
Modeling, Verification and Change

Management of Service-based

Business Processes

By

Pengbo Xiu



ii

A thesis submitted to Macquarie University

for the degree of Doctor of Philosophy

Department of Computing

July 2018

Examiner’s Copy



iii

c© Pengbo Xiu, 2018.

Typeset in LATEX 2ε.



iv

Except where acknowledged in the customary manner,

the material presented in this thesis is, to the best of my

knowledge, original and has not been submitted in whole

or part for a degree in any university.

Pengbo Xiu



Acknowledgments

I would like to express my sincere appreciation to my principal supervisor, Prof. Jian Yang,

and Dr. Weiliang Zhao. This work would have been impossible without their constant

guidance and encouragement. I am also grateful to all academic and administration staffs

in computing department, in particular, Dr. Yan Wang, Ms. Donna Hua, Ms. Fiona Yang,

Ms. Sylvian Chow, and Ms. Melina Chan for their kindly help.

I would also like to thank the research students who are in the same research group with

me, Lei Han, Yan Mei, Zizhu Zhang, Robertus Nugroho, Yi Tian, Youliang Zhong, and

Peiyao Li, for their encouragement and moral support which made me stay and studies in

the office 349 more enjoyable.

Special thanks to my beloved wife, Yuxuan Song for her continuous and unfailing love,

support, and understanding during my four years pursuit of Ph.D. degree which made the

completion of thesis possible. She was always around at times, and she helped me to keep

v



vi Acknowledgments

things in perspective. I greatly value her support and sincerely appreciate her encourage-

ment. I also owe thanks to my mother, Lili Wang, and my father, Shichao Xiu for their love

and moral support. I consider myself the luckiest man in the world to have such a lovely

and caring family, standing beside me with their love and unconditional support.

I am really grateful to the China Scholarship Council (CSC) and Macquarie University as

they offered me a scholarship. This work would not have been possible without the financial

support from them.



List of Publications

• Pengbo Xiu, Jian Yang, and Weiliang Zhao. “A Change Management Framework for

Service-based Business Process.” In Proceedings of the Australasian Computer Science

Week Multiconference (ACSW), p. 36. ACM, 2017.

• Pengbo Xiu, Weiliang Zhao, and Jian Yang. “Correctness Verification for Service-

Based Business Processes.” In 2017 IEEE International Conference on Web Services

(ICWS), pp. 752-759. IEEE, 2017.

• Pengbo Xiu, Jian Yang, and Weiliang Zhao. “Manage Consistency and Compatibility

in Dynamic Service-based Business Processes.” In preparing to the conference 2018

IEEE International Conference on Web Services (ICWS).

• Pengbo Xiu, Jian Yang, and Weiliang Zhao. “Change Management of Service-based

Business Processes.” In proceeding of the journal Service Oriented Computing and

Applications (SOCA).

vii



viii List of Publications



Abstract

Service-Oriented Computing (SOC) paradigm and web service technologies are essential

enablers for organizations to cooperate or collaborate with each other. The business processes

of such organizations are referred to as service-based business processes (SBP). To manage

SBPs in their dynamic context, it is vital that the complex dependencies among the internal

business process and the exposed external services are correctly analyzed and modeled.

This work provides solutions for the challenging issues of modeling, verification, and change

management of SBPs.

Different from existing approaches in the research areas of business process management

and service management, this Ph.D. research emphasizes the dependencies not only between

the internal business process and involved services of an SBP but also between/among their

components (e.g., activities, data, and operations). Due to the dependencies between/among

the activities and data elements of the internal business process of an SBP, there could be

complex control flow and data flow structures which make the SBP modeling and verification

ix



x Abstract

challenging. Due to the dependencies between the internal business process and services

involved in an SBP, changes may propagate between them in a cascading manner which

makes the change management of SBPs challenging. To deal with this issue, it is necessary

to develop a formal model for modeling SBPs at first. Then the correctness properties

of SBP should be identified, and corresponding verification methods should be proposed.

Finally, for handling changes in SBPs, the change types should be identified, and the change

propagation must be under control.

A Petri net based model is proposed for modeling SBPs. Based on the SBP model, a set

of correctness properties of SBP are identified, and the verification methods are developed

accordingly. A collection of SBP change patterns are identified and classified for translating

and implementing changes. With the help of the SBP model, correctness verification, and

the change patterns, a change management framework is proposed for managing changes, in

particular, the change propagation in SBPs.



Contents

Acknowledgments v

List of Publications vii

Abstract ix

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Service-based Business Process . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Business Process Management . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Service Oriented Computing . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Change Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

xi



xii Contents

1.3 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 A Scenario of Service-based Business Processes . . . . . . . . . . . . . 10

1.3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Research Gaps and Challenges . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Thesis Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 RELATED WORK 21

2.1 Process Modeling with Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Petri Nets Background . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Petri-net-based Modeling Techniques . . . . . . . . . . . . . . . . . . 25

2.2 Verification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Correctness of Control-Flow . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Correctness of Data-Flow . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Compatibility & Consistency . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Change Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Business Process Change Management . . . . . . . . . . . . . . . . . 34

2.3.2 Service Change Management . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 A Model for Service-based Business Processes 47

3.1 An Example of Service-based Business Processes . . . . . . . . . . . . . . . . 48

3.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Internal Business Process . . . . . . . . . . . . . . . . . . . . . . . . . 51



Contents xiii

3.2.2 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Service-based Business Process . . . . . . . . . . . . . . . . . . . . . 62

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Design Patterns of Service-based Business Processes 65

4.1 Control Flow Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Sequence Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.2 AND-split Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.3 AND-join Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.4 XOR-split Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.5 XOR-join Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.6 Loop Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.7 Control Dependency Pattern . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Process-service Relation Patterns . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 1A-to-1syncO Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.2 1A-to-1asyncO Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.3 2A-to-1syncO Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.4 1A-to-2asyncO Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Correctness Verification of Service-based Business Processes 79

5.1 Control Flow Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Definition of Control Flow Soundness . . . . . . . . . . . . . . . . . . 82

5.1.2 Verification of Control Flow Soundness . . . . . . . . . . . . . . . . . 84



xiv Contents

5.2 Data Flow Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Definition of Data Flow Soundness . . . . . . . . . . . . . . . . . . . 88

5.2.2 Verification of Data Flow Soundness . . . . . . . . . . . . . . . . . . 91

5.3 Consistency of Provided Service . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Definition of Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 Verification of Consistency . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Compatibility of Invoked Service . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Definition of Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.2 Verification of Compatibility . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Change Patterns of Service-based Business Processes 123

6.1 Change Patterns of Internal Business Processes . . . . . . . . . . . . . . . . 125

6.1.1 Activity Existence Changes . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.2 Activity Order Changes . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1.3 Process Data Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Change Patterns of Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.1 Operation Existence Changes . . . . . . . . . . . . . . . . . . . . . . 160

6.2.2 Operation Order Changes . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Change Management Framework For Service-based Business Processes 167

7.1 Management of Internal Business Process Changes . . . . . . . . . . . . . . . 170

7.1.1 Identifying the Primary Process Change . . . . . . . . . . . . . . . . 170



Contents xv

7.1.2 Implementing the Primary Process Change . . . . . . . . . . . . . . . 172

7.1.3 Analyzing and Handling the Change Impact on the Process Control

Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.1.4 Analyzing and Handling the Change Impact on the Process Data Flow 174

7.1.5 Analyzing and Handling the Change Impact on Services Involved . . 180

7.2 Management of Service Change . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2.1 Identifying the Primary Service Change . . . . . . . . . . . . . . . . . 182

7.2.2 Implementing the Primary Service Change . . . . . . . . . . . . . . . 183

7.2.3 Analyzing and Handling the Change Impact on the Service Control Flow183

7.2.4 Analyzing and Handling the Change Impact on the Internal Business

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2.5 Managing the Internal Business Process Change . . . . . . . . . . . . 186

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Conclusion and Future Work 189

References 197



xvi Contents



List of Figures

3.1 An SBP Example of a Travel Agency . . . . . . . . . . . . . . . . . . . . . . 49

3.2 The C-net of the Travel Agency’s SBP . . . . . . . . . . . . . . . . . . . . . 53

3.3 The Complete CD-net of Another Process . . . . . . . . . . . . . . . . . . . 56

3.4 The S-nets of the Travel Agency’s SBP . . . . . . . . . . . . . . . . . . . . . 60

4.1 Sequence Pattern in C-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 AND-split Pattern in C-net . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 AND-join Pattern in C-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 XOR-split Pattern in C-net . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 XOR-join Pattern in C-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Loop Pattern in C-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Control Dependency Pattern in C-net . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Deadlock Example in a C-net . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xvii



xviii List of Figures

5.2 Dead Activity Example in a C-net . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Dangling Activity Example in a C-net . . . . . . . . . . . . . . . . . . . . . 84

5.4 The Extended Net CN of a C-net . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Consistency Between a Provided Service and The Internal Business Process

of an SBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Refinement Rule 1 for 1A-to-1syncO Pattern . . . . . . . . . . . . . . . . . . 100

5.7 Refinement Rule 3 for 2A-to-1syncO Pattern . . . . . . . . . . . . . . . . . . 101

5.8 Refinement Rule 4 for 1A-to-2asyncO Pattern . . . . . . . . . . . . . . . . . 102

5.9 Normalization on XOR-split Place . . . . . . . . . . . . . . . . . . . . . . . . 104

5.10 Normalization on XOR-join Place . . . . . . . . . . . . . . . . . . . . . . . . 104

5.11 Normalization on Loop-in and Loop-out Places . . . . . . . . . . . . . . . . . 105

5.12 An Example of Postmarking Step 1 . . . . . . . . . . . . . . . . . . . . . . . 106

5.13 An Example of Postmarking Step 2 . . . . . . . . . . . . . . . . . . . . . . . 106

5.14 An Example of Postmarking Step 3 . . . . . . . . . . . . . . . . . . . . . . . 107

5.15 Examples of Using Brackets in Step 5 . . . . . . . . . . . . . . . . . . . . . . 108

5.16 An Example to Demonstrate The Postmarking Method . . . . . . . . . . . . 110

5.17 Marking M0 to M3 of the C-net Example . . . . . . . . . . . . . . . . . . . . 114

5.18 Marking M4 to M6 of the C-net Example . . . . . . . . . . . . . . . . . . . . 115

5.19 Compatibility Between an Invoked Service and the Internal Business Process

of an SBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.20 An Example of the Normalization on rC-net and rS-net . . . . . . . . . . . . 119

6.1 An Example of C-net Changes in PC-1 . . . . . . . . . . . . . . . . . . . . . 125



List of Figures xix

6.2 An Example of C-net Changes in PC-2 . . . . . . . . . . . . . . . . . . . . . 128

6.3 An Example of C-net Changes in PC-3 . . . . . . . . . . . . . . . . . . . . . 130

6.4 An Example of C-net Changes in PC-4 . . . . . . . . . . . . . . . . . . . . . 135

6.5 An Example of C-net Changes in PC-5 . . . . . . . . . . . . . . . . . . . . . 139

6.6 An Example of C-net Changes in PC-6 . . . . . . . . . . . . . . . . . . . . . 140

6.7 An Example of C-net Changes in PC-7 . . . . . . . . . . . . . . . . . . . . . 145

6.8 An Example of C-net Changes in PC-8 . . . . . . . . . . . . . . . . . . . . . 146

6.9 An Example of C-net Changes in PC-9 . . . . . . . . . . . . . . . . . . . . . 150

6.10 An Example of C-net Changes in PC-10 . . . . . . . . . . . . . . . . . . . . 151

6.11 An Example of C-net Changes in PC-11 . . . . . . . . . . . . . . . . . . . . 155

7.1 An Example of SBP Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 An Example of Primary Change . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 An Example Showing How to Implement a Change . . . . . . . . . . . . . . 172

7.4 An Example of the Inconsistency Caused by Process Change . . . . . . . . . 181

7.5 An Example of the Inconsistency Caused by Provided Service Change . . . . 185

7.6 The Potential Solutions for the Change Example in Figure 7.5 . . . . . . . . 186



xx List of Figures



List of Tables

3.1 The Labeling Function of The C-net . . . . . . . . . . . . . . . . . . . . . . 54

3.2 The Labeling Function of The S-nets . . . . . . . . . . . . . . . . . . . . . . 61

xxi



xxii List of Tables



1
Introduction

Service-Oriented Computing (SOC) paradigm and web service technologies are widely adopted

by modern organizations to facilitate business cooperation and collaboration. SOC is a

paradigm that utilizes services as essential elements for developing applications or solutions

[1]. With web service technologies, an organization can encapsulate its business functions

1



2 Introduction

into services for partners (referred to as “provided service”), it also can invoke services sup-

plied by its partners (referred to as “invoked service”) [2], the business process is referred to

as “internal business process”. The provided service, invoked service, and internal business

process are the concerned elements of a service-based business process (SBP). As an SBP has

complex dependencies among the components and is subject to changes due to its dynamic

nature, it is challenging to model the SBP, verify the SBP, and manage changes in this SBP.

This work deals with these challenging issues.

In this chapter, the inevitability of SBPs and the necessity of the SBP management are

discussed from the historical perspective in Section 1.1. The background of business process

management and service management is introduced in Section 1.2. The research problem is

discussed in Section 1.3. In Section 1.4, the contributions of this work are summarized. The

organizations of this thesis are provided in Section 1.5.

1.1 Service-based Business Process

As a type of information systems, the relevance of SBP systems is introduced from a historical

perspective in this section. As discussed in [3, 4], the information systems are classified into

various layers according to different features. The first layer consists of operating systems,

i.e., the system software that manage computers’ hardware/software resources and provide

common services for programs. The second layer consists of generic software that can be

widely used in different enterprises or different departments of an enterprise (e.g., database

management software and text editing software). The third layer consists of domain-specific



1.1 Service-based Business Process 3

software which is only used within specific types of enterprises or departments (e.g., ac-

counting software and HR management software). The fourth layer consists of customized

software which is developed for specific enterprises or departments. Business process manage-

ment (BPM) systems are contained in either the second layer as separate applications (e.g.,

workflow management systems)or the third layer as integrated components (e.g., enterprise

resource planning systems which offer a workflow management module).

Four ongoing trends in information systems have been discussed in [3, 4], which demon-

strate the historical context for SBP management systems:

• Trend 1 - From data-centric to process-aware: As discussed in [5], the modeling

of business processes was often neglected since data modeling was the starting point

for developing an information system in 1970s and 1980s. To follow the emerging

management trends (e.g., business process re-engineering), the information system

developers started to shift their focus from data modeling to business process modeling.

• Trend 2 - From coding to assembling : With the rapid increase in hardware perfor-

mance, software in the first and second layers (e.g., operating systems and database

management systems) offer more and more functionality. As a result, the challenge in

information system development shifts from the programming of individual modules

to assembling multiple existing modules from each of the four layers. To follow this

trend, business process management systems are used to customize software without

a lot of hard-coding.

• Trend 3 - From developing to outsourcing : With the advances of Web service technolo-

gies, an enterprise can outsource some parts of its information system to its partners



4 Introduction

by invoking the respective services provided by them. Meanwhile, some functions of

the enterprise’s information system are encapsulated into services for its partners to

use directly without developing functions by themselves. To follow this trend, service-

oriented architecture must be fully considered during the development period of busi-

ness process management systems.

• Trend 4 - From design to re-design: Due to the frequent changes on nowadays’ in-

formation systems, fewer of them are developed with a carefully planned design. To

follow this trend, the development of business process management systems becomes

more dynamic which needs an effective mechanism for dealing with changes.

1.2 Background

In this section, the research background of this research is introduced which contains the

research areas of BPM, SOC/SOA/WS, and change management (from the broad sense of

change management in software engineering to the narrow sense of change management in

service and BPM field).

1.2.1 Business Process Management

As discussed in section 1.1, in the seventies and eighties of the last century, the traditional

information systems landscape has been dominated by data-driven approaches which utilize

information modeling as the starting point. However, it has been recognized that processes

are equally important as data and need to be supported well in a systematic manner. As a

result, a set of workflow management systems have been proposed during the last two decades



1.2 Background 5

which aim at the automation of structured processes [6–8]. A workflow management system

has been defined in [9] as:

“A system that defines, creates and manages the execution of workflows through the use

of software, running on one or more workflow engines, which is able to interpret the process

definition, interact with workflow participants and, where required, invoke the use of IT tools

and applications.”

Note that these traditional workflow systems can only support the process design and the

software implementation after design. Few of them can deal with the process analysis works

(e.g., process simulation, process verification/validation, and data mining in process log).

Different with these traditional workflow systems which are restricted to specific application

domains, the concept of the business process management system is in a broader perspective

by incorporating different types of analysis and links processes to business and social aspects

[10]. Therefore, the BPM system is defined as:

“A system that assists organizations to design, implement, control, and analyze their

business processes which involve process information from a broad range of sources (humans,

departments, applications, and documents).”

To keep up with the trend of globalization and informatization, an increasing number of

enterprises decide to fuel their BPM systems with the service-based technologies which will

be discussed in the next subsection.



6 Introduction

1.2.2 Service Oriented Computing

Due to the booming development of the Internet, an increasing number of modern enterprises

reinforce their information systems with the support of service-based technologies. Service-

based information systems are developed by composing existing services for providing some

add-value functionalities. Service is a concept of platform-independent software components

which utilize external specifications to export their functionalities and properties. The func-

tions of a service can range from answering a simple request from a customer to executing

complicated business processes [11]. A service provided by an organization must have a

well-defined service description which contains the information of service signature, proto-

cols, QoS (Quality of Service), and necessary behaviors of the services for service publication,

discovery, selection, and composition.

As discussed in [1, 12, 13], Service-oriented computing (SOC) is a computing paradigm

that supports the development of rapid, low-cost, and easy composition of distributed ap-

plications. SOC utilizes services as the fundamental elements. The vision of SOC is a world

of cooperating services. In this world, these services are easily assembled into a loosely cou-

pled service network. The aim is to make dynamically flexible business processes and agile

applications which are cross-organization or cross-platform.

Different with SOC, service-oriented architecture (SOA) is an architectural style of build-

ing software applications. SOA promotes loose coupling between components so that these

components are reused and work within a distributed architecture. To differentiate SOA

from SOC, SOA is an element of SOC that plays a role to provide a suitable design to

achieve the vision of SOC, i.e., it depicts how software applications should be developed in



1.2 Background 7

order to satisfy the goal of SOC.

The Web service technologies provide a technical foundation for building service-based

applications and information systems based on the SOC paradigm. As defined by W3C

Group [14], Web service is a type of software systems that are designed for supporting

machine-to-machine interaction over a network in an interoperable manner. Web services

are built up on the basis of a set of Web-related standards. A Web service is defined by

the Web Service Description Language (WSDL) [15], published and discovered in service

registries by the Universal Description, Discovery, and Integration (UDDI) standards [16],

and exchanges information over the Internet by using the Simple Object Access Protocol

(SOAP) [17]. Web services defined in WSDL are composed of business processes by utilizing

the Business Process Execution Language for Web Services (BPEL4WS or simply BPEL)

[18], an XML based specification language. A BPEL process consists of a set of structured

activities implemented by respective Web services which are offered and accessed over the

Internet.

As discussed in [19], SOC, SOA, and Web service technologies are used to realize pro-

cess enactment infrastructures. Processes can both implement services and utilize existing

services. To keep competitive in today’s global business environment, it is necessary for

modern BPM systems to provide facilities that can expose defined processes as services and

implement activities in a process by directly calling other services.

1.2.3 Change Management

“The only thing that never changes is that everything changes.” - Louis L’Amour



8 Introduction

Due to the evolving nature of computing programs [20], finding an effective and efficient

way to manage changes in the development and maintenance phase of a software system is

a traditional issue in software engineering [21, 22]. As a particular type of software systems,

BPM systems have been paid a great deal of effort on change management which will be

discussed in details in the next chapter. The goal of change management in BPM systems is

to make an enterprise gain the ability to react to changes in a quick, effective, and flexible

way which is necessary for the enterprise’s economic success in today’s dynamic business

environment [23]. There is two significant research focusing on change management in BPM,

which are managing process schema changes (static changes) and managing process instance

changes (dynamic changes) [24].

The static change management refers to the problem of modifying the process on

the schema level or description level. The target is to provide primitives for refining a

process progressively without rewriting it from scratch, and the syntactical correctness of

the changed process must be guaranteed.

The dynamic change management refers to the issue of managing running process

instances when their process schema has been changed. The target is to provide mechanisms

for process designers to ‘gently’ migrate or adapt running instances to the modified process

schema which meets the new business requirements.

Service-based information systems and applications usually work in a distributed and

highly dynamic environment. Those systems and applications are subject to changes that

can arise from either the internal or the external requirements of the enterprises. As discussed

in [25], changes can occur on three significant aspects of a service which are the service’s



1.2 Background 9

interface, the service’s expected behavior, and the quality of this service (QoS). The interface

of a Web service contains the service’s sending and receiving messages and the message

exchange patterns that may be used [26]. Service interface changes thus refer to those

changes occurring on data schema of messages, data types of messages, message exchange

patterns, etc. The behavior of a service indicates how it exchanges messages with its clients,

i.e., message exchange protocols for the service [27]. Service behavior changes thus refer to

those changes occurring on the message exchange protocols for a service. The QoS changes

refer to the changes in the QoS properties of a service including execution price, execution

duration, and reputation [28].

The existing works dealing with the changes in service-based context are categorized

into three research aspects, which are service evolution, service adaptation, and change

management in service composition:

• Service evolution refers to the issue of continuously modifying a service in a dy-

namical and consistent manner [29]. The target of service evolution is to develop a

versioning strategy to support multiple versions of services and business protocols.

• Service adaptation refers to the problem of adjusting a service to eliminate the

incompatibilities with its clients caused by interface changes or behavior changes [30].

The target of service adaptation is to design an adapter for dealing with the various

types of mismatches related to service interfaces and service behaviors.

• Change management in service composition refers to the issue of managing

the changes in composited services [31]. The target of change management in service



10 Introduction

composition is to develop mechanisms for detecting, analyzing, and finally propagating

the changes of participant services in a service composition.

1.3 Research Problem

1.3.1 A Scenario of Service-based Business Processes

To keep competitive in the environment of business globalization, realizing inter-organizational

cooperation and collaboration becomes an inevitable trend for nowadays enterprises. With

the advances of SOC paradigms and Web service technologies, an enterprise’s business pro-

cess can achieve dynamic cooperation with partners. As discussed in [32], for such kind of

enterprises, BPM can define not only the processes within their service implementations but

also the orchestration of the use of shared services for defining their enterprise operation.

For realizing the global business, such a type of enterprise encapsulates some functions of its

business process into services for its partners to invoke, and at the same time, this enterprise

may request services provided by its partners [2]. From this enterprise’s perspective, in this

work, the former type of services is named as “provided service”, the latter is named as

“invoked service”, and its business process is named as “internal business process”. This

scenario is referred to as an SBP in this work.

1.3.2 Problem Definition

In order to manage SBPs, it is vital that the complex dependencies among the internal

business process and the exposed external services are correctly developed and maintained.



1.3 Research Problem 11

Due to the distributed and dynamic nature, the SBP of an enterprise is subject to frequent

changes arising from both its internal and external requirements (e.g., environment, policy,

regulation, and technology). These changes can happen in either the internal business process

or the involved services of the SBP. To minimize the risks and losses caused by the changes

in SBP, there is a need for an effective and robust mechanism to manage the changes which

include the following features:

1. An SBP model with formal definition

As discussed in [33], modeling has always been at the core position of Information

Systems design and development. Decision-makers utilize modeling technologies as

enabling tools for filtering out the irrelevant complexities of the real world, thereby

directly facing the most critical parts of the system being studied. A formally defined

model can provide a solid foundation for developing the correctness verification and

the change management mechanism for SBPs. Therefore, before dealing with changes

in an SBP, it is better to formally described each SBP component being concerned.

2. The support of complicated structures

As discussed in [34], because a business process may contain very complicated struc-

tures for meeting business requirements, there is an arising need for modeling a broad

range of business processes on a recurring basis and describing them in an imperative

way. The change management mechanism must be provided with the capability for

handling changes in an SBP with complicated structures.

3. The capability for describing various types of dependencies within an SBP



12 Introduction

There are various types of dependencies existing within an SBP, e.g., the dependencies

between activities (control flow), the dependencies between data and the process (data

flow), and the dependencies between the process and involved services. As discussed

in [35], there are complicated dependencies between the internal business process and

involved services of an SBP, which means that the changes occurring on one side may

affect others and even may propagate in the whole SBP like the cascading effect [36–

38]. Complete descriptions of these dependencies provide enabling tools for analyzing

the change impact and propagation in an SBP.

4. A taxonomy of changes with formal description

For effectively dealing with changes in SBP, it is necessary to classify these changes by

their different characteristics. A taxonomy of typical changes in SBP enables developers

to develop respective change management solution for each specific change type. As

a result, a reusable basis for change management in SBP is provided meaning that

there is no need to deal with each change in an ad-hoc manner. Respective patterns

and features of the change types in the taxonomy should be formally described by the

model language of SBP. As discussed in [39], these change patterns should ensure that

changes are performed in a correct, consistent, and efficient way.

5. The capability for analyzing change impact

Due to the complicated dependencies existing between different components of an SBP,

a change on one component may affect the other components in various degrees [36–

38]. Before managing the change, developers must be clear of three questions: which



1.3 Research Problem 13

components will be affected, how are they affected, and is there any further propa-

gated impact? After analyzing the change impact by answering these three questions,

corresponding management strategies are developed. Therefore, for an effective and ef-

ficient change management solutions for SBP, it is crucial to be able to analyze change

impact.

6. Capability for control change propagation

As a result of the impact analysis of a change occurring on one component of an SBP,

the impact triggered by this change on other components is identified. For adapting

this primary change on the SBP correctly, it is inevitable to have some further changes

on those affected components which are used to reduce the negative impact. Naturally,

as these changes also may affect the other components of the SBP in certain degrees,

the further changes for adapting these “further changes” will occur and the changes

will propagate in the SBP like the cascading effect. Therefore, it is crucial to have a

method to control the change propagation.

7. Capability for verifying the correctness of the changed SBP

It is error-prone to manage changes on SBPs which are in distributed and dynamic

environment, due to the complicated dependencies among SBP components. Managing

changes in an SBP is a risky work, as any errors on a component of the changed SBP

may cause a series of chain effect which even may lead to the system breakdown.

For making sure that a changed SBP is operated without any errors, it is crucial

for the change management mechanism to include a correctness verification for the

SBP. The correctness properties of an SBP should be identified, and the corresponding



14 Introduction

verification methods should be proposed.

1.3.3 Research Gaps and Challenges

Current studies in existing works provide limited support for dealing with modeling, verifica-

tion, and change management in the SBP scenario which is only utilized as partial solutions.

A set of research gaps are identified as follows:

1. There is a lack of support for modeling the complicated dependencies between the

internal business process and involved services of an SBP. Several existing model lan-

guages can model business processes and services separately, but few of them have

paid consideration to the complicated dependencies between processes and supporting

services. Without a formal model language which is able to model an SBP with its

inner dependencies between each component, the change management for SBP cannot

even succeed from the very beginning stage.

2. In some existing change management works on business process area, and web service

area, a set of change types or patterns have been classified and identified. However,

there is a lack of comprehensive taxonomy on varies types of changes in SBP scenario,

which leads the change management of SBP to be carried out without a reusable basis.

3. The change impact propagation between the business process and involved services of

an SBP needs to be analyzed in-depth and efficiently controlled. Complicated depen-

dencies exist between services and the business process of an SBP. A specific process

change usually affects the associated services and change occurring on a service often



1.3 Research Problem 15

has various levels of impact on the process. Even though some existing works have

discussed the change propagation in the components of a business process or a service,

the change propagation between a process and its involved services are rarely discussed

with the consideration on the coupling relations between them. Without an effective

method for analyzing and controlling the change propagation between the internal

business process and involved services of an SBP, the compatibility and consistency

between the process and services are influenced which may lead to the system failure.

4. Any errors on a component of a changed SBP can lead to a series of chain effect

which even can result in the system failure. Therefore, the correctness of the update

SBP has to be verified before implementation. There is a lack of identifications on

the correctness properties of SBP as well as the corresponding verification methods.

Current related studies usually focus on verifying the correctness of a single business

process, a collaboration of business processes, a single service, and a composition of

several services. Few works have discussed the correctness verification on an SBP

with consideration on the complicated dependencies between the business process and

involved services. By using the existing verification methods, even if the internal

business process and involved services of an SBP are verified as correct, the whole SBP

cannot be guaranteed correct, e.g., a communication conflict may exist between the

process and a service which can lead to the system failure.

The challenges for filling in the gaps are listed as follows:

1. To deal with the complexity of components in an SBP



16 Introduction

For managing an SBP, each component of the SBP must be formally described at the

first stage. There are a variety of components contained by an SBP including both

the elements from the internal business process and the elements from the services

involved in the SBP. Different from the existing process models or service models, the

expected SBP model must have the ability to formally describe the features of both

the processes and the services.

2. To deal with the complex dependencies among SBP components

There are complex dependencies that are not only among the elements of the internal

business processes and the elements of the services involved in an SBP but also between

the internal business process and the involved services. Due to the existence of these

dependencies, a change occurs on one component can affect another one which may

lead to further changes as change propagation if it is necessary. As the foundation

for managing changes in SBPs, it is necessary to have the ability to describe these

dependencies by the expected SBP model formally. For the dependencies among the

components of the internal business process of an SBP, the control flow of the activities

and the data flow of the data elements belonging to this process must be described

by the expected model. For the dependencies among the components of a service

involved in an SBP, the interface behaviors of the operations must be described by

the expected model. For the dependencies between the internal business process and

the services involved in an SBP, the interaction relations between the process and the

invoked services as well as the mapping relations between the process and the provided

services.



1.3 Research Problem 17

3. To identify and classify the diverse change types in an SBP

There is a variety of SBP changes due to the different change requirements. For

handling the changes, the first step of the SBP change management is to identify and

classify the common change types or change patterns, so that these change types or

patterns are utilized as reusable tools for SBP designers to transform the ad-hoc change

requirements into general changes and decompose complex changes into several change

primitives.

4. To control the change propagation in multiple modes

In the context of SBP, there are complex dependencies between the internal business

process and involved services; therefore, the changes occurring in one side may affect

the other one in certain degrees and can propagate through the whole SBP in multiple

modes like the cascading effect which makes the change management in SBP chal-

lenging. A service change may require further changes of one or multiple activities

of the internal business process. A change of an activity belonging to the internal

business process may affect other activities and related services of the process. Change

propagation refers to that a single change of an activity or a service causes a series of

changes associated with activities and/or services like the cascading effect. Therefore,

change management in the context of SBP is a challenging issue due to the complex

dependencies between internal business processes and services involved. To deal with

the complicated situations of SBP changes, it is necessary to have a mechanism for

managing the changes, in particular to ensure the change propagation to be under

control.



