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Summary 

One way of mitigating longevity risk is constructing a hedge using longevity- or 

mortality-linked securities. A fundamental question is how to price these securities in 

an incomplete life market where liabilities are not liquidly traded. Although there are 

various pricing methods developed in the literature, there has been no consensus on 

which one is the best and the choice is often based on user’s preference. This article 

investigates the potential impact of uncertainty arising from the choice of mortality 

models and pricing rules on the calculation of longevity-linked security prices. Twelve 

premium principles based on risk-neutral and real-world measures are examined under 

the Lee-Carter model and a generalisation of the CBD model. The quotations of UK 

pension annuities are set as the calibration constraints to incorporate the market view 

of longevity risk. We compare the results between different pricing methods and model 

assumptions on the prices of S-forwards and longevity swaps with different maturities. 

Overall, we find that the pricing rule uncertainty is less material than the mortality 

model uncertainty. Particularly, the relationships between the results from different 

premium principles tend to rely on the underlying mortality model assumption. Our 

results suggest that the Lee-Carter model tends to give higher implied risk premiums 

than the CBD model does for both S-forwards and longevity swaps. Besides, the risk 

premiums calculated by the risk-neutral pricing methods are often lower than those by 

methods with real-world probabilities, while the results are more comparable within 

each of the two families. 
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1. Introduction

Due to social and economic development, human longevity has been improving over 

the past several decades. Such a trend has brought financial burdens to pension plans 

and insurance companies who provide lifetime income for pensioners and annuitants. 

These institutions are exposed to a risk of people living unexpectedly longer, which is 

called the longevity risk. According to Blake (2018), the total longevity risk consists of 

idiosyncratic longevity risk and systematic longevity risk. Thereinto, specific longevity 

risk coming from the status of different individuals can be mitigated when the 

population is large enough. However, systematic longevity risk affects the entire 

population and cannot be fully diversified away.  

Solutions to manage longevity risk broadly fall into three categories (Cairns et 

al., 2008). Firstly, institutions providing pension products or annuities can transfer (at 

least partially) the unacceptable longevity risk to insurers or reinsurers. For example, 

insurers may pay a premium and arrange a reinsurance contract; pension funds may 

purchase annuity products from insurance companies to hedge their longevity risk. A 

hedge can also take effect when a company sells both life insurances and annuities, 

which belongs to the second category – natural hedging. The payoffs of the two types 

of products have opposite movements because their values are tied to the mortality level 

(death rates) and longevity level (survival rates) respectively. Nevertheless, there are 

limitations on the first two approaches in practice. The tightened regulatory capital 

requirements on mortality and longevity risk have limited the demand from reinsurers 

on accepting the risk. Moreover, many insurance companies do not have access to the 

resources required in providing both life insurances and annuities. The third category 

is to mitigate longevity risk by means of the life market where longevity-linked 

liabilities can be traded. Specifically, one may securitise the risk (Cowley & Cummins, 

2005) or use mortality- and longevity-linked products (Blake et al., 2006). Through 
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securitisation, insurers can package their business lines into securities whose payments 

are linked to the performance of the underlying business. The major problem of life 

insurances and annuities securitisation is the complexity of their inherent risks, which 

impedes investors’ ability to understand the securitised portfolios. Besides insurance 

securitisation, mortality- and longevity-linked instruments serve as a vehicle through 

which the unwanted longevity risk can be transferred. Previously proposed solutions 

include longevity bonds (Blake, 2001), longevity swaps (Dowd et al., 2006), q-forwards 

(Coughlan et al., 2007), S-forwards (Life and Longevity Markets Association, 2010), 

K-forwards (Tan et al., 2014), mortality options (Cairns et al., 2008), and survivor

options (Dowd, 2003).

Practitioners have been managing their longevity risk using some of the above 

methods. For instance, Blake et al. (2018) surveyed that forty-eight longevity swaps 

were implemented in the UK from 2007 to 2016, with the first transaction completed 

in April 2007 by Swiss Re and Friends Life Group (acquired by Aviva in 2015). 

However, the majority of existing transactions through the life market has been bespoke 

agreements which are illiquid, to some degree. To improve the transparency and 

attraction of the life market, some focus has been put on designing standardised 

products which have payments linked to pre-specified longevity or mortality indices. 

There were two key contributions to longevity-linked instruments, including the 25-

year EIB/BNP longevity bond and the 8-year Swiss Re Kortis longevity trend bond. 

Being the first longevity bond, the EIB/BNP bond was issued in November 2004. This 

amortising bond had coupon payments proportional to an index linked to the survival 

rates of English and Welsh males. It was withdrawn one year after the issuance due to 

the failure of attracting enough investors’ interests. In 2010, a longevity trend bond was 

designed to improve the effectiveness of Swiss Re’s natural hedging strategy. The bond 

paid quarterly coupons and provided a principal repayment with its value depending on 

the divergence between the longevity trends in the US and the UK. If the longevity 

trends of the two countries deviated too much from each other, the bond reduced its 

principal payment. The reduced amount would then be used to cover some of the losses 

from Swiss Re’s natural hedging portfolio.  

The two examples above represent the first attempts in developing a liquid life 

market. However, the EIB/BNP bond was not traded in the market, suggesting that its 

payment structure and price did not satisfy the market needs. Moreover, the Swiss Re 

bond would cover only extreme events (i.e., longevity trends in the two countries 
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diverge too much) but not the usual longevity risk facing most populations. Blake et al. 

(2018) also pointed out that the Swiss Re bond had a low trading volume, and that no 

similar longevity trend bonds were issued after 2008. Evidently, the life market is still 

in its infant stage and is lack of market liquidity. Achieving liquidity requires 

developing standardised (i.e., index-based) longevity- or mortality-linked securities. In 

the absence of benchmark longevity risk premiums, assigning an appropriate price to 

these index-linked securities stays challenging. Given the fact that mortality and 

longevity rates are not tradable in the current market, it is difficult to decide a proper 

valuation framework.  

The price of longevity hedging instruments can be derived from two 

components – future longevity patterns and a specified pricing formula, so the choice 

of mortality models and pricing principles is of utmost importance. Yet, different 

valuation models may not come up with a consistent price of longevity risk, making it 

a difficult problem to determine a suitable pricing framework. None of the proposed 

mortality models in the literature consistently outperforms the others in all data sets and 

time periods in terms of forecasting accuracy. The selection of mortality models can 

become quite subjective. Also, it is not clear which premium principle is the most 

appropriate in life market pricing. Researchers have proposed various pricing principles 

built on theories in different disciplines. For example, risk-neutral pricing came from 

the no-arbitrage finance theory; the zero-utility principle was developed based on 

economic utility functions. Loosely speaking, existing valuation methods may be 

categorised into two types based on their probability measures1. The first type is risk-

neutral pricing. Principles under this category set a price equal to the expected present 

value using risk-neutral probabilities. The present value is calculated by discounting 

future cash flows at a risk-free rate which is the expected return in a risk-neutral world. 

Nevertheless, when the market is incomplete, there are an infinite number of risk-

neutral measures, and the choice becomes rather arbitrary and has to depend on the 

situation of the problem. The second type is based on a real-world probability measure. 

Premiums are determined using real-world probabilities derived from historical data 

and a discount rate determined by the insurers’ own targets. The major shortcoming of 

 
1 One may also classify different pricing rules by the kind of method in developing each of them (Young 
(2006). There are three categories – Ad-hoc method, Characterisation method, and Economic method 
from which premium principles are derived based on intuitive grounds, required properties, and 
economic theories respectively. Yet, under such classification, groups may overlap with one another. For 
example, the Wang transform discussed in Section 2 belongs to all three methods.  
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applying this approach is the difficulty in choosing the appropriate discount rate. In 

practice, companies may incorporate profit loadings or risk premiums into their 

required rate of return which varies from one company to another. Without the 

availability of such private information, the use of a particular value of discount rate 

may be hard to justify in research.  

So far, no consensus has been reached on the “right” mortality models and 

premium principles in valuing mortality- and longevity-linked securities. This issue has 

aroused our interests in understanding the uncertainty in selecting between different 

mortality models and pricing rules and discovering their impact on pricing longevity 

risk. 

We examine the mortality model uncertainty by generating future mortality 

scenarios from two mortality models – Lee-Carter model (Lee & Carter, 1992) and a 

generalisation of the Cairns-Blake-Dowd (CBD) model (Cairns et al., 2008). These two 

mortality models have been applied in life market pricing. For instance, Kogure et al. 

(2014) employed the Lee-Carter model to price reverse mortgages in Japan; Li (2010) 

compared prices of longevity bonds derived under the Lee-Carter model, the original 

CBD model (Cairns et al., 2006), and the generalised CBD model. Moreover, the semi-

parametric bootstrap (Brouhns et al., 2005) has often been adopted in the simulation 

process to incorporate parameter risk. Yang et al. (2015) studied the potentially 

significant impact of model uncertainty on risk-neutral pricing by applying a modified 

semi-parametric bootstrap process. We also follow their suggestions and integrate 

model uncertainty into our mortality simulation using the modified bootstrap.  

Next, we investigate the uncertainty arising from different pricing rules. There 

have been some previous comparisons in the literature. Nonetheless, the analysis was 

often conducted among only four or fewer premium principles. For example, Barrieu 

and Veraart (2016) analysed the impact of different sources of uncertainty on valuing 

q-forwards. The model uncertainty and pricing rule uncertainty were studied by 

applying three premium principles to mortality scenarios simulated from the Lee-Carter 

model and the original CBD model. This thesis compares a wider range of premium 

principles both theoretically and empirically. We first begin our study with one of the 

most famous risk-neutral pricing principles – the Wang transform (Wang, 2000). It is a 

risk distortion measure which applies a specific distortion function to the cumulative 

distribution function of the underlying risk. We then consider six other risk distortion 

measures and review the potential relationships amongst these methods. We also cover 
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the canonical valuation and the Esscher transform which convert the real-world 

probability density function into a risk-neutral density function. Furthermore, two 

candidates with real-world probability measures are added to our list, namely the 

standard deviation principle and variance principle. Lastly, we propose and experiment 

with one variation of the standard deviation principle and refer to it as the median 

absolute deviation principle. It holds the same structure as the standard deviation 

principle, but the median absolute deviation from the median is applied instead of the 

standard deviation from the mean. Note that we are not aiming at advocating the “best” 

premium principle, but rather we try to understand the pricing rule uncertainty by 

comparing a wide range of valuation methods.  

