IOT-ENABLED SMART SENSING SYSTEM

Nawshin Nazrul

Bachelor of Engineering
Computer Engineering Major

]
Pg
ey

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Computer Engineering
Macquarie University

November 02, 2017

Supervisor: Professor Dr. Subhas Chandra Mukhopadhyay
Co-supervisor: PhD student Md. Eshrat E. Alahi

ACKNOWLEDGMENTS
I would like to express my utmost gratitude to my project supervisor, Professor
Dr. Subhas Chandra Mukhopadhyay for his guidance and support throughout
the thesis project. I would also like to extend my respects to my co-supervisor,
PhD student Md. Eshrat E. Alahi for his kind help and cooperation in every step
from the beginning to the end of this project. Finally, I would like to thank my
wonderful parents who have taught me to love and pursue my passion till the end

without fearing the obstacles in the way in-between.

STATEMENT OF CANDIDATE

I, (Nawshin Nazrul), declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Computer
Engineering, Macquarie University, is entirely my own work unless otherwise ref-
erenced or acknowledged. This document has not been submitted for qualification

or assessment an any academic institution.
Student’s Name: Nawshin Nazrul
Student’s Signature: NAWSHIN NAZRUL

Date: 02 November 2017

ABSTRACT

Nowadays, various types of smart sensing systems are available worldwide due
to the remarkable advancement achieved in the field of sensor technology. Not
many of them use capacitive sensors that need complex circuitry as well as soft-
ware algorithm. This project aims to develop an unconventional state of the art
smart sensing system for environment monitoring. The system will incorporate
a complex sensor node compatible with different kinds of capacitive sensors be-
sides resistive sensors that are not capable of communicating directly with the
microprocessor. This will also be an IoT (Internet of Things) integrated sys-
tem enabling it to continuously send the sensor data to a designated web server
for constant monitoring of the environment. The idea is to overcome the chal-
lenges of building a composite smart sensing system using complex algorithm. For
this particular project, three different kinds of sensors (LM335Z, HS1101LF and
TGS2600) have been used in order to sense various attributes of our surrounding
environment. LM335Z and TGS2600 are simple resistive types of sensors that
have the capabilities to measure temperature and general air quality respectively.
On the other hand, HS1101LF is a capacitive type of sensor that can measure
humidity and temperature. As mentioned earlier, interfacing capacitive sensors
to the microcontroller is not as simple as interfacing resistive ones. Therefore,
this project focuses on developing sensor nodes incorporating both resistive and
capacitive sensors in one connected circuit and achieve correct sensor data that
will be later uploaded to an loT server (ThingSpeak Channel) for continuous

monitoring of the environment.

Contents

Acknowledgments iii
Abstract vii
Table of Contents ix
List of Figures xi
List of Tables xiii
1 Imtroduction 1
1.1 Overview of the Project, 2
1.2 Time and Financial Budget Overview 4

2 Background and Literature Review 5
2.1 What is a Smart Sensor? 5
2.2 Typesof Sensors 6
2.3 Literature Review e 7

3 System Description 9
3.1 Sensor Node 9
3.1.1 HS1101LF Module - Relative Humidity Sensor 10

3.1.2 LM335 Module - Temperature Sensor 11

3.1.3 TGS2600 Module - General Air Quality Sensor 11

3.1.4 Impedance Analyser 12

3.1.5 Microcontroller L 13

3.1.6 ADG849 Module - Switch 14

3.1.7 Power Bank 15

3.2 Software Platform 15
3.3 IoT Configuration 15

4 Experimental Setup and Working Principles 17
4.1 Circuit Diagramo 17
4.2 LM335 Temperature Sensor Measurements 18

b'e CONTENTS

4.2.1 Calibration 18

4.2.2 Circuit Diagram and Temperature Results 19

4.3 HSI101LF Relative Humidity Sensor Measurements 20

4.3.1 Calibration 20

4.3.2 Unknown Impedance Calculation 29

4.3.3 Phase Shift Calculation 25

434 Humidity Results 26

4.4 TGS2600 General Air Quality Sensor Measurements 26

5 Results and Discussion 30

51 Field Experiment Data 30

5.2 DISCussion e e e e e 36

5.2.1 Determining the Values of Calibration and Feedback Resistors . . . 36

5.2.2 Stability and Storing Issues of Gain Factors 37

6 Conclusion and Future Work 38

A Project Timeline and Consultation Attendance Form 41

B LookUp Table for Humidity Sensor 43

C Arduino Codes developed for Smart Sensing System 44
C.1 Final code for measuring sensor data and sending them to ThingSpeak

Channel 44

C.11 AD5933 Header File 44

C.1.2 AD5933 Source Code 48

C.1.3 Main Sketch oL 62

Bibliography 67

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6

4.8

(]

[S e S)
=] & N = QO BD =

wn

Al
A2

Block diagram of a Smart Sensor L.

A simple block diagram of the proposed design
HS1101LF Relative Humidity Sensor
LM335 Temperature Sensor
TGS2600 General Air Quality Sensor [1]
Functional block diagram of AD5933 impedance analyser [2]
Timing diagram of AD5933 impedance analyser [2]
Arduino Uno Wi-Fi Board [3] L.
ADG849 Module [4]
Cygnett ChargeUp 4000 Power Bank [5]
Dragino LGO1-S Gateway

Circuit Diagram of AD5933 impedance analyser with Arduino Uno Wi-Fi .
lIoT-enabled smart sensing system for environment monitoring
Circuit diagram of LM335 Temperature Sensor
Code for LM335 Temperature Sensoro
Frequency vs Gain Factors Chart
Frequency vs Unknown Impedance Chart
Sensitivity Graph for TGS2600 Module [6]
Rs/Ro Vs different level of gas concentration in ppm

Location of the Sensor Nodes (Ubar, Macquarie University)
Field 1-4 with sensor data in ThingSpeak Channel 1.
Field 5-8 with sensor data in ThingSpeak channel 1
Field 1-4 with sensor data in ThingSpeak Channel 2.
Field 5-8 with sensor data in ThingSpeak channel 2
Exact Humidity and Temperature data taken from Google [7]
Relative humidity and temperature Variation charts obtained from im-

ported ThingSpeak channel data

Gantt chart of the Project Timeline
Consultation attendance Form

xi

xii LIST OF FIGURES

B.1 Lookup table for humidity calculation given in the datasheet 43

List of Tables

1.1 Price of the items needed to be purchased
4.1 Phase Angle Calculation Table [2] 25

5.1 Calibration and feedback resistor values for different ranges of impedance . 37

xiil

Chapter 1

Introduction

Smart sensors have become an inevitable part of our society by providing security and
safety with constant monitoring of our health and environment [8]. Previous studies show
that, smart sensors possess the capability of completely changing the method used to
maintain, control and monitor the civil infrastructure [9]. However, developing a smart
sensing system including low-power, low-cost as well as small sized sensors and which
supports wireless communication is still a great challenge for the researchers. Therefore,
the goal of this project is to build a low-power and cost-effective system including IoT
applications for environment monitoring purpose. Currently, most of the available smart
sensing systems are quite straightforward and only include resistive type sensors. This
project focuses on establishing a compound sensing system incorporating both capacitive
and resistive sensor in one circuit. It will also be connected to a web-server where the
processed sensor data will be sent for constant monitoring.

The sensor node developed for this project is a complex node including two resistive sen-
sors for measuring temperature and general air quality (LM335 and TGS2600) as well
as one capacitive sensor (HS1101LF) for measuring humidity of the surrounding envi-
ronment. An impedance analyser (AD5933) is also introduced in the project to create
communication between humidity sensor and the main Arduino microcontroller via I2C
protocol. A detailed description of the system components and methodology to achieve
accurate results have been discussed in the following chapters. The complete circuit di-
agram has also been provided along with the figure of the working sensor node. After
processing the sensor data, they are sent straight to the IoT server for monitoring pur-
pose. For this, an open-source IoT platform called " ThingSpeak” has been selected since
creating a private channel here and uploading data constantly are more straightforward
than other IoT applications. Finally, the field experiment results and other challenges
encountered during the project are illustrated at the end of this document.

2 Chapter 1. Introduction

1.1 Overview of the Project

This section outlines a brief discussion of the overall project and the contents of this doc-
ument. This project is supervised by Professor Dr. Subhas Chandra Mukhopadhyay and
co-supervised by PhD student Md. Eshrat E. Alahi. The overall thesis project is divided
into two units ENGG460 and ENGG411. Each of these units include 13 weeks. During
the first 4 weeks of ENGG460, the list of projects was made available to the students and
the students were expected to choose their project, meet the prospective supervisor and
submit their list of preferred projects online. The list of project allocations was available
by the end of week 6. After that, a regular meeting per week with the supervisor has
been setup to discuss any problem encountered during working on the project in order to
ensure that the progress is keeping up with the schedule. Before the commencement of
ENGG411, there was a winter vacation of four weeks and a few milestones were achieved
during the vacation. Finally, ENGG411 started from July 31st, 2017 and the final report
submission deadline is on 6th November 2017. The framework of the thesis project is as
follows:

Chapter 2 illustrates some important definitions, background and literature review related
to this project. Definitions of smart sensor and different types of sensors are provided and
the literature review section contains information collected from the research conducted
during the last few weeks of ENGG460.

Chapter 3 discusses the proposed design of this project. It includes the hardware and
software architecture of the whole system.

Chapter 4 depicts the experimental setup and working procedures for this project. It ex-
plains the whole procedure step by step following which the expected results were attained.

Chapter 5 includes the results and discussions which illustrates the results achieved during
the field experiment as well as refer to the problems encountered during the process and
the solutions that could be thought of up till now.

Chapter 6 will conclude the project by outlining the goals achieved and the summary of
the project. It will also discuss any future work that can take place after what has been
done till now to achieve further improvements.

Project Objectives:

e Getting familiarised with Arduino Uno Wi-Fi platform and Arduino [IDE

1.1 Overview of the Project 3

e Gain experience in embedded C, Matlab programming and netwroking
e Understanding characteristics of different types of sensors

e Developing a low-cost and low-power smart sensing system connected to an [oT
server for constant monitoring of environment

4 Chapter 1. Introduction

1.2 Time and Financial Budget Overview

The project started from 24th of April, 2017 which was the beginning of the 7th week
of ENGG460. From then the number of total weeks till now is 22, excluding 2 weeks of
exam period. The project plan or the project timeline is provided in Appendix A. The
project timeline planned during the first week had been followed closely and more than
50 percent of work had been accomplished within week 6. Therefore, the project has been
completed successfully by due date.

Every student is allocated with approximately 400 Australian dollars as the financial bud-
get for the thesis project. Some of the equipment were already provided in the laboratory,
for example, Arduino Uno Wi-Fi, resistors, jumper wires, USB cables, soldering irons etc.
However, most of the important equipment needed to be hought. The table below shows
the items that were bought along with their price in Australian dollar -

| Name of The Equipment | Price (Per Item in Australian Dollar)
Impedance Component Analyser (2) 50.0%2 = 100.0
Temperature Sensor (LM335) (2) 1.49%2 = 2.98
Humidity Sensor (HS1101LF) (2) 8.85%2 = 17.7
Gas Sensor(TGS2600) (2) 25.0%2 = 50.0
Multiplexer (ADG849) (2) 2.89x2 = 5.78
Power Bank (Cygnett 4,000 mAh) (2) 39.9542 = 79.9
| Total | =256.36

Table 1.1: Price of the items needed to be purchased

Chapter 2

Background and Literature Review

This chapter contains some important definitions, background theory and literature review
related to this project. It describes what a smart sensor is and what are the main kinds
of a smart sensor. Later, it explains the working principles of resistive and capacitive
sensor. Finally, it discusses the advantages and drawbacks (if any) of some of the state of
the art smart sensing systems available in the market.

2.1 What is a Smart Sensor?

Ideally, a smart sensor indicates to a sensing element with enhanced abilities which is
usually provided by a microprocessor. In other words, Smart sensors are regular sensing
clements with embedded intelligence that can transmit processed information to external
users [8]. These sensing elements can be resistive, capacitive, piezo resistive materials
or even photodiode. Smart sensors not only are capable of self-health assessment or
self-calibration but also provide information with increased integrity and reliability. The
main difference between a smart and an ordinary sensor is that the smart sensor has a
microprocessor instead of having a sensor interface, which can perform various intellectual
activities, such as analog to digital conversions, signal conditioning, interfacing and
making other decisions. The figure below refers to the block diagram of a smart sensor [9]-

Figure 2.1: Block diagram of a Smart Sensor

o

6 Chapter 2. Background and Literature Review

2.2 Types of Sensors

There are different kinds of sensors based on various requirements of the users, like tem-
perature sensor, humidity sensor, pressure sensor, gas sensor, light sensor and so on.
However, all these sensors can again be divided into several types depending on their ap-
plications, type of input voltage and corresponding circuitry. This project mainly focuses
on resistive and capacitive types of sensors since they are the most common types to be
used in smart sensor systems. The functional attributes of these two sensors are explained
below-

Resistive Sensors [10]:

Resistive sensors are most frequently used in smart sensing systems due to its user-friendly
functionality. These perform measurements by detecting the change of resistance in a
resistive element. The following equation measures resistance:

px L

R= .

