INTERNET OF THINGS BASED
MECHATRONIC SYSTEM

David Simpson

Bachelor of Engineering
Mechatronic Engineering

]
Pg
ey

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Electronic Engineering
Macquarie University

November, 2017

Supervisor: Prof. Subhas Mukhopadhyay

ACKNOWLEDGMENTS
I would like to acknowledge the people who made it possible for me to make it this
far in my academic career. To my parents, thank you for the unconditional love
and support you have shown me as I struggled to find my own path. Without
all you have done for me it is doubtful I would have made it this far. To my
partner Kim, thank you for all the love you show me and for keeping me sane
over these years of study. To my brother, thank you for showing me how to
overcome my problems and the rewards of hard work. Finally I would like to
thank Prof. Subhas Mukhopadhyay who has provided me with invaluable personal
and academic advice throughout this project. Thank you for the kindness and

flexibility you have shown me and for your friendly and approachable attitude.

STATEMENT OF CANDIDATE

I, David Simpson, declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Electronic
Engineering, Macquarie University, is entirely my own work unless otherwise ref-
erenced or acknowledged. This document has not been submitted for qualification

or assessment an any academic institution.

Student’s Name: David Simpson
Student’s Signature: David Simpson (Electronic)

Date: 13/11/2017

ABSTRACT

This thesis has the purpose of developing a new Internet of Things controlled
mechatronic system. The ability to remotely control mechatronic systems opens
up a world of possibilities for new devices as well as upgrading existing tech-
nologies. Throughout this project a new Internet of Things framework was cre-
ated from scratch including an Android application, cloud based web server and
a mobile mechatronic system to execute user commands. All of these project
components were newly developed and designed to provide a potential teaching
platform for future students of wireless mechatronics. The Android application
communicates user commands to the web server which acts as a ’fixed point’ to
which both the mechatronic system and the Android application can communi-
cate. The web server saves any received command data into an SQL database for
analysis and then encrypts the data. The mechatronic system is a mobile robot
designed from the ground up using CAD tools and then 3D printed to allow for
future design changes. The robot polls the web server at a set interval to check
for new commands. The overall Internet of Things framework developed during
this project is functional but requires further software development to make the

system more robust and completely secure.

Contents

Acknowledgments

Abstract

Table of Contents

List of Figures

List of Tables

1

Introduction

1.1 Project Goals and Deliverables

Background and Related Information

2.1 The Internet of Things
2.2 Networking and Communication Protocols

2.3 Wireless Hardware
24 Cloud Serviceso
25 Security e

Project System Design Specification

3.1 Introduction and Overview
3.2 Android Application
3.3 Cloud Services o
3.4 Robotic System L 0oL

Completed System Specification

4.1 Android Application
4.2 Cloud Services
4.3 Robotic System L0

System Experimental Analysis

iii
vii
ix
xi

xiii

2

10
13
13
14
14
15

17
17
21
23

31

X CONTENTS
6 Conclusions and Future Work 35
6.1 Reflections 35
6.2 Futurework 35
6.3 Conclusion 36
Abbreviations 37
A IoT System Models 39
A1 Device-To-Device 39
A2 Device-To-Cloud e 40
A3 Device-To-Gateway e 41
A4 Back-End Data-Sharingo 42
B IoT Communication Protocols 43
C Security Measures 45
D Robot Photos 47
E Web Server Code 51
Bl appsjs : : = s 5 2 5 555 5 55 585 55 3 86 6 83 8856 86 68 85 88 i@ 51
E.2 arduinoComm.js. 53
E3 androldCommijS. « « v « v v v v w v v w e e ww e e e e e e e 5D
F Android Application Code 57
F.1 MainActivityjava o7
F.2 PagerAdapterjava 60
F.3 SingletonGlobaljava 62
F.4 httpTransferjava e 64
F.5 TabFragmentl.java 73
F.6 TabFragment2.java 76
F.7 TabFragment3.java e e 81
G Arduino Code 89
Bibliography 117

List of Figures

2.1 Forecast number of connected devices (millions). [11] 4
2.2 Simplified example of IoT architecture. 5
2.3 IoT market arcas of focus [8]. 6
2.4 OSI Network Model [3]. 7
3.1 Project system architecture. 14
4.1 Tab 1 - Connection configuration 18
4.2 Tab 2 - Movement control 19
4.3 Tab 3 - Roboticarm control 20
4.4 Web server process flow chart 22
4.5 Web server DES encryption function00 L. 23
4.6 Base component 24
4.7 Side attachment 25
4.8 Roboticarmmount L 26
4.9 Electrical components mount 26
4.10 Complete model of designed components 27
4.11 Electrical circuit diagram 29
A1 Device-To-Device system model [20] 39
A.2 Device-To-Cloud system model [20] 40
A.3 Device-To-Gateway system model [20] 41
A.4 Back-End Data-Sharing system model [20] 42
B.1 Summary of IoT communication protocols [12] 44
C.1 Summary of IoT communication protocols [7] 46
D.1 Robot with arm attached. L. 48
D.2 Robot without arm attached. 49
D.3 Robot without arm attached. 50

xi

List of Tables

51 MYSQL database successful 0 ... 32
52 MYSQL database failure 32
5.3 Cryptographic algorithm experimental results 33
5.4 Movement command experimental data00 34

xiil

Chapter 1

Introduction

Throughout history humanity has understood the power and importance of communi-
cating over large distances and has strived to develop new and improved methods to
accomplish this goal. One of the earliest rudimentary methods was the use of smoke
signals to indicate danger [4,13,15] or to send news, for example the Chinese use of signal
beacons to alert their troops to the presence of approaching enemies. These smoke signals
provided an invaluable advantage allowing for troops to be readied and positioned rather
than caught off guard. Further early communication methods that have been used to
great effect include homing pigeons, signal drums and semaphore systems [4,15]. Each of
these techniques provided their user with a strong advantage over their competitors, be
it in war or business.

After the discovery of electricity the true power of long distance communication be-
gan to be unlocked. With the invention of the electrical telegraph system suddenly in-
dividuals, businesses and governments could send messages over huge distances almost
instantancously, resulting in massive economic and social impacts. In a relatively short
time humanity went on to develop the telephone, as well as one of the first wireless elec-
trical communication tools, the radio. Over the course of the 20th century microwave and
satellite communication systems were developed along with the first mobile phones and
the modern internet.

The Internet of Things (IoT) is the next step forward on this developmental path.
IoT is a broadly defined concept relating to the trend of increased connectivity of modern
products and devices. While there is no official consensus of what constitutes the [oT
there are two definitions that I believe provide insight into the topic:

e The Oxford English Dictionary: ” The interconnection via the Internet of computing
devices embedded in everyday objects, enabling them to send and receive data [20].”

e The Internet Architecture Board: ” The term Internet of Things (IoT) denotes a
trend where a large number of embedded devices employ communication services
offered by the Internet protocols. Many of these devices, often called smart objects,
are not directly operated by humans, but exist as components in buildings or vehicles,
or are spread out in the environment [20].”

1

2 Chapter 1. Introduction

1.1 Project Goals and Deliverables

The over-arching goal is to create an IoT based mechatronic system. It is intended that the
final deliverables of this project include an Android smartphone control app, an arduino
based rohot and a web server to facilitate communication between the app and robot while
recording important data for analysis. It is my hope that the outcomes of this project can
find a potential use as a teaching platform for future students of wireless mechatronics.
A list of project deliverables is provided below:

Android smart-phone control application.

Cloud-based web-server to facilitate communication.

SQL database for data analytics.

e Prototype mobile robotic platform with attached robotic arm.

Several additional robotic platforms based on prototype.

e Collision avoidance behaviour implemented.

Chapter 2

Background and Related Information

2.1 The Internet of Things

The term "Internet of Things” was first used by rescarcher Kevin Ashton in 1999 during
a presentation where he discussed expanding the internet to accommodate connected
objects or "Things’ [17,20]. As per the definitions given in Chapter 1, the IoT can be
loosely defined as the interconnection and communication between distributed products,
objects and devices with the goal of providing improved services and performance through
convenient user access and data analysis. An example to clarify this definition would
be a ’smart’ house where distributed sensor nodes constantly measure temperature and
communicate with the air conditioning control system to regulate the temperature as
required. The home-owner would be able to access these temperature readings and control
the air-conditioning system remotely over the internet. The household power usage could
also be monitored by a smart-meter allowing for a home-owner to examine their energy
usage and take action to reduce their power bills. This is just a basic example of the
potential value provided by IoT connected devices. This value will continue to grow as
the number of connected 'things’ rapidly expands. This forecast future growth is shown
in Figure 2.1.

4 Chapter 2. Background and Related Information

40,000

| . . 10,000

2015 2020f 2025f 2030f 20351 204 0f 2045f 2050f

@B sSmartphones B8 M2M [l Mobile computing Wearables .|

Figure 2.1: Forecast number of connected devices (millions). [11]

TIoT System Architecture

The ’smart’ house scenario given in Section 2.1 provides a common example of an IoT
home automation system. The next step in understanding IoT systems is to look at a basic
system architecture model that could be implemented for a variety of loT applications.
Figure 2.2 provides the outline for a simplified IoT system. There are limitless potential
applications for the IoT and so to help define the different types of systems the Internet
Architecture Board (IAB) released RFC7452 [9], a document designed to help engineers
through the IoT design process. This document provides four basic system architectures
that show the varied forms in which IoT systems are commonly found. A list of these
system models is included below and diagrams are found in Appendix A [9, 20].

e Device-To-Device
e Device-To-Cloud
e Device-To-Gateway

e Back-End Data-Sharing

2.1 The Internet of Things 5

User loT Connected
Command/Request Devices
—_— _—
Webserver Localiy
evwrenr | and Database Communication 1
—— | Hub |
| | . 4

Figure 2.2: Simplified example of IoT architecture.

Another common definition of [oT architecture is the layer model which separates the
components of an IoT system into functional layers [7,21]. There are several different
layer models but they all have some common sections as listed below:

1. Application Layer - Provides user interface
2. Transportation/Network Layer - Relay data

3. Perception Layer - Gathering information, ie:sensors

IoT Market Details

The IoT market has been the focus of much interest and hype over the last few years.
It is often difficult to accurately gauge the economic impact the industry will have as
future market value estimates vary wildly, often by hundreds of billions of dollars. The
McKinsey Global Institute, in their 2015 study, estimated that by 2025 the internet of
things will add value of between $3.9 - $11.1 trillion USD across all major IoT impacted
industries [16].

While it is almost universally agreed that the loT will have an enormous future eco-
nomic impact there is also the belief that the industry has been over-hyped. Despite this,
even more conservative estimates of industry potential, such as that by BMI Research,
believe that while the next five years may not yield the enormous growth forecast, the
long-term potential of the IoT has been underestimated [11].

The current main areas of [oT market focus are shown in Figure 2.3. The areas shown
are based on research of 640 publicly announced IoT projects and demonstrate the impact
that the IoT is having across various industries. Manufacturing in particular is on the
forefront of the IoT wave as focus shifts from revenue generation, through the creation of
new products, to cost saving measures [10], such as connected manufacturing robots that
allow for early failure detection and preventative maintenance.

6 Chapter 2. Background and Related Information

o6 10T ANALYTICS Insights that empower you o understand loT markals
loT Segment Global share of loT projects? Details

Americas Furope APAC Trend?

@A comected industry I -

(@) Connected car [N >+
G < other [N =+
@'ﬂ smart Agriculture [N &+ _
@ B connected Building’ [N s* ’?’ ,
ﬁ Connected Health [N 5% , _-»‘

. s 1--

Ow smart Retail [JIIIN] 2% N = 640 global, publicly

announced loT projects

% Smart Supply Chain - 4% B Americas B Europe I APAC 1 WA 1 WA

L Based on 640+ pullicly ise boT projects.(Not | i 10T projects &g, Wearables, Smart Home) . Trend based on 0T Analytics’s 02/2016 loT Employment Statistics Tracker luding
Consumer Smart Home Solutions Source: loT Analytics 2016 Global of [I 2016)

Figure 2.3: IoT market areas of focus [8].

2.2 Networking and Communication Protocols

OSI Network Model

The open systems interconnection model (OSI) is a general reference model for facilitat-
ing communication between systems regardless of their individual technical characteris-
tics. The model breaks down communications into seven layers, each of which has its
own functions. It should be noted that this model is simply a reference framework and
there are certain situations where components of real world applications do not fit into
the designated layers. Figure 2.4 shows the seven layers and their general flow in a com-
munication system. A complete description of the layers and their functions can be found
in the official ISO documentation, ISO/IEC 7498-1 [14].

Communication Protocols

In order to facilitate reliable and secure communication between the different modules of
an IoT system there are a number of tried and tested communication protocols. The use
of pre-existing communication methods allows for increased interconnectivity between
different IoT systems, increased security and helps avoid wasted time reinventing the
wheel. The protocol that is implemented should be chosen based on the specific IoT
application requirements. Some applications will prioritise low power usage while others
require high data transfer rates. Commonly used protocols for the loT include:

2.2 Networking and Communication Protocols

—r—
A

SENDING |

APPLICATION LAYER

e

RECIEVING |

v

APPLICATION LAYER

PRESENTATION LAYER

PRESENTATION LAYER

|

3

SESSION LAYER

SESSION LAYER

I

T

TRANSPORT LAYER TRANSPORT LAYER
L4
NETWORK LAYER NETWORK LAYER
A
¥
DATA LINK LAYER DATA LINK LAYER
3
r
PHYSICAL LAYER PHYSICAL LAYER

\ Physical Link —/_

Figure 2.4: OSI Network Model [3].

AMQP - Advanced Message Queuing Protocol

CoAP - Constrained Application Protocol

DDS - Data Distribution Service

JMS - Java Message Service

MQTT - Message Queueing Telemetry Transport

HTTP - Hyper-Text Transfer Protocol

These communication protocols are located in the top three layers of the OSI model
given in Figure 2.4 and operate on top of the transport layer which most commonly utilises

8 Chapter 2. Background and Related Information

the transmission control protocol (TCP) or the user datagram protocol (UDP). A good
review of the pros and cons of these protocols is provided by Foster [12] and a full table
of the various protocols and their characteristics is given in Appendix B.

2.3 Wireless Hardware

When creating an loT system several considerations must be looked at when choosing the
development hardware to use. Some of these considerations include cost, power require-
ments, physical constraints, processing power, data acquisition, communication and ease
of development. The mechatronic system applied in this project will be based around the
Arduino microcontroller board as it is a low cost solution with high ease of development
due to the large amount of reference material available. There are four Arduino board
models that include built in wireless capabilities [2]:

e Uno Wiki
e Yun
e Tian

e I[ndustrial 101

The use of these boards allows for simple incorporation of WiFi into a mechatronic
project. The trade-off of this is the increased cost associated with these more advanced
boards and their relatively small number of I/O ports which may be insufficient for larger
projects. In order to minimize costs for this project it was decided to combine a ESP8266
wireless module with an Arduino Mega board. This allows for low cost wireless commu-
nication with a large I/O capacity. The Arduino Mega communicates with the ESP8266
breakout board over one of it’s hardware serial ports.

There are a number of potential solutions for integrating wireless connectivity into
an IoT project. The selection of an appropriate device should be based on the specific
requirements of the individual project. Some of the commonly available wireless solutions
include:

e NRF24L01 2.4GHz Transceiver Module
e Bluetooth HC-06 Module
Arduino WiFi Shield

e XBee ZigBee Module

GSM/GPRS Cellular Module
ESP8266 Module

2.4 Cloud Services 9

There are also a number of other IoT hardware development platforms available that
it is good to be aware of including the Raspberry Pi, Intel Edison, NodeMCU, Beaglebone
Black, Particle 10, Teensy and many others. When selecting a platform it is important
to consider the power, communication, cost and data acquisition requirements for an
individual project in order to choose the best solution.

2.4 Cloud Services

A modern computing concept found often in studying the IoT is that of the "cloud”. This
term is commonly used in relation to backing up local system files such as photos on an
internet server so that they can be accessed from anywhere, but what is cloud computing
really? Microsoft provides the following basic explanation:

Cloud computing is the delivery of computing services - servers, storage,
databases, networking, software, analytics and more - over the internet [G]

A more formal definition is provided by the National Institute of Standards and Tech-
nology (NIST) that breaks down cloud computing into three service models, five required
characteristics and four models of deployment [18].

Cloud Service Models:

e Software as a Service (SaaS) - User can access applications that run on the service
provider’s infrastructure, such as Facebook.

e Platform as a Service (PaaS) - User can deploy their own applications to the cloud
for testing, development and use.

e Infrastructure as a Service (IaaS) - User can control the service provider’s infras-
tructure as if it were their own and create a virtual data center. This allows users to
avoid investment costs related to designing and purchasing their own server hard-
ware.

