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Abstract

This thesis contributes to the development of non-invasive optical techniques based on

light absorption, scattering, and fluorescence for photo-diagnostic and Photo-dynamic

Therapy (PDT) of biological tissues. The first part of the thesis is devoted to the devel-

opment of highly diffusive tissue body phantoms for optical parameter measurements

aiming differentiation of healthy and diseased tissues. The key results are theoretical

and experimental investigations of photon transport in biological tissues. The diffuse re-

flectance Rd and diffuse transmittance Td of tissue body phantoms were measured using

Double Integrating Sphere system. The optical parameters, absorption coefficient µa

and reduce scattering coefficient µ́s were calculated employing Inverse Adding-Doubling

method from the measured values of diffuse reflectance Rd and diffuse transmittance

Td. This part also includes breast cancerous-tissue differentiation from normal tissue

on the basis of Raman Scattering, Polarization and Confocal Fluorescence Imaging.

The second part of the research is devoted to the fluorescence diagnostics of biological

tissues and cells. The Programmable Integrating Sphere Light (PISAL) source was de-

signed, built and retro-fitted in Laser Scanning Leica-DMIRB Microscope for wide-field

fluorescence microscopy of BV2 cancerous cell line. The in-vitro fluorescence chemical

quenching quantification of the native fluorophore, free and bound Reduced Nicoti-

namide Adenine Dinucleotide (NADH) was performed. Key results of fluorescence

quenching quantification confirm, that Carbonyl Cyanide-P-Trifluoro-Methoxy Phenyl

Hydrazone (FCCP) selectively quenches the fluorescence of free and bound-NADH in

plated and suspended He-La cells. The auto-fluorescence quenching quantification of

NADH/ NAD(P)H with FCCP has validated the results of unsupervised unmixing in
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He-La cell using label-free optical method of Hyperspectral Auto-Fluorescence Imag-

ing. The combination of Hyperspectral Auto-Fluorescence Imaging and unsupervised

unmixing technique will be useful for tissue diagnostic for monitoring of Photo-dynamic

Therapy using PISAL light source and Single Channel Analysis(SCA).
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1
General Introduction and Outline

1.1 Introduction

Biological tissue is a medium in which both absorption and scattering of light occur

simultaneously and is called turbid medium . So total attenuation coefficient can be

expressed as a sum of absorption and scattering coefficients. When light falls on a

tissue, the detected intensity across the tissue surface is less as compared to incident

intensity due to simultaneous absorption and scattering. The tissue diagnosis depends

upon absorption, scattering and transmission intensity of light through tissue [1]. The

Lambert’s-Beer’s Law describes the amount of absorption of light by the tissues. It

tells us that transmitted intensity of light depends upon the incident intensity, the

total absorption coefficient of the tissue, and (thickness or concentration) of the tissue

constituents (chromophore) and is explained in subsection (2.2.1) optical properties

of tissues are discussed. Every chromophore absorb light at a specific wavelength
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λ of light from the electromagnetic spectra, which play an essential role in photo-

diagnosis and photodynamic therapy of biological tissues. The water, oxyhaemoglobin

and de-oxyhaemoglobin in soft tissues absorb light in near-infrared therapeutic win-

dow (600-1200 nm), other chromophores such as melanin, lipids also absorb a fraction

in therapeutic window, and due to scattering dominance over absorption, the propa-

gation of light becomes diffuse [2, 3]. In the figure 1.1 which is taken and modified

from reference [4] shows the spectral absorption of cell all basic constituents. The

Figure 1.1: Spectral absorption of the tissue chromophores; reduced form of coen-

zyme NADH (Nicotinamide Adenine Dinucleotide), (FAD) Flavin Dinucleotide , (ATP)

Adenosine Triphosphate, and human skin.

most exciting thing about biological tissue is that it neither follow Raleigh scattering

nor Mie scattering but a third parameter called Henyey-Greenstein g function, which

explains the scattering phenomenon in biological tissues [5, 6]. The values of g vary

from -1 to +1 and the value -1 shows backward, +1 shows forward scattering and 0

value shows isotropic scattering. The quantitative measurement of diffuse reflectance

signal Rd, however, requires accurate knowledge of tissue optical properties because



1.1 Introduction 3

of high scattering in light-tissue interaction. So, according to Radiative Transfer The-

ory (RTT), a turbid medium can be characterised by three parameters; absorption

coefficient µa, scattering coefficient µs, and anisotropy factor g. These parameters are

calculated using First-order scattering, Kubelka -Munk Theory, Monte-Carlo Simu-

lation (MC) and Inverse Adding-Doubling (IAD) method from the measured values

of diffuse reflectance Rd, diffuse transmittance Td and collimated transmittance Tc

using Integrating Sphere system. There exist natural fluorophores in the cells and tis-

sue which give fluoresce upon excitation with a suitable wavelength λ of light. Most

common fluorophores are Nicotinamide Adenine Dinucleotide (NADH), Flavin Ade-

nine Dinucleotide (FAD) Tryptophan, and Protoporphyrin IX etc. The absorption

spectrum for commonly known fluorophores is shown in figure 1.1. Wide-field fluores-

Figure 1.2: Light tissue interaction mechanism

cence microscopy, confocal microscopy, and fluorescence spectroscopy are the standard

techniques used to diagnose normal and malignant cells and tissue using natural fluo-

rophores optical properties. Since cells and tissues are turbid and thick enough, only

the penetration of light inside the tissue limits the fluorescence diagnostic application.
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So, natural fluorophores give auto-fluorescence upon excitation at a particular λ of

light, which help to diagnose the healthy and diseased tissue using fluoroscopic tech-

niques.The scattering of light from biological tissue is used for diagnosis of variety of

diseases. There are two type of primary scattering; elastic scattering (Rayleigh and

Mie) and inelastic scattering (Raman and Brillouin scattering). In case of Rayleigh

scattering, the scattering particles are smaller than the wavelength λ of incident light

and scattering intensity varies inversely with fourth power of λ and while in case of

Mie scattering, the scattering particles are comparable to the wavelength λ of incident

light and scattering intensity shows weak dependence on wavelength of light λ. Figure

1.2 shows possible type of interactions in biological tissues. It shows that every type

of interaction may be elastic or inelastic scattering, absorption and transmission all of

them provides useful information about biological tissue.

1.2 Motivation

The uncontrollable growth of abnormal cells or cluster is the primary cause of cancer.

If these abnormal cells are uncontained, it can cause death. According to Atlanta

report submitted by the statistical study group of researchers, that in USA cancer

is the second cause of death among children (0-14) years age and up to December

2016 around 12% of children died due to cancer [7]. The data of female breast cancer

based on survival, mortality, incidence and screening statistics in the US described that

approximately 17.37% deaths occurred among US women in 2015 due to breast cancer

[8]. The American Cancer Society and the National Cancer Institute around 3,560,570

breast cancer and 757,190 uterine corpus cases reported in females and more than 20

million people will survive with cancer history in January 1, 2026 [9]. Nowadays breast

cancer diagnosis include microscopic analysis or affected part biopsy or x-rays based

mammography. These methods are painful and uncomfortable. So, there is a need of

painless optical methods to diagnose the cancer early as possible to increase the survival

rate. Our goal is to diagnose the breast and cervical cancer using optical methods.

These optical methods make use of diffuse reflectance Rd, diffuse transmittance Td,

Raman Scattering and fluorescence quenching from the tissues or cells to differentiate

healthy and diseased cells and tissues.
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1.3 Aims and Objective

The aims of this dissertation are as follows

• To fabricate a unique sample holder to measure for diffuse reflectance Rd and

diffuse transmittance Td highly diffusive tissue body phantoms Intralipid and

Indian-ink in an Integrating Sphere System. The optical parameters (absorp-

tion coefficients µa and reduce scattering coefficient µ́s=µs(1-g)) of tissue mimic

phantoms made from concentrated 20% Intralipid and 1% Indian-ink dilutions

by applying Inverse Adding-Doubling (IAD) method.

• To use optical techniques to differentiate healthy and cancerous breast tissues.

• To make a high uniform profile programmable Integrating sphere light source

for fluorescence imaging of breast cancer BV2 cells. The PISAL source in the

future can be used for wide-field fluorescence imaging of many chromophores like

Tryptophan, DNA, Proteins, and many other fluoropheres in a cell using spatial

uniform light source.

• To perform auto-fluorescence quenching quantification of free and bound NADH

in biological tissues.

• The hyper-spectral imaging and unmixing of the cell auto-fluorescence for vali-

dation of unsupervised unmixing techniques.

1.4 Thesis Outline

This thesis is compiled in the form of nine chapters as follows

• Chapter 1 is a general introduction and outline which is an introduction of light-

matter interaction and it highlights the electromagnetic spectral region use for op-

tical photo-diagnostic techniques for biological tissues. The natural fluorophores

NADH and FAD of the cell which give auto-fluoresce upon excitation with the

suitable wavelength λ of light and have a critical role in cellular metabolism.

• Chapter 2 provides the detail literature survey of the optical parameters mea-

surement of absorption coefficient µa, scattering coefficient µs, and anisotropy g
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using Double Integrating Sphere (DIS) system. The photon transport equation

and its solution using First-Order scattering, Kubelka -Munk Theory, Monte-

Carlo simulation MC, and Inverse Adding-Doubling IAD Method. The current

literature for tissue body phantoms (Indian ink and Intralipid), breast cancerous

tissue differentiation based on optical parameters is also the part of this chapter.

• Chapter 3 consists of two published articles along with some theoretical back-

ground of light absorption and emission in tissues and motivation for the study.

The first publication is a Laser Physics Journal article under the title Opti-

cal Properties Measurement of Highly Diffusive Tissue Phantoms for Biomed-

ical Applications in Laser Physics 25, 025605 (2014), which gives change in

optical parameters absorption coefficient µa and scattering coefficient µs upon

percentage change of tissue body phantoms concentration. The second publi-

cation is the conference publication under the title Optical Parameter Measure-

ment of Highly Diffusive Tissue Body Phantoms With Specially Designed Sample

Holder for Photo Diagnostic and PDT ApplicationsProc. of SPIE 9668, 966842-

966841(2015), which gives an idea of the specially designed sample holder for

diffuse reflectance Rd and diffuse transmittance Td measurement for high diffu-

sive tissue body phantoms Intralipid and Indian-ink. The repeatability curve of

optical parameters for 20% Intralipid is also part of this publication. The third

part of the chapter provides the supplementary material for detailed experimental

analysis.

• Chapter 4 consist s of the third publication under the title, Optical Diagnostic

of Breast Cancer Using Raman, Polarimetric and Fluorescence Spectroscopy, in

which we have differentiated the normal and malignant breast human tissue using

optical techniques and a paper published in Laser Physics Letters 12, 045601

(2015).

• Chapter 5 consists of fourth publication under the title, Programmable LED-

Based Integrating Sphere Light Source for Wide-Field Fluorescence Microscopy,

in a journal of Photo-diagnosis and Photodynamic Therapy 20 201-206 (2017).

In this article, we have indigenously developed and retrofitted a uniform profile

light source consisting of nine LEDs in a Laser Scanning DMIRB Leica Confocal
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Microscope for Fluorescence Microscopy of BV2 cell line.

• Chapter 6 consists of a literature review of Hyperspectral Fluorescence Imaging

(HSFI) system, its four types, Spatial-scanning, Spectral-scanning, Snapshot-

scanning and Spatio-Spectral scanning. It also provides detail about hyperspec-

tral image analysis methods, pre-processing methods, and feature extraction and

selection methods and data classification techniques. The coupling of Hyper-

spectral Imaging Systems with optical modalities like Raman scattering, fundus

cameras, confocal and conventional microscopes is also part of this chapter. The

process of fusion of unsupervised-unmixing techniques with other classification

methods, e.g., Support Vector Machine with Artificial Neural Network and Snap-

shot Hyperspectral Imaging with Vortex Analysis techniques. Finally, recent ap-

plication of Hyper-Spectral Imaging System HSFI for cellular differentiation of a

variety of cancers has been discussed.

• Chapter 7 consist of fifth manuscript, it shows the fundamental chemical reac-

tion between Reduced Nicotinamide Adenine Dinucleotide (NADH) with Car-

bonyl Cyanide-p-Trifluoro Methoxy Phenylhydrazone (FCCP). In-vitro fluores-

cence quenching quantification of NADH versus FCCP in a wide range of con-

centration (0.01-5.0) µM for He-La cell line model are part of this manuscript.

We plotted the Stern-Volmer Plots using peak fluorescence intensity values and

presented the fluorescence quenching comparison of In-vitro NADH solution, sus-

pended and plated cells. We studied the Excitation Emission Matrix EEM of

NADH and FCCP quenching fluorescence. The manuscript ready for submission

under the title Auto-Fluorescence Quenching Quantification of Free and Bound

NADH In He-La Cell Line Model.

• Chapter 8 consists of sixth publication under the title, Fluorescence Quenching

of Free and Bound NADH In He-La Cells Determined by Hyperspectral Imaging

and Unmixing of Cell Auto-Fluorescence. The work beyond the chemical fluores-

cence quenching quantification and hyperspectral unmixing validation are part of

this chapter. We did hyperspectral imaging of He-La cells at all the FCCP con-

centrations (50-1000) µM using 18 channel hyperspectral imaging system. The

whole data has been unmixed using PCA-analysis. It validates that hyperspectral
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fluorescence imaging can be used to unmix NADH and FAD.

• Chapter 9 concludes the entire thesis work. It also gives the future direction,

that how we can use optical techniques to monitor Photodynamic TherapyPDT.



2
Integrating Sphere, Its Biological

Application (Literature Review Part-I)

2.1 Summery of the Literature Review

A literature review of Double Integrating Sphere (DIS) system to measure the optical

parameters absorption coefficients µa and reduce scattering coefficients µ́s of biological

tissue is presented. We studied the photon transport equation and its solution using

First-order scattering, Kubelka-Munk method, Monte-Carlo simulation and Inverse

Adding-Doubling (IAD) method. We presented the up-to-date literature for the use of

Indian ink and Intralipid as tissue body phantoms for medical applications. We also

discussed normal and malignant breast-tissue differentiation on the basis of optical

parameters.
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2.2 Introduction

An Integrating Sphere is a hollow spherical cavity which conserves power but destroys

the spatial information of the source. Its interior is coated with a diffuse white reflective

layer and there are two small holes across the hollow spherical cavity, named as entrance

and exit ports. Due to multiple reflections of the light radiation inside the spherical

cavity, the light flux distribute uniformly at every point on the surface. The light

produced by a source inside the sphere can be measured on a single point on the

surface of the Integrating Sphere and has many application in science and technology

[10]. For the theoretical assumptions to be valid, the area of all ports of the Integrating

Sphere should be at most 5% of the sphere surface area. Applications of Integrating

Sphere includes; the measurement of total power of a laser beam without direction,

position and shape dependency [11], absolute quantum yield measurement [12–14],

diffuse reflection and transmission measurement [15], construction of uniform light

sources [16–19] and the optical parameter measurements of the biological tissues [20].

2.2.1 Optical Properties Measurements

In optical measurements, the intensity is a measurable quantity. Once light interacts

with biological tissues, the total intensity of light is reduced, so measurements of the

transmitted, reflected, and scattered intensities provide insight into the tissue structure.