(2.1)

Where,

R = resistance of the material;

p = electrical resistivity of the material;
L = cross-sectional length of the material;
A = cross-sectional area of the material.

Capacitive Sensors [10]:

Capacitive sensors are well-known for their ability to store energy. It basically follows the
operating principle of coupling effect. According to this principle, dielectric materials are
placed between two poles that contain opposite charges and the permittivity of dielec-
tric materials influences the intensity that polarises the charges of these materials. The
capacitance here depends both on the sensors size and the permittivity of the material
used. The equation for that is given below:

EUXEJ_XA

¢= d

(2.2)

Where,

C = capacitance of the interdigital sensor;

€p = the permittivity of vacuum;

€1 = relative permittivity;

A = the effective area;

d = the effective spacing between electrodes of different polarity.

2.3 Literature Review 7

The main operational difference between resistive and capacitive sensor is the type of
input voltage. Resistive sensors can operate at DC voltage whereas capacitive sensors can
only operate at AC supply voltage as an input.

2.3 Literature Review

As mentioned earlier, the applications of smart sensor systems are becoming more and
more popular each day. Specially, with the remarkable advancement made in the past few
vears in the field of wireless sensor networks (WSN) has made it even more challenging to
develop sensor nodes with more advanced and newer features and attributes. This section
discusses some of the state of the art smart sensing systems, their special characteristics
and drawbacks.

A smart nitrate sensor system has been developed in [11] which is also an loT-based sys-
tem. This system used interdigital capacitive sensors for measuring nitrate concentration
in surface and ground water. Arduino Uno Wi-Fi was introduced as the sensor platform
that contains Atmel ATmega328 microprocessor. The most remarkable features of this
design were that it could successfully measure nitrate concentration ranging from 0.01-0.5
mg/L and the sensor data was sent to an open database platform called ThingSpeak using
HTTP POST protocol to make it a connected system. However, this sensor system could
only be used for low measurements.

Another IoT-enabled smart sensor design has been proposed in [12] for domestic environ-
ment monitoring. This system contained three different sensing components for measuring
various parameters of home environment with almost 97 percent accuracy of reliability
of the provided information. A resistive temperature TMP 36 and a light sensor BPW
21R are some of the sensors that were used in this system. For IoT configuration, it
used ZigBee Wireless Sensor Network and XBee-S2 module as the gateway. Although it
achieved a remarkable amount of reliability, occasional changes were noticed during the
throughput process because of interferences from other networks.

A barometric sensor and an alcohol sensor (BMP 085, MQ 3) were used in designing
a detachable smart sensor in [13] for environment monitoring. Instead of Arduino, it
used DSTIM (Detachable Smart Transducer Interface Module) sensor platform and PIC
18LF2550 as the microcontroller. As the previous design, it also used ZigBee Wireless
Sensor Network for enabling loT configuration. One of the noteworthy features of this
system is it can be distributed at different geographical locations and measure as well as
send information about the environment to the server. The only weakness of this system
is it has a comparatively low power and sensing efficiency.

[14] Describes the design of a wireless sensor node for Biomedical Research which used
SHIMMER as the sensor platform and TI MSP430 as the microcontroller. This is a very

8 Chapter 2. Background and Literature Review

flexible platform that has the capability of physiological, kinematic and ambient sensing.
One of the problems with this system is it uses Bluetooth connection which is often not
very reliable. Also, it is still an ongoing research.

A low-cost wireless sensor system is developed using Arduino and Raspberry Pi platform
[15]. It consists of a base station and a number of sensor nodes that can be distributed
in different locations. The base station uses a low-power and small Raspberry Pi Model
B based on ARM processor. On the other hand, the sensor nodes contain Arduino Uno
R3 platform integrated with Atmel Atmega328 microcontroller. Wireless communication
is enabled among the sensor nodes and the base station via XBee Pro S2B module which
will send the data to a MySQL databse. However, the storage capacity in this system is
not large enough. RHT 03 (temperature and humidity sensor) is used here to measure
humidity and temperature of the environment.

Chapter 3

System Description

As mentioned earlier in the document, the goal of this project is to develop a couple of
sensor nodes consisting of LM335 temperature sensor, TGS2600 general air quality sensor
and HS1101LF humidity sensor as the main sensors and Arduino Uno Wi-Fi as the main
sensor platform which is based on ATmega328P microcontroller. LM335 and TGS2600
being resistive sensors, interfacing them to the microcontroller is quite straightforward
since resistive sensors can function at DC input voltage provided by Arduino microcon-
troller. However, capacitive resistors only support AC input voltage which cannot be
provided by Arduino microcontrollers. Therefore, an impedance analyser (AD5933) has
been used in this project to solve this problem which makes the whole system a little bit
more complex. The humidity sensor is interfaced to the microcontroller via IC protocol
which takes place in the impedance analyser. All necessary measurements are processed
here and then sent to the microcontroller through this protocol. The detailed discussion
about this protocol will be given later in this document. After processing all the sensed
data through software algorithm, the information is uploaded in a designated web server
through IoT configuration. Arduino Uno Wi-Fi has its Wi-Fi module (ESP8266) which
has an integrated TCP/IP protocol stack that helps to get access to the Wi-Fi. Dragino
(LG-01 S) has been used as the IoT gateway that will connect the Arduino Uno Wi-Fi
with the ThingSpeak server which is an open database platform. The processed data
will be sent directly to a ThingSpeak channel constantly where the user can monitor the
updated information.

A block diagram of the design is given in the next page.

3.1 Sensor Node

As mentioned above, the sensor node consists of the sensors (HS1101LF, LM335 and
TGS2600), a multiplexer (ADG849), Arduino platform (Arduino Uno Wi-Fi) and the

impedance analyser. To provide power, a low-cost power bank has been used in this
project. A brief discussion about these components are outlined in the sections below-

10 Chapter 3. System Description

Thingspeak
Channel

Humidity and
Draging LG-015 Temperature
Gateway /’ Sensor
| Solar Panel/ 5 (HS1101LF)
Batte
n Impedance Analyser Gas Sensor
e (TGS2600)
PFawer Supply

/ Temperature

Microcontraller | / Sensor
based platform {LM335)

(Arduino Uno

Management

Wi-Fi)

Figure 3.1: A simple block diagram of the proposed design

3.1.1 HS1101LF Module - Relative Humidity Sensor

This is an environment-friendly low-cost relative humidity sensor with high reliability and
long-term stability. It has a really low temperature coefficient which also does not need
any calibration in standard conditions. It has an operating temperature ranging from
-60°C to 140°C. The supply voltage should be 10 VAC. Since it cannot operate at DC
voltage and does not have I>C bus or pins, the measurements are done using a separate
impedance analyser which is then sent to the Arduino microcontroller via I*C protocol.
The impedance analyser first measures the unknown impedance of the sensor which is
then used to calculate the capacitance (This will be discussed later in detail). All the
measurements need to be done at 10 KHz/V as per the datasheet of this sensor. This
capacitance is crucial to finally measure the humidity using a polynomial equation which
is also provided in the datasheet [16].

Figure 3.2: HS1101LF Relative Humidity Sensor

3.1 Sensor Node 11

3.1.2 LM335 Module - Temperature Sensor

LM335 is a precision IC (Integrated Circuit) temperature sensor which provides temper-
ature in degree Kelvin. This is low-voltage IC which operates at 3.3V. It has three pins,
pinl is the adjustable pin which is only used when calibration is needed to get more
precise temperature readings. Pin 2 and 3 are the output and ground pin respectively.
This sensor gives an output of 10 mV per degree Kelvin. Pin 2 is connected to an analog
pin of the Arduino board and a 2K resistor is connected in series with pin 2 and 3.3
V of the Arduino board. Arduino board can measure the analog voltage with suitable
code and provide output temperature in Kelvin, Celsius or Fahrenheit. This sensor has
an operating temperature ranging from -40°C to 100°C [17].

LM335 Pinout

LM335 Symbolic Rep

www_TheEngineeringProjects. com

Figure 3.3: LM335 Temperature Sensor

3.1.3 TGS2600 Module - General Air Quality Sensor

TGS2600 is a low-power and low-cost general air quality sensor which is highly sensitive
to gaseous air contaminants in low concentration, like hydrogen or carbon monoxide
in cigarette smoke. The sensing element is made of a metal-oxide semiconductor layer
generated on top of an aluminium substrate of the sensing chip along with an integrated
heater. This heater helps maintaining the sensing unit at a pre-determined temperature to
get precise output. The conductivity of the sensor increases in the presence of a detectable
gas relying on the concentration of the gas in air. This change of conductivity can be
converted to an output with necessary electrical circuit that can eventually provide a
measure of that gas concentration. This is an analog sensor therefore an ADC (analog-
to-digital converter) is needed to convert the data into expected output. This sensor has
4 pins; pin 1 is the VCC pin, pin 2, 3 and 4 are integrated heater, data and ground pin
respectively [6].

12 Chapter 3. System Description

Figure 3.4: TGS2600 General Air Quality Sensor [1]

3.1.4 Impedance Analyser

The impedance analyser used here is AD5933 which is a high precision impedance con-
verter solution. The main components include an on-board 12-bit frequency generator, 1
MSPS and an analog-to-digital converter (ADC), a temperature sensor and [?C interface.
An external complex impedance gets excited at a known frequency by the frequency gen-
erator and the on-board ADC samples the received response signal from that impedance.
Next the on-board DSP engine performs a discrete Fourier transform (DFT) on it and
returns a real and imaginary value at each frequency increment. These values are stored
in particular registers and can be read using I*C protocol [2].

After calibration, a frequency sweep is performed and the magnitude as well as the phase
shift are easily calculated at each frequency point using the following equation [2]

Magnitude = \/fRz + 1% (3.1)

Phase = tan ' (I/R) (3.2)

Serial I’C interface and I’C Timing of AD5933

ADB5933 is controlled via I2C protocol and always acts as the slave device while connected
through this bus interface with another device (master device). It has a 7-bit bus address
which is by default 0001101 (0x0D) when it is powered up. According to the I*C protocol,
the data transfer is always initiated by the master device followed by a start condition.
This start condition refers to the transition of the Serial Data Line (SDA) from high to low
given that the Serial Clock Line remains high at that time. Then the slave device shifts in
next 8 bits containing an R/W (0= write, 1= read) bit along with the bus address which
decides the direction of data flow (if data is written to or read from the slave device).

3.1 Sensor Node 13

Figure 3.5: Functional block diagram of AD5933 impedance analyser [2]

Data transmission is always carried out in sequences of nine clock pulses, 8 bits of data
which are followed by an acknowledge bit, either sent by the master or the slave device.
Data transmission must occur during the low period of clock signal and remain stable
when it is high since a low-to-high transition during the high period of clock signal might
be acknowledged as a stop signal. The stop condition is established when all the data
have been written to or read from the slave device [2].

= JUyyuuyrvurvuyryyuuuuy
N Vn

STARTCOMDITION SLAVEAORESS EYTE ACKNOWLEDGE BY REGISTERADIRESS ACKHOWLEDGE BY
BYMASTER s NASTERSLAVE

Figure 3.6: Timing diagram of AD5933 impedance analyser [2]

3.1.5 Microcontroller

Arduino Uno Wi-Fi has been chosen as the sensor platform for this project for the ad-
vantage of having its own integrated Wi-Fi module. Tt has ATmega328P microcontroller
and ESP8266 Wi-Fi module integrated into it. Its operating voltage is 5 V and can be
powered up by simply connecting it to a computer via USB cable. Arduino Uno Wi-Fi
contains 6 analog input pins, 14 digital input and output pins, a USB connection, a reset
button and so on for other functionalities. This board is popular for its small size, less
weight and low power consumption [3].

14

Chapter 3

. Svstem Description

ESPa2e0 Bootioackr Button
5P 18p

L
R
£

Figure 3.7: Arduino Uno Wi-Fi Board [3]

3.1.6 ADGS849 Module - Switch

This is a rigid CMOS SPDT (single pole, double throw) analog switch that has an operat-
ing voltage ranging from 1.8 to 5.5 V. It has total 6 pins where pin 2 and 3 are VDD and
ground pins respectively. Pin 1 is the logic control input which controls whether switch
S1 (pin 4) or switch S2 (pin 6) should be on. This multiplexer is used in this project to
switch between calibration and measurement when necessary for the humidity sensor [4].