In summary, we examine twelve principles including the Wang transform, 

proportional hazard transform, dual-power transform, Gini principle, Denneberg’s 

absolute deviation principle, exponential transform, logarithmic transform, canonical 

valuation, Esscher transform, standard deviation principle, variance principle, and 

median absolute deviation principle. Most pricing principles require a specification of 

one or more parameter values which can be obtained by making arbitrary choices or 

setting market price constraints (i.e., calibration). The calibration process requires 

information about market prices of securities with payments associated with survival 

or mortality rates. For instance, Kogure and Kurachi (2010) estimated the market 

annuity price based on the actuarial life table commonly used by Japanese insurers and 

set the market price as the price constraint; Sherris et al. (2019) calibrated a risk-neutral 

pricing principle via the BlackRock CoRI Retirement Indices which estimate the 

retirement costs of 20 cohorts in the US. Yet most of the previous studies chose the 

EIB/BNP longevity bond price as a constraint (e.g., Chen et al., 2010; Li, 2010; Li & 

Ng, 2011; Zhou & Li, 2013). As we have discussed earlier, the EIB/BNP bond was not 

a successful attempt of issuing longevity-linked securities, and the appropriateness of 

setting this price constraint is doubtful. Therefore, we use market quotations of standard 

UK pension annuities in our calibration procedures to incorporate the market view of 

longevity risk. This study focuses on the pricing of S-forwards and longevity swaps2. 

S-forwards involve the exchange of a single cash flow linked to the survival rates of a 

predetermined population on the maturity date. We believe that studying S-forwards 

 
2 Some earlier analyses have been performed on q-forwards (Coughlan et al., 2007; Barrieu & Veraart, 
2016), longevity bonds (Denuit et al., 2007; Kogure & Kurachi, 2010), and longevity swaps (Dowd et 
al., 2006; Zhou & Li, 2013; Li & Tan, 2018; Li et al., 2019).  
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with a simple payment structure helps to understand the impact of pricing rule 

uncertainty and differentiate it from other sources of uncertainty such as interest rate 

risk and structural risk. For further demonstration, longevity swaps comprising a set of 

S-forwards with different maturities are also included in our analysis.  

Overall, the main objective of this thesis is to study the influence of mortality 

model uncertainty and pricing rule uncertainty on pricing S-forwards and longevity 

swaps. Twelve premium principles are examined both theoretically and empirically 

based on mortality scenarios simulated from two mortality models. We find that the 

choice of mortality models plays a greater role than the choice of premium rules, and 

the relationships between the results from different pricing principles also tend to reply 

on the underlying mortality model assumption.     

The remainder of the thesis is structured as follows. Section 2 reviews the 

various premium principles which have been applied in the longevity context and also 

the wider area. In section 3, we introduce the primary modelling components required 

in our analysis and the implementation steps. Section 4 discusses the differences and 

similarities between the twelve pricing methods based on nine desirable properties and 

an empirical study. Section 5 provides a sensitivity analysis on the valuation results. 

Section 6 gives the concluding remarks.  
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 2. Literature Review 
 

In this section, we provide a review of some existing pricing principles that have been 

applied in the literature. S-forwards and longevity swaps are similar to classical forward 

contracts and swaps, except that the underlying assets are linked to survival rates rather 

than the values of standard securities like stocks. An intuitive way to price these 

longevity-linked derivatives may be risk-neutral pricing which has been widely applied 

in financial derivatives valuation. This stream of pricing methods converts the real-

world probability measure P into an equivalent risk-neutral (martingale) measure Q. In 

a risk-neutral world, the security price is equal to the expected present value of future 

payoffs under the risk-neutral distribution, using a risk-free discount rate. Nevertheless, 

the uniqueness of the martingale measure Q relies upon the no-arbitrage assumption in 

a market where numerous securities are traded liquidly. In an incomplete life market, 

there exist an infinite number of equivalent measures. For instance, Cairns et al. (2006) 

incorporated separate longevity risk loadings into each of the two time series processes 

in the CBD model. The identification of the two risk loading parameters was made by 

setting one market price constraint and one arbitrary constraint (e.g., the two parameters 

are set as equal). Li (2010) avoided setting arbitrary constraints and employed the 

canonical valuation method under which the risk-neutral measure is determined by 

minimising the Kullback-Leibler information criterion (Kullback & Leibler, 1951). 

This method was initially developed by Stutzer (1996) to evaluate derivatives in 

financial markets, and it was then extended to applications in the life market (e.g., 

Kogure & Kurachi, 2010; Leung et al., 2018). Furthermore, Frittelli (2000) has shown 

that the univariate (one unknown parameter) canonical valuation is equivalent to a 

pricing method widely applied in the insurance context - the Esscher transform (Gerber 

& Shiu, 1994). Another example of risk-neutral pricing is the instantaneous Sharpe ratio 

method studied by Bayraktar et al. (2009). It can be regarded as an alteration from the 
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real-world measure P to a risk-adjusted measure Q, assuming a constant market risk 

premium (Chen et al., 2010).  

However, the adequacy of adopting risk-neutral pricing methods in the life 

market is questioned by some authors. In a study of q-forwards, Barrieu and Veraart 

(2016) claimed that the risk-neutral price is a measure of replicating costs, while in an 

incomplete life market portfolio replication is not always possible. They pointed out 

the potential inappropriateness of relying on risk-neutral premiums and only examined 

three pricing rules based on real-world measures, including the fair premium principle, 

standard deviation principle, and zero-utility principle. The fair premium principle 

gives a price merely covering the expected payoff, which makes it not very appealing 

to insurers as it does not include a risk margin to the price. By contrast, the standard 

deviation principle assigns a premium in which the embedded loading is proportional 

to the standard deviation of the payoff. The parameter involved in this method is related 

to the Sharpe ratio of the underlying portfolio. The last method considered in their paper 

is the zero-utility principle developed from the expected utility theory (Von Neumann 

& Morgenstern, 1944). In insurance pricing, the zero-utility principle calculates the 

price that makes the insurer indifferent between providing and not providing the cover, 

given a specified utility function (Dickson, 2005). For example, Coughlan et al. (2007) 

adopted the zero-utility principle with an exponential utility function in q-forward 

valuation. Besides this principle, another economic method which has been examined 

in pricing mortality-linked securities is the Tatonnement approach (Zhou et al., 2015). 

This method assumes that the agents of buyer and seller maximise their expected utility 

by changing the supply and demand function until an agreed price is reached. The main 

advantage of the Tatonnement method is that inputs of security prices are not necessary, 

which copes with the issue of the lack of market price data of longevity- or mortality-

linked securities. Yet this method still requires a specification of the agents’ utility 

functions. Similar to the zero-utility principle, the choice of utility functions would be 

arbitrary, and the assumption of a fair market may not be well suited for the life market.  

So far, none of the pricing methods above has been found to be the “best” to 

assess longevity- or mortality-linked securities. In recent years, some focus has been 

drawn to the comparison among existing methods. Besides the aforementioned 

comparison between the three real-world principles, Bauer et al. (2010) considered the 

Wang transform and the instantaneous Sharpe ratio approach, where the calibrated 

process utilised UK annuity quotations. Moreover, Leung et al. (2018) employed risk-
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neutral pricing with the risk-adjusted CBD model, Wang transform, canonical valuation, 

and Tatonnement approach (Zhou et al., 2015) to price the failed EIB/BNP longevity 

bond under a Bayesian framework. These few studies only included a limited number 

of pricing rules that have earlier been applied in the longevity context. However, there 

are many more other methods in the wider literature, and there is no reason to prevent 

us from considering other sensible premium principles. In this study, we apply a broad 

collection of valuation methods to price S-forwards and longevity swaps.  

We first expand the comparison list by adding candidates with risk-neutral 

measures. The popular Wang transform belongs to a risk-distortion family whose 

members apply an increasing and concave distortion function to the (de-)cumulative 

distribution function of the underlying risk. One of the principles in this family is the 

proportional hazard transform, which maps the original de-cumulative distribution 

function to a proportionally distorted one (Wang, 1995). Wang (1996) also analysed 

some other candidates in the context of insurance pricing, comprising the dual-power 

transform, Gini principle, Denneberg’s absolute deviation principle, exponential 

transform, and logarithmic transform, which will be covered in this study. Furthermore, 

two real-world pricing methods with their risk loadings being proportional to dispersion 

measures, the standard deviation principle and variance principle, are included in our 

list. When proposing the Denneberg’s absolute deviation principle (Denneberg, 1990), 

one of the advocated reasons is the statistical robustness of the absolute deviation from 

the median. Inspired by this reasoning, we adjust the standard deviation principle by 

replacing the mean and standard deviation with the median and median absolute 

deviation from the median. This proposed alternative determines a risk premium 

entirely based on a median-related measure, and it is referred to as the median absolute 

deviation principle. Mathematical formulae of the pricing methods studied in this thesis 

are given and interpreted in the next section. 
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3. Methodology 
 

In this section, we introduce the major modelling components involved in our analysis, 

including two mortality models for simulating future mortality scenarios and a list of 

twelve premium principles. We also explain the payoff structures of S-forwards and 

longevity swaps and our estimation process in detail.   

 

3.1 Mortality models 
 

3.1.1 The Lee-Carter model with cohort effect 

We first consider the Lee-Carter model (Lee & Carter, 1992) with an additional cohort 

effect which expresses the natural logarithm of central death rate 𝑚𝑚𝑥𝑥,𝑡𝑡 as  

𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡� = 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑥𝑥𝜅𝜅𝑡𝑡 + 𝛾𝛾𝑡𝑡−𝑥𝑥, 

where 𝛼𝛼𝑥𝑥 demonstrates the average level of mortality at age x, 𝜅𝜅𝑡𝑡 is the time-index of 

mortality improvement, and 𝛽𝛽𝑥𝑥 represents the age sensitivity of mortality to changes in 

𝜅𝜅𝑡𝑡 2F

3. The cohort parameter is included and estimated when significant patterns are 

detected in the residuals plotted against cohort year. To predict future mortality values, 

we model the mortality index 𝜅𝜅𝑡𝑡 as a random walk with drift4 

𝜅𝜅𝑡𝑡 = 𝜅𝜅𝑡𝑡−1 + 𝜃𝜃 + 𝑢𝑢𝑡𝑡, 

 
3 The identification issue exists in the estimation of the model parameters 𝛽𝛽𝑥𝑥 and 𝜅𝜅𝑡𝑡. Specifically, there 
are infinitely many combinations of 𝛽𝛽𝑥𝑥 and 𝜅𝜅𝑡𝑡 resulting in the same value of 𝑙𝑙𝑙𝑙�𝑚𝑚𝑥𝑥,𝑡𝑡�. We follow Lee 
and Carter (1992) and set ∑ 𝛽𝛽𝑥𝑥𝑥𝑥 = 1, ∑ 𝜅𝜅𝑡𝑡𝑡𝑡 = 0. The constraint on the cohort factor is set as ∑ 𝛾𝛾𝑡𝑡−𝑥𝑥𝑡𝑡−𝑥𝑥 =
0. 
4 The autoregressive integrated moving average (ARIMA(p,1,q)) process is recommended by (Lee & 
Carter, 1992) to model the period effect 𝜅𝜅𝑡𝑡. For comparison purpose, we adopt an ARIMA(0,1,0), i.e., a 
random walk with drift to eliminate the uncertainty from choices of the order parameters p and q. The 
random walk with drift has often been employed in previous studies (e.g., Tuljapurkar et al., 2000).        
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in which 𝜃𝜃 is the drift term, 𝑢𝑢𝑡𝑡 is a sequence of independent and identically distributed 

random variables following the standard Gaussian distribution. The cohort parameter 

𝛾𝛾𝑡𝑡−𝑥𝑥 can be modelled by a weakly stationary AR(1) model5, 

𝛾𝛾𝑡𝑡−𝑥𝑥 = 𝑎𝑎0 + 𝑎𝑎1𝛾𝛾𝑡𝑡−𝑥𝑥−1 + 𝑒𝑒𝑡𝑡,  

where the Gaussian error term 𝑒𝑒𝑡𝑡 is assumed to be independent of 𝑢𝑢𝑡𝑡.   