18 Introduction

5. To guarantee the absence of errors when managing changes

Due to the complex dependencies among the components of SBPs and the following

multiple change propagation modes, it is error-prone to manage SBPs, in particular to

deal with changes in SBPs. In order to avoid the potential risks of the system breaking

down, the absence of errors must be guaranteed in both the design and maintenance

phases of SBPs. As there are various types of potential errors in each component of

an SBP, it is challenging to identify the correctness properties for each component to

avoid the errors. Due to the different features of different components in SBPs, it is

challenging to develop verification methods for verifying the correctness properties of

respective components.

1.4 Contributions

For addressing the research problem and filling up the gaps, a set of results are contributed

by this work in the SBP management area. These contributions mainly cover three aspects

of SBP management which are modeling, correctness verification, and change management.

The contributions of this work are summarized as follows:

1. An SBP model is defined for capturing the characteristics of different types of compo-

nents and the dependencies among them. Petri net language is employed for building

up the SBP model due to its formal semantic, graphical representation, state-based

features, and the support by a rich set of existing analysis tools. The proposed model

can be utilized as a foundation for further analysis and management work.



1.4 Contributions 19

2. Two classes of SBP design patterns are identified which are control flow patterns and

process-service relation patterns supported by the SBP model in this work. These SBP

design patterns provide re-usable solutions for SBP designers to deal with recurrent

problems when building up SBP models.

3. A set of correctness properties of SBP are specified, and verification methods for ver-

ifying respective correctness properties are developed. These identified correctness

properties and corresponding verification methods can be utilized as enablers by SBP

developers for guaranteeing the absence of errors during the design and maintenance

phases of SBPs.

4. Fourteen internal business process change patterns and eleven service change patterns

are identified on the basis of the SBP model. For handling complex SBP changes, these

SBP change patterns can be employed to decompose complex changes into primitive

changes. These SBP change patterns can assist the designers to analyze and implement

complex change requirements on the original SBP model which is the first and the most

crucial step for analyzing the changes impact and managing the changes.

5. A change management framework for handling SBP changes is proposed based on the

SBP model, design patterns, correctness verification methods, and change patterns.

This change management framework provides guidelines for SBP designers to manage

changes arising in SBPs.



20 Introduction

1.5 Thesis Organizations

The remainder of this thesis is organized as follows. In Chapter 2, the existing works are

reviewed in the area of process and service modeling, verification, and change management.

In Chapter 3, an SBP model is proposed which can formally describe the components of the

SBP and the dependencies among them. In Chapter 4, two classes of SBP design patterns are

identified which are control flow patterns and process-service relation patterns. In Chapter

5, four correctness properties of SBPs are identified, and corresponding verification methods

are proposed. The correctness of the control flow structures of internal business processes and

services of SBPs is referred to as the control flow soundness. The correctness of the data flow

structures of internal business processes of SBPs is referred to as the data flow soundness.

The correctness properties of the relations between internal business processes and different

types of involved services of SBPs are referred to as the consistency (for provided services)

and the compatibility (for invoked services). In Chapter 6, a set of SBP change patterns are

identified with the formal description of how to implement each pattern on an SBP. Chapter

7 proposes a change management framework based on the technical components in Chapter

3&4 (SBP modeling), Chapter 5 (SBP correctness verification), and Chapter 6 (SBP change

patterns). The relationship among different technical components used in the framework is

discussed as well. In Chapter 7, the method for managing the changes on internal business

processes of SBPs is introduced at first, followed by the method for managing changes on

services involved in SBPs. In Chapter 8, the results of this thesis are concluded, and the

future work is discussed.



2
RELATED WORK

This chapter provides an overview of the existing research related to the modeling, verifi-

cation, and change management of SBP. The chapter is structured as follows. Firstly, the

research on the process modeling is introduced in Section 2.1. The Petri net based process

modeling languages are highlighted in this section. Then, in Section 2.2, the research related

to the correctness verification of SBP is discussed. Finally, the research related to the change

21



22 RELATED WORK

management of SBP is discussed in Section 2.3.

2.1 Process Modeling with Petri Nets

Business process modeling is one of the major focuses in the research field of the informa-

tion system. As discussed in [40], the modeling of processes plays a key role in business

process management that can be utilized to plan, design, simulate and automatically exe-

cute a business process. Therefore, it is essential to choose a suitable modeling language to

represent an organization’s process. As identified in [19], there are three types of process

modeling languages as follows. To study business processes by abstracting them from their

“implementation details”, formal modeling languages are used as theoretical models which

have unambiguous semantics and allow for analysis. Commonly used formal languages for

process modeling include Petri nets, state machines, transition systems, temporal logic, pro-

cess algebras, etc. Due to the low-level and inflexible nature of formal modeling languages,

conceptual modeling languages are often used for roughly describing the desired behavior of

processes which are high-level languages without the formal semantics. Common conceptual

modeling languages include BPMN (Business Process Modeling Notation) [41–43], EPCs

(Event-Driven Process Chains) [44–46], UML activity diagrams [47–49], etc. For process

enactment, execution modeling languages are used in practice which is more technical than

the former two. One of the most common execution modeling languages is BPEL (Business

Process Execution Language) [50–52]. The target of this work is to model SBPs, thereby

analyzing them and managing changes for them. Therefore, following sections only focus on

existing formal model languages related to this work which have well-defined semantics and



2.1 Process Modeling with Petri Nets 23

allow for analysis.

2.1.1 Petri Nets Background

Classsical Petri Nets

A class of modeling languages is named as Petri nets which were invented by Carl Adam Petri

[53]. The use of Peti net is for the description of distributed systems. Petri nets not only

are developed with a mathematical foundation which is well-defined, but also have graphical

features which make them user-friendly. A Petri net is directed graph which contains three

types of components: places, transitions, and arcs. A place represents a state of the system

which is often shown as a circle graphically. A transition represents an event which may

change the state of a system, often drawn as a rectangle or a bar. An arc represents the

flow relation between a place and a transition which is shown as an arrow connecting the

place and the transition. Arcs of a Petri net cannot connect two nodes in the same type.

For representing the dynamic behavior of a system, tokens (graphically shown as dots) are

used which stay in places and can be “consumed” and “produced” by transitions. In [54],

the author has presented a formal definition of classical Petri nets.

A Petri net is a tuple, PN = (P, T, F,M0) where:

- P is a finite set of places.

- T is a finite set of transitions.

- F ⊆ (P × T )∪ (T ×P ) is a set of arcs or flow relations between places and transitions.

- M0 is the initial marking of the Petri net representing the initial state of the system.

A marking M = {M(p1),M(p2),M(p3), ...} represents the system state. M(p) : p → N



24 RELATED WORK

(N is the set of all non-negative integers) indicates how many tokens in place p. The markings

of a Petri net can be changed based on the firing rules or transition rules as follows.

1. A transition t is enabled (it may fire) if there is at least one token in each input place

of it.

2. Firing a transition t consumes one token from each input place of t, and produces one

token in each output place of t.

Extended Petri Nets

As same as other formal modeling languages, Petri nets are “extensible”. For modeling

specific situations in the real world, there are a plenty of existing extension works on Petri

nets that add new properties to classical Petri nets. In [55], the distinction between tokens

are allowed that each token can be attached with a data value named “color”, the extended

Petri nets are called “colored Petri nets”. The development of colored Petri nets provides an

enable tools for such kind of modeling works that the manipulation of system’s data values

and the representation of system’s hierarchical structure must be concerned. For modeling

and analyzing the temporal behavior of systems, the property of time has been extended on

Petri nets in several works [56–59]. The notion of time can be represented in Petri nets in

four ways which are tokens holding durations of places [56], firing durations of transitions

[57], enabling durations of transitions [58], and timestamps as token colors of colored Petri

nets [59].



2.1 Process Modeling with Petri Nets 25

2.1.2 Petri-net-based Modeling Techniques

As indicated in [60], there are three benefits of process modeling languages which are de-

veloped based on Petri Nets. The first benefit is that by using Petri nets, process logic can

be represented by a formal and graphical modeling language. The formal semantics of Petri

nets provide a reusable basis for modeling business process, and the graphical feature eases

the understanding of the modeled processes. The second benefit is that Petri nets make it

possible to model the state of a system explicitly, different from many other process mod-

eling languages which are event-based. Event-based languages model processes’ transitions

(tasks) explicitly and the states before or after each transition (task) implicitly. Event-based

languages can only be used in the circumstance where the tasks can only be triggered by

the process management system. However, in many realistic situations, the activation of a

task is affected by the environment instead of the restrictions of the system. To deal with

these situations, there is a need for using a state-based modeling language instead of an

event-based one. The third benefit is that there is an abundance of formal analysis tech-

niques developed based on Petri nets. By the assistance of these techniques, Petri nets-based

process modeling languages can not only deal with the structural modeling but also apply a

wide range of analysis, verification, and validation of the modeled processes.

Modeling Control FLows of Processes

One of the most significant works of using Petri nets to model and analyze business processes

is the Workflow Net. For the purpose of verifying the correctness of the control-flows of

business processes, the notion of Workflow Net was firstly proposed in [61]. Due to the third



26 RELATED WORK

benefit of process modeling languages based on Petri Nets which has been mentioned before,

the correctness of a business process has been shown that it can be represented by such a

Petri net and can be verified by using standard Petri-net-based techniques. In a Workflow

net, each transition represents a corresponding task of a process. A place represents the

pre-condition or post-condition of a task. The flow relations of the process are represented

by arcs.

Modeling Data FLows of Processes

In the process modeling research area, early works mainly focus on the process structure

but neglect the data-flow inside. As discussed in [62], a process’s data-flow and control-flow

should not be completely independent of each other. Interactions exist between the data-flow

and the control-flow of a process, e.g., the data-flow’s execution order can be determined by

the control-flow, the control-flow’s execution order can be influenced by the result of a data

operation in the data-flow. It is necessary to integrate the control-flow and data-flow when

modeling a process for analyzing it or managing changes in it. Some approaches have been

proposed by recent works that extend the existing control-flow models to show the data-flow

at the same time.

A formal foundation for integrating the data-flow and control-flow was firstly proposed

in the field of embedded system modeling [63]. The authors have proposed a Petri-net-based

model that is named as Dual Flow Net (DFN). In a DFN, there are three types of elements,

i.e., reactive units, storage units, and transformational units.

The DFN has been extended in [64] for workflow modeling and verification. The authors

have proposed a model language named Dual Flow Net (DFN), which could model the



2.1 Process Modeling with Petri Nets 27

control-flow, the data-flow, and the interactions between them explicitly.

Another extension on Workflow nets for supporting data-flow modeling has been proposed

in [65]. The Workflow nets with input/output data (WFIO-net) have been proposed in this

work, which extended each activity of the control-flow with its input and output data sets.

In this model, each data set is represented by a place which is connected with its associated

activity transitions by arcs. The different directions of these arcs represent corresponding

input/output operations by connected activities.

Modeling Services

Not only for process modeling, but Petri net techniques also have been used for web ser-

vice modeling. As discussed in [66], for facilitating the monitoring and verification of web

services-oriented software systems, an architectural modeling language named Web Service

Net (WS-Net) has been presented. WS-Net is developed based on the Colored Petri Net

(CPN) semantics, which defines the architectural components of a web service in three lay-

ers: interface net, interconnection net, and interoperation net. An automatic translation

engine which can translate from WSDL to the WS-net has also been developed for handling

the real-life applications and eliminating translation errors by manual work.

As a single web service cannot satisfy the increasing users’ requirements, there are new

challenges for nowadays’ web services on composing or collaborating. As a solution, many

effective approaches by using the workflow technique have been provided for composing

complex web applications [31, 67, 68]. By using the workflow technique, there are also many

Petri-net-based methods for facilitating web service composition [69–76].

In [69], a Petri-net-based algebra has been proposed for modeling and supporting the



28 RELATED WORK

performance analysis of web service composition from the control-flow’s perspective. In

this work, the behavior of a web service is treated as a partially ordered set of service

operations which can be directly mapped into a Petri net. The authors modeled the service

behavior by mapping the operations into transitions, the state of the service into places, the

causal relations between places and transitions into arcs. The composition of a set of web

services is modeled by an algebra which uses the Petri net of each service as building blocks

and represents the control-flow relations (e.g., sequence, alternative, iteration, arbitrary

sequence, parallel with communication, discriminator, selection, and refinement) between

the composited services by corresponding algebra operators.

In [72], the authors have presented an approach based on hierarchical colored Petri nets

for verifying the reliability of web services composition. The data-flow of web service com-

position has been considered in this work by using the token colors to represent the data

elements.

In [75], a colored-Petri-net-based method has been proposed. By transforming the BPEL

descriptions into a colored-Petri-net-based modeling language, the compatibility of two com-

posited services can be analyzed.

2.2 Verification Techniques

2.2.1 Correctness of Control-Flow

A property named soundness and its alternative notions are identified in several works for

verifying the correctness of the control-flow of a business process. Analyzing the soundness



2.2 Verification Techniques 29

property of a control-flow enables a system designer to detect the absence of deadlocks,

livelocks, and other anomalies without domain knowledge of the process [77]. In [61], a

Petri-net-based model named workflow nets has been proposed that can be used to model

the control-flow of a business process. The soundness property of workflow nets also has

been defined as a correctness criteria in this work. A workflow net is sound if and only if all

the following three conditions hold: (i) option to complete: for every reachable state M from

the initial state, there is an existing execution route which leads from state M to the end

state, (ii) proper completion: the end state is the only state reachable from the initial state,

(iii) no dead transition: by following the appropriate execution route, an arbitrary activity

of the net can be executed. The verification of soundness property of a workflow net has

been proved to be equivalent to the problem of liveness and boundedness of a circuited net

that connects the initial state and end state of the workflow net. As discussed in [78], the

classical soundness means 1-soundness based on their alternative notion named k-soundness.

A workflow net is k-sound if an execution is starting with k tokens in the initial place, it

always properly terminates with k tokens in the final place.

In [79], a property named weak soundness has been defined. The requirements of weak

soundness are a subset of the requirements of the original soundness which allows the exis-

tence of “dead transitions” (activities never been executed in any possible behaviors of the

process).

In [80], relaxed soundness has been defined which is also implied by the notion of original

soundness. Relaxed soundness does not require proper termination in all possible execution

cases of a Petri net, only requires that for each transition of the net, there is an existing



30 RELATED WORK

firing sequence taking the initial state to the end state. Livelocks, deadlocks, or still active

transitions while reaching the final state might be contained in some cases of a relaxed sound

Petri net.

In [81], lazy soundness has been defined. A lazy sound process allows that some “lazy-

activities” of the process might still be active or never been active when the final state is

reached. The livelocks and deadlocks are prohibited by lazy soundness. Figure1 shows

the classification for different alternative notions of soundness. As shown in the figure, the

requirements of lazy soundness is a subset of the requirements of weak soundness.

2.2.2 Correctness of Data-Flow

The correctness verification from the control-flow perspective has received much more at-

tention than the other perspectives including data-flow, resources, and temporal features of

business processes. The data-flow perspective has not been considered enough in the works

done in the dimension of process analysis.

In [82], a set of potential data validation issues that can occur in the data-flow of a busi-

ness process are identified, which are: lost data, missing data, redundant data, inconsistent

data, mismatched data, misdirected data, and insufficient data. Three data-flow implemen-

tation models are also introduced briefly. The first one, explicit data-flow, describes the

transition of data elements from one activity to another. The second one, implicit data-flow

through control-flow, utilizes the control-flow to pass data from one activity to another. The

third one, implicit data-flow through process data store, describes the data-flow by building

a repository of process data that is utilized by activities for writing and retrieving data.



2.2 Verification Techniques 31

Because the authors have not proposed a formal model for modeling the data-flow, there is

a lack of formal methods for detecting the identified types of data-flow errors in this work.

As the data-flow performs how the data elements are transferred between activities in

a business process, for better describing and analyzing the data-flow, it is better to model

the data-flow together with the control-flow. Another idea is to extend existing control-flow

models so that data-flow can be modeled and verified at the same time [63–65, 83, 84].

In [83], the authors provide a method for detecting a set of data-flow anomalies. Al-

though there is a formal definition of an integration of control-flow and data-flow in this

work, the data-flow anomalies are only described by scenarios and examples. There is no

formal specification for data-flow anomalies, and a well-defined detection algorithm becomes

impossible. Both data-flow and data-flow anomalies are defined formally in [65]. The authors

propose a Petri-net-based approach for formulating the data-flow modeling and verification.

The detection algorithms for data flow anomalies in [65, 83] can only give the coarse gran-

ularity result of a detected anomaly. These algorithms give the result such as “there is a

data initialization anomaly” but can not tell the difference between “delayed initialization

anomaly” and “missing input data anomaly”.

In [63], a formal approach is proposed in the aspect of embedded-systems that can de-

scribe both the control-flow and data-flow, and then applied to the aspect of the business

process in [64]. The proposed approach is developed based on Petri net language by ex-

tending the two building blocks of classical Petri net to three: the storage unit, the reactive

unit, and the transformational unit. This approach extends the notion of classical soundness

from [61] for supporting the cases when data-flow can influence control-flow. No explicit



32 RELATED WORK

correctness property of data-flow is considered independently in this approach.

For verifying the data-flow correctness of a business process, an extended Workflow net,

named Workflow net with data (WFD-net), has been proposed in [84]. The authors extended

Workflow net with data elements and defined four types of operations (read, write, destroy,

and guard) by tasks on these data elements. A series of data-flow anti-patterns are identified,

which are: missing data, strongly redundant data, weakly redundant data, strongly lost

data, weakly lost data, inconsistent data, never destroyed data, twice destroyed, and data

not deleted on time.

In order to guarantee the data flow correctness during the adaptation of a business pro-

cess, some methods for checking the correctness of data flow in process change management

area are proposed in [85–87]. In [85], the data flow correctness of workflow is maintained

dynamically during the modification of workflow instances. The data flow is defined as the

exchange of data elements between tasks which read or write these data elements. A set

of restrictions are established for governing the data flow correctness. As an extension of

[85], in [86], a formal framework is developed for migrating workflow instances to a changed

workflow model without affecting the correctness. A set of correctness principles and formal

theorems for both control flow and data flow are imposed for designing adaptive workflow

models. In [87], a method that guarantees the data flow correctness during the adaptation

of a business process rather than performing model checking after the adaption. A set of

criteria for different types of adaptation operations are proposed that can assist the de-

velopers to adapt the process model correctly. For the operations that introduce data flow

anomalies, these criteria also can provide further remedy suggestions, i.e., further adaptation



2.2 Verification Techniques 33

operations.

2.2.3 Compatibility & Consistency

In the research areas of business process and web service, the notion compatible means that

there is no conflict or deadlock when two cooperating processes or two interacting services

communicate with each other. The notion consistent means that two processes or two

services have the same behavior at certain abstract level. Quite a few works are dealing with

the verification of compatibility and consistency in web services and business processes areas

[2, 88–91].

A Petri-net-based approach is proposed in [2]. The author defines a property named

semantic compatibility between two interactive web services. According to this definition

of compatibility, if two services can interact without any deadlocks or conflicts, they are

compatible with each other. To verify the compatibility, another property named as weak

soundness is defined in this work, so that the verification of the compatibility between two

services is converted into the verification of the weak soundness of the composition net of

these two services that are fully supported by CPN Tools [92]. For non-interactive services,

a property named backward compatibility between different versions of a service is defined

and analyzed in [88]. In [89], a finite-state-automata-based method is proposed for solving

the similarity problem of business processes.

In [90], an automatic method is proposed for checking consistency between executable

and abstract business processes. A Petri-net-based model is developed to model business

processes, and a data structure named communication graph is used for checking the property



34 RELATED WORK

of consistency. An approach based on Refined Process Structure Tree is proposed in [91]

for handling the change propagation in business process choreographies. For calculating the

change impact from a change occurring on a private process to its public process, a method

for abstracting the control-flow in a private process is developed. However, these works can

only handle the process with simple control-flow structures and provide limited support for

dealing with the complicated network structures.

2.3 Change Management

Due to the evolution nature of computing programs [20], finding effective and efficient ways to

manage changes in development and maintenance phases of software systems is a traditional

research area in software engineering [22, 93–96], database management system [97–100],

distributed system [101–103], and information system [104, 105]. A plenty of works also

have been done on the change management of business processes or the change management

of web services.

2.3.1 Business Process Change Management

In the research area of the business process change management, quite a few works have

been done particularly in the change management for workflow systems since the end of last

century. The works are categorized into two classes which are managing changes during

design time and managing changes during runtime.



2.3 Change Management 35

Managing Changes During Design Time

For change management of business processes during design time that these processes are

not executed yet, the research is similar to software version and configuration management

(SCM) [106–109]. There is a broad range of works on business process model versioning.

In [110] the prototype of a supporting tool for merging different versions of a business

process is proposed which can be used as a plug-in for IBM WebSphere Business Modeler

[111]. As a further extension of this work, an approach for detecting and analyzing the

differences between different versions of a process model without a change log is proposed

in [112]. This approach utilizes the concept of an SESE fragment decomposition of process

models as an enabling tool for detecting and the visualizing the differences based on the

structure of process models.

In [110, 112], the differences between different versions of a process model can be visu-

alized and analyzed by applying change operations iteratively on the original version that

reconnect the control flow of the process automatically.

In [113], an approach for language-independent change management of business processes

is proposed. In this work, the concept of an intermediate representation for process models

is identified. Based on the concept, the differences between different process models can be

computed.

For comparing business process models in multi-developer environments on a semantic

level, an approach is proposed in [114]. This approach can identify the equivalence be-

tween business process models based on the detection of equivalent process fragments. This



36 RELATED WORK

approach is extended in [115], which improves the detection mechanism by further consider-

ations on the semantics of different process modeling languages. Several analysis strategies

are proposed in [116] for the detected semantic conflicts by using approaches in [114, 115].

Managing Changes During Run Time

For change management of running business processes, based on the different research goals,

the existing works can be summarized into two categories as process evolution and process

flexibility.

Process evolution aims to evolve running business processes in a dynamic and disciplined

manner. Quite a few approaches have been proposed for managing instances of running

instances during the evolution of their business process models.

Some works aim to develop mechanisms that can dynamically modify business process

models, meanwhile, ensure the correctness of these models and their consistency with run-

ning instances. In [24], for preserving the syntactical correctness during workflow models

changes, two types of change primitives (declarative primitives and flow primitives) support-

ing workflow models changes are identified. The declarative primitives are used to modify

the declaration of workflow variables which can be added, removed, or reset default values.

The flow primitives are used to modify the flow structure of a workflow which can modify

the execution condition, predecessors, or successors of a task. For ensuring the consistency

between changed workflow models and their running instances, a set of evolution policies are

proposed in [24] which are abort strategy, flush strategy, and progressive strategy. The abort

strategy requires that all running instances of the original workflow model are aborted, and

the newly created instances follow the changed workflow model. The flush strategy requires



2.3 Change Management 37

that no new instance starts until all running instances of the original workflow model ter-

minate, then all new instances start following the changed workflow model. The progressive

strategy requires that multiple versions of a workflow model for all instances exist at the same

time according to corresponding history or state of each instance. In [117], a three-phase

framework for dealing with running instances of a changed business process is proposed. The

first phase is defining modification; the second phase is conforming to modification; the third

phase is enacting modification that handles the affected process instances for conforming to

the changed process models by defining a concept of compliance graph as a foundation.

Not only for business process change management in design time, but version control

mechanisms are also developed for assisting process evolution at runtime. In [118, 119], a

version control mechanism for evolving workflow models and migrating running instances is

proposed. In this work, a workflow and its tasks are defined separately, so that the task

version and workflow version can be managed separately as well. Then a set of instance

migration rules are identified that depend on corresponding execution states. The proposed

workflow version control mechanism and instance migration rules provide an enabling tool

for dynamically adjustment of workflow instances by late binding and local modification

techniques of workflow instances. In [120], a framework for workflow evolution is proposed

based on version control techniques. In this work, a set of change operations are defined

firstly. Then a version tree can be generated from different versions of a workflow caused

by some change operations. The version tree can be utilized to determine the conditions of

instances migration of the modified workflow.

Some works focus on the changes propagation from business processes to their running



38 RELATED WORK

instances [85, 86, 121]. In [85], a formal foundation is proposed to support dynamically

modifying running instances of a workflow. A conceptual and graph-based workflow model

is built with formal defined syntax and semantics. Based on this model, a “complete and

minimal set of change operations” are developed. By using these change operations, run-

ning instances of a workflow can be modified by preserving the structure correctness and

their consistency with the workflow. Different with permanent structural changes of work-

flow instances, when managing temporary changes, this work proposes some precautions for

enabling a running workflow system to undo temporary changes in case of backward opera-

tions. As an extension, in [86], a set of correctness properties and corresponding theorems

are proposed for assisting automatic migration of a plenty of long-running process instances

to a modified workflow. In [121], an approach is proposed for managing the migration of

large numbers of long-running process instances to a changed workflow. A continuous in-

stances migration model is built to keep an instance continuing to run during its migration

to a changed process. The state of migrating running instances can be determined by the

proposed method. Based on the result of the determination, the migration process from the

old version to the evolved version of the concerned workflow can be scheduled, configured,

and implemented without affecting the workflow’s availability. A demonstration of how to

utilize the proposed approach to a business process system is presented in this work.

Different to the process evolution that focuses on evolving a process model with the

consideration of all running instances, the process flexibility focuses on adjusting a process

model for individual instances in a particular context. Aiming to make fast and effective

reactions on either expected or unexpected changes during runtime, the research on process



2.3 Change Management 39

flexibility tries to find out the possible dynamic modification of both business process models

and their instances.

There is quite limited literature discussing the change management problem for SBPs.

In [36, 37], a classification of different types of changes and a set of change impact patterns

in SBP are identified. The authors also develop a method for analyzing the change impact

propagation between/within different components of an SBP. Without a formal defined SBP

model, the proposed approach has limited capability to analyze the details of the complex

dependency between the internal business process and involved services.

2.3.2 Service Change Management

The target of the change management in service-based applications is to make the changes

be handled automatically in the in the development and maintenance phases of these appli-

cations. In this subsection, existing research on service change management is categorized

into three classes which are service adaption, service evolution, and change management in

service composition.

Service adaption

The research on service adaptation mainly focuses on the ability of a service to adjust

itself on the interface behavior in order to keep compatible during the interaction with other

services [29]. For adapting services, the standard approach is to design adapters to mediate

the mismatches between the services to be adapted and the changed interacting services. For

developing adapters, some existing methods are proposed based on the mismatches between

protocols or interfaces of services on the technical level and some are based on the formal



40 RELATED WORK

service models on the abstract level.

In [122], the interoperability with substituted services of Web-based applications is dis-

cussed. Four types of incompatibilities arising during the interoperation are categorized

which are structural incompatibility, value incompatibility, encoding incompatibility, and

semantic incompatibility. These incompatibilities are addressed from three aspects. Firstly,

a set of static and dynamic analysis tools are proposed to estimate the compatibility be-

tween an application and a substituted service. Secondly, a set of middle-ware components

named ‘cross-stubs’ are generated semi-automatically which can resolve the incompatibilities

and enable interoperation with substituted services. Thirdly, a mechanism named ‘multi-

option types’ are proposed to enable applications to be designed in an interoperation-friendly

manner from the very beginning stage.

In [123], a general guideline for managing service adaptation is proposed. Firstly, for

defining the adaptation of web services on the business protocol level, different types of in-

compatibilities that need to be resolved for services adaptation are identified and classified.

The types of incompatibilities are the signature mismatch, the message order mismatch, the

missing/extra message mismatch, and the message split/merge mismatch. Then, a method-

ology for developing adapters for services is proposed based on the identified incompatibilities

patterns and service composition technologies.

Based on the types of incompatibilities between services identified in [123], as the follow-

ing work, an aspect-oriented framework is proposed in [124] for dealing with the differences

between standard external specification and internal service implementation at the interface

and protocol level. The framework consists of three parts, which are: i) a taxonomy is



2.3 Change Management 41

categorized for the different mismatch types, ii) a repository of aspect-based templates is

proposed for automating the mismatch handling task, and iii) a supporting tool is devel-

oped for the instantiation of templates and the execution together with respective service

implementations.

Based on the mismatch patterns identified in [123], as another following work, a semi-

automated mechanism is proposed in [125] for generating adapter specification to mediate

the incompatibilities between protocols and service interfaces. All kinds of service order

mismatches are identified, and a tree named as ‘mismatch tree’ is generated in this work.

Furthermore, a semi-automated support for resolving the mismatches are provided by ana-

lyzing the mismatch tree.

As an extension to [125], in [126], the matching and adaptation of services focus on not

only the functional description including the interfaces and data but also the behavioral

description of services. A semi-automated matching method is proposed in this work with

the consideration of both types of service descriptions. Two algorithms are developed for

matching protocol-aware service interface, one is depth-based interface matching algorithm,

and the other one is iterative reference-based interface matching algorithm. These algorithms

can be utilized to refine the results of service interface matching by compositing the ordering

constraints of service operations and business protocols.

Some research about service adaption is based on the formal service models such as Petri

nets, process algebra, and finite state machine. In [2, 127], for checking and managing the

compatibility between two services, the formal modeling language, Petri nets are employed



42 RELATED WORK

for translating a BPEL process into a Petri nets based service model, so that the compati-

bility can be analyzed both formally and automatically. The work in [128, 129] also utilize

Petri nets to translate BPEL. The problem of analyzing the interaction between WS-BPEL

processes are characterized. A technology chain is proposed in these work. The technology

chain firstly translates a WS-BPEL process into a Petri nets based model. Secondly, the

‘controllability’ of the process (the existence of a partner process which can be interacted

with correctly) is analyzed. Then the operating guideline is generated. Finally, for dealing

with the processes in realistic size (which can be quite massive), a flexible model generation

method is proposed for generating the compact Petri nets based models.

Service evolution

Service evolution is about the capability to keep consistency when dynamically changing

services [29]. Two aspects can be classified for the existing research on service evolution

which are service version control and service evolution on the abstract level.

Service versioning focuses on handling the different versions of services. In [130], the

functional requirements for a Service-Oriented Monitoring Registry (SOMR) are provided.

An SOMR can send a notification to the clients of a service when the version of the service

interface changes or when the service becomes disabled. Four architectural views of an

SOMR are presented which are: the overall skeleton of the SOMR system, four tiers of the

SOMR and the interconnection among these tiers, details of each tier, and the deployment

of the SOMR in an executable environment.

The work in [131] focuses on deploying multiple versions of a web service simultaneously

for the unsupervised clients who are independently developed. For addressing this problem,



2.3 Change Management 43

a solution is proposed by developing a technique named as ‘Chain of Adapters’. According

to the arguments in this work, this approach can keep a right balance for dealing with the

different kinds of requirements.

In [132], a version-aware service model is proposed by extending the existing architecture

of WSDL and UDDI. This work aims to address the version management of Web services.

