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Abstract

Machine Learning (ML) techniques are used by most data-driven organisations to extract insights.
In addition, Machine-learning-as-a-service (MLaaS), where models are trained on potentially
sensitive user data and then queried by external parties are becoming a reality. However, recently,
these systems have been shown to be vulnerable to Membership Inference Attacks (MIA), where
a target’s data can be inferred to belong or not to the training data. While the key factors for the
success of MIA have not been fully understood, existing defences mechanisms only consider
the model-specific properties. In this thesis, we investigate the impact of both the data and ML
model properties on the vulnerability of ML techniques to MIA. Our analysis indicates a strong
relationship between the MIA success with the properties of the data in use, such as the data
size and balance between the classes as well as with the model properties including the fairness
in prediction and the mutual information between the data and the model’s parameters. We
provide recommendations on assessing the possible information leakage from a given dataset
and propose new approaches to protect ML models from MIA by using several properties,
e.g. the model’s fairness and mutual information between data and the model’s parameters as
regularizers, which reduces the attack accuracy by 25% yielding a fairer and a better performing
ML model.
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1
Introduction

Advances in Machine learning (ML) techniques are nowadays enabling highly accurate pre-
dictions, analytics extraction, classification and recommendation tasks for a wide range of
applications. However, the success of these models is largely dependent on the access to
well-provisioned computationally powerful platforms as well as the availability of a substan-
tial amount of data used for model training. Third party Machine-Learning-As-A-Service
(MLaaS) providers like Google and Amazon have successfully addressed these two challenges
by providing publicly accessible high-performance computing infrastructure combined with ML
algorithms trained on enormous data. Working as a black-box API, MLaaS enables users to
upload their own dataset to the server and get a trained ML model on it. Organisations, public
and private alike, as well as data scientists and researchers, are now using the MLaaS platforms
to get insights on data collected from a vast range of sources.
The availability of such services raises certain safety and privacy concerns, as for many domains,
the use of sensitive data in learning is inevitable. For example, social media researchers are
utilizing machine learning in analyzing human behaviours through massive social media data
[25]. Similarly, medical records are analyzed by vendors who provide healthcare or insurances
to verify the likelihood of certain health conditions [33]. In both the cases of social media and
health, data are personal and sensitive, and therefore involves data privacy issues. In certain
scenarios, biomedical data [3] and location data [32] are also deemed to be sensitive in nature.
Although the structure of the learning model is generally hidden, as a user trains the model on
provider’s server, the centralized server presumably has access to the records it was trained on,
which could potentially be misused if the presence of a record in the training data is exposed.
In addition to that, some services give flexibility to the data owner to extend a pay-per-query
model, where other users can query the owner’s learning model [41]. Because of the publicly
available querying platform, adversarial attacks are feasible by probing the outcome of the
model to gain knowledge of the model structure or about some user’s record [37, 43, 20, 45,
25, 17]. Especially, models deployed as deep learning (DL) neural networks, are more prone to
different kinds of adversarial attacks [35, 31].
Membership Inference Attack (MIA) [37] is one of the highly regarded critical inference attacks
against ML models that can reveal whether a record was used to train a model. This attack can
achieve a substantial amount of successes on ML models even when the model structure is not
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shared. Successful MIA can pose a severe threat to user privacy by identifying the data of a
particular user contained in a dataset. For instance, knowing if a person’s record was part of the
data used to analyse suicidal behaviours [25] or movements of Alzheimer patients [32] reveals
information about the person’s suicidal tendency and health condition.
Hence, it is crucial to understand the reasons behind a successful MIA on a model and to
get an idea of the possible information leakage through the attack. Although, many pieces of
research [34, 30, 14] have established a link between MIA and certain ML model properties (e.g.
overfitting, choice of hyperparameters), studying the effect of other data and model properties is
yet to be done.
In this research, we investigate information leakage from ML models imposed by MIA. Our
primary objective is to identify the reasons behind the model’s susceptibility towards the attack
and possible measures of reducing the severity of MIA. To build a comprehensive understanding,
a rigorous analysis is performed in this research, where we investigate multiple properties related
to both data and model. Explored data properties are the data size, balance in the classes and
features, the number of features and entropy. Explored model properties include the selection
of classifiers, hyperparameters, mutual dependency between the record and model parameters,
overfitting and model’s fairness. We also study MIA-indistinguishability as proposed in [47] that
captures the vulnerability of a model to MIA in the term of disparity in the model’s predictions
towards member and non-member records. We estimate MIA’s performance against variations
in each of the properties and found some of the properties may accelerate the effectiveness of
the attack when scaled up (e.g. data size), while others serve the opposite (e.g. model’s fairness).
All the experiments are performed on Artificial Neural Network (ANN) except the experiment
where we have tested the effect of different model combinations. For the later experiment, we
use other ML algorithms such as Logistic Regression (LR), Support Vector Machine (SVM),
Random Forest (RF), K- Nearest Neighbour (KNN) in addition to ANN.
We further investigate approaches to enhance the model’s resistance against MIA in compliance
with the findings and observe that the use of certain model properties as regularizers in the ML
model may reduce the attack accuracy considerably. We demonstrate the effectiveness of our
proposed defence mechanism by using the model’s fairness differences and mutual information
between its records and model-parameters as regularizers. The used regularizers reduce attack
accuracy and improve the model’s performance significantly.

1.1 Background

1.1.1 Machine Learning Preliminaries

ML models outperform other Statistical Models (SM) (e.g., Bayesian regression and generalized
additive models) with their extreme adaptability towards evolving and complex data features
[5, 21]. In case of the supervised learning, an ML model is trained on a set of data points to
capture their inherent features and map these features to a set of predefined output labels. The
aim of the training phase is that, once trained, the model is capable of predicting label for a new
unlabeled data point. Let’s assume, D = {(xi, yi)} is the set of m data points sampled from a
probability distribution P (X, y) of feature vectors xi ∈ X , where X is the feature space, and
class label yi ∈ y, where y is a predefined set of class labels. An ML algorithm attempts to
identify a function f : X → y that maps the input data points to different classes in the best
possible way. The output is a probability vector P (f) that indicates the relative association of a
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data point to each of the class labels in y. Let’s define the model f as:

y = f(X; θ),

where θ represents the parameters generated by the model based on the features. A loss function
l(f(xi; θ), yi) captures the error of the prediction by measuring the difference between actual
and the model’s predicted class labels. Hence, the algorithm’s target is to find a function f that
minimizes the below expected loss:

L(f) = E(xi,yi)∼P (X,y)[l(f(xi; θ), yi)]

The empirical loss of the model f over the training dataset D can be defined as:

L(f) =
1

m

m∑
i

l(f(xi; θ), yi),

where m is the number of data points in D. However, a model that captures the exact feature-to-
label mapping, is more likely to produce erroneous prediction while encountering an unknown
data point. In order to prevent the algorithm from excessive leaning towards a particular dataset
D, known as overfitting, and to achieve better generalization to all the data points sampled
from similar distributions, different regularizers are used in practice. A regularizer penalizes
the model parameters if the model becomes complex i.e., learn too much information from
the training data. Therefore, the optimization problem of the model with parameters θ is to
minimize the below empirical loss:

min
θ

1

m

m∑
i

l(f(xi; θ), yi) + λR(θ),

where R(θ) is the regularizing function with a weight balancing λ > 0, also called L2-ratio.
The regularizers can be the Lp norm of θ, i.e., ‖θ‖pp. For example, L1-norm regularizer is
R(θ) = ‖θ‖11 and L2-norm regularizer is R(θ) = ‖θ‖22. The algorithm f repeatedly updates the
model parameters θ to achieve the lowest possible cost function L(f) by updating the decision
variables in the direction of the gradients:

θ+ := θ − α∂L
∂θ
,

where θ+ is the updated model parameters and α is a configurable hyperparameter called the
learning rate that determines how much the parameters will be updated during each epoch.
Smaller learning rates require more training epochs as they make smaller changes on each
update, whereas larger learning rates result in rapid changes and require fewer training epochs.
However, a very high learning rate may result in a fast calculation of non-optimal parameters
causing an inconsistent training.

