Trichoderma reesei proteasome and genome-wide effects of the expression of mutant cellobiohydrolase I

Liisa Kaarina Kautto

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

> Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia June 2009

Table of Contents

Abst Decl Attac Abbr List o List o	Abstract Declaration Attachments to this thesis Abbreviations List of Figures List of Tables	
Ackr	nowledgements	15
Cha	pter 1 Introduction	17
1.1	Protein quality control in the cell	18
	1.1.1 Role of chaperones in protein quality control	20
	1.1.2 Molecular mechanism of unfolded protein response in the endoplasmic reticulum	25
	1.1.3 ER-associated protein degradation (ERAD)	28
	1.1.4 Ubiquitin proteasome system	29
	1.1.5 Tagging proteins for degradation in the ubiquitin-proteasome pathway	34
1.2	26S proteasome, a molecular machine designed for controlled proteolysis	35
	1.2.1 Structure of the 26S proteasome	35
	1.2.2 Assembly of the 26S proteasome	39
	1.2.3 Diverse functions of the 26S proteasome	41
	1.2.4 Proteasome-interacting proteins	43
	1.2.5 Proteasome inhibition	44
	1.2.6 Kole of proteasome in human diseases	45
	1.2.7 Approaches for proteasome purification	43
1.3	The secretory pathway in Trichoderma reesei	46
	1.3.1 Cellobiohydrolase, the main secreted protein in <i>Trichoderma reesei</i>	48
1.4	Strategies to study protein quality control in filamentous fungi	52
	1.4.1 Generation of mutant proteins	52
	1.4.2 Proteasome proteomics	53
	1.4.3 Approaches to study gene expression	54
	1.4.4 Visualisation of proteins by microscopy	56
1.5	Aims of this study	59
Cha	pter 2 Materials and methods	61
2.1	Isolation and purification of the proteasomes from Trichoderma reesei	61
	2.1.1 Fungal strains and cultivation conditions	61
	2.1.2 Purification of fungal proteasomes	61

2.1.3	b Dena	turing po	olyacrylamide gel electrophoresis (SDS-PAGE) and	
		Western	blotting of the purified <i>Trichoderma reesei</i> proteasome	63
	2.1.4	Two dir	nensional map of fungal proteasome	64
	2.1.5	Transmi	ission electron microscopy of the Trichoderma reesei	
		Proteas	some	65
2.2	Generation and analysis of cellobiohydrolase I mutants			
	2.2.1	Express	tion vector	68
	2.2.2	Site dire	ected mutagenesis of the <i>cbh1</i> gene	68
		2.2.2.1	Introduction of mutated fragments back to the expression	
			vector pCVt	71
	2.2.3	Transfo	ormation of Trichoderma reesei	72
		2.2.3.1	Transformation with pCVt $\Delta 2$, pCVt $\Delta 4$, pCVt $\Delta 5$ and the nor	1-
			mutated pCVt DNA	73
	2.2.4	Conform	mation of DNA integration into the <i>cbh1</i> locus by PCR and	
		Souther	rn blotting	74
		2.2.4.1	Extraction of genomic DNA	75
		2.2.4.2	Confirmation of homologous integration into the <i>cbh1</i> locus	5
			by PCR	75
		2.2.4.3	Analysis of the copy number of the mutant genes by Souther	rn
			blotting	76
	2.2.5	Detectio	on of protein secretion	77
		2.2.5.1	Cultivation and total protein secretion	77
		2.2.5.2	Detection of secreted CBHI and Venus proteins	77
	2.2.6	Analysi	is of hyphal morphology under the light microscopy	78
	2.2.7	Norther	rn analysis of cbh1 expression	78
	2.2.8	Cellobi	ohydrolase enzyme activity assay	80
2.3	Gene	expressi	on analysis using microarray	80
	2.3.1	Combi	Matrix Custom Array slides	81
	2.3.2	Experi	mental design for expression of the mutant CBHI molecules	82
	2.3.3	Experi	mental design for proteasome inhibition analysis	83
	2.3.4	Cultiva	ation of transformants for total RNA extraction for microarray	y 83
	2.3.5	Total F	RNA extraction, cDNA synthesis, labelling and hybridisation	84
	2.3.6	Confir	mation of the microarray results by Northern blotting	85
2.4	View	lication	of the 265 protogome and internation between the 205	
2.4	visua		of the 205 proteasone and interaction between the 205	07
	241	Vigual	isotion of the 20S protossome in Twichodowna vessei	0/
	2.4.1	Visual	isation of the 205 proteasome in <i>Trichoderma reeset</i>	0/
	2.4.2	Sample	e preparation for sectioning	8/
	2.4.3	riuores	scent rabelling and co-rocalisation of the 205 proteasome and	
	211	Ince mu	later UDTI	88
	∠.4.4	miara	iorabening of the target proteins for transmission electron	00
		micros	сору	88