 

3.1.2 The Cairns-Blake-Dowd model with cohort effect and quadratic terms  

The CBD model (Cairns et al., 2006) is famous for its advantages in modelling 

mortality at higher ages. We consider an extension of the original CBD model, which 

can capture the possible curvature of the mortality curve (e.g. Cairns et al., 2009). It 

expresses the logit of one-year mortality rate of a life aged x in year t 𝑞𝑞𝑥𝑥,𝑡𝑡 as  

𝑙𝑙𝑙𝑙 � 𝑞𝑞𝑥𝑥,𝑡𝑡
1−𝑞𝑞𝑥𝑥,𝑡𝑡

� = 𝜅𝜅𝑡𝑡,1 + 𝜅𝜅𝑡𝑡,2(𝑥𝑥 − 𝑥̅𝑥) + 𝜅𝜅𝑡𝑡,3((𝑥𝑥 − 𝑥̅𝑥)2 − 𝜎𝜎𝑥𝑥2) + 𝛾𝛾𝑡𝑡−𝑥𝑥, 

where 𝜅𝜅𝑡𝑡,1 , 𝜅𝜅𝑡𝑡,2 , and 𝜅𝜅𝑡𝑡,3  represent the general level, gradient, and curvature of the 

mortality curve in year t, and 𝑥̅𝑥  and 𝜎𝜎𝑥𝑥2  are the mean of 𝑥𝑥  and (𝑥𝑥 − 𝑥̅𝑥)2  across the 

sample age range. Again, a cohort parameter 𝛾𝛾𝑡𝑡−𝑥𝑥 is employed to rectify the patterns 

(if any) in the residual plot. After fitting the model, we can project the time-varying 

components to generate future mortality scenarios. The three indices 𝜅𝜅𝑡𝑡,1, 𝜅𝜅𝑡𝑡,2, and 𝜅𝜅𝑡𝑡,3 

are modelled by a multivariate random walk with drift, that is  

𝐊𝐊𝐭𝐭 = 𝐊𝐊𝐭𝐭−𝟏𝟏 + 𝚯𝚯 + 𝛆𝛆𝐭𝐭,           

in which 𝐊𝐊𝐭𝐭 = (𝜅𝜅𝑡𝑡,1, 𝜅𝜅𝑡𝑡,2, 𝜅𝜅𝑡𝑡,3)′, 𝚯𝚯 is a 3 × 1 vector which contains three drift terms, 

and the 3 × 1 error vector 𝛆𝛆𝐭𝐭 is assumed to follow the standard multivariate Gaussian 

distribution. Likewise, the cohort parameter is fitted by an AR(1) model. We refer to 

this model simply as the CBD model in the following of the thesis.  

 

3.2 Premium principles 

 
We will now elaborate the premium principles considered in this research, including 

nine risk-neutral (arbitrage-free) measures and three valuation methods with real-world 

probability measures. As mentioned in Section 2, we denote the empirical (real-world) 

 
5 One may also fit a non-stationary ARIMA process to the cohort effect. However, mortality projection 
of new cohorts is required in our analysis, the non-stationarity could lead to irrational forecasting results. 
Considering this issue, we follow Plat (2009) and fit the cohort parameter by a mean-reverting AR(1) 
model.  
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and risk-neutral probability distributions by P and Q respectively, where Q is an 

equivalent martingale measure of P. Risk-neutral principles adjust the real-world 

probabilities to allow for higher risk, then the premium is equal to the expectation from 

the risk-neutral distribution. Under the physical measure P, let ℤ be the set of non-

negative insurance risks on a probability space (Ω, B, P), in which Ω represents the 

sample space containing all possible outcomes, the event space B comprises all possible 

events where each event is a collection of outcomes. The probability measure P 

specifies the likelihood of occurrence of an event. Consider a risk 𝑋𝑋 ∈ ℤ , with 

probability density function (pdf) f(x), cumulative distribution function (cdf) 𝐹𝐹(𝑥𝑥) =

Pr (𝑋𝑋 ≤ 𝑥𝑥), and de-cumulative function 𝑆𝑆(𝑥𝑥) = 1 − 𝐹𝐹(𝑥𝑥). Let E[X] be the expected 

value of X, then E[𝑋𝑋] = ∫ 𝑥𝑥 𝑓𝑓(𝑥𝑥)∞

0 𝑑𝑑𝑑𝑑 = ∫ (1 − 𝐹𝐹(𝑥𝑥))∞

0 𝑑𝑑𝑑𝑑 = ∫ 𝑆𝑆(𝑥𝑥)∞

0 𝑑𝑑𝑑𝑑 . We use 

𝑓𝑓∗(𝑥𝑥), 𝐹𝐹∗(𝑥𝑥), 𝑆𝑆∗(𝑥𝑥) to represent the corresponding risk-neutral functions for measure 

Q. The risk premium charged for X is denoted by 𝛱𝛱𝑋𝑋, which is a function of X. This 

particular function specifies a premium principle.  

 

Table 1 Summary of twelve premium principles. 

Premium Principles Pricing Formulae 

Wang Transform 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋], where 𝐹𝐹∗(𝑥𝑥) = Φ(Φ−1(𝐹𝐹(𝑥𝑥))  −  𝜆𝜆) 

Proportional Hazard Transform 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋], where 𝐹𝐹∗(𝑥𝑥) = 1 − (1 − 𝐹𝐹(𝑥𝑥))1/𝜆𝜆 

Dual-power Transform 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋], where 𝐹𝐹∗(𝑥𝑥) = 𝐹𝐹(𝑥𝑥)𝜆𝜆 

Gini Principle 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋], where 𝐹𝐹∗(𝑥𝑥) = 1 − �(1 + 𝜆𝜆)�1 − 𝐹𝐹(𝑥𝑥)� − 𝜆𝜆�1 − 𝐹𝐹(𝑥𝑥)�2� 

Denneberg’s Absolute Deviation 
Principle 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋], where 𝐹𝐹∗(𝑥𝑥) = �

1 − 𝜆𝜆 − (1 − 𝜆𝜆)�1 − 𝐹𝐹(𝑥𝑥)�,    0 ≤ 𝐹𝐹(𝑥𝑥) ≤ 0.5
1 − (1 + 𝜆𝜆)�1 − 𝐹𝐹(𝑥𝑥)�,            0.5 < 𝐹𝐹(𝑥𝑥) ≤ 1

 

Exponential Transform 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋], where 𝐹𝐹∗(𝑥𝑥) = 1 −
1 − 𝑒𝑒−𝜆𝜆�1−𝐹𝐹(𝑥𝑥)�

1 − 𝑒𝑒−𝜆𝜆
 

Logarithmic Transform 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋], where 𝐹𝐹∗(𝑥𝑥) = 1 −
ln(1 + 𝜆𝜆�1 − 𝐹𝐹(𝑥𝑥)�)

ln(1 + 𝜆𝜆)
 

Canonical Valuation 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋], where 𝑓𝑓∗(𝑥𝑥) = 𝑒𝑒𝜆𝜆𝜆𝜆 𝑓𝑓(𝑥𝑥)

∫ 𝑒𝑒𝜆𝜆𝜆𝜆 𝑓𝑓(𝑥𝑥)∞
0 𝑑𝑑𝑑𝑑

 

Esscher Transform 𝛱𝛱𝑋𝑋 = E∗[𝑋𝑋] =
E[𝑋𝑋𝑒𝑒𝜆𝜆𝜆𝜆]
E[𝑒𝑒𝜆𝜆𝜆𝜆]

 

Standard Deviation Principle 𝛱𝛱𝑋𝑋 = E[𝑋𝑋] + 𝜆𝜆 × SD[𝑋𝑋] 
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Variance Principle 𝛱𝛱𝑋𝑋 = E[𝑋𝑋] + 𝜆𝜆 × VAR[𝑋𝑋] 

Median Absolute Deviation 
Principle 𝛱𝛱𝑋𝑋 = 𝐹𝐹−1(0.5) + 𝜆𝜆 × MAD[𝑋𝑋], where MAD[𝑋𝑋] = median(|𝑋𝑋 − 𝐹𝐹−1(0.5)|) 

 

 
The first seven principles in Table 1 can be categorised as distortion risk measures. 

Although all risk-neutral valuation methods utilise adjusted probabilities to allow for a 

risk premium, members in this family act on the (de-)cumulative distribution rather than 

the pdf. The distortion function g(x) applied to the original de-cumulative function is 

an increasing and concave function (Wang, 1996). Under a distortion method, the 

resulting risk premium 𝛱𝛱𝑋𝑋 is equal to the expected value based on the distorted cdf 

𝐹𝐹∗(𝑥𝑥) . That is, 𝛱𝛱𝑋𝑋 = 𝐸𝐸∗[𝑋𝑋] = ∫ (1 − 𝐹𝐹∗(𝑥𝑥))∞

0 𝑑𝑑𝑑𝑑 = ∫ 𝑔𝑔(1 − 𝐹𝐹(𝑥𝑥))∞

0 𝑑𝑑𝑑𝑑 =

∫ 𝑔𝑔�𝑆𝑆(𝑥𝑥)�𝑑𝑑𝑑𝑑∞

0 . Due to the use of the de-cumulative distribution, distortion premium 

principles can naturally be applied to assign premiums to different layers of insurance 

(Laeven & Goovaerts, 2008). In the following, we list and discuss the seven distortion 

risk measures. 

  

3.2.1 Wang transform 

One of the most popular methods applied in pricing longevity and mortality instruments 

is the Wang transform (Wang, 2000, 2002). It embeds a Gaussian-related distortion 

function which gives a distorted cdf 𝐹𝐹∗(𝑥𝑥) = Φ(Φ−1(𝐹𝐹(𝑥𝑥))  −  𝜆𝜆) (𝜆𝜆 ≥ 0), in which 

Φ(𝑥𝑥)  represents the cdf of the standard Gaussian distribution, and Φ−1(𝑥𝑥)  is its 

inverse function. There is no initial specification of the distribution of the underlying 

risk X, but when X is normally or lognormally distributed, the Wang transform recovers 

the Capital Asset Pricing Model and the Black-Scholes Model (Wang, 2003). Due to 

its elegant structure and theoretical support, this method has been widely employed by 

academics in life market pricing. For example, Lin and Cox (2005) and Cox et al. (2006) 

applied it to price mortality bonds by distorting distributions of mortality rates. 

Assuming that asset prices follow a Geometric Brownian Motion, Wang (2002) 

demonstrated that the Wang transform forms a universal pricing framework. 