WSDL is enhanced in this work for describing the versions of services. UDDI is enhanced

in this work for utilizing the attributes of versions in service directory with an event-based

notification/subscription mechanism. A proxy is developed for dynamically updating the

client application instance during the runtime of a service.

In [133], for recognizing changes in the WSDL specification of a service accurately, an

empirical study on the analysis of WSDL evolution is presented. Firstly, an algorithm called

‘VTracker’ is developed for differentiating XML files which can recognize changes in WSDL

precisely. Then, the changes occurring on the subsequent versions of a set of services are

analyzed. Finally, the potential impact on the maintainability of these services is discussed.

The research about service evolution on the abstract level focuses on providing theorems

or guidelines for managing service evolution which is abstracted from the technical standards

of services. In [134], the notion of service evolution management is introduced by providing

an understanding of service changes impact analysis, service changes control, service versions

tracking/auditing, and service status monitoring. In order to address the problem, a formal

model is proposed for managing service evolution. The formal model captures the major

features of various of service description models in practical used and is independent of

existing technical standards.



44 RELATED WORK

In [135], an approach for managing service evolution by leveraging the loosely-coupled

nature of the service-oriented context is proposed. The goal of this work is to enable in-

dependent evolution of loosely coupled interacting services in a transparent manner which

can preserve the interoperability between these interacting services at the same time. The

concept of service contract is defined in this work to ensure the service evolution under con-

trol. A service contract covers the different types of functionalities of two interacting services

which are provided functionalities and requested functionalities. Based on the concept of

the service contract, the notion of interoperability of interacting services is introduced.

Change management in service composition

Due to the dynamic nature of services, participant services in a service composition may

change from time to time. The changes on one participant service can affect other services

in this composition and further changes on other services may be implemented due to the

change propagation. The research on change management in service composition focuses on

detecting participant service changes in a composition, analyzing the changes impact, simu-

lating and facilitating the changes propagation, and finally generating the proper reactions

for handling the changes.

Change management in cross-organizational business processes is studied in quite a few

research which is a similar problem as change management in services composition. In [136],

the problem of the process choreographies evolution is defined as the change of interactions

between partners’ processes in a cross-organizational setting. Modifications applied in one

partner’s side may lead to inconsistencies or even errors in the process choreography. To

address this problem, a framework called Dynamic Choreographies (DYCHOR) is proposed



2.3 Change Management 45

which can help process developers to analyze the change impact propagation in the chore-

ography. In particular for recognizing the participant process changes from a choreography

change, in [137], an approach is proposed to enrich the description of the private processes

of a choreography for enabling the automated generation of public process. Two types of

changes are discussed in this work which are subtractive changes and additive changes. Sub-

tractive changes are referred to as the change of deleting a message sequence. Additive

changes are referred to as inserting a message sequence in the respective public views.

In [138], a framework is proposed for managing the evolution of business protocols in

web services. The goal of this work is to handle the ongoing instances started based on

the old protocols which have already been changed. The proposed framework can support

the service administrators to manage the evolution of business protocols. A set of change

operators are identified for supporting the protocols modification. This work can assist the

analysis on the impact of business protocol changes on service compositions.

In [139], a framework and corresponding tools are proposed for facilitating the change

management in security protocol, in particular, the trust negotiation protocols. This frame-

work can automatically determine the consequences of the protocol changes which can apply

to the ongoing trust negotiations. For managing the change process, a GUI tool which is

database-backed is implemented in this work.

In [140], an integrated framework is proposed for managing changes in long-term com-

posited services which focuses on automating the change reaction process. A tree-structured

service ontology is proposed which can provide semantic support for change reaction. Then



46 RELATED WORK

a set of algorithms are developed for querying semantics from the ontology. The service on-

tology can support the modification of the service composition and participant services. As

an extension, the following work [141] propose a system to realize the framework proposed

in [140] which is named as Evolution of Long-term Composed Services (Ev-LCS). This sys-

tem can address the change management issues in long-term composed services. Firstly, a

formal model is proposed which provides the semantic foundations to automate the process

of change management. Then, a set of change operators are presented which can identify

a change in a precise and formal manner. Thirdly, a strategy for implementing changes is

proposed. Finally, a prototype system is developed to demonstrate the result of this work.

2.4 Discussion

An overview of the research related to the SBP management is provided by this chapter.

The reviewed literature in this chapter provides valuable experience and solid foundations

for modeling, verification, and change management of SBPs. However, the works focusing on

business processes are always without consideration on services, and then the works focusing

on services rarely take the business process into consideration. As discussed in this chapter,

few works focus on the research set of SBP which can be treated as an integration of the

features of business processes, services, and the new features resulted by the dependencies

between business processes and services. For filling the research gap of SBP management,

an SBP model, a set of correctness properties and corresponding verification methods, and

a change management framework are reported in the following chapters.



3
A Model for Service-based Business Processes

Service-Oriented Computing (SOC) paradigm and web service technologies are widely adopted

by modern organizations to realize collaboration and cooperation. SOC is a computing

paradigm that utilizes services as essential elements for developing applications or solutions

[1]. With web service technologies, an organization can encapsulate its business functions

47



48 A Model for Service-based Business Processes

into services for partners (referred to as “provided service”), it also can invoke services sup-

plied by its partners (referred to as “invoked service”)[90], the business process is referred

to as “internal business process”. The provided services, invoked services, and the internal

business process are the concerned elements of a service-based business process.

The rest of this chapter is organized as follows. Section 3.1 presents an example to

illustrate the SBP of a travel agency. Section 3.2 proposes a Petri-net-based model of SBP.

In this section, the internal business process model of an SBP is proposed firstly in Sub

Section 3.2.1. Then the involved service model of an SBP is proposed in Sub Section 3.2.2.

Finally, the SBP model is proposed in Sub Section 3.2.3 which consists of the internal

business process model, the involved service model and the dependency relations between

process and services. Section 3.3 summarizes this chapter.

3.1 An Example of Service-based Business Processes

An SBP example of a travel agency is shown in Figure 3.1. Figure 3.1A shows the internal

business process of the travel agency. Rounded rectangles in Figure Figure 3.1A represent

the activities of the process.

Figure 3.1B shows that the travel agency provides a service “Flight Inquiry & Book-

ing” for customers to inquire and book flights. Figure 3.1C shows that the “Flight” service

from an airline company is invoked by the travel agency in order to collect available flights

information for customers. Figure 3.1D shows that the “Payment” service from a financial

institution is invoked by the travel agency for processing the payment by the assist from a

third party financial institute. In Figure 3.1B, C, and D, circles represent the operations



3.1 An Example of Service-based Business Processes 49

C. Flight Service (Invoked)

D. Payment Service (Invoked)

B. Flight Inquiry & Booking 
Service (Provided)

A. Internal Business Process

E. Itinerary & Receipt

Receive 
Inquiry

Check 
Available 

Flights 

Send Flights 
Information

Send 
Acknowle-

dgment 

Archive 
Customer 

Information 

Receive 
Booking 
Order

Prepare Bill

Send Bill

Make 
Payment

Invoke 
Payment 
Service

Prepare 
Itinerary 
&Receipt

Send 
Itinerary
&Receipt

Sign 
Agreement

Receive 
Payment 

Confirmation

Receive 
Request

Send Flights 
Information

Flights Inquery

Flights Info.

Receive 
Request

Request 
to Sign 

Agreement

Payment Info.

Agreement

Send 
Payment 

Confirmation

Signed Agreement

   Payment Confirmation

Start 
Inquiry

Send Flights 
Information

Flights Inquery

Acknowledgement

Flights Information

Order Information

Receive 
Order

Send 
Bill

Make 
Payment

Send 
Itinerary
&Receipt

Bill

Payment Info.

Notification

Itinerary & Receipt

Traveler_Name

Depart_Airport

Depart_Date

Depart_Flight

Arrive_Airport

Arrive_Date

Arrive_Flight

Pay_Amount

Pay_Number

Pay_Name

Pay_Method

Pay_Date

Input

Output

Figure 3.1: An SBP Example of a Travel Agency



50 A Model for Service-based Business Processes

of these services, envelope icons represent the messages of operations, and the arrows on

messages are used for determining the message types (input message or output message).

The relations between operations of the provided services (Figure 3.1B) and activities of

the internal business process are shown by dotted lines. The relations between operations

of the invoked services (Figure 3.1C and D) and activities of the internal business process

are shown by dashed arrows. Activities associated with provided services support their

functions. Activities associated with invoked services utilize their functions.

Figure 3.1E shows one of the I/O parameters of the internal business process. The

parameter “Inquiry & Booking” is the output of activity “Prepare Inquiry & Booking”

and the input of activity “Send Inquiry & Booking”. The parallelograms in Figure 3.1E

represent the data elements contained in this parameter.

3.2 Model Specification

This section proposes a formal SBP model represented with Petri net [53]. Petri net provides

not only a well-defined formal language but also has a user-friendly graphical representation.

As indicated in [60], there are three reasons to describe processes with a Petri net as (1)it

provides the formal language with a graphical representation; (2)it has the capability to

capture complex and complicated states; (3)there are a rich set of analysis tools. In the

proposed SBP model, there are three upper components (i.e., the internal business process

model, a set of involved services models, and the relations between these services models

and the process model) which are discussed in the following subsections respectively.



3.2 Model Specification 51

3.2.1 Internal Business Process

In this subsection, the control flow model of the internal business process of an SBP is

defined firstly (Definition 1). Then, for model the data flow of the internal business process,

the data flow is defined combined with the control flow model (Definition 2). Finally, the

internal business process model is defined that contains activities, data elements, control

flow relations, and data flow relations (Definition 3).

Control Flow Model

A labeled Petri net is employed for building up the control flow model of the internal busi-

ness process of an SBP. The control flow model is named as a control flow net (C-net) that

describes the control flow relations between activities of the internal business process (Defi-

nition 1). In a C-net, transitions are labeled with activities that represent corresponding ac-

tivities of an internal business process, places represent the pre-conditions or post-conditions

of activities, and arcs represent the control flow relations in the process.

Definition 1. (C-net) A control flow net (C-net) is a tuple CN = (PC , TC , FC , LC ,MC
0 ),

where:

- PC = {iC} ∪ {oC} ∪ PC
L is a finite set of places of a C-net.

iC and oC are a pair of special places which represent the initial and ending state of

the C-net (i.e., •iC = φ, oC• = φ).

PC
L is a finite set of logic places which represent the pre-conditions or post-conditions

of activities.



52 A Model for Service-based Business Processes

- TC is a finite set of transitions.

- FC ⊆
(
PC × TC

)
∪
(
TC × PC

)
is a finite set of arcs which represent the flow relations

between the places and the transitions of the C-net

- LC : TC → Act ∪ {τC} is a labeling function where Act is a set of activities of the

process. It is assumed that τC /∈ Act denotes a silent activity which is not an actual

activity of the process but only for logical requirements.

- MC
0 is the initial marking of the C-net.

A marking M(pC) : PC → Z+ represents the number of tokens in place pC (Z+ is the

set of all non-negative integers). The initial marking MC
0 is only one token in place

iC.

Figure 3.2 shows the C-net that represents the control flow of the internal business process

of the example in Figure 3.1. The labeling function of this C-net is shown in Table 3.1.

Data Flow Model

The data flow performs how the data elements are transferred between activities in the

internal business process of an SBP. As discussed in [62], the data flow and the control

flow of a process should not be completely independent of each other. There are interactions

between the data elements and the activities of a process, e.g., the operation order of the data

elements can be determined by the control flow, and the execution order of the activities can

be influenced by the result of a data operation in the data flow. Therefore, it is necessary to

integrate the control flow and data flow for modeling the data flow of a process. A “combined



3.2 Model Specification 53

p
C

L1

i
C

o
C

t
C

1

t
C

2

p
C

L3
p

C
L2

t
C

3 t
C

4

t
C

6

t
C

8

t
C

5

t
C

7

t
C

9

t
C

19

t
C

18

t
C

17

t
C

16

t
C

15

t
C

14

t
C

13

t
C

12

t
C

11

t
C

10

p
C

L4

p
C

L6

p
C

L8

p
C

L5

p
C

L7

p
C

L9

p
C

L11

p
C

L12

p
C

L13

p
C

L14

p
C

L15

p
C

L16

p
C

L17

p
C

L18

p
C

L19

p
C

L10

t
C

20

Figure 3.2: The C-net of the Travel Agency’s SBP

control&data flow net” (CD-net) is presented in this subsection (Definition 2). Referring to

the data flow schema defined in [85], it can be depicted that the transfer of data elements in

the process is reflected by activities reading or writing respective parameters which contain

the data elements. In the scenario of this work, each activity of the internal business process

of an SBP has an input parameter containing all the input data elements and an output

parameter containing all the output data elements. An example is shown in Figure 3.1E,

the output parameter of activity “Prepare Itinerary & Receipt” and the input parameter of

activity “Send Itinerary & Receipt” are same which contains the same set of data elements



54 A Model for Service-based Business Processes

Table 3.1: The Labeling Function of The C-net

tC LC(tC) tC LC(tC)

tC1 Receive Inquiry tC11 Receive Booking Order

tC2 τC tC12 Prepare Bill

tC3 Check Available Flights tC13 Send Bill

tC4 Send Acknowledgment tC14 Make Payment

tC5 τC tC15 Invoke Payment Service

tC6 τC tC16 Sign Agreement

tC7 Send Flights Information tC17 Receive Payment Confirmation

tC8 Archive Customer Information tC18 Prepare Itinerary & Receipt

tC9 τC tC19 Send Itinerary & Receipt

tC10 τC tC20 τC

about itinerary and receipt information.

Definition 2. (CD-net) A combined control & data flow net (CD-net) is a tuple CDN =

(PΩ, TΩ, FΩ, LC , LD,MΩ
0 ), where:

- PΩ = PC ∪ PD ∪ P I ∪ PO ∪ {iΩ} ∪ {oΩ} is a finite set of places.

PC is the set of places from the C-net.

PD is a set of data places representing the data elements.

P I is a set of input parameter places representing the input parameters of respective

activities.

PO is a set of output parameter places representing the output parameters of respective



3.2 Model Specification 55

activities.

iΩ and oΩ are a pair of special places which represent the initial and ending state of

the CD-net (i.e., •iΩ = φ, oΩ• = φ).

- TΩ = TC ∪ T I ∪ TO ∪ {tleg} ∪ {ttar} is a finite set of transitions.

TC is the set of transitions from the C-net.

T I is a set of input parameter transitions which are used to collect data elements for

input parameters of respective activities.

TO is a set of output parameter transitions which are used to distribute data elements

for output parameters of respective activities.

{tleg} is a transition for initializing the legacy data elements of the internal business

process.

{ttar} is a transition for gathering the target data elements of the internal business

process.

- FΩ ⊆
(
PΩ × TΩ

)
∪
(
TΩ × PΩ

)
is a finite set of arcs which represent the flow relations

between the places and the transitions of the CD-net. To make the data elements

available for multiple readings, each arc connecting a pD and a tI is bidirectional.

- LC is the labeling function of the C-net.

- LD : PD → Data is a labeling function where Data is a set of data elements of the

internal business process.



56 A Model for Service-based Business Processes

i
C 

i
  

o
  

t
tar

t
l eg

t
C

1

t
C

2

p
C

L1

o
C 

p
C

L2

p
C

L3 p
C

L4

t
C

3

t
C

4

p
D

1

p
D

6

p
D

3

p
D

2

p
D

4

p
D

7

p
D

8

p
D

5

p
I
1

p
I
2

p
O

1

p
O

2

t
I
1

t
O

1

t
I
2

t
O

2

Figure 3.3: The Complete CD-net of Another Process

- MΩ
0 is the initial marking of a CD-net. For each CD-net, the initial marking MΩ

0 is

only one token in place iΩ.

Due to the oversize CD-net of the internal business process of the travel agency example

in Figure 3.1, for illustrating a complete CD-net as an alternative, Figure 3.3 shows the

CD-net of another business process with smaller size. In the control flow of this process, two

tasks, tC2 and tC3 , are executed in parallel. There also are eight data elements involved in the

data flow, four of them (pD1 , pD2 , pD3 , pD4 ) are external data, the rest (pD5 , pD6 , pD7 , pD8 ) are

produced by tC2 and tC3 , and three of them (pD6 , pD7 , pD8 ) are the target data of the process.



3.2 Model Specification 57

Internal Business Process Model

An internal business process of an SBP is considered as a combination of a set of activities,

a set of data elements, and their relations (control flow and data flow). In this subsection,

the internal process model IP is introduced (Definition 3).

Definition 3. (IP) The internal business process of a service-based business process is a

tuple IP = (Act,Data, CN,CDN), where:

- Act is a set of activities of the internal business process.

An activity a ∈ Act is a tuple a = (aId, InPara,OutPara, aType) where aId(a) is a

function that returns the identification of the activity a, InPara(a) is a function that

returns the set of data elements contained in the input parameter of the activity a,

OutPara(a) is a function that returns the set of data elements contained in the output

parameter of the activity a, and aType(a) is a boolean function that returns a result

whether the activity a is a communication activity or an internal activity. An activity

being indicated as a communication activity means that there are involved service(s)

associated by this activity.

- Data is a set of data elements of the internal business process.

- CN is the C-net of the internal business process which aims to describe the control

flow structure of the process.

- CDN is the CD-net of the internal business process which aims to describe the data

flow structure of the process.



58 A Model for Service-based Business Processes

3.2.2 Service

In this subsection, the service behavior model that is describing the control flow of the

involved services of an SBP is defined firstly (Definition 4). Then, the service model is

defined (Definition 5).

Service Behavior Model

From a service requester’s perspective, it is necessary that the expected behavior of the

service is observable, which implies that the requester can see both what operations are in

this service and how to invoke them [36, 37]. As discussed in [69], the behavior of a web

service can be treated as a partially ordered set of service operations which can be directly

mapped into a Petri net. For describing the behavior of a service, the operations of the

service can be mapped into transitions, the state of the service can be mapped into places,

and the causal relations between places and transitions into arcs.

A labeled Petri net is employed for building up the behavior model of the services involved

in an SBP. The behavior model is named as a service behavior net (S-net) that describes

the invocation relations associated with the operations of a service (Definition 4). In an

S-net, transitions are labeled with operations that represent corresponding operations of

the respective involved service, places represent the pre-conditions or post-conditions of

operations, and arcs represent the control flow relations in the service behavior model.

Definition 4. (S-net) An operations transition net (S-net) of a service is a tuple SN =

(P S, T S, F S, LS,MS
0 ), where:

- P S = {iS} ∪ {oS} ∪ P S
L is a finite set of places.



3.2 Model Specification 59

iS and oS are a pair of special places which represent the initial and ending state of the

S-net (i.e., •iS = φ, oS• = φ).

P S
L is a finite set of logic places which represent the pre-conditions or post-conditions

of operations.

- T S is a finite set of transitions.

- F S ⊆
(
P S × T S

)
∪
(
T S × P S

)
is a finite set of arcs which represent the flow relations

between the places and the transitions of the S-net

- LS : T S → Op∪{τS} is a labeling function where Op is a set of operations of a service.

It is assumed that τS /∈ Op denotes a silent operation which is not an actual operation

of the service but only for the logical requirements.

- MS
0 is the initial marking of an S-net. For each S-net, the initial marking MS

0 is only

one token in place iS.

The S-nets of the three services involved in the SBP example (Figure 3.1) are shown in

Figure 3.4. The labeling functions of these S-nets are shown in Table 3.2.

Service Model

A service involved in an SBP is considered as a combination of a set of operations, control flow

relations between operations, the name of the service, and the type of the service. Because

a service model can represent either a provided service or an invoked service of an SBP, the

type property of the service can indicate what type the service is. In this subsection, the

service model s is introduced (Definition 5).



60 A Model for Service-based Business Processes

Flight Service 
(Invoked)

Payment Service 
(Invoked)

Flight Inquiry & Booking 
Service (Provided)

p
S1

L1

i
S1

o
S1

t
S1

1

t
S1

2

p
S1

L2

t
S1

3

t
S1

4

t
S1

5

t
S1

7

p
S1

L3

p
S1

L4

p
S1

L5

t
S1

6

p
S2

L1

i
S2

t
S2

1

t
S2

2

o
S2

p
S3

L1

i
S3

t
S3

1

t
S3

3

o
S3

t
S3

2

p
S3

L2

Figure 3.4: The S-nets of the Travel Agency’s SBP

Definition 5. (Service) A service S is tuple S = (sId,Op, SN, sType), where:

- sId is the identification of the service.

- Op is a set of operations of the service.

An operation o ∈ Op is a tuple o = (oId, InMsg,OutMsg, oType) where oId(o) is is

a function that returns the identification of the operation, InMsg(o) is a function that

returns the input message of the operation, and OutMsg(o) is a function that returns

the output message of the operation.



3.2 Model Specification 61

Table 3.2: The Labeling Function of The S-nets

tS1 LS1(tS1) tS2 LS2(tS2)

tS11 Start Inquiry tS21 Receive Request

tS12 Send Flights Information tS22 Send Flights Information

tS13 Receive Order tS3 LS3(tS3)

tS14 Send Bill tS31 Receive Request

tS15 Make Payment tS32 Request to Sign Agreement

tS16 Send Itinerary & Receipt tS33 Send Payment Confirmation

oType(o) : o → {One-way, Request-response, Solicit-response, Notification} is a map-

ping function which returns to a message transmission type of an operation, indicating

which type from the four types the operation belongs to.

- SN is the service behavior net of the service.

- sType(S) : S → {Provided, Invoked}is a boolean mapping function returning a result

which indicated whether the service is a provided service or an invoked service.

Note that as introduced in [15], there are four possible types of message transmission

patterns for an operation, which are:

1. One − way - The operation receives a message. As shown in Figure 3.1D, the opera-

tion “Receive Request” of the invoked service “Payment Service” is an One− way

operation which only receives a message of request information.

2. Notification - The operation sends a message. In Figure 3.1D, the operation “Send



62 A Model for Service-based Business Processes

Payment Confirmation” of the invoked service “Payment Service” is anNotification

operation which only sends a message of payment confirmation.

3. Request− response - The operation receives a message, then sends a correlated mes-

sage. In Figure 3.1B, the operation “Start Inquiry” of the provided service “Flight

Inquiry & Booking” is a Request− response operation which receives a message of

flight inquiry and then replies an acknowledgment.

4. Solicit−response - The operation sends a message, then receives a correlated message.

A Solicit − response operation is similar to a Notification operation; however, the

difference is that the Solicit− response operation expects a correlated response from

the requester. In Figure 3.1D, the operation “Request to Sign Agreement” of the

invoked service “Payment Service” is a Solicit− response operation which sends a

message of agreement and then receives the signed agreement.

3.2.3 Service-based Business Process

The SBP model is used to specify the details of an SBP on the top of the internal business

process model, the set of involved service models, and the relations between the internal

business process and the services. Combined with the definitions in former sections, an SBP

model is defined as follows (Definition 6).

Definition 6. (SBP) A service-based business process is a tuple SBP = (IP,Σ,RS, RO),

where:

- IP is the internal business process of the SBP.



3.3 Discussion 63

- Σ = {S1, S2, ..., Sn} is a set of services involved in the SBP.

- RS ⊆ Act×Σ is a set of relations between activities and services.

For example, a relation rS ∈ RS and rS = 〈an, Sm〉,

1. if sType(Sm) = Provided, it means that activity an provides a function of provided

service Sm.

2. if sType(Sm) = Invoked, it means that activity an invokes a function of invoked

service Sm.

- RO ⊆ Act × Ω is a set of relations between activities of the internal business process

and operations of services involved in the SBP.

Ω = Op1 ∪Op2∪, ...,∪Opn is the set of all operations of services involved in the SBP.

For example, a relation rO ∈ RO and rO = 〈an, om〉, om belongs to service Sm,

1. if sType(Sm) = Provided, it means that the activity an “carries out” the function

of the operation om.

2. if sType(Sm) = Invoked, it means that the activity an “utilizes” the function of

the operation om.

3.3 Discussion

In this chapter, a Petri-net-based model is defined for modeling SBPs. The proposed SBP

model provides a formal basis for describing SBPs, verifying SBPs, simulating SBPs, ana-

lyzing SBPs, and managing changes in SBPs.



64 A Model for Service-based Business Processes

A motivating example of a travel agency is presented for capturing the typical features

of SBP scenario in this work. In the SBP scenario in this work, an SBP consists of an

internal business process, the provided service(s) by the process, the invoked service(s) by

the process, and the dependency relations between these services and the internal business

process.

The internal business process of an SBP is defined as a composition of a C-net, a CD-

net, a set of activities, and a set of data elements. The C-net is defined for representing the

control flow of the internal business process of an SBP. The CD-net is defined for modeling

the data flow of the internal business process of an SBP.

A service involved in an SBP is defined as a composition of the identification of the

service, the type of the service, operations of the service, and an S-net. The S-net is defined

for representing the operations transition behavior of the service that can be considered as

the control flow relation of these operations.

For modeling a broad range of real-world SBP cases on a recurring basis and describing

them in an imperative way, corresponding design patterns are identified in the next chapter.

These patterns provide enabling tools for describing SBPs in a unified and reusable manner.



4
Design Patterns of Service-based Business

Processes

The notion of pattern is attributed to [142] generally, which means a classification of recurring

problems and respective solutions in a specific domain. Early pattern-based studies mainly

65



66 Design Patterns of Service-based Business Processes

focus on the domain of architecture. The notion of patterns has generally been applied in

a broad range of other domains. A set of pattern-based studies have been proposed in the

domain of information technology for designing software systems [143, 144] and business

processes [39, 145–147].

For modeling a broad range of real-world SBP cases on a recurring basis and describing

them in an imperative way, corresponding design patterns are identified in the following

sections. In Section 4.1, a set of control flow patterns of SBP are identified. In Section 4.2,

a set of process-service relation patterns of SBP are identified. Section 4.3 summarizes this

chapter.

4.1 Control Flow Patterns

The complicated control flow structure makes it challenging to describe, simulate, and an-

alyze an SBP. It also increases the complexity of change management for an SBP. In this

section, seven common design patterns for modeling the control flow structure of real-world

SBP cases are identified based on the SBP model which are sequence pattern, AND-split

pattern, AND-join pattern, XOR-split pattern, XOR-join pattern, loop pattern, and control

dependency pattern. These control flow patterns provide a unified and recurring basis in

order to deal with the concerns of the complicated control flow structures of SBP.

4.1.1 Sequence Pattern

• Description: An activity is enabled after the completion of executing a preceding

activity in the internal business process of an SBP.



4.1 Control Flow Patterns 67

• Example: For the SBP example in Figure 3.1, as the activity “Send Itinerary &

Receipt” is enabled after the completion of the activity “Prepare Itinerary & Receipt”,

they are in a sequence control flow pattern.

• Demonstration: Figure 4.1 is the demonstration of sequence pattern by C-net. To

represent the sequence pattern by C-net, a place is used to connect two transitions,

one of which is labeled by an activity and the other one is labeled by its preceding

activity.

ActivityA

ActivityB

Figure 4.1: Sequence Pattern in C-net

4.1.2 AND-split Pattern

• Description: The control flow of one branch diverges into multiple parallel branches,

these parallel branches are executed concurrently.

• Example: An example of AND-split pattern is shown in Figure 3.1, after the com-

pletion of the activity “Receive Inquiry”, the activity “Check Available Flights” and



68 Design Patterns of Service-based Business Processes

the activity “Send Acknowledgment” are enabled concurrently, they are in a AND-split

control flow pattern.

• Demonstration: Figure 4.2 is the demonstration of AND-split pattern by C-net.

To represent the AND-split pattern by C-net, the divergence to parallel branches is

achieved by a transition which has one input arc and two or more output arcs. This

transition is labeled with a silent activity τC .

AND-split

Activity2Activity1 ... ActivityN

Figure 4.2: AND-split Pattern in C-net

4.1.3 AND-join Pattern

• Description: The control flows of two or more branches converge into a single con-

secutive branch. The consecutive branch is enabled after the completion of all its input

branches.

• Example: An example of AND-join pattern is shown in Figure 3.1, the thread of

control is passed to the consecutive branch after the completion of the activity “Send



4.1 Control Flow Patterns 69

Flights Information” and the activity “Archive Customer Information”, they are in an

AND-join control flow pattern.

• Demonstration: Figure 4.3 is the demonstration of AND-join pattern by C-net. To

represent the AND-join pattern by C-net, the convergence from parallel branches is

achieved by a transition which has two or more input arcs and one output arc. This

transition is labeled with a silent activity τC .

AND-join

Activity2Activity1 ... ActivityN

Figure 4.3: AND-join Pattern in C-net

4.1.4 XOR-split Pattern

• Description: One branch diverges into multiple mutually exclusive branches which

are enabled immediately after the completion of the incoming branch. Only one of

these outgoing branches can be executed depending on a selection mechanism that can

select one of them to be executed. The selection can either be made by users or be

value-based.



70 Design Patterns of Service-based Business Processes

• Example: An example of the XOR-split pattern is shown in Figure 3.1, the thread

of control diverges into two branches, one is to execute the activity “Receive Booking

Order” firstly, the other one is to do nothing. A selection has to be made from these

two branches depending on whether the customer decides to continue to book a flight

from the travel agency after inquiry.

• Demonstration: Figure 4.4 is the demonstration of XOR-split pattern by C-net.

To represent the XOR-split pattern by C-net, the divergence to mutually exclusive

branches is achieved by a place which has up to one input arc and two or more output

arcs.

Activity2Activity1 ... ActivityN

Figure 4.4: XOR-split Pattern in C-net

4.1.5 XOR-join Pattern

• Description: Multiple mutually exclusive branches converge into one branch which

is enabled immediately after the completion of one of the incoming branches.

• Example: An example of XOR-join pattern is shown in Figure 3.1, the threads of



4.1 Control Flow Patterns 71

control converge into a single branch after the possible completion of one of the in-

coming two branches, one is the completion of the activity “Send Itinerary & Receipt”

finally, the other one is to do nothing.

• Demonstration: Figure 4.5 is the demonstration of XOR-join pattern by C-net.

To represent the XOR-join pattern by C-net, the convergence from multiple mutually

exclusive branches is achieved by a place which has two or more input arcs and up to

one output arc.

Activity2Activity1 ... ActivityN

Figure 4.5: XOR-join Pattern in C-net

4.1.6 Loop Pattern

• Description: A fragment of control flow is executed repeatedly. There is a post-test

condition after the completion of the fragment to evaluate whether to repeat it or to

continue its consecutive branch.

• Example: For the SBP example in Figure 3.1, the activity “Prepare Bill” is exe-

cuted repeatedly. Its consecutive activity “Send Bill” can be executed only after a

satisfactory result comes out from the post-test of this loop.



72 Design Patterns of Service-based Business Processes

• Demonstration: Figure 4.6 is the demonstration of loop pattern by C-net. To

represent the loop pattern by C-net, a transition is used to connect from the output

place to the input place of a fragment. This transition is labeled with a silent activity

τC .

