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1. Abstract 

This PhD thesis analyses three key problems in financial risk management and fund 

management. First, it tackles the problems of identifying risk contributors and 

performing Value-at-Risk analysis for Asian hedge funds. Second, it sheds light on 

agency problems affecting funds management in Australia. Last but not least, it 

discusses the problems of cleansing financial historical data essential for risk 

management. The thesis consists of three key chapters based on two published 

journal articles and one research paper.   

 

Chapter 3, titled Style Analysis and Value-at-Risk of Asia-focused Hedge Funds has 

been published in the Pacific-Basin Finance Journal, Volume 19 (2011). The chapter 

identifies risk factors and analyses Value-at-Risk (VaR) for Asia-focused hedge funds. 

Through a modified style analysis technique, we find that Asian hedge funds 

represented by Asian hedge fund indices show significant positive exposure to 

emerging equity markets. They also hold a significant portion of portfolio in cash and 

high credit rating bonds while taking short positions in world government and 

emerging market bonds. A rolling window style analysis is used to measure the 

time-varying risk exposure of Asian hedge funds. For both a static and rolling period 

style analysis, our model provides high explanatory power for returns on the 

considered hedge fund index. We further conduct a Value-at-Risk analysis using the 

results of a rolling window style analysis as inputs. Our results indicate that the 

accuracy of VaR models is dominated by their ability to capture the tail distribution 

of the hedge fund returns. Moreover, the distributional assumption seems to be more 

important than the chosen volatility model for the performance of the models in VaR 

prediction. Our findings further suggest that the considered parametric models 

outperform a simple historical simulation that is purely based on past return 

observations. 

 

Chapter 4 is based on a journal article, titled Agency Theory and Financial Planning 
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Practice that has been published in the Australian Economic Review, Volume 47 

(2014). The chapter extends an influential contribution to the literature on agency 

theory and then uses this extension, along with other theoretical contributions, to 

shed light on agency problems affecting funds management and financial planning in 

Australia. The case for pure fee for service in actively managed funds and plans turns 

out to be weak. The amount of money exposed to risk by an active manager should 

be less than the entire investible wealth of the client, especially in the case of 

investors on the cusp of retirement. Asset-based fees on actively managed funds 

should include a fulcrum component. 

 

Chapter 5 titled Backfilling Financial Data with an Iterative PCA-based Imputation 

proposes an iterative PCA-based data imputation algorithm for handling missing 

values in financial time series. The designed backfilling algorithm generates 

satisfactory results for both simulated and empirical data, covering equity, rates and 

FX asset classes. Furthermore, our proposed model outperforms two of the most 

commonly used approaches for data imputation. Performance of our model depends 

on the fraction of the missing data and the noise of the data set. Our model serves as 

a robust tool for risk managers to backfill missing values in financial data, 

considering that complete data forms a prerequisite for generating a correct 

estimation of VaR and other performance measures.  
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2. Introduction 

This PhD thesis deals with topics in financial risk management and fund 

management. The contribution of the thesis concentrates on three research areas: 

 Risk management for Asia-focused hedge funds 

 Fee structure in fund management 

 Historical data for financial risk management 

This introduction discusses the motivation and objectives for each of the research 

topics above and provides an overview of the thesis. 

2.1 Risk Management for Asia-focused hedge funds 

In the past decade, significant growth rates in Asian financial markets have attracted 

global investors’ strong interest for capital allocation in Asia focused hedge funds. A 

number of studies concerned with measuring the performance and risk of hedge 

funds have been conducted in the literature already. In many of these studies, the 

performance of hedge funds, as alternative investments, is compared to traditional 

funds or asset classes (Ackermann et al., 1999; Brown et al., 1999; Liang, 1999; 

Agarwal and Naik, 2004). Some of the results in these studies suggest that hedge 

funds can outperform equity markets due to the superior investment skills of hedge 

fund managers (Brown et al., 1999; Liang, 1999), while other studies cast doubt on 

the persistence of the superior performance of hedge funds (Ackermann et al., 1999; 

Agarwal and Naik, 2004). From a risk management perspective, hedge funds are 

exposed to market risk, liquidity risk and credit risk (Amenc et al., 2002).  

 

The performance and risk analysis of hedge funds may also be underestimated due to 

the presence of various biases in hedge fund indices as pointed out by Fung and 

Hsieh (2000). There are several difficulties as it comes to investigating the 

performances and risks of the hedge fund industry. The short data history of many 

hedge funds makes it difficult to compare the returns with those of traditional asset 
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classes. Also, dynamic and less transparent investment strategies applied by hedge 

fund managers make it difficult to capture the effective style components for this 

asset class. Finally, hedge fund returns usually exhibit nonlinearities when being 

regressed on returns of traditional asset classes. 

 

In order to explore the risk exposures of hedge funds, many researchers have 

attempted to map the returns onto a set of external factors. While the conventional 

return-based Sharpe’s (1992) style analysis is commonly used in mutual fund 

analysis, Agarwal and Naik (2000) conduct a generalised style analysis of various 

hedge fund strategies by allowing negative style weights and relaxing the constraint 

that the sum of the style weights has to be one. They examine the significance of 

style weights by employing a two-step procedure initially proposed by Lobosco and 

DiBartolomeo (1997). Similarly, Dor et al. (2003) modify Sharpe’s return based style 

analysis in order to examine the effective style of hedge funds. Therefore, the return 

based style analysis using traditional asset classes is augmented by index options to 

more appropriately characterize the risk of the hedge funds. Fung and Hsieh (2004) 

propose an asset based style factor model that can explain up to 80% of the monthly 

variation in hedge fund portfolios. More recently, Teo (2009) suggests augmenting 

the factor model of Fung and Hsieh (2004) with broad Asian equity indexes to study 

Asian focused hedge funds. 

 

This chapter contributes to the literate in several dimensions. First, we make use of 

the return based style analysis framework suggested by Agarwal and Naik (2000) and 

Dor et al. (2003) to identify the effective style factors for Asia-focused hedge funds. 

To our knowledge, next to Teo (2009) this is one of the first empirical studies to 

apply this technique to the Asian hedge fund industry. Our model also differs from 

Teo (2009) who follows an approach similar to an APT (arbitrage pricing theory) 

model. In contrast, our approach is based on Sharpe’s (1992) return based style 

analysis, in which there is no intercept term and the sum of coefficients is equal to 

one. Further, instead of averaging individual hedge fund returns as in Teo (2009), we 
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adopt the HFRI Emerging Markets: Asia ex-Japan Index to represent the universe of 

Asia-focused hedge funds. Another contribution to the literature of the chapter is the 

focus on back-testing the proposed models in an extensive out-of-sample forecasting 

and risk analysis. We apply both parametric and nonparametric models and apply a 

variety of performance measures using VaR and density forecasts in combination 

with loss functions to examine the ability of the models to appropriately quantify the 

risk for the considered hedge fund index. 

2.2 Fee Structure in Fund Management 

This chapter examines agency problems affecting funds management and financial 

planning in Australia. Many studies have been devoted to modelling the behaviour of 

fund managers and investors, particularly in examining a fund manager’s fee 

structure and its impact on investment decisions. Grinblatt and Titman (1989) apply 

option pricing theory to study performance-based fee contracts and show that 

option-like bonus components in performance-based compensation contracts can 

induce fund managers to seek excessive risk. To mitigate this adverse risk incentive, 

they suggest that contracts should be designed with a cap and apply penalties for 

underperformance. Similarly, Starks (1987) employs agency theory to study the 

impact of compensation contracts on fund managers’ investment decisions. The 

author shows that contracts with symmetric payoffs dominate those with a bonus 

component in situations where there is asymmetric information between investors 

and fund managers. As a result investors cannot observe managers’ efforts in 

selecting a portfolio’s risk level.   

 

In contrast, Das and Sundaram (2002) show that if asymmetric incentive fees and 

leveraging are allowed, an incentive fee with a large performance component 

provides a higher utility to fund managers and a low level of equilibrium volatility 

and, thus, a better risk sharing between the two parties. 
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Dybvig et al. (2010) consider three optimisation problems corresponding to 

increasingly severe agency problems. In the first-best case, agency problems are 

absent. In the second-best case the manager reveals truthfully the observed signal to 

the investor but has private information about her effort level. In the third-best case 

the adverse-selection problem and the moral-hazard problem are both present. They 

find that in a second-best case, the optimal contract should include a bonus in 

proportion to the fund’s excess return over a benchmark return to give the manager 

incentives to work hard. 

 

Other models, such as Carpenter (2000) and Cuoco and Kaniel (2001), assume fund 

managers are compensated with an option written on the portfolio’s value. Carpenter 

(2000) specifies fee structure as a fixed component plus a call option with the 

portfolio value as underlying and benchmark return as strike price. Their findings are 

mixed. In general the option-like payoffs will increase a manager’s appetite for risk – 

the manager will typically increase the volatility of the portfolio for a payoff to be 

“away from the money”. However, if a manager were to trade his own account, he 

would occasionally target lower asset volatility. Similarly, Cuoco and Kaniel (2001) 

specify a put option on the managed portfolio as a penalty term in contracts for 

managers’ poor performance. They find that the existence of a penalty for 

underperforming the benchmark induces fund managers to invest in benchmark’s 

constituent stocks as a hedge against portfolio performance deviating from 

benchmark. 

 

The chapter introduces generalised log utility into the setup of Dybvig et al (2010). 

Generalised log utility has the realistic implication that relative risk aversion is a 

declining function of wealth, unlike its log, quadratic, power and exponential 

competitors. Next, we examine Australian industry practice. In addition to our 

extension to Dybvig’s model, we draw informally on the results of Stoughton et al. 

(2011), Bateman et al. (2007) and Grossman and Stiglitz (1976), to shed light on the 

agency problems raised by intermediated investment management, multiple time 



11 
 

periods, and general equilibrium. 

2.3 Dealing with Missing and Incorrect Data 

This chapter deals with the problem of missing values in financial time series. 

Specifically it provides a new imputation algorithm that can help to backfill missing 

or incorrect data in financial time series such that it can be applied for risk 

management purposes or back-testing analysis in fund management. 

 

The value-at-risk (VaR) concept has emerged as one of the most prominent measures 

of downside market risk, where the VaR is defined as the lower end of a 99% 

confidence interval for a given horizon (typically a day or two weeks). In 1997, a 

Market Risk Amendment to the Basle Accord permitted banks to use VaR estimates 

for setting bank capital requirements related to trading activity. To calculate VaR, 

historical simulation has been adopted by most banks as the standard industry 

approach, see e.g., Jorion (2000) and Alexander (2001). 

 

One of the major concerns for historical simulation relates to the quality of the 

available data. Historic data is usually sourced from various data vendors and it is not 

uncommon for downloaded data to be of poor quality. Problematic data can be 

missing, meaningless or unlikely. Missing data may occur from a market close, or 

insufficient contributor depth in the case of composite quotation, or even system 

failure leading to the loss of data. In the case of meaningless data, although the data 

is present, it may violate some condition. For example, negative FX spot rates, 

negative FX option volatility, or a normally liquid time series that suddenly shows 

complete staleness: all these examples of data are meaningless. Unlikely data are 

those that behave abnormally, for example, a sudden spike of FX volatility in a 

normal market environment.  

 

Once problematic data has been detected, correction protocols have to be applied. 
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Note that given the large set of time series to be cleansed and maintained, such a 

correction tool should run on a fully automated basis. The default corrective action is 

simply to re-query the original source system from which data is snapped. Should 

that fail to resolve the problematic value, the second action is to impute a value based 

on relevant statistical information about the time series and its nearby neighbours. 

For example, an error in the 7 year interest swap rate can be corrected with reference 

to its 5 year and 10 years swap rates. 

 

To the best of our knowledge, limited research has been conducted in applying 

advanced and automated techniques to backfill financial time series. Karelmo (2010) 

uses a basic PCA based algorithm to fill the missing observations in corporate bond 

time series. Mailleta and Merlinb (2009) propose a way that does not require any 

hypothesis and is totally data driven to complete the missing values in hedge fund 

monthly return time series. Minsky et al. (2010) backfill missing return data for a 

hedge fund by randomly selecting peers’ returns. All the studies above are either 

based on a simple approach or developed for a particular asset class. The chapter, by 

adopting the regularised PCA algorithm proposed by Josse et al. (2011), we propose 

an advanced PCA-based backfill procedure for financial time series and test the 

imputation performance using various asset class time series. The main focus of this 

chapter is on backfilling missing observations, which result from the removal of 

problematic data (i.e., missing, meaningless and unlikely data).  

2.4 Structure of the Thesis 

This PhD thesis consists of three main chapters, which can be assigned to the 

research areas discussed above in the following way: 

 Risk management for Asia-focused hedge funds 

Style Analysis and Value-at-Risk of Asia-focused Hedge Funds, co-authored with 

Stefan Trück, Pacific-Basin Finance Journal, Volume 19 (2011) p.491–510. 

 Fee structure in fund management 
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Agency Theory and Financial Planning Practice, co-authored with Geoffrey 

Kingston, Australian Economic Review, Volume 47. 

 Historical data for financial risk management 

Backfilling Financial Data with an Iterative PCA-based Imputation, co-authored 

with Stefan Trück. 
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3. Style Analysis and Value-at-Risk of Asia-Focused 

Hedge Funds 

Haijie Weng (contribution: 80%) and Stefan Trück (contribution: 20%) 

 

This paper has been presented at: 

 22nd Australasian Finance and Banking Conference, Sydney, August 2009 

 Higher Degree Research Expo, Macquarie University, Sydney, November 

2010 

 European Financial Management Symposium, Beijing, March 2011 

This paper has been published in Pacific-Basin Finance Journal 19 (2011) p.491–

510. 

 

Abstract 

In this paper we identify risk factors for Asia-focused hedge funds through a 

modified style analysis technique. Using an Asian hedge fund index, we find that 

Asian hedge funds show significant positive exposures to emerging equity markets 

and also hold significant portion of portfolio in cash and high credit rating bonds 

while they take short positions in world government and emerging market bonds. A 

rolling window style analysis is further employed to analyse the time-varying risk 

exposure of Asian hedge funds. For both a static and rolling period style analysis, our 

model provides a high explanatory power for returns of the considered hedge fund 

index. We further conduct a Value-at-Risk analysis using the results of a rolling 

window style analysis as inputs. Our results indicate that the accuracy of VaR models 

is dominated by their ability to capture the tail distribution of the hedge fund returns. 

Moreover, the distributional assumption seems to be more important than the chosen 

volatility model for the performance of the models in VaR prediction. Our findings 

further suggest that the considered parametric models outperform a simple historical 

simulation that is purely based on past return observations. 
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3.1 Introduction 

In the past decade, significant growth rates in Asian financial markets have attracted 

global investors’ strong interest for capital allocation in Asia focused hedge funds. 

The expansion of the sector results in over 1,000 hedge funds focusing on Asian 

markets, representing over 15 percent of the total number of funds in the global 

industry. Although Asia-focused funds are characteristically smaller, accounting only 

for 4.9 percent of total industry assets, the significant growth rates of the 

Asia-focused hedge fund industry over the past years has also drawn the attention of 

the research community.      

 

A number of studies concerned with measuring the performance and risk of hedge 

funds have been conducted in the literature already. In many of these studies, the 

performance of hedge funds, as alternative investments, is compared to traditional 

funds or asset classes (Ackermann et al., 1999; Brown et al., 1999; Liang, 1999; 

Agarwal and Naik, 2004). Some of the results suggest that hedge funds can 

outperform equity markets due to superior investment skills of hedge fund managers 

(Brown et al., 1999; Liang, 1999), while other studies cast doubt on the persistence 

of the superior performance of hedge funds (Ackermann et al., 1999; Agarwal and 

Naik, 2004). From a risk management perspective, hedge funds are exposed to 

market risk, liquidity risk and credit risk (Amenc et al., 2002). The performance and 

risk analysis of hedge funds may also be underestimated due to the presence of 

various biases in hedge fund indices as pointed out by Fung and Hsieh (2000). There 

are several difficulties as it comes to investigating the performances and risks of the 

hedge fund industry. The short data history of many hedge funds makes it difficult to 

compare the returns with those of traditional asset classes. Also dynamic and less 

transparent investment strategies applied by hedge fund managers make it difficult to 

capture the effective style components for this asset class. Finally, hedge fund returns 

usually exhibit nonlinearities when being regressed on returns of traditional asset 

classes. 



16 
 

In order to explore the risk exposures of hedge funds, many researchers have 

attempted to map the returns onto a set of external factors. While the conventional 

return-based Sharpe’s (1992) style analysis is commonly used in mutual fund 

analysis, Agarwal and Naik (2000) firstly conduct a generalised style analysis of 

various hedge fund strategies by allowing negative style weights and relaxing the 

constraint that the sum of the style weights has to be one. They examine the 

significance of style weights by employing a two-step procedure initially proposed 

by Lobosco and DiBartolomeo (1997). Similarly, Dor et al. (2003) modify Sharpe’s 

return based style analysis in order to examine the effective style of hedge funds. 

Hereby, the return based style analysis using traditional asset classes is augmented by 

index options to more appropriately characterize the risk of the hedge funds. Fung 

and Hsieh (2004) propose an asset based style factor model that can explain up to 80 

percent of the monthly variation in hedge fund portfolios. More recently, Teo (2009) 

suggests augmenting the factor model of Fung and Hsieh (2004) with broad Asian 

equity indexes to study Asian focused hedge funds. 

 

This paper aims to contribute to the literate in several dimensions. First, we make use 

of the return based style analysis framework suggested by Agarwal and Naik (2000) 

and Dor et al. (2003) to identify the effective style factors for Asia-focused hedge 

funds. To our knowledge, next to Teo (2009) this is one of the first empirical studies 

to apply this technique to the Asian hedge fund industry. Our model also differs from 

Teo (2009) who follows an approach similar to an APT (arbitrage pricing theory) 

model. In contrast, our approach is based on Sharpe’s (1992) return based style 

analysis, in which there is no intercept term and the sum of coefficients is equal to 

one. Further, instead of averaging individual hedge fund returns as in Teo (2009), we 

adopt the HFRI Emerging Markets: Asia ex-Japan Index to represent the universe of 

Asia-focused hedge funds. Another contribution to the literature of this paper is the 

focus on backtesting the proposed models in an extensive out-of-sample forecasting 

and risk analysis. We apply both parametric and nonparametric models and apply a 

variety of performance measures using VaR and density forecasts in combination 
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with loss functions to examine the ability of the models to give an appropriate 

quantification of the risk for the considered hedge fund index. 

 

Conventional style analysis usually includes the broad range of traditional asset 

classes across the world. Since our focus is on Asian hedge funds, we augment the 

considered style factors by including the MSCI emerging markets Asia index, the 

MSCI Pacific excluding Japan index (developed markets in pacific region exclude 

Japan) and the MSCI Japan index in the return based style analysis for better 

explaining returns of Asia-focused hedge funds. Several studies on hedge funds show 

that the returns exhibit option-like features (Glosten and Jagannathan, 1994; Mitchell 

and Pulvino, 2001; Fung and Hsieh, 2001). Reasons for this are that hedge fund 

managers trade dynamically and are not limited to investing in a specific class of 

assets only. Hence the nonlinear payoff of a hedge fund may result from explicitly 

investing in derivatives or implicitly trading dynamically. In order to include the 

nonlinearity in hedge fund returns in the return based style analysis, the literature 

suggests using actively traded index options as nonlinear factors for the mapping of 

hedge fund returns; see e.g. Fung and Hsieh(2001), Agarwal and Naik (2004) and 

Teo (2009). Other studies suggest augmenting the return of traditional asset classes 

with the returns of synthetic options on these traditional asset classes, see e.g. 

Loudon et al. (2006). In this paper, we augment the trend-following factors created 

by Fung and Hsieh (2001) in style analysis to capture the option-like payoff of hedge 

fund’s dynamic trading. The trend-following factors are created by using 

combinations of exchanged-traded put and call options in stock, bond, short term 

interest rate, currency and commodity. In summary, the selected style factors in this 

paper include global asset indices to cover the broad range of asset classes that Asian 

hedge fund managers can invest and trend-following style factors to capture the 

option-like payoff resulting from hedge fund managers’ dynamic trading activities.  

 

Similar to Agarwal and Naik (2000) and Dor et al (2003), we relax the style analysis 

conditions by allowing negative weights of style factors since hedge fund managers 
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often take short positions to exploit arbitrage opportunities or hedge the portfolio 

against market movements. Ideally, the factors used in the style analysis are 

independent; however, in practise, the chosen factors will fall short of ideal and 

sometimes will have high correlations with other factors. Therefore we need to 

eliminate the redundant factors which can be replicated by others and keep the 

remaining factors independent as much as possible. To address this issue, we further 

employ the two-step procedure proposed by Lobosco and Dibartolomeo (1997) to 

determine the statistical significance of factor weights. Finally, as shown by many 

researchers (e.g. Fung and Hsieh 2004; Bollen and Robert 2008), hedge fund 

managers change trading strategies over time; therefore we perform style analysis 

using rolling estimation to provide insights of time variation of hedge fund 

exposures. 

 

Our findings suggest that Asian hedge funds show significant positive exposures to 

emerging equity markets, especially emerging markets in Asia, and also hold 

significant portion of portfolio in cash and high credit rating bonds while short sell 

world government bond and high yield emerging market bonds. Further, small but 

statistically significant exposures to trend-following factors show the option-like 

payoff pattern of Asian hedge funds. In general, the style analysis can explain up to 

82% of the variance of hedge fund returns, indicating a high explanatory power of 

our model. Finally, the style analysis on rolling window sheds light on how hedge 

fund managers change risk exposures over time in response to changing market 

conditions and arbitrage opportunities.   

 

Second, the ultimate goal for identifying the underlying risk exposures of the hedge 

fund is to evaluate the risk of the hedge funds. In our analysis we use the 

Value-at-Risk (VaR) measure, defined as the maximum loss with a given confidence 

level over a given period of time. VaR can provide information about the risk in the 

extreme tails of a distribution. This is of particular importance, since many hedge 

funds exhibit a nonlinear payoff structure, that is, hedge funds may face great losses 



19 
 

under certain extreme events although they have an average low standard deviation. 

The nonlinear exposures also lead to a situation where the normality assumption of 

expected returns that suggests the use of the standard deviation as the only risk 

measure is no longer justified. Therefore, for hedge funds, VaR, as a complementary 

tool for measurement of the risks, can better capture the behaviour of hedge funds in 

some extreme events. 

 

Many methods have been proposed to calculate VaR (see Duffie and Pan 1997, Hull 

and White 1998, Jorion 2000). In general, they can be categorised as nonparametric 

and parametric approaches. Nonparametric VaR makes no assumption about the 

shape of the distribution of returns. For example, historical simulation as a 

nonparametric method assumes that historical returns can provide an appropriate 

evaluation of the risk and therefore estimates the VaR based on the empirical 

distribution of past observations. On the other hand parametric VaR assumes that the 

distribution of returns belongs to a parametric family, such as normal distribution. It 

usually applies a two-step approach: first, it is assumed that the portfolio variance is 

governed by certain specifications, such as a covariance matrix specification of the 

underlying assets, or a time-varying variance of the aggregate portfolio. It further 

makes distributional assumption about the portfolio returns and then calculates the 

VaR based on the estimated parametric dependence structure and return distributions. 

For example, portfolio variance can be modelled as a GARCH process or exponential 

weighted moving average (EWMA) specification. The distribution of portfolio 

returns is often assumed to be normal or from the Student’s t distribution.  

