversion is trivial and can be effi-

ciently performed as suggested in [11]. The reverse conversion (RNS-to-binary) is more

challenging but the proposed modular multiplication architecture can be easily modified

to construct the reverse converter. The area and delay of the reverse converter would be

approximately the same as the area and delay of the modular multiplication architecture.

The serial reverse converter would need approximately N clock cycles where N = 40 is

the number of moduli in the RNS. The clock cycles for a single-key ECPM based on serial

MM are ECPMcycles = 182875 as shown in Section 6.7.7. Hence the total clock cycles

required for one reverse conversion adds only N
ECPMcycles

= 40
182875

≈ 0.02% of the total

202 Chapter 6. Elliptic Curve Point Multiplication

clock cycles for one ECPM. Since the forward and reverse conversion is performed only at

the start and end of an ECPM operation therefore their contribution to the overall delay

of the ECPM operation is very little. The delay of the reverse conversion is estimated

to be 227 ns = 0.00023 ms (same delay as of modular multiplication in Table 4.8) for

Virtex-6 implementation which is negligible as compared to the delay (1.35 ms) of the

ECPM architecture.

6.8.2 ASIC Implementations of Proposed ECPM Architectures

Synthesis results of ASIC implementations of the proposed ECPM architectures are re-

ported in Table 6.2. Power consumption is obtained by performing time-based power

analysis in Prime Time in the presence of switching activity of the architectures. Energy

is calculated by multiplying average delay for one ECPM by power consumption.

It can be seen that multi-key ECPM (MK ECPM) has the highest throughput as well

as lowest energy dissipation than the other proposed ASIC implementations of ECPM.

Similarly, area-delay product of multi-key ECPM is also less than the single-key ECPM ar-

chitectures. The throughput of multi-key ECPM is 82-93% higher than single-key ECPM

implementations. Therefore multi-key ECPM architecture is the preferred choice for ap-

plications with high throughput requirements. The energy dissipation of multi-key ECPM

is 40-45% lower than the single-key ECPM architectures. The drawback of the multi-key

ECPM is its high area requirements of 50 mm2 which is not feasible for fabrication using

90-nm CMOS technology. Therefore multi-key ECPM architecture is more suitable for

ASIC implementations using state-of-the-art technology e.g 28-nm process node.

Single-key ECPM architecture has two implementations: 1) single-key ECPM using se-

rial modular reduction (SK ECPM SMR) 2) single-key ECPM using serial-parallel modu-

lar reduction (SK ECPM SPMR). The energy and area-delay product of SK ECPM SMR

is 9% and 23% less, respectively, than the SK ECPM SPMR. Therefore it can be claimed

6.8. Hardware Implementation and Analysis of Results 203

T
ab

le
6.
2:

S
y
n
th
es
is

re
su
lt
s
of

p
ro
p
os
ed

E
C
P
M

im
p
le
m
en
ta
ti
on

s
on

90
n
m

C
M
O
S

D
e
si
g
n

C
y
c
le

C
lo
ck

L
a
te
n
c
y

A
v
g
.
D
e
la
y

A
re
a

T
h
ro

u
g
h
p
u
t

P
o
w
e
r

E
n
e
rg

y
A
re
a
×
D
e
la
y

T
im

e
C
y
c
le
s

fo
r
o
n
e
E
C
P
M

(n
s)

(m
s)

(m
s)

(m
m

2
)

(K
b
p
s)

(µ
W

)
(n
J
)

M
K

E
C
P
M

31
.8
1

21
58
80

6.
86
7

0.
33

50
.2
67

78
2.
9

2.
53

0.
83

16
.5
9

S
K

E
C
P
M

S
M
R

26
.2
9

18
28
75

4.
80
8

4.
80
7

3.
89
1

53
.2

0.
29

1.
39

18
.7
0

S
K

E
C
P
M

S
P
M
R

35
.3
9

52
79
5

1.
86
8

1.
86
8

13
.0
72

13
7.
0

0.
82

1.
53

24
.4
2

M
K

E
C
P
M
:
M
u
lt
i-
k
ey

E
C
P
M

S
K

E
C
P
M

S
M
R
:
S
in
g
le
-k
ey

E
C
P
M

u
si
n
g
se
ri
a
l
m
o
d
u
la
r
re
d
u
ct
io
n

S
K

E
C
P
M

S
P
M
R
:S
in
g
le
-k
ey

E
C
P
M

u
si
n
g
se
ri
a
l-
p
a
ra
ll
el

m
o
d
u
la
r
re
d
u
ct
io
n

204 Chapter 6. Elliptic Curve Point Multiplication

that the overall performance of SK ECPM SMR is better than SK ECPM SPMR. More-

over, the area of SK ECPM SMR is also 70% less than SK ECPM SPMR which reduces

its fabrication cost. SK ECPM SMR is suitable for applications with low-energy and

low-area requirements e.g mobile phones, tablets, etc. The drawback of SK ECPM SMR

is its low throughput. The throughput can be increased by using serial-parallel modular

reductions instead of serial modular reductions. This is shown by second implementa-

tion of single-key ECPM – SK ECPM SPMR – which processes 4 channels in parallel.

The throughput of SK ECPM SPMR is about 2.5 times higher than SK ECPM SMR

with little difference in energy dissipation. Hence SK ECPM SPMR is suitable for high-

throughput applications e.g banking servers, email servers, etc.

6.9 Summary of Results

This chapter presented the proposed ECPM architectures named as multi-key ECPM,

single-key ECPM using serial modular reduction, and single-key ECPM using serial-

parallel modular reduction. Results for FPGA and ASIC implementations of the proposed

architectures are analysed to evaluate the performance and usefulness of the architectures.

Multi-key ECPM has the highest throughput than the single-key ECPM architectures.

Hence it is useful for applications which performs continuous ECPM operations e.g bank-

ing servers. Single-key ECPM architectures have low latency therefore they are more

suitable for applications that requires a quick result e.g EFTPOS and ATM. The low area

of single-key ECPM architectures makes them preferred choice for mobile applications

also.

6.9. Summary of Results 205

Publications Pertaining to this Chapter

• S. Asif, S. Hossain, Y. Kong, “High-throughput multi-key elliptic curve cryptosys-

tem based on residue number system”, IET Computers and Digital Techniques (sub-

mitted).

206 Chapter 6. Elliptic Curve Point Multiplication

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis proposes a number of architectures to perform high-throughput, low-power

elliptic curve cryptography (ECC) to ensure the security of confidential information in

various applications such as banking and email servers, mobile phones, ATMs, EFTPOS,

tablets, and laptops. High-throughput ECC systems are critical for the banking and

email servers that perform thousands of encryptions in each second. Therefore these

applications put little focus on the area or energy optimisation of the system. Battery

operated systems such as mobile phones, tablets, and laptops are more concerned with

power consumption due to the limited battery life. The ECC implementations in this

work aim to optimise the throughput and energy of ECC systems.

The proposed ECC systems used the residue number system (RNS), well-known for

their high-speed arithmetic operations of addition, subtraction, and multiplication. The

RNS in this work is constructed by finding 40 co-prime numbers (called moduli) where

each modulus is of 14 bits. The small size of the modulus ensures a high throughput of

the RNS arithmetic operations. The thesis provides a detailed discussion of the criteria

207

208 Chapter 7. Conclusions and Future Work

for increasing the dynamic range of the RNS to suit different applications.

The contribution in the research field is made in designing several hardware architec-

tures for three major arithmetic operations of ECC at different hierarchy levels. Firstly,

seven different architectures are proposed for high-speed counter-based Wallace (CBW)

multipliers. Secondly, the algorithm for modular multiplication (MM) in RNS is dis-

cussed and three different architectures are proposed. Thirdly, the design of an elliptic

curve point multiplication (ECPM) architecture is presented by using the double-and-

always-add algorithm. The existing architectures of elliptic curve point addition (ECPA)

and elliptic curve point doubling (ECPD) are analysed in detail and improvements are

proposed. Two different architectures are proposed for the ECPM that demonstrate ex-

tremely high throughput and low power consumption. The detailed discussion of these

contributions is provided in the subsequent text in reverse order.

Elliptic Curve Point Multiplication

The major operation in ECC is elliptic curve point multiplication (ECPM), that dominates

the overall complexity of the ECC system in terms of throughput and area. This thesis

proposes two ECPM architectures; the first architecture is designed to provide very high

throughput whereas the second architecture targets applications with limited hardware

resources. Both architectures are based on the double-and-add algorithm (also called

binary algorithm) that performs elliptic curve point doubling (ECPD) and elliptic curve

point addition (ECPA) in each iteration irrespective of the value of the key.

• The first ECC architecture (multi-key ECPM) achieved very high throughput by

simultaneous processing of the multiple keys. The processing of multiple keys is

performed by employing deep pipeline stages at different levels of the architecture

and processes 21 keys simultaneously between its pipeline stages. The ECPA and

ECPD architectures employed in this architecture consist of 10 and 9 logic levels,

7.1. Conclusions 209

respectively, which results in 19 logic levels for one iteration of point multiplication.

The results of one logic level are stored in an array of registers for the synchronisation

of operations at different logic levels. This allows the architecture to process two

additional keys in one point multiplication iteration. The clock cycles required

to complete one iteration are 840, and the 21 ECPM operations are performed in

840 ∗ 256 = 215040 clock cycles. This architecture uses dedicated hardware for the

computation of each modular operation in the ECPD and ECPA. This architecture

is suitable for banking and email servers which require extremely high throughput

rate, but multi-key ECPM is not suitable for resource-constrained applications due

to its large area requirements.

• The second ECPM architecture (single-key ECPM) optimises the hardware cost by

resource sharing and pre-computations. Firstly, the existing architectures of point

doubling and point addition are modified and the modular operations are reduced by

using pre-computations. Secondly, the point doubling and point addition architec-

tures are merged by connecting the outputs of the point doubling to the inputs of the

point addition. Thirdly, the merged ECPD-ECPA architecture is optimised and the

number of logic levels is reduced by operation reordering. Fourthly, the number of

concurrent modular reductions are reduced by half by careful analysis and reordering

of operations. These optimisations significantly reduced the delay and area of the

single-key ECPM architecture. The optimised architecture requires a maximum of

two modular reductions concurrently therefore the hardware architecture consists of

only two modular reduction components. The complete ECPM hardware comprises

of two modular reduction components (Mod), three 15×15 modular multipliers, two

15-bit modular adders, and one 15-bit modular subtractor. The hardware is fur-

ther reduced by splitting the arithmetic operations (×,+,−) and modular reduction

within RNS channels represented as “Barrett” in the proposed architecture. Three

210 Chapter 7. Conclusions and Future Work

ROM modules are used to store the RNS moduli and the pre-computed values. In

addition, a RAM is used to store the intermediate values used in later steps of the

computation. The architecture is synchronised by implementing a hardwired control

unit which provides appropriate signals to various modules. The final optimisation

is aimed to reduce the power consumption, which is very critical in battery-operated

applications, by switching off the modular reduction modules during their idle state

using dedicated start signals. The single-key ECPM architecture is more suitable for

portable applications such as personal digital assistants (PDAs), mobiles, tablets,

and laptops where the energy and area is of major concern.

• The FPGA implementation results of the multi-key and single-key ECPM architec-

tures achieve a throughput of 624-1113 Kbps and 74-235 Kbps, respectively. The

throughput of multi-key ECPM is 70-93% higher than single-key ECPM architec-

tures. The hardware cost of multi-key ECPM is 87-88% more than the single-key

ECPM architectures. The area-delay product of multi-key ECPM about half than

the single-key ECPM architecture for Virtex-7 implementations. This is because

multi-key ECPM takes full advantage of the large number of DSP slices available in

the Virtex-7 FPGA. The proposed multi-key ECPM has up to 98% higher through-

put than the state-of-the-art software-based ECC implementations.

Modular Multiplication

The second part of this research is aimed to perform efficient modular multiplication (MM)

which is the most frequent operation in ECPM. The existing RNS-based MM algorithm

is improved in this research for hardware implementations and a new set of RNS moduli

is designed with a dynamic range of 560 bits. The correct functionality of the algorithm

is verified by software simulations and the constant values are proposed that ensure the

maximum optimisation of the hardware. Three different RNS-based MM architectures

7.1. Conclusions 211

are proposed that provide a trade-off between hardware cost, throughput, and energy

dissipation.

• Firstly, a parallel MM architecture is developed that provides an extremely high

throughput by processing all the RNS channels concurrently. This architecture

achieves exceptionally high throughput rate as compared to the existing architec-

tures, therefore this is a preferred architecture for applications with high demands

on the throughput. The drawback of the parallel MM architecture is its slightly

larger area which makes it unsuitable for area-constrained applications.

• Secondly, a serial MM architecture is constructed that processes the RNS channels

in a serial manner and thus requires N clock cycles for one modular multiplication

for a RNS of N moduli. The advantage of this architecture is its low hardware cost

therefore the serial MM architecture is fabricated as an ASIC on 65 nm CMOS tech-

nology by using the low-power low-threshold standard cell library. The fabricated

ASIC of 1 mm2 is verified by measurements and the power consumption is recorded

for different supply voltages in the range of 0.43-1.2 V that prove the suitability of

the proposed MM architecture for low-voltage applications.

• Thirdly, a serial-parallel MM architecture is proposed that divides the RNS moduli

into several groups, where each group consists of four RNS channels. The groups

are processed serially but the RNS channels within each group are processed con-

currently. This serial-parallel MM architecture is suitable for applications that have

moderate constraints on the throughput and area.

• The FPGA implementation results of the serial, serial-parallel, and parallel MM

architectures achieve a throughput of 358-432 Mbps, 1128-1391 Mbps, and 14798-

15900 Mbps, respectively. The serial-parallel is more efficient than the serial and

parallel MM architectures in terms of area-delay product.

212 Chapter 7. Conclusions and Future Work

Counter-Based Wallace Multiplier

• An effort is also made to improve multiplication, which is a fundamental operation of

MM. Counter-based Wallace (CBW) multipliers are considered as one of the fastest

multiplier architectures, and therefore several hardware architectures are proposed

in this research for CBWmultipliers. A detailed analysis is provided for optimisation

of the proposed architectures, and a generic algorithm is proposed which is useful

to construct a CBW multiplier of any size.

• The effect of using Booth encoding with Wallace multipliers is also studied and

conclusions are drawn. It has been shown that, contrary to the popular belief,

the use of Booth encoding in Wallace multipliers increases the overall delay of the

multiplier. However, these results are only for the CMOS technology used in this

work (90 nm); the implementations on other technologies might exhibit different

performance. The synthesis results of the proposed architectures are compared

with a reference design to prove the effectiveness of the proposed multipliers.

7.2 Future Research Directions

This research work provides a solid ground for RNS-based implementations of ECC ar-

chitectures. Due to the novelty of the proposed scheme it has great potential for further

improvement. Other than the obvious desire to reduce the area, delay, and power con-

sumption of the proposed architectures, there are a few more components that are required

to use these architectures in practical applications.

Firstly, binary-to-RNS and RNS-to-binary converters can be constructed to integrate

the proposed ECC architectures with existing systems. The latter can be accomplished by

minor modification in the proposed modular multiplication. Secondly, an architecture is

required for the conversion of Jacobian coordinates to affine coordinates. The complexity

7.2. Future Research Directions 213

of these two tasks can be reduced by first converting the RNS to binary form and then

performing the conversion from Jacobian to affine coordinates.

The proposed serial-parallel architecture divided the RNS in a group of four channels.

The future work could be to investigate the implementations of serial-parallel architectures

with a different group size. The possible group size for the proposed RNS can be 2, 4,

5, 8, 20, and 20. The optimum size of the group depends on the application requirement

and thus a wide range of applications can use the proposed MM and ECC architectures.

Another avenue of the research is the investigation of physical implementations of

the counter circuits which are the building blocks of the parallel modular multiplication

architecture. The use of Booth encoding in Wallace multipliers can be further analysed

by implementations on various CMOS technologies.

