Low Temperature Oxidation of Coal

by

Stuart J. Day BAppSc (NSWIT)

A thesis submitted for the degree of

Master of Science

Department of Chemistry Macquarie University, Australia

20 December, 2001

HIGHER DEGREE THESIS AUTHOR'S CONSENT (MASTERS)

This is to certify that I, STURRT JCHA DAY being a candidate for the degree of MSE are aware of the policy of the University relating to the retention and use of higher degree theses as contained in the University's Master Degree Rules generally, and in particular Rule 7(10).

In the light of this policy and the policy of the above Rules, I agree to allow a copy of my thesis to be deposited in the University Library for consultation, loan and photocopying forthwith.

Hava Signature of Witness

.....

Signature of Candidate

Dated this ______ 21 57 _____ day of _____ 2001

Office Use Only

The Academic Senate on 19 July 2002 resolved that the candidate had satisfied requirements for admission to the degree of MSc. This thesis represents a major part of the prescribed program of study.

CORRECTIONS AND CLARIFICATIONS

教士

Throughout this thesis, the rate of oxygen consumption or moisture uptake by the coal has been expressed in units of g $O_2/g/s$ or g $H_2O/g/s$, respectively. These units are intended to mean grams of O_2 (or H_2O) per gram of coal per second, i.e. g O_2 g⁻¹ coal s⁻¹.

Chapter 2 p. 36 The thermocouple used in the reactor to measure the sample temperature was a T type (copper-constantan).

p. 36 The MTI gas chromatograph was fitted with a thermal conductivity detector.

Chapter 3 p. 50 Line 9: "various partial pressures of CO₂ so than an isotherm" should read "various partial pressures of CO₂ so that an isotherm"

p. 56 Figure 3.10 shows the dependence of apparent activation energy on mean particle diameter. The data from which this plot was made are listed below:

Mean Particle	Apparent Activation
Diameter (mm)	Energy (kJ mol ⁻¹)
0.13	53.1 ± 2.4
0.30	44.2 ± 6.8
0.47	48.1 ± 5.3
0.68	54.4 ± 6.4
1.01	36.0 ± 1.4
2.25	46.9 ± 0.8
5.73	46.1 ± 0.5
9.00	36.3 ± 3.5
24.0	$\textbf{43.5} \pm \textbf{0.4}$

Alient Day 26/7/2002

Contents

-

L	ist of Fig	ures	iv
A	bstract		vi
D	eclaratio	n	vii
A	cknowlea	gements	viii
1	Review	v of Previous Work	1
	1.1 Self	-Heating and Spontaneous Combustion	1
	1.2 Oxi	dation of Coal	2
	1.2.1	Coal Formation and Classification	
	1.2.2	Chemistry of Oxidation	
	1.2.3	Effect of Particle Size	
	1.2.4	Effect of Time	
	1.2.5	Effect of Temperature	
	1.2.6	Effect of Moisture	
	1.2.7	Effect of Oxygen Concentration	
	1.3 Mo	isture in Coal	
		ns of This Work	
		erences	
-			
2	-	imental Procedures	
	2.1 Exp	perimental	
	2.1.1	Samples	
	2.1.2	Mercury Porosimetry Measurements	
	2.1.3	Helium Pycnometry Measurements	
	2.1.4	Surface Area Measurements	
	2.1.5	Petrographic Analyses	
	2.1.6	Rate of Oxidation Measurements	
	2.1.7	Adsorption of Moisture	
	2.2 Ref	erences	
3	Coal (Characterisation and Oxidation Rate Measurements	41
	3.1 Ch	emical and Physical Properties	41
	3.1.1	Chemical Composition	
	3.1.2	Petrology	43
	3.1.3	Mercury Porosimetry	44
	3.1.4	Helium Densities	
	3.1.5	CO ₂ Surface Areas	
	3.2 Ox	dation Kinetics	
	3.2.1	Effect of Time	
	3.2.2	Effect of Temperature	
	3.2.3	Effect of Coal Petrology	
	3.2.4	Effect of Particle Size	
	3.3 Ref	erences	66
4	Model	ling of Oxidation Kinetics	
1		roduction	
		e Elovich Model	
	4.2.1	Results	