 

In this paper, we examine VaR for the considered hedge fund index using both 

parametric and nonparametric techniques. For the parametric approach, two methods 

are used to estimate the time-dependent portfolio variance: covariance matrix 

forecasts estimated from a wide variety of multivariate volatility models and 

aggregate portfolio variance forecasts. Loss functions are employed to evaluate the 

quality of the competing volatility models. Portfolio returns are assumed to be either 
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from the normal or Student t distribution. For the nonparametric approach, VaR is 

calculated using historical simulation with a rolling window including 100 months of 

observations. To evaluate the different approaches with respect to their ability to 

appropriately quantify the risk, we employ different methods to determine the 

accuracy of the VaR forecasts. Next to examining the coverage and numbers of 

exceptions for the considered VaR models, we also investigate density forecasts and 

the magnitude of the occurred exceptions. Practitioners and researchers are interested 

not only in the frequency of the VaR exceptions, but also in the magnitude of the loss 

when the VaR is violated. Therefore, we employ a hypothesis test initially proposed 

by Berkowitz (1999) to examine whether the magnitudes of the observed violations 

are consistent with those implied by the proposed VaR models.   

 

Our empirical results show that in general, the direct hedge fund index variance 

forecast (H-EWMA and H-GARCH models) outperform the forecast based on 

covariance matrix specification in term of hedge fund variance forecasting. However, 

under the VaR loss functions, the results show that VaR model based on the Student t 

distribution outperform those based on a normal distribution regardless of the chosen 

model for the volatility. These results suggest that the distributional assumption for 

the returns might be of greater importance than the model that is used for volatility 

dynamics. Because our out-of-sample data covers the Global Financial Crisis period 

when hedge funds also suffered from significant negative returns, it indicates that in 

this paper the performance of a VaR model is dominated by its ability to capture the 

tail distribution of hedge fund returns correctly. Moreover, we find that most of the 

considered VaR Models perform well with respect to the magnitude of VaR 

exceptions. 

    

The remainder of the paper is structured as follows. Section two describes the hedge 

fund data used in this paper. Section three presents the style analysis technique used 

in this paper as well as the empirical results for the considered style factors. Section 

four presents the examined approaches for our risk analysis and evaluates the 
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out-of-sample Value-at-Risk forecasts for the considered models. Finally, section five 

concludes. 

3.2 Data 

When performing analysis of hedge funds, data can be collected by either averaging 

individual hedge fund returns or using hedge fund indices directly. It is important to 

keep in mind that hedge fund indices can inherit biases existing in the hedge fund 

databases. Hedge fund data are susceptible to selection bias, survivorship bias and 

instant history bias as discussed by Fung and Hsieh (2004). Hedge fund managers 

voluntarily report the returns to the data vendors, so selection bias can arise if the 

hedge fund data collected in the database cannot represent the whole universe of the 

hedge funds. Survivorship bias occurs if the database only contains information on 

operating funds. Defunct funds may stop reporting to the database because of bad 

performance, termination or other reasons like e.g. mergers. When a fund is included 

in a database, its past track record is appended to the database, which creates instant 

history bias. Funds often undergo an incubation period before reporting to the 

database. Funds with good performance then go on to list in various databases for 

seeking new investors, while unsuccessful funds will not enter the databases. Thus 

backfilling the past performance into the database may generate an upward bias. 

Recognizing these biases, some database vendors construct the indices with the care 

to mitigate the effects of these errors inherited from the databases. When working 

with hedge fund indices, it is essential to choose those indices that are less prone to 

these biases.  

 

In this paper, we choose to work with an Asian hedge fund index rather than 

individual hedge fund returns. There are two major providers for Asian hedge fund 

indices: Eurekahedge and Hedge Fund Research (HFR). The Eurekahedge database 

mainly includes funds with investments in the Asia-Pacific region, while HFR is a 

large global hedge fund database. Eurekahedge provides the explicit information on 
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the fund main investment region; in contrast, HFR classifies a fund as Asian hedge 

fund if the fund has more than 50% of its investments in the Asia ex-Japan region. 

Eurekahedge and HFR started to collect hedge fund return data from January 2000 

and January 1990, respectively. There are some differences in constructing the 

indices between the two databases. For example, unlike Eurekahedge, HFR has a 

requirement that included funds have at least $50 Million under management or have 

been actively traded for at least twelve months. In the HFR index, the historical 

performance of a new constituent fund will not affect the finalized historical 

performance of the index. In contrast, Eurekahedge backfills the new constituent 

funds with past performance and rebalances the index value, which is prone to 

instant history bias. Considering that the HFR has a longer performance history and 

is less prone to instant history bias, we decide to use a HFR Asia index (HFRI 

Emerging Markets: Asia ex-Japan Index) as a proxy to investigate the style factors 

and risk of Asia-focused hedge funds. We consider monthly returns of the index for 

the period January 1990 to April 2010. 

3.3 Style Analysis of Asia-Focused Hedge Funds 

This section provides empirical results on the conducted style factor analysis on 

Asia-focused hedge funds. In a first step we identify appropriate style factors to use 

in the style analysis. In a second step we apply the style analysis framework 

proposed by Sharpe (1992) to identify the risk exposures of Asia-focused hedge fund 

managers. Furthermore, we employ the two-step procedure proposed by Lobosco and 

Dibartolomeo (1997) to determine the statistical significance of factor weights. 

Finally, we perform the style analysis using a rolling estimation framework in order 

to examine the time variation of the factor weights and hedge fund exposures.       

3.3.1 Style factors of Asian Hedge Funds  

It has been noted by many researchers that hedge fund returns are related to returns 

from traditional asset classes (e.g. Fung and Hsieh 2001, 2002, 2003; Agarwal and 
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Naik 2000, 2004; Mitchell and Pulvino 2001; Dor et al. 2003). Fung and Hsieh (2002) 

find that fixed income hedge funds are typically exposed to interest rate spreads. This 

is a result of many fixed income hedge funds rather holding long positions in high 

yield bonds and hedging the interest rate risk by shorting treasury bills or bonds. 

Further, Fung and Hsieh (2003) show that equity long/short hedge funds tend to take 

long positions in low capitalization stocks and short positions in large capitalization 

stocks, such that hedge fund returns are typically exposed to the spread between large 

cap and small cap stocks. In an extension of their prior work, Fung and Hsieh (2004) 

propose a model of hedge fund returns using seven identified asset based style (ABS) 

factors. For diversified hedge fund portfolios, the seven ABS factors can explain up 

to 80 percent of monthly return variations. The seven ABS factors include two equity 

ABS factors (equity market return and spread between small-cap stock returns and 

large-cap stock returns), two fixed income ABS factors (change in 10 year Treasury 

yields and change in the yield spread between 10 year T-bonds and Moody’s Baa 

bonds) and three trend following ABS factors (lookback straddles on bonds, 

currencies and commodities).  

 

Agarwal and Naik (2000) conduct a generalised style analysis of various hedge fund 

indices. To cover the broad range of the asset classes hedge fund managers may 

invest in, they use the S&P 500 composite index, the MSCI world index excluding 

US and MSCI emerging market index to proxy the global equity market exposures. 

They further choose the Salomon Brothers (SB) Government and Corporate Bond 

index, the SB World Government Bond index and the Lehman High Yield index to 

assess the bond market exposure. Finally, they include a number of commodity and 

currency indices to account for the hedge funds’ exposure to these variables. 

Similarly, Dor et al. (2003) perform a return-based style analysis to examine the 

effective style of hedge fund managers by using traditional asset classes and index 

options. They select the asset classes aiming to cover the equity and fixed income 

investment in the US and outside the US. For instance, they use 3-month Treasury 

bills as cash equivalent, intermediate and long term bonds and US corporate bonds to 
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represent fixed income investment in the US, the Russell 1000 and 2000 index to 

represent equity investment in US as well as four global equity and fixed income 

indices to represent foreign investments. Applying principal component analysis, Teo 

(2009) shows that the Asia exclude Japan equity market index and Japan equity 

market index both are highly correlated with the returns of Asia equity hedge funds.  

 

In addition to an exposure to traditional asset classes, many researchers argue that 

due to dynamic trading, hedge fund returns often exhibit non-linear option-like 

exposures to standard asset classes (Fung and Hsieh 1997, 2001; Agarwal and Naik 

2004). Further, Agarwal and Naik (2004) illustrate that the payoffs of a large number 

of equity-oriented hedge funds actually resemble a short position of a put option on 

the market index. To capture this option-like feature of hedge fund returns, Fung and 

Hsieh (2001) create style factors by using combinations of exchanged traded put and 

call options in stocks, bonds, interest rates as well as currency and commodity 

markets. Further, Bollen and Robert (2008) employ the five trend-following factors 

used in Fung and Hsieh (2001) to investigate the time-series variation in hedge fund 

risk exposures. Similarly, Agarwal and Naik (2004) use actively traded at-the-money 

(ATM) and out-of-the-money (OTM) European call and put options on the S&P 500 

composite index as option based risk factors to capture the option-like features of 

hedge fund returns. Following Agarwal and Naik (2004), Teo (2009) uses OTM 

European call and put options on the Nikkei225 traded on the Singapore Stock 

Exchange and calculates the time series of returns for the option trading strategy in a 

similar way. Given the lack of actively traded options for the identified index factors, 

Loudon et al (2006) create pseudo option-like payoff profiles for a subset of index 

factors to model the nonlinear exposures that fixed income hedge funds may face. 

 

In this paper, we select global asset indices to cover the investment regions including 

Asia and the rest of the world and employ the five trend-following factors used in 

Fung and Hsieh (2001) to capture the option-like payoff of hedge fund dynamic 

trading strategies. The global asset indices included in our style analysis cover cash, 
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equities and bonds markets. In particular, we use 3-month Treasury bills as cash 

equivalent. To proxy the exposure to Asia and global equities, we include the MSCI 

emerging markets Asia index, the MSCI Pacific excluding Japan index (developed 

markets in the pacific region excluding Japan), the MSCI Japan index, the S&P 500 

index, the MSCI Europe index (developed markets in Europe) and the MSCI 

emerging markets excluding Asia index. To capture the exposures to bonds, we 

consider the Bank of America Merrill Lynch US High Bond index, the JP Morgan 

emerging markets bond Asia index, the CGBI broad investment grade (BIG) index 

and the CITI world government bond index. The five trend following factors are the 

returns of a private trend following strategy (PTFS) lookback straddles in bonds, 

currencies, short term interest rates, commodities and stocks. In total, we use eleven 

asset indices and five trend-following factors. Appendix A provides a more detailed 

description of the selected style factors.        

3.3.2. Style Analysis 

After having identified the style factors, we can conduct a return based style analysis 

for the hedge fund returns. Sharpe (1992) proposed an econometric technique to 

determine the mutual fund’s investment style which requires a time series of 

historical fund returns. This technique involves a constrained regression that uses N 

asset classes to replicate the historical return pattern of a fund. The style analysis 

framework for modelling the fund return is as follows: 

 

𝑟𝑡 = ∑ 𝑤𝑖𝐹𝑖,𝑡𝑁
𝑖=1 + 𝑒𝑡           (1) 

 

where 𝑟𝑡 is the fund return at time t, 𝐹𝑖,𝑡 is the return of the 𝑖𝑡ℎ style factor at time 

t, 𝑖 = 1, … ,𝑁, 𝑤𝑖 is the corresponding factor weight, and 𝑒𝑡 represents the error 

term.  

 

Style analysis has been initially proposed to analyse mutual funds. Because the 

weights of the replicated asset classes should add up to unity and mutual fund 
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managers are not allowed to take short positions, Sharpe (1992) imposed two 

constraints on the coefficients 𝑤𝑖: 

 

∑ 𝑤𝑖 = 1,  ∀𝑖 𝑁
𝑖=1            (2a) 

𝑤𝑖 ≥ 0, ∀𝑖            (2b) 

 

When applying return based style analysis to hedge funds, the constraint of 

nonnegative coefficients is usually released to allow hedge fund managers also to 

take short positions in the various asset classes (Agarwal and Naik 2000; Dor et al 

2003). 

 

Based on Eq. (1), the excess return of the hedge fund over the sum of the weighted 

factor returns can be expressed as 𝑒𝑡 = 𝑟𝑡 − ∑ 𝑤𝑖𝐹𝑖,𝑡𝑁
𝑖=1 .  Sharpe (1992) suggests 

choosing the optimal weights for 𝑤𝑖 through minimising the term 𝑒𝑡 or rather the 

variance of 𝑒𝑡  subject to constraint (2). This can be achieved for example by 

quadratic programming. To evaluate the effectiveness of the style analysis, we use 

the coefficient of determination (𝑅2) or adjusted 𝑅2 given by 𝑅2 = 1 − 𝑣𝑣𝑣(𝑒𝑝)
𝑣𝑣𝑣(𝑣𝑝)

 and 

 𝑅𝑣𝑎𝑎2 = 1 − 𝑇−1
𝑇−𝑁

× 𝑣𝑣𝑣(𝑒𝑝)
𝑣𝑣𝑣(𝑣𝑝)

, where N is the number of style factors, T the number of 

observations, 𝑣𝑣𝑟(𝑒𝑝) the variance of the residuals and 𝑣𝑣𝑟(𝑟𝑝) is variance of the 

hedge fund returns. Often, for hedge fund analysis these measures are interpreted as 

𝑅2 indicating the proportion of return variance attributable to investment styles 

while the unexplained part (1 − 𝑅2) is attributable to the fund manager’s skill. In 

contrast to 𝑅2 , the adjusted 𝑅2  has the advantage of imposing a penalty an 

increased number of style factors.  

 

Ideally, the factors used in style analysis need to be independent; however, in practise, 

the chosen factors will fall short of the ideal and sometimes will have high 

correlations with other factors. To address this issue, we therefore employ a two-step 

procedure initially proposed by Lobosco and Dibartolomeo (1997) to determine the 
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statistical significance of the factor weights. In a first step we conduct the analysis 

using all style factors and then calculate the standard deviation of the residuals (𝜎𝑒). 

Then we perform a style analysis for each style factor using the remaining style 

factors as explanatory variables calculating the standard deviation of the residuals (𝜎𝑖) 

for style factor i. The latter style analysis is estimated with the constraint that the sum 

of weights is one. The standard error for the weight of style factor i is given by 
𝜎𝑒

𝜎𝑖√𝑁−𝑘−1
, where N is the number of observations and k is the number of style factors 

with non-zero weight. A low standard error indicates that the factor is difficult to be 

replicated by other style factors. The t-statistic for each factor is given by 𝑤𝑖𝜎𝑖√𝑁−𝑘−1
𝜎𝑒

, 

where 𝑤𝑖 is the weight for factor i . Based on the calculated t-statistics, using a 5% 

significance level non-significant factors are excluded from the model. This two-step 

procedure is repeated until the remaining factors are all statistically significant. 

3.3.3 Empirical Results for the Style Analysis            

As mentioned above we investigate monthly returns of the HFRI Emerging Markets: 

Asia ex-Japan Index obtained from the HFR database. The style factors including 

eleven asset indices and five trend-following factors are obtained from Datastream 

and David Hsieh’s Hedge Fund Data Library respectively. Both hedge fund and style 

factor returns are considered for the period January 1994 to December 2009 

including a total of 192 observations. Table 1 reports the descriptive statistics for the 

hedge fund and style factors returns. The average monthly hedge fund index return is 

0.62% while the standard deviation of monthly returns is 3.79%. The bond factors, in 

general, appear to have positive mean, negative skewness and high kurtosis. Among 

these, the Asia bond index has the highest return but also exhibits the highest 

negative skewness and kurtosis indicating that the lower tail of the distribution is 

longer than the upper tail, as well as a heavy-tailed distribution. Similar results are 

obtained for the equity factors apart from the Japanese equity index, which yields a 

negative mean, positive skewness and low kurtosis during the considered time period. 

The five trend-following factors appear to have the largest standard deviation among 
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all the style factors. We further note that the Asian hedge fund, world government 

bond index and Japan equity index are normally distributed during the sample period.  

 

Table 2 provides the results for the conducted style analysis: the first column shows 

the weights with standard errors for all style factors. The second column shows the 

results of the style analysis after dropping the insignificant factors using the recursive 

procedure described above. We find that Asian hedge funds show significant style 

weights on the three-month T-bill, the world government bond index, the US broad 

investment grade index, the Asian bond index, Japan equity, emerging market (Asia 

and the rest of emerging market) equity, and three trend-following indices on short 

term interest rates, currencies and stocks. In particular, Asian hedge funds show a 

significant positive exposure to emerging equity markets with 34.5% to the Asia 

market index and 10.3% to the MSCI emerging markets excluding Asia index and a 

small positive exposure to the Japanese equity index. Since the hedge fund index 

studied in this paper includes hedge funds investing in emerging markets with 

primary focus on Asia and typically less than 10% exposure to Japan, our finding is 

consistent with the classification of the fund index. The long position in emerging 

equity is also consistent with the typical short selling restrictions in emerging equity 

markets. The Asian hedge funds also show positive style weight on three-month 

T-bill and US corporate bond index, but negative style weights on world government 

bond and emerging market bond Asia indices. The net exposure to the bond market is 

approximately 45%. This suggests that Asian hedge funds hold significant portions 

of portfolio in cash and high credit rating bonds while they short sell world 

government bonds and high yield emerging market bonds. Further, small but 

statistically significant exposures to trend-following factors show the option-like 

payoff pattern of Asian hedge funds. The style analysis can explain up to 82% of the 

variance of hedge fund returns, the remaining unexplained variance being attributed 

to managers’ trading skill. Moreover, the explanatory power of the regression model 

remains almost unchanged after eliminating the insignificant style factors. 
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Unlike mutual funds that follow a defined investment strategy and therefore are not 

allowed to change their investment styles, hedge funds are generally free to change 

trading strategies and asset allocation to different asset classes. Assuming the style 

weights are constant, the above style analysis shows an average risk exposure of 

Asian hedge funds over the sample period from January 1994 to December 2009. To 

investigate the hedge funds’ dynamic risk exposure over time, we perform the style 

analysis using a rolling window of 72 months. Figure 1 shows the style changes for 

the HFRI Emerging Market-Asia exclude Japan index over time. We find that Asian 

hedge funds experience significant shifts in risk exposure over time. Furthermore, the 

major style factors are the three-month T-bill, emerging market Asia bond index, 

emerging market equity and Japan equity. Figure 2 shows the adjusted R2 when 

factors weights change over time. The adjusted R2 is 80% on average, indicating a 

high explanatory power of the rolling-period style analysis. In the next section, the 

results of the rolling period style analysis will be used as inputs for an extensive risk 

analysis of the considered hedge fund index. 

 

 

Figure 1: The dynamic exposure to the considered style factors of the HFRI emerging markets Asia 

excluding Japan index based on a rolling window approach with length of 72 months 
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 Mean Median Max Min Standard 

Deviation 
Skewness Kurtosis Normality 

Test 
HF 0.62  0.72  12.37  -11.02  3.79  -0.07  3.43  1.68  
TB 0.29  0.36  0.51  0.00  0.15  -0.50  1.78  19.89*  
WGB 0.42  0.49  3.38  -1.91  0.89  -0.05  3.36  1.13  
BIG 0.51  0.61  4.44  -3.44  1.14  -0.17  4.17  11.95*  
HY 0.54  0.85  7.15  -15.42  2.54  -1.63  11.94  724.69*  
AB 0.72  0.85  9.10  -17.64  2.80  -2.42  17.42  1,851.24*  
SP500 0.45  1.14  9.23  -18.56  4.54  -0.95  4.70  51.84*  
EU 0.44  1.08  12.36  -23.98  5.09  -1.09  6.05  112.59*  
JP -0.12  -0.31  15.43  -16.00  5.63  0.07  2.89  0.24  
PAXJ 0.22  0.85  17.43  -28.90  6.45  -0.88  5.82  88.78*  
EMXA 0.60  1.96  17.55  -40.82  8.06  -1.46  7.87  257.50*  
EMA -0.02  0.05  19.44  -27.65  7.83  -0.47  3.69  10.71*  
PTFSBD -1.38  -4.82  68.86  -25.36  14.73  1.46  6.00  140.13*  
PTFSFX 0.19  -4.31  90.27  -30.13  19.82  1.37  5.63  114.86*  
PTFSCOM -0.30  -2.90  64.75  -23.04  13.92  1.26  5.54  102.62*  
PTFSIR 3.12  -3.14  221.92  -30.60  28.89  4.09  25.57  4,609.18*  
PTFSSTK -4.73  -6.32  46.15  -30.19  12.84  0.98  4.88  59.08*  

Table 1: Descriptive statistics of hedge fund and style factor returns 
The table shows the mean, median, standard deviations, minimum and maximum returns, 
skewness, kurtosis and results for a normality test for the hedge fund index and selected style 
factors during the period January 1994 to December 2009. The hedge fund index is the 
HFRI emerging markets Asia excluding Japan (HF). The style factors are three-month T-bill 
(TB), CITI world government bond index (WGB), CGBI broad investment grade index (BIG), 
Bank of America Merrill Lynch US High Bond index (HY), JP Morgan emerging markets 
bond Asia index (AB), S&P 500 index (SP500), MSCI Europe index (EU), MSCI Japan index 
(JP), MSCI Pacific excluding Japan index (PAXJ), MSCI emerging markets excluding Asia 
index (EMXA), MSCI emerging markets Asia index (EMA), bond PTFS (PTFSBD), currency 
PTFS (PTFSFX), commodities PTFS (PTFSCOM), short term interest rate PTFS (PTFSIR) 
and stock PTFS (PTFSSTK). The normality test is the Jarque-Bera Test which has a χ2 
distribution with 2 degree of freedom under the null hypothesis of normal distribution. The 5% 
critical value is 5.99. The asterisk indicates statistical significance at 5%.  
  



31 
 

 
 HF HF 
TB 78.3 

(15.4) 
74.2 
(14.7) 

WGB -64.2 
(28.6) 

-64.1 
(28.3) 

BIG 50.1 
(22.9) 

51.3 
(22.3) 

HY 1.0 
(6.4) 

 

AB -17.6 
(6.4) 

-16.6 
(6.1) 

SP500 -2.5 
(5.1) 

 

EU -6.0 
(4.8) 

 

JP 7.8 
(2.7) 

7.4 
(2.6) 

PAXJ 6.6 
(4.4) 

 

EMXA 10.4 
(2.8) 

10.3 
(2.3) 

EMA 33.0 
(3.0) 

34.5 
(2.3) 

PTFSBD -1.0 
(0.9) 

 

PTFSFX 1.3 
(0.7) 

1.5 
(0.6) 

PTFSCOM 1.3 
(0.9) 

 

PTFSIR -1.1 
(0.5) 

-1.0 
(0.5) 

PTFSSTK 2.5 
(1.0) 

2.5 
(1.0) 

Adjusted R2 82.64 82.49 
Table 2: Style analysis of Asian hedge fund index 

This table shows the results for style analysis of the Asian hedge fund index from January 
1994 to December 2009. The first column shows the weights with standard errors for all 
style factors. Standard errors for style weight are in parentheses. The weights significant at 5% 
level are expressed in bold font. The second column shows the results of the style analysis 
after dropping the insignificant factors through repeated procedure. All data are in 
percentage. The adjusted coefficient of determination R2 is reported as well. 

 



32 
 

 

Figure 2: Adjusted R2 of the rolling window style analysis. 

3.4 Value-at-Risk Analysis 

In the previous section we have identified risk factors for the considered Asian hedge 

fund index and examined the dynamic nature of the risk exposure to the identified 

factors. In this section we conduct a thorough Value-at-Risk analysis for the 

considered hedge fund index using various benchmark models and backtesting 

techniques. In particular the performance of different approaches to modelling the 

volatility of the index and the style factor returns are considered. 

