
Millimeter Wave Beam Alignment Using
Deterministic Compressive Sensing

By

Erfan Khordad

A thesis submitted to Macquarie University

for the degree of Master of Research

Department of Engineering

June 2019



ii

Except where acknowledged in the customary manner, the

material presented in this thesis is, to the best of my knowl-

edge, original and has not been submitted in whole or part

for a degree in any university.

Erfan Khordad



Acknowledgements

I would like to express my sincere thanks to my supervisor, Prof. Stephen V. Hanly and my co-

supervisor Prof. Iain B. Collings for their patience, motivation and continuous support of my research.

I amalso grateful that I have conductedmy research under their supervision and expert guidance leading

to writing this dissertation.



Abstract

Designing the beamforming vectors for channel estimation in mmWave systems is challenging because

of the narrow beams required and the small number of useful directions. The state of the art employs

random or structured random beamforming to leverage compressive sensing techniques to solve this

problem using a small number of measurements. In this dissertation, inspired by existing deterministic

sensing matrices from the theory of compressive sensing, two novel deterministic compressive sensing

approaches are proposed for channel estimation in mmWave systems. In the proposed approaches, the

Kronecker product or row-by-row Kronecker product of existing deterministic sensing matrices are

used to design the structure of pilot beam patterns for the beam alignment process. These approaches

not only result in significant overhead reduction, but also present improvement in terms of performance

for some scenarios.
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Chapter 1

Introduction

The next generation of wireless cellular networks (5G) aim to greatly increase the number of connected

users and at the same time boost per user-data rates by orders of magnitude. It also aims to deliver

new low latency services for machine to machine communications and improved spectral and energy

efficiency for future networks. Previous generations of wireless systems have tried to cope with such

demands; however, 5G’s precursors were not sufficient to realize new concepts and ideas such as the

Internet of Things and smart cities. In this regard, there have been extensive studies considering

challenges ahead for 5G, and there are still many issues to be dealt with.

The main focus for developing 5G has been on five major technologies including device-centric

architectures, smarter devices, machine-to-machine communications, massive multiple input multiple

output (MIMO) and millimeter wave [1].

Device-centric architectures bypass connections to base stations (BSs) and allow direct data

transfers between devices without intermediate nodes; therefore, they will change the traditional archi-

tecture. Device-centric architectures makes devices more active to have participation in exchanging

data in the network rather than just being receive nodes. Device-to-Device (D2D) connections and

multi-hop communications make up device-centric architectures. In D2D connections, devices act

as a bridge to deliver coverage to other devices without following the traditional architecture where

a link is established through a BS, uplink and downlink connections. This can reduce latency, avoid

possibly strong pathloss in communicating with BS, and prevent waste of power in uplink and down-

link directions. Devices can also act as relays in a multi-hop manner over long distances between

BSs and in non-line of sight conditions, resulting in less pathloss and hence less energy consumption

as compared to single-hop communications. Therefore, device-centric communications can have a

significant impact upon future networks [2].

Smarter devices have a crucial role in realizing 5G concepts [1]. Nearby users can wirelessly

exchange digital content through their devices. Managing such connection by the infrastructure side
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might cause a waste of signalling resources and power in uplink and downlink. This shows the

importance of upgrading devices to be able to participate in D2D communications. In addition,

devices need to be more compatible with data processing and storage in cloud-based procedures so as

to use the high volume of memory and processing resources shared in the cloud.

Machine-to-machine (M2M) communications is defined as exchanging information or communi-

cating among machines operating as a network with low human involvement. There are some major

challenges for M2M communications including delivering network coverage to a large number of

low-rate devices, maintaining a minimum data rate in almost all conditions and transferring data with

very low latency [1]. M2M communications is established for a wide variety of purposes such as

measurements in industry or cooperating between sensors. The ideas of D2D and M2M might seem

analogous at first glance. D2D is more associated with communications and the fact that the data

should be directly exchanged among devices without BSs or intermediate nodes involvement. M2M

is more associated with the application. In M2M, machines collaborate with each other in order

to work as a team and to pursue a common objective. They might use access points or multi-hop

communications across the wireless network to be connected to each other.