Nonetheless, Pelsser (2008) proved that the Wang transform does not always produce 

consistent results with those from no-arbitrage pricing unless certain restrictive 
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constraints are satisfied. Following the analysis, the author concluded that this principle 

is not a universal pricing method in general. Moreover, one may extend the one-factor 

Wang transform to a two-factor model with 𝐹𝐹∗(𝑥𝑥) = 𝑄𝑄(Φ−1(𝐹𝐹(𝑥𝑥))  −  𝜆𝜆) (𝜆𝜆 ≥ 0), 

where 𝑄𝑄 refers to a cdf of t-distribution with ν degrees of freedom. This extension has 

been found suitable to model the yield spread premium of catastrophe bonds and 

corporate bonds (e.g., (Wang, 2004). For comparison purpose, this study only focuses 

on the one-factor Wang transform.            

 

3.2.2 Proportional hazard transform 

The proportional hazard transform has one of the simplest distortion functions 𝑔𝑔(𝑥𝑥) =

𝑥𝑥1/𝜆𝜆 (𝜆𝜆 ≥  1). Wang (1995) applied this function to the hazard rate of an insurance 

risk, which results in a distorted distribution with 𝑆𝑆∗(𝑥𝑥) = 𝑆𝑆(𝑥𝑥)1/𝜆𝜆. The distorted cdf 

is given by 𝐹𝐹∗(𝑥𝑥) = 1 − 𝑆𝑆∗(𝑥𝑥) = 1 − 𝑆𝑆(𝑥𝑥)1/𝜆𝜆 = 1 − (1 − 𝐹𝐹(𝑥𝑥))1/𝜆𝜆 . Researchers 

have applied the proportional hazard transform in pricing insurance risks. Maria de and 

João Andrade (2005) analysed the application of this principle under the assumptions 

of exponential, Pareto, and uniform distributions with resampling techniques. Necir and 

Meraghni (2009) proposed an estimator of the proportional hazard premium based on 

extreme quantiles to price heavy-tailed insurance claims.  

 

3.2.3 Dual-power transform  

The dual-power function (Wang, 1996) is similar to the proportional hazard function, 

but it transforms F(x) rather than S(x). Specifically, 𝑆𝑆∗(𝑥𝑥) = 1 − (1 − 𝑆𝑆(𝑥𝑥))𝜆𝜆  and 

𝐹𝐹∗(𝑥𝑥) = 𝐹𝐹(𝑥𝑥)𝜆𝜆 . The implied distortion function is 𝑔𝑔(𝑥𝑥) = 1 − (1 − 𝑥𝑥)𝜆𝜆 (𝜆𝜆 ≥  1) . 

This principle was applied by Lynn Wirch and Hardy (1999) to calculate the guarantee 

liability of segregated funds.   

 

3.2.4 Gini principle  

Denneberg (1990) introduced the Gini principle involving the use of the Gini 

coefficient – a measure of wealth inequality. Its distortion function is 𝑔𝑔(𝑥𝑥) =

(1 + 𝜆𝜆)𝑥𝑥 − 𝜆𝜆𝑥𝑥2 (0 ≤  𝜆𝜆 ≤  1) , which implies distorted 𝑆𝑆∗(𝑥𝑥) = (1 + 𝜆𝜆)𝑆𝑆(𝑥𝑥) −

𝜆𝜆(𝑆𝑆(𝑥𝑥))2  and 𝐹𝐹∗(𝑥𝑥) = 1 − ((1 + 𝜆𝜆)�1 − 𝐹𝐹(𝑥𝑥)� − 𝜆𝜆(1 − 𝐹𝐹(𝑥𝑥))2). As one candidate 

of distortion measures, the Gini principle was applied in estimating premiums for 

excess-of-loss reinsurance with high retention levels (Vandewalle & Beirlant, 2006).  
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3.2.5 Denneberg’s absolute deviation principle 

The median and mean absolute deviation from the median are two alternatives of the 

mean and standard deviation respectively. The former two statistics about the median 

are less affected by outliers than the latter two; also, the median-related measures can 

reflect asymmetry of the underlying distributions (Denneberg, 1988). Accordingly, 

Denneberg (1990) argued that the average absolute deviation from the median is more 

appropriate than the standard deviation from the mean in determining insurance risk 

loadings. The author derived the absolute deviation principle using a piecewise 

distortion function  

𝑔𝑔(𝑥𝑥) = � (1 + 𝜆𝜆)𝑥𝑥,           0 ≤ 𝑥𝑥 < 0.5
 𝜆𝜆 + (1 − 𝜆𝜆)𝑥𝑥,    0.5 ≤ 𝑥𝑥 ≤ 1  (0 ≤  𝜆𝜆 ≤  1).  

Then g(x) is applied to S(x) and this produces a distorted piecewise cdf 

 𝐹𝐹∗(𝑥𝑥) = �
1 − 𝜆𝜆 − (1 − 𝜆𝜆)�1− 𝐹𝐹(𝑥𝑥)�,    0 ≤ 𝐹𝐹(𝑥𝑥) ≤ 0.5
1 − (1 + 𝜆𝜆)�1 − 𝐹𝐹(𝑥𝑥)�,            0.5 < 𝐹𝐹(𝑥𝑥) ≤ 1

.     

Subject to the increasing and concave constraints on distortion functions, one can 

develop many other distortion members. We include two more distortion candidates 

mentioned in Wang (1996) as below. 

 

3.2.6 Exponential transform 

The distortion function is formed by two exponential functions. It maps [0,1] to [0,1] 

with weighted probabilities. The distortion function and the risk-adjusted cdf are 

 𝑔𝑔(𝑥𝑥) = 1−𝑒𝑒−𝜆𝜆𝜆𝜆

1−𝑒𝑒−𝜆𝜆
 (𝜆𝜆 >  0) and 𝐹𝐹∗(𝑥𝑥) = 1 − 1−𝑒𝑒−𝜆𝜆�1−𝐹𝐹(𝑥𝑥)�

1−𝑒𝑒−𝜆𝜆
 respectively. 

 

3.2.7 Logarithmic transform 

This principle adopts a similar transformation to the exponential one, with the distortion 

function and the cdf being 𝑔𝑔(𝑥𝑥) = ln (1+𝜆𝜆𝜆𝜆)
ln (1+𝜆𝜆)

 (𝜆𝜆 >  0) and 𝐹𝐹∗(𝑥𝑥) = 1 − ln (1+𝜆𝜆�1−𝐹𝐹(𝑥𝑥)�)
ln (1+𝜆𝜆)

. 

 

Instead of distorting the cdf, some risk-neutral principles act on the pdf. We first 

consider one representative among the variations within this category – the canonical 

valuation.  

 

3.2.8 Canonical valuation 
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Stutzer (1996) proposed the canonical valuation stemming from the Shannon entropy 

used in Physics. Li (2010) applied this method to price longevity risk using simulations 

from parametric bootstrap (Brouhns et al., 2005); Li and Ng (2011) employed it in 

valuing mortality risk with nonparametric bootstrap (Efron, 1979). The canonical 

valuation identifies the equivalent martingale measure Q by maximising the Shannon 

entropy, which is the same as minimising the Kullback-Leibler information criterion 

(Kullback & Leibler, 1951). For this reason, the canonical valuation is often called the 

maximum entropy principle. The implementation of canonical valuation is 

demonstrated as follows. 

The risk-neutral probability function 𝑓𝑓∗(𝑥𝑥)  is solved by minimising the 

Kullback-Leibler information criterion ∫ 𝑓𝑓∗(𝑥𝑥) ln 𝑓𝑓∗(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

∞

0 𝑑𝑑𝑑𝑑, subject to the constraint 

∫ 𝑓𝑓∗(𝑥𝑥)∞

0 𝑑𝑑𝑑𝑑 = 1. Then the premium is equal to the expected value under the risk-

neutral measure, i.e., 𝛱𝛱𝑋𝑋 = 𝐸𝐸∗[𝑋𝑋] = ∫ 𝑥𝑥𝑓𝑓∗(𝑥𝑥)∞

0 𝑑𝑑𝑑𝑑. The solution is given by 𝑓𝑓∗(𝑥𝑥) =

𝑒𝑒𝜆𝜆𝜆𝜆 𝑓𝑓(𝑥𝑥)

∫ 𝑒𝑒𝜆𝜆𝜆𝜆 𝑓𝑓(𝑥𝑥)∞
0 𝑑𝑑𝑑𝑑

, where λ can be obtained by setting a market price constraint. Specifically, 

λ is estimated as the parameter value that equates the simulated mean price (risk-

neutral) for 𝛱𝛱𝑋𝑋 and the market price.  

When there is more than one security price available in the market, this 

approach can be readily extended to incorporate the additional information. Given m 

security prices, the risk-neutral probability is 𝑓𝑓∗(𝑥𝑥) = 𝑒𝑒∑ 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖
𝑚𝑚
𝑖𝑖=1 𝑓𝑓(𝑥𝑥)

∫ 𝑒𝑒∑ 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖
𝑚𝑚
𝑖𝑖=1 𝑓𝑓(𝑥𝑥)∞

0 𝑑𝑑𝑑𝑑
 , where 𝑥𝑥𝑖𝑖  is 

the present value of payoffs from security i, and 𝜆𝜆𝑖𝑖 (𝑖𝑖 = 1, 2, … ,𝑚𝑚) can be obtained by 

setting multiple market price constraints. Again, we only consider the univariate 

canonical valuation with one parameter to make the results comparable among different 

principles. Moreover, it can be shown that the univariate canonical valuation gives the 

same solution as the Esscher principle – a popular valuation method in actuarial science 

(Gerber & Shiu, 1994).   

 

3.2.9 Esscher transform 

The Esscher transform was proposed by Esscher (1932). It was applied in economic 

pricing by Bühlmann (1980) and in option pricing by Gerber and Shiu (1994) 

respectively. In the context of actuarial science, the Esscher transform can serve as an 
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insurance pricing method (refer to Dickson (2005) for more details). One can obtain the 

premium under the Esscher principle by 𝛱𝛱𝑋𝑋 = E[𝑋𝑋𝑒𝑒𝜆𝜆𝜆𝜆]
E[𝑒𝑒𝜆𝜆𝜆𝜆]

= ∫ 𝑥𝑥𝑥𝑥𝜆𝜆𝜆𝜆𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
0

E[𝑒𝑒𝜆𝜆𝜆𝜆]
 (𝜆𝜆 >  0). With 

an appropriate parameter value 𝜆𝜆, the loss process after transform 𝑋𝑋∗ becomes a unique 

martingale under no-arbitrage assumptions. The premium function can also be written 

as the expected value of the risk-adjusted variable 𝑋𝑋∗  with 𝑓𝑓∗(𝑥𝑥) = 𝑒𝑒𝜆𝜆𝜆𝜆𝑓𝑓(𝑥𝑥)
E[𝑒𝑒𝜆𝜆𝜆𝜆]

=

𝑒𝑒𝜆𝜆𝜆𝜆𝑓𝑓(𝑥𝑥)

∫ 𝑒𝑒𝜆𝜆𝜆𝜆𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
0

, which is an exponential tilting to the original pdf. It can be seen that the 

risk-adjusted pdf is identical to that under the univariate canonical valuation.  

 

Next, we discuss some valuation methods formed by real-world probability measures. 