3.4.1 Modelling the conditional volatility 

In order to evaluate the performance of the style factor analysis with respect to risk 

quantification, an adequate approach for modelling the conditional variance of the 

index and factor returns is required. Therefore, we start our analysis with a 

description of the considered models for volatility in the empirical analysis. Let 𝑦𝑡 

and 𝑟𝑖,𝑡 denote the return of the hedge fund index and style factor i at time t. 

Investigating the autoregressive nature of returns, we find that, generally, the 

considered time series do not indicate significant ARMA dynamics. An exception is 

the return series of the three-month T-bill, which yields significant first-order 

autocorrelation. Further, we conduct augmented Dickey-Fuller unit root tests for the 

three-month T-bill to test the stationarity of the data series, and find that it has a unit 
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root such that the series is non-stationary. Therefore, we express the returns of the 

three-month T-bill as 

 

 𝑟𝑏,𝑡 = 𝑟𝑏,𝑡−1 + 𝜀𝑏,𝑡 = 𝑟𝑏,𝑡−1 + 𝜂𝑡�ℎ𝑏,𝑡       (3) 

 

Since our focus is on volatility forecasting, we model the hedge fund index and the 

style factors using the following model: 

 

   𝑦𝑡 = 𝑢𝑡 + 𝜖𝑡 = 𝑢𝑡 + 𝜂𝑡�ℎ𝑡           (4) 

𝑟𝑖,𝑡 = 𝜇𝑖,𝑡 + 𝜀𝑖,𝑡 = 𝜇𝑖,𝑡 + 𝜂𝑡�ℎ𝑖,𝑡         (5) 

 

where 𝑢𝑡 and 𝜇𝑖,𝑡 are the conditional mean for the hedge fund index and factor i at 

time t. Further,  ℎ𝑡 and ℎ𝑖,𝑡  are conditional variance for hedge fund index and 

factor i at time t, and 𝜂𝑡 is an iid process with zero mean and unit variance. Using a 

rolling window analysis, therefore, the conditional mean for the three-month T-bill is 

its past return at time 𝑡 − 1, while the conditional mean for the hedge fund index and 

the other style factors is equal to the mean return over the past 72 months. Let further 

𝑤𝑡 = [𝑤1,𝑡 ,𝑤2,𝑡, … ,𝑤𝑛,𝑡] denote the style weights vector at time t estimated from the 

rolling window style analysis, such that the forecasted hedge fund conditional 

variance at time 𝑡 + 1 in covariance matrix specification is given by 

 

 ℎ𝑡+1 = 𝑤𝑡 × 𝐻𝑡+1 × 𝑤𝑡′ + ℎ𝑒,𝑡         (6)  

     

where 𝐻𝑡 is a nxn matrix with n being the number of significant non-zero style 

factors. Taking 𝑛 = 2, for example, 𝐻𝑡+1 = �
ℎ11,𝑡+1 ℎ12,𝑡+1
ℎ21,𝑡+1 ℎ22,𝑡+1

�, while ℎ𝑒,𝑡  is the 

conditional variance of the corresponding residuals of the rolling window style 

analysis, which is assumed to be normally distributed with variance 𝜎𝑒,𝑡
2 . 
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To generate appropriate covariance matrix forecasts, we then apply equally weighted 

moving average, exponentially weight moving average (EWMA) and 

GARCH-BEKK models.  

 

The equally weighted moving average (MA) model puts equal weights on the past 

priod observations, taking the form: 

 

𝐻𝑡+1 = ∑ 𝜀𝑡−𝑘72
𝑘=0 𝜀𝑡−𝑘′           (7) 

 

where 𝜀𝑡 = [𝜀1,𝑡, 𝜀2,𝑡, … , 𝜀𝑛,𝑡] is the vector containing the style factor’s innovations 

at time t. In contrast, the exponentially weight moving average (EWMA) model is 

based on exponentially decreasing weights, i.e., more weight is given to more recent 

observations: 

 

𝐻𝑡+1 = ∑ (1− 𝜆)𝜆𝑘𝜀𝑡−𝑘72
𝑘=0 𝜀𝑡−𝑘′         (8) 

 

where 𝜆 is the decay factor that is set equal to 0.97 following the weight suggested 

by RiskMetrics (JP Morgan 1996). 

 

The third method used in this paper for forecasting the covariance matrix is a 

multivariate GARCH model. Multivariate GARCH models provide estimates for the 

conditional covariance as well as the conditional variances in contrast to univariate 

models and have gained high popularity in modelling and forecasting multivariate 

time series. For example, Gibson and Boyer (1998) compare the correlation 

forecasting ability of three sophisticated models (two GARCH models and a 

two-state Markov switching model) and two simple moving average models and find 

that the sophisticated models (a diagonal GARCH and a Markov switching approach) 

produce better correlation forecasts than the simple moving averages. Multivariate 

GARCH models specify equations for the behaviour of the variance covariance 

matrix through time. Several different multivariate GARCH formulations have been 
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proposed in the literature, including the VECH, the diagonal VECH and the BEKK 

model, see e.g. Bauwens et al. (2006) for a survey on the most important 

developments in multivariate GARCH modelling. In our analysis we suggest to use a 

GARCH BEKK (Baba-Engle-Kraft-Kroner) model (Engle and Kroner, 1995). This 

model overcomes some of the difficulties of the VECH model by ensuring that the 

conditional variance-covariance matrix is always positive definite. The model has the 

form 

 

𝐻𝑡+1 = 𝐶𝐶 ′ + ∑ ∑ 𝐴𝑘𝑎′ 𝐻𝑡+1−𝑎𝐴𝑘𝑎𝐾
𝑘=1 + ∑ ∑ 𝐵𝑘𝑎′ 𝜀𝑡+1−𝑎𝜀𝑡+1−𝑎′ 𝐵𝑘𝑎𝐾

𝑘=1
𝑞
𝑎=1

𝑝
𝑎=1      (9) 

 

where 𝐴𝑘𝑎, 𝐵𝑘𝑎 are parameter matrices and 𝐶 is a lower triangular matrix. The 

decomposition of the constant term into a product of two triangular matrices (𝐶𝐶 ′) is 

conducted to ensure the positive definiteness of the conditional variance-covariance 

matrix (𝐻𝑡+1). For example, for 𝑞 = 𝑝 = 𝐾 = 1 the BEKK model becomes 

 

𝐻𝑡+1 = 𝐶𝐶 ′ + 𝐴′𝐻𝑡𝐴 + 𝐵′𝜀𝑡𝜀𝑡 ′𝐵         (10) 

 

The diagonal BEKK model is a further simplified version of Eq. (10) where A and B 

are diagonal matrices. It is a restricted version of the diagonal VECH model such that 

the parameters of the covariance equations for ℎ𝑖𝑎𝑡  (𝑖 ≠ 𝑗) are products of the 

parameters of the variance equations (equations for ℎ𝑖𝑖𝑡). To illustrate the diagonal 

BEKK model, consider the simple GARCH(1,1) model in a bivariate case, where the 

diagonal BEKK model becomes: 

 

𝐻𝑡+1 = �
𝑐11 𝑐12
0 𝑐22�+ �𝑣11 0

0 𝑣22
�
′
𝐻𝑡 �

𝑣11 0
0 𝑣22

�+ �𝑏11 0
0 𝑏22

�
′
�
𝜀1,𝑡
2 𝜀1,𝑡𝜀2,𝑡

𝜀2,𝑡𝜀1,𝑡 𝜀2,𝑡
2 � �𝑏11 0

0 𝑏22
� (11) 

 

In our analysis, we employ a GARCH(1,1)-BEKK model in order to generate 

forecasts of the covariance matrix through time. Then the conditional variance of the 

hedge fund index at time t can be forecasted using the covariance matrix forecast of 
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the underlying style factors in combination with the estimated weights.  

 

An alternative approach would be to estimate the conditional variance of the hedge 

fund index directly from its historical return observations. This approach reduces the 

computational effort provided that the historical observations are sufficient for 

estimation. In this paper, we employ EWMA and GARCH(1,1) models to forecast 

the hedge fund conditional variance, taking the following forms: 

 

 ℎ𝑡+1 = ∑ (1− 𝜆)𝜆𝑘𝜖𝑡−𝑘72
𝑘=0 𝜖𝑡−𝑘′       (12) 

ℎ𝑡+1 = 𝛼0 + 𝛼1𝜖𝑡2 + 𝛽ℎ𝑡           (13) 

 

where 𝜖𝑡 denotes the innovation of the hedge fund index at time t and 𝜆 is equal to 

0.97. 

 

In summary, we use two approaches to estimate the hedge fund conditional variance: 

a covariance matrix forecast based on the style factors and a forecast being only 

based on historical returns of the hedge fund. As mentioned above for the covariance 

matrix specification based on the style factors we employ three different methods: 

equally weighted moving average (henceforth F-MA); exponentially weighted 

moving average (henceforth F-EWMA) and GARCH-BEKK (henceforth F-BEKK) 

models. To derive forecasts based on historical returns only, we apply two 

approaches: the EWMA approach (henceforth H-EWMA) and a GARCH(1,1) model 

(henceforth H-GARCH).     

3.4.2 Statistical loss functions for volatility models  

To evaluate the out-of-sample performance of the considered forecast models, we 

adopt a variety of statistical loss functions that have different interpretations and 

therefore provide a more complete evaluation of the competing models; see e.g. 

Bollerslev and Ghysels (1996) for more details on the choice of appropriate loss 

functions. The loss functions considered in our empirical analysis are: 
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𝑀𝑀𝑀1 = 1
𝑇
∑ �𝜎𝑡+1 − ℎ𝑡+1

1/2 �
2𝑇

𝑖=1        (14) 

𝑀𝑀𝑀2 = 1
𝑇
∑ (𝜎𝑡+12 − ℎ𝑡+1)2𝑇
𝑖=1                         (15) 

𝑀𝐴𝑀1 = 1
𝑇
∑ �𝜎𝑡+1 − ℎ𝑡+1

1/2 �𝑇
𝑖=1         (16) 

𝑀𝐴𝑀2 = 1
𝑇
∑ |𝜎𝑡+12 − ℎ𝑡+1|𝑇
𝑖=1         (17) 

𝐺𝑀𝐺𝑀 = 1
𝑇
∑ �ln(ℎ𝑡+1) + 𝜎𝑡+12

ℎ𝑡+1
�𝑇

𝑖=1        (18) 

𝐺𝐺 = 1
𝑇
∑ (ln(σt+12 )− ln(ℎ𝑡+1))2𝑇
𝑖=1       (19) 

𝐻𝑀𝑀𝑀 = 1
𝑇
∑ �σt+1

2

ht+1
− 1�

2
𝑇
𝑖=1         (20)   

 

Where 𝜎𝑡+12  is the realised hedge fund variance at time 𝑡 + 1 given by (𝑦𝑡+1 −

𝑦�)2, 𝑦𝑡+1 the hedge fund return at time 𝑡 + 1 and 𝑦� is the mean hedge fund return 

during the out-of-sample period. Note that the mean-squared error (MSE) in (14) and 

(15) and mean absolute error (MAE) in (16) and (17) penalise the errors 

symmetrically, while logarithmic loss function (LL) in (19) and the 

heteroscedasticity-adjusted MSE in (20) have the particular features of penalising 

forecast errors asymmetrically. Further, GMLE in (18) corresponds to the loss 

implied by a Gaussian quasi-maximum likelihood function. Theoretically, the 

volatility model that yields the minimum value for a particular loss function is 

considered to be the best model. However, as pointed out by Bollerslev et al. (1994), 

the criteria being used to select the best model are not always straightforward when 

several loss functions are being considered. Once the volatility model that generates 

the lowest value under a given loss function is said to be the best model, the 

Diebold-Mariano test (1995) can be applied to test for significant differences 

between the models. This is a pairwise test of equal predictive ability (henceforth 

EPA) of two competing models, to find out whether the competing model has the 

same predictive power as the best model. Under the null hypothesis of equal 

forecasting accuracy of two competing models, the Diebold-Mariano statistic given 
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by 𝑎�

�𝑉�(𝑎�)
 is asymptotically normally distributed. Hereby, 𝑑̅  denotes the sample 

mean of the loss difference between the two competing models and 𝑉�(𝑑̅) is an 

estimate of the asymptotic variance of 𝑑̅.   

3.4.3 Empirical results for the considered volatility models and loss 
functions 

Table 3 reports the out-of-sample evaluation of the competing volatility models, 

according to the statistical loss functions introduced in Section 4.2. The evaluation of 

the one month ahead volatility forecasts is based on 120 out-of-sample observations 

and a rolling window of 72 months. As indicated in Table 3, the H-EWMA model 

performs best with respect to the MSE, MAE and LL loss functions, while the 

H-GARCH model performs best with respect to the GLME and HMSE loss functions. 

The F-EWMA is the second best model for the MSE, MAE and LL loss functions, 

while the H-EWMA and F-BEKK model are the second best for the GMLE and 

HMSE loss functions, respectively. Although the H-EWMA is not consistently the 

best model for all of the considered loss functions, we decided to choose it as the 

benchmark model for the conducted Diebold-Mariano test since it provided the best 

results for five out of the seven considered loss functions. Table 4 reports the results 

for the Diebold-Mariano tests where the H-EWMA is tested against the other 

competing models under the null hypothesis of equally predictive ability. We find 

that the H-EWMA and H-GARCH models provide the same level of forecast 

accuracy except for the MAE criterion where the H-EWMA is significantly better. In 

general, the hedge fund index variance forecasts being based on past returns 

(H-EWMA and H-GARCH models) seem to outperform the forecasts based on the 

covariance matrix specification. This is probably due to the difficulties in modelling 

the conditional variance of the regression residuals, which is attributable to the hedge 

fund managers’ skills. However, also the F-EWMA model that used the style factors 

to forecast the conditional variance of the hedge fund index returns provides 

appropriate results and comes second for most of the considered loss functions. To 

apply this technique might of particular interest for risk managers when newly 
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created funds with a short history of return observations are being considered. In 

such cases the estimation of conditional variance EWMA or GARCH models may 

not be feasible due to lack of data. 

Model MSE1 MSE2 LL GMLE MAE1 MAE2 HMSE 

F-MA 10.0106 753.5978 9.0383 6.2431 3.4162 23.8276 4.9643 

F-EWMA 9.4507 728.2086 8.6407 6.2236 3.3130 23.0510 5.0119 

F-BEKK 11.8436 931.5314 9.3659 6.2715 3.6962 27.1971 4.1585 

H-EWMA 9.1445 713.4914 8.4755 6.1584 3.2408 22.5607 4.4970 

H-GARCH 10.9369 794.8419 9.1468 6.1323 3.5280 25.7920 2.9251 

Table 3: Out-of-sample evaluation of volatility models 

Evaluation of one month ahead volatility forecasts based on 120 out-of-sample observations and a 

rolling window of 72 months. The minimum value for each loss function is in bold font and underlined, 

and the second smallest value is just in bold font. 

 

Model MSE1 MSE2 LL GMLE MAE1 MAE2 HMSE 

F-MA -2.06* 
(0.040) 

-2.19* 
(0.028) 

-1.99* 
(0.047) 

-1.49 
(0.136) 

-1.85 
(0.065) 

-1.82 
(0.069) 

-0.63 
(0.529) 

F-EWMA -2.10* 
(0.035) 

-2.00* 
(0.045) 

-1.51 
(0.130) 

-2.67** 
(0.008) 

-2.32* 
(0.020) 

-2.24* 
(0.025) 

-1.80 
(0.071) 

F-BEKK -1.97* 
(0.049) 

-1.39 
(0.166) 

-2.95** 
(0.003) 

-1.92 
(0.054) 

-2.43* 
(0.015) 

-2.08* 
(0.038) 

1.27 
(0.205) 

H-GARCH -1.86 
(0.063) 

-0.96 
(0.338) 

-1.89 
(0.059) 

0.30 
(0.768) 

-2.00* 
(0.046) 

-2.10* 
(0.036) 

1.37 
(0.171) 

Table 4: Diebold-Mariano test (benchmark model: H-EWMA) 

This table shows the statistics and corresponding p-values (in parentheses) for the conducted 

Diebold-Mariano test. Other competing models are tested against H-EMWA model under the null 

hypothesis of equal predictive ability. * and ** represent the rejection of the null hypothesis at 5% and 

1% respectively.  
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3.4.4 Value-at-Risk framework and loss functions 

The derived forecasts for the volatility of the considered hedge fund index can also 

be used as an input for a Value-at-Risk (VaR) analysis. The one-month ahead hedge 

fund index VaR at the α% confidence level of model i can then be denoted by: 

 

𝑉𝑣𝑅𝑖(𝛼) = 𝑢𝑡+1𝑖 + Φ(𝛼)�ℎ𝑡+1𝑖          (21) 

 

where 𝑢𝑡+1 and ℎ𝑡+1 are the forecasted conditional mean and variance estimated at 

time t with model i; Φ( ) is a cumulative distribution function, which is often 

assumed to be the Gaussian or Student t distribution. Using the style factor 

covariance matrix specification, 𝑢𝑡+1  is given by 𝑤𝑡 × 𝜇𝑡′ , where 

𝑤𝑡 = [𝑤1,𝑡 ,𝑤2,𝑡, … ,𝑤𝑛,𝑡] and 𝜇𝑡 = [𝜇1,𝑡, 𝜇2,𝑡 , … , 𝜇𝑛,𝑡] are the vectors containing the 

weights and the conditional means of the significant style factors at time t. On the 

other hand, when only considering historical hedge fund index returns, 𝑢𝑡+1 is 

simply equal to 𝑢𝑡, the conditional mean of the hedge fund index at time t. In this 

paper, using the techniques described in the previous sections, we use a normal and 

Student t distribution in order to estimate the hedge fund VaR at the 1% and 5% 

confidence level. 

 

Choosing an appropriate distributional assumption is vital for accuracy of VaR 

estimation. As discussed by Lopez and Walter (2000), for a portfolio of foreign 

currency, the performance of VaR models depend more on the assumption of return 

distribution than on the conditional volatility forecasting. Generally, the normal 

distribution is the most commonly used distribution in VaR estimation. However, 

empirical distributions of hedge fund returns are usually fat-tailed, i.e., great losses 

have a higher likelihood than suggested by the Gaussian distribution. Therefore, we 

also employ a Student t distribution for the VaR estimation of the considered index. 

The t-distribution has the form 
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𝑓(𝜖𝑡) =
Γ�𝑣+12 �

√𝜋Γ�
𝑣
2�

[ℎ𝑡(𝑣 − 2)]−0.5[1 + 𝜖𝑡2

ℎ𝑡(𝑣−2)
]−

𝑣+1
2      (22) 

 

where 𝑣 > 2  is the degree of freedom that affects the tail thickness of the 

distribution, and Γ( ) denotes the Gamma function. Using the residuals of the 

considered volatility models during the in-sample period, we estimate the degree of 

freedom parameter as 𝑣 = 6. In the following we compare the VaR results for the 

considered models in combination with the assumption of a Gaussian or Student t 

distribution for the hedge fund index returns. 

 

When investigating the appropriateness of different VaR models, another common 

approach is to estimate VaR based on historical simulation. In this case the VaR is 

calculated from the empirical distribution of historical returns only, not assuming any 

parametric model for the returns or volatility. Historical simulation is a particularly 

popular approach in the industry such that we decided to compare our results for VaR 

quantification based on the considered parametric models also to a nonparametric 

approach. Hereby, we use a rolling window of the past 100 return observations in 

order to construct the nonparametric empirical distribution of hedge fund returns and 

subsequently estimate the VaR. 

 

To evaluate the different VaR models in their ability to forecast extreme losses at a 

specified confidence level, we thus employ the historical simulation approach, 

parametric models for the index returns as well as models based on the estimated 

style factors in order to determine the accuracy of the VaR forecasts. This is done by 

using a three-step procedure initially proposed by Christoffersen (1998) and 

Christoffersen and Diebold (2000).  

 

The first step is to evaluate the VaR estimation based on the unconditional coverage. 

Here the null hypothesis is that the unconditional coverage 𝛼� = 𝑥/𝑇 is equal to p, 

with x being the number of VaR exceptions at a given confidence level p and T the 
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total number of VaR forecasts in the out-of-sample period. Then the test statistics is 

given by 𝐺𝑅𝑢𝑢 = −2ln [𝑝
𝑥(1−𝑝)𝑇−𝑥

𝛼𝑥(1−𝛼)𝑇−𝑥
], follows a χ2(1) distribution. The second step is 

to test for independence of VaR exceptions in order to examine whether exceptions 

are spread evenly through the period used for backtesting. Then the LR statistic for 

the test of independence is 𝐺𝑅𝑖𝑛𝑎 = −2ln � (1−π2)(T00+T00)(1−π2)(T01+T11)

(1−π01)T00π01T01(1−π11)T10π11T11
�  , 

following a χ2(1) distribution, where 𝜋𝑖𝑎 = Pr {𝐼𝑡 = 𝑖|𝐼𝑡−1 = 𝑗}(𝑖, 𝑗 = 0,1), 𝐼𝑡 to be 

1 if VaR is exceeded and to 0 otherwise, 𝜋01 = 𝑇01
𝑇01+𝑇00

, 𝜋11 = 𝑇11
𝑇10+𝑇11

,  𝜋2 =

𝑇01+𝑇11
𝑇01+𝑇00+𝑇10+𝑇11

, 𝑇𝑖𝑎 is the number of observations that a i followed by a j in the 𝐼𝑡 

series. Note that when hedge fund returns exhibit heteroskedasticity, evaluation of 

VaR models based on the test for unconditional coverage only may not be sufficient, 

because a VaR model providing an appropriate unconditional coverage may still 

yield an incorrect conditional coverage. Thus, the third step is to test the conditional 

coverage by using the statistics 𝐺𝑅𝑢𝑢 = 𝐺𝑅𝑖𝑛𝑎 + 𝐺𝑅𝑢𝑢  that follows a χ2(2) 

distribution. As pointed out by Christoffersen (1998) and Christoffersen and Diebold 

(2000), a model that passes both the unconditional and conditional coverage test can 

be considered as adequate for VaR estimation. 

3.4.5 Empirical results for Value-at-Risk quantification      

Table 5 presents the unconditional coverage (UC), i.e., the percentage of exceptions, 

the LR statistics for unconditional coverage test (LRuc), the independence test (LRind) 

and the conditional coverage test (LRcc) for both 95% and 99% VaR one month 

ahead forecasts. If the fraction of empirically observed exceptions is greater than the 

theoretical number of exceptions at the 1% and 5% significance level, it indicates 

that the model is inadequate. For 99% VaR, the unconditional and conditional 

coverage tests reject most parametric VaR models under normal distribution 

assumption and historical simulation approach, while for 95% VaR, all the models 

pass the three tests. Further, all the models pass the independence test, showing that 

VaR exceptions seem do not cluster abnormally. From the table, the results show that 

VaR models based on t-distribution assumption clearly outperform those based on a 
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normal distribution assumption. Recall that for volatility forecasting, the H-EWMA 

and H-GARCH models performed best for most of the considered loss functions. 