1.1.2 Membership inference attack (MIA)
MIA [37] or tracing [8, 10], determines a record’s presence in the training dataset of an ML
model without knowing the structure of the model. The attack model is based on several
assumptions. Firstly, the attacker has a black-box oracle access to the model and can acquire the
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FIGURE 1.1: Membership Inference Attack (MIA) showing how the attacker acquires the prediction
vector by querying the target model. Obtained prediction vector and the correctly labeled records are
passed to the attack model, which determines the membership of the records. The second diagram
includes the use of shadow models to train the attack model beforehand.

model’s prediction vector on any data record. Secondly, the data distribution of the target model’s
inputs and outputs, including their number and the range of values they can take is known to
the adversary. The adversary intends to distinguish training set members from non-members
by observing the model’s predictions. To identify a record’s presence (i.e the membership), the
attacker tries to generate output close to the target model on randomly sampled records from the
similar data distribution and trains an ML model to classify a record’s membership based on
the prediction probabilities generated by the model. The attacker then uses the trained classifier
model on the observed output of the target model to infer the membership information of some
records.
The classic MIA [37], consists of training three different models: 1) target model, 2) shadow
model and 3) attack model. The target model is the model of interest for the adversary to
learn sensitive information about the individuals. The structure of this model and the used
training dataset are essentially kept hidden. An adversary has access to the target model to
perform queries on it and obtain some aggregated statistics on the data. The purpose of a shadow
model is to imitate the target model’s behaviour and generate outputs similar to it. As the target
model’s structure is not known, the adversary implements multiple shadow models by sampling
data from similar distributions as the target model’s training data. Finally, the classifier that
categorizes records into member and non-member classes (i.e used in the target model’s training
data or not), is called the attack model. The attack model is trained on the prediction vector
obtained from the shadow models and tested against the prediction vector of the target model
(truth data/ground truth). An overview of the attack is illustrated in Figure 1.1. The attack model
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fa aims at increasing the number of inferred members. Hence, defences against MIA can be
achieved by building a model robust against the attack model.

1.2 Literature Review

Adversarial attacks on ML models can be ranged from perturbing the model’s prediction using
adversarial examples to inferring knowledge about the model itself or the data used in it. Based
on adversary’s knowledge the adversarial attacks could roughly be categorized into two groups:
white-box and black-box attacks [49, 36]. Adversarial attacks that are performed on a known
model structure, are called white-box attacks. In contrast, if the structure of the target model is
unknown to the attacker, they are called black-box attacks. The adversarial attack first proposed
by [13] in a white-box setting, shows that introducing only a little amount of adversarial noise can
successfully mislead the model with a higher confidence levels of predictions. Later, the attack
was implemented on multiple ML models [29, 23, 19]. Recently, the explosion of Generative
Adversarial Network (GAN) [7, 42, 27] exploits this idea remarkably by generating adversarial
examples. In GAN-based adversarial attack prevention, adversarial examples are used to train a
model to discriminate between the actual and model-generated inputs. A comprehensive study
on the white-box adversarial attacks and their defenses is conducted in [24].
However, an adversarial attack that can gain insight about the records or the model without
knowing the model structure (black-box attack), is allegedly more devastating [8, 41]. Member-
ship Inference Attack (MIA) [37, 43] is one such attack, where although the model’s structure is
not disclosed to the adversary, the adversary successfully manages to learn whether a record
is part of the private training data. MIA can be highly successful given the adversary has prior
knowledge of the data distribution of the training dataset and can observe the model’s outcomes
in determining a record’s presence in the training data (as in the MLaaS platform).
Since its inception, MIA has shown a tremendous success on other models such as GAN [14, 7,
16] and differentially private models [33] in a range of domains such as social media [25], health
[3], sequence-to-sequence video captioning [17] and user mobility [32]. To attack a model by
simulating its behaviour, attacker deploys multiple shadow models [37]. However, later, Salem
et.al. [34] showed that an attack model that uses only one such shadow model or no model at all
can still render strong membership inference.
Besides MIA, other black-box attacks include adversarial attempts inferring sensitive attributes
of individual records through Attribute Inference Attack [20], and Model Inversion Attack [45,
11, 15], that allows an adversary to approximate the training data with varying accuracy level
based on the confidence value generated by the model on them without any knowledge of the
model.
A successful MIA exploits a model’s tendency to yield higher confidence value when encounter-
ing data that they are trained on (members) than the others. The property of a model to overfit
towards its training data makes it vulnerable to MIA [48]. Thus, existing defences against MIA
attempt to reduce overfitting of a model by applying regularizers like L2-regularizer [37] that
generalizes a model’s prediction or by adding Dropout layers to the model [39] that ignore a few
neurons in each iteration of training to avoid high train accuracy. Nasr et al. [30] proposed a
min-max game-theoretic defence method using the highest possible attack accuracy as adversar-
ial regularization to decrease the target model’s prediction loss while increasing privacy against
MIA. Differential privacy [28] is also another proposed defence method against membership
inference. However, the security guarantee is limited to a certain value of the privacy budget ε
[33, 22]. Furthermore, recent works reveal that overfitting can be necessary but not sufficient
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condition for a successful MIA. [26] shows that the effect of MIA was strong even when the
models were well-generalized. Therefore, it is necessary to identify other reasons for a model’s
vulnerability to MIA.
MIA-indistinguishability, as proposed in [47], defines a model’s vulnerability based on the
equality of prediction or fairness of the model on the member and non-member records. Fairness
in ML [46, 12, 4] is an emerging concept, that specifies how much a model distorts from
producing predictions with equal probabilities for individuals across different protected groups.
Similarly, MIA-indistinguishability defines a model’s vulnerability towards MIA by estimating
the model’s discrimination in prediction for the member and non-member records. Intuitively,
besides overfitting, both MIA-indistinguishability and model’s fairness in general can be possible
reasons behind MIA’s success.

1.3 Problem Statement
Several works have been done to improve machine learning models’ resilience against adversarial
MIA. Most of these solutions consider reducing the overfitting of the model to make it resistant
against such adversarial attacks. However, in addition to model overfitting, there are several
underlying data and model characteristics that could contribute to the success of these attacks.
For example, data characteristics such as data size, balance in the classes and features and
entropy, as well as model characteristics such as overfitting, group and individual fairness and
MIA-indistinguishability might play an important role in determining the success rate of MIA.
No comprehensive study has been conducted so far in the literature to investigate which of these
factors significantly impact the attack accuracy, so that the resistance methods can be developed
considering those factors. In this thesis, we aim to conduct an exploratory analysis of different
data and model properties’ influence in the success of MIA and provide recommendations to
develop defence methods in order to improve models’ resistance based on the findings of our
study.

1.4 Contributions
This research aims at protecting user data privacy against MIA by establishing a relation
between ML models and the attack on a black-box settings and by identifying the reasons
behind information leakage from the models. To achieve this, we measure MIA effectiveness
for multiple data and model properties. Explored data properties are: data sizes, balance in the
classes and features, number of the features and entropy. Explored model properties are: choice
of classifier and different hyperparameters, overfitting, ML fairness and MIA-indistinguishability.
From the study, we find MIA to be highly affected by both the data and model properties. In this
thesis, MIA is implemented according to [37]. In most of the experiments, target, shadow and
attack models are implemented as Artificial Neural Network (ANN) except in one experiment
where we also investigate other ML models such as Support Vector Machine (SVM), Logistic
Regression (LR) and Random Forest(RF). Furthermore, this research illustrates ways to improve
robustness of the model against MIA by using the model properties as regularizers in the model.
We verify our proposition by investigating models with mutual information between records
and parameters and three different fairnesses as regularizers against MIA. In summary, our
contributions are:

• Identifying the correlation of different data and model properties with MIA’s suc-
cess and their potential impact: Some of the properties show strong positive correlation
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with MIA (for example, fairness of the model), while others show negative correlations
(for example, balance in the classes). However, for a few of the properties, such as, number
of the features and entropy, we could not find any straightforward correlations with MIA,
which we intend to explore further in future.;

• Minimizing information leakage in ML models by reducing MIA accuracy based on
these findings: we propose to use influential model properties such as model’s fairness
and mutual information between the records and the model parameters as regularizers in
the model for improved defense against MIA;

• Studying the effectiveness of the recommended defense methods: We demonstrate the
models implemented with the above mentioned custom regularizers, reduce MIA accuracy
by a higher rate and increase the model’s performance compared to the models without
any regularizer and with the L1 or L2 regularizer.

1.5 Outline of the Report
This thesis is structured as follows. Chapter 1 provides a brief introduction including background,
literature review and contributions. The details of the methodology used in this research are
described in Chapter 2. Chapter 3 illustrates the experimental set up and Chapter 4 presents
the results obtained from the experiments. Based on the obtained results, our proposed defence
methods to build MIA-resilient model are presented in Chapter 5. Chapter 6 provides conclusion
and remarks on future works.
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2
Research Methodology

This chapter provides an outline of the research methodology followed in this thesis.In addition,
we also describe the selected data and model properties in this chapter. We use the classic MIA
structure described in [37]. We study the effect of the data size, class and feature balances,
number of features in the dataset, and entropy on the success of MIA. Furthermore, we also
explore the impact of the model’s hyperparameter selection, fairness, and overfitting on MIA.
Besides, we capture the relationship between the amount of information about the data available
in the ML model and the success of MIA using mutual information. Also, we study multiple ML
algorithms arranged in several target and shadow combinations to determine the MIA-resilience
of a target model against different classifiers.