Chapter 3 Results

3.1	Proteomic characterisation of the proteasomes from <i>Trichoderma reesei</i>			
	5.1.1	3.1.1.1 Western blotting of the purified 20S and 26S proteasomes	94	
	3.1.2	Proteasome mapping of the <i>Trichoderma reesei</i> proteasome	96	
	3.1.3	Visualisation of the proteasome by transmission electron microscopy		
		(TEM)	102	
3.2	Gener	ration of mutant (misfolded) cellobiohydrolase I	103	
	3.2.1	Site-directed mutagenesis	103	
	3.2.2	Generation and screening of transformants	104	
3.3	Moleo	cular characterisation of the mutant CBHI strains	107	
3.4	Biochemical characterisation of the mutant CBHI strains secreting the			
	Venus	s protein	109	
	3.4.1	Microscopic examination of the CBHI mutant strains	109	
	3.4.2	The effect of mutations on protein secretion	112	
	3.4.3	Protein profiles in the mutant CBHI strains	114	
	3.4.4	Cellobiohydroase activity in culture supernatants	117	
3.5	Micro	array profiling of gene expression in the mutant CBHI strains	118	
	3.5.1	Global view of differentially expressed genes	120	
	3.5.2	Time scale view into overall changes in gene expression in the mutant strains	123	
	353	Set 1: Differentially expressed genes involved in protein folding /	123	
	5.5.5	LIPR and protein elimination / $FR\Delta D$	128	
	354	Set 2: Global profiling of expression changes	134	
	355	Northern analysis to confirm the microarray results	144	
	5.5.5	Northern analysis to commit the interourity results	177	
3.6	The e	ffects of the expression of mutant CBHI under proteasome inhibiting	140	
	cond	Itions	146	
	3.6.1	inhibition	149	
3.7	Visua	lisation of the Trichoderma reesei proteasome and interaction		
	betwe	een the 20S proteasome and mutated (misfolded) CBHI in fungal	151	
	$\frac{1}{2}$ nypn	ate Visualization of the 208 protocome in Tricke dorma rease i humber	151	
	3.7.2	Localisation of immunostained mutant CBHI and the 20S	131	
		proteasome	152	
	3.7.3	Interaction and subcellular localisation of CBHI and 20S proteasome		
		particles under transmission electron microscopy	157	

Cha	pter 4 General discussion and main findings	161
4.1	Purification of the Trichoderma reesei proteasome	161
4.2	Three different mutant versions of CBHIs caused physiological changes	1.60
	and secretion stress in <i>Trichoderma reesei</i>	163
4.3	Not all misfolded CBHIs induced secretion stress at the transcriptional	
	level	167
4.4	Misfolded CBHIs under microscopy	172
4.5	Conclusions and future work	175
Dof		170
References		1/0
Appendices		