Photons absorbed by the tissue cannot be detected. Therefore, the absorbed intensity

is calculated by subtracting the transmitted, reflected, and scattered intensities from

the incident intensity. The experimental arrangement to measure the total attenuation

coefficient µt is shown in figure 2.1 (a). There are two beams; one is the reference beam

Io and the second is attenuated beam I after interaction with the tissue or sample. The

attenuation coefficient can be calculated using the Lambert-Beer law

I = Ioexp(−µtD) (2.1)

where D is the sample thickness. So, there is an exponential decay of the light intensity

as it passes through the turbid media. Most of the biological tissues produce forward

scattering after interaction with light. The anisotropy factor g, which gives the angular

dependence of scattering, can be measured experimentally by fixing the sample and

rotating the detector on 360 degree angle. The experimental arrangement to measure
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anisotropy g, is shown in the figure 2.1 (b). It can be measured by the following formula

[21].

g =

∑
i(cos θi)Ii∑

Ii
(2.2)

Here I is the measured light intensity at each scattering angle θ. It has a value of

+1 for forward scattering, -1 for backward scattering and 0 for isotropic medium. For

most of the biological tissues, its value lies in the range of 0.69 ≤ g ≤0.99 [22]. Now,

we will investigate the measurement of diffuse reflectance Rd, diffuse transmittance Td

and collimated transmittance Tc. Single or double Integrating Spheres can be used

to measure these quantities. Single Integrating Sphere experiment to measure Rd,

Td and Tc is shown in figure 2.1 (c, d) [23]. Since, biological tissue can change the

optical properties during measurement, so in such cases, double Integrating Sphere

experimental set up is the best choice and it is shown in figure 2.1 (e). The Photon

Transport Theory (PTT) in biological tissues, radiance equation and its analytical and

numerical solutions will be the subjects of the next section.

2.3 Photon Transport Theory, Solution and Applications

Light tissue interaction, at the single photon level, has been governed analytically by the

photon transport theory. Specifically, the transport of each photon through the turbid

medium (i.e., offering both absorption and scattering of light such as biological samples)

is followed and recorded. This theory has been used extensively in understanding

the underlying mechanism of the light-tissue interactions. Importantly, the analytical

results of photon transport theory reasonably agree with the experimental evidence in

many cases.The photon transport theory is based on the radiative transport equation,

which describes the spatial variations of the photon beam radiance, as follows [24, 25].

dJ(r, s)

ds
= −µtJ(r, s) +

αs
4π

∫
4π

J(r, ś)p(s, ś)dώ (2.3)

where J(r,s) is the radiance (W/cm2 Sr−1) and p(s,ś ) is the phase function of the photon

beam scattered from original direction ś into s, ds is the differential path length, and

dώ is the solid angle in the direction s. The normalized value of p(s,ś ) is called the

anisotropy function g, given as

g =

∫ 1

−1

cos θ.p(cos θ).dcos θ (2.4)
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Figure 2.1: Experimental setup to measure optical properties of biological tissues (a)

total attenuation coefficient µt using Lambert-Beer law (b) Goniometric setup to mea-

sure anisotropy g of biological tissue; sample or detector can rotate all around the

sample to measure data from 360 degrees (c) single integrating sphere setup to mea-

sure diffuse reflectance Rd of any sample (d) single integrating sphere setup to measure

diffuse transmittance Td of any sample (e) The Double Integrating Sphere System

to measure the optical properties diffuse reflectance Rd, diffuse transmittance Td and

collimated transmittance Tc of tissue and cells simultaneously.

g is a bounded function [-1, 0, 1] representing the backward, isotropic and forward

scattering, respectively. In equation 2.3 µt is total attenuation coefficient which is the
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sum of the absorption coefficients µa and scattering coefficients µs can be written as

follows

µt = µa + µs (2.5)

As equation 2.3 has more than one variables so it cannot be solved analytically it can

be solved numerically by considering certain assumptions. The relationship between

intensity and radiance is given by the equation

I(r, s) =

∫
4π

J(r, s)dω (2.6)

The solution of equation (2.3) gives optical parameters ( µa, µs, and g . The radiance

J is the combination of coherent and diffuse parts given by

J = Jc + JD (2.7)

so to calculate the radiance, solutions of both coherent and diffusive part of the radiance

are necessary. Coherent radiant equation and its solution can be written as

dJc(r, s)

ds
= −αt (2.8)

Jc = Ioδ(ω − ώ)exp−d (2.9)

Here Io is the incident intensity, d optical depth (dimensionless quantity) and δ(ω− ώ)

is the solid angle change. We can write a relation between dimensionless parameter d

optical depth and physical path length s. The physical path length s and the reduced

coefficient µ́s can be written by the equations as

d = αts (2.10)

µ́s = µs(1− g) (2.11)

From the measured intensity (radiance) of the light beam, the optical properties are

calculated using various analytical models; these models include the First-Order Scat-

tering (FOS) [26, 27] , Kubelka-Munk Method (KMM) [28] , Diffusion Approxima-

tion (DA), Monte-Carlo Simulations (MCS) [29], and Inverse Adding-Doubling (IAD)

Method.
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2.3.1 First-order Scattering

The basic assumption of the first order scattering method is that the diffuse intensity

is much less than the coherent intensity during light tissue interaction such that

Ic + Id ∼= Ic (2.12)

This assumption reduces the radiative transport equation (and its solution) to the

simple case of Beer Lambert law, where the total attenuation coefficient µt is given by

the following equation

µt = µa + µs
1

D
ln(

Io
I

) (2.13)

The first-order solution is applicable to problems where the incident beam is in the

form of plane wave and the optical depth d« 1. Such scenarios are routinely found

in optical diagnosis where the optical depth is considerably small. On the contrary,

if the assumption that the optical depth d« 1 does not hold, the first order solution

may not lead to accurate results. Previously, the method of first order scattering has

been used in many biomedical applications of light. For instance, photons interaction

with spherical particles in turbid media has been investigated, using first order diffuse

scattering, towards facilitating the imaging applications in the presence of multiple

scattering centers. The results showed the agreement of analytic solution with experi-

mental data [30]. Moreover, the photon fluence distributions in biological tissues have

been studied with the help of mathematical model, based on radiative transport equa-

tion in turbid media [31]. Jun Li et al. measured laser speckle pattern formation after

transmission of light from ultrasonic modulation column to acquire two-dimensional

images of thick (∼25 mm) biological-tissue with a low-power laser [32]. Further, it

was demonstrated that "Born Approximation" fails in case of strong perturbations;

however, the iterative algorithm can still yield accurate results in scattering media for

higher order approximations [33] .

2.3.2 Kubelka-Munk Method

Kubelka and Munk (1931) proposed two flux theories having J1 & J2 radiances, i.e.

forward and backward flux instead of first order scattering in which Jc = 0. Due to

two fluxes, there are two Kubelka-Munk absorption and scattering coefficients i.e., A
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KM and SKM . They can be calculated from the measured values of diffuse reflectance

Rd, diffuse transmittance Td and unscattered Tc. If we know the values of Rd, Td and

Tc then AKM and SKM can be found using the following equations [34]

x́ =
1 + (Rd)

2 − (Td)
2

2Rd

(2.14)

,

ý =

√
´x2 − 1 (2.15)

SKM =
1

ýt
ln(

1− (x́− ýRd

Td
) (2.16)

AKM = SKM(x́− 1) (2.17)

AKM = 2µa (2.18)

SKM = 3µs(1− g)− µa (2.19)

The K-M method may be iterative and non-iterative method. In case of non-iterative

K-M method AKM and SKM can be obtained by putting the values of Rd and Td in

equations 2.14-2.19 and an anisotropy g can be measured goniometrically [21]. Hua et

al. applied K-M two-flux model to calculate the µt of human normal small-intestine

tissue and explored that optical parameters variation with wavelength, can be used for

tissue diagnostics [35]. Yang et al. provided a revised Kubelka-Munk theory-I, using a

statistical approach, and considering the effect of scattering on the optical path length

in turbid media. According to their results, AKM and SKM depend non-linearly on

both µa and µs and experimental findings on dye paper cannot be explained using

ordinary K-M approach so they revised K-M theory and explained the results on dye

and paper numerically. This new approach can be used to solve many complicated

problems including (dental resin composite material [36], fluorescent turbid media[37],

3-D radiative transfer [38], low-scattering sample calibrations [39], decoupling of scat-

tering and absorption in turbid materials [40], and scattering or absorption of light in

non-homogeneous materials [41]. Yang et al. also presented a revised K-M theory II

in which they provided unified framework for homogeneous and inhomogeneous opti-

cal media by studying ink penetration depth for linear and exponential homogeneous

model. They studied this framework for AKM and SKM as well as flux in and out for

vertical light streams [42]. Yang et al. proposed a revised general K-M theory III of
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light propagation in turbid media. The relation between K-M theory and RTT equa-

tion, valid only for scattering dominating media. Arindam, R. et al. measured Rd and

Td values for tissue phantoms and their results indicate that SKM depends only on µ́s

while AKM depends on µa and µ́s [43]. Rehman et al. applied KM- Model (KMM) to

calculate the optical parameters of He-La cell suspension by measuring measured Rd,

Td and Tc by placing the sample sandwich between two integrating spheres [44].

2.3.3 Diffusion Approximation DA

When scattering become dominant on absorption like in tissues, the diffusion radiance

can be expanded as

Jd =
1

4π
(Id + 3FdS + .....) (2.20)

Id is the diffuse intensity, and Fd is the vector flux can be expressed by the following

equation.

Fd(r) =

∫
4π

Jd(r, s)sdω (2.21)

Thus total intensity in case of diffusion approximation can be written as

I = Ic + Id = Aexpαtz +Bexpαeffz (2.22)

Here z is the path length, the solution of equation 2.22 gives the relation for optical

parameters (α, αs, and g) as

αeff =
√

3αάt (2.23)

Diffusion approximation applications include (measurement of optical properties of

thin samples [45], light scattering from red blood cells [46], human tissue diffuse re-

flectance measurement with CCD [47], diffuse optical tomography [48] and the accuracy

improvement of the scattering model in highly absorbing media [49]. The diffusion ap-

proximation technique is used to study the fractal mechanism of light scattering tissue

optical biopsy [50], early detection of breast cancer using novel estrogen conjugate

fluorescent dyes [51], and analysis of optical tomography with non-scattering regions

[52]. Keith, D. Paulsen et al. developed a finite element algorithm for the analysis

of frequency domain optical data based on a diffusion approximation. They did the

computation for a tissue-like phantom and simulated the boundary condition of multi-

detector, multi-source measurement and excitation strategy to elucidate µa and µs [53].
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Daniele, C. et al. reported an analysis of the time-dependent DA, getting solutions

for the slab geometry and a semi-infinite diffusing medium. They concluded that in

case of transmittance, the effect of the refractive index mismatch cannot be ignored

in obtaining an expression of the diffusion absorption coefficient (α) [54]. James, L.

Karagiannes et al. measured the optical parameters of animal and plant tissues over

a wide spectral range and found that the data match well with known fluoropheres

in the cells [55]. Serge Grabtchak et al used the diffusion approximation to simulate

experimental interstitial radiance data obtained for homogenous 1% Intralipid-liquid

phantoms and observed the optical absorption and scattering properties in the range

of λ=650-900 nm [56].

2.3.4 Monte Carlo Simulations (MC)

Monte-Carlo (MC) simulation solves equation 2.3 numerically in which N photons are

generated randomly using computer random generator. The photons follow the op-

tical path through a turbid medium during absorption and scattering events and the

distance between two collisions is noted through computer algorithms. If scattering

occurs, a new direction is adopted by the photon with new probity phase function and

a random number. As the photons propagate through the turbid medium, their weight

reduces continuously until reaches a threshold value where they can escape from the

given volume and is detected [57, 58]. Marquet Pierre et al. modeled light distribution

in turbid media based on a single MC approach, which can save time just avoiding rep-

etition of certain parameters. It uses two probability distribution radiance functions,

one depends on geometry and anisotropy while the other depends on optical coefficients

[59]. Oliveira, L. et al. estimated the evolutionary states of rabbit muscle immersed

in an osmotic solution using MC simulation. They examined the optical transparency

by reducing the value of absorption coefficient simultaneously and independently [60].

Chu, S. et al. made the analysis of the fluorescence spectra of the colon and cervical tis-

sues at different dysplasia grades using MC simulation. The simulation results matched

well with the in-vivo optical parameter µa, µs [61]. Jagajothi, G. et al. determined the

optical parameters µa, µs and g of the skin lesion with MC simulation and made the

tissue-body phantom with white paraffin wax mixed with colour pigments in multiple

proportions [62]. Alwin, K. described a fast, accurate method for determination of the
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optical properties of an infinite and semi-infinite turbid media proved that the single

MC method can be used to extract optical parameters µa, µs with less than 1% and 2%

errors, respectively [63]. Chatigny, S. et al. developed a Hybrid Monte-Carlo (HMC)

technique to model time-domain transillumination measurements with small-area de-

tectors to reduce the time calculations, but it produces spikes in the temporal signals

[64]. Lin, L. et al. developed condensed MC methods to predict the spatially resolved

reflectance from a turbid medium with arbitrary µa, µs and their direct scaling of the

radial reflectance of baseline simulation is more efficient and faster than conventional

scaling methods [65]. Nunu, R. et al. presented the concept of parallel MC simulation

of light photon transmitting through a heterogeneous tissue medium. A combination

of triangle meshes can make this type of heterogeneous surface. The MC simulation is

implemented on graphics processing units (GPU) [66].

2.3.5 Inverse Adding Doubling Method

The Inverse adding-doubling (IAD) method is a numerical approach introduced by

Prahl et al. in 1999 to solve transport equation 2.3. This method takes the values

of the optical parameters and match the corresponding values of Rd and Td layer

by layer continuously and make the layer thickness double to estimate the double

layer parameters for a thin slab, which is also implementable for dissimilar slabs of

tissues also [67, 68]. John, W. Pickering et al. devolved a system which can calculate

the optical parameters of tissue µa, µs and g simultaneously. Scott, A. Prahl 1999

explained it more and provided the code to the general public to calculate the optical

parameters µa, µs and g from the measured values of Rd, Td and Tc using single or

double Integrating sphere. It takes Rd, Td and Tc, ports diameters, Integrating sphere

diameter, number of ports, the refractive index of the sample as input and gives optical

parameters µa, µs, and g as output [69]. The Henyey-Greenstein phase function which

gives the anisotropy can be calculated theatrically and experimentally using equations

2.4 and 2.2 respectively [70]. The inverse adding-doubling method is used in many

photo-diagnostic and photodynamic monitoring applications. A diagnosis study is

based on measured values of optical parameters, because healthy and diseased tissue

vary in optical parameters. Inverse Monte-Carlo (IMC) simulation in combination

with IAD algorithm can be used with real-time Photodynamic Therapy (PDT) for
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dosimetry calculations. Morales, C. et al. iteratively solved the radiative transport

equation using genetic algorithms and Monte-Carlo Multi-Layer (GA-MCML). It is

robust search technique that avoids the local minima for the optimization problem on

a set of phantoms using a single integrating sphere system [71]. Xiaoyan, Ma. et al.

measured optical parameters of mammalian tissue phantoms based on the integrating

sphere and spatial filtering techniques from the UV-NIR region. The corresponding

procedures for inverse determination of optical parameters from the experimental data

have been established [72]. Dhiraj, K. Sardar et al. used an integrating-sphere system

and IAD method to differentiate normal and diseased skin tissues. They also calculated

the optical parameters for human retinal tissues using the IAD method [21, 73, 73–75].

