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CORRECTIONS AND CLARIFICATIONS 


Throughout this thesis, the rate of oxygen consumption or moisture uptake by the coal 
has been expressed in units of g 02/g/s or g H20/g/s, respectively. These units are 
intended to mean grams of 0  2 (or H20) per gram of coal per second, i.e. g 0  2 g" 
coal s"1. 

Chapter 2 p. 36 The thermocouple used in the reactor to measure the sample 
temperature was a T type (copper-constantan). 

p. 36 The MTI gas chromatograph was fitted with a thermal 
conductivity detector. 

Chapter 3 p. 50 Line 9: "various partial pressures of C02 so than an isotherm" 
should read "various partial pressures of C02 so that an isotherm" 

p. 56 Figure 3.10 shows the dependence of apparent activation 
energy on mean particle diameter. The data from which this plot was 
made are listed below: 

Mean Particle Apparent Activation 
Diameter (mm) Energy (kJ mol"1) 

0.13 53.1 ±2.4 
0.30 44.2 ±6.8 
0.47 48.1 ±5.3 
0.68 54.4 ±6.4 
1.01 36.0 ±1.4 
2.25 46.9 ±0.8 
5.73 46.1 ±0.5 
9.00 36.3 ±3.5 
24.0 43.5 ± 0.4 
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Abstract 


The kinetics of oxidation of a high volatile bituminous coal have been studied at 

temperatures between 75 and 120 °C and particle sizes between 0.125 and 24 mm. The rate 

of oxidation was found to increase with increasing temperature yielding an activation 

energy of about 45 kJ/mol. At temperatures below about 75 °C the oxidation rate was 

essentially independent of the particle size but at higher temperatures, the rate tended to 

decrease with increasing particle size. For all of the temperatures examined, however, the 

rate remained independent of particle size if the particles were less than about 1 mm in 

diameter. This suggests that in those regimes where there is no particle size dependence, 

the overall rate of oxidation is under chemical control whereas in regions where the rate 

reduces with increasing particle diameter, diffusion becomes the rate limiting mechanism. 

Several oxidation rate models were tested against the experimental results. Of these, a 

modification of the shrinking core model in which each particle was assumed to be made 

up of many individual shrinking cores provided the best fit yielding excellent agreement 

with the measured rates. 

Moisture adsorption isotherms and the rate of moisture uptake by the coal were studied at 

temperatures between 10 and 60 °C and relative humidities ranging from about 10 to 100 

percent. At all temperatures, moisture adsorption followed the Langmuir isotherm up to 

about 80 percent relative humidity but above this level the moisture content of the coal was 

substantially underestimated by the Langmuir model. An empirical model originally 

proposed by Henderson was found to provide a better fit over the full relative humidity 

range. The rate of moisture uptake increased with increasing relative humidity and 

temperature but decreased with increasing particle size. A rate model, similar in form to 

the shrinking core model, provided a very good fit to the experimental data and 

successfully predicted the effects of temperature, relative humidity and particle size on the 

rate of adsorption. 
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