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Summary 

In everyday life our brains receive a huge amount of information from our senses. 

Since we cannot process it all, we must select the information that is most relevant for our 

current activity and prioritise it over other, irrelevant, information. This ‘selective 

attention’ process is critical for making sense of the world around us and for functioning 

successfully within it.  

Certain regions of frontal and parietal cortex have long been implicated as sources 

of selective attention in the brain. In particular, the ‘adaptive coding hypothesis’ proposes 

that certain neural populations adjust to selectively code the information that is required 

for current behaviour (Duncan 2001). This may serve as a source of bias, supporting 

related information processing across the rest of the brain (Desimone and Duncan 1995, 

Miller and Cohen 2001). The primary aims of this thesis were to investigate if adaptive 

coding provides a mechanism for feature-selective attention in the frontoparietal cortices 

and whether this in turn modulates responses across the rest of the brain. 

In Chapter 1, I present an overview of the relevant literature. In Chapter 2 I used 

multi-voxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) 

data to demonstrate that regions of the frontoparietal cortices prioritise coding of task-

relevant features over equivalent irrelevant feature information. In Chapter 3 I replicated 

this finding and examined the adaptive response of these regions in greater detail, 

investigating the extent to which single voxels in these regions can be re-used to code 

information across multiple tasks. In Chapter 4 I developed a paradigm that tracks the 

extent to which irrelevant information interferes with behavioural performance, and tested 

the causal contribution of the right dorsolateral prefrontal cortex (dlPFC) to this task using 
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transcranial magnetic stimulation (TMS). In Chapter 5 I used this paradigm to examine the 

behavioural and neural consequences of disrupting activity in the frontal lobe, using 

concurrent TMS-fMRI. Using MVPA, I found that disrupting the right dlPFC with TMS 

affected the multi-voxel coding of both relevant and irrelevant feature information in 

frontal, parietal and visual cortices. Finally, in Chapter 6, I discuss the implications of 

these results in a broader context and suggest some areas for future research. Together, the 

experiments presented in this thesis advance the understanding of flexible mechanisms 

employed in the frontoparietal cortices in the context of feature-selective attention.  
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Chapter 1 

 Introduction 

  

At every moment our brains receive far more input than they can process at once. 

Because of this, we need to prioritise a subset of the available information and ignore the 

rest, a process known as selective attention. Additionally, the selective attention system 

needs to be flexible, to cope with the changing input and goals of everyday life. Consider, 

for example, a situation where you are in an airport trying to reach your flight. You must 

attend to the relevant inputs (flight details on the board) to find your gate number (current 

goal) in order to reach your flight on time (end goal). In order to do this effectively, you 

need to ignore irrelevant details (e.g. other flight information, announcements, background 

noise, etc) that are bombarding your senses. Having established the gate number you now 

need to attend to other aspects of the environment (e.g. direction signs) while ignoring 

information that was previously relevant (flight board). This need to prioritise processing 

of some aspects of input over others, depending on our current goal, is a constant 

requirement that our brains are usually able to cope with efficiently.  

In some cases, we may wish to prioritise processing of a single feature of an 

object. For example, if you were to use a welding torch to weld two pieces of metal 

together, you would need to first focus your attention on the colour of the flame produced 

to ensure that it is at the correct temperature. Next you would need to switch your focus of 

attention to the width of the beam, currently ignoring the colour of the flame, in order to 

adjust the width depending on the size of the metals you are welding together. In everyday 
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life, we encounter a variety of situations requiring this ability to flexibly select the relevant 

inputs for the current task, whether this is at the level of listening for a flight 

announcement amongst distractors or at the level of focusing on the relevant feature of a 

single object.  

The neural underpinnings of flexible selective attention are thought to involve the 

frontal and parietal cortices. Evidence for this comes from several converging methods. 

Neuropsychological research has pointed to the frontal and parietal lobes, and in particular 

the prefrontal cortex (PFC), as critical to adaptive goal-directed behaviour. Damage to this 

region often results in inflexible behaviour both in humans (e.g. Luria, 1966; Manes et al., 

2002) and in non-human primates (Rossi, Bichot, Desimone, & Ungerleider, 2007). 

Evidence from neurostimulation studies has also demonstrated the importance of frontal 

cortex, alongside the parietal cortices, in enabling goal-directive behaviour via top-down 

modulation of earlier processing areas (e.g. Feredoes, Heinen, Weiskopf, Ruff, & Driver, 

2011; Higo, Mars, Boorman, Buch, & Rushworth, 2011; Lee & D'Esposito, 2012; Miller, 

Vytlacil, Fegen, Pradhan, & D'Esposito, 2011; Morishima et al., 2009; Ruff et al., 2006; 

Taylor, Nobre, & Rushworth, 2007; Zanto, Rubens, Thangavel, & Gazzaley, 2011). In 

human neuroimaging, studies similarly converge that cognitive control seems to be 

implemented by a network of regions in frontal and parietal cortices (Cole & Schneider, 

2007; Corbetta & Shulman, 2002; Duncan, 2010; Duncan & Owen, 2000; Fedorenko, 

Duncan, & Kanwisher, 2013; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). 

A large body of evidence implicates both the frontal and parietal cortex in 

cognitive control. However, the mechanisms by which flexible selective attention, a key 

component of cognitive control, is realised, requires further investigation. One influential 

proposal, the adaptive coding hypothesis (Duncan, 2001) theorises that neurons in certain 
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higher brain regions dynamically adjust their responses to code for information that is 

currently relevant. In doing so, they may provide a source of bias to other, more 

specialised, brain regions, to support preferential processing of the relevant information in 

those regions as well (Desimone & Duncan, 1995). Thus, adaptive coding provides a 

possible neural mechanism for the implementation of selective attention. 

The focus of this thesis is to investigate whether adaptive coding in human 

frontoparietal cortex could operate as a mechanism for selective attention. I focus 

particularly on feature-selective attention: the selection of relevant over irrelevant features 

of single objects (Chen, Hoffmann, Albright, & Thiele, 2012). In this chapter I start by 

reviewing the literature that implicates frontal and parietal cortex in goal-directed 

behaviour. Next, I review some of the prominent models of attention, which sit within a 

broad framework of executive control. I then focus particularly on the adaptive coding 

hypothesis (Duncan, 2001) and consider the evidence for restricted regions of the 

frontoparietal cortices as candidates for adaptive coding in the human brain. Finally, I 

explore how adaptive coding in this network could provide a mechanism for feature-

selective attention. I conclude with an outline of the thesis, outlining my research 

questions about the implementation of feature-selective attention in the human brain. 

Frontal and parietal lobes as critical for goal-directive 

behaviour 

Selective attention is necessary to prioritise the contents of capacity-limited 

networks in favour of task-relevant representations. This supports successful performance. 

The process is thought to rely on “top-down” modulation, in which signals from higher 

cortical regions bias processing in earlier cortical regions. Top-down modulation may 
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support selection through both enhancement of task-relevant, and suppression of task-

irrelevant, neural activity in specialised processing regions such as the visual cortex (e.g. 

Desimone & Duncan, 1995; Gazzaley, Cooney, McEvoy, Knight, & D'esposito, 2005; 

Kanwisher & Wojciulik, 2000; Knight, Staines, Swick, & Chao, 1999; Shimamura, 2000). 

The frontal cortex was one of the first areas to emerge as a potential source of top-down 

signals due to the widespread and reciprocal anatomical connectivity between subregions 

of the frontal lobes and multiple levels of the visual system (Miller & Cohen, 2001; 

Webster, Bachevalier, & Ungerleider, 1994). In addition, a wealth of neuropsychological 

studies has connected frontal damage to deficits in executive functions, which involve 

impairment of selective processing (e.g. Barceló & Knight, 2002; Bornstein, 1986; Drewe, 

1974; Eslinger & Grattan, 1993; Janowsky, Shimamura, Kritchevsky, & Squire, 1989; 

Milner, 1963; Nelson, 1976; Perret, 1974; Robinson, Heaton, Lehman, & Stilson, 1980; 

Stuss, Floden, Alexander, Levine, & Katz, 2001; Vendrell et al., 1995). In this section I 

will review a selection of the neuropsychological data that points towards a role of the 

frontal, and to a lesser extent the parietal, cortices in executive functions. I will then 

discuss neuroimaging studies that provide further evidence that the frontal and parietal 

lobes are crucial for controlling attention. Finally, I will review neurostimulation data that 

link both frontal and parietal cortices with top-down modulation of earlier processing 

regions.  

Although several cognitive deficits have been associated with damage to the 

frontal cortex, a common denominator is inflexibility. For example, patients with frontal 

lobe damage are typically unable to resist interference from stimuli, or aspects of stimuli, 

that would normally be suppressed or ignored (Chao & Knight, 1995). The Wisconsin 

Card Sorting Test (WCST, Grant & Berg, 1948) provides a measure of this inflexibility in 

frontal patients, in which the subject has to remember, and shift when needed, the 
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categorising principle of a series of figures (Milner, 1963). Individuals must deduce the 

rule by which the cards should be sorted (rather than being told the rule explicitly). After 

the initial rule is learned successfully, the examiner changes the rule so that the old rule 

must be rejected, the new rule discovered, and a switch made from using the old rule to 

the new. The ability to exhibit such flexible readjustment is proposed to be a central 

characteristic of executive function (Duncan, 2001). Individuals with frontal lobe damage 

tend to persist in sorting items according to the previous and now inappropriate rule, 

exhibiting difficulty with shifting to what is currently relevant. This has been observed in 

humans with frontal damage (e.g. Barceló & Knight, 2002; Bornstein, 1986; Drewe, 1974; 

Eslinger & Grattan, 1993; Janowsky et al., 1989; Milner, 1963; Nelson, 1976; Robinson et 

al., 1980) as well as non-human primates with lesions in the PFC (Dias, Robbins, & 

Roberts, 1996). 

Another popular assessment for attentional control is the Stroop task (Stroop, 

1935). In this task participants are asked to name the colour of the ink of (a) colour words 

that are printed in a congruous coloured ink (e.g. the word “green” printed in green ink, 

the congruent condition) and (b) colour words that are printed in incongruous coloured ink 

(e.g., the word “green” printed in blue ink, the incongruent condition) (Egner, 2007). Thus 

participants must attend to the ink colour and suppress information derived from the word. 

The robust effect, however, is that participants are slower and less accurate on the 

incongruent condition relative to the congruent one, suggesting that the information in the 

word interferes with the naming of the colour of the ink. This “congruency effect” 

provides a measure of interference by the irrelevant dimension. Frontal patients have been 

shown to perform poorly in this task, for example by making more errors in the 

incongruent condition, in comparison to healthy controls (Stuss et al., 2001; Vendrell et 

al., 1995) and patients with non-frontal lesions (Perret, 1974). Data from frontal lobe 
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patients with both the WCST and the Stroop, then, indicate a potentially causal role for the 

frontal cortex in selecting behaviourally relevant information over that which is irrelevant 

and distracting.  

Damage to regions of the parietal cortex has also been shown to affect 

performance on tasks that require flexibility. This includes (but is not limited to) tasks that 

involve response conflict (Coulthard, Nachev, & Husain, 2008), visuo-temporal attention 

(Shapiro, Hillstrom, & Husain, 2002), and aspects of working memory (WM) (e.g. Heide, 

Blankenburg, Zimmermann, & Kömpf, 1995; Koenigs, Barbey, Postle, & Grafman, 2009). 

A study by Roca et al., (2009) found that frontal patient deficits on many executive tasks 

requiring flexible selective attention, including WCST, can be entirely accounted for by 

deficits in fluid intelligence scores (Roca et al., 2009), which, in turn, are linearly 

predicted by the extent to which certain regions of frontal and parietal cortex are damaged 

(Woolgar et al., 2010). This suggests that certain regions of both frontal and parietal 

cortex may be important for attentional control.  

The role of frontal and parietal cortices in a variety of executive control processes 

has also been informed by neuroimaging data. For example, the PFC is activated in tasks 

where filtering of irrelevant information is required (Banich, Milham, Atchley, Cohen, 

Webb, Wszalek, Kramer, Liang, Wright, et al., 2000; Banich, Milham, Atchley, Cohen, 

Webb, Wszalek, Kramer, Liang, Barad, et al., 2000; Liu, Banich, Jacobson, & Tanabe, 

2004; MacDonald, Cohen, Stenger, & Carter, 2000). Activity in the anterior cingulate 

cortex (ACC) has also been associated with tasks requiring filtering of irrelevant 

information such as in the Stroop task with greater ACC activation in the incongruent 

condition compared with the neutral condition (e.g. Bench et al., 1993). Several adaptation 

studies also have shown that changes to an attended object (Downar, Crawley, Mikulis, & 

Davis, 2001; Hon, Epstein, Owen, & Duncan, 2006) or attended feature (Thompson & 
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Duncan, 2009) leads to extensive activation throughout frontal and parietal regions. In 

addition, frontal and parietal regions have been linked with top-down modulation of 

responses in posterior regions. For example, Kastner et al. (1999) cued participants to shift 

attention to a spatial location in expectation of a target stimulus. During the expectation 

period, several frontal and parietal regions showed increased activity compared to a 

resting baseline condition. Greater activity was also observed in visual cortices during the 

expectation period, perhaps implicating frontal and parietal regions in top-down signalling 

to the visual cortex, although the slow timecourse of fMRI does not allow inference about 

the order of events. These various studies provide converging evidence that frontal and 

parietal regions are important in selective attention.  

In healthy adults, neurostimulation data have provided causal evidence that top-

down influences from frontal and parietal cortices support selection for behaviourally 

relevant information. The critical role of the frontal and parietal cortices in attentional 

control has been demonstrated in humans using neurostimulation alone (e.g. transcranial 

magnetic stimulation, TMS) and also in combination with neuroimaging techniques (e.g. 

in combination with fMRI). 

TMS is a neurostimulation technique in which magnetic stimulation is used to 

induce an electric field in the brain. TMS delivers short magnetic pulses that temporarily 

disrupt neural processing at the site of stimulation, creating a temporary, reversible, 

‘virtual lesion’ (Walsh & Cowey, 2000). We can investigate the behavioural consequences 

of the stimulation, which allows us to infer whether activity at the site of stimulation 

contributes to a particular cognitive operation. For example, early studies on the human 

visual system (e.g. Amassian et al., 1989; Amassian et al., 1993) showed that stimulation 

of the visual cortex can interfere with perception. These early studies demonstrated that 

this technique has the potential to be used to infer causal structure-function relationships.   
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If disrupting a region using TMS affects performance of a specific aspect of an 

attentionally-demanding task, this can provide evidence that the region is involved in 

attention. For example, disruption of the dorsolateral PFC (dlPFC) with TMS impairs 

performance in a high load WM task, but only when irrelevant information is present in 

the paradigm (Sandrini, Rossini, & Miniussi, 2008). This suggests that the dlPFC is 

involved in attentional selection when irrelevant visual information must be ignored. In 

another example, Soutschek et al., (2013) stimulated either the intraparietal sulcus (IPS) or 

the pre-supplementary motor area (pre-SMA) during a task requiring participants to ignore 

irrelevant stimulus information. Participants decided whether a central letter surrounded 

by distractor letters was either a vowel or a consonant. The irrelevant distractors could 

either create response conflict where the irrelevant information was incongruent with 

required response, or perceptual conflict, where the irrelevant letters were different but 

required the same response (e.g. central letter and distractors were different vowels, “E” 

and “A”). Stimulation over IPS increased perceptual conflict whilst stimulation to pre-

SMA increased response conflict. This suggests that irrelevant stimulus information 

interfered more when these regions were temporarily disrupted, and that therefore these 

regions are normally important in supressing interference from this irrelevant information. 

These data indicate the involvement of these regions in selective attention and also 

demonstrate how stimulation techniques can be used to test a causal relationship between 

neural activity and behaviour.  

The data reviewed thus far provides strong converging evidence that frontal and 

parietal regions are involved in selective attention. A question remains as to what role they 

play. For example, do responses in these regions bias responses in earlier cortical regions 

to result in selective processing of relevant information? The combination of TMS with 

other techniques (e.g. electroencephalography, EEG, or fMRI), often described as 
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“perturb-and-measure” approaches (Paus, 2005), allows for direct assessment of how 

TMS affects neural processing both locally and in remote but connected brain regions 

(Bestmann & Feredoes, 2013). A number of studies have revealed causal influences of the 

frontal and/or parietal lobes on earlier processing regions by combining TMS with fMRI 

(e.g. Blankenburg et al., 2010; Feredoes et al., 2011; Higo et al., 2011; Miller et al., 2011; 

Ruff et al., 2008; Ruff et al., 2006; Ruff et al., 2009) or with EEG (e.g. Capotosto, 

Corbetta, Romani, & Babiloni, 2012; Morishima et al., 2009; Taylor et al., 2007; Zanto et 

al., 2011). For example, Zanto and colleagues (2011) used fMRI-guided, offline repetitive 

TMS (rTMS) to perturb function within a specific region of the PFC involved in a 

delayed-response task, then measured the outcome with EEG recordings. Ten minutes of 

rTMS to the right inferior frontal junction (IFJ) significantly reduced top-down 

modulation of the P1 component (a positive signal seen as early as 100ms post-stimulus 

onset) of the event-related potential (ERP) to colour stimuli at posterior electrodes, as well 

as a significant reduction in WM accuracy for colour. As P1 modulation recovered with 

time after rTMS, so did WM performance. The effect of rTMS-induced reduction in P1 

modulation during colour processing was also found to predict the reduction in WM 

accuracy on an individual participant basis. Moreover, participants with stronger fMRI 

functional connectivity between the IFJ and visual cortices had a greater impact of 

stimulation over IFJ on top-down modulation. These results suggest that frontal cortex 

implements top–down control over perceptual areas to promote the successful 

establishment of task-relevant representations, potentially by modulating feature 

processing.  

Other studies (e.g. Capotosto, Babiloni, Romani, & Corbetta, 2009, 2011) have 

also shown top-down modulation as a result of IPS stimulation. In these studies, 

disruption to the IPS during the allocation of spatial attention produced disruption of 
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anticipatory EEG rhythms in occipito-parietal cortex. Together these findings are 

consistent with a top-down role of the IPS in the endogenous allocation of attention.  

EEG can inform us about the timecourse of top-down effects but provides much 

less information about which brain regions are affected. For this, we can use TMS in 

combination with fMRI. For example, in a study using combined fMRI and TMS (Higo et 

al., 2011), a cue instructed participants to store one of two objects in WM. fMRI revealed 

increased activity in visual regions specialised for processing the selected object category 

(e.g. houses). TMS over the frontal operculum/anterior insula was found to diminish this 

top-down modulation of posterior visual activity indicating a role of this region in 

modulating task-relevant vs. task irrelevant stimulus processing. Feredoes et al. (2011) 

also investigated how a region of prefrontal cortex exerts control over anatomically 

remote visual areas using concurrent TMS–fMRI. Participants performed a delayed 

recognition WM task where participants first viewed a presentation of target categories 

followed by an unfilled delay period (no distractor) or a distractor delay period with three 

distractor stimuli from the opposite category. Following this, a target probe was presented 

and participants had to indicate if it matched the initial target category. Participants 

performed the task in the scanner whilst TMS was applied to the right dlPFC. The timing 

of TMS coincided with the presentation of the irrelevant distractors. TMS increased the 

blood-oxygen level dependent (BOLD) signal in posterior visual regions. This increase 

was specific to the regions representing the current memory targets, and not the 

distractors, and was therefore taken as evidence that an important function of the dlPFC is 

to maintain relevant information in the face of distracting irrelevant information. In this 

example, and in others where TMS does not disrupt task performance, TMS was used as a 

causal “physiological probe” in which if stimulation modulates remote BOLD responses 

(or ERPs) under certain conditions, it in inferred that the two regions are functionally 
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connected (e.g. Bestmann et al., 2008; Blankenburg et al., 2010; Feredoes et al., 2011). 

These data provide evidence that control signals from frontal cortex propagate to posterior 

regions to help overcome the effects of irrelevant information during WM maintenance.  

The role of the parietal cortex in top-down influences has also been studied with 

concurrent TMS-fMRI (Blankenburg et al., 2010; Heinen et al., 2011; Ruff et al., 2008; 

Ruff et al., 2009). For example, in Blankenburg and colleagues’ (2010) investigation, 

TMS was applied over parietal sites during the direction of covert attention towards one 

hemifield which increased the BOLD signal in the contralateral early visual areas. This 

finding indicates a causal attention-dependent influence of parietal cortex over activity in 

visual areas. Together, the use of neurostimulation and neuroimaging techniques have 

provided evidence for a causal top-down modulation relationship between frontal/parietal 

cortices and specialised processing areas such as the visual cortex.   

The wealth of neuropsychological, neuroimaging, and neurostimulation data on the 

function of frontal and parietal regions provide strong evidence that these regions play a 

crucial role in attentional control. I will now consider the various theoretical proposals for 

how these regions are thought to support flexible goal-directed behaviour. A number of 

theoretical models have been proposed for how the control of cognition is implemented 

(e.g. Baddeley, Della Sala, Robbins, & Baddeley, 1996; Badre & D'Esposito, 2009; 

Cohen, Dunbar, & McClelland, 1990; Dehaene, Kerszberg, & Changeux, 1998; Duncan, 

2001; Koechlin & Summerfield, 2007; Miller & Cohen, 2001; Norman & Shallice, 1986; 

Reynolds, O'Reilly, Cohen, & Braver, 2012). The emergent consensus is a hierarchical 

view of cognitive processes, where a complex executive system regulates, monitors, and 

inhibits simpler domain-specific cognitive processes. In the following section I will 

discuss a selection of the most influential models of executive functions (broadly 
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conceived as processes that organise and control cognitive processes) that consider the 

way in which attentional control is realised in the brain.  

Models of executive function  

A prominent model proposed by Norman and Shallice (Norman & Shallice, 1980, 

1986; Shallice & Burgess, 1991) states that in certain situations a “supervisory attention 

system” (SAS) is needed to influence selection and enable deliberate control. This model 

of attentional control assumes that two complementary processes operate in the selection 

and control of action. The basic mechanism is termed “contention scheduling”, which is 

thought to be able to control routine activities automatically, without conscious control. 

According to this framework, behaviour is governed by sets of thought or action 

‘schemas’. A schema is a set of actions or cognitions that have become very closely 

associated through practice. However, in circumstances that require a higher level of 

cognitive control the SAS then intervenes and provides additional inhibition or activation 

to the appropriate schema. The operation of the SAS is thought to be necessary for 

behaviour in situations that involve planning and decision making, error correction, that 

contain novel sequences of actions, and when the overcoming of a strong habitual 

response is required. An impairment of the SAS then leads to difficulties in these 

situations. For example, in some situations, environmental triggers lead to the activation of 

one schema, but an alternative schema needs to be selected. In these situations, damage to 

the SAS will make it more likely that the previously relevant schema, triggered by 

environmental events, will continue to be selected, leading to behavioural rigidity. In other 

situations, a reduction in supervisory input may lead to the triggering of inappropriate 

behaviour by salient objects in the environment, leading to distractibility or an inability to 

filter out irrelevant details. Thus, damage to the SAS could explain excessive rigidity as 
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well as excessive distractibility, both of which have been reported to occur following 

damage to the frontal lobes (e.g. Luria, 1966; Manes et al., 2002). 

The SAS model ties in closely with an earlier model of WM, defined as a short-

term memory mechanism that integrates moment-to-moment perceptions across time, 

proposed by Baddeley and colleagues (Baddeley et al., 1996; Baddeley & Hitch, 1974). In 

this model, WM has three distinct components, one for verbal memories (the phonological 

loop), one for visual and spatial information (the visuospatial sketchpad) and a third 

referred to as the ‘central executive’ component. According to this model, the central 

executive coordinates the flow of attention between the components of WM and is often 

linked to the functioning of the frontal lobes. The central executive functions as a limited 

capacity system, responsible for strategy selection, planning, and the attentional control of 

action. The notion of a “central executive” is similar to the SAS, indeed, in an attempt to 

specify the subcomponents of executive control in greater detail, Baddeley and colleagues 

(1996) incorporated the SAS from Norman and Shallice’s (1980) model of attentional 

control as an approximation of central executive functioning. This provided a framework 

for specifying the processes and capacities needed by such an attentional controller. A few 

basic capacities were postulated and explored (Baddeley et al., 1996): the ability to focus, 

to divide and to switch attention, and the ability to relate the content of WM to long-term 

memory. Other accounts of executive function have also referred to subcomponents of 

executive function (e.g. Miyake et al., 2000), but the consistent theme across these models 

is a view of a hierarchical and flexible system that enables goal-directed behaviour 

through the influence of one or more ‘executive’ cognitive modules on other, more 

specialised, ones.   

More recent models have gone further, linking executive and specialised modules 

onto different brain regions, such as the prefrontal cortex (PFC). For example, Miller and 
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Cohen (2001) also drew distinctions between a central executive and other specialised 

systems, similar to the models of control discussed above. Based on findings from the 

non-human primate literature, including both neuropsychological and neuroanatomical 

data, Miller and Cohen (2001) proposed that the PFC is key when behaviour must be 

guided by internal states or intentions (i.e., top-down control, see also Fuster, 2008). In 

Miller and Cohen’s (2001) model of prefrontal function, they argue that the capacity to 

support sustained activity in the face of interference is one of the distinguishing 

characteristics of the PFC. In their account, they discuss how the PFC is anatomically well 

situated to provide feedback signals and exert biasing influences on other structures 

throughout the brain. Other accounts of executive control consider a similar hierarchical 

view of the brain. For example, a computational model (Dehaene & Changeux, 2011; 

Dehaene et al., 1998) distinguished between a ‘global workspace’ and specialised modular 

subsystems. In this model, the global workspace interconnects multiple specialized brain 

areas in a coordinated fashion, similar to Miller and Cohen’s (2001) model of prefrontal 

function.   

The PFC covers a considerable portion of the human brain, and several theories of 

prefrontal organisation suggest that there are specialised functional regions within the PFC 

(e.g. Badre & D'Esposito, 2009; Botvinick, 2008; Bunge & Zelazo, 2006; Christoff & 

Keramatian, 2007; Koechlin & Summerfield, 2007; O’Reilly, 2010). For example, the rule 

abstraction model (Badre, 2008; Badre & D'Esposito, 2007, 2009) suggests a gradient 

with different regions in the PFC recruited according to the control demands of the task: as 

one moves anteriorly, prefrontal areas are recruited to support the use of progressively 

more complex rules. An alternative account is the information cascade model (Koechlin, 

Ody, & Kouneiher, 2003; Koechlin & Summerfield, 2007), which suggests that as one 

moves in a caudal to rostral direction across the lateral frontal cortex, there is a change in 
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the nature of the information being represented. The furthest rostral end of the hierarchy 

might hold information that has potential future relevance, whereas the furthest caudal 

region codes information about the current stimulus. These models are supported by 

neuroimaging and neuropsychological data demonstrating that further rostral areas process 

increasingly abstract representations (e.g. Azuar et al., 2014; Badre & D'Esposito, 2007; 

Koechlin, Basso, Pietrini, Panzer, & Grafman, 1999; Koechlin & Jubault, 2006; Nee & 

Brown, 2012) although see (Crittenden & Duncan, 2012; Reynolds et al., 2012). 

Other accounts have been offered in which both anterior and posterior PFC 

represents task-relevant information, but activity is modulated according to whether 

information needs to be transiently updated or sustained over longer time periods (e.g. 

Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Dosenbach et al., 2007; Dosenbach 

et al., 2006; Reynolds et al., 2012). Still other proposed divisions include different 

involvement of dorsal and ventral regions based on stimulus modality (Goldman-Rakic, 

Roberts, Robbins, & Weiskrantz, 1998), or medial and lateral segregation corresponding 

to monitoring for conflict vs. implementing control (Botvinick, 2008), and others (e.g. 

O’Reilly, 2010). Corbetta and Shulman (2002) also proposed two separate networks for 

attention where a dorsal frontoparietal system is involved in goal-directed stimulus-

response selection whilst a ventral system is important for stimulus-driven shifts of 

attention, working as an alerting mechanism to detect behaviourally relevant stimuli. At 

this point there is no consensus on these organisation schemes, and various sources of 

empirical evidence provide challenges to these proposals (e.g. Crittenden & Duncan, 

2012).  

The evolving consensus here is of a complex executive system that regulates more 

specialised processing areas. Specific frontal and parietal regions may form part of this 

executive system. In the following section I will discuss an influential theory, termed the 
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adaptive coding hypothesis (Duncan, 2001), that again paints a hierarchical view of the 

brain, but differs from the other models discussed in the emphasis placed on the adaptive 

response of single neurons.  

The Adaptive Coding Hypothesis 

The adaptive coding hypothesis (Duncan, 2001; Duncan, 2010) proposes that a 

network consisting of specific frontal and parietal regions are involved in processing the 

relevant aspects of many different types of tasks. This network is proposed to support 

goal-directed behaviour by adjusting its responses to code the information that is currently 

relevant for behaviour. Neurons in the network are not always tuned to the same specific 

features in the environment, but rather their response properties are highly adaptable so 

they shift their tuning profiles to code features or information that is currently relevant.  

The adaptive coding model differs from other models discussed above in the 

emphasis placed on adaptive responses of single frontoparietal neurons. Rather than the 

recruitment of different regions for different tasks (e.g. Botvinick, 2008; Corbetta & 

Shulman, 2002; Dosenbach et al., 2007; Dosenbach et al., 2006; Goldman-Rakic et al., 

1998; O’Reilly, 2010; Reynolds et al., 2012), this model accounts for flexible behaviour 

by proposing that responses within a single system adapt to represent currently needed 

information across tasks. Similar to the models discussed above (e.g. Dehaene et al., 1998; 

Miller & Cohen, 2001; Norman & Shallice, 1980), it posits a hierarchical structure of the 

brain in which information processing in more specialised processing areas is biased by 

the influence of this network (Desimone & Duncan, 1995). These specialised processing 

areas include those concerned with sensory inputs and the generation of motor commands. 

In this way, these higher regions can carry out a central function in configuring a flexible 

cognitive system to address what is currently relevant. This ability to adjust to the task-
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relevant information, with accompanying top-down signalling to sensory, motor and other 

systems, is proposed to account for the flexibility of the human brain to adapt to a 

dynamic environment.  

Single unit studies have provided evidence that neurons in both frontal and parietal 

cortex encode information that is relevant for the task. For example, the activity from 

single cells in lateral frontal cortex (e.g. Freedman, Riesenhuber, Poggio, & Miller, 2001; 

Kadohisa et al., 2013; Rao, Rainer, & Miller, 1997; Roy, Riesenhuber, Poggio, & Miller, 

2010) and lateral parietal cortex (Andersen, Essick, & Siegel, 1985; Fitzgerald, 

Swaminathan, & Freedman, 2012; Gail & Andersen, 2006; Ibos, Duhamel, & Hamed, 

2013; Stoet & Snyder, 2004; Swaminathan & Freedman, 2012) can discriminate a wide 

range of task features including task rules, cues, stimuli and responses. In Everling and 

colleagues’ study (2002), 50% of all cells recorded in the lateral PFC (lPFC) discriminated 

targets (relevant) from non-targets (irrelevant), while many fewer cells made the task-

irrelevant distinction between one non-target and another. Furthermore, data from non-

human primate research has supported the proposal that neurons adjust their responses 

across tasks to encode what is currently relevant. For example, in a study conducted by 

Rao and colleagues (1997), monkeys performed a combined ‘what–where’ WM task, 

where in different phases of each trial monkeys retained either target identity or target 

location. Across the lPFC, many single neurons carried both identity and location 

information. Importantly, when the task required a switch from identity to location, this 

switch was reflected in the responses of individual neurons, identity information being 

discarded and location information taken up. These data provide evidence for adaptive 

coding in this area (Duncan, 2001), whereby lPFC neurons adjust to code the relevant 

feature information of the current phase of the task.  
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Another example of adaptive coding in non-human primate comes from Freedman 

et al (2001). Freedman and colleagues (2001) used morphing software to create stimuli 

that fell into two general categories: ‘cats’ and ‘dogs’. Three species of cat and three 

breeds of dog were used as prototypes. The remaining stimulus set varied continuously 

either between ‘cat’ and ‘dog’ or between two prototypes within the same category (e.g. 

two types of cat, or two types of dog). Monkeys were trained to perform a categorisation 

task on this stimulus set where on each trial two stimuli were presented, separated by an 

interval. The monkeys indicated whether two sequentially presented stimuli were from the 

same or different categories according to an arbitrary decision-boundary, ignoring within 

category differences. 20% of lPFC neurons adjusted their firing rates to reflect these 

decision boundaries, differentiating between cats and dogs, even for those exemplars close 

to the decision boundary (e.g. a neuron responding strongly to cats would respond to a 

morph made up of 60% cat and 40% dog but not to a morph made up of 60% dog and 

40% cat). Moreover, when monkeys were trained on a new, orthogonal, decision-

boundary based on the same stimulus set where the cat-dog distinction was now irrelevant, 

the neurons altered their firing rates to reflect the new category distinctions that the 

monkeys had learnt. The results of this study emphasise how lPFC neurons demonstrate a 

remarkable flexibility to adjust their firing rates to reflect the currently task-relevant 

information, even across orthogonal categorical decision boundaries.  

Several other studies have similarly demonstrated that prefrontal neurons can 

encode the behavioural meaning of visual stimuli, regardless of their physical properties 

(Cromer, Roy, & Miller, 2010; Freedman, Riesenhuber, Poggio, & Miller, 2002; Roy et 

al., 2010; Sakagami & Niki, 1994; Sakagami & Tsutsui, 1999; Watanabe, 1986). For 

example, two recent studies (Cromer et al., 2010; Roy et al., 2010) used a similar 

paradigm to that of Freedman and colleagues (2001) and showed comparable results. Roy 
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et al. (2010) demonstrated that 24% of lPFC neurons had a distinct firing rate in response 

to one category of visual stimuli over another. Similar to Freedman and colleagues’ (2001) 

study, these neurons responded to the relevant category membership of the stimuli, rather 

than to their simple visual properties. They were also shown to alter their firing rate to 

reflect the new task when these stimuli were re-categorised in orthogonal categories. 

Cromer and colleagues (2010) showed that lPFC neurons responded to the relevant 

category membership of a different set of stimuli (sports cars vs. sedan cars), and when 

monkeys were re-trained to categorise a separate stimulus set (cats vs. dogs), 44% of the 

task-responsive neurons changed their firing rate to reflect the new task. These data also 

provide evidence that substantial portions of lPFC neurons are able to engage in multiple 

cognitive tasks, emphasising the flexibility of these neurons to alter their coding as needed 

for behaviour.  

Similar results have been shown in the lateral parietal cortex (Freedman & Assad, 

2006) where the activity of lateral parietal neurons encoded the direction of motion 

according to category membership. This encoding then shifted to the new category 

membership after the monkeys were retrained to group the same stimuli into two new 

categories. These data indicate that both lateral frontal and lateral parietal neurons are able 

to alter their responses as needed for behaviour as well as shift their responses to engage 

in multiple cognitive tasks.  

Kadohisa et al. (2013) tracked the shift of prefrontal neurons dynamically allocated 

to processing task-relevant information over time. In this study, monkeys were first 

presented with a cue followed by one or two target objects, which could be presented to 

either or both visual fields. These target objects could be either relevant to the alternative 

cue (currently irrelevant), associated with the current cue (behaviourally relevant targets) 
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and/or targets that were never associated with either cue (always irrelevant). Interestingly, 

the results showed that when two stimuli were present in the display, prefrontal neural 

resources were reallocated over time. During early processing responses were dominated 

by the stimulus (relevant or irrelevant) in the contralateral hemisphere, but later, globally 

across hemispheres, activity was dominated by the behaviourally relevant object 

(irrespective of its location). This suggests that higher regions exert control by reallocating 

attentional resources, over time, to favour behaviourally relevant information. These 

findings again emphasise how frontal neurons have the potential to respond to different 

task features, and to alter their responses to favour behaviourally relevant information. 

Although the electrophysiological studies reviewed above provide detailed 

information at the level of single-cell activity, they are limited in the breadth of brain 

coverage and scale of brain network under study. In the human brain, many associations 

have been drawn between specific subregions of frontal and parietal areas of the human 

brain and explicit executive functions. However, Duncan and Owen (2000) demonstrated 

that a wide range of tasks activate a common network of frontal and parietal regions. 

Duncan and Owen’s (2000) meta-analysis reviewed twenty positron emission tomography 

(PET) and fMRI studies which implemented tasks that manipulated cognitive demand. 

The five categories of “demand” that these studies manipulated were response conflict, 

task novelty, duration of delay (WM), items to recall (WM), and perceptual difficulty. The 

findings showed that across these different types of demands, there was a similar 

recruitment of a particular constellation of frontal and parietal regions, which Duncan 

(2006, 2010) named ‘multiple demand’ or MD regions. These regions incorporate the 

anterior insula/frontal operculum (AI/FO), the inferior frontal sulcus (IFS), the dorsal 

anterior cingulate/pre-SMA (ACC/pre-SMA), and the IPS (Figure 1).  
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Figure 1: Illustration of the “multiple demand” (MD) regions of the human 

brain projected on a standard template of the left hemisphere (regions are 

symmetrical in the right hemisphere)  

 

More recent studies have confirmed that the MD regions respond to a wide range 

of task demands (e.g. Dosenbach et al., 2006; Fedorenko et al., 2013; Niendam et al., 

2012; Nyberg et al., 2003; Stiers, Mennes, & Sunaert, 2010), including at the level of 

single subjects (Fedorenko et al., 2013). In the study by Fedorenko and colleagues (2013), 

40 participants completed 7 different tasks varying in type of cognitive demand: language, 

arithmetic, verbal and spatial working memory, and response selection/inhibition, while in 

the scanner. Similar to the tasks in Duncan and Owen’s meta-analysis (2000), each task 

had a harder and easier version to assess increased cognitive demand. Fedorenko et al.’s 

(2013) study found comparable MD activity associated with increased difficulty in each 

separate task at both group and single-subject levels. Additionally, in individual subjects, 

these regions were often adjacent to regions showing a different pattern of responses that 

did not modulate with difficulty across the tasks. This indicates that sensitivity to task 

difficulty is a specific feature of the MD regions. In line with their broad response across 

tasks, these regions have been variously referred to as the “task positive network” (Fox et 

al., 2005), “frontoparietal control system” (Vincent et al., 2008), “task activation 

ensemble” (Seeley et al., 2007) and have been described as “flexible hubs” that adjust 

their connectivity patterns along with task demands (Cole et al., 2013). 
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The studies reviewed here provide evidence for a system that responds to 

increasing cognitive demands across a variety of different types of cognitive demand. This 

makes the MD regions candidates for adaptive coding, since a minimal prediction the 

adaptive coding hypothesis is that regions showing adaptive coding should be involved in 

a range of different tasks (Duncan, 2001; Duncan, 2010, 2013). However, there are 

alternative explanations for common activation between tasks; for example, common 

activation could reflect a very general response, such as effort, which would not 

necessarily be related to adaptive coding. Until recently, our capacity for examining 

coding in humans was limited. The advent of new analysis methods for fMRI that use the 

pattern of response across voxels to infer what information is encoded greatly enhance the 

inference possible and mean that we can test the more specific predictions of the adaptive 

coding hypothesis in the human brain. 

Traditional univariate fMRI analyses mainly focus on mapping the magnitude of 

changes in the BOLD signal in various brain areas during different task conditions. These 

conventional methods look for voxels that show a significantly different response to 

experimental conditions relative to some baseline or control condition. Typically, data are 

spatially smoothed and activity is averaged across voxels within a region of interest. This 

is done to boost signal-to-noise ratio, but results in a loss of sensitivity to fine-grained 

spatial-pattern information, blurring out spatial patterns that might discriminate between 

experimental conditions (e.g. Mur, Bandettini, & Kriegeskorte, 2009). 

Unlike traditional methods, multivoxel pattern analysis (MVPA) preserves the 

fine-grained information in fMRI data by extracting information from patterns of activity 

across multiple voxels (e.g. Haxby et al., 2001; Haynes & Rees, 2006; Haynes & Rees, 

2005; Kamitani & Tong, 2005; Yang, Fang, & Weng, 2012). Voxels considered 
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individually might not be significantly responsive to any of the conditions of interest; 

however, the multi-voxel codes across many voxels have the potential to reveal patterns of 

activation relating to those conditions. MVPA also does not traditionally involve spatial 

averaging of voxel responses as with univariate-based analysis, whereby fine-grained 

pattern differences can go undetected unless the regional-average activation also differs. 

MVPA is therefore suited for detecting pattern changes even if they occur in the absence 

of regional-average activation changes. Consider an example response to the two novel 

objects shown in Figure 2 (left panels). For the hypothetical region in this example, 

average activation is similar for both objects. However, the pattern of activation over 

voxels is different; this region still carries information that distinguishes between the two 

objects at a multi-voxel scale. In this case, MVPA would be a suitable technique for 

examining whether information about these stimuli is carried in a particular brain region.  

  

Figure 2: Left images: Hypothetical multi-voxel activity patterns for a ‘cuby’ 

and a ‘spiky’ object within a region of interest. In this hypothetical region, 

average activation for both objects is identical, but there is information that 

can be detected with MVPA to distinguish between the experimental 

conditions (voxel activation responses to conditions in colour). Right: Linear 

decision boundary separating condition A (e.g. cuby objects) and condition B 

(e.g. spiky objects)  
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There are many different algorithms that can be used to undertake MVPA but they 

all share the basic principle of interpreting the data in a multidimensional space, where 

each dimension (usually) corresponds to the response of an individual voxel. Figure 2 

(right) illustrates an example where we consider the activity patterns of only two voxels. 

In order to classify these patterns we can construct a line that separates our two conditions 

(cuby vs. spiky object), even though the response of each voxel individually does not 

discriminate between the two conditions (Cox & Savoy, 2003; Haynes & Rees, 2006). 

Typically, the analysis would include many such voxels, so the decision line generalises to 

a multidimensional hyper plane. 

 

Figure 3: Example of a standard MVPA cross-validation training and testing 

procedure: In this example there are four experimental runs and the classifier 

is trained to distinguish between the patterns of activation pertaining to cuby 

and spiky objects. One subset of the data is left out on each iteration as the 

independent test data set. This procedure is repeated leaving out a different 

subset until all data contributes equally to test and train subsets. Performance 

on the different iterations is averaged together to obtain overall classifier 

performance.   

The classifier algorithm attempts to derive a model that describes how responses to 

the experimental conditions are separated in this space. The classifier is trained to classify 

a set of patterns (referred to as samples, Figure 3) from the different experimental 
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conditions and is then tested with an independent set of samples (that did not contribute to 

the training model). The accuracy with which the classifier can predict the condition to 

which the test samples belong forms a measure of the information held in that region 

about the particular categories tested (classification accuracy). 

The accuracy of the categorisation of test samples indicates how well the classifier 

performs in identifying differences between the samples from different conditions. If the 

pattern of activation in a particular region can be used to consistently discriminate 

between two task events, at an accuracy greater than that expected by chance (the null 

hypothesis), then that region is said to ‘carry information’ about the conditions. In order to 

preserve fine-grained subject-specific information, the patterns are not typically averaged 

across subjects. Instead, MVPA is performed in native subject space for each individual, 

and group analysis can be performed as a second level analysis.   

MVPA is fundamentally limited by the amount of information about the neural 

population codes that can be provided by fMRI. Voxel resolution is one such limitation 

and an ongoing debate continues as to what gives rise to the pattern of voxel biases 

exploited by classification algorithms. Early MVPA fMRI research (Haynes & Rees, 

2005; Kamitani & Tong, 2005) posited that pattern classification methods exploit the fine 

functional, columnar architecture of neuronal preferences. For example, a single voxel 

may happen to sample more of one type of cortical column (or neuronal preference e.g. 

orientation ~45°) relative to others, therefore the response to one condition would be 

slightly different between voxels even though the voxel resolution is not fine enough to 

resolve cortical columns directly. This has been referred to as the “hyperacuity” 

hypothesis. This assumption has been called into question by recent studies showing the 

existence of large-scale patterns of response bias for orientation (Freeman, Brouwer, 
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Heeger, & Merriam, 2011) and motion direction (Beckett, Peirce, Sanchez-Panchuelo, 

Francis, & Schluppeck, 2012), which can account for decoding these features. Op de 

Beeck (2010) also showed that MVPA is robust to spatial smoothing, which has been 

interpreted as evidence against a columnar-scale bias driving classification (Op de Beeck, 

2010). In addition, the assumption that the response biases reflect neuronal response 

properties has been called into question by results suggesting such biases may be vascular 

in origin (Gardner, 2010; Shmuel, Chaimow, Raddatz, Ugurbil, & Yacoub, 2010). Despite 

the ongoing debate and the fact that sensitivity is limited by the measurement technique of 

fMRI, statistically distinct activity patterns nonetheless provide strong evidence for a 

difference between the underling neural activity in the region, even if we cannot be certain 

on what scale these patterns arise.  

Now let us return to the evidence that the MD regions are involved in adaptive 

coding. As discussed earlier, data from the non-human primate literature has previously 

shown that both frontal (e.g. Freedman et al., 2001; Kadohisa et al., 2013; Rao et al., 

1997; Roy et al., 2010) and parietal cortex (Andersen et al., 1985; Fitzgerald et al., 2012; 

Gail & Andersen, 2006; Stoet & Snyder, 2004; Swaminathan & Freedman, 2012) 

discriminate a range of task information. MVPA provides the potential to explore similar 

questions about adaptive coding in the human brain: regions demonstrating adaptive 

coding should code a range of different types of information under different circumstances 

(Duncan, 2001).  

Using MVPA of fMRI data, the MD network has indeed been shown to code a 

range of task information demonstrating flexibility to respond to a variety of behaviourally 

relevant stimuli in different contexts (Bode & Haynes, 2009; Harel, Kravitz, & Baker, 

2014; Haynes et al., 2007; Li, Ostwald, Giese, & Kourtzi, 2007; Nee & Brown, 2012; 
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Reverberi, Gorgen, & Haynes, 2011; Soon, Namburi, & Chee, 2013; Stiers et al., 2010; 

Waskom, Kumaran, Gordon, Rissman, & Wagner, 2014; Woolgar, Afshar, Williams, & 

Rich, 2015; Woolgar, Hampshire, Thompson, & Duncan, 2011; Woolgar, Thompson, Bor, 

& Duncan, 2011; Woolgar, Williams, & Rich, 2015). We recently conducted a meta-

analysis (Appendix A, Woolgar, Jackson, & Duncan, in press) drawing on 100 published 

decoding analyses to examine the various types of information coding across the human 

brain.  

 

Figure 4 (taken from Woolgar et al., (in press), see Appendix A): Number of 

significant decoding points reported in each network, after correcting for the 

number of analyses examining coding of each task feature and network 

volume. Asterisks indicate significance of chi-squared or exact binomial 

goodness of fit tests examining whether there was more coding in each 

principal network compared to Other for all decoding points (above bars) or 
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for decoding points in each task feature separately (asterisks on coloured bar 

segments). *p<0.05, **p<0.01, *** p<0.00001.  