Massive MIMO is the idea of increasing the number of antennas by more than an order of

magnitude in wireless systems exploiting multiple antennas at transceivers [3]. This technology has

enormous potential to pave the road for 5G requirements owing to high spectral efficiency, nearly flat

channel responses because of decreasing small-scale effects as a result of large number of channel

measurements, and simple design of transceivers due to near orthogonality of the channels between

each BS and users. In other words, massive MIMO is one of the key components in fulfilling 5G

requirements. There are some major challenges for massive MIMO including pilot contamination,

overhead reduction, antenna correlations and coupled measurements, and millimeter wave massive

MIMO [3].

Millimeter Wave (mmWave) is another key component, providing the required spectrum for

5G [1][3]. Conventional wireless systems have operated at microwave frequencies from several

hundred MHz to a few GHz with wavelengths in the range of a few centimeters up to about a meter.

This spectrum is now quite congested and there is a need for more bandwidth. One of the promising

solutions is using mmWave frequencies for communications systems to satisfy the demand for more

bandwidth. Challenges regarding mmWave systems such as propagation-related issues, efficient

beamforming designs and channel characterization should be addressed to take full advantage of

mmWave frequencies. This thesis focuses on challenges and signal processing problems concerning
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mmWave systems.

1.1 mmWave Systems

One of the potential solutions to provide a large amount of bandwidth is utilizing mmWave frequencies

with the wavelength between 1 millimeter to 10 millimeters, ranging from 30 to 300 GHz. Some

considerations in the past claimed that employing mmWave might be impractical owing to adverse

propagation characteristics of mmWave signals. However, in recent years, there has been much

progress in mmWave circuit design resulting in more cost- and power-effective communications

devices. In fact, high frequency electronics allows new signal processing techniques (such as discussed

in this thesis) to help overcome the challenges of the mmWave channels [3].

Propagation characteristics related to the nature of mmWaves are now the major challenge and

pose difficulties including pathloss and attenuation owing to rain, foliage and atmospheric absorption.

Pathloss increases with the frequency squared; thus, increasing the carrier frequency by an order of

magnitude for example from 3 to 30 GHz, results in 20 dB power loss without regard to the distance

between transmitter and receiver [3]. Oxygen absorption or heavy rain can cause attenuation on the

order of 10 to 20 dB per Km. Small cells with small radii ranging from 50 to 200 meters are envisaged

for cellular structures [4]. For such small cells, this attenuation would be only a few dB, which is less

significant. In fact, this absorbtion and pathloss might be favorable owing to the fact that it reduces the

interference from other BSs. On the other hand, mmWave signals are very sensitive to blockages since

they show more specular propagations and low diffraction in comparison to microwave frequencies.

As such, a link established by mmWave signals may be completely disconnected due to obstacles [5].

Hardware limitations including high cost and power consumption of analog/digital signal devices,

expensive Radio Frequency (RF) chains, and difficulty of implementing a full RF chain make use

of digital baseband processing infeasible for every antenna element. An RF chain for each antenna

and digital baseband processing are used in traditional MIMO systems, but it is not power- and cost-

efficient to use such an approach in mmWave sytems owing to the large number of antenna elements

required at mmWave frequencies [6][7].

The key element addressing the propagation issues and providing high gains and improved signal-

to-noise ratios (SNRs) in mmWave systems is employing directional beamforming generated by the

aid of large antenna arrays. In fact, since mmWave systems employ small wavelength, a large number

of antenna elements can be compacted in a small size in order to boost array gain and help overcome
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Figure 1.1: Measurements of propagation loss conducted in [9].

pathloss. In other words, mmWave signals do not bring about any increased pathloss, providing that

physical antenna size is kept constant and directional transmissions are deployed [4][8][9]. To verify

this, one can refer to measurements conducted in [9]. A patch antenna and an array antenna of the same

physical aperture size which, respectively, operate in 3 and 30 GHz were used in these measurements

as shown in Fig. 1.1. As seen, the patch antenna (3GHz) or the array antenna (30GHz) used at the

receiver side both result in the same amount of propagation loss. Also, employing array antennas at

the transmitter and receiver decreases the propagation loss and increases the receive power by 20 dB

in the scenario considered in [9].

Analog beamforming is a sub-optimal solution to the hardware limitations in mmWave systems.