ADG849
sz
)D
1 !
I
]
IN
g
SWITCHES SHOWN _ &
FOR A LOGIC 1 INPUT

Figure 3.8: ADG849 Module [4]

3.2 Software Platform 15

3.1.7 Power Bank

For this project, Cygnett ChargeUP 4000 mAh power bank has been used as the main
source of power. This has been designed following the latest Lithium polymer battery
technology which has allowed its smaller cells to preserve more charge and provide higher
output. Two or three cell phones can be charged at a time with this power bank. It
is also quite small and slim (103g) which is suitable for the small sensor node. It has
a digital display to show how much power it has at the moment. A micro-USB comes
with the power bank which can be used to recharge it by plugging it into a computer,
car charger or wall charger. The battery will also turn off automatically while not being
used to save power. This power bank was able to provide power to the sensor node for 24
hours without having to recharge it [5].

Figure 3.9: Cygnett ChargeUp 4000 Power Bank [5]

3.2 Software Platform

The Arduino IDE (Integrated Development Environment) 1.8.4 has been used as the
main software platform to upload necessary codes to the Arduino Uno Wi-I'i board. This
software consists of a text editor for writing code, a text console, a message area, a toolbar
with common functions as well as a wide range of libraries and examples helpful for a
first-time user. It can be connected with any compatible Arduino hardware through a
USB cable for uploading code and communicating with it. This is an open source platform
that runs on Windows, Mac OS X and Linux. Its source code is developed by GitHub
and the environment is written in Java and based on processing and other open-source
software [18].

3.3 IoT Configuration

As it has been already mentioned earlier, Arduino Uno Wi-Fi has its own integrated
Wi-Fi module (ESP8266) along with TCP/IP protocol stack which enables access to the

16 Chapter 3. System Description

internet. Since it covers a very small area, Dragino (LG-01 S) has been introduced as
the IoT gateway to connect Arduinos Wi-Fi with a particular ThingSpeak channel so
that the sensor data can be constantly updated there. REST protocol has been used in
the code for transmitting data to the channel. ThingSpeak platform has been chosen
for this project since it is free and very easy to create an account as well as a private
channel here. The procedure of transferring data from client to the server is also quite
straightforward. When a private channel is created, a unique API key and a channel
number are automatically created for that particular channel. Arduino IDE has a built-in
library for ThingSpeak and the code is uploaded to the Arduino board with the API key
included in it. The channel can display as many fields as required and gets updated at a
user defined interval.

Figure 3.10: Dragino LG01-S Gateway

Chapter 4

Experimental Setup and Working
Principles

This chapter discusses all necessary theories and methods required to get accurate results
for the three sensors. At first, the calibration procedure, circuit diagram of the LM335
temperature sensor as well as the code to gain correct temperature results are described.
After that, the working principles of HS1101LF humidity sensor is explained in detail. The
calibration test of this sensor is a bit complicated. Once the calibration is performed, the
unknown impedance of the sensor is calculated to get the capacitance of the sensor which
is most important parameter to get accurate humidity results. Finally, the methodology
to obtain TGS2600 air quality sensor is illustrated with necessary theories and graphs.

4.1 Circuit Diagram

The circuit diagram of the complete system as well as the picture of the sensor node is
given in the next page:

17

18

Chapter 4. Experimental Setup and Working Principles

N
IOREF
RESET

5 r| 13V
= - @
T G i,

Y

BEEREE

501
o

Asdeamo U Wik it

@D
D13
D12
-1
Do

gEpéptPs g9

ADGES

-2 vop oup

Hppota0d |

NC [y
2m)
JiH Avoo aceen i g Huesstry and b 1
1 Avoo acnms E—— P Tesprstun Figare ns
moo Do [i s L Tah2e0 i
ADTR p Dot 12

Figure 4.1: Circuit Diagram of AD5933 impedance analyser with Arduino Uno Wi-Fi

[HS1101LF
Humidity Sensor

_ Arduino Uno
Wi-Fi
=~ Cygnett

ChargeUp

Impedatie Gas Serlso Power
(AD5933) (TG52600) Bank

Figure 4.2: loT-enabled smart sensing system for environment monitoring

4.2 LM335 Temperature Sensor Measurements

4.2,1 Calibration

Generally, LM335 does not need any calibration. However, to ensure higher efficiency,
there is a pot connected across LM335 with an arm tied to the adjustment pin (pin 1)
which allows a one-point calibration of the sensor. This calibration corrects any inaccuracy
in the temperature readings over the full temperature range. This single-point calibration
is meaningful since LM335 sensor output is proportional to absolute temperature with the
extrapolated sensor output going to 0 volt at 0°Kelvin (-273°Celsius). Hence any error in

4.2 LM335 Temperature Sensor Measurements 19

output voltage versus temperature is just a slope, therefore, a calibration of this slope at
one particular temperature rectifies errors at all temperatures. The temperature sensors
voltage output is given by the following equation [17]:

VoutTO x T
Vout = ——
ou 70

(4.1)
Where, T is the unknown temperature and TO is the known reference temperature in
°Kelvin. The output is usually calibrated at 10 mV /°Kelvin, therefore, at 25°Celsius or
298 “Kelvin, VoutT0 = 298°K x 10mV/°K = 2.98V.

Thus the dropped voltage between the supply voltage (5V) and output voltage is = (5-
2.98) V = 2.02V. Since this sensor is basically a Zener diode, a bias current must be
generated in order to use it. According to the datasheet this current should be between
400 vA and 5 mA. A 2KQ resistor has been used in the circuit to get this current.

4.2.2 Circuit Diagram and Temperature Results

The circuit connection for this sensor is very simple. The adjustable pin will remain
unconnected and pin 2 and 3 will be connected to analog input 0 (A0) and the ground of
the Arduino board respectively. A 2K resistor will also be connected in series with pin
2 and 5V of the board. The circuit diagram and a screenshot of the code are given below:

N v Vin

v D13
— BT p12 f—
L, —] AReF [N ==
w02 —Jowr Arduino oo |
— nic o =
- 08

3o
3 os [
= ps o

]
A0 ELa
ADJ — i 03 =
Tem)
SGI'IEPOYOUT —_— a2 E 02 f—
T
GND e L [Fr LN
— . E 0o ==
— s st f—
) 504 |—
GND

Figure 4.3: Circuit diagram of LM335 Temperature Sensor

According to the code, the analog output voltage or the raw voltage at A0 pin of the
board is read first. Now this voltage is divided by 1024 since the span of 1024 holds the
supply voltage 5V. The ratio of this raw voltage to the full span of 1024 is now achieved by
multiplying it with 5000 in order to get the value in millivolts. Since 1024 represents the

20 Chapter 4. Experimental Setup and Working Principles

flHmitializes/defines the output pin of the LM235 temperature sensor
int outputPin= @;

flthis sets the ground pin to LOW and the input voltage pin to high
void setup()

5 (

6 Serial.begin(9688);

B r

8

@ //main loop

18 veoid loop()

11 {

12 int rawvoltage= analogRead(outputPin);

13 float millivelts= (rawvoltage/1024.8) » 5000;
L4 float kelvin= (millivolts/1@);

15 Serdal.print(kelvin);

16 Serdal.println(" degrees Kelvin");

17

1
1

& float celsius= kelvin - 273.15;
9 Serfal.print(celsius);
8 Serial.println(" degrees Celsius"};

fleat fahrenheit= ({celsius * 2}/5 +32);
Serial.print(fahrenheit);
Serial.println(" degrees Fahrenheit");

delay(38008) ;
}
Figure 4.4: Code for LM335 Temperature Sensor

maximum value of the supply voltage (5V), the value of the raw voltage cannot be greater
than 1024. The reason for multiplying the ratio with 5000 is it represents 5000 millivolts.
Once the raw voltage is calculated in millivolts, the temperature in Kelvin is obtained
by dividing the millivolts by 10. In order to get the equivalent Celsius temperature
value, 273.15 is subtracted from the Kelvin value. Finally, the Fahrenheit temperature is
attained from the following equation

Celsius x 9
Fahrenheit = ——— 4.2
ahrenhei 5130 (4.2)

4.3 HS1101LF Relative Humidity Sensor Measure-
ments

4.3.1 Calibration

In order to attain humidity results from this sensor, it has to be calibrated at first us-
ing impedance analyser (AD5933). After that the unknown impedance of the sensor is
obtained which is used to calculate the capacitance and eventually the relative humidity
of the surrounding environment. According to Ad5933 functional block diagram in the
datasheet, a feedback resistor (Rfb) is connected in series with pin 4 and 5 (Vin) and
another calibration resistor (Rcal) is connected in series with pin 5 and 6 (Vout) of the
impedance analyser to perform the calibration. Performing frequency sweep is another
important step during calibration which will be discussed in the next subsection. The
calibration test is conducted during each frequency sweep using software algorithm to
observe if the achieved impedance results match the known physical calibration resistor

4.3 HS1101LF Relative Humidity Sensor Measurements 21

(Real) value. 200 KQ resistors have been used as both Recal and Rfb resistors in this
project.

Performing Frequency Sweep

All the necessary calculations to get unknown impedance and finally the humidity and
temperature need to be performed during a frequency sweep. AD5933 can operate in
a wide range of frequency which is from 1 Hz to 100 KHz. Frequency sweep is fully
performed and controlled via programming of the three parameters, which are: start fre-
quency, frequency increment and number of increments [2].

Start Frequency:

Start frequency is a 24-bit word that is programmed at Register Address 0x82, 0x83 and
0x84 inside the on-board RAM. The following equation is the code for the start frequency
that needs to be loaded on the start frequency register [2]:

RequiredOutput Start Frequency
(MCLK/4)

Start FrequencyCode = () % 2% (4.3)

Here,

Required Output Start Frequency = User defined start frequency;
MCLK = 16 MHz.

After putting the required values into the equation, the value needs to be converted into
hexadecimal and stored into Register Address 0x82, 0x83 and 0x84. For example, if the
value is 0x0F5C28 then the user need to program 0x0F to Register address 0x82, 0x5C
to address 0x83 and 0x28 to address 0x84 [2].

Frequency Increment:

This is also a 24-bit word programmed at Register Address 0x85, 0x86 and 0x87 in the
on-board Ram. The code is given by [2]:

RegquiredFrequencylIncrement -

(MCLK/4)) x 27 i)

Frequeneylnerement = (

Here,

Required Frequency Increment = User defined frequency resolution during the sweep;
MCLK = 16 MHz.

Conversion and storing of the output from the equation in the registers are similar to the
start frequency.

22 Chapter 4. Experimental Setup and Working Principles

Number of Frequency Increments:

This is a 9-bit word that is also programmed to the on-board RAM at Register address
0x88 and 0x89. This number refers to the number of frequency points in each sweep. The
highest value that can be programmed as the number of points is 511 [2].

After all the three parameters are programmed, a start frequency sweep command is
issued at Register address 0x80 and 0x81. The user controls each frequency increment
during the sweep. After each frequency increment command is executed, one set of real
data from address 0x94, 0x95 and one set of imaginary data from address 0x96, 0x97
are read. After the frequency sweep is completed, bit D3 in the status register is set to
indicate the completion of the frequency sweep command [2]. According to the humidity
sensor datasheet, the capacitance measurements need to be done at 10 KHz/V. However,
after a few trial and errors, expected results have been achieved for a frequency sweep
from 11300 Hz to 12400 Hz with an increment of 100 Hz in this project. The number of
increments was defined to be 10.

Impedance Calculation

At each frequency point during the sweep, a DFT is calculated. The AD5933 DFT
algorithm is given by the following formula [2]:

1023

X(f) = Z(ﬂ:(n)(cos(n) — jsin(n))) (4.5)

n=0

where:

X(f) is the power in the signal at the Frequency Point f;

x(n) is the ADC output;

cos(n) and sin(n) are the sampled test vectors provided by the DDS core at the Frequency
Point f.

For each frequency point, the multiplication is sampled over the span of 1024. The output
is stored in two 16 bit registers in the form of twos complement as real and imaginary
component [2].

Magnitude Calculation:

In order to get impedance, the magnitude of the DFT has to be calculated first for each
frequency increment. The equation of calculating magnitude is given by the following
equation [2]:

Magnitude = \/(R? + I?) (4.6)

Where, R is the real and I is the imaginary value stored in register address 0x94, 0x95
and 0x96, 0x97 respectively in hexadecimal. These hexadecimal values are converted

4.3 HS1101LF Relative Humidity Sensor Measurements 23

to decimal internally in AD5933 and the magnitude is calculated by providing software
instructions through Arduino IDE.