	4.	The 3.1 3.2	Shrinking Core Model Description of the Model Results	78
	4.	The 3.1 3.2	Pore Tree Model Description of The Model Results	94
	4.4	Refe	erences	
5	Mo	oistu	re Adsorption	105
	5.1	Moi	sture Isotherms	
	5. 5.	Rat 2.1 2.2 2.3	e of Adsorption Effect of Relative Humidity Effect of Temperature Effect of Particle Size	
	5.3	Moi	sture Adsorption Kinetics	113
	5.4	Refe	erences	123
6	Co	nclu	ısions	125
	6.1	Coa	l Characterisation	125
	6.2	Por	e Structure	125
	6.3	Effe	ect of Particle Size on the Rate of Oxidation	127
	6. 6.	Kin 4.1 4.2 4.3	etic Modelling Elovich Model Shrinking Core Model Pore Tree Model	
	6.5	Moi	isture Adsorption	131
A	ppe	ndiy	Χ	134

Summary of Previous Research into the Effect of Particle Size on the Rate of Oxidation

List of Figures

Figure 1.1. Oxidation rate as a function of time for Puxtrees coal at 120 °C14
Figure 2.1. Representation of mercury penetrating a cylindrical pore (from Gregg and Sing, 1991)
Figure 2.2. Schematic diagram of the automated apparatus used for measuring the rate of oxygen consumption
Figure 2.3. One of the reactors used for the oxidation rate measurements. Air entered at the
bottom fitting and exited at the top. The thermocouple for monitoring the sample temperature is visible
Figure 3.1. The dependence of chemical composition on particle size
Figure 3.2. The dependence of petrographic composition of Puxtrees coal on particle size
Figure 3.3. The dependence of total intruded volume on particle size
Figure 3.4. Mercury porosimetry pressure - intruded volume curves for various particles
size fractions
Figure 3.5. The dependence of helium density on particle size
Figure 3.6. The dependence of CO_2 surface area on particle size
Figure 3.7. Oxidation rate as a function of time for 8-10 mm particles of Puxtrees coal 53
Figure 3.8. Oxidation rate as a function of time for the full range material at temperatures from 22 to 120 °C
Figure 3.9. Arrhenius plots for -32 mm Puxtrees coal
Figure 3.10. The dependence of apparent activation energy on particle size
Figure 3.11. Comparison of oxidation rate curves for 8-10 mm which had been crushed to
-250 µm and the original -250 µm fraction
Figure 3.12. The dependence of oxidation rate (at 120 °C) on particle size
Figure 3.13. The dependence of oxidation rate (at 75 °C) on particle size
Figure 3.14. The dependence of oxidation rate (measured at 10 days) on particle size 59
Figure 3.15. Oxidation rate at 90 °C normalised to the spherical external surface area 64
Figure 3.16. Oxidation rate at 90 °C normalised to the mercury intruded volume66
Figure 4.1. The dependence of activation energy on time
Figure 4.2. The dependence of pre-exponential factor on time
Figure 4.3. Comparison of Elovich model with experimental data for Puxtrees coal at
90 °C. The particle size was 1.7-2.8 mm
Figure 4.4. The dependence of the Elovich a parameter on particle size
Figure 4.5. The dependence of the Elovich α parameter temperature
Figure 4.6 Comparison of measured oxidation rates at 22 and 35 °C to those predicted by
the Elovich model
Figure 4.7. Progress of reaction in the shrinking core model (from Denbigh and Turner, 1971)
Figure 4.8. Comparison of experimental results for 1.44 mm particles at 120 °C with the
SCM calculated curve. The effect of varying k and D_e is also shown – best k = 6.50 x
10^{-5} s^{-1} , high k = 9.75 x 10-5 s ⁻¹ ; best D _e = 1.50 x 10-9 cm ² s ⁻¹ , high D _e = 2.25 x 10 ⁻⁹ cm ² s ⁻¹
$cm^2 s^{-1}$
Figure 4.10. The dependence of the values estimated for the rate constant, k, on particle size
Figure 4.11. Comparison of measured rate data with rates calculated with the shrinking
core model