 

3.2.10 Standard deviation and variance principle  

The price under the standard deviation principle is given by 𝛱𝛱𝑋𝑋 = E[𝑋𝑋] + 𝜆𝜆 ∗ SD[𝑋𝑋]. It 

is equal to the pure premium plus a risk loading proportional to the standard deviation 

of the underlying risk. The loading parameter 𝜆𝜆 is related to the well-known Sharpe 

ratio (Sharpe, 1966). As noted by Buhlmann (1970), this method has been commonly 

applied in casualty and property insurance. A similar branch is called the variance 

principle and its risk loading is proportional to the variance of the risk, that is, 𝛱𝛱𝑋𝑋 =

E[𝑋𝑋] + 𝜆𝜆 ∗ VAR[𝑋𝑋].  

 

3.2.11 Median absolute deviation principle  

As demonstrated by Denneberg (1988), statistics about the median tend to be more 

robust than mean-variance measures (e.g., mean, standard deviation, and variance) for 

asymmetric distributions and samples with outliers. For example, Leys et al. (2013) 

advocated the use of the median absolute deviation from the median (MAD) because 

the standard deviation is not resilient to outliers. More importantly, they stated that the 

MAD is less affected by the sample size. Such properties may be desirable in life market 

pricing. Not all available mortality data are adequate for estimating mortality models, 

as a prolonged period may involve structural changes. To avoid the inclusion of shifts 

in the longevity trend, a shorter sample period starting from more recent years is often 

utilised. Besides, there could be mortality jumps resulted from catastrophe events and 

medical breakthroughs included in sample data. Although such incidents may not lead 
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to permanent changes in mortality trends, they could produce outliers in the short run. 

Therefore, the statistical robustness of the MAD makes it better suited for mortality 

data with relatively small sample size and potential outliers. The aforementioned 

Denneberg’s absolute deviation principle utilises the mean absolute deviation about the 

median6, while one may construct a premium principle which is entirely based on the 

median. Accordingly, we modify the standard deviation principle by replacing the mean 

and standard deviation with the median and MAD as  

𝛱𝛱𝑋𝑋 = 𝐹𝐹−1(0.5) + 𝜆𝜆 × MAD[𝑋𝑋] (𝜆𝜆 > 0), where MAD[𝑋𝑋] = median(|𝑋𝑋 − 𝐹𝐹−1(0.5)|) .   

Given the long-term nature of the underlying risk, coping with possible permanent 

shifts in longevity trends (i.e., structural changes) is vital in pricing longevity-linked 

products. The standard deviation and variance principles may fail to price possible 

structural changes fairly, since these measures around the mean may not truly reflect 

the real uncertainty of future mortality. By contrast, any asymmetry in the mortality 

distribution can be more properly accommodated by the median absolute deviation 

principle. In Section 4, we shock our mortality models by arbitrarily including 

permanent shifts in the drift terms of the (multivariate) random walk processes to 

further investigate the performance of these variations. 

We will discuss the properties of each principle and some empirical results in Section 

4. 

 

3.3 Longevity-linked instruments 

 
3.3.1 S-forwards (Life and Longevity Markets Association, 2010) 

Similar to classical forward contracts, two counterparties of an S-forward agree to 

exchange two payments on a predetermined future date T (maturity date). The cash 

flows are linked to indices of survival rates rather than security prices. The buyer of an 

S-forward pays a fixed rate 𝐾𝐾(𝑇𝑇) (forward rate) to the seller and receives a floating rate 

𝑆𝑆(𝑇𝑇)  (realised survival rate) in return. Thereby, one counterparty needs to pay an 

amount that is linked to the difference between the forward rate and realised rate on the 

maturity date. The forward rate is specified at the outset of the contract and reflects the 

 
6 Note that we denote the median absolute deviation from the median by MAD, but not the mean absolute 
deviation from the median or mean.  
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expectation of future longevity level. A fair (long) S-forward has zero value at the 

inception of the contract, i.e., 

𝑉𝑉0[notional principal × (𝑆𝑆(𝑇𝑇) − 𝐾𝐾(𝑇𝑇))] = 0, 

where 𝑉𝑉0[𝑋𝑋] represents the time-0 value of the risk X under a specific valuation formula. 

For convenience, we assume that the notional principal agreed in the contract is one 

unit. Each premium principle involves a different function for 𝑉𝑉0[𝑋𝑋], which would 

produce a different forward rate of 𝐾𝐾(𝑇𝑇).   

 

3.3.2 Longevity swaps (Dowd et al., 2006) 

In a longevity swap, two counterparties exchange a stream of future cash flows 

depending on the differences between the floating rates and fixed rates in regular 

periods. In other words, it consists of a series of S-forwards with different maturities. 

A risk premium is incorporated into the fix-leg payments such that the swap value on 

the issue date is zero for both parties.  

 

3.4 Estimation process 

 
To investigate the impact of using different premium principles under different 

mortality models on the calculation of S-forward and longevity swap prices, we need 

to forecast the empirical distribution of mortality rates using past mortality data and 

estimate the parameters in the pricing formulae with market information. Our 

estimation process can be split into three general steps. Figure 1 shows a flow diagram 

of the process.  
 

 

 

 

 

 

 

 

 
 

Fig. 1 Estimation process 
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First, two sets of future mortality scenarios are generated from the CBD model 

and the Lee-Carter model. We fit the two mortality models to our mortality data using 

an iterative updating method under the Poisson assumption (Brouhns et al., 2002; Li, 

2013). The number of deaths at age x in year t 𝐷𝐷𝑥𝑥,𝑡𝑡 is assumed to follow a Poisson 

distribution Poisson(𝐸𝐸𝑥𝑥,𝑡𝑡𝑚𝑚𝑥𝑥,𝑡𝑡) with the mean equal to the expected number of deaths. 

This setting allows us to estimate the model parameters using the maximum likelihood 

approach. Then under each of the two mortality models, we project and simulate future 

values of time series to generate a large number of mortality scenarios. The semi-

parametric bootstrap proposed by Brouhns et al. (2005), which incorporates both 

process error (uncertainty in the time series) and parameter error (uncertainty in the 

parameter estimation), is used here. Specifically, we obtain a pseudo sample by 

simulating the number of deaths from a Poisson distribution with a mean equal to the 

observed death counts. Then the mortality model is fit to this pseudo sample and the 

fitted model is used to forecast future mortality distributions. The same process is 

repeated 10,000 times to generate 10,000 scenarios under each model. After obtaining 

future mortality scenarios, the second step is to calibrate the parameters of the twelve 

pricing principles by setting market price constraints. Under each premium principle, 

we find the parameter value such that the pricing formula gives a price that is equal to 

the reference market price. Lastly, we apply the calibrated premium principles to 

calculate the prices of S-forwards and longevity swaps with different maturities.  
 

3.5 Data 

 
We have collected UK mortality data by single age and year from the Human Mortality 

Database (HMD, 2018). The number of deaths and exposed to risk of the UK population 

aged 60 to 89 between 1965 and 2016 are chosen for our analysis. The starting age of 

60 is selected because we are interested in longevity risk of pensioners; the ending age 

of 89 is chosen to avoid using the volatile data at higher ages (Thatcher, 1999). We 

extend the projected and simulated mortality rates to a prescribed maximum age using 

the Coale-Kisker method (Coale & Kisker, 1990). Following Gampe (2010), we assume 

an ultimate value of 0.7 at age 110 and obtain the central death rates between ages 90 

and 109 accordingly. Data before 1965 are not included, as structural changes in the 



25 
 

mortality trend have been detected around that time (Li et al., 2011). Note that we do 

not split our data by sex because it can no longer be a pricing factor for annuities in 

Europe after 21st December 2012 under the revised legislation Council Directive 

2004/113/EC (2004). As at 20th October 2018, the standard annuity rate for a £100,000 

pension fund was £5,563 for a single life aged 657. Although the quoted annual income 

is paid monthly in advance, for convenience, we treat it as an annual payment. For 

example, an annuitant aged 65 will receive a payment of £5,563 in the middle of each 

future year on survival. One problem with incorporating the market annuity quotations 

into the constraints is that these prices usually include loadings other than the market 

perception of longevity risk. To filter out the impact of non-longevity components, we 

exploit the concept of money’s worth (MW) which is a reflection of an annuity’s “true 

value”. The money’s worth is defined as the expected present value of annuity 

payments as a proportion of the annuity price. Annuity providers require a non-negative 

loading of (1 – MW)×100%, comprising longevity loadings and non-longevity loadings 

such as expenses. We can subtract the proportion of non-longevity loadings from the 

market price and obtain a risk premium into which only longevity risk is incorporated. 

Nevertheless, the size and type of loading factors embedded in annuity prices are 

usually not publicly available. In this thesis, we assume that money’s worth is 94%, and 

half of the loading (1 – MW) comes from longevity risk8, implying 3% non-longevity 

loadings. Under the current economic environment and general perception of future 

outlook, interest rates are expected to remain low. We then use the UK gilt rate as the 

risk-free rate and the discount rate. As at 20th October 2018, the 15-year gilt rate was 

1.7%.    

 
7 Annuity quotations were obtained from https://www.sharingpensions.co.uk. 
8 Aquilina et al. (2017) investigated that the money’s worth for 65-year-old male annuitants is 94% in 
the UK for a £50,000 pension from 2006 to 2014. We acknowledge that this information does not match 
with our data exactly (e.g., the size of the pension pot), while it is the most relevant one we can find as a 
proxy.  Gallagher (2003) reported in his conference paper that the expense assumption of UK annuities 
is usually 1% to 3% of the total price. An analysis of the European insurance industry by Oliver Wyman 
(Whitworth & Byron, 2012) also suggested an equal annuity margin for operation expense and longevity 
risk. We borrow this information and adopt a 3% expense loading in our analysis.        

https://www.sharingpensions.co.uk/
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4. Empirical and theoretical analyses of pricing 

principles under different mortality model 

assumptions 
 

4.1 Fitting results 
 

Based on the sample range described earlier, we fit the Lee-Carter model and the CBD 

model with a curvature term, under which the estimated time series components are 

plotted in Fig. 2.  

 

 
Fig. 2 Parameter estimates of the Lee-Carter model (top) and the generalised CBD model 

(bottom) with cohort effect 

 

𝜅𝜅𝑡𝑡  

𝜅𝜅𝑡𝑡 ,1 𝜅𝜅𝑡𝑡 ,2 𝜅𝜅𝑡𝑡 ,3 

𝛾𝛾𝑡𝑡−𝑥𝑥  

𝛾𝛾𝑡𝑡−𝑥𝑥  
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We can observe that both the 𝜅𝜅𝑡𝑡 and 𝜅𝜅𝑡𝑡,1 in the Lee-Carter and CBD models 

have a downward trend, indicating the overall improvement in mortality rates over time. 