Gain Factor Calculation:

Calculating gain factors using the magnitude obtained earlier is the second step. The
equation of gain factor calculation is given below [2]:

Admittance, (m)

nFactor = =
Gumbceior =q Code Magnitude

(4.7)

Here,

Impedance = Calibration resistor value = 200 KQ; ;
Output Excitation Voltage = 2 V peak-to-peak;
PGA Gain = 1.

The impedance mentioned in this equation refers to the reference or calibration resistor
value which is defined by the user in the code. As expected, the gain factors achieved in
this project formed a linearly increasing line graph and were proportional to the frequency
increments which is shown in the graph below where x-axis indicates frequency and y-axis
indicates gain factors.

Gain Factors

1E-09
9E-10
8E-10
7E-10
GE-10

SE-10

4E-10

3E-10 y=3E-13x- 3E-09
R? = 0.9585

Gain Factors

2E-10
1E-10

11200 11400 11500 11200 12000 12200 12400 12600
Frequency (Hz)

Figure 4.5: Frequency vs Gain Factors Chart

Impedance Calculation:

During calibration, the gain factors are used to calculate the impedance to ensure that the
impedance value matches the value of the calibration resistor. The formula of calculating
the impedance is given by [2]:

1

I'mpedance =
g (GainFactor x Magnitude)

(4.8)

24 Chapter 4. Experimental Setup and Working Principles

Here, the gain factor and magnitude have already been calculated in the previous two
steps. All the gain factors and magnitudes have been calculated manually as well to
ensure the software algorithm is working properly. The results were satisfactory and the
impedance value received was 200KQ which is the value of the calibration resistor. The
gain factors are saved in an array for caleulating unknown impedance in the next step.

4.3.2 Unknown Impedance Calculation

Once calibration test is successfully conducted, the next important step is to calculate the
unknown impedance of the sensor. In this step, the calibration resistor would be removed
and the sensor should be connected in that place. ADG849 mux will be used to complete
the calibration automatically with the one run of the system and then move to calculating
the unknown impedance. The formula is the same as impedance calculation, however, the
gain factors would be the gain factor values attained from the calibration stage in this
case. However, the magnitude will be calculated again using the sensor in the circuit to
get new sets of real and imaginary values. The gain factors and the impedance values
were averaged after performing three frequency sweeps within the same range to get more
reliable data. The unknown impedance values were also proportional to the frequency
increments according to the graph below. The x-axis represents frequency increments
and the y-axis represent the averaged unknown impedance.

Unknown Impedance
85000
84000

v =-7.0529% + 163556
R*=0.9934

83000
82000
81000
80000
79000
78000
71000

Impedance (£1)

76000

75000
11200 11400 11600 11800 12000 12200 12400 12600

Frequency (Hz)

Figure 4.6: Frequency vs Unknown Impedance Chart

4.3 HS1101LF Relative Humidity Sensor Measurements

25

4.3.3 Phase Shift Calculation

Calculating phase shift is the next step in order to get the capacitance of the humidity
sensor. The phase angle is calculated using the table provided in AD5933 datasheet which
is given below [2]:

| Real] Imaginary [Quadrant | Phase Angle
Positive Positive First
tan_l(i) X Ll
o R i
Negative Positive Second
180 — (tan™'(=) x @)
T
Negative Negative Third
180 + (tan_l(i) X @)
R T
Positive Negative Fourth
I 180
71 - it
360 + (tan (R) X —)

Table 4.1: Phase Angle Calculation Table [2]

26 Chapter 4. Experimental Setup and Working Principles

4.3.4 Humidity Results

After the phase shift has been calculated, the imaginary component of the sensor’s
impedance is obtained through the following equation:

I'maginaryImpedance = I'mpedance X sin(phase) (4.9)

Next, this imaginary impedance is used to calculate the capacitance using the following

equation:
1

21 x frequency x Imaginarylmpedance

Capacitance = (4.10)
Where,
Frequency = frequency value at that point of frequency sweep.

The average value of capacitance has been taken in this project after performing the
frequency sweep. Finally, this capacitance value is used to get the humidity according to
the equation mentioned in the datasheet of humidity sensor (HS1101LF) [16]:

RH(%) = —3.4656 % 10* x X*+1.0732x 10" x X —1.0457 x 10* x X +3.2459x 10* (4.11)
Where, RH (%) represents humidity in percentage and

X = C(read)/CQ55%RH (4.12)

AD5933 impedance analyser also has a built-in 14-bit digital temperature sensor which is
capable of measuring temperature with an accuracy of +/-2°Celsius within the measure-
ment range. The temperature data are stored in register 0x92 and 0x93. The sensor has
a temperature measurement range of -40°to 150°Celsius [2]. A function in the coding has
been defined to get the temperature data and show it in Celsius value.

4.4 TGS2600 General Air Quality Sensor Measure-
ments

This is an analog general air quality sensor which is capable of indicating concentration
level of different gaseous contaminants in air, for example, it can detect up to 30 ppm of
hydrogen gas in the air. It is generally used in the laboratories where different types of
chemical gases are often used. As it has already been mentioned before, this sensor has
four pins, the standard Vin and ground pins. a data pin and a separate Vin pin for the
integrated heater. Both the Vin pins of the sensor and the heater are connected to the
5V pin of the Arduino board. The data pin is connected to analog input pin (A1) of the
Arduino board. A 1 K resistor is also connected in series with the data pin and the
Ground of the Arduino. The basic measuring circuit of this sensor is given below [6]:

4.4 TGS2600 General Air Quality Sensor Measurements 27

After the raw voltage of the analog input pin Al has been read through software coding,
the resistance of the sensor needs to be calculated according to the equation given in the
TGS2600 sensor datasheet, which is [6]:

Ve

o=

) x Rl (4.13)
Where,

Rs = Resistance of the sensor;

Ve = Supply voltage = 5V;

Vil = output voltage = raw voltage®(5V/1024);

Rl = Load resistor = 1 Kf.

According to the sensor’s datasheet, the sensor’s resistance should be in the range of
10K~ 90K(2. It has also provided a sensitivity characteristics graph for different types of
gases, such as-hydrogen, ethanol, iso-butane, methane and carbon monoxide. The graph
is shown below:

10
1 A
Methane=::3
v =i Carbon monoxide
<
+ Iso-butane]
i Ethanol
01
0.01

Gas Concentration (ppm)

Figure 4.7: Sensitivity Graph for TGS2600 Module [6]

28

Chapter 4. Experimental Setup and Working Principles

From this graph, distinct charts have been made using Microsoft Excel for each of the
gases which are given below. These charts have provided distinet logarithmic equations
for each of the gases which were written in the code in order to get the concentration level
(in ppm) of each of the gaseous contaminant.

1 10

Hydrogen Concentration (ppmj

Hydrogen
08 07
07 ;
i y = -0.138Infx) + 06585 06
06 R - 0.97 05
0.9
o d a 04
£ 04 £
T >
= 03 2 03
02 02
01 01
0

Ethanol

¥ = -0.11In(x) + 0.6097
R = 08747

10
Ethanol Concentration (ppm)

100

(a) Sensitivity characteristic graph for Hydrogen Gas (b) Sensitivity characteristic graph for Ethanol Gas

0.110n{x} + 0.6521
0.9702

Iso-butane
08
07 7
06 | e R
05 -
€ o4
=
= 03
0.2
01
i
1 10
Iso-butane Concentration (ppm)

06

Rs/Ro

04
0.2

100 1

Methane

y = -0.063ln(x) + 1.0202
RE=0.9373

10
Methane Concentration (ppm)

100

(¢) Sensitivity characteristic graph for Iso-butane Gas (d) Sensitivity characteristic graph for Methane Gas

0.8

Rs/Ro

0.6
04

0.2

Carbon monoxide

¥ 014 2In{x) + 1.0647
R = 0.957

10
Carbon monoxide Concentration (ppm)

(e) Sensitivity characteristic graph for Carbon monox-

ide Gas

Figure 4.8: Rs/Ro Vs different level of gas concentration in ppm

4.4 TGS2600 General Air Quality Sensor Measurements 29

The figures (4.8) in the previous page represent Rs/Ro versus concentration level in ppm
of different gaseous contaminants [6] (hydrogen, ethanol, iso-butane, methane and carbon
monoxide). Here,

Rs = Sensor resistance in displayed gases at various concentrations and
Ro = Sensor resistance in fresh air.

This chapter has illustrated all the theories and working procedures which were followed to
develop the smart sensing system. The equations and graphs provided in this chapter were
applied in the software coding to acquire correct results. The equations and graphs for
calculating magnitude, gain factors and unknown impedance of the humidity sensor were
obtained from the AD5933 datasheet. The equation to calculate humidity was provided
in HS1101LF sensor datasheet. All the sensitivity characteristic graphs for the TGS2600
sensor were produced using the graph given in TGS2600 sensor datasheet.

Chapter 5

Results and Discussion

This chapter illustrates the results achieved in the field experiment by following the
methodology explained in the previous chapter. The street view of the location of the
field experiment is provided. The sensor data is sent directly to the ThingSpeak channel
for monitoring. the screenshots of the channels are given and the results are explained.
Visualisation charts using the imported data from the server have also been presented
for further demonstration. Finally, the challenges encountered during the course of the
project are explored in the discussion section.

5.1 Field Experiment Data

After processing all the sensor data according to the working procedures mentioned in
the previous chapter, they are sent to the private Thingspeak channel through Wi-Fi
connection. For field experiment, two similar sensor nodes were developed. Two private
channels in the ThingSpeak server were created to update sensor data from those nodes
separately for the convenience of monitoring them. The nodes were placed at two different
spots inside Macquarie University campus. A screenshot of the location is given in the
next page:

30

5.1 Field Experiment Data 31

Macquarie Park, Hew South Wales @ :

Google

Figure 5.1: Location of the Sensor Nodes (Ubar, Macquarie University)

The red circles in the figure above indicate the exact locations of the sensor nodes. The
system was on the run for two hours continuosuly to collect the field data and update
them in the channels. The results were compared to the actual data from Google. Google
shows the average data measured from a larger area, however, only two nodes were applied
to measure data from two distinet locations in this case. Therefore, the data collected
from these nodes were accurate precisely for those locations. The code was implemented
in a way that each of the field was updated after an interval of 40 seconds. Screenshots
of the updated channels are provided in the next page:

32

Chapter 5. Results and Discussion

Field 1 Chart 0o 2 x

Relative Hurnidity

~ 60
&
=
3 40 W‘m..
E
E
¥ 20
z
& o

5:30 600 16:30 17:00 17:30

Time
Thingspeak.co
Field 3 Chart O & n

Temperature 2

Temperature? foC)
]

16:00 16:30 17:00 17:30
Time

Thingtpesk com

Field 2 Chart €1 x
Temperature 1
40
n) M
=
@
5
"
<
&
£
s
0
16:00 16:30 1700 17:30
Time
Thingspeak.com
Field 4 Chart o & x

Figure 5.2: Field 1-4 with sensor data

Field & Chart [E N T 2

Field 5 Chart [C =T

Ethanol Concentration

16:00 16:30 17:00 17:30
Time

Ethanol Concentration (ppm)
-
1
4

Thirgspeak eam

Field 7 Chart Z O & %

Methane Concentration

1600 6:30 17:00 17:30

Methane Concentration (ppm)

Time

ThirgSpak.com

Iso-butane Concentration (ppm}

Hydragen Concentration (ppm)

Hydrogen Concentration

16:00 16:30 17:00 730
Time

Thirgteask.cam

in ThingSpeak Channel 1

Iso-butane Concentration

16:00 6:30 17:00 17:30
Time
Thingspesic eam

Field 8 Chart Do o+ x

Carbon Monoxide Concentration (ppi

Carbon Monoxide Concentration

1
15:30 600 16:30 700 17:30
Time

ThingSpaak.cam

Figure 5.3: Field 5-8 with sensor data in ThingSpeak channel 1

5.1 Field Experiment Data 33

Field 1 Chart F o & x Field 2 Chart E O & =
Relative Humidity Temperature |
o 10
g £
=20 & 20
= k
g 3
= IS
] o
15:30 6:00 16:30 17:00 17:30 15:30 6.00 16:30 17:.00 17:30
Time Time
ThingSaeak com ThingSpask cam
Field 3 Chart o & % Field 4 Chart B O # =

Temperature 2 Hydrogen Concentration
]

W

Hydrogen Cancentration (ppm)

=
E 20
o L]
16:00 16.30 17.00 3o 16.00 16.30 17:00 17.30
Time Time
Figure 5.4: Field 1-4 with sensor data in ThingSpeak Channel 2
Field 5 Chart [E =T A Field 6 Chart [EXN =R A

Ethanal Concentration Iso-butane Cancentration

05
e e e S S S

025

16:00 16:30 17:00 17:30
Time

Ethanol Concentration (ppm)
o

16.00 16:30 17.00 17:30
Time

ThirgSpeak com ThingSptak.com

Field 7 Chart [E =T Field 8 Chart o & x

Methane Concentration Carbon Monoxide Concentration

16:00 1630 1700 1730 16:00 16:30 170 17:30

Time

Methane Concentration {ppm)
o
4
a
Carbon Monoxide Concentration (ppi
o
a

Thirgspeak com ThingSpeak com

Figure 5.5: Field 5-8 with sensor data in ThingSpeak channel 2

34 Chapter 5. Results and Discussion

m.accuweather.com/en/au/mars ¥

® AccuWeather E

Marsfield v .