The MD network encoded a range of task features, including visual, auditory, 

motor and rule information (Figure 4, taken from Woolgar et al., in press), more 

frequently than predicted based on network volume. This contrasted with more specialised 

processing areas such as the visual, auditory and motor cortices which primarily coded 

information from their own domain. These data confirm that the MD regions are involved 

in processing a range of different types of information across different tasks.  

A stronger test of adaptive coding is whether individual regions in the human brain 

adjust responses within single tasks, for example, if task demands change. Recent MVPA 

studies have shown that the MD network indeed adjusts its coding of perceptual (Woolgar, 

Hampshire, et al., 2011; Woolgar, Williams, et al., 2015) and task rule information 

(Woolgar, Afshar, et al., 2015) as task demands vary. For example, in Woolgar et al.’s 

(2011) study, participants responded to the location of a blue square on a screen. The 

stimulus positions were either perceptually easy (far apart) or difficult (close together) to 

distinguish. Across the MD regions, position coding was significantly stronger in the more 

difficult relative to the easier condition. In contrast, the visual cortices showed the 

opposite result, with a weaker representation of the difficult relative to the easy stimuli, in 

line with the physical stimulus differences. These data suggest that the MD regions 

adjusted to emphasise the perceptual information when it was more challenging and the 

input from the visual cortex was weak. Woolgar and colleagues (2015) found similar 

results for the representation of task rules in the MD network: Coding of rule information 

was stronger when the rules were more complex and behaviourally confusable compared 

to when they were relatively simple. These studies indicate that the MD network can 
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indeed adjust its responses within single tasks, at least as measured at the voxel level, 

consistent with the adaptive coding hypothesis.  

Adaptive coding in the MD network could form the basis for the operation of 

selective attention. Woolgar et al. (2015) found that the multi-voxel representation of 

objects in the MD network was stronger when objects were attended compared to when 

they were ignored. These data indicate that the behavioural relevance of task stimuli, in 

this case whether the stimuli were attended (targets) or ignored (distractors), influences 

coding in these regions. The behavioural relevance of a stimulus has also been found to 

modulate MD network coding in a category discrimination task (Erez & Duncan, 2015). In 

this study, participants were cued at the start of a block with the names of two target 

categories (e.g., shoes, butterflies). In the following four trials they were then shown a 

picture of an object on each trial and had to decide whether it belonged to the target 

category. The presented stimulus could either be a target (target category cue is shoe and 

subsequent presented stimulus is a shoe), consistent non-target (target category cue is shoe 

and subsequent presented stimulus is a sofa, and a sofa is never a target category), or an 

inconsistent non-target (target category cue is butterflies and subsequent presented 

stimulus is a shoe, which is a target on other trials). The results showed that multi-voxel 

patterns in the MD regions discriminated visual categories for which the distinction was 

behaviourally relevant. In contrast, behaviourally irrelevant category distinctions were not 

coded. These data show that behavioural relevance modulates category discrimination 

across the MD network, consistent with the view that the MD network adjusts its 

responses to code the relevant aspects of a task. These responses to behavioural relevance 

could provide the source of bias for the implementation of attention in the brain. 

The MD regions are not the only areas in which attention modulates responses. 

Preferential responses to attended information is also seen, for example, throughout the 
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visual cortex, where we see a stronger response to attended versus ignored visual input 

(Jehee, Brady, & Tong, 2011; Moran & Desimone, 1985; Murray & He, 2006; Murray & 

Wojciulik, 2003; Serences, Saproo, Scolari, Ho, & Muftuler, 2009). The MD regions have 

extensive connectivity patterns with subcortical, sensory and motor regions (Selemon & 

Goldman-Rakic, 1988) and it is commonly suggested that these regions bias activity 

towards task-relevant information and provide control input to these other cortical and 

subcortical systems (Dehaene et al., 1998; Desimone & Duncan, 1995; Duncan, 2013; 

Miller & Cohen, 2001; Norman & Shallice, 1980). However, this is difficult to examine 

using fMRI data alone (see section 1.1 for evidence from combined TMS/EEG and 

TMS/fMRI). The MD regions may therefore play an important role in implementing the 

controls for selective attention. 

The literature indicates that the MD network is involved in cognitive control and 

that it appears to work adaptively to code a range of task features. The adaptive coding 

hypothesis offers a possible mechanism for the way in which selective attention is 

achieved. However, further research is needed to test the hypothesis that these regions 

preferentially code task-relevant information in a range of situations, for example, not 

only in the case of spatial attention and for attended objects but also for attended features 

of objects. Additionally, the question of how the MD regions influence and potentially 

bias processing in specialised processing regions, particularly information coding in other 

regions, and whether this depends on the selective representation of information in this 

system, is a critical question that requires further investigation.   

Feature-selective attention  

Much of the previous research on the control of attention has focused on spatial 

attention. This is the process where our attention can be deployed to locations in space, for 
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example, where spatial attention is varied by pre-cueing the location where a target 

stimulus is likely to appear (e.g. Posner, 1980). Voluntary spatial attention is thought to 

depend on top-down mechanisms (Yantis & Serences, 2003), for example, directing 

attention to a particular location in the visual field has also been shown to modulate 

neuronal responses in corresponding part of the primate visual cortex (e.g. Luck, Chelazzi, 

Hillyard, & Desimone, 1997; McAdams & Maunsell, 1999; Moran & Desimone, 1985; 

Seidemann & Newsome, 1999). Spatial attention has dominated investigations of 

attention, but we also have the capacity to allocate our attention to a particular feature of 

an object or visual field. This type of attention can be further divided into feature-based 

and feature-selective attention.  

Feature-based attention encompasses the ability to enhance the representation of 

image components throughout the visual field that are related to a particular feature. For 

example, it can support our ability to detect a behaviourally relevant target among 

distractor items, as in popular ‘visual search’ paradigms in visual psychophysics. In visual 

search experiments, targets and distractors differ by at least one feature, and target 

detection can be improved by enhancing the representation of image components that 

match the attended feature (e.g. the colour red or a vertical orientation) and by suppressing 

those that do not. Several psychophysical studies have demonstrated that feature-based 

attention improves detection or otherwise enhances behavioural performance across the 

visual field (e.g. Cohen & Magen, 1999; Saenz, Buraĉas, & Boynton, 2003).  

Feature-based attention is typically thought to involve up-regulating processing of 

the parts of visual field that match a given value of a given feature (e.g. red). This overlaps 

with, but is distinct from, the ability to selectively attend to a particular feature dimension 

of an object (e.g. to make fine discriminations concerning its colour), while ignoring other 

features of that object (e.g. its shape).  The latter is called feature-selective attention, 
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because selection affects which feature is attended to. Although the terms feature-based 

and feature-selective attention are often used interchangeably, they are distinct because 

feature-based attention does not require the selection of a certain feature of an object 

whilst simultaneously ignoring other features of the object (Chen et al., 2012). Feature-

based attention requires enhancement of aspects of a visual field that match a template 

feature. Feature-selective attention requires enhanced processing of a task-relevant feature 

of an object and simultaneous suppression of a task-irrelevant feature of that same object. 

Feature-selective attention is particularly important in situations where two features of an 

object result in response conflict (e.g. if the orientation of a grating requires a left button 

response whilst the contrast of the grating requires a right button response).  

The PFC and lateral parietal cortex (constituent parts of the MD network, see 

section 1.3) have been specifically implicated in feature-selective attention in the non-

human primate literature (e.g. Freedman & Assad, 2006; Lauwereyns et al., 2001; Rao et 

al., 1997). For example, in Lauwereyns et al.’s (2001) study, macaque monkeys were 

trained to classify patterns of moving dots according to either their colour or their 

direction of motion. This required the monkeys to extract the relevant feature dimension 

whilst ignoring the other feature. They found that around 20% of prefrontal cells showed 

strong attentional modulation. These cells discriminated between stimulus colours when 

the monkeys attended to colour, but discriminated movement direction when the animals 

attended to stimulus motion. These data demonstrate adaptive coding for feature-specific 

information in the non-human primate brain.  

In the human brain, Thompson and Duncan (2009) used an fMRI adaptation 

analysis to show that the MD network responds more to changes in attended stimulus 

features (colour/shape) than to changes in unattended stimulus features. Similarly, Li et 

al., (2007) used MVPA to demonstrate that the MD regions preferentially coded the 
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features of moving dot figures that were relevant to the task: when the task changed, so 

did the pattern of information coding. These findings offer suggestive evidence that 

adaptive neural coding in the human frontoparietal cortex may support selection at the 

level of object features. In this thesis, I examine this further, asking whether adaptive 

coding provides a mechanism for feature-selective attention through adjustment of 

response properties in the MD network, by prioritising processing of task-relevant object 

features over task-irrelevant object features. 

 

Overview of thesis   

The evidence reviewed above is a firm foundation for the hypothesis that adaptive 

coding in the MD network supports feature-selective attention. We know that the MD 

regions adjust their responses in line with task demands, encode a range of task-related 

information, and respond to changes in attended features. It seems reasonable then, that 

this selective representation in the MD regions would support task-relevant decision-

making processes necessary for solving the task at hand, and could be the source of bias 

supporting processing of the attended feature in more specialised regions (e.g. Dehaene et 

al., 1998; Desimone & Duncan, 1995; Miller & Cohen, 2001).  

In this thesis, I explore the role of the MD network in feature-selective attention. 

The main questions addressed by the following experimental chapters are: 1. Does the MD 

network adjust its responses to prioritise coding of relevant over irrelevant object feature 

information? 2. Do the same voxels show coding of relevant features across multiple 

tasks? 3. Does the dlPFC play a causal role in filtering out irrelevant feature information? 

4. Does selection of relevant feature information and/or inhibition of irrelevant feature 

information in the dlPFC underlie top-down modulation of earlier processing regions? I 
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used behavioural, fMRI, MVPA, TMS and concurrent TMS-fMRI methods to answer 

these research questions in 4 experiments outlined below. 

In Chapter 2, I present a study examining whether the MD network prioritises 

coding of task-relevant feature information over task-irrelevant feature information. I used 

MVPA of fMRI data acquired while participants performed a perceptually challenging 

categorisation task. At different times, participants were required to discriminate novel 

“spiky” objects across one of two orthogonal decision boundaries based on two feature 

dimensions, length and orientation. I tested whether MD representation of visual object 

features flexibly adjusted according to task-relevance (coding for length information when 

length was relevant, and orientation information when orientation was relevant). The 

results showed that the MD network coded the task-relevant feature distinctions more 

strongly than the equivalent task-irrelevant feature distinctions. These data demonstrate 

that the MD network adjusts its representation of objects to make the feature distinctions 

needed for the current behavioural task, providing support for adaptive coding as a 

mechanism for the implementation of feature-selective attention. 

In Chapter 3, I examined the flexible coding in the MD system in more detail, 

asking whether the same voxels carried information about the relevant object features 

across multiple tasks. First I examined whether the MD regions coded the task-relevant 

features of different objects, “spikies” and “smoothies”, in two task contexts. Then, I 

assessed the extent to which the same voxels were ‘re-used’ to code the relevant 

discriminations across both task contexts and compared this to the voxel re-use predicted 

by chance. Finally, I compared the extent of voxel re-use between the two tasks of Chapter 

3 to the extent of re-use between the tasks in Chapter 2. I replicated the finding from the 

first experiment (Chapter 2) that the MD network preferentially coded the task-relevant 
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feature distinctions, this time across different stimulus sets. I also found that irrelevant 

feature information was coded more strongly in the MD regions when it was inconsistently 

irrelevant (i.e. when that information had recently been relevant on a different task) 

compared to when it was never relevant to the participant’s task. The data also showed 

that significantly more MD voxels than expected by chance were re-used to code relevant 

feature information across the two tasks, suggesting, at least at the level of voxels, that 

attentional resources can be flexibly re-allocated in different tasks. Conversely, there was 

no evidence to suggest that the same voxels were re-used to code relevant feature 

information across the two tasks in the LOC or BA 17, indicating that this flexibility may 

be particular to higher cortical brain regions. Despite clear predictions from the non-

human primate literature (Cromer et al., 2010; Roy et al., 2010), there was no difference in 

the extent of voxel re-use between the data from Chapters 3 and 2.  

Chapter 4 presents a study where I explored whether the dlPFC plays a causal role 

in filtering irrelevant feature information. I used TMS to stimulate the dlPFC during a task 

requiring participants to ignore irrelevant feature information and compared behavioural 

performance to that under three control conditions. The active TMS condition was high 

intensity stimulation (HIS) of the dlPFC (100% of motor threshold). The three control 

conditions were a sham condition (inactive coil), low intensity stimulation (LIS) to the 

dlPFC (40% MT) and HIS (100% MT) to a control region. The button response for the 

irrelevant feature was either incongruent or congruent with the required button response 

for the currently relevant feature. The resulting congruency difference allowed us to index 

the extent to which irrelevant information processing influenced behaviour.  

We selected the dlPFC for stimulation as it is the largest component of the MD 

system, extending caudally from around the region of the IFJ, along the IFS and middle 
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frontal gyrus to the anterior PFC. In addition, the right dlPFC is cited in the literature as a 

region that plays a causal role in modulating processing in more specialised regions (e.g. 

Feredoes et al., 2011; Zanto et al., 2011). The prediction was that disruption to the right 

dlPFC would either decrease selection of relevant information and/or decrease inhibition 

of irrelevant feature information, which consequently would result in an increase in the 

magnitude of the congruency effect relative to the control conditions. This experiment was 

also the pilot of the paradigm to be used in a combined fMRI-TMS experiment (Chapter 

5). Although there was a main effect of congruency, our behavioural data did not show an 

effect of disruption to the right dlPFC. A Bayes analysis showed that more evidence was 

needed to make a firm conclusion. I subsequently conducted two further behavioural 

experiments to improve the sensitivity of the paradigm.  

In Chapter 5, I asked whether the right dlPFC is causally involved in the selection 

of task-relevant feature information and/or inhibition of task-irrelevant feature 

information. I employed concurrent TMS and fMRI during a task where participants were 

required to ignore irrelevant feature information, using the task developed in Chapter 4. 

Participants completed two separate sessions: in the first session, they practised the 

behavioural task and completed several localiser tasks in the fMRI scanner; in the second 

session, participants were scanned whilst completing eight runs of the main task. The 

second session was combined with TMS so that on every trial, participants received three 

pulses of either LIS (40% MT, control) or HIS (100% MT) over the right dlPFC 

(functionally defined). The dlPFC has been associated with both inhibition of task-

irrelevant information and selection of task-relevant information. Therefore I predicted 

that disruption to right dlPFC would result in a) stronger coding of irrelevant feature 

information and/or b) weaker coding of relevant feature information. I related this to 

participants’ behaviour, predicting that HIS compared to LIS would disrupt selection of 
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the relevant feature information and/or inhibition of the irrelevant feature information and 

therefore result in a larger congruency effect.  

In line with the proposal that the dlPFC suppresses the representation of irrelevant 

information, we found stronger coding of irrelevant information across the frontoparietal 

network and other brain regions, including early visual cortices, following right dlPFC 

disruption. Irrelevant feature information also had more effect on participants’ reaction 

times under HIS. HIS to the dlPFC also modulated the representation of task relevant 

information. However, contrary to our prediction that disruption to dlPFC would impair 

selection of relevant feature information, we found stronger coding of relevant colour 

information across the brain under HIS relative to LIS, possibly indicating some form of 

adaptive compensation. These data are in line with a causal role for dlPFC in modulating 

the representation of relevant and irrelevant information in the brain.  

In my final Chapter (Chapter 6), I summarise the main findings of my research and 

consider how it fits with the current literature. I discuss limitations of my research and 

challenges for this field as well as future directions, before drawing it all together with 

general conclusions. 
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Abstract  
 

Human cognition is characterised by astounding flexibility, enabling us to select 

appropriate information according to the objectives of our current task. A circuit of frontal 

and parietal brain regions, often referred to as the frontoparietal attention network or 

multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. 

There is evidence that these regions dynamically adjust their responses in order to 

selectively process information that is currently relevant for behavior, as proposed by the 

“adaptive coding hypothesis" (Duncan, 2001). Could this provide a neural mechanism for 

feature-selective attention, the process by which we preferentially process one feature of a 

stimulus over another? We used multivariate pattern analysis (MVPA) of functional 

magnetic resonance imaging (fMRI) data during a perceptually challenging categorization 

task to investigate whether the representation of visual object features in the MD regions 

flexibly adjusts according to task-relevance. Participants were trained to categorize 

visually similar novel objects along two orthogonal stimulus dimensions 

(length/orientation) and performed short alternating blocks in which only one of these 

dimensions was relevant. We found that multi-voxel patterns of activation in the MD 

regions encoded the task-relevant distinctions more strongly than the task-irrelevant 

distinctions: The MD regions discriminated between stimuli of different lengths when 

length was relevant and between the same objects according to their orientation when 

orientation was relevant. The data suggest a flexible neural system that adjusts its 

representation of visual objects to preferentially encode stimulus features that are currently 

relevant for behavior, providing a neural mechanism for feature-selective attention. 
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Introduction 

We live in a complex dynamic environment in which the behavioral relevance of 

different sensory input changes rapidly. To function successfully, we need a cognitive 

system that can select what is currently relevant, ignore distraction, and update its 

responses in accordance with events in the world. Selection of relevant information can be 

specific to different features of visual objects depending on the current goal. For example, 

if I am looking for my blue cup among other cups, color is the relevant dimension. When I 

find my cup and reach to pick it up other features of the cup are now relevant (e.g. 

orientation). Following Chen and colleagues (2012), we refer to the process of attending to 

and making a decision about one feature of an object, while ignoring other features of that 

object, as feature-selective attention. We use this nomenclature to differentiate it from 

feature-based attention, in which a relevant feature is used to select what object or location 

to attend to (e.g. attend to the red object). In feature-based attention, attention is directed 

towards objects and/or locations matching a cued value (e.g. red), while objects of a 

different color are ignored. In feature-selective attention, attention is instead directed 

towards a particular stimulus dimension (e.g., color), in preference to other dimensions 

(e.g., shape), in order to make a judgement about the relevant feature of a stimulus (Chen 

et al., 2012).  

The adaptive coding hypothesis (Duncan, 2001) offers a possible neural 

mechanism for feature-selective attention. It holds that within certain higher cortical 

regions, the response properties of single neurons are highly adaptable such that in any 

particular task context, many cells become tuned to code information that is currently 

relevant. Evidence of such ‘adaptive coding’ comes primarily from single-unit work with 

non-human primates in which neurons in higher cortical regions have been shown to alter 
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coding as needed for behavior (Cromer, Roy, & Miller, 2010; Freedman, 2001; Freedman 

& Assad, 2006; Roy, Riesenhuber, Poggio, & Miller, 2010; Sakagami & Niki, 1994; 

Stokes et al., 2013). For example, in a go/no-go discrimination task where the relevant 

feature of a cue changed between three task contexts (Sakagami & Niki, 1994), 72% of 

prefrontal cortex (PFC) neurons showed different responses during the cue period for each 

task condition. In another example, Roy et al. (2010) demonstrated that 24% of PFC 

neurons had a distinct firing rate in response to one category of visual stimuli over 

another. These neurons responded to the relevant category membership of the stimuli, 

rather than to their simple visual properties. Moreover, when the decision boundary 

changed so that these same stimuli were re-categorized into orthogonal categories, these 

neurons changed their firing rate to reflect the new task (see also Cromer et al. (2010)). 

Similar results have been found for the lateral intraparietal cortex, where neural firing 

rates reflect learned category boundaries and change to reflect orthogonal category 

boundaries on retraining (Freedman & Assad, 2006). 

In the human brain, candidate regions for adaptive coding are a set of frontal and 

parietal brain regions known as multiple-demand (MD) regions (Duncan, 2001; Duncan, 

2010). The MD regions incorporate the anterior insula/frontal operculum (AI/FO), the 

inferior frontal sulcus (IFS), the dorsal anterior cingulate/ pre-supplementary motor area 

(ACC/pre-SMA), and the intraparietal sulcus (IPS). They are characterized by their 

response to a wide range of task demands (Dosenbach et al., 2006; Duncan & Owen, 

2000; Nyberg et al., 2003), even at the level of single participants (Fedorenko, Duncan, & 

Kanwisher, 2013). These regions have also been referred to as the “task positive network” 

(Fox et al., 2005) or “frontoparietal control system” (Vincent, Kahn, Snyder, Raichle, & 

Buckner, 2008), and have been described as “flexible hubs” that adjust their connectivity 

patterns along with task demands (Cole et al., 2013).  
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In addition to being active for a range of tasks, human imaging data suggests that 

the MD regions are capable of coding a range of task features. Evidence for this comes 

from MVPA of fMRI data, in which information coding is inferred if patterns of 

activation across voxels reliably discriminate between task events (e.g. Haxby et al., 2001; 

Haynes & Rees, 2005; Kamitani & Tong, 2005). Such studies suggest that the MD regions 

can code several different types of task-relevant information such as rules, stimuli, and 

motor responses (e.g. Bode & Haynes, 2009; Haynes et al., 2007; Li, Ostwald, Giese, & 

Kourtzi, 2007; Nee & Brown, 2012; Reverberi, Gorgen, & Haynes, 2011; Woolgar, 

Hampshire, Thompson, & Duncan, 2011; Woolgar, Thompson, Bor, & Duncan, 2011; 

Woolgar, Williams, & Rich, 2015). Moreover, in response to changes in task demands, the 

MD regions adjust their representation of perceptual (Woolgar, Hampshire, et al., 2011; 

Woolgar, Williams, et al., 2015) and rule information (Woolgar, Afshar, Williams, & 

Rich, 2015). For example, in Woolgar and colleagues’ (2011) study, participants had to 

identify the spatial position of a visual stimulus. When the positions were close and 

overlapping, such that they were more difficult to discriminate, they were more strongly 

represented in MD regions, compared to when they were spaced far apart and perceptually 

easier, despite a weaker representation of the difficult stimuli in visual cortex. However, in 

this work the stimuli were always discriminated according to their spatial position, and 

this stimulus feature was always task relevant. Here, we examine the complementary 

question of whether flexibility of the MD system also underpins our capacity to attend to 

different features of the same object, depending on what is currently relevant. Suggestive 

evidence comes from a recent study in which object representations in lateral PFC (lPFC) 

could be decoded more strongly within a single task than between tasks (Harel, Kravitz, & 

Baker, 2014), raising the possibility that the same objects may be represented differently 

as task contexts change.   
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In the current study we examined the responses of the MD regions when different 

features of the same visual objects were made relevant. We presented a set of novel 

objects that varied along two dimensions (length of one of the spikes and orientation of 

that same spike; Figure 1). In separate blocks of trials, participants categorized the stimuli 

on the basis of one of the feature dimensions (length or orientation). Thus, at any one time 

participants were required to discriminate objects according to one (relevant) dimension 

and ignore the other (irrelevant) dimension. We used MVPA of fMRI data to test whether 

the patterns of activation in the MD regions discriminate objects according to the 

externally imposed decision boundary, and whether this multi-voxel categorization 

changes when an orthogonal decision boundary is used. If the representations in MD 

regions are driven by physical stimulus characteristics, the same information should be 

present irrespective of the task. However, the adaptive coding hypothesis predicts that 

neural populations in MD regions adjust their responses to adaptively code the currently 

relevant information, in which case we should see stronger coding for the task-relevant 

feature distinction than the task-irrelevant distinction. We also examined responses in 

regions of interest (ROIs) in the lateral occipital complex (LOC) and early visual cortex, 

for comparison. We found that MD coding of the relevant feature distinction was 

significantly stronger than discrimination along the equivalent irrelevant dimension. LOC 

also followed this pattern, albeit more weakly, but we did not find coding of either 

dimension of these highly similar stimuli in the early visual cortex. Our results suggest 

that the frontoparietal MD network adjusts its representation of individual objects to make 

the specific discrimination that is needed for the current task. We suggest that this process 

supports selective attention to task-relevant object features. 
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Materials and Methods 

Participants 

Twenty-six healthy adult volunteers (17 females; mean age = 24.3 years, SD= 

5.27) participated. All participants were right-handed with normal or corrected-to-normal 

vision and no history of neurological or psychiatric disorder. Participants gave written 

informed consent, and the study was approved by the human research ethics committee of 

Macquarie University, Sydney, Australia. The participants received $50. There were 

twenty-seven participants initially, but one subject was excluded because he did not 

complete the task.  

Stimuli 

Stimuli were abstract novel “spiky” objects created using custom MatLab scripts 

(Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006). The stimulus set consisted of 16 

objects (Figure 1) in which one spike varied along two dimensions (its length and 

orientation). Participants learnt to discriminate between the 16 objects across two 

orthogonal decision boundaries (task contexts) based on the length and orientation 

dimensions. The relevant visual feature of the stimuli therefore varied depending on the 

current decision boundary. The stimuli were aligned so that the main stem of the objects 

appeared at an angle of +37 degrees from vertical. During both the training and scanning 

sessions, the visual angle (VA) of the spiky object’s length along its main axis was 8.07°. 

Stimulus presentation was controlled by a PC running the Psychophysics Toolbox-3 

package (Brainard, 1997) in MatLab (Mathworks). Stimuli were presented in the centre of 

a screen and viewed through a mirror mounted on the head coil in the scanner. 
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Figure 1: The stimulus set consisted of 16 ‘spiky’ objects with eight objects 

on either side of two orthogonal category boundaries. Category boundaries 

were defined based on the length (horizontal axis) or orientation (vertical 

axis) of the third spike on the left side of the object. Spike length and 

orientation was titrated on an individual subject basis to equate the difficulty 

of categorization across the two dimensions. 

Titrating Task Difficulty 

 
Less than one week (1-7 days) prior to scanning, participants completed a 

behavioral testing session in which we titrated the discriminability of the stimuli to ensure 

that the length and orientation tasks were of comparable difficulty on an individual subject 

level. We started with a difference of 1.26° VA between the shortest and longest length of 

the spike, and a maximum difference of 27.02° in the angle of orientation. After 192 trials, 

the range of lengths or orientations in the stimulus set was adjusted if there was a 

significant difference in the subject's reaction times between the two tasks (p < 0.05). For 
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this, we increased the difficulty of the task that had the lower average reaction time. This 

procedure was repeated until there was no difference in reaction time between the two task 

contexts, as confirmed with Bayes analysis in each participant separately. In Bayes 

analysis, a Bayes Factor (BF) > 3 indicates strong evidence for experimental hypothesis 

and BF < 1/3 indicates strong evidence for the null hypothesis (Dienes, 2011; Love et al., 

2015). We required BF < 1, and took this as evidence towards the null and sufficient to 

deem the conditions equated. The difficulty of the orientation context was increased for 11 

participants (maximum angle decreased to 21.92° for 6 participants and 13.86° for 5 

participants) and the difficulty of the length context was increased for 5 participants 

(maximum difference in VA was decreased to 1.06° for 2 participants and 0.95° for 3 

participants).  

Procedure 
 

Prior to titrating the stimuli, participants completed at least 6 blocks of practice 

trials to learn the task. Stimuli were initially presented for 400ms until participants 

achieved >80% correct after which objects were presented for 216ms. Feedback 

(correct/incorrect) was presented after each response until participants achieved > 80% 

performance, after which feedback (percent correct) was only given at the end of each 

block. Once participants reached a high performance level ( > 80% correct) in both task 

contexts, we then titrated the stimuli to ensure equal performance in reaction times (as 

described above). During titration participants only received feedback at the end of each 

block. Immediately prior to entering the scanner, participants completed a further 2 

practice blocks of each task context to remind them of the task and to avoid initial practice 

effects in the scanner. These two practice blocks also introduced a response-mapping 

screen to be used in the scanning task, which randomly assigned the button to be pressed 
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for each category decision (short or long spikes in the length task and clockwise or anti-

clockwise spikes in the orientation task) on a trial-by-trial basis (Figure 2). This allowed 

separate estimation of the blood-oxygen-level dependent (BOLD) response associated 

with perceptual information about each category from that associated with each button 

press. Participants also performed an additional two practice blocks in the scanner during 

the structural scan, prior to commencing the main experiment, to familiarise them with the 

button-response box in the scanner.   

 

Figure 2: Stimulus categorization task: A picture cue at the start of each 

block indicated the current task context for categorization (orientation or 

length; inset shows cue display for the length task). On each trial a fixation 

cross was presented for 500ms followed by a ‘spiky’ object for 200ms. Finally 

a response mapping screen appeared which indicated the appropriate 

response button. In the example shown, the current context is length. For the 

first trial, the stimulus is category 1 on the length dimension and therefore 

the correct response was the left-button.  
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Participants were scanned whilst performing the categorization task shown in 

Figure 2. Each participant completed 4 acquisition runs (8.09min each) consisting of 4 

blocks (32 trials / block) totaling 128 trials per acquisition run (2.02min / block). At the 

start of each block, a picture cue (4000ms) indicated the current task (length or 

orientation) and which attribute was category 1 and 2 (e.g. whether short spikes/long 

spikes were category 1 or 2; counterbalanced across participants). The order of task 

contexts was counterbalanced across participants as well as within-participant across runs. 

The picture cue depicted spiky objects from the extremes of the currently relevant 

dimension (see Figure 2, inset). The stimulus set was identical across the two contexts, but 

the relevant feature was either the length of the same spike relative to the category 

boundary or the orientation of a particular spike relative to the category boundary (rotated 

clockwise versus anti-clockwise from the boundary) in the different contexts. Thus, 

participants were attending to the same part of the object, but different features of that 

object part, in the two conditions.  

On each trial, participants saw a white central fixation cross (500ms) after which 

the spiky object was presented at fixation for 216ms. Finally, participants saw a response 

mapping screen which indicated the category-to-button response mapping on this trial, and 

responded regarding the category membership of the stimulus. The response mapping 

screen randomly assigned category 1 and 2 decisions to either the left or right response 

button, operated by the index or middle finger of the participant’s right hand. The 

response mapping screen was visible until a button-press was made or until the jittered 

time interval timed out (2000-3000ms). If a response was made before the end of the inter-

trial-interval, a blank black screen was shown for the remainder of the trial time. Feedback 

(accuracy score) was presented at the end of each block for 6000ms after which there was 
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a delay of 4000ms prior to the start of the next block. At the end of each run, a blank black 

screen was shown for 4000ms.  

Following completion of the main task during the scanning session we ran a 

localizer task to functionally identify the LOC as an a priori region-of-interest (ROI). 

Participants viewed central intact and scrambled versions of black and white common 

objects in 16.8s blocks of 16 trials (1100ms/trial), whilst fixating on a central cross. 

Participants had to indicate via a button response when the fixation cross changed color to 

remind them to fixate centrally. There were 21 blocks consisting of alternating blocks of 

whole objects, scrambled objects, and rest blocks (counterbalanced across participants). 

The EPI (acquisition time) for the localizer task was 6.25min. 

Data Acquisition 

The data were collected using a 3T Verio Siemens (Erlangen, Germany) Magnetic 

Resonance Imaging (MRI) scanner at Macquarie Medical Imaging, Macquarie University 

Hospital, Sydney, Australia. We used a sequential descending T2*- weighted echo planar 

imaging (EPI) acquisition sequence with the following parameters: acquisition time 2000 

ms; echo time 30 ms; 34 oblique axial slices with a slice thickness of 3.0 mm and a 0.70 

mm inter-slice gap; in plane resolution 3.0×3.0 mm; matrix 64×64; field of view 210 mm; 

flip angle 78°. T1-weighted MPRAGE structural images were also acquired for all 

participants (slice thickness 1.0 mm, resolution 1.0×1.0 mm).  

Preprocessing 

MRI data were preprocessed using SPM 5 (Wellcome Department of Imaging 

Neuroscience, www. fil.ion.ucl.ac.uk/spm) in Matlab 2011b. Functional MRI data were 

converted from DICOM to NIFTII format, spatially realigned to the first functional scan 
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and slice timing corrected, and structural images were co-registered to the mean EPI. EPIs 

from the main experiment were smoothed slightly (4 mm FWHM Gaussian kernel) to 

improve signal-to-noise ratio. LOC localizer EPIs were also smoothed (8 mm FWHM 

Gaussian kernel) and in all cases the data were high pass filtered (128 s). Structural scans 

were additionally normalized, using the segment and normalize routine of SPM5, in order 

to derive the individual participant normalization parameters needed for ROI definition 

(below). 

ROIs 

MD ROIs were defined using co-ordinates from a previous review of activity 

associated with a diverse set of cognitive demands (Duncan & Owen, 2000) using the 

kernel method described in Cusack, Mitchell, and Duncan (2010), as in our previous work 

(Woolgar, Hampshire, et al., 2011; Woolgar, Thompson, et al., 2011; Woolgar, Williams, 

et al., 2015). The procedure yielded a total of seven ROIs: left and right IFS (centre of 

mass +/−38 26 24, volume 17 cm3); left and right AI/FO (+/−35 19 3, 3 cm3); left and 

right IPS (+/−35 −58 41, 7cm3) and ACC/ pre-SMA (0 23 39, 21 cm3).  

Left and right visual cortex ROIs were derived from the Brodmann template 

provided with MRIcro (Rorden & Brett, 2000) (BA 17, centre of mass −13 −81 3, 16 −79 

3, volume 54 cm3). All co-ordinates are given in MNI152 space (McConnell Brain 

Imaging Centre, Montreal Neurological Institute). MD and BA17 ROIs were deformed for 

each participant by applying the inverse of the participant’s normalization parameters. 

This allowed analyses to be carried out using native space (i.e., non-normalised) EPI data.  

Using the functional localiser scan data, we defined LOC for each participant as 

the brain area in the lateral occipital lobe that responded more strongly to whole objects 

than to scrambled versions of the same objects. We used the standard multiple regression 
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approach of SPM5 (Wellcome Department of Imaging Neuroscience, London, UK; 

www.fil.ion.ucl.ac.uk) to estimate values pertaining to the whole and scrambled object 

conditions (block design). Blocks were modelled using a box car function lasting 16s 

convolved with the hemodynamic response of SPM5. The run mean was included in the 

model as a covariate of no interest. Whole-brain analyses (paired t-tests) compared 

voxelwise BOLD response in the two conditions (whole objects minus scrambled objects). 

The resulting map was thresholded such that there was at least one cluster with a 

minimum size of 20 voxels. These clusters were then imported into MarsBaR (Brett, 

Anton, Valabregue, & Poline, 2002) and those active voxel clusters close to anatomical 

LOC coordinates from previous studies (Grill-Spector et al., 1999; Grill-Spector, Kushnir, 

Hendler, & Malach, 2000) were selected as the ROIs.  

First-Level Model 

To obtain estimated activation patterns for multivariate analysis, a General Linear 

Model (GLM) was estimated for each participant using the realigned, slice-time corrected 

and smoothed native space EPI images using SPM5 (Wellcome Department of Imaging 

Neuroscience, London, UK; www.fil.ion.ucl.ac.uk). We classified each stimulus as either 

“short” or “long” on the length dimension, and “rotated clockwise” or “rotated anti-

clockwise” relative to the category boundary on the orientation dimension. Trials were 

modelled as events of zero duration convolved with the hemodynamic response of SPM5. 

Each trial contributed to the estimation of two beta values, the relevant feature (short or 

long for length context blocks, and clockwise or anti-clockwise for orientation context 

blocks) and irrelevant feature (short or long for orientation context blocks, and clockwise 

or anti-clockwise for length context blocks). We derived the estimates for each feature in 
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each block separately. The two run means were included in the model as covariates of no 

interest. Error trials were excluded from the analysis. 

MVPA  

We used MVPA to examine the representation of relevant and irrelevant stimulus 

features. Of central interest was whether the MD regions adapted to code length and 

orientation information more strongly when it was relevant for the task than when it was 

task-irrelevant. We also examined the same stimulus feature distinctions in the LOC, and 

early visual cortex (Brodmann area 17, BA 17).  

We implemented MVPA using the Decoding Toolbox (Hebart, Görgen, & Haynes, 

2015), which wraps the LIBSVM library (Chang & Lin, 2011). We examined coding of 

orientation when orientation was relevant, orientation when orientation was irrelevant, 

length when length was relevant, length when length was irrelevant. For each participant 

and ROI, a linear support vector machine was trained to decode the relevant 

(clockwise/anti-clockwise in orientation blocks, and short/long in length blocks) and 

irrelevant (clockwise/anti-clockwise in length blocks, and short/long in orientation blocks) 

stimulus features separately, for each task context separately. In total, there were 16 

blocks for each participant: 8 with length relevant, and 8 with orientation relevant. For 

each classification, we used a leave-one-out 8 fold splitter whereby the classifier was 

trained using the data from 7 out of the 8 blocks and subsequently tested on its accuracy at 

classifying the unseen data from the remaining block, iterating over all possible 

combinations of training and testing blocks. For example, to yield a classification 

accuracy score for the task-relevant length distinctions (i.e., short vs. long in length 

blocks), we took the 8 blocks in which participants performed the length task and trained 

the classifier to distinguish between patterns of activation representing short and long 
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spikes using data from 7 out of these 8 blocks, and then tested generalization to the 

remaining unseen block. We repeated this iteratively for all 8 combinations of training and 

testing data, and then averaged the accuracies from each iteration together to give a mean 

accuracy score for task-relevant length coding. This was repeated for each condition, 

participant and ROI separately.  

The mean classification accuracy for each participant in each ROI and in each 

condition was then entered into a second level analysis. Of central interest was whether 

the MD network would code task-relevant stimulus features more strongly than task-

irrelevant ones. To address this, we conducted a three factor ANOVA on classifier 

accuracy with the factors relevancy, feature, and MD region. To explore any hemispheric 

effects, we ran an additional ANOVA with factors relevancy, feature, MD region and 

hemisphere. 

Since a difference in coding between relevant and irrelevant conditions is only 

interpretable if coding in at least one condition is also significantly above chance, we also 

conducted one-sample t-tests against the classification accuracy expected by chance (50%) 

in each condition (relevant and irrelevant) separately. One-tailed significance tests were 

used where appropriate for inference: tests comparing classification of relevant to 

irrelevant feature distinctions in the MD regions are one-tailed since the direction of the 

effect is pre-specified, and tests comparing classification accuracy to chance are one-tailed 

as below chance classifications are not interpretable. All other tests are two-tailed. Alpha 

was adjusted for four comparisons using Bonferroni correction (0.05 divided by 4). 

We also examined whether coding in the visual cortices was stronger for task-

relevant than irrelevant stimulus features. For this, we used a two-factor ANOVA on 

classifier accuracy with factors relevancy (task-relevant, task-irrelevant) and feature 
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(orientation, length) for each of the visual cortex ROIs (LOC, early visual cortex) 

collapsed across hemisphere. Again, we also tested whether coding in the visual cortices 

was above chance in each condition separately (one-sample t-test against the classification 

accuracy expected by chance, 50%).  

Finally, we ran an additional analysis in which the classifier was trained on data 

representing the category number decisions in one task context (category 1/category 2) 

and tested on the category number decisions participants made in the other task context 

(category 1/category 2). We included this analysis to explore whether the categorization 

decision was represented at the level of the stimulus (i.e. short/long) or at the level of the 

category number (category 1/category 2). 

Results 

Behavioral Results 

Prior to scanning, participants practiced the task until they scored at least 80% 

correct in both task conditions. Task difficulty was then titrated to match reaction times 

between the two conditions for each participant separately (assessed with Bayes factor 

analysis for each participant separately, all BF10 < 0.89).  

In the scanning session, participants performed with a high degree of accuracy 

(mean = 89.6%, SD = 9.1). Accuracy scores were assessed using Bayes Factor analysis to 

check for differences in performance between the two task contexts. There were no 

differences in accuracy score between the two conditions for any participant individually 

(all BF10 < 0.64). Reaction time data from the scanning session are not meaningful as the 

response mapping screen defined the response after the stimulus display.  
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Decoding Task-Relevant and Task-Irrelevant Stimulus Features 

MD Regions 

 
MVPA was used to differentiate multivoxel patterns pertaining to stimulus feature 

distinctions (orientation: clockwise/anti-clockwise, and length: short/long) when they were 

relevant to the task (orientation in orientation task blocks, and length in length task blocks) 

and when they were irrelevant to the task (orientation in length task blocks, and length in 

orientation task blocks). The resulting classification accuracy signified the strength of 

coding.  

The adaptive coding hypothesis (Duncan, 2001) proposes that neurons 

dynamically adjust their responses in order to selectively code information that is 

currently relevant for our behavior. We asked whether this could provide a basis for 

feature-selective attention, with preferential coding of currently relevant visual features in 

the MD system. Our prediction was that the MD regions would change their 

representation of the visual stimuli between tasks, to reflect or emphasize the distinctions 

that were needed in each task context.  

The results are presented in Figure 3. In line with the hypothesis, a three-way 

ANOVA with factors relevancy (task-relevant and task-irrelevant stimulus features), 

region (AI/FO, IFS, ACC/pre-SMA, and the IPS; collapsed across hemisphere where 

appropriate), and feature (orientation and length) revealed a main effect of relevancy 

(F(1,25) = 1.13, p = 0.03). The ANOVA showed no main effect of feature (F(1,25)=1.01, 

p=0.32), no main effect of region (F(3,75) = 0.77, p = 0.51), no significant interaction 

between relevancy and MD region (F(3,75) = 2.05, p = 0.12), region and feature 

(F(3,75)=1.75,p=0.16), or relevancy and feature (F(3,75) = 0.21,  p = 0.65), and no 
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significant 3-way interaction (F(3,75) = 1.41, p = 0.25). These results indicate that the MD 

regions coded the task-relevant feature distinctions more strongly than the task-irrelevant 

distinctions, despite these features being actually physically identical. In our additional 

ANOVA, included to check for hemispheric differences, there was no main effect of 

hemisphere (F(3,24) = 2.52, p = 0.13), but there was a significant interaction between 

relevancy and hemisphere (F(1,24) = 5.78, p = 0.02), reflecting a stronger relevancy effect 

on the left.  

The coding of relevant over irrelevant features is only interpretable if coding in 

one or more of the relevancy conditions is also significantly above chance. Therefore, we 

conducted one-sample t-tests against the classification accuracy expected by chance (50%) 

in each relevancy condition separately. We found that the MD regions coded the task-

relevant stimulus features significantly (mean classification accuracy for relevant across 

all regions, 55.14%; one sample t-test against chance, t(25) = 4.75, p < 0.001), whereas 

classification of the task-irrelevant stimulus distinctions was not significantly different 

from chance (mean classification accuracy for irrelevant, 52.21%; t(25) = 1.65, p = 0.11). 

Thus, on average across the network, these regions only encoded the task-relevant 

stimulus distinctions. Considering each MD ROI separately, the relevant stimulus 

distinctions were coded in all 4 MD ROIs (ACC/pre-SMA, mean accuracy 55.64%; t(25) 

= 3.01, p = 0.004; IPS, mean accuracy 54.80%; t(25) = 2.81, p = 0.01; IFS, mean accuracy 

57.27%; t(25) = 5.47, p < 0.001; AI/FO, mean accuracy 52.94%; t(25) = 2.85, p = 0.01; 

Figure 3, dark bars) while the irrelevant stimulus distinctions were only coded in the 

AI/FO (mean classification accuracy 53.31%; t(25) = 2.66, p = 0.01; other ps > 0.05; 

Figure 3, light bars).  

Recall that the stimulus set was identical across conditions; each feature (length, 

orientation) was relevant in one condition and irrelevant in the other. The data suggest that 
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the MD system encoded the relevant feature in each case, that is, it adjusted such that it 

coded the same physical stimulus distinction (e.g. length) more strongly when it was 

relevant than when it was irrelevant.  

 

 

Figure 3: Coding of task-relevant and task-irrelevant stimulus distinctions in 

MD regions. Error bars indicate standard error.  Significance marking for 

individual bars indicate whether coding was significantly greater than chance 

in each condition separately (one-sample t test against chance, 50%), 

significance marking between bars indicate where coding was significantly 

greater for relevant compared to irrelevant distinctions (main effect of 

relevancy / paired t-test). *p < 0.05, ** p < 0.01, alpha for analyses of 

individual regions corrected for four comparisons using Bonferroni correction. 

The MD regions coded task-relevant stimulus distinctions more strongly than 

the physically identical task-irrelevant distinctions. 

 



                         Feature-selective attention in the multiple-demand (MD) regions 

  

   80 

Lateral Occipital Complex (LOC) 

  
The LOC is known to respond strongly to object features (Grill-Spector, Kourtzi, 

& Kanwisher, 2001) and has previously been found to show preferential representation of 

attended relative to distractor objects (Woolgar, Williams, et al., 2015). It therefore 

seemed a likely candidate for preferential coding of relevant object features in our task. 

Figure 4 presents the data from the LOC, and visual inspection suggests a trend in this 

direction. However, an ANOVA with factors relevancy (relevant, irrelevant) and feature 

(orientation, length) showed no significant main effect of relevancy (F(1,25) = 2.83, p = 

0.11), no main effect of feature (F(1,25) = 0.32, p = 0.57), and no relevancy*feature 

interaction (F(1,25) = 0.08, p = 0.78). When we compared coding to chance, the LOC 

carried significant information about task-relevant distinctions (mean classification 

accuracy 56.67%; t(25)=3.65, p < 0.001), but not about irrelevant distinctions (mean 

classification accuracy 52.63%; t(25) = 1.39, p = 0.15). Thus, although the LOC only 

discriminated objects along the stimulus dimension that was currently relevant, the 

interaction with relevancy did not reach significance. 

Early Visual Cortex 

 
We also tested whether information pertaining to task-relevant and task-irrelevant 

stimulus distinctions was coded in early visual cortex (BA 17). An ANOVA with factors 

relevancy (relevant, irrelevant) and feature (orientation, length) showed no main effect of 

relevancy (F(1,25) = 0.57, p = 0.81), no main effect of feature (F(1,25) = 2.1, p = 0.17), 

and no relevancy*feature interaction (F(1,25) = 2.06, p = 0.16). Thus, we found no 

evidence that context modulates coding of orientation and length in this region (Figure 4). 

Further, BA 17 did not show categorical discrimination of these visually similar objects 
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according to either the task-relevant (relative to chance; mean classification accuracy 

52.9%; t(25) = 1.62, p = 0.14), or task-irrelevant (relative to chance; mean classification 

accuracy  52.3%; t(25) = 1.17, p= 0.25) stimulus features. Thus, in contrast to the MD and 

LOC ROIs, BA 17 did not distinguish these objects according to the task-imposed 

decision boundaries.  

 

 

Figure 4: Coding of task-relevant and task-irrelevant stimulus distinctions in 

LOC and BA 17. Error bars indicate standard error. The significance markings 

for individual bars indicate whether coding was significantly greater that 

chance in each condition separately (one-sample t test against chance, 50%). 