Algorithm 1 Membership Inference Attack (MIA) (Shokri’17 [37])
D(X, y) is the total population. m ∈ {0, 1} is the membership label.

1: Sample, Dt, Ds ← D, where Dt 6= Ds

2: On target model ft:
3: Sample, Dt−train, Dt−test ← Dt, where Dt−train 6= Dt−test
4: Get, P (ft) ⇐= P [ŷ = y|(X, y) ∈ Dt−train]
5: On shadow model fs:
6: Sample, Ds−train, Ds−test ← Ds, where Ds−train 6= Ds−test
7: Get, P (fs) ⇐= P [ŷ = y|(X, y) ∈ Ds−train]
8: Assign membership label m to (X, y) ∈ Ds

9: On attack model fa(x, y, P (f):
10: Train on (X, y) ∈ Ds and P (fs)
11: Test on (X, y) ∈ Dt and P (ft)

9
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FIGURE 2.1: An overview of the proposed 2-stage methodology. In the first stage, customized datasets
are used as an input to the MIA model and the effects of different data and model properties are observed
comparing the predicted membership and true membership of the records. In the second stage, based on
the observations, further exploration is done to improve the model’s resilience against MIA.

2.1 Exploratory Analysis of Different Properties on MIA
The overall research is based on an exploratory research method that consists of two major
stages. In the first stage, MIA is implemented on customized datasets and multiple models to
systematically evaluate MIA attack accuracy, attack precision and attack recall against different
data and model properties. Details of the explored data and model properties are discussed
in Sections 2.2 and 2.3 and Algorithm 1 outlines the steps to implement MIA. Based on the
results obtained from the first stage, we study the correlation between different data and model
properties with the success of the attack. In the second stage, we study the effectiveness of using
multiple model-based properties to improve the model’s resilience against MIA by applying
them as regularizers. We evaluate the model’s performance in terms of both producing the
correct prediction and resistance against information leakage through MIA. We also compare
our results with model without any regularizer and with the two standard L1 and L2-norm
regularizers. Figure 2.1 illustrates an overview of the methodology.

2.2 Explored Data Properties
In an ML setting, a dataset D(X, y) can be considered as a collection of records or data points
(X, y) with a feature vector X and a set of class labels y. Each feature xi ∈ X contains different
level of balances in the feature values and in the entropy. Also, the data points of each dataset
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may have different balances between the class labels. Our first objective is to identify whether
properties of a dataset have any impact on MIA. A brief description of the investigated properties
and their evaluation metrics are given below:

1. Data sizes: Number of the records sampled from the population for training the target
model has an effect on the model’s prediction. More records often enhance the prediction
of an ML model. On the other hand, availability of many records may influence the
vulnerability of the model to MIA.

2. Balance in the classes: Balance in the classes can be measured as the frequency ratio
between different classes in the dataset. For instance, a dataset D(X, y) would have a
proper balance between the binary class labels y ∈ [0, 1] if:

P [y = 0|∀xi, xi ∈ X] = P [y = 1|∀xi, xi ∈ X] (2.1)

In case of the multiple classes, we consider the ratio between one selected class against all
the other classes. Also, for simplicity, throughout the thesis, the class balances are denoted
as the percentage of one of the class labels. For example, 10% class balance refers to the
dataset having 10% records labeled as the class y = 1.
Balance among the class labels has a tremendous impact on model’s prediction and
fairness [12]. High imbalance in the classes makes the model producing biased prediction
towards the class that has more occurrences. Thus, this property can be considered as one
of the factors impacting MIA.

3. Balance in the features: Similar to the balance in the classes, balance in the features can
have a huge impact on model’s prediction. Let’s assume, X is the set of features and A is
the set of records, we denote aj.xi for the feature xi ∈ X of the record aj ∈ A. The set of
possible feature values for a single feature xi ∈ X is C = ∀aj∈A{aj.xi}.
In the case of multiple features, we concatenate all the feature values of a record into one
and consider as a single feature. The set of all possible combinations of feature values for
all features X is: C = ∀aj∈A{∀xi∈Xaj.xi}. The feature balance is calculated as the ratio
between one feature value c in C and all the other feature values in C. So, a dataset with
balanced feature would have following equality:

P [aj.xi = c|∀aj∈A∀xi∈X , c ∈ C] = P [aj.xi 6= c|∀aj∈A∀xi∈X , c ∈ C] (2.2)

For example, a properly balanced single feature xi with only two feature values {0, 1},
has an equal probabilities of the feature values:

P [aj.xi = 0|∀aj∈A] = P [aj.xi = 1|∀aj∈A] (2.3)

4. Entropy: Entropy is a measure of randomness or uncertainty of a variable. A dataset
containing more random features effectively distorts the prediction [38]. Thus, this
property has the potentiality to affect MIA. Following Shannon’s entropy formula, if aj.xi
are the feature value of the feature xi ∈ X and of the record aj ∈ A, the entropy of each
feature xi ∈ X is:

H[P (xi)] = −
∑

aj .xi∈xi

Paj .xi logPaj .xi , (2.4)

Thus the entropy of overall dataset can be calculated by taking the mean entropy over n
number of features:

H[P (X)] =
1

n

∑
xi∈X

H[P (xi)] (2.5)

5. Number of features: Besides the above-mentioned features, we also observe the effect of
the number of features in a dataset on MIA.
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2.3 Explored Model Properties

We consider below model properties as possible candidates to have an impact on MIA:
1. Choice of model’s hyperparameters: In case of Neural Network (NN) based ML models,

performance of the model is highly case-specific for distinct prediction problems. It
requires exploring enormous possibilities to design a highly specific model. The structure
of the model and the choice of hyperparameter affect the prediction [40], which may
also affect MIA’s success. Relying on the best practice recommendation we select below
hyperparameters and observe their impact on MIA:

• Number of layers in the model: Number of layers in an NN increases the learnability
of the model. However, too many layers may also cause the model to overfit by
allowing the model to learn excessive information about the training data, which
is one of the established reasons behind a successful membership inference [48].
In contrast, fewer number of layers may limit the model’s performance, yielding
underfitting.

• Number of nodes per layer: The nodes in each layer hold the network generated
weights or parameters based on the input features and information for the transforma-
tion that a layer performs. For the first layer, this is driven by the number of features.
In subsequent layers, the number of units depend on the choice of expanding or
contracting the representation from the previous layer. The result of the entire NN
solely relies on the computation of the outputs done by the nodes at each layer.
Hence, varying the number of nodes supposedly affect MIA as well.

• Rate of regularization: Regularizers are used to generalize a model. Regularization
rate (λ) controls the amount of penalty that would be applied on the model’s loss if
the model becomes complicated. Use of regularizers is one of the effective defences
against MIA [37]. Hence, MIA’s effectiveness would also be influenced by the
variations in the rate of regularizations.

• Learning rate: The rate of changes in the network parameters between iterations/epochs
is defined by the learning rate (α) of the model. Large learning rate causes bigger
fluctuations in the parameters that result in non-optimal prediction. On the other
hand, lower learning rate takes more iterations to converge. Either way, learning
rates affect MIA by altering the model’s learning capacity.

2. Target-shadow model combination: As the target model structure is unknown to the
attacker, the attacker applies different shadow models against the target model to infer
membership information. Hence, evaluating a target model against only one type of ML
classifier may not reveal the overall scenario. It is also necessary to compare different
shadow models in combinations to identify the maximum amount of information leakage
from the model.

3. Mutual information of the data and model parameters: The focus of an ML algorithm is
to identify a function f(X; θ) that maps the input data points to different classes. The
model’s parameters θ are generated based on all the features of the training set. The
mutual dependence between the model parameters and the features holds the amount of
information obtained by the model after observing the features and can be represented as
the mutual information between them I(X; θ) which can be calculated as:

I(X; θ) = H(X)−H(X|θ), (2.6)
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whereH(X) is the marginal entropy of the features andH(X|θ) is the conditional entropy
that quantifies the amount of information needed to explain X when the value of θ are
known.