HOURLY DAY & NIGHT

Tue 10/24 TEMP PRECIP
X5 26° 0%
Intermittent clouds
RealFeel®: 27° Rain: 0 mm
Winds: 19 km/h E Snow: 0 CM
Gusts: 22 km/h Ice: 0 mm
Humidity: 44% Visibility: 16 km
Dew Point: 13° Ceiling: 11003 m
UV Index: 4 (Moderate) Wet Bulb: 18°

Cloud Cover: 53%

. 5PM y 250 0%

I'| Intermittent clouds
Figure 5.6: Exact Humidity and Temperature data taken from Google [7]

As mentioned above, two separate channels were created in ThingSpeak server for two
similar nodes. Each channel contains eight fields for displaying humidity, temperature
data from LM335 sensor, temperature data from AD5933 impedance analyser, hydrogen
concentration, ethanol concentration, iso-butane concentration, methane concentration
and carbon monoxide concentration respectively in the v axis and the x axis represent
time in all the fields. The field experiment was conducted for two hours on Tuesday, 24
October 2017 from 3.30 pm to 5.30 pm. Figure 5.2 and 5.3 are referring to the eight fields
of the first channel which are displaying data collected from the sensor node placed on
the rooftop of the Ubar at Macquarie University campus. On the other hand, figure 5.4
and 5.5 represent the eight fields of the second channel displaying data from the other
sensor placed outdoor. As it can be seen in case of the first channel, the humidity range
was (39-45)% with reasonable fluctuations whereas, the sccond channel shows that the
relative humidity was in between (30-31)% during those two hours. Field 2 and 3 of both
channels show similar temperature range (26-34°Celsius) demonstrating consistency and
accuracy of both temperature sensors. Since the sensor nodes were placed at a no smoking
and any sort of chemical gas free area, the gas concentration level was very low with a
range of only (0.86-1.4)ppm. Figure 5.6 shows the actnal humidity and temperature data

5.1 Field Experiment Data

35

at 4pm on the same day obtained from ” Accuweather” website via google search engine
to compare with the experiment results. So far, the results achieved were almost 95%

accurate.

Relative Humidity Variation over 2 hours

v Humid ty (%)

ey

EEEEEYw L
gai:ESE:E%"-'HEU

LEEEE i s

fascfitgEaagas
gsgéggyﬁggif__da
AIzzsil3egiEag
1dinAisdas 288
g298d32832
S8EEESERTIRSG
“"Nﬁﬁsgsgét
EERE

Date and Time

Temperature Variation over 2 hours

041251 UTE

3 12
uny |
¥ a0 :ch | qugd 256 o i . »end
i 5.7 ol - 035 s
I { be s 938 N et
r \| 28 e S
& 0 ‘ ‘ §
¢ L
5 -
E

28 05:29:48 UTC

3
g

2017-10-24

20171024
017-10-24 04.45.05 UTE

2017:10-20 0535:19 ui:a

]

(a) Relative Humidity Variation over 2 hours achieved(b) Temperature Variation over 2 hours

from first channel

Relative Humidity Variation over 2 hours
Fw 3w
- 13 w | o
= 3% 5 1!' A 53 5 n
- 1) 30 1y 0 0
Ee 1 [} 3
H i I |
I HHJ f
i SEEERPvu W '
S5EE 0
EERES R R §2-z238 2
SBEEszzg 8 GHE TS 8
ZZmas5033 -]
283337833 B8gag o
FEEssaddg I EE R B
SERIIENSG i 33z
N FEE IS S R
DCaate and Tinme

first channel

achieved from

Temperature Variation over two hours

< a7 W28
el 06 3306

I

D12 amd Time

Teenparatuse (ol]

i

2017-10.21 05:31:23
2017 10 2¢ 05:42:16.

2017-10-24 0430255

2007.10:24 04:37-29.
2017-16-24 045133
2017 10 24 04:38:14,
017-10-24 05:18:08%

2017.10:2
2017-10-24 05:24:28,

(¢) Relative Humidity Variation over 2 hours achieved(d) Temperature Variation over 2 hours

from second channel

second channel

Figure 5.7: Relative humidity and temperature Variation charts obtained from imported

ThingSpeak channel data

achieved from

36 Chapter 5. Results and Discussion

ThingSpeak being a very user-oriented platform, it also provides option for importing
data from the channels for further analysis and demonstrations. Imported data can be
used to create various types of visualisation charts through Microsoft Excel or Matlab
coding. Figure (a) and (b) of 5.7 in the privious page represent visualisation charts of
relative humidity and temperature variation over the 2 hours of field experiment which
were attained from the imported data from ThingSpeak channel 1. Similarly, Figure (c)
and (d) refer to the humidity and temperature variation charts obtained from imported
data from ThingSpeak Channel 2. The x-axis in all the figures represents the date and
time whereas the y-axis in figure (a) and (c¢) represents humidity and in figure (b) and
(d) it indicates temperature at that time. From these figures, specific humidity and
temperature data at specific date and time can be easily observed. Furthermore, the
average, minimum or maximum value of these sensor data can easily be calculated by
importing data from the channels.

5.2 Discussion

This section illustrates some of the problems encountered during the course of the project
and their solutions-

5.2.1 Determining the Values of Calibration and Feedback Re-
sistors

According to the theory explained in AD5933 datasheet, the values of the calibration and
feedback resistors are calculated using the equation mentioned below [2]:

RSl % — 0.2 x Zmin 1 (5.1)
b= X 5.
Vpk + Y22 — Vdcof fset Gain

Here,

Rfb = feedback resistor;

VDD = supply voltage = 3.3 V;

Zmin = minimum impedance range;

Vpk = peak voltage of the selected output range = 2 V peak-to-peak;

Gain = PGA gain = 1;

Vdceoffset = the DC offset voltage for the selected range = 1.48 V (from the datasheet).

Real = (Zmin + Zmazx) x (5.2)

-

o =

Where,

Real = calibration resistor;

Zmin = minimum impedance range;
Zmax = maximum impedance range.

5.2 Discussion 37

According to these equations, the calibration and feedback resistors were calculated for
the impedance ranges given below:

| Zmin KQ | Zmax KQ | Rfb KQ | Real KQ
0.1 1 0.07667 0.366
1 10 0.7667 3.67
10 100 7.667 36.67
100 1000 76.67 366.67

Table 5.1: Calibration and feedback resistor values for different ranges of impedance

However, the impedances received for each set of these values in the calibration stage did
not match with value of calibration resistor. After several attempts, the co-supervisor
suggested to use 200 KQ for hoth the resistors and the results were satisfactory.

5.2.2 Stability and Storing Issues of Gain Factors

The gain factors are expected to represent a linear curve or line while plotted against
frequency. However, random changes in the gain factors were noticed in the beginning of
the project. After performing an experiment in the lab, it became evident that resistors
show a little change in their resistance values as well as become a little capacitive in high
frequency whereas pure resistive elements should have been used for this experiment.
Therefore, a low frequency range has been decided (11300-12400 Hz) to perform the
frequency sweep until this stage of the project.

Storing the gain factors in an array was another issue that was encountered during the
project. Arduino Uno Wi-Fi has a very low memory (32 KB) and does not contain any
SD card slot. Since it cannot store a large amount of data, the number of frequency
increments has been kept low for now. This issue has not been resolved yet.

Chapter 6

Conclusion and Future Work

To summarise the whole project, the goal of this project was to establish an innovative low-
cost sensor node containing both resistive and capacitive sensors and send the processed
data to an IoT server for environment monitoring. For this purpose, a capacitive humidity
sensor and two resistive temperature and gas sensors were used in one connected circuit.
According to the research conducted for this project, this type of sensor node is rarely
available in the market due to the complexity of the development process. Chapter 2 has
illustrated the literature review and background knowledge of this particular project. The
detailed system description as well as system components are mentioned and described in
chapter 3.

Chapter 4 discusses all the necessary working principles for the three sensors used in
this project. LM335 is a simple and accurate temperature sensor. Since this is a resistive
sensor, it could be directly interfaced to the Arduino microcontroller. Its datapin was
connected to one of the analog inputs of the Arduino board to get the raw voltage of the
input pin. This voltage is then used to measure the temperature using necessary software
coding which has been explained in chapter 4.

ADb5933 impedance analyser was introduced to create communication between HS1101LF
humidity sensor and the main microcontroller. At first the sensor was calibrated by
performing a frequency sweep which is dependent on three variables— start frequency,
frequency increment and the number of increments. These variables are defined by the
user according to the characteristics of the sensor. In this project, the frequency sweep
range was 11,300 Hz to 12,400 Hz with an increment of 100 Hz at each point. The
number of increments was defined as 10. A calibration resistor and a feedback resistor of
same value (200 kQ) were used for the calibration test. The next step was to obtain the
real and imaginary component from the respective register addresses inside the on-board
RAM of the impedance analyser in order to calculate the magnitude at frequency point.
After that, these magnitudes and the user defined reference resistance value were used
to calculate the impedance to ensure that the impedance value and reference resistance
value matched.

When the calibration test was successful, the calibration resistor was removed and the

38

39

sensor was placed instead to measure its unknown impedance. The gain factors achieved
in the previous stage were used in this case to calculate the impedance where the equation
remained the same. However, the magnitudes were different since the real and imaginary
components should be different for the sensor. After gaining the impedance values for the
sensor, they were averaged after every three frequency sweep in order to get more accurate
results. These impedance values are required to calculate phase shift and capacitance
which is the most important phase to get humidity results. Humidity is calculated using
the equation given in the HS1101LF sensor datasheet. Expected results were achieved
following the above steps with almost 95% of accuracy.

TGS2600 gas sensor is a general air quality sensor which is usually required in the labora-
tories where harmful chemical gases are used. It can detect almost 1~30 ppm of hydrogen
gas and has a high sensitivity to low gas concentration levels only. The gas concentration
level detection principle depends on the sensor resistance in that environment as well as
in fresh air. Equations were developed for each gas using the sensitivity characteristic
graph given in the datasheet. However, practical experiment need to be conducted to get
the accurate sensor resistance value in fresh air and in the environment where the gas
concentration level will be measured.

Once expected results were attained for all the three sensors, the next step was to
establish an IoT configuration to make the whole system a connected end-to-end arrange-
ment. This has been discussed in detail in chapter 5. ThingSpeak was chosen as the
IoT platform for this project which is a user-friendly open-source application. Two sim-
ilar nodes were developed to make it a smart sensor network and the sensor data from
those nodes were updated successfully to two different private channels in the ThingSpeak
server. In short, it can be said that all the milestones were achieved with expected results
making it an overall successful project.

For future work, LoRa shield, which stands for "long range”, can be introduced instead of
the Arduino’s Wi-Fi shield for its capacity of covering larger distance (5-10 kilometers).
Due to time constraint, an claborate analysis and demonstration could not be carried
out in this project. Further Matlab analysis can also be done in the ThingSpeak server
using the sensor data for more advanced demonstrations according to the user’s require-
ments. Only two sensor nodes have been developed until now to make it a sensor network.
However, larger number of sensor nodes would be able to provide more accurate results
making the system more reliable for environment monitroing.