214 Chapter 7. Conclusions and Future Work

Appendix A

TCL Scripts for Counter-Based

Wallace Multiplier

A.1 TCL script for Synthesis in Design Compiler

1 s e t t e s t 0

2 s e t i t e r a t i o n s 1

3 s e t e l a b e x i s t 0

4 s e t dec r va lue 0 . 1

5 s e t de lay 1 .03

6 s e t out l oad 1 . 5

7 s e t area 0

8 s e t max dyn power 0

9 s e t max leak power 0

10 s e t s t r u c tu r e ” f a l s e ”

11 s e t map ”medium”

12 s e t wire model ”ForQA”

13 s e t wire mode ” top”

Listing A.1: Constraints file for CBW Multiplier (CBW 16x16 DC.con)

215

216 Appendix A. TCL Scripts for Counter-Based Wallace Multiplier

1 source s c r i p t s /CBW 16x16 DC.con

2 f o r { s e t i 0} { $ i < $ i t e r a t i o n s } { i n c r i } {

3 remove des ign −al l

4 i f { $ e l a b e x i s t == 0} {

5 ana lyze −format vhdl − l ib work { . / s r c /HA.vhd \

6 . / s r c /FA.vhd \

7 . / s r c / PG in i t i a l B lo ck .vhd \

8 . / s r c /PG Group Block.vhd \

9 . / s r c /Kogge Stone Gener ic .vhd \

10 . / s r c /Add4.vhd \

11 . / s r c /Add5.vhd \

12 . / s r c /Add6.vhd \

13 . / s r c /Add7.vhd \

14 . / s r c /CBW 16x16 Stage0.vhd \

15 . / s r c /CBW 16x16 Stage1.vhd \

16 . / s r c /CBW 16x16 Stage2.vhd \

17 . / s r c /CBW 16x16 Stage3.vhd \

18 . / s r c /CBW 16x16 Stage0 Part0.vhd \

19 . / s r c /CBW 16x16 Stage1 Part0.vhd \

20 . / s r c /CBW 16x16 Stage2 Part0.vhd \

21 . / s r c /CBW 16x16 Stage3 Part0.vhd \

22 . / s r c /CBW 16x16 Stage0 Merger0.vhd \

23 . / s r c /CBW 16x16 Stage1 Merger0.vhd \

24 . / s r c /CBW 16x16 Stage2 Merger0.vhd \

25 . / s r c /CBW 16x16 Stage3 Merger0.vhd \

26 . / s r c /CBW 16x16.vhd}

27

28 e l a bo r a t e CBW 16x16 −a r ch i t e c tu r e ARCH CBW 16x16 − l ibrary DEFAULT

−parameters ”Final Adder Type=1” −update

29 wr i t e −format ddc −hierarchy −output . / n e t l i s t /

CBW 16x16 Final Adder Type1elab.ddc

A.1. TCL script for Synthesis in Design Compiler 217

30 } e l s e {

31 r e a d f i l e −format ddc . / n e t l i s t /CBW 16x16 Final Adder Type1elab.ddc

32 }

33 #################

34 # Sta r t o f Compile

35 #################

36 se t max de lay $delay −from [a l l i n p u t s] −to [a l l o u t pu t s]

37 s e t l o a d $out load [a l l o u t pu t s]

38 se t max area $area

39 set max dynamic power $max dyn power

40 se t max leakage power $max leak power

41 compi le −map effort $map

42 #################

43 # End o f Compile

44 #################

45 s e t de lay [expr $delay − $dec r va lue]

46 i f { $ t e s t == 0} {

47 r emove unconnected por ts −blas t buses [g e t c e l l s ”∗” −hier]

48 r emove unconnected por ts [g e t c e l l s ”∗” −hier]

49 r e po r t h i e r a r chy > . / r e po r t s /CBW 16x16 hierarchy DC.rpt

50 r e p o r t c e l l > . / r e po r t s /CBW 16x16 cell DC.rpt

51 r e po r t n e t −verbose −connect ions > . / r e po r t s /CBW 16x16 net DC.rpt

52 }

53 i f { $ t e s t == 0} {

54 r epo r t t im ing > . / r e po r t s /CBW 16x16 timing DC.rpt

55 r e po r t a r e a > . / r e po r t s /CBW 16x16 area DC.rpt

56 r epor t power > . / r e po r t s /CBW 16x16 power DC.rpt

57 } e l s e {

58 r epo r t t im ing >> . / r e po r t s /CBW test 16x16 timing DC.rpt

59 r e po r t a r e a >> . / r e po r t s /CBW test 16x16 area DC.rpt

60 r epor t power >> . / r e po r t s /CBW test 16x16 power DC.rpt

218 Appendix A. TCL Scripts for Counter-Based Wallace Multiplier

61 }

62 i f { $ t e s t == 0} {

63 change names −rules v e r i l o g −hierarchy > /dev/ nu l l

64 wr i t e −format v e r i l o g −hierarchy −output . / n e t l i s t /

CBW 16x16 Final Adder Type1.v

65 wr i t e s d f . / n e t l i s t /CBW 16x16 Final Adder Type1.sdf

66 wr i t e s d c . / n e t l i s t /CBW 16x16 Final Adder Type1.sdc

67 wr i t e −format ddc −hierarchy −output . / n e t l i s t /

CBW 16x16 Final Adder Type1.ddc

68 }

69 }

Listing A.2: Synopsys Design Compiler synthesis script for 16×16 CBW Multiplier -

Architecture 8

A.2 TCL Script for Power Analysis in Prime Time

1 remove des ign −al l

2 r e a d v e r i l o g . / n e t l i s t /CBW 16x16 Final Adder Type1.v

3 cu r r en t d e s i g n CBW 16x16 Final Adder Type1

4 se t max de lay 1 . 0 −from [a l l i n p u t s] −to [a l l o u t pu t s]

5 r e po r t v cd h i e r a r chy . / n e t l i s t /CBW 16x16.vcd

6 s e t power ana lys i s mode ” time based ”

7 read vcd − s t r ip path t e s t cbw 16x16 f i n a l a dde r t yp e1 /uut . / n e t l i s t /

CBW 16x16.vcd

8 update power

9 r epor t power > . / r e po r t s /CBW 16x16 power PT.rpt

10 r epo r t t im ing > . / r e po r t s /CBW 16x16 timing PT.rpt

Listing A.3: Synopsys Prime Time script for Power Analysis of 16×16 CBW Multiplier -

Architecture 8

Appendix B

TCL Scripts for Modular Multipliers

B.1 Pipelined Parallel Modular Multiplier

B.1.1 TCL script for Synthesis in Design Compiler

1 s e t t e s t 0

2 s e t on l y e l a b 0

3 s e t e l a b e x i s t 0

4 s e t dec r va lue 0 . 1

5 s e t s t a g e d e l a y 0 . 1

6 s e t de lay 1 .13

7 s e t out l oad 1 . 5

8 s e t area 0

9 s e t max dyn power 0

10 s e t max leak power 0

11 s e t s t r u c tu r e ” f a l s e ”

12 s e t map ”high ”

13 s e t bottom up compi le 0

14 s e t donttouch ” true ”

15 s e t c l k p e r i o d 15

219

220 Appendix B. TCL Scripts for Modular Multipliers

16 s e t c l k unc e r t a i n 0 . 1

Listing B.1: Constraints file for Modular Multiplier (MM SoR 256 pipelined DC.con)

1 source /home/ . . . / syn/ s c r i p t s /MM SoR 256 pipelined DC.con

2 remove des ign −al l

3 s e t h o s t o p t i o n s −max cores 4

4 i f { $ e l a b e x i s t == 0} {

5 ana lyze −format vhdl − l ib work {/home/ . . . / syn/ s r c /SoR package.vhd \

6 /home/ . . . / syn/ s r c /MIA rows40 cols15 package.vhd \

7 /home/ . . . / syn/ s r c /MIA rows41 cols9 package.vhd \

8 /home/ . . . / syn/ s r c /HA.vhd \

9 /home/ . . . / syn/ s r c /FA.vhd \

10 /home/ . . . / syn/ s r c /Add4.vhd \

11 /home/ . . . / syn/ s r c /Add5.vhd \

12 /home/ . . . / syn/ s r c /Add6.vhd \

13 /home/ . . . / syn/ s r c /Add7.vhd \

14 /home/ . . . / syn/ s r c /addRNS.vhd \

15 /home/ . . . / syn/ s r c /Barrett .vhd \

16 /home/ . . . / syn/ s r c / compute alpha.vhd \

17 /home/ . . . / syn/ s r c /compute gamma.vhd \

18 /home/ . . . / syn/ s r c / compute Z.vhd \

19 /home/ . . . / syn/ s r c /MIA rows40 cols15 .vhd \

20 /home/ . . . / syn/ s r c /MIA rows40 cols15 Stage.vhd \

21 /home/ . . . / syn/ s r c /MIA rows41 cols9 .vhd \

22 /home/ . . . / syn/ s r c /MIA rows41 cols9 Stage.vhd \

23 /home/ . . . / syn/ s r c /mulRNS.vhd \

24 /home/ . . . / syn/ s r c /ROM alphadrange.vhd \

25 /home/ . . . / syn/ s r c /Reg Fi l e .vhd \

26 /home/ . . . / syn/ s r c /compute DRNS component.vhd \

27 /home/ . . . / syn/ s r c /Transpose.vhd \

28 /home/ . . . / syn/ s r c /modular mult ip l i e r SoR.vhd }

B.1. Pipelined Parallel Modular Multiplier 221

29

30 e l a bo r a t e modular mult ip l i e r SoR −a r ch i t e c tu r e a r ch modu la r mu l t ip l i e r SoR

− l ibrary DEFAULT −update

31 wr i t e −format ddc −hierarchy −output /home/ . . . / syn/ n e t l i s t /

modu la r mu l t ip l i e r SoR e lab .ddc

32 } e l s e {

33 r e a d f i l e −format ddc /home/ . . . / syn/ n e t l i s t /modu la r mu l t ip l i e r SoR e lab .ddc

34 }

35

36 i f { $on ly e l ab == 0} {

37 #################

38 # Sta r t o f Compile

39 #################

40 #set max de lay $delay −from [a l l i n p u t s] −to [a l l o u t pu t s]

41 c r e a t e c l o c k ” c lk ” −name ” c lk ” −period $ c l k p e r i o d

42 s e t c l o c k un c e r t a i n t y $ c l k unc e r t a i n c lk

43 s e t f i x h o l d c lk

44 s e t l o a d $out load [a l l o u t pu t s]

45 se t max area $area

46 set max dynamic power $max dyn power

47 se t max leakage power $max leak power

48 s e t s t r u c t u r e $ s t r u c tu r e

49 compi le −map effort $map

50

51 #################

52 # End o f Compile

53 #################

54 i f { $ t e s t == 0} {

55 r emove unconnected por ts −blas t buses [g e t c e l l s ”∗” −hier]

56 r emove unconnected por ts [g e t c e l l s ”∗” −hier]

57 r e po r t h i e r a r chy > /home/ . . . / syn/ r epo r t s /

222 Appendix B. TCL Scripts for Modular Multipliers

modu la r mu l t ip l i e r SoR h i e r a r chy DC. rpt

58 r e p o r t c e l l > /home/ . . . / syn/ r epo r t s /modu la r mu l t ip l i e r SoR ce l l DC. rpt

59 r e po r t n e t −verbose −connect ions > /home/ . . . / syn/ r epo r t s /

modular mult ip l i e r SoR net DC.rpt

60 }

61 i f { $ t e s t == 0} {

62 r epo r t t im ing > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR t iming DC.rpt

63 r e po r t a r e a > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR area DC.rpt

64 r epor t power > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR power DC.rpt

65 } e l s e {

66 r epo r t t im ing >> /home/ . . . / syn/ r epo r t s /

modu la r mu l t ip l i e r SoR te s t t im ing DC. rpt

67 r e po r t a r e a >> /home/ . . . / syn/ r epo r t s /

modu la r mu l t ip l i e r SoR te s t a r ea DC. rpt

68 r epor t power >> /home/ . . . / syn/ r epo r t s /

modular mult ip l i e r SoR tes t power DC.rpt

69 }

70 i f { $ t e s t == 0} {

71 change names −rules v e r i l o g −hierarchy > /dev/ nu l l

72 wr i t e −format v e r i l o g −hierarchy −output /home/ . . . / syn/ n e t l i s t /

modu la r mu l t ip l i e r SoR.v

73 wr i t e s d f /home/ . . . / syn/ n e t l i s t /modu la r mu l t ip l i e r SoR. sd f

74 wr i t e s d c /home/ . . . / syn/ n e t l i s t /modu la r mu l t ip l i e r SoR. sdc

75 wr i t e −format ddc −hierarchy −output /home/ . . . / syn/ n e t l i s t /

modular mult ip l i e r SoR.ddc

76 }

77 }

Listing B.2: Synopsys Design Compiler synthesis script for pipelined parallel modular

multiplier

B.2. Non-Pipelined Parallel Modular Multiplier 223

B.1.2 TCL Script for Power Analysis in Prime Time

1 remove des ign −al l

2 r e a d v e r i l o g /home/ . . . / syn/ n e t l i s t /modu la r mu l t ip l i e r SoR.v

3 cu r r en t d e s i g n modular mult ip l i e r SoR

4 c r e a t e c l o c k ” c lk ” −name ” c lk ” −period 25

5 r e po r t v cd h i e r a r chy /home/ . . . / sim/ n e t l i s t /modular mult ip l i e r SoR.vcd

6 s e t power ana lys i s mode ” time based ”

7 read vcd − s t r ip path t e s t modu l a r mu l t i p l i e r s o r /uut/ /home/ . . . / sim/ n e t l i s t

/modular mult ip l i e r SoR.vcd

8 update power

9 r epor t power > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR power PT.rpt

10 r epo r t t im ing > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR t iming PT.rpt

Listing B.3: TCL script for power analysis of pipelined parallel modular Multiplier

B.2 Non-Pipelined Parallel Modular Multiplier

B.2.1 TCL script for Synthesis in Design Compiler

1 s e t t e s t 0

2 s e t on l y e l a b 0

3 s e t e l a b e x i s t 0

4 s e t dec r va lue 0 . 1

5 s e t s t a g e d e l a y 0 . 1

6 s e t de lay 1 .13

7 s e t out l oad 1 . 5

8 s e t area 0

9 s e t max dyn power 0

10 s e t max leak power 0

11 s e t s t r u c tu r e ” f a l s e ”

12 s e t map ”high ”

13 s e t bottom up compi le 0

224 Appendix B. TCL Scripts for Modular Multipliers

14 s e t donttouch ” true ”

15 s e t c l k p e r i o d 15

16 s e t c l k unc e r t a i n 0 . 1

Listing B.4: Constraints file for non-pipelined parallel modular multiplier

(MM SoR 256 pipelined DC.con)

1 source /home/ . . . / syn/ s c r i p t s /MM SoR 256 DC.con

2 remove des ign −al l

3 s e t h o s t o p t i o n s −max cores 4

4 i f { $ e l a b e x i s t == 0} {

5 ana lyze −format vhdl − l ib work {/home/ . . . / syn/ s r c /SoR package.vhd \