**p < 0.01. 

 

Coding of Category Placement 

On each trial, participants had to categorize the object according to the relevant 

feature dimension (e.g. short/long on length blocks), associate that decision with the 
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number representing the chosen category (1 or 2, e.g. short = 1 in half the participants), 

and then use the response mapping screen to transform their choice into the appropriate 

button press response (left or right, 1 = left on half of the trials). Therefore, it is possible 

that as well as the categorization decision at the level of the stimulus, participants also 

held a category number in mind on each trial. To test for representation at this higher level 

of abstraction, we ran an additional analysis where we trained the classifier on the data 

representing the category number decisions in one task context and tested this on the 

category number decisions participants made in the other task context. We were not able 

to decode the category number placement of the objects in the MD system (mean 

classification accuracy 50.5%, t(25) = 1.31, p = 0.21). In order to interpret this null effect 

we calculated the Bayes Factor. Coding of category number placement revealed a Bayes 

Factor (BF10) of 0.44. As this is less than 1 (Dienes, 2011) and approaches the level of 

0.33 suggested by (Jeffreys, 1998) to represent significant evidence for the null 

hypothesis, we interpret this as evidence that, although the MD regions encode task-

relevant stimulus distinctions, the representation is not abstracted to the level of 

categorical number placement.   

Discussion 

The adaptive coding hypothesis (Duncan, 2001) proposes that neural populations 

dynamically adjust their responses to selectively code information that is currently 

relevant for our behavior. This provides a possible mechanism for feature-selective 

attention, which allows information about task-relevant stimulus features to be processed 

in preference to irrelevant attributes. We examined the responses of the MD regions in a 

difficult visual object categorization task in which the relevant stimulus dimension varied 

on physically identical stimuli. The MD system adjusted its representation of these novel 
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objects to preferentially encode feature distinctions that were relevant for the task. When 

the task required participants to categorize the objects based on length, the MD regions 

coded length information and not orientation information but when the task was to 

categorize based on orientation, orientation was encoded in preference to length. Thus, the 

MD system adjusted its representation of the features of an object to encode the 

discrimination necessary for the current task. Consistent with the proposal that the 

cognitive flexibility of these regions underlies their involvement in a wide range of tasks 

(e.g. Cole & Schneider, 2007; Duncan, 2010; Duncan & Owen, 2000), our data suggest 

the coding of this adaptive system adjusts to hold the currently relevant features of a 

stimulus as needed for behavior.  

Electrophysiological studies in non-human primates have previously shown that 

neurons in higher cortical regions adapt their tuning profiles to respond most strongly to 

the information that is currently relevant (Cromer et al., 2010; Freedman, 2001; Freedman 

& Assad, 2006; Roy et al., 2010; Sakagami & Niki, 1994; Stokes et al., 2013). The 

implementation of MVPA for fMRI has shown similar results in humans: patterns of 

activation in the MD regions code a range of different types of task-related information 

(e.g. Bode & Haynes, 2009; Haynes et al., 2007; Li et al., 2007; Nee & Brown, 2012; 

Reverberi et al., 2011; Woolgar, Hampshire, et al., 2011; Woolgar, Thompson, et al., 

2011; Woolgar, Williams, et al., 2015), and adjust their responses when task demands 

vary (e.g. Li et al., 2007; Woolgar, Afshar, et al., 2015; Woolgar, Hampshire, et al., 2011; 

Woolgar, Williams, et al., 2015). The MD regions also encode attended objects in 

preference to unattended objects (Woolgar, Williams, et al., 2015) and a previous 

adaptation study demonstrated that these regions show greater responses to changes in 

attended stimulus features (color/shape) than to changes in unattended stimulus features 

(Thompson & Duncan, 2009). Here, we find that these regions can also flexibly adapt 
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their representations of single objects to emphasize task-relevant stimulus distinctions, 

resulting in preferential coding of attended stimulus features.  

Our data align with a recent study in which objects were strongly represented in 

lPFC in individual task contexts but the representation did not generalize between task 

contexts (Harel et al., 2014). Those data suggested that the same set of objects may be 

represented differently as task contexts change. Here, we tested this possibility directly by 

specifying the specific stimulus distinctions that an adaptive system should make in each 

task context. We found that the MD system adjusted its representation of the set of novel 

objects to make this specific distinctions needed for the task. In a related study (Peelen & 

Caramazza, 2012), participants responded to one of two semantic dimensions of an object 

(how the object is used or where the object is found) in a one-back task. Results from a 

whole-brain searchlight revealed several regions, including the right lPFC, which showed 

coding of the two semantic dimensions. However, no region showed preferential coding of 

task-relevant over task-irrelevant dimensions. The MD regions are known to be recruited 

most strongly when tasks are challenging (e.g. Duncan & Owen, 2000). It may be, then, 

that preferential coding of task-relevant information is only observed when the task is 

sufficiently difficult (Woolgar, Afshar, et al., 2015), as in the current experiment. 

The observation that stimulus features were coded more strongly when they were 

relevant than when they were irrelevant suggests that some filtering of information occurs 

between input (the relevant and irrelevant features were physically identical in our case) 

and MD representation as recorded with fMRI. In our data, we could not detect MD 

coding of irrelevant information in 4 of the 5 MD regions. However, recent evidence from 

non-human primates suggests that task irrelevant information can affect firing rates in 

higher cortical regions such as the frontal eye fields (Mante, Sussillo, Shenoy, & 

Newsome, 2013). Differences in the tasks, sensitivity of the methods and recording site, 
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may account for the different result. In that study, consistent with our findings, the effect 

of irrelevant information was weaker than that of relevant information but interestingly the 

size of the difference there was too small to account for the behavioral effect (Mante et al., 

2013). Other work suggests a dynamic change in the responses of lateral prefrontal 

neurons over time (Kadohisa et al., 2013). When presented with a target and distractor 

object in the left and right visual field, prefrontal activity was initially dominated by the 

contralateral object, regardless of its relevance, but over the course of the trial prefrontal 

resources were quickly re-assigned such that representation of the target came to dominate 

in both hemispheres (Kadohisa et al., 2013). 

In our data, the LOC held information about the task-relevant feature distinctions, 

demonstrating that it is sensitive to minimal changes in the shape of an object (e.g., to 

small changes in the length of one spike) when that change is relevant for behavior. The 

LOC did not make the task irrelevant distinctions, but the difference in coding between 

relevant and irrelevant conditions did not reach significance. The trend for relevant coding 

to be greater than irrelevant coding is in line with previous work which has emphasized a 

role for the LOC in responding more strongly to attended compared to unattended objects 

(e.g. Konen & Kastner, 2008; Murray & He, 2006; Murray & Wojciulik, 2003; Woolgar, 

Williams, et al., 2015; Xu & Chun, 2005). It seems likely that the magnitude of feature-

selective attention effects, as in our study, would be considerably smaller than effects of 

attention allocated on a whole-object level. Although we could not look at it in this study, 

because we did not track eye movements, it is also possible similar patterns might occur in 

other brain regions such as the frontal eye fields, based on previous findings that they are 

reliably activated by attentional tasks in humans (e.g. Corbetta et al., 1998; Culham, 

Cavanagh, & Kanwisher, 2001; Ester, Sprague, & Serences, 2015; Jerde, Merriam, 

Riggall, Hedges, & Curtis, 2012) and in non-human primates (Mante et al., 2013).  
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We did not observe multivoxel coding of object-category information in early 

visual cortex (BA17), or any interaction with relevancy. Although previous investigations 

using MVPA with fMRI have reported preferential coding of task-relevant stimuli in this 

region (Jehee, Brady, & Tong, 2011; Kok, Jehee, & de Lange, 2012; Woolgar, Williams, 

et al., 2015), there are some marked differences between these previous studies and the 

current study that may account for the different results. In previous work, coding 

corresponded to discrimination between physically dissimilar stimuli (gratings of 55° and 

145° orientation in Jehee et al., (2011), 40° and 135° in Kok et al., (2012), and different 

objects in Woolgar et al., (2015)). In our task, coding corresponded to discriminations 

across an arbitrary boundary on identical sets of stimuli. Objects close to the decision 

boundary were physically very similar, meaning stimulus-driven activation patterns would 

also be very similar and therefore difficult to classify. Moreover, the objects on either side 

of the category boundary were collapsed in our analyses, meaning that the classifier was 

required to generalize over physical differences of a similar magnitude to those it needed 

to discriminate between. This makes our result in the MD regions all the more striking, 

since the information they encoded was based on such minimal visual differences.  

Successful behavior requires a flexible cognitive system. Here, we have 

demonstrated that the MD network adjusts its representation of visual objects to make the 

distinctions that are needed for the current task. In this way, visually minimal task-relevant 

feature distinctions are coded more strongly than the equivalent irrelevant distinctions. 

This study exemplifies the extent to which the MD network can flexibly emphasize 

different features of an object, providing a possible neural mechanism for the 

implementation of feature-selective attention.  
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Abstract 
 

Frontoparietal cortex is thought to flexibly allocate attentional resources depending 

on our current goal and provide signals that configure our moment-to-moment information 

processing (e.g. Desimone & Duncan, 1995; Duncan, 2010). A fundamental question is 

how these signals are coded in neural activity and in what ways these processing 

mechanisms enable flexibility for the requirements of different tasks. Single-unit studies 

(Cromer, Roy, & Miller, 2010; Freedman, 2001; Roy, Riesenhuber, Poggio, & Miller, 

2010) have shown that prefrontal neurons flexibly adjust their responses to code relevant 

information across multiple tasks. Additionally, these studies indicate that the extent to 

which these neurons are re-used across tasks (“multitask”) may depend on how similar the 

two tasks are, with a greater proportion of neurons involved in representing more than one 

stimulus when the stimuli are more distinct (Cromer et al., 2010). In the human brain, the 

“multiple demand” (MD) system is proposed to exert control by adjusting its responses to 

selectively process information that is currently relevant (Duncan, 2001). Here, we used 

multi-voxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) 

data to examine the coding of relevant and irrelevant stimulus features in the MD network, 

and quantified the extent to which single voxels contributed to multiple neural codes. 

Participants categorised two separate groups of novel objects (“spikies” and “smoothies”) 

based on the features of each set of objects. We found that multi-voxel patterns of 

activation in the MD regions encoded the task-relevant feature distinctions more strongly 

than the task-irrelevant distinctions, as in our previous work (Chapter 2 – Jackson et al., in 

press). A comparison of the two datasets revealed that irrelevant feature information was 

coded more strongly when it was sometimes relevant to the task (Chapter 2 – Jackson et 

al., in press) compared to when it was never relevant (current study). Next, we asked 
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whether the neural codes for each stimulus feature depended on the same or different 

voxels. In the MD system, we found that voxels were more likely to be re-used in multiple 

neural codes than we predicted based on a permutation test (i.e., by chance). This was not 

the case for the visual system, where the stimulus features were also encoded, but voxel-

re-use was at chance. The same analysis, applied to our previous dataset (Chapter 2 – 

Jackson et al., in press), revealed the same pattern of results. Despite differences in the 

stimuli and our prediction based on the non-human primate literature, there were no 

significant differences in voxel re-use between the two experiments. Our data emphasise 

the flexibility of the MD regions, with single voxels re-used to multitask coding of 

relevant feature information across different tasks.  

Introduction 

To function successfully, we need a cognitive system that can select what is 

currently relevant, ignore distraction, and when we encounter increasing task difficulty, 

employ mechanisms enabling us to deal with an increase in cognitive demand. The ability 

to select between task-relevant and task-irrelevant information is a basic aspect of 

attentional function. This system needs to constantly update the way it responds in order to 

meet the requirements of our current environment. We do not fully understand how the 

human brain is able to swiftly adjust processing priorities in response to changing 

circumstances. 

One influential model, the adaptive coding hypothesis, proposes that context-

specific task parameters directly shape the tuning profile of higher cortical neurons 

(Duncan, 2001; Duncan, 2010). These neurons are not tuned to specific features in the 

environment but instead their response properties are thought to be highly adaptable, 

coding the details of stimuli, tasks and responses according to what information is 
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currently relevant for behaviour. This model suggests that the way that stimuli are 

encoded will change depending on task parameters.  

Evidence for such ‘adaptive coding’ came originally from single-unit work with 

non-human primates where neural responses in higher cortical regions were found to be 

relatively independent of the physical attributes of stimuli, and depend instead on their 

behavioural significance. For example, several experiments have reported that neurons in 

prefrontal cortex (PFC) encode the behavioural meaning of visual stimuli, regardless of 

their physical properties (Cromer et al., 2010; Freedman & Assad, 2006; Freedman, 

Riesenhuber, Poggio, & Miller, 2001; Freedman, Riesenhuber, Poggio, & Miller, 2002; 

Roy et al., 2010; Sakagami & Niki, 1994; Sakagami & Tsutsui, 1999; Watanabe, 1986). 

This contrasts with findings showing that the responses of neurons in other association 

cortices, such as inferior temporal cortex, are less strongly driven by categorical 

membership and more responsive to visual features (Freedman & Miller, 2008; Freedman, 

Riesenhuber, Poggio, & Miller, 2003).  

Adaptive coding is also evident in the changing response of PFC neurons during 

single trials (Kadohisa et al., 2013). In this study, monkeys performed a cue detection task 

where they were presented with one of two cues that were associated with one of two 

alternative targets. After a delay one or two objects were presented that could consist of a 

behaviourally relevant target (associated with the current cue), currently irrelevant target 

(associated with the alternate cue), and/or a consistently irrelevant target (never relevant to 

either task). The results showed that when two objects were present in the display, 

attentional competition was resolved by a reallocation of prefrontal neural resources over 

time. During early processing, different neurons responded to different items and 

responses were mostly dominated by the object in the contralateral hemisphere. Later, 

responses reflected the behaviourally relevant objects globally across hemispheres, 
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suggesting an adaptive re-allocation of prefrontal resources over the course of the trial. 

The extent of this reallocation was greater when the accompanying stimulus was never 

relevant to the task compared to when it currently irrelevant (but relevant for the 

alternative cue), suggesting that consistently irrelevant information is more easily filtered 

out. 

Adaptive coding can also be observed in Cromer and colleagues’ (2010) study 

where non-human primates were trained to classify stimuli according to an arbitrarily 

defined category boundary. In this study, individual PFC neurons displayed tuning 

profiles that were aligned with the task-relevant decision space. When the task changed so 

that the monkeys were required to classify a second group of stimuli according to a new 

decision boundary, 44% of these neurons changed their firing rate to reflect the new task. 

These data provide evidence that substantial portions of PFC neurons are able to engage in 

multiple cognitive tasks, emphasising the flexibility of these neurons to alter their coding 

as needed for behaviour. Roy et al., (2010) showed similar results in an experiment where 

monkeys switched between two tasks requiring them to re-categorise the same stimuli 

across an orthogonal decision boundary. However, in this study only 24% of the task-

responsive neurons altered their firing rate to reflect the decision boundary of the new 

task. It appears that in some cases PFC neurons are recruited to represent different 

information depending on the task (termed "multitasking", Cromer et al., 2010) but in 

other situations, information is primarily encoded in different PFC neurons for different 

task contexts (Roy et al., 2010). These data reflect the striking properties of these neurons 

not only to adjust what they code in different circumstances, but to adjust the extent to 

which they act as “generalists” (coding multiple types of information) or “specialists” 

(coding only one type of information) according to different circumstances (Cromer et al., 

2010; Roy et al., 2010). It emphasises the importance of investigating the variety of 
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control mechanisms, such as resource allocation, employed in higher cortical regions, in 

response to different task requirements. 

In the human brain, candidate regions for adaptive coding are a set of frontal and 

parietal brain regions, often referred to as multiple-demand (MD) regions (Cole et al., 

2013; Duncan, 2010, 2013; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008), elsewhere 

called “task positive network” (Fox et al., 2005) or “frontoparietal control system” 

(Vincent et al., 2008). These are a specific set of regions in the prefrontal and parietal 

cortex, in particular: cortex in and around the inferior frontal sulcus (IFS), anterior insula 

(AI), frontal operculum (AI/FO), pre-supplementary motor area and adjacent dorsal 

anterior cingulate (pre-SMA/ACC) and in and around the intraparietal sulcus (IPS). They 

are characterised by their response to a wide range of task demands (Dosenbach et al., 

2006; Duncan & Owen, 2000; Nyberg et al., 2003), even at the level of single participants 

(Fedorenko, Duncan, & Kanwisher, 2013). They have been widely implicated in models 

of executive function and cognitive control (Cole & Schneider, 2007; Corbetta & 

Shulman, 2002).  

Human imaging data has revealed that the MD regions display distinctive forms of 

flexibility depending on the requirements of the task. Evidence for this comes from 

MVPA of fMRI data where coding is revealed by regularities in fine-grained activity 

patterns evoked by different stimulus events (e.g. Haxby et al., 2001; Haynes & Rees, 

2006; Haynes & Rees, 2005; Kamitani & Tong, 2005). For example, the MD regions have 

been shown to flexibly code a range of task features demonstrating flexibility to respond 

to a variety of behaviourally relevant aspects of a task in different contexts (e.g. Bode & 

Haynes, 2009; Harel, Kravitz, & Baker, 2014; Haynes et al., 2007; Li, Ostwald, Giese, & 

Kourtzi, 2007; Nee & Brown, 2012; Reverberi, Gorgen, & Haynes, 2011; Stiers, Mennes, 

& Sunaert, 2010; Woolgar, Afshar, Williams, & Rich, 2015; Woolgar, Hampshire, 
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Thompson, & Duncan, 2011; Woolgar, Thompson, Bor, & Duncan, 2011; Woolgar, 

Williams, & Rich, 2015) also refer to (Appendix A, Woolgar, Jackson, & Duncan, in 

press). In addition they have been shown to adjust the strength of their coding within 

single tasks as task demands vary, increasing their representation of perceptual (Woolgar, 

Hampshire, et al., 2011; Woolgar, Williams, et al., 2015) and rule task information 

(Woolgar, Afshar, et al., 2015) when perceptual or rule elements of the task are made 

more difficult.  

Previously (Chapter 2 – Jackson et al. (in press)), we examined whether flexibility 

of the MD system could underpin our capacity to attend to different features of the same 

object. Participants categorised objects across an orthogonal decision boundary that 

created two task contexts based on separate feature dimensions. The nature of the two 

tasks required participants to suppress information about the irrelevant feature in order to 

respond accurately to the behaviourally relevant feature dimension. We refer to the 

mechanism employed to enable this selective processing of features as feature-selective 

attention (Chen, Hoffmann, Albright, & Thiele, 2012). We demonstrated that the MD 

regions flexibly emphasised different features of the same object as required by the current 

task, providing a possible mechanism for feature-selective attention. The first objective of 

the current study was to examine whether the result replicates in a second experiment 

using different stimulus sets across the two tasks.  

 Our second objective was to test whether coding of irrelevant information across 

tasks is modulated by whether the irrelevant information is currently irrelevant (relevant in 

the alternative task) or never relevant to the participants’ task.  To address this objective 

we drew a comparison between our previous dataset (Chapter 2 – Jackson et al. (in press)) 

and the current data. In Kadohisa et al.’s study, the results indicated when information was 
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consistently irrelevant it was easier to filter out. We therefore predicted a similar pattern of 

results in our data.  

A third goal of this study was to investigate flexible coding in the MD system in 

more detail, by interrogating the extent to which multiple neural codes load on the same 

individual voxels. In Cromer et al.’s (2010) and Roy et al.’s (2010) studies, the firing rate 

of individual units discriminated between multiple different visual stimuli in different 

tasks. Although these studies provide detailed information at the level of single-cell 

activity, they are limited in the scale of brain network under study. New methods are 

needed to examine this process in the human brain. Accordingly, we developed a method 

to measure the extent to which voxels in the MD regions were ‘re-used’ in multiple codes 

more often than expected by chance, as an indirect method for estimating neuronal 

population recruitment. In Chapter 2, the patterns across the MD regions held relevant 

over irrelevant information, but here we ask whether it is the same voxels that hold that 

information. We predicted, in line with the adaptive coding hypothesis (Duncan, 2001), 

that MD voxels would flexibly be re-used to code behaviourally relevant information 

across multiple tasks.  

 Ideally, to answer a question about whether neural resources are re-used across 

multiple tasks, we would exploit responses at the neural-level rather than the voxel-level. 

However, this is not possible in the human brain. Thus, a finding that a voxel carries 

different information under two task conditions may indicate that the same neural 

populations are active across the different conditions, consistent with the single cell data. 

Alternatively, it could be due to different neural populations within the voxel that are each 

active in one condition. It seems unlikely that there would be a bias for qualitatively 

different neuron populations to cluster together in single voxels, particularly given the 

actual voxel ‘allocation’ is arbitrary, but nonetheless, we refer to only ‘voxel re-use’ rather 



                                     Frontoparietal voxels are re-used to code relevant feature information 

   103 

than ‘neural re-use’. We see this method as the first step towards testing the notion of 

recruitment of the same neural resources for different tasks.  

Finally, these datasets allow investigation of another level of flexible control in the 

MD network: whether the extent to which MD regions behave as “specialists” and 

“generalists” is affected by task demands, as suggested in the non-human primate monkey 

literature (Cromer et al., 2010; Roy et al., 2010). In Cromer et al.’s (2010) and Roy et al.’s 

(2010) studies, less neural multitasking occurred when monkeys switched between two 

orthogonal decision boundaries of the same stimuli, requiring suppression of the 

previously relevant information (high demand), compared when task the switched between 

separate groups of visual objects (low demand). We asked whether the extent to which 

MD voxels were re-used to code behaviourally relevant information was modulated by 

whether the tasks required participants to switch their focus of attention between two 

features of the same object (Chapter 2 data, high demand) or to switch their focus of 

attention between features of different objects (current experiment data, low demand). 

This is the stronger test of neural flexibility, and the one that this study was originally 

designed to examine, because if there is an interaction in the extent to which voxels are re-

used between the two experiments, this must be based on differential allocation of 

resources and cannot be attributed to sub-populations of neurons sampled by different 

voxels.  

Materials and Methods 

This study includes comparisons to the data presented in Chapter 2. In this 

Chapter, we refer to the experiment from Chapter 2 as “Experiment 1”. We designed the 

current experiment (“Experiment 2”) to be comparable to Experiment 1 to allow 

comparisons between the two datasets. However, there was one important difference. In 
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Experiment 1, the two sets of encoded stimulus features belonged to the same group of 

objects (Figure 1, top panel). Thus, in Experiment 1 participants were attending to the 

same object, but different features of that object, in the two conditions. As a result, the 

irrelevant dimension in one block was the relevant dimension in other blocks. In 

Experiment 2, the two sets of encoded task-relevant stimulus features belonged to different 

groups of objects, rendering the irrelevant dimension never relevant to the task (Figure 1, 

bottom panel).  

Our first aim was to examine whether the MD regions adjust to code task-relevant 

feature information across different groups of objects reflecting the same type of adaptive 

properties as demonstrated in our previous work (Chapter 2 – Jackson et al. (in press)). 

Second, we compared the current data set to that from the previous Chapter to examine 

whether the strength of coding of irrelevant feature information differed depending on 

whether that information was sometimes relevant or never relevant in the broader 

experimental context. Our third aim was to examine the extent to which the same MD 

voxels contributed to the neural codes for the relevant information across different tasks. 

Finally, we assessed whether a greater proportion of voxels would be re-used to code task-

relevant stimulus features when the encoded features belong to different objects 

(Experiment 2, low demand) compared to when encoded features belong to the same 

objects (Experiment 1, high demand). To allow these comparisons, the two experiments 

were matched as closely as possible in terms of their methods and procedure. Here I 

describe the details of the new experiment, Experiment 2, emphasising differences from 

Experiment 1 where relevant (for full details on Experiment 1, refer to Chapter 2, Jackson 

et al. (in press)).  
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Participants 

Twenty-six healthy adult volunteers (17 females; mean age = 23.9 years, SD= 

4.56) participated in Experiment 2. All participants were right-handed with normal or 

corrected-to-normal vision and no history of neurological or psychiatric disorder. 

Participants were selected using the Macquarie University Psychology Participant Pool 

(SONA) to be matched on age (BF10<0.28) and gender (17 female) with the 26 

participants in Experiment 1. Participants gave written informed consent and the human 

research ethics committee of Macquarie University (Sydney, Australia) approved the 

experiment. All participants received $50. 

 Stimuli 

 

Figure 1: Experiment 1 (top panel): Participants performed two tasks in 

the scanner where they categorised spiky objects according to an orientation 

(task 1) and length (task 2) dimension. Experiment 2 (bottom panel): 

Participants performed two tasks in the scanner where they categorised spiky 
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objects along an orientation dimension (task 1) and smoothy objects along a 

breadth dimension (task 2). The objects in this figure depict the extremes of 

each dimension (refer to Figure 2 for all 32 objects). The red and orange 

circles in this figure are to illustrate the differences between objects and were 

not shown in the actual display 

 

Our stimulus set consisted of abstract novel “spiky” objects and “smoothy” objects 

created using custom MatLab scripts (Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006). 

The stimulus set consisted of 32 objects (16 spiky and 16 smoothy objects, Figure 2). One 

“spike” of the spiky objects varied along two dimensions (its length and orientation) and 

one “spheroid” of the smoothy objects also varied along two dimensions (its breadth and 

height).  

Participants performed two tasks. In one task, participants discriminated between 

the 16 spiky objects based on the orientation dimension (rotated clockwise vs. rotated anti-

clockwise spikes). For the second task, subjects discriminated between the 16 smoothy 

objects based on the breadth dimension (wide vs. narrow spheroid). The stimuli also 

varied on a second dimension (for spiky objects the critical spike also varied in length, for 

smoothy objects the spheroid varied in height) but participants never discriminated the 

objects based on these irrelevant dimensions (Figure 1, bottom panel shows maximum 

difference between objects for the relevant dimensions). This aspect of the stimulus design 

was different to Experiment 1 (Chapter 2) in which only the spiky objects were used 

(Figure 2, left panel), and participants switched between the two dimensions of the spiky 

stimulus set. During both the training and scanning sessions, the visual angle (VA) of the 

spiky object’s length along its main axis was 8.07° and for the smoothy objects it was 

8.56°. A PC running the Psychophysics Toolbox-3 package (Brainard, 1997) in Matlab 

(Mathworks) controlled stimulus presentation. Stimuli were presented at central fixation 

on a screen and viewed through a mirror mounted on the head coil in the scanner. 
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Figure 2: The stimulus set consisted of 32 objects total. One “spike” of the 

spiky objects varied along two dimensions (its length and orientation) and one 

“spheroid” of the smoothy objects also varied along two dimensions (its 

breadth and height). Participants categorised the spiky objects according to 

the orientation dimension; the length dimension was always irrelevant. For 

the second task, participants categorised the smoothy objects according to 

breadth dimension; the height dimension was always irrelevant.  

Procedure 
 

In the previous chapter, participants completed at least 6 blocks of practice trials to 

learn the task. Stimuli were initially presented for 400ms until participants achieved >80% 

correct after which objects were presented for 216ms. Feedback (correct/incorrect) was 

presented after each response until participants achieved >80% performance, after which 

feedback (percent correct) was only given at the end of each block. Once participants 

reached a high performance level (>80% correct) in both tasks, we titrated the stimuli to 

ensure no difference in reaction times. We used the spiky stimulus set that was most 

frequently used in Experiment 1, and matched the difficulty of the smoothy object task to 

this. To achieve this, we increased or decreased the difficulty of the smoothy task by using 

different smoothy stimulus sets varying on the maximum difference across the relevant 

decision boundary (breadth). This procedure was repeated until there was no difference in 
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reaction time between the two task contexts, as assessed with Bayes analysis in each 

participant separately. During titration participants only received feedback at the end of 

each block.  

Immediately prior to entering the scanner, participants completed a further 2 

practice blocks of each task context to remind them of the task and to avoid initial practice 

effects in the scanner. These two practice blocks also introduced a response-mapping 

screen to be used in the scanning task, which randomly assigned the button to be pressed 

for each category (clockwise or anti-clockwise spikes in the orientation task and narrow or 

wide spheroids in the breadth task) on a trial-by-trial basis. This allowed separate 

estimation of the blood-oxygen-level dependent (BOLD) response associated with 

perceptual information about each category from that associated with each button press. 

Participants also performed an additional two practice blocks in the scanner during the 

structural scan, prior to commencing the main experiment, to familiarise them with the 

button-response box in the scanner. 

Participants were scanned whilst performing the categorisation task shown in 

Figure 3 (for comparison, see also categorisation task for Experiment 1 shown in Chapter 

2, Figure 2). The procedure and task were identical to Experiment 1 except that in this 

experiment the two tasks were performed on different stimuli as detailed above. Each 

participant completed 4 acquisition runs (8.09min each) consisting of 4 blocks of 128 

trials (2.02min/block). At the start of each block, a picture cue (4000ms) indicated the 

current task (orientation of the spikes, breadth of the spheroids). The picture cue also 

indicated which attribute was category 1 and 2 (e.g. whether rotated clockwise/anti-

clockwise spikes were category 1 or 2; counterbalanced across participants). The order of 

task contexts was counterbalanced across participants as well as within-participants across 

runs.  
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Figure 3: Stimulus categorisation task: A picture cue at the start of each 

block indicated the current task for categorisation: breadth (smoothy task) or 

orientation (spiky task). The inset shows cue display for both the orientation 

and breadth task. On each trial a fixation cross was presented for 500ms 

followed by an object for 216ms. Finally, a response mapping screen 

appeared which indicated the appropriate response button. In the example 

shown, the current task is breadth. For the first trial, the stimulus is category 

1 on the breadth dimension and therefore the correct response was the left-

button.  

The picture cue depicted either spiky objects or smoothy objects from the extremes 

of the currently relevant dimension dependent on the current task context. On each trial, 

participants saw a white central fixation cross (500ms) after which a spiky or smoothy 

object was presented at fixation for 216ms. Finally, participants saw a response mapping 

screen which indicated the category-to-button response mapping on this trial, and 

responded regarding the category membership of the stimulus. The response mapping 

screen randomly assigned category 1 and 2 decisions to either the left or right response 

button, operated by the index or middle finger of the participant’s right hand. The 

response mapping screen was visible until a button-press was made or until the jittered 
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time interval timed out (2000-3000ms). If a response was made before the end of the inter-

trial-interval, a blank black screen was shown for the remainder of the trial time. Feedback 

(accuracy score) was presented at the end of each block for 6000ms after which there was 

a delay of 4000ms prior to the start of the next block. At the end of each run, a blank black 

screen was shown for 4000ms. 

Following completion of the main task during the scanning session, we ran a 

localiser task to functionally identify the LOC as an a priori region-of-interest (ROI). 

Participants viewed centrally located intact and scrambled versions of black and white 

objects in 16.8s blocks of 16 trials (1100ms/trial), whilst attending to a central fixation 

cross. Participants indicated via a button response when the fixation cross changed colour. 

There were 21 blocks consisting of alternating blocks of whole objects, scrambled objects, 

and rest blocks (counterbalanced across participants). The EPI (acquisition time) for the 

localiser task was 6.25min. 

Data Acquisition 

Data acquisition was identical to Experiment 1. FMRI data were collected using a 

3T Siemens Verio Magnetic Resonance Imaging (MRI) scanner at Macquarie University 

Hospital. We used a sequential descending T2*- weighted echo planar imaging (EPI) 

acquisition sequence with the following parameters: acquisition time 2000 ms; echo time 

30 ms; 34 oblique axial slices with a slice thickness of 3.0 mm and a 0.70 mm inter-slice 

gap; in plane resolution 3.0×3.0 mm; matrix 64×64; field of view 210 mm; flip angle 78°. 

T1-weighted MPRAGE structural images were also acquired for all participants (slice 

thickness 1.0 mm, resolution 1.0×1.0 mm). 
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 Preprocessing 

Preprocessing was identical to Experiment 1. MRI data were preprocessed using 

SPM 5 (Wellcome Department of Imaging Neuroscience, www. fil.ion.ucl.ac.uk/spm) in 

Matlab 2011b. Functional MRI data were converted from DICOM to NIFTII format, 

spatially realigned to the first functional scan and slice timing corrected, and structural 

images were co-registered to the mean EPI. EPIs from the main experiment were 

smoothed slightly (4 mm FWHM Gaussian kernel) to improve signal-to-noise ratio. LOC 

localiser EPIs were also smoothed (8 mm FWHM Gaussian kernel) and in all cases the 

data were high pass filtered (128s). Structural scans were additionally normalised, using 

the segment and normalise routine of SPM5, in order to derive the individual participant 

normalisation parameters needed for ROI definition (below). 

Regions of Interest 

ROIs were defined in the same way as for Experiment 1. MD regions of interest 

(ROIs) were defined using co-ordinates from a previous review of activity associated with 

a diverse set of cognitive demands (Duncan & Owen, 2000) using the kernel method 

described in Cusack, Mitchell, and Duncan (2010), and as in previous work (Woolgar, 

Hampshire, et al., 2011; Woolgar, Thompson, et al., 2011; Woolgar, Williams, et al., 

2015). The procedure yielded a total of seven ROIs: left and right IFS (centre of mass 

+/−38 26 24, volume 17 cm3); left and right AI/FO (+/−35 19 3, 3 cm3); left and right IPS 

(+/−35 −58 41, 7cm3) and ACC/ pre-SMA (0 23 39, 21 cm3). 

Left and right visual cortex ROIs were derived from the Brodmann template 

provided with MRIcro (Rorden & Brett, 2000) (BA 17, centre of mass −13 −81 3, 16 −79 

3, volume 54 cm3). All co-ordinates are given in MNI152 space (McConnell Brain 

Imaging Centre, Montreal Neurological Institute). MD and BA17 ROIs were deformed for 
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each participant by applying the inverse of the participant’s normalisation parameters. 

This allowed analyses to be carried out using native space (i.e., non-normalised) EPI data. 

We defined LOC for each participant based on the functional localiser scan as the 

brain area that responded more strongly to whole objects than to scrambled versions of the 

same objects. We used the standard multiple regression approach of SPM5 (Wellcome 

Department of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk) to estimate 

values pertaining to the whole and scrambled object conditions (block design). Blocks 

were modelled using a box car function lasting 16s convolved with the hemodynamic 

response of SPM5. The run mean was included in the model as a covariate of no interest. 

Whole-brain analyses (paired t-tests) compared voxelwise BOLD response in the two 

conditions (whole objects minus scrambled objects). The resulting map was thresholded 

such that there was at least one cluster with a minimum size of 20 voxels. These clusters 

were then imported into MarsBaR (Brett, Anton, Valabregue, & Poline, 2002) and clusters 

of activation close to anatomical LOC coordinates from previous studies (Grill-Spector et 

al., 1999; Grill-Spector, Kushnir, Hendler, & Malach, 2000) were selected as ROIs. 

First-Level Model 

To obtain estimated activation patterns for multivariate analysis, a General Linear 

Model (GLM) was estimated for each subject using the realigned, slice-time corrected and 

smoothed native space EPI images using SPM5 (Wellcome Department of Imaging 

Neuroscience, London, UK; www.fil.ion.ucl.ac.uk).  The data were modelled as in 

Experiment 1. Relevant features were “rotated clockwise” or “rotated anti-clockwise” for 

orientation context blocks, and “wide” or “narrow” for breadth context blocks. The 

irrelevant features were “short” or “long” for orientation context blocks, and “tall” or 

“short” for breadth context blocks (height dimension). Trials were modelled as events of 

zero duration convolved with the hemodynamic response of SPM5. Every trial contributed 
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to the estimation of two beta values, the relevant feature (wide or narrow for breadth 

context blocks, and clockwise or anti-clockwise for orientation context blocks) and 

irrelevant feature (wide or narrow for orientation context blocks, and clockwise or anti-

clockwise for breadth context blocks). We derived the estimates for each feature in each 

block separately. The two run means in each experiment were included in the model as 

covariates of no interest. Error trials were excluded from the analysis. 

MVPA 

As in the previous Chapter, we used MVPA to examine the representation of 

relevant and irrelevant features in the MD regions, LOC, and early visual cortex 

(Brodmann area 17, BA 17). We implemented MVPA using the Decoding Toolbox 

(Hebart, Görgen, & Haynes, 2015), which wraps the LIBSVM library (Chang & Lin, 

2011). We examined coding of orientation of the spike (relevant) and length of the spike 

(irrelevant) in the spiky orientation task. We also examined coding of breadth of the 

spheroids (relevant) and the height of the spheroids (irrelevant) in the smoothy breadth 

task. We also drew on the data from Experiment 1 to make comparisons between the 

datasets. In Experiment 1 the conditions were coding of orientation when orientation was 

relevant, orientation when orientation was irrelevant, length when length was relevant, 

length when length was irrelevant. 

For each participant and ROI, a linear support vector machine was trained to 

decode the relevant (clockwise or anti-clockwise for orientation context blocks, and wide 

or narrow for breadth context blocks) and irrelevant (short or long for orientation context 

blocks, and tall or thin for breadth context blocks) stimulus features for each task context 

separately. 
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In total, there were 16 blocks for each participant in each experiment: 8 with 

orientation relevant and 8 with breadth relevant. For each classification, we used a leave-

one-out 8 fold splitter whereby the classifier was trained using the data from 7 out of the 8 

blocks and subsequently tested on its accuracy at classifying the unseen data from the 

remaining block, iterating over all possible combinations of training and testing blocks. 

For example, to yield a classification accuracy score for the task-relevant breadth 

distinctions (i.e., wide vs. narrow in breadth blocks), we took the 8 blocks in which 

participants performed the breadth task and trained the classifier to distinguish between 

patterns of activation representing wide and narrow spheroids using data from 7 out of 

these 8 blocks, and then tested generalization to the remaining unseen block. The 

accuracies were then averaged to give a mean accuracy score for task-relevant breadth 

coding. The same procedure was repeated for each condition, participant and ROI 

separately. 

The mean classification accuracy for each participant in each ROI and in each 

condition was then entered into a second level analysis. We conducted a three factor 

analysis of variance (ANOVA) on classifier accuracy with the factors relevancy, object, 

and MD region. To explore any hemispheric effects, we ran an additional ANOVA with 

factors relevancy, object, MD region and hemisphere. Since a difference in coding in the 

relevant and irrelevant conditions is only interpretable if coding in at least one condition is 

also significantly above chance, we also conducted one-sample t-tests against the 

classification accuracy expected by chance (50%) in each condition (relevant and 

irrelevant) separately. One-tailed significance tests were used where appropriate for 

inference: tests comparing classification of relevant to irrelevant feature distinctions in the 

MD regions are one-tailed since the direction of the effect is pre-specified, and tests 

comparing classification accuracy to chance are one-tailed as below chance classifications 
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are not interpretable. All other tests are two-tailed. Alpha was adjusted for four 

comparisons using Bonferroni correction (0.05 divided by 4). 

Next we compared the datasets to see whether there was stronger coding of the 

irrelevant feature information when the irrelevant feature was relevant to the task half of 

the time (Experiment 1), compared to when the irrelevant feature was never relevant to the 

task (Experiment 2). To do this we used a mixed model ANOVA with within-subjects 

factor region (AI/FO, IFS, ACC/pre-SMA, and the IPS; collapsed across hemisphere) and 

between-subjects factor experiment (Experiment 1, Experiment 2). 

As in Experiment 1, we also examined whether coding in the visual cortices was 

stronger for task-relevant than irrelevant stimulus features. For this, we used a two-factor 

ANOVA on classifier accuracy with factors relevancy (Task-relevant, Task-irrelevant) 

and object (Spiky, Smoothy) for each of the visual cortex ROIs (LOC, Early visual cortex) 

collapsed across hemisphere. Again, we also tested whether coding in the visual cortices 

was above chance in each condition separately (one-sample t-test against the classification 

accuracy expected by chance, 50%). 

Voxel re-use 

Voxel re-use for relevant information 

We developed an extension of multi-voxel pattern analysis to examine 1) whether 

voxels are re-used to code relevant information across multiple tasks; and 2) whether the 

extent to which resources are re-used varies with task demands (i.e., between 

experiments). Although each voxel may have contributions from independent populations 

of neurons, it seems unlikely that there is a bias for such neuron populations to cluster 

together in single voxels rather than across voxels. Thus, we can look at the voxel-level re-

use to investigate these two aims.  
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For this analysis, we identified the voxels that contributed the most signal to the 

stimulus discriminations using a transformation of the classifier weight outputs. A recent 

paper (Haufe et al., 2014) showed that multivariate classifier weight vectors alone do not 

provide information about the signal-of-interest because voxel weights can be independent 

of the underlying signal. For example, a voxel may be highly weighted (critical to the 

multivoxel discrimination) if it provides a good estimate of noise, which is also present in 

the response of other, signal-carrying voxels, even if it does not carry the signal from the 

underlying neural code. However, the extent to which each voxel contributes signal to the 

underlying neural code can be recovered by multiplying the classifier weight vector by the 

covariance in the data (Haufe et al., 2014). We used this approach for both Experiment 1 

and Experiment 2 data, retrieving the transformed weights from the Decoding Toolbox 

(Hebart et al., 2015). First, for a particular participant and ROI, we trained a linear support 

vector machine classifier using all the data (8 blocks) of each task context separately (e.g. 

in Experiment 1: left vs right orientation in the 8 orientation task blocks). From this we 

extracted the weight assigned to each voxel by the classifier, and transformed it (Haufe et 

al., 2014) to recover the extent to which each voxel contributed signal to each multivoxel 

pattern. We then identified the top 10% of voxels with the highest signal contributing to 

each discrimination and calculated the proportion of these voxels that were also in the top 

10% for the other relevant stimulus distinction. For example, for relevant discriminations 

in Experiment 1, we calculated the overlap between the voxels contributing the most 

signal to orientation coding in the orientation task blocks and the voxels contributing the 

most signal to length coding in the length task blocks. If 40 out of the 200 voxels in an 

ROI that contributed the highest signal to the discrimination of orientation in the 

orientation task were also amongst the 200 voxels that contributed the highest signal to the 

discrimination of length in the length task, then the proportion of re-use or overlap was 

40/200 = 0.2 (20%).  
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For relevant discriminations in Experiment 2, we similarly calculated the overlap 

between the voxels contributing the most signal to orientation coding of the spiky object 

and the voxels contributing the most signal to breadth coding of the smoothy object. We 

repeated this procedure for every participant, in each ROI and each experiment separately. 

This measure of voxel re-use is only meaningful in regions where patterns of activation 

reliably discriminated between the stimuli in the first place, so we carried out this analysis 

only in regions and conditions where information coding was above chance in the 

previous analysis. As a sanity check, we also checked whether voxel re-use was at chance 

when information coding was at chance in Experiment 2.  

Permutation tests on voxel re-use 

We used a permutation test (Stelzer, Chen, & Turner, 2013) to establish the voxel 

re-use expected by chance. This approach accounts for within-subject factors such as 

vasculature that could lead to certain voxels having higher classification weights. We 

carried this out for each region and each experiment separately. In the first step, we 

exhaustively permuted the condition labels within each block (128 combinations total) for 

each person in each experiment and each task separately. For each permutation, we trained 

a classifier using the permuted data, and calculated the transformed weight vectors, in the 

same way as we had done for the correctly labelled data. Next, we built a group level null 

distribution by sampling (with replacement) from the set of 20 participants * 128 

permutation results (one sample per participant per permutation, 10,000 permutations). 

From this, we calculated the probability p of observing the actual re-use value (from the 

correctly labelled data) given the group null distribution, using the Monte-Carlo approach 

(k+1/(n+1) where k is the number of permutations in the null with equal or higher 

accuracy to the actual re-use value and n is the number of all permutations).  
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Statistical comparison between experiments 

Finally, we examined whether the extent of MD voxel re-use varied between 

experiments. For this, we entered the voxel re-use values into a mixed model ANOVA 

with within-subjects factor region (AI/FO, IFS, ACC/pre-SMA, and the IPS; collapsed 

across hemisphere) and between-subjects factor experiment (Experiment 1, Experiment 2). 

Results 

In the following section we report the behavioural and decoding results from the 

current experiment (with reference to findings from Experiment 1 when relevant), 

followed by the comparison of voxel re-use in both experiments. For behavioural and 

decoding results for Experiment 1, refer to Chapter 2 (Jackson et al. (in press)). 

 Behavioural Results 

Prior to scanning, participants practiced the task until they scored at least 80% 

correct in both task conditions. The stimulus set was then titrated to match reaction times 

between the two conditions for each participant separately (assessed with Bayes factor 

analysis for each participant separately: all BF10 < 0.76), with the stimulus sets matched 

between experiments. As BF < 1 we interpret this as evidence that the conditions were 

matched (Dienes, 2011).  

In the scanning session, participants performed with a high degree of accuracy 

(94.2%, SD = 7.1). Accuracy scores were entered into a one-way ANOVA to check for 

differences in performance between the two task contexts. There was no main effect of 

feature (F(1,27) = 0.04, p = 0.92) , giving no evidence that at a group level participants 

found either condition (smoothy or spiky task) more difficult than the other. There were 

also no differences in accuracy score between the two conditions for any participant 
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individually (all BF10 < 0.89). Reaction time data from the scanning session was not 

analysed because the response mapping screen prevented participants from responding 

when they first saw the stimuli. 

Decoding of Task-Relevant and Task-Irrelevant Stimulus Distinctions 

MD Regions 

MVPA was used to differentiate multivoxel patterns pertaining to relevant and 

irrelevant stimulus distinctions. The relevant feature distinctions were orientation in 

orientation task blocks and breadth in breadth task blocks and the irrelevant feature 

distinctions were length in orientation task blocks and height in breadth task blocks. The 

decoding results are presented in Figure 4 (refer to Chapter 2 for decoding results from 

Experiment 1). 

Based on the adaptive coding hypothesis (Duncan, 2001) and previous results 

(Chapter 2), we predicted that the MD regions would code the task-relevant feature 

distinctions more strongly than the task-irrelevant feature distinctions. A three-way 

ANOVA with factors relevancy (task-relevant, task-irrelevant stimulus features), region 

(AI/FO, IFS, ACC/pre-SMA, and the IPS; collapsed across hemisphere where 

appropriate), and object (spikies, smoothies) revealed a main effect of relevancy (F(1,25) 

= 14.5, p = 0.001), corresponding to stronger representation of the relevant compared to 

irrelevant stimulus dimensions. No other main effects or interactions were significant (all 

ps > 0.11). These results indicate that the MD regions coded the task-relevant feature 

distinctions more strongly than the task-irrelevant distinctions. We have no evidence for a 

difference between regions or between spiky and smoothy objects.  

In our additional ANOVA, included to check for hemispheric differences, there 

was no main effect of hemisphere (F(1,25) = 0.16, p = 0.69) or relevancy by hemisphere 
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interaction (F(1,25) = 0.20, p = 0.66). However, there was a significant interaction 

between region and hemisphere (F(2,50) = 6.87, p = 0.002). To explore this, we 

performed post hoc ANOVAs (factor: region) for the left and right hemispheres 

separately. In the left hemisphere there was a significant main effect of region (F(2,50) = 

5.64, p = 0.006) and pairwise comparisons revealed stronger coding of information overall 

in the left IFS compared to the left AI/FO (p = 0.02). There was no main effect of region 

in the right hemisphere (F(2,50) = 0.28, p = 0.75).  

The difference in strength of coding for relevant and irrelevant features is only 

interpretable if coding in one or more of the relevancy conditions is also significantly 

above chance. Therefore, we conducted one-sample t-tests against the classification 

accuracy expected by chance (50%). We found that, on average, the MD regions coded the 

task-relevant features significantly above chance (mean classification accuracy for 

relevant across all regions, 55.9%; one sample t-test against chance, t(25) = 3.93, p < 

0.001), whereas classification of the task-irrelevant stimulus distinctions was numerically 

below chance (mean classification accuracy for irrelevant, 48.6%). Thus the MD regions 

only encoded the task-relevant stimulus distinctions.  