However, for the conducted VaR analysis we find that with respect to unconditional 

coverage during the out-of-sample period in particular the H-GARCH and F-BEKK 

models combined with the assumption of a t-distribution for the returns yield the best 

results. For these models, the number of exceptions is usually equal or even lower 

than the corresponding probability level while all three LR tests fail to reject the null 

hypothesis of adequate model specification. In contrast to these parametric methods, 

the nonparametric historical simulation approach performs rather poorly. In Section 

4.3, the empirical results indicated that the H-GARCH and F-BEKK models rank 

among the two best models with respect to volatility forecasting for the HMSE loss 

function. This function assigns higher weight to an incorrect low variance forecast 

when the actual realised variance is high. Hence, the volatility model that closely 

captures the tail features of the distribution should perform best for HMSE loss 

criterion. Moreover, we find that the Student t distribution is significantly more 

suitable than the normal distribution to capture the fat-tailed distribution of hedge 

fund returns. Taking into account that our out-of-sample data covers the Global 

Financial Crisis period during the years 2008 and 2009 when also hedge funds 

suffered significant losses, the empirical results indicate that the performance of VaR 

models is particularly dominated by its ability to capture the tail of the return 

distribution.  

 

In Figure 3 and 4 we also provide a plot of the actual hedge fund returns and the 95% 

and 99% VaR estimates based on the considered H-GARCH-t and F-BEKK-t models. 

Both models react quite significantly to the change in market condition during the 

Global Financial Crisis. However, the H-GARCH-t model seems to respond even 

quicker to the changes than the F-BEKK-t model. 
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 95% VaR 99% VaR 

Model UC LRuc LRind LRcc UC LRuc LRind LRcc 

H-EWMA-n 7.50 1.38 0.16 1.54 4.17 6.79* 1.82 8.62* 

H-EWMA-t 5.00 0.00 1.18 1.18 1.67 0.45 0.07 0.52 

H-GARCH-n 7.50 1.38 0.16 1.54 0.83 0.04 0.02 0.05 

H-GARCH-t 5.00 0.00 1.18 1.18 0.83 0.04 0.02 0.05 

F-MA-n 8.33 2.36 0.04 2.39 5.00 9.91* 1.18 11.09* 

F-MA-t 5.83 0.17 0.71 0.88 0.83 0.04 0.02 0.05 

F-EWMA-n 9.17 3.56 0.00 3.56 5.00 9.91* 1.18 11.09* 

F-EWMA-t 5.00 0.00 1.18 1.18 1.67 0.45 0.07 0.52 

F-BEKK-n 9.17 3.56 0.00 3.56 3.33 4.10* 2.71 6.81* 

F-BEKK-t 5.00 0.00 1.18 1.18 0.83 0.04 0.02 0.05 

Historical Simulation 6.67 0.64 0.38 1.02 3.33 4.10* 2.71 6.81* 

Table 5: VaR out-of-sample evaluation: 95% and 99% VaR 
Unconditional coverage (UC), i.e., the percentage of exceptions as well as the LR statistics for 
unconditional coverage test (LRuc), independence test (LRind) and conditional coverage test (LRcc) for 
both 95% and 99% VaR estimates. * indicates rejection of the null hypothesis at the 5% significance 
level. The minimum value of the unconditional coverage is highlighted in bold letters.          
 

 Figure 3: Returns of HFRI Emerging Market-Asia exclude Japan index and 95% VaR 
forecasts for the considered out of sample period January 2000 to December 2009. The 
graph compares the computed 95% VaR for the H-GARCH-t model (green dotted line) and 
F-BEKK-t model (red dotted line). 
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Figure 4: Returns of HFRI Emerging Market-Asia exclude Japan index and 99% VaR 
forecasts for the considered out of sample period January 2000 to December 2009. The 
graph compares the computed 99% VaR for the H-GARCH-t model (green dotted line) and 
F-BEKK-t model (red dotted line). 

 

3.4.6 Magnitude of VaR exceptions 

Generally, in the academic literature and practice, most evaluations of VaR estimates 

are based on the frequency of the VaR exceptions. However, also the magnitude of 

VaR exceptions is of particular interest to risk managers and financial institutions. 

This is even of higher importance when risk management practices focus also on 

expected shortfall instead of VaR only. In this section, we employ a hypothesis test 

proposed by Berkowitz (2001) focussing on the expected loss in comparison to the 

actually observed loss when the VaR is exceeded.       

 

A difficulty in evaluating the performance of VaR models is the small number of 

observed violations. For example, a 99% VaR should provide only approximately 

one violation in every 100 observations if it is correctly specified. Therefore, as 

stressed by Kupiec (1995), a large sample size is required to verify the accuracy of a 

VaR model. An alternative to focusing on the low frequency of VaR exceptions only, 

is to apply the Rosenblatt (1952) transform to the predicted return distribution 
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𝐹�(𝑦𝑡) = ∫ 𝑓(𝑥)𝑑𝑥𝑦𝑡
−∞           (23) 

 

where 𝑦𝑡 is the realised return at time t and 𝑓(𝑥) is the loss density function 

generated by the model used for forecasting. Rosenblatt shows that if the distribution 

is correctly specified this will transform the observed returns into a series of iid 

random variables. Thus, the accuracy of the VaR model can be tested under the null 

hypothesis that the probability integral transforms 𝐹�  are iid and distributed 

uniformly on [0,1]. As suggested by Crnkovic and Drachman (1996), the Kuiper 

statistic based on the distance between the empirical and the theoretical cumulative 

distribution function of the uniform distribution can be used in order to test for 

uniformity. However, a small sample size is not suitable for this test since a large 

number of points is required to calculate the distance. Therefore, instead of testing 

the uniformity, Berkowitz (2001) transforms 𝐹� into standard normal series and tests 

the accuracy of VaR models by constructing likelihood-ratio (LR) tests. Focusing on 

the magnitude of the VaR exceptions, Berkowitz proposes a LR test based on the 

censored likelihood, such that the shape of realised lower tail is compared with the 

forecasted lower tail so as to determine whether the observed VaR exceptions are in 

line with the underlying VaR model. Moreover, Berkowitz points out that the 

proposed likelihood-ratio test is well suited for sample sizes as small as 100. Let 

𝑧𝑡 = Φ−1 �F�(yt)� denote the inverse of the standard normal distribution function of 

F�(yt), 𝑉𝑣𝑅 = Φ−1(α) denote the cut-off point, i.e., VaR=-1.96 for 5% lower tail of 

standard normal distribution and 𝑧𝑡∗ denote the further transformation of 𝑧𝑡 given 

by 

 

𝑧𝑡∗ = �𝑉𝑣𝑅 𝑖𝑓 𝑧𝑡 ≥ 𝑉𝑣𝑅
𝑧𝑡     𝑖𝑓 𝑧𝑡 < 𝑉𝑣𝑅 . 

 

Then the log-likelihood function can be expressed as  
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 𝐺 = ∑ 𝐺𝐿𝐿 �1−Φ�VaR−µ
σ

��𝑧𝑡∗=𝑉𝑣𝑉 + ∑ �−1
2
𝑙𝐿𝐿(2𝜋𝜎2)− �𝑧𝑡∗−𝜇�

2

2𝜎
�𝑧𝑡∗<𝑉𝑣𝑉    (24) 

 

where 𝜇 and 𝜎 denote the mean and standard deviation of the transformed standard 

normal series 𝑧𝑡 . Under the null hypothesis that 𝜇 = 0  and 𝜎 = 1 , the 

likelihood-ratio test statistic is given by 𝐺𝑅 = 2�𝐺(𝜇,𝜎) − 𝐺(0,1)� , which is 

approximately 𝜒2(2) distributed. 

 

The test statistics for the LR test are reported in Table 6. Interestingly, for none of the 

models the null hypothesis that 𝜇 = 0 and 𝜎 = 1 can be rejected, indicating that 

the mean and the variance of the observed violations is consistent with those implied 

by the considered VaR models. That is, all the models appear to perform well 

regarding to the magnitude of VaR exceptions. 

  

Model 95% VaR 99% VaR 

H-EWMA-n -1.18 0.68 

H-EWMA-t 1.11 0.13 

H-GARCH-n -1.04 -0.20 

H-GARCH-t 2.69 0.76 

F-MA-n 0.52 2.15 

F-MA-t 1.97 0.48 

F-EWMA-n -0.74 1.36 

F-EWMA-t 0.95 0.10 

F-BEKK-n -0.11 0.50 

F-BEKK-t 2.19 0.77 

Historical Simulation -0.22 -0.38 

Table 6 Magnitude of VaR exceptions 

LR statistics for magnitude of VaR exception test for both 95% and 99% VaR. * indicates the rejection 

of the null hypothesis at 5% significance level.           
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3.5 Conclusion 

In this paper, we identify style factors for Asia-focused hedge funds represented by 

the HFRI Emerging Market-Asia exclude Japan index. Hereby, we make use of the 

style analysis framework initially suggested by Agarwal and Naik (2000) and Dor et 

al. (2003). Furthermore, we employ a two-step procedure proposed by Lobosco and 

Dibartolomeo (1997) to test for the significance of the considered style factors. A 

rolling window style analysis is performed to provide further insights into the 

dynamic structure of style factor weights and risk exposures. This is one of the first 

empirical studies applying these techniques with particular focus on the Asian hedge 

fund industry.  

 

The empirical results show that the most significant equity factors relating to the 

HFRI Emerging Market-Asia exclude Japan index are emerging equity markets, 

especially emerging markets in Asia. The two factors representing global and Asian 

emerging markets together account for a weight of approximately 45% on average. 

The risk exposures are consistent with the investment objective of the hedge fund 

strategy. With respect to the fund’s exposure to bond markets, we find that 

Asia-focused hedge funds indicate positive exposures to cash and high credit rating 

bonds but negative exposures to world government and emerging market bonds. In 

general, these fixed income factors account for a weight of 45%. The rolling window 

style analysis captures the hedge fund managers’ style drift in responding to dynamic 

trading and changing market situations. For both static and rolling period style 

analysis, our model provides a high explanatory power for returns of the hedge fund 

index. 

 

We further conduct an extensive analysis with respect to the ability of the models to 

provide appropriate forecasts for volatility and Value-at-Risk of the index. Hereby, 

we use the identified factors and factor weights of the rolling window style analysis 

in combination with a multivariate GARCH, moving average or exponentially 
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weighted moving average (EWMA) model. The results are also compared to an 

approach that applies a univariate EWMA and GARCH model directly to the returns 

of the index.  With respect to volatility forecasting the models are compared based 

on a set of different loss functions. We find that none of the models performs best for 

all of the considered loss functions or significantly outperforms all of the other 

models. However, overall the best results are obtained for three of the considered 

models: the EWMA and GARCH model using the actually observed returns of the 

hedge fund index as well as a model using the estimated style factor weights in 

combination with an EWMA scheme for the volatility.  

 

In a second step, based on hypothesis tests for unconditional and conditional 

coverage, we further evaluate the performance of the considered models with respect 

to VaR estimation. Hereby, also different assumptions for the return distribution are 

applied. Finally, the magnitude of the observed VaR exceptions is compared to those 

implied by the estimated VaR models. Our results indicate that the accuracy of the 

VaR models is dominated by its ability to capture the tail distribution of the hedge 

fund returns. Moreover, the performance of the models in VaR prediction seems to be 

dependent rather on the distributional assumption for the returns than on the chosen 

approach for volatility modelling: all models assuming a Student t distribution for the 

returns of the hedge fund index are significantly better than their counterparts 

assuming a Gaussian distribution. Overall, the best models for VaR estimation are a 

GARCH BEKK model based on the underlying style factors and a GARCH model 

that is based on the hedge fund returns only. Our findings further suggest that, in VaR 

forecasting, all parametric models outperform a simple historical simulation 

approach being purely based on past return observations. Finally, all of the 

considered VaR models perform reasonably well in forecasting the magnitude of the 

loss conditional on a VaR exception. 

 

Overall, our findings suggest that style analysis in combination with an appropriate 

parametric model for the identified factors provides an appropriate quantification of 
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the risk for the considered Asian hedge fund index. We also find that multivariate 

models based on identified style factors and style weights significantly outperform a 

historical simulation approach with respect to volatility or VaR forecasting. On the 

other hand, our analysis indicates that they do not necessarily outperform simpler 

models like a univariate GARCH or EWMA model being directly applied to the 

hedge fund return series. However, they provide important insights on the exposures 

and investment style of a fund and indicate how fund returns can be replicated by 

observable market factors. In a time-varying setting style analysis also provides 

information on how the weights of the different style factors potentially change 

through time as a reaction to different market conditions. Finally, style analysis might 

be useful for risk management when only a short period of observations is available 

for the fund itself while the identified style factors provide a much longer history that 

can be employed for estimating VaR or other risk measures. Therefore, we believe 

that style analysis approach should also be of particular help when individual hedge 

funds with a short track record are analysed and the use of hedge fund returns only 

for risk analysis will fail due to the lack of historical data. This issue should be 

thoroughly investigated in future research. 
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Appendix A: Description of considered style factors for the style analysis of 
Asian-focused hedge funds  
Factors Description 
3-month Treasury 
Bill  

Monthly yield on U.S. Treasury securities at 3-month constant 
maturity. 

Bank of America 
Merrill Lynch US 
High Bond 

Index for US high yield bonds (below investment grade). 

CGBI Broad 
Investment Grade 

Index for US investment grade bonds. The index includes treasuries, 
agency debt, corporate, non-corporate credit, mortgage-backed 
securities, and asset-backed securities. 

CITI World 
Government Bond 

A market capitalization weighted bond index consisting of the 
government bond markets of the multiple countries. 

S&P 500 The S&P 500 is a free-float capitalization-weighted index of the 
prices of 500 large-cap common stocks actively traded in the United 
States 

MSCI Europe The market capitalization weighted index measures the equity market 
performance of the 16 developed markets in Europe. 

MSCI Japan MSCI Japan measures the performance of the Japanese equity 
market.  

MSCI emerging 
markets excluding 
Asia 

The market capitalization weighted index measures the equity market 
performance of the emerging markets excluding Asia. There are 13 
emerging market countries included in this index.  

MSCI emerging 
markets Asia 

The market capitalization weighted index measures the equity market 
performance of the emerging markets in Asia. The index consists of 
the following emerging market countries: China, India, Indonesia, 
Korea, Malaysia, Philippines, Taiwan, and Thailand. 

MSCI Pacific 
excluding Japan 

The market capitalization weighted index measures the equity market 
performance of the developed markets in the Asia Pacific region 
excluding Japan. The index consists of the following developed 
market countries: Australia, Hong Kong, New Zealand and 
Singapore. 

Trend-Following 
Risk Factors 

The returns of private trend following strategy (PTFS) lookback 
straddles in bond, currency, short term interest rate, commodity 
and stock.  
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Abstract 

 

We extend an influential contribution to the literature on agency theory and then use 

this extension, along with other theoretical contributions, to shed light on agency 

problems affecting funds management and financial planning in Australia. The case 

for pure fee for service in actively managed funds and plans turns out to be weak. 

The amount of money exposed to risk by an active manager should be less than the 

entire investible wealth of the client, especially in the case of investors on the cusp of 

retirement. Asset-based fees on actively managed funds should include a fulcrum 

component.  
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4.1 Introduction 

This paper compares and contrasts mainstream agency theory with financial planning 

practice in Australia. It appears to be the first attempt to do so. It extends an 

influential mainstream contribution to the literature on agency theory and then uses 

this extension, in conjunction with other theoretical contributions, to shed light on 

actual contracts between investors, financial planners, licensees and product 

providers. The case for pure fee for service in actively managed funds and plans 

turns out to be weak, at least when the manager and the provider are treated as a 

consolidated entity, that being a reasonable first-order approximation in the 

Australian case. The amount of money exposed to risk by an active manager should 

be less than the entire investible wealth of the client, especially in the case of 

recently-retired investors. Asset-based fees on actively managed funds should be 

symmetric in gains and losses relative to a benchmark, contrary to current 

mainstream practice. 

 

The background to this paper is the continued growth in financial planning and funds 

management as the baby boomers move towards retirement. At present only 13 per 

cent of Australians are at least 65 years of age, and 7 out of 10 retired households 

rely principally on the Age Pension. Only 15 to 20 per cent of Australians have 

received financial advice from planners at some point during their lives. However, 

the 65-plus population is projected to hit 23 per cent of the population by 2050 and 

self-funded retirements are becoming more widespread, so the number of Australians 

receiving advice from financial planners should rise. Funds under advice in Australia 

stand at $519 billion (Rainmaker Group 2013). There are 760 advisory groups, 8,300 

financial planning practices, and 18,200 financial planners. There has been ongoing 

vertical integration within the industry, as small practices enter into ‘sponsorship’ 

relationships, primarily with the big-four banks and the major insurance companies. 

At least 80 per cent of financial planners are sponsored. On the other hand, 

self-managed superannuation funds account for 31 per cent of total superannuation 
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assets of $1.4 trillion (Australian Prudential Regulation Authority 2012). This alone 

suggests that the market for advice is contestable, as a consequence of a substantial 

competitive fringe of comparatively self-reliant investors. 

 

The financial planning industry has come under scrutiny in the wake of the global 

financial crisis (2008-10) and the collapse of Storm Financial in 2009. The 2007 

budget had abolished taxes on the earnings of superannuation funds in drawdown 

mode and allowed higher personal contributions. As a consequence there were strong 

inflows into superannuation during the 2007 financial year – decisions which worked 

out badly for many investors in the wake of the global financial crisis. The year 2009 

saw two official inquiries into industry practices. The Ripoll inquiry reported in 2009 

and the Cooper inquiry reported in 2010. These served as inputs to the government’s 

Future of Financial Advice (FoFA) and MySuper reforms. Questions raised in the 

Australian debate on financial planning include these: 

 1. Should fee-for-service supplant asset-based fees?  

 2. Should commissions from product providers to planners be banned? 

3. Do recommended asset allocations tend to be too risky for clients on the cusp 

of  retirement?  

 4. Do financial plans tend to be ‘cookie cutter’ ones rather than customised to the 

 particular circumstances of clients? 

 5. Do typical fee structures encourage ‘closet indexing’ by fund managers? 

6. Has there been inadequate disclosure of dollar (rather than percentage) 

amounts charged in  fees? 

We arrive at affirmative answers to all these questions except the first one. 

 

Section 2 sheds light on the first, third, fourth and fifth questions by extending the 

model of Dybvig et al. (2010). That model is a direct descendent of the classic 

agency model due to Ross (1973). It derives optimal contracts in financial plans 

when both the investor-principal and the planner-agent have log utility. It does not 

distinguish between planners and managers, and this is useful to the extent that the 
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managed funds industry shows strong vertical integration, as is the case in Australia. 

Efficient fee structures always involve asset fees, and generally tie a component of 

remuneration to portfolio performance relative to a suitable passive benchmark, to 

discourage closet indexing. 

 

We introduce generalised log utility1 into the setup of Dybvig et al. Generalised log 

utility has the realistic implication that relative risk aversion is a declining function 

of wealth, unlike its log, quadratic, power and exponential competitors.2 It is the 

simplest way to capture habit-dependent utility whereby a retiree is concerned to 

prevent her living standard falling below some pre-determined level, and is 

consistent with a desire to ‘keep up with the Joneses’. It can rationalise conservative 

asset allocations on the cusp of retirement whereas simple log utility generates 

aggressive allocations. Generalised log utility captures the concern of some investors 

with preventing shortfalls in wealth below some subjective reference level, and the 

present value of protected future consumption is the natural interpretation of that 

level. In this way it sheds light on the question of excessively risky allocations for 

people on the cusp of retirement. 

 

The proposed model is of a contract between an investor and a unified fund 

manager/financial planner entity and not a standalone financial planner. It is 

important to emphasize that this assumption is realistic in the Australian context 

because of strong vertical integration in the financial planning/fund managing 

industry as described in Section 3. Approximately 70-80% of financial planning 

practices are owned by large institutions which also manage funds.  

  

Section 3 examines Australian industry practice. Unsurprisingly, typical contracts set 

out in actual Statements of Advice and Product Disclosure Statements turn to be 

much richer than could be captured by a single theory. Accordingly, Section 3 draws 

informally on the results of Stoughton et al. (2011), Bateman et al. (2007) and 

Grossman and Stiglitz (1976), in addition to the formal theory of Section 2. These 
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contributions shed light on the agency problems raised by intermediated investment 

management, multiple time periods, and general equilibrium. Put another way, 

Section 2 does not shed light on all six questions, and therefore needs to be beefed up 

by other theories, at least informally. 

 

Take our second question, on commissions. It presupposes a three-way split between 

investors, advisers and investment managers (notwithstanding the considerable 

vertical integration in Australia.) Stoughton et al. (2011) do introduce such a split (in 

contrast to Dybvig et al.) and it sheds light on commissions. Investors can engage an 

adviser, or pay a fixed cost to access actively managed funds without intermediation 

by advisers, analogous to Australia’s self-managed funds. Investors divide into 

sophisticated or unsophisticated ones, depending on whether they anticipate 

equilibrium outcomes in the financial planning industry and are impervious to 

promotional material. Commissions from managers to advisers can take the form of 

cash or soft-dollar compensation such as conferences in resort locations. All this 

helps explain Australian practice. 

4.2 Agency Theory 

This section extends the theory of fee structures for actively managed funds that 

mitigate agency problems when both the principal and the agent have generalised-log 

utility functions. One new result is that efficient fees include a fixed component 

reflecting the agent’s protected consumption. This generates a new rationale for a flat 

component of fees, analogous to fee-for-service. But the optimal contract retains 

roles for asset-based fees. Another new result is that, from both an investor and 

manager standpoint, the participation decision is not all-or-nothing; the amount 

placed with the active manager is equal to the investor’s wealth less the present value 

of the total protected consumption of the investor and the manager. Remaining 

wealth is allocated to safe assets. In practice, this suggests that an investor should 

place part of her retirement money in term deposits rather than allow all of it to be 
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actively managed. 

 

Our setup retains some features of Dybvig et al. (2010). Notably, the asset-based fees 

derived there are retained here as a component of the overall fee structure, including 

a symmetrical asset-based fee for performance relative to a passive benchmark. 

 

Dybvig et al. (2010) derive an optimal contract for portfolio managers using an 

agency theory model. In this model, it is assumed that the signals about future prices 

can be influenced by a portfolio manager’s efforts. An investor is then required to 

find an optimal contract to provide the manager incentive to exert effort and to use 

the signal in the investor’s interest. Further, Dybvig et al. (2010) assume both 

investor and manager have a log utility and consider three scenarios: 1) the first-best 

world where the manager’s effort is observable; 2) the second-best world where the 

manager’s signal is observable but the effort is not observable and 3) the third-best 

world where neither the effort nor the signal is observable. The authors have shown 

that in the first best world the optimal contract is a fixed proportion of the 

end-of-period assets under management independently of the signal. In the 

second-best world, the optimal contract is a fixed fraction of the end-of-period assets 

under management plus a bonus in proportion to the excess portfolio return over a 

benchmark. The bonus component is to give the manager incentives to exert efforts. 

In the third-best world, the manager’s fee is no longer a liner combination of the 

portfolio and a benchmark performance, as it is in the second-best world, but 

contains an additional nonzero payoff conditional on the signal. The excess return 

component in the fee structure will still provide the manager the incentive but will 

tend to make the manager overly conservative when making investment decisions.  