Andre, R. et al. used an integrating-sphere and IMC simulations to measure optical

parameters (µa, µs and g of human blood at λ=633 nm [76]. Optical parameters are

the measurement of state of a tissue, so the real time state of a tissue is possible

during treatment. To account these variations, Katsunori, I. et al. measured optical

parameters of tissue in the range of λ=350-1000 nm, using a tunable Er:YAG laser

[77] after the PDT treatment. Honda N. et al. investigated the effects of PDT on the

optical parameter µa, µ́s of lung carcinoma employing IAD from the measured values of

Rd , Td using integrating sphere for λ=350-1000 nm. They found that coagulation and

ablation phenomenon results in increase of µ́s and decrease of µa values while in PDT

both µa, µ́s are increased [78]. Bashkatov, A. N. et al. measured the optical parameters

µa and µs of the human skin, subcutaneous adipose tissue and human mucosa with

Integrating-Sphere System using IAD method from λ=400-2000 nm [79]. Baba, Justin

S. et al. and Allegood, MS. et al. measured µa, µs using the g value for a specified

λ. They used an Integrating-sphere with a collimated white-light source for diffuse

reflectance and transmittance measurements. Their Lab-View program takes input

from IAD method to produce optical parameters of tissue body phantoms and they

called this technique as Hybrid Inverse-Adding Method (HIAD) [80]. Wei, Huajiang et

al. checked normal human pulmonary artery tissue spectral dependence of the optical

parameters µa, µ́s with IAD method. Their results indicate that µa and the penetration

depth (l) show direct relation, while µ́s and backscattered reflectance show an inverse

relation with λ [81].
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2.4 Tissue Body Phantoms

To find the optical properties of biological tissue there is a need for such materials

which have the tissue-like optical properties. In the literature, Intralipid and Indian

ink are used as tissue body phantoms. When light interacts with the tissue, it is

either scattered or absorbed. Ideally, if tissue body phantom absorbs light completely

and scattering is negligible, then its optical properties resembles Indian-ink, and if

tissue body phantom scatters light completely and absorption is negligible, then its

optical properties resembles with Intralipid. Different groups of scientist used uniform

micro-spheres (Duke Scientific Corporation), 10-20% Intralipid and 1.0% Indian-ink for

the Integrating sphere calibration to use it for biological applications. To observe µs

variation with Intralipid concentration at a specific λ, the Indian-ink % value should

be fixed at some arbitrary value, and Rd, Td should be measured using a series of

Intralipid concentrations in an Integrating-sphere system. A summary of tissue body

phantom optical parameters are shown in table 2.1, 2.2 and 2.3. Conversely, to observe

µa variation with Indian-ink concentrations at a specific λ, Intralipid concentration

should be fixed at some arbitrary value and Rd, Td should be measured using a series

of Indian-ink concentrations in an integrating sphere system [82–84].

Krainov, A.D. et al. analysed the optical parameters of Lipofundin and Indian-ink to

create tissue mimic phantoms at the wavelength range of 700-1100 nm. The optical

parameter measurement analysis results indicate that for bowel tissue, the Lipofundin

and Indian-ink should be 2.9% and 0.018% while for muscles its value is 0.89% and

0.024%, respectively [85]. Driver, I. et al. studied fat emulsions (tissue phantom

materials) and found that µeff and l (penetration depth) of an Intralipid suspension,

are not directly proportional to the concentration because water absorption plays an

important role [86]. Alida, Mazzoli et al. made semi- indigenous tissue body phantoms

by adding scattering and absorbing particles to a Poly Vinyl Alcohol) (PVA) gel having

the degree of hydrolysis greater than 99% to which particles were added, and liquid

Indian-ink used to simulate melanin (pigment cells) [87, 88]. Ruiqi, L. at al. made a

Poly-dimethyl-siloxane (PDMS) based liver phantom by using Al2O3 powder 99.99%

as primary scatterer (0.5-1) µm and Inframat and black-ink to mimic absorption over in

the range of λ=700-1000 nm. Their calculated values (µa, µ́s) for tissue body phantoms

were (3.0-0.5) cm−1 and (4.0-8.0) cm−1 at λ=200-1100 nm, respectively [89]. Idit, F. et
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al found an isobaric point using new tissues-like phantoms made of polyvinyl chloride-

plastisol (PVCP), silicone elastomer-PDMS and PDMS-glycerol mixture [90].
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2.4.1 Breast Tissue Differentiation

Breast cancer is a very common disease in women. Most commonly used effective

screening tool against breast cancer was X-Ray mammography but with 50% false

negative results [116]. The researchers started research on breast-cancer diagnostics

using optical techniques which include; time-independent and dependent measurements

of scattered light [117–120]. The table 2.4 and 2.5 show a complete list of breast-

tissue diagnosis results using different optical techniques along with the commonly

used method of optical parameters extraction programs, like IAD, IMC and Diffusion-

approximation.

2.5 Conclusion

Double-Integrating Sphere along with theoretical models (First order scattering, K-

M Theory, Monte-Carlo Simulation, and Inverse Adding Doubling(IAD) Method) will

always remain a compulsory instrument to measure the optical parameters absorption

coefficients (µa) and reduced scattering coefficients ´(µs) of biological tissues accurately

and precisely. These optical parameters are very helpful in PDT treatment planning.
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3
Tissue Optical Parameter Measurements

(Publication I and II)

3.1 Addendum

3.1.1 Accessories to Measure Rd and Td

The accessories consist of Double Integrating Sphere (Optoprim Germany), each sphere

has a diameter of 300 mm and 20 layers of BaSO4. There are two stoppers of 1 inch

diameter were locally fabricated to measure the reference signals and optical fiber

200µm. An Ava-spec, Russia, 2048 spectro-photometers and a red λ=632.8 nm He-Ne

laser 17 mW output power. The Integrating sphere set up is shown in the figure 3.1.
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Figure 3.1: Real experimental set up

3.1.2 Integrating Sphere System calibration

Different groups of scientist use uniform microspheres (Duke Scientific Corporation),

10%, 20% Intralipid and Indian ink for the integrating sphere calibration. To draw

the linearity curve for scattering coefficient µs from the measured values of Rd and Td,

Indian ink concentration is fixed while Intralipid concentration is varied according to

the requirement of biological tissues. Similarly to draw the linearity curve of absorption

coefficient µs from the measured values of Rd and Td, The concentration of Intralipid

is fixed is while the concentration of Indian ink is varied according to the requirement

of biological tissues [82–84]. The table 3.1 and table 3.2 show the prepared samples

for tissue body phantoms. Table 3.3 shows the concentration of Intralipid used for

absorption and scattering coefficient. Here S.S stands for Stock Solution.
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Table 3.1: % Intralipid samples Indian Inkfix,total volume of the solution Vtotal (µl)

% Intralipid Rqd 0.1% Intralipid S.S (V)(µl) Water (V) (µl)

0.01 0500 4500

0.02 1000 4000

0.03 1500 3500

0.04 2000 3000

0.05 2500 2500

0.06 3000 2000

0.07 3500 1500

0.08 4000 1000

0.09 4500 0500

0.10 5000 0000

Table 3.2: % Indian ink sample Intralipidfix,total volume of the solution Vtotal (µl)

% Indian-Ink

Rqd

0.01% Indian-Ink SS (V)

(µl)

Water (V) (µl)

0.001 0500 4500

0.002 1000 4000

0.003 1500 3500

0.004 2000 3000

0.005 2500 2500

0.006 3000 2000

0.007 3500 1500

0.008 4000 1000

0.009 4500 0500

0.010 5000 0000
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Table 3.3: Different concentration of Intralipid solution used,total volume of the solu-

tion Vtotal (µl)

%Intralipid 10% Intralipid S.S (V) (µl) Water (V) (µl)

0.5 0250 4750

1.0 0500 4500

1.5 0750 4250

2.0 1000 4000

2.5 1250 3750

3.0 1500 3500

3.5 1750 3250

4.0 2000 3000

4.5 2250 2750

5.0 2500 2500

5.5 2750 2250

6.0 3000 2000

6.5 3250 1750

7.0 3500 1500

3.2 Motivation for Optical Parameter Measurement

During light-tissue interactions, some part of light penetrates in the tissue while most

of the light scatter. To find the actual contribution of each constituent of the tissue,

exact knowledge of optical parameters of tissue absorption coefficient (µa), scattering

coefficient (µs) and anisotropy g is necessary. Moreover, the malignant tissues, hav-

ing significantly higher (absorption coefficients µa and reduce scattering coefficients

µ́s=µs(1-g)) lower the Signal to Noise Ratio (SNR).

We have fabricated a unique sample holder using microscopic coverslips to measure the

signal from highly concentrated Intralipid and Indian-ink tissue mimic body phantoms.

The diffuse reflectance Rd and diffuse transmittance Td of 1.0% Indian-ink and 20%

Intralipid tissue body phantoms have measured by placing the sample holder in an

Integrating Sphere System at λ=632.8 nm and Inverse Adding-Doubling method used

to calculate optical parameters (µa and µ́s) from measured values of Rd and Td.
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3.3 Author’s Contribution to Publication-I

Being the principal author of this paper, Ph.D. candidate (Aziz ul Rehman) performed

the whole experimental work, made the tissue body phantoms and produced all the data

for each tissue body phantom, implemented Inverse Adding Doubling (IAD) method

to calculate optical parameters and wrote the manuscript. Second author Iftikhar

Ahmed was responsible for proof reading, figures of our specially designed sample

holder, and corresponded with the Editor of the Journal. All other authors, each has

5% contribution. They did the proofreading and helped to manage every facility needed

to carry out this research work. Two papers were published from this data. Aziz ul;

Rehman presented this work in SPIE conference held in Sydney in 2015.

3.4 Publication-I

All material adapted from the publication by Aziz ul Rehman, I Ahmad, K Rehman,

S Anwar, S Firdous and M Nawaz, Optical properties measurement of highly diffusive

tissue phantoms for biomedical applications Laser Physics 25, 025605 (2014)
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3.5 Author’s Contribution to Publication-II

Being the principal author of this paper, Ph.D. candidate (Aziz ul Rehman) did the

whole experimental work, make the tissue body phantoms and generated all the data

for each tissue body phantom, applied Inverse Adding-Doubling (IAD) method to cal-

culate optical parameters and wrote the manuscript. All other authors, each have 5%

contribution. They did the proof reading and helped to mange every facility needed

to carry out this research work. Two papers were published from this data. Aziz ul

Rehman presented this work in SPIE conference held in Sydney in 2015.

3.6 Publication-II

Aziz ul Rehman, K Rehman , S Anwar, S Firdous,and M Nawaz , Optical param-

eter measurement of highly diffusive tissue body phantoms with specially designed

sample holder for photo diagnostic and PDT applications,Proc. of SPIE 9668, 966842-

966841(2015).
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4
Optical Diagnostic of Breast Cancer

(Publication III)

4.1 Tissue Optical properties

4.1.1 Fluorescence

During light-tissue interaction, molecules are excited by absorbing t light. Fluores-

cence is the emission of light when molecules or atoms make a transition from higher

energy states to lower energy states. The emitted electromagnetic waves have longer

wavelength (λ) or lower energy as compared to the energy absorbed by the molecules.

This increase in wavelength of emitted light is due to Stokes shift 4λ, named after

Irish physicist George G. Stokes and according to thumb rule it is ≈25-50 nm for most

of the molecules [121]. The process of fluorescence can be best explained by Jablonski

diagram as shown in figure 4.1 which is taken from [122]. The electronic transition

for fluorescence from excited state of molecule to the ground state of a molecule can
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Figure 4.1: Jablonski diagram for tissue fluorescence, phosphorescence and non radia-

tive decays.

be seen in figure 4.1. Its intensity is given by the absorbed intensity multiplied by

fluorescence quantum yield) ηF and ratio of the solid angle made by the radiation with

the detector Ω to the total solid angle 4π.

IF (λ) = Io(1− exp(−ελcad)ηF
Ω

4π
) (4.1)

In case of monolayer equation 4.1 exponential higher terms can be neglected and equa-

tion 4.1 can be simplified as equation 4.2.

IF (λ) = IoηF ελcad)
Ω

4π
(4.2)

The equation 4.2 shows that, fluorescence intensity is proportional to the concentration

and ηF of tissue molecules.
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4.1.2 Raman Scattering

Raman scattering is an inelastic scattering of light photons from molecules which are

in higher vibrational levels during excitation state. It was discovered by C.V.Raman

and K.S. Krishnan from liquid molecules [123–125]. Raman shift may be Stokes- or

anti-Stokes depends upon the loose or gain of energy by the scattering photons. Ra-

man shift is the characteristics of molecules so it can be used for diagnosis purposes.

Raman spectroscopy which rely on Raman scattering is a very useful technique to

see the biochemical change at the molecular level. It is used to differentiate normal

and diseased cells and tissues [126]. Figure 4.2 which is taken from [127] explains the

molecular level energy diagram where acronym MIR stands for mid-infrared, RS for

Raman Scattering and RRS stands for Resonance Raman Scattering. Raman scat-

tering signal is weak signal compared with fluorescence signal. There different type

of Raman effects e.g., Surface-Enhanced Raman Scattering (SERS), Stimulated Ra-

man Scattering (SRS), Resonance Raman scattering (RRS), and Coherent Anti-Stokes

Raman Scattering (CARS), which give less fluorescence background for bio-molecules.

4.1.3 Polarization Imaging and Muller Matrix Polarimetry

Bio-molecules are birefringent and they rotate the state of polarization when light fall

on them [128, 129]. The ability to rotate the sate of polarization differs for normal

and diseased molecules, so it can be used for diagnosis. Polarization imaging is used to

differentiate tissue and cells. The Mueller matrix imaging of the breast cancer samples

were obtained from λ=400-800 nm of light experimentally. By measuring optical polar-

ization parameters ( transmission and reflection), 4×4 Mueller matrix can be generated

[130]. The main important parameters from 4×4 Mueller matrix are the diagonal el-

ements M11, M22, M33, and M44. These diagonal elements of the Mueller matrix give

retardance, diattenuation, and depolarization of the sample under investigation. By

decomposing the measured Mueller matrix into retardance, diattenuation, and depo-

larization components can provide a complete description of effect of light state in a

sample. In Muller matrix polarimetry, there is a common way to express Muller matrix



52 Optical Diagnostic of Breast Cancer (Publication III)

Figure 4.2: Raman scattering illustration using a molecular energy level diagram, ύ

and ´́υ are the vibrational states of the molecule

without any dimension. [131]. In our experiment we have scanned the circle marked

ROI as in figure 2 of the publication III as 16×16 (106.0 µm2/pixel) [132].

4.2 Motivation for Optical Diagnostic of Breast Cancer

The optical detection of early biochemical changes associated with the benign tumor,

before the pathological diagnosis can revolutionize the cancer diagnostics. The best

way to improve the survival rate of breast cancer is that it should be detected as early

as possible. According to the National Cancer Institute, up to 20% of all breast can-

cers fail to be discovered by x-ray mammography (uses ionizing radiation) [133]. The

ultra-sound and MRI provide high spatial resolution, but comparatively less informa-

tion about the molecular-level changes [134, 135]. Raman spectroscopy along with
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fluorescence and polarimetric imaging is the best solution to diagnose breast cancer as

early as possible.

4.3 Author’s Contribution to Publication III

We obtained the breast tissue samples from the pathology department of Pakistan

Institute of Medical Sciences (PIMS) Islamabad Pakistan thorough clinical history and

patients consent after a surgical breast biopsy and shaped into tissue block after passing

through formalin fixing method. Aziz ul Rehman completed fluorescence microscopy

section. Shahzad Anwar completed Raman spectroscopy section. Dr Shamaraz Firdous

completed the polarimetry section. Each of the authors has written his relevant part,

and Dr Shamaraz Firdous made correspondence with the editor.