To test whether this was also the case in each region individually, we considered 

coding in each MD ROI separately, correcting for the 4 multiple comparisons using a 

Bonferroni corrected alpha level (a = 0.0125). We found that the relevant stimulus 

distinctions were coded in 3 MD ROIs (ACC/pre-SMA, mean accuracy 56.1%; (t(25) = 

2.85, p < 0.001); IPS, mean accuracy 57.3%; (t(25) = 3.74, p < 0.001); IFS, mean 

accuracy 56.4%; (t(25) = 3.62, p < 0.001)) with a trend in the remaining AI/FO ROI that 

did not reach our Bonferroni corrected significance level (mean accuracy 53.6%; (t(25) 

=1.81, p = 0.04)). The irrelevant feature distinctions were not coded in any of the MD 

regions.  
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Figure 4: Coding of task-relevant and task-irrelevant stimulus distinctions in 

MD regions. Error bars indicate standard error.  Significance markings for 

individual bars indicate whether coding was significantly greater that chance 

in each condition separately (one-sample t test against chance, 50%), 

significance marking between bars indicate where coding was significantly 

greater for relevant compared to irrelevant distinctions (main effect of 

relevancy / paired t-test). *p < 0.05, ** p < 0.01, alpha for individual regions 

corrected for four comparisons using Bonferroni correction. The MD regions 

coded task-relevant feature distinctions more strongly than the task-irrelevant 

distinctions. 

Comparison of irrelevant coding between experiments 

Our comparable design of Experiment 1 and Experiment 2 allow us to directly test 

the prediction that irrelevant information that is sometimes relevant (Experiment 1) leads 

to stronger coding of irrelevant information compared with situations where it is never 

relevant (Experiment 2). To address this, we conducted a further analysis using the 

irrelevant feature classification from both experiments. The data are presented in Figure 5. 

We used a mixed model ANOVA with within-subjects factor region (AI/FO, IFS, 
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ACC/pre-SMA, and the IPS; collapsed across hemisphere) and between-subjects factor 

experiment (Experiment 1, Experiment 2). There was a significant main effect of 

experiment (F(1,50) = 4.60, p = 0.04),  no main effect of region (F(3,150) = 1.12, p = 

0.34) and no significant interaction (F(3,150) = 2.14, p = 0.09). The results indicate that 

the MD regions coded the irrelevant stimulus information more strongly in Experiment 1, 

when this information was sometimes relevant to the task, than in Experiment 2. 

 

Figure 5: Coding of task-irrelevant stimulus distinctions in MD regions 

(Experiment 1: Left bars; Experiment 2: right bars). Error bars indicate 

standard error. Although coding of irrelevant information was not different 

from chance in either Experiment, the MD regions coded task irrelevant 

feature information more strongly in Experiment 1 than in Experiment 2. 

Lateral Occipital Complex (LOC) 

The LOC is known to respond strongly to object features (Grill-Spector, Kourtzi, 

& Kanwisher, 2001) and has previously been found to show preferential representation of 

attended relative to distractor objects (Woolgar, Williams, et al., 2015). In Experiment 1 

(Chapter 2), this region only coded the relevant stimulus distinctions, but the interaction 
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with relevancy was not significant. In this independent set of data the trend was again in 

the same direction (Figure 6), but an ANOVA with factors relevancy (Task-relevant, 

Task-irrelevant) and object (Spikies, Smoothies) again showed no significant main effect 

of relevancy (F(1,25) = 1.85, p = 0.19). There was also no main effect of object (F(1,25) = 

0.44, p = 0.54), and no relevancy*object interaction (F(1,25) = 0.01, p = 0.94). When we 

compared coding to chance, the LOC did not carry significant information about task 

relevant distinctions (mean classification accuracy = 53.0%, (t(25) = 1.33, p = 0.19)), or 

about irrelevant distinctions (mean classification accuracy=49.6%, (t(25) = 0.68, p = 

0.81)). Thus, in Experiment 2 we did not find evidence to suggest that the LOC 

discriminated the objects along either dimension, or that LOC coding was modulated by 

relevance. 

 

Figure 6: Coding of task-relevant and task-irrelevant stimulus distinctions in 

LOC. Error bars indicate standard error. Coding did not differ from chance in 

either condition.  
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Early Visual Cortex 

 Finally, we tested whether information pertaining to task-relevant and task-

irrelevant stimulus distinctions was coded in early visual cortex (BA 17, Figure 7). An 

ANOVA with factors relevancy (Task-relevant, Task-irrelevant) and object (Spikies, 

Smoothies) showed no main effect of relevancy (F(1,25) = 0.16, p = 0.69), no main effect 

of object (F(1,25) = 0.08, p = 0.78), and no relevancy*object interaction (F(1,25) = 1.02, p 

= 0.32). Thus, we found no evidence that context modulates coding of feature information 

in this region. However, BA 17 did show above chance classification of these objects 

according to both the task-relevant (relative to chance, mean classification accuracy 

56.2%; (t(25) = 2.35, p = 0.002)) and the task-irrelevant (relative to chance; mean 

classification accuracy 55.8%; (t(25) = 2.95, p = 0.006)) stimulus features. This indicates 

that although BA 17 was sensitive to small differences in the appearance of novel objects, 

coding in this region was not modulated by behavioural relevance.  

Voxel re-use 

We developed an extension of multi-voxel analysis to investigate whether MD 

voxels would code for relevant information across multiple tasks (multitasking). We also 

compared the extent of multitasking between our two datasets (Experiment 1 and 

Experiment 2). 

Permutation tests 

We ran permutation tests to compare the voxel re-use we observed to that expected 

by chance. We carried out this analysis for all the ROIs that showed significant coding of 

the stimulus information (whether relevant or irrelevant). These were the MD regions, 

LOC (Experiment 1), and BA 17 (Experiment 2), for the relevant stimulus dimensions, 

and BA 17 (Experiment 2) for the irrelevant stimulus dimension. 
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Figure 7: Coding of task-relevant and task-irrelevant stimulus distinctions in 

BA 17. Error bars indicate standard error. Significance markings for individual 

bars indicate whether coding was significantly greater that chance in each 

condition separately (one-sample t test against chance, 50%). ** p < 0.01.  

 

The results for the MD network are shown in Figure 8. Collapsing over region, we 

found that in both Experiment 1 and 2, the MD network displayed a higher proportion of 

voxel re-use for the relevant dimensions than what would be expected by chance (22.6% 

Experiment 1; p < 0.0001, 23.9% Experiment 2; p < 0.01). Considering the regions 

separately, voxel re-use was above chance in the IFS in Experiment 1 (28.1%, p < 

0.0001), and the IPS in both experiments (Experiment 1: 22.2%, p < 0.01, Experiment 2: 

25.1%, p < 0.01). Conversely, LOC (Experiment 1) and BA 17 (Experiment 2) did not 

multitask coding of the relevant (p > 0.09) or the irrelevant information (BA 17, 

Experiment 2; p > 0.25) across the two tasks. 
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As a sanity check we tested whether voxel re-use was at chance when information 

coding was at chance in Experiment 2. Voxel re-use was at chance for irrelevant 

information coding across the MD regions (all ps > 0.12) as well as for relevant (p = 0.72) 

and irrelevant (p = 0.85) information coding in LOC.  

MD regions: Comparing the proportion of voxel re-use between 

Experiment 1 and Experiment 2 

Our novel approach allowed us to examine whether the extent to which 

frontoparietal voxels were re-used between tasks was dependent on the demands of the 

task (Experiment 1 vs. Experiment 2, Figure 8). We entered these data into a mixed model 

ANOVA with within-subjects factor region (AI/FO, IFS, ACC/pre-SMA, and the IPS; 

collapsed across hemisphere) and between-subjects factor experiment (Experiment 1, 

Experiment 2).  

 

Figure 8: Proportion of voxel re-use in MD regions (for relevant dimensions) 

for Experiment 1 (left bars) and Experiment 2 (right bars), ** p < 0.01 

(chance established with permutation tests, Stelzer, Chen, & Turner, 2013). 

There was strong evidence to suggest that voxel re-use does not differ with 

task demands (BF = 0.28, Experiment 1 vs. Experiment 2) 
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Based on the findings from the single-unit literature (Cromer et al., 2010; Roy et 

al., 2010) we predicted that there would be a higher proportion of voxel re-use in 

Experiment 2 (low demand) than in Experiment 1 (high demand). However, the ANOVA 

showed no significant main effect of experiment (F(1,50) = 0.28, p = 0.60) and no 

significant interaction between experiment and region (F(3,150) = 0.64, p = 0.59). There 

was a significant main effect of region (F(3,150) = 13.4, p < 0.001), and post-hoc pairwise 

comparisons showed that there was a higher proportion of voxel re-use in the IFS than in 

the three other MD regions (all ps < 0.01) and a lesser extent of multitasking voxels in the 

AI/FO than in the three other MD regions (all ps < 0.01). We entered the voxel re-use data 

into a Bayes analysis and found strong evidence for the null hypothesis that voxel re-use 

did not differ between experiments (BF10	
  = 0.28). 

Discussion 

In the human brain, a network of frontal and parietal brain regions referred to as 

the MD regions, are thought to exert control by flexibly processing information that is 

currently relevant (Duncan, 2001; Duncan, 2010, 2013). To explore the underlying 

mechanisms that promote adaptive flexibility in these regions, the current study had 

several aims. First, we aimed to replicate our findings that the MD regions preferentially 

encoded the task-relevant over task-irrelevant features of visual objects. Second, we 

compared our two data sets to examine whether MD coding of irrelevant information 

differs according to whether this information is sometimes relevant or never relevant. 

Third, we quantified the extent to which MD resources are re-used to code relevant feature 

information across tasks. Finally, we investigated whether the extent to which MD 

resources are re-used to code different information across tasks (whether they act as 
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‘generalists’ or ‘specialists’, Cromer et al., 2010; Roy et al., 2010) varies with task 

demands.  

We examined the responses of the MD regions in a difficult visual object 

categorisation task in which participants discriminated the features of two objects. 

Unknown to the participant, an irrelevant dimension of those objects varied but was never 

relevant to the task. We compared the results of this experiment to our previous work 

where participants categorised a single set of stimuli along two orthogonal dimensions and 

the MD regions adjusted their coding to reflect the currently relevant dimension (Chapter 

2, Jackson et al. (in press)). We found that the MD system again preferentially coded the 

relevant feature distinctions. In addition, we asked whether coding of the irrelevant 

dimension would vary depending on whether the participants were required to attend to 

the irrelevant dimension at other times in the experiment. We found stronger coding for 

the irrelevant information in Experiment 1 (when the irrelevant dimension was sometimes 

relevant to the task) compared to Experiment 2 (when the irrelevant information was never 

relevant). Consistent with the proposal that the cognitive flexibility of these regions 

underlies their involvement in a wide range of tasks (e.g. Cole & Schneider, 2007; 

Duncan, 2010; Duncan & Owen, 2000), these data suggest that this system adjusts to 

prioritise processing of the currently relevant features of a stimulus. 

Electrophysiology studies in non-human primates have previously shown that 

neurons in higher cortical regions adapt their tuning profiles to respond to the information 

that is currently relevant (Cromer et al., 2010; Freedman & Assad, 2006; Freedman et al., 

2001; Freedman et al., 2002; Roy et al., 2010; Sakagami & Niki, 1994; Sakagami & 

Tsutsui, 1999; Stokes et al., 2013). In the human brain, the MD regions are considered to 

be candidate regions for this type of control because they have been shown to code a range 

of different types of task information (e.g. Bode & Haynes, 2009; Haynes et al., 2007; Li 
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et al., 2007; Nee & Brown, 2012; Reverberi et al., 2011; Woolgar, Hampshire, et al., 

2011; Woolgar et al., in press; Woolgar, Thompson, et al., 2011; Woolgar, Williams, et 

al., 2015), and adjust their responses when task demands vary (Li et al., 2007; Woolgar, 

Afshar, et al., 2015; Woolgar, Hampshire, et al., 2011; Woolgar, Williams, et al., 2015). In 

our previous work (Chapter 2, Jackson et al. (in press)) we have shown that these regions 

adapt their representations of single objects to emphasise task-relevant stimulus 

distinctions, resulting in preferential coding of attended stimulus features. Here we show 

that these regions code the task-relevant stimulus distinctions across two different groups 

of objects, and that, again, coding of the attended stimulus features is stronger than coding 

of the irrelevant stimulus features. In Experiment 2, the relevant and irrelevant stimulus 

dimensions were not identical, leaving open the possibility that the relevant stimulus 

dimensions were encoded preferentially due to differences in the physical stimuli, rather 

than relevance per se. We also chose not to swap the relevant and irrelevant dimensions 

over participants because, unlike with typical univariate analyses, confounds at the 

individual subject level do not ‘average out’ at the group level in decoding analyses 

(Todd, Nystrom, & Cohen, 2013; Woolgar, Golland, & Bode, 2014). These design choices 

mean that the original result in the previous chapter is more conclusive in demonstrating 

that the relevancy of the stimulus-dimension, rather than its physical properties, drives 

decoding in the MD system. However, these design choices were necessary to allow a 

direct comparison between coding of irrelevant information in situations where this 

irrelevant information is sometimes versus never relevant in other blocks, and in order to 

manipulate the similarity of the stimuli in the two tasks so that we could investigate the 

effect of stimulus similarity on voxel re-use. 

Influential theories propose that cognitive control is exerted from higher cortical 

regions by biased processing toward task-relevant information (e.g. Desimone & Duncan, 



                                     Frontoparietal voxels are re-used to code relevant feature information 

   130 

1995; Duncan, 2001; Miller & Cohen, 2001). In both Experiment 1 and 2, MD 

representation of task-irrelevant stimulus features was weak, which may reflect a 

processing bias away from irrelevant information. When we compare data across 

Experiment 1 and 2, however, we can see that these regions code more irrelevant 

information if it has been relevant recently (i.e. in the wider task context) than if it was 

never relevant to the task. This may be because irrelevant information that is never 

relevant to the participant’s task is easier to filter out than information that will potentially 

be used at another time. This concept is supported by evidence from Kadohisa et al.’s 

(2013) single-unit work which showed that when prefrontal resources were reallocated 

from the distractor to the behaviourally relevant target, the extent of this reallocation was 

greater if the accompanying stimulus was consistently irrelevant compared to when it was 

currently irrelevant (relevant for the alternative cue). This supports the idea that 

information pertaining to the irrelevant distinctions in these regions is filtered out, and that 

this may occur more efficiently when irrelevant information is consistently irrelevant. 

In Experiment 1 (refer to Chapter 2 for full decoding results), the LOC held 

information about the task-relevant features but the difference in coding between relevant 

and irrelevant conditions did not reach significance. In Experiment 2, we observed the 

same trend, but multi-voxel coding of stimulus information in this region was not 

significantly above chance. Previous research has shown that the LOC responds to 

attended objects more strongly than to unattended objects (e.g. Konen & Kastner, 2008; 

Murray & He, 2006; Murray & Wojciulik, 2003; Woolgar, Williams, et al., 2015; Xu & 

Chun, 2005) so we might expect that the LOC would code relevant information more 

strongly than irrelevant information in both experiments. However, in both experiments 

we examined coding of minimal visual changes within object, which are likely to have 

considerably smaller effects than those of attention allocated on a whole-object level. This 
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makes the significant coding of relevant information in the MD regions all the more 

striking, since the information they encoded was based on minimal visual differences. 

BA 17 held information about both the task-relevant and the task-irrelevant feature 

distinctions to a similar extent, indicating that it does not discriminate object features 

according to behavioural relevance. This is in line with previous work that has shown that 

multiple features of objects are encoded in early visual areas even if they are task-

irrelevant (Emmanouil, Burton, & Ro, 2013), alongside the idea that these regions are 

primarily stimulus-driven. Other authors have reported attentional influences on early 

visual cortex (e.g. Jehee, Brady, & Tong, 2011; Kok, Jehee, & de Lange, 2012; Woolgar, 

Williams, et al., 2015) but we did not find any evidence for an influence of feature-

selective attention on the discrimination between our physically similar stimuli in either 

experiment. The results of Experiment 2 differ from our findings from Experiment 1 

(Chapter 2) both relevant and irrelevant feature information were coded significantly in 

Experiment 2, whereas we did not observe coding of either in Experiment 1. The two main 

differences between the experiments were the different stimuli (smoothies were only 

included in Experiment 2), and the requirement to supress the irrelevant dimension of the 

stimuli, which was unique to Experiment 1. However, decoding was always within 

stimulus sets (i.e. between 2 sets of spikies, or between 2 sets of smoothies), and there was 

no evidence that coding in Experiment 2 was driven by the smoothies, so it is not obvious 

how the different stimulus sets could account for the difference. The requirement to 

suppress one aspect of the stimuli may account for the different results between 

experiments. However, to account for the data it would have to be a general suppression of 

coding rather than suppression of the irrelevant information specifically.  

In this experiment, we examined another level of flexibility: namely whether MD 

regions can effectively multitask (voxels are re-used) coding of relevant information 
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across different tasks, and whether their behaviour as “specialists” or “generalists” is 

affected by task demands. To do this we developed an extension of multi-voxel analysis 

and identified the voxels that contributed the most signal to the stimulus discriminations 

using a transformation of the classifier weight outputs. We found that voxel re-use in the 

MD regions was significantly above chance, while voxel re-use in LOC and BA17 was 

not. Voxel re-use could potentially reflect the flexibility of underlying neural populations 

to dynamically adjust their responses to reflect relevant feature information across 

multiple tasks. These results fit within the predictions made by the adaptive coding 

hypothesis (Duncan, 2001) and replicates the findings from the non-human primate 

literature in the human brain at the level of voxel responses (Cromer et al., 2010; 

Freedman, 2001; Roy et al., 2010)  

 To establish chance for voxel re-use we used a permutation test (Stelzer et al., 

2013) which accounts for within-subject factors such as vasculature that could lead to 

certain voxels having higher classification weights. Clearly, however, voxel re-use is an 

indirect measure of the extent to which individual neurons are re-used (20,000 to 30,000 

neurons per mm3 of cortex (Logothetis, 2008)), and it is possible that in our data, the same 

neurons were not re-used, even when voxels were, because those voxels happened to 

sample two independent populations of neurons each responding to different tasks. 

Accordingly, we draw conclusions only at the level of voxels, not neurons. However, it 

seems unlikely that such an explanation could completely account for our results, because 

the key independent neural populations (coding for the arbitrary categorisations imposed 

by the task), would have to happen to concentrate within single voxels more frequently 

than they are distributed across voxels, and this would have to be consistent across the 

MD regions, across participants and across the two experiments. Future research 
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combining electrophysiological recordings with fMRI in non-human primates could 

further elucidate these possibilities.  

Based on the single-unit literature (Cromer et al., 2010; Roy et al., 2010), we 

predicted that there would be a higher proportion of MD voxel re-use for coding stimulus 

information across tasks with different objects (Experiment 2, low demand) than across 

tasks with the same stimulus set (Experiment 1, high demand). Our results showed that on 

average, in the MD network, in Experiment 1, 22.6% of the top 10% of voxels were re-

used to code the two relevant stimulus dimensions in the two tasks in Experiment 1, and 

23.9% of the top 10% of voxels were re-used in Experiment 2. However, although the 

numerical trend was in the predicted direction there was no significant difference in voxel 

re-use between the two experiments. In fact, a Bayes Factor analysis indicated strong 

evidence for the null hypothesis that the extent of multitasking does not vary in 

accordance with the demands of the tasks. One possibility is that the extent of re-use at the 

single neuron level does not vary in humans, or at least not within the MD network, and 

therefore voxel re-use also did not vary. This would mean that, contrary to our prediction, 

these regions re-use the same proportion of resources regardless of the circumstances. For 

example, they may use some optimal division of labour regardless of similarities in the 

information being encoded. However, there are a number of alternative explanations for 

our null result. It may be that the demands of our two tasks were not sufficiently different 

(i.e. that our manipulation was not strong enough) to induce a difference that our methods 

would be sensitive to. It could also be the case that changes did occur on a sub-voxel scale 

but we were not able to detect them. There are limitations to what we can infer about 

resource re-use using this method, but if one is careful about the inference we draw, then 

this and similar methods (e.g. van Kemenade et al., 2014) are promising approaches to 

examine the distribution of neural resources between tasks in the human brain.  
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Successful behaviour requires an adaptive cognitive system that can implement 

various mechanisms in order to process information in our environment flexibly and 

efficiently. Here, we have replicated our finding that the frontoparietal cortex prioritises 

feature information that is needed for the current task. Task-relevant feature distinctions 

were coded more strongly in the MD regions than the irrelevant distinctions. The 

irrelevant feature distinctions themselves were not reflected in the pattern information 

across this network even though they were coded in early visual areas. We also 

investigated the distribution of neural resources between tasks. Our data show that MD 

voxels are re-used to code information across multiple tasks, more often than predicted by 

chance, while voxels in visual regions are not. There was evidence that voxel re-use did 

not depend on task demands, at least as far as were manipulated them. The new methods 

developed here have potential for investigating the distribution of neural resources in the 

human brain. This study provides evidence that the MD network emphasises task relevant 

features of different objects and can flexibly re-use its resources in order to do so, 

providing a mechanism for the implementation of feature-selective attention. 
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Chapter 4 

Next, I turned to the causal role of the MD regions in feature-selective attention. 

For this I used a similar paradigm, in which participants attend to one of two features of 

an object. Since I wanted to measure the interference by irrelevant features on behaviour, 

I used more obvious features categories (colour and shape) than the very subtle categories 

of my previous work (e.g. orientation and length). I reasoned that I would be more likely 

to be able to detect the effect on behaviour if the irrelevant categories were easy to 

distinguish without being closely attended. I carried out substantial piloting and 

development work to refine this paradigm for use in a subsequent concurrent TMS-fMRI 

experiment, as detailed in this Chapter.  This chapter contains the results of a TMS 

experiment I carried out at Macquarie (Sydney) and two behavioural experiments I 

carried out at the University of Reading (UK). 
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Abstract 
 
Our brains receive more information from the world than we can process at once. 

To function successfully, we must flexibly select what is relevant and filter out what is 

irrelevant. The dorsolateral prefrontal cortex (dlPFC) is proposed to be fundamental to this 

process, acting as a selective gating or filtering mechanism (e.g. Shimamura, 2000). It is 

part of a network of frontal and parietal ‘multiple demand’, or MD, regions that are 

proposed to be critical to goal-directed behaviour, supporting selective processing of task-

relevant information across the brain (Duncan, 2010, 2013). This network is often 

contrasted with the default mode network (DMN) which is found to deactivate in response 

to demanding cognitive tasks (Buckner, Andrews‐Hanna, & Schacter, 2008). Here, we 

used transcranial magnetic stimulation (TMS) to stimulate right dlPFC whilst participants 

performed a task that measured intrusion by irrelevant feature information. Participants 

paid attention to one feature of novel objects (e.g. colour) and ignored another (e.g. form). 

Crucially, the response for the irrelevant feature could either be congruent or incongruent 

with the required response for the relevant feature. Participants completed this task in four 

separate TMS sessions consisting of high-intensity (100% motor threshold (MT)) 

stimulation of dlPFC, low intensity (40% MT) stimulation of dlPFC, high intensity 

stimulation of a control region targeting the DMN, and a sham coil over dlPFC. We 

predicted that when dlPFC processing was disrupted during the task we would see an 

increase in the magnitude of the congruency effect relative to our control conditions. 

Although we found a main effect of congruency, where participants were less accurate on 

incongruent than congruent trials, we did not find evidence to support our prediction. A 

Bayes analysis indicated that more evidence was needed to either reject or accept the null 

hypothesis. Collecting more data was beyond the scope of this initial study, which served 

primarily as a pilot for a subsequent combined TMS-functional magnetic resonance 
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imaging (fMRI) experiment (Chapter 5). Instead, we tested a number of modifications in 

two further experiments to increase the sensitivity of the behavioural measure to 

interference from irrelevant features. We used the final design of the main task for the 

subsequent combined TMS-fMRI study (Chapter 5). The outcome of this set of 

experiments is a sensitive task for measuring the extent to which participants are able to 

filter out irrelevant information coming from an attended object. 

Introduction 
 
The ability to prioritise task-relevant over task-irrelevant information is important 

in navigating every day life. We can only encode a limited amount of information in 

working memory (WM) meaning that we must select some information for maintenance 

while filtering out other information. Prominent theorists (Desimone & Duncan, 1995; 

Miller & Cohen, 2001) postulate that this type of control is exerted from higher cortical 

regions of the brain, such as the dorsolateral prefrontal cortex (dlPFC). This region is 

thought to exert influence over more specialised processing areas by biasing processing 

toward task-relevant information and away from distracting, irrelevant information 

(Desimone & Duncan, 1995; Duncan, 2001). Selection of relevant information can operate 

over spatial locations (spatial attention), sensory features (feature based attention), objects 

(object based attention) or at the level of single features of objects ('feature-selective 

attention', Chen, Hoffmann, Albright, & Thiele, 2012). In this experiment we focus on 

feature-selective attention.   

The prefrontal cortex (PFC) has traditionally been associated with executive 

control (e.g. Curtis & D'Esposito, 2003; Fuster, 2008; Miller & D'Esposito, 2005; Miller 

& Cohen, 2001). This is supported by findings from electrophysiological studies showing 

that lateral PFC neurons respond flexibly to task-relevant information (Cromer, Roy, & 
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Miller, 2010; Everling, Tinsley, Gaffan, & Duncan, 2002; Freedman, 2001; Kadohisa et 

al., 2013; Lauwereyns et al., 2001; Rao, Rainer, & Miller, 1997; Roy, Riesenhuber, 

Poggio, & Miller, 2010; Sakagami & Niki, 1994; Sakagami & Tsutsui, 1999; Watanabe, 

1986). In the human brain, regions of the PFC are found to be involved in tasks where 

filtering of irrelevant information is required (Banich, Milham, Atchley, Cohen, Webb, 

Wszalek, Kramer, Liang, Wright, et al., 2000; Banich, Milham, Atchley, Cohen, Webb, 

Wszalek, Kramer, Liang, Barad, et al., 2000; Liu, Banich, Jacobson, & Tanabe, 2004). 

Neurostimulation data has additionally shown that disruption to the dlPFC only impairs 

performance in a WM task when irrelevant information is present (Sandrini, Rossini, & 

Miniussi, 2008). This suggests that prefrontal regions may act to amplify neural 

representations of task-relevant information and/or to inhibit representations of what is 

irrelevant (e.g. "dynamic filtering theory" Shimamura, 2000). There is still debate, 

however, whether amplification, inhibition, or a combination of both mechanisms occur 

(e.g. Aron, 2007; Kanwisher & Wojciulik, 2000). Regardless of the mechanism, the 

combination of neuroimaging and neurostimulation techniques have demonstrated causal 

top-down influences from prefrontal regions to earlier processing areas (e.g. Feredoes, 

Heinen, Weiskopf, Ruff, & Driver, 2011; Lee & D'Esposito, 2012; Miller, Vytlacil, Fegen, 

Pradhan, & D'Esposito, 2011; Morishima et al., 2009; Zanto, Rubens, Thangavel, & 

Gazzaley, 2011). Together the literature indicates a crucial role for the dlPFC in executive 

function, providing top-down feedback via the selection of task-relevant, and/or inhibition 

of task-irrelevant, information.  

The dlPFC is part of a circuit of frontal and parietal brain regions, often referred to 

as multiple-demand (MD) regions or the frontoparietal control system, that are 

consistently shown to play a fundamental role in attentional mechanisms (Cole & 

Schneider, 2007; Corbetta & Shulman, 2002; Duncan, 2001; Duncan, 2010; Vincent, 
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Kahn, Snyder, Raichle, & Buckner, 2008). For example, these regions respond to a wide 

range of task demands (Dosenbach et al., 2006; Duncan & Owen, 2000; Nyberg et al., 

2003), even at the level of single participants (Fedorenko, Duncan, & Kanwisher, 2013). 

The MD regions also adjust their representation of perceptual (Woolgar, Hampshire, 

Thompson, & Duncan, 2011; Woolgar, Williams, & Rich, 2015) and rule information 

(Woolgar, Afshar, Williams, & Rich, 2015) in response to changes in task demands.  

 In contrast to the active role of the MD network, a set of brain regions known as 

the default mode network (DMN) are usually associated with the opposite response profile 

than that exhibited by the MD system (Buckner et al., 2008; Raichle & Snyder, 2007). 

This network incorporates sections of the medial temporal lobe, parts of the medial 

prefrontal cortex, the posterior cingulate cortex, and the precuneus, and is usually 

associated with the task negative or resting state (Fedorenko et al., 2013; Fox et al., 2005; 

Mazoyer et al., 2001; Raichle et al., 2001; Shulman et al., 1997). For instance, Shulman 

and colleagues conducted a meta-analysis comparing data between active and passive 

tasks. They found a consistent set of brain regions (DMN) that were more active under 

passive conditions than goal-directed task conditions. The DMN can be detected using 

task-free connectivity fMRI (Greicius, Krasnow, Reiss, & Menon, 2003) and is also 

associated with past thinking and episodic memory processing (Buckner & Carroll, 2007; 

Buckner et al., 2005). Given the previous literature, it seems likely that regions of the 

DMN compared to the MD network would perform different roles in a feature-selective 

attention task. 

To test for a casual role in feature-selective attention, we can disrupt processing in 

a region thought to be critical in controlling attention, and compare this to disruption in a 

region proposed to play a different role (part of the DMN).  We can do this by employing 

TMS, a neurostimulation technique in which magnetism is used to induce an electric field 
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in the brain. TMS delivers short pulses that penetrate the skull and disrupt neural 

processing in a non-invasive, temporary way (Walsh & Cowey, 2000). This “virtual 

lesion” technique allows us to investigate the causal relationship between neural activity 

and behavioural performance. The distinctive roles of the MD and the DMN systems 

indicated by previous literature give rise to different predictions for the effect of TMS 

stimulation on regions of either network during a task requiring inhibition of the irrelevant 

feature information.  

Here, we developed a paradigm where subjects were required to select the relevant 

feature of an object whilst ignoring the irrelevant feature information in order to 

successfully perform the task. We presented stimuli that varied on two dimensions: colour 

and form. Participants categorised one dimension (e.g., colour) while ignoring the other 

(e.g., form) in one block of trials, and switched to the other dimension on alternate blocks. 

The button response for the irrelevant feature was either congruent or incongruent with the 

required response for the relevant feature. To test the hypothesis that the dlPFC is causally 

involved in feature-selective attention, we employed TMS whilst participants performed 

this task in four separate sessions. Neurostimulation studies often include only one control 

to compare against their main experimental condition (Davis, Gold, Pascual‐Leone, & 

Bracewell, 2013). Here, we employed a more rigorous design by comparing our main 

experimental condition (stimulation to the dlPFC) to three separate control conditions.  

Our main experimental condition was high intensity stimulation (100% motor 

threshold (MT)) to the right dlPFC. Our first control was low intensity stimulation (40% 

MT) of the dlPFC, to reflect the control used in concurrent TMS-fMRI paradigms 

(Chapter 5). This type of control is practical for concurrent TMS-fMRI experiments, as it 

does not require removing participants from the scanner to reposition the coil, as other 

control types would. It may also control for any non-specific effects of TMS (e.g, 
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psychological effects, scalp tactile sensation). However, this control cannot tell us whether 

the outcome of stimulation reflects a function specific to our region-of-interest. We 

therefore included two other controls. 

Although many studies opt to use the vertex of the skull as a control region for 

TMS, it often falls between cerebral hemispheres and is therefore only a control for the 

sensation of stimulation; rather than actual stimulation of brain tissue. Thus, to control for 

changes due to stimulation of brain tissue in a region not predicted to be critical for the 

task, as well as the scalp sensation of stimulation, we selected a prefrontal brain region 

close, but superior and anterior, to our dlPFC target region (Brodmann area 45). This 

region is part of the DMN network, and provides an interesting control because the DMN 

often shows the opposite activation response to the MD network (e.g. Fedorenko et al., 

2013). Stimulation of a brain region that plays a different role for a particular task should 

not lead to the same performance deficits as a region that is critical for a particular task. 

Finally, we also used a sham coil, which is a coil that visually resembles the actual coil 

and produces a sound during a TMS pulse, but does not produce similar scalp sensations 

or superficial muscle twitching in the same manner as the active coil. This condition acted 

as a control for the acoustic artefact of dlPFC stimulation. Additionally, we included no-

TMS trials (trials with no TMS stimulation) as a baseline for performance on each session. 

We predicted that high intensity stimulation of dlPFC would affect performance resulting 

in increased magnitude of the congruency effect relative to performance in our control 

conditions.  

This study was designed to investigate the role of the dlPFC in feature-selective 

attention as measured through behaviour and to develop an appropriate task for the 

following combined TMS-fMRI experiment (Chapter 5). Chapter 5 investigates how 

disruption to dlPFC function modulates coding of task-relevant and task-irrelevant feature 
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information in the rest of the frontoparietal network and earlier processing regions. Here 

we report the methods and results of the TMS behavioural experiment and review the 

findings. We did not find evidence to support our initial prediction, and a Bayes analysis 

suggested that this may be due to a lack of power. As this experiment served primarily as 

a pilot for the subsequent chapter (Chapter 5) we then report two behavioural experiments 

where we tested a number of modifications to increase the sensitivity of the behavioural 

measure to interference from irrelevant features. 

Experiment 1 (TMS) 

Materials and Methods 

Participants 
There were initially sixteen adult participants, but only ten (7 female; mean age = 

25.2 years, SD = 5.09) completed all sessions and are therefore included in this study. All 

participants were right-handed with normal or corrected-to-normal vision and no history 

of neurological or psychiatric disorder. Participants gave written informed consent, passed 

relevant safety screening for TMS, and Macquarie University Research Ethics Committee 

approved the study. All of the participants for the TMS behavioural experiment were 

recruited from our two previous fMRI experiments (Chapter 2 and Chapter 3), so that the 

structural MR images could be used to define the stimulation sites. All participants 

received $120.00.  

Stimuli and Task 
Stimuli were abstract novel “spiky” and “cuby” objects created using custom 

MatLab scripts (Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006). There were 4 objects 

in the stimulus set: a blue and a green version of each of the spiky and cuby stimuli, 

obscured by Gaussian noise (Figure 1). We used a PC running the Psychophysics 
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Toolbox-3 package (Brainard, 1997) in MatLab (Mathworks) to present the stimuli. 

Objects were presented at central fixation on a screen. Participants performed two separate 

tasks that alternated in blocks. In the form task, participants discriminated between spiky 

and cuby objects, ignoring colour. For the colour task, they discriminated between green 

(RGB 95 171 96) and blue (RGB 95 114 172) objects, ignoring form.  

 

Figure 1: The stimulus set for the feature-selective congruency measure 

consisted of four novel objects differing on the basis of two feature 

dimensions: colour (green/blue) and form (“spiky”/“cuby”). 

 

The current task context was indicated by a cue at the start of the block (colour or 

form, Figure 2). Participants responded by pressing the left or right response button (‘z’ or 

‘m’; on the keyboard) depending on the colour or form of the stimulus. For example, if 

participants were performing the colour task and the presented object was a green spiky, 

participants would press the button associated with ‘green’. Importantly, this button 

response could either be congruent or incongruent with the response for the irrelevant 

feature in the alternate context. In this example, in the form context the button for “spiky” 
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could also be left (congruent) or it could be right (incongruent). The mapping of which 

colour/form was associated with which button response (stimulus-response mapping) was 

randomised over participants and swapped within participants half way through each 

session. This stimulus response-mapping switch was included because the experiment 

served in part as a pilot for the subsequent combined TMS-fMRI experiment (Chapter 5). 

It is an important aspect of the TMS-fMRI design as it allows separation of the BOLD 

response associated with each stimulus feature from that associated with each button 

press.  

 

 

Figure 2: Feature-selective congruency measure: A picture cue at the start of 

each block indicated the current task context (inset shows cue display for 

colour task). On each trial, a cue reminded participants of the current task 

context (500ms) followed by the object to categorise (100ms), followed by 

the fixation cross (1100ms). On a TMS trial (50% of all trials), participants 

would receive three pulses of TMS starting 50ms after stimulus onset.   



                                                   Exploring the causal role of the dlPFC in feature-selective attention 

   155 

TMS 

We used a transcranial magnetic stimulator (Magstim model 200, Magstim, 

Whitland, UK), with a focal figure-of-eight stimulating coil (90-mm outer diameter) for 

stimulation. The Matlab (Mathworks) script running the experimental task on a PC 

remotely triggered the onset of the TMS pulses to occur 50ms after stimulus presentation. 

Our protocol contained a total of 16 TMS stimulation blocks per session  (384 pulses in 

total per session at 10 Hz), complying with published safety limits for TMS stimulation 

(Rossi, Hallett, Rossini, & Pascual-Leone, 2009). Each session lasted 1 hour in total 

including practise and set-up.  

Region Selection 

Right dlPFC 

 
Figure 3: Selected dlPFC region for stimulation: The top panel shows the 

right dlPFC stimulation site and the bottom panel shows the dlPFC stimulation 

site with the overlaid activation maps used to guide selection. The coordinates 

for the right dlPFC stimulation site were transformed into native space for 

each participant. 

 

The location of our main stimulation site was a region in the right dlPFC. The 

target region was selected by overlaying activation and resting-state connectivity maps 
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from previous research that identified the MD network (Duncan & Owen, 2000; 

Fedorenko et al., 2013; Power et al., 2011) with functional localiser data collected for our 

participants in a previous scanning session (Figure 3, bottom panel, description of 

localiser below). We focused on the right dlPFC because TMS to this region has 

previously been shown to affect activity in visual brain regions during a task requiring 

selective attention (e.g. Feredoes et al., 2011). Additionally right dlPFC is activated in 

conditions with a high level of conflict requiring more control compared to conditions 

with a lower level of conflict (e.g. Egner & Hirsch, 2005). This, combined with the 

practical reason of the dlPFC being accessible during TMS-fMRI (Chapter 5), made it the 

ideal stimulation site. 

We targeted the MNI152 coordinates [44 31 28] (McConnell Brain Imaging 

Centre, Montreal Neurological Institute, Figure 3, top panel) as the site of stimulation 

based as the intersection of the functional and resting-state connectivity maps. We also 

ensured that the stimulation location was lateral and within the zone identified by Opitz et 

al. (2016) as most likely to affect the frontoparietal control network as opposed to the 

DMN. The right dlPFC coordinate was deformed for each participant by applying the 

inverse of the participant’s normalisation parameters. This allowed us to target the site of 

stimulation in native (i.e., non-normalised) space for each participant.  

Control region 
The control region we selected is part of the DMN, a network often contrasted 

against the frontoparietal network as it is found to deactivate in response to demanding 

cognitive tasks (Buckner et al., 2008). This region was selected by overlaying activation 

maps from a previous study defining the DMN (Power et al., 2011) and our previous 

fMRI localiser data (Figure 4, bottom panel). The contrasts used to define the DMN 

region were the opposite contrasts to that used to determine our dlPFC site (task negative). 
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Out of the resultant clusters, we selected the region that was superior and anterior to the 

region selected for dlPFC stimulation. We also ensured that this stimulation location was 

within the target zone identified by Opitz et al. (2016) as most likely to affect the DMN 

rather than the frontoparietal network. We selected an 8mm sphere and targeted the central 

MNI152 coordinates [16 47 46], Figure 4, top panel). The DMN coordinate was deformed 

for each participant as for the right dlPFC coordinate.  

 

 

 

Figure 4: Selected DMN region for stimulation: The top panel shows the DMN 

stimulation site and the bottom panel shows the DMN stimulation site with the 

overlaid activation maps used to guide selection. The central coordinate for 

the DMN stimulation site was transformed into native space for each 

participant. 

 

Localiser task 
We drew on data from an fMRI localiser task that participants completed on a 

previous occasion (run in conjunction with the experiments outlined in Chapter 2 and 3). 

Participants performed a spatial WM task designed to identify the frontoparietal regions 

responsive to increased WM demand (Fedorenko et al., 2013). On each trial, participants 

were presented with a black fixation cross (500ms), followed by a series of four 3*4 grids 
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(1000ms) in each of which one (low WM) or two (high WM) squares were blue (Figure 

5).  Participants had to remember the spatial locations of all the blue squares in the grid. 

Finally participants were presented with a two-alternative forced choice screen depicting 

two grids (max of 3750ms). One showed the summation of the blue squares in the 

preceding grids (correct), and the other showed the same grid with one incorrect square 

(incorrect). Participants indicated the correct grid by pressing the left or right button, at 

which point they were immediately shown feedback (a green tick for correct and a red 

cross for incorrect, 250ms). If the participant responded in under 3750ms, a fixation cross 

was shown until the next trial began (4000ms after choice screen). Participants performed 

blocks of low WM, high WM and rest (fixation cross) lasting 16s each (order 

counterbalanced over participants). The EPI time was 8.42m. 	
  

	
  

Figure 5: Spatial working memory task used to localise MD and DMN regions: 

On each trial participants were presented with a fixation cross followed by a 

series of 4 grids in which one (low WM) or two (high WM) squares were blue. 

Participants were then presented with a two-alternative forced choice screen 

depicting two grids and were required to press the left or right button to 

select their choice. They received feedback at the end of the trial. 
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MRI data were preprocessed using SPM 5 (Wellcome Department of Imaging 

Neuroscience, www. fil.ion.ucl.ac.uk/spm) in Matlab 2011b. Functional MRI data were 

converted from DICOM to NIFTII format, spatially realigned to the first functional scan 

and slice timing corrected, and structural images were co-registered to the mean EPI. EPIs 

were smoothed (8 mm FWHM Gaussian kernel) and in all cases the data were high pass 

filtered (128s). We used the standard multiple regression approach of SPM5 to estimate 

values pertaining to the high WM and low WM conditions (block design). Blocks were 

modelled using a box car function lasting 16s convolved with the hemodynamic response 

of SPM5. The run mean was included in the model as a covariate of no interest. Mass 

univariate whole-brain analyses (paired t-tests) compared group-level BOLD response 

across conditions (high WM minus low WM to define the MD regions and low WM 

minus high WM to define the DMN regions). 

Neuronavigation 

We used a neuronavigational system (Visor 2, Berlin, Germany) that uses MR 

anatomical information and predefined stimulation target coordinates on each individual 

to allow visual guidance of the coil. The navigational system displays the estimated 

electric field projected onto the cortical structures based on the current coil position on the 

participant’s head. We registered a head tracker with four reflecting spheres and a coil 

tracker with six reflecting spheres into the navigational system. The standard Visor 2 

routines were used to determine the coil position on the participant’s head, which was then 

marked on the scalp. This assisted efficient re-location of the location following the 

practice component of the task (start of session and half way through each session). 

During the main task, the coil was maintained in position over the ROI using the 

navigational system. In the dlPFC stimulation sessions, the coil was oriented with the 

handle pointing posteriorly and anteriorly with respect to the participant’s head and 
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roughly parallel to the midline, to increase the overlap with the frontoparietal network as 

opposed to the DMN (Opitz et al., 2016). During the task, we used a chinrest to maintain 

the participant’s position. 

Procedure 

Defining motor threshold 
At the start of the first session for each participant, we measured his or her 

individual resting motor threshold. This is the minimal intensity at which a single pulse to 

the motor cortex reliably produced a visible twitch in the resting abductor pollicis brevis 

of the hand in 3 out of 5 pulses. The motor threshold offers a means of normalising 

stimulation intensity across participants, and was used to determine the intensity of TMS 

stimulation during the main task. The average motor threshold across participants was 

58% of maximum stimulator output. The intensity of stimulation in the low intensity 

session was 40% of the participant’s motor threshold, and in the high intensity stimulation 

sessions was 100% of the participant’s motor threshold.  

Overall procedure 
Participants completed four sessions in total. Each session followed the same 

protocol apart from the site and intensity of the stimulation. The four sessions were: a) 

high intensity stimulation (100% of MT) of dlPFC; b) low intensity stimulation (40% of 

MT) of dlPFC; c) high intensity stimulation (100% of MT) of the control region; and d) 

sham coil at 100% of MT over dlPFC. We counterbalanced the order of the sessions 

across participants. 

In every session, prior to starting the main experiment, participants performed 6 

practice blocks of the task. Each block started with the task cue (4000ms) indicating the 

current task context (form or colour). On each trial participants would first see a cue 

reminding them of the current task (form or colour, 500ms) followed by the object 
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(100ms) and then a black fixation cross (1100ms) (Figure 2). During the first two practice 

blocks, participants received feedback following each trial as well as feedback (percent 

correct) at the end of the block. For the last four blocks of practice participants only 

received feedback at the end of the block.  

Following the practice, participants completed 8 blocks of the main task where 

they only received feedback at the end of the block. In this main task, half of the trials 

were a TMS stimulation trial (participants received three pulses of stimulation) and half 

were a no TMS trial (no stimulation) (pseudo-random order). On stimulation trials, 

participants received three pulses of stimulation (10Hz) beginning 50ms after stimulus 

onset. The TMS coil was held against their head throughout the stimulation blocks and the 

stimulation location was maintained using the online neuronavigational system described 

above.  

Following this, participants then completed a further 6 blocks of practice in which 

they learnt the new stimulus response-mapping (described above). Participants then 

completed the last 8 blocks of the main task with stimulation on 50% of trials according to 

the current stimulation condition and the new stimulus-response mapping.  

Results 
In line with the prominent proposal that the dlPFC plays a critical role in selective 

attention (e.g. Duncan, 2001; Miller & Cohen, 2001), we predicted that interruption of 

dlPFC function with TMS would affect performance on our feature-selection task, which 

requires selection of relevant information and/or inhibition of irrelevant feature 

information. Therefore, we expected the location of the stimulation, as well as whether the 

trial was a TMS trial or not, to interact with the congruency effect. The experiment has a 

complex design, resulting in four factors.  
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We analysed RT (correct trials only) and accuracy (percent correct) data separately 

with four-way ANOVAs, with the factors Session (High intensity dlPFC stimulation, Low 

intensity dlPFC stimulation, High intensity control region stimulation, Sham), Stimulation 

(TMS trial, No TMS trial), Task (Colour task, Form task), and Congruency (Congruent, 

Incongruent). As a note, the factor Stimulation for the sham session included sham and no 

sham trials instead of TMS and no TMS trials. Greenhouse-Geisser correction for non-

sphericity (assessed with Mauchly’s test of sphericity) were applied when appropriate.  