 

We extend the utility function for both the investor and manager in Dybvig et al 

(2010) to a generalised log utility. A constant is added in the log utility which we 

consider as the protected consumptions of the investor and manager.  
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Dybvig et al. (2010) consider three optimization problems corresponding to 

increasingly severe agency problems. In the first-best case, agency problems are 

absent. In the second-best case the manager reveals truthfully the observed signal to 

the investor but has private information about her effort level. In the third-best case 

the adverse-selection problem and the moral-hazard problem are both present. It is 

the second-best case which yields the most interesting results, so we disregard the 

third-best case, and comment only briefly on the first-best case. Our main result is 

this: 

4.2.1 Proposition 

The optimal contract between an investor and an active manager whose effort level 

cannot be verified by the investor first carves out the total protected wealth of the 

investor and the agent. It then subjects the remaining wealth of the investor to a fee 

structure with a flat component and two asset-based components. One asset fee is a 

standard proportional fee on fund earnings. The other is a symmetrical fulcrum-style 

performance fee: 

( ) ( )0, [ ( )] .
1

R P P B
m

R R

w w
s C R R Rελ λφ w

λ ελ
−  

= + + − +  
    (1) 

On the left-hand side of equation (1), ( ),sφ w  is the fee paid by an investor when the 

manager’s unobserved effort ε (0 1)ε≤ ≤  generates a private signal s S∈  about 

future returns, and the state of the world is w∈Ω . On the right-hand side, mC  is 

the protected consumption of the manager, 0w  is investible wealth, w  is the 

present value of the total protected consumption of the investor and the manager, Rλ  

is a Lagrange multiplier on a participation constraint, PR  is the return to the actively 

managed portfolio, ελ  is a Lagrange multiplier on an incentive-compatibility 

constraint, and BR  is the return to a passively-managed (zero-effort) benchmark 

portfolio. 
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4.2.2 Proof 

See Appendix 1 

4.3 Financial Planning Practice 

This section compares and contrasts our claimed optimal structure (1) with actual fee 

structures and associated advice documented by the Financial Planning Association 

and Morningstar. Consistent with (1), actual fees contain both flat and proportional 

components. On the other hand (and as one might expect) there appears to be little or 

no advice to the effect that investors set aside part of their wealth in safe assets. 

Rather, the plan discussed here recommends that investors elevate their pre-existing 

exposures to growth assets. Moreover, there appears to be little or no use of fulcrum 

fees by either planners or fund managers. Performance fees exist and are mostly set 

in practice by managers rather than planners. They are not of the fulcrum variety, as 

they are neither symmetrical nor based on the natural benchmark, i.e. the best 

passively managed allocation for investors with age and wealth comparable to that of 

the actual client. Consistent with these gaps between prescriptive theory and actual 

practice, there is evidence of the closet indexing that fulcrum fees would discourage. 

 

The Financial Planning Association is the dominant industry association for 

Australian financial planners. Roughly two thirds of licensed planners belong to it. 

The FPA has promulgated an ‘Example’ Statement of Advice on behalf of a 

hypothetical couple aged 57 and with a dependent teenage daughter (FPA 2008). The 

couple’s accumulated superannuation is $550,000. The associated model plan places 

the breadwinner into salary sacrifice and a transition to retirement pension, thereby 

reducing the couple’s short-term annual tax bill from $38,975 to $22,941.3 The 

model plan makes persuasive recommendations for retaining life insurance 

associated with the client’s pre-existing superannuation fund at work. It says: ‘The 

FPA liaised with the Australian Securities and Investment Commission regularly 

during the development process to arrive at this final version’ (FPA 2008, p2). 

4.3.1 Fee structure 

Initial advice is charged out at $8,277, after tax and on a fee-for-service basis. This 

initial fee appears to be primarily in exchange for receiving the tax benefits of salary 
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sacrifice and a Transition to Retirement pension. There may be scope to unbundle the 

initial fee from ongoing fees (in exchange for asset-management services) in the 

event the couple decides to stick with their pre-existing superannuation fund while 

adopting the planner’s recommendations concerning salary sacrifice and a TTR 

pension structure. This fee is paid in the first instance to the licensee, who retains 2 

per cent of it, and the remainder goes to the planner. In this way, the bubble 

containing .98 x $8,272 refers to the flat-rate fee actually received by the planner. If 

the couple does switch its superannuation balances into the fund recommended by 

the model plan, several ongoing or asset-based annual fees become payable. The 

investor pays 1.89 per cent pa of assets under management to the product provider. 

The provider pays 0.6 per cent pa of assets under management to the licensee, from 

their management fees, and to pay the cost of ongoing advice. Thus the bubble 

containing .98 x 0.6 per cent refers to the asset fee actually received by the planner. 4 

The provider may also pay an additional 0.2 per cent to the licensee, for 

recommending their products, along with soft-dollar benefits, ‘typically between 

$10,000 and $20,000’ pa. Figure 1 summarises these payments. 

[Figure 1 here] 

Judging by the FPA’s model plan, fee-for-service in practice appears to be confined 

to initial tax advice and does not extend to portfolio formation. Mainstream agency 

theory − our Section 2 model included − typically does not prescribe pure 

fee-for-service for an actively-managed portfolio, and this accords with industry 

practice. The purpose of the two asset-based fees identified in Section 2 is to elicit 

effort from the manager/adviser that is commensurate with the earnings potential of 

the asset. 

 

The acknowledged commissions of 0.6 and 0.2 per cent pa, along with the soft-dollar 

benefits, accord with the theory of Stoughton et al. (2011). Commissions have been 

contentious on the argument that an agent should not try to serve two principals 

simultaneously – they create the possibility of a conflict of interest between adviser 

and client. Moreover, the model plan does not mention any requirement that 

investors periodically ‘opt in,’ leaving it open to the criticism of inertia selling. 
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Elderly couples could be particularly susceptible. For example, if the person 

responsible for managing household finances passes away before her partner, it could 

take a considerable time before the surviving partner becomes aware of trail fees in 

the family’s financial plan. 

 

Regulatory Guide 246, promulgated by ASIC (2013), generally bans ‘conflicted 

remuneration’ in plans written from 1 July 2013 onwards. This would seem to ban 

future use of the commissions of 0.6 and 0.2 per cent, as well as the soft-dollar 

payments. The associated FoFA reforms also require planners to offer advice that is 

in the best interests of their clients, again from 1 July 2013. FoFA initially proposed 

requiring clients to ‘opt in’ every two years. In March 2012, however, this was 

watered down; membership of an industry association with an ASIC-approved code 

of ethics now exempts a planner from opt-in. 

4.3.2 Asset allocation and asset fees 

Table 1 summarises the plan’s proposed asset allocation and part of its proposed fee 

structure. It itemises and breaks down the figure of 1.89 per cent shown in Figure 1. 

[Table 1 here] 

Table 1 shows the model plan recommends a fund-of-funds portfolio in which each 

individual fund carries an asset-based fee. The riskier funds on the menu generally 

carry higher fees. This is on the face of it an incentive to recommend risky products. 

The generally sizeable fees suggest that most sub-funds envisage adding value via 

active management. The FPA’s model says that the exposure of the elderly couple’s 

superannuation to ‘growth’ assets (shares plus commercial property) is too low in 

their pre-existing superannuation fund. It recommends that at least 70 per cent of 

couple’s portfolio, and possibly as much as 95 per cent, be invested in growth assets.5 

The reason is to ‘take advantage of market opportunities and your investment time 

horizon’ (p4). By contrast the average Self-Managed Superannuation Fund allocates 

30 per cent to safe interest-bearing assets, typically term deposits. 

 

The long investment horizon faced by the elderly couple is actually a reason for 

caution, and the FPA’s advice is at odds with indications that financial plans are 
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fragile around the point of retirement. Bengen (2001) appears to have initiated this 

line of research, basing his fragility finding on historical simulations with actual 

returns data for the United States. He noticed that, once you are retired, the sequence 

of investment returns becomes critical: a market down followed by a market up tends 

to do more damage than it would have done early in working life. One relevant 

argument is that if you suffer a big hit early on, you still need to draw down your 

account balance for living expenses, further depleting it. Even if markets do 

eventually bounce back you cannot expect to recoup your losses. 

 

Theory based on the notion of a ‘protected’ consumption level (e.g. our Section 2 

model) supports this fragility argument: if your annual expenditure over an expected 

lifetime cannot fall below some minimum standard, then your asset allocation 

initially needs to be conservative, reflecting a high present value of protected lifetime 

expenditure. In practice, protected consumption corresponds to ‘ultra’ necessities 

such as electricity, gas and timely medical procedures. The longer your expected time 

in retirement, the more conservative your initial allocation needs to be. The present 

value of your protected consumption falls as your remaining years run out, so your 

proportionate allocation to risky investments can progressively be lifted, provided 

your risky investments have not underperformed. Another reason for planning an 

upward-sloping equity-age profile in retirement is that bequests tend to be luxury 

expenditures and can therefore perform a shock-absorber role late in life.6 

 

Another reason for caution on the part of the FPA’s hypothetical couple is that the 

FPA’s model plan does not address the couple’s apparent lack of retirement flexibility. 

The plan assumes that the couple’s sole breadwinner will continue to work until age 

65, or for 3 or 4 years past the recent average retirement age for males. As a 

consequence, the hypothetical household cannot count on being able to work for 

longer if investment markets fall before the planned retirement date. Moreover, a 

setback in health or employment could see the breadwinner forced into retirement 

before age 65. 

 

Section 2 is consistent with a ‘shortfall’ notion of risk whereby potential investor 

losses are capped by placing some wealth in passively-managed safe assets.7 The 

FPA’s plan appears to recommend that only 5 per cent of the investor’s 
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superannuation be unambiguously invested in this way. 

 

The FPA submitted to the Cooper review that portfolio restrictions are unwarranted, 

particularly in the case of investors on the cusp of retirement: ‘Lifestyle [also known 

as ‘glidepath’ or ‘target-date’] options per se are not necessarily an appropriate 

strategy for super fund members to adopt. For example, the 10/30/60 rule indicates 

that the majority of the growth of an investment portfolio occurs during the 

retirement stage’ (FPA 2009, p12). This rule says that 10 per cent of your nominal 

investment earnings in retirement come from contributions, 30 per cent comes from 

investment earnings before retirement, and 60 per cent comes from investment 

earnings after retirement.8 The FPA evidently sees this rule as reinforcing the case for 

a comparatively aggressive allocation on the cusp of retirement. 

 

There are problems with both the 10/30/60 rule and the FPA’s application of it. First, 

it appears to be based on comparisons of nominal (rather than real) contributions and 

investment earnings at widely separated dates, whereas neither nominal contributions 

nor nominal investment earnings are commensurate across widely separated dates. 

Second, an allocation’s potential for generating high expected nominal earnings at 

retirement is far from being a sufficient statistic for evaluating it. The extra 

information needed includes an appropriate forward-looking adjustment for inflation, 

the client’s risk aversion (which could be time-varying), and the price of risk (the 

ratio of the equity premium to the variance of returns to risky assets). Finally, a 

comfortable retirement usually necessitates drawing down superannuation balances 

rather than attempting to maintain them intact. 
 

FoFA should help discourage highly risky allocations. It bans asset-based fees on the 

borrowed component of sums invested by geared investors, which should help avoid 

a repetition of the Storm Financial affair. It also seeks to reduce operational and 

counterparty risks in the managed funds industry, by setting up compensation 

schemes for investors. 
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4.3.3 Performance fees 

Theory and practice diverge on the question of performance fees. Our Section 2 

theory retained a key feature of Dybvig et al. (2010): the performance component of 

an asset-based fee should be symmetrical in the outperformance of the actively 

managed portfolio over the zero-effort benchmark portfolio. This symmetry is the 

defining feature of so-called fulcrum fees. Figure 2 portrays a fulcrum fee.9 Current 

regulatory practice in the United States towards managed funds is that fulcrum fees 

have become the only legal performance fees outside hedge funds. However, this 

regulatory change saw a big switch by fund managers, away from conventional legal 

structures and towards hedge funds. 

 

Fee schedules for hedge funds offered in the US are instead tend to be the ‘2-20’ 

variety: managers do not pay clients if they underperform the agreed benchmark, 

always receive a fixed asset-based fee of 2 per cent and, in addition, receive an 

additional fee of 20 per cent whenever the portfolio outperforms the benchmark 

(Cochrane 2012). Cochrane observes that the corresponding payoff profile resembles 

the payoff profile for a long position in a call option. The value of a call is an 

increasing function of the value of the underlying asset, so an option-style payoff 

motivates managers to exert more effort. But the value of an option is generally an 

increasing function of the volatility of the underlying asset, so that an option-style 

payoff introduces an agency problem whereby the manager is tempted to form an 

excessively risky portfolio, unless sufficiently deterred by a concern for reputation.10 

 

Eighteen performance fees used in Australian managed funds are analysed by 

Whitelaw et al. (2011a).11 Seventeen of the funds define the benchmark return as 

returns to the Standard and Poors/Australian Stock Exchange’s accumulation indices 

for its largest 200 or 300 stocks, plus a hurdle rate ranging from zero to five 

percentage points. No fund offers a fulcrum–style performance fee. On the other 

hand, all but two offer some variant or other of a ‘high watermark’ feature. This 
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means performance fees cannot be collected until some or all of any 

underperformance relative to the benchmark has been recovered. Partially offsetting 

high watermarks are resets whereby about half the funds in the sample allow their 

pre-existing high watermarks to be cancelled periodically, putting the manager back 

in a position to receive fees for outperformance relative to an agreed benchmark 

without having to make good previous losses. 

 

The heavy solid line in Figure 2 is a stylised portrayal of the performance fee 

structure of ‘fund number 9’ in the sample of Whitelaw et al. The figure is stylized 

because it does not portray the short-run dynamics of high-watermark and reset 

features. Fund number 9 is typical of the sample. Its fee for outperforming the 

benchmark is 20 per cent, its benchmark is one plus annualised growth in the 

S&P/ASX 200, and its base fee is 0.75 per cent, calculated before extracting the 

performance fee. The heavy solid line shows fund number 9’s performance fee 

before allowing for high watermarks and resets. The heavy dashed line is a stylised 

portrayal of the average performance fee after allowing for high watermarks and 

resets. The combined effect of these two features is to push the manager’s embedded 

call option towards being out-of-the-money. This will tend to weaken incentives both 

for exerting effort and recommending a risky portfolio. 

[Figure 2 here] 

The sample of Whitelaw et al. (2011a) suggests that the agency problems affecting 

performance fee schedules in US hedge funds are also present in performance fee 

schedules for Australian actively-managed funds. Active managers in both countries 

apparently prefer to rule out downside rather than submit to fulcrum contracts, 

notwithstanding the relevant prediction (or prescription) of agency theory. In fairness 

to product providers, one reason for the absence of fulcrum contracts could be 

investor resistance to the higher fees that might be required. Moreover, an institution 

offering fulcrum contracts would need to hold capital against the contingency of 

having to compensate investors for underperforming. 
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FoFA does not address the question of performance fees, including fulcrum ones. 

Worth investigating are compromises which would see underperforming managers 

reimburse investors up to a cap. 

4.3.4 Active versus passive management 

Theory and practice diverge on the question of the relative merits of active and 

passive management (paralleling the question of performance fee design.) Grossman 

and Stiglitz (1976) model an economy in which the expected returns to active and 

passive management are equalised. Grossman and Stiglitz assume (like Section 2 

above) that information acquisition is costly and research investments are rewarded. 

Active investors drive asset prices towards fair value, and just cover costs in doing so. 

Yet the international evidence is that active managers perform about 100 basis points 

pa less well on average than this parity-like condition suggests. 

 

The FPA’s model quotes a management expense ratio of 1.89 per cent pa of funds 

under advice-cum-management (Table 1). Internationally, Vanguard is the 

best-known provider of index funds. Its Australian Growth Index Fund quotes a 

management expense ratio of 0.36 per cent. The FPA’s recommended fund-of-funds 

therefore suggests a considerable degree of active management. This inference is 

consistent with this finding of Whitelaw et al. (2011b), based on their study of 75 

large-cap Australian share strategies: ‘There is a discernible relationship between 

active share score and fees’ (p2). By the same token, ‘a number of vehicles’ have 

‘relatively high fees and low active share scores’ (p2). Moreover, the problem of 

closet indexing appears to be particularly acute in the case of large-cap Australian 

share funds, which are ‘are among the least active globally’ (p2). 

 

Whitelaw et al. point out that the ASX/S&P Accumulation index is ‘tightly 

constrained and top-heavy’ (p4). Notably, the top 10 holdings in the Australian index 

accounting for 52 per cent of index capitalisation. This creates an unfortunate 

interaction with the strong home bias of the FPA’s model plan, which allocates only 
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10 per cent to international shares (Table 1). If you want both an active management 

style and strong diversification then you would probably be better off with a more 

internationally diversified portfolio than that proposed by the FPA’s model plan. 

 

This problem − of active managers who are actually among the least active 

internationally − may well derive from our unusual approach of compulsory 

pre-funded superannuation. MySuper seeks to mitigate the problem. It seeks to 

ensure that low-cost and diversified funds are available to people who are not 

actively engaged with their superannuation. It also proposes designing workplace 

forms and procedures that nudge inactive investors into ticking a box that steers them 

into low-cost and diversified funds. However, MySuper does not mandate the 

‘lifestyle’ allocations that would reduce risk on the cusp of retirement. In the United 

States, by contrast, 36 per cent of accumulation fund members are in target-date 

funds. A big Vanguard plan has seen a ‘large steepening of the age-equity allocation 

gradient’ (Mitchell and Utkus, 2012). The share of growth assets can now drop by 20 

percentage points or more over working life. 

4.3.5 Disclosure 

The FPA’s ‘Example SOA’ discloses dollar amounts payable during the first year of 

the contract. Not disclosed, however, are dollar amounts projected after the first year. 

For example, the projected total dollar amount payable in the first year of the 

breadwinner’s projected retirement at age 65 can be estimated at $36,181. That 

amounts to more than half of the couple’s ‘target’ retirement income of $70,000 pa 

(Kingston 2009).12 The trail fees include annual asset-based commissions from the 

product provider. Thus, the projected $36,181 fee payable in the client’s retirement 

year includes a commission of $2,906 from the fund-of-funds to the financial planner 

(and the licensee.) 

 

The model plan does put a figure on a ‘target’ level of retirement income, namely 

$70,000 pa. But it gives no numeric indication of the possible dispersion of actual 
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incomes around this target. An argument for plans based on the notion of ‘protected’ 

consumption is that they do address this question of ‘lifestyle’ risk. Kingston (2009) 

examines strategies for putting a floor of $50,000 pa in real terms under the couple’s 

spending in retirement, based on the couple’s average life expectancy.13 

 

Noted earlier was the terse and (in our view) flawed justification for reweighting the 

portfolio to a comparatively aggressive one with at least 70 per cent in growth assets. 

The possible incentive effects of asymmetric performance fees are not mentioned at 

all. The FPA’s ‘Example SOA’ instead refers to a Product Disclosure Statement 

(access restricted) for details of performance fees.  

 

FoFA does not address questions of disclosure of risks and does not seek to restrict 

portfolio allocations. On the other hand, it does mandate annual disclosure of dollar 

amounts payable in fees. 

4.4 Conclusion 

Our extension of the model of Dybvig et al. (2010) shed light on the tension between 

agency theory and financial-planning practice. To the extent that investors on the 

cusp of retirement have concerns about their wealth falling short of some 

predetermined value, they should simply allocate their wealth partly to safe 

interest-bearing assets before contracting with the active manager/financial planner. 

In practice, however, this appears not to be the norm. Rather, planners are entrusted 

with the bulk of the superannuation balances of their clients and derive most of their 

income from asset-based fees. As a consequence, fee income from a given client 

tends to hit a maximum at the outset of the client’s retirement. This tempts planners 

to overweight high-fee growth assets at that particular point of the client’s life cycle. 

By contrast, theory suggests that the case for a high weight on growth assets is 

stronger at ages well before retirement and, possibly, late in retirement too. 
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Likewise, theory suggests that fulcrum contracts are the right type of performance 

fee. In practice, however, we typically see option-type payoff profiles, which tend to 

promote excessive exposure to growth assets, at least at the outset of a client’s 

retirement. 

 

The proposed model does successfully capture the fact that fees for clients of 

financial planners or managed funds typically have both flat and proportional (asset 

based) components. However, option-like payoffs are also commonly seen in a 

manager’s contract. Note that further analysis of the non-linear features of these 

contracts is beyond the scope of this paper and will be left to future research. . 

 

There is a public interest in financial plans with less aggressive asset allocations for 

elderly clients, in particular, the taxpayer interest. The Age Pension is indexed to the 

maximum of wage and price inflation, and is payable for the remaining life of the 

pensioner, subject to means tests. It can be viewed as public retirement income 

insurance. It tempts advisers to recommend aggressive asset allocations, since the 

taxpayer becomes in effect a part guarantor of the client’s core retirement income 

stream. In this way, the Age Pension fall-back promotes moral hazard in advice on 

asset allocations, with taxpayers picking part of the tab for unsound or unlucky 

advice. Thus, Harmer (2009, p15) noted that ‘Age Pension applications in December 

2008 were around 50 per cent higher than the number recorded in October of the 

same year.’ 

 

Between June 2007 and June 2012 the share of self-managed funds in total 

superannuation balances rose from 27 per cent to 31 per cent. Our Section 2 theory 

suggests that part of the explanation may be contract designs that were always 

suboptimal from the standpoint of investors but with weaknesses that remained latent 

until the financial crisis hit.  

 

The next review of financial advice should examine ways of requiring financial 
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advisers to disclose and respond to the fragility of financial plans for investors on the 

cusp of retirement. A good start would be this: require Statements of Advice for 

clients aged over 55 to disclose the percentage allocation to 

Australian-dollar-denominated interest-bearing securities rated at least ‘high quality’ 

by one of the major credit rating agencies. 

 

Appendix 1: Proof of Section 2 Proposition 

For convenience we reproduce here, as equation (A1), the relevant Section 2 

proposition: 

( ) ( )0, [ ( )] .
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λ ελ
−  

= + + − +  
    (A1) 

On the left-hand side of equation (A1), ( ),sφ w  is the fee paid by an investor when 

the manager’s unobserved effort ε (0 1)ε≤ ≤  generates a private signal s S∈  

about future returns, and the state of the world is w∈Ω . On the right-hand side, 

mC  is the protected consumption of the manager, 0w  is investible wealth, w  is 

the present value of the total protected consumption of the investor and the manager, 

Rλ  is a Lagrange multiplier on a participation constraint, PR  is the return to the 

actively managed portfolio, ελ  is a Lagrange multiplier on an 

incentive-compatibility constraint, and BR  is the return to a passively-managed 

(zero-effort) benchmark portfolio. 

 

Proof of equation (A1) begins with a mixture model of the joint density f of s  and 

w , conditional on effort ε : 

( , ; ) ( , ) (1 ) ( , )I Uf s f s f sw ε ε w ε w= + −        (A2) 

where If  is the informed (effort-conditioned) distribution of portfolio returns, and 

Uf is the uninformed density. The uninformed density has the property 
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( , ) ( ) ( )U sf s f s f ww w= , where f w  and sf  are the marginal distributions of

Uf  with respect to w  and s  respectively. 