4.4 Publication III

Shahzad Anwar, Shamaraz Firdous, Aziz ul Rehman and Muhammad Nawaz, Optical

diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy.

Laser Physics Letters 12, 045601 (2015).
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5
Integrating Sphere Light Sources

(Publication IV)

5.1 Excitation Spectrum of Common Fluoropheres

The excitation spectra of the native fluoropheres in a cell are determined from excita-

tion wavelengths. For this, biological samples (cells and tissues) are excited at appro-

priate wavelength (λ). Figure 5.1 is taken and modified from reference [136] gives the

excitation spectra of commonly known fluoropheres in a cell, including NADH, FAD,

and porphyrin. The idea for light source fabrication was derived keeping in view the

excitation spectra of common fluoropheres.
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Figure 5.1: Spectral absorption ranges of tissue chromopheres NADH, NAD, FAD etc.

5.2 Emission Spectrum of Common Fluoropheres

Fluorescence is the emission of light when molecules or atoms make a transition from

higher energy states to lower energy states. The emitted electromagnetic waves have

longer wavelength (λ) or lower energy as compared to the energy absorbed by the

molecules. Figure 5.2 which taken and modified from [4] shows the emission spectrum,

of common fluoropheres which is helpful in emission filters selection in a filter cube.

5.3 Motivation to Build Light Source

Mercury lamp with suitable optical filters are used for wide-field fluorescence mi-

croscopy. Since mercury lamp has a spectrum with characteristic absorption peaks

and very less power in ultra violet (UV) range especially 340 nm and 365 nm. These

are the wavelengths on which most important of the key fluoropheres NADH, FAD can

be excited. The Baso4 coated integrating sphere along with high power deep UV light

emitting diodes (LEDs) are enough to build these type of light source. Deep UV LEDs

are available in open market in these days. The idea is to build a light source which has

the uniform spatial profile and can be tuned across electromagnetic spectrum especially

in the spectral region where most important fluoropheres can be excited. In this study
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Figure 5.2: Spectral emission ranges of tissue chromophores NADH, NAD, FAD etc.

Deep UV LEDs light source is retrofitted in to the LSC Leica-DMIRB Microscope

to do fluoresence microscopy on room temperature along with CMOS camera instead

of EMCCD. The end use of this light source is to do single channel hyperspectral

fluoresence imaging to monitor PDT of biological tissues.

5.4 Author’s Contribution to Publication IV

Being the principal author of this paper, the Ph.D. candidate (Aziz ul Rehman) dis-

cussed this idea with principal supervisor Ewa M. Goldys. Author purchased the ac-

cessories like filter cubes, high power LEDs, power source to operate LEDs, made the

controller circuit from Macquarie University MET services to operate the LEDs. He

did the whole experiment and acquired data analysed it and wrote the article. Being

the Principal supervisor Ewa Guided on each step in the manuscript and did revisions

until it is finalized and published. Fluoresence Microscopy was performed on BV2 cells

so Ayad Anwer helped in cell culturing and wrote the method for it.
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5.5 Publication IV

Material taken from Aziz ul Rehman, A.G. Anwer, E.M. Goldys, Programmable LED-

Based Integrating Sphere Light Source for Wide-Field Fluorescence Microscopy, Photo-

diagnosis and Photodynamic Therapy 20 201-206 (2017)



Pages 65-70 of this thesis have been removed as they contain published material. Please 
refer to the following citation for details of the article contained in these pages. 

Rehman, A., Anwer, A. G., & Goldys, E. M.. (2017). Programmable LED-based integrating 
sphere light source for wide-field fluorescence microscopy. Photodiagnosis and 
Photodynamic Therapy, 20, p.201-206. 

DOI: 10.1016/j.pdpdt.2017.10.002 

https://doi.org/10.1021/acs.jnatprod.7b00816


5.6 Supplementary Material 71

5.6 Supplementary Material

Supplementary material includes Integrating Sphere dimensions, reflexivity curve of

the Integrating Sphere, PISAL source electronic circuit diagram, and real experimental

setup.

5.6.1 Light Source Conceptual Diagram

An integrating sphere conceptual light source is shown in figure 5.3

Figure 5.3: Integrating Sphere light input and light output diagram
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5.6.2 Barium Sulphate Reflectance Spectrum

Reflectivity curve for BaSo4 and PTFE is shown in the figure 5.4 which is taken and

modified from [137]

Figure 5.4: Reflectivity curve of the BaSO4 and PTFE
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5.6.3 Real Experimental Setup

It is a general purpose integrating sphere, its diameter is 152 mm and a hole was tapped

to fit the LEDs mounting head. A real setup for the light source is shown in the figure

5.5.

Figure 5.5: (a) integrating sphere as a light source without any Lens spreading light

in all direction (b) Integrating sphere as a light source with light collecting lens (UV

fused silica Plano Convex lens uncoated D=50 and F=60.0) (c) beam spot from the light

source after passing through the collimator (d) The complete light source along with

control box and collimator showing the light spot during operation (e) It is commercial

collimator taken from DM IRB (Leica) to collimate the light coming from the sphere



74 Integrating Sphere Light Sources (Publication IV)

5.6.4 Electronic Controller

Electronic controller circuit diagram and mounting head for LED is shown in the figure

5.6

Figure 5.6: LED controller PC circuit diagram
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The Hyperspectral Imaging and Unmixing

in Biological Tissues (Literature Review

Part-2)

6.1 Summery of Literature Review

Hyperspectral Fluorescence Imaging (HSFI) is a well-known technique in the medical

research field and is considered as a non-invasive tool for tissue diagnosis. Implementa-

tion of HSFI imaging along with feature selection and extraction techniques are useful

for image analysis. This literature review gives a brief introduction to hyperspectral

imaging acquisition methods and its types. We presented the image analysis, pre-

processing methods, feature extraction and selection methods and data classification

techniques. The coupling of hyperspectral imaging systems with well-known optical
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modalities like Raman scattering microscopes, fundus cameras, confocal and conven-

tional microscopes is discussed. The fusion of unsupervised unmixing techniques with

classification methods i.e., the combination of Support Vector Machine with an Ar-

tificial Neural Network and Snapshot Hyperspectral Imaging with Vortex Analysis

Techniques is outlined. Finally, we discussed the recent application of Hyperspectral

Imaging System for cellular differentiation of different types of cancer.

6.2 Introduction

A conventional RGB image contains three colours, red, green, and blue, but a hyper-

spectral image can have many colours depending on the number of channels used for

imaging across the whole electromagnetic spectrum. The absorption, scattering, and

transmission are main type interaction of electromagnetic rays with cells and tissue.

The interactions give rise to a lot of information from the tissue in the form of spectral

images used for analysis. Every individual constituent or fluorophore present in the

cells or tissues, when interacting with electromagnetic radiation carries an intrinsic

spectral signature with it. An unknown fluorophore can be identified after making a

comparison with intrinsic spectral signature. In Hyperspectral Imaging System(HSFI),

we use both spectral and spatial intrinsic signatures to create a 3-D data called hyper-

spectral data-cube. So in hyper-spectral data-cube, there are three dimensions (x,y,λ),

first two (x, y) represent spatial dimensions of molecule while the third one represents

the spectral signature (λ) for hyperspectral imaging. Every pixel of the spectral image

carries some spectral signature. A HSFI has an excellent potential for non-invasive

diagnosis of malignant diseases.

Biological tissue behaves as turbid mediums and transportation of light through it in-

curs multiple scattering from tissue surface along with absorption in melanin, water,

and haemoglobin [136, 138, 139]. The hyperspectral image which is formed by the re-

flection, fluorescence or transmission of light from tissue contains quantitative diagnos-

tic information about tumour delimitation, identification, and pathological conditions

[140]. The idea of the hyperspectral image initially developed for remote sensing [141]

and now this technology has been successfully implemented in other research areas in

the medical field. Now there are numerous application of hyperspectral imaging to
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diagnose the malignant diseases such as cancer using label-free non-invasive methods.

Currently, the hyperspectral imaging sensors are being used to capture and build a λ-I

profile of a scene with exceptionally high spatial and spectral resolution [142]. The

HSFI Applications include (agriculture [143–145], eye care [146, 147], food processing

[148, 149], mineralogy [150, 151], detection of environmental pollutants [152], chemi-

cal imaging, astronomy for space and surveillance [153, 154] and medical in-vivo and

in-vitro diagnostics [155] in the surgical marking of tumors [156, 157]).

Figure 6.1: Schematic diagram of a typical auto-fluorescence Hyperspectral Imaging

System.
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6.3 Fluorescence Hyperspectral Imaging System

A HSFI system consists of the following components

• A light source lamp combination with a monochromator for λ selection, or LEDs

of suitable λ.

• A filter cube (exciter, dichroic and emitter.

• A microscope along with suitable objective to image tissues.

• A detector (CCD/EMCCD) array with suitable quantum efficiency.

• A computer system to operate the whole imaging system.

The schematic diagram of HSFI is shown in figure 6.1

6.4 Hyperspectral Image Acquisition Methods

There are four hyperspectral image acquisition methods which include Spatial, Spec-

tral, Snapshot and Spatio-Spectral scanning. They acquire a three-dimensional (X,Y,λ)

data-set i.e., hyperspectral data cube. Here X and Y represent the spatial coordinates

while the λ coordinate corresponds to the spectral dimension and can have any value

across the whole electromagnetic spectrum depending on the availability of light source,

detectors, and the particular application. We will discuss each of the acquisition meth-

ods below, addressing in detail.

6.4.1 Spatial Scanning Hyperspectral Imaging Method

In this hyperspectral imaging method, a complete spectrum for each pixel obtained

spectrally (like in point or line scanning than system scans spatially throughout the

image area). Figure 6.2 (a) which is taken and modified from reference [158–160]

shows the line or push-broom scanning. An optical slit formes a thin strip of the image

which passes through a dispersive device which creates the image on the detector as

shown in figure 6.2(b). So, a grating can produce a high spectral resolution image

having maximum spectral information in spatial scanning systems because it spatially

cover a small image area. Line scanning, consisting of whisk-broom or push-broom
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HSFI, is not able to provide a live display of images. Devices based on this type of

acquisition method were mainly installed in applications, such as quality control in food

production, airborne mounted systems, food inspection and geological remote-sensing

applications [161, 162].

Figure 6.2: (a) A diagram demonstrating the essential components used in a line or

Push-Broom Scanning Hyperspectral Imaging System. A slit permits a small portion of

the incoming light from a source to split into different wavelengths via a prism or grid.

A CCD/EMCCD detector records information corresponding to each λ, stored in a

hyperspectral data-cube (b) Image output storage format depends upon the method of

scanning (line scanning, point scanning, λ scanning, (c) Snapshot Scanning and Spatio-

Spectral scanning) with a data-cube construction per unit time for each hyperspectral

imaging technique.

6.4.2 Spectral Scanning Hyperspectral Imaging Method

Spectral-scanning hyperspectral systems capture the full scene in a single exposure with

2-D detector arrays and then make a λ scan to complete the hyperspectral data cube.

An Acoustic Optical Tunable Filter (AOTF) is used to tune the light of a particular
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λ across the whole range of the electromagnetic spectrum which is ultimately detected

by linear variable filters [163], filter arrays [164–166] and the camera sensor [167]. The

Liquid-Crystal Tunable Filters (LCTF) [166–168] use the same techniques found in

LCDs to adjust their spectral transmittance [169]. The Figure 6.3 shows a diagram for

Figure 6.3: Illustration of an Opto-mechanics behind an Acoustic Optical Tuneable-

Filter, In this filter a piezoelectric crystal alters the geometry of light slightly. The

crystal is tuned in such a way that only a particular λ exits along the 0-order plane

toward a monochromatic imaging sensor

AOTF mechanics. Since a hyperspectral scanning system first captures the scene, then

scans across λ covering all the bands or channels, the hyperspectral data cube cannot be

stored simultaneously [170]. An AOTF is one of the examples of a tunable filter [171].

A tunable filter camera uses a tunable electrical filter to perform the hyperspectral

imaging and a modified image taken from reference [172] is shown in the figure 6.3.

6.4.3 Snapshot Hyperspectral Imaging Method

A Snapshot Hyperspectral Imaging System (HSI) or Non-Scanning imaging method

acquires a simultaneous image of all the elements of the data-cube by taking multiple

2-D slices, i.e., 2-D detector arrays with a higher number of pixels which can again

unite them into a data-cube. Figure 6.2 (c) shows the Snapshot Hyperspectral Imag-

ing Method. The single-shot imager of Computer-Generated Holograms (CGH) is one
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of the examples to disperse light in snapshot HSI systems [173, 174]. They consist of

cells of square pixels arranged in arrays to form a 2-D grating which assists a computed

tomography imaging spectrometer (CTIS) to acquire spatial and spectral information

in a single shot. Since this method does not involve any scanning, it is superior to

use it in hyperspectral imaging where we motion artefact cannot be avoided, e.g., hy-

perspectral eye images. Snapshot HSI can capture each band for a single data-cube

simultaneously, eliminating spatial and temporal misrepresentations. A snapshot image

can be obtained using an integral field spectrometry with faceted mirrors [175, 176],

coherent fibre, and lens-let arrays [177]. Hyperspectral imaging resembles real-time

volumetric molecular imaging, in which a sample is illuminated with an x-ray pencil

beam, and an energy-sensitive- detector is used for detection. The Computed Tomog-

raphy Imaging Spectrometer (CTIS) [178], coded aperture snapshot spectral imager

(CASSI) [179], multi-aperture filtered camera (MAFC), image mapping spectrometry

(IMS) [180, 181] and the Snapshot Hyperspectral Imaging Fourier Transform (SHIFT)

spectrometer [182–184] are the best examples of these types of systems. They are used

for non-destructive examination in a variety of medical diagnostics [185] applications

and its image may involve spectro- polarimetry and Computed Tomography (CT) to-

gether. For spectro polarimetric images all four Stokes parameters in a spectrum are

encoded through modulation to find the spectral dependence. The spatial and spectral

information are reassembled using Inverse Medical Computed Tomography (IMCT)

mathematical techniques [186].

6.4.4 Spatio-Spectral Scanning Imaging Method

The Spatio-Spectral scanning imaging method takes advantage of both spatial and

scanning imaging and put into practice for constituents situated at angled positions

and difficult to image, using line scanning, spectral scanning, and snapshot scanning

imaging methods. It produces a series of diagonal thin slices in a hyperspectral data

cube. More accurately speaking, each image represents two dimensions in which one is

λ coded. It combines partial advantages of spatial and spectral scanning and acquires

the spectrum of a given sample using point scanning. A prototype Spatio-Spectral scan-

ning system consists of a slit spectroscope at some suitable, non-zero distance before a

camera, in which scanning each 2-D sensor output represents a λ=λ(y)-coded, spatial
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(x,y) map of the scene. An entire array of pinholes is used to project a series of projec-

tions onto the prism or grid. Each projection is used to make a rainbow-coloured strip

which adds to the recorded 2-D image. The scanning process is accomplished through

camera movement orthogonal to the slit or entire system can be displayed at a right

angle to the slit, or a dispersive element can be placed just before a spatial scanning sys-

tem. The Figure 6.2 (d) shows the spatio-spectral system image formation or scanned

image. The remote sensing, with the idea of super-resolution, uses the Spatio-Spectral

approach extensively [187–189]. Masia, F. et al. have presented the concept of sparse

sampling for fast hyperspectral Coherent Anti-Stokes Raman scattering imaging while

retaining the original spectral information. For a human osteosarcoma U2OS cell, the

hyperspectral imaging acquisition time was reduced by a factor of 25, and this method

applies to hyperspectral imaging techniques with sequential spectral acquisition [190].