4. Fairness of the model: Within the past few years, fairness has become one of the most
popular topics in ML. Many definitions of ML fairnesses have been proposed in the
literature [12, 46, 6]. Fairness is one of the critical properties of a model that measures a
model’s behavior of prediction towards different individuals grouped based on a particular
protected feature. Fairness of a model can be defined in many ways [6, 4]. In order to
evaluate a model’s fairness against the severity of MIA, we consider three types of fairness
measures: group or statistical fairness, predictive fairness and individual fairness. Let’s
assume, ‘Gender’ is a protected feature in a dataset. It contains two groups of individuals:
‘male’ and ‘female’. Fairness of an ML model on this dataset would essentially mean
whether the model treats both ‘male’ and ‘female’ records equally without giving benefit
to one group more than the other. Different fairnesses can be defined as below:

• Group Fairness: A model is considered fair, if it predicts a particular outcome for
individuals across the protected subgroups with almost equal probabilities [12]. A
predictor f(X) =⇒ y achieves group fairness with respect to the two groups of
records gi, gj ∈ X iff,

P [ŷi = y|xi ∈ gi] = P [ŷj = y|xj ∈ gj], (2.7)

where ŷi and ŷj are the predicted outcomes for the records in group gi and gj . For
instance, in our previous example of the ‘Gender’ feature, the model is said to have
perfect group fairness if the number of the predicted class (for instance, class 1) is
the same for both ‘male’ and ‘female’ records.
To determine the group fairness of a model, we estimate the fairness difference, δg,
between two subgroups of the records as below:

δg(f) :=
1

2

∑
ŷi,ŷj∈y

|P (ŷi)− P (ŷj)| (2.8)

• Predictive Fairness: A classifier satisfies this definition if the subgroups have equal
probability to truly belong to the positive class, in other words, has similar rate of
precisions [46]. That is,

P [ŷi = y|yi = y, xi ∈ gi] = P [ŷj = y|yj = y, xj ∈ gj] (2.9)

Based on Equation 2.9, we measure the difference in predictive fairnesses δp of a
model as below:

δp(f) :=
1

2

∑
ŷi,ŷj∈y

y

|P (ŷi)− P (ŷj)| (2.10)

• Individual Fairness: The concept of individual fairness was introduced in [9] that
ascertains a predictor is fair if it produces similar outputs for similar individuals.
That is, if two records, xi and xj are similar, then the prediction on them would be
similar by the model [12]. However, equal distance between two records and between
their predictions are difficult to achieve. According to [9], a realistic definition of
individual fairness would be:

∆(ŷxi , ŷxj) ≤ d(xi, xj), (2.11)
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where, d is the distance between the records xi and xj and ∆ is the distance between
the model’s prediction for xi and xj denoted as ŷxi and ŷxj , respectively.
Both ∆ and d can be measured in different ways. In [9], a statistical distance metric
is proposed for ∆ that measures the total variation norm between two probabilities
for the outcome of the classifier for the two records:

∆tv(ŷxi , ŷxj) =
1

2

∑
ŷxi ,ŷxj∈y

|P (ŷxi)− P (ŷxj)| (2.12)

This metric assumes that the distance metric selected for d will scale the measured
distance within 0 to 1 range, where distance between two similar records would be
nearly zero and distance between two dissimilar records would be close to 1. They
also suggest a better choice for ∆ using the relative l∞ norm metric:

∆∞(ŷxi , ŷxj) = sup
ŷxi ,ŷxj∈y

log(max
{P (ŷxi)

P (ŷxj)
,
P (ŷxj)

P (ŷxi)

}
), (2.13)

which would allow the use of a metric for d that considers two records to be similar
if d << 1 and dissimilar if d >> 1. The authors discuss a few futuristic insights in
identifying a proper metric for d considering scenarios such as distance between two
records from the same protected group and different protected groups. They also
propose to build a user-specific distance metric for calculating d by allowing users
to specify the set of attributes to consider in the calculation (refer to [9] for details).
Beside the above measures, according to [46], a possible distance metric for d is the
distance between two records xi and xj divided based on one certain feature which
would be 0 if all the other feature values are identical and 1 if some are different, i.e,
d = xi ⊕ xj . Similarly, the authors of [46] proposed to simply define ∆ as 0 if the
classifier resulted in the same prediction and 1 otherwise.
In our experiments, to measure the individual fairness δi, we consider the differences
between two different distance measures d and ∆ derived from Equation 2.11:

δi(f) := ∆(ŷxi , ŷxj)− d(xi, xj) (2.14)

For simplicity of the calculation, we use the statistical distances between the predic-
tions (Equation 2.12) and between the records to compute ∆ and d respectively as
below:

δi(f) := |P (xi)− P (xj)| −
1

2

∑
ŷxi ,ŷxj∈y

|P (ŷxi)− P (ŷxj)| (2.15)

A lower value of the estimated fairness differences represents a model producing fairer
outputs. For instance, we can assume a model is fair on the record subgroups, if δg is very
small (≈ 0) and unfair if large (≈ 1). Also, throughout the thesis, the terms fairness and
difference in the fairnesses are used synonymously.

5. MIA-Indistingushability: As proposed by [47], MIA-indistinguishablity represents a
model’s strength to withstand the MIA. Intuitively, a model can be said MIA-indistinguishable
if the probability of a record’s presence in the training dataset of the model is the same
as the probability of its presence in the test dataset. As an intruder has access to the
outcome of the model, according to [47], the target model ft satisfies perfect MIA-
indistinguishability if for any prediction over the class labels y ∈ {0, 1}:

P [m = 1|ŷ = y, y] = P [m = 0|ŷ = y, y], (2.16)
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where m ∈ {0, 1} is the membership value denoting whether the record is a member of
the train data (m = 1) or test data (m = 0). Another equivalent form of this formula
assuming the adversary’s zero prior knowledge on a record’s membership and unbiased
classes sampled in the dataset, ft satisfies the perfect MIA-indistinguishability iff for any
ŷ ∈ y:

P [ŷ = y|y,m = 1] = P [ŷ = y|y,m = 0] (2.17)

In the worst case scenario, how much a model deviates from being indistinguishable
can be measured using the l∞-relative metric between the considered probabilities and
maximum divergence across the classes of y:

δmi(f) := D(P (ŷm1), P (ŷm0)) = sup
ŷ∈y
y

| log
P (ŷm1)

P (ŷm0)
|, (2.18)

where ŷm1, ŷm0 ∈ y are the prediction for the records with the membership value m = 1
and m = 0, respectively. Thus, a model is presumably less vulnerable to MIA if δmi
is close to zero. We estimate the MIA-indistinguishability by computing the statistical
difference between prediction of the train (m = 1) and test data (m = 0) of the target
model using the below equation equivalent to Equation 2.18:

δmi(f) := sup
ŷ∈y
y

| log{max
(P (ŷm1)

P (ŷm0)
,
P (ŷm0)

P (ŷm1)

)
}| (2.19)

We evaluate MIA-indistinguishability for different member and non-member ratios. To
simplify, we denote the ratios as the member rates, representing the percentage of member
records sampled from the target dataset. For instance, member rate 10% refers to 10%
train records and 90% test records split randomly from the target dataset. Similarly, 50%
member rate represents equal proportion of the member and non-member records.

6. Model Overfitting: As indicated in [30, 37], overfitting is one of the main contributors
to the machine’s vulnerability towards MIA. ML models tend to predict correctly with
higher probability when the record is a member of the training set. This tendency to lean
towards the training data, makes the model vulnerable to MIA, as the adversary can make
assumption about a record’s membership based on the prediction outcome. However,
[26] shows that, membership inference is significant even though the models are well
generalized. To explore this property, according to the previous works [37, 34, 26], we
measure overfitting as the difference between the training and testing accuracy of the
target model.
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3
Experimental Setup

The investigations conducted in this work are two-folded: we apply and evaluate MIA in multiple
experimental setup by varying the properties as described in Section 2.2 and 2.3. In this chapter
we explain how the data are customized along with the model setup for different experiments.

3.1 Property Measures
In our experiments we estimate different properties (listed in Section 2.2 and 2.3) as below:

• We measure the balance in the classes by calculating the ratio of the two (binary) classes
(0, 1) available in the dataset, where 0% being the total absence of the class label 1 and
50% being the equal frequency of both the class labels 0 and 1. For simplicity, the balances
are denoted based on the proportion of the records with class label of 1. For example,
when sampling records from the Purchase dataset with the ratio of 1’s and 0’s is 1 : 9 as
the class labels, we simply refer the dataset to have a 10% balance in the classes.

• We select one value from the range of each feature and measure the feature balance as the
ratio between the selected feature value and all the other feature values. Similar to the
class balance, we also denote the feature balance as the percentage of the chosen feature
value for each feature. For example, for the feature ‘Repeater’ that has the values {0, 1}, a
10% balance in its feature means 10% of the records have ‘Repeater’= 1 as the feature
value. Throughout the thesis, the terms balanced classes and balanced features refer to the
datasets having an equal proportion of the classes and feature values.