 

The agency problem here is simultaneously to choose three things: (i) the utility iu  

of the investor, given by ( , ) ( ( , ) )ii iu s n C s Cw w= − , where ( , )iC s w  is the 

consumption of the investor and iC  is the protected consumption of the investor; (ii) 

the utility mu  of the manager, given by ( , ) ( ( , ) )mm mu s n C s Cw w= − , where 

( , )mC s w  is the consumption of the manager; and (iii) the manager’s effort level ε , 

to maximise the investor’s expected utility. The relevant maximum problem, then, is 

( , ), ( , ),
max ( , )( ( ) (1 ) ( )) ( ) ,

i m

I s
iu s u s

u s f s f f s d dsw

w w ε
w ε w ε w w+ −∫∫   (A3) 

subject to constraints. One is a budget constraint. For mathematical convenience we 

use the Dybvig et al. transformation of consumption levels into exponential functions 

of utility levels: 

0( ) (exp( ( , ) ) exp( ( , ))) ( ) ,i ms S u s u s p d w ww w w w∀ ∈ + = −∫   (A4) 

where ( )p w  is the pricing density for a claim that pays a dollar in state ω, and 

( )( )i mw C C p dw w≡ +∫  is the present value of total protected consumption. A 

second constraint ensures participation by the manager: 

'( , )( ( ) ( )) ( ) ( ) 0,I s
mu s f s f f s d ds cww w w w ε− − =∫∫          

(A5) 

where ( )c ε  is the cost of manager effort, and the prime superscript of the function 

c  in (A5) denotes a derivative. A third and final constraint ensures the 

incentive-compatibility of effort: 

arg max ( , )( ( ) (1 ) ( )) ( ) ( ).I s
mu s f s f f s d ds cw

ε
ε w ε w ε w w ε

′
′ ′ ′= + − −∫∫ (A6) 

 

Dybvig et al. come up with a lemma that enables replacement of ( , )iu s w  in the 

above problem by the investor’s indirect utility. We need a minor extension of it to 
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the case of protected consumptions: the expected utility conditional on s for the 

investor will be shown to equal 

( )
( )

( )
( ( ) ( ))

log ,
I

i

f f s f
B s

p

w ww ε w w

w

 + −
 
 
 

                     (A7) 

where the term ( )iB s  is given by 

( ) 0 exp( ( , ) ( )i mB s w w u s p dw w w≡ − − ∫                        (A8) 

and has the interpretation of the investor’s share of the budget net of the present 

value of total protected consumption. 

 

Proof of equation (A7) follows Dybvig et al. The optimal solution must satisfy the 

sub-problem of maximizing (A3) subject to (A4). Differentiating the Lagrangean for 

this problem with respect to ( ),iu s w  gives 

( ) ( ) ( ) ( )( )[ ( , ) (1 ) ( ) ] exp ,I s
B if s f f s s p u swε w ε w λ w w+ − =         (A9) 

where ( )B sλ  is the multiplier to the budget constraint. Integrate equation (A9) with 

respect to w  and rearrange to get 

( ) ( )
( )

.
s

B
i

f s
s

B s
λ =  

Substitute this into equation (A9) to get equation (A7), as required for this paper’s 

counterpart of the lemma in Dybvig et al. 

 

Following Dybvig et al. we set out three definitions of equilibrium returns. The gross 

portfolio return conditional on observing s  is  

( )
( ) (1 ) ( )

.
I

P f s f
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p

wε w ε w
w

+ −
≡       (A10) 

The gross portfolio return without observing s  is termed the benchmark return and 

is given by 

( )
( ) .B fR

p

w w
w

≡              (A11) 
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Finally, the return under maximum effort ( 1)ε =  is  

( )
( )

.
I

I f s
R

p
w
w

≡                (A12) 

These definitions give the intuitive decomposition (1 ) .P I BR R Rε ε= + −  

 

Equation (A7) enables computation of the investor’s expected utility, namely 

 ( ) ( )0log exp( ( , ) ( ) s
mw C u s p d f s dsw w w− −∫ ∫  

( )
( ) ( ) ( ) ( ) ( )( )( ( ) 1 ( ))

log , 1 .
I

I s
f s f

f s f f s dsd
p

w
w

ε w ε w
ε w ε w w

w

 + −
 + + −
 
 

∫∫

 (A13) 

Differentiate the Langrangean associated with the problem of maximising equation 

(A13) with respect to ( ),mu s w  and subject to equations (A5) and (A6). This gives 

the first-order condition 

 

( )( ) ( )
( )

( )

exp ,
( ( ) ( ( ) ( )) )

( ) ( )

m I
R

i

I

u s p
f f s f

B s

f s f

w w

w
ε

w w
λ w ε w w

λ w w

= + −

+ −

  (A14) 

where Rλ  and ελ  are the Lagrange multipliers to (A5) and (A6). Multiply both 

sides by ( )iB s  and integrate both sides with respect to w  to get an expression for 

the manager’s share of the budget net of the present value of total protected 

consumption, namely, ( )mB s  ( )0 :iw w B s≡ − −  

( ) ( ).m R iB s B sλ=         (A15) 

Apply equations (A4) and (A15) to get  

( ) 0 .
1i

R

w wB s
λ
−

=
+

        (A16) 

Equations (A14) and (A16) together imply 
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( ) ( ) ( )

( )
0

( ( ) ( ))
, log .

1

I

R R
m

R

f f s f
w w

u s
p

w wελw ε w w
λ λ

w
λ w

  
+ + −  −   =  +

  
 

  (A17) 

Taking exponentials of both sides gives equation (A1), as required to complete the 

proof of it. 

 

A.1 Numerical Analysis 

This section gives a numerical analysis of optimal contracts. Paralleling Dybvig et al. 

we made the following assumptions for ( )sf s , ( )f w w , ( | )If sw and ( )p w , where 

the market state ω and signal s have zero means and standard deviations σ and have 

correlation ρ > 0. In what follows, r is the risk free rate and μ is the mean return on 

the market: 

2

2

1( ) exp
22

s sf s
ss p

 
= − 

 
       (A18) 

2

2

1( ) exp
22

f w ww
ss p

 
= − 

 
       (A19) 
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2

2 22

1( | ) exp
2 12 1

I s
f s

w ρ
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s ρs p ρ

 −
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 −−  

    (A20) 

( )2

2

1( ) exp .
22

r r
p e

w µ
w

ss p
−

 + −
= − 

 
 

     (A21) 

Set μ = 0.1, σ = 0.2, ρ = 0.5, r = 0.05, ε =0.5, w0 = 100 and, initially, Ci = Cm = 5. By 

choosing nonnegative Lagrange multipliers λR and λε, we can plot the investor’s 

wealth and the manager’s fee for the first-best and second-best problems. The 

first-best case arises as we let ελ  tend towards zero in Eq. (A1). Because effort can 

be observed in this case, there is a zero shadow price of tightening the 

incentive-compatibility constraint. 

 

The figures show the second-best fee minus the first-best fee. Figure A.1 shows the 
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manager is rewarded when signal and market outcomes are both high and is therefore 

induced to exert effort. Figure A.2 considers the effects of an increase in the 

manager’s protected consumption, from 5 to 10 units. The manager is now rewarded 

less when signal and market outcomes are high, indicating that higher protected 

consumption leads to less effort. More generally, comparison of the vertical axes of 

the two figures shows that with high protected managerial consumption there is now 

comparatively little difference between effort levels regardless of signal and market 

outcomes. 

 

 

Figure A.1 Manager’s payoff: Second-best minus first-best levels 
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Figure A.2 Difference in second-best minus first-best fee when Cm is increased  

A.2 Discussion 

Moving from simple to generalised log utility changes the optimal contract in two 

ways. First, the efficient fee structure incorporates a flat component 
mC . Second, the 

proportional component / (1 )R R PRλ λ+ is not based on the investor’s entire wealth 

0w  but on an amount net of the present value of total protected consumption w . 

 

The first-best case arises as we let ελ  tend towards zero in equation (A1). Because 

effort can be observed in this case, there is a zero shadow price of tightening the 

incentive-compatibility constraint. 

 

The concept of protected manager consumption 
mC  is vague, and this lack of 

specificity is a source of strength as well as weakness. Notably, it facilitates 

alternative interpretations. For example, 
mC  might take the indirect form of a 
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proportional asset fee. We typically see such minima in the prospectuses of actively 

managed funds. In this way, the flat component could be interpreted as the fixed cost 

of operating an account. Alternatively, 
mC  could represent the wage costs of 

providing ancillary services such as tax minimisation, which could be more 

‘commoditised’ than skilful active management. 

 

The benchmark portfolio return BR  is also usefully flexible. It can be interpreted as 

the return to an index portfolio of equities, or as the return to an equities-plus-cash 

portfolio that has had no value added via efforts to time the market. In the same way, 

the risks entailed by active management can be interpreted as originating solely from 

investment risk, or also from operational and other non-investment risks specific to 

active management. We can interpret the uninformed distribution ( , )Uf s w  as 

including such risks and the effort level ε  as including efforts to reduce them. 

Endnotes 

1. Also known as the Stone-Geary utility function. 

2. See e.g. Wachter and Yogo (2010) for a review of the evidence on relative risk 

aversion falling with wealth (which they rationalise by a distinction between 

necessities and luxuries rather than ‘protected’ consumption − a device which can be 

interpreted as playing the role of necessities without the complication of a relative 

price between necessities and luxuries.) 

3. There is currently a cap of $25,000 p.a. on concessional contributions by people 

with over $500,000 in super, so tax benefits on this scale are not currently available. 

4. Neither this fee nor the one shown in the bubble containing 98 x $8,272 ought be 

interpreted as separate payments from the licensee to the planner. Rather, routing 

payments via the licensee in this way is presumably for the purpose of mitigating 

operational risks. 

5. ‘It’s my understanding you are willing to implement a less conservative strategy to 

meet your objectives...I have allocated approximately 30% to cash and income funds 

to cover pension payments’– FPA (2008, p4). The generic assets in ‘income’ funds 
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are not disclosed. 

6. See Bateman et al. (2007), Ding et al. (forthcoming) and Kingston (2009). 

Constant-mix allocations, through time and across the major asset classes, are 

associated with constant relative risk aversion (also known as ‘power’ utility). Actual 

proportionate allocations to risky assets tend to rise with an investor’s wealth (recall 

Section 1). 

7. More precisely, funds placed under active management were given by the 

investor’s initial investment ‘cushion’, namely
0w w− . 

8. For an exposition, see e.g. Russell (2008). Ironically, this influential exposition 

also endorses a glide-path approach – the FPA treats the 10/30/60 rule as an argument 

against glide paths. 

9. In terms of our Section 2 theory, the slope of the ray in the figure is given by 

/ Rελ ελ  and outperformance is given by .P BR R−  

10. In terms of options analysis, if a call has a knockout feature and the value of the 

underlying asset is sufficiently close to the knockout price, then increases in 

volatility will reduce the value of a call. The real-options analogue here is that an 

investor might switch to a different fund if the value of the original fund has fallen 

sufficiently. There is a substantial literature on these considerations, which we ignore, 

to save space. 

11. Whitelaw et al. are concerned with the comparative expense of performance fee 

structures rather than the implications for incentives (i.e. the concerns here.) 

12. Financial planning practices have typically sold on multiples of three or four 

times annual revenues. By contrast, accounting practices have typically sold on 

multiples of two. 

13. Kingston builds on estimates in Bateman et al. (2007). In the terminology of 

dynamic asset allocation, this strategy is constant-proportion portfolio insurance with 

a finite horizon. The case of generalised log utility corresponds in practice to a 

multiple of about one. This is conservative compared to typical infinite-horizon CPPI 

strategies, which typically have multiples in the range of 3 to 5. Such strategies are 
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not particularly conservative. 
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Portfolio  

share 

(per cent) 

Investment  

sector 

Investment  

options 

Management  

fee 

(per cent) 

  

5 Cash Cash 1.13 

5 Income Income extra 1.77 

20 Income Income fund 1.92 

5 Listed property securities Property securities fund 1.66 

10 Australian shares Australian active equity 1.86 

17 Australian shares Boutique Australian shares 1.96 

8 Australian shares Australian equity long/short 2.24 

20 Australian shares Australian small companies 1.91 

10 International shares Global value equity 2.01 

100 per cent   1.89 per cent 

Table 1:  Asset Allocation and Product Fees in the ‘Example SOA’ 

Source: FPA (2008). 
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Figure 1: Fee Structure in the ‘Example SOA’ 

Source: constructed from data in FPA (2008).  

 

  

Investor $8,272 Licensee

1.89% 0.60% .98 x .6% .98 x $8,272
                of balance of balance of balance

0.20%
of balance 

Product Financial
provider Soft dollars planner

10K-20K 



87 
 

 

Figure 2 : Alternative Performance Fee Structures 
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Abstract 

In this paper an iterative PCA-based data imputation algorithm is proposed for 

handling missing values in financial time series. The designed backfilling algorithm 

generates satisfactory results for both synthetic and real data, covering equity, rates 

and FX asset classes. Further, the proposed model outperforms other commonly used 

approaches for data imputation. The model serves as a robust tool for risk managers 

to backfill missing values in financial data, since complete data is a prerequisite for 

generating correct VaR numbers.  It is worth noting that the performance of the 

model depends on the fraction of the missing data and the noise of the data set. 
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5.1 Introduction 

The value-at-risk (VaR) concept has emerged as one of the most prominent measures 

of downside market risk, where VaR is defined as the lower end of a 99% confidence 

interval for a given time horizon (typically a day or two weeks). In 1997, a Market 

Risk Amendment to the Basle Accord permitted banks to use VaR estimates for 

setting bank capital requirements related to trading activity. To calculate VaR, 

historical simulation has been adopted by most of banks as the standard industry 

approach, see, e.g., Jorion (2000) and Alexander (2001). 

 

In this approach, changes in major risk factors observed during historical periods are 

combined with sensitivities to generate vectors of profits and losses for a portfolio 

from which VaR is calculated. The key advantage of this method is that there is no 

explicit requirement to model joint distributions, i.e. the multivariate distribution of 

all of the risk factors. Typically the distribution of the individual risk factors is 

non-Gaussian, while correlations between the factors will be time-varying and 

subject to regime changes. However, for historical simulation, the joint behaviour of 

the risk factors is implicitly captured in historical data. For example, if two risk 

factors are strongly correlated, then we should expect to mostly see those factors 

move together in the historical price and return data.  

 

One of the major concerns for historical simulation relates to the quality of the 

available data. Historical data are usually sourced from various data vendors and it is 

not uncommon for downloaded data to be of poor quality. The problematic data can 

be missing, meaningless or unlikely. In practical applications, missing data may be 

due to a market close, or insufficient contributor depth in the case of composite 

quotation, or system failure. In the case of meaningless data, although the data is 

present, it may violate some sort of condition. For example, negative FX spot rates, 

negative FX option volatility, or a normally liquid time series that suddenly shows 

complete staleness: all these examples of data are meaningless. Unlikely data are 
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those that behave abnormally, for example, a sudden spike of FX volatility in a 

normal market environment.  

 

Once problematic data has been detected, correction protocols have to be applied. 

Given the large set of time series to be cleansed and maintained, for practical 

application in financial institutions such a correction tool should run on a fully 

automated basis. The default corrective action is simply to re-query the original 

source system from which data is snapped. Should that fail to resolve the problematic 

value, the second action is to impute a value based on relevant statistical information 

about the time series and its nearby neighbours. For example, an error in the 7 year 

interest swap rate can be corrected with reference to its 5 year and 10 years swap 

rates. 

 

To our best knowledge, limited research has been conducted to apply advanced and 

automated techniques to backfill financial time series. Karelmo (2010) uses a basic 

PCA based algorithm to fill the missing observations in corporate bond time series. 

Mailleta and Merlin (2009) propose a way that does not require any hypothesis and is 

totally data driven to complete the missing values in hedge fund monthly return time 

series. Minsky et al. (2010) simply backfill missing return data for a hedge fund by 

randomly selecting its peers’ returns. All the studies are either based on a relatively 

simple approach or developed for a particular asset class. In this paper, by adopting 

the regularised PCA algorithm proposed by Josse et al. (2011), we attempt to propose 

an advanced PCA-based backfill procedure for financial time series and to test the 

imputation performance using time series of various asset classes. The main focus of 

this paper is on backfilling missing observations, which result from removal of 

problematic data (i.e., missing, meaningless and unlikely data). There is a clear gap 

between the regularised PCA algorithms in Josse et al. (2011) and backfilling 

missing financial data, a problem faced by many practitioners and researchers. In this 

paper, we further extend and enrich their model with additional functions that cater 

for dealing with financial time series. Our extensions lead to an algorithm that allows 
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for backfilling missing financial data and test the performance against other 

competing models.   

 

This paper focuses on backfilling missing values through Principal Component 

Analysis (PCA) and a detailed literature review on using this approach for missing 

data is provided in section 5.2. However it is worth reviewing other strands of 

literature dealing with missing data. For example, Beckers and Rixen (2003) adopt 

empirical orthogonal functions (EOF) to infer missing data from oceanographic data 

series. They calculate the missing data from an optimal number of EOFs determined 

by a cross-validation technique. One advantage of EOF is that they do not require a 

priori information about the error covariance structure and are parameter free. An 

application of EOF to reconstruct incomplete oceanographic data sets is, for example, 

also found in Alvera-Azcarate et al. (2005).  

 

Another strand of the literature uses machine learning to impute missing data. For 

example, Breiman (2001) proposes a machine learning methodology called “Random 

Forest”. In the applied algorithms, the decision trees grow iteratively and data are 

classified. The rules learned from these classifications are used for the imputation of 

missing values (see also Nourani et al. (2008), Rustum and Adeloye (2007), Kim and 

Pachepsky (2010)). Other methods that have been proposed in the literature to deal 

with missing values also include the so-called inverse distance method by Xia et al. 

(1999) and the simple arithmetic averaging (SAA) method by Xia et al. (1999, 2001). 

 

In this paper we decide to focus on correlation based imputation methods, including 

PCA-based imputation and Expectation Maximization methods, rather than the 

above reviewed methods. Admitting that those methods may also generate good 

quality of imputation results and have less requirements on the correlation structure 

among the time series, we argue that correlation based methods for missing data are 

still widely used in the financial industry. This is also due to the fact that very often 

financial time series for related or similar products exhibit strong correlation. We 
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also argue that correlation based imputation methods would be easier to be endorsed 

by practitioners, given that the main purpose of this paper is to propose a tool to 

efficiently and accurately backfill the missing financial time series data for the 

practitioners.      

 

The paper is organized as follows. Section 2 provides a brief review of principal 

component analysis (PCA) and its applications in data imputation. Section 3 

proposes an iterative PCA-based date imputation procedure for financial time series. 

Section 4 conducts empirical analysis of the proposed method on various data sets. 

Section 5 compares the proposed model with other data imputation methods and 

discusses the results. Finally, Section 6 concludes. 

5.2 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a well-established technique for reducing the 

dimensionality of a large set of data while retaining as much variability as possible. A 

substantial number of PCA-based backfilling routines have been proposed by 

practitioners and researchers, see e.g. Alexander (2009), for backfilling missing data 

in various areas, including climate records, bioscience, software engineering, just to 

mention a few. The popularity of PCA comes from three important properties. First, 

it is the optimal linear scheme for compressing a set of high dimensional vectors into 

a set of lower dimensional vectors. Second, the model parameters can be computed 

directly from the data – for example by diagonalizing the sample covariance. Third, 

given the model parameters, the original data can be easily reinstated from the 

compressed data without much loss of information: they require only matrix 

multiplications. 

 

The Principal Component representation is defined as follows: Let X be a nT ×  

matrix of random variables where T and n are the number of rows and columns of 

matrix X respectively, and V denotes its corresponding nn×  covariance matrix. 
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Furthermore, let W be the nn×  orthogonal matrix of V. The nT ×  matrix P, 

where columns that correspond to principal components (as an exact linear 

combination) of X, is then given by the relation: XWP = or equivalently TPWX = . 

 

By selecting the first k columns of P and W and thus creating P* and W*, an 

approximation of X can be obtained through the relation 
TWPX *** = . This is the 

dimension reduction benefit of PCA. 

 

The principal components are retrieved through an eigenvalue decomposition of a 

covariance matrix of a set of observable variables. The ith eigenvalue λi of V is 

obtained by taking the sum of squares of each element in the corresponding ith 

principal component. Given that the total variation is explained by the sum of the 

eigenvalues of V, one can easily derive an expression for the fraction of the 

variability which is explained by the first k components: 
n

k

λλλ
λλλ

+++
+++

...

...
21

21 . For more 

details on PCA, refer to Alexander (2009), for example. 

 

In the presence of missing data, a number of alternatives have been suggested, see, 

e.g. Jolliffe (2002) for a more detailed review. A quick and simple method is to 

replace missing values by the mean value calculated from the available observations. 

A more sophisticated approach of imputation is regression-based PCA backfilling, 

proposed by Grung and Manne (1998). The authors suggest a regression based 

method in which factors and factor loadings are obtained by a two-step regression 

procedure. Another alternative offered by imputation is to assume a distribution 

based on the observed data and to simulate the missing values from the distribution. 

This procedure is repeated multiple times and the variability of the missing value 

rather than a single value is estimated (Schafer 1997). 

 

A different class of procedure is based on maximum likelihood estimation (Little and 
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Rubin 1987). Under the assumption of a multivariate normal distribution, an 

expectation maximization (EM) algorithm together with an iterative procedure is 

applied to estimate the missing values. The iterative PCA algorithm (also named 

EM-PCA) consists of initialising the missing values, performing PCA on the 

available observations, filling-in missing values with the reconstruction formula and 

iterating until convergence. To overcome the shortcoming that PCA is highly 

sensitive to outliers, Stanimirova et al. (2007) propose an Expectation-Maximization 

Spherical Principal Component Analysis (EM-SPCA) to backfill missing values in a 

real data environment. Their approach uses a robust PCA based method combined 

with the expectation maximization algorithm to deal with missing values and 

outlying observations simultaneously. The proposed method works well for highly 

contaminated data containing different amounts of missing elements. The authors 

claim that EM-SPCA outperforms standard EM-PCA in the case where outliers exist. 

Schneider (2001) proposes a regularised EM algorithm which is suggested to be 

more suitable in cases where the number of variables exceed the number of 

observations. The regularized EM algorithm is based on an iterated analysis of linear 

regressions of variables with missing values on variables with available values, with 

regression coefficients estimated by ridge regression.  

 

The quality of the prediction of the missing values will deteriorate in accordance 

with an increasing number of principal components, creating an overfitting problem. 

Problems of overfitting are exacerbated with increasing numbers of missing values. 

To overcome this problem, Josse et al. (2011) propose an iterative regularized 

EM-PCA algorithm which imposes a “shrunk” imputation step to remove the 

noise-causing instabilities in the predictions. 

 

Another suggested PCA based backfilling routine is presented by Kondrashov and 

Ghil (2006). They use Singular Spectrum Analysis (SSA) to fill the gaps in several 

types of spatial-temporal data sets. Making use of the spatial and temporal 

correlations, they iteratively produce estimates of missing data points. The algorithm 
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is demonstrated on both simulated and real data and yields promising results for 

single missing value and even longer continuous gaps. The main challenge to apply 

SSA is to define the optimal parameters, which depend on the distribution of missing 

data, as well as on the variance distribution between oscillatory modes and noise. 

5.3 Proposed Iterative PCA Imputation 

This section describes the proposed PCA-based data imputation algorithm. It consists 

of three major steps: clustering, selecting the number of components and imputation 

as described below. 

5.3.1 Clustering  

Before applying PCA, one may want to categorise all the time series into different 

groups. The objective of grouping is to have high co-linearity among all the time 

series in the same group, so that PCA is suitable. Intuitionally, time series can be first 

grouped by asset classes (IR, FX, Equity, Credit, etc.). The data set by asset class can 

be further sub-grouped based on specific features of each asset class. For example, 

for interest rates we can further group the data by currencies (USD, EUR, JPY, etc.), 

while equity time series can be grouped by region, market capitalisation, industry, 

etc.  

 

Alternatively, one can group the time series based on observed correlations, an 

approach that is also adopted in this paper. Grouping by correlations serves the 

purpose of reducing the noise brought by other less correlated time series. Moreover, 

in each subgroup, the number of principal components is reduced when a lower 

number of time series is considered, such that also the computational time is reduced. 

For each time series with missing values, we can find the most correlated time series 

from two available options: choosing the top m most correlated series or choosing the 

series with absolute correlation greater than a certain threshold value. The 

determination of the threshold value is either based on long term historical 



96 
 

correlations between two asset classes or a discretionary figure that risk managers 

consider to be reasonable.  