Cloud Computing Characteristics: Models of Deployment:

e On-demand self-service .
e Private cloud

e Broad network access
e Community cloud
e Resource pooling

e Public cloud

Rapid elasticity
e Measured service e Hybrid cloud

In the context of this project, a web server and SQL database will be developed
and deployed to a cloud server allowing for communication between the Arduino robotic

10 Chapter 2. Background and Related Information

system and an Android smartphone application. This usage demonstrates the platform
as a service (PaaS) model of cloud computing.

2.5 Security

Cyber security is one of the most important features of connected systems. Unsecured
systems can allow an attacker to potentially copy data, send false commands or take
complete control of a device. In Figure 2.1 we saw that there will be a huge increase in
the number of connected devices over the next decade. Without the implementation of
adequate security measures many of these devices may be vulnerable to cyber-attacks.

Types of Attack

The type of attack used is often called an ’attack vector’ and some of the common attack
vectors that IoT designers must be aware of include [7,21]:

e Denial of Service (DoS) - A network is deliberately sent large amounts of useless
traffic in order to make the service unavailable for a user

e Malicious Code Injection - External code is 'injected’ into a system to cause error
or steal data (ie: SQL injection)

e Sleep Denial - Battery powered nodes are designed to sleep when not needed. This
type of attack prevents a node from entering its sleep mode and results in an eventual
loss of power

e Svhil attack - Multiple identities are created for a single node

e Man in the Middle - The communication channel between system components is
monitored or taken control of

e Hardware tampering - Remote nodes may be physically interfered with or even
replaced

There are many more possible attack vectors with new hacking techniques constantly
being developed. For this reason a good understanding of cyber-security is very important
for the development of IoT systems.

Security Measures
There are a number of main security measures to be aware of when considering connected

devices [7,21].

e Authentication - Devices must be authenticated before being allowed to communi-
cate as part of a system

2.5 Security 11

e Encryption - Data is encrypted to keep information confidential
e Secure Hardware - Design nodes to prevent physical tampering

A more comprehensive list of potential security breaches and their associated risks/ac-

tions is included in Appendix C [7]. This list includes an IoT layer model as referenced

in Section 2.1.

12

Chapter 2. Background and Related Information

Chapter 3

Project System Design Specification

3.1 Introduction and Overview

The goal of this project is the design and implementation of a mechatronic system that
can be commanded over an loT framework. It is not the goal to directly control the
mechatronic system, as you would a remote control toy car, but instead simple commands
are to be sent from the user to the robotic system and the system then acts autonomously
based on those commands. The system also provides sensor data to be saved in a cloud-
based database for access and analysis by the user. The overall project design has three
main components:

1. Android application for user interaction
2. Mechatronic system

3. Cloud-based web server and data storage

The project system architecture connecting these main components is shown in Figure
3.1 along with the protocols used to communicate between each component. Note that the
MySQL database is controlled using standard structured query language (SQL) commands
[5] while the ESP-8266 WiFi module is controlled using an AT command set [1], derived
from the Hayes command set, with the commands sent over a serial connection from the
Arduino.

13

14 Chapter 3. Project System Design Specification

Robatic

MysQL
Database
Arm

Half Duplex Serial

Serial : 12C
Node.JS ESP-8266 Arduino
Web Server WiFi Module Mega

PWM
DC
Motors

Figure 3.1: Project system architecture.

3.2 Android Application

Application Structure

The Android application acts as the user interface and controller for our system. The app
was written from scratch in the Java programming language and using Android Studio
software. The app includes a basic user interface for sending commands and implements
swipe tabs for the various functions, for example one tab is used for inputting connection
settings while another is used to send basic motor commands. Communication is achieved
through the use of Android’s "HttpURLConnection’ class to send asynchronous HTTP
requests to the web server. It is intended that sensor data from the robotic system should
be accessible to the user through the application.

3.3 Cloud Services

‘Web Server

The web server is implemented using the Node.js (Javascript) language and is based on
the Node.js Express framework. The web server receives commands from the Android
application using HT'TP POST request. These commands are saved in an SQL database
and the command data is then encrvpted. The server waits until the next HTTP GET
request is received from the Arduino system then the encrypted commands are sent to
the Arduino on the GET response and an acknowledgement is sent back to the Android
app confirming that the commands were received. As the server cannot initiate HTTP
requests to the Android app or robotic system it must store any received commands and
wait until the app or robot poll the server again.

3.4 Robotic System 15

Data Storage and Analytics

Each GET request from the Arduino will also include sensor data that is to be saved into
the SQL database along with timestamp details and any other desired data. This SQL
data should be accessible from the Android application to allow the user to visualise and
analyse the data.

3.4 Robotic System

Design Considerations

The following important considerations were taken into account during the design process
for the robotic system:

e System must be able to receive control commands from an Android application over
the internet and to acknowledge receipt of commands.

e System must be able to send sensor data to web server for data analysis purposes.

o Chassis design should be modular to allow for easy assembly/disassembly and future
redesign as well as ease of 3D printing.

e System should be mechanically stable when robotic arm is mounted to chassis.
e System should be battery powered.
e System should be mobile and implement autonomous collision avoidance behaviours.

e Cost should be minimized.

System Components

The chosen components for the mechatronic system are:

e 3D printed chassis e Crustcrawler AX-12 robotic arm
e 4 x 6V DC motors

e 2 x 12V DC motor driver board
Arduino Mega 2560

ESP-8266 WiFi module e Step down DC-DC converter

e Ultrasonic sensors

e 12V 2.2 AH SLA battery

16 Chapter 3. Project System Design Specification

Peripheral Control and Communication

The Arduino Mega controls and communicates with all the peripheral components based
on various protocols as described below:

e ESP8266 - AT commands are sent from the Arduino over one of the hardware serial
ports. The system polls the web server at regular intervals to see if any updated
commands have been received from the Android app user.

e Robotic Arm - The Crusterawler AX-12 robotic arm utilises half-duplex serial com-
munication as opposed to the full-duplex used by the Arduino. In order to translate
between full and half duplex, extra circuitry is required in the form of a 7405241
tri-state buffer. Stable communication was achieved at a baud rate of 200,000 bps.

e Sensors - Ultrasonic sensors readings are taken using the I2C protocol.

e DC Motors - The motors are controlled using pulse width modulation (PWM) by
using the analogWrite() command on Arduino PWM pins connected to the motor
driver breakout boards.

Chapter 4

Completed System Specification

This chapter details the completed [oT system that was eventually created for this project.
It should be noted that there are a number of differences between the intended design
functionality detailed in Chapter 3 and the final system. These changes are described in
detail below.

4.1 Android Application

The Android application was written in the java programming language using Android
Studio software. This application functions as the user interface for the overall loT frame-
work. User commands are input through the use of push-buttons, slide-bars and text
prompts. Prior to undertaking this project I had minimal experience in Android app pro-
gramming and so this was a difficult and time consuming learning experience. Due to my
lack of experience the application produced is functional but does not follow Android’s
recommended best programming practices and cannot be considered complete or fully
secure in its current state.

In its basic form the application converts the user inputs into a string and using the
"HttpURLConnection’ class provided by Android to asynchronously transmit the infor-
mation to the web server using HTTP POST functions. Due to time constraints I was
unable to add functionality to the app to allow recorded robot sensor data to be viewed
by the user. Screen-shots of the final application user interface are included below.

17

18 Chapter 4. Completed System Specification

MOVEMENT ROBOT ARM
SETTINGS CONTROL CONTROL

Internet of Things Robotic
Controller

Set new connection details:

[ie:192.168.1.12 SET
IP Address
ie: 8080 SET
Port

Current connection details:
http://14.202.147.3:8888

TEST CONNECTION

Figure 4.1: Tab 1 - Connection configuration

4.1 Android Application

19

MOVEMENT ROBOT ARM

SETTINGS CONTROL CONTROL

Internet of Things Robotic

Controller
SEND COMMAND
POWER ON
FORWARD

o)

LEFT RIGHT

)

BACKWARD

Figure 4.2: Tab 2 - Movement control

20 Chapter 4. Completed System Specification

MOVEMENT ROBOT ARM

SETTINGS CONTROL CONTROL

Internet of Things Robotic
Controller

Robotic Arm Joint Control

BASE —————————— 150
SHOULDER —_— 150
ELBOW ———— 150
WRIST ——————— 150
GRIPPER ————— 150

SEND COMMAND |RESI:—I' ANGLES]

Figure 4.3: Tab 3 - Robotic arm control

4.2 Cloud Services 21

4.2 Cloud Services

The cloud component of this project involved the development of a web server and
database that would facilitate communication between the user interface application and
the robot as well as recording data for later analysis. Originally it had been intended to
deploy the web server to an existing cloud server such as OpenShift, Microsoft Azure or
Google Cloud, but I ran into networking issues when trying to connect to these servers
using the ESP8266 WiFi module. The server was instead hosted on a Beaglebone Black
development board running a Debian operating system. The server was connected to my
home network and was accessible after configuring port forwarding of the relevant port
on my router.

The asynchronous language Node.js, a derivative of javascript, was used for this section
of the project. One of the major challenges faced during this stage of the project was
learning how to program in an asynchronous language. Asynchronous code is also called
'non-blocking’ code where functions can all execute at the same time instead of one after
the other. This requires a much different approach than conventional languages where
code is executed line by line.

The second major challenge faced in this section was in finding an encryption and
authorisation algorithm that could be implemented by both the web server and the
robot. After significant testing, development and debugging I was able to implement
the Data Encryption Standard (DES) algorithm. Unfortunately this is an outdated algo-
rithm that provides only basic security. Ideally I would implement ChaCha20 encryption
with Poly1305 authentication, but in attempting to do this i ran into significant problems
and elected to keep the basic encryption to stay on schedule. The complexity of encryp-
tion algorithms made the process difficult but again it was a valuable learning experience.
A flow chart of the functional process of the web server is shown by Figure 4.4 and the
code used to encrypt my data is included in Figure 4.5.

22

Chapter 4. Completed System Specification

Receive HTTP request

Arduino Arduino

or Android

Android

b

Save sensor data
in database
Request
type
h 4
| L Encypt last received
command
Reply connection Save command
received in database
h
e Reply with
encrypted data
Reply command
received

Figure 4.4: Web server process flow chart

4.3 Robotic System 23

[T N T AR]
co -~ &b ow

subStr
. cipher = crypto.cr
cipher.setAutoPadding(
c = cipher.update(

o

-~ =

c+=cipher.final('h
outputData += c;

e |

9
8
1
2
3

o R [M|
[, T N

Figure 4.5: Web server DES encryption function

4.3 Robotic System

The mechatronic system developed took the form of a four wheeled, battery powered
robot with a Crustcrawler AX-12 robotic arm mounted to it. The intention had been to
implement autonomous behaviours in the robot but due to time constraints this was not
possible and focus was instead placed on developing the IoT framework.

Chassis

The robot chassis was designed from scratch using Autocad software and as I had little
CAD experience it is a very simple design. As the chassis was to be 3d printed it was
required that all chassis components be small enough to fit on the print bed of my available
3d printer (20cm x 20cm). Due to this limitation the chassis design is in several parts
which join together as shown below. The chassis components were printed using PLA
plastic. The design was intended to keep the centre of gravity low and use a heavy sealed
lead acid (SLA) battery to help keep the robot stabilised when the robotic arm is attached.
Photos of the completed robotic system can be seen in the appendices.

24

Chapter 4. Completed System Specification

Figure 4.6: Base component

4.3 Robotic System

25

Figure 4.7: Side attachment

26 Chapter 4. Completed System Specification

Figure 4.8: Robotic arm mount

Figure 4.9: Electrical components mount

4.3 Robotic System

27

Figure 4.10: Complete model of designed components

28 Chapter 4. Completed System Specification

Electronics

The core of the electronic system is the Arduino Mega board. This board controls the
motors and robotic arm as well as reading sensor data and communicating with the
ESP8266 Wifi module. The full list of electronic components used includes:

e Arduino Mega e 12V 2.2AH SLA battery

e ESPR266 WiFi module
e 2 x Motor driver board
e 2 x DC-DC voltage converter

e 4 x 6V DC motor with encoder e 7415241 Tri-state buffer IC

Due to time constraints I was unable to implement ultrasonic sensors in the final
product as intended. Instead the motor encoder values were used as sensor values when
testing the system. The two DC-DC voltage converters take the 12V battery as an input
and output 5V and 9V. The 5V supply is used to power the ESP8266 module as it requires
higher current than can be supplied by the Arduino 5V rail. The 9V supply is used to
power the Arduino via the barrel jack connection. The 12V battery is used to directly
power the motors as well as robotic arm servos. A circuit diagram of the system is provided
in Figure 4.11. Note that this diagram does not include the motor encoder connections or
the circuit for controlling the robotic arm. Instructions for interfacing Dynamixel servos
with an Arduino can be found online [19)].

4.3 Robotic System 29

g g
sgg 2 ELEI
=
[—
N
| N Iy
RS .
o [e —i 0l £ 11
ONTLYL L
s
] e]

buizyLay

Figure 4.11: Electrical circuit diagram

30

Chapter 4. Completed System Specification

Chapter 5

System Experimental Analysis

This chapter details the experimental analysis performed on the completed ToT system.
Three main areas were examined during this process to test the stability and efficiency of
the system as a whole. These areas were:

e Data Analytics - Testing if commands and sensor data were accurately recorded into
SQL database for later analysis

e Sccurity Algorithms - Testing the performance of various data encryption/decryp-
tion algorithms on the Arduino microcontroller

e Spatial Accuracy - Testing the spatial accuracy of the robotic system when given a
move command

Data Analytics

One of the major driving aspects behind the IoT is the desire for large amounts of data
for analysis purposes. IoT systems must be able to record data so that usage patterns
or other metrics may be analysed. In this project an SQL database was used to capture
sensor data from the robot as well as command data sent from the user. Both sets of data
are stored in a database table.

For this experiment I used an encoder attached to the robot motor as the example sen-
sor, while the IP address, time-stamp and command values were saved from any Android
app user commands that were received. The 'CmdReceived’ column is the Arduino’s con-
firmation to the server that it received the last command. In order to test the robustness
of the data storage system several test runs were carried out.

The experimental data from two of these test runs is included below. Table 5.1 shows
the results of a test where the recorded user commands and sensor data were both suc-
cessfully recorded. Table 5.2 displays an incomplete table, indicating a failure of some
kind.

After analysing the performance of my system I concluded that a flaw in my design
was to blame. As part of the design the Arduino polls the web server at most every 2.5
seconds. Due to this fact, if commands are received at a similar or faster rate than this

31

32 Chapter 5. System Experimental Analysis
Table 5.1: MYSQL database successful
1D Address Timestamp Speed | Angle | Power | Encoderl | CmdReceived
1 | =ffff:49.195.94.91 | 2017-11-04T16:38:38 0 0 0 122 1
2 | =ffff:49.195.94.91 | 2017-11-04T16:38:46 0 0 0 122 1
3 | =ffff:49.195.94.91 | 2017-11-04T16:38:55 0 0 0 143 1
4 | =Afff:49.195.94.91 | 2017-11-04T16:39:04 0 0 0 212 1
5 | =ffff:49.195.94.91 | 2017-11-04T16:39:11 0 0 0 245 1
6 | =fitf:49.195.94.91 | 2017-11-04T16:39:20 0 0 0 222 1
7 | =fl1:49.195.94.91 | 2017-11-04T16:39:26 0 0 0 196 1
8 | =ffff:49.195.94.91 | 2017-11-04T16:39:34 0 0 0 171 1
9 | =f:49.195.94.91 | 2017-11-04T16:39:44 0 0 0 171 1
10 | =:ffff:49.195.94.91 | 2017-11-04T16:39:51 0 0 0 171 1
Table 5.2: MYSQL database failure

D Address Timestamp Speed | Angle | Power | Encoderl | CmdReceived
1 | =ffff:49.195.94.91 | 2017-11-04T16:45:59 0 0 0 20 1
2 | =ffff:49.195.94.91 | 2017-11-04T16:46:08 0 0 0 46 1
3 | =flf:49.195.94.91 | 2017-11-04T16:46:18 0 0 0 68 1
4 | =ffff:49.195.94.91 | 2017-11-04T16:46:19 0 0 0 99 1
5 | «ffff:49.195.94.91 | 2017-11-04T16:46:20 0 0 0 132 1
G | :ff1:49.195.94.91 | 2017-11-04T16:46:20 0 0 0 -

7 | =ffff:49.195.94.91 | 2017-11-04T16:46:21 0 0 0 - -
8 | =fiff:49.195.94.91 | 2017-11-04T16:46:22 0 0 0 - -
9 | =ffff:49.195.94.91 | 2017-11-04T16:46:23 0 0 0 - -
10 | ffff:49.195.94.91 | 2017-11-04T16:46:24 0 0 0 - -

polling interval then multiple sets of command data may be written into the database
but the Arduino only responds to the last command that was received before polling the
server again. This means that some commands are incorrectly marked as received when
they were actually missed. In order to correct this system flaw some further software
development and debugging is required. One quick potential fix is to block the Android
application from sending new commands for several seconds after the last command was
sent. This solution would just be a patch though and not address the underlying issues.