• The entropy of a dataset is measured by taking the mean entropy calculated using Equation
2.5 over all the features.

• The mutual information between the features and the model-generated parameters I(X; θ)
is calculated according to Equation 2.6 by taking the mean value over θ produced in
multiple layers for each feature.

• Model’s fairnesses are measured as the difference of fairness values according to Equation
2.8,2.10 and 2.15 between one selected group of records and all the other records.

17
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• We measure MIA-indistinguishability of the target model for multiple member rates
(defined in Section 3.3) following Equation 2.19.

3.2 Dataset Preparation
We select three extensively used datasets in studying MIA [37, 20, 35] and create multiple
modified versions of them to perform different experiments. The datasets are pre-processed as
follows:

• UCI Adult dataset [44]: This dataset contains individuals’ records classified into two
groups based on whether a person makes over $50k per year. Total number of records is
48, 842 with 14 census features such as age, gender, education, marital status, occupation
and working hours. In different experiments we use 1000− 10, 000 randomly sampled
records from the dataset.

• Purchase dataset [2]: This is an unlabeled dataset containing records of the customers and
their purchasing history. To prepare the dataset, we combine two datasets from the data
source [2]. The “transactions” dataset contains the customer’s buying history and The
“history” dataset contains the incentives offered to them. We obtain 16 features by joining
them including chain, category, purchase quantity, purchase amount, offer, market and
repeater. We prepare the primary dataset by randomly sampling 400,000 records. Later in
different experiments we use 10,000-100,000 records randomly sampled from the primary
dataset. Labels of the dataset are assigned using K-means clustering. In earlier works[37],
the customers were clustered into 2, 10, 20, 50, and 100 classes based on their buying
patterns. However, we cluster the records into 2 classes {0, 1} to measure the balance
between them during different experiments.

• Texas hospital dataset[18]: This dataset is based on publicly available Texas Hospital
Discharge Data with information on inpatient stays in several health facilities, released
by the Texas Department of State Health Services. We use 400, 000 records randomly
sampled from years 2006 to 2009 and 16 features such as patient’s gender, country, race,
principal surgical procedure code & day, risk mortality and illness severity. We label
the records into two classes (0, 1) denoting whether a patient got immediate response by
calculating the difference between the date of admission and the date of principal surgery.
In different experiments we use 10, 000− 100, 000 randomly sampled records from the
primary dataset.

3.3 Dataset Customization
Customizing the datasets based on different data properties is a crucial part of our study. During
an experiment to capture the effect of a certain property, we keep consistency in the other
property values as far as possible to understand that particular property’s sole impact. For
example, while evaluating the effect of variable balances in the features on MIA, the data size
and level of balance in the classes are kept consistent. A consolidated details of the property
values used in different experiments are summarised in Table 3.1.
Details of the dataset preparation for different experiments are as follows:
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Evaluated Property Controlled Properties Other Properties

Data size
10000 to 100000 (10000 interval)
1000 to 10000 (1000 interval)

Balance in the classes 10% and 50%
Number of features 16 (14 for Adult)

Balance in the classes 0% to 50% (10% interval)
Data size 100,000 (10,000 for Adult)
Number of features 16 (14 for Adult)

Balance in the features 0% to 50% (10% interval)
Data size 100,000 (10,000 for Adult)
Balance in the classes 10% and 50%
Number of features 5

Number of features
1 to 16 features (1 feature interval)
1 to 14 for Adult dataset

Data size 100,000 (10,000 for Adult)
Balance in the classes 10% and 50%

Entropy

Mutual information between record
and model parameters I(X; θ)

Model overfitting

Property not controlled;
Measured on different datasets

MIA-indistinguishability Member-rate 10% to 90% (10% interval)

Target-shadow model combinations
Implemented 5 ML models (Table 3.3)
1-target vs. 1-shadow model
1-target vs. 5-shadow models (different models)

Choice of model hyperparameters
ANN with multiple set of hyperparameters
(Table 3.2)

Data size 100,000 (10,000 for Adult)
Balance in the classes 10% and 50%
Number of features 16 (14 for Adult

Model fairness
(δg, δp, δi)

Property not controlled;
Measured on different datasets

Data size 100,000 (10,000 for Adult)
Balance in the classes 10% to 50% (10% interval)
Balance in the features 10% to 50% (10% interval)
Number of features 5

For all experiments a default ANN is used as the ML model (ANN hyperparameters are chosen as described in Table 3.3)
except ”Target-shadow Model Combination” experiment

TABLE 3.1: Details of the property values used in different experiments

• We create datasets containing 10, 000 to 100, 000 records with 10, 000 interval for Pur-
chase and Texas datasets and 1, 000 to 10, 000 records with 1, 000 interval for Adult to
evaluate the effect of the data sizes on MIA.

• To evaluate the impact of the balance in the classes on MIA we sample records keeping
the rate balance rate of the class label ‘1’ from 0% to 50% with 10% interval.

• For estimating how the balance in the features influences the MIA, we create the datasets
with only 5 selected features and tuned their feature balances between 0% and 50% with
10% interval by sampling records accordingly.

• For analysing the effect of the number of features on MIA, we generate multiple datasets
having 1 to 16 features (14, in case of Adult dataset).

• To understand the impact of the model fairness properly, we consider datasets with 5
features having both the classes and the features balanced from 10% to 50% with 10%
interval.

• For all the experiments we always use 25% member rate while splitting the target dataset
into train and test records except for the experiment on MIA-indistinguishability, where
we measure MIA-indistinguishability for the different member rates from 10% to 90%,
with a 10% interval.

We use 100, 000 records (10, 000 in case of Adult dataset) with all the features and with two
levels of balances (10% and 50%) in the classes as default setting in all the other experiments.
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hyperparameters Values
Hidden layers 1-layer to 5-layers
Number of nodes 5, 50, 100, 500
Learning rate, α 0.00001, 0.0001, 0.001,0.01, 0.1
L2-ratios, λ 0, .001, .01, .1, 1, 2, 3

TABLE 3.2: Different hyperparameter’s values used in the ANN model to study their impact on the
MIA attack accuracy.

Model hyperparameters
Logistic Regression (LR) C=0.01, solver= LBGFS
Support Vectopr Machine (SVM) C=0.01, kernel= RBF
Random Forest (RF) n-estimators=100, criterion=gini,

max-depth=2
K-Nearest Neighbour (KNN) p=2, neighbors=3
Artificial Neural Network (ANN) α = 0.001, solver= sgd,

epochs=50

TABLE 3.3: Hyperparameters selected for the different models used while exploring target-shadow
model combinations against MIA.

3.4 Model Setup

We implement MIA according to Algorithm 1, where both the target and shadow datasets DT

and DS are sampled distinctly from the total population D. The default ANN model used as the
target, shadow and attack model for every experiment is strutured as a one hidden layer network
and 50-nodes with other hyperparameters selected as α = .001, solver=sgd and epochs=50
(similar to the ANN setting in Table 3.3). Furthermore, to reduce the computational complexity,
we use only one shadow model following the work of Salem et.al. in [34], as their experiments
show that similar attack accuracy were observed when using one shadow model instead of
multiple shadow models as in [37].
We also investigate how choosing different hyperparameters for a neural network may affect the
MIA. For this experiment, we probe ANN models containing 1 to 5-hidden layers with different
number of nodes, learning rates α and L2-ratios λ using L2-regularizer. The detailed ranges of
the hyperparameters probed for this experiment are given in Table 3.2.
Five models are chosen to study the effect of using different classifiers as shadow models on
the attack accuracy. The models are Logistic Regression (LR), Support Vector Machine (SVM),
Random Forest (RF), K- Nearest Neighbour (KNN) and ANN. Choice of the hyperparameters for
all the models are listed in Table 3.3. We experiment on target and shadow model combinations
in two settings: one-to-one and one-versus-all. In one-to-one setting, the models are examined
against each other using only one shadow model. On the other hand, in the one-versus-all setting,
each model is tested against five shadow models each structured as one of the considered models.