Fragment Loop

Figure 4.6: Loop Pattern in C-net

4.1.7 Control Dependency Pattern

• Description: Two activities in two parallel branches, whether an activity is enabled

or not depends on the completion of the other one.

• Example: For the SBP example in Figure 3.1, the activity “Send Flights Information”

and the activity “Send Acknowledgment” are in two parallel branches. The activity

“Send Flights Information” is enabled after not only the completion of its preceding

activity “Check Available Flights” in same branch, but also the completion of the

activity “Send Acknowledgment” in other parallel branch.

• Demonstration: Figure 4.7 is the demonstration of control dependency pattern by

C-net. To represent the control dependency pattern by C-net, a transition after the



4.1 Control Flow Patterns 73

output place of the preceding activity transition is used to diverge the control thread

into the same branch and the consecutive activity transition in another parallel branch.

This transition has the same function as an AND-split transition and is labeled with a

silent activity τC . Another transition before the input place of the consecutive activity

transition is used to converge the control threads from the same branch and another

parallel branch. This transition has the same function as an AND-join transition and

is labeled with a silent activity τC either. These two silent activity transitions are

connected by a place.

AND-split

Activity1AND-join

Activity2

AND-split

... ...

Figure 4.7: Control Dependency Pattern in C-net



74 Design Patterns of Service-based Business Processes

4.2 Process-service Relation Patterns

As discussed in [148], one of the most important characteristics of software interaction is

whether the interaction is synchronous or asynchronous. For synchronous interactions, when

a software system calls another one during an execution thread, the thread cannot proceed

until the response comes back. Even though the design of synchronous interactions is simple

and intuitive, for some specific types of applications, there is no need for them to interact

synchronously. As an alternative, the design of synchronous interactions is applied. E-mail

is a remarkable example of asynchronous interactions. It is not necessary for the sender of an

e-mail to wait until a reply is received. The sender can work on other things before receiving

a reply. Therefore, sending and receiving e-mails are synchronous interactions.

In the domain of web service, a “Request− response” or “Solicit− response” operation

receiving/sending a message, and then sending/receiving a correlated message is referred

to as a synchronous operation; a “One − way” or “Notification” operation only receiv-

ing/sending a message is referred to as an asynchronous operation.

According to different granularity levels of operations from a service involved in an SBP

and their related activities from the internal business process, four process-service relation

patterns for RO (relations between activities and operations of services involved) are sup-

ported by the SBP model which are described as follows. These patterns are 1A-to-1syncO

(one activity to one synchronous operation) pattern, 1A-to-1asyncO (one activity to one

asynchronous operation) pattern, 2A-to-1syncO (two activities to one synchronous opera-

tion) pattern, and 1A-to-2asyncO (one activity to two asynchronous operations) pattern.



4.2 Process-service Relation Patterns 75

4.2.1 1A-to-1syncO Pattern

• Description: One activity is related with one synchronous operation. For a provided

service, a synchronous operation is supported by one activity. For an invoked service,

an activity invokes a synchronous operation synchronously.

• In Formal: For an SBP , rO = 〈x, y〉 (rO ∈ RO, x is an activity, y is an operation)

belongs to a 1A-to-1syncO Pattern, iff :

i. oType(y) = Request− response or oType(y) = Solicit− response,

ii. @r′O = 〈x′, y′〉 (r′O ∈ RO) s.t. x′ = x or y′ = y.

• Example: As shown in Figure 3.1, the activity “Make Payment” of the internal

business process and the operation “Make Payment” of the provided service “Flight

Inquiry & Booking” are in a 1A-to-1syncO pattern. The activity carries out the op-

eration by receiving the payment from the customer followed by sending a notification

for a successful payment.

4.2.2 1A-to-1asyncO Pattern

• Description: One activity is related with one asynchronous operation. For a provided

service, an asynchronous operation is supported by one activity. For an invoked service,

an activity invokes an asynchronous operation asynchronously.

• In Formal: For an SBP , rO = 〈x, y〉 (rO ∈ RO, x is an activity, y is an operation)

belongs to a 1A-to-1asyncO Pattern, iff :



76 Design Patterns of Service-based Business Processes

i. oType(y) = One− way or oType(y) = Notification,

ii. @r′O = 〈x′, y′〉 (r′O ∈ RO) s.t. x′ = x or y′ = y.

• Example: As shown in Figure 3.1, the activity “Invoke Payment Service” of the

internal business process and the operation “Receive Request” of the invoked service

“Payment Service” are in a 1A-to-1asyncO pattern. The activity calls the operation

by sending the payment information.

4.2.3 2A-to-1syncO Pattern

• Description: Two activities are related with one synchronous operation. For a pro-

vided service, a synchronous operation is supported by two activities. For an invoked

service, two activities invoke a synchronous operation asynchronously.

• In Formal: For an SBP , rO = 〈x, y〉 (rO ∈ RO, x is an activity, y is an operation)

belongs to a 2A-to-1syncO Pattern, iff :

i. oType(y) = Request− response or oType(y) = Solicit− response,

ii. ∃r′O = 〈x′, y′〉 (r′O ∈ RO) s.t. x′ 6= x and y′ = y,

iii. @r′′O = 〈x′′, y′′〉 (r′′O ∈ RO) s.t. x′′ = x or x′, or y′′ = y.

• Example: As shown in Figure 3.1, the activities “Receive Inquiry” and “Send Ac-

knowledgment” of the internal business process are in a 2A-to-1syncO relation with

the operation “Start Inquiry” of the provided service “Flight Inquiry & Booking”.

These two activities carry out the input and output of the operation separately.



4.3 Discussion 77

4.2.4 1A-to-2asyncO Pattern

• Description: One activity is related with two asynchronous operations. For a pro-

vided service, two synchronous operations are supported by one activity. For an invoked

service, an activity invokes two asynchronous operations synchronously.

• In Formal: For an SBP , rO = 〈x, y〉 (rO ∈ RO, x is an activity, y is an operation)

belongs to a 1A-to-2asyncO Pattern, iff :

i. oType(y) = One− way or oType(y) = Notification,

ii. ∃r′O = 〈x′, y′〉 (r′O ∈ RO) s.t. x′ = x and y′ 6= y,

iii. @r′′O = 〈x′′, y′′〉 (r′′O ∈ RO) s.t. x′′ = x, or y′′ = y or y′.

• Example: As shown in Figure 3.1, the activity “Check Available Flights” of the

internal business process is in a 1A-to-2asyncO relation with the operations “Receive

Request” and “Send Flights Information” of the invoked service “Flight Service”.

The activity calls the operation “Receive Request” firstly and then waits until the

response comes back from the operation “Send Flights Information”.

4.3 Discussion

In this chapter, seven control flow patterns for designing the control flow of the internal

business process of an SBP are identified. These patterns provide enabling tools for SBP

designers to build up the control flow of internal business processes with complicated struc-

tures. Four process-service relation patterns are identified as well for designers to deal with



78 Design Patterns of Service-based Business Processes

the dependencies between the internal business process and services involved in an SBP.

These patterns are described with both informal language and formal language of SBP

model definitions in Chapter 3. All of these patterns are demonstrated by using the example

in Figure 3.1.

A unified and reusable basis is provided by this patterns for managing SBPs. The unified

and reusable basis makes it possible to develop general methods aiming at modeling, ana-

lyzing, and maintaining SBPs without paying consideration to some ad-hoc requirements.

Further utilization and discussion are introduced in the following chapters.



5
Correctness Verification of Service-based

Business Processes

To keep up with the trend of globalization and informatization, an increasing number of

enterprises decide to run their business process in a service-based manner with the help of

79



80 Correctness Verification of Service-based Business Processes

Web Service technology. To manage such service-based business processes (SBP), it is vital

that the elements of SBP and the dependencies among this elements are correctly developed

and maintained. It is error-prone in the development phase of an SBP, as the dependencies

among different types of elements involved in the SBP are complex which is discussed in

previous chapters. Because the business regulations and customer requirements may need to

change frequently, SBP is dynamic by nature. As a result, both internal business processes

and involved services of SBPs may need to change accordingly. Because of the complex

dependencies among the elements of an SBP, the changes occurring in one element can

affect the others and propagate in the SBP with a cascading manner [36, 37] that can easily

cause anomalies. Therefore, it is error-prone in the maintenance phase of an SBP as well.

It is necessary to identify the correctness properties of SBP and develop the method to

verify these properties correspondingly. In this chapter, a set of correctness properties of

SBP is identified that includes: the control flow soundness, the data flow soundness, the con-

sistency between a provided service and the internal business process, and the compatibility

between an invoked service and the internal business process. Corresponding solutions for

verifying the specified properties are developed that includes:

• The control flow soundness of an SBP is verified by checking the liveness and bound-

edness of a Petri net that specifies the control flow of the SBP.

• Eleven types of data flow anomalies are identified. The data flow soundness of an SBP

is verified by an algorithm to detect anomalies in it.

• An algebra-based method is proposed to verify the consistency between a provided

service and the internal business process of an SBP.



5.1 Control Flow Soundness 81

• An Petri-net-based method is proposed to verify the compatibility between an invoked

service and the internal business process of an SBP.

The rest of this chapter is organized as follows. In Section 5.1, the control flow soundness

is specified, and corresponding verification method is proposed. In Section 5.2, the data

flow soundness is specified, and corresponding verification method is proposed. In Section

5.3, the consistency between a provided service and the internal business process of an

SBP is specified, and corresponding verification method is proposed. In Section 5.4, the

compatibility between an invoked service and the internal business process of an SBP is

specified, and corresponding verification method is proposed. Further discussion about this

chapter is in Section 5.5.

5.1 Control Flow Soundness

Seven control flow patterns are identified in Chapter 4 for building up the complicated control

flow structures of the internal business process of an SBP. It is error-prone to develop such

an internal business process with complicated control flow structures. The errors may result

in that the improper termination of the internal business process, e.g., the execution of the

process is obstructed by some deadlocks, some activities have never been executed when the

process terminates, and some activities are still running when the process terminates. It is

vital to define the correctness property for the control flow of the internal business process

and develop a corresponding method to verify the identified correctness property.



82 Correctness Verification of Service-based Business Processes

5.1.1 Definition of Control Flow Soundness

There are three types of errors that must be guaranteed to avoid in the control flow of an

internal business process of an SBP. The first one is the existence of deadlocks that may

stick the execution of the process. Figure 5.1 shows an example of a deadlock in a C-net.

In this example, because each activity cannot be enabled until the completion of the other

one, the execution of the control flow is obstructed.

Activity2Activity1

AND-split

AND-join

AND-split AND-split

AND-join

AND-join

Figure 5.1: Deadlock Example in a C-net

The second one is the existence of dead activities that have never been executed when

the process terminates. Figure 5.2 shows an example of a dead activity in a C-net. In this

example, the activity Activity7 will never be enabled when the C-net completes in any case.

The third one is the existence of dangling activities that are still running when the process

terminates. Figure 5.3 shows an example of a dangling activity in a C-net. In this example,



5.1 Control Flow Soundness 83

Activity5Activity2

Activity1

Activity3 Activity6

Activity4

AND-join

Activity7

AND-split

Figure 5.2: Dead Activity Example in a C-net

the activity Activity3 may still be running when the process terminates.

For a sound C-net, the absence of all three types of errors must be guaranteed. Therefore,

in the following definition of CF soundness, three conditions are identified to hold for the

absence of respective error types.

Definition 7. (CF Soundness) Let CN = (PC , TC , FC , LC ,MC
0 ) be a C-net of an SBP.

CN is CF sound if and only if all the following three conditions hold,

i. Option to complete: For each reachable state MC from the initial state iC, there is

an existing firing sequence which leads from state MC to the end state oC. In formal:

∀MC (iC
∗→MC)⇒ (MC ∗→ oC)



84 Correctness Verification of Service-based Business Processes

Activity1

AND-split

AND-split

AND-join Activity3

Activity2

LOOP

Figure 5.3: Dangling Activity Example in a C-net

ii. No dead transitions: There is no dead transition in CN . In formal:

∀tC∈TC , ∃MC ,M ′C iC
∗→MC tC→M ′C

iii. Proper completion: oC is the only state reachable from state iC with one token in

oC. In formal:

∀MC (iC
∗→MC ∧MC ≥ oC)⇒ (MC = oC)

5.1.2 Verification of Control Flow Soundness

For determining whether a given CN is CF sound, the liveness and boundedness properties

of Petri nets are introduced in Definition 8 and Definition 9. In Theorem 1, a condition for a



5.1 Control Flow Soundness 85

C-net to be sound is stated. Theorem 1 transfers the problem from verifying CF soundness

to verifying liveness and boundedness. In Theorem 1, an extended net CN is defined by

adding a transition t∗ to CN which connects the end place oC and the initial place iC . As

an example, the extended net CN of the C-net belonging to the travel agency’s SBP (Figure

3.2) are shown in Figure 5.4. The corresponding proof of Theorem 1 is proposed.

p
C

L1

i
C

o
C

t
C

1

t
C

2

p
C

L3
p

C
L2

t
C

3 t
C

4

t
C

6

t
C

8

t
C

5

t
C

7

t
C

9

t
C

19

t
C

18

t
C

17

t
C

16

t
C

15

t
C

14

t
C

13

t
C

12

t
C

11

t
C

10

p
C

L4

p
C

L6

p
C

L8

p
C

L5

p
C

L7

p
C

L9

p
C

L11

p
C

L12

p
C

L13

p
C

L14

p
C

L15

p
C

L16

p
C

L17

p
C

L18

p
C

L19

p
C

L10

t
C

20

t
*

Figure 5.4: The Extended Net CN of a C-net

Definition 8. (Live) A Petri net (PN,M0) is live iff, for every reachable state M from

M0 and every transition t, there is a state M ′ which is reachable from M and enables t,

formally: ∀MM0
∗→M , ∀t∈T , ∃M ′,M ′′ M

∗→M ′ t→M ′′.



86 Correctness Verification of Service-based Business Processes

Definition 9. (Bounded) A Petri net (PN,M0) is bounded iff, for every place p in every

reachable state, the number of tokens in p is bounded.

Theorem 1. If (CN, iC) is live and bounded, CN is CF sound.

Proof. Since (CN, iC) is live, i.e., ∀M iC
∗→ M , ∀tC∈TC , ∃M ′,M ′′ M

∗→ M ′ tC→ M ′′. Hence we

can deduce that

∀M iC
∗→M,∃M ′,M ′′M

∗→M ′ t∗→M ′′ (1)

.

Since t∗ has only one input place oC and only one output place iC . Hence M ′ must be

with at least one token in place oC and M ′′ must be with at least one token in place iC , i.e.,

M ′ = Mx + oC , M ′′ = Mx + iC . Since (N, iC) is bounded, Mx equals to the empty state, i.e.,

M ′ = oC ,M ′′ = iC (2)

.

By combining result (1) and result (2) we can deduce that ∀M(iC
∗→ M) ⇒ (M

∗→ oC)

and M ′ is the only state which is equal to oC . Hence, requirements (i) and (ii) of Definition

7 hold.

Since (N, iC) is live, i.e., ∀M iC
∗→ M , ∀tC∈TC , ∃M ′,M ′′ M

∗→ M ′ tC→ M ′′. It is easy to

deduce that ∀tC∈TC , ∃M ′,M ′′ iC
∗→M ′ tC→M ′′. Hence, requirement (iii) of Definition 7 holds.

Since all of the three requirements (i), (ii) and (iii) of Definition 7 hold, CN is CF

sound.



5.2 Data Flow Soundness 87

An existing work named CPN Tools [92] can be used to check the liveness and bound-

edness properties. A CN can be analyzed by CPN Tools. The Petri-net-based flow model

can be analyzed by CPN Tools, and a report is generated as a result. For the input CN ,

if each place pC in the output report holds M(pC) ≤ n (n is a non-negative integer), then

CN is bounded. If each tC belonging to CN is in the set of “live transition instances” listed

by the report, then CN is live. The “dead markings” set and the “dead transitions” set

are reported by CPN Tools. Therefore, the reasons for why a C-net is not CF sound are

provided.

5.2 Data Flow Soundness

Modeling and verifying the data flow of a business process is as vital as the control flow

[65, 83]. In this section, eleven data flow anomalies are identified and formally described

by the SBP model defined in Chapter 3. These data anomalies are classified into three

types which are data initialization anomalies, data redundancy anomalies, and data version

anomalies. A data anomalies detection algorithm is developed.

In [83], the authors provide a method for detecting a set of data flow anomalies. Although

there is a formal definition of data flow in this work, the data flow anomalies are only

described by scenarios and examples. There is no formal specification for data anomalies, and

a well-defined detection algorithm becomes impossible. Both data flow and data anomalies

are defined formally in [65]. The authors propose a Petri-net-based approach for formulating

the data flow modeling and verification. The detection algorithms for data flow anomalies in

[65, 83] can only give the coarse granularity result of a detected anomaly. These algorithms



88 Correctness Verification of Service-based Business Processes

give the result such as “there is a data initialization anomaly” but can not tell the difference

between “delayed initialization anomaly” and “missing input data anomaly”.

The existence of the “XOR-split” pattern and “Loop” pattern leads to different practical

execution orders of a set of activities due to different selections. There are some “possible

execution orders” in the practical execution of these activities. As loop conditions can only

affect the repetitions of a set of activities but not the existence of them, the possible execution

orders of activities are only generated by the XOR selections. The set of all possible execution

orders is denoted as Π = {π1, π2, ..., πn} which is used for describing some types of data flow

anomalies in the following subsections.

5.2.1 Definition of Data Flow Soundness

Type-I Data Initialization Anomalies

1 Missing Target Data: When the process terminates, there is a final output target

data that has not been initialized.

In Formal: For an IP , ∀pD ∈ PD, pD is a missing target data iff : ttar ∈ pD• and

•pD ⊆ T I .

2 Missing Input Data: An input data of an activity has never been initialized when

the process terminates.

In Formal: For an IP , ∀pD ∈ PD, pD is a missing input data of activity α, iff :

∃tIα ∈ pD• and •pD ⊆ T I .

3 Delayed Initialization: An input data of an activity has not been initialized when



5.2 Data Flow Soundness 89

the activity is enabled, but the input data will be initialized by a subsequent activity

before the process terminates.

In Formal: For an IP , ∀pD ∈ PD, pD is a delayed initialization data of activity α,

iff : ∃tIα ∈ pD•, tleg /∈ •pD, •pD ( T I , and ∀tOβ ∈ •pD, the transition labeled with β is

enabled after the transition labeled with α.

4 Uncertain Initialization: The availability of an input data of an activity is uncertain

when the activity is enabled.

In Formal: For an IP , ∀pD ∈ PD, pD is an uncertain initialization data of activity

α, iff : ∃tIα ∈ pD•, tleg /∈ •pD, •pD ( T I , and ∀tOβ ∈ •pD, the transition labeled with

β is in parallel with the transition labeled with α.

5 Conditionally Initialized Target Data: A target data of the process can only be

initialized under specific routing condition(s), under other condition(s) it can never be

initialized.

In Formal: For an IP , ∀pD ∈ PD, pD is a conditionally initialized target data, iff :

ttar ∈ pD•, ∃πi ∈ Π, •pD ⊆ T I ; and ∃πj ∈ Π (i 6= j), •pD ( T I .

6 Conditionally Initialized Input Data: An input data of an activity can only be

initialized under specific routing condition(s), under other condition(s) it can never be

initialized.

In Formal: For an IP , ∀pD ∈ PD, pD is a conditionally initialized input data of

activity α, iff : tIα ∈ pD•, ∃πi ∈ Π, •pD ⊆ T I , and ∃πj ∈ Π (i 6= j), •pD ( T I .



90 Correctness Verification of Service-based Business Processes

Type-II Data Redundancy Anomalies

7 Redundant Legacy Data: A legacy data of the process is neither a target data nor

an input data for any activities.

In Formal: For an IP , ∀pD ∈ PD, pD is a redundant legacy data, iff : tleg ∈ •pD

and pD• ⊆ T I .

8 Redundant Output Data: An output data of an activity is neither a target data

nor an input data for any activities.

In Formal: For an IP , ∀pD ∈ PD, pD is a redundant output data of an activity α,

iff : tOα ∈ •pD and pD• ⊆ T I .

9 Conditionally Redundant Legacy Data: A legacy data of the process is an input

data of an activity only under certain routing conditions.

In Formal: For an IP , ∀pD ∈ PD, pD is a conditionally redundant legacy data, iff :

tleg ∈ •pD, ∃πi ∈ Π, pD• ⊆ T I , and ∃πj ∈ Π (i 6= j), pD• ( T I .

10 Conditionally Redundant Output Data: An output data of an activity is an input

data of another activity only under certain routing conditions.

In Formal: For an IP , ∀pD ∈ PD, pD is a redundant output data of an activity α,

iff : tOα ∈ •pD, ∃πi ∈ Π, pD• ⊆ T I , and ∃πj ∈ Π (i 6= j), pD• ( T I .

Type.3 Data Version Anomalies

11 Multiple Initialized Data: A data is initialized more than once.



5.2 Data Flow Soundness 91

In Formal: For an IP , ∀pD ∈ PD, pD is a multiple initialized data iff : ∃π ∈ Π,

| • pD − T I | > 1.

Because of the allowance of some types of data anomalies in some practical cases, two

degrees of data flow correctness of SBP are defined as follows. DF Soundness (Definition

10) is a more restrictive correctness property which does not allow the existence of any data

anomalies in an SBP. Weak DF Soundness (Definition 11) only demands the absence of some

specific types of data anomalies. For an SBP that is weak DF sound, the redundant data and

multiple versions of a data element are allowed to exist, but any data initialization anomaly

is not allowed.

Definition 10. (DF Soundness) An SBP is DF sound iff: no data flow anomaly exists.

Definition 11. (Weak DF Soundness) An SBP is weak DF sound iff: no data initial-

ization anomaly exists.

5.2.2 Verification of Data Flow Soundness

An algorithm (Algorithm 1) for detecting data flow anomalies is developed in this subsection.

The correctness verification for the data flow of an SBP can be realized by this algorithm to

detect those data anomalies. The input of Algorithm 1 is the internal business process IP

of the SBP, and the output is a set of data flow anomalies Λ detected by the algorithm.

Function 1 is proposed for each data element d of the internal business process of the SBP

to collect all the activities which utilize the data d as an element of their input parameters

into a set Ind, and to collect all the activities who utilize the data d as an element of their



92 Correctness Verification of Service-based Business Processes

Algorithm 1 Data Flow Anomalies Detection

INPUT: IP // IP is the internal business process of the concerned SBP

OUTPUT: Λ // Λ is the data flow anomaly set

Λ← φ

for each data element d ∈ Data of IP do

Call Function 1

if Outd = φ && Ind 6= φ then

Call Function 2

else if Ind = φ && Outd 6= φ then

Call Function 3

else {Ind 6= φ && Outd 6= φ}

for each y ∈ Ind do

Call Function 4

Call Function 5

end for

Call Function 6

end if

Call Function 7

end for

output parameters into a set Outd. The input of Function 1 is the internal business process

IP of the SBP, and the output is two sets of activities Ind and Outd.

Function 2 of the algorithm is utilized to detect the “1. Missing Target Data”

anomalies and the “2. Missing Input Data” anomalies in the case where a data d is in



5.2 Data Flow Soundness 93

Function 1
INPUT: IP

OUTPUT: Ind, Outd

Ind ← φ

Outd ← φ

for each activity a ∈ Act of IP do

if d is an input data of a then

Ind ← Ind ∪ {a} //a set of activities who read d

else if d is an output data of a then

Outd ← Outd ∪ {a} //a set of activities who write d

end if

end for

if d is a target data of IP then

Ind ← Ind ∪ {tar} //tar represents a virtual activity

else if d is a legacy data of IP then

Outd ← Outd ∪ {leg} //leg represents a virtual activity

end if

the input parameters of some activities (Ind 6= φ) but not in the output parameters of any

activities (Outd = φ).

Function 3 of the algorithm is utilized to detect the “7. Redundant Legacy Data”

anomalies and the “8. Redundant Output Data” anomalies in the case where a data d

is in the output parameters of some activities (Outd 6= φ) but not in the input parameters

of any activities (Ind = φ).



94 Correctness Verification of Service-based Business Processes

Function 2
INPUT: IP

OUTPUT: Λ

for each x ∈ Ind do

if x = tar then

Λ← “d is a missing target data”

else

Λ← “d is a missing input data of x”

end if

end for

Function 3
INPUT: IP

OUTPUT: Λ

for each x ∈ Outd do

if x = leg then

Λ← “d is a redundant legacy data”

else

Λ← “d is a redundant onput data of x”

end if

end for

Function 4 of the algorithm is for each activity y who utilizes the data d as an element

of its input parameter to collect all the activities which are executed prior to, after, and

concurrently in to respective sets PRE(y), POST (y), and CON(y).



5.2 Data Flow Soundness 95

Function 4
INPUT: IP

OUTPUT: PRE(y), POST (y), CON(y)

for each z ∈ Outd do

if z is enabled before y then

PRE(y)← z // a pre-executed activities set of y

else if z is executed after y then

POST (y)← z // a post-executed activities set of y

else if z is enabled in parallel with y then

CON(y)← z // a concurrently-executed activities set of y

end if

end for

Function 5 of the algorithm is utilized to detect the “3. Delayed Initialization”

anomalies, the “4. Uncertain Initialization” anomalies, the “5. Conditionally Ini-

tialized Target Data” anomalies, and the “6. Conditionally Initialized Input Data”

anomalies in the case where a data d is either in the input parameters of some activities

(Ind 6= φ) or in the output parameters of any activities (Outd = φ).

Function 6 of the algorithm is utilized to detect the “9. Conditionally Redundant

Legacy Data” anomalies and the “10. Conditionally Redundant Output Data”

anomalies in the case where a data d is either in the input parameters of some activities

(Ind 6= φ) or the output parameters of any activities (Outd = φ).

Function 7 of the algorithm is utilized to detect the “11. Multiple Initialized Data”

anomalies in the special case where a data d is in the output parameters of two or more



96 Correctness Verification of Service-based Business Processes

Function 5
INPUT: IP

OUTPUT: Λ

if |POST (y)| = |Outd| then

Λ← “d is a delayed initialized input data of y”

else if |CON(y)| > 0 && |PRE(y)| = 0 && ∀π ∈ Π,∃z ∈ CON(y), z ∈ Actπ then

Λ← “d is an uncertain initialized input data of y”

else if |CON(y)| > 0 && |PRE(y)| = 0 && ∃π ∈ Π,∀z ∈ CON(y), z /∈ Actπ then

Λ← “d is an uncertain initialized input data of y”

Λ← “d is a conditionally initialized input data of y”

else if |CON(y)| > 0 && |PRE(y)| > 0 && ∃π ∈ Π,∀z ∈ PRE(y), z /∈ Actπ &&

∃π ∈ Π,∀z ∈ CON(y), z /∈ Actπ then

Λ← “d is an uncertain initialized input data of y”

Λ← “d is a conditionally initialized input data of y”

else if |CON(y)| = 0 && |PRE(y)| > 0 && ∃π ∈ Π,∀z ∈ PRE(y), z /∈ Actπ && y = tar

then

Λ← “d is a conditionally initialized target data”

else if |CON(y)| = 0 && |PRE(y)| > 0 && ∃π ∈ Π,∀z ∈ PRE(y), z /∈ Actπ && y 6= tar

then

Λ← “d is a conditionally initialized input data of y”

end if

activities (|Outd| > 1) in one execution instance (∃π ∈ Π, |Actπ ∩Outd| > 1).



5.3 Consistency of Provided Service 97

Function 6
INPUT: IP

OUTPUT: Λ

for each x ∈ Outd do

if ∃π ∈ Π,∀y ∈ Ind, y /∈ Actπ && x = leg then

Λ← “d is a conditionally redundant legacy data”

else if ∃π ∈ Π,∀y ∈ Ind, y /∈ Actπ && x 6= leg then

Λ← “d is a conditionally redundant output data of x”

end if

end for

Function 7
INPUT: IP

OUTPUT: Λ

if |Outd| > 1 && ∃π ∈ Π, |Actπ ∩Outd| > 1 then

Λ← “d is a multiple initialized data by Outd”

end if

5.3 Consistency of Provided Service

Business can be dynamic due to regulation and customer requirements change. As a result,

both internal business process and the involved services may need to change accordingly.

Because of the complex dependencies between the internal business process and involved

services of an SBP, the changes occurring in one element can affect the others and propagate

in the SBP with a cascading manner [36, 37] that can easily cause the inconsistency between

a provided service and the internal business process. It is demanding to ensure that the



98 Correctness Verification of Service-based Business Processes

internal business process is consistent with the provided services of an SBP. For verifying

the consistency, an algebra-based method is proposed in this section which focuses on the

control flow behaviors of the internal business process and provided services of an SBP.

5.3.1 Definition of Consistency

From the perspective of the service provider, the consistency of a provided service requires

that the flow relation of input and output messages performed by the service interface is

same with the order of the respective messages delivered by the internal business process.

As an example shown in Figure 5.5, the internal business process 1 and its provided service

1 have the same flow relation for dealing with the respective messages that are to input the

message Inquiry 1 and then to input the message Inquiry 2, so they are consistent with each

other. As the changed service 1, service 1′ requires its operations in a parallel control flow

relation which is not sequential anymore so that the message Inquiry 1 and the message

Inquiry 2 can be handled without fixed order. So the internal business process 1 is not

consistent with the provided service 1′.

Due to the different process-service relation patterns can be contained in an SBP as

discussed in Section 4.2, the order of input and output messages cannot be shown completely

by the original SBP model proposed in Chapter 3. Therefore, in order to define and verify

the consistency between a provided service and the internal business process of an SBP, a set

of corresponding refinement rules are proposed firstly for refining the C-net of the internal

business process and the S-net of the provided service based on the process-service relation

patterns. The refined C-net is named as rC-net and the refined S-net is named as rS-net.



5.3 Consistency of Provided Service 99

Receive 
Inquiry1

Process 
Inquiry1

Receive 
Inquiry2

Receive 
Inquiry1

Receive 
Inquiry2

Service 1 (Provided) Service 1' (Provided)Internal Process 1

Receive 
Inquiry1

Receive 
Inquiry2

Receive 
Inquiry1

Process 
Inquiry1

Receive 
Inquiry2

Internal Process 1

Change to

Figure 5.5: Consistency Between a Provided Service and The Internal Business Process of an
SBP

*Note that the same refinement rules will be used in the next section for

verifying the compatibility between an invoked service and the internal business

process of an SBP.

For each activity or operation in one of the four relation patterns, the corresponding

refinement rules are shown as follows:

• Rule 1 (For 1A-to-1syncO Pattern): Replace the activity transition by two new se-

quential ordered activity transitions representing the acts of “send” and “receive” sepa-

rately. The order depends on the message transmission pattern of associated operation.