6.5 Coupling Optical-Modalities with HSFI

A hyperspectral imaging system can be combined with different imaging modalities to

obtain the collective benefits of each imaging modality for disease diagnosis in cells

and tissues. Combined Imaging techniques include confocal microscopy [191–195], po-

larimetric imaging [196–200], fundus cameras [201–204], Raman microscopy [205–209]

and laparoscopy [210–212]. Investigations of the spectral properties of tissue become

much easier after the fusion of HIS with above mentioned techniques in providing use-

ful information. Fu, D. et al. fused a hyperspectral imaging system with stimulated

Raman scattering by chirping femtosecond laser, and explored that the combination of

fast spectroscopy and label-free chemical imaging enabled new applications in study-

ing biological systems [213]. The combination of hyperspectral point-scanning micro-

scope, a confocal microscope along with a point-scanning spectrometer (fluorescence

light from the sample falls on the prism) before a linear detector array which has a

high spectral resolution of 0.003 µm with the diffraction-limited spatial resolution and

multiplex technology for live cell imaging [214, 215]. The fusion of a hyperspectral

line-scanning microscope system and Image Spectrometer (IS) used a Powell lens for

line-focusing of excitation light on the sample plane [216]. The same objective used

for light collection creates an image on the entrance slit of the Image Spectrometer. A
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two dimensional detector array is used to capture the dispersed spectral components

of the line image. There is an increase of the image data cube acquisition speed and

spectral range from VIS to IR of the imaging system, but it affects the image contrast

and spatial resolution due to the slit operation [2, 217–220]. Billecke, N. et al. did

chemical imaging of lipid droplets in muscular tissues using hyperspectral coherent

Raman microscopy, and correlated these signatures towards Obesity and pathogenic

development of insulin resistance in type-2 diabetes. Label-free stratification of ec-

topic fat deposition and cellular organelle imaging becomes possible in fresh tissue

sections with virtually no sample preparation [221]. Milos Miljkovic et al. developed

a method based on a Raman label-free imaging method for human cells with less than

a micrometre of spatial resolution. The Raman hyperspectral image is reconstructed

by spectral contrast due to biochemical compositional changes, which provides further

insight for the spatial information signature in a sample [222]. Francesco, M. et .al.

improved the abilities of Hyperspectral Image Analysis (HIA) in combination with

Coherent Anti-Raman Scattering (CARS), Stimulated Raman Scattering (SRS), and

Spontaneous Raman Data (SRD) by reducing the spatial variation in the spectral error

and speeding up sequential hyperspectral imaging to suppress motion artefacts. Xu

J. et al. developed an ultra-broadband Hyperspectral Multiplex Coherent Anti-Stokes

Raman Scattering (HM-CARS) system to perform chemo-selective histological imaging

for stain-free clinical histopathology of clonal tissue samples. This system along with

PCA can bypass many complicated histopathological procedures, providing a tissue

fingerprint [223]. Vasefi, F. et al. developed a multimode dermoscope that can be

used to map the distribution of specific skin molecules by combining polarization and

hyperspectral imaging along with an efficient analytical model. It has matched phys-

iological and anatomical expectations, confirming a technologic approach applied to

next-generation dermo-scopes which appeal to dermatologists very well [224]. The Hy-

perspectral Imaging System coupled with fundus camera to acquire auto-fluorescence

images of eye is the latest emerging technology, and is an important tool for non-

invasive diagnosis of the eye disease [225, 226]. Roger, A. Schultz et al. developed a

prototype hyperspectral imaging system capable of capturing the emission spectrum

from a microscope optically coupled to an imaging spectrograph, with output recorded

by a CCD camera; using the software it can reconstruct hyperspectral data samples
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relevant to cytogenetic, histologic and cell fusion [227]. Imaging spectrometers and flu-

orescence microscopy combine together in the form of a hyperspectral imaging system

in which simultaneous capturing of typical biomolecular signatures is used for the lo-

cation of emissions. There is a construction of spectral libraries for automatic analysis

in successive acquisitions [228]. The small fields of view FOV’s of the imaging system

limit application, which can be replaced with large FOV by integration with confocal

scanning microscope [229].

6.6 Hyperspectral Fluorescence Imaging System Comparison

In the chapter 2 we have discussed in detail the optical properties of biological tissues.

Based on optical properties of biological tissue which are reflectance, fluorescence, and

transmission the hyperspectral system can work in different measurement modes across

the whole range of the electromagnetic spectrum. Most of HSI systems work on re-

flectance and in many cases, fluorescence and reflectance modes are coupled together

to identify bimolecular signatures of various tumors [230]. In transmission mode, light

is transmitted through tissue samples from a light source placed below the sample

holder and collected by an imaging spectrograph placed above the sample [231]. In our

laboratory, we have implemented the fluorescence mode along with EMCCD camera

in an inverted microscope for hyperspectral fluorescence imaging of biological cells and

tissues. In a hyperspectral imaging spectral resolution depends upon the number of

channels in a given wavelength band, if there more channels in a given band the res-

olution will be more. Similarly the spatial resolution depends upon the camera used

in hyperspectral imaging system. If camera has high spatial resolution hyperspectral

system will be better in spatial resolution. Table 6.1 shows the comparison of differ-

ent fluorescence and reflectance hyperspectral imaging systems along with spatial and

spectral resolution.
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6.7 Hyperspectral Image-Processing Methods

Image-processing methods make use of computer-based algorithms for the extraction,

storage, and manipulation of information from hyperspectral image data. The ex-

traction of relevant information make use of processing and data-mining techniques.

Analysis, classification, regression, target detection, and pattern recognition are com-

monly used in data-mining and processing techniques [241]. The image obtained by

the camera is stored in the system as a hypercube (M×N×λ). Here M is the number

of rows, N the number of columns and λ the number of channels (for the hyperspec-

tral image case it is more than three). The Spectral Control and Acquisition System

(SCAS) written by the specific user can do specific hyperspectral application depending

upon the capability of the code. Statistical information about the image is analysed

in a histogram of pixel values [242]. The 3D hyperspectral data-cube usually store

images in format Band Interleaved by Line (BIL), Band Sequential (BSQ) or Band

Interleaved by Pixel (BIP). All of these file formats are known as ENVI, based on com-

mercial software. Every file format has advantages and disadvantages for particular

hyperspectral analysis, but BIL formats are most suitable to the majority of hyper-

spectral image- processing tasks. There are many spectroscopic, chemometric analysis,

and machine-learning tools such as Principal Component Analysis (PCA) and Partial

Least Squares Regression Analysis (PLSRA) which can provide real-time detection of

multiple constituents and can be used to process the spectral information within the

hyperspectral image. The hyperspectral image workflow consists of image acquire-

ment, calibration, Spectral-Spatial Pre-processing, and reduction of dimensions, and

detection of a specific target.

6.7.1 Hyperspectral Image Analysis

A medical hyperspectral data cube contain much diagnostic information extracted at

the level of tissue, cells, and molecules. All spectral and spatial information present in

the hyperspectral data cube has a crucial importance for disease screening, diagnosis,

and treatment. The hyperspectral data-sets use advanced image-classification methods

for extraction, unmixing, and classification of relevant spectral information from the

data of the captured image [243]. The goal is to relate these molecular signatures with
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the state of the specific disease by decomposing mixtures of spectral and spatial infor-

mation spectra into intrinsic molecular components. Hyperspectral image analysis, in

the field of remote sensing has made much progress, but there is less improvement of

hyperspectral image-analysis methods in the clinic. The hyperspectral image consists

of many objects with different spectral properties, and not every pixel in the image

represents a single fluorophore but may be a combination or mixture of various spec-

tra. The complexity of this mixing depends upon the spatial resolution of the system,

what type of fluorophores are present in the image, and the distance of the image

formation from the camera [244]. A hyperspectral imaging system must have enough

spatial resolution relative to the number of target endmembers so that the abundance

of each target end-member within a given pixel makes it possible to implement he ex-

traction techniques [245, 246]. The image pre-processing, feature extraction/selection,

and classification are the fundamental step involved in HSI analysis.

6.7.2 Hyperspectral Image Pre-Processing Methods

Hyperspectral image pre-processing methods aim to display image information more

clearly and pre-processing is used to process the image in spatial as well as spectral

domains. Noise reduction, image segmentation (Selection of ROI by masking the im-

age areas) [247–250], image smoothness, flattening, normalisation, baseline correction

and compression of image data are used in image pre-processing. Background masking

also called binarization, uses factor analysis or PCA methods [251], and is just like

choosing a sample from some population in statistics [252]. Spatial pre-processing can

affect the spectral signature so that it is usually not applied to calibrated images or

raw data. Spatial post-processing is commonly used for interpretation, manipulation

and pattern recognition for ordinary images. Specific features that exist in signal in

the time domain are extracted using appropriate filters in the frequency domain [253].

Spectral features like spectral shape and peak width can be obtained using the differen-

tiation tool (first and second order derivative tests) and baseline corrections [254, 255].

Tsai, F. et al. used differentiation analysis of hyperspectral data for detecting spectral

features, and extracted subtle information at different spectral scales of interest [256].

In spectral pre-processing of hyperspectral images, endmembers can be extracted us-

ing the spectral library of intrinsic signatures. Pixel Purity Index (PPI) and N-finder
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algorithms require pre-processing methods such as spectral unmixing, target detection

and classification before their implementation [141]. Maider Vidal et al. showed that

the removal of noise, dead pixels, spiked points, and data compression from the hy-

perspectral image are a prerequisite for image analysis [257]. Estimation of abundance

in unmixing is similar to concentration in PLS regression. Robert Korprowski et al.

proposed a method which subdivides spectral image processing into three steps: read-

ing image from the data file, matrix conversion of raw data and preliminary image

analysis, and provided the solution to extract the selected features from the massive

data image in the MAT-LAB platform [258]. Image segmentation is necessary with

a medical hyperspectral fluorescence image and can be done either manually or auto-

matically [259, 260]. Both spatial and spectral pre-processing techniques can be fused

together under an integrated processing algorithm or unified mathematical framework

[261]. One researcher used crossed information in composite kernel methods by the

fusion of spatial and spectral pre-processing methods integrally for the classification,

segmentation and unmixing of the hyperspectral image data. Mendoza et al. extracted

both spatial topological and spectral latent variables in image segmentation using a

butterfly approach [262]. Data-Driven Markov Chain Monte Carlo (DDMCMC) used

the computer simulation for image segmentation which operates in the Bayesian statis-

tical unification the framework in which many segmentation algorithms play roles such

as edge detection, clustering, region growing, split-merge, snake/balloon, and region

competition [263]. Fu, D. et al. used a cell-segmentation method based on spectral pha-

sor analysis of hyperspectral stimulated Raman scattering image data. They combine

the technique with the branch-bound algorithm for optimal unsupervised segmentation

selection of cellular organelles of mammalian cells [264]. Gabriel, Martin, Antonio, and

Plaza et al. developed a pre-processing method after fusion of spatial and spectral in-

formation. Spatially homogeneous and spectrally pure pixels are used from each cluster

in image analysis before end-member identification and spectral unmixing [265].

6.7.3 Feature Extraction and Selection Methods

Hyperspectral images have a lot of redundant information in both spectral and spa-

tial domains. Feature extraction is a linear or nonlinear transformation that reduces

the data redundancy by transforming it into a new lower-dimension space, so there
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should be efficient and accurate extraction of diagnostic information from the data-

set. General feature extraction methods include PCA [266], PLS [267] , Kernel PCA

[268] and a Linear Discriminant Analyser (LDA). All of the above methods preserve

the information necessary for the application under consideration, for example, clas-

sification and detection minimising the classification error. A detailed explanation

of the PCA steps used for medical hyperspectral images was presented by Guolan,

Lu. and Baowei, Fei. [226]. Other PCA techniques include Independent Component

Analysis (ICA) [269] and Minimum Noise Fraction MNF [270]. The relative distribu-

tions of molecular component mixtures, identification of vital discriminative features,

and estimation of spectrum in the spectroscopic data are possibly using these PCA-

based methods. Unlike the extraction technique, the feature-selection method does

not require low- dimensional space. In this extraction method well-known algorithms

(branch and bound [271], greedy hill climbing [272], exhaustive search [273], floating

search methods [274–276], bidirectional search [277], projection pursuit) [278, 279] are

used to find the optimized solution from the given hyperspectral image data. In bioin-

formatics, its use is for contents and micro-array analysis. Its objective function is

subdivided into three methods: filters, wrapper, and embedded. Every technique has

specific advantages and disadvantage for a given application [280]. Mehmet Fatihakay

analysed the Wisconsin Breast Cancer Data-set (WBCD) using a combination of SVM

and a feature selection method without compromising classification accuracy or sensi-

tivity; specificity and classification accuracy was found to be 99.51% for s SVM model

that contains five features [281].

6.8 Hyperspectral Data Classification

Classification methods applied for most hyperspectral medical imaging include pixel

and subpixel methods. The (mostly supervised) classification methods include Sup-

port Vector Machines (SVMs) [282], Artificial Neural Networks (ANN) [283], Spectral

Information Divergence (SID) [284], and Spectral Angle Mapper (SAM) [285].
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6.8.1 Support Vector Machines

The SVM algorithm is a kernel-based machine-learning technique, commonly used in

hyperspectral-image data classification and relying on statistical learning theory that

separates the linearly separable feature space with maximum margin into classes [286].

A non-linear SVM having a higher-dimensional feature space can be used along with

slack variables in case the feature space is not linearly separable. They are less sen-

sitive to the curse of dimensionality, so are used for universal classification solutions.

The disadvantage of SVMs includes the trial-and-error based method of finding the

best kernel function for a given problem. Therefore, non-linear SVMs can be used in

combination with feature-extraction methods to make an effective framework for clas-

sification and regression analysis, such as kernel- PCA, kernel discriminant analysis

[287] and LDA-SVM [288]. Masood, K. et al. used SVM algorithms for Hyperspectral

Texture Analysis (HTA) for colon tissue biopsy classification [289]. Kong et al. used

support vector machine analysis for hyperspectral fluorescence imaging data analysis

to detect skin tumours, in which hyperspectral images were obtained on 21 channels

with λ=440-640 nm [290]. SVMs along with feature-selection techniques were used to

detect breast cancer [291, 292], classification and validation of cancerous tissue [293],

gene selection to detect cancer [294], bladder cancer recognition [295]. In Raman hy-

perspectral imaging SVMs are used for prostate cancer detection hyperspectral imaging

[296].

6.8.2 Artificial Neural Networks

An Artificial Neural network (ANN) is a classification method whose implementation on

the hyperspectral image depends on the information acquired from different sensors, the

parameters used to obtain an image, the nature of the pixel information and the number

of outputs generated for each spatial element of data [297, 298]. The Convolutional

Neural Networks (CNNs) are used for a feature-learning approach for the classification

of hyperspectral images. They provide information about the structured features,

spectral band-pass filters resemblance, using the direct input of hyperspectral data

[299]. Qian Wang et al. developed an identification method combining both spectral

and spatial features and an SVM recursive feature to differentiate lymphoblasts from
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lymphocytes. The Marker-based ANN learning vector quantisation was proposed to

perform identification with the integrated features [300]. Romuald Jolivot et al. used

an ANN based algorithm to construct a hyperspectral data-cube from multi-spectral

image data, which can improve diagnosis of skin cancer and inflammatory diseases [301].