RT data  
RT data are presented in Figure 6. Difference score RT data (incongruent-

congruent trials) are presented in Figure 7 to illustrate the magnitude of the congruency 

effect in each condition. Our main question was whether interrupting dlPFC processing 

would increase the magnitude of the congruency effect. The four-way ANOVA revealed a 

main effect of Task (F(1,9) = 7.86, p = 0.02), where participants were faster in the colour 

task (312ms) than in the form task (327ms). There was also a main effect of Congruency 

(F(1,9) = 9.21, p = 0.02), significant two-way interactions between Stimulation and 

Congruency (F(1,9) = 6.01, p = 0.04) and Session and Congruency (F(3,27) = 3.12, p = 

0.04), and a significant three-way interaction between Stimulation, Session and 

Congruency (F(3,27) = 4.91, p = 0.01). There were no other significant main effects or 

interactions (all ps > 0.15). 
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Figure 6: Experiment 1 (TMS). Reaction time data (ms) presented 

separately by session and stimulation condition. A: High intensity stimulation 

dlPFC; B: Low intensity stimulation dlPFC; C: Control region stimulation; D: 

Sham stimulation. Error bars indicate standard error. In both the high 

intensity dlPFC and control region stimulation, participants were faster in 

congruent than incongruent trials. Participants were faster in congruent than 

incongruent trials in no-stimulation sham trials, but were faster in incongruent 

than congruent trials in stimulation sham trials. Note: y-axis does not start at 

zero.  
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Figure 7: Experiment 1 (TMS). Difference scores for RT data: light bars are 

trials without TMS stimulation, dark bars are trials with TMS stimulation. The 

y-axis indicates the magnitude of the congruency effect (incongruent-

congruent trials). A higher score indicates a larger congruency effect. The 

bars are split by session. Error bars indicate standard error.  

 

To explore the interaction between Stimulation, Session and Congruency, we 

conducted an ANOVA on the data from each Session separately (High intensity dlPFC 

stimulation, Low intensity dlPFC stimulation, High intensity control region stimulation, 

Sham). These ANOVAs had factors Stimulation and Congruency.  

If TMS of the dlPFC interferes with selection of the relevant feature and/or 

filtering out of the irrelevant feature, we should see an interaction between Congruency 

and Stimulation, with a larger congruency effect on TMS relative to no-TMS trials. The 

ANOVA on the high intensity dlPFC stimulation data revealed a main effect of 

Congruency (F(1,9) = 11.4, p < 0.01), where participants were significantly slower on 

incongruent trials (327ms) than congruent trials (314ms) and no main effect of Stimulation 

(F(1,9) = 1.72, p = 0.23). The interaction of Congruency and Stimulation did not reach 

significance (F(1,9) = 4.61, p = 0.06). If we look at Figure 6, panel A, it is clear that the 
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trend is actually in the opposite direction to our prediction: TMS, if anything, reduced the 

congruency effect. Therefore, although there was a significant congruency effect overall in 

this session, we have no evidence that it is larger for TMS relative to no-TMS trials. 

For the three control sessions, we predicted only a main effect of Congruency 

(with RTs slowed on incongruent relative to congruent trials) only, as TMS should have 

no impact. The result for the low intensity dlPFC stimulation session showed that the main 

effect of Congruency was on the cusp of significance (F(1,9) = 4.76, p = 0.052), in the 

predicted direction. There was no main effect of Stimulation (F(1,9) = 0.09, p = 0.77) and 

no interaction of Congruency and Stimulation (F(1,9) = 0.09, p = 0.75). The data for the 

control region (DMN) revealed a main effect of Congruency (F(1,9) = 6.01, p < 0.01), 

where participants were significantly slower on incongruent trials than congruent trials. 

There was again no main effect of Stimulation (F(1,9) = 0.81, p = 0.39) or interaction of 

Congruency and Stimulation (F(1,9) = 0.11, p = 0.74). The sham condition showed no 

main effect of Congruency (F(1,9) = 0.22, p = 0.64) or Stimulation (F(1,9) = 1.71, p = 

0.23), but did show an interaction between Congruency and Stimulation (F(1,9) = 12.9, p 

< 0.01). Post-hoc comparisons of congruent and incongruent trials separately for Sham 

trials and No sham trials revealed the source of this interaction. On No sham trials, we saw 

the predicted congruency effect: participants were slower on incongruent trials (326ms) 

than on congruent trials (313ms, t(9) = 2.26, p = 0.04). However, on Sham trials, 

participants were significantly faster on incongruent trials (308ms) than on congruent 

trials (318ms, t(9) = 2.86, p = 0.02).  

Overall, then, we did not see support for our hypothesis from the RT data. The 

three-way Session*Congruency*Stimulation interaction seems to be driven by a larger 

Congruency*Stimulation interaction in the sham session relative to the other sessions.  
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Accuracy data  
Accuracy data (percent correct) are presented in Figure 8. Difference score 

accuracy data (congruent-incongruent trials) are presented in Figure 9 to illustrate the 

magnitude of the congruency effect in each condition. As for reaction time data, we 

predicted a 3-way Session*Stimulation*Congruency interaction, in which accuracy would 

be higher for congruent relative to incongruent trials, and this congruency effect would be 

larger for TMS relative to no TMS trials in the high dlPFC session only.  

 
Figure 8: Experiment 1 (TMS). Accuracy data (percent correct %): The 

data are presented separately by session and stimulation condition condition. 

A: High intensity stimulation dlPFC; B: Low intensity stimulation dlPFC; C: 

Control region stimulation; D: Sham stimulation). Error bars indicate standard 

error. There was a significant main effect of congruency where participants 

were more accurate on congruent than incongruent trials. Note: y-axis does 

not start at zero. 

The ANOVA revealed a main effect of Congruency (F(1,9) = 8.12, p = 0.02) 

where participants were more accurate on congruent trials compared to incongruent trials. 

There was no main effect of Session (F(3,27) = 1.61, p = 0.21), Stimulation (F(1,9) = 0.34, 

p = 0.55), or Task (F(1,9) = 3.83, p = 0.09). Visual inspection of the data (Figure 8, Figure 
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9) suggested a trend for a larger congruency effect in the high stimulation dlPFC and 

control region sessions, but there were no significant two-way, three-way and no four-way 

interactions (all ps> 0.14). Thus, although we found the predicted effect of congruency 

overall, we have no evidence from the accuracy data to suggest that TMS impacted the 

magnitude of the congruency effect. 

 

 

 

Figure 9: Experiment 1 (TMS). Difference scores for accuracy data: The 

dark-coloured bars are TMS stimulation trials and the lighter coloured bars are 

trials without TMS stimulation. The y-axis indicates the magnitude of the 

congruency effect (congruent-incongruent trials). The bars are split by 

session. Error bars indicate standard error.  

 

Bayes Analysis 

The accuracy data clearly show a congruency effect, but do not show a significant 

effect of stimulation site or intensity. If this could be interpreted as evidence for no effect 

(i.e., support for the null hypothesis), this would be evidence against the dlPFC being 

involved in selection of relevant features and/or filtering irrelevant information (assuming 

one accepts that we have a valid measure of this with our paradigm). Alternatively, it is 
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possible that our lack of effect reflect a lack of sufficient power or sensitivity. We 

therefore entered the accuracy difference scores (congruent-incongruent trials) into a 

Bayes analysis to differentiate these alternatives. We tested evidence for the null 

hypothesis that Session and Stimulation have no effect (BF > than 3: strong evidence for 

experimental hypothesis; BF < 1/3: strong evidence for the null hypothesis; BF 1/3-3: the 

experiment is not sensitive enough; (Dienes, 2011; Love et al., 2015)). The BF10 was 0.91, 

suggesting we did not have enough enough evidence to distinguish between our 

hypothesis and the null, although it is moving in the direction of support for the null 

hypothesis. Unfortunately, collecting more data was beyond the scope of this thesis. 

Discussion  
The right dlPFC is part of a circuit of frontal and parietal brain regions, often 

referred to as multiple-demand (MD) regions or the frontoparietal attention network. This 

network is consistently shown to play a fundamental role in cognitive control (Cole & 

Schneider, 2007; Duncan, 2001; Duncan, 2010; Vincent et al., 2008). Here we examined 

whether disruption to the dlPFC influences the magnitude of a congruency effect in a task 

requiring selection of relevant and/or inhibition of irrelevant feature information. Both RT 

and accuracy data showed a congruency effect (poorer performance on incongruent 

relative to congruent trials), but we did not find the predicted interactions with TMS 

stimulation and stimulation site. A Bayes analysis on accuracy data suggests this may be 

due to a lack of power; we return to this below. 

One of the features of this experiment was the inclusion of three different types of 

control. The inclusion of a control site accounts for general effects of stimulation on the 

brain. Additionally, if this region is proposed to be involved in different processes 

compared to the main stimulation site, it can provide an effective comparison for the 

involvement in the cognitive process under investigation. Here, we found comparable 
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results in our main site of stimulation and our control site. The RT data revealed a 

congruency effect in both the high stimulation dlPFC stimulation session and the control 

region stimulation session, but this was not influenced by whether participants received 

stimulation or not on a particular trial. One explanation for this is that the high intensity 

TMS on stimulation trials may have caused a flow-over effect onto other trials within the 

same session. Alternatively, it may be because these regions do not act differently in 

respect to filtering irrelevant feature information, or it could be due to a lack of sensitivity 

of our behavioural measure. A recent study showed that very slight changes in coil 

orientation and stimulation zone of dlPFC can alter the network that is affected (Opitz et 

al., 2016). Although we took precautions in choosing our two stimulation coordinates 

(DMN and frontoparietal network) as within the correct region and coil orientiation-

invariant zone for each network respectively (Opitz et al., 2016), it is still possible that we 

missed the target network. Another possibility is that both the frontoparietal and DMN 

support feature-selective attention but under different mechanisms. For example, it may be 

the case that deactivation of DMN is essential to performing a difficult task. However, 

neither of these regions showed a larger congruency effect than the other control regions, 

making this explanation unlikely.  

Our second control, low intensity TMS, is an ideal control for concurrent TMS-

fMRI experiments as it allows TMS conditions (high and low) to be presented on a trial-

by-trial basis. If it is to be considered an ‘ineffective’ level of stimulation, it would be 

reassuring to see that the low-TMS does not modulate congruency effects. However, in 

this experiment, the effect of low intensity TMS on RT was difficult to interpret, because 

there was no congruency effect in either TMS or no TMS trials. Finally, in the sham 

condition, we observed a surprising effect where no “stimulation” trials had a standard 

congruency effect whilst sham “stimulation” showed the opposite (participants were faster 
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in incongruent trials than congruent trials). The only difference between stimulation and 

no stimulation trials in the sham session is a sound that mimics the acoustic artefact of 

actual stimulation. It is therefore difficult to explain this result. However, if this is a 

general effect of the noise associated with TMS, it at least acts against our prediction that 

TMS will increase the congruency effect (making our test more conservative). Overall, the 

use of three different controls raises important questions about the way in which we 

interpretat active site data when we compare it to different choices of control, but the data 

were not able to adjudicate between them. 

In the accuracy data, we found clear evidence for a difference in performance on 

incongruent and congruent trials, indicating that our paradigm can track the influence of 

irrelevant feature information on performance. However, there was no evidence that the 

magnitude of the congruency effect (in accuracy) was affected by TMS, regardless of 

stimulation type. These results are surprising considering the evidence supporting a role 

for the dlPFC in filtering irrelevant information, but as our Bayes analyses suggest, 

presumably reflect a lack of power. The right dlPFC is part of a network of frontoparietal 

regions and previous work studying patients with frontal lobe injury has also shown 

compensatory over-activation of this network when part of the network is damaged 

(Woolgar, Bor, & Duncan, 2013). Although it is beyond the scope of this experiment to 

assess, it may be the case that disruption to dlPFC was compensated for by the rest of the 

MD network. The combination of TMS with other neuroimaging techniques may provide 

an approach to examine this and enhanced understanding of the mechanisms of action of 

TMS. In addition, TMS stimulation did not affect participants’ accuracy in the task 

overall. This may be because participants’ performance was close to ceiling (~95%) and it 

has been suggested that TMS effects on accuracy at this level are difficult to observe 

(Manenti, Cotelli, Calabria, Maioli, & Miniussi, 2010). Thus, our results form only a 
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preliminary step in testing whether this region is involved in filtering irrelevant feature 

information.  

This experiment was carried out in part as a pilot for the subsequent TMS-fMRI 

experiment where we tested whether disruption to this region affected brain responses in 

the rest of the MD network and in more specialised processing areas (Chapter 5). Given 

the clear need for a robust behavioural measure, we next made modifications to the 

paradigm with the goal of increasing sensitivity. These behavioural experiments are 

reported below.  

Experiment 2 

Introduction 
There were several possible explanations for the lack of a reliable effect of 

stimulation in Experiment 1. First, accuracy was close to ceiling (~95%) and TMS effects 

on accuracy at this level may be difficult to observe (Manenti et al., 2010). Second, it was 

possible that the task was not difficult enough to recruit the MD regions. These areas are 

characterised by their response to a wide range of task demands, and these are typically all 

challenging tasks (Dosenbach et al., 2006; Duncan & Owen, 2000; Nyberg et al., 2003). 

Indeed, the MD regions have been shown to adjust their representation of perceptual 

information in response to task demand, such that in easier conditions they do not hold 

relevant information (Woolgar et al., 2011; Woolgar, Williams, et al., 2015). Therefore, in 

the following experiment, we increased the difficulty of the task. 

Materials and Methods 
The design of the task in Experiment 2 is identical to Experiment 1 apart from the 

modifications explained below. 
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Participants 
Eight healthy adult volunteers (5 females; mean age = 22.8 years, SD = 4.08) 

participated in this experiment, which was conducted at the University of Reading, UK. 

All participants were right-handed with normal or corrected-to-normal vision and no 

history of neurological or psychiatric disorder. Participants gave written informed consent, 

and Reading University Research Ethics Committee approved the study. All participants 

received 2 course credits for participating.  

Stimuli 

 
Figure 10: Experiment 2.  We used three additional versions (Condition 2, 3 

and 5) of the stimulus set used in Experiment 1 (TMS). The stimulus set for 

Conditions 1 and 4 were identical to the stimulus set used in Experiment 1.  

 

There were four different stimulus sets each consisting of 4 objects (Figure 10). 

For Condition 1 (baseline) and 4 (psychological response time pressure, see procedure 

below), the objects consisted of the same set as used in Experiment 1 (TMS). For 

Condition 2 (additional noise), we used Adobe Photoshop CC 2015 to edit the stimuli and 

add another layer of Gaussian noise, with the aim of increasing the perceptual difficulty of 
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the task; otherwise the stimuli were identical to Condition 1. For Condition 3 (change 

colour), we used Adobe Photoshop CC 2015 to edit the colour of the stimuli, with the aim 

of increasing the difficulty of distinguishing between the colour of the objects (blue object 

RGB values: 98, 179, 180), otherwise the stimuli were identical to Condition 1. For 

Condition 5 (all changes), we edited the stimuli to add another layer of noise to match 

Condition 2 and changed the RGB values of the blue objects to match Condition 3.  

Procedure 

Participants completed the five different versions (conditions) of the task in a 

single testing session. Participants completed four blocks (two blocks of each task: colour 

and form) of each condition (20 blocks total). There were 32 trials per block.    

For Condition 1 (baseline), 2 (additional noise), and 3 (change colour), the task 

that participants completed was identical to Experiment 1 (TMS). For Condition 4 

(psychological response time pressure) we used the stimulus set from Condition 1 

(baseline). However, in this condition, participants were informed that their responses 

would only be recorded within 500ms of the object presentation. This modification to the 

task was added to increase the perceived difficulty, encouraging participants to respond as 

fast as possible following stimulus presentation. In this condition, participants were 

encouraged to respond during the white cross period following object presentation, which 

would change to black after 500ms. If participants did not respond within 500ms, their 

response would be marked as incorrect and reflected in their feedback. Responses 

following this 500ms time were still recorded for data analysis. 500ms was chosen 

because it was long enough to be achievable (based on the results of Experiment 1) but 

short enough to apply psychological time pressure. For Condition 5 (all changes), all three 

modifications were added from Condition 2, 3 and 4. The order in which participants 

performed conditions 1, 2 and 3 was counterbalanced across participants whilst Condition 
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4 was always presented fourth and Condition 5 was always presented last. The last two 

conditions were not counterbalanced because the addition of the response time limit would 

have affected performance on subsequent conditions.  

At the start of the session, participants completed 2 practice blocks of the task in 

the first condition. For example, if the first condition for this participant was the baseline 

condition, then the practice blocks would consist of baseline stimuli. During the practice 

blocks, participants received feedback following each trial as well as feedback (percent 

correct) at the end of the block. For the main task participants did not receive feedback 

following each trial but received feedback at the end of the block. The task for Conditions 

1, 2, and 3 was identical to Experiment 1 (TMS). For Conditions 4 and 5, the task was the 

same except for the addition of the psychological response time pressure.  

Results 
RT and accuracy data were submitted to separate three-way ANOVAs with the 

factors Condition (Baseline, Colour change, Additional noise, Psychological response 

time pressure, All change), Task (Colour, Form) and Congruency (Congruent, 

Incongruent). Here, we were interested in examining whether the modifications to the 

paradigm (Conditions 1-5) increased the difficulty of the task. Greenhouse-Geisser 

correction for non-sphericity (assessed with Mauchly’s test of sphericity) were applied 

when appropriate. 

RT data  
RT data are presented in Figure 11. A three-way ANOVA with factors Condition 

(Baseline, Colour change, Additional noise, Psychological response time pressure, All 

change), Task (Colour, Form) and Congruency (Congruent, Incongruent) revealed a main 

effect of Condition (F(4,28) = 5.62, p < 0.01), no main effect of Congruency (F(1,7) = 

0.17, p = 0.71) and no main effect of Task (F(1,7) = 1.2, p = 0.32). There were no 
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significant two-way interactions (all ps > 0.08).  However, there was a significant 

interaction between Condition, Task and Congruency (F(4,28) = 3.31, p = 0.04).  

  

Figure 11: Experiment 2. RT data: The two graphs are separated by task 

(Panel A: Colour, Panel B: Form). Within each graph the data are separated 

by condition. For each condition the light bars are the congruent trials and the 

dark bars are the incongruent trials. Error bars indicate standard error. Post-

hoc ANOVAs following a three-way interaction revealed a main effect of 

condition in the colour task (response time condition was faster than the 

baseline, change colour, and all change, conditions). The form task showed 

faster RTs in the response time condition than in the all change and additional 

noise condition. The all change condition and change colour conditions also 

showed faster RTs than the additional noise condition.  

 

To explore the three-way interaction, we conducted a simple main effects analysis. 

We split the data by Task as we were interested in whether we had a larger main effect of 

Congruency in certain Conditions. Additionally for the purpose of this experiment, we 

were interested in seeing if there was a main effect of condition, to assess whether the 

conditions differed in difficulty. The two ANOVAs therefore had the factors of 

Congruency and Condition. The colour task ANOVA showed a main effect of Condition 

(F(4,28) = 3.36, p = 0.02), no main effect of Congruency (F(1,7) = 1.81, p = 0.22) and no 



                                                   Exploring the causal role of the dlPFC in feature-selective attention 

   176 

interaction between Condition and Congruency (F(4,28) = 1.62, p = 0.19). Pairwise 

comparisons on the Condition main effect showed that RTs on the psychological response 

time pressure condition (307ms), were faster than the baseline (400ms, p = 0.03), change 

colour (366ms, p = 0.04), and the all change (340ms, p = 0.04), conditions. There were no 

further significant differences between the conditions (p > 0.07 all). Therefore, the 

psychological response time pressure condition resulted in faster RTs for the colour task, 

but there was no evidence for a congruency effect on RT overall or a difference in 

congruency effect between tasks.  

The form task ANOVA showed a main effect of Condition (F(4,28) = 8.73, p < 

0.01). The main effect of Congruency did not quite reach significance (F(1,7) = 5.12, p = 

0.06) and there was no interaction between Congruency and Condition (F(4,28) = 1.31, p 

= 0.28). Pairwise comparisons revealed that RTs were significantly faster for the 

psychological response time pressure condition (332ms) than in the all change condition 

(353ms, p < 0.01), which in turn had significantly faster RTs than to the additional noise 

condition (413ms, p < 0.001). The psychological response time pressure condition and the 

change colour condition (340ms) also had significantly faster RTs than the additional 

noise condition (ps < 0.001). There were no further significant differences between the 

conditions (p > 0.08 all). Therefore, the response time condition resulted in faster RTs 

than some of the other conditions, but there was no evidence for a difference in 

congruency effect. 

Accuracy data   
Accuracy data are presented in Figure 12. Visual inspection suggested a larger 

congruency effect in the all change condition. A three-way ANOVA with factors 

Condition (Baseline, Colour change, Additional noise, Psychological response time 

pressure, All change), Task (Colour, Form) and Congruency (Congruent, Incongruent) 
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revealed a main effect of Condition (F(4,28) = 5.72, p < 0.01). The ANOVA also showed 

a main effect of Congruency (F(1,7) = 13.6, p < 0.01) modulated by a significant 

interaction between Task and Congruency (F(1,7) = 11.1, p = 0.01). There was no main 

effect of Task (F(1,7) = 1.45, p = 2.72) and no other significant interactions (all ps > 0.11).  

Pairwise comparisons following up the main effect of Condition (which did not 

interact with any other factors) revealed that the all change condition had significantly 

lower accuracy scores (85.5%) than the baseline condition (92.2%, p < 0.01), additional 

noise condition (92.3%, p = 0.02) and the colour change condition (93.4%, p < 0.01). 

There were no further significant differences between the conditions (p > 0.07 all). 

  

Figure 12: Experiment 2: Accuracy data: The two graphs are separated 

by task (Panel A: Colour, Panel B: Form). Within each graph the data are 

separated by condition. For each condition the light bars are the congruent 

trials and the dark bars are the incongruent trials. Error bars indicate 

standard error. The data showed a main effect of condition where the change 

all condition had lower accuracy scores than the baseline, additional noise and 

change colour conditions. An interaction between Task and Congruency 

showed that the Congruency effect was larger for the colour task. Participants 

had significantly lower accuracy scores in incongruent trials compared to 

congruent trials for the colour task but there was no effect of congruency in 

the form task. Note: y-axis does not start at zero. 
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To explore the interaction between Task and Congruency, we conducted post hoc 

paired t-tests for each task (colour and form) separately. In the colour task, participants 

had significantly lower accuracy scores (87.4%) on the incongruent trials than on the 

congruent trials (92.8%, t(7) = -4.39, p < 0.01). In the form task, there was no difference 

in accuracy scores between incongruent (91.6%) and congruent trials (91.7%, t(7) = -0.15, 

p = 0.89). Therefore, there was an effect of congruency, but only in the colour task, and 

this was not modulated by the different conditions. Although performance on the all 

change condition was poorer overall, the trend towards a larger congruency effect in this 

condition was not enough to drive a significant two or three way interaction.  

Discussion 
The purpose of this experiment was to increase the difficulty of the task and to 

increase the robustness of the congruency effect. The accuracy data indicated that the 

condition where all aspects of the task were changed (all change) was the most difficult, 

and relative to the other condition with psychological response time pressure (response 

time condition), RTs were also slower on this condition. This condition also showed the 

largest numerical congruency effect in accuracy. However, the statistical analysis showed 

that the congruency effect was specific to the colour task.  

The purpose of this paradigm was to utilise it for a combined TMS-fMRI project. 

If the congruency effect only occurs in one task context, this would result in only half of 

the data from our TMS-fMRI paradigm being used for further analysis. We therefore ran a 

further experiment to match the congruency effect between the two task contexts.  
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Experiment 3 

Introduction 
In Experiment 2, we found evidence for a congruency effect in the colour task but 

not in the form task indicating that it was easier to ignore the irrelevant dimension in the 

form task than the colour task. Additionally, participants found the condition where we 

made the task both perceptually more challenging in the colour domain, degraded the 

stimuli, and introduced a psychological response time pressure the most difficult, and this 

condition had the largest numerical congruency effect. We therefore changed the object 

forms to increase the difficulty of the form discrimination, reasoning that by making it 

harder to process form; we would increase our sensitivity to any interference from colour. 

Woolgar et al. (2015) found that participants were faster to respond to “spikies” than they 

were to “cubies” and “smoothies”, suggesting that spikies may be more distinct that the 

other objects. Therefore we altered the stimulus set so that participants would need to 

distinguish between “cubies” and “smoothies” (rather than cubies and spikies) in the form 

task. We conducted this experiment with the original colours from the TMS paradigm 

(Exp 3: Condition 1) and the new more perceptually challenging colours used in 

conditions 3 and 5 of Experiment 2 (Exp 3: Condition 2). We included Condition 1 with 

the original colours to test whether the colour dimension interfered more when the colours 

were perceptually distinct. 

Materials and Methods 
The design of the task here is identical to Experiment 1 and 2 apart from a few 

modifications as explained below. 
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Participants 
A group of seven healthy adult volunteers (6 females; mean age = 21.5 years, SD = 

4.56) participated in this experiment. All participants were right-handed with normal or 

corrected-to-normal vision and no history of neurological or psychiatric disorder. 

Participants gave written informed consent, and Reading University Research Ethics 

Committee approved the study. All participants received 2 course credits for participation.  

Stimuli 

 
Figure 13: Stimulus sets used for Experiment 3. This stimulus set consisted 

of “cuby” and “smoothy” objects. Condition 1 stimuli consisted of the same 

colours as used in Experiment 1 and Experiment 2 with additional noise 

(Experiment 2: Condition 2). Condition 2 stimuli consisted of the less 

perceptually distinct colours from Experiment 2 with additional noise 

(Condition 5).   

The stimulus set was similar to Experiment 1 and 2. However, instead of using 

“spiky” and “cuby” objects, we used “cuby” and “smoothy” objects (Figure 13) (Op de 

Beeck, Baker, DiCarlo, & Kanwisher, 2006). The form task required participants to 

discriminate between cuby and smoothy objects. For Condition 1 of this experiment, we 

used the stimuli from Experiment 2, Condition 2 (additional noise), in which the colour of 

the stimuli matched the colour of the original stimuli from Experiment 1 but had an extra 

layer of Gaussian noise (Figure 13, top panel). For Condition 2 in this experiment we used 
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the stimuli from Experiment 2, Condition 5 (all changes) which also had the additional 

layer of noise and the colours were less distinct (Figure 13, bottom panel).  

 

Figure 14: Feature-selective congruency measure in Experiment 3. A picture 

cue at the start of each block indicated the current task context (inset shows 

cue display for colour task for Condition 2 of this experiment). On each trial a 

cue reminded participants of the current task context (500ms) followed by the 

object to categorise (100ms) followed by the white fixation cross (500ms) and 

the black fixation cross (600ms). The white fixation cross induced 

psychological time pressure on responses.  

Procedure 
The task was identical to the task of Conditions 4 (response time) and 5 (all 

change) of Experiment 2 (Figure 14), in which participants were told they had only 500ms 

to make their responses. The two versions of the task were identical apart from the 

stimulus set. The order that participants completed the two conditions (Condition 1: more 

distinct colours, Condition 2: less distinct colours) was counterbalanced across 

participants. Participants completed two blocks of practice trials that used the stimulus set 

from the first condition they would carry out. Following this they completed 10 blocks of 

each condition (20 blocks total).  
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Results 
The goal of Experiment 3 was to develop a task in which the congruency effect 

was not dependent on the task context (form or colour). As we were not interested in 

whether there was a difference between Condition 1 and Condition 2, but only whether 

there was a usable congruency effect in either (or both) Conditions, we ran separate two-

way ANOVAs for Condition 1 and 2 including factors Task (Colour, Form) and 

Congruency (Incongruent, Congruent). We did this for both RT and accuracy data 

separately. 

RT data   
The results for Condition 1 (more distinct colours) are shown in Figure 15A. A 

two-way ANOVA factors Task (Colour, Form) and Congruency (Incongruent, Congruent) 

showed no main effect of Congruency (F(1,6) = 1.71, p = 0.24) or Task (F(1,6) = 0.34, p = 

0.58) and no significant interaction between Congruency and Task (F(1,6) = 1.32, p = 

0.29).  

 
Figure 15: Experiment 3. Reaction time data: The data here are separated 

by condition and task (Panel A: Condition 1, Panel B: Condition 2). Error bars 

indicate standard error. Condition 1: more distinct colours; Condition 2: less 

distinct colours. The RT data showed no differences between any of the 

conditions. Note: y-axis does not start at zero 
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The results for Condition 2 (less distinct colours) are shown in Figure 15B. The 

two-way ANOVA again showed no main effect of Congruency (F(1,6) = 1.21, p = 0.35) 

or Task (F(1,6) = 2.99, p = 0.14) and no significant interaction between Congruency and 

Task (F(1,6) = 0.11, p = 0.76). Therefore, there were again no effects of Congruency on 

RT in this Experiment. 

Accuracy data   
The accuracy data for Condition 1 are shown in Figure 16A. As for RT, we 

conducted a two-way ANOVA with factors Task (Colour, Form) and Congruency 

(Incongruent, Congruent). This ANOVA showed no main effect of Congruency (F(1,6) = 

2.47, p = 0.17) or Task (F(1,6) = 1.34, p = 0.29) and no significant interaction between 

Congruency and Task (F(1,6) = 0.79, p = 0.41).  

 

 
Figure 16: Experiment 3. Accuracy data: The data here are separated by 

condition and task (Panel A: Condition 1, Panel B: Condition 2). Error bars 

indicate standard error. Condition 1: more distinct colours. Condition 2: less 

distinct colours. Condition 2 showed a main effect of congruency in which 

participants were more accurate in congruent compared to incongruent trials. 

Note: y-axis does not start at zero. 
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The accuracy data for Condition 2 are shown in Figure 16B. We again conducted a 

two-way ANOVA with factors Task (Colour, Form) and Congruency (Incongruent, 

Congruent). The ANOVA showed a main effect of Congruency (F(1,6) = 6.91, p = 0.03) 

with participants having higher accuracy scores in congruent trials (93.2%) compared to 

incongruent trials (88.3%). The ANOVA showed no main effect of Task (F(1,6) = 4.23, p 

= 0.09) and no significant interaction between Congruency and Task (F(1,6) = 0.02, p = 

0.92). Therefore, there was a significant congruency effect in Condition 2 which did not 

differ between the two tasks.  

Discussion  
For this experiment we used the version of the paradigm that participants found 

most difficult from Experiment 2. We also changed the objects to increase the difficulty of 

discriminating form in the form task. Although there was no congruency effect evident in 

the RT data, the accuracy data revealed a main effect of congruency that did not depend 

on task context in Condition 2 (less distinct colours). Therefore we selected Condition 2 of 

Experiment 3 as the final paradigm for the concurrent TMS-fMRI project.  

Conclusions 
In Experiment 1, we examined whether disruption to the dlPFC impaired 

participants’ performance in a task requiring them to select for relevant information and/or 

inhibit irrelevant feature information. The dlPFC has been proposed to play a critical role 

in this type of control (Duncan, 2001; Miller & D'Esposito, 2005; Miller & Cohen, 2001; 

Shimamura, 2000) and evidence from previous neurostimulation data supports this view 

(e.g. Sandrini et al., 2008; Zanto et al., 2011). We did not find evidence to support this 

suggested role of the dlPFC but this may be due to a number of factors. Aside from a 

small sample size, participants’ accuracy scores were close to ceiling, which may decrease 

our potential for finding an effect. Therefore in Experiment 2, we modified the stimulus 
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set and the design of the task to increase its difficulty. We found that Condition 5 of 

Experiment 2, where we had modified the colour of the stimuli, added noise, and added 

psychological response time pressure, was the most difficult for participants, reflected in 

the accuracy data. However, our congruency effect here appeared to be specific to the 

colour task and was not found in the form task. In Experiment 3, we increased the 

difficulty of the form task by changing the objects that participants discriminated between. 

In this experiment we found a congruency effect in our accuracy data and no evidence to 

suggest that this was influenced by the task that participants performed. This was therefore 

selected as the final design of the paradigm for the subsequent TMS-fMRI experiment 

(Chapter 5). Overall, these experiments gave us a thorough understanding of the processes 

involved in using TMS, including the importance of considering appropriate controls, and 

developed a sensitive task that could be used to measure feature-selective attention in the 

following study.  
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Abstract 
A critical aspect of successful goal-directed behaviour is the ability to select 

between task-relevant and task-irrelevant information. A circuit of frontal and parietal 

multiple-demand (MD) brain regions are suggested to play a fundamental role in this type 

of control (Duncan, 2010). Neurons in these regions are proposed to exhibit substantial 

flexibility, adapting their response properties to code the information required for the 

current task ("adaptive coding hypothesis", Duncan, 2001; Duncan, 2013). A prominent 

region in this network is the dorsolateral prefrontal cortex (dlPFC), often conceptualised in 

terms of attention-mediated filtering (e.g. Desimone & Duncan, 1995; Miller & Cohen, 

2001; Shimamura, 2000). This region has been associated with both inhibition of 

irrelevant information and selection of task-relevant representations (e.g. Kanwisher & 

Wojciulik, 2000; Knight, Staines, Swick, & Chao, 1999). In view of this we devised an 

experiment to provide causal evidence for one or both of these mechanisms. Our task 

measured intrusion by irrelevant feature information. Participants attended to one feature 

of a novel object (e.g., its colour) whilst simultaneously ignoring another feature (e.g., 

form) of the same object. We employed transcranial magnetic stimulation (TMS) during 

functional magnetic resonance imaging (fMRI) in order to investigate the mechanisms 

underlying feature-selective attention in the right dlPFC. We using multivoxel pattern 

analysis (MVPA) to compare what task information was coded across the brain when the 

right dlPFC was disrupted under high intensity stimulation (HIS, 110% of motor 

threshold) compared to low intensity stimulation (LIS, 40% of motor threshold), and 

related this to participant’s behavioural data. We predicted that if the dlPFC normally 

inhibits irrelevant information, then disrupting dlPFC function would result in stronger 

coding of irrelevant feature information in other brain areas. Conversely, we predicted that 

if the dlPFC normally enhances coding of relevant information, then disrupting dlPFC 
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would result in weaker coding of relevant feature information. Our results showed that 

TMS had a significant effect on behaviour, with irrelevant feature information impacting 

participants’ reaction times more strongly under HIS. This behavioural effect was 

mirrored in the neural data: under HIS we found stronger coding of irrelevant information 

across the MD network and visual brain regions. These results provide causal evidence for 

a functional role of dlPFC in inhibition of irrelevant feature information. Conversely, HIS 

had either no effect (for object form) or resulted in stronger coding (for object colour) of 

task relevant information. We speculate that this adaptive response could reflect 

compensation for disruption of prefrontal function. These data are in line with top-down 

bias accounts of prefrontal function, supporting the role of the dlPFC in modulating 

processing of relevant and irrelevant feature information.  

Introduction 
The complex environment we live in makes it necessary to distinguish relevant 

from irrelevant information constantly and reliably. This type of attention can even be 

specific to selecting a relevant feature of an object, referred to as feature-selective 

attention (Chen, Hoffmann, Albright, & Thiele, 2012). Our ability to attend to specific 

features of objects whilst filtering out irrelevant information requires a sophisticated 

system that can coordinate processing across the human brain towards our goals. The 

details of this system, and the way in which it influences processing across the rest of the 

brain, is currently an area of active research.  

A circuit of frontal and parietal brain regions, often referred to as multiple-demand 

(MD) regions (Cole & Schneider, 2007; Corbetta & Shulman, 2002; Duncan, 2001; 

Duncan, 2010; Kanwisher & Wojciulik, 2000; Vincent, Kahn, Snyder, Raichle, & 

Buckner, 2008), are suggested to play a fundamental role in selective attention. These 
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regions extend over a specific set of regions in the prefrontal and parietal cortex, 

specifically cortex in and around the dorsolateral prefrontal cortex (dlPFC), anterior insula 

(AI), frontal operculum (AI/FO), pre-supplementary motor area and adjacent dorsal 

anterior cingulate (ACC/pre-SMA) and in and around the intraparietal sulcus (IPS). 

Duncan (2001) proposed that neurons within these regions dynamically adjust their 

responses in order to selectively process information that is currently relevant (“adaptive 

coding hypothesis"). In our previous work (Chapter 2 and Chapter 3) we showed that these 

regions held a stronger representation of task-relevant features compared to task-irrelevant 

feature information. This selective representation may provide a source of bias, 

modulating responses in earlier processing areas via back-projections (also known as “top-

down” control) (Corbetta & Shulman, 2002; Desimone & Duncan, 1995; Duncan, 

Humphreys, & Ward, 1997; Frith, 2001; Knight et al., 1999; Miller & D'Esposito, 2005; 

Miller & Cohen, 2001; Ruff & Driver, 2006; Serences & Yantis, 2006).  

It is increasingly recognised that regions within this frontoparietal network have 

the potential to influence processing in other brain regions. The dlPFC, in particular, is 

often cited in the literature as maintaining top-down signals that guide neural activity 

according to behavioural relevance (e.g. Curtis & D'Esposito, 2003; Knight et al., 1999; 

Miller & D'Esposito, 2005; Miller & Cohen, 2001; Shimamura, 2000). Electrophysiology 

studies in non-human primates have provided evidence that lateral prefrontal neurons 

respond flexibly to task-relevant information, adaptively coding information that is 

currently relevant (Cromer, Roy, & Miller, 2010; Everling, Tinsley, Gaffan, & Duncan, 

2002; Freedman, Riesenhuber, Poggio, & Miller, 2001; Kadohisa et al., 2013; Rao, 

Rainer, & Miller, 1997; Roy, Riesenhuber, Poggio, & Miller, 2010). This biased 

processing of task-relevant information is then suggested to influence processing across 

the brain (Miller & Cohen, 2001), as prefrontal regions send projections to much of the 
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cerebral cortex (Pandya & Barnes, 1987; Ungerleider, Gaffan, & Pelak, 1989). For 

example, in electrophysiological studies, prefrontal regions have been associated with top-

down influences on inferior temporal cortex (e.g. Miller, Erickson, & Desimone, 1996) 

and superior colliculus (Johnston & Everling, 2006). Moreover, studies on non-human 

primates with induced prefrontal lesions have provided causal evidence for interactions 

with early cortical regions (Chafee & Goldman-Rakic, 2000; Fuster, Bauer, & Jervey, 

1985; Monosov, Sheinberg, & Thompson, 2011; Rossi, Bichot, Desimone, & Ungerleider, 

2007; Tomita, Ohbayashi, Nakahara, Hasegawa, & Miyashita, 1999).  This evidence has 

provided the foundation for several models of prefrontal function (e.g. Curtis & 

D'Esposito, 2003; Duncan, 2001; Miller & Cohen, 2001; Shimamura, 2000). However, the 

method by which the PFC influences other regions to achieve selective processing 

requires further research. 

Competition-based models of attention (Desimone, 1998) suggest that task-

relevant excitatory signals to selective visual neurons outcompete task-irrelevant inputs 

thus sharpening the focus of attention (also refer to Desimone & Duncan, 1995; Kastner & 

Ungerleider, 2000; Miller & Cohen, 2001; Pessoa, Kastner, & Ungerleider, 2003). Other 

accounts suggest that top-down modulation is a result of enhancement of task-relevant 

information and simultaneous inhibition of task-irrelevant inputs (e.g. Knight & Stuss, 

2002; Shimamura, 2000; Smith & Jonides, 1999). For example, a dynamic filtering 

account of prefrontal function (Shimamura, 2000) maintains that prefrontal regions, with 

extensive projections to and from many cortical and subcortical regions, orchestrate 

signals by means of inhibiting some areas whilst maintaining activation of others. It is 

often difficult to disentangle these two mechanisms (enhancement of task-relevant 

information and suppression of task-irrelevant information), particularly if the 

enhancement of relevant information by top-down projection has a subsequent effect on 
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task-irrelevant information due to local competition (Desimone, 1998; Desimone & 

Duncan, 1995). For example, in a study that employed functional magnetic resonance 

imaging (fMRI), participants were presented with stimuli composed of moving and 

stationary dots (O'Craven, Rosen, Kwong, Treisman, & Savoy, 1997). When participants 

paid attention to moving dots, and ignored stationary ones, activity in motion-specific 

regions was selectively increased. This is suggestive of top-down attentional facilitation, 

but these data cannot disentangle whether attentional modulation is a result of 

enhancement of task-relevant information or suppression of irrelevant information or a 

combination of both.  

One way in which we can further investigate these two potential mechanisms is to 

examine causal interactions between brain regions by perturbing the function of one 

region and recording the effect in other regions. This is now possible in the human brain 

with the cutting-edge combination of transcranial magnetic stimulation (TMS) and 

neuroimaging e.g., fMRI or electroencephalography (EEG). The combination of TMS 

with neuroimaging can help to test causal brain-behaviour relations not only at the 

stimulated target site, but also for interconnected brain regions (Bestmann, Baudewig, 

Siebner, Rothwell, & Frahm, 2005; Bestmann & Feredoes, 2013; Driver, Blankenburg, 

Bestmann, Vanduffel, & Ruff, 2009; Feredoes, Heinen, Weiskopf, Ruff, & Driver, 2011). 

With the combination of these techniques, prefrontal regions have been causally linked 

with top-down modulation of earlier cortical responses (e.g. Feredoes et al., 2011; Higo, 

Mars, Boorman, Buch, & Rushworth, 2011; Lee & D'Esposito, 2012; Miller, Vytlacil, 

Fegen, Pradhan, & D'Esposito, 2011; Morishima et al., 2009; Zanto, Rubens, Thangavel, 

& Gazzaley, 2011). For example, Zanto et al. (2011) combined EEG with offline TMS 

targeting the inferior frontal junction (IFJ). They found that EEG signatures from posterior 

electrodes that distinguished between task-relevant and task-irrelevant stimuli were 
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diminished following TMS to the IFJ. For task-relevant stimuli, the response amplitude 

following TMS to IFJ was decreased, whilst for task-irrelevant stimuli the response 

amplitude increased. These data indicate a causal role for this region in the selection of 

task-relevant information as well as the inhibition of task-irrelevant information.  

Studies using concurrent TMS with fMRI have also demonstrated top-down 

modulatory effects from prefrontal regions. For example, Feredoes et al. (2011) used 

fMRI with online TMS to right dlPFC and found that when distractors were presented 

during a delay period, there was increased activity in posterior visual regions during 

dlPFC stimulation. An increase in activation was observed in fusiform face area (FFA) 

under dlPFC-TMS during memory for faces with house distractors whilst 

parahippocampal place area (PPA) responses were increased by TMS during house 

memory for face distractors. This increase in activity was specific to the regions 

representing the current memory targets but not the distractors and was therefore taken as 

evidence that an important function of the dlPFC is to maintain relevant information in the 

face of distracting irrelevant information.  

The literature indicates that dlPFC appears to play an important role in causal top-

down influences. However, to our knowledge, previous work has mainly focused on the 

magnitude of EEG, or fMRI responses, using univariate analyses. This allows inference 

about the change in activation in different brain regions, but does not tell us about changes 

in information coding. This is an important distinction because activation does not always 

reflect the storage or representation of information (D’Esposito & Postle, 2015) and 

therefore the observed changes in overall activation may not reflect changes in the 

representation of information.  If we want to understand the role of the dlPFC in 
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supporting the preferential representation of attended information in the brain (Duncan, 

2001), we need to use an analysis technique that taps information coding more directly.  

Multi-voxel pattern analysis (MVPA) allows us to assess what information is 

represented in the brain by taking into account the full spatial pattern of brain activity 

(Haynes & Rees, 2006). We know there are top-down effects on information coding in 

visual cortex (e.g. Jehee, Brady, & Tong, 2011), and with TMS, we now have the 

opportunity to address whether this is causal result of dlPFC function. The combination of 

TMS with fMRI-MVPA can allow us to examine the change in information representation 

across the human brain in response to disruption of the right dlPFC.  

As we previously demonstrated, MVPA allows us to separate the representation of 

relevant and irrelevant object features (Chapters 2 and 3). The MD cortex appears to 

flexibly represent this information, providing a potential source of bias to other brain 

regions such as the early visual cortex. Our first question, therefore, was whether 

disrupting dlPFC function with TMS would affect information coding in the rest of the 

MD system, and in the visual cortex. Second, an open question concerns whether top-

down influences are primarily exerted by the enhancement of task-relevant information, 

and/or via the inhibition task-irrelevant information (e.g. Aron, 2007; Kanwisher & 

Wojciulik, 2000). It is entirely possible that both of these mechanisms occur in 

combination, whereby relevant information is enhanced and irrelevant information is 

simultaneously suppressed (Knight et al., 1999; Shimamura, 2000). Another possibility is 

that irrelevant information is not directly suppressed by top-down influences but rather 

driven out by local competition from relevant inputs (Desimone, 1998; Desimone & 

Duncan, 1995; Miller & Cohen, 2001). In combination with TMS, we have the 



                                            Top-down feature-selective signals from dlPFC 

 

 202 

opportunity to examine the causal effect of dlPFC activity on the representation of 

relevant and irrelevant object features. 

In this study we used online TMS in combination with fMRI-MVPA methods to 

causally investigate these two mechanisms (enhancement and inhibition) in right dlPFC. 

We focused on the right dlPFC because stimulation to this region has previously been 

shown to affect activity in visual brain regions during a task requiring selective attention 

(Feredoes et al., 2011). We used the following logic: if the right dlPFC usually enhances 

coding of the attended object feature then interrupting this mechanism with TMS 

stimulation should result in a decrease in coding of the attended object feature elsewhere 

in the brain. Conversely if this region usually filters out distracting information, 

stimulation should result in an increase in coding of the unattended object feature. Both 

mechanisms are possible and could happen concurrently; with this method we investigated 

whether either one, or both, are subserved by dlPFC. 

Participants performed a task in which they attended to one feature of a novel 

object (e.g. its colour) whilst ignoring an irrelevant feature (e.g., its form). The response 

for the irrelevant feature (form in colour blocks; colour in form blocks) was either 

congruent or incongruent with the required response for the relevant feature. We randomly 

interleaved high intensity (effective) TMS (110% motor threshold, MT) with low intensity 

(ineffective) TMS (40% MT) on any given trial. Our first prediction was that disruption of 

the two mechanisms outlined would be reflected in the behavioural data. Specifically, we 

expected that irrelevant feature information would have a larger effect on performance in 

the high intensity stimulation (HIS) compared to the low intensity stimulation (LIS) 

condition, resulting in a larger congruency effect. Our second prediction was that HIS 

would affect information coding in the brain. We predicted that, relative to LIS, HIS to 
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right dlPFC would result in a) stronger multi-voxel coding of irrelevant feature 

information (release from suppression); and/or b) weaker coding of relevant feature 

information (disrupted upregulation of attended information). We anticipated that this 

change in information coding would be seen in the rest of the frontoparietal network, 

which is proposed to work together as a system (Duncan, 2010), as well as in visual cortex 

(LOC and early visual cortex), reflecting top-down modulation (e.g. Desimone & Duncan, 

1995).  

Materials and Methods 

Participants 

A group of twenty healthy adult volunteers (15 females; mean age = 21.6 years, 

SD= 3.36) participated in this experiment. All participants were right-handed with normal 

or corrected-to-normal vision and no history of neurological or psychiatric disorder. 

Participants gave written informed consent and passed relevant screening for TMS and 

MRI. The University of Reading Research Ethics Committee approved the study. All 

participants received £30.00. Initially thirty-one participants signed up for the experiment. 

However, four participants were excluded for not passing screening requirements, and 

seven participants were excluded for not completing both session 1 and session 2 of the 

experiment, leaving us with 20 datasets for analysis. 