Abstract

Trichoderma reesei has a naturally high capacity for protein secretion and is currently employed for industrial production of a range of enzymes and recombinant gene products for a variety of biotechnological applications. A major limitation for the use of *T. reesei* as a universal production host is that industrial-scale production of heterologous proteins often results in lower yields than those achieved from native proteins. One reason for the low secretion yields of heterologous proteins is their improper folding and consequent elimination from the cell by the protein quality control mechanisms mediated by the unfolded protein response and the ER-associated degradation. Proteasome plays an important role in protein quality control by degradation the misfolded or aberrant proteins. In the current study three different mutant versions of the main secreted protein, cellobiohydrolase I (CBHI) tagged with the fluorescent protein Venus, were explored. The transcriptional response of the fungal hyphae was determined by CustomArrayTM 12K slides at three different time points. Potential interaction between the mutant CBHIs and the fungal proteasome was studied by fluorescence and the immunoelectron microscopy.

A new rapid purification method for the fungal proteasome was developed during this study followed by separation of the proteasome subunit proteins by 2DE. Several proteasome interacting proteins (PIPs) were also identified. The purified 26S proteasome was visualised by transmission electron microscopy. The three mutant CBHI strains differed in terms of protein production and CBHI enzyme activity, although there were similarities between them showing a pulsing phenomenon both in protein secretion and transcription of the CBHI mRNA. Interestingly only one of the mutant CBHI strains could secrete the Venus-tagged fusion protein into the culture medium.

The genome wide transcriptional study showed that two mutations in the *cbh1* core gene did not cause UPR or ERAD activation, even though physiological signs of the stress were evident. Four and five mutations in the *cbh1* core gene lead to expression changes in genes related to UPR and ERAD pathways and the physiological indications of stress were also seen under the light microscope. A new finding was up-regulation of a group of genes

involved in ribosome structure and synthesis in all mutant CBHI strains. In previous studies, secretion stress has been applied to fungal hyphae by drugs such as dithiothreitol (DTT) or tunicamycin, which seem to result in a different feedback to the protein translation machinery.

Fluorescence and immunoelectron microscopy studies supported the microarray results indicating that four mutations in the *cbh1* core gene lead to the interaction of the mutant CBHI with the 20S proteasome and at least partial retention of the mutant CBHI protein in the fungal hyphae.

Declaration

The research presented in this thesis is original work conducted between April 2005 and April 2009 by the author. This material has not been submitted as part of the requirement for any other degree or course to any other institution. To the best of my knowledge it contains no material previously published or written by any other person except where due reference is made in the text.

Liisa Kaarina Kautto

Attachments to this thesis

Grinyer, J., Kautto, L., Traini, M., Willows, R.D., Te , J., Bergquist, P. and Nevalainen, H. 2007. Proteome mapping of the *Trichoderma reesei* 20S proteasome. Current Genetics. 51:79-88.

Kautto, L., Grinyer, J., Birch, D., Kapur, A., Baker, M., Traini, M., Bergquist, P. and Nevalainen, H. 2009. Rapid purification method of the 26S proteasome from filamentous fungi *Trichoderma reesei*. Protein Expression and Purification. 67:156-163.

- DVD Supplementary material for the microarray data
 - Supplementary material for the fluorescence microscopy studies
 - Thesis in PDF-format

Abbreviations

Abbreviations frequently used in the text are:

bp	Base pairs
CBHI	Cellobiohydrolase I
CLSM	Confocal laser scanning microscopy
DEPC	Diethylpyrocarbonate
DIC	Differential interference contrast
DNA	Deoxyribonucleic acid
dNTP	Deoxyribonucleotide triphosphate
2D	Two dimensional
EDTA	Ethylene diamine-tetra-acetic acid
ER	Endoplasmic reticulum
ERAD	Endoplasmic reticulum associated degradation
FBS	Fetal bovine serum
g	Specific gravity
h	Hour
kb	Kilobase
kDa	Kilodalton
LB	Luria broth
MW	Molecular weight
М	Moles per litre
min	Minute
ORF	Open reading frame
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate-buffered saline
PCR	Polymerase chain reaction
PDA	Potato dextrose agar
RNA	Ribonucleic acid
RT	Room temperature
S	Second
SDS	Sodium dodecyl sulphate
TEM	Transmission electron microscopy
Tris	Tris(hydroxymethyl)aminomethane
UPR	Unfolded protein response
V	Voltage
v/v	Volume per volume
W/V	Weight per volume