Appendix A

Project Timeline and Consultation
Attendance Form

Project Timeline

21-Apr 10-Jun 30-1ul 18-5ep /-Nov 27-Dec

Literature Review —
Session 1 Exam Period -
Winter Vacation -

Initial Design and Development _

Prototype Testing .
Final Design and Development -

Field Testing -
Report -

Figure A.1l: Gantt chart of the Project Timeline

41

42

Chapter A. Project Timeline and Consultation Attendance Form

Consultation Meetings Attendance Form

Vaek Date Comments Student’s Supervisor’s
(if applicable) Signature Signature
Warkly meeking 4o | Nawshin
1 4H.o0G ¢ cI-'swgnbml:m(ﬂ..“;‘
LA Fhp elninae .
3 |46 08 F| R A S hiiry | Newshin
finser 1l
Te gl +h obldm of i
':1 25.0 S AT 'nun-'rg -;:‘:h : f‘fnu\r NMS‘/\.‘\-V\
Aadn LB L Vg Ay
; how o i
6 |6 oa 17| B L LT i Newoshhn
M"'d_k" TS 264 qus Senyor =
%‘“’k 2.?' 8= ‘S(nar fj:,"gj EM'\t\tff\’ﬁf N o shaan %\W‘LUFAAW
—]
et ddomak Z
B q6+to: 7 Tﬂ‘f\i";ﬂid PPPVERT oo Nowoghiin
Diguwadled Haor SEM.(ho
1| 284t 7| °; = T -
JHW&W-?\J'LAEJF)'U{"'d' P
12, |31 17| Rl Repe- 1 N awsshen #\M(MP&

Figure A.2: Consultation attendance Form

Appendix B

LookUp Table for Humidity Sensor

TYPICAL RESPONSE LOOK-UP TABLE (POLYNOMIAL REFERENCE CURVE) @ 10KHZ / 1V

REVERSE POLYNOMIAL RESPONSE OF HS1101LF

RH (%) = -3.4656 10***X%+1.0732 10*%*X2-1.0457 10+%*X+3.2459 10+3)

With X=C(read) / C@55%RH

RH (%) 0 5 10 15 20 25 30 35 40 a5 50
Cp (pF) 161.6 163.6 165.4 167.2 169.0 170.7 172.3 173.9 175.5 177.0 178.5
RH (%) 55 60 65 70 75 80 85 90 95 100

Cp (pF) 180 181.4 182.9 184.3 185.7 187.2 188.6 1901 191.6 193.1

Figure B.1: Lookup table for humidity calculation given in the datasheet

43

19

20 7/

21

99

Appendix C

Arduino Codes developed for Smart
Sensing System

C.1 Final code for measuring sensor data and send-
ing them to ThingSpeak Channel

C.1.1 AD5933 Header File

#ifndef ADS5933_h
#define AD5933_h

Includes
#include <Arduino.h>
#include <Wire.h>

Lste |

t p2
'/ Device address and address pointer
#define AD5933_ADDR (0x0D)
#define ADDR_PTR (0xB0O)
'/ Control Register
#define CTRL_REG1 (0x80)
#define CTRL_REGZ2 (0x81)
/ Start Frequency Register:
#define START_FREQ_1 (0x82)
#tdefine START_FREQ_2 (0x83)

44

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 45

23 #define START_FREQ 3 (0x84)

24 // Frequency increment register

25 #define INC_FREQ_1 (0x85)

26 #define INC_FREQ_2 (0x86

27 #define INC_FREQ_ 3 (0x87)

28 // Number of increments register

20 #define NUM_INC_1 (0x88)

30 #define NUM_INC_2 (0x89)

31 // Number of settling time cycles register

32 #define NUM_SCYCLES_1 (0x8A)
33 #define NUM_SCYCLES_Z2 (0x8B)
34 // Status register

35 #define STATUS_REG (0x8F)
36 // Temperature data register
37 #define TEMP_DATA_1 (0x92)
38 #define TEMP_DATA_2 (0x93)
39 // Real data register

40 #define REAL_DATA_1 (0x94)
41 #define REAL_DATA_2 (0x95)
42 // Imaginary data register

43 #define IMAG_DATA_1 (0x96
44 #define IMAG_DATA_2 (0x97)
45

46 /*

47 =« Constants

48 » Constants for use with the ADS5933 library class.
49 */
50 // Temperature measuring

| #define TEMP_MEASURE (CTRL_TEMP_MEASURE)

2 #define TEMP_NO_MEASURE (CTRL_NO_OPERATION)
53 // Clock sources

54 #define CLOCK_INTERNAL (CTRL_CLOCEK_INTERNAL)
5 #define CLOCK_EXTERNAL (CTRL_CLOCK_EXTERNAL)
56 // PGA gain options
57 #define PGA_GAIN_X1 (CTRL_PGA_GAIN_X1)
58 #define PGA_GAIN_X5 (CTRI_PGA_GATN_X5)
59 // Power modes
60 #define POWER_STANDBY (CTRL_STANDBY_MODE)
61 #define POWER_DOWN (CTRL_POWER_DOWN_MODE)
62 #define POWER_ON (CTRL_NO_OPERATION)

63 // 1I2C result success/fail

64 #define I2C_RESULT_SUCCESS (0)

65 #define I2C_RESULT_DATA_TOO_LONG (1)

66
67
68
69

=1 =1

=~ = = =1
T Wb

// Frequency sweep parameters

#define

S x %
* AD59
* Con
*/

SWEEP_DELAY

33 Library class
tains mainly functions

class ADS5933 {

publ

ekl

// Reset the board

for

46 Chapter C. Arduino Codes developed for Smart Sensing System
#define I2C_RESULT_ADDR_NAK (2)
#define I2C_RESULT_DATA_ NAK (3)
#define I2C_RESULT_OTHER_FAIL (4)
// Control register options
#define CTRL_NO_OPERATION {0b00000000)
#define CTRL_INIT_START_FREQ (000010000}
#define CTRL_START_FREQ_SWEEP (0b00100000)
#define CTRL_INCREMENT_FREQ (0b00110000)
#define CTRL_REPEAT_FREQ {(0b01000000)
#define CTRL_TEMP_MEASURE (0b10010000)
#define CTRL_POWER_DOWN_MODE (0b10100000)
[#define CTRL_STANDBY_MODE (0b10110000)
#define CTRL_RESET (0b00010000)
#define CTRL_CLOCK_EXTERNAL (0b00001000)
#define CTRL_CLOCK_INTERNAL (0b00000000)
#define CTRL_PGA_GAIN_X1 (0b00000001)
#define CTRL_PGA_GAIN_X5 (000000000}
// Status register options
#define STATUS_TEMP_VALID (0x01)
#define STATUS_DATA VALID (0x02)
#define STATUS_SWEEP_DONE (0x04)
#define STATUS_ERROR (0xFF)

(1)

static bool reset (void);

// Temperature measuring
static bool enableTemperature (byte);
static double getTemperature(void);

// Clock
static bool
static bool

used yet

setClockSource (byte);
setInternalClock (bool);
//bool setSettlingCycles(int);

interfacing with the AD58933.

// not implemented - not

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 47

108

109 // Frequency sweep configuration

110 static bool setStartFrequency(unsigned long);

111 st setIncrementFrequency (unsigned long);

112 s setNumberIncrements (unsigned int);

113

114 // Gain configuration

115 static bool setPGAGain (byte);

116

117 // Excitation range configuration

118 //bool setRange (byte, int); // not implemented - not
used yet

119

120 // Read registers

121 static byte readRegister (byte);

122 tatic byte readStatusRegister (void);

123 static int readControlRegister (void);

124

125 // Impedance data

126 static bool getComplexData (int*, intx);

127

128 // Set control mode register (CTRL_REG1)

129 static bool setControclMode (byte);

130

131 // Power mode

132 static bool setPowerMode (byte);

133

134 // Perform frequency sweeps

135 static bool frequencySweep (int real[], int imag[], int)
r

136 static bool calibrate(double gain[], int phase[], int
ref, int n);

137 static bool calibrate(double gain[], int phase[], int
real[],

138 int imag[], int ref, int n);

139 static float GetHumidity ();

140 private:

141 // Private data

142 static const unsigned int clockSpeed = 16776000;

143

144 // Sending/Receiving byte method, for easy re-use

145 static int getByte(byte, bytex);

146 static bool sendByte (byte, byte);

48 Chapter C. Arduino Codes developed for Smart Sensing System

147 };
148
149 #endif

C.1.2 AD5933 Source Code

1 /%%

2 x @file AD5933.cpp

3 * @brief Library code for AD5933
L

5

*/

6 #include "AD5933.h"

7 #include <Math.h>

8 #define START_FREQ (11300)
9 #define FREQ_INCR (100)

10 #define NUM_INCR (10)

Il #define REF_RESIST (201200)

12

13 /xx

14 * Request to read a byte from the AD5933.
15 =

16 = @param address Address of register requesting data from
i r

17 » @param value Poi to a byte where the return value should
be stored, or

18 = where the errocr code will be stored if fai

19 % @return Success or failure

0 =/

1 int ADS5933::getByte(byte address, byte *value) {

2 // Request to read a byte using the address pointer
register

Wire.beginTransmission (AD5933_ADDR);

Wire.write (ADDR_PTR) ;

Wire.write (address);

B BS b

Y Ot = QO

// Ensure transmission worked

[S S S T I S

8 if (byte res = Wire.endTransmission() != I2C_RESULT_SUCCESS
) |

29 *value = res;

30 return false;

31 }

32

33 // Read the byte from the written address

34 Wire.requestFrom(AD5933_ADDR, 1);

35 if (Wire.available()) {

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 49

36 *value = Wire.read();
37 return true;

38 } else {

39 xvalue = 0;

40 return false;

41 }

42 1}

43

14 /o *

45 =+ Write a byte to a register on the AD5933.
46 =

47 * @param address The register address to write to
48 « (@param wvalue The byvte to write to the address
49 % Q@return Success or failure of transmission

0 =/

| bool AD5933::sendByte(byte address, byte value) {
2 // Send byte to address

3 Wire.beginTransmission (AD5933_ADDR);

| Wire.write (address);

3] Wire.write (value);

6

7 // Check that transmission completed successfully

58 if (byte res = Wire.endTransmission() != I2C_RESULT_SUCCESS

) |

59 return false;

GO } else {

61 return true;

62 }

63 }

64

65 /x*

66 * Set the control mode register, CTRL_REGl. This is the
register where t

67 =+ current command needs to be written to so this is used a lot
68 =«
* @param mode The control mode to set
* @return Success or failure
*
bool AD5933::setControlMode (byte mode) {
// Get the current value of the control register
byte wal;
if (!'getByte (CTRL_REG1l, &val))

-3
=1 &
o DO

=1 =1 =1 =1 -1
T W N —

50

Chapter C. Arduino Codes developed for Smart Sensing System

86 '}

88 /xx

89
90
91
92
93

94

95

*

*

*

*/

return false;

// Wipe out the top 4 bits...mode bits are bits 5 through
8.
val &= 0x0F;

// Set the top 4 bits appropriately
val |= mode;

// Write back to the register
return sendByte (CTRL_REG1, wval);

Reset the AD5933. This interrupts a sweep if one is running,
but the start

frequency, number of increments, and frequency increment
register contents

are not overwritten, but an initialize start frequency
command is required

to restart a frequency sweep.

@return Success or failure

96 bool ADDH933::reset () {

97
98
99
100
101
102

*

*

*

*

// Get the current value of the control register
byte wal;
if (!getByte (CTRL_REG2, &val))

return false;

// Set bit D4 for restart
val |= CTRL_RESET;

// Send byte back
return sendByte (CTRL_REGZ, wval);

Set enable temperature measurement. This interferes with
frequency sweep
operation, ©¢f course.

@param enable Option to enable to disable temperature

144

145

146
147

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 51

measurement.

* @return Success or failure
*/
bool AD5933::enableTemperature (byte enable) {
// If enable, set temp measure bits. If disable, reset to
no operation.
if (enable == TEMP_MEASURE) ({
return setControlMode (CTRL_TEMP_MEASURE) ;
} else {
return setControlMode (CTRL_NO_OPERATION) ;
}
}
IEx;
* Get the temperature reading from the AD5933. Waits until a
temperature is
» ready. Alsoc ensures temperature measurement mode is active.
*
* @return The temperature in celcius, or -1 if fail.
*/
double AD5933::getTemperature() {
// Set temperature mode
1f (enableTemperature (TEMP_MEASURE)) {
// Wait for a valid temperature to be ready
while ((readStatusRegister() & STATUS_TEMP_VALID) !=
STATUS_TEMP_VALID) ;
// Read raw temperature from temperature registers
byte rawTemp[2];
if (getByte(TEMP_DATA_1, &rawTemp[0]) &&
getByte (TEMP_DATA 2, &rawTemp[l]))
{
// Combine raw temperature bytes into an interger.
The ADC
// returns a 14-bit 2's C value where the 14th bit
is a sign
// bit. As such, we only need to keep the bottom 13
bits.
int rawTempVal = (rawTemp[0] << 8 | rawTemp[l]) & O
x1FFF;
// Convert into celcius using the formula given in

the

52 Chapter C. Arduino Codes developed for Smart Sensing System

148 // datasheet. There is a different formula
depending on the sign
149 // bit, which is the 5th bit of the byte in

TEMP_DATA_1.
if ((rawTemp[0] & (1<<5)) == 0) {
return rawTempVal / 32.0;
} else {
return (rawTempvVal - 16384) / 32.0;

T W= O

By

}

return -1;

oo OO OO O o O
00 =1
——

el e e e e e e e el

o

160

161 /%«

162 + Set the color source. Choices are between internal and
external.