33

Table 5.3: Cryptographic algorithm experimental results

Algorithm Encrypt/Byte (uS) | Decrypt/Byte (uS) | Key Set (uS)
AES-128-ECB 33.75 67.84 365.43
AES-192-ECB 40.55 82.18 405.05
AES-256-ECB 47.34 96.53 412.66

ChaCha8 128-bit 9.66 9.66 42.99
ChaCha8 256-bit 9.66 9.66 41.91
ChaChal2 128-bit 12.33 12.33 42.99
ChaChal2 256-bit 12.33 12.33 41.91
ChaCha20 128-bit 17.67 17.68 42.98
ChaCha20 256-bit 17.67 17.68 41.91
ChaChaPoly1305 43.59 43.58 978.67
Speck-128-ECB 9.75 10.12 253.99

Speck-192-ECB 10.03 10.42 264.68

Speck-256-ECB 10.32 10.71 275.31

DES 79.22 52.88 2101

Security Algorithms

When considering the security algorithms to use there were three major considerations
taken into account that are listed below in the order of importance:

1. Ease of implementation
2. Performance on Arduino microcontroller
3. Level of security

Initially I had chosen performance as the most important factor but due to my lack of
experience with cyber-security algorithms prior to this project I was forced to change my
priorities. During the testing phase of the project I tested a number of different algorithms
using the ArduinoLibs cryptographic library [22]. The Arduino mega was used as the test
device and the results obtained are detailed in Table 5.3.

It can be seen from these results that the chosen DES algorithm performs poorly in
comparison to its modern counterparts. This is because the DES algorithm was first
created in the 1970’s. DES is considered unsafe for new applications but was the easiest
algorithm for me to implement in practice on both the Arduino and Node.js platforms.
Furthermore the DES algorithm does not implement any authentication such as Poly1303,
and so it only provides a basic level of security to the system. I did not feel it was necessary
to record encryption algorithm data for the web server as it has access to much greater
processing power than the Arduino and so encryption times would be negligible for the
small amounts of data being transmitted.

34 Chapter 5. System Experimental Analysis

Table 5.4: Movement command experimental data

Set Distance (mm) | Measured Distance (mm) Set Angle (deg) | Measured Angle (deg)

100 94 45 41

200 179 90 83

500 428 180 173

1000 832 360 337

-100 -97 -45 -48

-200 -183 -90 -84

-500 -444 -180 -169

-1000 -898 -360 -337

Spatial Accuracy

The final area of testing was that of the accuracy of the robot at executing any given move
commands. The two types of movement commands recognised are a straight forward /back
move of user defined length and a left/right turn of some multiple of 45 degrees. As the
major focus of this project was on the development of the IoT communication framework,
the robot control system has only been designed to provide a basic level of accuracy.

Using the encoder rating of 341 pulses per revolution and a measured wheel diameter of
65mm gives us approximately 20.42cm per revolution, or 0.6mm per encoder pulse. Using
these figures along with some trial and error allowed me to achieve the results shown in
Table 5.4 when testing movement commands. Note that the measurements shown were
made using a tape measure and protractor and each measurement was averaged over 3
runs at each distance/angle. Measurements were also taken when the robotic arm was
not mounted to the chassis.

The results show the poor spatial accuracy of the robot as expected. Reasons for this
inaccuracy include a simple control system, poor quality motors and encoders, slippage
and lack of angular sensor feedback. In order to improve the quality and spatial accuracy
of this system a number of tasks should be undertaken.

e [mplement PID controllers

Use higher quality encoders

Addition of inertial measurement unit to provide angular feedback

Further develop code to prevent motor shutoff function from being blocked by other
running functions (such as receiving and processing new command data)

Chapter 6

Conclusions and Future Work

6.1 Reflections

This thesis has been the culmination of my four years of study in the field of mechatronics.
While I did not meet all the original goals I set out to achieve for this project I am content
as [feel I have learned an enormous amount in the process. 1 have developed new skills
in CAD modelling, mobile application development, networking and security theory, 3D
printing and asynchronous programming which will serve me well in my future career. I
am proud of the work I have completed and of the system that I created.

6.2 Future work

As it stands the [oT framework I have created is functional but by no means is it a
completed system. The following tasks describe what my next steps would be were [to
continue with the system development.

e Modify Android app to meet Android’s recommended best programming practices

e Re-design and reprint the chassis for increased strength, stability and improved
aesthetics

e Run the web server from an existing cloud platform rather than through my personal
hardware and home network

e [mplement more complete security for the system including an up to date encryption
and authentication algorithm.

e Add sensors such as inertial motion units to the robot chassis to aid with autonomous
behaviour

e [mprove Arduino code to implement more robust communication and improve sta-
bility

36 Chapter 6. Conclusions and Future Work

e Add ability for user to view and analyse data recorded in SQL database

These are just some of the possible steps that could be taken to continue the develop-
ment of this [oT controlled mechatronic system.

6.3 Conclusion

During this project I have developed from scratch a new and functional IoT controlled
mechatronic system. The system brings together a user friendly Android application, a
web server for communication and data storage, and a robotic platform for command
execution and data gathering. During the creation of these components I gained a wide
range of new skills and knowledge that will be invaluable in the future. I was unable to
meet some of the original design requirements due to underestimating the time required
to learn so many new skills, but despite this I am more than satisfied with the system I
created.

The final system has several shortcomings including inadequate security measures and
an imperfect data collection method, but with some minor work many of these problems
could be quickly rectified. In undertaking any future projects of this scope I will have a
much better appreciation of the need for strict time management and the value of spending
extra effort during the research and design phase.

To summarise, the outcome of this project was the successful production of a new and
functional Internet of Things controlled mechatronic system. While several of the original
design criteria were not met due unforeseen technical problems and time management
issues, with a little work the system can be readily modified into a more complete, robust
and secure system.

Chapter 7

Abbreviations

ToT
IAB
HTTP
HTML
TCP
UDP
IP
WWW
M2M
ISO
OSI
API
NIST
SaaS
PaaS
IaaS
SQL
PWM
DES
SLA

Internet of Things

Internet Architecture Board

Hyper-Text Transfer Protocol

Hyper-Text Markup Language

Transmission Control Protocol

User Datagram Protocol

Internet Protocol

World Wide Web

Machine to Machine

International Organisation for Standardization
Open Systems Interconnection

Application Programming Interface

National Institute of Standards and Technology
Software as a Service

Platform as a Service

Infrastructure as a Service

Structured Query Language

Pulse Width Modulation

Data Encryption Standard

Sealed Lead Acid

37

38

Chapter 7. Abbreviations

Appendix A
IoT System Models

A.1 Device-To-Device

FIGURE 1

Example Of Device-To-Device Communication Model

« = -8

WIRELESS NETWORK

Light Bulb From Bluetooth, Z-Wave, Light Switch From
Manufacturer A Zigbee Manufacturer B
souRce: Tschofenig, H, et.al, Architectural Considerations in Smart Object Networking. Tech. no. RFC 7452.

Internet Architecture Board, Mar. 2015, Web. https:/ fwww.rfc-editor.org/rfc/ rfc7452.txt.

Figure A.1: Device-To-Device system model [20]

40 Chapter A. loT System Models

A.2 Device-To-Cloud

FIGURE 2

Example Of Device-To-Cloud Communication Model

APPLICATION
HTTP SERVICE PROVIDER CoAP

1LS DTLS
TCP uop

K p PN

Device with Device with Carbon
Temperature Sensor Monoxide Sensor
soURCE: Tschofenig, H, et.al, Architectural Considerations in Smart Object Networking. Tech. no. RFC 7452,

Internet Architecture Board, Mar. 2015. Web. https://www.rfc-editor.org/rfc/rfc7a52.txt.

Figure A.2: Device-To-Cloud system model [20]

A.3 Device-To-Gateway 41

A.3 Device-To-Gateway

Example Of Device-To-Gateway Communication Model

APPLICATION
SERVICE PROVIDER

t

IPv4/ IPv6
P |
ooco v

HTTP LOCAL GATEWAY CoAP

ns A ®. OIS

1CP uop

/ IPUS Layer 1 Protocol = \ .‘\\
IEEE 802.11 (Wi-Fi)
|EEE 80215.4 (LR-WPAN)

Device with Device with Carbon
Monoxide Sensor

Temperature Sensor

source: Tschofenig, H, et.al, Architectural Considerations in Smart Object Networking. Tech. no. RFC 7452.
Internet Architecture Board, Mar. 2015, Web. https://www.rfc-editor.org/rfc/rfc7d52.txt.

Figure A.3: Device-To-Gateway system model [20]

42 Chapter A. loT System Models

A.4 Back-End Data-Sharing

FIGURE 4

Back-End Data-Sharing Model

APPLICATION
SERVICE
Protocol
T / PROVIDER #2
CoAP APPLICATION HTTPS
& a - SERVICE Oauth 2.0
HTTP PROVIDER #| JSON
Bl T APPLCATION
SERVICE
PROVIDER #3

souRce: Tschofenig, H., et.al, Architectural Considerations in Smart Object Networking. Tech. no. RFC 7452,

nternet Architecture Board, Mar. 2015. Web. https://www.rfc-editor.org/rfc/rfc7a52.txt.

Figure A.4: Back-End Data-Sharing system model [20]

Appendix B

IoT Communication Protocols

43

44 Chapter B. loT Communication Protocols
DDS MQTT AMOP JMS REST/HTPP | CoAP
Abstraction Pub/Sub Pub/Sub Pub/Sub Pub/Sub ReguestReply | ReguestReply |
Architecture Giobal Data Brokered PP or Brokered PP PP
Style Space Brokered
Qos 22 2 2 2 Provided by Confirmable or
ranspon e.9. nonconfirmable
ICE messages
Interoperabiity | Yes Partial Yes MNa Yez Yoz
Performance 10s of 1000= | Typically 100s o Typicailly 1008 | Typically 1005 | Typically 100s | Typically 100s
1000+ 1o 1000+ 1o 1000+ of st of Sts par
per second. per second per per ges per per second second
Massive fan- | broker second per second per
out broker broker
perfermance
Real-time Yes Mo No =] No No
Transpons UDP by TCPR TCP Mot specified TR uprP
default but but sypically
other TCP
transpors
such as TCP
can also be
used
Subseription Partitions, Topics with Exchanges Topics and N/A, Provides
Controd Topias with hierarchical Queues and Cueues with support for
Message matehing bindings in MESSage Mulyesst
filtering w081 filtering addressing
standard,
undefined in
latest v1.0
standard
Data CDR Uncefined AMOP ype Ungafinad Ne Configurable
Serialization SYSiem or user
defined
Swndards OMG's RTPS | Proposed OASIS OASIS ANMOP JCP JMS Is an Proposed IETF
and DDSI MSTT swandard M standard architectural CoAP standard
standard=s =tyle rather
than a
smandard
Enceding Binary Binary Binary Binary Plain Text Binary
Licansing Open Source | Open Sourse & Open Source & | Open Sourse & | HTTP Open Source &
Maodel & Commergially Conr ially < ially available for Commercially
Commercially | Licenzed Licen=ad Licen=ed free on most Licenzed
Licensed plattorms
Dynamic Yoz No No No No Yes
Discovery
Mabile Yes Yes Yes Dapandant cn Yes Via HTTP
devices JAVA proxy
{Andreid. i0S) capabilities of
the OS
GLaWPAN Yes Yes | i- it Irrple ton | Yes Yes
devices specific =pecific
Mult-phase No No Yes Yes No No
Transactions

Figure B.1: Summary of IoT communication protocols [12]

Appendix C

Security Measures

45

46 Chapter C. Security Measures

Countermeasure

injection Fake Data Manipulation Secure Booting

Slosp danisl Node shutdown Authentication

Intrusion in network

Data manipulation ool et
Data leakage Security Aware AdHoc
Sinkhole Attack [22] (Data of the Nodes)
Routing
Routing loops Encrypting Routing
Inﬂ:;'h::on (Network Destruction) #H Tables

Data leakage Homomorphic
Sl (User data on cloud) i Encryption

Data Leakage
relationships (User data on cloud)

=

Processing Lavyer

o
-
Virus, Worms _

= 5 e
- Trojarl Horse, [a1] geswrﬁ:::m' Ion s 2012 Rrotaciiye Enshusre

— Denial of

3 Senvice(Dos) [43] Resource Destruction Access Control Lists
S [t (T REE e =il __
3‘ Software

2 Vulnerabllities [4s) Buffer over flow Awareness of security

Figure C.1: Summary of IoT communication protocols [7]

Appendix D
Robot Photos

47

48

Chapter D. Robot Photos

Figure D.1: Robot with arm attached.

49

Robot without arm attached.

.

Figure D.2

50

Chapter D. Robot Photos

Figure D.3: Robot without arm attached.

Appendix E
Web Server Code

E.1 app.js

var express = require (' express ') ;

var path = require(’path’);

var favicon = require(’serve—favicon’);

var logger = require(morgan’) ;

var cookieParser = require(cookie—parser ') ;
var bodyParser = require ('body—parser ') ;

var mysql = require ("mysql’) ;

var debug = require(’debug’) (’thesis—server:server’);
var http = require(http’);

var index = require(’./routes/index) ;

var users = require(’./routes/users’);

var app = express();

var con = mysql.createConnection ({
host: "localhost”,
user: “user”,
password: "password”,
database: "thesisDB”

1)

con.connect (funetion (err) {
if (err) throw err;
console.log (" Connected!”) ;
var sql = "CREATE TABLE thesisTable (id INT AUTOINCREMENT
PRIMARY KEY, address VARCHAR(255), timestamp VARCHAR(255) ,
speed VARCHAR(255) ,angle VARCHAR(255) ,power VARCHAR(255) ,

51

52 Chapter E. Web Server Code

encoderl VARCHAR(255) ,cmdreceived VARCHAR(255))";
con.query(sql, function (err, result) {
if (err) throw err;
console . log(” Table created”);
P
9k

// Global variable setup (not ideal but used for functional
testing)

global .speedbar = 0:
global . turnbar = 0;
global .LED = 0;

global . power = 0
global .newCommand = 0;

global .servos = "150150150150150";

// view engine setup

app.set ('views’, path.join(__dirname, ’'views'));
app.set ('view engine’, ’‘pug’);

app.set ('port’, (8888));

app.use(logger ('dev’));

app.use (bodyParser.json());

app.use (bodyParser. urlencoded ({ extended: false }));
app.use (cookieParser ());

app.use (express.static (path.join (--dirname, ’public’)));

// Setup Routes

var arduinoComm = require (’./routes/arduinoComm’) ;
var androidComm = require (’./routes/androidComm"’) ;

app.use (’/arduino’, arduinoComm) ;
app.use (’/android ', androidComm):;
app.use(’/’, index);

// Tnitialise server and listen for connections
app.listen (app.get(’'port '), function() {
console.log(’Thesis webserver listening on port: * + app.get(’

port 7))
b

E.2 arduinoComm.js 53

E.2 arduinoComm.js

var express = require (' express ') ;

var router = express.Router();

var bodyParser = require ('body—parser ') ;

var querystring = require (querystring ’);

var mysql = require ("mysql’);

var url = require(’url’);

var crypto = require(”crypto”);

var currentlD = 0;

var key = new Buffer(’5B5SA5ST6T6AS667TCE’, 'hex’);
var iv = new Buffer(8);

iv. fill (0);

var outputData;

var con = mysql.createConnection ({
host: "localhost”,
user: “user”
password: "password”,
database: "thesisDB”

1

router.use(bodyParser. text ({ type: 'text/html’ })):

router.get (’/’, function(req, res) {
sqlInsert2(req,dataString);

speedbar = 0;

turnbar = 0;

res.write (outputData);
res.end();

1

function sqllnsert2(req,callback){

con.connect (function (err) {
if (err) throw err;
console.log (” Connected!”) ;
var sql = "UPDATE thesisTable SET encoderl=req.query.