Stimuli 

Stimuli were abstract novel “smoothy” and “cuby” created using custom MatLab 

scripts (Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006). The stimulus set consisted of 

4 objects (Figure 1). Participants learnt to discriminate between a cuby and a smoothy 

object in the form task. For the colour task they discriminated between a blue (RGB 
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values: 98 179 18) and a green object (RGB values: 95 171 96). The relevant visual 

feature of the stimuli varied depending on the current decision boundary (form or colour). 

We controlled stimulus presentation with a PC running the Psychophysics Toolbox-3 

package (Brainard, 1997) in MatLab (Mathworks). Stimuli were presented at central 

fixation on a screen and viewed through a mirror mounted on the head coil in the scanner.  

Procedure 

Participants took part in two separate sessions 2-8 days apart. In session 1, we first 

familiarised participants with the sensation of TMS and measured their resting motor 

threshold (MT). Following this, participants completed a structural scan and three 

functional localiser tasks in the scanner in order to determine individual stimulation sites 

and regions of interest (ROIs) for analysis. In session 2, participants underwent concurrent 

TMS-fMRI whilst completing the main experimental task.  

Session 1 

For each participant, we determined the minimum intensity at which a single pulse 

through the TMS coil, positioned over the hand area of the primary motor cortex, reliably 

produced a visible twitch in the abductor pollicis brevis when at rest, in 5 of 10 successive 

pulses. The MT of each participant determined the intensity of TMS stimulation for that 

participant in session 2. The average MT recorded across participants was 58% of 

maximal stimulator output. The intensity of stimulation in session 2 was pseudo-randomly 

varied over trials at either 110% or 40% of the individual participant’s MT.  

After acquiring the individual MT, participants were given instructions about the 

structural scan and tasks that they would complete in the scanner. These tasks were a task 

localiser for the right dlPFC, a lateral occipital complex (LOC) localiser, and a fixation 
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localiser. Participant practised the right dlPFC task localiser before they entered the 

scanner. Participants were instructed on the other localisers but were not required to 

practise the tasks, as they were very simple.   

 

Figure 1: The stimulus set consisted of four novel objects differing on the 

basis of two feature dimensions; colour (blue/green) and form 

(“smoothy”/“cuby”). 

 

Right dlPFC task localiser  

This localiser was designed to activate the dlPFC using a modified version of the 

main experimental task (see description below). Since the task localiser was performed in 

a separate session to the TMS-fMRI session, it was entirely independent data and 

therefore valid to use for determining a target ROI for TMS. We aimed to find a region of 

dlPFC that responded more strongly on incongruent relative to congruent trials. We 
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reasoned that this activity would reflect the additional processes required in upregulating 

relevant and/or suppressing irrelevant information on incongruent trials.  

In the localiser, congruent and incongruent trials were blocked to give maximal 

power for analysis. The congruent condition blocks consisted of the objects where the 

response button for the irrelevant dimension was congruent with the required response for 

the relevant dimension (e.g. a blue cuby would be congruent if both ‘cuby’ and ‘blue’ 

were associated with the ‘left’ response). The incongruent condition blocks consisted of 

the objects where the response for the irrelevant dimension was incongruent with the 

required response for the relevant dimension (a green cuby would be incongruent if ‘cuby’ 

was associated with the ‘left’ response but ‘green’ was associated with the ‘right 

response). A rest block was also included where participants viewed a black cross at 

fixation for 16s. The order of task (colour/form) and congruent/incongruent blocks was 

counterbalanced across participants. 

Participants completed at least 6 practice blocks outside of the scanner until they 

achieved >70% performance. For the first 2 blocks participants received feedback on 

every trial, following this they received feedback only at the end of the block (percent 

correct). At the start of each block a picture cue (3000ms) indicated the current task (form 

or colour). The picture cue displayed all four objects and separated them according to the 

feature dimension that participants would discriminate between in the upcoming block 

(Figure 2, inset). The stimulus set was thus identical across the two task contexts, but the 

currently relevant dimension differed. The picture cue indicated the correct button 

responses for the relevant dimension.  

On each trial participants would first see a cue that reminded them of the current 

task (form or colour, 500ms) followed by an object displayed at fixation for 100ms. A 
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white cross would then be displayed for 500ms after the object offset followed by a black 

cross for 1000ms. The white cross would be replaced by the black cross before 500ms if 

participants responded within this time period and the remaining time that the white cross 

would have been displayed for was added on to the duration of the black cross period. 

Participants were told that their responses were only recorded during the white cross 

period. This was done to introduce time pressure in order to increase difficulty. Responses 

were also recorded if they occurred during the black cross period (total recorded response 

period of 1500ms) but this was not reflected in participant’s feedback scores.  

 

 

Figure 2: dlPFC task localiser: A picture cue at the start of each block 

indicated the current task context  (inset shows cue display for the colour 

task). On each trial a cue reminded participants of the current task context 

(500ms) followed by the object to categorise (100ms) followed by the white 

fixation cross (500ms) and the black fixation cross (1000ms). Following the 

picture cue the task was blocked so that participant completed 8 trials of the 

congruent condition followed by 8 trials of the incongruent condition followed 

by a 16s rest period (black fixation cross). 
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In the scanner, each participant completed 2 runs (6.00m each) of the task 

localiser. Within each run participants completed 18 blocks of each condition; congruent 

(16.8s, 8 trials), incongruent (16.8s, 8 trials) and rest (16.8s). Participants received 

feedback (percent correct) at the end of every set of congruent and incongruent blocks 

before the rest period. In the second run the button response mapping (the button 

associated with each object) was switched in order to mimic the procedure of the main 

task. This was an essential feature of the design of the main task in order to dissociate 

activity associated with participant’s motor response from that associated with the 

stimulus features. The button response mapping order was counterbalanced across 

participants. 

Lateral Occipital Complex (LOC) localiser 

After the task localiser, we ran a second localiser to functionally identify object-

sensitive cortex in the LOC. Participants viewed centrally located intact and scrambled 

versions of black and white objects in 16.8s blocks of 16 trials (1100ms/trial), whilst 

attending to a central fixation cross. Participants indicated via a button response when the 

fixation cross changed from black to blue. There were 21 blocks consisting of alternating 

blocks of whole objects, scrambled objects, and rest blocks (order counterbalanced across 

participants). The EPI (acquisition) time for this localiser task was 6.25min. 

Fixation localiser 

Following the LOC localiser we ran a fixation localiser task (Figure 3) to identify 

the cortical region stimulated by visual information at fixation (covering the same area of 

central visual field as the objects in the task localiser and main task). Participants viewed a 

small white circle at the centre of the screen that was visible across all experimental 

blocks. Rest blocks (16s) consisted only of the circle presentation. In the stimulus blocks, 

participants viewed either a flickering checkerboard presented only at fixation (the spatial 
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extent of which matched the objects in the main task) or a checkerboard filling the entire 

field of view leaving only a blank grey screen in the place of the fixation checkerboard.  

  

 

Figure 3: Fixation localiser: A white central circle was present throughout all 

blocks. In blocks participants viewed either a flickering checkerboard 

presented only at fixation, a checkerboard filling the entire field of view 

leaving only a blank grey screen in the place of the fixation checkerboard or 

just the white central circle (rest). When the central white circle flashed green 

(0.1s, random intervals) participants were required to respond with a button 

press. In the example above there are four blocks of the task depicted, the 

task consisted of 24 blocks total (8 blocks of each condition). The block order 

was counterbalanced. 

 

Participants were required to press a button when the central circle on the screen 

flashed green. This task was included to encourage attention and fixation, however, as we 

did not include eye-tracking in this experiment, we cannot be certain that participants did 

not move their eyes from fixation during the localiser task. However, it seems unlikely 

that this would have occurred, as there was no advantage to looking away from the central 

circle. The EPI time for the fixation localiser was 8.00m.  

Session 2  

In session 2 we used the Brainsight infrared frameless stereotaxy 

neuronavigational system (Rogue Research Inc.) that relies on acquired MR anatomical 
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information (acquired in session 1) to navigate to each participant’s individual target 

stimulation location (see below) and marked the stimulation site on the scalp. Following 

this, participants practiced the main task outside the scanner and then completed 8 runs of 

the task in the scanner with simultaneous online TMS stimulation on every trial.  

Target region selection 

 

For each participant, we defined the target region as follows. First, we contrasted 

univariate activation on incongruent minus congruent blocks in our dlPFC task localiser 

(contrast 1), and congruent and incongruent minus rest (contrast 2; see Univariate 

contrasts section below for contrast details). The results of these contrasts were compared 

to a sphere of radius 8mm centered on MNI co-ordinates [44 31 28], which was the target 

location in our previous work (Chapter 4), deformed into individual subject native space. 

The comparison sphere location was chosen on the basis of published functional activation 

and connectivity data (Cole et al., 2013; Duncan & Owen, 2000; Fedorenko, Duncan, & 

Kanwisher, 2013) and localiser data collected in our previous experiment (refer to Chapter 

4 for further details, see Figure 4 for overlaid activation).  

If the peak activation from contrast 1 (incongruent minus congruent) was within 

8mm of the 8mm sphere in native space then the central coordinate of peak activation was 

used for that participant as their stimulation target. This was the case for 12 out of 20 

participants. If contrast 1 showed no activation within range of our sphere then we 

compared activation for contrast 2 (congruent and incongruent minus rest) to the sphere 

applying the same procedure. The resultant cluster was used for 5 participants. If there 

were no clusters of activation from these contrasts near to our pre-defined sphere, then the 

central point of the sphere was chosen as the target. This was the case for 3 participants. 



                                            Top-down feature-selective signals from dlPFC 

 

 211 

 

Figure 4: The top panel shows a sphere (radius = 8mm) centered on MNI152 

coordinates [44 31 28]. This sphere was used for guidance in selecting our 

stimulation coordinate from task localiser data. The bottom panel shows 

overlaid activation maps used for selection of this sphere (see Chapter 4). The 

location of the sphere was transformed into native space for each participant. 

 

Neuronavigation 

At the start of session 2, we used the neuronavigational system with the predefined 

stimulation target coordinates of each individual (functionally defined, see below) to guide 

coil placement. A tracker with three reflecting spheres, attached to the participant’s head, 

and a pointer with four reflecting spheres was registered into the Brainsight system. The 

standard Brainsight neuronavigation routines were used to determine the coil position on 

the participant’s head. The target location was marked on the participant’s scalp with a 

non-permanent pen for later targeting with TMS inside the MRI scanner. The position of 

the TMS coil was adjusted in the scanner so that it fit within the head coil and was 

comfortable for participants. The stimulating coil was oriented with the handle pointing 

posteriorly with respect to the participant’s head, and roughly parallel to the midline. 
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TMS-fMRI 

Prior to entering the scanner the participants practiced the main task for at least 6 

blocks without TMS (about 20 minutes). The main task was similar to the task localiser 

that the participants completed in session 1. However, now the congruent and incongruent 

conditions were not blocked. Instead these two conditions occurred pseudo-randomly on a 

trial-by-trial basis. In addition, there was no rest block and the timings were slowed down 

to prolong the duration between the TMS pulses (Figure 5 shows the task design). During 

practice, participants received feedback following each trial for the first two blocks as well 

as feedback at the end of the block. For the last four blocks of practice participants only 

received feedback (percent correct) at the end of the block. Participants repeated the 

practice trials until they scored >70% correct.  

Participants completed 8 runs of the task in the scanner with concurrent TMS. 

Runs lasted 6.3 minutes and there was a minimum of 1 minute break between runs. In 

each run participants completed one block of the colour task and one block of the form 

task. The block started with a picture cue (4000ms) indicating the current task context and 

response mapping. On each trial participants first saw a cue reminding them of the current 

task (form or colour, 500ms) followed by the object (100ms). Participants received a train 

of three pulses; the first pulse at 75ms after stimulus onset. The following two pulses were 

separated by 75ms. The train of pulses was delivered at 110% or 40% of participant’s 

individual MT, with intensity varying pseudo-randomly over trials. A white cross 

appeared for 500ms after the object offset followed by a black cross for a variable time 

period of between 3500-4000ms. The white cross was replaced with the black cross before 

500ms if participants responded within this time period, and in this case the remaining 

time that the white cross would have been displayed was added on to the duration of the 

black cross. 
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Figure 5: Concurrent TMS-fMRI task: A picture cue at the start of each block 

indicated the current task context (inset shows cue display for form task). On 

each trial a cue reminded participants of the current task (500ms) followed by 

the object to categorise (100ms: first pulse (high or low intensity) 75ms after 

stimulus onset), followed by the white fixation cross (500ms) and the black 

fixation cross (3500ms-4000ms). In this example, participants are cued to 

attend to the form of the objects. The first object is a blue cuby, which is 

associated with the left button response. Participants were asked to respond 

as fast as possible (in white cross time period) with the correct button 

response. 

Participants received feedback (percent correct) at the end of each block. After the 

first four runs, the button-response mapping was swapped (e.g. if the button response for a 

green smoothy was the left button, this would now be the right button response). TMS 

timing was carefully controlled to coincide with the readout period of slice acquisition, so 

that the artifact caused by each pulse would affect only one slice and would occur at a 

different slice of each volume. 
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TMS 
The MR-compatible TMS figure-8 stimulating coil (MRI B90 II. MagVenture, 

Farum, Denmark) was held firmly in position by a custom made MR compatible non-

ferromagnetic coil holder with several degrees of freedom in each direction inside the MR 

head coil. The cable of the TMS coil passed through the back of the scanner and out 

through a wave guide on the scanner wall. It connected to the TMS machine located in the 

MR control room.  

A MatLab (Mathworks) script running on an experimental PC connected to the 

TMS machine remotely controlled and triggered the onset of the TMS pulses to be 

synchronized to the fMRI scanning sequence. TMS pulses were delivered to coincide with 

the readout phase of a slice acquisition. In this way, the TMS artefact affected only the one 

slice on which TMS was applied (Bestmann, Baudewig, & Frahm, 2003). This slice was 

later discarded (see Preprocessing, below). The same TMS machine and coil were used in 

session 1 for determining individual MT and in session 2 for the main experiment. The 

main experiment consisted of a total of 16 blocks (8 runs) with a total of 1536 pulses 

across all of the runs complying with published safety limits for TMS stimulation (Rossi, 

Hallett, Rossini, & Pascual-Leone, 2009). 

 
fMRI 

Data acquisition 

The data were collected for both session 1 and 2 using a Siemens Magnetom Trio 

3T whole body Magnetic Resonance Imaging (MRI) scanner at Reading University, 

Reading, UK. 
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Session 1 

We used a sequential ascending T2*- weighted echo planar imaging (EPI) 

acquisition sequence with the following parameters: acquisition time 2080 ms; echo time 

30 ms; 60 oblique axial slices with a slice thickness of 3.0 mm and a 0.70 mm inter-slice 

gap; in plane resolution 3.0×3.0 mm; matrix 64×64; field of view 256 mm; flip angle 78°. 

T1-weighted MPRAGE structural images were also acquired for all participants (slice 

thickness 1.0 mm, resolution 1.0×1.0 mm). 

Session 2 

We used a sequential ascending T2*- weighted echo planar imaging (EPI) 

acquisition sequence with the following parameters: acquisition time 2450ms; echo time 

30 ms; 35 oblique axial slices with a slice thickness of 3.0 mm and a 0.70 mm inter-slice 

gap; in plane resolution 3.0×3.0 mm; matrix 64×64; field of view 256 mm; flip angle 90°; 

50% phase oversampling in the phase encoding direction to shift any Nyquist ghost 

artefact, due to the presence of the TMS coil, to outside the volume of interest.  

Preprocessing 

Session 1 

MRI data were preprocessed using SPM 5 (Wellcome Department of Imaging 

Neuroscience, www. fil.ion.ucl.ac.uk/spm) in MatLab 2013b. Functional MRI data were 

converted from DICOM to NIFTI format, spatially realigned to the first functional scan 

and slice timing corrected, and structural images were co-registered to the mean EPI. EPIs 

were smoothed slightly (4mm FWHM Gaussian kernel) and in all cases the data were high 

pass filtered (128s). Structural scans were additionally normalized, using the segment and 

normalise routine of SPM5, in order to derive the individual participant normalization 

parameters needed for TMS target definition.  
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Session 2 

After we had reconstructed the TMS-fMRI data, we removed the slices that were 

affected by TMS pulses (one slice per pulse). Slices with a signal magnitude of >1.5 SD 

from the run mean were replaced by the mean of the same slices from the preceding and 

proceeding volumes (following Feredoes et al., 2011; Ruff et al., 2008; Ruff et al., 2006). 

Aside from this initial step for session 2 data, preprocessing followed the same steps as 

session 1. EPIs from session 2 were smoothed slightly (4 mm FWHM Gaussian kernel) to 

improve signal-to-noise ratio for multi-variate analyses and were smoothed separately 

with a larger smoothing kernel (following standard practice) for univariate analyses (8 mm 

FWHM Gaussian kernel). 

Univariate contrasts 

Right dlPFC Task localiser 

The right dlPFC was functionally defined on an individual level on the basis of: a) 

our main effect of interest (additional activation associated with conflict or intrusion from 

the irrelevant dimension); or b) as activation pertaining to performing the overall task 

compared to rest. We used the standard multiple regression approach of SPM5 (Wellcome 

Department of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk) to estimate 

values corresponding to the congruent and incongruent task conditions as well as the rest 

conditions (block design). Blocks were modelled using a box car function lasting 16.8s 

convolved with the hemodynamic response of SPM5. The run mean was included in the 

model as a covariate of no interest. Whole-brain analyses (paired t-tests) compared blood-

oxygen-level-dependent (BOLD) responses across the following conditions: [incongruent 

– congruent] (congruency effect), and [(congruent + incongruent) – rest] (task effect). The 

resulting map was thresholded such that there was at least one cluster with a minimum 
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size of 20 voxels. The peak of one of these clusters was chosen as the target stimulation 

site as explained above.  

LOC  

For each participant, we defined object-selective LOC as the occipital brain area 

that responded more strongly to whole objects than to scrambled versions of the same 

objects. We again used the standard multiple regression approach of SPM5. Here, we 

estimated values pertaining to the whole and scrambled object conditions. Blocks were 

modelled using a box car function lasting 16s convolved with the hemodynamic response 

of SPM5. The run mean was included in the model as a covariate of no interest. Paired t-

tests compared voxelwise BOLD response in the two conditions (whole objects minus 

scrambled objects). The resulting map was thresholded such that there was at least one 

cluster with a minimum size of 20 voxels in lateral occipital cortex. These clusters were 

then imported into MarsBaR (Brett, Anton, Valabregue, & Poline, 2002) and clusters of 

activation close to LOC coordinates from previous studies (Grill-Spector et al., 1999; 

Grill-Spector, Kushnir, Hendler, & Malach, 2000) were selected as ROIs.  

Fixation 

We defined an ROI based on increased activation in response to visual stimulation 

at fixation where the objects in the main task were presented compared to visual 

stimulation outside of this area. Here, we estimated activity pertaining to the fixation 

checkerboard and outside-fixation checkerboard conditions. Blocks were again modelled 

using a box car function lasting 16s convolved with the hemodynamic response of SPM5. 

The run mean was included in the model as a covariate of no interest. We contrasted 

BOLD responses with paired t-tests in the two conditions using our visual localiser data 

(flickering checkerboard at main task object location minus flickering checkerboard 
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outside object location). The resulting map was thresholded such that there was at least 

one cluster with a minimum size of 20 voxels within early visual cortex.   

Comparison of overall activation for HIS contrasted with LIS   

Here we examined activity differences under HIS compared to LIS using a mass-

univariate (whole brain) approach. We also examined activity differences under HIS 

compared to LIS in our pre-defined MD regions (see MD network definition below). A 

General Linear Model (GLM) was estimated for each participant using the realigned, 

slice-time corrected and smoothed normalised EPI images (8 mm FWHM Gaussian 

kernel) from session 2 using SPM5. We modelled HIS and LIS trials separately and 

contrasted BOLD responses for HIS and LIS at the second (random effects across 

subjects) level with paired t-tests at each voxel.  

MD network definition 

MD regions of interest (ROIs) for decoding and univariate analyses were defined 

using co-ordinates from a previous review of activity associated with a diverse set of 

cognitive demands (Duncan & Owen, 2000) using the kernel method described in Cusack, 

Mitchell, and Duncan (2010), as in our previous work (Chapter 2, Chapter 3, see also 

Woolgar, Hampshire, Thompson, & Duncan, 2011; Woolgar, Thompson, Bor, & Duncan, 

2011; Woolgar, Williams, & Rich, 2015). The procedure yielded a total of seven ROIs: 

left and right IFS (centre of mass +/−38 26 24, volume 17 cm3); left and right AI/FO 

(+/−35 19 3, 3 cm3); left and right IPS (+/−35 −58 41, 7cm3) and ACC/ pre-SMA (0 23 39, 

21 cm3).  
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MVPA  

First-Level Model for TMS-fMRI task 

To obtain estimated activation patterns for multivariate pattern analysis, a GLM 

was estimated for each participant using the realigned, slice-time corrected and smoothed 

native space EPI images from session 2 using SPM5. We modelled stimuli according to 

their two different feature dimensions, form (cuby or smoothy) and colour (green or blue), 

separately for HIS and LIS trials. To account for trial by trial variation in reaction time 

(Todd, Nystrom, & Cohen, 2013), trials were modelled as events lasting from stimulus 

onset until response (Grinband, Wager, Lindquist, Ferrera, & Hirsch, 2008; Henson, 2007; 

Woolgar, Golland, & Bode, 2014) convolved with the hemodynamic response of SPM5. 

Every trial contributed to the estimation of two beta values, the relevant feature (cuby or 

smoothy in the form task, and green or blue in the colour task) and the irrelevant feature 

(cuby or smoothy in the colour task, and green or blue in the form task), for HIS and LIS 

trials separately (a total of 8 regressors per block).  

ROI Analysis 

We implemented MVPA using the Decoding Toolbox (Hebart, Görgen, & Haynes, 

2015) which wraps the LIBSVM library (Chang & Lin, 2011). We used MVPA to 

examine the representation of relevant and irrelevant stimulus features in the HIS and LIS 

conditions separately. For this we examined coding of colour when colour was relevant 

(colour task), colour when colour was irrelevant (form task), form when form was relevant 

(form task), form when form was irrelevant (colour task). This was conducted for the HIS 

and LIS trials separately. We examined these stimulus feature distinctions in each MD 

region (including the stimulated right dlPFC), LOC, and our fixation ROI. 



                                            Top-down feature-selective signals from dlPFC 

 

 220 

For each participant and ROI, a linear support vector machine was trained to 

decode the relevant (green/blue in colour blocks, and cuby/smoothy in form blocks) and 

irrelevant (green/blue in form blocks, and cuby/smoothy in colour blocks) stimulus 

features. In total, there were 16 blocks for each participant: 8 with colour relevant, and 8 

with form relevant. Half of the trials in these 8 blocks contributed to the HIS 

classification, and half contributed to the LIS classification.  

For each classification, we used a leave-one-out 8 fold splitter whereby the 

classifier was trained using the data from 7 out of the 8 blocks and subsequently tested on 

its accuracy at classifying the unseen data from the remaining block. For example, to yield 

a classification accuracy score for the task-relevant colour distinctions in the HIS 

condition, we took the 8 blocks in which participants performed the colour task and used 

the classifier to distinguish between patterns of activation representing green and blue 

objects in HIS trials in 7 out of these 8 blocks, and then tested generalization to the 

remaining unseen block. This procedure was repeated iterating over all possible 

combinations of training and testing blocks. The accuracies were then averaged over 

iterations to give a mean accuracy score for task-relevant colour coding in the HIS 

condition. This was repeated for each condition, participant and ROI separately.  

This cross-validation decoding approach, which is becoming standard in the field 

(e.g. Mahmoudi, Takerkart, Regragui, Boussaoud, & Brovelli, 2012; Mur, Bandettini, & 

Kriegeskorte, 2009), gives unbiased estimates of the true classification accuracy for each 

condition, participant and ROI. Therefore, parametric statistics can be used to analyse this 

data at the second level (random effects). Accordingly, we entered the decoding scores 

into two separate ANOVAs to examine changes in coding of relevant and irrelevant 

feature information separately. We did this to address our two a priori predictions that 
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disruptive/effective HIS compared to ineffective LIS to right dlPFC would result in a) 

stronger coding of irrelevant feature information; and/or b) weaker coding of relevant 

feature information. We conducted these ANOVAs for the MD regions (all regions except 

the stimulated right dlPFC), right dlPFC, LOC and fixation separately.  

Since a difference in coding between HIS and LIS is only interpretable if coding in 

at least one condition is also significantly above chance, we also conducted one-sample t-

tests against the classification accuracy expected by chance (50%) in each condition 

separately. Tests comparing classification accuracy to chance are one-tailed as below 

chance classifications are not interpretable. Alpha was adjusted for six comparisons for the 

6 MD regions using Bonferroni correction (0.05 divided by 6).  

Searchlight Analysis 

In order to identify any additional brain regions coding feature-relevant and 

feature-irrelevant information under HIS and LIS, whole brain pattern classification was 

carried out using a roaming spotlight (Kriegeskorte, Goebel, & Bandettini, 2006). For 

each participant, data were extracted from a spherical ROI (radius 5 mm) centered in turn 

on each voxel in the brain. A linear support vector machine was trained and tested as 

before, using data from each sphere, and the classification accuracy value for that sphere 

was assigned to the central voxel. This yielded whole brain classification accuracy maps 

for each individual for each of the effects of interest outlined above.  

To combine data across individuals, classification accuracy maps were normalized 

and were subsequently smoothed using a 8mm FWHM Gaussian kernel. Classification 

accuracy for each condition was compared to chance at the group level using a one-sample 

t-test against chance (50%). Our prediction was that there would be stronger coding of 

irrelevant feature information in the brain following disruption to the right dlPFC, and 
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weaker coding of relevant feature information. To examine this across the whole brain, we 

conducted paired t-tests that compared coding of relevant information between the HIS 

and LIS condition, and coding of irrelevant information between the two stimulation 

conditions. The resultant maps were thresholded at p < 0.05 with family wise error (FWE) 

correction for multiple comparisons at the cluster level.  

Results 

Behavioural Results 

In line with prominent theorists who have propagated the view that the dlPFC 

plays a critical role in selective attention (Duncan, 2001; Miller & Cohen, 2001), we 

predicted that disruption of the right dlPFC would affect participants’ ability to select the 

relevant feature information and/or to inhibit irrelevant feature information. On congruent 

trials, the response for the irrelevant feature is congruent with the response for the relevant 

feature and may assist in selecting the correct response. In contrast, on incongruent trials, 

the irrelevant feature calls for the opposite response and therefore interferes with selection 

of the correct button response. The difference between performance on incongruent and 

congruent trials − the ‘congruency effect’ − is thus a measure of the extent to which 

irrelevant information affects performance. If the dlPFC normally supports the selection of 

the relevant information, and/or the inhibition of the irrelevant information, we would 

expected to see a larger congruency effect when the dlPFC is disrupted in the HIS 

condition in comparison to the (ineffective) LIS condition.  

RT data  

Reaction time data are presented in Figure 6 (panels A and B). We analysed RT 

(correct trials only) data with a three-way repeated measures ANOVA, with factors TMS 
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(HIS, LIS), Task (Colour task, Form task), and Congruency (Congruent, Incongruent). We 

predicted an interaction between TMS and Congruency, in which the congruency effect 

would be larger for the HIS condition.  

 
Figure 6: Reaction time (top panels) and accuracy (bottom panels), for the 

colour task (left panels) and form task (right panels), on congruent and 

incongruent trials under HIS and LIS. RT data showed that participants were 

faster in congruent trials than incongruent trials under HIS. Accuracy data 

showed a main effect of congruency only. Error bars indicate standard error. 

 

In line with our prediction, there was a significant interaction between TMS and 

Congruency (F(1,19) = 4.78, p = 0.04). Post-hoc paired t-tests showed that in the HIS 

condition, participants were significantly slower in incongruent trials (535ms) than in 

congruent trials (518ms, t(19) = 4.78, p < 0.0001), but this did not occur in the LIS 

condition (incongruent: 532ms, congruent: 530ms, t(19) = 0.36, p = 0.73). No other main 
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effects or interactions were significant (all ps > 0.11). This demonstrates that HIS to 

dlPFC increased the magnitude of the congruency effect in RT relative to LIS.  

Accuracy data  

Accuracy data (percent correct %) are presented in Figure 6 (panels C and D). As 

for RT, accuracy data were entered into a three-way ANOVA with factors TMS (HIS, 

LIS), Task (Colour task, Form task), and Congruency (Congruent, Incongruent). This 

ANOVA did not show the predicted Task*Congruency interaction (F(1,19) = 0.97, p = 

0.34). Instead, there was a significant main effect of Congruency (F(1,19) = 11.58, p = 

0.003), reflecting more accurate performance on congruent (87.5%) relative to 

incongruent (84.4%) trials overall. No other main effects or interactions were significant 

(all ps > 0.23).  

Univariate data: HIS vs. LIS  

Our experiment was designed to examine information coding using MVPA, but we 

also carried out a whole-brain mass-univariate analysis to examine whether overall 

activation levels changed following HIS to right dlPFC. Although the univariate effects of 

disruptive TMS can be complex (Sack et al., 2007), we had hoped this analysis would be 

an additional source of information to which networks were affected by TMS stimulation. 

However, we did not find evidence for a change in overall activation in the two intensity 

conditions. No clusters survived FWE correction for the univariate contrasts of [HIS – 

LIS] or [LIS – HIS]. We also conducted univariate ROI analyses in our pre-defined MD 

regions; but, no clusters survived Bonferroni correction for the univariate contrasts of 

[HIS – LIS] or [LIS – HIS] (all ps > 0.12).  
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A univariate effect is not a pre-requisite for our main analyses: MVPA is known to 

be a more sensitive technique as it preserves fine-grained information from patterns of 

activity across multiple voxels. Therefore information can often be decoded from activity 

patterns even when activity itself is low (e.g. Harrison & Tong, 2009). The following 

analyses used MVPA to examine whether information coding was affected by TMS.  

ROI based pattern classification  

We conducted two separate ANOVAs for each ROI to examine changes in coding 

of relevant and irrelevant feature information separately. We did this to address our two a 

priori predictions that HIS compared to LIS would result in a) stronger coding of 

irrelevant feature information; and/or b) weaker coding of relevant feature information. 

The right dlPFC was the target for TMS stimulation and so we analysed it separately from 

the rest of the MD system. 

MD regions 

Decoding irrelevant information 

Decoding results for irrelevant information are presented in Figure 7 (Panels A and 

B). Classification accuracies for irrelevant feature information were entered into a three-

way ANOVA with factors TMS (HIS, LIS), Feature (Colour, Form) and Region 

(ACC/pre-SMA, left AI/FO, right AI/FO, left IPS, right IPS, left dlPFC). We reasoned 

that if the dlPFC was normally involved in inhibiting the coding of irrelevant feature 

information, then disrupting processing in this region should result in an increase in 

coding of irrelevant information. Therefore, we predicted a main effect of TMS, with more 

coding in HIS relative to LIS. The ANOVA indeed revealed a main effect of TMS (F(1,19) 

= 17, p = 0.001), reflecting stronger coding of irrelevant feature information in the HIS 

condition (59.3%) compared to the LIS condition (49.9%).  
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Figure 7: Decoding results in MD regions (not including right dlPFC): 

Stronger coding of irrelevant features across MD regions in HIS over LIS 

(ANOVA). Stronger coding of relevant colour information across MDs in HIS 

over LIS (post-hoc paired t tests). Error bars indicate standard error. The 

significance markings for individual bars indicate whether coding was 

significantly greater than chance in each condition separately (one sample t-

test against chance, 50%). **p<0.008 (i.e., 0.05 / 6 to correct for multiple 

comparisons). 

 

There was no main effect of Feature (F(1,19) = 0.21, p = 0.66) or Region (F(5,95) 

= 0.49, p = 0.78), and no interactions between TMS and Feature (F(1,19) = 1.27, p = 

0.27), TMS and Region (F(5,95) = 0.31, p = 0.91) or TMS*Feature*Region (F(5,95) = 

0.91, p = 0.48). The data therefore indicated a network-wide effect in which TMS 

increased coding of irrelevant information. 
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The stronger coding of irrelevant features in HIS over LIS is only interpretable if 

coding in one or more of the conditions is also significantly above chance. Therefore, we 

conducted one-sample t-tests against the classification accuracy expected by chance (50%) 

for HIS and LIS conditions separately. We found that the MD regions coded the irrelevant 

feature information significantly under HIS (t(19) = 5.19, p < 0.01) whereas classification 

of this information under LIS was at chance (t(19) = 0.05, p = 0.45) (Figure 8, Panel A). 

Thus, the results support our prediction that the right dlPFC is involved in inhibiting 

irrelevant feature information, and disruption to this region increases the extent to which 

irrelevant information is available through the MD system.  

Decoding relevant information 

Decoding results for relevant information are presented in Figure 7 (Panels C and 

D). Classification accuracies for relevant feature information were entered into a three-

way ANOVA as described above. Our prediction here was that if the dlPFC is involved in 

supporting coding of relevant information, the disrupting processing in this region should 

result in a decrease in coding of relevant information. Therefore, we predicted a main 

effect of TMS, with more coding in LIS relative to HIS.  

The ANOVA revealed a main effect of TMS (F(1,19) = 10.94, p < 0.01) but the 

effect was in the opposite direction to our prediction, with stronger coding of task relevant 

information in HIS (57.2%) compared to LIS (51.9%), as for irrelevant information. The 

main effect was modulated by a significant interaction between TMS and Feature (F(1,19) 

= 5.84, p = 0.03). Post-hoc paired t-tests showed stronger coding of relevant feature 

information in the HIS condition (60.1%) compared to the LIS condition for colour (49%, 

t(19) = 3.44, p < 0.01), but no difference in coding of relevant information between the 

HIS condition (54.3%) and the LIS condition for form (54.6%, t(19) = 0.15, p = 0.46). No 

other main effects or interactions were significant (all ps > 0.17). 
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Figure 8: Coding of irrelevant (panel A) and relevant (panel B) feature 

information in MD regions (collapsed) under LIS and HIS. Error bars indicate 

standard error. The significance markings for individual bars indicate whether 

coding was significantly greater than chance in each condition separately (one 

sample t-test against chance, 50%). Markings between bars indicate where 

coding was significantly greater under HIS compared to LIS **p<0.01. 

We conducted one-sample t-tests against the classification accuracy expected by 

chance (50%) for HIS and LIS conditions and relevant colour and form separately. We 

found that the MD regions coded the relevant colour information significantly under HIS 

(mean accuracy across all regions 60.1%; t(19) = 3.26, p < 0.01) whereas classification of 

this information under LIS was at chance (mean accuracy across all regions 49.1%; t(19) = 

0.52, p = 0.31) (Figure 8, Panel B). Classification of form relevant information did not 

quite reach significance under HIS (54.3%; t(19) = 1.77, p = 0.06) but was significant 

under LIS (54.6%; t(19) = 2.64, p < 0.01).  

Right dlPFC  

Decoding results for the stimulated right dlPFC region are presented in Figure 9. 

To assess changes in coding in this region, we conducted a two-way ANOVA including 
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factors TMS (HIS, LIS) and Feature (Colour, Form) for the irrelevant and relevant 

information separately. For relevant information, there were no significant effects of TMS 

or Feature (all main effects and interaction p > 0.55). One sample t-tests showed no 

significant coding of irrelevant information under LIS or HIS (all ps > 0.15). For 

irrelevant information, there were again no significant effects of TMS or Feature (all main 

effects and interaction p > 0.13). One sample t-tests showed no significant coding of 

relevant or irrelevant information under LIS or HIS (all ps > 0.17).  

 
Figure 9: Coding of irrelevant (panel A) and relevant (panel B) feature 

information in right dlPFC (stimulated region) in HIS and LIS: Error bars 

indicate standard error.  

 

We did not find evidence to suggest that information coding changes under HIS 

compared to LIS in right dlPFC for either relevant or irrelevant information. This pattern 

of results is in contrast with the results from analysing the rest of the MD frontoparietal 

network, which showed a clear change in the strength of coding as a result of disruption.  
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Lateral Occipital Complex (LOC)  

Decoding irrelevant information 

Decoding results for irrelevant information in LOC are presented in Figure 10, 

Panel A. The ANOVA was conducted as for the right dlPFC. We predicted that LOC 

would show stronger coding of irrelevant information with HIS than with LIS to dlPFC.  

 

Figure 10: Coding of irrelevant (panel A) and relevant (panel B) 

feature information in LOC in HIS and LIS: Paired t-tests revealed 

stronger coding of relevant colour information (left panel) in HIS compared to 

LIS. Error bars indicate standard error. The significance markings for 

individual bars indicate whether coding was significantly greater than chance 

in each condition separately (one sample t-test against chance, 50%). 

**p<0.01.  

There was a trend in this direction (Figure 10, right) that did not quite reach 

significance (main effect of TMS F(1,19) = 4.41, p = 0.051). There was no main effect of 

Feature (F(1,19) = 0.01, p = 0.99) and no interaction between TMS and Feature (F(1,19) = 

1.78, p = 0.21). One sample t-tests showed that classification of the irrelevant colour 

information was significantly above chance under HIS (57.9%, t(19) = 3.45, p < 0.01). No 

other t-tests were significant (all ps > 0.07). 
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Decoding relevant information 

Decoding results for relevant information in LOC are presented in Figure 10, Panel 

B. Classification accuracies were entered into a two-way ANOVA as above. We predicted 

that LOC would show weaker coding of relevant information under HIS relative to LIS to 

dlPFC. The ANOVA revealed a main effect of TMS (F(1,19) = 6.92, p = 0.02) modulated 

by a significant interaction between TMS and Feature (F(1,19) = 9.71, p < 0.01). Post hoc 

paired t-tests showed that for colour, there was stronger coding of relevant colour feature 

information in the HIS condition (59.3%) compared to the LIS condition (49.3%, t(19) = 

4.83, p < 0.01), opposite to our prediction and in line with the results from the MD 

network. There was no difference in coding of relevant form information between the HIS 

condition (52.7%) and the LIS condition (53.5%, t(19) = 0.23, p = 0.82). There was no 

main effect of Feature (F(1,19) = 0.01, p = 0.91). One sample t-tests showed that 

classification of the relevant colour information was significantly above chance under HIS 

(59.3%, t(19) = 4.71, p < 0.01). No other t-tests were significant (all ps > 0.07). In this 

case, LOC followed a similar pattern to that of the MD network, coding more strongly for 

relevant colour information under HIS.  

Visual fixation ROI 

Decoding irrelevant information 

Decoding results for irrelevant information in the ROI at fixation are presented in 

Figure 11, Panel A. The ANOVA was conducted as above. For this ROI we expected to 

see stronger coding of irrelevant feature information under HIS relative to LIS, reflecting 

disruption to an inhibiting dlPFC mechanism. However, there were no significant effects 

of TMS or Feature (all main effects and interaction, p > 0.23). One sample t-tests showed 
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that classification of irrelevant colour information was significantly above chance under 

HIS (57.4%, t(19) = 3.01, p < 0.01). No other t-tests were significant (all ps > 0.06).  

Decoding relevant information 

Decoding results for relevant information in the fixation ROI are presented in 

Figure 11, Panel B. The ANOVA was conducted as above. The ANOVA showed no main 

effect of TMS (F(1,19) = 0.04, p = 0.84) or Feature (F(1,19) = 3.93, p = 0.06), and no 

interaction between TMS and Feature (F(1,19) = 2.36, p = 0.14). 

 
Figure 11: Coding of irrelevant (panel A) and relevant (panel B) 

feature information in the visual fixation ROI in HIS and LIS. Error bars 

indicate standard error. The significance markings for individual bars indicate 

whether coding was significantly greater than chance in each condition 

separately (one sample t-test against chance, 50%). **p<0.01. 

 

Coding of relevant colour information under HIS was above chance but did not 

pass correction for multiple comparisons (p = 0.03). Coding was not significantly above 

chance in any other condition (all ps > 0.07).  

Whole brain pattern classification  
Overall, the results from our ROIs showed that there was stronger coding of 

irrelevant features across the MD network following disruption to right dlPFC, providing 
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support for an inhibitory mechanism. Coding of irrelevant information also tended to be 

stronger in the fixation ROI and LOC under HIS, but the difference from LIS was not 

significant. Interestingly, against our prediction that disruption to dlPFC would result in 

weaker coding of task-relevant information across the system, we saw either no effect 

(form task), or the opposite result (colour task) for the frontoparietal regions and LOC.  

We checked for additional regions showing multivoxel coding of relevant and 

irrelevant feature information by performing the decoding analysis across the whole-brain 

using a roaming searchlight (Kriegeskorte et al., 2006). Since the searchlight analysis is 

performed on the same data as the ROI analyses, corresponding results are not surprising 

(although, since searchlights are typically smaller than ROIs, the comparison may inform 

the spatial scale of the multi-voxel patterns). In addition, a searchlight analysis is typically 

less sensitive than a ROI-based approach due to the need to correct for multiple 

comparisons. However, the advantage of this approach is that is it free from a priori 

spatial hypotheses, meaning we can potentially identify additional regions missed by the 

ROI approach.  

We designed the searchlight analyses to mimic the key components of our ROI 

analysis. For irrelevant information, we performed searchlights comparing coding to 

chance in the HIS and LIS condition separately. Then, we conducted paired t-tests to 

directly compare coding between the two stimulation conditions. For relevant information, 

since our ROI analyses had suggested different results in the two tasks, we carried out the 

same analysis, comparing coding to chance in HIS and LIS, but kept colour and form data 

separate. We again conducted paired t-tests to directly compare coding between the HIS 

and LIS condition.  
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Figure 12: Feature coding assessed with a roaming searchlight. Whole-

brain maps show voxels where patterns of activation in the local 

neighborhood (5 mm sphere) discriminated (A) irrelevant feature information 

under HIS; (B) irrelevant feature information under LIS; (C) irrelevant 

feature information in HIS minus LIS; (D) relevant colour information under 

HIS; (E) relevant colour information in HIS minus LIS. Results are 

thresholded clusterwise at p <0.05 with FWE for multiple comparisons and an 

additional extent threshold of 40 voxels. Coordinates of peak decoding are 

given in Tables 1 and 2. 

 

For irrelevant coding under LIS, the only cluster of significant coding was in the 

cerebellum (Table 1, Figure 12, panel B). By contrast, under HIS, significant coding of 

irrelevant information was seen across the brain including several visual cortical regions, 

temporal regions, precuneus, postcentral gyrus, orbitofrontal cortex, putamen, 

supplementary motor area, posterior cingulate cortex, and cingulate gyrus, as well as 

within our ROI ACC-pre/SMA (Table 1 and Figure 12, panel A). The direct comparison 
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of these maps revealed stronger coding of irrelevant feature information under HIS 

compared to LIS in several occipital regions, the precentral gyrus, putamen and within our 

left IPS ROI (Table 1 and Figure 12, panel C). There were no significant clusters in the 

reverse comparison (LIS – HIS). 

Coding of relevant colour feature information under HIS confirmed our ROI analysis 

revealing clusters in lateral occipital regions but additionally in several other regions 

including superior anterior prefrontal, postcentral gyrus, early visual cortex, hippocampus, 

fusiform gyrus, middle temporal areas, and frontal eye fields (Table 2 and Figure 12, panel 

D). There were no significant clusters under LIS. Stronger coding of relevant colour 

information under HIS compared to LIS was observed in occipital lobes (lateral occipital, 

fusiform gyrus, lingual gyrus), subcortical regions (hippocampus, putamen, thalamus, 

cerebellum), and superior temporal pole (Table 2 and Figure 12, panel E).  There were no 

significant clusters in the reverse comparison (LIS – HIS). For coding of relevant form 

information, there were no significant clusters under any contrast.  
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Table 1: Peak coordinates for whole-brain searchlights: irrelevant feature 

information in HIS minus LIS, irrelevant feature information under HIS and 

irrelevant feature information under LIS.  

 

Table 2: Peak coordinates for whole-brain searchlights. Relevant colour 

information in HIS minus LIS and relevant colour information under HIS  
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Discussion 
The dlPFC is thought to be crucial for goal-directive behaviour, providing the 

source of top-down signals that modulate processing in earlier cortical regions (Desimone 

& Duncan, 1995; Miller & Cohen, 2001). It is part of a circuit of frontal and parietal brain 

regions, referred to as multiple-demand (MD) regions (Duncan, 2010), or the 

frontoparietal attentional network (Fox et al., 2005; Vincent et al., 2008), that are thought 

to play a fundamental role in attentional and executive control. Non-human primate 

research has shown that these brain regions preferentially code task relevant information 

(Cromer et al., 2010; Everling et al., 2002; Freedman et al., 2001; Kadohisa et al., 2013; 

Rao et al., 1997; Roy et al., 2010), as has human neuroimaging (e.g. Chapter 2, Chapter 3, 

also Woolgar, Williams, et al., 2015). These regions are also shown to have a causal effect 

in more specialised brain regions such as the visual cortex (e.g. Feredoes et al., 2011; Higo 

et al., 2011; Lee & D'Esposito, 2012; Miller et al., 2011; Zanto et al., 2011). In addition, 

top-down effects, such as explicitly allocating attention, can affect information coding in 

visual cortex (e.g. Jehee et al., 2011). However, to our knowledge no work has explicitly 

linked disruption to MD function with information coding in a causal framework.  

Here we examined whether disrupting right dlPFC with TMS affected the strength 

of coding of irrelevant and relevant feature information in the brain. We predicted that, 

relative to our control low intensity stimulation (LIS), disruptive high intensity stimulation 

(HIS) would result in a) increased coding of the irrelevant feature information; and/or b) 

decreased coding of the relevant feature information in the rest of the brain. Understanding 

the role of dlPFC in this type of top-down control will further our understanding of how 

the processing of task relevant information comes to be prioritised in the brain.  

Following HIS to the dlPFC, we observed an increase in coding of irrelevant 

information in the rest of the MD system, in line with our prediction. One of the strengths 
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of this paradigm is that the causal effect of TMS to dlPFC can be used to examine top-

down effects on coding in visual brain regions. This is because any task-mediated changes 

in non-stimulated regions must be due to the change caused by TMS to right dlPFC. The 

results in LOC and the fixation ROI showed the same trend as the MD regions, both 

coding irrelevant information under HIS but not under LIS. Although the difference in the 

visual ROIs was not significant, the searchlight revealed three clusters in the visual cortex 

(calcarine sulcus, lingual gyrus, superior occipital gyrus) where there was significantly 

more coding of irrelevant information under HIS. These data are in line with the 

suggestion that TMS caused irrelevant information to be released from suppression 

normally exerted by the dlPFC. Our searchlight results suggest that this was a widespread 

effect encompassing much of the frontal and parietal cortex and even early visual cortex. 