Also, the other two time-varying components (𝜅𝜅𝑡𝑡,2 and 𝜅𝜅𝑡𝑡,3) of the CBD model show a 

generally increasing trend. It may be reasonable to fit a (three-dimensional) random 

walk with drift to the time-related parameters in the two models9. A cohort effect 𝛾𝛾𝑡𝑡−𝑥𝑥 

is included in each of the two mortality models given the significant patterns detected 

in the residuals plots against cohort year (left diagrams of Fig. 3). As displayed on the 

right side of Fig. 3, the patterns and spikes are mostly removed after incorporating 

cohort terms. Furthermore, we examine the goodness-of-fit of our models using the 

Bayesian Information Criterion (BIC), which penalises using additional parameters. 

After removing the systematic patterns, despite a larger number of parameters, the BIC 

value of the Lee-Carter (CBD) model reduces from 34,530 (28,805) to 25,609 (23,112), 

which again advocates the use of cohort factors in modelling the UK population.  

Next, we discuss some desirable premium principle properties which may or 

may not be satisfied by the twelve pricing methods under study. 

  

 
9 Cairns et al. (2008) pointed out the potential biological inappropriateness resulted from fitting a random 
walk with drift to parameters in the CBD model, and suggested to remove the drift term of the slope and 
curvature coefficients. One may also try other time series choices such as the (vector) autoregressive 
integrated moving average model. Yet, we are not targeting at discovering the uncertainty arising from 
time series models. We follow Cairns et al. (2011) and employ a multivariate random walk with drift.  
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Fig. 3 Standardised deviation residuals against cohort year without (left column) and with (right 

column) cohort effect from the Lee-Carter model (top panel) and the generalised CBD model 

(bottom panel) 

 

4.2 Desirable properties satisfied by each premium principle 
 

In practice, a pricing method may be chosen for its particular properties. For example, 

scale invariance ensures that when claims are expressed in another currency, which is 

effectively a scale transformation, the premium in that currency is the same scale 

transformation of the previous premium. Therefore, insurers may prefer a scale-

invariant method in dealing with international business. To provide a more 

comprehensive comparison between different pricing principles, we list some popular 

properties below and demonstrate which of those properties are satisfied by each 

principle (see Young (2004) for an extended list of properties). We use the same 

notation 𝛱𝛱𝑋𝑋 , E[𝑋𝑋] , and 𝑆𝑆(𝑥𝑥)  to denote the risk premium, expected value, and de-

cumulative distribution function of a non-negative risk 𝑋𝑋 ∈ ℤ  with the probability 

space (Ω, B, P). 

 

1. Non-negative loading: 𝛱𝛱𝑋𝑋 ≥ 𝐸𝐸[𝑋𝑋] for all 𝑋𝑋 ∈ ℤ. 
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It is reasonable to expect that the premium charged for a risk X should at least cover 

the expected payment of X. Otherwise, insurers would suffer a loss on average.  

 

2. No unjustified risk loading:  𝛱𝛱𝑋𝑋 = 𝑐𝑐 if 𝑋𝑋(𝜔𝜔) = 𝑐𝑐 for all 𝜔𝜔 ∈ 𝛺𝛺, where c is a non-

negative constant. 

When there is no uncertainty about the payout of X, an appropriate premium is just 

the constant payout of c.  

 

3. Additivity for independent risks: 𝛱𝛱𝑋𝑋1+𝑋𝑋2 = 𝛱𝛱𝑋𝑋1 + 𝛱𝛱𝑋𝑋2  for all 𝑋𝑋1,𝑋𝑋2 ∈ ℤ, where 

𝑋𝑋1 and 𝑋𝑋2 are independent.  

This property requires that the premium for the sum of independent risks is equal to 

the sum of individual premiums. From the point of view of premium size, there is 

no incentive to combine or separate independent risks, given that additivity is 

satisfied.   

 

4. Sub-additivity: 𝛱𝛱𝑋𝑋1+𝑋𝑋2 ≤ 𝛱𝛱𝑋𝑋1 + 𝛱𝛱𝑋𝑋2 for all 𝑋𝑋1,𝑋𝑋2 ∈ ℤ. 

Taking insurance as an example, sub-additivity states that it would be cheaper to 

insure multiple (possibly dependent) risks together than individually.  

 

5. Scale invariance: 𝛱𝛱𝑍𝑍 = 𝑐𝑐𝛱𝛱𝑋𝑋 for all 𝑋𝑋 ∈ ℤ, where Z = cX and c is a non-negative 

constant.  

This scale invariance property can be justified in some circumstances. For instance, 

customers would expect to pay double the price (i.e., 2𝛱𝛱𝑋𝑋) when their policy size is 

doubled, otherwise they could buy two separate policies and pay a total of 2𝛱𝛱𝑋𝑋. 

However, when the size of risk X is huge, insurers may apply a greater loading for 

the doubled risk 2X considering their capital adequacy (Wang, 2004).  

 

6. Translation invariance: 𝛱𝛱𝑌𝑌 = 𝛱𝛱𝑋𝑋 + 𝑐𝑐 for all 𝑋𝑋 ∈ ℤ, where Y = X + c, and c is a 

non-negative constant. 

This property states that when a risk X changes by a constant amount c, its premium 

should be adjusted by the same amount.  

 

7. No rip-off: 𝛱𝛱𝑋𝑋 ≤ 𝑥𝑥max, where 𝑥𝑥max is the finite maximum value of X (if it exists).  
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If the premium exceeds the maximum possible payout of the underlying risk, rational 

customers would not have the motivation to buy such a product.  

 

Suppose all insurers (or investors) are risk-averse, then higher risks should be 

compensated by higher premiums. The following properties refer to two fundamental 

orderings of risks. 

 

8. Monotonicity:  

If 𝑋𝑋(𝜔𝜔) ≤ 𝑌𝑌(𝜔𝜔) for all 𝜔𝜔 ∈ 𝛺𝛺, then 𝛱𝛱𝑋𝑋 ≤ 𝛱𝛱𝑌𝑌.  

 

9. First stochastic dominance (FSD) ordering:  

If 𝑆𝑆𝑋𝑋(𝑧𝑧) ≤ 𝑆𝑆𝑌𝑌(𝑧𝑧) for all 𝑧𝑧 ≥ 0, then 𝛱𝛱𝑋𝑋 ≤ 𝛱𝛱𝑌𝑌. 

 

Each premium principle may or may not meet all the nine properties discussed 

above. Table 2 lists the twelve pricing methods under the nine desirable properties. We 

use Y (N) to represent that the corresponding property is satisfied (not satisfied) by each 

method.  

 

Table 2 Principle × property matrix, Y (N) indicates satisfaction (non-satisfaction) of the 

property10. 

Premium 

principles 

Non-

negative 

loading 

No 

unjustified 

loading 

Additivity 
Sub-

additivity 

Scale 

invariance 

Translation 

invariance 

No rip-

off 
Monotone FSD 

Wang Y Y N Y Y Y Y Y Y 

PH Y Y N Y Y Y Y Y Y 

DP Y Y N Y Y Y Y Y Y 

Gini Y Y N Y Y Y Y Y Y 

Denne Y Y N Y Y Y Y Y Y 

Exp Y Y N Y Y Y Y Y Y 

Log Y Y N Y Y Y Y Y Y 

ME Y Y Y N N Y Y N N 

 
10 For presentation purpose, we only show the abbreviation of each principle in the following tables and 
figures. Specifically, the Wang transform, proportional hazard transform, dual-power transform, Gini 
principle, Denneberg’s absolute deviation principle, exponential transform, logarithmic transform, 
canonical valuation (maximum entropy), Esscher transform, standard deviation principle, variance 
principle, and median absolute deviation principle are denoted by Wang, PH, DP, Gini, Denne, Exp, Log, 
ME, Ess, sd, var, and mad, respectively.  
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Ess Y Y Y N11 N Y Y N N 

sd Y Y N Y Y Y N N N 

var Y Y Y N N Y N N N 

mad N Y N N Y Y N N N 

 

As shown in Table 2, all pricing principles considered above are translation 

invariant, and they do not have unjustified loadings. Translation invariance can 

readily be justified. The risk premium calculated by the first nine principles is the 

expected value from a risk-neutral distribution. Adding a constant to the underlying risk 

would shift the risk premium by the same amount. Due to the zero dispersion of a 

constant, the last three principles also possess the translation invariance property. For 

the same reason, when there is no uncertainty in the risk (i.e., payout is equal to a 

constant), the resulting risk premium from all twelve methods is simply equal to the 

constant payout. In addition, the first eleven valuation methods ensure that the price of 

a risk covers at least the expected payment (non-negative loading), given the non-

negative parameter value λ. However, the median absolute deviation principle does not 

satisfy this property in all cases. Since its lower bound is the median rather than the 

mean, it is possible to have a premium below the mean for positively skewed 

distributions. One may set a lower bound for λ to guarantee this property. When the 

median 𝐹𝐹−1(0.5) is less than the mean 𝐸𝐸[𝑋𝑋], enforcing the constraint 𝜆𝜆 ≥ 𝐸𝐸[𝑋𝑋]−𝐹𝐹−1(0.5)
𝑀𝑀𝑀𝑀𝑀𝑀[𝑋𝑋]

 

can yield a premium with non-negative loadings. Besides the lower bound, all 

principles except the last three with real-world probability measures produce a premium 

subject to an upper bound – the maximum payout from the underlying risk (no rip-off). 

Again, charging a premium exceeding the upper limit can be avoided by restricting the 

domain of λ. Furthermore, only the canonical valuation, Esscher transform, and 

variance principle are additive for independent risks. Without the independence 

assumption, the seven candidates with distortion risk measures and the standard 

deviation principle are sub-additive12. The same set of candidates and the newly 

proposed principle satisfy the scale-invariant property. For example, the variance 

principle violates this property because its risk loading is proportional to the variance 

 
11 See Wang (2003) for a counter example. 
12  (Wang, 1995) proved the sub-additivity for the proportional hazard transform, which can be 

generalised to any distortion measures with increasing and concave distortion functions (Wang, 1996).  
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which is not in the same scale as the payout. By comparison, the standard deviation 

principle and median absolute deviation principle may be more suitable than the 

variance principle when scale-invariance is favoured. Besides, only those principles 

with distortion measures preserve the two orderings of risks – monotonicity and first 

stochastic dominance. It is not surprising to observe that these seven candidates satisfy 

the same set of properties. The premium principles with distortion risk measures are 

fundamentally similar, as they all add a risk loading by applying an increasing and 

concave distortion function to the underlying cdf.  The only property which is not 

preserved by them is the additivity. Although the Esscher transform and canonical 

valuation are also based on risk-neutral distributions, they distort the pdf rather than the 

cdf. Such differences in techniques make them fail to satisfy the two orderings of risks.   