6 /home/ . . . / syn/ s r c /MIA rows40 cols15 package.vhd \

7 /home/ . . . / syn/ s r c /MIA rows41 cols9 package.vhd \

8 /home/ . . . / syn/ s r c /HA.vhd \

9 /home/ . . . / syn/ s r c /FA.vhd \

10 /home/ . . . / syn/ s r c /Add4.vhd \

11 /home/ . . . / syn/ s r c /Add5.vhd \

12 /home/ . . . / syn/ s r c /Add6.vhd \

13 /home/ . . . / syn/ s r c /Add7.vhd \

14 /home/ . . . / syn/ s r c /addRNS.vhd \

15 /home/ . . . / syn/ s r c /Barrett .vhd \

16 /home/ . . . / syn/ s r c / compute alpha.vhd \

17 /home/ . . . / syn/ s r c /compute gamma.vhd \

18 /home/ . . . / syn/ s r c / compute Z.vhd \

19 /home/ . . . / syn/ s r c /MIA rows40 cols15 .vhd \

20 /home/ . . . / syn/ s r c /MIA rows40 cols15 Stage.vhd \

21 /home/ . . . / syn/ s r c /MIA rows40 cols15 RNS.vhd \

22 /home/ . . . / syn/ s r c /MIA rows41 cols9 .vhd \

23 /home/ . . . / syn/ s r c /MIA rows41 cols9 Stage.vhd \

24 /home/ . . . / syn/ s r c /mulRNS.vhd \

25 /home/ . . . / syn/ s r c /ROM alphadrange.vhd \

B.2. Non-Pipelined Parallel Modular Multiplier 225

26 /home/ . . . / syn/ s r c /compute DRNS component.vhd \

27 /home/ . . . / syn/ s r c /Transpose.vhd \

28 /home/ . . . / syn/ s r c /modular mult ip l i e r SoR.vhd }

29

30 e l a bo r a t e modular mult ip l i e r SoR −a r ch i t e c tu r e a r ch modu la r mu l t ip l i e r SoR

− l ibrary DEFAULT −update

31 wr i t e −format ddc −hierarchy −output /home/ . . . / syn/ n e t l i s t /

modu la r mu l t ip l i e r SoR e lab .ddc

32 } e l s e {

33 r e a d f i l e −format ddc /home/ . . . / syn/ n e t l i s t /modu la r mu l t ip l i e r SoR e lab .ddc

34 }

35

36 i f { $on ly e l ab == 0} {

37 #################

38 # Sta r t o f Compile

39 #################

40 se t max de lay $delay −from [a l l i n p u t s] −to [a l l o u t pu t s]

41 s e t l o a d $out load [a l l o u t pu t s]

42 se t max area $area

43 set max dynamic power $max dyn power

44 se t max leakage power $max leak power

45 s e t s t r u c t u r e $ s t r u c tu r e

46 compi le −map effort $map

47

48 #################

49 # End o f Compile

50 #################

51 i f { $ t e s t == 0} {

52 r emove unconnected por ts −blas t buses [g e t c e l l s ”∗” −hier]

53 r emove unconnected por ts [g e t c e l l s ”∗” −hier]

54 r e po r t h i e r a r chy > /home/ . . . / syn/ r epo r t s /

226 Appendix B. TCL Scripts for Modular Multipliers

modu la r mu l t ip l i e r SoR h i e r a r chy DC. rpt

55 r e p o r t c e l l > /home/ . . . / syn/ r epo r t s /modu la r mu l t ip l i e r SoR ce l l DC. rpt

56 r e po r t n e t −verbose −connect ions > /home/ . . . / syn/ r epo r t s /

modular mult ip l i e r SoR net DC.rpt

57 }

58 i f { $ t e s t == 0} {

59 r epo r t t im ing > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR t iming DC.rpt

60 r e po r t a r e a > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR area DC.rpt

61 r epor t power > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR power DC.rpt

62 } e l s e {

63 r epo r t t im ing >> /home/ . . . / syn/ r epo r t s /

modu la r mu l t ip l i e r SoR te s t t im ing DC. rpt

64 r e po r t a r e a >> /home/ . . . / syn/ r epo r t s /

modu la r mu l t ip l i e r SoR te s t a r ea DC. rpt

65 r epor t power >> /home/ . . . / syn/ r epo r t s /

modular mult ip l i e r SoR tes t power DC.rpt

66 }

67 i f { $ t e s t == 0} {

68 change names −rules v e r i l o g −hierarchy > /dev/ nu l l

69 wr i t e −format v e r i l o g −hierarchy −output /home/ . . . / syn/ n e t l i s t /

modu la r mu l t ip l i e r SoR.v

70 wr i t e s d f /home/ . . . / syn/ n e t l i s t /modu la r mu l t ip l i e r SoR. sd f

71 wr i t e s d c /home/ . . . / syn/ n e t l i s t /modu la r mu l t ip l i e r SoR. sdc

72 wr i t e −format ddc −hierarchy −output /home/ . . . / syn/ n e t l i s t /

modular mult ip l i e r SoR.ddc

73 }

74 }

Listing B.5: Synopsys Design Compiler synthesis script for non-pipelined parallel modular

multiplier

B.2. Non-Pipelined Parallel Modular Multiplier 227

B.2.2 TCL Script for Power Analysis in Prime Time

1 remove des ign −al l

2 r e a d v e r i l o g /home/ . . . / syn/ n e t l i s t /modu la r mu l t ip l i e r SoR.v

3 cu r r en t d e s i g n modular mult ip l i e r SoR

4 c r e a t e c l o c k ” c lk ” −name ” c lk ” −period 70

5 r e po r t v cd h i e r a r chy /home/ . . . / sim/ n e t l i s t /modular mult ip l i e r SoR.vcd

6 s e t power ana lys i s mode ” time based ”

7 read vcd − s t r ip path t e s t modu l a r mu l t i p l i e r s o r /uut/ /home/ . . . / sim/ n e t l i s t

/modular mult ip l i e r SoR.vcd

8 update power

9 r epor t power > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR power PT.rpt

10 r epo r t t im ing > /home/ . . . / syn/ r epo r t s /modular mult ip l i e r SoR t iming PT.rpt

Listing B.6: TCL script for power analysis of non-pipelined parallel modular Multiplier

228 Appendix B. TCL Scripts for Modular Multipliers

Appendix C

Scripts for Chip Fabrication of Serial

Modular Multiplier

C.1 Synthesis in Design Compiler

1 s e t t e s t 0

2 s e t on l y e l a b 0

3 s e t e l a b e x i s t 0

4 s e t out l oad 1 . 5

5 s e t area 0

6 s e t max dyn power 0

7 s e t max leak power 0

8 s e t map ”high ”

9 s e t c l k p e r i o d 6

10 s e t c l k unc e r t a i n 0 . 1

11 s e t i n d e l a y 0 . 1

12 s e t out de l ay 0 . 1

Listing C.1: Constraints file for Serial Modular Multiplier (top DC.con)

1 remove des ign −al l

229

230 Appendix C. Scripts for Chip Fabrication of Serial Modular Multiplier

2 source . / s c r i p t s / top DC.con

3 s e t h o s t o p t i o n s −max cores 4

4 i f { $ e l a b e x i s t == 0} {

5 ana lyze −format vhdl − l ib work { . / s r c /SoR package.vhd \

6 . / s r c /add.vhd \

7 . / s r c /Barrett .vhd \

8 . / s r c /compute DRNS component.vhd \

9 . / s r c /mul.vhd \

10 . / s r c /MUX2.vhd \

11 . / s r c /MUX channel.vhd \

12 . / s r c /MUX K.vhd \

13 . / s r c /MUX moduli.vhd \

14 . / s r c /MUX RNS.vhd \

15 . / s r c /Reg Fi l e .vhd \

16 . / s r c /ROM alphadrange.vhd \

17 . / s r c /modular mult ip l i e r SoR.vhd \

18 . / s r c / top.vhd}

19

20 e l a bo r a t e top −a r ch i t e c tu r e arch top − l ibrary DEFAULT −update

21 wr i t e −format ddc −hierarchy −output . / n e t l i s t / top e l ab .ddc

22 } e l s e {

23 r e a d f i l e −format ddc . / n e t l i s t / top e l ab .ddc

24 }

25

26 s e t dont touch BUF ∗ t rue

27

28 i f { $on ly e l ab == 0} {

29 #################

30 # Sta r t o f Compile

31 #################

32 c r e a t e c l o c k ” c lk ” −name ” c lk ” −period $ c l k p e r i o d

C.1. Synthesis in Design Compiler 231

33 s e t c l o c k un c e r t a i n t y $ c l k unc e r t a i n c lk

34 s e t f i x h o l d c lk

35 s e t p r opaga t ed c l o c k c lk

36 s e t l o a d $out load [a l l o u t pu t s]

37 se t max area $area

38 set max dynamic power $max dyn power

39 se t max leakage power $max leak power

40 s e t i n pu t d e l a y −max −clock c lk $ i n d e l a y [r emove f r om co l l e c t i o n [

a l l i n p u t s] { c lk }]

41 s e t ou tpu t d e l a y −max −add −clock c lk $out de lay [a l l o u t pu t s]

42 compi le −map effort $map

43

44 #################

45 # End o f Compile

46 #################

47 i f { $ t e s t == 0} {

48 r emove unconnected por ts −blas t buses [g e t c e l l s ”∗” −hier]

49 r emove unconnected por ts [g e t c e l l s ”∗” −hier]

50 r e po r t h i e r a r chy > . / r e po r t s / top hierarchy DC.rpt

51 r e p o r t c e l l > . / r e po r t s / t op c e l l DC . r p t

52 r e po r t n e t −verbose −connect ions > . / r e po r t s / top net DC.rpt

53 }

54 i f { $ t e s t == 0} {

55 r epo r t t im ing > . / r e po r t s / top t iming DC.rpt

56 r e po r t a r e a −hierarchy > . / r e po r t s / top area DC.rpt

57 r epor t power > . / r e po r t s / top power DC.rpt

58 } e l s e {

59 r epo r t t im ing >> . / r e po r t s / top te s t t im ing DC. rpt

60 r e po r t a r e a −hierarchy >> . / r e po r t s / t op t e s t a r e a DC . r p t

61 r epor t power >> . / r e po r t s / top tes t power DC.rpt

62 }

232 Appendix C. Scripts for Chip Fabrication of Serial Modular Multiplier

63 i f { $ t e s t == 0} {

64 change names −rules v e r i l o g −hierarchy > /dev/ nu l l

65 wr i t e −format v e r i l o g −hierarchy −output . / n e t l i s t / top .v

66 wr i t e s d f . / n e t l i s t / t o p . s d f

67 wr i t e s d c . / n e t l i s t / top . sdc

68 wr i t e −format ddc −hierarchy −output . / n e t l i s t / top .ddc

69 }

70 }

Listing C.2: Synopsys Design Compiler synthesis script for modular multiplier chip

C.2 Multiple Power Domains Using Common Power

Format (CPF)

1 ############### Technology part ###############

2 s e t c p f v e r s i o n 1 . 1

3 s e t power un i t uW

4

5 ################## Library De f i n i t i o n s ###################

6 d e f i n e l i b r a r y s e t −name l i b 1 2V l v t l p t c \

7 − l i b r a r i e s ” \

8 $ l ibPath/CORE65LPLVT nom 1.20V 25C.lib\

9 $ l ibPath/CLOCK65LPLVT nom 1.20V 25C.lib”

10

11 ################ Design part ##################

12 s e t d e s i g n top

13

14 ################## Creating power nets ###################

15 c r ea te power ne t s −nets {VDD PERI VDDCORE} −voltage 1 . 2

16 c r ea te g round ne t s −nets GND −voltage 0

17

C.2. Multiple Power Domains Using Common Power Format (CPF) 233

18 ################# Creating power domains #################

19 create power domain \

20 −name PD CORE \

21 − ins tances {uut/∗}

22 create power domain \

23 −name PD DEFAULT \

24 −default \

25 − ins tances ∗

26

27 ############# Desc r ib ing power modes ##############

28 c r e a t e nom ina l c ond i t i o n −name cond h i gh l v t l p −voltage 1 . 2

29 update nomina l condi t ion −name cond h i gh l v t l p − l i b r a r y s e t ”

l i b 1 2V l v t l p t c ”

30

31 create power mode −name PMDEFAULT −domain condit ions {

PD CORE@cond high lvt lp PD DEFAULT@cond high lvt lp} −default

32

33 ################ Desc r ib ing power nets ###################

34 c r e a t e g l o b a l c o nn e c t i o n −domain PD CORE −net GND −pins gnd

35 c r e a t e g l o b a l c o nn e c t i o n −domain PD CORE −net VDDCORE −pins vdd

36 c r e a t e g l o b a l c o nn e c t i o n −net VDDCORE −pins VDDC − ins tances PAD VDD CORE N

37 c r e a t e g l o b a l c o nn e c t i o n −net VDDCORE −pins VDDC − ins tances PAD VDD CORE E

38 c r e a t e g l o b a l c o nn e c t i o n −net VDDCORE −pins VDDC − ins tances PAD VDD CORE S

39 c r e a t e g l o b a l c o nn e c t i o n −net VDDCORE −pins VDDC − ins tances PADVDD COREW

40

41 c r e a t e g l o b a l c o nn e c t i o n −domain PD DEFAULT −net GND −pins gnd

42 c r e a t e g l o b a l c o nn e c t i o n −domain PD DEFAULT −net VDD PERI −pins vdd

43

44 c r e a t e g l o b a l c o nn e c t i o n −net VDD PERI −pins VDDC − ins tances PAD VDD PERI

45 c r e a t e g l o b a l c o nn e c t i o n −net GND −pins GNDC − ins tances PADGNDW

46 c r e a t e g l o b a l c o nn e c t i o n −net GND −pins GNDC − ins tances PAD GND N

234 Appendix C. Scripts for Chip Fabrication of Serial Modular Multiplier

47 c r e a t e g l o b a l c o nn e c t i o n −net GND −pins GNDC − ins tances PAD GND E

48 c r e a t e g l o b a l c o nn e c t i o n −net GND −pins GNDC − ins tances PAD GND S

49

50 ################ Update Power Domains ####################

51 update power domain −name PD CORE − inte rna l power net VDDCORE

52 update power domain −name PD DEFAULT − inte rna l power net VDD PERI

53

54 end des ign

Listing C.3: Script for Common Power Format

C.3 Location of Pads (pads.io)

1 Or i ent : R180

2 Pad: Pcorneru l NW PADSPACE C 74x74u CH

3 Or i ent : R90

4 Pad: Pcornerur NE PADSPACE C 74x74u CH

5 Or i ent : R270

6 Pad: P co r n e r l l SW PADSPACE C 74x74u CH

7 Or i ent : R0

8 Pad: Pco rne r l r SE PADSPACE C 74x74u CH

9

10 # Bottom row, l e f t to r i g h t 13

11 Pad: PAD result3 output S

12 Pad: PAD result4 output S

13 Pad: PAD result5 output S

14 Pad: PAD result6 output S

15 Pad: PAD result7 output S

16 Pad: PAD result8 output S

17

18 Pad: PAD VDD CORE S S CPAD S 74x50u VDD

19 Pad: PAD GND S S PADGND 74x50uNOTRIG

C.3. Location of Pads (pads.io) 235

20

21 Pad: PAD result9 output S

22 Pad: PAD result10 output S

23 Pad: PAD result11 output S

24 Pad: PAD result12 output S

25 Pad: PAD result13 output S

26 Pad: PAD result14 output S

27

28 # Le f t bottom to top

29 Pad: PAD result2 output W

30 Pad: PAD result1 output W

31 Pad: PAD result0 output W

32 Pad: PAD mode1 input W

33 Pad: PAD mode0 input W

34

35 Pad: PADVDDCOREW W CPAD S 74x50u VDD

36 Pad: PADGNDW W PADGND 74x50uNOTRIG

37

38 Pad: PAD A0 input W

39 Pad: PAD A1 input W

40 Pad: PAD A2 input W

41 Pad: PAD VDD PERI W PADVDD 74x50uNOTRIG

42

43 # Right row bottom to top

44 Pad: PAD counter5 output E

45 Pad: PAD counter4 output E

46 Pad: PAD counter3 output E

47 Pad: PAD counter2 output E

48 Pad: PAD counter1 output E

49 Pad: PAD counter0 output E

50

236 Appendix C. Scripts for Chip Fabrication of Serial Modular Multiplier

51 Pad: PAD GND E E PADGND 74x50uNOTRIG

52 Pad: PAD VDD CORE E E CPAD S 74x50u VDD

53

54 Pad: PAD A14 input E

55 Pad: PAD A13 input E

56 Pad: PAD A12 input E

57

58 # Top row l e f t to r i g h t

59 Pad: PAD A3 input N

60 Pad: PAD A4 input N

61 Pad: PAD A5 input N

62 Pad: PAD A6 input N

63 Pad: PAD A7 input N

64 Pad: PAD start input N

65

66 Pad: PAD GND N N PADGND 74x50uNOTRIG

67 Pad: PAD clk input N

68 Pad: PAD VDD CORE N N CPAD S 74x50u VDD

69

70 Pad: PAD rst input N

71 Pad: PAD A8 input N

72 Pad: PAD A9 input N

73 Pad: PAD A10 input N

74 Pad: PAD A11 input N

Listing C.4: Location of pads

C.4 Floorplan, Power Planning, and Placement

1 #Create Floorp lan

2 f l o o rP l an − f l i p s − s i te CORE −overlapSameSiteRow −d 1000 . 0 1000 . 0 20 . 1 20 . 1