encoderl , emdreceived=1 WHERE ID = currentID”;

con.query(sql, function (err, result) {
if (err) throw err;
console.log(”1 record inserted”);

54 Chapter E. Web Server Code

currentID+4+=1;
1)
};
callback (encryptDES) ;
}

function dataString(callback) {
var returnString = "7LED=";
returnString += LED;
returnString += "&speedbar=";
returnString += speedbar;
returnString += "&turnbar=";
returnString += turnbar;
returnString 4= "&power=";
returnString 4= power;
returnString += "&servos=";
returnString += servos;
returnString 4= " 7;

var len = returnString.length;

var padding = 64—len;

for(var 1 = 0;i<padding;i++){
returnString += " 7

callback (returnString);

}

function encryptDES(plaintext){
outputData="";
for(var i = 0;i<64;i+=8){

var subStr = plaintext.substring(i,i+8);

var cipher = crypto.createCipheriv(”des”, key,iv);
cipher.setAutoPadding (false);

var ¢ = cipher.update(subStr., ’binary’, “hex’);

ct=cipher. final (hex’);
outputData += ¢;

}

module. exports = router;

E.3 androidComm.js 55

E.3 androidComm.js

var express = require (' express ') ;

var router = express.Router();

var bodyParser = require ('body—parser ') ;
var mysql = require ("'mysql’);

var querystring = require (querystring ') ;

var con = mysql.createConnection ({
host: "localhost™,
user: “user”,
password: "password”,
database: "thesisDB”

D

router.post (’/', function(req, res) {
saveVariables (req,sqllnsert);
res.send ("Command Sent ') ;

1)

router.get ('/’, function(req, res) {
if(req.query.conTest = 1){
res.send (' Success ')
}

else{
res.send ('testFail ") ;
}

1K

function saveVariables(req, callback){

var address = req.connection.remoteAddress;
var timeStart = req.connection.timeStart;
speedbar = req.body.speedbar;

turnbar = req.body.turnbar;

LED = req.body.LED;

power = req.body.power;

servos = req.body.servos;

callback (address , timeStart) ;

}

function sqllnsert (addr,time){
con.connect (function(err) {

56

Chapter E. Web Server Code

if (err) throw err;
console.log(” Connected!”) ;
var sql = "INSERT INTO thesisTable (address. timestamp,
speed , angle, power) VALUES (addr, timestart, speedbar
turnbar, power)”;
con.query(sql, function (err, result) {
if (err) throw err;
console.log(”1 record inserted”);

1)

1)

}

module . exports =

= router;

Appendix F

Android Application Code

F.1 MainActivity.java

package com.vark.aard.thesis_app:

import android.os.Bundle;

import android.support.design.widget.TabLayout;
import android.support.vd.view.ViewPager ;

import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.Toolbar;

import android.util.Log;

import android.view.Menu;

import android.view.Menultem:

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedlnstanceState);
setContentView (R.layout. activity _main);

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar (toolbar);

TabLayout tabLayout = (TabLayout) findViewById(R.id.
tab_layout);
tabLayout.addTab(tabLayout.newTab () .setText(” Settings”))

tabLayout . addTab(tabLayout.newTab () .setText (" Movement
57

58

Chapter F. Android Application Code

Control”));

tabLayout .addTab(tabLayout.newTab () .setText (" Robot Arm
Control”));

tabLayout.setTabGravity (TabLayout. GRAVITY_FILL) ;

final ViewPager viewPager = (ViewPager) findViewByld (R.
id . pager);
final PagerAdapter adapter = new PagerAdapter
(getSupportFragmentManager (), tabLayout.
getTabCount ());
viewPager . setAdapter (adapter);
viewPager .addOnPageChangeListener (new TabLayout.
TabLayoutOnPageChangeListener (tabLayout)) ;
tabLayout.addOnTabSelectedListener (new TabLayout.
OnTabSelectedListener () {
@QOverride
public void onTabSelected (TabLayout.Tab tab) {
viewPager.setCurrentltem (tab. getPosition());
}

@Override
public void onTabUnselected (TabLayout.Tab tab) {

}

@Override
public void onTabReselected (TabLayout.Tab tab) {

}
b
}

@QOverride

public boolean onCreateOptionsMenu(Menu menu) {
getMenulnflater (). inflate (R.menu.menu_main, menu);
return true;

}

@OQOverride
public boolean onOptionsItemSelected (Menultem item) {
int id = item.getltemld();
if (id = R.id.action_settings) {
return true;

F.1 MainActivity.java

59

}

return super.onOptionsltemSelected (item);

60 Chapter F. Android Application Code

F.2 PagerAdapter.java

package com.vark.aard.thesis_app;

JEE:
* Created by David on 4/09/2017.

*/

import android.support.v4.app.Fragment;
import android.support.vd.app.FragmentManager ;
import android.support.vd.app.FragmentStatePagerAdapter;

public class PagerAdapter extends FragmentStatePagerAdapter {
int mNumOfTabs;

public PagerAdapter(FragmentManager fm, int NumOfTabs) {
super (fm) ;
this . mNumOfTabs = NumOfTabs;

}

@Qverride
public Fragment getltem(int position) {

switch (position) {
case 0:
TabFragmentl tabl = new TabFragmentl();
return tabl;
case 1:
TabFragment2 tab2 = new TabFragment2() ;
return tabh2;
case 2:
TabFragment3 tab3 = new TabFragment3() ;
return tab3;
default:
return null

}

@Override

public int getCount () {
return mNumOfTabs;

¥

F.2 PagerAdapter.java

61

62 Chapter F. Android Application Code

F.3 SingletonGlobal.java
package com.vark.aard.thesis_app;

JEE:
* Created by David on 4/09/2017.

*/

public class SingletonGlobal {
private static final SingletonGlobal ourlnstance = new
SingletonGlobal () ;

private String mSpeedBar = "07";
private String mTurnBar = 707 ;
private String mCommandReceived = 707;

private String mLED = 707;

private String mPower = "17;

private Boolean mCommandSent = false ;

private String mRobotAngles = "1501501501501507;

public static SingletonGlobal getInstance() {

return ourlnstance;

private SingletonGlobal() {

}

public String getSpeedbarVal() {
return this.mSpeedBar;
}

public void setSpeedbarVal(String str) {
this.mSpeedBar = str;
}

public String getTurnbarVal() {
return this.mTurnBar;
}

public void setTurnbarVal(String str) {
this . mTurnBar = str;
}

public String getCommandReceived(){ return this.

F.3 SingletonGlobal.java 63

mCommandReceived ; }

public void setCommandReceived (String str){ this.
mCommandReceived = str;}

public String getLEDStatus(){ return this.mLED;}

public void setLEDStatus(String str){ this.mlED = str;}
public String getPowerStatus(){ return this.mPower;}

public void setPowerStatus(String str){ this.mPower = str;}
public Boolean getCommandSent(){return this.mCommandSent;}

public void setCommandSent(Boolean bool){this.mCommandSent =
bool ;}

public void setRobotAngles(String str){ this.mRobotAngles =
str;}

public String getRobotAngles(){ return this.mRobotAngles;}

64 Chapter F. Android Application Code

F.4 httpTransfer.java

package com.vark.aard.thesis_app;

import android.content.ContentValues;
import android. content.Context

import android.content.SharedPreferences;
import android.os. AsyncTask;

import android.os.Handler;

import android. text. TextUtils;

import android. util.Log;

import android. view . View;

import android.widget . TextView;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.lOException;

import java.io.InputStreamReader;
import java.io.QOutputStream;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;

import java.net.URLEncoder;

JETS
* Created by David on 16/07/2017.

*/

public class httpTransfer extends AsyncTask<Context, Integer,
String> {
SharedPreferences prefs;
SharedPreferences. Editor editor;
private Context mContext;
private View mView;
private TextView textViewld , textViewl) .textView24:
private Integer tablnt;

public httpTransfer(Context passedContext, View passedView
Integer tabNumber){
mContext = passedContext ;
mView = passedView;
tabInt = tabNumber;
it (tabInt==1) {

F.4 httpTransfer.java 65

textViewls = (TextView) mView. findViewById(R.id.
textViewls);
}
else if (tabInt==2){
textViewld = (TextView) mView. findViewById(R.id.
textViewl4d);
}
else if (tablnt==3){
textViewld = (TextView) mView.findViewBylId(R.id.
textViewld);
}
else if (tabInt==4){
textView24 = (TextView) mView.findViewById(R. id.
textView24) ;
}
else{
//how did you get here?!
}

}

@QOverride
protected void onPreExecute(){
super.onPreExecute () ;
if (tabInt==1) {
textViewl5.setBackgroundResource (R. drawable. rect) ;
textViewl5.setText (" Attempting Connection”) ;
}
else if (tabInt==2){
textViewl4 . setBackgroundResource (R.drawable.rect);
textViewl4d .setText (" Attempting Connection”) ;

else if (tabInt==3){

//no changes as waiting for get request to check if
commands received

}

else if (tabInt==4){
textView24 .setBackgroundResource (R. drawable . rect) ;
textView24 . setText (" Attempting Connection”) ;

}

else{

//Huh?
}

66 Chapter F. Android Application Code

}

@Override
protected String dolnBackground (Context ... params){
prefs = mContext. getSharedPreferences(” Connection”,

Context .MODEPRIVATE) ;
editor = prefs.edit();
String result
if (tabInt==1) {
result = sendGetRequest () ;
}

else if (tablnt==2){
result = sendPostRequest () ;

else if (tabInt==3){
result = sendGetRequest () ;
}

else if (tabInt==4){
result = sendPostRequest () ;
}

else{ result = null; }

return result ;

}

protected void onPostExecute(String getResult){
super.onPostExecute (getResult);
if (tabInt==1) {
if (TextUtils.isEmpty(getResult)){
textViewl5.setBackgroundResource (R. drawable.
buttonrect3);
textViewlh.setText (" Connection Failed”);

else if(getResult.equals(” Success”)){
textViewlh.setBackgroundResource (R. drawable.
buttonrect2);
textViewl5.setText (" Connection OK");
}
else{
textViewl5.setBackgroundResource (R. drawable.
buttonrect3);
textViewlh.setText (" Connection Failed”);

F.4 httpTransfer.java 67

else if (tabInt==2){
if (TextUtils.isEmpty(getResult)){
textViewl4 . setBackgroundResource(R. drawable.
buttonrect3);
textViewl4.setText (” Connection Failed”);

else if(getResult.equals (”Command Sent”)){
textViewl4.setBackgroundResource (R. drawable.
buttonrect2);
textViewld .setText (” Connection OK"):
SingletonGlobal. getInstance () .setCommandSent (
false);

else{
textViewl4.setBackgroundResource (R. drawable.
buttonrectd);
textViewl4 .setText (” Connection Failed”);

else if (tabInt==3){

else if(tablnt==4) {
if (TextUtils.isEmpty(getResult)){
textView24 .setBackgroundResource (R. drawable.
buttonrectd);
textView24 .setText (” Connection Failed”);
}
else if(getResult.equals (”Command Sent”)){
textView24 .setBackgroundResource (R. drawable.
buttonrect2);
textView24 .setText (" Connection OK");
}
else {
textView2d .setBackgroundResource (R. drawable.
buttonrect3);
textView24 .setText (" Connection Failed”);

}
else{ }

68

Chapter F. Android Application Code

public String sendPostRequest (){
String inputLine;
String result = "7";
StringBuilder stringURLbuild = new StringBuilder();
stringURLbuild . append (" http://");
stringURLbuild . append (prefs . getString (" ipAddress
" 7192.168.1.127));
stringURLbuild . append (7:7) ;
stringURLbuild . append (prefs . getString (" port” ,"8888"));
stringURLbuild . append (” / android”);
String stringUrl = stringURLbuild. toString () ;

HttpURLConnection connection = null;

try {
//Create a URL object holding our url
URL myUrl = new URL(stringUrl);

//Create a connection
connection =(HttpURLConnection)
myUrl. openConnection () ;

//Set methods and timeouts
connection.setRequestMethod ("POST”) ;
connection .setReadTimeout (4000) ;
connection.setConnectTimeout (4000) ;
connection.setDoOutput (true);

ContentValues values = new ContentValues();
values . put (" portNum” , prefs . getString (" port”,”8888"))

if (SingletonGlobal. getInstance (). getPowerStatus ().
equals (707)){
values.put(”speedbar”,”—1");
values . put(” turnbar” ,”707);

else{
values.put(” speedbar” , SingletonGlobal.
getInstance () .getSpeedbarVal());
values.put(” turnbar”,SingletonGlobal . getInstance
().getTurnbarVal());

F.4 httpTransfer.java 69

values . put (" newCommand” ,” 17) ;

values.put("LED” ,5SingletonGlobal . getInstance ().
getLEDStatus()) ;

values .put (” power” ,SingletonGlobal. getInstance ().
getPowerStatus ()) ;

values.put(” servos”,SingletonGlobal . getInstance ().
getRobotAngles());

StringBuilder valueSB = new StringBuilder();
for (String name : values.keySet()) {
valueSB . append (URLEncoder. encode (name,” UTF—8")) ;
valueSB . append("=");
valueSB . append (URLEncoder. encode (values .
getAsString (name) ,"UTF-8")) ;
valueSB . append("&") ;

valueSB .setLength (valueSB.length () —1);

OutputStream out = connection.getOutputStream () ;

BufferedWriter writer = new BufferedWriter (new
OutputStreamWriter (out, "UTF-8"));

writer . write(valueSB.toString());

writer . flush () ;

writer.close () ;

out.close();

//Connect to our url
connection.connect () ;
if (connection. getInputStream ()!=null) {
//Create a new InputStreamReader
InputStreamReader streamReader = new
InputStreamReader (connection.
getlnputStream ()) ;
//Create a new buffered reader and String
Builder
BufferedReader recader = new BufferedReader(
streamReader) ;
StringBuilder stringBuilder = new StringBuilder

//Check if the line we are reading is not null
while ((inputLine = reader.readLine()) != null)

70

Chapter F. Android Application Code

{
stringBuilder.append(inputLine);

}
//Close our InputStream and Buffered reader
reader.close ()
streamReader . close () ;
//Set our result equal to our stringBuilder
result = stringBuilder.toString();

else{ }

} catch(IOException e) {
e.printStackTrace () ;
result = null;

} finally {
connection . disconnect () ;

}

return result;

}

public String sendGetRequest () {
String inputLine;
String getResult = :
StringBuilder stringURLbuild = new StringBuilder();
stringURLbuild . append (" http://7) ;
stringURLbuild . append (prefs . getString (" ipAddress

7.7192.168.1.127)),

stringURLbuild . append (7:7) ;
stringURLbuild . append (prefs . getString (” port” ,”8888"));
stringURLbuild . append (” /android”);

",

stringURLbuild . append (" ?77) ;
if (tabInt==1) {
stringURLbuild . append (" conTest=1") ;

else if (tabInt==2 || tabInt==3){
stringURLbuild . append (” conTest=0");
}

String stringUrl = stringURLbuild. toString () ;
HttpURLConnection connection = null;
try {

//Create a URL object holding our url

F.4 httpTransfer.java

71

URL myUrl = new URL(stringUrl);

//Create a connection
connection =(HttpURLConnection)
myUrl. openConnection () ;

//Set methods and timeouts
connection.setRequestMethod ("GET”) ;
connection.setReadTimeout (8000) ;
connection.setConnectTimeout (8000);

//Connect to our url
connection.connect () ;
if (connection.getInputStream ()!=null) {
//Create a new InputStreamReader
InputStreamReader streamReader = new
InputStreamReader (connection .
getInputStream ()) ;
//Create a new buffered reader and String
Builder
BufferedReader reader = new BufferedReader(
streamReader) ;
StringBuilder stringBuilder = new StringBuilder

()
//Check if the line we are reading is not null
while ((inputLine = reader.readLine()) != null)

stringBuilder.append(inputLine);
}
//Close our InputStream and Buffered reader
reader. close () ;
streamReader. close () ;
//Set our result equal to our stringBuilder
getResult = stringBuilder.toString();

}
else{}

} catch (IOException e) {

e.printStackTrace ()
getResult = null;

} finally {

}

connection. disconnect () ;

72

Chapter F. Android Application Code

return getResult ;

F.5 TabFragmentl.java 73

F.5 TabFragmentl.java

package com.vark.aard.thesis_app:

JET:

+* Created by David on 4/09/2017.