List of Figures

Figure 1.	UPR and ERAD are part of protein quality control in the cell.	17
Figure 2.	Diagram illustrating the interaction between UPR and ERAD.	20
Figure 3.	Diagram of participants of the protein folding/unfolding in the ER.	23
Figure 4.	Ire1p mediated regulation of unfolded protein response in yeast.	26
Figure 5.	Comparison of induction of the HAC1 coding gene in T. reesei,	
	S. cerevisiae and mammalian cells.	27
Figure 6.	The ubiquitin proteasome system (UPS).	32
Figure 7.	The assembly and structure of the 26S proteasome.	36
Figure 8.	Assembly pathway of the bacterial <i>Rhodococcus</i> proteasome.	40
Figure 9.	A schematic overview of secretory pathway in filamentous fungi.	47
Figure 10.	The structure of T. reesei cellobiohydrolase, CBHI interacting with	
	cellulose.	49
Figure 11.	Positions and pairs of the 20 cysteine residues which form disulfide	
	bridges, and location of the active site in the CBHI core.	50
Figure 12.	3D structure of CBHI from T. reesei derived from chrystallography	
	(1 Cel).	67
Figure 13.	The expression vector pCVtin pUC.	68
Figure 14.	A schematic overview of two PCR rounds for the amplification of the	
	mutant <i>cbh1</i> genes.	70
Figure 15.	Schematic of homologous integration of an expression cassette into	
	the <i>T. reesei</i> genome.	74
Figure 16.	The work flow schematic for microarray studies.	81
Figure 17.	Experimental design for the analysis of the expression of three mutant	
	CBHI molecules on the UPR and ERAD pathway genes (Set1, Table	
	5) and effects on global gene expression (Set2 section 2.3.1).	83
Figure 18.	Experimental design for the analysis of gene expression changes in the	
	T. reesei with or without the proteasome inhibitor MG132.	83
Figure 19.	Pooled fractions 23-30 and 31-40 eluted from Superose 6 column	
	showed chymotrypsin-like activity.	92

Figure 20.	Chromatograms and graphs showing the fractions with chymotrypsin-	
	like activity from 26S proteasome purification.	93
Figure 21.	SDS-PAGE and Western blots of the T. reesei proteasomes purified	
	by two different methods.	95
Figure 22.	2D map of the purified T. reesei 20S proteasome.	98
Figure 23.	2D map of a purified T. reesei 26S proteasome with protein	
	identifications.	99
Figure 24.	Transmission electron micrographs of the T. reesei 26S proteasome.	102
Figure 25.	Number of copies of the expression cassette containing the mutated	
	<i>cbh1</i> gene in the genome of the <i>T. reesei</i> transformant $CVt\Delta 4$.	106
Figure 26.	Northern blots of Rut-C30, CVt, CVt Δ 2, CVt Δ 4 and CVt Δ 5 after 12	
	h, 24 h and 48 h growth in the CLS medium inducing <i>cbh1</i>	
	expression.	108
Figure 27.	Fluorescence of Venus in <i>T. reesei</i> hyphae. A. 36 h cultivation; B.4 d	
	cultivation in CLS medium.	110
Figure 28.	Physiological changes in the hyphae of different transformants and	
	Rut-C30.	111
Figure 29.	Transformants grown on PDA plate showing different colony	
	phenotype.	112
Figure 30.	pH-profiles of the culture supernatants of all transformants and the	
	non-transformant Rut-C30.	113
Figure 31.	Total protein concentration in the supernatants of all transformants	
	including CVt, and the non-transformant Rut-C30 measured over 6 h	
	to 7 d in cultures grown on CLS medium.	113
Figure 32.	SDS-PAGE separation of total secreted proteins stained with	
	Coomassie Colloidal Blue G250 from Rut-C30, CVt, CVt Δ 2, CVt Δ 4	
	and $CVt\Delta 5$.	115
Figure 33.	Western blot analysis of the total secreted protein in the T. reesei	
	culture supernatants.	116
Figure 34.	Total cellulase activity of the culture supernatants from the non-	
	mutant CVt and the different CBHI mutant strains compared to non \square	
	transformant Rut-C30 after 5 d cultivation in the CLS medium.	117