   

4.3 Pricing S-forwards and longevity swaps 

 
This section presents the implied risk premiums of S-forwards and longevity swaps 

calculated by the twelve principles under the two mortality models. The premium 

principles are calibrated by setting the market annuity price with a starting age of 65 as 

a constraint. Each calibrated pricing principle is then applied to the simulated mortality 

scenarios to produce a set of forward rates with different maturities. Instead of 

comparing forward rates, we display the implied risk premiums over the central 

estimates of survival rates. For longevity swaps with a term T, the risk premium δ per 

annum can be solved by the following equation: ∑ 𝐾𝐾(𝑡𝑡)
(1+𝑟𝑟)𝑡𝑡 =𝑇𝑇

𝑡𝑡=1  ∑ 𝑆𝑆𝑐𝑐(𝑡𝑡)
(1+𝑟𝑟)𝑡𝑡 𝑒𝑒

𝛿𝛿𝛿𝛿𝑇𝑇
𝑡𝑡=1 , where r 

is the discount rate over the term of the contract, 𝐾𝐾(𝑡𝑡) is the forward rate at time t, and 

𝑆𝑆𝑐𝑐(𝑡𝑡) is the central estimate (projected value) of the survival rate at time t. Since S-

forwards only involve one cash flow on the maturity date, the implied risk premium 

can be found from the equation13 𝐾𝐾(𝑇𝑇) = 𝑆𝑆𝑐𝑐(𝑇𝑇)𝑒𝑒𝛿𝛿𝛿𝛿 . Fig. 4 plots the implied risk 

premiums of S-forwards and longevity swaps with different maturities. The numerical 

results are illustrated in Tables 3 and 4. One would expect a positive relationship 

between longevity risk premiums and the contract term due to the increased uncertainty 

in longevity levels in the more distant future. In general, all of the valuation methods 

give higher premiums to longer contracts.  

 
13 The original form is 

𝐾𝐾(𝑇𝑇)
(1+𝑟𝑟)𝑇𝑇 = 𝑆𝑆𝑐𝑐(𝑇𝑇)

(1+𝑟𝑟)𝑇𝑇 𝑒𝑒
𝛿𝛿𝛿𝛿 , where the discounting factors can be cancelled. 
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Fig. 4 Annual risk premiums of S-forwards (top panel) and longevity swaps (bottom panel) 

calculated by different principles under the Lee-Carter model (left column) and CBD model 

(right column)14 

 
Table 3 Annual risk premiums of S-forwards calculated by different principles under the Lee-

Carter and CBD model 

Model Lee-Carter CBD 

Term 15 20 25 15 20 25 

Wang 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

PH 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

DP 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

Gini 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

Denne 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

Exp 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

Log 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

ME 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

Ess 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

 
14 Note that the variance principle (dashed blue curve) assigns a premium close to zero (even slightly 
negative) to short-term contracts, especially for the CBD model. 
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sd 0.04% 0.06% 0.09% 0.01% 0.02% 0.04% 

var 0.03% 0.07% 0.11% 0.00% 0.01% 0.06% 

mad 0.05% 0.07% 0.09% 0.02% 0.03% 0.06% 

 
Table 4 Annual risk premiums of longevity swaps calculated by different principles under the 

Lee-Carter and CBD model 

Model Lee-Carter CBD 

Term 15 20 25 15 20 25 

Wang 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

PH 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

DP 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

Gini 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

Denne 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

Exp 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

Log 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

ME 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

Ess 0.02% 0.03% 0.04% 0.00% 0.01% 0.01% 

sd 0.03% 0.04% 0.05% 0.01% 0.01% 0.01% 

var 0.01% 0.02% 0.04% 0.00% 0.00% 0.01% 

mad 0.03% 0.04% 0.05% 0.01% 0.02% 0.02% 

 

Several interesting observations can be made from Fig. 4 and Tables 3 and 4. 

Firstly, S-forwards have higher implied risk premiums than longevity swaps. The 

former exchanges a single cash flow on the maturity date, while the latter swaps a set 

of cash flows linked to the difference between the forward and realized survival rate on 

each exchange date. Given the same underlying cash flows, the implied risk premiums 

of longevity swaps are weighted by those of S-forwards whose term is shorter than or 

equal to that of the corresponding longevity swap. For instance, the premium of a 10-

year longevity swap is affected by that of 10 S-forward contracts (with identical 

characteristics) with terms ranging from 1 to 10 years. Since longevity risk premiums 

tend to increase by time, one would expect S-forwards to produce higher implied 

premiums than longevity swaps with the same maturity. Our results suggest that for 25-

year contracts, the difference in the implied risk premiums between longevity swaps 

and S-forwards is around 0.04% to 0.05% under the Lee-Carter model and 0.03% to 

0.04% under the CBD model.  
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Secondly, the distinctions in annual risk premiums are minimal between the 

nine risk-neutral candidates. The premium curves are almost identical under the Lee-

Carter model, and under the CBD model the differences are slightly more obvious. 

Despite the small differences (less than 0.01%), the dual-power principle tends to 

produce the highest risk premiums and the proportional hazard principle the lowest for 

both S-forwards and longevity swaps. Besides, the canonical valuation and Esscher 

transform result in the same parameter value and risk premiums.  

The risk premiums of the two securities obtained from the standard deviation 

principle and median absolute deviation principle tend to be higher than those from 

risk-neutral measures. Such divergence is more apparent for longer-term longevity 

swaps which involve the accumulation effect of a series of cash flows exchanged before 

maturity. Also, the median absolute deviation principle results in similar risk premiums 

to those from the standard deviation principle under the Lee-Carter model, while the 

two methods deviate more under the CBD model.  

Another real-world measure, the variance principle, gives a more convex curve, 

which behaves differently compared to the other eleven methods. For S-forwards, the 

curve produced from the variance principle stays below the others for shorter maturities 

but goes above them after the crossover at the 20- and 22-year maturity under the Lee-

Carter and CBD model, respectively. However, its curve for longevity swaps is always 

below those from the other eleven principles. The reason may be that the higher 

premiums under the variance principle at long maturities are not enough to compensate 

for the effect of the lower premiums at short maturities. On the one hand, the 

discounting effect has a greater impact on longer-term cash flows, reducing the weights 

of those higher premiums. On the other hand, the crossover point (around year 20) may 

be too late to balance the influence of risk premiums below and above those calculated 

by the other principles. Lastly, it can be seen that the CBD model gives more convex 

risk premium curves than the Lee-Carter model does, which agrees with the observation 

on longevity bond risk premiums by Li (2010).   

Note that the above results of the three physical measures are derived by 

discounting future cash flows at a discount rate equal to the risk-free rate. In practice, 

the real-world discount rate is usually equal to the risk-free rate plus a loading required 

by insurers. It is hard to determine a particular value for the real-world discount rate in 

our analysis without such private information. Therefore, we add a range of arbitrary 

loadings and examine the impact. Table 5 presents the incremental annual risk 
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premiums of 25-year contracts under the two models for each additional 0.1% (10 basis 

points) loading, and the results for different maturities under the CBD model are plotted 

in Fig. 5. When a 10-basis point loading is included in the real-world discount rate, the 

annual risk premium of 25-year S-forwards calculated by the standard deviation 

principle and median absolute deviation principle increases by about 15 to 16 (17 to 18) 

basis points under the Lee-Carter (CBD) model. A greater impact is observed under the 

variance principle, with an incremental premium of around 19 to 20 (23 to 25) basis 

points under the Lee-Carter (CBD) model. For longevity swaps, an additional 10-basis 

point increase in loadings results in a rise of 7 to 9 basis points in the annual risk 

premiums under the Lee-Carter model, and the figures are about 2 basis points lower 

under the CBD model. Unlike the case for S-forwards, the risk premiums of longevity 

swaps derived from the variance principle are less affected by additional loadings. This 

observation is further underlined by Fig. 5 which displays the risk premiums over 

different terms under the CBD model.  

 
Table 5 Incremental annual risk premiums of 25-year contracts from additional loadings in the 

real-world discount rate 

Derivatives 
Mortality models Lee-Carter CBD 

Premium principles sd var mad sd var mad 

S-forwards 

baseline risk 

premiums15 
0.09% 0.11% 0.09% 0.04% 0.06% 0.06% 

r + 0.1% 0.16% 0.19% 0.16% 0.18% 0.23% 0.18% 

r + 0.2% 0.16% 0.20% 0.16% 0.17% 0.24% 0.18% 

r + 0.3% 0.15% 0.20% 0.16% 0.17% 0.24% 0.17% 

r + 0.4% 0.15% 0.20% 0.15% 0.17% 0.25% 0.17% 

r + 0.5% 0.15% 0.20% 0.15% 0.17% 0.25% 0.17% 

Longevity 

swaps 

baseline risk 

premiums 
0.05% 0.04% 0.05% 0.01% 0.01% 0.02% 

r + 0.1% 0.08% 0.07% 0.08% 0.06% 0.05% 0.06% 

r + 0.2% 0.09% 0.08% 0.08% 0.06% 0.05% 0.06% 

r + 0.3% 0.09% 0.08% 0.09% 0.06% 0.06% 0.07% 

r + 0.4% 0.09% 0.08% 0.09% 0.07% 0.06% 0.07% 

 
15 The baseline risk premiums refer to those calculated using the risk-free discounts rate. 
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r + 0.5% 0.09% 0.09% 0.09% 0.07% 0.06% 0.07% 

 

Under the variance principle, short-term (shorter than 10 years) S-forwards are 

assigned with risk premiums close to zero. Although the risk premiums are higher than 

those calculated by the other two principles for longer-term S-forwards, the aggregate 

effect over time causes the consistently lower (incremental) risk premiums of longevity 

swaps. To make a straightforward comparison between mortality models and valuation 

methods, we plot the results calculated by all the three principles under the two 

mortality models in Fig. 6, given a 10-basis point increase. The graphs show that the 

premium curve of the variance principle crosses over the other two for S-forwards, 

while the curve remains the lowest for longevity swaps. As noted, the risk premiums 

obtained by the standard deviation principle and median absolute deviation principle 

are close to each other under the Lee-Carter model, while the latter produces slightly 

higher values under the CBD model.  