*/

import
import
import
import
import
import
import
import
import
import
import
import

import

public

android . content . Context ;
android. content.SharedPreferences;
android . os. Bundle;

android . support . v4d. app.Fragment ;
android. text. TextUtils;

android. util . Log;

android.view. LayoutInflater;
android . view . View;

android . view . ViewGroup;

android . widget . Button;

android . widget . EditText ;

android . widget . TextView;

java.util.concurrent . ExecutionException;

class TabFragmentl extends Fragment {

private EditText editTextIPAddress, editTextPortNumber;
private Button portButton ,ipButton,testButton;

private TextView textViewl3d,textViewlh;

private static final String TAG = "MainActivity”;
SharedPreferences prefs;

SharedPreferences . Editor editor;

@Override
public void onCreate(Bundle savedInstanceState){

}

super.onCreate(savedlnstanceState);

prefs = getActivity ().getSharedPreferences(” Connection”,
Context .MODEPRIVATE) ;
editor = prefs.edit ();

@Override
public View onCreateView (LayoutInflater inflater , ViewGroup

74

Chapter F. Android Application Code

container , Bundle savedInstanceState) {

final View viewtabl = inflater.inflate(R.layout.
tab_fragment_1, container, false);

editTextIPAddress = (EditText)viewtabl.findViewById(R.id
.editTextl);

editTextPortNumber = (EditText)viewtabl.findViewByld (R.
id . editText2);

portButton = (Button)viewtabl.findViewByld (R.id.IPButton
)i

ipButton = (Button)viewtabl.findViewByld(R.id.PortButton
)

testButton = (Button)viewtabl.findViewById(R.id.
TestButton) ;

textViewl3 = (TextView)viewtabl.findViewByld(R.id.
textViewl3);

textViewls = (TextView)viewtabl.findViewByld(R.id.
textViewlh) ;

setConnectText () ;

portButton.setOnClickListener (new View.OnClickListener ()
{
@Override
public void onClick(View v) {
String newlP = editTextIPAddress.getText ().
toString () ;
editor.putString (" ipAddress”, newlP);
editor.commit() ;
Log.d(TAG,” IP address button”);
Log.d(TAG, newIP) ;
setConnectText () ;
}
b

ipButton.setOnClickListener (new View.OnClickListener () {
@OQOverride
public void onClick(View v) {
String newPort = editTextPortNumber. getText ().
toString () ;
editor.putString (” port”, newPort);
editor.commit() ;
Log.d(TAG,” Port number button”);
Log.d(TAG, newPort) ;

F.5 TabFragmentl.java 75

setConnectText () ;

1

testButton.setOnClickListener (new View.OnClickListener ()
{
@OQOverride
public void onClick(View v) {
new httpTransfer (getContext () ,viewtabl . 1).
execute () ;

})s

return viewtabl ;

}

public void setConnectText () {
StringBuilder sh = new StringBuilder();
sb.append (" http://7);
sb.append(prefs. getString ("ipAddress” ;7192.168.1.127));
sb.append (7:7) ;
sb.append (prefs. getString (” port” ,”8888”));
String currentConnect = sb.toString () ;
textViewl3.setText (currentConnect);

76 Chapter F. Android Application Code

F.6 TabFragment2.java
package com.vark.aard.thesis_app;

JEE:
* Created by David on 4/09/2017.

*/

import android.content.Context ;

import android.content.SharedPreferences;
import android.os.Bundle:

import android.os.Handler;

import android.support.v4.app.Fragment;
import android. text. TextUtils;

import android. util.Log;

import android.view. LayoutInflater;
import android. view. View;

import android. view. ViewGroup;

import android.widget . Button;

import android.widget . SeekBar ;

import android. widget . TextView:

import java.util.concurrent. ExecutionException;
public class TabFragment2 extends Fragment {

private Button cmdButton, ledButton, pwrButton, fwdButton,
leftButton ,rightButton ,bwdButton, stopButton;

private TextView textViewl4d , textView2 , textView3;

SharedPreferences prefls;

SharedPreferences. Editor editor;

private View viewtab?2;

private Integer fwdCount = 0;
private Integer turnCount = 0;
@QOverride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
prefs = getActivity ().getSharedPreferences(” Connection”,
Context .MODEPRIVATE) ;
editor = prefs.edit();

F.6 TabFragment2.java 77

@Override
public View onCreateView (LayoutInflater inflater , ViewGroup
container , Bundle savedInstanceState) {

viewtab2 = inflater . inflate(R.layout. tab_fragment_2
container, false);

cmdButton = (Button) viewtab2.findViewByld(R.id.
commandButton) ;

ledButton = (Button) viewtab2.findViewByld (R.id.
LEDButton) ;

textViewld = (TextView) viewtab2.findViewByld(R.id.
textView14) ;

textView2 = (TextView) viewtab2. findViewByld(R.id.
textView2) ;

textViewd = (TextView) viewtab2.findViewById(R.id.
textView3) ;

pwrButton = (Button) viewtab2.findViewById(R.id.
powerButton) ;

fwdButton = (Button) viewtab2.findViewByld(R.id.
fwdButton) ;

leftButton = (Button) viewtab?2.findViewByld (R.id.
left Button) ;

right Button = (Button) viewtab2 . findViewById(R.id.
rightButton);

bwdButton = (Button) viewtab2.findViewByld(R.id.
bwdButton) ;

stopButton = (Button) viewtab2.findViewByld(R.id.
stopButton) ;

cmdButton. setOnClickListener (new View.OnClickListener ()
{
@QOverride
public void onClick(View v) {
if (SingletonGlobal.getInstance () .getCommandSent
() .equals(false)) {
SingletonGlobal . getInstance () .setCommandSent
(true);
SingletonGlobal. getInstance() .
setCommandReceived (707) ;
new httpTransfer(getContext(), viewtab2, 2).
execute () ;
textView2.setText (707);
textView3 .setText (707);

78 Chapter F. Android Application Code

fwdCount = 0;

}
}

ledButton.setOnClickListener (new View.OnClickListener ()

@Override
public void onClick(View v) {
if (SingletonGlobal.getlnstance ().getLEDStatus ()
cequals ("07)) {
SingletonGlobal.getInstance () .setLEDStatus
("17)
} else {
SingletonGlobal . getInstance () .setLEDStatus

(07):

b

pwrButton.setOnClickListener (new View.OnClickListener ()
{
@Override
public void onClick(View v) {
if (SingletonGlobal.getInstance ().getPowerStatus
().equals(707)) {
SingletonGlobal . getlnstance () .setPowerStatus
(1)
} else {
SingletonGlobal . getInstance () .setPowerStatus

(07):

}
1)

fwdButton.setOnClickListener (new View.OnClickListener ()
{
@QOverride
public void onClick(View v) {
fwdCount += 100;
SingletonGlobal. getInstance () .setSpeedbarVal(
fwdCount . toString ())

F.6 TabFragment2.java 79

textView2 .setText (fwdCount. toString());

1

bwdButton.setOnClickListener (new View.OnClickListener()
{

@OQOverride

public void onClick(View v) {
fwdCount —= 100;
SingletonGlobal. getInstance () .setSpeedbarVal(

fwdCount . toString ());

textView2 .setText (fwdCount. toString());

1

stopButton.setOnClickListener (new View.OnClickListener ()

{

@OQOverride

public void onClick (View v) {

SingletonGlobal. getInstance () .setSpeedbarVal
(:: _177);
new httpTransfer(getContext (),
viewtab2 , 2).execute();

textView2.setText (707) ;

Ik

leftButton.setOnClickListener (new View.OnClickListener ()

{

@Override
public void onClick (View v) {
turnCount — 1;

SingletonGlobal. getInstance () .setTurnbarVal(
turnCount. toString ());

Integer temp = 45*xturnCount ;

textView3 .setText (temp.toString ()):

IOk

right Button.setOnClickListener (new View.OnClickListener
0O {
@Override
public void onClick (View v) {

80

Chapter F. Android Application Code

b

return

turnCount += 1;

SingletonGlobal. getInstance () .setTurnbarVal(
turnCount. toString ())

Integer temp = 45xturnCount ;

textView3.setText (temp. toString());

viewtab?2;

F.7 TabFragment3.java 81

F.7

TabFragment3.java

package com.vark.aard.thesis_app:

JET:

+* Created by David on 4/09/2017.

*/

import android.content.Context;

import android.content.SharedPreferences;
import android.os.Bundle;

import android.support.v4.app.Fragment;
import android.util.Log;

import android.view.Layoutlnflater;
import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.SeekBar;

import android.widget . TextView;

public class TabFragment3 extends Fragment {

private TextView textViewll 6 textViewl7 ,textViewl9 textView2l
,textView23 | textView24 ;
private SeekBar seekBar3,seekBar4 6 seekBarb , seekBar6 ,seekBar7

private Button resetAngle ,robotSend;
SharedPreferences prefs;
SharedPreferences. Editor editor;
private View viewtah3;

@Override
public void onCreate(Bundle savedInstanceState){
super.onCreate (savedInstanceState);

prefs = getActivity () .getSharedPreferences(” Connection” ,
Context . MODEPRIVATE) ;
editor = prefs.edit();

}

@QOverride

public View onCreateView (Layoutlnflater inflater , ViewGroup
container , Bundle savedInstanceState) {
viewtab3 = inflater.inflate (R.layout.tab_fragment_3 ,

82 Chapter F. Android Application Code

container , false);

textViewll = (TextView) viewtab3.findViewById(R.id.
textViewll);

textViewl7 = (TextView) viewtab3 . findViewById(R.id.
textViewlT7);

textViewl9 = (TextView) viewtab3.findViewByld(R.id.
textView19);

textView2l = (TextView) viewtab3.findViewBylId(R.id.
textView2l) ;

textView23 = (TextView) viewtab3d.findViewByld (R.id.
textView23) ;

textView24d = (TextView) viewtab3.findViewByld (R.id.
textView24) ;

seekBar3 = (SeekBar) viewtab3.findViewByld (R.id.seekBar3

socll]%aﬂ = (SeekBar) viewtab3.findViewByld (R.id.seekBar4

secl-);];3a.r5 = (SeekBar) viewtab3.findViewByld (R.id.seekBarh

sec}Z];aL'ﬁ = (SceckBar) viewtab3.findViewByld (R.id.seckBarG

80(312];33.1'7 = (SeekBar) viewtab3.findViewByld(R.id.seekBar7

1‘(:5{)31;;Ar1g1c = (Button) viewtab3.findViewById(R.id.
resetAngle) ;

robotSend = (Button) viewtab3.findViewByld (R.id.
robotSend) ;
setAngleText () ;

seekBar3.setOnSeekBarChangeListener (new SeeckBar.
OnSeekBarChangeListener () {
@OQOverride
public void onProgressChanged (SeekBar seekBar, int
progress ,
boolean fromUser) {

int seekValue = seekBar.getProgress();
textViewll.setText (String. valueOf(seekValue)):

}

@Override

public void onStartTrackingTouch (SeekBar seekBar) {
// TODO Auto—generated method stub

}

F.7 TabFragment3.java

83

@Qverride
public void onStopTrackingTouch(SeekBar seekBar) {

}
IOF

seekBard .setOnSeekBarChangeListener (new SeekBar.
OnSeekBarChangeListener () {
@QOverride
public void onProgressChanged (SeekBar seekBar, int
progress ,
boolean fromUser) {

int seekValue = seekBar.getProgress();
textViewl7.setText (String.valueOf(seekValue));

}

@OQOverride

public void onStartTrackingTouch(SeekBar seekBar) {
// TODO Auto—generated method stub

}

@Override
public void onStopTrackingTouch(SeekBar seekBar) {

}
IOk

seekBar5 . setOnSeekBarChangeListener (new SeekBar.
OnSeekBarChangeListener () {
@Qverride
public void onProgressChanged (SeekBar seekBar, int
progress ,
boolean fromUser) {

int seekValue = seekBar.getProgress();
textViewl9.setText (String . valueOf(seekValue)) ;

}

@Qverride
public void onStartTrackingTouch(SeekBar seekBar) {
// TODO Auto—generated method stub

84 Chapter F. Android Application Code

@Override
public void onStopTrackingTouch(SeckBar seekBar) {

}
19k

seekBarG . setOnSeekBarChangeListener (new SeekBar.

OnSeekBarChangeListener () {

@Override

public void onProgressChanged(SeekBar seekBar, int
progress ,

boolean fromUser) {

int seekValue = seckBar.getProgress();
textView21 .setText (String. valueOf(seekValue)):

}

@Override

public void onStartTrackingTouch (SeekBar seekBar) {
// TODO Auto—generated method stub

}

@Override
public void onStopTrackingTouch(SeekBar seekBar) {

'
b

seckBarT.setOnSeekBarChangeListener (new SeeckBar.

OnSeekBarChangeListener () {

@QOverride

public void onProgressChanged(SeckBar seckBar, int
progress ,

boolean fromUser) {

int seekValue = seckBar.getProgress();
textView23.setText (String. valueOf(seekValue));

}

@Override
public void onStartTrackingTouch (SeekBar seekBar) {
// TODO Auto—generated method stub

@Override

F.7 TabFragment3.java 85

public void onStopTrackingTouch(SeekBar seekBar) {

}
1

resetAngle.setOnClickListener (new View.OnClickListener ()

{

@Override

public void onClick(View v) {
seekBar3.setProgress(150);
seekBard . setProgress (150);
seekBar5.setProgress(150);
seckBar6.sctProgress(150);
seekBar7.setProgress (150);
String resetAngles = "1501501501501507;
SingletonGlobal. getInstance () .setRobotAngles(

resetAngles);

Ik

robotSend.setOnClickListener (new View.OnClickListener ()
{
@Override
public void onClick(View v) {
StringBuilder robotString = new StringBuilder();
if (seekBar3. getProgress () <10) {
robotString.append (”007);
robotString . append(seekBar3 . getProgress());

else if(seekBar3.getProgress()<100){
robotString.append (707);
robotString . append (seekBar3 . getProgress ());

else{
robotString . append (seekBar3 . getProgress ());

if (seekBard. getProgress () <10) {
robotString.append (”007);
robotString . append (seekBar4 . getProgress ());

else if(seekBar4.getProgress()<100){
robotString.append (”07);
robotString.append (seekBar4.getProgress ());

86

Chapter F. Android Application Code

}
else
robotString . append (seekBar4 . getProgress());

if (seekBar5.getProgress()<10) {
robotString .append(”00”);
robotString . append (seekBarb. getProgress ()) ;
}
else if (seekBard. getProgress()<100){
robotString .append(707) ;
robotString . append (seekBarb . getProgress ()) ;
}
else
robotString . append (seekBarb. getProgress ()) ;

if (seekBar6.getProgress()<10) {
robotString .append(”00”);
robotString . append (seekBar6. getProgress ()) ;
}
else if (seekBar6. getProgress () <100){
robotString .append(707) ;
robotString . append (seekBar6. getProgress());

else
robotString . append (seekBar6. getProgress());
}

if (seekBar7.getProgress()<10) {
robotString .append(7007);
robotString . append (seekBar7. getProgress());
}
else if(seekBar7.getProgress()<100){
robotString .append(707) ;
robotString .append (seekBar7. getProgress());
}
else
robotString . append (seekBar7. getProgress ()) ;
}

String robotSendString = robotString.toString();

SingletonGlobal. getInstance () .setRobotAngles(
robotSendString) ;

new httpTransfer (getContext () ,viewtabd 4).
execute () ;

F.7 TabFragment3.java 87

1)

return viewtab3;

}

public void setAngleText (){
textViewll.setText (" 150"
textViewlT7.setText (7150”7
textViewl9.setText (71507
textView21 .setText (71507
textView23.setText (7150”7

L S L S —

88

Chapter F. Android Application Code

Appendix G
Arduino Code

/*

*+ Robotic System Control and Wireless Communication Platform
Thesis Project: David Simpson — 2017

*

* HOSTNAME = IP Address of webserver

* (192.168.1.12 for local network testing)

% (14.202.147.3 for proper operation and internet access)

P

! This IP address may change if updated by ISP as webserver is
hosted on home network!