Frederic Ratle et.al. proposed a semi-supervised framework of ANN and a bendable

embedding regularizer for the classification of unlabelled samples. The classification

accuracy and scalability for hyperspectral image improved and the system can handle

millions of specimens in remote sensing [302].

6.8.3 Data Unmixing Models

Linear Spectral Unmixing (LSU) is a fundamental method for data analysis [303].

Its underlying assumption is that observed spectra should be a linear combination of

all the constituents spectra, called end-members. The linear combination consists of

concentrations of fluorophores, absorption and reflectance coefficients. In fluorescence

hyperspectral imaging method tissue or cell image signatures are linear combinations

of the fluorophores and they can be expressed in an equation

Ap = Xf + r =
N∑
i=1

Xifi + r (6.1)

Here is the observed spectrum, f is the abundance coefficient vector, N the number of

end-member spectra of X, r is the residual or noise, and can be found in the literature

[304]. Linear spectral unmixing may be supervised or unsupervised whether X is known

or not [236]. If there is no noise r and there are M materials present in the unknown

sample, there should be M vertices of the hull in (M-1)-dimensional space. If there

are four materials A, B, C and D present in the spectrum, the tetrahedron should

show four vertices for the pure constituents in three-dimensional space. A convex hull

showing vertices A, B, C and D is shown in the Figure 6.4 below. Similarly, for three

pure constituents, a two-dimensional triangle exists having three vertices [305, 306]. A

straightforward geometrical interpretation to find end-members is that the spectra of

all individual pixels represent a specific cluster in an N-dimensional space. The cluster

contained within a convex hull is called a simplex, and each pixel spectrum point within

this simplex represents a linear combination of the spectra presented on the vertices

of that simplex. Errors are typically between 5-10%. According to Liang Gao.et al.
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Figure 6.4: A convex hull showing four vertices

LSU contains a hyperspectral measurement matrix X having dimension M ×P , here P

image pixels and M spectral bands. In Linear Spectral Unmixing (LSU), X denotes a

linear combination of the fundamental elements given by the following equation [307].

X = SC +R (6.2)

S is the spectral constituent matrix having dimension M ×K, C is the chromophore

concentration K × P matrix, and R is the additive noise matrix. For supervised

unmixing, the equation is

C? = S‡X (6.3)

is an estimation of C? and the Moore-Penrose pseudo-inverse of matrix S‡. The rank

of the matrix C and the spectral-component matrix S ≥ postulated chromophores. It

has two advantages:

1. The hyperspectral imaging permits a general experimental procedure for imaging

a diversity of chromophore mixtures with no change of filters.
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2. It expedites the unsupervised Linear Spectral Unmixing.

For the formation matrix S, supervised LSU requires accurate and up-to-date infor-

mation of the emission and reflection spectra of biomarkers and database. For in-vivo

tissue measurements, prior knowledge of the emission and reflection spectra is chal-

lenging to obtain or sometime not reliable for use, e.g. when the experimental chro-

mophore spectra show unrepeatable results or biological variations, supervised spectral

unmixing become inapplicable. Under such situations, HSFI become necessary for the

collection of spectral samples to estimate spatial and spectral components [308, 309],

green, yellow, and red are used for normal, precancerous, and cancerous fibroblast

nuclei respectively.

6.9 HSFI Application in Optical Diagnostic

A hyperspectral imaging system along with software analysis tools is used for the di-

agnosis of a variety of malignant diseases. Almost all types of cancers e.g. (breast

cancer [310], head and neck cancer [311] , colon cancer [312], skin cancer [219, 313]),

(crime-scene investigations and age estimation [314, 314]. Gastric cancer [219, 315–

317], cervical cancer [318, 319], ovarian cancer [320, 321], oesophageal cancer, brain

cancer [322], colorectal cancer [323], and cancer metastasis [324], are diagnosed using

different hyperspectral acquisition methods, and the heart and circulatory pathology,

retinal diseases, diabetes, haemorrhagic shock by taking real-time images using label-

free tissues and cells. Beule P. et al. used hyperspectral fluorescence lifetime imaging

with an optically sectioned whole-field for label-free biological tissues [325]. Bjorgan,

A. et al. developed a hyperspectral imaging system to estimate optical parameters of

skin for real-time tissue diagnostic [326]. Cancio, L.C. et al. proved that HSI is an in-

novative approach to diagnose haemorrhagic shock [327]. Cassidy, R. J. et al. analysed

hyperspectral colon-tissue images using vocal-synthesis models. [328]. Wang, C. et

al. introduced a hyperspectral imaging method for detection and quantitative analysis

of cervical neoplasia for the comparison with clinical findings to assess the accuracy

and efficacy of the process [329]. Martin, E. Gosnell et al. did hyperspectral auto-

fluorescence imaging of neurosphere-derived cells to investigate neuro-degenerative dis-

eases from olfactory patient mitochondrial MELAS (myopathy, encephalomyopathy,
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lactic acidosis, stroke-like syndrome). cellular maps of the native fluorophores, free

and bound NADH, flavin, and retinoid revealed subtle subpopulation metabolic signa-

tures. We now present some of the novel hyperspectral images techniques for disease

diagnosis.

6.9.1 Breast Cancer

Due to the massive time consumption in the standard diagnosis of an image pattern

by a professional radiologist, automated classifiers process the diagnosis in mammogra-

phy, saving time without any cost of accuracy in distinguishing benign and malignant

tumours. Figure 6.5 is taken and modified from refrence [330] shows the image differ-

entiation enhancement after Artificial Neural Network (ANN) processing. ANN plays

Figure 6.5: Results (a-c) original image, Image after ANN processing, and image after

ANN processing along with Gabor wavelets as input

a vital role to diagnose breast cancer. Much less data is available for these detection

techniques concerning specificity and sensitivity. Support Vector Machine (SVM) de-

cision tree and ANN are frequently used classifications to detect breast cancer at the

early stages by statistics. Emad, A. Mohammed et.al implemented Fine Needle Aspi-

rate (FNA) technology and analysed the data using new Ordered Weighted Averaging

(OWA) operator for early diagnosis of cancer with 99.71% accuracy [331].
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6.9.2 Cellular Differentiation Using Hyperspectral Imaging

Hyperspectral images along with algorithms can be used to distinguish normal, precan-

cerous, and cancerous cells. The figure 6.6 is taken and modified from reference [332]

shows left and right image comparisons based on spectral libraries. Comparison of

normal human fibroblast, as well as its telomerised and SV 40-transformed derivatives,

have been made using the standard algorithm. Gaudi, S. et al. explained that hy-

perspectral imaging of melanocytic lesions allows the identification of objects through

their unique spectral signatures. Further investigation of HSI in classifying a neoplasm

is encouraged [333]. Guolan, L. et al. drew tumour margins in an animal study during

surgical resections which always remained a challenging task [334]. Hattery, D. et al.

created a blood volume and obtained blood oxygenation hyperspectral images using

a multilayered tissue model used for patient treatment monitoring [335]. Amicia, D.

Elliott et al. did real-time hyperspectral snapshot fluorescence imaging of pancreatic

b-cell dynamics in combination with an image-mapping spectrometer (IMS), and their

device can acquire real-time signals from multiple fluorophores with high collection

efficiency of 65% and an image acquisition rate 7.2 fps. The figure 6.7 which is taken

and modified from [336] shows how they reconstructed He-La cell images using their

protocol. Kester, R. et al. put forward an image-mapping spectrometry introducing

a new snapshot hyperspectral imaging platform for a variety of applications starting

from remote sensing, to surveillance, and live-cell microscopy to medical diagnostics

[337]. It facilitates the capturing and identification of the different spectral signatures

present in an optical field during a single-pass evaluation, including molecules with

overlapping but distinct emission spectra.

6.9.3 Fundus Camera and Hyperspectral Imagining

Gao, L.et al. did hyperspectral images of the eye at λ=470-650 nm wavelengths to

reveal minute eye differences. This optical technique can perform real-time imaging

of oxygen saturation dynamics with a sub-second temporal resolution [338]. Sunni, R.

Patel et al. measured the retinal reflectance of arterioles and venules using a prototype

hyperspectral retinal camera repeatedly, giving hope for correct retinal-oxygen satu-

ration values in future imaging [339]. D.C. Gray et al. made use of the advantages
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Figure 6.6: (A) Corrected hyperspectral image of normal fibroblasts and algorithm-

based nuclear classification on the left and right respectively; (B) Corrected hyper-

spectral image of precancerous fibroblasts and their algorithm-based nuclear classifi-

cation on the on the left and right respectively; (C) Corrected hyperspectral image of

cancerous fibroblasts and their algorithm-based nuclear classification on the left and

right respectively Note: Green, yellow and red are used for normal, precancerous and

cancerous fibroblast nuclei respectively

of multi-spectral, adaptive optics and confocal fluorescence imaging to resolve single

cells in healthy and diseased retina. The figure 6.8 is taken and modified from refer-

ence [340] shows the images and their resolution at the different wavelengths. Julia

Schweizer et al. diagnosed age-related macular degeneration in the eye; they acquired

and analysed hyperspectral images to detect the oxidative state of cytochrome-C in

real time [341]. Measuring biochemical status without additional biochemical markers
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Figure 6.7: Triple-labelled He-La cells and spectral unmixing in ECFP, EGFP and

SYFP; (A) The reference image was taken by a colour camera directly at a microscope

slide; (B) D, E and F are the images obtained after merging; (D-F) Pseudo-coloured

images of the unmixed component in a linear unmixing algorithm on am Image mapping

spectrometer (IMS) measured data-cube. The spectral-component images indicate

subcellular localisations of the FPs

in-vitro is possible using the developed system. It has been applied in ophthalmol-

ogy to detect macular degeneration in the eye [342], oxygen saturation and diabetic

retinopathy applications [343].

6.9.4 Lung Cancer Detection

Silas, J. Leavesley et al. did hyperspectral imaging microscopy for identification and

quantitative analysis of fluorescently labeled cells in highly autofluorescent tissues.Su,

M.et al. fused HIS data with Foliage-Penetration Synthetic Aperture-Radar (FOPEN

SAR) data which can enhance overall detection and classification performance [344].
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Figure 6.8: Typical images taken by the HRC to create a hyperspectral cube of retinal

images between 500 and 600 nm at 5 nm intervals with an exposure time of 80 ms

Eung, S.H. et al. made hyperspectral fluorescence imaging of cellular iron for in vitro

model of Parkinson disease and said that the diagnosis application might expand to

various neurological disorders involving alkalis and alkaline metals in the body.

6.10 Discussion

Medical hyperspectral fluorescence imaging (MHFI) technology is a methodology which

can solve our complex medical problems more efficiently and precisely. Medical Fluo-

rescence Hyperspectral Imaging (MHFI) is used in image analysis for visualizing the

chemical composition of the compartments in the body of the living organisms. MHFI

is also used to keep an eye on tissue oxygenation and blood volume during surgery to

provide real-time data continuously during surgical procedures [345, 346].The optical

penetration depth is inversely proportional to λ and cannot penetrate deep into tissue,

which limits the application of HFI. The optical penetration depth of light in the tissue

is 0.0357 cm at λ=850 nm and 0.048 cm at λ=550 nm respectively. This penetration

depth limitation can be avoided by using reflectance hyperspectral images. Snapshot

hyperspectral imaging facilities have much usage where there is a possibility of motion

artefacts, and data analysis can be made using latest data cube formats like vortex data

analysis in MATLAB using the latest Math-Work-Simulink facilities. Fluorescence and
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reflectance based hyperspectral imaging methodology have been used successively to

probe and diagnose tissues with a healthy and diseased state. Still, there is much

research remaining in hyperspectral imaging on a molecular level. To investigate the

fusion of a hyperspectral imaging system with Raman spectroscopy is s a better choice.

So Raman hyperspectral imaging in combination with HSFI, or in some cases unifi-

cation of CARS, also provides insight into the molecular level. The spectral libraries

of tissues, cells, and molecules signatures should be up-to-date, so that this database

should be used effectively for various disease diagnosis and treatment. Furthermore,

advanced data-mining and classification methods are still essential to fully utilise the

plentiful spectral and spatial marks of the constituents in hyperspectral images.

6.11 Conclusion

Hyperspectral imaging methods obtain a 3-D hyperspectral image data-cube, having

spatial and spectral dimensions. All of the four data-acquisition and imaging techniques

are fully described along with the latest research. As an emerging imaging technology,

Hyperspectral Imaging applications exist from research to medical trials. Fusion of

HSFI with other imaging modalities, including Raman scattering, confocal microscopy,

the fundus camera and PET scanning, results in acquiring more useful data. Analysis

of hyperspectral data with the latest unmixing and classification algorithms is detecting

changes in cells at the molecular level and diagnosing malignant disease at early stages

with astonishing results. The combination of research results along with clinical trials

provides an excellent potential in improving the hyperspectral imaging modalities to

produce reliable and accurate results in terms of diagnostics, monitoring and tumour

marking during surgical procedures. The spectral libraries including the latest research

discoveries can improve the supervised unmixing techniques. In unsupervised unmixing

new advanced classification algorithms like the combination of support vector machines

and artificial neural networks are promoting. Snapshot hyperspectral imaging along

with vortex analysis has made Hyperspectral Imaging much fast in processing.
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7
Auto-Fluorescence Quenching

Quantification of NADH (Manuscript V)

7.1 Fluoroscopic Data Acquisition Instruments

A spectro-photometer is an instrument used to measure the intensity of light across a

wavelength (λ) in a spectrum. It can be used to measure the excitation and emission

spectra of materials under investigation. Figure 7.1 (a) shows the schematic diagram

of a spectro-photometer. The light source, excitation monochromator, sample housing,

emission monochromator, and detector are the main component of any fluorescence

measurement setup. The Continuous Wavelength (CW) λ source produces light of all

wavelengths and a monochromator selects wavelength used to illuminates the sample.

The emission filter is used to collect the fluorescence light from the sample at a right

angle to the incident beam and finally detector gives the fluorescence signal. In next,

section we will explain the fluorometer components and their functions in detail. The
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light source shown in the figure can be a Xenon arc lamp, a high-pressure mercury

lamp, a quartz-tungsten halogen lamp or a solid state light source like LED or a laser.

Among these light sources Mercury arc lamp is the one which emits high-intensity

Figure 7.1: (a) Schematic diagram for fluorescence spectro-photometer (b) Cary

Eclipse fluorescence spectro-photometer used for In-vitro for experimental measure-

ment (c) Different components of Fluoro-log Tau-3 system (d) Fluoro-star Galxy photo-

spectrometre to read fluorescence data from micro-plates

light over a broad range of wavelengths covering UV to near IR region. This broad-

band light spectrum consists of many wavelengths which can be separated using a

monochromator. The monochromator makes use of basic filters, a diffraction grating

for wavelength selection and is designed to have a high efficiency and sensitivity. The

detector consists of a photomultiplier tube (PMT) to detect the fluorescence signal over

a wide range of λ’s with high sensitivity and gain. Most of the spectro-photometer
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available now use a PMT as the detector and even it can detect single photon also.

In our experiments, we used Fluorolog Tau-3 for auto-fluorescence measurement it is

shown in figure 7.1 (c) with its components. We used it for auto-fluorescence signal

measurements of He-La cell suspension targeting NADH emission spectra. We excited

the He-La cell suspension at λ=340 nm and emission collected from λ=400-650 nm.

The Cary Eclipse Fluorescence spectrometer is simple and capable of collecting the light

from four different modes. These are fluorescence, phosphorescence, bioluminescence,

and time-resolved phosphorescence. But the sensitivity of Cary Eclipse spectrometre

is lower as compared to Fluorolog Tau-3 system, therefore, we used it for In-vitro

fluorescence measurements and to acquire the in-vitro data of NADH for EEM. It is

shown in the figure 7.1 (b).