3.5 Evaluation Metrics

We use the classification accuracy score of the attack model to evaluate MIA’s performance and
denoted as the attack accuracy throughout the thesis. The score reflects the number of correctly
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True
Member (m = 1)

True
Non-member (m = 0)

Predicted Member
(fa(X) = 1)

True Positive (TP) False Positive (FP)

Predicted Non-member
(fa(X) = 0)

False Negative (FN) True Negative (TN)

TABLE 3.4: Confusion matrix for evaluating the performance of MIA

inferred membership information about the desired records by the attack model and can be
defined as:

Attack accuracy =
Number of Correctly Predicted Memberships

Total Number of Predictions
(3.1)

As a binary classifier, MIA’s attack accuracy can be written in terms of the positive and negative
predictions (Table 3.4) as below:

Attack Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

The attack precision and attack recall values can be calculated as below:

Attack Precision =
TP

TP + FP
(3.3)

and,

Attack Recall =
TP

TP + FN
(3.4)

We compute Pearson’s correlation coefficients for each of the properties against attack accuracy
for better understanding of how they correlate to each other. Pearson’s correlation coefficient
formula is given below:

ρ =
COV(p, a)

σpσa
, (3.5)

where ρ is the correlation coefficient, p represents the different property values and a is the
accuracy of membership inference obtained on them. COV(p, a) is essentially the covariance
between the variables, and σp and σa are the standard deviations of p and a, respectively. A
positive value of the coefficient suggests that increase in the property value boosts the attack
accuracy, while the negative value refers to the opposite. The higher the value for ρ is, the higher
the correlation between the evaluated property and MIA accuracy.
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4
Exploratory Analysis of the Impact of

Different Properties on MIA

This chapter illustrates all the experimental results showing the performance of MIA in corre-
spondence to the investigated data and model properties. We describe MIA’s performance in
terms of the attack accuracy, precision and recall with respect to the changes in the properties.
The acquired results reveal that, most of all the different properties affects MIA’s performance
indicating strong relationships among them. Moreover, the Pearson’s correlation coefficients
computed between the properties and the attack accuracy also support our findings. Table 4.1
shows the correlation coefficients for some of the evident properties with the attack accuracies.
Among all the properties, data size, balance in the classes, group fairness and mutual information
between records and model generated parameters show a strong correlation with MIA.

Adult Purchase Texas

Datasize 0.280 0.327 0.337
Balance in the classes -0.940 -0.181 -0.015
No of features -0.146 -0.181 -0.187
Balance in the features 0.011 0.045 0.009
Entropy -0.221 -0.018 -0.006
Individual fairness 0.067 0.041 0.038
Group fairness 0.313 0.475 0.291
Predictive fairness 0.028 0.043 0.020
I(X; θ) 0.246 0.303 0.140
MIA-indistinguishability -.03.495 -.008623 -.047929

TABLE 4.1: Person’s correlation coefficients calculated between different properties and MIA attack
accuracy.
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a. Purchase dataset

b. Texas dataset

c. Adult dataset

FIGURE 4.1: Data size vs attack accuracy, attack precision and attack recall: results obtained on
different datasets (confidence Interval=95%). Figure shows that increasing the data size increases the
severity of MIA in the case of both 10% and 50% class balances.

1-hidden layer, no regularizer (λ=0)

Datasets Train Acc Test Acc Attack Acc
Adult 80.956 81.232 58.893

Purchase 71.512 71.405 54.121
Texas 78.465 78.226 57.716

a

5-hidden layers, no regularizer (λ=0)

Datasets Train Acc Test Acc Attack Acc
Adult 89.806 89.782 71.080

Purchase 88.802 88.780 71.736
Texas 90.993 90.862 71.257

b

1-hidden layer, with regularizer (λ=.01)}

Datasets Train Acc Test Acc Attack Acc
Adult 74.972 75.076 55.977
Purchase 64.829 65.532 56.36
Texas 75.974 76.074 49.891

c

5-hidden layers, with regularizer (λ=.01)

Datasets Train Acc Test Acc Attack Acc
Adult 88.364 88.355 66.955

Purchase 88.33 88.358 70.211
Texas 90.498 90.473 72.664

d

TABLE 4.2: Target model’s train and test accuracies (%) versus obtained MIA attack accuracies (%)
for the models having a) 1 and b) 5-hidden layers respectively, without using any regularizer, whereas, c)
and d) illustrate the results with regularizer. Data size is 100,000 (10,000 for Adult) and class balance is
10%. Selected hyperparameters: α: .001, λ: .01 and number of nodes in each hidden layer: 5.
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FIGURE 4.2: Different levels of balance in the classes vs attack accuracy, attack precision and attack
recall for Purchase, Texas and Adult dataset (CI = 95%). Datasets with properly balanced classes result
in low attack accuracy.

FIGURE 4.3: Attack accuracy, attack precision and attack recall for the different levels of feature
balances in the three selected features from Purchase dataset (CI = 95%). Datasize is 100,000 and class
balance is 10%.

4.1 Effect of Different Data Properties
1. Data Sizes: From the experimental results obtained on all three datasets, it is evident that

the size of the dataset has a huge impact on the MIA’s success. The adversary has more
advantage in attacking rather large datasets. On the same model structure, regardless of
the highly balanced or imbalanced class labels, an increase in the data size enhances the
attack accuracy. Figure 4.1 illustrates the results acquired on datasets with different data
sizes. For all the datasets, the shadow model’s data sizes are twice larger than the target
model’s data sizes (1 : 2). Note that, a similar trend in the MIA’s success is obtained when
the data size of the target and shadow models are equal (1 : 1). Table 4.1 also indicates a
strong positive correlation between data sizes and attack accuracy for all three datasets.
The attack accuracy and recall are higher for the datasets with imbalanced class labels
than the balanced ones, while attack precision is lower for the datasets with imbalanced
class labels. That means while more TPs are predicted more FPs are also included in the
prediction when classes are imbalanced. However, TPs have more cost than FPs in this
problem settings. We obtain the similar trend of attack precision and attack recall in most
of the experiments.

2. Balance in the Classes: Figure 4.2 shows the attack accuracy for different balances in
the class labels for all three of the datasets. When a dataset has a proper balance in the
class labels(50%, i.e. 1 : 1), the MIA is less successful. In terms of an ML model’s



26 EXPLORATORY ANALYSIS OF THE IMPACT OF DIFFERENT PROPERTIES ON MIA

a. Purchase dataset

b. Texas dataset

c. Adult dataset

FIGURE 4.4: Attack accuracy, attack precision and attack recall obtained for the different levels of
feature balances in the cases of two class balances- 10% and 50% (CI = 95%). Number of features in
each of the datasets is 5. Data size is 100,000 (10,000 for Adult dataset)

prediction, this behaviour explains that the model produces less biased prediction towards
one particular class when it is trained on a dataset that has properly balanced classes,
hence giving less benefit to the adversary. From the Table 4.1, we can also observe a
negative correlation between balance in the classes and the attack accuracy. Similar trend
with attack accuracy, precision and recall are achieved as described above for data size
results. In addition to this, from the figure, it can be seen that, although the attack accuracy
is lower for 50% class balance than 0% class balance, the lowest attack accuracy value
is not always achievable from a perfectly balanced class. For example, in case of the
Adult dataset, the lowest attack accuracy value is obtained with 30% balance level in class
labels.

3. Balance in the Features: In case of the balance in the features, the effect of each feature
is different when they are experimented individually against MIA. Figure 4.3 shows the
performance of the attack on three selected features from the Purchase dataset investigated
separately. Similar patterns are found after carrying out the experiments on 5 features
selected from Purchase, Texas and Adult datasets that show no consistency in the increase
or decrease of the attack accuracy with respect to the increase in the feature balances. The
results are depicted in Figure 4.4. However, attack accuracy is lower as expected for the
class balance 50% compared to the class balance 10%. Although, according to the Table
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a. Purchase dataset

b. Texas dataset

c. Adult dataset

FIGURE 4.5: Attack accuracy for the datasets containing 1 to 16 features (14 featuers in the case of
Adult dataset; CI = 95%). Balance in the classes are 10% and 50%. Data size is 100,000 (10,000 for
Adult dataset).

4.1, the balance in the features and the attack accuracy is positively correlated, it is hard
to make any straightforward conclusion on how the balance in the features affects MIA’s
success. The results demonstrate that several features combined together by keeping
a certain balance among them may prevent membership inference better, which needs
further exploration.

4. Number of the Features: Introducing more features in a dataset increases dimensionality in
the dataset, that makes it difficult to perform MIA by the adversary. Figure 4.5, represents
the observed attack accuracy for each dataset with a gradual increase in the number of
features. Although there is no straightforward trend in the attack accuracy, from the
figure, it can be understood that a certain combination of features in a dataset shows better
defence against MIA. For instance, in case of the Purchase dataset, mean attack accuracy
for a 2-features dataset is 64%, while for the 16-features the accuracy decreases to 57.5%.
Further exploration may reveal the actual reason behind this behavior of the dataset.