 

 

Fig. 5 Annual risk premiums of S-forwards (top panel) and longevity swaps (bottom panel) 

calculated by real-world measures under the CBD model, assuming different loadings in the 

discount rate 
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Fig. 6 Annual risk premiums of S-forwards (top panel) and longevity swaps (bottom panel) 

calculated by real-world measures under the Lee-Carter model (left column) and the CBD 

model (right column), with 0.1% loading in the discount rate 

 

Overall, the results suggest that the choice of mortality models matters more 

than that of premium principles. For example, the Lee-Carter model gives 4 to 5 (3 to 

4) basis points higher in annual risk premiums for 25-year S-forwards (longevity swaps) 

compared to those from the CBD model. By contrast, the variations in the results 

between different premium principles seem to be less material. Between the risk-neutral 

and real-world families, the former often produces lower risk premiums than the latter, 

by less than 2 basis points. Within the risk-neutral family, we observe rather similar 

results between the nine candidates; the deviations are relatively greater under the CBD 

model but are still negligible (less than 1 basis point). Among the three real-world 

measures, the variance principle displays more convex premium curves, while the other 

two perform comparably. As aforementioned, the CBD model leads to clearer 

distinctions between the standard deviation principle and median absolute deviation 

principle than the Lee-Carter model does. Based on all our numerical results, it appears 

that in general the pricing rule uncertainty is less significant than the mortality model 

uncertainty. Moreover, the specific impact of choosing a particular premium principle 

depends on the underlying assumption of the mortality model. 
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In the next section, we conduct a sensitivity test to further investigate the impact 

of mortality model uncertainty. A robustness test allowing for structural changes in 

mortality improvement is also provided and discussed. 
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5. Sensitivity tests 
 

5.1 Allowance for model uncertainty 
 

We have demonstrated that the selection of mortality model plays a vital role in pricing 

longevity-linked securities. Nonetheless, no consensus has been reached on which 

mortality model serves best in life market pricing. To better account for model 

uncertainty in our pricing analysis, we employ the modified semi-parametric bootstrap 

method proposed by Yang et al. (2015). The idea is to select the “best” mortality model 

within the bootstrapping process, given predetermined list of model candidates and 

selection criteria. One may set selection criteria based on particular needs. For instance, 

the Bayesian Information Criterion (BIC) or Akaike Information Criterion (AIC) may 

be applied when a balance between goodness-of-fit and parameter parsimony is 

required. Our objective is to examine the effect of mortality model uncertainty on 

pricing which involves predicting future mortality distributions, so the forecasting 

accuracy is one major concern. Therefore, in each iteration step, we select the mortality 

model which produces the lowest mean absolute percentage error (MAPE) value in a 

backtest for specified fitting and forecasting periods. For convenience, we split the total 

data period into halves, while one may use other splits where appropriate. The 

implementation is briefly described as follows. After performing a backtest using the 

pseudo sample generated from Poisson distributions, the model with the lowest MAPE 

value is selected for that particular sample. Then we estimate the parameters of the 

chosen model using the entire pseudo sample and simulate future values of the time-

varying components and mortality rates. The selection-fitting-simulation process is 

repeated 10,000 times to get different paths of mortality scenarios. This modified 

bootstrapping method allows us to integrate process error, parameter error and model 

error into a comprehensive simulation framework.  
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Among 10,000 pseudo samples, 4,192 of them called for the Lee-Carter model, 

and the other 5,808 samples pointed to the CBD model. Fig. 7 illustrates the annual risk 

premiums of S-forwards and longevity swaps obtained under different models. An 

enlarged version for the modified bootstrap is given in Fig. 8. In general, the figures 

from the modified semi-parametric bootstrap are somewhere between those from the 

Lee-Carter model and CBD model on their own. For example, the premiums of a 25-

year S-forward contract after incorporating the model risk are between 6 and 9 basis 

points, compared with the values of 4 to 6 basis points under the CBD model and 9 to 

10 basis points under the Lee-Carter model. This observation is in line with our 

expectation because the results from the modified bootstrap may be regarded as some 

form of a “weighted” average between those from the two models, with weights 

depending on the forecast accuracy. Besides, the nine candidates of the risk-neutral 

family present more variations under the modified bootstrap approach. It can be seen 

from Fig. 8 that the risk premiums from the Denneberg’s absolute deviation principle 

and dual-power principle tend to rank highest, followed closely by the Gini principle, 

exponential principle, logarithm principle, Wang transform, and Esscher transform 

(canonical valuation). The proportional hazard transform still tends to produce the 

lowest premiums. Again, the impact of mortality model uncertainty is greater than that 

of pricing rule uncertainty.  

 
Fig. 7 Annual risk premiums of S-forwards (top panel) and longevity swaps (bottom panel) 

calculated by different principles using the Lee-Carter model (left column), modified bootstrap 

(middle column), and CBD model (right column) 
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Fig. 8 Annual risk premiums of S-forwards and longevity swaps calculated by different 

principles using the modified bootstrap, with a term of 15, 16, ... , 25 years 

 

 

5.2 Incorporation of structural changes 

 

Barrieu and Veraart (2016) stressed the impact of longevity trend risk in pricing 

longevity-linked securities. They suggested that there could be permanent changes in 

the trend of longevity improvements, which is often referred to as structural changes. 

However, the mortality models considered in our analysis are rather data-driven, and 

they extrapolate future mortality rates by assuming a continuity of past trends. Based 

on data from only the latest few decades, it is difficult to allow for rare structural 

changes in mortality forecasting. We follow Li et al. (2019) and adjust the drift terms 

of random walk processes in the two mortality models to incorporate arbitrary changes 

in longevity trends. They set three potential regimes for future longevity levels - low, 

moderate, and high mortality improvements by allowing time-varying drift terms. For 

the Lee-Carter model, we modify the drift term to Θ𝑡𝑡 = (0.5𝜃𝜃,𝜃𝜃, 1.5𝜃𝜃)′, where 𝜃𝜃 is the 

original drift estimated from past data. For the CBD model, the drift vector of the 

multivariate random walk is adjusted to Θ𝑡𝑡 = (0.5Θ,Θ, 1.5Θ)′, where Θ = (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3) 

contains three estimated drifts of the three time-specific components. The drift term is 

increased (decreased) by 50% to reflect high (low) mortality improvements. The 

transition matrix of structural changes is assumed to be �
0.99 0.01 0
0.01 0.98 0.01

0 0.01 0.99
�. It is 

difficult to determine the frequency of transitions between states without studying the 

underlying causes of structural changes such as urbanisation, medical breakthroughs or 
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a change in life style. An arbitrary value 0.01 is assigned to the probability of switching 

to the adjacent state, considering the once-in-a-century occurrence of permanent 

longevity shocks in historical data. 

Fig. 9 shows the risk premiums of longevity swaps under the two models after 

allowing for structural changes. Compared with the previous pattern without structural 

changes (Fig. 4), both the magnitude and the shape of the curves are quite similar. With 

this allowance for structural changes, the simulated paths of future longevity would 

trend differently, which then affect the calibration of premium principles using the 

market price. Table 6 gives the estimated parameters of the twelve pricing methods 

with and without structural changes under the Lee-Carter model. It can be seen that the 

loading factors of the three real-world principles under the Lee-Carter model decrease 

after allowing for varying drift terms. The impact of more volatile mortality scenarios 

turns out to be compensated by the decrease in magnitude of the loading factor, which 

then results in a similar level of risk premiums. For the risk-neutral methods, the 

connection between the risk parameter values and the resulting risk premiums is not as 

straightforward as that for the real-world methods. Instead of altering the explicit risk 

loading, the influence of more fluctuating longevity trends lies on the distorted 

distribution. Fig. 10 plots the risk-neutral probabilities from the Wang transform under 

the Lee-Carter model. We can observe that the allocated weights to the 10,000 

simulated scenarios (left graph) have very different patterns under the two assumptions. 

This is a direct consequence of having to match the same market price. The result is 

that the two corresponding distorted distributions are comparable with each other (right 

graph) and they give similar risk premiums. In practice, nevertheless, one may expect 

higher risk premiums of longevity-linked securities if the market has incorporated such 

structural changes into their consideration.  
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Fig. 9 Annual risk premiums of longevity swaps calculated by different principles after 
incorporating possible structural changes 
 

Table 6 Parameter estimates under the Lee-Carter model (with and without structural changes) 

Model Wang PH DP Gini Denne Exp Log ME Ess sd var mad 

Lee-
Carter 

original 0.37 1.48 1.55 0.66 0.47 1.36 2.80 1.16 1.16 0.37 1.14 0.54 
structural changes 0.34 1.42 1.48 0.59 0.42 1.21 2.31 0.95 0.95 0.33 0.94 0.51 
 

 

 

 

 

 

 

 

 
 
Fig. 10 Risk neutral probabilities from the Wang transform under the Lee-Carter model, with 
(yellow) and without (blue) structural changes16 
 

 

 

  

 
16 Note that the empirical cumulative distribution is based on scenarios sorted by simulated annuity prices. 
The real-world probability of each scenario is equal to 1

10000
 (given 10,000 simulations). 
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6. Concluding remarks 
 

In this thesis, we have investigated the impact of mortality model uncertainty and 

pricing rule uncertainty on pricing S-forwards and longevity swaps by comparing risk 

premiums calculated by twelve premium principles under two mortality models. The 

mortality models are fitted to UK mortality data and the valuation methods are 

calibrated using the market quotation of pension annuities. Our empirical results 

indicate that the uncertainty arising from the choice of mortality models dominates that 

of premium principles, and the relationships in the results between different pricing 

methods tend to rely on the underlying mortality model assumption. Considering the 

Lee-Carter model with a cohort parameter and the generalised CBD model, the risk 

premiums obtained under the former are generally higher than the latter. Regarding 

premium principles, those based on real-world measures produce greater premiums 

than the risk-neutral methods, assuming the same discount rate. When loadings are 

added to the real-world discount rate, figures from the three real-world pricing methods 

become even higher. Among this class, the standard deviation principle gives lower risk 

premiums than the median absolute deviation principle under the CBD model, while 

their pricing results are quite comparable under the Lee-Carter model. Moreover, the 

variance principle results in the most convex premium curves among all twelve 

candidates. Within the risk-neutral family, variations between the nine members are 

more detectable under the CBD model, although the magnitude is rather minimal.  

Given the significant influence of the choice of mortality model on the prices of 

longevity-linked securities, it is imperative to highlight the effect of incorporating 

model uncertainty into the pricing process. Our sensitivity test of model uncertainty 

demonstrates that the risk premiums calculated from the modified semi-parametric 

bootstrap may be viewed as a “weighted” average of those computed from individual 
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models, where the “weights” can be determined by the forecast accuracy on simulated 

pseudo samples.  

In practice, insurers may have particular preferences on certain mortality 

models, for instance, the user is more familiar with a specific model. A more 

comprehensive approach is to blend potential candidates together and obtain more 

balanced results by means of the modified bootstrap. Regarding pricing principles, both 

risk-neutral and real-world methods have their difficulties to implement in reality such 

as theoretical appropriateness and justifiable discount rates. Despite that, based on our 

numerical study, applying methods with real-world measures could result in higher 

premiums. Within each of the two categories, the results are more similar, and so 

insurers may select a principle based on its theoretical properties. For example, the 

seven candidates with distortion risk measures satisfy all the properties considered 

except additivity, which makes them qualitatively attractive. Nevertheless, when 

additivity is favored, one may adopt the variance principle.     

There are some future directions for research. When the life market transits to a 

more mature stage, more longevity products will be available. One can then employ 

those security prices with more matching features (e.g., matched term to maturity) to 

set the calibration constraints rather than using annuity quotations as in this study. 

However, one can imagine that even the securities whose payoffs are linked to the same 

population may not carry the same market view of longevity risk premium at times. In 

such situation, practitioners need to select the most suitable market price or they may 

apply those pricing principles with multiple parameters to incorporate all market 

information. We have only considered pricing principles in the univariate case for 

comparison purposes, while some pricing principles can be extended to multivariate 

versions. It would be interesting to examine the pricing rule uncertainty by integrating 

more market information. Moreover, given the long-term nature of longevity risk, it 

may not be realistic to assume a constant discount rate for all cash flows. One may 

incorporate the interest rate uncertainty and investigate the combined effect on the 

pricing of longevity-linked securities. Lastly, the primary concern of pension plan 

sponsors and annuity providers is to manage longevity risk. It would be useful to 

integrate pricing and hedging into a comprehensive system. One could apply calibrated 

pricing methods to mortality scenarios of the underlying reference population of 

longevity products, then embed the cost of hedging (risk premiums) in assessing 

hedging effectiveness.  
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