7.2 Motivation for Auto-fluorescence Quenching Quantifica-

tion

NADH is a coenzyme which plays an important role in energy metabolism, mitochon-

drial functions, oxidative stress generation, and cell death [347]. So NADH fluorescence

quenching can tell us about the state of the cell which can be used in cellular diagnosis.

In this work, we performed in-vitro and in-vivo fluorescence quenching quantification

experiment of free and bound NADH in He-La cell line model.

7.3 Author’s Contribution to Manuscript V

Being the principal author of this paper, the Ph.D. candidate (Aziz ul Rehman) has

discussed an idea of fluorescence quenching with principal supervisor Ewa M. Goldys.

This work has generated two articles, one article having the title Fluorescence quench-

ing of free and bound NADH in He-La cells determined by hyperspectral imaging and

unmixing of cell autofluorescence has been published in Biomedical Optics Express and

the second article is ready for submission. For the second manuscript having the title,

Auto-Fluorescence Quenching Quantification of Free and Bound NADH In He-La Cell

Line Model, principal author acquired preliminary data for in-vitro results of NADH

and FCCP quenching on Cary Eclipse Fluorescence spectrometer. Idea worked very
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well, so we have extended this in-vitro work towards cellular studies for He-La cell line.

Second author Ayad G. Anwer involved in the rest of the experimental work for cellular

fluorescence quenching studies in He-La cell line model. We did red to green ratio ex-

periment for mitochondrial membrane potential. The Manuscript has been written by

Aziz ul Rehman and Prof. Ewa M. Goldys checked it and highlighted the shortcoming.

7.4 Manuscript V

Aziz ul Rehman, Ayad G. Anwer, and Ewa M. Goldys, Auto-Fluorescence Quench-

ing Quantification of Free and Bound NADH In He-La Cell Line Model (Ready for

submission)

7.5 Auto-Fluorescence Quenching Quantification of NADH In

He-La Cell Line Model

Aziz ul Rehman1,2,3, Ayad G. Anwer1,2, and Ewa M. Goldys1,2

1Department of Physics and Astronomy Macquarie University, Sydney, 2109, New

South Wales, Australia
2ARC Centre of Excellence in Nano-scale Bio-photonics, Macquarie University, Sydney,

2109, New South Wales, Australia
3Biophotonics Laboratory, National Institute of Lasers & Optronics, Lehtrar Road,

Islamabad 45650,Pakistan

Abstract

Nicotinamide Adenine Dinucleotide (NADH) is an intrinsic key fluorophore in cells and

tissues of key relevance importance to cellular energy metabolism, mitochondrial func-

tions, antioxidation/generation of oxidative stress, and cell death. Its fluorescence can

be quenched by Carbonyl cyanide-p-trifluoro methoxy phenylhydrazone (FCCP). We

have investigated in-vitro and cellular (He-La cells) chemical auto-fluorescence quench-

ing quantification of the free and bound NADH/NADPH in a broad range of FCCP

quencher concentrations (0.010-5.0) mM. In-vitro studies show significant and more
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pronounced fluorescence quenching rate in free-NADH as compared to bound-NADH.

The suspended cells show a higher auto-fluorescence quenching rate as compared to

both plated cells and free NADH solution. The decrease in red to green ratio with in-

creasing concentration of quencher confirms that FCCP is responsible for mitochondrial

depolarization in He-La cells.

7.5.1 Introduction

Fluorescence quenching has turned out to be a valuable tool to explore various aspects

of protein binding studies and it first exploited for these type of applications in the late

1960s and early 1970s [348–350]. In Fluorescence quenching phenomenon the fluores-

cence intensity of the fluorophore is reduced (quenched) while interacting with another

molecule, called a quencher. Fluorescence quenching occurs due to many interactions

including a Dynamic Quenching [351–353], chemical reaction, and a transfer of energy

to the vicinity molecules. The quencher molecule may form a complex by reaching in

close proximity, probably with one or more intervening solvent molecules and when

this complex is excited, it returns to the ground sate without light emission resulting

in static quenching. Fluorescence quenching has many applications including diffusion

of oxygen in membranes [354], sensing of a wide variety of analytes including heavy

metals [355], Nitric Oxide (NO) [356] and oxygen [357].

The Nicotinamide Adenine Dinucleotide (NAD) is a key cellular water-soluble fluo-

rophore found in bound and free forms in mitochondria and cytosol respectively [358].

This coenzyme is frequently used as a metabolic fingerprint [359, 360]. The NADH,

the reduced form of NAD, absorbs at λ=340 nm and emits around λ=465 nm. Upon

binding with proteins, change in NADH fluorescence Quantum Yield (QY) occurs (in-

crease or decrease) depending upon the type and way the protein binds with NADH.

For example if the NADH binds with protein in an elongated fashion there is a four-

fold increase in QY yield which is due to contact prevention between adenine and the

fluorescent-reduced nicotinamide group [361]. This increase in QY has been used to

study binding of NADH to proteins and single-molecule protein-folding [362, 363]. It

contributes in energy metabolism, reductive biosynthesis, and anti-oxidation [364–366],

and can be used for cellular investigation without any physical perturbations [367].

The NADH and FAD are metabolic pathways co-enzymes involved in glycolysis, Krebs
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cycle, and Oxidative phosphorylation [347]. The fluorescence of NADH and flavin rep-

resent a major contribution to autofluorescence from the cells [368, 369]. In the reduced

state NADH is fluorescent and while in oxidized form NADH is non fluorescent[370].

The oxidation of NADH can be induced by sodium borohydrate, cyanides, and oxy-

gen which react both with free and bound NADH [371, 372]. In the present work we

are reporting first time, in-vitro (in solution) fluorescence quenching quantification of

FCCP with NADH in a broad range of FCCP concentration i.e, up to 5 mM. We are

providing fluorescence quenching quantification across the whole Excitation Emission

Matrix (EEM) of NADH. We have extended this in-vitro study towards cellular study

in case of He-La cell line. We did auto-fluorescence quantification of free and bound

NADH in He-La cells across a broad range of FCCP concentrations (0.010-1.00) mM.

We did comparison auto-fluorescence quenching of plated and suspended He-La cells

with NADH solution fluorescence quenching study. The JC-1 staining experiment was

performed on He-La cells and plotted the red to green ratio versus FCCP concentration.

7.5.2 Materials and Methods

Free and bound NADH Sample Preparation

To prepare free NADH and NADPH solution first a stick solution of 5 mM of NADH

and NADPH was prepared. Other concentrations were obtained just by dilution in

distilled water. To prepare bound-NADH in solution, 50 µM β-NADH was prepared by

binding the L-Malate Dehydrogenase (L-MDH, Sigma Aldrich ]10127248001, from pig

heart) protein. Both 50 µMNADH (Sigma Aldrich ] 10107735001) and 100 µM L-MDH

was dissolved in 100 mM Mops (Sigma Aldrich ] M1254) buffer (pH 7.0) to prepare 50

µM β-NADH. Moreover, to prepare 50 µM β-NADPH, 50 µM NADPH (Sigma Aldrich

] 10107824001) and 100 µM L-MDH was mixed in 100 mM Mops buffer (pH 7.0).

Meanwhile 50 mM of FCCP (Sigma Aldrich ] C2920-50MG) solution was prepared

in Dimethyl Sulfoxide (DMSO, Sigma Aldrich ] 8418-50ML). Appropriate amount of

FCCP is mixed with the β-NADH solution to yield the following final concentration of

FCCP; 0 µM (control), 10 µM, 20 µM, 30 µM, 40 µM, 50 µM, 100 µM, 150 µM, 200 µM,

250 µM, 300 µM, 500 µM, 1 mM, 2 mM and 5 mM. The same procedure was followed for

the β-NADPH. The L-Malate Dehydrogenase (L-MDH, Sigma Aldrich ]10127248001,
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from pig heart) was used to bind NADH with protein [372]. The experiment was

performed in quartz cell on room temperature.The fluorescence emission was measured

on a Cary Eclipse fluorescence spectrometer (Varian) by exciting the sample at λ=340

nm, while the emission recorded in the range of λ=400-550 nm.

He-La cell Suspension and Fluorescence Spectra

The He-La cells from ATTC (CCL-2) were sub-cultured and maintained in the complete

culture medium (Dulbecco’s modified Eagle’s medium (DMEM)-high glucose, Sigma

Aldrich, D5796) containing 10% fetal bovine serum (FbS; Gibco, Catalog No: 16000-

044), penicillin/streptomycin (P/S; 100U/ml; Gibco, Catalog No ] 15240-062). Cells

were incubated at 37 Co 5% CO2 incubator. Passaging of cells performed as they reach

at confluence of 80 %. Cells were washed PBS and trypsinised with TrypLE (GIBCO,

Australia, Catalog No ] 12563-029). Following incubation with trypsin for 5 minutes

at 37 Co, a complete medium was added to trypsinised cells. The cell suspension was

centrifuged at 500 g for 5 minutes. After removing the supernatant, the cell pellet

was resuspended in the complete medium. The Trypan blue 0.4% (Sigma Aldrich,

Australia, Catalog No: T8154) used for cell viability test. The He-La cells from ATTC

(CCL-2) sub-cultured. The He-La cells were resuspended in the Hanks solution in a

quartz cell 750 µl excited at λ=340 nm and fluorescence data acquired from λ=400-650

nm on a Fluorolog Tau-3 Lifetime System.

Measurement of Membrane Potential

The cultured He-La cells in dishes were treated with (0.050 mM, 0.100 mM, 0.150

mM, 0.200 mM, 0.300 mM and 1.0 mM) of FCCP concentraion. The JC-1 staining

dye (Life Technologies, Cat# M34152) was used for labeling cells treated with FCCP.

The DMSO of 230 µl was used to dissolve the contents of one vial which results in

the formation of a 200 µM stock solution of JC-1. The He-La cells incubated at a

final 0.002 mM concentration of JC-1 and followed by 20 minutes incubations after

washing in phosphate-buffered saline (PBS). Leica SP-2 confocal microscope used for

imaging of the labeled cells. The spectral images were collected at λexc=488 nm for

each group of treated and control He-La cells in the range of λ=520-660 nm by keeping

a 10 nm window. The emission spectra were collected with peak emissions at λ=590
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nm (red) andλ=535 nm (green). These wavelengths are respectively appropriate for

the aggregated and monomeric forms of JC-1. The red to green fluorescence intensity

ratios provides the membrane potential estimation in mitochondria.

7.5.3 Results and Discussions

Free and Bound NADH/NADPH Quenching in Solution

For in-vitro studies 0.050 mM of free and bound NADH/NADPH solutions placed in

the quartz cell and excited at λmax=340 nm. The emission recorded at λ=400-550

nm. The fluorescence intensity change and λ shift are the two parameters which are

used to differentiate free and bound-NADH /NADPH. In the literature a blue shift

of 20 nm and increase in fluorescence intensity reported due to proteins binding with

NADH/NADPH [373]. Chemical reaction of FCCP with NADH is given below 7.2

and image taken from [235]. The figure 7.3 (a-e) shows in-vitro fluorescence quenching

Figure 7.2: Oxidation of NADH

results for free and bound NADH/NADPH. The figure 7.3 (a) shows the emission

spectrum of free-NADH after excitation at λ=340±1 nm [374]. In case of bound-NADH

fluorescence peak intensity wavelength λ=465 nm with 560 counts and shifted to λ=445

nmwith ∆λ=20 nm showing 310 counts as shown in figure 7.3 (a,c) and similarly a blue

shift ∆λ at peak fluorescence intensities is observed for NADPH [375] and is shown

in the figure 7.3 (b,d). Moreover a two-fold increase in the fluorescence intensity of

NADPH was observed after a bond formation with L-Malate Dehydrogenase (L-MDH,

Sigma Aldrich ] 10127248001 protein ). The fluorescence intensity of aqueous solution

of free-NADPH is less as compared to protein-bound NADPH . The binding inhibits



7.5 Auto-Fluorescence Quenching Quantification of NADH In He-La Cell Line Model109

the quenching of NADH by the adenine group at λ=340 nm, while same adenine group

is the main cause of an increase in the fluorescence emission intensity of NADPH. So

an increase in the fluorescence quantum yield is one tool for confirmation of NADPH

binding to proteins [376]. In our case fluorescence QY is two-fold shown in figure

7.3 (b, d). If any compound blocks the NADH oxidation like rotenone there may

be an increase in NADH fluorescence. The Stern-Volmer graph shows the effects of

the quencher concentration on fluoresence quantitatively. If any compound blocks the

NADH oxidation like rotenone there may be an increase in NADH fluorescence [377].

The figure 7.3 (e) the graphs explain the free and bound NADH/NADPH fluorescence

spectra along with a Stern-Volmer plot. For static chemical quenching equation can

be written as below

Io
I

= 1 +Ks[Q] (7.1)

I0 and I are the fluorescence intensities of NADH/NADPH before and after quenching

and [Q] is the quencher FCCP concentration (0.010-5.000) mM and Ks bio-molecular

static quenching constant which can be defined as

Ksv =
[I −Q]

[I][Q]
(7.2)

In case of free NADH/NADPH, Ksv remains between 0.016 and 0.115×1006(M−1)

while for bound NADH/NADPH it varies between (0.024 and 0.377×1006(M−1), where

[I-Q] is the concentration of the complex, and [Q] is the FCCPconcentration [378].

The results may differ due to inner filter effect that is fluorescence quenching due to

re-absorption of emitted light by FCCP. Two approaches have been used to explain

the process of fluorescence quenching in NADH/NADPH solution . Firstly FCCP

form a chemical bond with NADH/NADPH, resulting in static fluorescence quenching.

Secondly, it results in the formation of a non-fluorescent ground-state complex between

the NADH and FCCP. During complex formation [FCCP-NADH] NADH/NADPH are

oxidized while reducing FCCP [379]. In Figure 7.3 (a-e) from the fluorescence emission

spectrum of 0.050 mM free NADH/NADPH solution in which the FCCP concentration

varied from (0.010-5.0) mM, it is clear that both the given fluoropheres NADH/NADPH

reduce their fluorescence in the presence of FCCP till fluoresence vanishes.



110 Auto-Fluorescence Quenching Quantification of NADH (Manuscript V)

Figure 7.3: (a) Fluorescence emission spectra of the 0.050 mM NADH solution in which

FCCP (0.010-5.0) mM solution added, and excited at λ=340±1 nm (b) Fluorescence

emission spectra of the 0.050 mM free NADPH solution in which FCCP(0.010-5.0)

mM solution added, and excited at λ=340±1 nm (c) Fluorescence emission spectra of

the 0.050 mM bound-NADH solution in which FCCP(0.010-5.0) mM solution added,

and excitation at λ=340±1 nm (d) Fluorescence emission spectra of the 0.050 mM

bound NADPH solution in which FCCP(0.010-5.0 mM) solution added, and excited at

λ=340±1 nm (e) Stern-Volmer plot of free and bound NADH and NADPH at maximum

fluorescence intensity
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EEM and Fluorescence Quenching Quantification

To explore the fluorescence quenching effects in broad range of FCCP concentration

we have taken the excitation emission spectrum of NADH using the Cary Eclipse

fluorescence spectrometer. To acquire 3-D data for every sample λexc=280-380 nm

and λemt=400-550 nm used and constructed the Excitation Emission Matrix (EEM).