Implement the same way on the operation.

As shown in Figure 3.1, the activity “Make Payment” of the internal business pro-

cess and the operation “Make Payment” of the provided service “Flight Inquiry &



100 Correctness Verification of Service-based Business Processes

Booking” are in a 1A-to-1syncO pattern. Based on Rule 1, respective fragments of

the C-net of the internal business process and the S-net of the invoked service are

refined as shown in Figure 5.6. The replaced parts are in gray.

Make 
payment

Make 
payment

Fragment of 
C-net

Fragment of 
S-net

Refine to
Make 

payment
(Receive)

Make 
payment
(Receive)

Fragment of 
C-net

Fragment of 
S-net

Make 
payment

(Send)

Make 
payment

(Send)

Figure 5.6: Refinement Rule 1 for 1A-to-1syncO Pattern

• Rule 2 (For 1A-to-1asyncO Pattern): No action.

• Rule 3 (For 2A-to-1syncO Pattern): Replace the operation transition by two new

sequential ordered operation transitions representing the acts of “send” and “receive”

separately. The order depends on the message transmission pattern of the operation.

As shown in Figure 3.1, the activities “Receive Inquiry” and “Send Acknowledgment”

of the internal business process are in a 2A-to-1syncO relation with the operation “Start

Inquiry” of the provided service “Flight Inquiry & Booking”. Based on Rule 3,

respective fragments of the C-net of the internal business process and the S-net of the



5.3 Consistency of Provided Service 101

invoked service are refined as shown in Figure 5.7. The replaced parts are in gray.

Start 
Inquiry

Receive 
Inquiry

Fragment of 
C-net

Fragment of 
S-net

Refine to

Fragment of 
C-net

Fragment of 
S-net

Send 
Acknowle
-dgment

Start 
Inquiry

(Receive)

Receive 
Inquiry

Send 
Acknowle
-dgment

Start 
Inquiry
(Send)

Figure 5.7: Refinement Rule 3 for 2A-to-1syncO Pattern

• Rule 4 (For 1A-to-2asyncO Pattern): Replace the activity transition by two new

sequential ordered activity transitions representing the acts of “send” and “receive”

separately. The order depends on the message transmission pattern of each associated

operation.

As shown in Figure 3.1, the activity “Check Available Flights” of the internal business

process is in a 1A-to-2asyncO relation with the operations “Receive Request” and

“Send Flights Information” of the invoked service “Flight Service”. Based on Rule

4, respective fragments of the C-net of the internal business process and the S-net of

the invoked service are refined as shown in Figure 5.8. The replaced parts are in gray.

According to the refined C-net and S-net, the consistency between a provided service and



102 Correctness Verification of Service-based Business Processes

Receive 
Request

Check 
Available 

Flights

Fragment of 
C-net

Fragment of 
S-net

Refine to

Fragment of 
C-net

Fragment of 
S-net

Send 
Flights 
Info.

Receive 
Request

Check 
Available 

Flights
(Send)

Send 
Flights 
Info.

Check 
Available 

Flights
(Receive)

Figure 5.8: Refinement Rule 4 for 1A-to-2asyncO Pattern

the internal business process of an SBP are defined in Definition 12.

Definition 12. (Consistency) For an SBP, a provided service S and the internal business

process IP are consistent with each other iff, the operations of S and respective activities

related with these operations of IP have the same control flow relations.

5.3.2 Verification of Consistency

As there is an arising need for modeling a broad range of business processes on a recurring

basis and describing them in an imperative way [34], many types of control flow structures

can exist in an SBP. Especially for verifying the consistency between a provided service and

the internal business process of an SBP, existing works [89–91] are lack of the support to

some specific control flow structures (e.g., network structure). For verifying the consistency



5.3 Consistency of Provided Service 103

between a provided service and the internal business process of an SBP, a model reduction

method need to be applied at first on the control flow of the internal business process which

enables further comparison between the reduced control flow and a corresponding provided

service. Traditional model reduction methods in existing works [89–91] can only deal with

the symmetrical control structures in an internal business process.

As a concept from structured programming, a symmetrical control structure can only

contain symmetrical blocks with well-defined start and end nodes, e.g., sequence blocks,

parallel blocks, choice blocks, and loop blocks [85]. The reduction methods in existing works

work well with the processes that only contain symmetrical control flow structures, because

of the feature of symmetrical structures that can be nested. However, these traditional

reduction methods cannot handle network structures. Therefore, it could be challenging to

deal with complex control flow structures of an SBP, in particular, network structures.

To deal with this issue, an algebra-based method is developed in this work. An algebra

expression is generated as the “travel log” of the journey of tokens through a rC-net which

departs from iC and finally arrives at oC . Because the possible existence of the choice and

loop branches, some of such branches may not be executed or be executed multiple times in

one execution of the process. In order to make sure that the token initialized in iC can finally

reach oC and all transitions can be executed only once, some “normalization” is carried out

on the places which have more than one input or output transitions.

Normalization on rC-net

As shown in Figure 5.9, one type of places which have more than one output transitions

is the XOR-split place. The normalization on this type of places is to transfer them into



104 Correctness Verification of Service-based Business Processes

corresponding XOR-split transitions. The transferred parts are in gray.

Activity2Activity1

Transfer to

Activity2Activity1

XOR-split

Figure 5.9: Normalization on XOR-split Place

As shown in Figure 5.10, one type of places which have more than one input transitions

is the XOR-join place. The normalization on this type of places is to transfer them into

corresponding XOR-join transitions. The transferred parts are in gray.

Activity2Activity1

Transfer to
Activity2Activity1

XOR-join

Figure 5.10: Normalization on XOR-join Place

As shown in Figure 5.11, one type of places which have more than one input transitions

is the Loop-in place. The normalization on this type of places is to transfer them into

corresponding Loop-in transitions. One type of places which have more than one output



5.3 Consistency of Provided Service 105

transitions is the Loop-out place. The normalization on this type of places is to transfer

them into corresponding Loop-out transitions. The transferred parts are in gray, and the

directions of the arcs connecting the Loop-transition and Loop-in place are changed.

LoopActivity1

Transfer to

LoopActivity1

Loop-in

Loop-out

Figure 5.11: Normalization on Loop-in and Loop-out Places

Six Steps of The Postmarking Method

Because there is no place with more than one input arcs in transferred rC-net, it is easy

to prove that in every marking of rC-net, the number of tokens in each place is 0 or 1. A

postmark PMC can be “stamped” on a token after it “passed through” a specific transition

of the transferred rC-net. The postmarking steps and corresponding algebra are presented

as follows:

1. The token in the initial marking iC of the rC-net is with an initial postmark I. An

example is shown in Figure 5.12.



106 Correctness Verification of Service-based Business Processes

i
C

t
C

1

...

PM
C 

= I

Figure 5.12: An Example of Postmarking Step 1

2. If a transition is labeled by an activity aj which is associated with the concerned

provided service S (i.e., 〈aj, S〉 ∈ RS), and there is a token postmarked with x in the

input place of this transition, the token in the output place of this transition will be

postmarked with x� aj. An example is shown in Figure 5.13.

t
C

PM
C 

= x

L
C
(t

C
)= aj  AND <aj ,S>  RS

Next Marking

t
C

PM
C 

= x aj 

Figure 5.13: An Example of Postmarking Step 2

3. If a transition has n(n > 1) input places with tokens postmarked with x1, x2, ..., xn,

the token in the output place of this transition will be postmarked with x1�x2 �x3



5.3 Consistency of Provided Service 107

�...�xn. An example is shown in Figure 5.14.

t
C

PM
C 

= x1

Next Marking

PM
C 

= x2 PM
C 

= xn...

...

t
C

...

PM
C 

= x1  x2  ...   xn

Figure 5.14: An Example of Postmarking Step 3

4. If a transition does not belong to the types of transitions which are discussed in step

2 and step 3, the token in its output place is postmarked the same as the token in its

input place.

5. After a token is postmarked with the form in step 3, an operation similar to factor-

ization of polynomials is performed immediately. In this operation, the symbol � is

treated as a multiplication relation (i.e., “×”) but without the commutative law and

the symbol � is treated as an addition relation (i.e., “+”). The usage of specific types

of brackets here is not based on the traditional rules in polynomial decomposition but

depends on the type of the “passed through” transition which has more than one input

places. The usage rules for brackets are (examples are shown in Figure 5.15):



108 Correctness Verification of Service-based Business Processes

i. “( )” is for the AND-join transitions.

ii. “[ ]” is for the XOR-join transitions.

iii. “{ }” is for the Loop-out transitions.

AND-joint
C

PM
C 

= x y

Next Marking

PM
C 

= x z

PM
C 

=x y   x z

     =x (y   z)

AND-joint
C

XOR-joint
C

PM
C 

= x y

Next Marking

PM
C 

= x z

PM
C 

=x y   x z

     =x [y   z]

XOR-joint
C

Loop-outt
C

PM
C 

= x y

Next Marking

PM
C 

= x z

PM
C 

=x y   x z

     =x {y   z}

Loop-outt
C

i. ii. iii.

Figure 5.15: Examples of Using Brackets in Step 5

Note that if the same type of brackets are nested, only the outside bracket set will be

kept. For example:

PMC = I � x�I � (y�z) = I � (x�(y�z)) = I � (x�y�z)

.

6. After step 5, the function A on the postmark PMC has the output as (here y, z, z1, ...zm

are postmark expressions):



5.3 Consistency of Provided Service 109

A(PMC) =



IF PMC IS IN FORM AS:

y y � (n) or y � [n] or y � {n} (n ∈ N)

y � z y � (z�n), (n ∈ N)

y � (z1�z2�...�zm) y � (z1�z2�...zm�n), (m > 1, n ∈ N)

y � [z1�z2�...�zm�1] y � [z1�z2�...zm�n], (m > 0, n ∈ N)

y � {z�1} y � {z�n}, (n ∈ N)

PMC OTHERWISE

An Example to Demonstrate The Postmarking Method

Figure 5.16 shows an example to demonstrate the proposed postmarking method. The

activities which are related to the concerned provided service are marked with gray color.

The activity “a3” of the internal business process is related with the operation “o1” of

the provided service. The activity “a2” of the internal business process is related with

the operation “o2” of the provided service. According to the refinement conditions and

normalization conditions identified in this section, there is no need for any refinement and

normalization on the C-net of this internal business process.

As shown in Figure 5.17 and Figure 5.18, the C-net of the internal business process has

seven markings. The “consumed” tokens by the fired transitions are shown with dashed line

in each marking.

• M0 - In the first marking M0, one token is in the initial place iC and the transition

AND − split1 is enabled.



110 Correctness Verification of Service-based Business Processes

o1(a3)

o2(a2)

a1

a3

AND-split1

AND-join2

a2

a4

AND-split2

AND-join1

Internal Business 
Process

Provided Service

Figure 5.16: An Example to Demonstrate The Postmarking Method

According to the step 1 of the postmarking method, the only one token in the initial

place iC of the C-net is postmarked with I, i.e.,

PMC(token1) = I.

• M1 - In the second marking M1, after the transition AND−split1 fired, the transitions

a1 and a3 are enabled.

According to the step 4 of the postmarking method, because the transition AND −

split1 is not in the same type with the transitions discussed in step 2 and step 3



5.3 Consistency of Provided Service 111

of the postmarking method, each token in the two output places of the transition is

postmarked the same as the token in its input place, i.e.,

PMC(token1) = I,

PMC(token2) = I.

• M2 - In the third marking M2, after the transitions a1 and a3 fired, the transition

AND − split2 is enabled.

According to the step 4 of the postmarking method, because the transition a1 is not in

the same type with the transitions discussed in step 2 and step 3 of the postmarking

method, the token 1 in the output place of the transition is postmarked the same as

the token in its input place.

According to the step 2 of the postmarking method, because the activity a3 is related

with the provided service, the token 2 in the output place of the transition a3 is

postmarked with I � a3, i.e.,

PMC(token1) = I,

PMC(token2) = I � a3.

• M3 - In the fourth marking M3, after the transition AND−split2 fired, the transitions

AND − join1 and a4 are enabled.

According to the step 4 of the postmarking method, because the transition AND −

split2 is not in the same type with the transitions discussed in step 2 and step 3



112 Correctness Verification of Service-based Business Processes

of the postmarking method, each token in the two output places of the transition is

postmarked the same as the token in its input place, i.e.,

PMC(token1) = I,

PMC(token2) = I � a3,

PMC(token2) = I � a3.

• M4 - In the fifth marking M4, after the transitions AND − join1 and a4 fired, the

transition a2 is enabled.

According to the step 3 of the postmarking method, because the transition AND −

join1 has two input places, the token 1 in the output place of the transition AND −

join1 is postmarked with I�I � a3.

According to the step 5 of the postmarking method, by performing the factorization

of polynomials on the postmark of the token 1 in the output place of the transition

AND − join1, the postmark of token 1 is transferred to I � (1�a3).

According to the step 6 of the postmarking method, because the postmark of the token

1 is in the form as y � (z�n), (n ∈ N), by performing the function A, the postmark of

the token 1 is finally transferred to I � a3.

According to the step 4 of the postmarking method, because the transition a4 is not in

the same type with the transitions discussed in step 2 and step 3 of the postmarking

method, the token 2 in the output place of the transition is postmarked the same as

the token in its input place, i.e.,

PMC(token1) = I � a3,



5.3 Consistency of Provided Service 113

PMC(token2) = I � a3.

• M5 - In the sixth marking M5, after the transition a2 fired, the transition AND−join2

is enabled.

According to the step 2 of the postmarking method, because the activity a2 is related

with the provided service, the token 1 in the output place of the transition a2 is

postmarked with I � a3 � a2, i.e.,

PMC(token1) = I � a3 � a2,

PMC(token2) = I � a3.

• M6 - In the seventh marking M6, after the transition AND−join2 fired, the execution

of the C-net terminates.

According to the step 3 of the postmarking method, because the transition AND −

join2 has two input places, the token 1 in the output place of the transition AND −

join2 is postmarked with I � a3 � a2�I � a3.

According to the step 5 of the postmarking method, by performing the factorization

of polynomials on the postmark of the token 1 in the output place of the transition

AND − join2, the postmark of token 1 is transferred to I � a3 � (a2�1).

According to the step 6 of the postmarking method, because the postmark of the token

1 is in the form as y � (z�n), (n ∈ N), by performing the function A, the postmark of

the token 1 is finally transfered to I � a3 � a2, i.e.,

PMC(token1) = I � a3 � a2.



114 Correctness Verification of Service-based Business Processes

M0 M1 M2 M3

a1

a3

AND-split1

AND-join2

a2

a4

AND-split2

AND-join1

a1

a3

AND-split1

AND-join2

a2

a4

AND-split2

AND-join1

a1

a3

AND-split1

AND-join2

a2

a4

AND-split2

AND-join1

a1

a3

AND-split1

AND-join2

a2

a4

AND-split2

AND-join1

1

1 2

1

2

2
3

1

Figure 5.17: Marking M0 to M3 of the C-net Example

Verifying The Consistency

The similar postmarking method can be performed on the S-net of the concerned provided

service. The only difference with the method on the C-net of the internal business process

is in step 2, if a transition is labeled by an operation opi and there is a token postmarked

with x in the input place of this transition, the token in the output place of this transition

will be postmarked with x� aj, where aj is the activity related with the operation opi (i.e.,

〈aj, opi〉 ∈ RO).



5.3 Consistency of Provided Service 115

M4 M5 M6

a1

a3

AND-split1

AND-join2

a2

a4

AND-split2

AND-join1

a1

a3

AND-split1

AND-join2

a2

a4

AND-split2

AND-join1

a1

a3

AND-split1

AND-join2

a2

a4

AND-split2

AND-join1

2

1

1 2

1

Figure 5.18: Marking M4 to M6 of the C-net Example

Then, a comparison can be carried out on the postmark PMC of the token in the ending

place oC of the C-net and the postmark PMS of the token in the ending place oS of the S-net.

It is easy to prove that if the two postmarks are with the equivalent algebraic expression,

the operations of the provided service and respective activities related with these operations

of the internal business process have the same control flow relations. Therefore, according

to Definition 12, Theorem 2 is established.

Theorem 2. For an SBP, if the postmark PMC of the token in the ending place oC of



116 Correctness Verification of Service-based Business Processes

the C-net and the postmark PMS of the token in the ending place oS of the S-net of a

provided service meet PMC = PMS, the internal business process and the provided service

are consistent with each other.

5.4 Compatibility of Invoked Service

Business can be dynamic due to regulation and customer requirements change. As a result,

both internal business process and the involved services may need to change accordingly.

Because of the complex dependencies between the internal business process and involved

services of an SBP, the changes occurring in one element can affect the others and propagate

in the SBP with a cascading manner [36, 37] that can easily cause the incompatibility

between an invoked service and the internal business process. It is demanding to ensure that

the internal business process is compatible with the invoked services of an SBP. For verifying

the compatibility, a Petri-net-based method is proposed in this section which focuses on

analyzing the interactions between the internal business process and invoked services of an

SBP.

5.4.1 Definition of Compatibility

From the perspective of the service requester, the compatibility of an invoked service requires

that there is no conflict during the interactions with the invoked service. As an example

shown in Figure 5.19, the internal business process 1 initiates the interaction by sending

an inquiry to the invoked service 1 firstly. Then the internal business process waits for the

feedback from the invoked service 1. Finally, after the internal business process receives the



5.4 Compatibility of Invoked Service 117

feedback, a rating of service is given to the invoked service. On the service side, the rating

can be received at any time which is not forced to be received after sending the feedback to

its requester. It is easy to see that there is no any conflict of interaction between the internal

business process and the invoked service, so they are compatible with each other. As the

changed service 1, service 1′ requires that the rating must be received before the feedback

is sent to the requester. After the invoked service 1′ receives the inquiry from the requester,

there is a conflict that both the requester’s internal business process and the invoked service

are waiting for messages correspondingly generated by the subsequent operation or activity.

So the internal business process 1 is not compatible with the provided service 1′.

Change to

Send 
Inquiry

Receive
Feedback

Give
Rating

Internal Process 1 Service 1 (Invoked)

Receive 
InquiryReceive 

Rating

Send
Feedback

Send 
Inquiry

Receive
Feedback

Give
Rating

Internal Process 1

Receive 
Inquiry

Send
Feedback

Service 1' (Invoked)

Receive 
Rating

Figure 5.19: Compatibility Between an Invoked Service and the Internal Business Process of
an SBP

Due to the different process-service relation patterns can be contained in an SBP as

discussed in Section 4.2, the order of input and output messages cannot be shown completely



118 Correctness Verification of Service-based Business Processes

by the original SBP model proposed in Chapter 3. Therefore, in order to define and verify

the compatibility between an invoked service and the internal business process of an SBP, a

set of corresponding refinement rules are proposed in sub Section 5.3.1 for refining the C-net

of the internal business process and the S-net of the invoked service based on the process-

service relation patterns. The refined C-net is named as rC-net and the refined S-net is

named as rS-net.

According to the refined C-net and S-net, the compatibility between an invoked service

and the internal business process of an SBP are defined in Definition 13.

Definition 13. (Compatibility) For an SBP, an invoked service S and the internal busi-

ness process IP are compatible with each other iff, there is no any conflict during the inter-

action between them.

5.4.2 Verification of Compatibility

According to Definition 13, for a compatible invoked service of an SBP, conflicts in the

interaction between the internal business process and the invoked service must be avoided.

To verify the compatibility between the internal business process and an invoked service,

some “normalization” is carried out on the rC-net of the internal business process and

the rS-net of an invoked service of a being verified SBP. The rC-net and the rS-net are

combined by connecting each operation transition of the rS-net and its corresponding related

activity transition of the rC-net with a place named as interface place, and directions of the

arcs represent message flow depending on the message transmission types of the operations

(Definition 5). An overall initial place i that connects iC of the rC-net and iS of the rS-net



5.4 Compatibility of Invoked Service 119

Send 
Inquiry

Receive
Feedback

Receive 
Inquiry

Send
Feedback

S-netC-net

t
dis

t
col

i

o

i
C

i
S

o
C

o
S

Interface places

Figure 5.20: An Example of the Normalization on rC-net and rS-net

by a distributor transition tdis, an overall ending place o that connects oC of the rC-net and

oS of the rS-net by a collector transition tcol. An example of the normalization is shown in

Figure 5.20.

As indicated in Definition 13, for verifying the compatibility between an invoked service

and the internal business process of an SBP, there is a need for a method which is able

to determine the existence of conflicts during the interactions between the service and the

process. It is easy to prove that if the combined net (containing the rC-net of the internal

business process and the rS-net of the invoked service) is CF sound (Definition 7), the

interaction between the service and the process is conflict-free so that he Theorem 3 holds.



120 Correctness Verification of Service-based Business Processes

Therefore, the compatibility can be verified by utilizing the same verification method for the

CF soundness in Section 5.1.2.

Theorem 3. For an invoked service and the internal business process of an SBP, if the

combined net of their respective rS-net and rC-net is CF sound, they are compatible with

each other.

5.5 Discussion

In this chapter, for verifying the correctness of an SBP, a set of correctness properties have

been identified firstly which are CF soundness of control flow, DF soundness and weak

DF soundness of data flow, consistency of provided services, and compatibility of invoked

services. Then, the verification methods of these correctness properties are developed corre-

spondingly based on the Petri-net-based SBP model proposed in Chapter 3.

For verifying the CF soundness, the issue is transformed into verifying the liveness and

boundedness properties by the assistance of CPN tools and respective proof of the equivalent

transformation is given. Approaches at the early time for modeling and analyzing business

processes by Petri net are in the workflow area. One of the most famous approaches is

Workflow nets [61, 77, 78]. These early works mainly focus on the process structure but

neglect the data flow inside.

For verifying the DF soundness and the weak DF soundness, a set of data flow anomalies

are identified, and an anomaly detection algorithm is developed correspondingly. The pro-

posed data anomaly detection method can provide more details of an anomaly rather than

only a simple type in other works [65, 83].



5.5 Discussion 121

Because provided services and invoked services have different features, two correctness

properties, consistency of provided services and compatibility of invoked services, are identi-

fied accordingly. For verifying the consistency of provided services, an algebra-based method

is developed. An algebraic expression is generated by the method as the “postmark” on a

token of a C-net or an S-net. The proposed method can support both the symmetrical and

network structures in the control flow of an internal business process. The latter cannot be

handled in the existing works [89–91].

For verifying the compatibility of invoked services, a Petri-net-based method is developed.

Some refinement is implied at first on the C-net of the internal business process and the S-net

of an invoked service which combines these two nets into one combined net. The verification

of the compatibility is transformed into verifying the CF soundness of the combined net.

In the following chapters, the change management of SBPs will be discussed in details

by the assistance of the SBP model and design patterns in Chapter 3&4 and the correctness

verification of SBP in this chapter.



122 Correctness Verification of Service-based Business Processes



6
Change Patterns of Service-based Business

Processes

Due to the distributed and dynamic nature, changes of the internal business process and

involved services of an SBP can happen often. There are dependencies between the internal

123



124 Change Patterns of Service-based Business Processes

business process and involved services [35], therefore, the changes occurring in one side may

affect the other one in certain degrees and can propagate in the whole SBP like the cascading

effect which makes the change management in SBP a really challenging problem [36, 37].

A change of an activity belonging to a process may affect other activities and related

services of the process. A service change may require further changes of one or multiple

activities of the process. Change propagation refers to that a single change of an activity

or a service causes a series of changes associated with activities and/or services. In order

to deal with complicated situations of SBP changes, it is necessary to have a mechanism

of change management. The foundation of the change management of SBP is to identify

the common change types or change patterns. In this chapter, a set of change patterns

of SBP are identified based on the common changes frequently occurring in the real world

cases. These change types or patterns can be utilized as enabling tools for SBP designers

to transform the ad-hoc change requirements into general changes and decompose complex

changes into several change primitives. Each change pattern introduced in this chapter is

described in both informal and formal specification. The formal specification of a change

pattern is based on the SBP model defined in Chapter 3. A change of an SBP can be

represented by a set of operations performed on the SBP model.

The rest of this chapter is organized as follows. In Section 6.1, the change patterns of

the internal business process of an SBP are identified. In Section 6.2, the change patterns

of the services involved in an SBP are identified. Further discussion about this chapter is in

Section 6.3.



6.1 Change Patterns of Internal Business Processes 125

6.1 Change Patterns of Internal Business Processes

6.1.1 Activity Existence Changes

This type of changes refers to like the changes of the existence of activities. Only the “delete”

and “insert” operation can change the existence of an activity. The “replace” operation is

also considered in this work as a combination which “deletes” the targeting activity at first

and then “inserts” another activity to the position of the deleted activity.

PC-1 Delete an activity

Description: The delete an activity change refers to that an activity is removed from

the internal business process of an SBP.

In Formal: Assume that the deleted activity is a.

For the set of activities Act′ of the changed internal business process IP ′,

Act′ = Act− {a}.

tb

ta

px

py

...

tb

py

...

Delete

Figure 6.1: An Example of C-net Changes in PC-1

For calculating the changed control flow net CN ′ of the changed internal business



126 Change Patterns of Service-based Business Processes

process IP ′, there are three different types of operations for this change in respective

cases. The differences between these cases depend on the different possible positions

of the transition ta that is labeled with the activity a (i.e.,LC(ta) = a) in the original

control flow net CN (Figure 6.1 shows an example of case ii.):

i. In the case of: in CN , the input place of ta is px, the output place of ta is py

which has only one input transition ta and one output transition tb. For CN ′,

T ′C = TC − {ta},

P ′C = PC − {py},

F ′C = FC ∪ {〈px, tb〉} − {〈px, ta〉, 〈ta, py〉, 〈py, tb〉}.

ii. In the case of: in CN , the input place of ta is px which has only one input

transition tb and one output transition ta, the output place of ta is py which is

not a “1-in-1-out” type of place. For CN ′,

T ′C = TC − {ta},

P ′C = PC − {px},

F ′C = FC ∪ {〈tb, py〉} − {〈tb, px〉, 〈px, ta〉, 〈ta, py〉}.

iii. In the other cases, in CN , the input place of ta is px, the output place of ta is py.

For CN ′,

T ′C = TC ∪ {tc} − {ta} (LC(tc) = τ),

P ′C = PC ,

F ′C = FC ∪ {〈px, tc〉, 〈tc, py〉} − {〈px, ta〉, 〈ta, py〉}.



6.1 Change Patterns of Internal Business Processes 127

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . For the data flow part, the respective

I/O parameter transitions and places of the deleted activity a will be removed, and

the flow relations associated with these transitions and places will be removed as well.

PC-2 Add an activity sequentially

Description: The add an activity sequentially change refers to that an activity is

inserted before/after a specific node of the control flow of the internal business process

of an SBP. The specific node can be the start/end event, any gateway, or another

activity.

In Formal: Assume that the added activity is a.

For the set of activities Act′ of the changed internal business process IP ′,

Act′ = Act ∪ {a}.

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, there are four different types of operations for this change in respective

cases. The differences between these cases depend on the different change requirements

of where to insert the transition ta that is labeled with the activity a (i.e.,LC(ta) = a)

in the original control flow net CN (Figure 6.2 shows an example of case iii.):



128 Change Patterns of Service-based Business Processes

tb

px

py

...

Add

LOOP

...
ta

...

tb

px

...
LOOP

...

ta

Figure 6.2: An Example of C-net Changes in PC-2

i. In the case of: in CN , the transition ta will be inserted sequentially after a

specific transition tb that has only one output place px. The respective change

requirement is to add an activity a sequentially after another activity or an AND-

join gateway. For CN ′,

T ′C = TC ∪ {ta},

P ′C = PC ∪ {py},

F ′C = FC ∪ {〈tb, py〉, 〈py, ta〉, 〈ta, px〉} − {〈tb, px〉}.

ii. In the case of: in CN , the transition ta will be inserted sequentially before a

specific transition tb that has only one input place px. The respective change

requirement is to add an activity a sequentially before another activity or an

AND-split gateway. For CN ′,

T ′C = TC ∪ {ta},

P ′C = PC ∪ {py},

F ′C = FC ∪ {〈px, ta〉, 〈ta, py〉, 〈py, tb〉} − {〈px, tb〉}.



6.1 Change Patterns of Internal Business Processes 129

iii. In the case of: in CN , the transition ta will be inserted sequentially after a

specific place px that has only one output transition tb or has only two output

transitions tb and a LOOP transition. The respective change requirement is to

add an activity a sequentially after the start event, an XOR-join gateway, or a

LOOP-out gateway. For CN ′,

T ′C = TC ∪ {ta},

P ′C = PC ∪ {py},

F ′C = FC ∪ {〈px, ta〉, 〈ta, py〉, 〈py, tb〉} − {〈px, tb〉}.

iv. In the case of: in CN , the transition ta will be inserted sequentially before

a specific place px that has only one input transition tb or has only two input

transitions tb and a LOOP transition. The respective change requirement is to

add an activity a sequentially before the end event, an XOR-split gateway, or a

LOOP-in gateway. For CN ′,

T ′C = TC ∪ {ta},

P ′C = PC ∪ {py},

F ′C = FC ∪ {〈tb, py〉, 〈py, ta〉, 〈ta, px〉} − {〈tb, px〉}.

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data ∪ InPara(a) ∪OutPara(a).

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied on



130 Change Patterns of Service-based Business Processes

the control flow part of the original CDN . For the data flow part, the respective I/O

parameter transitions and places of the added activity a and the possible new data

element places will be added. The flow relations associated with these transitions and

places will be added as well.

PC-3 Add an activity in parallel to existing activities

Description: The add an activity in parallel to existing activities change refers to

that an activity is inserted as a parallel branch to one or more existing activities of the

control flow of the internal business process of an SBP.

In Formal: Assume that the added activity is a.

For the set of activities Act′ of the changed internal business process IP ′,

Act′ = Act ∪ {a}.

tc

px

... Add

...

tatb

py

... tc

px

...