In our behavioural data, we observed an increase in the behavioural congruency effect 

under HIS: participants were faster to respond when the irrelevant feature directed them to 

the correct response, compared to when it directed them to the incorrect response, but only 

under HIS. These data therefore support the interpretation that TMS to the dlPFC 

disrupted participants’ ability to ignore the irrelevant information which was mirrored in 

the decoding results. The data provide causal evidence for a right dlPFC filtering 

mechanism; disruption to this mechanism caused a stronger representation of irrelevant 

feature information across many regions of the brain, and had a corresponding effect on 

behaviour. This also provides support for predictions of the adaptive coding and biased 

competition models (Desimone, 1998; Desimone & Duncan, 1995; Duncan, 2001), which 

suggest that selective responses in higher regions bias brain responses in earlier cortical 

areas.    

For task-relevant information, TMS had significantly different effects on the 

coding of form and colour, so we discuss them separately here. If dlPFC normally 
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facilitates the coding of relevant information, then disrupting dlPFC function should 

disrupt that facilitation. For both features, we therefore predicted a decrease in relevant 

information coding after HIS but not LIS TMS. However, for form we did not see any 

effect of TMS on relevant information coding, and for colour we actually saw the opposite 

effect. For colour, we found stronger coding of relevant colour information in HIS 

compared to LIS. This effect was seen in the rest of the MD system (with no significant 

differences between different MD regions), the LOC, and several other temporal, occipital 

and subcortical regions. One possible explanation is that the unexpected increase in 

relevant feature coding reflects a compensation mechanism. This seems particularly likely 

in the rest of the MD network since these regions are thought to be adaptive (Duncan, 

2001).  

Previous research has shown that the MD regions increase their coding of task 

relevant information when the system is challenged. For example, we have previously 

shown that the MD regions represent task-relevant visual objects, but only when the 

stimuli were degraded with Gaussian noise such that the physical input, and the 

representation of the stimuli in visual cortices, was weak (Woolgar, Williams, et al., 

2015). Similar results have been reported when visual stimuli are highly confusable 

(Woolgar, Hampshire, et al., 2011), or when stimulus-response mapping rules are complex 

(Woolgar, Afshar, Williams, & Rich, 2015); in all these cases coding was weak or absent 

when the task was easy, but increased significantly when the task was more difficult. We 

speculate that this is what is driving our relevant coding result: HIS to the dlPFC activated 

a similar mechanism in the rest of the MD system: the input became more akin to a more 

difficult visual stimulus (Harris, Clifford, & Miniussi, 2008), triggering an adaptive 

increase in coding of task-relevant information in the rest of the system.  
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Previous research has indicated that TMS disruption to a brain region can result in 

potential compensation mechanisms in other brain areas, particularly in the contralateral 

hemisphere (Andoh & Paus, 2011; Lee & D'Esposito, 2012; O'Shea, Johansen-Berg, Trief, 

Göbel, & Rushworth, 2007), providing general support for this type of interpretation of 

our data. For example, O’Shea et al. (2007) applied 1Hz offline rTMS over the left 

premotor cortex and used fMRI to record activity from the right premotor cortex. They 

found an increase in activity in the right premotor cortex and connected premotor areas 

following disruption to left premotor cortex. Subsequent TMS of right premotor cortex 

disrupted performance, confirming that the pattern of functional reorganisation of the right 

premotor cortex made a causal contribution in preserving behaviour after neuronal 

interference.  

Compensation for disruption is also often reported in patient data, where increased 

activity in the intact hemisphere may reflect a compensatory response for the loss of 

function in damaged frontal lobe tissue (Buckner, Corbetta, Schatz, Raichle, & Petersen, 

1996; Corbetta, Kincade, Lewis, Snyder, & Sapir, 2005; Voytek et al., 2010). Most 

relevant here is prior research showing that the frontoparietal network over-activates in 

response to damage to part of the network (Woolgar, Bor, & Duncan, 2013). Note that in 

our data there was no overall increase in activity in the MD regions, but rather an increase 

in information coding. Further work is needed to understand how changes in information 

coding relate to the type of compensatory mechanisms inferred based on patient and 

univariate changes. In our case, we also observed an increase in coding of relevant 

information elsewhere in the brain, particularly in visual cortices. This could be a direct 

result of TMS stimulation of right dlPFC or may have been mediated by the increase in 

coding of relevant information in the MD system.  
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The results showed an increase in coding for irrelevant information as well as 

relevant colour information in the frontoparietal cortices and visual cortical areas. One 

interpretation, therefore, is that HIS simply causes a general increase in coding of 

information across the brain. Two observations caution against this. First, the searchlight 

revealed that although the effect was widespread, it was far from encompassing the whole 

brain. Similarly, in the ROI analysis we did not observe the same effect in the stimulated 

region. This suggests that the results were not due to a very general mechanism or artefact 

of the analysis. Second, we did not observe stronger coding of task-relevant form 

information, but only colour information. It is difficult to reconcile the interpretation that 

HIS increases information coding in general with this task-sensitive effect. Nonetheless, 

further work is needed to explore the relationship between the TMS disruption and pattern 

information. In our data we have clear evidence that HIS to dlPFC affects coding of both 

relevant and irrelevant information, and no evidence for a differential effect.  

It was interesting that the increased behavioural congruency effect in the HIS 

condition appeared to be driven as much, if not more, by an increased facilitation in the 

congruent condition as by an increased interference in the incongruent condition. It would 

have been interesting to examine coding of relevant and irrelevant information in 

congruent and incongruent conditions separately to explore this further. However, it was 

not possible to do this with the present data because decoding of relevant or irrelevant 

information in congruent/incongruent conditions was confounded with the other 

dimension. For example, decoding of irrelevant colour information (blue vs. green) in 

congruent trials always corresponded with decoding of relevant form information (cuby 

vs. smoothy). This may be an important focus for further studies. 
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In our data, we failed to find any effect of TMS on information coding in the right 

dlPFC itself. We predicted a decrease in information coding in this region, for example, 

due to increased neuronal noise induced by HIS (Walsh & Cowey, 2000, although see, 

Harris et al., 2008; Ruff, Driver, & Bestmann, 2009; Sandrini, Umiltà, & Rusconi, 2011). 

In fact, we did not observe significant coding of either type of information under LIS or 

HIS. The right dlPFC ROI was large (we used this definition to account for any variability 

in the target site between subjects) and this may have washed out the effect of stimulation, 

for example if it affected only a small portion of the ROI. Another possibility is that the 

BOLD response directly at the site of stimulation is not sensitive to the direct effect of 

stimulation; for example, if its primary effect is on the axons (e.g. Siebner, Hartwigsen, 

Kassuba, & Rothwell, 2009), while the BOLD response primarily indexes post-synaptic 

potentials (e.g. Logothetis, 2008). This would imply that only the indirect effect of 

stimulation (i.e. the effect on other brain regions) would be observable with BOLD signal.  

 Another limitation with TMS stimulation is that factors such as minimal changes 

in coil orientation might alter whether the frontoparietal network or default mode network 

is affected (Opitz, Fox, Craddock, Colcombe, & Milham, 2016). This makes null results 

difficult to interpret in behavioural TMS studies, but a promising aspect of concurrent 

TMS-fMRI is that it has the potential to reveal the stimulated network (Bestmann et al., 

2008). In our case, we have evidence from both the ROI and searchlight analyses that we 

successfully influenced information processing in the MD network.  

In this experiment, we used a control condition of LIS as this allowed the two 

TMS conditions to be presented on a trial-by-trial basis. This makes the upcoming level of 

stimulation unpredictable to the participant, and is preferable because fMRI scanner drift 

makes it preferable to always compare events happening close together in time. Other 
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controls such as sham or different stimulation site would have involved removing the 

participant from the scanner and therefore splitting the session in time, or carrying out an 

additional scanning session. LIS controls for non-specific effects of TMS (noise artefact, 

scalp sensation, etc.) and targets the same ROI as the main stimulation site, and is 

therefore a more conservative control than a no-TMS comparison. However, the use of 

this control cannot specifically disentangle the function of the dlPFC compared to the 

function of other brain regions as would be possible with a control stimulation site. We 

cannot rule out that similar results could be seen with disruption to another region of the 

MD network, or indeed another brain region altogether. Future research could use a 

control region to examine whether the effect we have seen here is specific to the right 

dlPFC. It would also be critical for determining whether the compensatory interpretation 

holds regardless of which MD region is disrupted. 

A final, important consideration is whether the differences in RT could have driven 

artefactual differences in decoding. If conditions on either side of classification differ in 

difficulty, for example if one has longer RTs, this could drive decoding performance 

(Todd et al., 2013; Woolgar et al., 2014). In our case, however, differences in RTs for the 

congruent and incongruent conditions could not have contributed to decoding because all 

object features were equally represented in both the congruent and incongruent conditions. 

In addition, to account for trial by trial differences in RT (Todd et al., 2013), trials were 

modelled as epochs lasting from stimulus onset until response in the GLM to removes the 

effect of RT from the estimate of activity (Woolgar, Williams, et al., 2015), as in our 

previous work (e.g. Woolgar, Afshar, et al., 2015; Woolgar, Hampshire, et al., 2011; 

Woolgar, Thompson, et al., 2011). 
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This experiment is one of the first to combine MVPA with concurrent TMS-fMRI. 

The combination of these approaches provides an opportunity to link information coding 

and behavioural effects in a causal framework. We found that perturbing the right dlPFC 

with TMS affected information coding in the rest of the MD network and in the visual 

cortex. The data suggest a complex role of the dlPFC in representing relevant and 

irrelevant information. In line with a role for the dlPFC in suppressing irrelevant 

information (e.g. Shimamura, 2000), coding of irrelevant information was stronger in the 

rest of the (non-stimulated) MD network and in some regions of the visual cortex under 

HIS compared to LIS. However, against our prediction that disruption to a selection 

mechanism would result in weaker coding of relevant information across the brain, the 

representation of task-relevant colour information also increased under HIS in these areas. 

We speculate that this may reflect an adaptive or compensatory response to the challenge 

imposed on the MD system, but cannot rule out a more general effect of HIS to dlPFC in 

which coding of all task features is increased in task-related brain regions. Under either 

interpretation the data provide causal evidence that the right dlPFC is involved in 

modulating the representation of relevant and irrelevant feature information in the brain. 

More broadly, the results demonstrate interactions between the MD network and 

specialised cortex, providing evidence in support of major theories of executive control 

and attention, and demonstrate methods that could be used to address the predictions of 

these theories in more detail in the future. 
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Chapter 6 

Discussion 

The focus of this thesis has been on the critical ability to select between relevant 

and irrelevant information in a single object. I explored the key question of the way in 

which the brain might implement feature-selective attention. In particular, I focused on the 

multiple-demand (MD) regions as candidate regions (Cole & Schneider, 2007; Corbetta & 

Shulman, 2002; Duncan, 2001; Duncan, 2010; Kanwisher & Wojciulik, 2000; Vincent, 

Kahn, Snyder, Raichle, & Buckner, 2008) and the adaptive coding hypothesis as a viable 

underlying mechanism (Duncan, 2001). The driving motivation of this thesis was to 

investigate whether adaptive coding provides a mechanism for feature-selective attention 

in the MD network, and whether this in turn modulates responses across the rest of the 

brain. In this chapter, I first review the findings from each study and then discuss 

implications and outstanding questions within the broader theoretical context. Finally I 

summarise the overall findings from this thesis. 

Overview of findings 

Chapter 2: Feature-selective attention in frontoparietal cortex: 
Multivoxel codes adjust to prioritize task-relevant information 
 

In this chapter I presented a functional magnetic resonance imaging (fMRI) 

experiment using multivoxel pattern analyses (MVPA) studying the implementation of 

feature-selective attention in the MD network. Participants performed a task where they 
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classified novel objects along two orthogonal stimulus dimensions (length and orientation) 

in alternating blocks. I examined information in the MD network pertaining to the object 

feature when relevant (e.g. orientation feature information in the orientation task) versus 

irrelevant (e.g. orientation feature information in the length task) to the task. Lateral 

occipital complex (LOC) and Brodmann area 17 (BA 17) were included as regions of 

interest for comparison.  

The MD network discriminated between the objects according to the currently 

relevant feature dimension: there was stronger representation of equivalent stimulus 

distinctions when they were relevant compared to when they were irrelevant. LOC showed 

a qualitatively similar pattern of results, coding object features only when they were 

relevant for the current task, although this coding was not significantly stronger than 

coding of the irrelevant feature. BA 17 did not appear to discriminate the object features in 

either condition. These data provide a potential mechanism for feature-selective attention 

in the MD network, in that regions of this network adjust their responses to code the 

feature information that is currently relevant.  

Chapter 3: Overlapping neural codes: Frontoparietal voxels are re-used 
to code relevant feature information across different tasks 

 

This chapter extends the work from Chapter 2. In Chapter 2, I had shown that 

multi-voxel patterns in the MD network preferentially code relevant over irrelevant feature 

information. In Chapter 3, I first investigated whether this effect replicated with a new 

stimulus set. Second, I developed a new method to test whether the MD voxels with the 

highest signal contributing to the classification of relevant features in one task also 

provided the highest signal contributing to the classification of the relevant features in 

another task. The design of this experiment was similar to the previous chapter with the 
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goal of drawing a comparison between the two datasets. However, in contrast to the 

experiment from Chapter 2, where participants discriminated along orthogonal dimensions 

of the same stimulus set (‘spikies’), in this experiment, participants discriminated along 

dimensions of two different groups of objects (‘smoothies’ and ‘spikies’). In comparing 

the two datasets I refer to the experiment presented in Chapter 2 as Experiment 1, and the 

new experiment as Experiment 2.  

The results of the new data in Chapter 3 replicated the finding from Chapter 2: 

there was stronger coding of task-relevant object features than of the task-irrelevant 

feature information across the MD network. I then identified the top 10% of voxels with 

the highest signal contributing to the two relevant feature discriminations in each 

experiment. In both experiments, a higher proportion of voxels than that expected by 

chance contributed to discriminating the relevant feature dimension of the two tasks 

(termed ‘voxel re-use’).  

Based on non-human primate work (Cromer, Roy, & Miller, 2010; Roy, 

Riesenhuber, Poggio, & Miller, 2010), I predicted that voxel re-use would be higher in 

Experiment 2, when the two stimulus sets were independent, than in Experiment 1. 

However, a comparison of the two datasets revealed no difference between the two 

datasets in the extent of voxel re-use. These data suggest that, at least at the level of 

voxels, MD resources used to discriminate relevant feature information in one task can be 

re-used to code relevant feature information in another task context, but there was no 

evidence for a meta-level of flexibility in which this allocation of resources varied 

according to the broader demands of the experiment. The finding that individual voxels in 

the MD regions contributed to multiple multi-voxel codes more frequently than expected 

by chance, provides further support for adaptive coding in the MD network.  
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Chapter 4: Exploring the causal role of the right dorsolateral prefrontal 
cortex in feature-selective attention  

 
In this chapter, I conducted three experiments with the aims of developing a robust 

paradigm for a subsequent transcranial magnetic stimulation (TMS)-fMRI study (Chapter 

5), developing expertise in TMS methods, and examining the effect of different control 

methods: low intensity stimulation (LIS), control site, and sham. In the first experiment I 

examined whether the right dorsolateral prefrontal cortex (dlPFC) was causally involved 

in a task requiring selection of task-relevant over task-irrelevant feature information.  

Participants categorised novel coloured objects according to colour or form. The 

required response for the irrelevant feature was either incongruent or congruent with the 

required response for the relevant feature. I employed online TMS whilst participants 

performed the task in four separate sessions (high intensity stimulation (HIS) to right 

dlPFC, LIS to right dlPFC, HIS to a control region and sham stimulation). I predicted that 

when right dlPFC function was disrupted during the feature-selective congruency task this 

would result in an increase in the magnitude of the congruency effect relative to the 

control conditions. Although there was a main effect of congruency, indicating that 

participants were less accurate on incongruent than on congruent trials, there was no 

evidence that the size of the congruency effect changed with TMS stimulation. A Bayes 

analysis suggested we had insufficient power, but it was beyond the scope of this study to 

test more participants. Instead, I tested a number of modifications in two further 

behavioural experiments to increase the sensitivity of the measure of interference from 

irrelevant features; to optimise the design for my subsequent combined TMS-fMRI 

experiment (Chapter 5).  
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Chapter 5: A concurrent TMS-fMRI study investigating feature-
selective top-down signals from the dorsolateral prefrontal cortex 

 
This chapter presented a concurrent TMS-fMRI experiment where I investigated 

the role of the right dlPFC in feature-selective attention. Participants attended to one 

feature of novel objects (e.g., colour) whilst simultaneously ignoring another feature (e.g., 

form). TMS stimulation randomly alternated between 110% or 40% of an individual 

participant’s motor threshold on any given trial. I used MVPA of the fMRI data to 

compare what object feature information was coded in the brain when the right dlPFC was 

disrupted under HIS compared to LIS. The role of the dlPFC in feature-selective attention 

could involve (a) inhibition of irrelevant information and/or (b) selection and maintenance 

of task-relevant representations. I predicted that disrupting (HIS compared to LIS) the 

inhibition of irrelevant information would result in stronger coding of irrelevant feature 

information in other brain areas, whilst disrupting the selection of task relevant 

information would result in weaker coding of relevant feature information in other brain 

areas.  

TMS had a significant effect on behaviour. There was a larger congruency effect 

under HIS compared to LIS, which indicated that irrelevant information had a larger effect 

on behaviour when dlPFC function was perturbed by TMS. This behavioural effect was 

reflected in the neural data: under HIS I found stronger coding of irrelevant information 

across the MD frontoparietal network and visual brain regions. This can be interpreted as 

evidence for a functional role of the right dlPFC in inhibiting irrelevant information. 

However, contrary to our second prediction, I found either no effect (for object form) or 

stronger coding (for object colour) of task-relevant features under HIS. I speculated that 

this could reflect some form of compensation for disruption to dlPFC function, but from 

this pattern of data I cannot completely rule out a general effect of dlPFC disruption which 
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causes an overall increase in information coding regardless of relevancy. Under either 

interpretation, these data provide causal evidence for the role of right dlPFC in modulating 

the coding of relevant and irrelevant information in the brain. A searchlight analysis also 

revealed significant changes in information coding in parts of the visual cortex, in line 

with a role, for the dlPFC in providing top-down information to the visual cortex as 

predicted by various models of prefrontal function.  

Implications, outstanding questions, and future directions 

Adaptive coding as a framework for feature-selective attention 
 

The experiments in this thesis were designed to test the predictions laid out by the 

adaptive coding hypothesis (Duncan, 2001) in the context of feature-selective attention. 

The first prediction of the adaptive coding hypothesis is that neurons will adjust their 

responses to selectively encode information that is currently relevant. I tested this 

prediction in tasks that required selection at the level of single features of an object, in 

candidate (MD) regions in the human brain. If responses in the MD regions are adaptive 

then they should adjust to code relevant feature information of a single object over the 

irrelevant feature information. The mechanism for this adaptive response, as applied to 

feature-selective attention, is set out in Figure 1. 
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Figure 1: Adaptive coding model, figure modified with permission from 

Duncan (2001). The figure depicts the selectivity of three hypothetical 

neurons to two object features (orientation, o, and length, l). Selectivity is 

indicated by tuning curves next to each neuron where a sharper curve reflects 

greater sensitivity for the indicated feature dimension. Crucially, neurons may 

vary in selectivity for either orientation or length information but this 

selectivity is modulated by the current task (orientation or length). As an 

example, neuron 2 (n2), displays a greater selectivity along the orientation 

dimension than along the length dimension but this response is still 

modulated by task context (stronger response to the preferred orientation in 

orientation task, weaker in length task, and vice versa for length). The 

response of each individual neuron is modulated by context, and the result 

across the population is that the task relevant dimension is represented 

preferentially. 
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The results from Chapter 2 showed that multi-voxel patterns of activation in the 

MD regions did indeed encode the same feature distinctions more strongly when they 

were task-relevant than when they were task-irrelevant. Moreover, the data from Chapter 3 

indicated that this effect reflects the modulation of individual voxels, with the same voxels 

used to code the relevant feature distinctions across both tasks more frequently than 

predicted by chance. Figure 2 illustrates how adaptive responses to relevant feature 

information could lead to more distinctive multi-voxel patterns representing the task-

relevant over the task-irrelevant feature distinctions.  

A further prediction laid out by the adaptive coding hypothesis is that responses in 

the MD regions provide a form of top-down modulation to earlier cortical regions, biasing 

processing in favour of what is behaviourally relevant. In Chapter 5 I tested whether 

disruption to right dlPFC causally modulates coding of both relevant and irrelevant feature 

information across the system. It was apparent that disruption to this region not only 

modulated coding of feature information in early visual cortices but also in the rest of the 

MD network. This provides support for the prediction that these regions modulate feature-

selective responses across the brain. All in all the data in this thesis suggest a flexible 

system, in line with the adaptive coding hypothesis, that can adjust its responses to code 

relevant feature information. This adjustment may then modulate responses across the 

brain.  
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Figure 2: Example of adaptive coding at a multi-voxel level. The graphs 

indicate the selectivity of a neuron of type n2 (refer to figure 1). This neuron 

is tuned to a particular orientation and length, but its response is modulated 

by task context. Underneath the graphs in each panel is the hypothetical 

response of a voxel dominated by neurons of this type. Each square 

represents a voxel, and the preferential selectivity (for length and orientation 

dimensions) of that voxel is indicated above it e.g. the upper left voxel is 

tuned for short objects and for objects at 45°. In each quadrant there are four 

voxels, each of which is selective for a different combination of features. Next 

to each quadrant is the currently presented stimulus (e.g. short 45° 

stimulus). The colour shading in each voxel is a result of the voxels underlying 

selectivity, the features of the current stimulus, and the modulation by task 

context. For example, in Panel A for the orientation task, when a short 45° 

stimulus is presented, the voxel which has a preference for ‘long’ and ’45°’ 

will receive a score of 10 (the value is arbitrary but is assigned to illustrate a 

relative response). This is because it is this voxel’s preferred orientation 

(score of 10) but non-preferred length (score of 0) to give a total of 10. For 

this same voxel the response would be lower for the identical stimulus in the 

length task (Panel B) as it would have adjusted its response to show greater 

selectivity for its preferred length and less selectivity for its preferred 

orientation (score of 8). Panels A and B show the multivoxel patterns that 

would be used to decode orientation in the orientation (Panel A) and length 

(Panel B) task. As can be observed, the multivoxel patterns for orientation 

(compare left and right of the decision boundary) are highly distinct in Panel 

A, but more confusable in Panel B. The same result is found for decoding 

length (Panels C and D). This is an example of how adaptive coding may 

result in stronger decoding of relevant compared to irrelevant feature 

information. The same result is found if the neuron is modelled on n1 or n3 

from Figure 1. 
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Functional specialisation within the MD network 
 
Several alternative models of prefrontal cortex suggest dissociations between 

different regions (see Chapter 1, e.g. Badre, 2008; Badre & D'Esposito, 2009; Botvinick, 

2008; Bunge & Zelazo, 2006; Christoff & Keramatian, 2007; Corbetta & Shulman, 2002; 

Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Dosenbach et al., 2007; Dosenbach 

et al., 2006; Goldman-Rakic, Roberts, Robbins, & Weiskrantz, 1998; Koechlin, Ody, & 

Kouneiher, 2003; Koechlin & Summerfield, 2007; O’Reilly, 2010; Reynolds, O'Reilly, 

Cohen, & Braver, 2012). Although the experiments in my thesis were not designed to 

directly test any of these models, it was noticeable that there were almost no suggestions 

of dissociation of functions within the MD network. In my experiments, I saw similar 

recruitment of the IFS, IPS, AI/FO and ACC/pre-SMA across Chapters 2, 3 and 5; the 

only suggestion for a difference was in Chapter 3 in which voxel re-use was significantly 

higher in IFS (and lower in AI/FO).  

There are also a few cases where the data seem to directly contradict the 

predictions of these models. For instance, one proposal is that the prefrontal cortex (PFC) 

follows a rostrocaudal gradient with different regions recruited according to the demands 

of the task ("Rule Abstraction model", Badre, 2008; Badre & D'Esposito, 2007, 2009). In 

this proposal, the cortex is functionally organised so that more abstract goals are 

represented along a rostrocaudal hierarchy. For example, a low level rule (e.g. press the 

‘left’ button for rectangle and press the ‘right’ button for a square) is suggested to recruit 

the dorsal pre-motor cortex. Recruitment of anterior regions requires a higher level of rule 

abstraction (e.g. if the stimulus is red, use rule 1 (left for rectangle, right for square) 

otherwise, use rule 2 (right for rectangle, left for square)). In my paradigms, rules were 
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restricted to one level of abstraction (e.g. short = category 1), so should not have recruited 

regions anterior to the dorsal pre-motor area. However, I consistently found that task-

relevant stimulus features were coded in the IFS (Chapter 2, 3 and 5, see alsoWoolgar, 

Afshar, Williams, & Rich, 2015). It is also not clear that the Rule Abstraction model 

would predict coding of stimulus features (as opposed to rules) in these regions at all. It 

may be, however, that functional dissociations between these regions only become 

apparent under specific conditions, perhaps determined by the nature of task.  

My results support the proposal that the MD regions work together as a system, at 

least under certain conditions (in this case, feature-selective attention to novel objects). 

The findings fit well with the framework of the adaptive coding hypothesis whereby 

responses are flexible and adjust according to the currently relevant information. Thus, the 

weight of evidence from this thesis support the function of the MD regions as a network, 

being best understood through the general principle that coding in these regions is flexible 

and that they adapt to code relevant over irrelevant feature information.  

Enhancement of relevant/inhibition of irrelevant? 
 
My experiments have shown that the MD network plays an important role in 

feature-selective attention. There is a long-standing debate in the field regarding whether 

the effects of attention on neural activity is exerted by enhancing the representation of the 

relevant information or by inhibiting the representation of the irrelevant information, or 

both (e.g. Aron, 2007; Kanwisher & Wojciulik, 2000; Knight, Staines, Swick, & Chao, 

1999; Shimamura, 2000). Miller and Cohen (2001) suggest that attention biases competing 

inputs in favour of task-relevant information in the PFC, which in turn has a consequence 

on whether irrelevant information is further represented in the system. In this scenario, 

task-irrelevant inputs are not actively suppressed but are competed against by the selection 
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of task-relevant inputs. A competition-based model of visual attention was similarly 

proposed by Desimone (1998), who suggested that excitatory signals to selective visual 

neurons would result in inhibition of task-irrelevant visual neurons, sharpening the focus 

of attention (also refer to Desimone & Duncan, 1995; Kastner & Ungerleider, 2000; 

Pessoa, Kastner, & Ungerleider, 2003). Although my data do not resolve this debate, the 

results provide an interesting piece of the puzzle, which I will return to shortly.  

Evidence for competition-based models of attention stems primarily from non-

human primate research where PFC neurons have been found to maintain task-relevant 

information in delayed-response tasks (e.g. Fuster, 1973; Fuster & Alexander, 1971; 

Kubota & Niki, 1971). PFC neurons also adjust their responses to code task-relevant 

information across multiple tasks (e.g. Cromer et al., 2010; Freedman, 2001; Rao, Rainer, 

& Miller, 1997; Roy et al., 2010). This adjustment for task-relevant information provides a 

potential source of feedback, which could bias representations in earlier sensory 

processing areas in favour of task-relevant inputs (Miller & Cohen, 2001). These studies 

provide support for the notion that attention exerts influence by enhancing the 

representation of relevant information.  

In favour of the alternate mechanism of inhibition of irrelevant information, the 

PFC has been suggested to provide inhibitory regulation of neural activity (e.g. Knight & 

Stuss, 2002; Shimamura, 2000; Smith & Jonides, 1999), increasing the signal-to-noise 

ratio across the brain via a prefrontal-thalamic inhibitory system (Knight et al., 1999). An 

example of this was shown by reversible cooling of the prefrontal-thalamic system in the 

cat brain which increased the amplitude of evoked responses in primary sensory cortex 

(Skinner, 1984; Yingling & Skinner, 1977). Non-human primates studies have also 

provided support for an inhibitory mechanism of PFC (Bartus & Levere, 1977; Malmo, 
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1942). For example in Bartus et al.’s (1977) study, monkeys with dlPFC lesions were 

significantly impaired during a working memory (WM) task where irrelevant information 

was during a trial compared to monkeys with undamaged brains. In the human brain, 

several studies employing visual WM tasks have also emphasised an inhibitory role of the 

PFC (e.g. Chao & Knight, 1998; Clapp, Rubens, & Gazzaley, 2009; Postle, 2005). Chao 

and Knight (1998) showed that evoked responses to distracting stimuli in the auditory 

cortex during a delay period were greater for patients with PFC lesions than for control 

subjects. This was interpreted as evidence for the PFC as contributing to inhibition of 

irrelevant information. Inhibitory deficits have also been found in patients with prefrontal 

damage in cognitive tasks requiring suppression of prior learned material (Mangels, 

Gershberg, Shimamura, & Knight, 1996; Shimamura, Jurica, Mangels, Gershberg, & 

Knight, 1995).  Thus, data from both non-human and human studies suggest a role for 

inhibitory processes in selective attention, which may also rely on regions that form part 

of the MD network (Kanwisher & Wojciulik, 2000). 

There is a clear indication for both a mechanism that supports selection and 

maintenance of task-relevant inputs, as well as a mechanism that promotes inhibition of 

task-irrelevant inputs. However, it has been argued that evidence for an inhibition 

mechanism is less convincing (e.g. Aron, 2007; Shimamura, 2000). One reason for this is 

because it is often difficult to disentangle the two mechanisms. To illustrate, 

neuropsychological data has found that frontal patients show increased interference effects 

in the Stroop task (Perret, 1974; Stuss, Floden, Alexander, Levine, & Katz, 2001; Vendrell 

et al., 1995). The Stroop task (Stroop, 1935) requires participants to attend to one stimulus 

dimension whilst ignoring another. Increased interference by the irrelevant dimension in 

this task is often taken as evidence for an inhibition mechanism as disrupting inhibition of 

irrelevant information should result in a larger effect of the irrelevant information (e.g. 
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Dimitrov et al., 2003; Vendrell et al., 1995). However, in this case, it could also be that 

inadequate selection and maintenance of task-relevant information makes it more likely 

for irrelevant inputs to be preserved thus causing the observed interference effect. This 

does not exclude either possibility but emphasises the difficulty with the interpretation of 

underlying neural mechanisms.  

In consideration of the literature is possible that both of these mechanisms occur, 

whereby relevant information is enhanced and irrelevant information is simultaneously 

suppressed (e.g. D’Esposito & Postle, 2015; Knight et al., 1999; Shimamura, 2000) to 

optimise performance. Another possibility is that irrelevant information is not actively 

suppressed but rather driven out by competition from relevant inputs (e.g. Desimone, 

1998; Desimone & Duncan, 1995; Miller & Cohen, 2001). However, in many cases it is 

difficult to distinguish these two mechanisms. For example, Chapter 2 and Chapter 3 of 

this thesis present evidence that the MD regions adjust to code information that is 

currently relevant. Whilst this makes it possible for adaptive MD regions to underlie 

selection of task-relevant information, it does not eliminate the possibility that irrelevant 

information is also actively inhibited.  

In Chapter 2, participants performed a task where they classified objects along two 

orthogonal stimulus dimensions in alternating blocks. Thus in this experiment, the 

irrelevant information was sometimes relevant to the task (in the alternating task block). In 

comparison, in Chapter 3, the irrelevant feature was never relevant to the participant’s task 

as they alternated between performing two tasks on different groups of objects. A direct 

comparison revealed that there was stronger MD coding of irrelevant information in 

Chapter 2 (when the irrelevant information was sometimes relevant) than in Chapter 3 

(when it was never relevant). This may provide evidence for inhibition of irrelevant 



                                                                                             Discussion 

 

 273 

information in this network: when irrelevant information is never relevant, there is less 

coding of this information across the network, perhaps reflecting the ease with which one 

can inhibit it. There was no suggestion that coding of relevant information differed 

between experiments, making it unlikely that this difference was due to an increase in 

suppression from local competition with task relevant input. However, in both 

experiments, coding of irrelevant features was at chance across the MD system, making it 

difficult to interpret this finding.  

In Chapter 4 I used TMS to address the causal effect of right dlPFC on behaviour. 

However, even if I had shown a behavioural interference effect of disruption to the right 

dlPFC, it would not have been possible to disentangle the two possible underlying 

mechanisms. Interference could have been caused by disruption to selection of relevant 

over task-irrelevant inputs, or by disruption to inhibition of irrelevant feature information. 

This highlights the difficulty in dissociating the underlying mechanisms involved in 

feature-selective attention.  

As discussed in Chapter 5, the combination of TMS-fMRI, or TMS-

electroencephalography (EEG), has the potential to further elucidate the relationship 

between selection and inhibition (e.g. Feredoes, Heinen, Weiskopf, Ruff, & Driver, 2011; 

Zanto, Rubens, Thangavel, & Gazzaley, 2011). In Chapter 5, I employed concurrent TMS 

with fMRI-MVPA, which can reveal changes in the informational content in the brain 

following disruption to a particular region. These data showed that disruption to a region 

of the MD network increases the strength of coding of irrelevant feature information 

across the network and other brain regions. Moreover, this occurred in the absence of a 

decrease in coding of relevant information, ruling out an explanation based on local 

competition. These data in combination with the behavioural interference effect provide 
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evidence for a role of the right dlPFC in active inhibition of irrelevant feature information: 

when right dlPFC function is disrupted, irrelevant information has a larger effect on 

behaviour and is coded more strongly in the rest of the MD network and the visual cortex 

than when dlPFC is intact.  

The data in Chapter 5 showed an increase in both irrelevant and relevant 

information coding. This points to a disruption of an active inhibition mechanism as any 

passive inhibition due to upregulation of the relevant information should still have been in 

play (since relevant information was strongly represented in the MD system and 

elsewhere). However, an alternative is that, as I observed both an increase in the strength 

of relevant, and irrelevant information coding under HIS, the strength of coding of all 

information regardless of relevancy increases as a result of TMS stimulation. I suggest 

that this is unlikely in the case of these data as the stimulated target region, and many 

other brain regions, showed no effect of HIS, and the increase in strength of coding for 

relevant information under HIS was specific to colour information. Moreover, following 

the logic of TMS, the interpretation would have to be that the dlPFC usually suppresses 

the representation of task information in general (such that both relevant and irrelevant 

information is released from suppression under TMS). Given the previous literature, this 

interpretation seems unlikely. Nonetheless, it will be important to conduct further work 

using these kinds of paradigms to elucidate the top-down mechanisms supporting flexible 

behaviour (e.g. which regions modulate coding in other regions, what is the nature of the 

information that is modulated, is it dependent on task load, etc) and to examine the effect 

of TMS stimulation on information coding in general.  
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General limitations 
 

An inherent problem in examining underlying neural processes, such as the 

mechanisms supporting flexible behaviour, lies in the measurement techniques that we 

have available. To begin with, it is important to remember that fMRI is an indirect 

measure, indexing changes in the blood-oxygen-level-dependent (BOLD) response rather 

than neuronal responses directly. Thus, BOLD responses measured with fMRI are only an 

indirect reflection of the underlying neural responses (e.g. Aron, 2007; Logothetis, 

2008b). The accurate interpretation of the BOLD signal depends on characterising the 

nature of the underlying neural activity that gives rise to the haemodynamic response, and 

the way in which these two aspects are linked (Arthurs & Boniface, 2002). There is 

evidence suggesting that the BOLD signal correlates strongly with the underlying local 

field potential (LFP) as opposed to spike rates (Goense & Logothetis, 2008; Logothetis, 

2008b; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). The LFP is a mass 

neural signal that captures a multitude of neural processes, but the exact composition of 

LFP remains under investigation (Berens, Logothetis, & Tolias, 2010; Magri, Schridde, 

Murayama, Panzeri, & Logothetis, 2012). This means that modulations in fMRI signal 

reflect the pooled signal of a very large number of neurons with the precise underlying 

machineries unknown (Scannell & Young, 1999). We can only improve our interpretation 

of imaging data when we have a clearer understanding of how neuronal activity influences 

the fMRI signal.  

The problem of interpretation is not limited to fMRI. Other techniques such as 

electrical measurements of brain activity also have a complex relationship with network 

activity (Logothetis, 2008a). Using a combination of available techniques will both help 

us to clarify underlying brain function and potential mechanisms, and allow us to 
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investigate the relationship of our measurement to neural activity, for example by the 

simultaneous acquisition of electrophysiological recordings and fMRI data in non-human 

primates.  

Despite fMRI being an indirect measure of neural activity, the spatiotemporal 

response patterns reflected in fMRI signals contain detailed information that can be 

revealed using MVPA (e.g. Hebart, Görgen, & Haynes, 2015; Yang et al., 2014). For 

example, MVPA has been used to decode visual, auditory, motor and task rule 

information across different brain networks (Woolgar, Jackson, & Duncan, in press, refer 

to Appendix A). In this thesis, MVPA was used to examine the representation of task-

relevant and task-irrelevant object features in specific regions of the brain. However, 

although MVPA is highly sensitive to whether or not decodable information is present, an 

open debate remains as to the nature and content of the underlying signal that is driving 

the classifier.   

Hubel and Wiesel’s seminal work showed that orientation selective cells (Haxby et 

al., 2001), and likewise, ocular dominance selective cells (Hubel & Wiesel, 1963; 1972) 

are clustered into a columnar-like structure where groups of cells with similar response 

properties are arranged vertical to the cortical surface. An estimate of the size of ocular 

dominance columns have been measured from post-mortem samples of patients as 

approximately 1mm (Hubel & Wiesel, 1969). Converging evidence for this size comes 

from high-field, high resolution fMRI techniques of both ocular dominance columns 

(Adams, Sincich, & Horton, 2007) and orientation columns (Cheng, Waggoner, & Tanaka, 

2001; Yacoub, Shmuel, Logothetis, & Uğurbil, 2007). In some of the first studies that 

employed MVPA, Haynes and Rees (2005) and Kamitani and Tong (2005) showed that it 

was possible to decode the orientation of visual gratings using MVPA. Both papers 
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proposed that the biased sampling of the orientation columnar structures at a smaller scale 

than voxels is what drives the successful classification. This is often referred to as the 

“hyperacuity” hypothesis (de Beeck, 2010a). The hyperacuity hypothesis works on the 

assumption that each voxel samples a mixture of different columns. The columns sampled 

are not uniform and this can lead to a slightly bias for a given measurement (e.g. 

orientation) in different voxels (e.g. de Beeck, 2010b). The argument then is that, as 

MVPA considers the activity of a large number of voxels together, small biases across 

voxels could lead to distinctive responses for different conditions, allowing underlying 

neural selectivity to be inferred.  

The “hyperacuity” hypothesis and the source of decoded information remains a 

subject of significant debate (Boynton, 2005; Haynes & Rees, 2005; Kamitani & Tong, 

2005). Some have argued that without high-field, high resolution scanning, the resolution 

required to measure activity from columnar structures is not feasible as a voxel still 

contains many tens of thousands of neurons (Beckett, Peirce, Sanchez-Panchuelo, Francis, 

& Schluppeck, 2012; Chaimow, Yacoub, Ugurbil, & Shmuel, 2011). Another possibility is 

that decoded information relies on large-scale biases (e.g. Alink, Krugliak, Walther, & 

Kriegeskorte, 2013; Carlson, 2014; de Beeck, 2010a; Freeman, Brouwer, Heeger, & 

Merriam, 2011; Freeman, Heeger, & Merriam, 2013; Kamitani & Sawahata, 2010; 

Kriegeskorte, Cusack, & Bandettini, 2010). Potential large-scale biases for orientation in 

the human brain include (but are not limited to), broad preferences for radial orientations 

(e.g. Sasaki et al., 2006) and preferences across the visual field for cardinal orientations 

(e.g. Furmanski & Engel, 2000). 

Other researchers have claimed that the biases sampled are vascular in origin 

(Gardner, 2010; Shmuel, Chaimow, Raddatz, Ugurbil, & Yacoub, 2010). Additionally, de 
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Beeck (2010a) has shown that MVPA is robust to spatial smoothing, which he interprets 

as evidence against a columnar-scale bias driving classification, as smoothing should be 

detrimental to picking up small-scale functional organisation. However, the precise 

function and origin of large-scale biases that allow classification are still unknown (e.g. 

Freeman et al., 2011; Freeman et al., 2013; Maloney, 2015). Recent data presents an 

alternative account suggesting that orientation decoding relies on edge-related activity, 

and that this edge-related activity masquerades as a large-scale radial bias (Carlson, 2014; 

Wardle, Ritchie, Seymour, & Carlson, 2015). At this stage, all presented accounts 

depicting the source of decodable information (for orientation) remain viable. Thus, 

overall, MVPA can tell us what can be decoded in the brain but an open question remains 

as to why it is decodable. In the case of the data presented in this thesis, the source of the 

decoding (hyperacuity, large-scale biases, or some as yet un-identified cause) is less 

important than the changes in decoding between the physically identical conditions, which 

reflects that responses are adapting. It seems unlikely that we could find evidence of such 

adaptation if the patterns did not ultimately reflect some change in responses at the neural 

level.   

As is clear, we do not fully understand the distribution of neural responses 

underlying voxel-wise responses. Thus in Chapter 3, I refer to the data in terms of voxel 

re-use rather than neural re-use. In this chapter, MD voxels providing the strongest signal 

in the discrimination of relevant object features in one task were “re-used” in the sense 

that they also provided the strongest signal to the discrimination of the relevant object 

features in another task. I took this as evidence that these regions flexibly re-use resources 

to encode information across multiple tasks, as previously shown in the non-human 

primate literature (Cromer et al., 2010; Freedman, 2001; Roy et al., 2010). However, as 

we do not yet fully understand the pattern and distribution of neural responses underlying 
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voxel-wise responses, it is possible that within the voxels sampled, there are separate 

populations of neurons, each of which held the relevant feature in one (and only one) task. 

On the other hand, it is possible, as I inferred in this Chapter, that the voxels sampled 

represented an overall bias where the underlying neural populations showed preference to 

relevant feature dimensions of both tasks. We cannot discriminate these possibilities from 

the current data.  

Combining single-unit with fMRI measurements in non-human primates may help 

us elucidate these relationships in the future. In general, not only in the case of the data 

from Chapter 3, but in the case of all multi-voxel data, it is important to bear in mind that 

classifiers will exploit whatever information is present in the patterns of activity and that 

the interpretation of the source of information should be made with caution. Thus, is 

critical to design well-controlled experiments and avoid confounds. For example, in 

Chapter 2, we decoded physically identical objects in the task-relevant and irrelevant 

conditions, removing any low-level potential drivers for the classifiers. We also presented 

a response-mapping screen in order to dissociate the motor response (left vs. right) from 

the decision (short spike vs. long spike). Thus, the only potential driver for classification 

to be successful is our critical comparison of whether the stimulus was behaviourally 

relevant or irrelevant. Well-controlled designs allow us to infer the likely source of 

decodable information.   

The interpretation of MVPA of fMRI data also depends critically on the use of 

appropriate statistical analysis (e.g. Allefeld, Görgen, & Haynes, 2015; Combrisson & 

Jerbi, 2015; Hebart et al., 2015; Nichols & Holmes, 2002; Noirhomme et al., 2014; 

Stelzer, Chen, & Turner, 2013). In this thesis, standard parametric statistics were applied 

for second-level decoding analyses. Parametric statistics were appropriate in this case as 
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the classifier was trained across sets of data and tested on the independent data sets, and 

cross-validation provides an unbiased estimate of the classification accuracy. Compared to 

other available methods (e.g. two-step permutation test (Stelzer et al., 2013)), they are the 

most appropriate for making group-level inferences. However, methods for decoding 

analyses are under ongoing development and it will be important to consider the 

appropriateness and available inference as statistical theory is developed and more 

sophisticated methods become available.  

A further discussion in the MVPA literature is the extent to which the information 

that is decoded is actually used by the brain (de-Wit, Alexander, Ekroll, & Wagemans, 

2016). In their recent paper, de-Wit and colleagues (2016) discuss how the ability to 

decode something from fMRI data indicates that the relevant information is available to 

our classifier, but it does not mean that these patterns are used as information in the brain. 

The authors draw on examples of patients who have poor spatial perception even though it 

is possible to construct retinotopic maps in their early visual cortex. These maps can 

inform the “observer” (in this case, a researcher using pattern analysis) as to where objects 

are in relation to each other, but are apparently not useful for the patient’s behaviour. de-

Wit et al. (2016) argue that if the strength of coding can be related to performance on a 

task, then this provides evidence that the underlying patterns were also relevant for 

behaviour. They use Williams et al.’s (2007) study as a key demonstration of the strength 

of this approach. In this study, the authors computed spatial pattern correlations between 

objects pairs and found higher correlations for the same category objects pairs (e.g. two 

spiky objects) over different category object pairs (e.g. spiky and smoothy objects). This 

was the case for both retinotopic cortex and LOC. Crucially, in LOC, this was only true 

for correct trials (and not incorrect trials). These data suggest that the strength of coding in 

LOC can be related to behavioural performance, indicating that the brain uses this 
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information. In this thesis, one recurrent finding is that the MD regions code task-relevant 

features more strongly than task-irrelevant. An important extension would be to see 

whether the strength of this coding predicts behavioural success, which could provide 

support for the hypothesis that these regions have a causal role for behaviour.  

Although a correlation of decodable information in a region and behavioural 

performance is useful, de-Wit et al. (2016) also argue that even this does not provide the 

full picture without indication of how the decoded information is subsequently used 

elsewhere in the brain. Therefore, the combination of fMRI with other techniques, such as 

TMS, is useful. It has the potential to inform us how information coding in one brain 

region is causally related to information coding in other brain regions. 

A TMS-induced change in behaviour can be used to inform models of causal 

relations between specific brain regions and individual cognitive functions, and the 

combination of TMS with neuroimaging techniques can allow us to investigate the causal 

relationship between neural processing in different brain regions. In Chapter 5, I used 

concurrent TMS-fMRI with MVPA to investigate the causal relationship between activity 

in the dlPFC, information coding elsewhere in the brain, and participant behaviour. 

However, despite the intriguing possibilities afforded by TMS, its precise mechanisms of 

action remain unclear (Sandrini, Umiltà, & Rusconi, 2011). For example, TMS has been 

shown to elicit both enhanced and suppressed activity at the cortical level (Allen, Pasley, 

Duong, & Freeman, 2007; Moliadze, Zhao, Eysel, & Funke, 2003). It is even shown that 

the same stimulation parameters can result in either activation, suppression, or both 

depending on the brain regions stimulated (Paus, 2005). The effect of stimulation is 

dependent on a number of factors including the stimulation parameters themselves (e.g. 

frequency, intensity and duration, Pasley, Allen, & Freeman, 2009; Sandrini et al., 2011) 



                                                                                             Discussion 

 

 282 

and the choice of design (e.g. coil placement, region/zone selection,  Opitz, Fox, 

Craddock, Colcombe, & Milham, 2016). In addition, the following can change the effect 

of stimulation (and the list is not exhaustive): excitatory vs. inhibitory neurons, the 

structure of stimulated neural circuit and the modifications of synaptic connections (Pasley 

et al., 2009). This variance creates a challenge for using and interpreting the results of 

neural stimulation techniques, despite the promise in combining methodologies to 

demonstrate causal relationships.  