Figure 35.	The numbers of up-regulated (≥ 1.5 fold) or down-regulated (≤ 1.5	
	fold) genes from the entire <i>T. reesei</i> genome analysed by microarrays.	120
Figure 36.	Up-regulated and down-regulated genes assigned to their functional	
	classes in strain CVt $\Delta 2$ at 12 h, 24 h and 48 h.	124
Figure 37.	Up-regulated and down-regulated genes assigned to their functional	
	classes in strain CVt∆4 at 12 h, 24 h and 48 h.	126
Figure 38.	Up-regulated and down-regulated genes assigned to their functional	
	classes in strain CVt $\Delta 2$ at 12 h, 24 h and 48 h.	127
Figure 39.	The mRNA levels of <i>bip1</i> , <i>cal1</i> and <i>rpn8</i> in the <i>T. reesei</i> non-mutant	
	strain CVt and CBHI-mutant strains CVt $\Delta 2$, CVt $\Delta 4$ and CVt $\Delta 5$ at 12	
	h growth in the CLS medium.	145
Figure 40.	Up-and down-regulated genes assigned to their functional classes in	
	strains Rut-C30, CVt and CVt Δ 4 under proteasome inhibition	
	conditions.	147
Figure 41.	The mRNA levels of <i>alpha5</i> , <i>alpha7</i> , <i>beta1</i> and <i>beta5</i> genes in the <i>T</i> .	
	reesei non-transformant strain Rut-C30 and the CBHI-mutant strain	
	$CVt\Delta 4$ grown with or without MG132.	150
Figure 42.	T. reesei Rut-C30 grown 19 h and 2 d in the CLS and immunolabelled	
	with a polyclonal anti-yeast 20S antibody which was detected by	
	Alexa Fluor [®] 488.	152
Figure 43.	Indirect immunofluorescence microscopy of CBHI and 20S	
	proteasome particles in T. reesei Rut-C30.	153
Figure 44.	Indirect immunofluorescence microscopy of CBHI and 20S	
	proteasome particles T. reesei CVt.	154
Figure 45.	Indirect immunofluorescence microscopy of CBHI and 20S	
	proteasome particles T. reesei $CVt\Delta 2$.	154
Figure 46.	Immunocytochemical localisation of the mutant CBHI and 20S	
	proteasome particles in <i>T. reesei</i> $CVt\Delta 4$.	155
Figure 47.	Immunocytochemical localisation of the mutant CBHI and 20S	
	proteasome particles in T. reesei CVt∆5.	156
Figure 48.	TEM images of ultrathin sections of <i>T. reesei</i> hyphae.	158