The fluorescence emission data covers the absorption and emission range of NADH

[380, 381]. Now to acquire the quantitative fluorescence quenching results FCCP con-

centration has been increased from 0.050-1.0 mM in small steps while keeping NADH

concentration constant i.e., at 50 µM. The EEMs have plotted in MAT-LAB and their

fluorescence intensities 3-D plots with color mapping providing an overall fingerprint of

fluoropheres are shown in the figure 7.4 (a-f). Here a single profile elucidates full ranges

of excitation-emission, so newly emerged fluorophores can be distinguished by carefully

investigating the emission profile [382, 383]. The maximum fluorescence emission of 500

counts were found for NADH without FCCP figure 7.4(a) while minimum 30 counts

observed for 01 mM FCCP concentration shown in figure 7.4 (f). For some of the graph

we also observed secondary peaks at longer emission wavelength. Its origin based on

the fact that the scattered light constitutes λ and its integral multiples values of λ

with exponentially decreasing intensity [384, 385]. The FCCP concentration of 0.010

mM reduces the fluorescence approximately up to 50 % in case of free-NADH/NADPH

solution, and the fluorescence emission intensity decreases in a linear fashion with the

FCCP concentrations.

He-La Cells Suspension and Fluorescence Quenching Quantification

The figure 7.5 (a-b) shows the auto-fluorescence quenching quantification results of

He-La cell suspension. The control He-La cells (without FCCP) show the highest auto-

fluorescence signal. There is approximately 50% decrease in fluorescence intensity after

treatment of He-La cells with 0.050 mM concentration of FCCP. The auto-fluorescence

of He-La cells quenching occur across all the FCCP concentrations. The FCCP has a

high affinity to make chemical bond with NADH molecules like other cyanide molecules

such as carbonyl cyanide m-chloro phenylhydrazone (CCCP). As the FCCP makes a

chemical bond it oxidises the NADH. The process of oxidation in NADH ultimately



112 Auto-Fluorescence Quenching Quantification of NADH (Manuscript V)

Figure 7.4: (a) Fluorescence EEM of 0.050mM free NADH solution (b) Fluorescence

EEM of 0.050 mM free-NADH solution with 0.050 mM FCCP concentration (c) Flu-

orescence EEM of 0.050 mM free-NADH solution with 0.10 mM FCCP concentraion

(d) Fluorescence EEM of 0.050 mM free-NADH solution with 0.30 mM FCCP con-

centration (e) Fluorescence EEM of 0.050 mM free-NADH solution with 0.500 mM

FCCPconcentration (f) Fluorescence EEM of 0.050 mM free-NADH solution with 1.0

mM FCCPconcentraion
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Figure 7.5: (a) Auto-fluorescence quenching of He-La cell suspension FCCP(0.050-1.0)

mM concentrations added and excited at λ=340±1 nm (b) Stern-Volmer plot for the

bound-NADH in He-La cell suspension, here I0 and I are intensity without and with

quenching

changes the redox-ratio and disturbs the glycolysis, Krebs cycle, and oxidative phos-

phorylation [347, 371]. So, the process of auto-fluorescence quenching disturbs the

whole energy metabolism.

In-Vitro Fluorescence Quenching Comparison

A comparison of 0.050 mM NADH solution, plated and suspended He-La cells made

is shown in Figure 7.6. This graph shows that the NADH solution quenching rate lies

between plated and suspended cells. The higher values of the fluorescence intensity

in case of Platedcells by the addition of FCCP may be explained by the tendencies

of some cells to immediately respond to uncouplers with a reversing of the ATPase,

hydrolyzing ATP in an effort to stabilize the mitochondrial membrane potential [386–

388].

Depolarization of Mitochondria and Membrane Potential

The membrane potential probes are based on sensitivity of the electric potential in

the cells. The carbo-cyanine dyes typically react to the potential by aggregation in

the membranes, but overall the effects of the electric potential are quite small, so
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Figure 7.6: Fluorescence quenching comparison of NADH in solution, suspended and

plated cells

intensity ratios are often used to provide more stable results [389, 390]. We inves-

tigated the variation of membrane potential with increasing concentration of FCCP

(0.050-1.000) mM while He-La cells were stained with the JC-1 dye.The same pin-

hole aperture and detector voltage were used for both red and green JC-1 images.

Mitochondrial depolarization is indicated by a decrease in the red to green fluores-

cence intensity ratio. The potential-sensitive wavelength shift is due to concentration-

dependent formation of red fluorescent J-aggregates in the mitochondria. In control

cells JC-1 forms aggregates with intense red fluorescence, while in cells with defective

mitochondria it has a monomeric form which emits green fluorescence. As a result,

the red /green intensity ratio decreases as cellular metabolic activity decreases [391].

Kaisa M. Heiskanen etal;. demonstrated that the treatment of pheochromocytoma-6

cells with staurosporine shows mitochondrial membrane depolarization which can be

monitored by tetra-methyl rhodamine methyl ester along with laser-scanning confocal

microscopy using the signal of green fluorescent protein-tagged cytochrome c [392]. So

green fluorescent proteincan be used as an indicator for membrane potential monitor-

ing. The mitochondrial membrane potential measured here using JC-1 demonstrates
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Figure 7.7: Confocal laser scanning microscopy images of He-La cells treated with

FCCP (0.050-1.00) mM (a-g) show JC-1 fluorescence in two emission channels λ=532

nm ( green image) and λ=590 nm (red images), (h) Red to green fluorescence ratio

obtained from the analysed images in Image J software . The images are presented

without any post-processing. Bar scale=200 µm and magnification= 200×
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that the cellular mitochondria is affected directly by FCCP leading to decreased mi-

tochondrial activity. The analysis is shown in figure 7.7 (h) [393]. We observed a

shoulder in the red to green ratio of JC-1 staining (figure 7.7 (h)), a slight local in-

crease in NADH /NADPH which is due to increased mitochondrial activity [394]. The

increases in fluorescence of bound NADPH by the addition of FCCP may be explained

by the tendencies of some cells to immediately respond to uncouplers with a reversing

of the ATPase, hydrolyzing ATP in an effort to stabilize the mitochondrial membrane

potential [387, 388]. The FCCP, after oxidizing the mitochondrial NADH stimulates

cellular respiration in He-La cells. The red to green ratio fluorescence is related to

the mitochondrial membrane potential [395]. As the FCCP oxidises NADH so NAD+

increases which may effect anti-oxidation and oxidative stress generation [396]. The

NAD+ can be converted by NADKs to NADP+ which is the precursor for NADPH

formation [397]. We successfully demonstrated fluorescence quenching quantification

the free and bound NADH/NADPH with FCCP in a broad range of FCCP (0.010-

1.00) mM concentrations. The FCCP quenches the fluorescence quantity proportional

to its concentration for NADH/NADPH fixed concentration. The auto-fluorescence

quenching in He-La cell line suspension confirms that at the first instance cell respond

maximum than settle down for other concentration. The free-NADH/NADPH shows

higher quenching rate then bound-NADH/NADPH. The He-La cells in suspension

show the highest, while plated cells show the lowest quenching rate. The anti-oxidants,

oxidative stress and oxidative phosphorylation following FCCP exposure is the main

cause of this effect. The red to green ratio decrease with increasing FCCP concentra-

tion, showing that there is depolarization of mitochondria during fluoresce quenching

in He-La cell line.
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Auto-Fluorescence Quenching and

Unmixing of Free and Bound NADH in

He-La Cells (Publication VI)

8.1 Hyperspectral Imaging Introduction

A fluorescence hyperspectral imaging system consists of the following components

1. A combination lamp along with monochromator for λ selection.

2. A filter cube (exciter, dichroic and emitter).

3. A microscope with suitable objective to image tissues or cells.

4. A detector (CCD/EMCCD) array having suitable quantum efficiency.

5. A computer system to operate the whole imaging system.
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RGB image has three colours: Red, Green and Blue while a hyper-spectral image con-

sist of more than three channel. The image formed is called hypercube. A schematic

diagram of hyperspectral imaging is shown in figure 6.1 of Chapter 6, section 6.3. A

hyper spectral image of He-La cells taken by the author is shown in figure 8.1 a,b,c.

Data noise and background is removed from the image and smoothing is done using

a spectral Graphical user interface. The hyperspectral image become ready for un-

mixing. The hyperspectral unmixing techniques has discussed in detail in chapter 6.

The hyperspectral data-sets use advanced image-classification methods for the extrac-

tion, unmixing, and classification of relevant spectral information from the data of the

captured image [241, 243, 261].

Figure 8.1: Difference between RGB image and hyperspectral image (a) RGB image

of He-La cells (b) Blue,green and red fluoresce intensity (c) Hyperspectral Image with

17 channel starting from λexc=365-495 nm for He-La cells.
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8.2 Motivation for Auto-Fluorescence Quenching and Unmix-

ing

In chapter 7 we performed experiments for in-vitro and in-vivo fluorescence quenching

quantification of free and bound NADH. In this part of the study, we aim to validate the

hyper-spectral auto-fluorescence unmixing of natural cellular fluoropheres especially

NADH and FAD through quenching work. First, we performed chemical quenching

study of NADH and based on these results we acquired hyper-spectral auto-fluorescence

images for FCCP treated and untreated He-La cells.

8.3 Author’s Contribution to Publication VI

Being the principal author of the article having the title "Fluorescence quenching

of free and bound NADH in He-La cells determined by hyperspectral imaging and

unmixing of cell auto-fluorescence" I have discussed the idea with principal super-

visor Ewa, M. Goldys. Mr Aziz ul Rehman and Dr Ayad, G. Anwer together per-

formed the experiments which include; quenching quantification data of NAD+/NADH,

NADP+/NADPH kit quantification data, plated cells quenching data, and hyperspec-

tral auto-fluorescence data for FCCP treated and untreated cells. Dr Martin, E. Gosnell

analysed the hyper-spectral data and plotted the box plots. Dr Saabah B. Mahbub has

written unsupervised unmixing method section for hyper-spectral imaging, Dr Guozhen

Liu contributed to the discussion for the chemical reaction of NADH and FCCP. Ini-

tially, the manuscript was written by the principal author than each author contributed

related to their field. Finally Ewa, M. Goldys polished it and contributed to the dis-

cussion so that work can publish in a peer-review journal.

8.4 Publication VI

Aziz ul Rehman, Ayad, G. Anwer, Martin, E. Gosnell, Saabah, B. Mahbub, Guozhen,

Liu, and Ewa, M. Goldys, Fluorescence quenching of free and bound NADH in He-

La cells determined by hyperspectral imaging and unmixing of cell autofluorescence
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Conclusion and Future Work

9.1 Conclusions

Knowledge of optical parameters (absorption coefficients µa and reduced scattering

coefficients µś) have crucial importance in understanding the light-tissue interaction.

The solution of Photon Transport Equation (PTT by applying First-order scattering,

K-M Theory, Monte-Carlo Simulation and Inverse Adding-Doubling (IAD) methods

provide the values of the optical parameters µa, µs, and g.

The malignant tissues have significantly higher reduced scattering µ́s and absorption

coefficients µa, and effect the signal to noise ratio (SNR). Thin sample holder made

of microscopic coverslips solved S/N ratio problem by measuring diffuse reflectance

Rd and diffuse transmittance Td of 1.0% Indian-ink and 20% intralipid tissue body

phantoms while placing the sample holder in a Double Integrating Sphere System

at λ=632.8 nm . The µa and µs for 20% Intralipid was found to be 0.112±0.046

cm−1 and 392.299±10.090 cm−1 at λ=632.8 nm by applying Inverse Adding-Doubling
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method. The µa and µs for 1.0% Indian-ink found to be µa =9.808±0.490 cm−1 and

µs =1.258±0.063 cm−1 at λ=632.8 nm by applying Inverse Adding-Doubling method.

The repeatability and reproducibility of the Double Integrating Sphere system found

to be within 4.9% error. The optical parameters quantitative characterisation study of

Indian-ink and Intralipid tissue mimic body phantoms shows linear relationship with

the concentrations which has many biological diagnostics and therapeutic applications.

The Raman, polarimetric and fluorescence spectroscopic optical diagnostic techniques

successfully differentiated the normal and cancerous human breast tissues. Spectro-

scopic data collected from freshly excised surgical specimens of normal tissues with

Raman bands at 800 cm−1, 1171 cm−1 and 1530 cm−1 arising mainly by lipids, nucleic

acids, proteins, carbohydrates and amino acids. For breast cancerous tissues, Raman

bands observed to be at 1070 cm−1, 1211 cm−1, 1495 cm−1, 1583 cm−1 and 1650 cm−1

wave-number.

The indigenous made Programable Integrating Sphere Light (PISL) source is tuneable

in the range of λ=365-490 nm and has a uniform spatial profile and narrow spectral

width. The retrofitted Programable Integrating Sphere Light (PISL) source into the

fluorescence inverted microscope DM-IRB (Leica) together with a highly sensitive low-

noise CMOS camera has carried out multi-spectral auto-fluorescence images of live BV2

cells.

Hyperspectral auto-fluorescence Imaging (HSFI) and unmixing techniques literature

review part II provided explanation of HSFI methods, feature selection and extrac-

tion techniques and analysis. The hyperspectral imaging systems can be coupled

with Raman scattering, fundus cameras, confocal and conventional microscopes for

application in medical field. In-vitro fluorescence quenching quantification of free and

bound-NADH in a broad range of FCCP concentrations (0.010-5.0) mM can be used

for tissue optical differentiation . The free-NADH has higher quenching rate as com-

pared to bound-NADH for In-vitro studies . The free-NADH solution has lower auto-

fluorescence quenching rate then suspended He-La cells in case of plated cells . The red

to green auto-fluorescence ratio images indirectly show depolarization of mitochondria

. The label-free method of hyperspectral imaging of cell auto-fluorescence combined

with unsupervised unmixing separately isolated the emissions of free and bound-NADH

. Hyperspectral image analysis of FCCP-treated He-La cells confirms that FCCP by
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selection quenches auto-fluorescence of free and bound-NAD(P)H up to high concen-

trations values. This is confirmed by the measurements of average NAD/NADH and

NADP/NADPH content in cells. The selective auto-fluorescence quenching quantifica-

tion of NADH/ NAD(P)H with FCCP has validated the results of unbiased unmixing

of He-La cell auto-fluorescence.

9.2 Future Direction

We can extend the Programmable LEDs-Based Integrating Sphere Light (PISAL)

source tunability range from λ=365 nm to λ=200 nm in an integrating sphere just

by adding high power deep UV-LEDs. So PISAL source in the future can be used for

Wide-Field Fluorescence Imaging of many chromophores Tryptophan, DNA, Proteins

and many other fluoropheres in a cell using spatial uniform light source. The photo-

dynamic therapy (PDT) can be monitored by quantifying the reactive oxygen species

made through the photo-chemical reaction. There exist natural fluorophores NADH

and FAD in each cell whose oxidation and reduction state indirectly tell us about

the metabolic activity. The NADH and FAD are the cellular key fluorophores, and

their auto-fluorescence quenching quantification provides an insight into the cellular

metabolic activity. The NADH gives fluorescence in reduced form while NAD+ does

not . Similarly, FAD oxidized form gives fluorescence while reduced form does not.

So, by measuring the auto-fluorescence of both NADH and FAD+ simultaneously, we

can predict the metabolic activity of the cell that is an important parameter in pro-

grammed cell death. The auto-fluorescence of NADH and FAD can be measured on

each single spectral channel by performing hyper-spectral images on a system coupled

with an Integrating-Sphere Light Source PISAL, and it can be used for monitoring the

photodynamic therapy PDT .
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