20 . 0 20 . 0

C.4. Floorplan, Power Planning, and Placement 237

3

4 #Modify Floorp lan f o r two power domains

5 modifyPowerDomainAttr PD CORE −box 125 . 4 118 . 4 874 . 5 878 . 5 −mingaps 17 17

17 17

6

7 #Add power r i n g s

8 de le teAl lPowerPreroutes

9 s e l e c tOb j e c t Group PD CORE

10 addRing − s t a c k ed v i a t op l a y e r AP −around power domain − j o g d i s tance 2 . 5

−threshold 2 . 5 −type b l o c k r i n g s −nets {VDDCORE GND VDD PERI}

− s tacked v ia bottom layer M1 − layer {bottom M7 top M7 r i g h t M6 l e f t M6}

−width 3 −spacing 2 −o f f s e t 2

11 d e s e l e c tA l l

12 addRing − s t a c k ed v i a t op l a y e r AP −around core − j o g d i s tance 2 . 5 −threshold

2 . 5 −nets {GND VDD PERI} − s tacked v ia bottom layer M1 − layer {bottom M7

top M7 r i g h t M6 l e f t M6} −width 3 −spacing 2 −o f f s e t 2

13

14 #Add power s t r i p e s in PD CORE f o r VDDCORE and GND

15 s e l e c tOb j e c t Group PD CORE

16 addStr ipe −b l o c k r i n g t o p l a y e r l im i t M7 −max same layer jog length 6

−over power domain 1 −padco r e r ing bo t tom laye r l im i t M5

− s e t t o s e t d i s t a n c e 50 − s t a c k ed v i a t op l a y e r AP

−padco r e r i n g t op l a y e r l im i t M7 −spacing 2 − x l e f t o f f s e t 25

− x r i g h t o f f s e t 25 −merge s t r ipe s va lue 2 . 5 − layer M6

−b l o ck r i n g bo t t om l ay e r l im i t M5 −width 1 −nets {VDDCORE GND}

− s tacked v ia bottom layer M1

17

18 #Add power s t r i p e s out s ide PD CORE f o r GND

19 d e s e l e c tA l l

20 addStr ipe −b l o c k r i n g t o p l a y e r l im i t M7 −max same layer jog length 6

−padco r e r ing bo t tom laye r l im i t M5 − s e t t o s e t d i s t a n c e 25

238 Appendix C. Scripts for Chip Fabrication of Serial Modular Multiplier

− s t a c k ed v i a t op l a y e r AP −padco r e r i n g t op l a y e r l im i t M7 −spacing 2

− x l e f t o f f s e t 25 − x r i g h t o f f s e t 25 −merge s t r ipe s va lue 2 . 5 − layer M6

−b l o ck r i n g bo t t om l ay e r l im i t M5 −width 1 −nets GND

− s tacked v ia bottom layer M1

21

22 #Add IO F i l l e r s

23 add I oF i l l e r − c e l l PADSPACE 74x16u PADSPACE 74x8u PADSPACE 74x6u

PADSPACE 74x4u PADSPACE 74x2u PADSPACE 74x1u −side n

24 add I oF i l l e r − c e l l PADSPACE 74x16u PADSPACE 74x8u PADSPACE 74x6u

PADSPACE 74x4u PADSPACE 74x2u PADSPACE 74x1u −side w

25 add I oF i l l e r − c e l l PADSPACE 74x16u PADSPACE 74x8u PADSPACE 74x6u

PADSPACE 74x4u PADSPACE 74x2u PADSPACE 74x1u −side e

26 add I oF i l l e r − c e l l PADSPACE 74x16u PADSPACE 74x8u PADSPACE 74x6u

PADSPACE 74x4u PADSPACE 74x2u PADSPACE 74x1u −side s

27

28 #Spec i a l Route

29 s r oute −connect { corePin } −powerDomains PD CORE −nets VDDCORE

30 s r oute −connect { corePin } −powerDomains PD DEFAULT −nets VDD PERI

31 s r oute −connect { corePin } −nets GND

32

33 s r oute −connect { padPin } −layerChangeRange { M1 AP } −blockPinTarget {

neares tTarget } −padPinPortConnect { a l lP o r t allGeom }

−checkAlignedSecondaryPin 1 −padPinLayerRange { M1 AP } −allowJogging 1

−crossoverViaBottomLayer M1 −allowLayerChange 1 −targetViaTopLayer AP

−crossoverViaTopLayer AP −targetViaBottomLayer M1 −nets { GND }

34

35 s r oute −connect { padPin } −layerChangeRange { M1 AP } −blockPinTarget {

neares tTarget } −padPinPortConnect { a l lP o r t allGeom }

−checkAlignedSecondaryPin 1 −padPinLayerRange { M1 AP } −allowJogging 1

−crossoverViaBottomLayer M1 −allowLayerChange 0 −targetViaTopLayer AP

−crossoverViaTopLayer AP −targetViaBottomLayer M1 −nets { VDDCORE

C.4. Floorplan, Power Planning, and Placement 239

VDD PERI }

36

37 addStr ipe −b l o c k r i n g t o p l a y e r l im i t AP −max same layer jog length 6

−padco r e r ing bo t tom laye r l im i t M6 − s e t t o s e t d i s t a n c e 25

−ybottom offset 25 − s t a c k ed v i a t op l a y e r AP

−padco r e r i n g t op l a y e r l im i t AP −spacing 2 −merge s t r ipe s va lue 2 . 5

−direct ion ho r i z on t a l − layer M7 −b l o ck r i n g bo t t om l ay e r l im i t M6

−ytop o f f s e t 25 −width 1 −nets GND − s tacked v ia bottom layer M1

38

39 s e l e c tOb j e c t Group PD CORE

40 addStr ipe −b l o c k r i n g t o p l a y e r l im i t AP −max same layer jog length 6

−over power domain 1 −padco r e r ing bo t tom laye r l im i t M6

− s e t t o s e t d i s t a n c e 50 −ybottom offset 25 − s t a c k ed v i a t op l a y e r AP

−padco r e r i n g t op l a y e r l im i t AP −spacing 2 −merge s t r ipe s va lue 2 . 5

−direct ion ho r i z on t a l − layer M7 −b l o ck r i n g bo t t om l ay e r l im i t M6

−ytop o f f s e t 25 −width 1 −nets {VDDCORE GND} − s tacked v ia bottom layer

M1

41 d e s e l e c tA l l

42

43 # Add we l l taps to prevent l a t ch up

44 addWellTap − c e l l HS65 LL FILLERNPWPFP3 −maxGap 25 −inRowOffset 10 . 0

−startRowNum 1 −skipRow 0 −pre f ix WELLTAP −powerDomain PD CORE

45 addWellTap − c e l l HS65 LL FILLERNPWPFP3 −maxGap 25 −inRowOffset 0 . 0

−startRowNum 1 −skipRow 0 −pre f ix WELLTAP −powerDomain PD DEFAULT

46

47 # con f i g u r e placement

48 setPlaceMode −congEffort high

49

50 # place the c e l l s

51 placeDes ign

52

240 Appendix C. Scripts for Chip Fabrication of Serial Modular Multiplier

53 # check placement f o r v i o l a t i o n s , i . e . over lapping c e l l s

54 checkPlace

55

56 # pre CTS opt imi sa t i on

57 setOptMode −fixCap true −fixTran true −fixFanoutLoad f a l s e

58

59 optDesign −preCTS

60

61 setOptMode −fixCap true −fixTran true −fixFanoutLoad true

62 optDesign −preCTS

Listing C.5: Floorplan and Placement Scripts

C.5 Clock Tree Synthesis (CTS)

1 #Clock t r e e spec f i l e

2 createClockTreeSpec −bu f f e rL i s t {HS65 LL CNBFX10 HS65 LL CNBFX103

HS65 LL CNBFX124 HS65 LL CNBFX14 HS65 LL CNBFX17 HS65 LL CNBFX21

HS65 LL CNBFX24 HS65 LL CNBFX27 HS65 LL CNBFX31 HS65 LL CNBFX34

HS65 LL CNBFX38 HS65 LL CNBFX41 HS65 LL CNBFX45 HS65 LL CNBFX48

HS65 LL CNBFX52 HS65 LL CNBFX55 HS65 LL CNBFX58 HS65 LL CNBFX62

HS65 LL CNBFX82 HS65 LL CNIVX10 HS65 LL CNIVX103 HS65 LL CNIVX124

HS65 LL CNIVX14 HS65 LL CNIVX17 HS65 LL CNIVX21 HS65 LL CNIVX24

HS65 LL CNIVX27 HS65 LL CNIVX3 HS65 LL CNIVX31 HS65 LL CNIVX34

HS65 LL CNIVX38 HS65 LL CNIVX41 HS65 LL CNIVX45 HS65 LL CNIVX48

HS65 LL CNIVX52 HS65 LL CNIVX55 HS65 LL CNIVX58 HS65 LL CNIVX62

HS65 LL CNIVX7 HS65 LL CNIVX82 HS65 LL DLYIC2X4 HS65 LL DLYIC2X7

HS65 LL DLYIC2X9 HS65 LL DLYIC4X4 HS65 LL DLYIC4X7 HS65 LL DLYIC4X9

HS65 LL DLYIC6X4 HS65 LL DLYIC6X7 HS65 LL DLYIC6X9} − f i l e C l o ck . c t s t c h

3

4 setCTSMode −optAddBuffer t rue −useLibMaxCap true −powerAware true

5

C.6. Routing and Verification 241

6 spec i fyC lo ckTree − f i l e C l o ck . c t s t c h

7 de le teClockTree −al l

8

9 # syn the s i z e c l o ck t r e e

10 c lockDes ign −specFi le . / s c r i p t s / C l o ck . c t s t c h −outDir c l o c k r e p o r t

− f ixedInstBeforeCTS

11

12 de l e t eTr i a lRoute

13

14 # post CTS opt imi sa t i on

15 setOptMode −fixCap true −fixTran true −fixFanoutLoad f a l s e

16 optDesign −postCTS

17

18 setOptMode −fixCap true −fixTran true −fixFanoutLoad true

19 optDesign −postCTS

20

21 optDesign −postCTS −hold

Listing C.6: Clock Tree Synthesis (CTS)

C.6 Routing and Verification

1 # se t up rout ing

2 setNanoRouteMode −quiet −routeInsertAntennaDiode 0

3 setNanoRouteMode −quiet −routeTopRoutingLayer d e f a u l t

4 setNanoRouteMode −quiet −routeBottomRoutingLayer d e f a u l t

5 setNanoRouteMode −quiet −drouteEndIterat ion de f a u l t

6 setNanoRouteMode −quiet −routeWithTimingDriven f a l s e

7 setNanoRouteMode −quiet −routeWithSiDriven f a l s e

8

9 # route des ign

10 routeDes ign −g loba lDeta i l

242 Appendix C. Scripts for Chip Fabrication of Serial Modular Multiplier

11

12 setNanoRouteMode −quiet −drouteUseMultiCutViaEffort high

13 setNanoRouteMode −quiet −droutePostRouteSwapVia multiCut

14 de ta i lRoute

15

16 # post route opt imi za t i on

17 setOptMode −fixCap true −fixTran true −fixFanoutLoad f a l s e

18 optDesign −postRoute

19

20 setOptMode −fixCap true −fixTran true −fixFanoutLoad true

21 optDesign −postRoute

22

23 optDesign −postRoute −hold

24

25 # add f i l l e r c e l l s

26 addF i l l e r − c e l l HS65 LL FILLERPFP1 HS65 LL FILLERPFP4 HS65 LL FILLERPFP3

HS65 LL FILLERPFP2 HS65 LL FILLERPFOP16 HS65 LL FILLERPFOP12

HS65 LL FILLERPFOP9 HS65 LL FILLERPFOP8 HS65 LL FILLERPFOP64

HS65 LL FILLERPFOP32 HS65 LL FILLERPFOP16 HS65 LL FILLERPFOP12 −pre f ix

FILLER −powerDomain PD CORE

27

28 addF i l l e r − c e l l HS65 LL FILLERPFP1 HS65 LL FILLERPFP4 HS65 LL FILLERPFP3

HS65 LL FILLERPFP2 HS65 LL FILLERPFOP16 HS65 LL FILLERPFOP12

HS65 LL FILLERPFOP9 HS65 LL FILLERPFOP8 HS65 LL FILLERPFOP64

HS65 LL FILLERPFOP32 HS65 LL FILLERPFOP16 HS65 LL FILLERPFOP12 −pre f ix

FILLER −powerDomain PD DEFAULT

29

30 # Geometry

31 setVerifyGeometryMode −area { 0 0 0 0 } −minWidth true −minSpacing true

−minArea true −sameNet true −short true −overlap true −offRGrid f a l s e

−offMGrid true −mergedMGridCheck true −minHole true −implantCheck true

C.7. SKILL scripts 243

−minimumCut true −minStep true −viaEnclosure true −antenna f a l s e

− insuffMeta lOver lap true −pinInBlkg f a l s e −d i f fCe l lV i o l t rue

−sameCellViol f a l s e −padFi l l e rCe l l sOver lap true −routingBlkgPinOverlap

true −routingCel lBlkgOver lap true −regRoutingOnly f a l s e

−stackedViasOnRegNet f a l s e −wireExt true −useNonDefaultSpacing f a l s e

−maxWidth true −maxNonPrefLength −1 −error 1000 −warning 50

32

33 ver i fyGeometry

34

35 # Connect iv i ty

36 v e r i f yConne c t i v i t y

Listing C.7: Routing and Verification

C.7 SKILL scripts

1 procedure (CCSAddNetSetPropTapeoutFeb2015()

2

3 l e t ((cv)

4 cv = dbOpenCellViewByType(” tapeoutpads feb2015 ” ” top” ” cmos sch” n i l ”a”)

5

6 f o r ea ch (x cv˜> i n s t an c e s

7 i f (x˜>cel lName == ”modular mult ip l i e r SoR ” then

8 dbCreateProp (x ”vdd” ” netSet ” ”VDDCORE”)

9 dbCreateProp (x ”gnd” ” netSet ” ”GND”)

10 dbCreateProp (x ”gnds” ” netSet ” ”GND”)

11 dbCreateProp (x ”vdds” ” netSet ” ”VDDCORE”)

12 e l s e

13 i f (x˜>cel lName == ”CPAD S 74x50u IN INHERIT” | | x˜>cel lName == ”

CPAD S 74x50u OUT INHERIT” then

14 dbCreateProp (x ”vdd” ” netSet ” ”VDD PERI”)

15 dbCreateProp (x ”gnd” ” netSet ” ”GND”)

244 Appendix C. Scripts for Chip Fabrication of Serial Modular Multiplier

16 e l s e

17 dbCreateProp (x ”vdd” ” netSet ” ”VDD PERI”)

18 dbCreateProp (x ”gnd” ” netSet ” ”GND”)

19 dbCreateProp (x ”gnds” ” netSet ” ”GND”)

20 dbCreateProp (x ”vdds” ” netSet ” ”VDD PERI”)

21) ; i f

22) ; i f

23) ; f o r ea ch

24

25 dbSave (cv)

26 dbClose (cv)

27

28) ; l e t

29) ; procedure

Listing C.8: SKILL script to add netset

1 procedure (CCSAddPinsSchematicTapeoutFeb2015 ()