In Chapter 4 and 5, I used online TMS where participants received three pulses of 

stimulation, a parameter commonly used in disruption studies (Hallett, 2007; Walsh & 

Pascual-Leone, 2003). In Chapter 5, this TMS stimulation caused an increase in the 

behavioural congruency effect, which is an index of the extent to which irrelevant 

information affects behaviour, and I therefore interpreted my results in terms of disruption 

to the dlPFC. However, it is not entirely clear whether the effects of stimulation are 

predominantly excitatory or inhibitory (Parkin, Ekhtiari, & Walsh, 2015). Sandrini et al. 

(2011) discuss how lengthening the duration of online TMS will cause more disruption by 

temporal summation of the effects of stimulation. However, online TMS can also vary in 

behavioural outcome depending on the activation state of the stimulated region (Sandrini 

et al., 2011; Siebner, Hartwigsen, Kassuba, & Rothwell, 2009; Silvanto & Muggleton, 

2008). For example, stimulation during the time period when a region is involved in a task 

usually causes disruption, whilst a number of studies report facilitation if stimulation is 

delivered early, prior to the commencement of involvement in the task (e.g. Grosbras & 

Paus, 2003; Töpper, Mottaghy, Brügmann, Noth, & Huber, 1998). In my case, I selected a 

target region that was predicted to be involved in the task on theoretical grounds (previous 

meta-analytic work) and based on individual subject activation in the task localiser, timed 

the first TMS pulse to arrive 75ms after stimulus onset, and observed a disruption in 
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behaviour. I am therefore confident that this design caused a disruptive effect, and have 

interpreted my results accordingly.  

Another important consideration in the design of a TMS paradigm is the use of the 

control or placebo condition. For example, sham TMS approaches are widely used as a 

control condition, but this only controls for the sensory side effects (e.g. acoustic artefact) 

of TMS. Sham does not control completely for psychological variables because it does not 

mimic the somatosensory effect of TMS, and therefore participants may be aware of the 

different condition. In addition, sham cannot inform us of whether stimulation of a 

particular brain area has specific behavioural or physiological consequences. For this we 

need a control stimulation site (Duecker & Sack, 2015). However, there are limitations 

associated with this control as well. For example, this is likely to have a different 

sensation to the main target stimulation, and the interconnection of the brain may result in 

unexpected interactions. Using a lower stimulation of the critical area is a third method 

that controls for these factors but has the problem of unpredictability in terms of whether 

LIS could have a different effect (e.g., activation instead of inhibition) to the HIS. Chapter 

4 of this thesis presented a paradigm with three controls to TMS stimulation. I aimed to 

highlight the importance of the choice of control by comparing the controls, but 

unfortunately the sample size was too small to draw any firm conclusions. In future, 

similar set-ups with more than one control condition can further elucidate the complex 

relationship of TMS effect with behavioural outcome.   

Recent studies that combine TMS with neuroimaging have shown that TMS may 

affect remote brain areas interconnected with the stimulated brain region (Ruff, Driver, & 

Bestmann, 2009). Thus, although a behavioural effect of TMS indicates causal 

involvement of a targeted brain area in performance of the current task, it does not indicate 
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whether task-related performance is directly connected to the function of this region or 

reflects the influence of this region upon interconnected areas that are also involved. In 

Chapter 5, I used LIS as a control for the main effect of TMS. This was primarily for 

practical reasons as it allowed the two TMS conditions to be presented on a trial-by-trial 

basis. Although it would be ideal to have a control stimulation site, it comes at the cost of 

having to remove participants from the scanner in order to readjust the coil. Future 

research using concurrent TMS-fMRI-MVPA could consider using multiple controls 

including stimulation at different time points to investigate state-dependent effects, a 

control region, as well as LIS allowing a stronger inference to be made on the pattern of 

results. Nonetheless, the findings from Chapter 5 indicate that investigating the pattern of 

information coding following concurrent TMS disruption has the potential to be a 

powerful explanatory tool.    

Conclusions 
 
Now let us return to adaptive coding in the MD network and the implementation of 

feature-selective attention. Despite the limitations of the techniques that I have expounded 

in the above section, the data presented in this thesis provide strong evidence for adaptive 

responses in the MD regions as providing a mechanism for feature-selective attention. As 

mentioned previously, the adaptive coding hypothesis predicts that responses in these 

regions will adjust to task-relevant information, and this adjustment is further proposed to 

be a potential source of bias to earlier cortical regions (Duncan, 2001). Indeed in Chapter 

2, these regions were shown to code identical object features more strongly when they 

were task-relevant compared to when they were task-irrelevant. Chapter 3 showed again 

that the MD regions code task-relevant features more strongly than task-irrelevant ones, 

and further demonstrated that that the same voxels are re-used for the relevant feature 
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discrimination across multiple tasks. Although in Chapter 4 I did not find evidence for a 

causal role of dlPFC in feature-selective attention, these results were observed in Chapter 

5 where disruption to this region modulated both behaviour and coding of feature 

information across the MD network and earlier cortical regions. Therefore this thesis 

provides evidence for the predictions stated by the adaptive coding hypothesis, in the 

context of feature-selective attention, in that the MD regions adjust their responses to code 

relevant feature information and that this affects coding in earlier cortical regions.  

In conclusion, the findings presented in this thesis advance knowledge on the 

neural processes underlying feature-selective attention in the MD network. Specifically, 

the findings provide evidence that adaptive coding provides a mechanism for feature-

selective attention in the MD network. Together the experiments advance the 

understanding of flexible mechanisms employed in the frontoparietal cortices in the 

context of feature-selective attention.  
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Coding of Visual, Auditory, Rule, and Response
Information in the Brain: 10 Years of

Multivoxel Pattern Analysis

Alexandra Woolgar1, Jade Jackson1, and John Duncan2,3

Abstract

■ How is the processing of task information organized in the
brain? Many views of brain function emphasize modularity,
with different regions specialized for processing different types
of information. However, recent accounts also highlight flexi-
bility, pointing especially to the highly consistent pattern of
frontoparietal activation across many tasks. Although early
insights from functional imaging were based on overall acti-
vation levels during different cognitive operations, in the last
decade many researchers have used multivoxel pattern analy-
ses to interrogate the representational content of activations,
mapping out the brain regions that make particular stimulus,
rule, or response distinctions. Here, we drew on 100 search-
light decoding analyses from 57 published papers to charac-

terize the information coded in different brain networks. The
outcome was highly structured. Visual, auditory, and motor
networks predominantly (but not exclusively) coded visual,
auditory, and motor information, respectively. By contrast,
the frontoparietal multiple-demand network was characterized
by domain generality, coding visual, auditory, motor, and rule
information. The contribution of the default mode network
and voxels elsewhere was minor. The data suggest a balanced
picture of brain organization in which sensory and motor net-
works are relatively specialized for information in their own
domain, whereas a specific frontoparietal network acts as a
domain-general “core” with the capacity to code many different
aspects of a task. ■

INTRODUCTION

Multivoxel pattern analysis (MVPA) of fMRI data is a
powerful and increasingly popular technique used to
examine information coding in the human brain. In
MVPA, information coding is inferred when the pattern
of activation across voxels can reliably discriminate
between two or more events such as different stimuli,
task rules, and participant responses (e.g., Haynes &
Rees, 2006; Haxby et al., 2001). For example, if, in a
certain brain region, the patterns of activation elicited
in response to viewing red objects are more similar to
each other than to the patterns elicited by green objects
(and vice versa), we conclude that there is information in
the patterns that discriminates between red and green
objects and therefore codes for color. This allows infer-
ence beyond traditional univariate brain mapping (e.g.,
this region is more active for colored objects than black
and white ones) to examine the particular discrimina-
tions that the region is able to make (e.g., the region
carries specific information about what color was pre-
sented). Information coding may be tested by compar-
ing the correlation of patterns within object classes to
correlations between object classes (e.g., Haxby et al.,

2001), or using a machine learning algorithm such as a
pattern classifier. For example, if a classifier can be trained
to discriminate between red and green objects, such that
it can predict object color on an independent set of
data, we conclude that the pattern of activation can be
used reliably to discriminate between red and green
objects. The technique has also been generalized to incor-
porate multiple classes to test more complex representa-
tional models (e.g., representational similarity analysis;
Kriegeskorte, Mur, & Bandettini, 2008). It has been used
to examine neural coding of a wide range of different task
events including aspects of stimuli, task rules, participant
responses, rewards, emotion, and language (e.g., McNamee,
Rangel, & O’Doherty, 2013; Herrmann, Obleser, Kalberlah,
Haynes, & Friederici, 2012; Woolgar, Thompson, Bor, &
Duncan, 2011; Peelen & Vuilleumier, 2010; Haxby et al.,
2001).

Using a “searchlight,” MVPA can be used to map out
the brain regions that code for each particular type of
information (Kriegeskorte, Goebel, & Bandettini, 2006).
For each brain voxel in turn, pattern analysis is applied
to the pattern of activation across voxels in the local
neighborhood (e.g., in a sphere of a fixed radius centered
on the current voxel of interest), and the resulting metric,
which summarizes the strength of information coding
in the local neighborhood, is given to the center voxel.
The resulting whole-brain map indicates where in the
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brain a particular distinction is coded. This technique
allows for exploratory analyses that are free from a priori
hypotheses about where local patterns will be discrimi-
native and opens the door for unpredicted findings.

After several years of searchlight MVPA, we now have an
unprecedented opportunity to summarize our knowledge
of information coding in the brain. This is the aim of the
current paper. In the literature, most cognitive tasks com-
prise visual and/or auditory input, task rules, and motor
output, so we focus our analysis on coding of these task
features. We examine the frequency of information coding
reported in five brain networks: the visual, auditory, and
motor networks; the frontoparietal multiple demand
(MD; Duncan, 2006, 2010) or “task-positive” (Fox et al.,
2005) network; and a “task-negative” (Fox et al., 2005) or
“default mode” (Raichle et al., 2001) network (DMN).

Although traditional accounts of brain organization
emphasized modularity of function, several recent pro-
posals highlight the flexibility of many brain regions (e.g.,
Yeo et al., 2014; Dehaene & Naccache, 2001; Duncan,
2001). For example, one of the most consistent findings
in human neuroimaging is a characteristic pattern of acti-
vation in the frontoparietal MD network across a wide
range of different cognitive tasks (e.g., Yeo et al., 2014;
Fedorenko, Duncan, & Kanwisher, 2013; Niendam et al.,
2012; Dosenbach et al., 2006; Naghavi & Nyberg, 2005;
Owen, McMillan, Laird, & Bullmore, 2005; Duncan &
Owen, 2000). This common activity may reflect the com-
mon need for cognitive control, one aspect of which is
proposed to be the adaptive representation of task-relevant
information (Duncan, 2001, 2010). Accordingly, the sug-
gestion is that single neurons in the MD regions adjust
their pattern of firing to encode the specific information
currently relevant for the task, including stimuli, cues,
rules, responses, etc.

The result of our review is a balanced and highly struc-
tured picture of brain organization. According to the
MVPA data published in the last decade, auditory, visual,
and motor networks predominantly code information
from their own domain, whereas the frontoparietal MD
network is characterized by domain generality, coding
all four task features (visual, auditory, motor, and rule
information) more frequently than other brain areas.
After correcting for network area and the number of
studies examining each feature, the contribution of the
DMN and cortex elsewhere is minor. Although sensory
and motor networks are relatively specialized for infor-
mation in their own domain, the MD network appears
to act as a domain-general core with the capacity to code
different aspects of a task as needed for behavior.

METHODS
Paper Selection

We identified peer-reviewed papers published up until
the end of December 2014 by searching PubMed, Scopus,

Web of Science, HighWire, JSTOR, Oxford University
Press Journals, and ScienceDirect databases with the
following search terms: “MVPA searchlight,” “multivari-
ate analysis searchlight,” “multivoxel analysis searchlight,”
and “MVPA spotlight” in any field. We additionally re-
trieved all the studies listed by Google scholar as citing
Kriegeskorte et al. (2006) in which the procedure for
searchlight MVPA was first described. This yielded 537
empirical papers (excluding reviews, comments, methods
papers, or conference abstracts). Of these, we included
studies that performed volumetric searchlight analysis
(Kriegeskorte et al., 2006) across the whole brain of
healthy adults and reported a complete list of the coordi-
nates of peak decoding in template (MNI or TAL) space.1

Because most tasks comprise visual or auditory input,
task rules, and motor output, we focused on these task
features. From each of the papers, we identified inde-
pendent analyses that isolated the multivoxel represen-
tation of a single one of these task features. To achieve
this, if a paper reported two or more nonindependent
analyses (e.g., analyzed overlapping aspects of the same
data), only one analysis was included. We excluded any
analyses in which sensory and motor responses were con-
founded (e.g., if the same visual stimulus was associated
with the same motor response). This procedure yielded a
total of 100 independent analyses from 57 papers.

Characterization of Task Features

We categorized each of the 100 analyses according to
what task feature they examined, namely, whether they
examined the multivoxel discrimination between two or
more visual stimuli, two or more auditory stimuli, two
or more task rules, or two or more motor responses
(Table 1). This categorization was done twice, the first
time being as inclusive as possible, and the second time
using stricter criteria (Table 1, second column). For the
strict categorization, we excluded analyses in which the
multivoxel discrimination pertained to both an aspect of
the physical stimulus and a higher-level stimulus attribute
such as emotion or semantic category. Analyses focusing
on linguistic stimuli (e.g., written or spoken words) were
not included, on the basis that representation of these
stimuli would likely load on language-related processing
more than visual and/or auditory information processing.
Analyses pertaining to the discrimination of visual stim-

uli included discrimination of stimulus orientation, posi-
tion, color, and form. Additional analyses pertaining to
the semantic category of the visual stimulus (e.g., animals
vs. tools; Simanova, Hagoort, Oostenveld, & van Gerven,
2014) and stimuli that were consistently associated with
different rewards (e.g., face vs. currency, where a picture
of currency indicated a monetary reward; Clithero, Smith,
Carter, & Huettel, 2011) were included in our lenient
categorization but excluded from the strict categori-
zation. In our strict categorization, we also excluded two
further studies in which there was a possibility that the
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visual stimulus could evoke representation of motor
actions. These were videos of head turns (Carlin, Rowe,
Kriegeskorte, Thompson, & Calder, 2012) and photos
of hands in rock/paper/scissor pose (Vickery, Chun, &
Lee, 2011).

Analyses pertaining to the coding of auditory informa-
tion included discrimination of the direction of auditory
motion, pitch, loudness, and melody. Analyses pertaining
to the semantic category of sound (e.g., animals vs. tools;
Simanova et al., 2014) or emotion of vocal expression
(Kotz, Kalberlah, Bahlmann, Friederici, & Haynes, 2013)
were also included in our lenient categorization and
excluded from the strict categorization.

Analyses pertaining to the discrimination of task rules
included discrimination of different stimulus–response
mappings (e.g., Bode & Haynes, 2009), intended tasks
(e.g., addition vs. subtraction; Haynes et al., 2007) and
task set (e.g., attend to motion vs. color vs. size; Zhang,
Kriegeskorte, Carlin, & Rowe, 2013). Two analyses were
included in our lenient categorization and excluded from
the strict categorization. One was an analysis that dis-
criminated a dual from single task (Gilbert, 2011), which
was excluded from the strict categorization because of
the obvious confound with difficulty (for discussion,
see Woolgar, Golland, & Bode, 2014; Todd, Nystrom, &
Cohen, 2013), and the other pertained to discrimination
of task set where the stimuli were very similar but not
identical between the two tasks (Li & Yang, 2012).

Analyses pertaining to the discrimination of motor re-
sponses included discrimination of different button
presses and the direction of joystick movement during
response preparation and execution. One analysis that
discriminated between left and right finger tapping
(Carp, Park, Hebrank, Park, & Polk, 2011) was also ex-
cluded from the strict categorization, because it was
not clear whether the side to tap was confounded with
a visual cue. Two further studies were excluded from
our stricter analysis, because it was unclear which of
two possible motor responses was modeled (Colas &
Hsieh, 2014; Huang, Soon, Mullette-Gillman, & Hsieh,
2014).

Analyses

Our first analysis quantified the prevalence of visual,
auditory, rule, and motor information coding in different
brain networks. We focused on Visual, Auditory, and
Motor networks (capitalized to distinguish from visual,
auditory, and motor task features), the frontoparietal
MD network (Fedorenko et al., 2013; Fox et al., 2005;
Duncan & Owen, 2000), and the DMN (Fox et al., 2005;
Raichle et al., 2001). Our definition of the MD network
was taken from the average activation map of Fedorenko
et al. (2013), which is freely available online at imaging.
mrc-cbu.cam.ac.uk/imaging/MDsystem. This map indi-
cates the average activation for high relative to low de-
mand versions of seven tasks including arithmetic, spatial

and verbal working memory, flanker, and Stroop tasks.
Thus, the MD network definition is activation based: It
indexes regions that show a demand-related univariate
increase in activity across tasks. The map is symmetrical
about the midline because data from the two hemispheres
were averaged together in the original paper (Fedorenko
et al., 2013). We used the parcellated map provided on-
line in which the original average activation map was
thresholded at t> 1.5 and then split into anatomical sub-
regions (imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem).
This map includes restricted regions of frontal, parietal,
and occipitotemporal cortices as well as a number of small
subcortical regions. We only included frontal and parietal
regions. The resulting 13 MD regions were located in and
around the left and right anterior inferior frontal sulcus
(aIFS; center of mass [COM] +/−35 47 19, 5.0 cm3),
left and right posterior inferior frontal sulcus (pIFS;
COM +/−40 32 27, 5.7 cm3), left and right anterior insula/
frontal operculum (AI/FO; COM +/−34 19 2, 7.9 cm3),
left and right inferior frontal junction (IFJ; COM +/−44
4 32, 10.1 cm3), left and right premotor cortex (PM; COM
+/−28 −2 56, 9.0 cm3), bilateral ACC/pre-SMA (COM 0
15 46, 18.6 cm3), and left and right intraparietal sulcus
(IPS; COM +/−29 −56 46, 34.0 cm3). Visual, Auditory,
Motor, and DMN networks were taken from the whole-
brain map provided by Power et al. (2011), which par-
titions the brain into networks based on resting state
connectivity. The Visual network consisted of a large
cluster of 182.6 cm3 mm covering the inferior, middle,
and superior occipital, calcarine, lingual and fusiform
gyri, and the cuneus (BA 17, 18, 19, 37), with COM at
MNI coordinates 1 −79 6, plus small clusters in left
BA 37 (0.22 cm3, COM −54 −65 −21) and right inferior
parietal lobe (0.17 cm3, COM 26 −55 55, BA 7). The
Auditory network comprised two large clusters in left
and right superior temporal gyrus and rolandic oper-
culum (23.4 cm3 in each hemisphere, with COM at −51
−22 12 and 52 −19 10, BA 22, 42). The Motor network
comprised a large cluster over the precentral and post-
central gyri, paracentral lobule and SMA (107.7 cm3,
COM 1 −25 60, BA 4, 5, 6), and small clusters in the SMA
at the midline (0.04 cm3, COM 3 7 72) and left and right
middle temporal gyrus (0.07 cm3 with COM −48 −64 11
and 0.02 cm3 with COM 55 −60 6). The DMN comprised
six main clusters around the precuneus (extending to
mid cingulate cortex, 43.9 cm3, COM −1 −51 31, BA 7,
23), ventral ACC, and orbital frontal cortex extending
dorsally along the medial part of the superior frontal gyrus
(107.2 cm3, COM −2 42 24, BA 9, 10, 11, 32), left and
right angular gyrus (12.2 cm3, COM −43 −66 34; 10.6 cm3,
COM 47−62 32; BA 39), and left and right middle temporal
lobe (18.7 cm3, COM−58−17−13; 15.0 cm3, COM58−11
−17, BA 21, 20). To ensure that the networks did not over-
lap, the MD network was masked with each of the other
networks. Therefore, our definition of the MD network
pertained to voxels that were not part of the Visual, Audi-
tory, Motor, or DMN networks. To serve as a comparison
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with our five principal networks, all other voxels in the
voxelwise map of Power et al. (2011), which corresponds
to the anatomical labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002) and excludes the cerebellum, ventricles, and
large white matter tracts, were considered as a residual,
Other network. Definitions of the five principal networks
are depicted in Figure 1.
For each of our task features, we counted the number

of decoding peaks that were reported in each of our six
networks, including Other (any decoding peaks reported
using TAL coordinates were converted to MNI152 space
using tal2mni; imaging.mrc-cbu.cam.ac.uk/downloads/
MNI2tal/tal2mni.m). To visualize these data, for each task
feature and network, we divided the relevant tally by the
number of reported analyses for that task feature and the
volume of the network and plotted them on a stacked
bar chart. We visualized the data from the lenient and
strict categorization separately. Using data from the strict
categorization, we then carried out a series of chi-square
analyses to test for statistical differences in the distri-
bution of information coding across the networks. First,
we carried out a one-way chi-square analysis on the total
number of decoding peaks in each network. For this, the
observed values were the raw numbers of decoding
peaks (across all task features) reported in each network,
and the expected values were set proportional to the
volume of each network. This analysis tests whether
the distribution of information coding between the
networks is predicted by network volume. Second, we
carried out a chi-square test of independence to assess
whether the distribution of information about each task
feature (visual, auditory, motor, and rule decoding

points) was independent of network (MD, Visual, Audi-
tory, Motor, DMN, and Other). Finally, where significant
effects were found in these first two analyses, we carried
out a series of post hoc analyses considering each task
feature and region separately to clarify the basis for the
effect. For each task feature separately, we compared
the distribution of observed coding (tally of decoding
points in each network) to that predicted by the relative
volumes of the six networks. This was done using chi-
square (visual and rule information) or the equivalent
exact goodness of fit multinomial test for situations where
>20% of expected values were <5 (motor and auditory
information; implemented in R version 3.2.2 (Team,
2015) using the XNomial package (Engels, 2014)). Finally
we asked whether the tally of observed coding in each
of the five principal networks separately was greater
than that in Other, using a one-way chi-square test or a
one-tailed exact binomial test where any expected value
was <5.

Our second analysis concerned subdivisions within
the MD network. Although the observation of the MD
activation pattern in response to many kinds of demand
emphasizes the similarity of their response, we do expect
that there will be some functional differences between
the different regions (e.g., Fedorenko et al., 2013). To
explore this, we first carried out a one-way chi-square
comparing the total number of decoding peaks reported
in the seven different MD regions (aIFS, pIFS, AI/FO, IFJ,
PM, ACC/pre-SMA, IPS; data pooled over hemispheres).
Next, we divided the MD regions into two subnetworks:
a frontoparietal (FP) subnetwork, comprising the IPS,
IFJ, and pIFS MD regions, and a cingulo-opercular (CO)

Figure 1. Number of significant decoding points reported in each network, after correcting for the number of analyses examining coding of each
task feature and network volume. Asterisks indicate significance of chi-square or exact binomial goodness of fit tests examining whether there
was more coding in each principal network compared with Other for all peaks (above bars) or for each task feature separately (asterisks on colored
bar segments). Statistical testing was carried out for the strict categorization data only. *p < .05, **p < .01, ***p < .00001.
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subnetwork comprising ACC/pre-SMA, AI/FO, and aIFS
MD regions (Power & Petersen, 2013; Power et al.,
2011; Dosenbach et al., 2007). We carried out one-way
chi-square test comparing the total number of decoding
peaks reported in the two subnetworks to each other and
to coding in Other. We again used chi-square or the
equivalent exact test (Freeman & Halton, 1951) to test
for independence between subnetwork and task feature
and to compare coding of each feature between the two
subnetworks. Statistical testing was again carried out for
the “strict” categorization data only.

RESULTS

We summarized 100 independent decoding analyses,
reported in 57 published papers, that isolated the multi-
voxel representation of a single one of the following task
features: visual and auditory stimuli, task rules, or motor
output. First, we compared information coding in each of
our five a priori networks of interest, with Other included
as a baseline. The data, shown in Figure 1, suggest a
highly structured distribution. For data from the strict
categorization (Figure 1B), we used a series of chi-square
analyses and exact tests to examine the statistical differ-
ences between networks. First we asked whether there
was more decoding in some networks compared with
others, over and above the differences expected due to
variation in network volume (see Methods). Indeed, the
total number of decoding peaks varied significantly be-
tween the six networks even after network volume was
accounted for (χ2 (5, n = 365) = 157.16, p < .00001).
Second, we asked whether there was a relationship be-
tween the distribution of coding of the different task fea-
tures and the different brain networks. This chi-square
test of independence was also highly significant (χ2 (15,
n = 365) = 172.34, p < .00001), indicating a significant
relationship between task feature and brain network.
We carried out a series of post hoc analyses to clarify
the basis for these effects. For this, we considered each
task feature separately and compared the number of re-
ported points to the number that would be expected
based on the relative volumes of the six networks. For
all four task features separately, coding differed signifi-
cantly between networks (visual information: χ2 (5, n =
153) = 188.37, p < .00001; auditory information: exact
test p < .00001; rule information: χ2 (5, n = 151) =
29.47, p = .00002; motor information: exact test p <
.00001). For visual information, compared with expec-
tations based on network volume, coding in the Visual
(χ2 (1, n = 84) = 140.71, p < .00001), Motor (exact test,
p= .015), and MD (χ2 (1, n= 77) = 119.65, p< .00001)
networks was significantly more frequent than coding in
Other. No such difference was seen for visual informa-
tion coding in the DMN and Auditory networks ( ps >
.13). Auditory information coding was reported more
frequently in the Auditory (exact test, p < .00001) and
MD (exact test, p = .043) networks compared with

Other (for DMN, Motor, and Visual networks compared
with Other, ps > .68). Rule information coding was re-
ported more frequently in the MD (χ2 (1, n = 99) =
21.06, p < .00001) and Visual (χ2 (1, n = 89) = 5.02,
p = .03) networks compared with Other (equivalent
tests for DMN, Auditory and Motor networks, ps >
.09). Motor information was coded more frequently in
the Motor (exact test, p < .00001), MD (exact test, p =
.008), and DMN (exact test, p = .019) networks com-
pared with Other (equivalent tests for Visual and Audi-
tory networks, ps > .61). Therefore, relative to Other,
the MD network showed more coding of all four task
features (visual, auditory, rule, and motor), the DMN
showed more coding of motor information, the Motor
network showed more coding of motor and visual infor-
mation, the Visual network showed more coding of visual
and rule information, and the Auditory network showed
more coding of auditory information.
Our second series of analyses concerned subdivisions

within the MD network, again using data from the strict
categorization. First, we looked at total number of decod-
ing peaks in each region, combining across task feature
(visual, auditory, motor, rule). There was no evidence for
a difference between the seven MD regions, again com-
pared with expectations based on region volume (data
collapsed over hemisphere, χ2 (6, n = 93) = 5.77, p =
.45). Second, we asked whether there were differences
in the reported representational content of two putative
subnetworks, an FP subnetwork (IPS, IFJ, and pIFS), pro-
posed to support transient control processes, and a CO
network (ACC/pre-SMA, AI/FO, and aIFS), proposed to
support sustained control processes (Dosenbach et al.,
2007). The data are shown in Figure 2. There was no
evidence for a difference in the frequency of information
coding in these two subnetworks (χ2 (1, n = 84) = 2.62,
p = .11), with encoding in both subnetworks more fre-
quent than encoding in Other (FP: χ2 (1, n = 178) =
124.28, p < .00001; CO: χ2 (1, n = 132) = 23.99, p <
.00001). Interestingly, however, there was a significant
relationship between subnetwork and information type
(Freeman–Halton extension of Fisher’s exact test, p =
.002), suggesting that the two networks had different
representational profiles. The dissociation was driven by
more coding of visual information in FP than CO (χ2 (1,
n = 41) = 6.65, p = .010) and more coding of motor
information in CO than in FP (two-tailed binomial exact
test, 0% of motor points in FP was less than the 69.2%
predicted based on the two subnetwork volumes, p =
.009). Visual points were reported in all FP regions as well
as in ACC–pre-SMA and AI/FO, and motor points were
reported in ACC/pre-SMA and aIFS. There was no differ-
ence in coding between the subnetworks for rule or
auditory information, ps > .48. The pattern of results did
not change if ROIs were restricted to gray matter or if
coordinates reported in TAL were converted to MNI using
the tal2icbm_spm routine provided with GingerALE (www.
brainmap.org/icbm2tal/ ) instead of tal2mni.
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To aid the reader in visualizing the data, we generated
a whole-brain decoding map from the lenient categori-
zation. For this, the peak decoding coordinates reported
in each analysis were projected onto a single template
brain, smoothed (15 FWHM Guassian kernel) and thresh-
olded (≥3 times the height of a single peak). The result-
ing map indicates regions most commonly identified as
making task-relevant distinctions in the literature. As can
be seen in Figure 3, regions of maximum reported de-
coding corresponded well with our a priori networks.
Information coding was frequently reported in the MD

network (bilateral ACC/pre-SMA, right AI/FO, left IFJ, left
and right aIFS, right pIFS, left PM, and left and right IPS),
Visual network (BA 18/19) extending to inferior temporal
cortex, Auditory network (left and right superior temporal
gyrus), and the Motor network (left and right precentral
and postcentral gyri). Additional small regions of frequent
decoding were found in the dorsal part of the right middle
frontal gyrus (BA 9/8), the ventral part of the right inferior
frontal gyrus (BA 45/47), a ventral part of the left pre-
cuneus (BA 30), and the right temporal parietal junction
(BA 21). We similarly generated whole-brain decoding

Figure 2. Number of significant
decoding points reported in
each MD subnetwork after
correcting for the number
of analyses examining coding
of each task feature and
subnetwork volume. Asterisks
indicate significance of
chi-square or exact binomial
goodness of fit tests examining
whether there was more
coding in each subnetwork
compared with Other for all
peaks (above bars) or for
each task feature separately
(asterisks on colored bar
segments) and comparing
coding of each task feature
between the two subnetworks
(asterisks above colored
horizontal lines). Statistical
testing was carried out for
the strict categorization data
only. *p < .05, **p < .01,
***p < .00001.

Figure 3. Brain regions where significant decoding of visual, auditory, rule, and motor information was most frequently reported in the literature.
Areas of maximal decoding are shown rendered on left and right hemisphere and on the medial surface (x = −4). To create this visualization,
all the decoding peaks were projected onto a single template brain, smoothed, and summed, and the resulting image was thresholded at 3 times
the maximum height of a single smoothed peak.
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maps for each task feature separately (using a lower
threshold of 1.2 * single peak height to account for the
smaller number of data points in this visualization). As
can be seen in Figure 4, the result was a reassuring pic-
ture in which visual information was predominantly
found to be encoded in the visual cortex, with some
additional contribution from frontal and parietal lobes,
auditory information was predominantly reported in
the auditory cortex, and motor information was primarily
coded in motor cortices. Rule was the most diffusely
coded task feature, represented in frontal, parietal, and
occipitotemporal cortices. These maps did not change
markedly if the strict categorization data were used
instead.

DISCUSSION

The human brain is a massively parallel complex system.
In the past three decades, PET and fMRI technologies
have allowed us to probe the function of different parts
of this system by assessing what regions are active in dif-
ferent tasks. In the last decade, MVPA has taken this en-
deavor to a new level, enabling us to study what aspects
of stimuli, rules, and responses are discriminated in the
local pattern of multivoxel activation in different brain
regions. In this paper, we summarized the current state
of the literature, drawing on 100 independent analyses,
reported in 57 published papers, to describe the distribu-
tion of visual, auditory, rule, and motor information pro-

cessing in the brain. The result is a balanced view of brain
modularity and flexibility. Sensory and motor networks
predominantly coded information from their own do-
main, whereas the frontoparietal MD network coded all
the different task features we examined. The contribution
of the DMN and voxels elsewhere was minor.
The observation that the MD network codes informa-

tion from multiple domains fits well with an adaptive
view of this system. Consistent with the observation of
similar frontoparietal activity across many tasks (e.g.,
Yeo et al., 2014; Fedorenko et al., 2013; Duncan & Owen,
2000; Dosenbach et al., 2006), the proposal is that these
regions adapt their function as needed for the task in
hand (Duncan, 2001, 2010). To support goal-directed be-
havior in different circumstances, they are proposed to
be capable of encoding a range of different types of infor-
mation, including the details of auditory and visual stim-
uli that are relevant to the current cognitive operation
(Duncan, 2010). Support comes from single unit record-
ings, in which the firing rates of prefrontal and parietal
cells have been shown to code task rules (e.g., Sigala,
Kusunoki, Nimmo-Smith, Gaffan, & Duncan, 2008; Wallis,
Anderson, & Miller, 2001; White & Wise, 1999), behav-
ioral responses (e.g., Asaad, Rainer, & Miller, 1998; Niki &
Watanabe, 1976), auditory stimuli (e.g., Romanski, 2007;
Azumo & Suzuki, 1984), and visual stimuli (e.g., Freedman &
Assad, 2006; Freedman, Riesenhuber, Poggio, & Miller, 2001;
Hoshi, Shima, & Tanji, 1998; Rao, Rainer, & Miller, 1997).
Further support for an adaptive view of this system comes

Figure 4. Brain regions
where significant decoding
of (A) visual, (B) auditory,
(C) rule, and (D) motor
information was most
frequently reported in the
literature. To create this
visualization, the decoding
peaks for each task feature
(lenient categorization)
were projected onto a single
template brain, smoothed,
and summed, and the
resulting image was
thresholded at 1.2 times
the maximum height of a
single smoothed peak.
(E) Maps from A to D
flattened and overlaid at
50% transparency.
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from the observation that the responses of single units
in prefrontal and parietal regions adjust to code different
information over the course of single trials (Kadohisa
et al., 2013; Stokes et al., 2013; Rao et al., 1997) and make
different stimulus distinctions in different task contexts
(Freedman & Assad, 2006; Freedman et al., 2001). Accord-
ingly, in human functional imaging, the strength of multi-
voxel codes in the MD system has been found to adjust
according to task requirements, with perceptual discrimi-
nation increasing under conditions of high perceptual
demand (Woolgar, Williams, & Rich, 2015; Woolgar,
Hampshire, Thompson, & Duncan, 2011), rule discrimi-
nation increasing when rules are more complex (Woolgar,
Afshar, Williams, & Rich, 2015), and a greater represen-
tation of visual objects that are at the focus of attention
(Woolgar, Williams, et al., 2015). These regions are also
thought to make qualitatively different distinctions be-
tween visual stimuli in different task contexts (Harel,
Kravitz, & Baker, 2014). The data presented here empha-
size the extent of flexibility in these regions, suggesting
they are capable of representing task relevant information
from visual, auditory, rule, and motor domains.
Although each of the individual MD regions are known

to respond to a wide range of cognitive demands (e.g.,
Fedorenko et al., 2013), it nonetheless seems likely that
the different regions will support somewhat different
cognitive functions. Several organizational schemes have
been proposed for the pFC, including a rostrocaudal axis
along which different regions support progressively more
abstract control processes (Badre & D’Esposito, 2007;
Koechlin & Summerfield, 2007), ventral and dorsal seg-
regation based on the modality of the information being
processed (Goldman-Rakic, 1998), different types of
attentional orienting (Corbetta & Shulman, 2002) or what
the information will be used for (O’Reilly, 2010), and a
medial/ lateral segregation based on conflict monitoring
and task set implementation (Botvinick, 2008), although
some of these accounts have been challenged experi-
mentally (Crittenden & Duncan, 2014; Grinband et al.,
2011). One prominent subdivision of the MD system
draws a distinction between an FP subnetwork compris-
ing the MD regions on the dorsal lateral prefrontal surface
and the IPS and a CO subnetwork comprising cortex
around ACC/pre-SMA, AI/FO, and aIFS. This distinction
is born out in analysis of resting state connectivity (Power
& Petersen, 2013; Power et al., 2011), and the two sub-
networks have been ascribed various different functions,
for example, supporting transient versus sustained con-
trol processes (Power & Petersen, 2013; Dosenbach
et al., 2007), “executive” versus “salience” systems (Seeley
et al., 2007), and transformation versus maintenance of
information (Hampshire, Highfield, Parkin, & Owen,
2012). In our data, there was no evidence for differences
in the frequency with which information coding was
reported in the seven (bilateral) MD regions separately.
Subdividing the MD system into FP and CO subnetworks
also resulted in comparable levels of coding overall in

each subnetwork. However, there was a significant dif-
ference in the profile of task features coded by these
two subnetworks, with more coding of visual information
in FP than in CO and more coding of motor information
in CO than in FP. In CO, motor points were reported
both in ACC/pre-SMA region known to support motor
function and also in the aIFS. Clarification of the basis
of the subnetwork coding difference and how we should
interpret it will require further work.

Visual, auditory, and motor regions principally coded
information from their own domain. However, the visual
and motor networks also showed some domain general-
ity, with coding of other task features. Particularly salient
was the overlap between the maps for visual and rule in-
formation in the visual cortex (Figure 4E). In our review,
it was difficult to completely rule out confounds between
domains. For example, task rules were usually cued visu-
ally, meaning that the visual properties of the cues, as
much as representation of the abstract rules per se, could
drive discrimination between rules. However, there are
some cases of rule coding in the visual cortex where this
explanation is not sufficient. For example, we previously
reported that discrimination between two stimulus–
response mapping rules in the visual cortex generalizes
over the two visual stimuli used to cue each rule (Woolgar,
Thompson, et al., 2011). Similarly, Zhang et al. (2013)
found that rule discrimination in the calcarine sulcus
generalized over externally cued and internally chosen
rules, and Soon, Namburi, and Chee (2013) reported rule
discrimination in the visual cortex when rules were cued
with an auditory cue. In some cases, rule discrimination
in the visual cortex may reflect different preparatory
signals, for example, if the two rules direct attention to
different visual features (e.g., Zhang et al., 2013) or object
categories (e.g., Soon et al., 2013), but this is not always
the case: the two rules of Woolgar, Thompson, et al.
(2011) required attention to the same features of identi-
cal visual stimuli. Intriguingly, both rule and response
coding has previously been reported in the firing rates of
single units in V4 of the macaque visual cortex (Mirabella
et al., 2007).

In the motor cortex, the majority of reported coding
was for discrimination between motor movements, but
this region also showed appreciable coding of visual
stimuli. Interestingly, population level responses in the
primary motor cortex of the macaque have been reported
to encode visual stimuli and stimulus–response mapping
rules (e.g., Riehle, Kornblum, & Requin, 1994, 1997;
Zhang, Riehle, Requin, & Kornblum, 1997). In the MVPA
papers we studied, it was often difficult to say precisely
what aspects of a stimulus underpinned a given multi-
voxel discrimination. For example, visual presentation of
a familiar object might evoke representation of its asso-
ciated properties in other sensory domains (e.g., implied
somatosensory properties when watching manual explo-
ration of objects; Kaplan &Meyer, 2012). We excluded any
papers in which there were obvious associations between
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our task features, and in our stricter analysis, we also
excluded any studies in which higher-level features such
as semantic category differed between decoded items or
cases where items might evoke representations of asso-
ciated motor actions. The remaining points of visual dis-
crimination in the motor cortex were for discrimination
between Gabor patches differing in color and spatial fre-
quency (Pollmann, Zinke, Baumgartner, Geringswald, &
Hanke, 2014), the spatial location of a target (Kalberlah,
Chen, Heinzle, & Haynes, 2011), radial versus concentric
glass patterns (Mayhew & Kourtzi, 2013; Mayhew, Li,
Storrar, Tsvetanov, & Kourtzi, 2010), and between two
abstract shapes cuing the same rule (Reverberi, Gorgen,
& Haynes, 2012a). In one study, radial and concentric
patterns had been associated with differential button
presses during training, whereas during scanning, par-
ticipants performed an unrelated task (Mayhew et al.,
2010), and in all other cases, any button press responses
given by participants were orthogonal (Mayhew & Kourtzi,
2013) or unrelated (Pollmann et al., 2014; Reverberi et al.,
2012a; Kalberlah et al., 2011; Mayhew et al., 2010) to the
visual discrimination.

A few of the studies we included reported multivoxel
coding in the DMN. In some cases, the reported discrim-
ination in the DMN reflected participant intentions, such
as coding of internally selected task choices (Momennejad
& Haynes, 2012; Vickery et al., 2011; Haynes et al., 2007)
or externally instructed task rules (Soon et al., 2013; Nee
& Brown, 2012) during preparatory periods, the time
delay after which participants will self-initiate a switch
(Momennejad & Haynes, 2012), and the button which
the participant intends to press (Soon, Brass, Heinze, &
Haynes, 2008). In other cases, it reflected aspects of active
tasks including current rule (Zhang et al., 2013; Reverberi
et al., 2012a; Reverberi, Gorgen, & Haynes, 2012b) and
stimulus (e.g., orientation of a Gabor (Kahnt, Grueschow,
Speck, & Haynes, 2011), concentric versus radial glass
patterns (Mayhew & Kourtzi, 2013), and harmonicity of
a sound (Giordano, McAdams, Zatorre, Kriegeskorte, &
Belin, 2013). Interestingly, this network has recently been
reported to show activation during task switching as well
as multivoxel discrimination between the tasks being
switched to (Crittenden, Mitchell, & Duncan, 2015). Addi-
tionally, we recently reported multivoxel discrimination
between stimulus–response mapping rules in the pre-
cuneus, overlapping a major node of the DMN, during an
active stimulus–response task (Woolgar, Afshar, et al.,
2015). Those data suggest a role for DMN that is qualita-
tively different from the internally driven activities such
as mind wandering and introspection with which this
network is more typically associated (e.g., Buckner,
Andrews-Hanna, & Schacter, 2008).

There was more coding of motor information in the
DMN than in Other, but all five DMN motor coding
points came from a single study (Soon et al., 2008). Four
of these points corresponded to discriminatory activa-
tion in preparation of a left versus right button press at

a time point before the participant had indicated their
conscious intention to press a button, and the remaining
point was for response preparation when participants
were cued to make a choice. There were no motor cod-
ing points in the DMN during button press execution.
An important challenge for MVPA is to account for var-

iables that differ between conditions on an individual par-
ticipant basis, such as differences in RT (Woolgar et al.,
2014; Todd et al., 2013). Because MVPA is usually carried
out at the level of individual participants, with a direction-
less summary statistic (e.g., classification accuracy) taken
to the second level, any effect of difficulty, effort, atten-
tion, time on task, trial order (etc.) will not average out at
the group level. This may be a particular concern in re-
gions such as the MD and DMN networks, which are
known to show different overall activity levels according
to task demand. It is difficult to estimate the extent to
which these factors have contributed to the data analyzed
here. Some of the included studies matched their condi-
tions for difficulty (e.g., Zhang et al., 2013), explicitly ac-
counted for differences in RT in their analysis (e.g.,
Woolgar, Thompson, et al., 2011), or used designs in
which difficulty was unlikely to artifactually drive coding
(e.g., passive viewing, Kaplan & Meyer, 2012), but many
did not. Other studies sought to account for univariate
effects of difficulty that could drive multivariate results,
for example, by normalizing the multivoxel patterns to re-
move overall activation differences between conditions at
the level of individual participants (e.g., Gilbert, 2011).
However, because the effect of difficulty would not nec-
essarily manifest as an overall activation difference, this
could still fail to remove the effect of difficulty on decod-
ing. In our stricter analysis, we excluded analyses in
which there was an obvious difference in difficulty be-
tween discriminated conditions, but most studies did
not report whether there were any differences between
conditions on an individual participant basis. Note,
though, that we have previously examined the extent to
which trial by trial differences in RT contribute to decod-
ing in empirical data and found the contribution to be
minor (Crittenden et al., 2015; Erez & Duncan, 2015;
Woolgar et al., 2014).
We summarized 100 independent analyses, reported in

57 published papers, that isolated the multivoxel repre-
sentation of visual and auditory sensory input, task rules,
or motor output. The results confirm the power of the
MVPA method, with predominant coding of visual, audi-
tory, and response distinctions in the expected sensory
and motor regions. Outside sensory and motor areas,
the results are also structured, with a specific network
of frontal and parietal regions involved in coding several
different types of information. Consistent with the obser-
vation of similar frontoparietal activity across many tasks
and the suggestion that neurons of these regions adapt
their function as needed for current behavior (Duncan
2001), frontoparietal cortex codes information from across
sensory and task domains.
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Dear Eva 
 

UREC 15/45: Filtering irrelevant information: A concurrent fMRI-TMS 
study investigating the nature of top down signals from the pre-
frontal cortex. Provisional opinion 
 
Thank you for the response (email dated 27 October 2015, including attachments, refers) 
addressing the issues raised by the UREC Sub-committee at its September 2015 meeting. On the 
basis of the revised documentation, I can confirm that the Chair is pleased to confirm a 
favourable ethical opinion. 
 
Please note that the Committee will monitor the progress of projects to which it has given 
favourable ethical opinion approximately one year after such agreement, and then on a regular 
basis until its completion. 
 
Please also find attached Safety Note 59: Incident Reporting in Human Interventional Studies at 
the University of Reading, to be followed should there be an incident arising from the conduct 
of this research. 
 
The University Board for Research and Innovation has also asked that recipients of favourable 
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http://www.reading.ac.uk/internal/res/QualityAssuranceInResearch/reas-RSqar.aspx. 
 
 
Yours sincerely 
 
 
 
Dr M J Proven 
Coordinator for Quality Assurance in Research (UREC Secretary) 
cc: Dr John Wright (Chair); Professor Laurie Butler (Head of School) 

Dr Eva Feredoes 
School of Psychology and Clinical 
Language Sciences 
University of Reading 
RG6 6AL  
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1.1  

Project Title:     Filtering irrelevant information: A concurrent fMRI-TMS study investigating the nature of 
top down signals from prefrontal cortex 
Date of Submission:                 Proposed start date:  24.09.15            Proposed End Date: 24.09.17 

 
1.2 

Principal Investigator: Eva Feredoes 
Office room number:     1S15                          Internal telephone: x5011 
Email address:   e.a.feredoes@reading.ac.uk        Alternative contact telephone: 07968737685 
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Name: Jade Jackson Student   Institution/Department: Macquarie University, Dept. of Cognitive Science 
Email: jade.jackson@mq.edu.au 
 

…. 
1.3 

Project Submission Declaration 
 
I confirm that to the best of my knowledge I have made known all information relevant to the Research Ethics 
Committee and I undertake to inform the Committee of any such information which subsequently becomes 
available whether before or after the research has begun. 
 
I understand that it is a legal requirement that both staff and students undergo Criminal Records Checks when in a 
position of trust (i.e. when working with children or vulnerable adults).  
 
I confirm that if this project is an interventional study, a list of names and contact details of the subjects in this 
project will be compiled and that this, together with a copy of the Consent Form, will be retained within the 
School for a minimum of five years after the date that the project is completed. 
 

Signed                       (Principal Investigator)             Date: 20/08/15 
                         (Student)                                    Date: 20/08/15 
                      
1.4  

University Research Ethics Committee Applications 
Projects expected to require review by the University Research Ethics Committee (research involving NHS 
patients, Social Services clients, research involving potential for distress to participants) must be reviewed 
by the Chair of the School Ethics Committee or the Head of School before submission. 
 

         
 