163 =

164 » @param source Internal or External clock

160 * @return Success or failure

166 =/

167 bool AD5933::setClockSource (byte source) {

168 // Determine what source was selected and set it

appropriately

169 switch (source) {

170 case CLOCK_EXTERNAL:

171 return sendByte (CTRL_REGZ2, CTRL_CLOCK_EXTERNAL) ;

172 case CLOCK_INTERNAL:

173 return sendByte (CTRL_REGZ, CTRL_CLOCK_INTERNAL);

174 default:

175 return false;

176 }

177 }

178

179 /#«

180 =+ Set the color source to internal or not.

181 =*

182 * @param internal Whether or not to set the clock source as
internal.

183 # @return Success or failure

184 «/

185 bool ADS5933::setInternalClock (bool internal) {

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 53

186 // This function is mainly a wrapper for setClockSource ()
187 if (internal)

188 return setClockSource (CLOCK_INTERNAL);

189 else

190 return setClockSource (CLOCK_EXTERNAL) ;

191 1}

192

193 /**

194 * Set the start frequency for a frequency sweep.
195 =*

196 % @param start The initial frequency.

197 =+ @return Success or failure

198 «/

199 bool AD5933::setStartFrequency (unsigned long start) {

200 // Page 24 of the Datasheet gives the following formula to
represent the

201 // start frequency.

202 // TODO: Precompute for better performance if we want to
keep this constant.

203 long fregHex = (start / (16776000 / 4.0))*pow(2, 27);

204 if (fregHex > OxFFFFFF) {

205 return false; // overflow

206 }

207

208 // fregHex should be & 24-bit value. We need to break it up

into 3 bytes.
09 byte highByte = (freqgHex >> 16) & 0xFF;
0 byte midByte = (freqHex >> 8) & OxFF;

byte lowByte = freqHex & OxFF;

3 // Attempt sending all three bytes
4 return sendByte (START_FREQ_1, highByte) &&
51 sendByte (START_FREQ_2, midByte) &&

G sendByte (START_FREQ_3, lowByte);

0 * Set the increment frequency for a frequency sweep.

1
2 * @param start The frequency to increment by. Max of OxFFFFFF.
3 % @return Success or failure

4 x/

5 bool ADS5933::setIncrementFrequency (unsigned long increment) {

[T o I oA T LN T oA T o S N T S I O U S S ST LT N L]

54 Chapter C. Arduino Codes developed for Smart Sensing System

226 // Page 25 of the Datasheet gives the following formula to
represent the

227 // increment frequency.

228 // TODO: Precompute for better performance if we want to
keep this constant.

229 long fregHex = (increment / (16776000/ 4.0))«pow(2, 27);

230 if (fregHex > OxFFFFFF) {

231 return false; // overflow

232 }

233

234 // fregHex should be a 24-bit value. We need to break it up
into 3 bytes.

235 byte highByte = (fregHex >> 16) & O0xFF;

236 byte midByte = (freqHex >> 8) & OxFF;

237 byte lowByte = freqHex & OxFF;

238

239 // Attempt sending all three bytes

240 return sendByte (INC_FREQ_1, highByte) &&

241 sendByte (INC_FREQ_2, midByte) &&

242 sendByte (INC_FREQ_3, lowByte);

243 }

244

245 [+

246 + Set the number of frequency increments for a frequency sweep

247 «

248 * @param start The number of increments to use. Max 511.
249 % @return Success or failure

250 =/

251 bool ADS5933::setNumberIncrements (unsigned int num) {
252 // Check that the number sent in is wvalid.

253 if (num > 511) {

254 return false;

255 }

256

257 // Divide the 9-bit integer into 2 bytes.

258 byte highByte = (num >> 8) & OxFF;

259 byte lowByte = num & OxFF;

260

261 // Write to register.

262 return sendByte (NUM_INC_1, highByte) &&

263 sendByte (NUM_INC_2, lowByte);

264 }

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 55

265
266 /x*
267 x Set the PGA gain factor.

269 * @param gain The gain factor to select. Use constants or 1/5.
270 = @return Success or failure

271 =/

272 bool AD5933::s5etPGAGain (byte gain) {

20 // Get the current value of the control register

274 byte wval;

275 if (!getByte (CTRL_REGl, &val))

276 return false;

277

278 // Clear out the bottom bit, D8, which is the PGA gain set
bit

279 val &= OxFE;

280

281 // Determine what gain factor was selected

282 if (gain == PGA_GAIN_X1 || gain == 1) {

283 // Set PGA gain to x1 in CTRL_REGI1

284 val |= PGA_GAIN_XI1;

285 return sendByte (CTRL_REG1l, wal);

286 } else if (gain == PGA_GAIN_X5 || gain == 53) {

287 // Set PGA gain to x5 in CTRL_REGI

288 val |= PGA_GAIN_X5;

289 return sendByte (CTRL_REG1l, wval);

290 } else {

291 return false;

292 }

203 1

294

296 * Read the wvalue of a register.

297 =«

298 = @param reg The address of the register to read.

299 * @return The value of the register. Returns 0xFF if can’t

read it.
300 «/
301 byte AD5933::readRegister (byte reg) {
302 // Read status register and return it’s value. If fail,
return OxFF.
303 byte wval;

304 if (getByte(reg, &val)) {

56 Chapter C. Arduino Codes developed for Smart Sensing System

305 return val;

306 } else {

307 return STATUS_ERROR;

308 }

309 }

310

311 /#x

312 * Read the value of the status register.

313 =

314 = @return The value of the status register. Returns 0xFF if
can’t read it.

315 =*/

316 byte AD5933::readStatusRegister () {

317 return readRegister (STATUS_REG) ;

318 }

319

320 /# %

321 * Read the value of the control register.

323 * @return The value of the control register. Returns OxFFFF if
can’'t read it.

324 +/

325 int AD5933::readControlRegister () {

326 return ((readRegister (CTRL_REG1) << 8) | readRegister(

CTRL_REGZ2)) & OxFFFF;

327 }

328

329 /#x

330 * Get a raw complex number for a specific frequency
measurement.

co
&
[
#

@param real Pointer to an int that will contain the real

component.

333 * @param imag Pointer to an int that will contain the

imaginary component.
fa

334 % @return Success or failure

335 =/

336 bool ADS5933::getComplexData(int xreal, int =*imag) {

337 // Wait for a measurement to be available

338 while ((readStatusRegister() & STATUS_DATA_VALID) !=
STATUS_DATA_VALID) ;

339

340 // Read the four data registers.

341
342
343
344
345
346
347
348
349

366
367
J68
369

370
371
372
373
374
375
376
BT
378

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 57

// TODO: Do this faster with a block read
byte realCompl[2];

byte imagComp([2];
if (getByte (REAL_DATA_ 1, &realComp([0]) &&
getByte (REAL_DATA_2, &realComp[l]) &&
getByte (IMAG_DATA 1, &imagComp[0]) &&
getByte (IMAG_DATA_ 2, &imagComp[l]))
{
// Combine the two separate bytes into a single 16-bit
value and store
// them at the locations specified.
*real = (intlé_t) (((realComp[0] << 8) | realComp[l])
OxFFFF) ;
ximag = (intl6_t) (((imagComp[0] << B8) | imagComp([1l])
OxXFFFF) ;
return true;
} else {
*real = -1;
*imag = -1;
return false;
}
}
T
* Set the power level of the AD5933.
*
* @param level The power level to choose. Can be on, standby,
or down.
* @return Success or failure

* /[
bool AD5933::setPowerMode (byte lewvel) {
// Make the appropriate switch. TODO: Does no operation
even do anything?
switch (level) {
case POWER_ON:
return setControlMode (CTRL_NO_OPERATION) ;
case POWER_STANDBY:
return setControlMode (CTRL_STANDBY_ MODE) ;
case POWER_DOWN:
return setControlMode (CTRL_POWER_DOWN_MODE) ;
default:
return false;

58 Chapter C. Arduino Codes developed for Smart Sensing System

379 }

380 }

381

382 J#x

383 + Perform a complete frequency sweep.
384 %

385 * @param real An array of appropriate size to hold the real
data.

386 * @param imag An array of appropriate size to hold the
imaginary data.

387 = @param n Length of the array (or the number of discrete
measurements)

388 * @return Success or failure

389 =/
390 bool AD5933::frequencySweep (int real[], int imag[], int n) {
391 // Begin by issuing a sequence of commands
392 // If the commands aren’t taking hold, add a brief delay
393 if (! (setPowerMode (POWER_STANDBY) && // place in
standby
394 setControlMode (CTRL_INIT_START_FREQ) && // init start
freq
395 setControlMode (CTRL_START_FREQ_SWEEP))) // begin
frequency sweep
396 {
397 return false;
398 }
399
400 // Perform the sweep. Make sure we don't exceed n.
401 int 1 = 0;
402 while ((readStatusRegister() & STATUS_SWEEP_DONE) !=
STATUS_SWEEP_DONE) {
403 // Make sure we aren’t exceeding the bounds of our
buffer
104 if (i >= n) {
405 return false;
4006 }
407
408 // Get the data for this fregquency point and store it
in the array
409 if (!getComplexData(&real[i], &imag[i])) {
410 return false;

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 59

413 // Increment the frequency and our index.
414 i++;

415 setControlMode (CTRL_INCREMENT_FREQ) ;

416 }

417

418 // Put into standby

419 return setPowerMode (POWER_STANDBY) ;

420 }

121

422 [x«

423 « Computes the gain factor and phase for each point in a

frequency sweep.

425 = @param gain An array of appropriate size to hold the gain
factors
426 * @param phase An array of appropriate size to hold phase data

427 % Q@param ref The known reference resistance.

428 =« @param n Length of the array (or the number of discrete
measurements)

429 % (@return Success or failure

430 =/
431 bool AD5933::calibrate(double gain[], int phase[], int ref, int
n) {
432 // We need arrays to hold the real and imaginary values
temporarily

433 int *real = new int[n];

434 int ximag = new int[n];

435

436 // Perform the frequency sweep

437 if (!frequencySweep(real, imag, n)) {

438 delete [] real;

439 delete [] imag;

140 return false;

441 }

442

443 // For each point in the sweep, calculate the gain factor

and phase

444 for (int i = 0; 1 < n; i++) {

445 gain[i] = (double) (1.0/ref)/sqrt (pow(reall[i], 2) + pow(
imag(il, 2));

446 // TODO: phase

447 }

60 Chapter C. Arduino Codes developed for Smart Sensing System

448

449 delete [] real;

450 delete [] imag;

451 return true;

452}

453

454 /%

455 * Computes the gain factor and phase for each point in a
frequency sweep.

456 =+ Also provides the caller with the real and imaginary data.

457 =

458 # @param gain An array of appropriate size to hold the gain

factors

459 * @param phase An array of appropriate size to hold the phase
data

460 % @param real An array of appropriate size to hold the real
data

461 » @param imag An array of appropriate size to hold the
imaginary data.

462 * @param ref The known reference resistance.

463 = @param n Length of the array (or the number of discrete
measurements)

464 * @return Success or failure

465 #/

466 bool AD5933::calibrate(double gain[], int phase[], int real[],
int imagl([],

467 int ref, int n) {

468 // Perform the frequency sweep

469 if (!frequencySweep(real, imag, n)) {

470 return false;

471 }

472

473 // For each point in the sweep, calculate the gain factor
and phase

474 for (int 1 = 0; 1 < n; i++) {

475 gain[i] = (double) (1.0/ref) /sagrt (pow(real[i], 2) + pow(

imag[i], 2));
476

477 }

478

479 return true;
480 }

481 float ADS5933::GetHumidity () {

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 61

182 int real [NUM_INCR + 1], imag[NUM_INCR + 1];

183 double impedance[3] [NUM_INCR + 1], mate[NUM_INCR + 1]1={0};
double gain[NUM_INCR + 1]; double matel=0; double avg=0;
double X=0; int hum=0; double temp=0;

184 double actImpedance[3] [NUM_INCR + 1], phase[NUM_INCR + 1],
imagimpedance [NUM_INCR + 1], capacitance[NUM_INCR + 1];

185 for (int j = 0; 3 < 3; j++) {

486

187 if (AD5933::frequencySweep(real, imag, NUM_INCR + 1)) {

488 // Print the frequency data

489 double cfreg = START_FREQ-100;

490 cfreq += FREQ_INCR;

491 for (int i = 0; 1 < NUM_INCR + 1; i++, cfreq += FREQ_INCR
) A

192 double magnitude = sgrt (pow(real(i], 2) + pow(imag([i],

2))
193 double gain[ll] =

{0.00000000050641708374,0.00000000051234250068,0.000000000:

494 impedance[]j][i] = 1 / (magnitude + gain[i]);
495 actImpedance[Jj][1]= (impedance[J][1]+371548)/5.65;

498 double angle = atan (double(abs(imag[i]))/double {abs(reall[i])

V)
199 if(real[i]>0 && imag([i]>0){
500 phase[i]= angle*M_PI;
501 }
502 if(real[i]<0 && imag([i]>0){
503 phase[i]= 180-(anglexM_PI);

504}
505 if(real[i]<0 && imag[i]<0){

506 phase[i]= 180+ (anglexM_PI);
507 }

508 if(real[i]>0 && imag[i]<0){
09 phase[i]= 360+ (anglexM_PT) ;

0 }
Serial.pri
Serial.pri

1 E("P: ")
2

3 Serial.pri

!