2

3 l e t ((cv)

4 cv = dbOpenCellViewByType(” tapeoutpads feb2015 ” ” top ” ” cmos sch” n i l ”a”)

5

6 schHiCreatePin (”VDD PERI VDDCORE” ” inputOutput ” ” schematic ”)

7 schHiCreatePin (”GND” ” inputOutput ” ” schematic ”)

8

9 dbSave (cv)

10 dbClose (cv)

11

12) ; l e t

13) ; procedure

Listing C.9: SKILL script to create ports

Appendix D

TCL Scripts for Elliptic Curve Point

Multiplication Architectures

D.1 Multi-key ECPM Based on Serial Modular Re-

duction

D.1.1 TCL script for Synthesis in Design Compiler

1 s e t t e s t 0

2 s e t on l y e l a b 0

3 s e t e l a b e x i s t 1

4 s e t dec r va lue 0 . 1

5 s e t s t a g e d e l a y 0 . 1

6 s e t de lay 10

7 s e t out l oad 1 . 5

8 s e t area 0

9 s e t max dyn power 0

10 s e t max leak power 0

11 s e t s t r u c tu r e ” true ”

245

246 Appendix D. TCL Scripts for Elliptic Curve Point Multiplication Architectures

12 s e t map ”high ”

13 s e t bottom up compi le 0

14 s e t donttouch ” f a l s e ”

15 s e t c l k p e r i o d 5 . 0

16 s e t c l k unc e r t a i n 0 . 1

17 s e t i n d e l a y 0 . 1

18 s e t out de l ay 0 . 1

Listing D.1: Constraints file for multi-key ECPM (PMUL 1ch DC.con)

1 source /home/ . . . / syn/ s c r i p t s /PMUL 1ch DC.con

2 remove des ign −al l

3 s e t h o s t o p t i o n s −max cores 4

4 suppres s message ELAB−130

5 i f { $ e l a b e x i s t == 0} {

6 ana lyze −format vhdl − l ib work {/home/ . . . / syn/ s r c /SoR package.vhd \

7 /home/ . . . / syn/ s r c /add.vhd \

8 /home/ . . . / syn/ s r c /Barrett .vhd \

9 /home/ . . . / syn/ s r c /compute DRNS component.vhd \

10 /home/ . . . / syn/ s r c /modular adder SoR.vhd \

11 /home/ . . . / syn/ s r c /modular adder SoR dummy.vhd \

12 /home/ . . . / syn/ s r c /modular mult ip l i e r SoR.vhd \

13 /home/ . . . / syn/ s r c /modular multipl ier SoR dummy.vhd \

14 /home/ . . . / syn/ s r c /modular subtractor .vhd \

15 /home/ . . . / syn/ s r c /modular subtractor SoR.vhd \

16 /home/ . . . / syn/ s r c /modular subtractor SoR dummy.vhd \

17 /home/ . . . / syn/ s r c /mul.vhd \

18 /home/ . . . / syn/ s r c /MUX channel 1ch.vhd \

19 /home/ . . . / syn/ s r c /MUX K 1ch.vhd \

20 /home/ . . . / syn/ s r c /MUX moduli 1ch.vhd \

21 /home/ . . . / syn/ s r c /MUX moduli table 1ch.vhd \

22 /home/ . . . / syn/ s r c /MUX RNS 1ch.vhd \

D.1. Multi-key ECPM Based on Serial Modular Reduction 247

23 /home/ . . . / syn/ s r c /MUX2.vhd \

24 /home/ . . . / syn/ s r c /PADD Jac 256.vhd \

25 /home/ . . . / syn/ s r c /PDBL Jac 256.vhd \

26 /home/ . . . / syn/ s r c /PMUL Jac 256.vhd \

27 /home/ . . . / syn/ s r c /Reg Fi l e .vhd \

28 /home/ . . . / syn/ s r c /ROM alphadrange.vhd}

29

30 e l a bo r a t e PMUL Jac 256 −a r ch i t e c tu r e arch PMUL Jac 256 − l ibrary DEFAULT

−update

31 wr i t e −format ddc −hierarchy −output /home/ . . . / syn/ n e t l i s t /

PMUL Jac 256 elab.ddc

32 } e l s e {

33 r e a d f i l e −format ddc /home/ . . . / syn/ n e t l i s t /PMUL Jac 256 elab.ddc

34 }

35

36 i f { $on ly e l ab == 0} {

37 #################

38 # Sta r t o f Compile

39 #################

40 #set max de lay $delay −from [a l l i n p u t s] −to [a l l o u t pu t s]

41 c r e a t e c l o c k ” c lk ” −name ” c lk ” −period $ c l k p e r i o d

42 s e t c l o c k un c e r t a i n t y $ c l k unc e r t a i n c lk

43 s e t f i x h o l d c lk

44 #se t p r opaga t ed c l o c k c lk

45 s e t l o a d $out load [a l l o u t pu t s]

46 se t max area $area

47 set max dynamic power $max dyn power

48 se t max leakage power $max leak power

49 s e t s t r u c t u r e $ s t r u c tu r e

50 s e t i n pu t d e l a y −max −clock c lk $ i n d e l a y [r emove f r om co l l e c t i o n [

a l l i n p u t s] { c lk }]

248 Appendix D. TCL Scripts for Elliptic Curve Point Multiplication Architectures

51 s e t ou tpu t d e l a y −max −add −clock c lk $out de lay [a l l o u t pu t s]

52 #se t w i r e l o ad mode l −name ”area 234Kto312K” − l ibrary CORE65LPHVT

53 compi le −map effort $map

54

55 #################

56 # End o f Compile

57 #################

58 i f { $ t e s t == 0} {

59 r emove unconnected por ts −blas t buses [g e t c e l l s ”∗” −hier]

60 r emove unconnected por ts [g e t c e l l s ”∗” −hier]

61 r e po r t h i e r a r chy > /home/ . . . / syn/ r epo r t s /PMUL Jac 256 hierarchy DC.rpt

62 r e p o r t c e l l > /home/ . . . / syn/ r epo r t s /PMUL Jac 256 cell DC.rpt

63 r e po r t n e t −verbose −connect ions > /home/ . . . / syn/ r epo r t s /

PMUL Jac 256 net DC.rpt

64 }

65 i f { $ t e s t == 0} {

66 r epo r t t im ing > /home/ . . . / syn/ r epo r t s /PMUL Jac 256 timing DC.rpt

67 r e po r t a r e a −hierarchy > /home/ . . . / syn/ r epo r t s /PMUL Jac 256 area DC.rpt

68 r epor t power > /home/ . . . / syn/ r epo r t s /PMUL Jac 256 power DC.rpt

69 } e l s e {

70 r epo r t t im ing >> /home/ . . . / syn/ r epo r t s /PMUL Jac 256 test t iming DC.rpt

71 r e po r t a r e a −hierarchy >> /home/ . . . / syn/ r epo r t s /

PMUL Jac 256 test area DC.rpt

72 r epor t power >> /home/ . . . / syn/ r epo r t s /PMUL Jac 256 test power DC.rpt

73 }

74 i f { $ t e s t == 0} {

75 change names −rules v e r i l o g −hierarchy > /dev/ nu l l

76 wr i t e −format v e r i l o g −hierarchy −output /home/ . . . / syn/ n e t l i s t /

PMUL Jac 256.v

77 wr i t e s d f /home/ . . . / syn/ n e t l i s t /PMUL Jac 256.sdf

78 wr i t e s d c /home/ . . . / syn/ n e t l i s t /PMUL Jac 256.sdc

D.2. Single-Key ECPM Based on Serial-Parallel Modular Reduction 249

79 wr i t e −format ddc −hierarchy −output /home/ . . . / syn/ n e t l i s t /PMUL Jac 256.ddc

80 }

81 }

Listing D.2: Synopsys Design Compiler synthesis script for multi-key ECPM

D.1.2 TCL Script for Power Analysis in Prime Time

1 remove des ign −al l

2 r e a d v e r i l o g /home/ . . . / syn/ n e t l i s t /PMUL Jac 256.v

3 cu r r en t d e s i g n PMUL Jac 256

4 c r e a t e c l o c k ” c lk ” −name ” c lk ” −period 32

5 r e po r t v cd h i e r a r chy /home/ . . . / sim/ n e t l i s t /PMUL Jac 256.vcd

6 s e t power ana lys i s mode ” time based ”

7 read vcd − s t r ip path test PMUL Jac 256/uut PMUL wrapper/uut PMUL/ /home/ . . .

/ sim/ n e t l i s t /PMUL Jac 256.vcd

8 update power

9 r epor t power > /home/ . . . / syn/ r epo r t s /PMUL Jac 256 power PT.rpt

10 r epo r t t im ing > /home/ . . . / syn/ r epo r t s /PMUL Jac 256 timing PT.rpt

Listing D.3: TCL script for power analysis of multi-key ECPM

D.2 Single-Key ECPMBased on Serial-Parallel Mod-

ular Reduction

D.2.1 TCL script for Synthesis in Design Compiler

1 s e t t e s t 0

2 s e t on l y e l a b 0

3 s e t e l a b e x i s t 0

4 s e t dec r va lue 0 . 1

5 s e t s t a g e d e l a y 0 . 1

250 Appendix D. TCL Scripts for Elliptic Curve Point Multiplication Architectures

6 s e t de lay 10

7 s e t out l oad 1 . 5

8 s e t area 0

9 s e t max dyn power 0

10 s e t max leak power 0

11 s e t s t r u c tu r e ” true ”

12 s e t map ”high ”

13 s e t bottom up compi le 0

14 s e t donttouch ” f a l s e ”

15 s e t c l k p e r i o d 9 . 0

16 s e t c l k unc e r t a i n 0 . 1

17 s e t i n d e l a y 0 . 1

18 s e t out de l ay 0 . 1

Listing D.4: Constraints file for single-key ECPM based on serial-parallel modular

reduction (ECC opt 4ch DC.con)

1 source /home/ . . . / syn/ s c r i p t s /ECC opt 4ch DC.con

2 remove des ign −al l

3 s e t h o s t o p t i o n s −max cores 4

4 suppres s message ELAB−130

5 i f { $ e l a b e x i s t == 0} {

6 ana lyze −format vhdl − l ib work {/home/ . . . / syn/ s r c /SoR package.vhd \

7 /home/ . . . / syn/ s r c /add.vhd \

8 /home/ . . . / syn/ s r c /Add4ch.vhd \

9 /home/ . . . / syn/ s r c /Barrett .vhd \

10 /home/ . . . / syn/ s r c /Barrett4ch .vhd \

11 /home/ . . . / syn/ s r c / Bu f f e r s . vhd \

12 /home/ . . . / syn/ s r c /compute DRNS component.vhd \

13 /home/ . . . / syn/ s r c /CU.vhd \

14 /home/ . . . / syn/ s r c / ISL1.vhd \

15 /home/ . . . / syn/ s r c / ISL2.vhd \

D.2. Single-Key ECPM Based on Serial-Parallel Modular Reduction 251

16 /home/ . . . / syn/ s r c /Mod4ch SoR.vhd \

17 /home/ . . . / syn/ s r c /modular subtractor .vhd \

18 /home/ . . . / syn/ s r c /mul.vhd \

19 /home/ . . . / syn/ s r c /Mul4ch.vhd \

20 /home/ . . . / syn/ s r c /MUX K 4ch.vhd \

21 /home/ . . . / syn/ s r c /MUX moduli 4ch.vhd \

22 /home/ . . . / syn/ s r c /MUX moduli table 4ch.vhd \

23 /home/ . . . / syn/ s r c /MUX RNS 4ch.vhd \

24 /home/ . . . / syn/ s r c /MUX2.vhd \

25 /home/ . . . / syn/ s r c /MUX4ch4to1.vhd \

26 /home/ . . . / syn/ s r c /Reg Fi l e .vhd \

27 /home/ . . . / syn/ s r c /Reg4ch.vhd \

28 /home/ . . . / syn/ s r c /ROM alphadrange.vhd \

29 /home/ . . . / syn/ s r c /StoreOutput.vhd \

30 /home/ . . . / syn/ s r c /StorePADD.vhd \

31 /home/ . . . / syn/ s r c /StorePDBL.vhd \

32 /home/ . . . / syn/ s r c /Sub4ch.vhd \

33 /home/ . . . / syn/ s r c /ECC opt Jac 256.vhd}

34

35 e l a bo r a t e ECC opt Jac 256 −a r ch i t e c tu r e arch ECC opt Jac 256 − l ibrary

DEFAULT −update

36 wr i t e −format ddc −hierarchy −output /home/ . . . / syn/ n e t l i s t /

ECC opt Jac 256 elab.ddc

37 } e l s e {

38 r e a d f i l e −format ddc /home/ . . . / syn/ n e t l i s t /ECC opt Jac 256 elab.ddc

39 }

40

41 i f { $on ly e l ab == 0} {

42 #################

43 # Sta r t o f Compile

44 #################

252 Appendix D. TCL Scripts for Elliptic Curve Point Multiplication Architectures

45 #set max de lay $delay −from [a l l i n p u t s] −to [a l l o u t pu t s]

46 c r e a t e c l o c k ” c lk ” −name ” c lk ” −period $ c l k p e r i o d

47 s e t c l o c k un c e r t a i n t y $ c l k unc e r t a i n c lk

48 s e t f i x h o l d c lk

49 #se t p r opaga t ed c l o c k c lk

50 s e t l o a d $out load [a l l o u t pu t s]

51 se t max area $area

52 set max dynamic power $max dyn power

53 se t max leakage power $max leak power

54 s e t s t r u c t u r e $ s t r u c tu r e

55 s e t i n pu t d e l a y −max −clock c lk $ i n d e l a y [r emove f r om co l l e c t i o n [

a l l i n p u t s] { c lk }]

56 s e t ou tpu t d e l a y −max −add −clock c lk $out de lay [a l l o u t pu t s]

57 #se t w i r e l o ad mode l −name ”area 234Kto312K” − l ibrary CORE65LPHVT

58 compi le −map effort $map

59

60 #################

61 # End o f Compile

62 #################

63 i f { $ t e s t == 0} {

64 r emove unconnected por ts −blas t buses [g e t c e l l s ”∗” −hier]

65 r emove unconnected por ts [g e t c e l l s ”∗” −hier]

66 r e po r t h i e r a r chy > /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 hierarchy DC.rpt

67 r e p o r t c e l l > /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 ce l l DC.rpt

68 r e po r t n e t −verbose −connect ions > /home/ . . . / syn/ r epo r t s /

ECC opt Jac 256 net DC.rpt

69 }

70 i f { $ t e s t == 0} {

71 r epo r t t im ing > /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 timing DC.rpt

72 r e po r t a r e a −hierarchy > /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 area DC.rpt

73 r epor t power > /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 power DC.rpt

D.2. Single-Key ECPM Based on Serial-Parallel Modular Reduction 253

74 } e l s e {

75 r epo r t t im ing >> /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 tes t t iming DC.rpt

76 r e po r t a r e a −hierarchy >> /home/ . . . / syn/ r epo r t s /

ECC opt Jac 256 tes t area DC.rpt

77 r epor t power >> /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 test power DC.rpt

78 }

79 i f { $ t e s t == 0} {

80 change names −rules v e r i l o g −hierarchy > /dev/ nu l l

81 wr i t e −format v e r i l o g −hierarchy −output /home/ . . . / syn/ n e t l i s t /

ECC opt Jac 256.v

82 wr i t e s d f /home/ . . . / syn/ n e t l i s t /ECC opt Jac 256.sdf

83 wr i t e s d c /home/ . . . / syn/ n e t l i s t /ECC opt Jac 256.sdc

84 wr i t e −format ddc −hierarchy −output /home/ . . . / syn/ n e t l i s t /

ECC opt Jac 256.ddc

85 }

86 }

Listing D.5: Synopsys Design Compiler synthesis script for single-key ECPM based on

serial-parallel modular reduction

D.2.2 TCL Script for Power Analysis in Prime Time

1 remove des ign −al l

2 r e a d v e r i l o g /home/ . . . / syn/ n e t l i s t /ECC opt Jac 256.v

3 cu r r en t d e s i g n ECC opt Jac 256

4 c r e a t e c l o c k ” c lk ” −name ” c lk ” −period 36

5 r e po r t v cd h i e r a r chy /home/ . . . / sim/ n e t l i s t /ECC opt Jac 256.vcd

6 s e t power ana lys i s mode ” time based ”

7 read vcd − s t r ip path t e s t e c c o p t j a c 2 5 6 /uut ECC opt wrapper/uut ECC opt/

/home/ . . . / sim/ n e t l i s t /ECC opt Jac 256.vcd

8 update power

9 r epor t power > /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 power PT.rpt

254 Appendix D. TCL Scripts for Elliptic Curve Point Multiplication Architectures

10 r epo r t t im ing > /home/ . . . / syn/ r epo r t s /ECC opt Jac 256 timing PT.rpt

Listing D.6: TCL script for power analysis of single-key ECPM based on serial-parallel

modular reduction

Appendix E

FPGA Platforms Used in the

Implementations

Xilinx Virtex-6 and Virtex-7 FPGAs are selected for the hardware implementations in this

research. FPGAs are built of configurable components called Configurable Logic Blocks

(CLBs) where each CLB consists of two slices. A slice in Virtex-6 and Virtex-7 FPGA

contains four LUTs and eight flip-flops along with some multiplexers and arithmetic carry

logic circuitry. The LUTs in Virtex-6 and Virtex-7 can be configured as either one 6-input

LUT or two 5-input LUTs which shares the same input logic.