5.3.2 Selecting the number of components  

The next step is to determine the number of principal components used in the PCA 

analysis. On the one hand, if too few components are kept, relevant information may 

not be taken into account in the analysis. On the other hand, an excessive number of 

components could also be problematic, since the components with small eigenvalues 

that only explain a small fraction of the variability may be considered as noise. Then, 

considering too many components might cause an overfitting problem. In the 

following, we adopt the general cross-validation approximation proposed by Josse 

and Husson (2012) to select the number of components. Once the number of 

components is specified, it is kept fixed in the imputation step.  

5.3.3 Imputation step 

We adopt the regularised PCA algorithm proposed by Josse et al. (2011) for the step 

relating to imputation. The regularised PCA algorithm can help to overcome the 

overfitting problem in the missing data framework and improves the estimation of 

principal components and the prediction of missing values. Further we can repeat the 

imputation several times by using the previously imputed data. Our results show that 

repeating imputations can further improve the results by a small margin.   

 

We define a nm×  matrix E, containing the 1-day time series of changes in the risk 

factors that is calculated from raw data. Hereby, n is the number of time series falling 

in the same group in the clustering step and m is the length of the time series. In the 

matrix E, missing positions are identified and defined as a subspace ),( jt=Ω , 

where ),( jtx  are the missing observations with t and j being the row and column 

number in the matrix E. Each column of the matrix E, is standardized by subtracting 
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its mean and then dividing by its standard deviation1. This standardization ensures 

that time series are mean zero distributed and have a standard deviation of one. The 

missing values are then initialized with zero. The original set of observations can be 

restored from this standardized version of the data set by simply multiplying the 

reconstructed vectors with the standard deviation and adding back the originally 

estimated mean.  

 

The imputation procedure can now be initiated with the standardized matrix 0Ê , but 

is described for the general matrix, iÊ , obtained in the ith iteration, by the algorithm 

below: 

1. A principal component analysis is performed on matrix iÊ  such that 

principal components (PCs) iP and loadings 
iW are obtained. 

2.  The first k ranked PCs are selected together with corresponding loadings, 

resulting in a subset of PCs and loadings denoted by *
iP  and *

iW . An 

estimate *ˆ
iE of iÊ  is obtained by T

iii WPE ***ˆ = . 

3. From the estimate *ˆ
iE , values are taken only from positions initially 

identified as missing, i.e., Ω∈∀ ),( jt , and imputed into corresponding 

positions of the matrix iÊ , resulting in the new matrix 1
ˆ
+iE . 

4. Step 1 to 4 are repeated until convergence or until the maximum number of 

iterations is reached.  

 

It is also worth noting that the matrix E consists of daily data for the changes in the 

considered variables, which are calculated from the raw price data, e.g., equity prices, 

zero rates and FX rates.  
                                                             
1 To obtain series that are stationary and IID, normally univariate ARMA and GARCH filters need to be applied 
on each of the time series to remove autocorrelation and conditional volatility. For simplicity, we merely 
standardize the series by subtracting the mean and dividing by the standard deviation of each time series and 
assume the resulting series are stationary and IID.  
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Since missing data are essentially from the raw data, additional steps are required to 

ensure the imputed 1-day change data are in line with the raw data. For example, we 

observe the raw data of series j at time t, denoted as ),( jty , is missing. In the matrix 

E, ),( jtx  and ),1( jtx +  are therefore missing since ),( jtx and ),1( jtx +  are 

calculated as ),1(),( jtyjty −−  and ),(),1( jtyjty −+  respectively. We 

therefore need to adjust ),( jtx and ),1( jtx +  to ensure that

),1(),1(),1(),( jtyjtyjtxjtx −−+=++ .  

 

We apply the following method to adjust the imputed data: Assuming there are n 

consecutive missing raw data starting from t-n+1 and ending on t, such that all 

observations for series j between ),1( jty + and ),1( jnty +− are missing. We then 

define D as the deviation of the sum of the imputed changes ),(_ jitimputedx +  for 

the missing observations and the actual difference between ),1( jty + and

),1( jnty +− :  

∑
+

=

+−+−−+=
1

0
),(_),1(),1(

n

i
jitimputedxjntyjtyD . 

To match the sum of the imputed changes with the observed difference between 

),1( jty + and ),1( jnty +− , we add 1/ +nD to each imputed data. 

 

A flow chart for the applied algorithm is provided in Figure 1. 
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Figure 1: Flow chart of the proposed imputation algorithm that outlines the pre- 

processing step, the clustering step, the selection of the number of components and 

the imputation step. 

 

 

 

 

Inputs: 
a) Data set (some have missing data) 
b) Model parameters: clustering (m), 
threshold, max iteration, etc. 

Pre-processing: 
a) Convert level data to change data to 
remove non-stationarity;  
b) Standardize the change data through 
removing mean and scaling; 
c)  Initialize missing value on change data 
with zero 

Clustering: 
For each time series with missing value, 
find the most correlated time series from 
two available options: 
a) Choose the top m most correlated series 
b) Choose the series with absolute 
correlation greater than r, i.e. r=0.2 

Convert back to level data, generate and 
plot results 

Loop till all 
missing 
values are 
imputed 

Selecting number of components: 
For each group, determine the number of 
principal components using cross-validation 
approximation and keep it fixed throughout 
the imputation process 

Imputation: 
Missing value on m+1 time series are 
backfilled using regularised iterative PCA 
algorithm and only imputed value on 1st 
time series are saved down 

Repeating 
Imputation? 

Re-impute based on 
previously backfilled data 

Yes 

No 
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5.4 Model Validation  

To ensure the validity of the proposed backfilling procedure and to further reach 

understanding of its limitations, imputation validation tests are performed on two 

sample data sets (synthetic and real data) with missing data points imputed using the 

proposed backfilling algorithm.  

 

To measure the performance of the backfilling procedure, the mean and maximum of 

the absolute difference between true and estimated value among all imputed 

positions, and 90% and 95% percentiles of the absolute difference distribution are 

reviewed. The sample data structure and validation process, together with obtained 

results for the applied imputation algorithm are described in this section. 

5.4.1 Synthetic Data Set 

The synthetic data sets are simulated using the following underlying model: 

mnsnmsmn UFY ε+=  

The m by s matrix F and s by n matrix U are simulated from a standard normal 

distribution )1,0(N . Then each column of the m by n matrix snmsUF is divided by its 

standard deviation, estimated by column in order to control the signal to noise ratio. 

Finally a noise term mnε is added by simulating from a normal distribution with 

mean equal to zero and standard deviation equal to σ. Therefore, the signal to noise 

ratio is 1/ σ. In our simulation experiment, we set m=500, s=5, and n=30, where m 

and s are the number of rows and columns for matrix F, respectively, and n is the 

number of columns for matrix U. We also let σ vary between 0.25 and 1. With the 

simulated data set, we randomly remove between 5% up to 50% of the data and test 

the performance of the imputation under different scenarios. 

  

For each time series with any missing data, the selection of correlated time series is 

conducted either by picking a predetermined number of series ranked by correlation 
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or by setting a threshold value for the correlation coefficient. The former method 

fixes the number of series to be clustered but implies the risk of selecting less 

correlated series in comparison to the latter method, which explicitly sets a minimum 

value for inclusion. We test the following two scenarios:  

(i) Selecting the 10 series exhibiting the highest coefficient of correlation with 

the series that contains missing data; and, 

(ii) Selecting all series with a coefficient of correlation ρ>0.2.   

 

Further, we are interested in investigating whether a recursive imputation algorithm 

outperforms single imputation and hence test whether repeating the imputation step 

five times provides better results than conducting the imputation procedure only 

once.  

 

Figures 2-5 illustrate the results for the mean of the absolute differences, the 

maximum of the absolute difference as well as the 90% and 95% percentiles of the 

absolute difference between imputed and actual values for different values of the 

variance σ2 for the noise term. Note that the y axis shows the value for the considered 

performance criteria, i.e. the mean, the maximum, the 90% and 95% percentiles of 

the absolute difference between imputed and actual values, while the x axis contains 

the percentage of missing data and the noise level. Clearly, the higher the chosen 

sigma, the more noise is introduced in the data and the worse is the performance of 

the applied methods with respect to the considered measures. As indicated, 

combining the 10 time series with the highest correlation per group and repeating the 

imputation step 5 times yields the overall best results. We find that this 

implementation of the backfilling algorithm typically yields the lowest values for the 

considered performance criteria.  

 

In particular, under the same number of imputations, using the top 10 most correlated 

series appears to outperform a setup that uses a minimum correlation threshold for 

grouping the data. Further, we find that under the same setup for grouping the 
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correlated series, the recursive imputation outperforms a method that only conducts a 

single imputation step. Thus, overall we find that a fixed group size and recursive 

imputation seem to provide the best results for the proposed backfilling algorithm. As 

expected, we also observe that the results for the imputation algorithm deteriorate 

with an increasing fraction of missing data and for a higher standard deviation 

parameter of the noise. This is true for all four considered criteria.  

 

Figure 2: Synthetic data imputation results: mean of absolute difference 

 

Figure 3: Synthetic data imputation results: maximum absolute difference 
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Figure 4: Synthetic data imputation results: 95% percentile of absolute difference 

distribution  

 

Figure 5: Synthetic data imputation results: 90% percentile of absolute difference 

distribution  

5.4.2 CNY Data 

To validate the proposed algorithm on empirical data, we design a test scenario to 

backfill price data on products related to the Chinese yen (CNY) exchange rate. We 

use information inherent in USD exchange rate products with the same currencies to 

extract the missing information for the CNY. We expect USD related products to 

contain relevant information also for the CNY, given that the CNY is pegged to the 
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USD. We construct a data set with 28 time series covering CNY and USD rates 

instruments, i.e., deposit, deposit futures and swaps. Each time series has 500 

observations ranging from 09 October 2006 to 05 September 2008. To test the 

developed algorithm, we randomly remove 361 observations what roughly 

corresponds to 2% of the total observations. The results are provided in Table 1. 

 
  Average sum of 

absolute 
difference (bps) 

Maximum 
absolute 
difference 
(bps)  

99% 95%  90%  

10 series per group; single 
imputation 

2.91  47.0   24.3   8.3   5.5  

Min correlation =0.1; single 
imputation 

3.08  51.4   25.2   8.5   6.3  

10 series per group; five imputations 2.90  47.1   24.2   8.2   5.6  
Min correlation =0.1; five 
imputations 

3.08  51.6   25.2   8.4   6.3  

Table 1: CNY imputation results using CNY and USD rate instruments (28 time series in total) 

Note: The minimum value in each column is bold and underlined. 

From Table 1, we observe that the combination of selecting the 10 most correlated 

times series and performing multiple rounds of imputation yields the best results for 

three of the criteria considered. This set up of the algorithm outperforms other test 

combinations in 3 of 5 indicative test statistics, while performing almost equally well 

as the best method for the other two criteria. 

 

Further, we notice that the backfilling result for the CNY_Deposit_1W series is the 

worst among all the imputed series. Results regarding the quality of the imputation 

when excluding this series are provided in Table 2. As shown, the results are greatly 

improved after leaving out this particular time series. Interestingly now all four 

implementations of the algorithm produce rather similar results, although the fixed 

group size and recursive imputation setup marginally outperforms the other methods.  
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 Average 
sum of 
absolute 
difference 
(bps) 

Maximum 
absolute 
difference 
(bps) 

99% 95%  90%  

10 series per group; single imputation 2.52  13.63  11.24   7.23   5.42  
Min correlation =0.1; single 
imputation 

2.53  13.54  11.24   7.12   5.43  

10 series per group; five imputations 2.52  13.51  11.22   7.10   5.41  
Min correlation =0.1; five imputations 2.53  13.53  11.23   7.12   5.43  

Table 2: CNY imputation results without CNY_Deposit_1W series (27 time series in total) 

Note: The minimum value in each column is bold and underlined. 

The poor imputation results for the CNY_Deposit_1W series are due to a lack of 

similar time series. Therefore we further include three more series: CNY NDF 

(non-deliverable forward) Deposit with ON (overnight), 1 week and 6 months tenors 

and tabulate the results in Table 3. Since the CNY_NDF_Deposit_1W series is highly 

correlated with the CNY_Deposit_1W series, the results are significantly improved 

as compared with those in Table 1. This is true in particular for the maximum 

absolute difference. The results also suggest that finding highly correlated time series 

is vital in obtaining satisfying results for data imputation. As indicated in Table 3, it 

seems that choosing the top 10 most highly correlated series per group with 5 

imputation steps yields the best result again. 
 Average sum of 

absolute 
difference (bps) 

Maximum 
absolute 
difference 
(bps) 

99% 95%  90%  

10 series per group; single 
imputation 

2.49  13.44  10.93   6.93   
5.34  

Min correlation =0.1; single 
imputation 

2.98  26.13  12.62   8.82   
6.52  

10 series per group; five imputations 2.48  13.21  10.83   6.91  5.32  
Min correlation =0.1; five 
imputations 

2.98  26.12  12.52   8.82   
6.52  

Table 3: CNY imputation results using additional CNY NDF (non-deliverable future) series 

(31 time series in total) Note: The minimum value in each column is bold and underlined 
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5.5 Comparison against other imputation methods 

To further assess the performance of the proposed data imputation method against 

other competing methods, two more approaches have been selected for comparison: 

principal component regression and univariate linear regression. Principal component 

regression has enjoyed large popularity in a wide range of fields because of its 

capability to confront the situation that there are too many highly correlated predictor 

variables or too small sample size- a situation that is quite common in natural 

sciences. In the literature, the principal component regression has been applied to 

impute the missing data, for example, in the medical survey data sets (Marivate et al. 

2007), in compositional data (Hron et al. 2010), and in multivariate statistical process 

control (Arteaga and Ferrer 2002). The univariate linear regression (ULR) is a least 

square based imputation, which first models the relationship, expressed as regression 

coefficient, between a dependent time series containing missing data and one 

explanatory time series with complete data and then computes the missing positions 

in the dependent time series using the estimated regression coefficients and the 

corresponding observed values in the explanatory time series. The applications of 

univariate linear regression in backfilling missing data are widely seen in the 

literature. For example, ULR has been adopted for estimation of the missing values 

in microarray data sets in biological research (Hellem et al. 2004) and for handling 

missing data in clinical trials (O'Kelly and Ratitch 2014). Rodwell et al. (2014) 

compare the performance of various methods, including ULR, for imputing 

limited-range variables in biomedical research.         

 

Following a brief description of the two algorithms, we conduct an additional 

empirical study to analyse the backfilling performance for each algorithm. We cover 

three different types of data series each from interest rates, equity and foreign 

exchange asset classes, namely CNY interest rates, volatility surface parameters for 

EURGBP FX options and Hong Kong equity index options. We consider time 

periods of 7 years from 2005 to 2011 for the CNY interest rates and a two year series 
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from 2008 to 2009 for EURGBP FX and Heng Seng equity index options. The 

rationale behind selecting periods spanning from 2005 to 2011 for interest rates and 

from 2008 to 2009 for FX and equity options can be explained in two aspects: first, 

both periods cover the recent financial crisis happened in 2008 and consequently 

contain volatile and extreme data points, which has created more challenges to the 

backfill algorithms and test the model performance more convincingly than using 

tranquil market data. Second, interest rate expresses mean reversion property in 

history and hence using longer period (e.g., 6 years) helps to capture the correlation 

between each interest rate instrument and thus improves model performance. In 

contrast, the correlation structures for FX and equity options are embedded in recent 

period and we expect less information can be extracted from data dated back long 

into history, and therefore we consider two years’ data is sufficient enough. 

 

In summary, PCA imputation outperforms the two competing methods, as indicated 

by the test results. Further, it is worth noting that the performance of the PCA 

imputation method and principal component regression (PCR) are comparable in 

some cases, such that PCR could also be used as a verification tool for the PCA 

imputation. 

5.5.1 Principal Component Regression (PCR) 

In multiple linear regression, one of the major difficulties is the problem of 

multicollinearity, which occurs when there are near-constant linear functions of two 

or more of the predictor variables. Multicollinearity is often indicated by large 

correlations between subsets of the variables. If multicollinearities exist, the 

variances of some of the estimated regression coefficients can become very large, 

leading to unstable and potentially misleading estimates of the regression equation. 

Principal component regression (PCR) has gained strong popularity as a means to 

overcome this problem. PCR uses the PCs of the predictor variables in place of the 

predictor variables. As the PCs are uncorrelated, there are no multicollinearities 

between them, and often the principal components with the highest variance are 
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selected. 

 

In the context of multiple linear regression, the least square solution for ε+= XBY  

is given by ( ) YXXXB TT 1−
= . The problem is often that XX T is singular because of 

existing multicollinearities. PCR circumvents this by decomposing X  into 

orthogonal scores P and loadings TW , where TPWX = , and by regressing Y  

not on X  itself but on the first α columns of the scores P . Note that typically 

Y and X  denote returns or changes in the price data in order to remove the 

non-stationarity that often exists for level data. Missing values for Y are then 

calculated from estimated regression coefficients and the observed X . We refer to 

Jolliffe (2002) for more details on the application and estimation of PCR. 

 

 
Figure 6: A flow chart illustrating the three proposed imputation algorithms: iterative PCA 

 

Inputs: 
a) Data set (some have missing data) 
b) Model parameters: clustering (m), threshold, max iteration, etc 

Pre-processing: 
a) Convert level data to change data to remove non-stationarity;  
b) Standardize the change data through removing mean and scaling; 
c)  Initialize missing value on change data with zeros 

Clustering: 
For each time series Y with missing value, find the most correlated time 
series by choosing the top m most correlated series 
 

Convert back to level data, generate and plot results 

Iterative PCA Imputation: 
1. Component Selection: 
Determine the number of 
principal component using 
cross-validation approximation  
2. Imputation: 
Missing value on Y are 
backfilled using regularised 
iterative PCA algorithm 
 

PC Regression:  
Regress Y on the 
first k principal 
components of m 
series and then 
backfill missing 
values  

Univariate Linear 
Regression:  
Regress Y on the 
most correlated 
series x among m 
and then backfill 
missing values  



109 
 

imputation and the benchmark models PC regression and univariate linear regression. 

5.5.2 Univariate Linear Regression  

In this approach, we simply regress Y on a time series x  which has the highest 

correlation with Y and backfill the missing positions in Y using the estimated 

regression coefficients and the corresponding observed values in x .  

A flow chart, outlining the algorithm for each of the three imputation methods is 

provided in Figure 6. 

5.5.3 Test Cases 

In the following we compare the performance of the three algorithms over various 

asset classes, covering interest rates, as well as options on equity and foreign 

exchange rates. In particular, we backfill time series of CNY interest rate instruments, 

volatility surface parameters2 for Heng Seng Index options and FX volatility surface 

building instruments3 for EURGBP FX options. 

5.5.3.1 CNY rates  

The data sets selected for imputation include CNY interest rates (deposit rates and 

swap rates), USD interest rates (deposit rates and swap rates) and CNY government 

bonds. In this test, 50 continuous points for the considered CNY rates instruments 

across all its tenors (i.e., maturing in one month to ten years) are removed from the 

data set. Hereby, the entire time series contain 1568 data points, covering the period 

from January 1, 2005 to December 31, 2011, and 50 consecutive data points of all 

CNY interest rates time series, covering the period from January 28, 2007 to April 6, 

2007 are removed for imputation. Time series for USD rates instruments and CNY 

government bonds are complete and contain information for the imputation of the 

                                                             
2 The volatility surface is a plot of the implied volatility of an option as a function of its strike price. A call/put 
option gives the holder the right, but not the obligation, to buy/sell the underlying asset by a certain date (defined 
as the maturity of the option) for a predetermined price (defined as the strike of the option).  
The volatility surface of an equity option (e.g. Heng Seng Equity Index Option) can be modelled using three 
Stochastic Alpha Beta Rho (SABR) model parameters: at-the-money volatility (the level of the surface), the rho 
(the skewness of the surface) and the vol of vol (the convexity of the surface).   
3 In the context of FX option (e.g., EURGBP FX Option), its volatility is usually modelled using at-the-money 
(ATM) volatility (the level of the surface), the risk reversal (the slope of the surface) and the straddle (the 
curvature of the surface). The ATM option, risk reversal and straddle are liquidly traded in the market, and hence 
being used for building FX option volatility surface.  
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missing CNY rates. Note that for the conducted analysis all CNY rates data are 

missing within the same period; hence no information is available among CNY rates 

instruments for backfilling and backfilling has to rely on information from USD rates 

and CNY government bonds instead. 

 

We measure the performance of the proposed iterative PCA imputation algorithm and 

the two benchmark models in terms of the ratios of maximum and average absolute 

differences between the imputed and true value, divided by the averaged true values. 

Results for the considered performance criteria are reported in Table 4. A graphical 

representation of the results for the considered CNY rates across different tenors is 

provided in Appendix A. Hereby, the smallest average absolute difference or 

maximum absolute difference is an indicator for the best performance of a particular 

method. Over the considered data sets, we simply count the number of winners to 

rank the performance.  

 
 Maximum absolute difference Average absolute difference 
Time series with 50 

missing points 

IPCA  PCR ULR IPCA  PCR ULR 

Deposit_CNY_1M 20.6 26.9 33.6 12.3 16.5 21.8 
Deposit_CNY_2M 10.7 13.5 17 6.4 8.4 11 
Deposit_CNY_3M 1.8 1.8 2.0 1.0 1.1 1.1 
Deposit_CNY_6M 6.6 7.2 4.4 2.7 2.9 1.7 
Deposit_CNY_9M 5.1 4.7 5.8 2.1 2.2 2.4 
Deposit_CNY_1Y 5.2 5.3 6.2 2 1.9 2.5 
Swap_CNY_2Y 6.3 6.4 6.9 3.1 2.9 3.6 
Swap_CNY_3Y 6.8 6.9 7.1 1.7 1.7 2.3 
Swap_CNY_4Y 9.5 9.7 9.9 1.9 1.8 2.2 
Swap_CNY_5Y 10.1 10.2 10.3 2.0 2.0 2.4 
Swap_CNY_7Y 12.9 13.2 12.6 2.0 2.2 2.2 
Swap_CNY_10Y 12.7 12.9 12.8 2.0 2.1 2.1 

Table 4: Maximum and average absolute difference for CNY imputation 

Note: IPCA stands for Iterative PCA, PCR stands for Principal Component Regression and ULR 

stands for Univariate Linear Regression. The maximum absolute difference and average absolute 

difference are measured between the imputed and the real value and expressed as ratio to the mean of 
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the real values in percentage. The two smallest values in each row for maximum and average absolute 

difference respectively are highlighted in bold and underlined 

 

In general, as indicated in Table 4, the Iterative PCA, or simply IPCA, is the best 

performer followed by Principal Component Regression (PCR). In particular, IPCA 

provides the best results for nine of the considered series with respect to providing 

the smallest maximum absolute difference, and for eight series with respect to 

providing the minimum average absolute difference. PCR comes second, yielding the 

lowest maximum absolute difference for one series and the lowest average absolute 

difference for five of the considered series. The simple ULR approach performs 

worse, and yields the best lowest maximum absolute difference for two of the series 

and the lowest average absolute difference for only one of the series. The 

performance of ULR is also unstable as it is highly sensitive to the correlation 

between two time series. If the correlation is low, particular in this test case where 

the correlations between incomplete data (i.e., CNY rates) and complete data (i.e., 

USD rates and CNY government bonds) are rather low in nature, the results from 

ULR appear to be the least accurate. 