53

t(i + 1);
..(ll:ull);

tln(phase[i],20);

n
n
n

Serial.prin

6 imagimpedance[i]= actImpedance[j][i]*sin (phase[i]);

62 Chapter C. Arduino Codes developed for Smart Sensing System

-1

capacitance[i]= 1/ (2*xM_PI*cfreg+*imagimpedance[i]);

(&

]
Hl8 Serial.print ("Capacitance:");
519 Serial.println(capacitance(i],20);
520 }
521
522 }
523
524 }
525
526 for (int i=0; i<NUM_INCR + 1; i++){
527 for (int j=0; J<3; J++){
H28 mate[i]+= actImpedance[]] [1i];
529 //Serial.println(mate[i], 20);
530 }
531 Serial.println(mate[i], 20);
532 mate[i] = mate[i] / 3;
533 Serial.print (i + 1);
534 Serial.print (":_");
535
H36 }
D37
538 for(int i=0; i<NUM_INCR + 1; i++){
539 matel+= capacitance[i];
540 }
541 avg= matel/ (NUM_INCR + 1);
542
543
544 X= avg/ (1.8+pow(10,-10));
545 hum = (int) (-3.4656xpow (10, 3)*pow (X,3))+(1.0732*xpow (10, 4) *xpow

(X,2))-(1.0457+xpow (10,4) *X)+(3.245%9*pow (10, 3)) ;
46 return hum;

C.1.3 Main Sketch

1 #include "LowPower.h"
2 #include <Wire.h>

3 #include <UnoWiFiDevEd.h>// if you are using the Arduinoc IDE
1.8.x then: //#include <UnoWiFiDevEd.h>

4 #include "AD59%33.h"
5 #include <Math.h>
6

i
3 #define CONNECTOR "rest"

QU = WO D

B B b2 BD B bt et e e ek fed fed fed
- O O 00~

= Ll o =

40

16
47
48

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 63

#define SERVER_ADDR "api.thingspeak.com"

#define APIKEY_ THINGSPEAK "DVM9K6LGS8EKOCHL" //Insert your API

Key
#define START_FREQ (11300)
#define FREQ_INCR (100)
#define NUM_INCR (10)
) #define REF_RESIST (201200)
double gain[NUM_INCR + 1];
int phase[NUM_INCR + 1];
int real [NUM_INCR + 1];
int imag[NUM_INCR + 1];
int gasSensor = 15; // select input pin for gasSensor
int val = 0; // variable to store the value coming from the
sensor
int Ro= 16000;
) int sensePin = 14; // Pin A0
float sensorValue = 0; //Set the sensor values as a floating

number
float kelwvinValue = 0;
float celsiusValue = 0;

double hum = 0;
double templ = 0;
double temp2 = 0;
float gasl 0;
float gas2 = 0;
float gas3 = 0;

y float gasd = 0;
float gas5 = 0;

void setup() {
Wire.begin();
// Begin seria

1 at 9600 baud for output
//Serial .begin (9)

if (! (AD5933::reset () &&
AD5933::setInternalClock (true) &&
AD5933::setStartFrequency (START_FREQ) &&
AD5933::setIncrementFrequency (FREQ_INCR) &&

64 Chapter C. Arduino Codes developed for Smart Sensing System
19 AD5933: :setNumberIncrements (NUM_INCR) &&
2l AD5933: :s5etPGAGain (PGA_GAIN_X1)))
51 {
52 while (true) ;
53}
54
55} // Perform calibration sweep
56 AD5933::calibrate(gain, phase, REF_RESIST, NUM_INCR + 1);
57
58
59 Ciao.begin(); // CIAQ INIT
60 }
61
62 void loop () {
63
64 fieldl ();
65 field2();
66 field3 ();
67 fieldd ();
68 field5();
069 field6 ();
70 field7();
71 field8();
T for {(int i = 0; i < 10; i++) {
73 LowPower.idle (SLEEP_8S, ADC_OFF, TIMERZ_OFF, TIMER1_OFF,
TIMERO_OQFF,
74 SPI_OFF, USARTO_OFF, TWI_OFF);
75 }
76 }
77
78 double celsius() {
79 sensorValue = analogRead(sensePin); //reads voltage on Pin A0
80 kelvinValue = (((sensorValue / 1023.0) * 5.0) » 100.0)-10;
81 celsiusValue = kelvinValue - 273.15;
82 return celsiusValue;
83)
84
8> float Hydro() {
86
87 val = analogRead(gasSensor);// read the value from the pot
88 float voltage= val « (3.3 / 1023.0);
89 float Rs = ((5/voltage) - 1)=x1000;

90 f1

oat ratio = Rs/Ro;

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 65

float y = -0.138%log(ratio)+0.6585;
return y;

}

float Ethan() {

val = analogRead(gasSensor);// read the value from the pot
float voltage= val » (3.3 / 1023.0);

 float Rs = ((5/voltage) - 1)%1000;

float ratic = Rs/Ro;

float y = -0.11xlog(ratio)+0.6097;

return y;

}
float Iso(){

) val = analogRead (gasSensor);// read the value from the pot
float voltage= val (3.3 / 1023.0);

float Rs = ((5/voltage) — 1)x%1000;

float ratio = Rs/Ro;

float y = -0.11xlog(ratio)+0.6521;

return y;

}

float Meth() {

val = analogRead (gasSensor);// read the value from the pot
) float voltage= val = (3.3 / 1023.0);

float Rs = ((5/voltage) - 1)=*1000;

3 float ratio = Rs/Ro;

float vy = -0.063xlog(ratio)+1.0202;

return y;

}

float Carbon () {

val = analogRead(gasSensor);// read the value from the pot
» float voltage= val * (3.3 / 1023.0);
float Rs = ((5/voltage) - 1)=x1000;

3 float ratio = Rs/Ro;
float y = -0.142xlog(ratio)+1.0647;
return y;

}

66 Chapter C. Arduino Codes developed for Smart Sensing System

134 void fieldl() {

135 AD5933: :GetHumidity () ;

136 String uri = "/update?api_key=";

137 uri += APIKEY_ THINGSPEAK;

138 hum = ADS5933::GetHumidity () ;

139 uri += "gfieldl=";

140 uri += String (hum);

CiaoData data = Ciao.write (CONNECTOR, SERVER_ADDR, uri);
delay (40000);

1

|

1

1 void field2() {

146 String uri = "/update?api_key=";
1 uri += APIKEY_ THINGSPEAK;
148 templ = AD5933: :getTemperature();
149 uri += "&field2=";
150 uri += String(templ);
1 CiaoData data = Ciao.write (CONNECTOR, SERVER_ADDR, uri);
1 delay (40000);

1

1

1

1

1

)0 void field3() ({

56 String uri = "/update?api_key=";

Y uri += APIKEY_ THINGSPEAK;

158 temp2 = AD5933::getTemperature();

159 uri += "&field3=";

160 uri += String(temp2);

161 CiacData data = Ciaoc.write (CONNECTOR, SERVER_ADDR, uri);
162 delay (40000) ;

163 }

164

165 void field4() {

66 String uri = "/update?api_key=";

67 uri += APIKEY_THINGSPEAK;

68 gasl = Hydro();

69 uri += "&field4=";

70 uri += String(gasl);

71 CiacData data = Cizao.write (CONNECTOR, SERVER_ADDR, uri);
72 delay (40000) ;
]

void field5() {
6 String uri = "/update?api_key=";

C.1 Final code for measuring sensor data and sending them to ThingSpeak Channel 67

177 uri += APIKEY THINGSPEAK;

178 gas2 = Ethan();

179 uri += "&field5=";

180 uri += String(gas2);

181 CiaoData data = Ciao.write (CONNECTOR, SERVER_ADDR, uri);
182 delay (40000) ;

185 void field6 () {

186 String uri = "/update?api_key=";

187 uri += APIKEY_THINGSPEAK;

188 gas3 = Iso();

189 uri += "g¢fieldé6=";

190 uri += String(gas3);

191 CiaoData data = Ciao.write (CONNECTOR, SERVER_ADDR, uri);
192 delay (40000) ;

195 void field7() {

196 String uri = "/update?api_key=";

197 uri += APIKEY_ THINGSPEAK;

198 gasd = Meth();

199 uri += "g&field7=";

200 uri += String(gaséd);

201 CiaoData data = Ciao.write (CONNECTOR, SERVER_ADDR, uri);
202 delay (40000);

205 void field8() {

206 String uri = "/updaterzapi_key=";
207 uri += APIKEY_ THINGSPEAK;

208 gas5 = Carbon();

209 uri += "&field8=";

210 uri += String(gas5);

211 CiaoData data = Ciao.write (CONNECTOR, SERVER_ADDR, uri);
212 delay (40000);

213 1}

References

[1] UCTronics. (2015) Tgs2600 to-5 air gas sensor. [Online]. Available: http:
/ /www.uctronics.com/tgs2600-to-5-air-gas-sensor.html

[2] 1 MSPS, 12-Bit Impedance Converter, Network Analyzer, Analog Devices, 2017, rev.
F.

[3] R. C. P. Ltd. A000133—arduino uno wifi development
board—arduino. [Online]. Available: http://an.rs-online.com/web,/p/
processor-microcontroller-development-kits/1113737/

[4] 3 V/5 V. CMOS 0.5 SPDT/2:1 Muz in SC70, Analog Devices, 2004, rev. 0.

[5] J. H-F. G. P. Ltd. (2016) Cygnett chargeup digital 4000 portable power bank
(green/grey). [Online]. Available: https://www.jbhifi.com.au/phones/all-phones/
cygnett /eygnett-chargeup-digital-4000-portable-power-bank-green-grey /990236 /

[6] TGS 2600 - for the detection of Air Contaminants, Figaro Engineering, Inc., 2013.

[7] I. AccuWeather. (2017) Sydney weather - accuweather forecast for new south wales
australia. [Online]. Available: https://www.accuweather.com/en/au/sydney/22889/
weather-forecast /22889

[8] G. Hunter, J. Stetter, P. Hesketh, and C. Liu, “Smart sensor systems,” The Electro-
chemical Society, pp. 29-34, 2010.

[9] B. F. Spencer, M. E. Ruiz-Sandoval, and N. Kurata, “Smart sensing technology:
Opportunities and challenges,” Structural Control and Health Monitoring, pp. 349-
368, Sep. 2004.

[10] M. E. E. Alahi, A. Nag, A. N. Manesh, S. Mukhopadhyay, and J. Roy, A Simple
Embedded Sensor: Exzcitation and Interfacing. B. George, Ed. Springer International
Pu, 2017, pp. 111-138.

[11] M. E. E. Alahi, L. Xie, A. L. Zia, S. Mukhopadhyay, and L. Burkitt, “A temperature
compensated smart nitrate-sensor for agricultural industry,” IEEE Transactions on
Industrial Electronics, pp. 1-8, 2017.

63

REFERENCES 69

[12]

(13]

[14]

(15]

[16]
(17)

18]

S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, “Towards the imple-
mentation of iot for environmental condition monitoring in homes,” IEEE Sensors
Journal, vol. 13, no.10, pp. 3846-3853, Oct. 2013.

D. Bhattacharjee and R. Bera, “Development of smart detachable wireless sensing
system for environmental monitoring,” International Journal on Smart Sensing And
Intelligent Systems, vol. 7, no.3, pp. 1239-1253, Sep. 2014.

A. Burns, B. R. Greene, T. J. McGrath, Michael J.and OShea, B. Kuris, S. M. Ayer,
F. Stroiescu, and V. Cionca, “Shimmer a wireless sensor platform for noninvasive
biomedical research,” IEEFE Sensors Journal, vol. 10, no.3, pp. 1527-1534, Sep. 2010.

F. Sheikh and L. Xinrong, “Wireless sensor network system design using raspberry
pi and arduino for environmental monitoring applications,” in The 9th International
Conference on Future Networks and Communications (FNC-2014), Texas, USA,
2014, pp. 103-110.

HS1101LF Relative Humidity Sensor, TE Connectivity Ltd., 9 2015.

LMz35, LMz35A Precision Temperature Sensors,LM335 datasheet, Texas Instru-
ments, 2 2015, rev. E.

Arduino. (2017) Getting started with arduino and genuino products. [Onlinel.
Available: https://www.arduino.cc/en/Guide/HomePage

	Final Report
	by Nawshin Nazrul