In addition to CLBs, the selected FPGAs also contains DSP slices − named DSP48E1

slice− which contains dedicated fast multipliers and accumulators. Each DSP slice in

Virtex-6 and Virtex-7 FPGA consists of a 25×18 bit multiplier and a 48-bit accumulator.

Table E.1 lists the detailed characteristics of the Virtex-6 and Virtex-7 FPGAs used in

the implementations.

255

256 Appendix E. FPGA Platforms Used in the Implementations

Table E.1: Virtex-6 and Virtex-7 FPGA Details used in this research [3, 4]

Virtex-6 Virtex-7

Device XC6VSX475T-2-FF1759 XC7VX485T-2-FFG1761

Technology 40 nm copper CMOS 28 nm HKMG, HPL process

Core voltage 1.0 V 0.9 V

Logic Cells 476,160 485,760

Slice LUTs 297,600 303,600

Slice Registers 595,200 607,200

Slices 74,400 75,900

Max Distributed RAM (Kb) 7,640 8,175

DSP Slices 2,016 2,800

Max. Freq. of DSP Slices 600 MHz 741 MHz

Block RAM Blocks (36 Kb)1 1,064 1,030

Total I/O Banks 21 14

Max User I/O 840 700

Max. I/O Voltage 2.5 V 1.8 V2, 3.3 V3

1 Each 36 Kb block can also be used as two independent 18 Kb blocks.

2 High Performance (HP) class of I/Os on Virtex-7.

3 High Range (HR) class of I/Os on Virtex-7.

Appendix F

List of Acronyms

ANSI American National Standards Institute

ASIC Application Specific Integrated Circuit

ATM Automated Teller Machine

BE Booth Encoder (Booth Encoding)

CBW Counter Based Wallace

CPF Common Power Format

CRT Chinese Remainder Theorem

CTS Clock Tree Synthesis

DC Design Compiler

DRC Design Rule Check

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

ECPA Elliptic Curve Point Addition

ECPD Elliptic Curve Point Doubling

ECPM Elliptic Curve Point Multiplication

EFTPOS Electronic Funds Transfer at Point Of Sale

257

258 Appendix F. List of Acronyms

ESD Electrostatic Discharge

FA Full Adder

FPGA Field Programmable Gated Array

GDS Graphic Database System

HA Half Adder

HDL Hardware Description Language

IEEE Institute of Electrical and Electronic Engineers

I/O Input/Output

LFSR Linear Feedback Shift Registers

LSB Least-Significant Bit

LUT Look-Up Table

LVS Layout vs. Schematic

MI Multi Input

MK ECPM Multi-Key ECPM

MM Modular Multiplication

MR Modular Reduction

MSB Most-Significant Bit

MUX Multiplexer

NIST National Institute of Standards and Technology

PCB Printed Circuit Board

PDA Personal Digital Assistant

PDP Power-Delay Product

PW Proposed Wallace

R4BE Radix-4 Booth Encoding

RAM Random-Access Memory

RCW Reduced Complexity Wallace

259

ROM Read-Only Memory

RNS Residue Number System

RSA Publick-Key Cryptography Algorithm of Rivest, Shamir, and

Adleman

SDC Synopsys Design Constraints

SDF Standard Delay Format

SoR Sum of Residues

SK ECPM SMR Single-Key ECPM using Serial MR

SK ECPM SPMR Single-Key ECPM using Serial-Paralel MR

TCL Tool Command Language

TW Traditional Wallace

VCD Voltage Change Dump

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

Vth Threshold Voltage

260 Appendix F. List of Acronyms

References

[1] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptogra-

phy. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2003.

[2] “SEC 2: Recommended elliptic curve domain parameters, standards for

efficient cryptography, Certicom Research,” 2000. [Online]. Available: http:

//www.secg.org/sec2-v2.pdf

[3] Xilinx Virtex-6 Family Overview. [Online]. Available: http://www.xilinx.com/

support/documentation/data sheets/ds150.pdf

[4] 7 Series FPGAs Overview. [Online]. Available: http://www.xilinx.com/support/

documentation/data sheets/ds180 7Series Overview.pdf

[5] “P1363 standard specifications for public key cryptography,” Institute of Electrical

and Electronic Engineers, NY, 2000.

[6] “X 9.62 public key cryptography for the financial services industry: Elliptic curve

digital signature algorithm (ecdsa),” American National Standards Institute, 1999.

[7] “FIPS 186 – digital signature standard,” National Institute of Standards and Tech-

nology, 1994.

261

262 References

[8] V. S. Miller, Advances in Cryptology — CRYPTO ’85 Proceedings. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 1986, ch. Use of Elliptic Curves in Cryptography,

pp. 417–426.

[9] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Communications of the ACM, vol. 21,

no. 2, pp. 120–126, Feb. 1978.

[10] D. D. Chen, G. X. Yao, R. C. C. Cheung, D. Pao, and C. K. Koc, “Parame-

ter space for the architecture of FFT-based Montgomery modular multiplication,”

IEEE Trans. Comput., vol. 65, no. 1, pp. 147–160, Jan. 2016.

[11] D. Schinianakis and T. Stouraitis, “Multifunction residue architectures for cryptog-

raphy,” IEEE Trans. Circuits Syst. I, vol. 61, no. 4, pp. 1156–1169, Apr. 2014.

[12] G. Zervakis, N. Eftaxiopoulos, K. Tsoumanis, N. Axelos, and K. Pekmestzi, “A

high radix Montgomery multiplier with concurrent error detection,” in Design Test

Symposium (IDT), 2014 9th International, Dec. 2014, pp. 199–204.

[13] A. Miyamoto, N. Homma, T. Aoki, and A. Satoh, “Systematic design of RSA

processors based on high-radix Montgomery multipliers,” IEEE Trans. VLSI Syst.,

vol. 19, no. 7, pp. 1136–1146, Jul. 2011.

[14] A. Satoh and K. Takano, “A scalable dual-field elliptic curve cryptographic proces-

sor,” IEEE Trans. Comput., vol. 52, no. 4, pp. 449–460, Apr. 2003.

[15] H. Marzouqi, M. Al-Qutayri, and K. Salah, “An FPGA implementation of NIST

256 prime field ECC processor,” in Electronics, Circuits, and Systems (ICECS),

2013 IEEE 20th International Conference on, Dec. 2013, pp. 493–496.

References 263

[16] S.-C. Chung, J.-W. Lee, H.-C. Chang, and C.-Y. Lee, “A high-performance elliptic

curve cryptographic processor over gf(p) with spa resistance,” in Circuits and Sys-

tems (ISCAS), 2012 IEEE International Symposium on, May 2012, pp. 1456–1459.

[17] B. Parhami, Computer Arithmetic – Algorithms and Hardware Designs, 2nd ed.

Oxford University Press, 2010.

[18] P. V. Mohan, Residue Number Systems: Algorithms and Architectures. Norwell,

MA, USA: Kluwer Academic Publishers, 2002.

[19] N. S. Szabo and R. H. Tanaka, Residue Arithmetic and its Applications to Computer

Technology. New York: McGraw Hill, 1967.

[20] A. A. Hiasat and H. S. Abdel-Aty-Zohdy, “A high-speed division algorithm for

residue number system,” in Circuits and Systems, 1995. ISCAS ’95., 1995 IEEE

International Symposium on, vol. 3, Apr. 1995, pp. 1996–1999 vol.3.

[21] J.-H. Yang, C.-C. Chang, and C.-Y. Chen, “A high-speed division algorithm in

residue number system using parity-checking technique,” International Journal of

Computer Mathematics, vol. 81, no. 6, pp. 775–780, 2004.

[22] L. Sousa, “Efficient method for magnitude comparison in RNS based on two pairs

of conjugate moduli,” in 18th IEEE Symposium on Computer Arithmetic (ARITH

’07), Jun. 2007, pp. 240–250.

[23] T. Tomczak, “Fast sign detection for RNS (2n−1, 2n, 2n+1),” IEEE Trans. Circuits

Syst. I, vol. 55, no. 6, pp. 1502–1511, Jul. 2008.

[24] M. Xu, Z. Bian, and R. Yao, “Fast sign detection algorithm for the RNS moduli

set 2n+1 − 1, 2n − 1, 2n,” IEEE Trans. VLSI Syst., vol. 23, no. 2, pp. 379–383, Feb.

2015.

264 References

[25] C. V. Niras and Y. Kong, “Fast sign-detection algorithm for residue number system

moduli set 2n − 1, 2n, 2n+1 − 1,” IET Computers Digital Techniques, vol. 10, no. 2,

pp. 54–58, 2016.

[26] A. Omondi and B. Premkumar, Residue Number Systems: Theory and Implemen-

tation, ser. Advances in Computer Science and Engineering: Texts. UK: Imperial

College Press, 2007, vol. 2.

[27] M. A. Soderstrand, W. Jenkins, and G. Jullien, “Residue number system arithmetic:

Modern applications,” Digital Signal Processing, 1986.

[28] A. Skavantzos and T. Stouraitis, “Grouped-moduli residue number systems for fast

signal processing,” in Circuits and Systems, 1999. ISCAS ’99. Proceedings of the

1999 IEEE International Symposium on, vol. 3, Jul. 1999, pp. 478–483.

[29] M. Bhardwaj, T. Srikanthan, and C. T. Clarke, “A reverse converter for the 4-moduli

superset {2n− 1, 2n, 2n +1, 2n+1+1},” in Computer Arithmetic, 1999. Proceedings.

14th IEEE Symposium on, 1999, pp. 168–175.

[30] A. P. VINOD and A. B. PREMKUMAR, “A memoryless reverse converter for the

4-moduli superset {2n − 1, 2n, 2n + 1, 2n+1 − 1},” Journal of Circuits, Systems and

Computers, vol. 10, no. 01n02, pp. 85–99, 2000.

[31] M.-H. Sheu, S.-H. Lin, C. Chen, and S.-W. Yang, “An efficient VLSI design for a

residue to binary converter for general balance moduli (2n−3, 2n+1, 2n−1, 2n+3),”

IEEE Trans. Circuits Syst. II, vol. 51, no. 3, pp. 152–155, Mar. 2004.

[32] B. Cao, T. Srikanthan, and C. H. Chang, “Efficient reverse converters for four-

moduli sets {2n − 1, 2n, 2n + 1, 2n+1 − 1} and {2n − 1, 2n, 2n + 1, 2n−1 − 1},” IEE

Proceedings - Computers and Digital Techniques, vol. 152, no. 5, pp. 687–696, Sep.

2005.

References 265

[33] M. Abdallah and A. Skavantzos, “On multimoduli residue number systems with

moduli of forms ra, rb − 1, rc + 1,” IEEE Trans. Circuits Syst. I, vol. 52, no. 7, pp.

1253–1266, Jul. 2005.

[34] D. K. Taleshmekaeil and A. Mousavi, “The use of residue number system for im-

proving the digital image processing,” in IEEE 10th INTERNATIONAL CONFER-

ENCE ON SIGNAL PROCESSING PROCEEDINGS, Oct. 2010, pp. 775–780.

[35] L. Sousa, S. A. ao, and R. Chaves, “On the design of RNS reverse converters for

the four-moduli set {2n+1, 2n− 1, 2n, 2n+1+1},” IEEE Trans. VLSI Syst., vol. 21,

no. 10, pp. 1945–1949, Oct. 2013.

[36] P. Patronik and S. J. Piestrak, “Design of reverse converters for general RNS moduli

sets {2k, 2n − 1, 2n + 1, 2n+1− 1} and {2k, 2n − 1, 2n + 1, 2n−1 − 1} (n even),” IEEE

Trans. Circuits Syst. I, vol. 61, no. 6, pp. 1687–1700, Jun. 2014.

[37] N. I. Chervyakov, P. A. Lyakhov, D. I. Kalita, and K. S. Shulzhenko, “Effect of RNS

moduli set selection on digital filter performance for satellite communications,” in

Control and Communications (SIBCON), 2015 International Siberian Conference

on, May 2015, pp. 1–7.

[38] D. M. Schinianakis, A. P. Kakarountas, and T. Stouraitis, “A new approach to

elliptic curve cryptography: an rns architecture,” in MELECON 2006 - 2006 IEEE

Mediterranean Electrotechnical Conference, May 2006, pp. 1241–1245.

[39] D. M. Schinianakis, A. P. Fournaris, A. P. Kakarountas, and T. Stouraitis, “An RNS

architecture of an Fp elliptic curve point multiplier,” in 2006 IEEE International

Symposium on Circuits and Systems, May 2006, pp. 3369–3373.

266 References

[40] D. Schinianakis, A. Fournaris, H. Michail, A. Kakarountas, and T. Stouraitis, “An

RNS implementation of an Fp elliptic curve point multiplier,” IEEE Trans. Circuits

Syst. I, vol. 56, no. 6, pp. 1202–1213, Jun. 2009.

[41] Y. Kong and B. Phillips, “Fast scaling in the residue number system,” IEEE Trans.

VLSI Syst., vol. 17, no. 3, pp. 443–447, Mar. 2009.

[42] A. Safari, J. Nugent, and Y. Kong, “Novel implementation of full adder based scaling

in residue number systems,” in Circuits and Systems (MWSCAS), 2013 IEEE 56th

International Midwest Symposium on, Aug. 2013, pp. 657–660.

[43] M. Griffin, M. Sousa, and F. Taylor, “Efficient scaling in the residue number sys-

tem,” in IEEE International Conference on Acoustics, Speech, and Signal Process-

ing, vol. 89, 1989.

[44] F. Barsi and M. C. Pinotti, “Fast base extension and precise scaling in RNS for

look-up table implementations,” IEEE Trans. Signal Process., vol. 43, no. 10, pp.

2427–2430, Oct. 1995.

[45] A. Garcia and A. Lloris, “A look-up scheme for scaling in the RNS,” IEEE Trans.

Comput., vol. 48, no. 7, pp. 748–751, Jul. 1999.

[46] N. Burgess, “Scaling an RNS number using the core function,” in Proc. 16th IEEE

Symposium on Computer Arithmetic, 2003.

[47] U. Meyer-Bäse and T. Stouraitis, “New power-of-2 RNS scaling scheme for cell-

based ic design,” IEEE Trans. VLSI Syst., vol. 11, no. 2, pp. 280–283, Apr. 2003.

[48] Y. Kong and B. Phillips, “Residue number system scaling schemes,” in Proc. SPIE,

Smart Structures, Devices, and Systems II, S. F. Al-Sarawi, Ed., vol. 5649, Feb.