...

tb

py
...

ta

pia

poa

pob

poc

tands

tandj

Figure 6.3: An Example of C-net Changes in PC-3

For calculating the changed control flow net CN ′ of the changed internal business



6.1 Change Patterns of Internal Business Processes 131

process IP ′, there are five different types of operations for this change in respective

cases. The differences between these cases depend on the different change requirements

of where to insert the transition ta that is labeled with the activity a (i.e.,LC(ta) = a)

in the original control flow net CN (Figure 6.3 shows an example of case iv.):

i. In the case of: in CN , the transition ta will be inserted in parallel to a continuous

fragment starting from the transition tb and ending to the transition tc. The

transition tb must have only one input place (assuming it is px) and the transition

tc must have only one output place (assuming it is py). The fragment contains

one or more activity transitions. The respective change requirement is to add

an activity a in parallel to a fragment starting from an activity or an AND-split

gateway, ending to another activity or an AND-join gateway. For CN ′,

T ′C = TC ∪ {ta, tands, tandj}, (LC(tands) = τ, LC(tandj) = τ)

P ′C = PC ∪ {pib, poc, pia, poa},

F ′C = FC ∪ {〈px, tands〉, 〈tands, pib〉, 〈tands, pia〉, 〈pib, tb〉, 〈pia, ta〉,

〈tc, poc〉, 〈ta, poa〉, 〈poc, tandj〉, 〈poa, tandj〉, 〈tandj, py〉} − {〈px, tb〉, 〈tc, py〉}.

ii. In the case of: in CN , the transition ta will be inserted in parallel to a continuous

fragment starting from the place px and ending to the place py. The place px must

have only one “non-LOOP-transition” input transition (assuming it is tb) and the

place py must have only one “non-LOOP-transition” output transition (assuming

it is tc). The fragment contains one or more activity transitions. The respective



132 Change Patterns of Service-based Business Processes

change requirement is to add an activity a in parallel to the fragment starting

from an XOR-split or LOOP-in gateway, ending to an XOR-join or LOOP-out

gateway. For CN ′,

T ′C = TC ∪ {ta, tands, tandj}, (LC(tands) = τ, LC(tandj) = τ)

P ′C = PC ∪ {pob, pic, pia, poa},

F ′C = FC ∪ {〈tb, pob〉, 〈pob, tands〉, 〈tands, px〉, 〈tands, pia〉, 〈pia, ta〉,

〈ta, poa〉, 〈py, tandj〉, 〈poa, tandj〉, 〈tandj, pic〉, 〈pic, tc〉} − {〈tb, px〉, 〈py, tc〉}.

iii. In the case of: in CN , the transition ta will be inserted in parallel to a contin-

uous fragment starting from the transition tb and ending to the place py. The

transition tb must have only one input place (assuming it is px) and the place py

must have only one “non-LOOP-transition” output transition (assuming it is tc).

The fragment contains one or more activity transitions. The respective change

requirement is to add an activity a in parallel to the fragment starting from an

activity or an AND-split gateway, ending to an XOR-join or LOOP-out gateway.

For CN ′,

T ′C = TC ∪ {ta, tands, tandj}, (LC(tands) = τ, LC(tandj) = τ)

P ′C = PC ∪ {pib, pic, pia, poa},

F ′C = FC ∪ {〈px, tands〉, 〈tands, pib〉, 〈tands, pia〉, 〈pib, tb〉, 〈pia, ta〉,

〈ta, poa〉, 〈py, tandj〉, 〈poa, tandj〉, 〈tandj, pic〉, 〈pic, tc〉} − {〈px, tb〉, 〈py, tc〉}.



6.1 Change Patterns of Internal Business Processes 133

iv. In the case of: in CN , the transition ta will be inserted in parallel to a continuous

fragment starting from the place px and ending to the transition tc. The place

px must have only one “non-LOOP-transition” input transition (assuming it is

tb) and the transition tc must have only one output place (assuming it is py).

The fragment contains one or more activity transitions. The respective change

requirement is to add an activity a in parallel to the fragment starting from an

XOR-split or LOOP-in gateway, ending to an activity or an AND-join gateway.

For CN ′,

T ′C = TC ∪ {ta, tands, tandj}, (LC(tands) = τ, LC(tandj) = τ)

P ′C = PC ∪ {pob, poc, pia, poa},

F ′C = FC ∪ {〈tb, pob〉, 〈pob, tands〉, 〈tands, px〉, 〈tands, pia〉, 〈pia, ta〉,

〈tc, poc〉, 〈ta, poa〉, 〈poc, tandj〉, 〈poa, tandj〉, 〈tandj, py〉} − {〈tb, px〉, 〈tc, py〉}.

v. In the case of: in CN , the transition ta will be inserted as a new branch of a

parallel fragment starting from the transition tands and ending to the transition

tandj. The respective change requirement is to add an activity a in a parallel

fragment as another branch. For CN ′,

T ′C = TC ∪ {ta},

P ′C = PC ∪ {pia, poa},

F ′C = FC ∪ {〈tands, pia〉, 〈pia, ta〉, 〈ta, poa〉, 〈poa, tandj〉}.



134 Change Patterns of Service-based Business Processes

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data ∪ InPara(a) ∪OutPara(a).

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied on

the control flow part of the original CDN . For the data flow part, the respective I/O

parameter transitions and places of the added activity a and the possible new data

element places will be added. The flow relations associated with these transitions and

places will be added as well.

PC-4 Add an activity conditionally to existing activities

Description: The add an activity conditionally to existing activities change refers to

that an activity is inserted as an XOR branch to one or more existing activities of the

control flow of the internal business process of an SBP.

In Formal: Assume that the added activity is a.

For the set of activities Act′ of the changed internal business process IP ′,

Act′ = Act ∪ {a}.

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, there are five different types of operations for this change in respective

cases. The differences between these cases depend on the different change requirements

of where to insert the transition ta that is labeled with the activity a (i.e.,LC(ta) = a)

in the original control flow net CN (Figure 6.4 shows an example of case iii.):



6.1 Change Patterns of Internal Business Processes 135

tc

tb

... Add

...

tapx

py

...

toy

tb

...

...

px

py

...

tox

pxors

ta

pxors

tc

Figure 6.4: An Example of C-net Changes in PC-4

i. In the case of: in CN , the transition ta will be inserted conditionally to a contin-

uous fragment starting from the transition tb and ending to the transition tc. The

transition tb must have only one input place (assuming it is px) and the transition

tc must have only one output place (assuming it is py). The fragment contains

one or more activity transitions. The respective change requirement is to add an

activity a conditionally to the fragment starting from an activity or an AND-split

gateway, ending to another activity or an AND-join gateway. For CN ′,

T ′C = TC ∪ {ta, tox, tiy}, (LC(tox) = τ, LC(tiy) = τ)

P ′C = PC ∪ {pxors, pxorj},

F ′C = FC ∪ {〈px, tox〉, 〈tox, pxors〉, 〈pxors, tb〉,

〈pxors, ta〉, 〈tc, pxorj〉, 〈ta, pxorj〉, 〈pxorj, tiy〉, 〈tiy, py〉} − {〈px, tb〉, 〈tc, py〉}.



136 Change Patterns of Service-based Business Processes

ii. In the case of: in CN , the transition ta will be inserted conditionally to a contin-

uous fragment starting from the place px and ending to the place py. The place

px must have only one “non-LOOP-transition” input transition (assuming it is tb)

and the place py must have only one “non-LOOP-transition” output transition

(assuming it is tc). The fragment contains one or more activity transitions. The

respective change requirement is to add an activity a conditionally to the frag-

ment starting from an XOR-split or LOOP-in gateway, ending to an XOR-join or

LOOP-out gateway. For CN ′,

T ′C = TC ∪ {ta, tix, toy}, (LC(tix) = τ, LC(toy) = τ)

P ′C = PC ∪ {pxors, pxorj},

F ′C = FC ∪ {〈tb, pxors〉, 〈pxors, tix〉, 〈tix, px〉,

〈pxors, ta〉, 〈py, toy〉, 〈toy, pxorj〉, 〈ta, pxorj〉, 〈pxorj, tc〉} − {〈tb, px〉, 〈py, tc〉}.

iii. In the case of: in CN , the transition ta will be inserted conditionally to a con-

tinuous fragment starting from the transition tb and ending to the place py. The

transition tb must have only one input place (assuming it is px) and the place py

must have only one “non-LOOP-transition” output transition (assuming it is tc).

The fragment contains one or more activity transitions. The respective change

requirement is to add an activity a conditionally to the fragment starting from an

activity or an AND-split gateway, ending to an XOR-join or LOOP-out gateway.

For CN ′,

T ′C = TC ∪ {ta, tox, toy}, (LC(tox) = τ, LC(toy) = τ)



6.1 Change Patterns of Internal Business Processes 137

P ′C = PC ∪ {pxors, pxorj},

F ′C = FC ∪ {〈px, tox〉, 〈tox, pxors〉, 〈pxors, tb〉,

〈pxors, ta〉, 〈py, toy〉, 〈toy, pxorj〉, 〈ta, pxorj〉, 〈pxorj, tc〉} − {〈px, tb〉, 〈py, tc〉}.

iv. In the case of: in CN , the transition ta will be inserted conditionally to a con-

tinuous fragment starting from the place px and ending to the transition tc. The

place px must have only one “non-LOOP-transition” input transition (assuming

it is tb) and the transition tc must have only one output place (assuming it is py).

The fragment contains one or more activity transitions. The respective change

requirement is to add an activity a conditionally to the fragment starting from an

XOR-split or LOOP-in gateway, ending to an activity or an AND-join gateway.

For CN ′,

T ′C = TC ∪ {ta, tix, tiy}, (LC(tix) = τ, LC(tiy) = τ)

P ′C = PC ∪ {pxors, pxorj},

F ′C = FC ∪ {〈tb, pxors〉, 〈pxors, tix〉, 〈tix, px〉,

〈pxors, ta〉, 〈tc, pxorj〉, 〈ta, pxorj〉, 〈pxorj, tiy〉, 〈tiy, py〉} − {〈tb, px〉, 〈tc, py〉}.

v. In the case of: in CN , the transition ta will be inserted as a new branch of a

conditional fragment starting from the place pxors and ending to the place pxorj.

The respective change requirement is to add an activity a in a conditional fragment

as another branch. For CN ′,

T ′C = TC ∪ {ta},



138 Change Patterns of Service-based Business Processes

P ′C = PC ,

F ′C = FC ∪ {〈pxors, ta〉, 〈ta, pxorj〉}.

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data ∪ InPara(a) ∪OutPara(a).

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied on

the control flow part of the original CDN . For the data flow part, the respective I/O

parameter transitions and places of the added activity a and the possible new data

element places will be added. The flow relations associated with these transitions and

places will be added as well.

PC-5 Replace an activity by another one

Description: The replace an activity by another one change refers to that an activity

is replaced by another activity in the internal business process of an SBP.

In Formal: Assume that the replaced activity is a and the alternative activity is b.

For the set of activities Act′ of the changed internal business process IP ′,

Act′ = Act ∪ {b} − {a}.

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, assume that the input and output places of the transition ta labeled with

the activity a (i.e.,LC(ta) = a) are px and py respectively in the original control flow net

CN . For the changed control flow net CN ′ (Figure 6.5 shows an example of PC-5.),



6.1 Change Patterns of Internal Business Processes 139

py

tc

px

...

...

tb

py

td

px

...

...

ta
Replace

tb
Replacetc

Figure 6.5: An Example of C-net Changes in PC-5

T ′C = TC ∪ {tb} − {ta},

P ′C = PC ,

F ′C = FC ∪ {〈px, tb〉, 〈tb, py〉} − {〈px, ta〉, 〈ta, py〉}.

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data ∪ InPara(b) ∪OutPara(b).

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . For the data flow part, the respective

I/O parameter transitions and places of the replaced activity a will be removed, and

the flow relations associated with these transitions and places will be removed. The

respective I/O parameter transitions and places of the alternative activity b and the

possible new data element places will be added, and the flow relations associated with

these transitions and places will be added.



140 Change Patterns of Service-based Business Processes

6.1.2 Activity Order Changes

This type of changes refers to as the change of execution order of activities. By this type of

changes, the existence of activities is not changed.

PC-6 Add a conditional shortcut

Description: The add a conditional shortcut change refers to that a “conditional

shortcut” is added to make a fragment be executed conditionally in the internal busi-

ness process of an SBP.

In Formal: For the set of activities Act′ of the changed internal business process

IP ′,

Act′ = Act.

tc

tb

... Add

...

tapx

py
...

tiy

tb

...

...

px

py
...

tox

pxors

ta

pxors

tc

Figure 6.6: An Example of C-net Changes in PC-6

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, there are five different types of operations for this change in respective



6.1 Change Patterns of Internal Business Processes 141

cases. The differences between these cases depend on the different change requirements

of where to insert the conditional shortcut transition ta that is not labeled with any

activity (i.e.,LC(ta) = τ) in the original control flow net CN (Figure 6.6 shows an

example of case i.):

i. In the case of: in CN , the transition ta will be inserted conditionally to a contin-

uous fragment starting from the transition tb and ending to the transition tc. The

transition tb must have only one input place (assuming it is px) and the transition

tc must have only one output place (assuming it is py). The fragment contains

one or more activity transitions. The respective change requirement is to add a

conditional shortcut to the fragment starting from an activity or an AND-split

gateway, ending to another activity or an AND-join gateway. For CN ′,

T ′C = TC ∪ {ta, tox, tiy}, (LC(tox) = τ, LC(tiy) = τ)

P ′C = PC ∪ {pxors, pxorj},

F ′C = FC ∪ {〈px, tox〉, 〈tox, pxors〉, 〈pxors, tb〉,

〈pxors, ta〉, 〈tc, pxorj〉, 〈ta, pxorj〉, 〈pxorj, tiy〉, 〈tiy, py〉} − {〈px, tb〉, 〈tc, py〉}.

ii. In the case of: in CN , the transition ta will be inserted conditionally to a contin-

uous fragment starting from the place px and ending to the place py. The place

px must have only one “non-LOOP-transition” input transition (assuming it is

tb) and the place py must have only one “non-LOOP-transition” output transi-

tion (assuming it is tc). The fragment contains one or more activity transitions.



142 Change Patterns of Service-based Business Processes

The respective change requirement is to add a conditional shortcut to the frag-

ment starting from an XOR-split or LOOP-in gateway, ending to an XOR-join or

LOOP-out gateway. For CN ′,

T ′C = TC ∪ {ta, tix, toy}, (LC(tix) = τ, LC(toy) = τ)

P ′C = PC ∪ {pxors, pxorj},

F ′C = FC ∪ {〈tb, pxors〉, 〈pxors, tix〉, 〈tix, px〉,

〈pxors, ta〉, 〈py, toy〉, 〈toy, pxorj〉, 〈ta, pxorj〉, 〈pxorj, tc〉} − {〈tb, px〉, 〈py, tc〉}.

iii. In the case of: in CN , the transition ta will be inserted conditionally to a con-

tinuous fragment starting from the transition tb and ending to the place py. The

transition tb must have only one input place (assuming it is px) and the place py

must have only one “non-LOOP-transition” output transition (assuming it is tc).

The fragment contains one or more activity transitions. The respective change

requirement is to add a conditional shortcut to the fragment starting from an

activity or an AND-split gateway, ending to an XOR-join or LOOP-out gateway.

For CN ′,

T ′C = TC ∪ {ta, tox, toy}, (LC(tox) = τ, LC(toy) = τ)

P ′C = PC ∪ {pxors, pxorj},

F ′C = FC ∪ {〈px, tox〉, 〈tox, pxors〉, 〈pxors, tb〉,

〈pxors, ta〉, 〈py, toy〉, 〈toy, pxorj〉, 〈ta, pxorj〉, 〈pxorj, tc〉} − {〈px, tb〉, 〈py, tc〉}.



6.1 Change Patterns of Internal Business Processes 143

iv. In the case of: in CN , the transition ta will be inserted conditionally to a con-

tinuous fragment starting from the place px and ending to the transition tc. The

place px must have only one “non-LOOP-transition” input transition (assuming

it is tb) and the transition tc must have only one output place (assuming it is py).

The fragment contains one or more activity transitions. The respective change

requirement is to add a conditional shortcut to the fragment starting from an

XOR-split or LOOP-in gateway, ending to an activity or an AND-join gateway.

For CN ′,

T ′C = TC ∪ {ta, tix, tiy}, (LC(tix) = τ, LC(tiy) = τ)

P ′C = PC ∪ {pxors, pxorj},

F ′C = FC ∪ {〈tb, pxors〉, 〈pxors, tix〉, 〈tix, px〉,

〈pxors, ta〉, 〈tc, pxorj〉, 〈ta, pxorj〉, 〈pxorj, tiy〉, 〈tiy, py〉} − {〈tb, px〉, 〈tc, py〉}.

v. In the case of: in CN , the transition ta will be inserted as a new branch of a

conditional fragment starting from the place pxors and ending to the place pxorj.

The respective change requirement is to add a conditional shortcut in a conditional

fragment as another branch. For CN ′,

T ′C = TC ∪ {ta},

P ′C = PC ,

F ′C = FC ∪ {〈pxors, ta〉, 〈ta, pxorj〉}.



144 Change Patterns of Service-based Business Processes

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . The data flow part of CDN ′ keeps the

same with the original CDN .

PC-7 Delete a conditional shortcut

Description: The delete a conditional shortcut change refers to that a “conditional

shortcut” is removed from the internal business process of an SBP.

In Formal: For the set of activities Act′ of the changed internal business process

IP ′,

Act′ = Act.

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, the conditional shortcut transition ta that is not labeled with any activity

(i.e.,LC(ta) = τ) and relative flow relations will be removed from the original control

flow net CN (Figure 6.7 shows an example of case ii.):

T ′C = TC − {ta},

P ′C = PC ,

F ′C = FC − {〈pxors, ta〉, 〈ta, pxorj〉}.



6.1 Change Patterns of Internal Business Processes 145

Delete

tiy

tb

...

...

px

py
...

tox

pxors

ta

pxors

tc

tiy

tb

...

...

px

py
...

tox

pxors

pxors

tc

Figure 6.7: An Example of C-net Changes in PC-7

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . The data flow part of CDN ′ keeps the

same with the original CDN .

PC-8 Add a loop

Description: The add a loop change refers to that a “loop” is added to make a

fragment be repeatedly executed in the internal business process of an SBP.

In Formal: For the set of activities Act′ of the changed internal business process

IP ′,

Act′ = Act.



146 Change Patterns of Service-based Business Processes

tc

tb

... Add

...

tapx

py
...

tiy

tb

...

...

px

py
...

tox

ploopi

ta

ploopo

tc

Figure 6.8: An Example of C-net Changes in PC-8

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, there are four different types of operations for this change in respective

cases. The differences between these cases depend on the different change require-

ments of where to insert the loop transition ta that is not labeled with any activity

(i.e.,LC(ta) = τ) in the original control flow net CN (Figure 6.8 shows an example of

case i.):

i. In the case of: in CN , the loop transition ta will be inserted to a continuous

fragment starting from the transition tb and ending to the transition tc. The

transition tb must have only one input place (assuming it is px) and the transition

tc must have only one output place (assuming it is py). The fragment contains

one or more activity transitions. The respective change requirement is to add a

loop to the fragment starting from an activity or an AND-split gateway, ending



6.1 Change Patterns of Internal Business Processes 147

to another activity or an AND-join gateway. For CN ′,

T ′C = TC ∪ {ta, tox, tiy}, (LC(tox) = τ, LC(tiy) = τ)

P ′C = PC ∪ {ploopi, ploopo},

F ′C = FC ∪ {〈px, tox〉, 〈tox, ploopi〉, 〈ploopi, tb〉,

〈tc, ploopo〉, 〈ploopo, ta〉, 〈ta, ploopi〉, 〈ploopo, tiy〉, 〈tiy, py〉} − {〈px, tb〉, 〈tc, py〉}.

ii. In the case of: in CN , the loop transition ta will be inserted to a continuous

fragment starting from the place px and ending to the place py. The place px

must have only one “non-LOOP-transition” input transition (assuming it is tb)

and the place py must have only one “non-LOOP-transition” output transition

(assuming it is tc). The fragment contains one or more activity transitions. The

respective change requirement is to add a loop to the fragment starting from an

XOR-split or LOOP-in gateway, ending to an XOR-join or LOOP-out gateway.

For CN ′,

T ′C = TC ∪ {ta, tix, toy}, (LC(tix) = τ, LC(toy) = τ)

P ′C = PC ∪ {ploopi, ploopo},

F ′C = FC ∪ {〈tb, ploopi〉, 〈ploopi, tix〉, 〈tix, px〉,

〈py, toy〉, 〈toy, ploopo〉, 〈ploopo, ta〉, 〈ta, ploopi〉, 〈ploopo, tc〉} − {〈tb, px〉, 〈py, tc〉}.

iii. In the case of: in CN , the loop transition ta will be inserted to a continuous frag-

ment starting from the transition tb and ending to the place py. The transition tb



148 Change Patterns of Service-based Business Processes

must have only one input place (assuming it is px) and the place py must have only

one “non-LOOP-transition” output transition (assuming it is tc). The fragment

contains one or more activity transitions. The respective change requirement is

to add a loop to the fragment starting from an activity or an AND-split gateway,

ending to an XOR-join or LOOP-out gateway. For CN ′,

T ′C = TC ∪ {ta, tox, toy}, (LC(tox) = τ, LC(toy) = τ)

P ′C = PC ∪ {ploopi, ploopo},

F ′C = FC ∪ {〈px, tox〉, 〈tox, ploopi〉, 〈ploopi, tb〉,

〈py, toy〉, 〈toy, ploopo〉, 〈ploopo, ta〉, 〈ta, ploopi〉, 〈ploopo, tc〉} − {〈px, tb〉, 〈py, tc〉}.

iv. In the case of: in CN , the loop transition ta will be inserted to a continuous

fragment starting from the place px and ending to the transition tc. The place

px must have only one “non-LOOP-transition” input transition (assuming it is

tb) and the transition tc must have only one output place (assuming it is py).

The fragment contains one or more activity transitions. The respective change

requirement is to add a loop to the fragment starting from an XOR-split or LOOP-

in gateway, ending to an activity or an AND-join gateway. For CN ′,

T ′C = TC ∪ {ta, tix, tiy}, (LC(tix) = τ, LC(tiy) = τ)

P ′C = PC ∪ {ploopi, ploopo},

F ′C = FC ∪ {〈tb, ploopi〉, 〈ploopi, tix〉, 〈tix, px〉,

〈tc, ploopo〉, 〈ploopo, ta〉, 〈ta, ploopi〉, 〈ploopo, tiy〉, 〈tiy, py〉} − {〈tb, px〉, 〈tc, py〉}.



6.1 Change Patterns of Internal Business Processes 149

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . The data flow part of CDN ′ keeps the

same with the original CDN .

PC-9 Delete a loop

Description: The delete a loop change refers to that a “loop” is removed from the

internal business process of an SBP.

In Formal: For the set of activities Act′ of the changed internal business process

IP ′,

Act′ = Act.

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, the loop transition ta that is not labeled with any activity (i.e.,LC(ta) = τ)

and relative flow relations will be removed from the original control flow net CN (Figure

6.9 shows an example of PC-9.):

T ′C = TC − {ta},

P ′C = PC ,

F ′C = FC − {〈ploopo, ta〉, 〈ta, ploopi〉}.



150 Change Patterns of Service-based Business Processes

Delete

tiy

tb

...

...

px

py
...

tox

ploopi

ta

ploopo

tc

tiy

tb

...

...

px

py
...

tox

tc

ploopi

ploopo

Figure 6.9: An Example of C-net Changes in PC-9

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . The data flow part of CDN ′ keeps the

same with the original CDN .

PC-10 Add a control dependency

Description: The add a control dependency change refers to that a control depen-

dency is inserted between two parallel branches of the control flow of the internal

business process of an SBP.

In Formal: For the set of activities Act′ of the changed internal business process



6.1 Change Patterns of Internal Business Processes 151

IP ′,

Act′ = Act.

Add Control 
Dependency

tc

py

...

...

tb

px
...

...

...

...

tc

py

...

...

tb

px

...

...

...

...

tands

tandj

pic

pob
pcd

Figure 6.10: An Example of C-net Changes in PC-10

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, there are four different types of operations for this change in respective

cases. The differences between these cases depend on the different change requirements

of where to insert the control dependency in the original control flow net CN (Figure

6.10 shows an example of case i.):

i. In the case of: in CN , the control dependency will be inserted after the execution

of transition tb and before the execution of transition tc, which tb and tc are in two

parallel branches. The transition tb must have only one output place (assuming

it is px) and the transition tc must have only one input place (assuming it is py).

The respective change requirement is to add a control dependency between two

transitions in parallel branches (the first transition can be an activity transition



152 Change Patterns of Service-based Business Processes

or an AND-join transition, the second transition can be an activity transition or

an AND-split transition). For CN ′,

T ′C = TC ∪ {tands, tandj}, (LC(tands) = τ, LC(tandj) = τ)

P ′C = PC ∪ {pob, pic, pcd},

F ′C = FC ∪ {〈tb, pob〉, 〈pob, tands〉, 〈tands, px〉,

〈tands, pcd〉, 〈pcd, tandj〉, 〈py, tandj〉, 〈tandj, pic〉, 〈pic, tc〉} − {〈tb, px〉, 〈py, tc〉}.

ii. In the case of: in CN , the control dependency will be inserted after the place px

and before the place py, which px and py are in two parallel branches. The place

px must have only one “non-LOOP-transition” output transition (assuming it is

tb) and the place py must have only one “non-LOOP-transition” input transition

(assuming it is tc). The respective change requirement is to add a control depen-

dency between two places in parallel branches (the first place can be an XOR-join

place or a LOOP-out place, the second place can be an XOR-split place or a

LOOP-in place). For CN ′,

T ′C = TC ∪ {tands, tandj}, (LC(tands) = τ, LC(tandj) = τ)

P ′C = PC ∪ {pib, poc, pcd},

F ′C = FC ∪ {〈px, tands〉, 〈tands, pib〉, 〈pib, tb〉,

〈tands, pcd〉, 〈pcd, tandj〉, 〈tc, poc〉, 〈poc, tandj〉, 〈tandj, py〉} − {〈px, tb〉, 〈tc, py〉}.



6.1 Change Patterns of Internal Business Processes 153

iii. In the case of: in CN , the control dependency will be inserted after the execution

of transition tb and before the place py, which tb and py are in two parallel branches.

The transition tb must have only one output place (assuming it is px) and the place

py must have only one “non-LOOP-transition” input transition (assuming it is

tc). The respective change requirement is to add a control dependency between a

transition and a place in two parallel branches (the transition can be an activity

transition or an AND-join transition, the place can be an XOR-split place or a

LOOP-in place). For CN ′,

T ′C = TC ∪ {tands, tandj}, (LC(tands) = τ, LC(tandj) = τ)

P ′C = PC ∪ {pob, poc, pcd},

F ′C = FC ∪ {〈tb, pob〉, 〈pob, tands〉, 〈tands, px〉,

〈tands, pcd〉, 〈pcd, tandj〉, 〈tc, poc〉, 〈poc, tandj〉, 〈tandj, py〉} − {〈tb, px〉, 〈tc, py〉}.

iv. In the case of: in CN , the control dependency will be inserted after the place

px and before the execution of transition tc, which px and tc are in two parallel

branches. The place px must have only one “non-LOOP-transition” output tran-

sition (assuming it is tb) and the transition tc must have only one input place

(assuming it is py). The respective change requirement is to add a control de-

pendency between a place and a transition in two parallel branches (the place

can be an XOR-join place or a LOOP-out place, the transition can be an activity

transition or an AND-split transition). For CN ′,

T ′C = TC ∪ {tands, tandj}, (LC(tands) = τ, LC(tandj) = τ)



154 Change Patterns of Service-based Business Processes

P ′C = PC ∪ {pib, pic, pcd},

F ′C = FC ∪ {〈px, tands〉, 〈tands, pib〉, 〈pib, tb〉,

〈tands, pcd〉, 〈pcd, tandj〉, 〈py, tandj〉, 〈tandj, pic〉, 〈pic, tc〉} − {〈px, tb〉, 〈py, tc〉}.

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . The data flow part of CDN ′ keeps the

same with the original CDN .

PC-11 Delete a control dependency

Description: The delete a control dependency change refers to that a control depen-

dency between two parallel branches is removed from the internal business process of

an SBP.

In Formal: For the set of activities Act′ of the changed internal business process

IP ′,

Act′ = Act.

For calculating the changed control flow net CN ′ of the changed internal business

process IP ′, the place pcd, which connects the transition tands (LC(tands) = τ) and the

transition tandj (LC(tandj) = τ) of the control dependency, and relative flow relations



6.1 Change Patterns of Internal Business Processes 155

Delete

tc

py

...

...

tb

px

...

...

...

...

tands

tandj

pic

pob
pcd

tc

py

...

...

tb

px

...

...

...

...

tands

tandj

pic

pob

Figure 6.11: An Example of C-net Changes in PC-11

will be removed from the original control flow net CN (Figure 6.11 shows an example

of PC-11.):

T ′C = TC ,

P ′C = PC − {pcd},

F ′C = FC − {〈tands, pcd〉, 〈pcd, tandj〉}.

For the set of data elements Data′ of the changed internal business process IP ′,

Data′ = Data.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . The data flow part of CDN ′ keeps the

same with the original CDN .



156 Change Patterns of Service-based Business Processes

6.1.3 Process Data Changes

This type of changes refers to as the directly manipulating on the data elements of the

internal business process. Three change patterns are introduced in this subsection: update

the legacy data, update the target data, and update an activity. For updating the process

data set Data correspondingly, the only change in the data set is to add new data elements

which means that the original data elements cannot be removed.

PC-12 Update the legacy data

Description: The update the legacy data change refers to that the set of legacy data

elements of the internal business process of an SBP is changed.

In Formal: For the set of activities Act′ of the changed internal business process

IP ′,

Act′ = Act.

Figure shows an example

For the control flow net CN ′ of the changed internal business process IP ′,

T ′C = TC ,

P ′C = PC ,

F ′C = FC .

For the set of data elements Data′ of the changed internal business process IP ′, as-

sume that the original legacy data set is LegData and the changed legacy data set is

LegData′,

Data′ = Data ∪ LegData′.



6.1 Change Patterns of Internal Business Processes 157

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied on

the control flow part of the original CDN . For the data flow part, the data places of

the possible new added data elements that do not belong to Data will be added corre-

spondingly. The relative data flow connections connecting the legacy data transition

tleg and the new added legacy data places will be added, and the relative data flow

connections connecting the legacy data transition tleg and the data places that are no

longer legacy data elements will be removed.

PC-13 Update the target data

Description: The update the target data change refers to that the set of target data

elements of the internal business process of an SBP is changed.

In Formal: For the set of activities Act′ of the changed internal business process

IP ′,

Act′ = Act.

Figure shows an example

For the control flow net CN ′ of the changed internal business process IP ′,

T ′C = TC ,

P ′C = PC ,

F ′C = FC .

For the set of data elements Data′ of the changed internal business process IP ′, as-

sume that the original target data set is TarData and the changed target data set is



158 Change Patterns of Service-based Business Processes

TarData′,

Data′ = Data ∪ TarData′.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . For the data flow part, the data places

of the possible new added data elements that do not belong to Data will be added

correspondingly. The relative data flow connections connecting the new added target

data places and the target data transition ttar will be added, and the relevant data

flow connections connecting the data places that are no longer target data elements

and the target data transition ttar will be removed.

PC-14 Update an activity

Description: The update an activity change refers to that the set of data elements

belonging to the input and output parameters of an activity from the internal business

process of an SBP is changed.

In Formal: For the set of activities Act′ of the changed internal business process

IP ′,

Act′ = Act.