List of Tables

Table 1.	Examples of diverse functions of the 26S proteasome beyond	
	misfolded protein degradation.	42
Table 2.	Cysteine residues forming disulfide bridges in the native CBHI core	
	protein with their location in the three dimensional structure.	66
Table 3.	Primers used in site-directed mutagenesis of the <i>cbh1</i> gene.	69
Table 4.	Sequencing primers used to check the mutations introduced in the	
	<i>cbh1</i> core sequence.	72
Table 5.	Set 1 genes, their gene number from the second round sequencing of	
	the <i>T. reesei</i> genome (jgi Trire) and the relation to UPR (U) or ERAD	
	(E) pathways or housekeeping genes (HK).	82
Table 6.	The sequences of primers used in the PCR amplification of the	
	selected probes for Northern analysis.	86
Table 7.	Comparison of protein identifications from the 20S proteome using a	
	conventional purification method and identifications made from the	
	26S proteome using the new purification method developed in this	
	work.	100
Table 8.	Number of transformants obtained with plasmids harboring different	
	<i>cbh1</i> mutant genes.	105
Table 9.	Functional groups of protein-encoding genes which were	
	differentially expressed in Rut-C30 at 12 h, 24 h and 48 h cultured in	
	the CLS medium.	122
Table 10.	Differentially expressed genes of CVt $\Delta 2$, CVt $\Delta 4$ and CVt $\Delta 5$ after 12	
	h, 24 h and 48 h cultivation in the CLS medium.	123
Table 11.	Differentially expressed genes in Set1 encoding proteins involved in	
	UPR and ERAD.	129
Table 12.	Changes in gene expression in metabolic pathway subclasses in each	
	strain at three time points.	140
Table 13.	Quantitation of gold particles and ratio of 5 nm versus 10 nm gold	
	particles in thin sections of RutC30, CVt and CVt4. T. reesei hyphae	
	grown for 2 days in CLS medium.	160

Acknowledgements

The present study was carried out in the EDGE laboratory at Macquarie University in Sydney Australia during the years 2005-2009. Firstly, I wish to thank Macquarie University International for providing me with a scholarship.

My warmest thanks are to my supervisors Prof. Helena Nevalainen and Dr. Junior Telo for providing me with this opportunity. A good combination of support, advice and independence made this time both challenging and enjoyable. I felt privileged to be supervised under them with a vast knowledge of *Trichoderma*. Also, I thank you for having a good time while making serious science. I express my sincere thanks to Emeritus Prof. Peter Bergquist for his valuable advice and comments for the manuscripts and the thesis.

I wish to thank all my colleagues for sharing these years with me in the EDGE group and also for their readiness to provide help when ever it was needed. I truly feel that I have been greatly honoured to be working in such a supportive work environment. Special thanks to Dr. Jasmine Grinyer for sharing her knowledge on proteomics, her support and friendship. I also wish to thank Natalie Curach, Caiyan Wu, Niru Shoby Manalil, Noosha Ehya, Suja Mohammed, Robyn Peterson, Roberto Anitori and Shingo Miyauchi for their entertaining conversations and friendship during this study.

I warmly thank Debra Birch for sharing her microscopy expertise and technical assistance and Dr. Mick Godlewski for his assistance in the fluorescence microscopy and the image editing. Also I wish to thank Associate Prof. Robert Willows and Artur Sawicki for their advice and help in the proteasome purification.

I would also like to extend my gratitude towards Helena, Roz, Nicki and Emmi for a good sweat on the badminton court, Sami for opening my eyes to the wonderful nature of Australia and my late cousin Sirkka and her husband Antti for keeping me in touch with the rye bread. I wish to thank all my friends in Finland for their support. Special thanks go to my friends in heart Sanna and Matti for their continuous encouragement and support.

Financial support from Helsingin Sanomain 100-vuotissäätiö and Seppo Säynäjäkangas Säätiö are gratefully acknowledged.

I feel especially lucky to have such a wonderful family. My deepest thanks are expressed to my parents, Irene and Uuno for their unquestioned love, care and trust as well as support from far distance. I feel that a big part of this achievement belongs to them. My whole family, siblings Leena, Anna-Maija, Mikko, Ulla, Timo, Juha and Antti, sisters and brothers in law are all thanked for their support. I also thank my nieces and nephews just for being there and once seen, giving me joy.