2005, pp. 525–536.

References 267

[49] Y. Kong and B. Philips, “Residue number system scaling schemes,” in Proc. SPIE,

Smart Structures, Devices, and Systems II, vol. 5649. SPIE, Mar. 2005.

[50] A. Tomlinson, “Bit-serial modular multiplier,” Electronics Letters, vol. 25, no. 24,

p. 1664, Nov. 1989.

[51] N. Takagi, “A radix-4 modular multiplication hardware algorithm for modular ex-

ponentiation,” IEEE Trans. Comput., vol. 41, no. 8, pp. 949–956, Aug. 1992.

[52] C. K. Koc, T. Acar, and B. S. Kaliski, “Analyzing and comparing Montgomery

multiplication algorithms,” IEEE Micro, vol. 16, no. 3, pp. 26–33, Jun. 1996.

[53] W. P. Marnane, “Optimised bit serial modular multiplier for implementation on

field programmable gate arrays,” Electronics Letters, vol. 34, no. 8, pp. 738–739,

Apr. 1998.

[54] A. Hiasat, “New efficient structure for a modular multiplier for RNS,” IEEE Trans.

Comput., vol. 49, no. 2, pp. 170–174, Feb. 2000.

[55] D. Narh Amanor, C. Paar, J. Pelzl, V. Bunimov, and M. Schimmler, “Efficient hard-

ware architectures for modular multiplication on FPGAs,” in Field Programmable

Logic and Applications, 2005. International Conference on, Aug. 2005, pp. 539–542.

[56] C. McIvor, M. McLoone, and J. McCanny, “Hardware elliptic curve cryptographic

processor over gf(p),” IEEE Trans. Circuits Syst. I, vol. 53, no. 9, pp. 1946–1957,

Sep. 2006.

[57] J.-L. Beuchat and J. M. Muller, “Automatic generation of modular multipliers for

FPGA applications,” IEEE Trans. Comput., vol. 57, no. 12, pp. 1600–1613, Dec.

2008.

268 References

[58] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster interleaved modular

multiplication based on Barrett and Montgomery reduction methods,” IEEE Trans.

Comput., vol. 59, no. 12, pp. 1715–1721, Dec. 2010.

[59] S.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-W. Hsu, “Energy-efficient high-

throughput Montgomery modular multipliers for RSA cryptosystems,” IEEE Trans.

VLSI Syst., vol. 21, no. 11, pp. 1999–2009, Nov. 2013.

[60] K. Javeed and X. Wang, “Efficient montgomery multiplier for pairing and elliptic

curve based cryptography,” in Communication Systems, Networks Digital Signal

Processing (CSNDSP), 2014 9th International Symposium on, Jul. 2014, pp. 255–

260.

[61] L. Rahimzadeh, M. Eshghi, and S. Timarchi, “Radix-4 implementation of redundant

interleaved modular multiplication on FPGA,” in Electrical Engineering (ICEE),

2014 22nd Iranian Conference on, May 2014, pp. 523–526.

[62] A. Nadjia and A. Mohamed, “High throughput parallel Montgomery modular ex-

ponentiation on FPGA,” in Design Test Symposium (IDT), 2014 9th International,

Dec. 2014, pp. 225–230.

[63] K. Javeed, X. Wang, and M. Scott, “Serial and parallel interleaved modular multi-

pliers on FPGA platform,” in Field Programmable Logic and Applications (FPL),

2015 25th International Conference on, Sep. 2015, pp. 1–4.

[64] S. R. Kuang, K. Y. Wu, and R. Y. Lu, “Low-cost high-performance VLSI archi-

tecture for Montgomery modular multiplication,” IEEE Trans. VLSI Syst., vol. 24,

no. 2, pp. 434–443, Feb. 2016.

[65] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of

Computation, vol. 44, no. 170, pp. 519–521, Apr. 1985.

References 269

[66] P.-S. Chen, S.-A. Hwang, and C.-W. Wu, “A systolic RSA public key cryptosystem,”

in Circuits and Systems, 1996. ISCAS ’96., Connecting the World., 1996 IEEE

International Symposium on, vol. 4, May 1996, pp. 408–411 vol.4.

[67] C.-C. Yang, T.-S. Chang, and C.-W. Jen, “A new RSA cryptosystem hardware

design based on Montgomery’s algorithm,” IEEE Trans. Circuits Syst. II, vol. 45,

no. 7, pp. 908–913, Jul. 1998.

[68] C.-Y. Su, S.-A. Hwang, P.-S. Chen, and C.-W. Wu, “An improved Montgomery’s

algorithm for high-speed RSA public-key cryptosystem,” IEEE Trans. VLSI Syst.,

vol. 7, no. 2, pp. 280–284, Jun. 1999.

[69] A. F. Tenca and c. K. Koç, “A scalable architecture for Montgomery multiplication,”

in Proceedings of the First International Workshop on Cryptographic Hardware and

Embedded Systems, ser. CHES ’99. London, UK, UK: Springer-Verlag, 1999, pp.

94–108.

[70] C. D. Walter, “Montgomery exponentiation needs no final subtractions,” Electronics

Letters, vol. 35, no. 21, pp. 1831–1832, Oct. 1999.

[71] A. F. Tenca and C. K. Koc, “A scalable architecture for modular multiplication

based on Montgomery’s algorithm,” IEEE Trans. Comput., vol. 52, no. 9, pp. 1215–

1221, Sep. 2003.

[72] Y. Gong and S. Li, “High-throughput FPGA implementation of 256-bit Montgomery

modular multiplier,” in Education Technology and Computer Science (ETCS), 2010

Second International Workshop on, vol. 3, Mar. 2010, pp. 173–176.

[73] M. Huang, K. Gaj, and T. El-Ghazawi, “New hardware architectures for mont-

gomery modular multiplication algorithm,” IEEE Trans. Comput., vol. 60, no. 7,

pp. 923–936, Jul. 2011.

270 References

[74] P. Barrett, “Implementing the Rivest, Shamir and Adleman public-key encryp-

tion algorithm on a standard digital signal processor,” in Advances in Cryptology -

Crypto 86, ser. Lecture Notes in Computer Science. Berlin/Heidelberg, Germany:

Springer, 1987, vol. 263, pp. 311–323.

[75] J.-F. Dhem, “Design of an efficient public-key cryptographic library for RISC based

smart cards,” Ph.D. dissertation, Université Catholique de Louvain, May 1998.

[76] ——, “Modified version of the Barrett modular multiplication algorithm,” UCL

Crypto Group, Louvain-la-Neuve, Tech. Rep., 1994.

[77] M. E. Kaihara and N. Takagi, Cryptographic Hardware and Embedded Systems –

CHES 2005: 7th International Workshop, Edinburgh, UK, August 29 – September

1, 2005. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, ch.

Bipartite Modular Multiplication, pp. 201–210.

[78] M. Kaihara and N. Takagi, “Bipartite modular multiplication method,” IEEE

Trans. Comput., vol. 57, no. 2, pp. 157–164, Feb. 2008.

[79] K. Sakiyama, M. Knezevic, J. Fan, B. Preneel, and I. Verbauwhede, “Tripartite

modular multiplication,” Integration, the {VLSI} Journal, vol. 44, no. 4, pp. 259–

269, 2011, hardware Architectures for Algebra, Cryptology and Number Theory.

[80] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by automatic

computers,” Doklady Akademii Nauk SSSR, vol. 145, no. 2, pp. 293–294, 1962.

[81] J. C. Neto, A. F. Tenca, and W. V. Ruggiero, “A parallel k-partition method to per-

form montgomery multiplication,” in ASAP 2011 - 22nd IEEE International Con-

ference on Application-specific Systems, Architectures and Processors, Sep. 2011,

pp. 251–254.

References 271

[82] J. Neto, A. Ferreira Tenca, and W. Ruggiero, “A parallel and uniform k -partition

method for Montgomery multiplication,” IEEE Trans. Comput., vol. 63, no. 9, pp.

2122–2133, Sep. 2014.

[83] K. Javeed and X. Wang, “Radix-4 and radix-8 Booth encoded interleaved modular

multipliers over general Fp,” in Field Programmable Logic and Applications (FPL),

2014 24th International Conference on, Sep. 2014, pp. 1–6.

[84] H. Alrimeih and D. Rakhmatov, “Pipelined modular multiplier supporting multiple

standard prime fields,” in Application-specific Systems, Architectures and Processors

(ASAP), 2014 IEEE 25th International Conference on, Jun. 2014, pp. 48–56.

[85] J. C. Bajard, L. S. Didier, and P. Kornerup, “An RNS Montgomery modular multi-

plication algorithm,” in Computer Arithmetic, 1997. Proceedings., 13th IEEE Sym-

posium on, Jul. 1997, pp. 234–239.

[86] ——, “An RNS Montgomery modular multiplication algorithm,” IEEE Trans. Com-

put., vol. 47, no. 7, pp. 766–776, Jul. 1998.

[87] B. Phillips, “Modular multiplication in the Montgomery residue number system,”

in Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth

Asilomar Conference on, vol. 2, Nov. 2001, pp. 1637–1640 vol.2.

[88] Y. Kong, “High radix Montgomery multipliers for residue arithmetic channels on

FPGAs,” in Future Intelligent Information Systems, ser. Lecture Notes in Electrical

Engineering, D. Zeng, Ed. Springer Berlin Heidelberg, 2011, vol. 86, pp. 23–30.

[89] S. Antão and L. Sousa, “An RNS-based architecture targeting hardware accelera-

tors for modular arithmetic,” in 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, May 2013, pp. 2572–2576.

272 References

[90] S. Antão and L. Sousa, “A flexible architecture for modular arithmetic hardware

accelerators based on RNS,” Journal of Signal Processing Systems, vol. 76, no. 3,

pp. 249–259, 2014.

[91] T. Wu, S. Li, and L. Liu, Proceedings of International Conference on Soft Computing

Techniques and Engineering Application: ICSCTEA 2013, September 25-27, 2013,

Kunming, China. New Delhi: Springer India, 2014, ch. Improved RNS Montgomery

Modular Multiplication with Residue Recovery, pp. 233–245.

[92] K. Bigou and A. Tisserand, “RNS modular multiplication through reduced base

extensions,” in 2014 IEEE 25th International Conference on Application-Specific

Systems, Architectures and Processors, Jun. 2014, pp. 57–62.

[93] G. Yao, J. Fan, R. Cheung, and I. Verbauwhede, “Novel RNS parameter selection for

fast modular multiplication,” IEEE Trans. Comput., vol. 63, no. 8, pp. 2099–2105,

Aug. 2014.

[94] R. Dou, J. Han, and X. Zeng, “Parallelism exploitation of Montgomery multiplica-

tion in RNS on NoC-based platform,” in Solid-State and Integrated Circuit Tech-

nology (ICSICT), 2014 12th IEEE International Conference on, Oct. 2014, pp. 1–3.

[95] D. Schinianakis and T. Stouraitis, “An RNS Barrett modular multiplication archi-

tecture,” in Circuits and Systems (ISCAS), 2014 IEEE International Symposium

on, Jun. 2014, pp. 2229–2232.

[96] J. C. Bajard, L. S. Didier, P. Kornerup, and F. Rico, “Some improvements on RNS

Montgomery modular multiplication,” in Advanced Signal Processing Algorithms,

Architectures, and Implementations, Proceedings SPIE, vol. 4116, 2000, pp. 214–

225.

References 273

[97] J. C. Bajard, L. S. Didier, and J. M. Muller, “A new euclidean division algorithm

for residue number systems,” Journal of VLSI signal processing systems for signal,

image and video technology, vol. 19, no. 2, pp. 167–178, 1998.

[98] J. C. Bajard, L. S. Didier, and P. Kornerup, “Modular multiplication and base

extensions in residue number systems,” in Proc. 15th IEEE Symposium on Computer

Arithmetic, vol. 2, 2001, pp. 59–65.

[99] A. Shenoy and R. Kumaseran, “Fast base extension using a redundant modulus in

RNS,” IEEE Trans. Comput., vol. 38, no. 2, pp. 292–297, Feb. 1989.

[100] J. C. Bajard, N. Meloni, and T. Plantard, “Efficient RNS bases for cryptography,”

in Scientific Computation Applied Mathematics and Simulation, 2005 Proceedings

of IMACS, Jul. 2005.

[101] W. L. Freking and K. K. Parhi, “Montgomery modular multiplication and exponen-

tiation in the residue number system,” in Signals, Systems, and Computers, 1999.

Conference Record of the Thirty-Third Asilomar Conference on, vol. 2, Oct. 1999,

pp. 1312–1316 vol.2.

[102] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-Rower architecture for fast

parallel Montgomery multiplication,” in Advances in Cryptology - Eurocrypt 2000,

ser. Lecture Notes in Computer Science. Springer, 2000, vol. 1807, pp. 523–538.

[103] J. C. Bajard and L. Imbert, “A full RNS implementation of RSA,” IEEE Trans.

Comput., vol. 53, no. 6, pp. 769–774, Jun. 2004.

[104] J. H. Yang and C. C. Chang, “Efficient residue number system iterative modular

multiplication algorithm for fast modular exponentiation,” IET Computers Digital

Techniques, vol. 2, no. 1, pp. 1–5, Jan. 2008.

274 References

[105] J. Hu, W. Guo, J. Wei, Y. Chang, and D. Sun, “A novel architecture for fast RSA

key generation based on RNS,” in 2011 Fourth International Symposium on Parallel

Architectures, Algorithms and Programming, Dec. 2011, pp. 345–349.

[106] W. Guo, Y. Liu, S. Bai, J. Wei, and D. Sun, “Hardware architecture for RSA

cryptography based on residue number system,” Transactions of Tianjin University,

vol. 18, no. 4, pp. 237–242, 2012.

[107] J. C. Néto, A. F. Tenca, and W. V. Ruggiero, “CRT RSA decryption: Modular

exponentiation based solely on Montgomery multiplication,” in 2015 49th Asilomar

Conference on Signals, Systems and Computers, Nov. 2015, pp. 431–436.

[108] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura, “Implementation of RSA

algorithm based on RNS montgomery multiplication,” in Proceedings of Crypto-

graphic Hardware and Embedded Systems (CHES 2001), Sep. 2001, pp. 364–376.

[109] N. Guillermin, “A coprocessor for secure and high speed modular arithmetic,” in

Report 2011/354, Cryptology ePrint Archive, 2011.

[110] K. C. Posch and R. Posch, “Modulo reduction in residue number systems,” IEEE

Trans. Parallel Distrib. Syst., vol. 6, no. 5, pp. 449–454, May 1995.

[111] Y. Tong-jie, D. Zi-bin, Y. Xiao-Hui, and Z. Qian-jin, “An improved RNS Mont-

gomery modular multiplier,” in Computer Application and System Modeling (IC-

CASM), 2010 International Conference on, vol. 10, Oct. 2010, pp. V10–144–V10–

147.

[112] F. Gandino, F. Lamberti, P. Montuschi, and J. C. Bajard, “A general approach for

improving RNS Montgomery exponentiation using pre-processing,” in Computer

Arithmetic (ARITH), 2011 20th IEEE Symposium on, Jul. 2011, pp. 195–204.

References 275

[113] F. Gandino, F. Lamberti, G. Paravati, J. C. Bajard, and P. Montuschi, “An al-

gorithmic and architectural study on Montgomery exponentiation in RNS,” IEEE

Trans. Comput., vol. 61, no. 8, pp. 1071–1083, Aug. 2012.

[114] Z. Lim, B. Phillips, and M. Liebelt, “Elliptic curve digital signature algorithm over

GF(p) on a residue number system enabled microprocessor,” in TENCON 2009 -

2009 IEEE Region 10 Conference, Jan. 2009, pp. 1–6.

[115] N. Guillermin, “A high speed coprocessor for elliptic curve scalar multiplications

over Fp,” in Proceedings of the 12th International Conference on Cryptographic

Hardware and Embedded Systems, ser. CHES’10. Berlin, Heidelberg: Springer-

Verlag, 2010, pp. 48–64.