*

* Encoder parts altered from http://www.hessmer.org/blog

/2011/01/30/quadrature—encoder—too—fast —for—arduino—with—
solution/

* DES encryption algorithm derived from http://arduino—
projectsdu.com/des—algorithm /

*/

//Include library files
#include "ESP8266.h"

#include <DynamixelSerial2.h>
#include <digitalWriteFast.h>
#include <stdint.h>

#include <string .h>

//Define program constants

#define SSID "Network Name”

#define PASSWORD "password”

//#define HOSTNAME 7192.168.1.12" //local testing
89

90 Chapter G. Arduino Code

address
#define HOSTNAME — 714.202.147.37 J/internct IP address
#define HOSTTPORT (8888)
#define DEBUG false

//Initialise ESP8266 WiFi device to communicate on Seriall port
(BAUD rate for my ESP module is 115200)
ESP8266 wifi(Seriall);

[—— Variables ——
int speedValue = 0;

int turnValue
int LEDStatus
int powerStatus 0;

int newCommand = 0;

int emdReceived = 0;

unsigned long previousMillis = 0;
unsigned long interval = 2500;
int baseAngle = 512;

int shoulderAngle = 512;

int elbowAngle = 512;

int wristAngle = 512;

int gripAngle = 512;

long L_Target = 0;

long R_Target = 0;

long Target = 0;

boolean fortyfiveFlag = false;
boolean moveFlag = false;

boolean lastCmdCompleted = true;
char directionChar = 'f7;

uint8_t buffer2[1024];

uint32_t cmdBuffer [64];

¢ x/

—x/

0;
0;

[Encryption Constants ——————/

const uint8_t sbox[256] = {
/% S—box 1 %/
0xE4, 0xD1, 0x2F, 0xB8, 0x3A, 0x6C, 0x59, 0x07,
0x0F, 0x74, 0xE2, 0xD1. 0xA6. 0xCB, 0x95, 0x38,
0x41, OxER8, 0xD6, 0x2B, 0xFC, 0x97, 0x3A, 0x50,
0xFC, 0x82, 0x49, 0x17, 0x5B, 0x3E, 0xAO0, 0x6D,
/% S—box 2 x/
0xF1, 0x8E, 0x6B, 0x34, 0x97, 0x2D, 0xC0, 0xbA,

91

0x3D, 0x47, 0xF2, 0x8E, 0xCO,
0x0E, 0x7B, 0xA4, 0xD1, 0xb8,
0xD8, 0xAl, 0x3F, 0x42, 0xB6,
/* S—box 3 x/
0xA0, 0x9E, 0x63, OxF5, 0x1D,
0xD7, 0x09, 0x34, O0x6A, 0x28,
0xD6, 0x49, 0x8F, 0x30, 0xBI1,
0x1A, 0xD0O, 0x69, 0x87, Ox4F,
/#* S—box 4 x/
0x7D, 0xE3, 0x06, 0x9A, 0x12,
0xD8, 0xB5, 0x6F, 0x03, 0x47,
0xA6, 0x90, 0xCB, 0x7D, 0xF1,
0x3F, 0x06, 0xAl, 0xD8, 0x94,
/% S—box 5 x/
0x2C, 0x41, 0xTA, 0xB6, 0x85,
0xEB, 0x2C, 0x47, 0xD1, 0x50,
0x42, 0x1B, 0xAD, 0x78, 0xF9,
0xB8, 0xC7, 0x1E, 0x2D, 0x6F,
/% S—box 6 %/
0xC1, 0xAF, 0x92, 0x68, 0x0D,
0xAF, 0x42, 0x7C, 0x95, 0x61,
0x9E, O0xF5, 0x28, 0xC3, 0x70,
0x43, 0x2C, 0x95, OxFA, OxBE,
/% S—box 7 =/
0x4B, 0x2E, 0xF0, 0x8D, 0x3C,
0xD0, 0xB7, 0x49, O0x1A, 0xE3,
0x14, 0xBD, 0xC3, 0x7E, OxAF,
0x6B, 0xD8, 0x14, 0xA7, 0x95,
/* S—box 8 x/
0xD2, 0x84, 0x6F, 0xBl, 0xA9,
Ox1F, 0xD8, 0xA3, 0x74, 0xC5,
0x7B, 0x41, 0x9C, 0xE2, 0x06,
0x21, 0xE7, 0x4A, 0x8D, OxFC,
b
const uint8_t e_permtab || =

4, 6, /* 4 bytes
32, 1, 2, 3, 4, 5,

4, 5, 6, T, 8, 9,

8, 9, 10, 11, 12, 13,

12, 13, 14, 15, 16, 17,

16, 17, 18, 19, 20, 21,

20, 21, 22, 23, 24, 25,

0x1A,
0xC6 ,
0x7C,

0x69,
0x93,
0x05,

0xCT7,
0xhE ,
0x2C,
0xE3,

0xB4,
0xCB,
0xHA ,
0xB5,

0x85,
0x2C,
0x3E,
0x5B,

0xBC,
Ox1A,
0x52,
0xC7,

0x3F,
OxFA,
0xC5h,
0x09,

0xDO0,
0x39,
0x63,
0xA4,

0x34,
0xDE,
Ox4A |
0x17,

0xET,
0x0B,
0x1D,
0x60 ,

0x97,
0x5C,
0x68,
0x0F,

0xhA ,
0x2F,
0x05 ,
0xE2,

0x3E,
0x6B,
0xAD,
0x90 .

0x50,
0x0E,
0xF3,

0x35, 0x6B

in 6 bytes outx/

0xB5,
0x2F,
0xE9,

0x28,
0xF1,
0xE7,
0x2C,

0x4F
0xE9,
0x84 ,
0x2E,

0xE9,
0x86 ,
Ox0E,
0x53,

0x56B,
0x38,
0xB6,
0x8D,

0x61 ,
0x86 ,
0x92,
0x3C,

0xCT,
0x92,
0x58 ,

92

Chapter G. Arduino Code

24,
28,
}s

const

16,

19,
22,

const

58,
60,
62,
64,
57,
59,
61,
63,
b

const
8,
40,
39,
38,
37,
36,
35,
34 .
33,
}s

const
8

57,

25, 26, 27, 28, 29,
29, 30, 31, 32, 1

uint8_t p_permtab[] ={

4, /% 32 bit —> 32 bit */
7, 20, 21,
12, 28, 17,

15, 23, 26,
18, 31, 10,

8, 24, 14,
27. 3, 9,
13, 30, 6,
11, 4, 25

uint8_t ip_permtab [] ={

8, [+ 64 bit —> 64 bit #/
50, 42, 34, 26, 18, 10, 2,
52, 44, 36, 28, 20, 12, 4,
54, 46, 38, 30, 22, 14, 6,
56, 48, 40, 32, 24, 16, 8,
49, 41, 33, 25, 17, 9, 1,
51, 43, 35, 27, 19, 11, 3

45, 37, 29, 21, 13, 5
47, 39, 31, 23, 15, 7

tl

o
(o]

]

3]
o

uint8_t inv_ip_permtab [| ={

8, /* 64 bit —> 64 bit */
8, 48, 16, 56, 24, 64, 32,
7, 47, 15, 55, 23, 63, 31,
6, 46, 14, 54, 22, 62, 30,
5, 45, 13, 53, 21, 61, 29,
4, 44, 12, 52, 20, 60, 28,
3, 43, 11, 51, 19, 59, 27,
2, 42, 10, 50, 18, 58, 26,
1, 41, 9, 49, 17, 57, 25

uint8_t pcl_permtab|[] ={
7, /% 64 bit —> 56 bit#/
49, 41, 33, 25, 17, 9,

—t
ot
[o0e]
o

42, 34, 26, 18,
51, 43, 35, 27,
60, 52, 44, 36,
39, 31, 23, 15,
46, 38, 30, 22,
53, 45, 37, 29,
28, 20, 12, 4

10, 2,
19. 11,
63. 55.

on

(=2 R4
Ul = = =] W O O

14, 6,
21, 13,
}s

const uint8_t pc2_permtab [] ={

7, 6, /#* B66 bit —> 48 bit =*/
14, 17, 11, 24, 1, 5,

3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,

16, 7, 27, 20, 13,
41, 52, 31, 37, 47,
30, 40, 51, 45, 33,
44, 49, 39, 56, 34,
46, 42, 50, 36, 29,

}

const uint8_t splitin6bitword_permtab [] = {
8, 8, J* 64 bit — 64 bit =/
64, 64, 1, 6, 2, 3, 4, 5,
64, 64, 7, 12, 8, 9, 10, 11,
64, 64, 13, 18, 14, 15, 16, 17,
64, 64, 19, 24, 20, 21, 22, 23,
64, 64, 25, 30, 26, 27, 28, 29,
64, 64, 31, 36, 32, 33, 34, 35,
64, 64, 37, 42, 38, 39, 40, 41,
64, 64, 43, 48, 44, 45, 46, 47

}

const uint8_t shiftkey_permtab[] = {

T, T, /#* 56 bit —> 56 bit */
2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 1,

30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 29

[]

(R Y EN
b o oo Lt

94 Chapter G. Arduino Code

}s

#define ROTTABLE 0x7TEFC

byte crypt [8];

byte plaintext [8];

byte keyword [] = { 0x5b,0xba,0x57,0x67,0x6a,0x56,0x67,0x6e};

byte test [8];

int 1,m;

int Dx =0;
uint32_t hox=0,t;
String showprint =
uint8_t data [8];
/*********x**************************x*******:oc********x*********x**************

nn,
1

J———— Encoders ———— /
#define c_LeftEncoderPinA 2

#define c_LeftEncoderPinB 40

volatile long _LeftEncoderTicks = 0L:

#define c_RightEncoderPinA 3
#define c_RightEncoderPinB 41
volatile long _RightEncoderTicks = 0L;

/* */
/#———— Motor Driver Setup ————x/
//Front right motor

int FRmotorA = 31; //inl
int FRmotorB = 30; //in2

int FRmotorSpeed = 5; / JENABLE

//Back right motor

int BRmotorA = 47; //inl
int BRmotorB = 46; //in2
int BRmotorSpeed = 7; / /ENABLE

//Front left motor

int FLmotorA = 35; //inl
int FLmotorB = 34; //in2
int FLmotorSpeed = 4; / JENABLE

//Back left motor

95

int BLmotorA = 49; //inl
int BLmotorB = 48; //in2
int BLmotorSpeed = 6; / /ENABLE
/ /

/#®
d ok ok ok ok ok o ok o o o oK o o o o ok ok ok o o ok ok ok of s o 3k ok ok o o o o o oK 3R o ok o oK ok ok o ok o ok o oK o K o ok ok sk ok
* connectionInit () initialises the ESP8266 to station
+ mode then attempts to connect to the defined WiFi
network
s ok ok sk ok ok s ok ok sk ok ok ok ok ok sk ok ok ok o ok sk ok ok ok sk s sk ok ok sk ok sk ok ok ok ok sk sk ok 3k ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok
*/
boolean connectionInit (){
boolean result = false;
if (DEBUG) {

Serial.println ("ESP8266 Initialisation Begin:");

}

//Library sets ATHCOWMODE = 1 — Station mode
if (DEBUG) {
if (wifi.setOprToStation()) {
Serial . print (" to station + softap ok\r\n”):
} else {
Serial.print ("to station + softap err\r\n");
}

}
else{
wifi.setOprToStation();

}

//Connect to WiFi network
if (DEBUG) {
if (wifi.joinAP (SSID, PASSWORD)) {
Serial.print (" Join AP success\r\n");
Serial.print ("1P: 7);
Serial . println (wifi.getLocallP () .c_str()):
} else {
Serial.print (7" Join AP failure\r\n”);
}

}

else{
wifi.joinAP (SSID, PASSWORD) ;
}

96 Chapter G. Arduino Code

//Set single connection mode to send initial data to webserver
if (DEBUG) {
if (wifi.disableMUX()) {
Serial.print (" single ok\r\n");
} oelse {
Serial.print (" single err\r\n");
}
}

else{
wifi.disableMUX () ;
}

I
JE

S e ok st sk ol ot e ot s sk ol obe s sk e sk ot e ok st s ke st ke ol sk sk ok sk sk sk e sk ot ke ok st sk ke st ok o sk sk ok e sk sk e sk ok ke ok sk ok
* motorSetup () initialises the pins for the motor drivers
% ook ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o o ok ok ok ok ok ok ok o ok ok o ok sk ok ok ok ok o ok ok ok ok ok ok ok R ok ok sk ok ok
#

/

void motorSetup () {
pinMode (FRmotorA ,OQUTPUT) ;
pinMode (FRmotorB ,QUTPUT) ;
pinMode (FRmotorSpeed ,OUTPUT) ;
digitalWrite (FRmotorA ,LJOW) ;
digitalWrite (FRmotorB ,LOW) ;
analogWrite (FRmotorSpeed ,0) ;
pinMode (FLmotorA ,OQUTPUT) ;
pinMode (FLmotorB ,OQUTPUT) ;
pinMode (FLmotorSpeed ,OUTPUT) ;
digital Write (FLmotorA ,LJOW) ;
digitalWrite (FLmotorB ,IOW) ;
analogWrite (FLmotorSpeed ,0) ;
pinMode (BRmotorA ,OUTPUT) ;
pinMode (BRmotorB ,QUTPUT) ;
pinMode (BRmotorSpeed ,OUTPUT) ;
digital Write (BRmotorA TOW) ;
digitalWrite (BRmotorB ,LOW) ;
analogWrite (BRmotorSpeed ,0) ;
pinMode (BLmotorA ,QUTPUT) ;
pinMode (BLmotorB ,OUTPUT) ;
pinMode (BLmotorSpeed ,OUTPUT) ;
digital Write (BLmotorA ,IOW) ;
digital Write (BLmotorB ,LOW) ;

97

analogWrite (BLmotorSpeed,0) ;

}
[+

sk okok ok ok ok ok ok sk ok ok sk ok ok sk ook ok sk ok sk ok ok sk ok o sk sk ok ok sk ok ok sk ok ok sk ok ok ok sk ok ok ok ok sk sk ok sk ok ok ok sk ok
Encoder Interrupt Service Routines
ok ok ok oK ok ok ok oK 3K o oK o R SR K A S R oK K oK o oK K o oK oK o ok 3 o o 3K ok o 3K o o oK R o o oK o 3K K o 3K oK o oK oK K
*/
void leftMotorISR ()
{

if (digitalReadFast (c_LeftEncoderPinB)==1){

LeftEncoderTicks ——;

else{
_LeftEncoderTicks++;
}

}

// Interrupt service routines for the right motor’'s quadrature
encoder
void rightMotorISR ()
{
if (digitalReadFast (c_RightEncoderPinB)==1){
_RightEncoderTicks++;
}

else{
_RightEncoderTicks ——;
}

/®

sk ok sk s ok ok ok ok ok ok oK ok ok ok sk ok sk ok ok sk o ok ok ok ok ok 3k ok oK ok o 3 sk ok ok ok 3 oK 3 ok o ok ok ok ok ok ok o o o ok ok ok 3ok
* Setup function

S sk sk ok ok oK sk ok ok o ok SR R R SR S ok ok R R R SR K oK o 3k R KR S R o ok o ok R R oK R o oK o R R R Sk
*/
void setup(void)
{

Serial .begin(115200);

if (DEBUG) {

Serial . print (”setup begin\r\n");
}

delay (500);
connectionInit () ;

98 Chapter G. Arduino Code

motorSetup () ;
if (DEBUG) {
Serial .print ("setup end\r\n”);

}
pinMode (13 ,0UTPUT) ;
digitalWrite (13,LOW);
Dynamixel. begin (200000,9); // Inicialize the servo at 1Mbps
and Pin Control 2
delay (1000) ;
for (int i=1;i<8;i++){
Dynamixel.setTempLimit (i,80); // Set Max Temperature to 80
Celcius
Dynamixel.setVoltageLimit (i,65,160); // Set Operating
Voltage from 6.5v to 16v
Dynamixel . setMaxTorque (i ,800) ; // 50% of Torque
Dynamixel.setSRL(i,1);
}

// Motor quadrature encoders
// Left encoder

pinMode(¢_LeftEncoderPinA | INPUT PULLUP) ; // sets pin A
as input
pinMode (¢_LeftEncoderPinB , INPUT_PULLUP) ; // sets pin B

as input
attachInterrupt (0, leftMotorISR, RISING);

// Right encoder

pinMode (¢c_RightEncoderPinA , INPUT PULLUP) ; // sets pin A
as input
pinMode (¢_RightEncoderPinB , INPUT_PULLUP) ; // sets pin B

as input
attachInterrupt (1, rightMotorISR , RISING);

I
/*

Kok ok koK ok ok ok ok ok oK sk ok ok ok o 3K ok ok 3K ok ok ok 3k ok 3k 3k ok o sk ok ok K sk ok ok R ok oK ok ok oK ok ok ok ok ok ok ok ok koK ok ok koK
* Main Loop
sk ok ok ook ok ok ok R ok ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok ok ok ok ok sk ok ok sk sk ok sk sk ok sk ok sk ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok

*/

void loop(void)

unsigned long currentMillis = millis () ;