Figure 4.12. Comparison of measured data for 75, 90 and 105 °C with rates calculated
with the shrinking core model
Figure 4.13. Structure of coal particles assumed in the modified shrinking core model 90
Figure 4.14. The dependence of the values estimated for the rate constant (a) and
diffusivity (b) on particle size using the modified shrinking core model92
Figure 4.15. Fraction of total rate for chemical kinetics, Knudsen diffusion and bulk
diffusion. (a) $k = 4 \times 10^{-7}$; (b) $k = 4 \times 10^{-6}$
Figure 4.16. Oxidation rates predicted by the pore tree model for the chemical kinetics,
Knudsen diffusion, bulk diffusion and overall rate using the parameters listed in Table
4.2. The data for Puxtrees coal were measured at $t = 0$ days at 105 °C101
Figure 5.1. Moisture uptake of coal samples (at 10 °C and 76 percent relative humidity) as
a function of time
Figure 5.2. Moisture isotherms for Puxtrees coal at 10, 20, 30, 40 and 60 °C. The solid line
is the calculated Langmuir isotherm for the 20 °C data
Figure 5.3. Measured isotherms at 10, 20, 30 and 40 °C compared with the corresponding modelled
isotherms calculated using Equation 5.2
Figure 5.4. Rate of moisture adsorption (at 10 °C and 76 percent relative humidity) as a
function of time
Figure 5.5. Effect of relative humidity on rate of adsorption. Rates were measured after
two days of exposure110
Figure 5.6. Arrhenius plots for moisture adsorption at various relative humidities111
Figure 5.7. The dependence of the rate of moisture uptake on particle size. Rates were
measured after one day at 10 °C and 76 percent relative humidity
Figure 5.8. Shrinking core geometry of moisture in a single coal particle (from Monazam
et al., 1998)
Figure 5.9. Comparison of model predictions with measured moisture contents as a
function of time for Puxtrees coal
Figure 5.10. The dependence of the model output on the value used for D_w
Figure 5.11. The dependence of predicted moisture content on temperature as a function of
time. Particle size = 5 mm, relative humidity = 75%
Figure 5.12. The dependence of predicted moisture content on relative humidity as a
function of time. Particle size = 5 mm, temperature = $20 ^{\circ}C$
Figure 5.13. The dependence of predicted moisture content on particle size as a function of
time. Relative humidity = 75 %, temperature = $20 ^{\circ}C$
125

Abstract

The kinetics of oxidation of a high volatile bituminous coal have been studied at temperatures between 75 and 120 °C and particle sizes between 0.125 and 24 mm. The rate of oxidation was found to increase with increasing temperature yielding an activation energy of about 45 kJ/mol. At temperatures below about 75 °C the oxidation rate was essentially independent of the particle size but at higher temperatures, the rate tended to decrease with increasing particle size. For all of the temperatures examined, however, the rate remained independent of particle size if the particles were less than about 1 mm in diameter. This suggests that in those regimes where there is no particle size dependence, the overall rate of oxidation is under chemical control whereas in regions where the rate reduces with increasing particle diameter, diffusion becomes the rate limiting mechanism.

Several oxidation rate models were tested against the experimental results. Of these, a modification of the shrinking core model in which each particle was assumed to be made up of many individual shrinking cores provided the best fit yielding excellent agreement with the measured rates.

Moisture adsorption isotherms and the rate of moisture uptake by the coal were studied at temperatures between 10 and 60 °C and relative humidities ranging from about 10 to 100 percent. At all temperatures, moisture adsorption followed the Langmuir isotherm up to about 80 percent relative humidity but above this level the moisture content of the coal was substantially underestimated by the Langmuir model. An empirical model originally proposed by Henderson was found to provide a better fit over the full relative humidity and temperature but decreased with increasing particle size. A rate model, similar in form to the shrinking core model, provided a very good fit to the experimental data and successfully predicted the effects of temperature, relative humidity and particle size on the rate of adsorption.

Declaration

I hereby declare that this thesis is my own work and that none of the material contained within it has been submitted, in part or in full, for a higher degree to any other university or institution.

Hud Da

Stuart John Day

Acknowledgements

There are a number of people who deserve a special mention for their part in helping me to complete this thesis. Firstly, I would like to thank my employer, the CSIRO Division of Energy Technology, for generously granting me the necessary time off and making available their North Ryde laboratory facilities for me to undertake this research.

I am especially grateful to my two supervisors, Professor Brian Gray of the Department of Chemistry at Macquarie University and Dr John Carras of the CSIRO Division of Energy Technology for their continuing guidance and assistance. I would particularly like to thank Dr John Carras for his interest in and enthusiastic support of this project from its beginning, without which this work would not have been possible.

Finally, my most sincere thanks go to my wife, Jenny, and son, Robbie, for their enduring encouragement and support during the time that I have worked on this project