[116] M. Esmaeildoust, D. Schinianakis, H. Javashi, T. Stouraitis, and K. Navi, “Efficient

RNS implementation of elliptic curve point multiplication over GF(p),” IEEE Trans.

VLSI Syst., vol. 21, no. 8, pp. 1545–1549, Aug. 2013.

[117] K. Bigou and A. Tisserand, Cryptographic Hardware and Embedded Systems – CHES

2015: 17th International Workshop, Saint-Malo, France, September 13-16, 2015,

Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, ch. Single Base

Modular Multiplication for Efficient Hardware RNS Implementations of ECC, pp.

123–140.

[118] D. Schinianakis and T. Stouraitis, “An RNS modular multiplication algorithm,” in

Electronics, Circuits, and Systems (ICECS), 2013 IEEE 20th International Confer-

ence on, Dec. 2013, pp. 958–961.

[119] J. Gonnella, “The application of core functions to residue number systems,” IEEE

Trans. Signal Process., vol. 39, no. 1, pp. 69–75, Jan. 1991.

276 References

[120] Y. Kong, S. Asif, and M. Khan, “Modular multiplication using the core function

in the residue number system,” Applicable Algebra in Engineering, Communication

and Computing, vol. 27, no. 1, pp. 1–16, 2016.

[121] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48,

no. 177, pp. 203–209, 1987.

[122] P. Longa and A. Miri, “Fast and flexible elliptic curve point arithmetic over prime

fields,” IEEE Trans. Comput., vol. 57, no. 3, pp. 289–302, Mar. 2008.

[123] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography. Cambridge

University Press, 1999, cambridge Books Online.

[124] G. Orlando and C. Paar, Cryptographic Hardware and Embedded Systems — CHES

2001: Third International Workshop Paris, France, May 14–16, 2001 Proceedings.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, ch. A Scalable GF(p) Elliptic

Curve Processor Architecture for Programmable Hardware, pp. 348–363.

[125] S. B. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardware implementation of

an elliptic curve processor over GF(p),” in Application-Specific Systems, Architec-

tures, and Processors, 2003. Proceedings. IEEE International Conference on, Jun.

2003, pp. 433–443.

[126] A. K. Daneshbeh and M. A. Hasan, “Area efficient high speed elliptic curve crypto-

processor for random curves,” in Information Technology: Coding and Computing,

2004. Proceedings. ITCC 2004. International Conference on, vol. 2, Apr. 2004, pp.

588–592.

[127] G. Chen, G. Bai, and H. Chen, “A high-performance elliptic curve cryptographic

processor for general curves over gf(p) based on a systolic arithmetic unit,” IEEE

Trans. Circuits Syst. II, vol. 54, no. 5, pp. 412–416, May 2007.

References 277

[128] B. Ansari and M. Hasan, “High-performance architecture of elliptic curve scalar

multiplication,” IEEE Trans. Comput., vol. 57, no. 11, pp. 1443–1453, Nov. 2008.

[129] R. Laue and S. Huss, “Parallel memory architecture for elliptic curve cryptography

over GF(p) aimed at efficient FPGA implementation,” Journal of Signal

Processing Systems, vol. 51, no. 1, pp. 39–55, 2008. [Online]. Available:

http://dx.doi.org/10.1007/s11265-007-0135-9

[130] J.-Y. Lai and C.-T. Huang, “A highly efficient cipher processor for dual-field elliptic

curve cryptography,” IEEE Trans. Circuits Syst. II, vol. 56, no. 5, pp. 394–398,

May 2009.

[131] H. Alrimeih and D. Rakhmatov, “Fast and flexible hardware support for ECC over

multiple standard prime fields,” IEEE Trans. VLSI Syst., vol. 22, no. 12, pp. 2661–

2674, Dec. 2014.

[132] H. Marzouqi, M. Al-Qutayri, K. Salah, D. Schinianakis, and T. Stouraitis, “A high-

speed FPGA implementation of an RSD-based ECC processor,” IEEE Trans. VLSI

Syst., vol. 24, no. 1, pp. 151–164, Jan. 2016.

[133] K. Sakiyama, E. De Mulder, B. Preneel, and I. Verbauwhede, “A parallel process-

ing hardware architecture for elliptic curve cryptosystems,” in Acoustics, Speech

and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International

Conference on, vol. 3, May 2006, pp. III–III.

[134] J.-Y. Lai and C.-T. Huang, “Elixir: High-throughput cost-effective dual-field pro-

cessors and the design framework for elliptic curve cryptography,” IEEE Trans.

VLSI Syst., vol. 16, no. 11, pp. 1567–1580, Nov. 2008.

278 References

[135] K. Ananyi, H. Alrimeih, and D. Rakhmatov, “Flexible hardware processor for ellip-

tic curve cryptography over NIST prime fields,” IEEE Trans. VLSI Syst., vol. 17,

no. 8, pp. 1099–1112, Aug. 2009.

[136] S. Ghosh, M. Alam, D. R. Chowdhury, and I. S. Gupta, “Parallel crypto-devices for

GF(p) elliptic curve multiplication resistant against side channel attacks,” Comput.

Electr. Eng., vol. 35, no. 2, pp. 329–338, Mar. 2009.

[137] S. Ghosh, M. Alam, I. S. Gupta, and D. R. Chowdhury, “A robust gf(p) parallel

arithmetic unit for public key cryptography,” in Digital System Design Architec-

tures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on, Aug.

2007, pp. 109–115.

[138] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Petrel: Power and timing

attack resistant elliptic curve scalar multiplier based on programmable gf(p) arith-

metic unit,” IEEE Trans. Circuits Syst. I, vol. 58, no. 8, pp. 1798–1812, Aug. 2011.

[139] Y. Ma, Z. Liu, W. Pan, and J. Jing, Selected Areas in Cryptography – SAC 2013:

20th International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised

Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, ch. A High-

Speed Elliptic Curve Cryptographic Processor for Generic Curves over GF (p), pp.

421–437.

[140] J. W. Lee, S. C. Chung, H. C. Chang, and C. Y. Lee, “Efficient power-analysis-

resistant dual-field elliptic curve cryptographic processor using heterogeneous dual-

processing-element architecture,” IEEE Trans. VLSI Syst., vol. 22, no. 1, pp. 49–61,

Jan. 2014.

References 279

[141] K. C. C. Loi and S.-B. Ko, “Scalable elliptic curve cryptosystem FPGA processor

for NIST prime curves,” IEEE Trans. VLSI Syst., vol. 23, no. 11, pp. 2753–2756,

Nov. 2015.

[142] J. L. Beuchat and J. M. Muller, “Modulo m multiplication-addition: algorithms

and FPGA implementation,” Electronics Letters, vol. 40, no. 11, pp. 654–655, May

2004.

[143] M. Mohammadi and A. S. Molahosseini, “Efficient design of elliptic curve point

multiplication based on fast montgomery modular multiplication,” in Computer

and Knowledge Engineering (ICCKE), 2013 3th International eConference on, Oct.

2013, pp. 424–429.

[144] H. Pettenghi, R. Chaves, and L. Sousa, “RNS reverse converters for moduli sets with

dynamic ranges up to (8n+1)-bit,” IEEE Trans. Circuits Syst. I, vol. 60, no. 6, pp.

1487–1500, Jun. 2013.

[145] D. Schinianakis and T. Stouraitis, Secure System Design and Trustable Computing.

Cham: Springer International Publishing, 2016, ch. Residue Number Systems in

Cryptography: Design, Challenges, Robustness, pp. 115–161.

[146] R. Szerwinski and T. Güneysu, Cryptographic Hardware and Embedded Systems –

CHES 2008: 10th International Workshop, Washington, D.C., USA, August 10-

13, 2008. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, ch.

Exploiting the Power of GPUs for Asymmetric Cryptography, pp. 79–99.

[147] S. Antão, J. C. Bajard, and L. Sousa, “Elliptic curve point multiplication on GPUs,”

in ASAP 2010 - 21st IEEE International Conference on Application-specific Sys-

tems, Architectures and Processors, Jul. 2010, pp. 192–199.

280 References

[148] S. Antão, J. C. Bajard, and L. Sousa, “RNS-based elliptic curve point multiplication

for massive parallel architectures,” Comput. J., vol. 55, no. 5, pp. 629–647, May

2012.

[149] J. C. Bajard, J. Eynard, N. Merkiche, and T. Plantard, “RNS arithmetic approach

in lattice-based cryptography: Accelerating the ”rounding-off“ core procedure,” in

Computer Arithmetic (ARITH), 2015 IEEE 22nd Symposium on, Jun. 2015, pp.

113–120.

[150] J. Wei, W. Guo, H. Liu, and Y. Tan, Computer Engineering and Technology: 17th

CCF Conference, NCCET 2013, Xining, China, July 20-22, 2013. Revised Selected

Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, ch. A Unified Cryp-

tographic Processor for RSA and ECC in RNS, pp. 19–32.

[151] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron. Comput.,

vol. EC-13, no. 1, pp. 14–17, Feb. 1964.

[152] J. Fadavi-Ardekani, “M*N Booth encoded multiplier generator using optimized Wal-

lace trees,” IEEE Trans. VLSI Syst., vol. 1, no. 2, pp. 120–125, 1993.

[153] R. S. Waters and E. E. Swartzlander, “A reduced complexity Wallace multiplier

reduction,” IEEE Trans. Comput., vol. 59, no. 8, pp. 1134–1137, Aug. 2010.

[154] C. C. Foster and F. Stockton, “Counting responders in an associative memory,”

IEEE Trans. Comput., vol. C-20, no. 12, pp. 1580–1583, Dec. 1971.

[155] E. Swartzlander, “Parallel counters,” IEEE Trans. Comput., vol. C-22, no. 11, pp.

1021–1024, Nov. 1973.

[156] C. Vinoth, V. Bhaaskaran, B. Brindha, S. Sakthikumaran, V. Kavinilavu,

B. Bhaskar, M. Kanagasabapathy, and B. Sharath, “A novel low power and high

References 281

speed Wallace tree multiplier for RISC processor,” in Electronics Computer Technol-

ogy (ICECT), 2011 3rd International Conference on, vol. 1, Apr. 2011, pp. 330–334.

[157] K. Prasad and K. Parhi, “Low-power 4-2 and 5-2 compressors,” in Signals, Systems

and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference

on, vol. 1, Nov. 2001, pp. 129–133 vol.1.

[158] C.-H. Chang, J. Gu, and M. Zhang, “Ultra low-voltage low-power CMOS 4-2 and

5-2 compressors for fast arithmetic circuits,” IEEE Trans. Circuits Syst. I, vol. 51,

no. 10, pp. 1985–1997, Oct. 2004.

[159] M. Mehta, V. Parmar, and E. Swartzlander, “High-speed multiplier design using

multi-input counter and compressor circuits,” in Computer Arithmetic, 1991. Pro-

ceedings., 10th IEEE Symposium on, Jun. 1991, pp. 43–50.

[160] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34, pp.

349–356, 1965.

[161] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a

general class of recurrence equations,” IEEE Trans. Comput., vol. C-22, no. 8, pp.

786–793, Aug. 1973.

[162] J. Sklansky, “Conditional-sum addition logic,” IRE Transactions on Electronic

Computers, vol. EC-9, no. 2, pp. 226–231, 1960.

[163] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE Trans.

Comput., vol. C-31, no. 3, pp. 260–264, Mar. 1982.

[164] T. Han and D. A. Carlson, “Fast area-efficient VLSI adders,” in IEEE 8th Sympo-

sium on Computer Arithmetic, May 1987, pp. 49–56.

282 References

[165] S. Knowles, “A family of adders,” in Proc. 15th IEEE Symposium on Computer

Arithmetic, Adelaide, SA, Apr. 2001, pp. 277–281.

[166] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal of the As-

soclaUon for Computing Machinery, vol. 27, no. 4, pp. 831–838, Oct. 1980.

[167] D. Harris, “A taxonomy of parallel prefix networks,” in Conference Record of the

Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2,

Nov. 2003, pp. 2213–2217.

[168] F. K. Gurkayna, Y. Leblebicit, L. Chaouati, and P. J. McGuinness, “Higher radix

kogge-stone parallel prefix adder architectures,” in Circuits and Systems, 2000. Pro-

ceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, vol. 5,

2000, pp. 609–612 vol.5.

[169] V. C. Kumar, P. S. Phaneendra, S. E. Ahmed, V. Sreehari, N. M. Muthukrish-

nan, and M. B. Srinivas, “Higher radix sparse-2 adders with improved grouping

technique,” in TENCON 2011 - 2011 IEEE Region 10 Conference, Nov. 2011, pp.

676–679.

[170] S. Asif and M. Vesterbacka, “Performance analysis of radix-4 adders,” Integr.

VLSI J., vol. 45, no. 2, pp. 111–120, Mar. 2012. [Online]. Available:

http://dx.doi.org/10.1016/j.vlsi.2011.09.004

[171] A. D. Booth, “A signed binary multiplication technique,” The Quarterly Journal

of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–240, 1951. [Online].

Available: http://qjmam.oxfordjournals.org/content/4/2/236.abstract

[172] O. L. Macsorley, “High-speed arithmetic in binary computers,” Proceedings of the

IRE, vol. 49, no. 1, pp. 67–91, 1961.

References 283

[173] K. Swee and L. H. Hiung, “Performance comparison review of 32-bit multiplier de-

signs,” in Intelligent and Advanced Systems (ICIAS), 2012 4th International Con-

ference on, vol. 2, Jun. 2012, pp. 836–841.

[174] M. Sjalander and P. Larsson-Edefors, “High-speed and low-power multipliers using

the Baugh-Wooley algorithm and HPM reduction tree,” in 15th IEEE Int. Conf.

Electronics, Circuits and Systems, ICECS, St. Julien’s, Aug. 2008, pp. 33–36.

[175] W.-C. Yeh and C.-W. Jen, “High-speed Booth encoded parallel multiplier design,”

IEEE Trans. Comput., vol. 49, no. 7, pp. 692–701, 2000.

[176] R. Ward and T. Molteno, “Table of linear feedback shift registers,” Datasheet,

Department of Physics, University of Otago, 2007.

[177] S. Asif and Y. Kong, “Performance analysis of Wallace and radix-4 Booth-Wallace

multipliers,” in Electronic System Level Synthesis Conference (ESLsyn), 2015, Jun.

2015, pp. 17–22.

[178] H. Eriksson, P. Larsson-Edefors, M. Sheeran, M. Sjalander, D. Johansson, and

M. Scholin, “Multiplier reduction tree with logarithmic logic depth and regular

connectivity,” in Proc.IEEE Int. Symp. Circuits and Systems, 2006. ISCAS, Island

of Kos, May 2006, pp. 5–8.

[179] P. Barrett, “Communications authentication and security using public key encryp-

tion - a design for implementation,” Master’s thesis, Oxford University, Sep. 1984.

[180] B. Cao, C. H. Chang, and T. Srikanthan, “A residue-to-binary converter for a new

five-moduli set,” IEEE Trans. Circuits Syst. I, vol. 54, no. 5, pp. 1041 – 1049, May

2007.

284 References

[181] R. Muralidharan and C. H. Chang, “Radix-8 Booth encoded modulo 2n − 1 multi-

pliers with adaptive delay for high dynamic range residue number system,” IEEE

Trans. Circuits Syst. I, vol. 58, no. 5, pp. 982 – 993, May 2011.

[182] F. J. Taylor and C. H. Huang, “An autoscale residue multiplier,” IEEE Trans.

Comput., vol. 31, no. 4, pp. 321–325, Apr. 1982.

[183] A. Shenoy and R. Kumaseran, “A fast and accurate RNS scaling technique for high

speed signal processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37,

no. 6, pp. 929–937, Jun. 1989.

[184] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1996.

[185] C. Negre and J.-M. Robert, “New parallel approaches for scalar multiplication in

elliptic curve over fields of small characteristic,” IEEE Trans. Comput., vol. 64,

no. 10, pp. 2875–2890, Oct. 2015.