Figure shows an example

For the control flow net CN ′ of the changed internal business process IP ′,

T ′C = TC ,

P ′C = PC ,



6.1 Change Patterns of Internal Business Processes 159

F ′C = FC .

For the set of data elements Data′ of the changed internal business process IP ′, assume

that the original data set Data(a) consists of the input and output parameters of

the activity a, and the changed data set Data(a)′ consists of the input and output

parameters of the updated activity a, i.e., Data(a) = InPara(a) ∪ OutPara(a) and

Data(a)′ = InPara(a)′ ∪OutPara(a)′,

Data′ = Data ∪Data(a)′.

For calculating the changed combined control flow and data flow net CDN ′ of the

changed internal business process IP ′, the same operations for CN ′ will be implied

on the control flow part of the original CDN . For the data flow part, the data places

of the possible new added data elements that do not belong to Data will be added

correspondingly. The relative data flow connections connecting the new added input

data places and the input parameter transition tIa of the updated activity a will be

added, and the relative data flow connections connecting the data places that are no

longer input data of a and the input parameter transition tIa of the updated activity a

will be removed. The relative data flow connections connecting the output parameter

transition tOa of the updated activity a and the new added output data places will

be added, and the relative data flow connections connecting the output parameter

transition tOa of the updated activity a and the data places that are no longer output

data of a will be removed.



160 Change Patterns of Service-based Business Processes

6.2 Change Patterns of Services

Service change patterns are introduced from the perspectives of two of the four elements of

S: Op and SN . As defined in Section 3, four types of elements consist in a service, i.e., S =

(sId,Op, SN, sType). Because the change types about changing a service’s identification or

changing the type of a service (e.g., from a provided service to an invoked service) are not

considered in this work, only the elements of operation set Op and the control flow of the

operations SN will be affected by the service change patterns discussed in this section.

6.2.1 Operation Existence Changes

This type of changes refers to as the changes of the existence of operations. An operation

existence change occurs due to adding or removing operations in a service. The “replace”

operation is also considered in this work as a combination which “removing” the targeting

operation at first and then “adding” another operation to the position of the deleted one.

SC-1 Delete an operation

Description: The delete an operation change refers to that an operation is removed

from a service involved in an SBP.

In Formal: Assume that the removed operation is o, for the set of operations Op′ of

the changed service S ′,

Op′ = Op− {o}.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-1 in the last section.



6.2 Change Patterns of Services 161

SC-2 Add an operation sequentially

Description: The add an operation sequentially change refers to that an operation is

inserted before/after a specific node of the control flow of a service involved in an SBP.

The specific node can be the start/end event, any gateway, or another operation.

In Formal: Assume that the added operation is o, for the set of operations Op′ of

the changed service S ′,

Op′ = Op ∪ {o}.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-2 in the last section.

SC-3 Add an operation in parallel to existing operations

Description: The add an operation in parallel to existing operations change refers to

that an operation is inserted as a parallel branch to one or more existing operations of

the control flow of a service involved in an SBP.

In Formal: Assume that the added operation is o, for the set of operations Op′ of

the changed service S ′,

Op′ = Op ∪ {o}.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-3 in the last section.

SC-4 Add an operation conditionally to existing operations

Description: The add an operation conditionally to existing operations change refers



162 Change Patterns of Service-based Business Processes

to that an operation is inserted as an XOR branch to one or more existing operations

of the control flow of a service involved in an SBP.

In Formal: Assume that the added operation is o, for the set of operations Op′ of

the changed service S ′,

Op′ = Op ∪ {o}.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-4 in the last section.

SC-5 Replace an operation by another one

Description: The replace an operation by another one change refers to that an oper-

ation is replaced by another one in a service involved in an SBP.

In Formal: Assume that the replaced operation is o and the alternative operation

is u. , for the set of operations Op′ of the changed service S ′,

Op′ = Op ∪ {u} − {o}.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-5 in the last section.

6.2.2 Operation Order Changes

This type of changes refers to as the change of invocation order of operations of a service

involved in an SBP. By this type of changes, the existence of operations is not changed.

SC-6 Add a conditional shortcut



6.2 Change Patterns of Services 163

Description: The add a conditional shortcut change refers to that a “conditional

shortcut” is added to make a fragment be invoked conditionally in a service involved

in an SBP.

In Formal: For the set of operations Op′ of the changed service S ′,

Op′ = Op.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-6 in the last section.

SC-7 Delete a conditional shortcut

Description: The delete a conditional shortcut change refers to that a “conditional

shortcut” is removed from a service involved in an SBP.

In Formal: For the set of operations Op′ of the changed service S ′,

Op′ = Op.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-7 in the last section.

SC-8 Add a loop

Description: The add a loop change refers to that a “loop” is added to make a

fragment be repeatedly invoked in a service involved in an SBP.

In Formal: For the set of operations Op′ of the changed service S ′,

Op′ = Op.



164 Change Patterns of Service-based Business Processes

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-8 in the last section.

SC-9 Delete a loop

Description: The delete a loop change refers to that a “loop” is removed from a

service involved in an SBP.

In Formal: For the set of operations Op′ of the changed service S ′,

Op′ = Op.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-9 in the last section.

SC-10 Add a control dependency

Description: The add a control dependency change refers to that a control depen-

dency is inserted between two parallel branches of the control flow of a service involved

in an SBP.

In Formal: For the set of operations Op′ of the changed service S ′,

Op′ = Op.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-10 in the last section.

SC-11 Delete a control dependency

Description: The delete a control dependency change refers to that a control depen-

dency is removed from a service involved in an SBP.



6.3 Discussion 165

In Formal: For the set of operations Op′ of the changed service S ′,

Op′ = Op.

For the service net SN ′ of the changed service S ′, the change operations on the original

SN are the same as the change pattern PC-11 in the last section.

6.3 Discussion

In this chapter, a set of change patterns for the changes occurring in the internal business

process and the services involved in an SBP have been classified and identified. The internal

process changes are classified into three major types as: activity existence changes, activity

order changes, and process data changes. The involved service changes are classified into

two major types as operation existence changes and operation order changes. Fourteen

internal process change patterns and eleven involved service change patterns are identified

with both the informal and formal description based on the SBP model defined in Chapter

3. Different cases for each change pattern are considered in this work as discussed in the

formal description of these change patterns. These change patterns can be utilized as change

primitives for handling complex change requirements. The change patterns proposed in this

chapter provide a solid foundation the change management in SBP. In order to manage

change, the first step is to “know” the change which means to analyze what the change it

is, how to implement the change on the original SBP, and is there any impact along with

the change? For analyzing a change on a formal basis, it is necessary to have a standardized

and reusable method to assist the designer to disassemble the change into a set of change



166 Change Patterns of Service-based Business Processes

primitives and then imply them on the original SBP model. After implying a change on an

SBP by the assistance of respective change patterns, the change impact analysis and how to

deal with the impact will be discussed in the following chapter.



7
Change Management Framework For

Service-based Business Processes

Due to the distributed and dynamic nature, changes of the internal business process and

involved services of an SBP can happen from time to time. There are dependencies between

167



168 Change Management Framework For Service-based Business Processes

the internal business process and involved services [35]; therefore, the changes occurring in

one side may affect the other one in certain degrees and can propagate in the whole SBP

like the cascading effect which makes the change management in SBP a challenging problem

[36, 37].

Figure 7.1 shows an example of a change occurring on the travel agency’s SBP from Figure

3.1. Some new regulations request that the financial company, the provider of the payment

service, must send both the electronic payment confirmation and paper payment confirmation

to the payers. Therefore, to get the postal address of each payer, the service designer

decides to add an operation “Request Mailing Address” sequentially between the operations

“Receive Request” and “Request to Sign Agreement” (Change 1 in Figure 7.1). Due to

the dependencies between the invoked payment service and the internal business process of

the travel agency, the activity “Send Mailing Address” need to be inserted correspondingly

which is associated with the new added operation “Request Mailing Address” sequentially

between the activities “Invoke Payment Service” and “Sign Agreement” (Change 2 in Figure

7.1). Because there is no any address data of customers which has ever been collected

by the internal business process, the process designer decides to add an activity “Request

Mailing Address” in parallel with the activities “Prepare Bill” and “Send Bill” which can

collect the data of mailing address from each customer (Change 3 in Figure 7.1). Due to

the dependencies between the internal business process of the travel agency and the flight

inquiry and booking service provided by the travel agency, the operation “Request Mailing

Address” need to be added correspondingly in parallel with the operation “Send Bill” which

is associated with the new added activity “Request Mailing Address” in the internal business



169

C. Flight Service (Invoked)

D. Payment Service (Invoked)

B. Flight Inquiry & Booking Service 
(Provided)

A. Internal Business Process

Receive 
Inquiry

Check 
Available 

Flights 

Send Flights 
Information

Send 
Acknowle-

dgment 

Archive 
Customer 

Information 

Receive 
Booking 
Order

Prepare Bill

Send Bill

Make 
Payment

Invoke 
Payment 
Service

Prepare 
Itinerary 
&Receipt

Send 
Itinerary
&Receipt

Sign 
Agreement

Receive 
Payment 

Confirmation

Receive 
Request

Send Flights 
Information

Flights Inquery

Flights Info.

Receive 
Request

Request 
to Sign 

Agreement

Payment Info.

Agreement

Send 
Payment 

Confirmation

Signed Agreement

   Payment Confirmation

Start 
Inquiry

Send Flights 
Information

Flights Inquery

Acknowledgement

Flights Information

Order Information

Receive 
Order

Send 
Bill

Make 
Payment

Send 
Itinerary
&Receipt

Bill

Payment Info.

Notification

Itinerary & Receipt

Request 
Mailing 
Address

Send 
Mailing 
Address Address Form

Filled Form

Request 
Mailing 
AddressRequest 

Mailing 
Address

Address Form

Filled Form

1

2

34

Figure 7.1: An Example of SBP Change



170 Change Management Framework For Service-based Business Processes

process (Change 4 in Figure 7.1).

According to this example, it is easy to see that in the context of SBP, a service change

may require further changes of one or multiple activities of the internal business process. A

change of an activity belonging to the internal business process may affect other activities

and related services of the process. Change propagation refers to that a single change of an

activity or a service causes a series of changes associated with activities and/or services like

the cascading effect. Therefore, change management in the context of SBP is a challenging

issue due to the complex dependencies between internal business processes and services

involved. To deal with complicated situations of SBP changes, it is necessary to have a

framework to help the change management, in particular, to make the change propagation

under control. In this chapter, based on the proposed SBP model and SBP change patterns, a

change management framework is proposed for managing SBP changes. This framework can

provide guidelines and an enabling tool for SBP designers to deal with change management

problems in the real world.

7.1 Management of Internal Business Process Changes

7.1.1 Identifying the Primary Process Change

In this step, when a change request raises on the internal business process of an SBP, the

change request will be marked as a primary process change. Based on the change patterns

identified in Chapter 6, the primary process change will be analyzed and decomposed into

several primitive changes.



7.1 Management of Internal Business Process Changes 171

Make 
Bills

Arrange
Delivery

Post 
Bills

...

...

1

2

Figure 7.2: An Example of Primary Change

An example will demonstrate how this step works as shown in Figure 7.2. Figure 7.2

shows a C-net fragment of the internal business process of an SBP. A change request raises

which is to make part 1 and part 2 be executed in parallel. This change is marked as the

primary process change. As the result of the analysis of this primary process change, based

on the change patterns identified in Chapter 6, the primary process change is decomposed

into four primitive changes which are:

- firstly, delete the activity “Make Bills” (PC-1 in Chapter 6),

- secondly, delete the activity “Post Bills” (PC-1 in Chapter 6),

- thirdly, add the activity “Make Bills” in parallel to the activity “Arrange Delivery”

(PC-3 in Chapter 6),



172 Change Management Framework For Service-based Business Processes

- finally, add the activity “Post Bills” sequentially after the activity “Make Bills” (PC-2

in Chapter 6).

7.1.2 Implementing the Primary Process Change

According to the formal descriptions in Chapter 6 of the change primitives decomposed from

the primary process change, the primary process change will be implemented on the SBP

model.

Make 
Bills

Arrange
Delivery

Post 
Bills

...

...

Arrange
Delivery

Post 
Bills

...

...

Arrange
Delivery

...

...

Arrange
Delivery

...

...

AND-split

Make 
Bills

AND-join

Arrange
Delivery

...

...

AND-split

Make 
Bills

AND-join

Post 
Bills

1 2 3 4 5

Figure 7.3: An Example Showing How to Implement a Change

To implement the primary process change of the example in Figure 7.2, the four primitive

changes in step 1 will be implemented on the original SBP model one after another which

follows the order in step 1. As shown in Figure 7.3, Figure 7.3-1 is the original C-net of



7.1 Management of Internal Business Process Changes 173

the SBP. Because either the input or output place of the transition representing the activity

“Make Bills” is an “1-in-1-out” place, the implementation of the first primitive change of

deleting the activity “Make Bills” on the C-net will follow the change operations in PC-1, case

i (Chapter 6). Figure 7.3-2 is the result of implementing the first primitive change. Because

either the input or output place of the transition representing the activity “Post Bills” is

an “1-in-1-out” place, the implementation of the second primitive change of deleting the

activity “Post Bills” on the C-net will follow the change operations in PC-1, case i (Chapter

6). Figure 7.3-3 is the result of implementing the second primitive change. Because the

transition representing the activity “Arrange Delivery” has only one input place and one

output place, the implementation of the third primitive change of adding the activity “Make

Bills” in parallel to the activity “Arrange Delivery” on the C-net will follow the change

operations in PC-3, case i (Chapter 6). Figure 7.3-4 is the result of implementing the third

primitive change. Because the transition representing the activity “Make Bills” has only

one output place, the implementation of the fourth primitive change of adding the activity

“Post Bills” sequentially after the activity “Make Bills” on the C-net will follow the change

operations in PC-2, case i (Chapter 6). Figure 7.3-5 is the result of implementing the fourth

primitive change. After implementing the primitive changes in the control flow, the data

flow of the original SBP will be changed correspondingly.



174 Change Management Framework For Service-based Business Processes

7.1.3 Analyzing and Handling the Change Impact on the Process

Control Flow

The correctness of the changed C-net from step 2 will be checked by using the verification

method of CF soundness proposed in Chapter 5. If the verification result is sound, the

following part of this step will be skipped.

If the verification result is not sound and several control flow error(s) are detected, for

fixing the error(s), further changes on the control flow of the internal business process will

be designed and implemented as solutions by the designers. The corresponding solutions

depend on the specific cases of detected errors.

7.1.4 Analyzing and Handling the Change Impact on the Process

Data Flow

The correctness of the changed CD-net (combined control and data flow net) from step 2

will be checked, and data flow anomalies will be detected by using the verification method

of DF (data flow) soundness proposed in Chapter 5. If no data flow anomaly is detected,

the following part of this step will be skipped.

If any data flow anomaly is detected, for handling the detected anomaly(s), further

changes in the control flow of the internal business process will be designed and implemented

as solutions by the designers. For each specific type of data flow anomaly, corresponding

solution guidelines are proposed as follows.

1 Missing Target Data: If a missing target data anomaly is detected from the changed



7.1 Management of Internal Business Process Changes 175

SBP. It means that the process is unable to achieve its business goal. The designers

must make a solution to fix the anomaly. The potential solutions for handling this

data flow anomaly are:

i. to remove the missed target data from the target data set by a further change of

updating the target data (PC-13).

ii. to enable an existing activity which is not in any conditionally executed branch

to produce the missed target data by a further change of updating an activity

(PC-14).

iii. to implement a further change of replacing an existing activity which is not in

any conditionally executed branch by a new one which can produce the missed

target data (PC-5).

iv. to implement a further change of adding a new activity which can produce the

missed target data, the added activity must not be in any conditionally executed

branch (PC-2 or PC-3).

2 Missing Input Data: If a missing input data anomaly is detected from the changed

SBP, it means that an input data of an activity of the SBP’s internal business process

has never been initialized when the process terminates. The potential solutions for

handling this data flow anomaly are:

i. to remove the missed input data from the input parameter of the anomaly activity

by a further change of updating the activity (PC-14).



176 Change Management Framework For Service-based Business Processes

ii. to enable an existing activity which is undoubtedly executed before the anomaly

activity to produce the missed input data for the anomaly activity by a further

change of updating the existing activity (PC-14).

iii. to implement a further change of replacing an existing activity which is undoubt-

edly executed before the anomaly activity by a new one which can produce the

missed input data for the anomaly activity (PC-5).

iv. to implement a further change of adding a new activity which is certainly executed

before the anomaly activity to produce the missed input data for the anomaly

activity (PC-2 or PC-3).

3 Delayed Initialization: If a delayed initialization anomaly is detected from the

changed SBP, it means that an input data of an activity has not been initialized

when the activity is enabled, but the input data will be initialized by a subsequent

activity before the process terminates. The potential solutions for handling this data

flow anomaly are:

i. to remove the delayed initialized data from the input parameter of the anomaly

activity by a further change of updating the activity (PC-14).

ii. to enable an existing activity which is certainly executed before the anomaly

activity to produce the delayed initialized for the anomaly activity by a further

change of updating the existing activity (PC-14).

iii. to implement a further change of replacing an existing activity which is certainly

executed before the anomaly activity by a new one which can produce the delayed



7.1 Management of Internal Business Process Changes 177

initialized for the anomaly activity (PC-5).

iv. to implement a further change of adding a new activity which is undoubtedly

executed before the anomaly activity in order to produce the delayed initialized

for the anomaly activity (PC-2 or PC-3).

v. to implement a further change of deleting an existing activity which produces

the delayed initialized data (PC-1) and then adding the deleted activity which is

certainly executed before the anomaly activity to produce the delayed initialized

data for the anomaly activity (PC-2 or PC-3).

vi. to implement a further change of deleting the anomaly activity (PC-1) and then

adding the deleted activity which is certainly executed after the producer activity

of the delayed initialized data (PC-2 or PC-3).

4 Uncertain Initialization: If an uncertain initialization anomaly is detected from

the changed SBP. It means that the two activities, the data producer, and the data

consumer, are in two parallel branches. The potential solutions for handling this data

flow anomaly are same as the solutions for handling the delayed initialization anomaly.

5 Conditionally Initialized Target Data: If a conditionally initialized target data

anomaly is detected from the changed SBP, it means that the producer activity of

the conditionally initialized target data is in a conditionally executed branch. The

potential solutions for handling this data flow anomaly are:

i. to remove the conditionally initialized target data from the target data set by a

further change of updating the target data (PC-13).



178 Change Management Framework For Service-based Business Processes

ii. to enable an existing activity which is not in any conditionally executed branch to

produce the conditionally initialized target data by a further change of updating

an activity (PC-14).

iii. to implement a further change of replacing an existing activity which is not in any

conditionally executed branch by a new one which can produce the conditionally

initialized target data (PC-5).

iv. to implement a further change of adding a new activity which can produce the

conditionally initialized target data, the added activity must not be in any con-

ditionally executed branch (PC-2 or PC-3).

v. to implement a further change of deleting the activity in condition branch which

produces the conditionally initialized target data (PC-1) and then adding the

deleted activity which is certainly executed before the termination of the process

(PC-2 or PC-3).

6 Conditionally Initialized Input Data: If a conditionally initialized input data

anomaly is detected from the changed SBP, it means that an input data of an activity

can only be initialized under specific routing condition(s), under other condition(s) it

can never be initialized. The potential solutions for handling this data flow anomaly

are same as the solutions for handling the delayed initialization anomaly.

7 Redundant Legacy Data: If a redundant legacy data anomaly is detected from the

changed SBP. It means that a legacy data of the process is neither a target data nor

an input data for any activities. In most cases, the redundant legacy data anomaly



7.1 Management of Internal Business Process Changes 179

is ignored by the designer due to it will not cause any severe impact. If a designer

still decides to fix this type of anomaly, the only potential solution is to remove the

redundant data from the legacy data set of the SBP by a further change of updating

the legacy data (PC-12).

8 Redundant Output Data: If a redundant output data anomaly is detected from the

changed SBP, it means that an output data of an activity is neither a target data nor

an input data for any activities. In most cases, the redundant output data anomaly

is ignored by the designer due to it will not cause any severe impact. If a designer

still decides to fix this type of anomaly, the only potential solution is to remove the

redundant data from the output parameter of the anomaly activity by a further change

of updating an activity (PC-14).

9 Conditionally Redundant Legacy Data: If a conditionally redundant legacy data

anomaly is detected from the changed SBP. It means that a legacy data of the process

is an input data of an activity only under certain routing conditions. In most cases,

the redundant legacy data anomaly is ignored by the designer due to it will not cause

any severe impact.

10 Conditionally Redundant Output Data: If a conditionally redundant output data

anomaly is detected from the changed SBP. It means that an output data of an activity

is an input data of another activity only under certain routing conditions. In most

cases, the redundant output data anomaly is ignored by the designer due to it will not

cause any severe impact.



180 Change Management Framework For Service-based Business Processes

11 Multiple Initialized Data: If a multiple initialized data anomaly is detected from

the changed SBP, it means that a data element is initialized more than once. If there

is a data version control system for the process, the multiple initialized data anomaly

will be ignored by the designer. If not, a mechanism for manage the data version must

be developed to ensure that the multiple versions of the data will not cause a conflict

during the execution of the process.

7.1.5 Analyzing and Handling the Change Impact on Services In-

volved

The last four steps deal with the change propagation within the internal business process

element of an SBP. The change propagation across different elements (between the internal

business process and services involved in an SBP) will be discussed in this step.

Because of the complex dependencies between the internal business process and involved

services of an SBP as discussed in Chapter 3, the changes on the internal business process

may not only propagate within the process but also propagate to the services involved in

the SBP, which may cause inconsistency and incompatibility as discussed in Chapter 5. For

analyzing the impact by an internal process change on services involved in an SBP, the

consistency between each provided service and the changed internal business process of the

SBP and the compatibility between each invoked service and the changed internal business

process of the SBP will be checked by the verification methods in Chapter 5.

If the verification result shows that each service involved in the SBP is consistent or

compatible with the changed internal business process, there is no need for further changes



7.1 Management of Internal Business Process Changes 181

on services involved in the SBP. If not, for the provided service which is inconsistent with

the changed internal business process, the service will be changed in order to ensure that the

postmark PMS of the token in the ending place oS of the S-net of the provided service and

the postmark PMC of the token in the ending place oC of the C-net of the changed internal

business process meet PMS = PMC (Theorem 2).

Receive 
Inquiry1

Process 
Inquiry1

Receive 
Inquiry2

Receive 
Inquiry1

Receive 
Inquiry2

Service 1 (Provided) Service 1 (Provided)Internal Process 1

Receive 
Inquiry1

Receive 
Inquiry2

Internal Process 1'

Change to

Process 
Inquiry1

Receive 
Inquiry1

Receive 
Inquiry2

Figure 7.4: An Example of the Inconsistency Caused by Process Change

An example is shown in Figure 7.4. Firstly, the internal business process 1 is updated

to the internal business process 1′ based on a change requirement of moving the activity

ReceiveInquiry2 in parallel with the other two activities. Secondly, the postmark of the

token in the final markings of the service 1 and the changed internal business process 1′ are

calculated by the method in Chapter 5 as: PMS = I�ReceiveInquiry1�ReceiveInquiry2

and PM ′C = I � (ReceiveInquiry1�ReceiveInquiry2). The difference between PMS and



182 Change Management Framework For Service-based Business Processes

PM ′C indicates that the provided service is inconsistent with the internal business pro-

cess. Thirdly, it is necessary to have a further change on the provided service 1 to put the

operations ReceiveInquiry1 and ReceiveInquiry2 into two parallel branches.

For the invoked service which is incompatible with the changed internal business process,

the service will be changed in order to ensure that the combined net of their respective rS-net

and rC-net is CF sound (Theorem 3). The potential solutions for handling the incompati-

bility are:

i. The organization who runs this SBP has to decide on whether to invoke a new service

which is compatible with the changed internal business process and stop interacting

with the current one.

ii. If the organization decides to continue invoking the current one, they must commu-

nicate with the service provider to ask whether the invoked service can be changed

correspondingly.

7.2 Management of Service Change

7.2.1 Identifying the Primary Service Change

In this step, when a change request raises on a service involved in an SBP, the change request

will be marked as a primary service change. When the primary service change occurs on

an invoked service, it is necessary for the designer of the SBP to make a decision on whether

to keep interacting with the service or replace it with another one. If the designer of the SBP

decides to keep interacting with the changed invoked service or if the primary service change



7.2 Management of Service Change 183

occurs on a provided service, based on the service change patterns identified in Chapter 6,

the primary service change will be analyzed and decomposed into several primitive changes

same as the method of identifying the primary process changes proposed in the last section.

7.2.2 Implementing the Primary Service Change

According to the formal descriptions in Chapter 6 of the change primitives decomposed

from the primary service change, the primary service change will be implemented on the

SBP model same as the method of identifying the primary process changes proposed in the

last section.

7.2.3 Analyzing and Handling the Change Impact on the Service

Control Flow

The correctness of the changed S-net from step 2 will be checked by using the verification

method of CF soundness proposed in Chapter 5. If the verification result is sound, the

following part of this step will be skipped. Under normal circumstances, the control flow of

a service is much simpler than the control flow of the internal business process of an SBP.

Therefore, the changes of services rarely cause errors on the control flows of these services.

If the verification result is not sound and several control flow error(s) are detected, for

fixing the error(s), further changes on the control flow of the service will be designed and

implemented as solutions by the designers. The corresponding solutions depend on the

specific cases of detected errors.



184 Change Management Framework For Service-based Business Processes

7.2.4 Analyzing and Handling the Change Impact on the Internal

Business Process

The last three steps deal with the change propagation within the service element of an SBP.

The change propagation across different elements (between the service and the internal

business process of the SBP) will be discussed in this step.

Because of the complex dependencies between the internal business process and involved

services of an SBP as discussed in Chapter 3, the changes on a service involved may not

only propagate within the service but also propagate to the internal business process of the

SBP, which may cause inconsistency and incompatibility as discussed in Chapter 5. For

analyzing the impact by a service change on the internal business process of an SBP, if the

changed service is a provided service, the consistency between the service and the internal

business process of the SBP will be checked; if the changed service is an invoked service,

the compatibility between the service and the internal business process of the SBP will be

checked.

If the verification result shows that the changed service involved in the SBP is consistent

or compatible with the internal business process, there is no need for further changes on

the internal business process of the SBP. If not, for the changed provided service which is

inconsistent with the internal business process, the process will be changed in order to ensure

that the postmark PMC of the token in the ending place oC of the C-net of the internal

business process and the postmark PMS of the token in the ending place oS of the S-net of

the changed provided service meet PMC = PMS (Theorem 2).

An example is shown in Figure 7.5. Firstly, the provided service, service 1, is updated to



7.2 Management of Service Change 185

Receive 
Inquiry1

Process 
Inquiry1

Receive 
Inquiry2

Receive 
Inquiry1

Receive 
Inquiry2

Service 1 (Provided) Service 1' (Provided)Internal Process 1

Receive 
Inquiry1

Receive 
Inquiry2

Receive 
Inquiry1

Process 
Inquiry1

Receive 
Inquiry2

Internal Process 1

Change to

Figure 7.5: An Example of the Inconsistency Caused by Provided Service Change

service 1′ based on a change requirement. Secondly, the labels of the token in the final mark-

ings of the internal business process and service 1′ are calculated by this method as PMC =

I�ReceiveInquiry1�ReceiveInquiry2 and PMS = I�(ReceiveInquiry1�ReceiveInquiry2).

The difference between lP and lS1′ indicates that the changed provided service is inconsistent

with the internal business process. Thirdly, it is necessary to have a further change in the

internal business process to put activities ReceiveInquiry1 and ReceiveInquiry2 into two par-

allel branches. Different with the change propagation from the internal business process to

a provided service of an SBP, the change propagation from a provided service to the internal

business process of an SBP has multiple potential solutions which can meet PMC = PMS.

For the example shown in Figure 7.5, the potential solutions of the change propagation from

the changed provided service 1′ to the internal business process are proposed in Figure 7.6.



186 Change Management Framework For Service-based Business Processes

The designers of the SBP must select one solution of a process change from the candidate

solutions.

Receive 
Inquiry1

Process 
Inquiry1

Receive 
Inquiry2

Internal Process 1

Receive 
Inquiry1

Receive 
Inquiry2

Change to

Process 
Inquiry1

Internal Process 1'

Receive 
Inquiry1

Receive 
Inquiry2

Process 
Inquiry1

Internal Process 1'

OR

Figure 7.6: The Potential Solutions for the Change Example in Figure 7.5

7.2.5 Managing the Internal Business Process Change

After a decision is made, the selected candidate solution of a change in the internal business

process will become a primary process change. For managing this change, the same

method is used as the method of managing internal business process changes in the last

section.



7.3 Discussion 187

7.3 Discussion

Based on the model definitions and correctness verification introduced in the former chap-

ters, in this chapter, a change management framework for managing the changes in SBPs is

proposed. For handling a process change or a service change, the proposed framework can

be utilized as guidelines and an enabling tool to manage changes of SBPs. This change man-

agement framework provides semi-automatic supports for software developers, and manual

efforts are still necessary for the complete solution of the change management in SBPs.



188 Change Management Framework For Service-based Business Processes



8
Conclusion and Future Work

Service-Oriented Computing (SOC) paradigm and web service technologies are important

enablers for cooperation and collaboration of organizations. The business processes of such

organizations are referred to as service-based business processes (SBP). There are two sig-

nificant differences between the SBP management and the traditional business process man-

agement (BPM). The first difference is that there are more types of components contained in

189



190 Conclusion and Future Work

SBPs and the dependencies between the SBP components are more complex. It is vital that

the rich types of components and the complex dependencies among them are correctly de-

veloped and maintained. Therefore, it is necessary to develop a practical and robust method

to model and verify the correctness of SBP. The second difference is that the SBP manage-

ment requires more consideration of changes due to the dynamic nature of the service-based

components in SBPs. SBPs subject to changes arising from both the internal and external

requirements of the involved organizations. The changes can affect the correctness of SBPs

which may lead to failures. Therefore, it is necessary to have a method to manage the

changes in SBPs. The contribution of this work is summarized as follows:

• An SBP model has been defined for capturing the characteristics of different types

of components and the dependencies among them. Petri net language is employed

for building up the SBP model due to its formal semantic, graphical representation,

state-based features, and the support by a rich set of existing analysis tools. SBP

representing an SBP is defined on the top of the SBP model which is a 4-tuple contains

four elements: the internal business process (IP ), the involved service set (Σ), and the

relations between the process and the services (RS and RO). An IP consists of the

activity set (Act), the data set (Data), the control flow (CN), and the data flow

(CDN). A service S(S ∈ Σ) consists of the identification of the service (sId), the

type of the service (sType), the operation set of the service (Op), and the control

flow of these operations (SN). The relations between the internal process and the

services involved in the SBP are represented by RS and RO. An rS ∈ RS describes the

relationship between an activity and a service which means that the activity interacts



191

with the invoked service or the activity supports the provided service. An rO ∈ RO

describes the relations between an activity and an operation of a service which means

that the activity calls the operation of the invoked service or the activity carries out the

operation of the provided service. The proposed model can be utilized as a foundation

for further analysis and management work.