99

if (((currentMillis — previousMillis) > interval) &&
lastCmdCompleted) {

previousMillis = currentMillis;
sendGet () ;
receiveData () ; //Check if incoming data received from

webserver
limitAngles () ;
moveRobotArm () ;

driveCheck () ;

}

d ok ok ok ok ok o ok o o o oK o o o o ok ok ok o o ok ok ok of s o 3k ok ok o o o o o oK 3R o ok o oK ok ok o ok o ok o oK o K o ok ok sk ok
* moveRobotArm () sends commands to the AX—12 servos to move
to the commanded angle at a set speed
ok ok ok ok ok sk ok o ok o ok ok ok o sk ok sk ok ok o ok ok ok o sk ok sk ok ok ok sk ok ok ok ok ok sk ok o ok ok sk ok ok ok ok o sk ok o ok ok sk ok
*/

void moveRobotArm () {

Dynamixel. moveSpeed (1,baseAngle ,200) ;
Dynamixel. moveSpeed (2 ,shoulderAngle ,250) ;
Dynamixel. moveSpeed (3 ,shoulderAngle ;250) ;
Dynamixel . moveSpeed (4 ,elbowAngle ,250) ;
Dynamixel . moveSpeed (5, elbowAngle ,250) ;
Dynamixel . moveSpeed (6, wrist Angle ,250) ;
Dynamixel. moveSpeed (7, gripAngle ,250) ;

Se e o sk e s ok ok s s st e e sk ke e ok s ol o s sk e sk ok e e stk e ok e ke ok sk ok e sk sk e sk ok e e sk sk e o ok e ok ok ok e ok ok
#* limitAngles() prevents damage to robot by limiting
* angles that the robotic arm joints can turn to
s 3ok s sk ok ook ok sk sk sk ok sk skooke ok ok ok ok ok sk sk sk ok sk ok sk sk sk ok ol ke sk ke sk ol ok ok ok sk ok ok sk sk sk ok ok sk R ke sk ke koK
Y
void limitAngles(){

if (baseAngle <200){baseAngle=200;}

if (baseAngle >800){baseAngle=800;}

if (shoulderAngle <100){shoulderAngle=100;}
if (shoulderAngle >700){shoulderAngle=700;}

if (elbowAngle <500){elbowAngle=>500;}
if (elbowAngle >900){elbowAngle=900;}

100 Chapter G. Arduino Code

if (wristAngle <100){wristAngle=100;}
if (wristAngle >950){wristAngle=950;}

ripAngle=512;}

if (gripAngle <512){
{gripAngle=700;}

if (gripAngle >700)

o
[=]
o
=]

ok ok ok ok ok ok ok ok ook ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok o ok ok ok sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
#* driveCheck() uses the encoder counters to check if

* the requested distance/angle has been moved

sk sk ok ok ok ok ok sk sk ofok sk ofe ok sk sk ok ofe sk ok ke sk sk s ok 3k ok ok ok ke sk ook sk ot ok sk sk ok sk sk ok sk sk ok s ok sk ok ok ok ok ok o ok ok

*/

void driveCheck () {
long rightCount = _RightEncoderTicks;
long leftCount = _LeftEncoderTicks;

if (fortyfiveFlag){
if (directionChar = "r’){
if (rightCount<=R_Target){
motorsOff ('r) ;

if (leftCount>=L_Target){
motorsOff(’'17);
}

if (rightCount<=R_Target && leftCount>=L_Target){
fortyfiveFlag = false;
lastCmdCompleted = true;

}

else if(directionChar = "17){
if (rightCount>=R_Target){
motorsOff ('r ") ;

if (leftCount<=L_Target){
motorsOff (’17);

if (rightCount>=R_Target && leftCount<=L_Target){
fortyfiveFlag = false;
lastCmdCompleted = true;
}
}

101

}

if (moveFlag){
if (directionChar = "f7){
if (rightCount>=Target){
motorsOff('r7) ;

if (leftCount>=Target) {
motorsOff(’17);

if (rightCount>=Target && leftCount>=Target){
moveFlag = false;
lastCmdCompleted = true;

}

else if(directionChar = 'b’"){
if (rightCount<=Target){
motorsOff('r ") ;
}

if (leftCount<=Target) {
motorsOff("17);

if (rightCount<=Target && leftCount<=Target){
moveFlag = false;
lastCmdCompleted = true:
t
t
}
}

ok o ok ok ok ok ok o sk o ok o ok o sk ok ok ok ok o ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o ok ok ok ok sk ok
* moveStraight () moves the robot forward or backwards in
a straight line for the commanded distance

sk ok ok ok ok ok sk ok o sk ok ok o ok o sk ok sk ok ok sk ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk ok o ok ok sk ok ok ok ok ok ok ok o ok ok sk ok
*/
void moveStraight(float dist){ //dist in mm

_RightEncoderTicks = 0;

_LeftEncoderTicks = 0;

moveFlag = true;

Target = dist /0.6;

if (dist <0){

setDirection ('h’);

102

*

elsed

setDirection('f7);
}
analogWrite (FLmotorSpeed ,75) ;
analogWrite (BLmotorSpeed ,75
analogWrite (FRmotorSpeed ,75
analogWrite (BRmotorSpeed ,75

)
)
)
)

sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk ok ok sk sk ok ok sk ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk ok ok ok sk koK sk koK Sk koK
motorsOff() turns off the left motors, right motors or
all motors as requested

EEEE RS EE S S EEEEE SIS EEEE SRS SRS EEEEEEEEEEEE S

/

void motorsOff(char x){

if(x = "17){
analogWrite (FLmotorSpeed ,0) ;
analogWrite (BLmotorSpeed ,0) ;

else if(x = 'r’"){
analogWrite (FRmotorSpeed ,0) ;
analogWrite (BRmotorSpeed ,0) ;

else if(x = ’a’){
analogWrite (FLmotorSpeed ,0
analogWrite (BLmotorSpeed ,0
analogWrite (FRmotorSpeed , 0
analogWrite (BRmotorSpeed ,0

s ok o ook o ok o o o ok ok o o ok o o R o ok ok o o o o ok o o o o ook o o o ok ok o o ok o R R sk ok ok
processCommand () takes the decrypted command string and
executes the commands

oo sk ok ok ok ok S F Sk ok sk oK SR ok F o R K ok ok ok Sk S sk sk ok sk oK o o KR Sk oK sk Sk H SR ok sk sk ok oK ok o o K

*/

VO

id processCommand(String command, String value){
if (command = "LED”){

LEDStatus = value.tolnt ();

if (LEDStatus = 1){

Chapter G. Arduino Code

103

digitalWrite (13 ,HIGH) ;
}
else if (LEDStatus = 0){
digitalWrite (13 ,LOW) ;

if (DEBUG) {
Serial . print ("LED Command Received: ”);
Serial.println (value);

}

;
else if(command = "speedbar”){ //distance value in mm
speedValue = value.tolnt ();
float temp = float (speedValue);
if (speedValue = -1){
motorsOff (’a’);
moveFlag = false;
fortyfiveFlag = false;
lastCmdCompleted = true;
}
else if(speedValue = 0){ }
else{
moveStraight (temp) ;
}
if (DEBUG) {
Serial.print (" Speed Command Received: 7);
Serial.println (value);
}
else if(command = " turnbar”){

turnValue = value.tolnt () ;
if (!moveFlag){
if (turnValue <0){
fortyFive ('l ,turnValue);
}
else if (turnValue >0){
fortyFive ('r’ ,turnValue) ;

}

if (DEBUG) {
Serial . print (" Turn Command Received: 7);
Serial.println (value);
}
}

104 Chapter G. Arduino Code

else if (command = "power”){
powerStatus = value.tolnt () ;
if (DEBUG) {
Serial . print (" Power Command Received: 7);
Serial. println (value);

}

else if(command = "servos”){
String subStr = value.substring (0,3);
baseAngle = subStr.tolnt () ;
baseAngle = map(baseAngle ,0,300,0,1023);
subStr = value.substring (3,6) ;
shoulderAngle = subStr.tolnt () ;
shoulderAngle = map(shoulderAngle .,0,300.,0,1023);
subStr = value.substring(6,9);
elbowAngle = subStr.tolnt();
elbowAngle = map(elbowAngle,0,300,0,1023);
subStr = value.substring (9,12);
wristAngle = subStr.tolnt () ;
wrist Angle = map(wristAngle ,0,300,0,1023);
subStr = value.substring (12);
gripAngle = subStr.tolnt () ;
gripAngle = map(gripAngle ,0,300,0,1023);

}

else{
if (DEBUG) {

Serial . print (" Command Unknown: 7);
Serial. println (command) ;

}
}

JE

s sk ok skook ok ok sk sk sk sk sk sk sk sk ok sk sk ke sk ok s ok sk sk ok ok ke sk ook sk ok sk sk ok sk ok sk sk ofe sk sk e ok sk ok ok ok ok ok ok okok
Function sendGet() sends http get request to webserver
Kok ok koK ok ok R ok ok ok sk ok oK ok SR 3K ok oK 3K 3k ok ok 3k ok 3 3k ok o K ok ok K sk ok ok R ok oK ok ok oK ok ok ok ok ok ok ok ok ok ok ok ok ok ok
*/

void sendGet () {

if (wifi.createTCP (HOSTNAME, HOSTIPORT)){
//Serial.print (" create tcp ok\r\n");

elsed
//Serial . print (" create tcp err\r\n”);

105

}

String getCommand = "GET /arduino?”;

getCommand += " HITP/1.1\ r\nHost: 7;

getCommand += HOSTNAME;

getCommand += "\r\nContent—Tyvpe: text/html; charset=utf—8\r\n\
r\n”;

char cmdBuf[getCommand. length () +1];

getCommand . toCharArray (emdBuf , getCommand . length () +1);

wifi.send ((const uint8_t*)emdBuf, strlen (cmdBuf));

ook ok ok ok ok ok ok ok ok ok ok o ok ok ok ok o ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok o ok ok ok ok R ok
* receiveData () receives HTTP response from web server,
decrypts the data and then parses it into command data
s ook ok ok sk ok ok s ot kol st ek ok ook ok o ok sk ok ok e e ook ol ek ok ok ok e o ok ok ok ke e ook ok o o ok ok ok ok ok ok ok
*/
void receiveData(){
uint8_t buffer [1024] = {0}: //Create buffer for received
data
uint32_t len = wifi.recv(buffer, sizeof(buffer), 3000); //
Check for incoming data
//copy received data
for (int i=0:1<1024;i++){
buffer2[i] = buffer[i];
}

//If data has been received then 'len’ will be greater than 0
if (len > 0) {
Serial.println(” Decrypting”) ;
for(int 1 = 0;i<8;i4++){
stringToHex (i) ;
des_dec(plaintext , crypt, keyword);

int cmdlndex = i=%8;
for (int j = 0;j<8;j++){
cmdBuffer [emdIndex+j| = plaintext [j];

}
}
Serial . println (" Done decrypting”);
if (DEBUG) {
Serial.print (" Status:[”) ;
Serial . print (wifi.getIPStatus().c str());

106 Chapter G. Arduino Code

Serial . println (7]7);

Serial.print (” Received Data :7);
Serial . print ("[");
for(uint32_t i = 0; i < len; i++) {

Serial.print ((char)buffer|[i]);
}

Serial . print (”]\r\n");
}

//Parse commands and values from decrypted response data
char temp = ’a’;
int index = 1;
temp = cmdBuffer [index |;
String dataln;
while (temp != = "){
String cmd = 77;
String val = 77;
while (temp = '="){
cmd += temp;
index+-+;
temp = cmdBuffer [index];

}

index++;

temp = cmdBuffer [index];

while (temp != &’ &k& temp = ' 7){
val += temp;
index-++;

temp = cmdBuffer [index];

}

//Save received data into string to send back for
confirmation

dataln 4+= cmd;

dataln 4= "=";

dataln += val;

if (temp = "&7){
index—++;
temp = cmdBuffer [index];
dataln += "&";

}

processCommand (cmd , val) ; //Take action based on
received command

}

return ;

107

/*®
S sk sk ok sk ok ok ok ok sk ot st e sk sk sk ok sk ok ok ok ok otk ok sk sk ke ok sk st ok ok o ok ok ok ok sk ok ok sk ok ok ok sk ook o ok ok sk ok
#* fortyFive () executes a (45%num) degree turn
d ok ok ok ok ok o ok o o o oK o o o o ok ok ok o o ok ok ok of s o 3k ok ok o o o o o oK 3R o ok o oK ok ok o ok o ok o oK o K o ok ok sk ok
*/
void fortyFive(char dir,int num){
if (dir=="r"){ //r = turn right, 1 = turn left
_LeftEncoderTicks = 0;
_RightEncoderTicks = 0;
L_Target = (100=num) ;

R_Target = —(100%num) ;
setDirection('r’);
fortyfiveFlag = true;

analogWrite (FLmotorSpeed ,55
analogWrite (BLmotorSpeed ,55
analogWrite (FRmotorSpeed ,55
analogWrite (BRmotorSpeed ,55

else if (dir=="1"){ //r = turn right, 1 = turn left
_LeftEncoderTicks = 0;
_RightEncoderTicks = 0;
L_Target = —(100%num) ;
R_Target = (100x*num) ;
setDirection('17);
fortyfiveFlag = true;
analogWrite (FLmotorSpeed ,55) ;
analogWrite (BLmotorSpeed ,55) ;
analogWrite (FRmotorSpeed ,55)
analogWrite (BRmotorSpeed ,55)

1

s zkoskoskook ok sk okoskoskoske sk ok sk ok ok ok ok sk sk sk ok ke ok sk sk sk ke sk ok sk ok ok ok ok sk sk sk ok ok ok ok okosk ke sk ok sk ckock sk sk sk sk skok
#* setDirection () sets the motor driver pins for desired
movement direction

L EEEE LS EEEEE SRS S EEEE S EEEEEE LRSS EEEEEES EEEEE RS E
o/
void setDirection (char x){

directionChar = x;

108

Chapter G. Arduino Code

if (x=="f")

{

digital Write (FRmotorA ,
digitalWrite (FRmotorB,
digital Write (FLmotorA
digital Write (FLmotorB,
digitalWrite (BRmotorA ,
digitalWrite (BRmotorB,
digitalWrite (BLmotorA
digitalWrite (BLmotorB

else if(x=="b")

{

digitalWrite (FRmotorA
digitalWrite (FRmotorB,
digital Write (FLmotorA
digital Write (FLmotorB,
digitalWrite (BRmotorA ,
digital Write (BRmotorB,
digitalWrite (BLmotorA
digital Write (BLmotorB,

else if(x=="1")

{

digital Write (FRmotorA ,
digital Write (FRmotorB,
digital Write (FLmotorA ,
digital Write (FLmotorB,
digitalWrite (BRmotorA ,
digital Write (BRmotorB,
digital Write (BLmotorA,
digital Write (BLmotorB,

else if(x==r")

{

digitalWrite (FRmotorA
digitalWrite (FRmotorB,
digital Write (FLmotorA ,
digital Write (FLmotorB,
digitalWrite (BRmotorA ,
digital Write (BRmotorB,
digital Write (BLmotorA
digitalWrite (BLmotorB,

HIGH) ;
LOW) ;
HIGH) ;
LOW) ;
LOW) ;
HIGH) ;
LOW) :
HIGH) ;

LOW) ;
HIGH) ;
LOW) ;
HIGH) ;
HIGH) ;
LOW) ;
HICGH) ;
LOW) :

HIGH) ;
LOW) ;
LOW) ;
HIGH) ;
LOW) ;
HIGH) ;
HIGH) ;
LOW) ;

TOW) ;
HIGH) ;
HIGH) ;
LOW) ;
HIGH) ;
LOW) ;
LOW) ;
HIGH) ;

// Move robot forward

// Move robot backward

// turn left

// turn right

109

Stk sk ok sk ok ok ok ok otk ok sk ok o sk sk ot ke ok ok sk ok ok sk ok ok ok ot st e sk sk ok ok e ok ok ok ok otk ok sk sk ok sk ko R ok sk ok
stringToHex () takes a buffer of individual characters
and combines each pair of characters into a hex value.
This is necessary due to the way the encrypted data is
formatted and transmitted by the web server

sk ok ok ok ok ok sk ok o sk ok ok ok ok o sk ok sk ok ok o sk ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk ok o ok ok sk ok ok ok ok ok ok ok o ok ok sk ok
*/
void stringToHex(int blockNumber){
int index = 135+(blockNumber=16);
int count = 0;
for (int i = index;i<index+16;i+=2){

char templ = buffer2[i];

char temp2 = buffer2[i+1];

uint16_t bytel = 0;

uint16_t byte2 = 0;

uint32_t byteTotal = 0;