5.5.3.2 Equity Option Volatility Surface  

The equity option volatility surface for a given maturity is typically modelled using 

three Stochastic Alpha Beta Rho (SABR) model parameters: at-the-money volatility 

(the level of the surface), the rho (the skewness of the surface) and the vol of vol (the 

convexity of the surface). Here we choose the volatility surface for Hong Kong Heng 

Seng Index options with expiry ranging from one week to two years for imputation. 

Again we select six time series and remove 50 consecutive data points to examine 

the performance of the suggested backfilling algorithm and the benchmark models. 

The entire time series contains 523 data points, covering the period from January 1, 

2008 to December 31, 2009, while the 50 consecutive observations of the selected 

six time series that are selected for removal cover the period from March 3, 2008 to 

May 9, 2008. Please refer to Appendix B for plots of the time series, as well as for 
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plots of the results for the applied backfilling algorithms. Similar to the conducted 

analysis for the CNY rates, we find that the suggested iterative PCA method 

generally outperforms the other two competing algorithms. In particular, IPCA yields 

the best results for 50% of the considered time series and performance criteria, while 

both PCR and ULR perform best for only 3, respectively, 4 of the considered cases. 

Interestingly, ULR performs better for the considered equity option volatility surface, 

since the correlation for each SABR parameter time series across different maturities, 

is relatively high. Therefore, we obtain clearly better results for the ULR method in 

comparison to our analysis for the CNY rates instruments, where correlations 

between CNY and USD rates were typically much lower. 

 

 Maximum absolute difference Average absolute difference 
Time series with 50 

missing points 

IPCA  PCR ULR IPCA  PCR ULR 

HSI_1Y_SKEW 3.1 4.4 2.4 1.3 1.5 1.0 

HSI_2Y_SKEW 1.3 1.9 2.9 0.5 0.7 1.3 

HSI_1W_CONVEX 43.1 33.8 36.6 8.7 5.8 7.2 

HSI_2M_CONVEX 7.7 9.6 6.4 2.7 3.6 2.3 

HSI_2M_ATM 1.6 2.3 2 0.5 0.9 0.7 

HSI_2Y_ATM 0.4 0.4 1.1 0.1 0.1 0.4 

Table 5: Maximum and average absolute difference for Equity option volatility surface imputation 

Note: IPCA stands for Iterative PCA, PCR stands for Principal Component Regression and ULR 

stands for Univariate Linear Regression. The maximum absolute difference and average absolute 

difference are measured between the imputed and the real value and expressed as ratio to the mean of 

the real values in percentage. The two smallest values in each row for maximum and average absolute 

difference respectively are highlighted in bold and underlined. Time series are presented in an “Index 

Name_Maturity_SABR Parameter” format. For example, HSI_1Y_SKEW represents the skewness 

time series for Heng Seng Index option expiring in 1year. 

5.5.3.3 FX Option Volatility Surface 

Further, we consider backfilling missing data for FX option volatility surfaces. Note 
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that the FX option volatility surface for a given maturity (i.e., 6 months or 1 year) is 

described by the at-the-money volatility (the level of the surface), the risk reversal 

(the slope of the surface) and the straddle (the curvature of the surface). The risk 

reversal is defined as the difference between the volatility required to price the 

15-delta put (a put option having a delta of 0.15) and the volatility to price the 

15-delta call (a call option having a delta of 0.15) for a given maturity. The strangle 

is defined as: 0.5* (the sum of the 15-delta put and the 15-delta call volatility- 2* the 

at-the-money volatility). Here we choose the volatility surface for the EURGBP 

option expiring in 6M and 1 year for imputation, and 6 times series with 50 missing 

points for each series are selected to backfill and report. The time series contain 523 

data points, covering the period from January 1, 2008 to December 31, 2009, while 

the 50 consecutive data points that were removed from six of the time series to test 

the imputation algorithm, cover the time period from January 28, 2008 to April 4, 

2008. Please refer to Appendix C for the plots of comparisons. Once again, the 

suggested Iterative PCA algorithm overall performs best among the considered 

techniques.  

 
 Maximum absolute difference Average absolute difference 
Time series with 50 

missing points 

IPCA  PCR ULR IPCA  PCR ULR 

RR_6M 9.5 10.1 10.9 1.7 2.7 3 
RR_1Y 13.7 20.5 12 5.7 8 3.7 
ST_6M 3.9 5.7 8.6 1.7 1.8 3.9 
ST_1Y 8 7 6.1 4.5 2.7 2.1 
ATM_6M 2.4 2.2 2.8 1.1 0.9 1 
AMT_9M 1.6 1.7 3.4 0.7 0.8 0.9 
ATM_1Y 1 1.3 1.1 0.5 0.7 0.4 

Table 6: Maximum and average absolute difference for FX option volatility surface imputation 

Note: IPCA stands for Iterative PCA, PCR stands for Principal Component Regression and ULR 

stands for Univariate Linear Regression. The maximum absolute difference and average absolute 

difference are measured between imputed and real data and expressed as a ratio to the mean of the 

real values in percentage. The two smallest values in each row for maximum and average absolute 

difference respectively are highlighted in bold and underlined. RR denotes risk reversal, ST denotes 
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strangle, ATM denotes at-the-money volatility. The last two letters denotes the maturity of the FX 

option.  

In particular, IPCA provides the best results for 7 out of 12 series and criteria, 

followed by ULR and PCR that perform best only for 5, respectively, 2 criteria. 

Interestingly, also for this study ULR outperforms PCR due to the high correlation 

among the considered time series which is important for achieving stable results for 

ULR. Note, however, that often for backfilling financial data, missing data are more 

frequently observed in less liquid or lower trading volume asset classes, like CNY 

rates, for which it is difficult to find highly correlated counterparts. Hence, overall 

one might still prefer PCR over ULR in practical applications. Given that the 

performances of IPCA imputation and PCR are comparable in some cases, PCR can 

therefore be used as a verification tool for the PCA imputation suggested here. For 

example, if the two approaches generate close backfilling results, we are comfortable 

to accept the IPCA results. 

5.5.3.4 Distribution Comparison 

In this section we compare the distribution of imputation errors of the three 

competing imputation methods. In particular, we make use of the synthetic data set 

described in Section 5.4.1 and conduct the following simulation experiment n=100 

times: in each simulation run, we generate 30 correlated time series, each containing 

500 data points. Then we randomly remove 4% of the data points for imputation, 

resulting in 600 missing points for imputation. For each simulated data set, we then 

apply the iterative PCA imputation method as well as the two benchmark models, i.e. 

PC regression and the univariate linear regression. For each simulation run, we then 

calculate the mean squared error (MSE) and the mean absolute error (MAE) based on 

the deviation of the imputed values from the actual simulated data points.   

       

The empirical distribution of the imputation errors (expressed as imputed value 

minus the true value) for one of the simulation runs is plotted in Figure 7. Apparently, 
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the iterative PCA imputation method outperforms the two benchmark methods and 

typically provides smaller deviations of the imputed from the actual values.  

 

Table 7 provides descriptive statistics for MSEs and MAEs for the missing data 

based on the conducted simulation experiment with n=100 runs. Both for average 

MSEs and MAEs the PCA imputation method clearly provides superior results, i.e. 

smaller MSEs and MAEs than the two benchmark competitors. In particular, the 

linear univariate regression performs much worse than the PCA imputation method, 

but also than the PC regression approach.  

 

 
Figure 7: Empirical distribution of the imputation errors for one of the simulation runs (600 

missing data points) for the three imputation algorithms: iterative PCA imputation, PC 

Regression and Univariate Linear Regression. 

 

Statistics 
Iterative PCA 
Imputation 

PC 
Regression 

Univariate Linear 
Regression 

Mean Squared Errors (MSEs) 
Mean 0.0442 0.0876 0.2744 
Min 0.0373 0.0548 0.2127 
Max 0.0517 0.1730 0.3580 
Standard Deviation 0.0028 0.0219 0.0307 

Mean Absolute Errors (MAEs) 
Mean 0.1670 0.2283 0.4094 
Min 0.1532 0.1844 0.3602 
Max 0.1811 0.3107 0.4770 
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Standard Deviation 0.0054 0.0248 0.0235 

Table 7: Descriptive statistics of Mean Squared Errors (MSE) and Mean Absolute Errors 

(MAE) for the missing data based on the conducted simulation experiment with n=100 runs. 

In each simulation run, 4% of the simulated data are removed, resulting in 600 missing data 

points for imputation. 

 

Figure 8 also provides a plot of the MAE for the three based on 100 simulations runs 

with 600 missing data points. 

 

In a next step we apply statistical tests to formally examine differences between the 

performances of the three methods. Using a Kruskal-Wallis test, we test whether the 

error samples generated by the three competing imputation methods are statistically 

different. The Kruskal-Wallis test is a nonparametric version of the classical one-way 

analysis of variance (ANOVA), and tests the null hypothesis that all samples are 

drawn from the same population, or equivalently, from different populations with the 

same distribution (Hollander and Wolfe, 1999). The test does not require the samples 

to follow a normal distribution. Both for MSE and MAE, the conducted test rejects 

the hypothesis that the samples are drawn from the same population at all reasonable 

levels of significance (p<0.001). We conclude that the distributions of MSEs and 

MAEs are statistically significantly different. 

 

 

Figure 8: Empirical distribution of MAEs for imputation methods iterative PCA imputation 



117 
 

(left), PC Regression (middle) and Univariate Linear Regression (right) based on 100 

simulations runs with 600 missing data points.  

 

Finally, we conduct a multiple comparison procedure in order to further investigate 

which of the samples are significantly different, see Hochberg and Tamhane (1987). 

The test uses Tukey's honestly significant difference (Tukey's HSD) criterion that is 

optimal for the comparison of groups with equal sample sizes, to test for significant 

differences with respect to the performance of the methods. The test is conducted 

with a significance level of α = 0.05 and uses the rank statistics of the nonparametric 

Kruskal-Wallis test. For both MAEs and MSEs the multiple comparison procedure 

suggests that the PCA imputation method provides mean ranks that are significantly 

different from the two benchmark methods, i.e. that the approach provides MAEs 

and MSEs that are significantly smaller. The procedure can also significantly 

distinguish between the rank distribution of the MAEs and MSEs for the other two 

methods, suggesting that the applied PC regression significantly outperforms the 

univariate linear regression. The results for the conducted multiple comparison 

procedure are also illustrated in Figure 9. 

 

 

 

Figure 9: Results for multiple comparison procedure (Hochberg and Tamhane, 1987) using 

the calculated rank statistics of the Kruskal Wallis tests. The figure illustrates that the PCA 

imputation method provides mean ranks that are significantly different (smaller) from the 
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two benchmark methods, i.e. that the approach provides MAEs and MSEs that are 

significantly smaller. 

 

Overall, the conducted tests provide strong evidence for a superior performance of 

the PCA imputation method in comparison to the two benchmark methods, namely 

PC regression and a univariate regression model.  

 

5.6 Conclusion 

Clean and complete historical data is a prerequisite for risk managers to generate 

accurate estimation for the back-testing of risk models, trading strategies or the 

calculation of Value-at-Risk. In this chapter, an iterative PCA-based data imputation 

algorithm is proposed for handling missing values in financial time series. The 

designed backfilling algorithm generates good results for both synthetic data and real 

data, covering equity, currency rates and FX asset classes. Further the proposed 

model outperforms two other commonly used approaches for data imputation. It is 

worth noting that the performance of the model depends on the fraction of the 

missing data and the noise of the data set. The higher the fraction of missing values, 

naturally the poorer is the quality for the prediction of missing values. To reduce the 

impact of noise, first we can exclude less relevant time series through correlation 

based filtering, and second we can apply statistical tools, for example, an iterative 

regularized PCA imputation algorithm to overcome overfitting. We can also apply 

cross-validation to select the optimal number of components in the applied PCA.  

 

One of the potential limitations of the proposed model is that it relies on the 

correlation structure of the multivariate time series and hence may fail to 

appropriately backfill the missing data that are actually a result of outliers. However, 

to the best of our knowledge, we are not aware of any backfilling method that can 

provide appropriate and reliable estimates for missing financial data that were the 
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result of outliers. Thus, it can be considered as particularly difficult to generate 

imputation methods for missing outlier data, unless substantial additional 

information about the nature of the missing observations and reasons why they are 

missing is available.  

 

Another concern that is probably relevant for all imputation methods are the 

economic consequences of errors as a result of missing value imputation. Due to the 

existence of an imputation error and bias – the latter measured by the average 

deviation of the estimated values from the (unobservable) true values – there is 

almost certainly an economic cost involved with backfilling missing data. The actual 

economic costs of this error and bias due to imputation are very difficult to estimate 

and depend on what the data will be used for. Possible use of the data could be made 

in model estimation, pricing, risk reporting, creating hedging strategies, etc. However, 

overall the general rule is that the smaller the imputation error and the bias, the lower 

will be the economic costs of backfilling missing data.  

  

Therefore, with regards to the issue, the proposed model can be considered as a great 

improvement in comparison to the rather too simplistic approaches currently being 

used by many practitioners. For example, approaches like proxying missing values 

using another time series by discretion, taking the average of the most adjacent 

available data for the missing value, etc., are still widely being used in practice. In 

contrast, the proposed method makes use of the embedded correlation structure of 

multivariate time series and infers the missing value through PCA. Therefore we 

believe the improvement on having more appropriate estimates for missing values in 

comparison to many simplistic approaches used by practitioners will provide also 

advantages with regards to economic costs.          

 

Future work can be extended to research on backfilling large portions of missing data, 

which are commonly observed in financial time series, particularly for asset classes 

related to credit products. While the proposed model shows superior performance in 
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comparison to the benchmark competitors further empirical studies, using data for 

different asset classes could be applied in future research. 

 

Further, the development of an automated algorithm for the proposed backfilling 

framework would also be highly desirable. Such an automated algorithm could also 

be integrated with identifying meaningless or unlikely data points in financial time 

series, such as, e.g., negative FX spot rates, negative FX option volatility, and a 

sudden spike of FX volatility in a normal market environment. 
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Appendix A: Plots for CNY rates imputation  
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Note that purple line is the time series of original CNY deposit and swap rates at various tenors at 

length of 1568, in which 50 consecutive points (accounting for 3.19%) are removed for imputation. 

The lines in red, green and light blue represent the backfilled results using the proposed Iterative PCA 

Imputation and  two other competing methods (PC Regression and Univariate Linear Regression) 

respectively. 
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Appendix B: Plots for Heng Seng Index option volatility surface imputation  

 

Note that purple line is the time series of original Hong Kong Heng Seng Index Option volatility 

surface, expressing in terms of ATM volatility, skewness (SKEWRON) and convexity (CONVRON), at 

length of 523, in which 50 consecutive points (accounting for 9.56%) are removed for imputation. The 

lines in red, green and light blue represent the backfilled results using the proposed Iterative PCA 

Imputation and  two other competing methods (PC Regression and Univariate Linear Regression) 

respectively. 



127 
 

Appendix C: Plots for EURGBP FX option volatility surface imputation  
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Note that purple line is the time series of original EURGBP FX Option volatility surface, expressing 

in terms of at-the-money volatility (FXOPTION), the risk reversal (FXRR) and the straddle (FXST), at 

length of 523, in which 50 consecutive points (accounting for 9.56%) are removed for imputation. The 

lines in red, green and light blue represent the backfilled results using the proposed Iterative PCA 

Imputation and  two other competing methods (PC Regression and Univariate Linear Regression) 

respectively. 
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6. Summary and Conclusions 

This PhD thesis addresses the several key topics in financial risk management and 

fund management. In particular, three research areas are selected for this study: risk 

management for Asia-focused hedge funds, fee structure in fund management, and 

ensuring the quality of historical data for financial risk management. The three topics 

are closely related. Risk management for hedge funds and manger’s fee structures 

have attracted more attention from both academia and industry in the aftermath of the 

global financial crisis (GFC). One reason for this is that during the GFC, many 

managed funds posted dramatic losses. Even hedge funds, which claim to be capable 

of achieving a positive return on investment regardless of the market situation, also 

suffered severely from the GFC. With poor performance during the GFC, the 

manager’s fee structure has come under scrutiny as well.  

 

Therefore, risk management for managed funds, particularly for hedge funds and 

manager’s fee structure, deserve to be well studied. In risk management, backfilling 

missing historical data plays a crucial role, as incomplete historical data adversely 

affects the accuracy and the reliability of key risk figures, such as back-testing results, 

Value-at-Risk, etc. Three chapters are thus devoted to shed light on these topics. This 

section aims to summarise and highlight the major contributions of each of the 

chapters in the thesis. 

 

In lights of the above research fields worthy to explore, we firstly address topics in 

risk management for managed fund, with a specific focus on Asian hedged funds, in 

Chapter 3, which is devoted to identifying the risk factors contributing to the Asian 

hedge fund performance and proposing a measure to quantify the market risk of 

hedge funds. Next, in Chapter 4, we investigate the fee structure of managed funds 

with the aid of agency theory and shed light on actual contracts between investors, 

financial planners, licensees and product providers in Australia. Finally, in Chapter 5, 
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we contribute to the literature of risk management by developing a robust method to 

backfill the missing financial data. 

 

Chapter 3, titled “Style Analysis and Value-at-Risk of Asia-Focused Hedge Funds”, 

identifies style factors for Asia-focused hedge funds represented by the HFRI 

Emerging Market-Asia exclude Japan index. We make use of the style analysis 

framework initially suggested by Agarwal and Naik (2000) and Dor et al. (2003). We 

employ a two-step procedure proposed by Lobosco and Dibartolomeo (1997) to test 

for the significance of the considered style factors. A rolling window style analysis 

provides further insight into the dynamic structure of style factor weights and risk 

exposure. This is one of the first empirical studies to apply these techniques with a 

particular focus on the Asian hedge fund industry.  

 

The empirical results show that the most significant equity factors relating to the 

HFRI Emerging Market-Asia exclude Japan index are emerging equity markets, 

especially emerging markets in Asia. The two factors representing global and Asian 

emerging markets together account for a weight of approximately 45% on average. 

Risk exposures are consistent with the investment objectives of the hedge fund 

strategy. With respect to the fund’s exposure to bond markets, we find that 

Asia-focused hedge funds indicate positive exposure to cash and high credit rating 

bonds but negative exposure to world government and emerging market bonds. In 

general, these fixed income factors account for a weight of 45%. The rolling window 

style analysis captures the hedge fund managers’ style drift in responding to dynamic 

trading and changing market situations. For both static and rolling period style 

analysis, our model provides a high explanatory power for returns of the hedge fund 

index. 

 

We further conduct an extensive analysis with respect to the ability of the models to 

provide appropriate forecasts for volatility and Value-at-Risk of the index. We use 

identified factors and factor weights of the rolling window style analysis in 
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combination with a multivariate GARCH, moving average or exponentially weighted 

moving average (EWMA) model. The results are also compared to an approach that 

applies a univariate EWMA and GARCH model directly to the index returns. With 

respect to volatility forecasting, the models are compared based on a set of different 

loss functions. We find that none of the models performs best for all of the 

considered loss functions or significantly outperforms all of the other models. 

Nonetheless, the best results are obtained for three of the considered models: the 

EWMA and GARCH model using the actually observed returns of the hedge fund 

index as well as a model using the estimated style factor weights in combination with 

an EWMA scheme for the volatility.  

 

In a second step, based on hypothesis tests for unconditional and conditional 

coverage, we further evaluate the performance of the considered models with respect 

to VaR estimation. We also apply different assumptions for the return distribution. 

Finally, the magnitude of the observed VaR exceptions is compared to those implied 

by the estimated VaR models. Our results indicate that the accuracy of the VaR 

models is dominated by their ability to capture the tail distribution of the hedge fund 

returns. Moreover, the performance of the models in VaR prediction seems to be 

more heavily dependent on the distributional assumption for the returns than on the 

chosen approach for volatility modelling: all models assuming a Student t 

distribution for the returns of the hedge fund index are significantly better than their 

counterparts assuming a Gaussian distribution. Overall, the best models for VaR 

estimation are a GARCH BEKK model based on the underlying style factors and a 

GARCH model that is based on the hedge fund returns only. Our findings further 

suggest that, in VaR forecasting, all parametric models outperform a simple historical 

simulation approach being purely based on past return observations. Finally, all of 

the considered VaR models perform reasonably well in forecasting the magnitude of 

the loss, conditional on a VaR exception. 

 

Overall, our findings suggest that style analysis in combination with an appropriate 
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parametric model for the identified factors provides an appropriate quantification of 

the risk for the considered Asian hedge fund index. We also find that multivariate 

models based on identified style factors and style weights significantly outperform a 

historical simulation approach with respect to volatility or VaR forecasting. On the 

other hand, our analysis indicates that they do not necessarily outperform simpler 

models like a univariate GARCH or EWMA model being directly applied to the 

hedge fund return series. However, they provide important insights on the exposures 

and investment style of a fund and indicate how fund returns can be replicated by 

observable market factors. In a time-varying setting, style analysis also provides 

information on how the weights of the different style factors potentially change 

through time as a reaction to different market conditions. Finally, style analysis might 

be useful for risk management when only a short period of observations is available 

for the fund itself while the identified style factors provide a much longer history that 

can be employed for estimating VaR or other risk measures. Therefore, we believe 

that style analysis approach should also be of particular help when individual hedge 

funds with a short track record are analysed and the use of hedge fund returns only 

for risk analysis will fail due to the lack of historical data. This issue should be 

thoroughly investigated in future research. 

 

Chapter 4, titled “Agency Theory and Financial Planning Practice” augments the 

model of Dybvig et al. (2010) with a generalised log utility function, in conjunction 

with other theoretical contributions, to shed light on actual contracts between 

investors, financial planners, licensees and product providers in Australia. To our best 

knowledge, it is the first attempt to do so.  

 

From our results, the optimal contract between an investor and a fund manager 

whose effort level cannot be verified by the investor first carves out the total 

protected wealth of the investor and the manager. It then subjects the remaining 

wealth of the investor to a fee structure with a flat component and two asset-based 
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components. One asset fee is a standard proportional fee on fund earnings. The other 

is a symmetrical fulcrum-style performance fee. 

 

To the extent that investors on the cusp of retirement have concerns about their 

wealth falling short of some predetermined value, they should simply allocate their 

wealth partly to safe interest-bearing assets before contracting with the active 

manager/financial planner. The amount of money exposed to risk by an active 

manager should be less than the entire wealth that can be invested by a client, 

especially in the case of investors on the cusp of retirement. 

 

In practice, however, planners are entrusted with the bulk of the superannuation 

balances of their clients and derive most of their income from asset-based fees. By 

contrast, our theory suggests that asset-based fees on actively managed funds should 

include a fulcrum component, contrary to current practice. 

 

Chapter 5, titled “Backfilling Financial Data with an Iterative PCA-based Imputation” 

proposes an iterative PCA-based data imputation for handling missing values in 

financial time series. The designed backfilling algorithm generates satisfactory 

results for both synthetic data and real data, covering equity, rates and FX asset 

classes. Our proposed model outperforms two other commonly used approaches for 

data imputation. It is worth noting that the performance of the model depends on the 

fraction of the missing data and the noise of the data set. The higher the fraction of 

missing value, the poorer the quality of prediction of missing values. To reduce the 

impact of noise, first we can exclude less relevant time series from PCA through 

correlation based filtering, and second we can apply statistical tools, for example, 

iterative regularised PCA imputation, to overcome over-fitting, and cross-validation 

to select the optimal number of components in PCA. Future work can be extended to 

research on backfilling large portions of missing data, which are commonly observed 

in financial time series, particularly for credit asset class. 
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