• Two classes of SBP design patterns have been identified which are control flow patterns

and process-service relation patterns supported by the SBP model in this work. Seven

control flow patterns have been identified with both formal and informal descriptions

which are sequence, AND-split, AND-join, XOR-split, XOR-join, Loop, and control

dependency. A consolidated and recurring basis is provided by these control flow pat-

terns for modeling the complex control flow structures of SBPs. Due to the support

of the control dependency pattern, network structures may exist in the control flow of

an SBP which may lead to some challenging issues in the verification phase of this

SBP. Due to different granularity levels of activities from the internal business process

and their related operations from services involved in an SBP, four process-service rela-

tion patterns have been identified with both formal and informal descriptions which are

1A-to-1syncO (one activity is related with one synchronous operation), 1A-to-1asyncO

(one activity is related with one asynchronous operation), 2A-to-1syncO (two activ-

ities are related with one synchronous operation), and 1A-to-2asyncO (one activity

is related with two asynchronous operations). These SBP design patterns provide re-

usable solutions for SBP designers to deal with recurrent problems when building up

SBP models.



192 Conclusion and Future Work

• A set of correctness properties of SBP have been specified including the CF soundness

(control flow soundness), the DF soundness (data flow soundness), the consistency

between a provided service and the internal business process, and the compatibility

between an invoked service and the internal business process. For verifying the CF

soundness, a traditional verification method of Petri net has been employed which

transfers the soundness verification problem into the liveness and boundedness veri-

fication problem because a rich set of existing tools can support the verification of

these two properties of a Petri net. For verifying the DF soundness, a set of data

flow anomalies have been classified and specified, and an algorithm for detecting these

data flow anomalies has been developed correspondingly. For verifying the consistency

between a provided service and the internal business process, an algebra-based method

has been proposed. Different from other existing works, this method provides support

for handling the network structures. For verifying the compatibility between an in-

voked service and the internal business process, a Petri net based method has been

proposed which is similar to the method for verifying the CF soundness. These iden-

tified correctness properties and corresponding verification methods can be utilized as

enablers by SBP developers for guaranteeing the absence of errors during the design

and maintenance phases of SBPs.

• For managing changes in SBPs, at first, fourteen internal business process change

patterns and eleven service change patterns have been identified on the basis of the

SBP model. The internal process change patterns have been classified into three major

types as: activity existence changes, activity order changes, and process data changes.



193

The service change patterns have been classified into two major types as operation

existence changes and operation order changes. For handling complex SBP changes,

these SBP change patterns can be used to decompose complex changes into primitive

changes. These SBP change patterns can help the designers to analyze and implement

complex change requirements on the original SBP model which is the first and the

most important step for analyzing the changes impact and managing the changes.

Based on the SBP model, design patterns, correctness verification methods, and change

patterns, a change management framework for handling SBP changes has been pro-

posed in this work. In this framework, there are fives steps for handling the changes

occurring in the internal business process of an SBP, which are: 1.identify the primary

process change, 2. implementing the primary process change, 3. analyzing and handling

the change impact on the process control flow, 4. analyzing and handling the change

impact on the process data flow, 5. analyzing and handling the change impact on the

services involved. There are fives steps for handling the changes occurring in a service

involved in an SBP, which are: 1.identify the primary service change, 2. implementing

the primary service change, 3. analyzing and handling the change impact on the ser-

vice control flow, 4. analyzing and handling the change impact on the internal business

process, 5. managing the internal business process change. This change management

framework provides guidelines for SBP designers to dealing with change requirements

arising in SBPs.

Change management is a traditional topic in software engineering area. Due to the rapid

development of web technologies in recent two decades, service-based business processes have



194 Conclusion and Future Work

been applied by an increasing number of organizations. A huge amount of existing researches

have discussed the change management in the fields of business processes and web services,

but few of them choose the service based business processes as the research setting with

the consideration on the dependencies between the business processes and services involved.

In this work, a conceptual model has been defined for modeling SBPs, and the correctness

properties with corresponding verification methods have been developed based on the SBP

model. With the assistance of the SBP model and verification, a framework for managing

changes in SBP has been proposed.

The change management framework is still far away from the mature application which

can solve the practical problems. The future research directions in SBP”change management

are discussed as follows:

• The SBP model will be upgraded for modeling more features of SBPs. The resources

involved in the internal business process of an SBP will be considered. Because in the

practical cases, not only the control structures or data elements of a process can be

affected by changes, but also the resources involved in the process can be affected. The

change impact on process resources may lead to further changes in resource allocation or

resource authorization. Another important feature of processes is the temporal feature

of SBPs. In this work, the temporal feature has not been considered but it is very

critical for the SBPs which needs precise time control. The QoS (quality of service)

features of the services involved in an SBP will be contained in the SBP model for

quantitatively measuring the change impact on a specific service. There are relations

between the three new added features of SBP model. For example, the change on the



195

temporal feature of the internal business process of an SBP can affect the QoS feature

of a specific service involved in the SBP and also can affect the resource allocation of

the process.

• An automated change reaction mechanism will be developed. The change manage-

ment framework in this work can only be utilized as guidelines but can not guarantee

the optimal solution for handling SBP changes. With the automated change reac-

tion mechanism, when a change occurs in an SBP, the optimal solutions for handling

this changes which can minimize the negative impact will be generated automatically.

To realize this imagination, the change impact in SBPs needs to be quantitatively

measured at first. Then, by utilizing the change impact measurement, the possible

solutions for handling a change will be measured and sorted. This change reaction

mechanism can improve the effectiveness and efficiency of change management in the

dynamic context of SBPs.



196 Conclusion and Future Work



References

[1] M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and direc-

tions. In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the

Fourth International Conference on, pp. 3–12 (IEEE, 2003).

[2] A. Martens. Analyzing web service based business processes. In International Confer-

ence on Fundamental Approaches to Software Engineering, pp. 19–33 (Springer, 2005).

[3] W. M. van der Aalst. Making work flow: On the application of petri nets to business

process management. In International Conference on Application and Theory of Petri

Nets, pp. 1–22 (Springer, 2002).

[4] W. M. Van Der Aalst, A. H. Ter Hofstede, and M. Weske. Business process man-

agement: A survey. In International conference on business process management, pp.

1–12 (Springer, 2003).

197



198 References

[5] Y. Breitbart, A. Deacon, H.-J. Schek, A. Sheth, and G. Weikum. Merging application-

centric and data-centric approaches to support transaction-oriented multi-system work-

flows. ACM Sigmod Record 22(3), 23 (1993).

[6] W. Van Der Aalst and K. M. Van Hee. Workflow management: models, methods, and

systems (MIT press, 2004).

[7] F. Leymann and D. Roller. Production workflow: concepts and techniques (2000).

[8] D. C. Marinescu. Internet-based workflow management. Toward a Semantic Web, New

York (2002).

[9] P. Lawrence. Workflow handbook 1997 (John Wiley & Sons, Inc., 1997).

[10] M. Weske. Business Process Management (Springer, 2012).

[11] M. P. Papazoglou. Whats in a service? In European Conference on Software Archi-

tecture, pp. 11–28 (Springer, 2007).

[12] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented com-

puting: State of the art and research challenges. Computer 40(11) (2007).

[13] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented comput-

ing: A research roadmap. International Journal of Cooperative Information Systems

17(02), 223 (2008).

[14] H. Haas and A. Brown. Web services glossary. W3C Working Group Note (11 February

2004) 9 (2004).



References 199

[15] Web services description language (wsdl) 1.1. Tech. rep., W3C (2001).

Https://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[16] Uddi version 3.0.2. Tech. rep., OASIS (2004). Http://www.uddi.org/pubs/uddi-v3.0.2-

20041019.htm.

[17] Soap version 1.2. Tech. rep., W3C (2007). Https://www.w3.org/TR/soap12.

[18] Web services business process execution language version 2.0. Tech. rep., OASIS (2007).

Http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[19] W. M. Van Der Aalst. Business process management: a comprehensive survey. ISRN

Software Engineering 2013 (2013).

[20] M. M. Lehman and L. A. Belady. Program evolution: processes of software change

(Academic Press Professional, Inc., 1985).

[21] K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: a roadmap. In

Proceedings of the Conference on the Future of Software Engineering, pp. 73–87 (ACM,

2000).

[22] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,

G. Tamura, N. M. Villegas, T. Vogel, et al. Software engineering for self-adaptive sys-

tems: A second research roadmap. In Software Engineering for Self-Adaptive Systems

II, pp. 1–32 (Springer, 2013).

[23] M. Poppendieck and T. Poppendieck. Implementing lean software development: From

concept to cash (Pearson Education, 2007).



200 References

[24] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data & Knowledge

Engineering 24(3), 211 (1998).

[25] Y. Wang and Y. Wang. A survey of change management in service-based environments.

Service Oriented Computing and Applications 7(4), 259 (2013).

[26] Web services architecture. Tech. rep., W3C (2004). Https://www.w3.org/TR/ws-arch.

[27] S. Thatte. Message exchange protocols for web services. In W3C Workshop on Web

Services (Microsoft Corporation, 2001).

[28] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and policing in dynamic web

service selection. In Proceedings of the 13th international World Wide Web conference

on Alternate track papers & posters, pp. 66–73 (ACM, 2004).

[29] M. Papazoglou. The challenges of service evolution. In Advanced Information Systems

Engineering, pp. 1–15 (Springer, 2008).

[30] C. Zeginis and D. Plexousakis. Web service adaptation: State of the art and research

challenges. Self 2, 5 (2010).

[31] J. Rao and X. Su. A survey of automated web service composition methods. In In-

ternational Workshop on Semantic Web Services and Web Process Composition, pp.

43–54 (Springer, 2004).

[32] F. A. Cummins. Bpm meets soa: a new era in business design. In Handbook on

Business Process Management 1, pp. 531–555 (Springer, 2015).



References 201

[33] G. M. Giaglis. A taxonomy of business process modeling and information systems

modeling techniques. International Journal of Flexible Manufacturing Systems 13(2),

209 (2001).

[34] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow

patterns. Distributed and Parallel Databases 14(1), 5 (2003).

[35] F. Leymann, D. Roller, and M.-T. Schmidt. Web services and business process man-

agement. IBM systems Journal 41(2), 198 (2002).

[36] Y. Wang, J. Yang, and W. Zhao. Change impact analysis for service based business

processes. In 2010 IEEE International Conference on Service-Oriented Computing and

Applications (SOCA), pp. 1–8 (IEEE, 2010).

[37] Y. Wang, J. Yang, W. Zhao, and J. Su. Change impact analysis in service-based

business processes. Service Oriented Computing and Applications 6(2), 131 (2012).

[38] P. Xiu, J. Yang, and W. Zhao. A change management framework for service based

business process. In Proceedings of the Australasian Computer Science Week Multicon-

ference, p. 36 (2017).

[39] B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support

features–enhancing flexibility in process-aware information systems. Data & knowledge

engineering 66(3), 438 (2008).

[40] E. Söderström, B. Andersson, P. Johannesson, E. Perjons, and B. Wangler. Towards



202 References

a framework for comparing process modelling languages. In International Conference

on Advanced Information Systems Engineering, pp. 600–611 (Springer, 2002).

[41] M. Zur Muehlen and J. Recker. How much language is enough? theoretical and practical

use of the business process modeling notation. In International Conference on Advanced

Information Systems Engineering, pp. 465–479 (Springer, 2008).

[42] B. P. Model. Notation (bpmn) version 2.0. OMG Specification, Object Management

Group (2011).

[43] J. Mendling and M. Weidlich. Business Process Model and Notation (Springer, 2012).

[44] W. M. Van der Aalst. Formalization and verification of event-driven process chains.

Information and Software technology 41(10), 639 (1999).

[45] A.-W. Scheer, O. Thomas, and O. Adam. Process modeling using event-driven process

chains. Process-Aware Information Systems pp. 119–146 (2005).

[46] O. Thomas and M. Fellmann. Semantic business process management: Ontology-based

process modeling using event-driven process chains. IBIS 4, 29 (2007).

[47] M. Dumas and A. H. Ter Hofstede. Uml activity diagrams as a workflow specification

language. In International Conference on the Unified Modeling Language, pp. 76–90

(Springer, 2001).

[48] R. Eshuis and R. Wieringa. A formal semantics for uml activity diagrams-formalising

workflow models (2001).



References 203

[49] H. Eshuis. Semantics and verification of UML activity diagrams for workflow modelling.

Ph.D. thesis (2002).

[50] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, et al. Business process execution language for web

services (2003).

[51] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web services

platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-

reliable messaging and more (Prentice Hall PTR, 2005).

[52] C. Ouyang, E. Verbeek, W. M. Van Der Aalst, S. Breutel, M. Dumas, and A. H.

Ter Hofstede. Formal semantics and analysis of control flow in ws-bpel. Science of

computer programming 67(2-3), 162 (2007).

[53] C. A. Petri. Kommunikation mit automaten (1962).

[54] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE

77(4), 541 (1989).

[55] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use,

vol. 1 (Springer Science & Business Media, 2013).

[56] J. E. Coolahan and N. Roussopoulos. Timing requirements for time-driven systems

using augmented petri nets. IEEE transactions on software engineering (5), 603 (1983).

[57] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with

generalized stochastic Petri nets (John Wiley & Sons, Inc., 1994).



204 References

[58] B. Walter. Timed petri nets for modelling and analyzing protocols with real-time char-

acteristics. Protocol Specification, Testing and Verification III, pp. 149–159 (1983).

[59] W. van der Aalst. Interval timed coloured petri nets and their analysis. Application

and Theory of Petri Nets 1993 pp. 453–472 (1993).

[60] W. M. Van Der Aalst. Three good reasons for using a petri-net-based workflow manage-

ment system. In Proceedings of the International Working Conference on Information

and Process Integration in Enterprises (IPIC96), pp. 179–201 (Citeseer, 1996).

[61] W. van der Aalst. Verification of workflow nets. Application and Theory of Petri Nets

1997 pp. 407–426 (1997).

[62] C.-C. Dolean and R. Petrusel. Data-flow modeling: A survey of issues and approaches.

Informatica Economica 16(4), 117 (2012).

[63] M. Varea, B. M. Al-Hashimi, L. A. Cortés, P. Eles, and Z. Peng. Dual flow nets:

Modeling the control/data-flow relation in embedded systems. ACM Transactions on

Embedded Computing Systems (TECS) 5(1), 54 (2006).

[64] S. Fan, W. Dou, and J. Chen. Dual workflow nets: Mixed control/data-flow repre-

sentation for workflow modeling and verification. In Advances in Web and Network

Technologies, and Information Management, pp. 433–444 (Springer, 2007).

[65] L. Cong, Q. ZENG, D. Hua, et al. Formulating the data-flow modeling and verifica-

tion for workflow: A petri net based approach. International Journal of Science and

Engineering Applications 3, 107 (2014).



References 205

[66] J. Zhang, C. K. Chang, J.-Y. Chung, and S. W. Kim. Ws-net: A petri-net based specifi-

cation model for web services. In Web Services, 2004. Proceedings. IEEE International

Conference on, pp. 420–427 (IEEE, 2004).

[67] B. Srivastava and J. Koehler. Web service composition-current solutions and open

problems. In ICAPS 2003 workshop on Planning for Web Services, vol. 35, pp. 28–35

(2003).

[68] N. Milanovic and M. Malek. Current solutions for web service composition. IEEE

Internet Computing 8(6), 51 (2004).

[69] R. Hamadi and B. Benatallah. A petri net-based model for web service composition.

In Proceedings of the 14th Australasian database conference-Volume 17, pp. 191–200

(Australian Computer Society, Inc., 2003).

[70] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl. Qos aggregation for web service com-

position using workflow patterns. In Enterprise Distributed Object Computing Confer-

ence, 2004. EDOC 2004. Proceedings. Eighth IEEE International, pp. 149–159 (IEEE,

2004).

[71] X. Yi and K. J. Kochut. A cp-nets-based design and verification framework for web ser-

vices composition. In Web Services, 2004. Proceedings. IEEE International Conference

on, pp. 756–760 (IEEE, 2004).

[72] Y. Yang, Q. Tan, and Y. Xiao. Verifying web services composition based on hierarchical

colored petri nets. In Proceedings of the first international workshop on Interoperability

of heterogeneous information systems, pp. 47–54 (ACM, 2005).



206 References

[73] W.-L. Dong, H. Yu, and Y.-B. Zhang. Testing bpel-based web service composition using

high-level petri nets. In Enterprise Distributed Object Computing Conference, 2006.

EDOC’06. 10th IEEE International, pp. 441–444 (IEEE, 2006).

[74] D. Zhovtobryukh. A petri net-based approach for automated goal-driven web service

composition. Simulation 83(1), 33 (2007).

[75] W. Tan, Y. Fan, and M. Zhou. A petri net-based method for compatibility analysis and

composition of web services in business process execution language. IEEE Transactions

on Automation Science and Engineering 6(1), 94 (2009).

[76] W. Tan, Y. Fan, M. Zhou, and Z. Tian. Data-driven service composition in enterprise

soa solutions: A petri net approach. IEEE Transactions on Automation Science and

Engineering 7(3), 686 (2010).

[77] W. M. Van Der Aalst, K. M. van Hee, A. H. ter Hofstede, N. Sidorova, H. Verbeek,

M. Voorhoeve, and M. T. Wynn. Soundness of workflow nets: classification, decid-

ability, and analysis. Formal Aspects of Computing 23(3), 333 (2011).

[78] K. Van Hee, N. Sidorova, and M. Voorhoeve. Generalised soundness of workflow nets

is decidable. In International Conference on Application and Theory of Petri Nets, pp.

197–215 (Springer, 2004).

[79] A. Martens. On compatibility of web services. Petri Net Newsletter 65(12-20), 100

(2003).

[80] J. Dehnert and P. Rittgen. Relaxed soundness of business processes. In International



References 207

Conference on Advanced Information Systems Engineering, pp. 157–170 (Springer,

2001).

[81] F. Puhlmann and M. Weske. Investigations on soundness regarding lazy activities.

In International Conference on Business Process Management, pp. 145–160 (Springer,

2006).

[82] S. Sadiq, M. Orlowska, W. Sadiq, and C. Foulger. Data flow and validation in workflow

modelling. In Proceedings of the 15th Australasian database conference-Volume 27, pp.

207–214 (Australian Computer Society, Inc., 2004).

[83] S. X. Sun, J. L. Zhao, J. F. Nunamaker, and O. R. L. Sheng. Formulating the data-flow

perspective for business process management. Information Systems Research 17(4), 374

(2006).

[84] N. Trčka, W. M. Van der Aalst, and N. Sidorova. Data-flow anti-patterns: Discovering

data-flow errors in workflows. In International Conference on Advanced Information

Systems Engineering, pp. 425–439 (Springer, 2009).

[85] M. Reichert and P. Dadam. Adept flexsupporting dynamic changes of workflows without

losing control. Journal of Intelligent Information Systems 10(2), 93 (1998).

[86] M. Reichert, S. Rinderle, and P. Dadam. On the common support of workflow type and

instance changes under correctness constraints. In OTM Confederated International

Conferences” On the Move to Meaningful Internet Systems”, pp. 407–425 (Springer,

2003).



208 References

[87] W. Song, X. Ma, S. C. Cheung, H. Hu, and J. Lü. Preserving data flow correct-

ness in process adaptation. In Services Computing (SCC), 2010 IEEE International

Conference on, pp. 9–16 (IEEE, 2010).

[88] K. Becker, A. Lopes, D. S. Milojicic, J. Pruyne, and S. Singhal. Automatically de-

termining compatibility of evolving services. In Web Services, 2008. ICWS’08. IEEE

International Conference on, pp. 161–168 (2008).

[89] A. Wombacher, P. Fankhauser, B. Mahleko, and E. Neuhold. Matchmaking for business

processes based on choreographies. In e-Technology, e-Commerce and e-Service, 2004.

EEE’04. 2004 IEEE International Conference on, pp. 359–368 (IEEE, 2004).

[90] A. Martens. Consistency between executable and abstract processes. In e-Technology,

e-Commerce and e-Service, 2005. EEE’05. Proceedings. The 2005 IEEE International

Conference on, pp. 60–67 (IEEE, 2005).

[91] W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert. Dealing with change in process

choreographies: Design and implementation of propagation algorithms. Information

systems 49, 1 (2015).

[92] K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools for

modelling and validation of concurrent systems. International Journal on Software

Tools for Technology Transfer 9(3-4), 213 (2007).

[93] V. Rajlich. A model for change propagation based on graph rewriting. In Software Main-

tenance, 1997. Proceedings., International Conference on, pp. 84–91 (IEEE, 1997).



References 209

[94] Y. Kataoka, D. Notkin, M. D. Ernst, and W. G. Griswold. Automated support for

program refactoring using invariants. In Proceedings of the IEEE International Con-

ference on Software Maintenance (ICSM’01), p. 736 (IEEE Computer Society, 2001).

[95] M. Lanza and S. Ducasse. Understanding software evolution using a combination of

software visualization and software metrics. In In Proceedings of LMO 2002 (Langages

et Modèles à Objets (Citeseer, 2002).

[96] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions on

software engineering 30(2), 126 (2004).

[97] A. H. Skarra and S. B. Zdonik. The management of changing types in an object-oriented

database. In ACM Sigplan Notices, vol. 21, pp. 483–495 (ACM, 1986).

[98] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and implementation of

schema evolution in object-oriented databases, vol. 16 (ACM, 1987).

[99] C. Yu and L. Popa. Semantic adaptation of schema mappings when schemas evolve.

In Proceedings of the 31st international conference on Very large data bases, pp. 1006–

1017 (VLDB Endowment, 2005).

[100] M. Grossniklaus, S. Leone, A. De Spindler, and M. C. Norrie. Dynamic metamodel

extension modules to support adaptive data management. In International Conference

on Advanced Information Systems Engineering, pp. 363–377 (Springer, 2010).

[101] J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change man-

agement. IEEE Transactions on software engineering 16(11), 1293 (1990).



210 References

[102] H. Evans and P. Dickman. Drastic: A run-time architecture for evolving, distributed,

persistent systems. In European Conference on Object-Oriented Programming, pp. 243–

275 (Springer, 1997).

[103] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic change management by dis-

tributed graph transformation: Towards configurable distributed systems. In Inter-

national Workshop on Theory and Application of Graph Transformations, pp. 179–193

(Springer, 1998).

[104] C. Dorn and S. Dustdar. Interaction-driven self-adaptation of service ensembles. In

International Conference on Advanced Information Systems Engineering, pp. 393–408

(Springer, 2010).

[105] E. Serral, P. Valderas, and V. Pelechano. Supporting runtime system evolution to

adapt to user behaviour. In International Conference on Advanced Information Systems

Engineering, pp. 378–392 (Springer, 2010).

[106] E. E. Schmidt and B. W. Lampson. Software version management system (1985). US

Patent 4,558,413.

[107] W. A. Babich. Software configuration management: coordination for team productivity

(Addison-Wesley Longman Publishing Co., Inc., 1986).

[108] R. Conradi and B. Westfechtel. Version models for software configuration management.

ACM Computing Surveys (CSUR) 30(2), 232 (1998).



References 211

[109] J. Estublier. Software configuration management: a roadmap. In Proceedings of the

Conference on the Future of Software Engineering, pp. 279–289 (ACM, 2000).

[110] J. M. Küster, C. Gerth, A. Förster, and G. Engels. A tool for process merging in

business-driven development. In CAiSE Forum, vol. 344 (Citeseer, 2008).

[111] A. Iyengar, V. Jessani, and M. Chilanti. WebSphere business integration primer: Pro-

cess server, BPEL, SCA, and SOA (IBM Press, 2007).

[112] J. M. Küster, C. Gerth, A. Förster, and G. Engels. Detecting and resolving process

model differences in the absence of a change log. In International Conference on Busi-

ness Process Management, pp. 244–260 (Springer, 2008).

[113] C. Gerth, J. M. Küster, and G. Engels. Language-independent change management of

process models. In International Conference on Model Driven Engineering Languages

and Systems, pp. 152–166 (Springer, 2009).

[114] C. Gerth, M. Luckey, J. M. Küster, and G. Engels. Detection of semantically equivalent

fragments for business process model change management. In Services Computing

(SCC), 2010 IEEE International Conference on, pp. 57–64 (IEEE, 2010).

[115] C. Gerth, J. Küster, M. Luckey, and G. Engels. Precise detection of conflicting change

operations using process model terms. Model Driven Engineering Languages and Sys-

tems pp. 93–107 (2010).



212 References

[116] C. Gerth, J. M. Küster, M. Luckey, and G. Engels. Detection and resolution of conflict-

ing change operations in version management of process models. Software & Systems

Modeling 12(3), 517 (2013).

[117] S. W. Sadiq. Handling dynamic schema change in process models. In Database Con-

ference, 2000. ADC 2000. Proceedings. 11th Australasian, pp. 120–126 (IEEE, 2000).

[118] G. Joeris and O. Herzog. Managing evolving workflow specifications. In Cooperative

Information Systems, 1998. Proceedings. 3rd IFCIS International Conference on, pp.

310–319 (IEEE, 1998).

[119] G. Joeris and O. Herzog. Managing evolving workflow specifications with schema ver-

sioning and migration rules. Tech. rep., TZI Technical Report 15, University of Bremen

(1999).

[120] M. Kradolfer and A. Geppert. Dynamic workflow schema evolution based on workflow

type versioning and workflow migration. In Cooperative Information Systems, 1999.

CoopIS’99. Proceedings. 1999 IFCIS International Conference on, pp. 104–114 (IEEE,

1999).

[121] D. Frank, L. Fong, and L. Lam. A continuous long running batch orchestration model

for workflow instance migration. In Services Computing (SCC), 2010 IEEE Interna-

tional Conference on, pp. 226–233 (IEEE, 2010).

[122] S. R. Ponnekanti and A. Fox. Interoperability among independently evolving web ser-

vices. In Proceedings of the 5th ACM/IFIP/USENIX international conference on Mid-

dleware, pp. 331–351 (Springer-Verlag New York, Inc., 2004).



References 213

[123] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani. Developing

adapters for web services integration. In CAiSE, vol. 3520, pp. 415–429 (Springer,

2005).

[124] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati. An aspect-oriented

framework for service adaptation. In ICSOC, vol. 4294, pp. 15–26 (Springer, 2006).

[125] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-

automated adaptation of service interactions. In Proceedings of the 16th international

conference on World Wide Web, pp. 993–1002 (ACM, 2007).

[126] H. R. Motahari Nezhad, G. Y. Xu, and B. Benatallah. Protocol-aware matching of web

service interfaces for adapter development. In Proceedings of the 19th international

conference on World wide web, pp. 731–740 (ACM, 2010).

[127] A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing compatibility of bpel

processes. In Telecommunications, 2006. AICT-ICIW’06. International Conference on

Internet and Web Applications and Services/Advanced International Conference on,

pp. 147–147 (IEEE, 2006).

[128] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing interacting bpel

processes. Business Process Management pp. 17–32 (2006).

[129] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing interacting ws-bpel

processes using flexible model generation. Data & Knowledge Engineering 64(1), 38

(2008).



214 References

[130] B. Kalali, P. Alencar, and D. Cowan. A service-oriented monitoring registry. In

Proceedings of the 2003 conference of the Centre for Advanced Studies on Collaborative

research, pp. 107–121 (IBM Press, 2003).

[131] P. Kaminski, H. Müller, and M. Litoiu. A design for adaptive web service evolution. In

Proceedings of the 2006 international workshop on Self-adaptation and self-managing

systems, pp. 86–92 (ACM, 2006).

[132] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, and N. Du. A version-

aware approach for web service directory. In Web Services, 2007. ICWS 2007. IEEE

International Conference on, pp. 406–413 (IEEE, 2007).

[133] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau. An empirical study on

web service evolution. In Web Services (ICWS), 2011 IEEE International Conference

on, pp. 49–56 (IEEE, 2011).

[134] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. Managing the evolution of

service specifications. In International Conference on Advanced Information Systems

Engineering, pp. 359–374 (Springer, 2008).

[135] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. Evolving services from a

contractual perspective. In CAiSE, vol. 9, pp. 290–304 (Springer, 2009).

[136] S. Rinderle, A. Wombacher, and M. Reichert. Evolution of process choreographies in

dychor. On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA,

and ODBASE pp. 273–290 (2006).



References 215

[137] A. Wombacher. Alignment of choreography changes in bpel processes. In Services

Computing, 2009. SCC’09. IEEE International Conference on, pp. 1–8 (IEEE, 2009).

[138] S. H. Ryu, R. Saint-Paul, B. Benatallah, and F. Casati. A framework for manag-

ing the evolution of business protocols in web services. In Proceedings of the fourth

Asia-Pacific conference on Comceptual modelling-Volume 67, pp. 49–59 (Australian

Computer Society, Inc., 2007).

[139] H. Skogsrud, B. Benatallah, F. Casati, and F. Toumani. Managing impacts of security

protocol changes in service-oriented applications. In Proceedings of the 29th inter-

national conference on Software Engineering, pp. 468–477 (IEEE Computer Society,

2007).

[140] X. Liu, C. Liu, M. Rege, and A. Bouguettaya. Semantic support for adaptive long term

composed services. In Web Services (ICWS), 2010 IEEE International Conference on,

pp. 267–274 (IEEE, 2010).

[141] X. Liu, A. Bouguettaya, J. Wu, and L. Zhou. Ev-lcs: A system for the evolution

of long-term composed services. IEEE Transactions on Services Computing 6(1), 102

(2013).

[142] C. Alexander. A pattern language: towns, buildings, construction (Oxford University

Press, 1977).

[143] E. Gamma. Design patterns: elements of reusable object-oriented software (Pearson

Education India, 1995).



216 References

[144] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software

Architecture, Patterns for Concurrent and Networked Objects, vol. 2 (John Wiley &

Sons, 2013).

[145] N. Russell, A. H. Ter Hofstede, W. M. Van Der Aalst, and N. Mulyar. Workflow

control-flow patterns: A revised view. BPM Center Report BPM-06-22, BPMcenter.

org pp. 06–22 (2006).

[146] N. Russell, A. H. Ter Hofstede, D. Edmond, and W. M. van der Aalst. Workflow data

patterns (2004).

[147] N. Russell, A. H. Ter Hofstede, D. Edmond, and W. M. van der Aalst. Workflow

resource patterns. Tech. rep., BETA Working Paper Series, WP 127, Eindhoven Uni-

versity of Technology, Eindhoven (2004).

[148] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: concepts, architectures

and applications (Springer Science & Business Media, 2013).