* X X X ¥ ¥

if (templ=="0"){bytel+=0;}
else if (templ=='1"){bytel+=1;}

else if (templ=='2"){bytel+=2;}
else if (templ=='3"){bytel+=3;}
else if (templ=="4"){bytel+=4;}

] if (templ=='5"){bytel+=5h;}
else if (templ=='6"){bytel+=6;}
else if (templ=='7"){bytel+=T;}

] if (templ=='8"){bytel+=8;}
else if (templ=="9"){bytel+=9;}
else if (templ=='a’||templ=="A"){bytel+=10:}
else if (templ=='b’||templ=="B’){bytel+=11;}
else if (templ=='c’||templ=="'C"){bytel+=12;}
else if (templ=='d’||templ=="D"){bytel+=13:}
else if (templ=='e’||templ=="E’){bytel+=14;}
else if (templ=='f’||templ=="F"){bytel+=15;}
if (temp2=="0"){byte2+=0;}

else if (temp2=='1"){byte2+=1;}
else if (temp2=="2"){byte2+=2;}
else (temp2=="3"){byte2+=3;}
else (temp2=="4"){byte2+=4;}

110 Chapter G. Arduino Code

else if (temp2=="5"){byte2+=5;}
else if (temp2=="6"){byte2+=6;}
else if (temp2=="7"){byte2+=T;}
else if (temp2=='8"){byte2+=8;}
else if (tomp?——’Q J{byte2+=9;}
else if (temp2=="a’||temp2=="A"){byte2+4+=10;}
else if (temp2=="b’||temp2=="B’) {byte2+4+=11;}
else if (temp2=='c’||temp2=="C"){byte2+=12:}
else if (temp2=='d’||temp2==D") {byte2+4+=13:}
else if (temp2=='e’||temp2=="E’) {byte2+=14:}
else if (temp2=="f"||temp2=="F") {byte2+=15;}

byte2 = byte2;
byteTotal = (bytel*16) + byte2;
crypt [count] = byteTotal;
count++;
}
}

/**
[2otk o ook o o o o o sk o ok ook ok ook o o o o o o o o o o ok o oo ook o o R R o o o o o o o ok o o ok ok o o R o o o o o o o ok ok o ok o ok R R R

[stkkok ok ok o Sk o SRR SRR SRR OK K R R SR R SR R SR SRR SRR KRS OR K Sk SR R Sk R SRR SR SO RO SR Rk SR SR SR SR KRS K R K K

JE:

* Remaining functions are for decryption algorithm as detailed
at

* http://arduino—projects4u .com/des—algorithm/

*/

/**
[2otk o ook o o o o o sk o ok ook ok ook o o o o o o o o o o ok o oo ook o o R R o o o o o o o ok o o ok ok o o R o o o o o o o ok ok o ok o ok R R R

[s st st oot ok e o s sk ok s s o o oo ok stk R R sl sk R s o o sk s o kst ok st R s s ok s o sk o ot st ok Rk s R s o o s sk ok ok ok ok Rk R R R K

void permute(const uint8_t xptable, const uint8_.t *in, uint8_.t =
out) {
uint8_t ob; /# in—bytes and out—bytes x/
uint8_t byte, bit; /x counter for bit and byte =/
ob = ptable[1];
ptable = &(ptable [2])
for (byte=0; byte<ob; ++byte){

111

uint8_.t x,t=0;
for (bit=0; bit <8; ++bit){
x=«ptable++ —1 ;
t<<=1;
if ((in[x/8]) & (0x80>>(x%8))){
t|=0x01;
}
t
out [byte]=t;test [byte]=t:
;
}

[ok st ot ot ot ke e o o o sk o s ok stk kst ok ok R s o ok ok s ok ok ook R ok ok R R R R i ok s sk sk ok R ok ok ok ok ek R sk ok ok sk o ok sk sk sk sk ok o

void changeendian32(uint32_t % a){
xa = (#a & 0x000000FF) << 24 |

(+a & 0x0000FF00) << 8§ |
(+a & 0xX00FF0000) >> 8 |
(xa & 0xFF000000) >> 24;
box=((*a & 0x000000FF) << 24)|
(xa & 0x0000FF00) << 8 |
(¥a & 0x00FF0000) >> 8 |
(xa & 0xFF000000) >> 24;

1

[ookt ok ok o sk ok o sk ok ook ok ok Kok KRR R s R R o o o ok ok ok K ok ok ok ko R R Rk o ok sk ok ok ok ok ok ok ok ok okl R s ok ok ok sk ok ok ok o

static inline
void shiftkey (uint8_t xkey){
uint8_t k[7];
memepy (k, key, 7);
permute ((uint8_t *)shiftkey_permtab , k, key);
if (DEBUG = true) {
Serial.print ("CD["):Serial.print(m): Serial.print (7]
56 xits = 7);
for (int j=0:;j<7;j++){
if (test[j]<0x10) Serial.print(707);
Serial.print(test[j] ,HEX); Serial.print(” 7);
print_binary (test [j],8);Serial.print (" 7);
}
Serial.println();

}

112 Chapter G. Arduino Code

}

/:oc***********:«***

/**

static inline
uint64_t splitin6bitwords (uint64_t a){
uint64_t ret=0;
a &= 0x0000FffFEfFrffffLL ;
permute ((uint8_t*)splitin6bitword_permtab , (uint8_t*)&a, (
uint8_t =)&ret) ;
return ret ;

}

/**

static inline
uint8_t substitute(uint8_t a, uint8_t * shp){
uint8_t x;
x = sbpla>>1];
x = (a&l)?7x&0x0F : x>>4;
return x;

}

/**

uint32_t des_f(uint32_t r, uint8_t* kr){
uint8_t i:
uint32_t ret;
uint64_t data;
uint8_t xsbp; /% sboxpointer =/
permute ((uint8_t*)e_permtab, (uint8_t*)&r, (uint8_t=*)&data);
showprint ="E 48 bits = ";printoutl (0,6);
for(i=0; 1<7; ++i) {((nint8_t*)&data)[i] "= kr[i]:}
if (DEBUG == true) ({
Serial.print (”ExorKS 48 bits = ");
for (int j=0;j <6;j++){
if (((uint8_tx)&data)[j]<0x10) Serial.print(”07);

113

}

Serial.print (((uint8_t*)&data)

il

print_binary (((uint8_t=*)&data)

}

Serial.println ();

}

/#* Sbox substitution =/
data = splitinGbitwords (data);
sbp=(uint8_t *)shox;
for (i=0; i<8 ++i){
uint8_t x:
x = substitute (((unint8_tx)&data) |
t<<=4;
t |= x;
sbp += 32;
}
changeendian32(&t);
if (DEBUG = true) {
Serial.print (7 Shox 32 bits

[j] ,HEX); Serial.print(” 7)

[j],8);Serial.print(” 7);

i], sbp);

=");

if (box/0x1000000<0x10) Serial.print(”07);
Serial.print (box/0x1000000 HEX); Serial . print(” "):

print_binary (box/0x1000000,8)

;Serial.print (7 7);

if (box/0x10000&0xFF<0x10) Serial.print(”0”);
Serial. print (box/0x10000&0xFF ,HEX) ; Serial . print (" 7);
print_binary (box/0x10000&0xFF,8) ; Serial . print (" 7);

if (((box/0x100)&0xFF)<0x10) Serial.print(”0");
Serial. print (box/0x100&0xFF HEX) ; Serial. print (" 7);
print_binary (box/0x100,8); Serial .print(” 7);

if (box&0xFF<0x10) Serial.print(707);
Serial. print (box&0xFF HEX); Serial.print (™ 7);

print_binary (box&0xFF 8) ;
Serial.println ();

}

permute ((nint8_t#)p_permtab ,(uint8_t*)&t, (uint8_tx*)&ret);

showprint = "P 32 bits = ",

return ret ;

printoutl (0,4);

114 Chapter G. Arduino Code

/**

void des_enc(void# out, const void# in, const void* key){
#define R #((uint32_t*)&(data[4]))
#define L #((uint32_t=*)&(data[0]))
uint8_t kr[6] ,k[7];
permute ((uint8_t*)ip_permtab, (uint8_tx)in, data);
showprint = "L[0] 32 bits = 7; printoutl (0,4);
showprint = "R[0] 32 bits = 7; printoutl(4,8);
permute ((uint8_t*)pcl_permtab, (const uint8_tx)key, k);
showprint = "CD[0] 56 bits = 7; printoutl(0,7);
for (i=0; i<8; i++){

Dx=i*2+1;
if (DEBUG = true) { Serial.print(”Round ");
Serial.println(Dx); }
shiftkey (k) ;
if (ROTTABLE& ((1<<((i<<1)+0)))) shiftkey (k);
permute ((uint8_t %) pc2_permtab, k, kr);

showprint = "KS 48 bits = 7; printoutl (0,6);
L "= des_f(R, kr);

showprint = "L[1] 32 bits = 7; printout2(0,4);

showprint = "R[1i] 32 bits = 7; printout2(4,8);

Dx=i%2+2;

if (DEBUG = true) { Serial.print(”Round 7);
Serial.println(Dx); }
shiftkey (k) ;
if (ROTTABLE&((1<<((i<<1)+1)))) shiftkey(k):
permute ((uint8_t #)pc2_permtab, k, kr);

showprint = "KS 48 bits = 7; printoutl (0,6);
R "= des_f(L, kr);
showprint = "L[1] 32 bits = 7; printout2(0,4);
showprint = "R[i] 32 bits = 7; printout2(4,8);
}
/* L <—> Rx/
R "= L;
L "= R;
R "= L;

showprint = "LR[16] 64 bits = ”; printout2(0,8);
permute ((uint8_t*)inv_ip_permtab , data, (uint8_t=)out);
showprint = "Crypt 64 bits = 7; printoutl(0,8);

115

}

ook ok ok ok ok ok sk ok ok ok ok ok ok ok Rk R R ok ok ok ok Sk ok Kok ok kR R R R R sk ok ok ok ok ok ok ok ok ok R s kR ok ok sk ok oK ok o

void des_dec(void* out, const void# in, const uint8_t* key){
#define R #((uint32 _t«)&(data[4]))
#define L =((uint32_t*)&(data[0]))
uint8_t kr[6].k[7];
permute ((uint8_t#)ip_permtab, (uint8_t=*)in, data);
showprint = "L[0] 32 bits = 7; printoutl(0,4);
showprint = "R[0] 32 bits = 7; printoutl (4,8);
permute ((uint8_t *)pcl_permtab, (const uint8_tx*)key, k);
showprint = "CD[0] 56 bits = ”; printoutl(0,7);
for (i=7; i>=0; i——){

Dx=i%2+42;
if (DEBUG = true) { Serial.print(”Round ");
Serial.println (Dx); }
permute ((uint8_t =) pcl_permtab, (const uint8_t*)
key, k);
for (m=1;meDx+ 1) {
shiftkey (k) ;
if (ROTTABLE&(1<<(m—1))) shiftkey (k);
}
permute ((uint8_t*)pc2_permtab, k, kr);
showprint = "KS 48 bits = 7; printoutl(0,6);
L "= des_f(R, kr);
showprint = "L[1] 32 bits = 7; printout2(0,4);
showprint = "R[1] 32 bits = 7; printout2(4,8);

Dx=i #241;

if (DEBUG == true) { Serial.print(”Round ");
Serial.println (Dx): }

permute ((uint8_t=)pcl_permtab, (const uint8_t=*)
key, k);

for (m=1;mDx+ 1;m++){

shiftkey (k) ;
if (ROTTABLE& (1<<(m—1))) shiftkey(k);

permute ((uint8_t*)pc2_permtab, k, kr);
showprint = "KS 48 bits = 7; printoutl(0,6);
R "= des f(L, kr);

116 Chapter G. Arduino Code

showprint = "L[i] 32 bits = "; printout2(0.4);
showprint = "R[1i] 32 bits = "; printout2(4.,8);

¥ L > Rx/

b= B = w R

<_
= L
= R;
= L
showprint = "LR[16] 64 bits = 7; printout2(0,8);
permute ((uint8_t*)inv_ip_permtab , data, (uint8_t=)out);
showprint = 7"Plain 64 bits = 7; printoutl(0,8);

}

void print_binary(uint64_t v, int num_places)
uint64_t mask=0, n;
for (n=1; n<=num_places; n++)

{
}

v = v & mask; // truncate v to specified number of places
while (num_places)

mask = (mask << 1) | 0x00000001;

if (v & (0x00000001 << num_places—1))
{

Serial.print ("17);

Serial. pl‘il'lt (3'-033) ;
}
—num_places;
if (((num_places%8) = 0) && (num_places != 0))

Serial . print (7 7);

}

}

void printoutl(int min,int max) {
if (DEBUG = true) {
Serial.print (showprint);
for (int j=min;j<max;j++){
if (test[j]<0x10) Serial.print(”07);
Serial.print (test[j] ,HEX); Serial.print(” 7);

117

print_binary (test[j],8);Serial.print (™ 7);
}
Serial.println ();
}

}

void printout2(int min,int max) {
if (DEBUG = true) {
Serial.print (showprint);
for (int j=min;j<max;j++){
if (data[j]<0x10) Serial.print(707);
Serial.print (data[j] ,HEX); Serial .print(” 7);
print_binary (data[j].8): Serial.print(” 7);:
}
Serial.println ();

}

118

Chapter G. Arduino Code

Bibliography

[1] (2015) Esp8266 - at command reference. Room-15. [Online]. Available: https:
//room-15.github.io/blog/2015/03/26 /esp8266-at-command-reference/

[2] (2017) Arduino products. Arduino. [Online]. Available: https://www.arduino.cc/
en/Main/Products

[3] (2017) [sofosi model in communication networks. studytonight.
Studytonight.com. [Online]. Available: http://www.studytonight.com/
computer-networks/complete-osi-model

[4] “Signaling.” Columbia Electronic Encyclopedia, 6th Edition, p. 1, 2017.

[5] (2017) Sqgl commands and functions. Microsoft. [Online]. Available: https:
//msdn.microsoft.com/en-us/library /aa978483(v=vs.71).aspx

[6] (2017) What is cloud computing? a beginners guide. Microsoft. [Online]. Available:
https://azure.microsoft.com/en-au/overview /what-is-clond-compnting /

[7] M. Ahemd, M. Shah, and A. Wahid, “lot security: A layered approach for at-
tacks defenses,” in 2017 International Conference on Communication Technologies
(ComTech), 2017.

[8] J. Bartje. (2016) The top 10 iot application areas - based on rea iot projects. [Online].
Available: https://iot-analytics.com/top-10-iot-project-application-areas-q3-2016,/

9] I. A. Board. (2015) Architectural considerations in smart object networking.
[Online]. Available: https://tools.ietf.org/html/rfc7452

[10] “Industry trend analysis - iot key themes 2017 - enterprise drives focus on cost
cutting,” Business Montitor International, 2015.

[11] “Economic analysis - the internet of things: Slow burner, but game changer,” Busi-
ness Montitor International, 2017.

[12] A. Foster, “Messaging technologies for the industrial internet and the internet of
things,” PrismTech, 2013.

119

120 BIBLIOGRAPHY

[13] E. J. Hurst, “Evolutions in telemedicine: From smoke signals to mobile health solu-
tions,” Jowrnal of Hospital Librarianship, vol. 16, no. 2, pp. 174-185, April 2016.

[14] “Information technology - open systems interconnection - basic reference model: The
basic model,” International Organisation for Standardization, 1996.

[15] R. W. Lucky, “Wires and wireless,” :EEE Spectrum, p. 32, November 2012.

[16] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and D. Aharon,
“The internet of things: Mapping the value bevond the hype,” McKinsey Global
Institute, 2015.

[17] D. McFarlane. (2015) The origin of the internct of things. [Online]. Available:
http://www.redbite.com/the-origin-of-the-internet-of-things/

[18] P. Mell and T. Grance, “The nist definition of cloud computing,” National Institute
of Standards and Technology, 2011.

[19] Robottini. (2011) Dynamixel ax-12a and arduino: how to use
the serial port. [Online]. Available: http://robottini.altervista.org/
dynamixel-ax- 12a-and-arduino- how-to-use-the-serial-port

[20] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An overview,” Internet
Society, White Paper, 2015.

[21] S. Vashi, J. Ram, J. Modi, S. Verma, and C. Prakash, “Internet of things (iot): A
vision, architectural elements, and security issues,” in 2017 International Conference
on -SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017.

[22] R. Weatherley. (2017) Arduino libraries. [Online]. Available: https://github.com/
rweather /arduinolibs

	43888992_Thesis
	by David Simpson