5. Entropy: The entropy of a dataset determines the level of randomness among the features.
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a. Purchase dataset b. Texas dataset c. Adult dataset

FIGURE 4.6: Relationship between the entropy of the datasets vs. attack accuracy for 10% balance in
the classes. Data size is 100,000 ( 10,000 for Adult dataset).

Large datasets with many features render higher entropy value. For a limited number
of features used in the dataset, the result still shows high attack accuracies for the small
entropy values. Figure 4.6 shows the results of this experiment for the datasets with 10%
balance in the classes. However, from the result, it is hard to derive any conclusion about
the relationship between the attack accuracy and entropy except the Adult dataset. In the
case of Adult dataset, attack accuracy range is lower for low entropy value. We followed a
similar trend for the 50% balance in the classes as well. Although the correlation between
the entropy and the attack accuracy is negative according to the Table 4.1, the experimental
results suggest the necessity of further investigation on this property.

4.2 Effect of Different Model Properties

1. Selection of Model’s Hyperparameters: Properly tuned hyperparameters has a tremendous
contribution to a model’s performance. To understand the effectiveness of a proper selec-
tion of the hyperparameter values against MIA, we experiment on multiple hyperparameter
settings based on the number of layers, number of nodes in each layer, the learning rate
and L2-ratio. Obtained results for the models having 1 to 5-hidden layers are presented in
Figure 4.7. From the figure it can be observed that, having a higher number of nodes on
each layer increases attack accuracy. The figure also demonstrates a significant increase
in the attack accuracy for a slight increase in the learning rate (α) of the target model.
Also, the selection of the L2-ratio (λ) to control the amount of regularization impacts MIA
significantly. More regularization decreases attack accuracy. However, after a certain
point (λ > .1), increasing the regularization value seems to behave the opposite.

2. Target-Shadow Model Combination: In one-to-one setting we find that, in general, shadow
models structured as ANN and RF may yield higher attack accuracy against most of the
models (Figure 4.8). We also observe that, ANN shows maximum vulnerability against
shadow model built as ANN. However, for lower data size in Adult dataset (10,000) ANN
also proves to be vulnerable against SVM. Furthermore, it is evident that, shadow models
built as similar to the target do not guarantee maximum attack accuracy. However, when
each model encounters all five shadow models (right-side graphs in Figure 4.8), the attack
accuracy surges higher in case of all the target models. From the experimental results
it can be realized that, the success of MIA is highly classifier dependent and combined
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a. Purchase dataset

b. Texas dataset

c. Adult dataset

FIGURE 4.7: MIA accuracy for models with different combinations of hyper parameters. Left-most
graphs show the effect of increasing the number of nodes on each layer on MIA. The graphs in the middle
show the effect of changing the learning rate and the right-most graphs show the effect of changing the
L2-ratio. Data size is 100,000 (10,000 for Adult dataset) and class balance is 10%.

attack of multiple models against one model is more severe.
3. Mutual Information between Records and Model Parameters: Mutual information between

model-generated parameters and the records I(X; θ) can capture the information learned
by the model over a dataset. Higher mutual information between them indicates that
the model captures more information from the records, which in turn could result in
vulnerability towards membership inference. The resulting figure (Figure 4.9) of the
experiments and the correlation coefficient (Table 4.1) also supports this interpretation.
For all the datasets, attack accuracy values soar up for a small increase in the values of I .
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a. Purchase dataset

b. Texas dataset

c. Adult dataset

FIGURE 4.8: Attack accuracy obtained using different ML algorithms as target and shadow models.
Left-side figures show the level of attack accuracy achieved from one-to-one setting between the target
and shadow model combinations. The right-side figures show attack accuracy for each of the target
models against five shadow models using all the five examined algorithms.Data size is 100,000 (10,000
for Adult dataset) and balance in the classes is 10%

a. Purchase dataset b. Texas dataset c. Adult dataset

FIGURE 4.9: Relationship between I(X; θ) and attack accuracy. Here, I is the mutual information
between the features of a dataset and the model parameters estimated on them. Class balance is 10% and
data size is 100,000 ( 10,000 for Adult dataset)
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a. Purchase dataset b. Texas dataset c. Adult dataset

FIGURE 4.10: Relationship between the MIA-indistinguishability and attack accuracy for the member
rates of <50%, 50% and >50% (CI = 95%). Results obtained on 100,000 data (10,000 for Adult
dataset) with 10% balance in the classes.

4. Model’s Fairness: Fairness is one of the high-impact model properties on MIA. Table
4.1 shows a strong correlation between the fairness and attack accuracy. We measure
fairnesses as the difference between two groups of records. Thus, lower fairness difference
represents a fairer model. Figure 4.11 depicts the results of our studies on three different
fairnesses- group, predictive and individual fairness for multiple balances in the classes and
features. The figure clearly shows that, for a model with a lower fairness difference, the
attack is comparatively weaker. Also, there is a significant positive relationship between
balance in the features and classes with model’s fairness. For instance, a model depicts
lower fairness difference for the datasets with properly balanced features and classes.

5. MIA-indistinguishability: The vulnerability of a model towards MIA in the form of
MIA-indistinguishability is explored for different member rates used in the target model.
MIA-indistinguishability is measured as the difference between the member and non-
member predictions. Hence, a lower value of MIA-indistinguishability suggests a model
with similar member and non-member predictions. Figure 4.10 illustrates results obtained
from the experiment. We observe that, when the member rate is 50%, the range of
MIA-indistinguishability is very low and attack accuracy is always close to the random
guess (50%). For both the cases where the member and non-member ratio is unequal (
member rates>50% and<50%), increase in the MIA-indistinguishability boosts the attack
accuracy, except for the Texas dataset. This results require a further assessment in order
to verify the relationship between MIA and MIA-indistinguishability. The correlation
coefficients between MIA-indistinguishability and attack accuracy indicate a negative
correlation as expected (Table 4.1).

6. Model’s Overfitting: The significance of a model’s overfitting tendency is well-explored
by multiple pieces of research [48, 26, 34]. In our experiments, in order to observe the
contribution of the overfitting to MIA’s success, we use multiple hyperparameter settings
that depict very low overfitting on all the datasets. Acquired test accuracy, train accuracy
and attack accuracy values from these models are illustrated in Table 4.2. In the table we
compare ANNs consisting of 1 and 5-hidden layers in the cases of both with and without
using a regularizer. It is evident from the results that even though the models are not
overfitted, increasing the number of hidden layers shows an increase in the attack accuracy.
Also, model’s with regularizer (L2) yields lower attack accuracy compared to the model
with the same structure but no regularization.
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a. Purchase dataset b. Texas dataset c. Adult dataset

FIGURE 4.11: Relationship between fairnesses and attack accuracy for the datasets with 10% to 50%
class and feature balances. The graphs in each column show the attack accuracy, differences in group,
predictive and individual fairness respectively for each of the datasets. Data size is 100,000 (10,000 for
Adult dataset) and the number of used data features are 5.

In summary, to prevent information leakage, the major concerning properties regarding the
data are the data size and balance in the classes. Although using smaller datasets limit the
fruitfulness of the training, the adversarial advantage over the huge data should be estimated
before deploying them in MLaaS platform. In addition to that, sampling records with the class
labels proportionately balanced would also reduce the impact of MIA and may foster fairness in
the model. Besides the data size and the class balances, features used in the dataset may also be
tested against MIA in several combinations with different balances among them to identify an
optimal set of features that may expose less information. In the case of a model, hyperparameter
selection, mutual information between the records and model’s parameters learned on them and
model’s fairness has more impact on MIA. However, in reality, it would be extremely difficult
to control the properties to minimize information leakage, especially the data properties. Thus,
we attempt to elevate the model’s resilience against MIA according to the above observations.
We proceed further to develop an optimal MIA-resistant model by utilising the values of the
dominant model properties. Chapter 5 describes our method and findings on the experiments of
the MIA resilience in detail.



5
Towards MIA-resilient ML models

In the previous chapter, we present the results of our empirical study to identify factors that
contribute to MIA’s success. Our findings inspired us to further look into preventing ML
models from leaking membership information. In this chapter, we propose a new technique
by introducing custom regularizer in the model that aims at strengthening the model against
MIA with a successful reduction in the attack accuracy. To validate our proposed technique,
we implement multiple model properties as regularizers in the model and observe the impact
on both MIA and model’s prediction. The results demostrate that, the regularizers reduce MIA
accruacy and at the same time, improve model’s predictability by inducing better generalization
of the parameters.

5.1 Tuning the Model for Better Resilience
Previous research showed that using a well-generalized model with lower overfitting that
produces similar number of correct predictions for both training and testing records is one of
the ways to prevent MIA [48]. However, from the previous chapter, we learn that models with
marginal overfitting can also result in high MIA accuracy (results acquired on model’s overfitting
are discussed in Section 4.2). In addition, compared to the overfitting, model properties such
as fairness difference between two record groups, and the mutual information between the
records and model parameters (I(X; θ)) show greater influence on MIA accuracy. As both of
these properties are negatively correlated to the attack accuracy, decrementing them towards an
optimal value would essentially improve the model’s performance. Also, one of the existing
defences proposed in [30], suggests a game-theoretic approach to minimize classification loss of
the model by using the maximum gain of MIA as a regularizer.
Based on the above analysis, we investigate a novel technique to improve the underlying model’s
performance as well as the resilience against MIA by using property values as regularizers in
the model. We explore following four model properties that showed high correlation with MIA
accuracy in our experimental results presented in the previous chapter:

• Difference in the group fairness, δg,

• Difference in the predictive fairness, δp,
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• Difference in the individual fairness, δi and,

• Mutual information between the records and the model parameters, I(X; θ)

Algorithm 2 Group Fairness as a Regularizer
D : X × y is the total population where g1, g0 ∈ D are the data points resembling two groups of
individuals with g1 ∩ g0 = φ

1: for k number of epochs do
2: for l steps do
3: Randomly sample m data points from g1 and n data points from g0
4: Use the records to train the target model ft and measure the group fairness δg as:
. According to Equation 2.8

δg =
1

2

∑
ŷ∈y

|Pg0(ŷ)− Pg1(ŷ)|

5: Set r ← max
l
δg

6: Update ft by descending its stochastic gradients over its parameters θ using below equation:

5θ
1

m+ n

m+n∑
i=1

l(ŷ, yi) + λ
∑
j

|θ.er|

Algorithm 2 gives an outline of how a model’s fairness difference in the groups can be used as
a regularizer in that model. The algorithm starts by sampling records from the two groups of
individuals and obtaining the group fairness difference δg according to Equation 2.8 by training
the target model ft. After repeating the steps for l times (steps 2-4 in Algorithm 2), the maximum
gourp fairness difference r of the model is estimated (step 5). Finally below regularizer function
is used to update the gradients (step 6):

R(θ) =
∑
j

|θ.er|,

Where j is the number of parameters θ generated by the model in one epoch.

Regularizers

None
δg
δp
δi

I(X; θ)
L1
L2

a

Train Acc Test Acc Attack Acc

73.04 72.80 73.89
85.00 84.72 50.03
84.72 84.59 48.84
84.89 84.93 51.99
73.14 73.35 51.15
76.78 76.81 55.29
76.69 76.94 59.13

b

Train Acc Test Acc Attack Acc

76.17 75.87 74.04
84.75 84.71 53.27
84.73 84.80 58.53
84.71 84.72 58.15
70.93 70.77 59.40
79.93 80.34 55.76
78.63 78.74 55.72

c

Train Acc Test Acc Attack Acc

76.54 76.52 73.36
84.49 84.52 52.33
84.57 84.15 51.84
84.41 84.60 50.25
70.14 70.31 53.34
76.42 76.72 52.41
69.64 69.83 53.95

TABLE 5.1: Train, test and attack accuracy (%) for different regularizers applied in the models for a)
Purchase, b) Texas and c) Adult datasets with 5 features and 10% balance both in the classes and features.

To evaluate the model’s performance, we repeat the steps for 50 epochs and measure the train
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loss and difference in the group fairness in each epoch. We have also estimated the train and test
accuracy of the model and attack accuracy after performing MIA on the model. We follow a
similar algorithm in implementing models with other properties as regularizers. We use datasets
with 100,000 records (10,000 records for Adult dataset), 5 features and 10% balance in the
classes in these experiments.

a. Purchase dataset b. Texas dataset c. Adult dataset

FIGURE 5.1: Comparison of the model’s training loss on each epoch using δg, δp, δi, I(X, θ), L1 and
L2 regularizers. The number of used features is 5, data size is 100,000 (10,000 for Adult dataset) and
class balance is 10%.

a. Purchase dataset b. Texas dataset c. Adult dataset

FIGURE 5.2: The decrease in group fairness differences in each epoch for multiple models applying
δg, δp, δi, I(X, θ), L1 and L2 regularizers.

5.2 Experimental Evaluation of the Proposed Regularizers
For all the four studied regularizers, the obtained results show success both in terms of improving
the model’s performance and reducing MIA accuracy. The attack accuracy values as reported
in Table 5.1 show that the lowest attack accuracy was achieved by using one of the proposed
regularizers compared to the model without any regularizer or using L1 and L2 regularizers. As
expected, all the regularizers perform significantly better in terms of reducing attack accuracy
compared to using no regularizer. The train and test accuracy are also improved substantially
(Table 5.1). The improvement in the train accuracy can be observed from Figure 5.1 that exhibits
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the decrease in the model’s loss in each epoch. Also, for all the datasets, group and predictive
fairness differences achieve the minimum loss of prediction compared to the other regularizers.
Furthermore, in term of reducing fairness difference, from Figure 5.2 it is evident that models
with the group, predictive and individual fairness regularizers ensure a higher level of fairness
towards the record groups compared to L1 and L2 regularizers.



6
Conclusion & Future Work

Complete prevention against the inevitable disclosure of information from an ML model through
the adversarial attacks is not achievable yet. But, an optimal model that leaks minimum
information can be ensured by carefully adopting both the model and data properties. In this
thesis, several selective data and model properties are analysed against MIA, to monitor how
the attack accuracy is influenced by different property values. Considered data properties in
our study are- the data size, balance in the classes, balance in the feature values, number of the
features and data entropy. On the other hand, we explore model properties like the choice of
the target model and model’s hyperparameters, mutual information between the records and
model parameters and overfitting. In addition to that, we also examine the impact of a model’s
fairness which is a reasonably new concepts in ML researches that shows model’s integrity
of prediction towards different groups of individuals. Furthermore, MIA-indistinguishability,
referring to the equal predictability of a model for both member and non-member records, is
also investigated against MIA accuracy. We explore whether models with higher fairness and
MIA-indistinguishability offer better resistance against MIA.
The outcome of the investigation promisingly shows that both the data and model properties may
considerably affect the membership inference from the model by the intruder. Our investigation
shows that larger datasets with unbalanced classes or features are the most vulnerable towards
MIA. On the other hand, choosing the right model with proper hyperparameter setting can
reduce the vulnerability. Furthermore, an ML model with high learnability produces higher
mutual information between the records and model’s parameters which may increase the attack
accuracy. Additionally, if a model gives more benefit to one group of individuals than the other
in terms of correct prediction, the chances of a record to be exposed increase tremendously.
Similarly, if a record is predicted differently by the model because of its presence in the training
or test dataset, the probability of a successful attack capturing the difference surges. However,
a few of the explored properties such as balance in the feature values, entropy and MIA-
indistinguishability need further exploration to understand the obtained experimental results and
realize their contribution to MIA’s success.
In addition to assessing different data and model properties’ contribution to the information
leakage from an ML model through MIA, we further study how the observations can be utilised
to strengthen a model, before allowing public access to it. We apply model properties such as
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group, predictive and individual fairnesses and mutual information between the records and the
parameters as regularizers in the model to control the model’s ability to extract information from
the features. All the four regularizers deemed to reduce the attack accuracy as well as model’s
training loss according to our experimental results. The results also demonstrate improved
fairness of the model compared to the model without any regularizer and with other standard
regularizations (L1, L2- norm).

6.1 Future Works
The outcomes of our study in the thesis motivate further exploration of the data and model
properties to build an optimal ML model with marginal information disclosure. In this research,
we only consider MIA as the adversarial attack, while other variants of black-box attacks such
as model inversion attack [45] and attribute inference attacks [20] are yet to be studied. In
addition, it is necessary to study the impact of other model specific properties for other variants
of ML algorithms, such as re-inforced ML and agent-based modelling. Besides, existing defence
mechanisms of MIA including the use of dropout layer [39], differential privacy based noise
addition to the data and model parameters [1] and adversarial regularization [30] are not explored
in our research. In addition, as the defences are model-specific, a further attempt can be made
towards formulating a comprehensive defence against MIA that is not bounded by the type of the
target model. Hence, the futuristic notion of this research could be described as a three-folded
study:

• Further exploration of other data and model properties and their impact on different
black-box and white-box adversarial attacks;

• Evaluating the effectiveness of adversarial attacks on the range of techniques for supervised
and unsupervised learning in the case of both centralised and federated settings;

• Investigation on the practicality of the existing defences for the above-mentioned attacks in
order to develop an optimal attack-resistant ML model and preferably model-independent
defence mechanism.
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