A single RF chain and a group of phase shifters to adjust the phase of the signal transmitted by

each antenna are employed in this beamforming technique. Sub-optimal performance of the analog

beamforming is due to the fact that amplitudes of the weights applied to the signal by the antennas

are constant and the resolution of phase adjustment is low. Also, the analog beamforming could not

support transmission of multiple data streams owing to using a single RF chain [6][7].

Hybrid analog/digital structures have been employed to make multi-stream transmission possible.

Two different parts constitute the hybrid structures. A large number of phase shifters improve the

antenna array gain and a small number of RF chains are used in order to cancel multiuser interference;

these are employed in analog and digital parts respectively [10].
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Figure 1.2: Resolution bins associated with (a) Doppler-Delay domain (b) Angle domain [14].

1.2 Channel Estimation in mmWave Systems

The physical model for the multipath wireless channel depends nonlinearly on a large number of

parameters including angle of departure (AoD) from the transmitter, angle of arrival (AoA) to the

receiver, Doppler shift and delay. It is a daunting task to estimate and analyze this nonlinear channel

model. In addition, propagation paths in mmWave channels are formed by a small number of clusters,

indicating the sparse structure of mmWave channels [11][12]. To approximate the channel model by

a tractable and linear model and also to exploit the sparsity of mmWave channels, the virtual channel

representation (the beamspace representation) is employed [13][14]. The virtual model is generated

by sampling the space the four parameters generate and by virtue of four-dimensional (4D) Fourier

series. The sampling provides 4D resolution bins associated with different discretized parameters as

illustrated in Fig. 1.2 which divides the four dimensions to two 2D spaces: the Doppler-delay space

and the angle space. In the virtual channel model, each 4D bin has a corresponding value known as a

virtual channel coefficient. All paths lying within a bin are determined by merely one virtual channel

coefficient. The dots in Fig. 1.2 show the paths within the bins. In order to gain more insight, Fig.

1.3 can be considered, showing the angle space for two bins in the Doppler-delay space.

Numerous channel estimation studies assumed an environment with many uniformly-distributed

line of sight and diffuse paths, i.e., rich multipath environment. This means that nearly all bins in the

virtual channel representation contain paths. By way of illustration, this indicates that nearly all bins

in Fig. 1.2 or Fig. 1.3 should contain some dots. There are also many scenarios for which it has been

found that propagation paths tend to form clusters around scatterers[14–17].

For channels including clusters of paths, when the bandwidth, symbol duration or the number of

antennas employed in the system are large, the angle-delay-Doppler sampling rate is large as well, so

the 4D bins become smaller than the space between multipath clusters [14]. As a consequence, the
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Figure 1.3: Angle space for two resolution bins in the Doppler-delay space [14].

number of bins containing the paths belonging to the clusters noticeably decreases and the number

of empty bins significantly increases. Fig. 1.2 and Fig. 1.3 illustrate the case that the bandwidth

or the number of antennas are very large. In other words, out of a large number of virtual channel

coefficients just a few of them have values above an acceptable threshold, showing that the beamspace

representation of a clustered multipath channel is sparse. Since only a few virtual channel coefficients

have significant values, estimating and analyzing the channel narrows down to finding those few

virtual channel coefficients. Otherwise, owing to very large dimensions of MIMO channel matrices,

a plethora of channel gains would be estimated, and it would be a daunting task to do so [18]. In

particular, a mmWave channel is a multipath channel with a small number of clusters, and its virtual

model, owing to large number of antennas, includes only a few significant virtual channel coefficients.

Therefore, the virtual model we have described captures the sparse nature of mmWave channels.

The nonzero virtual channel coefficients correspond to the bins in the 4D space (AoA-AoD-

Doppler-delay), and the pair of the green and red bins linked by arrows in Fig. 1.3 correspond to these

4D bins. The sparsity of the channel is illustrated by both the sparsity in the Doppler-delay projection

(sparse red bins) and the sparsity in the AoA-AoD projection (sparse green bins) [14].

The sparsity of the model representing the mmWave channel arises because there are only a few

significant paths between the BS and user equipments (UEs) in cellular communications operating in

mmWave frequencies. Thus, BSs and UEs need to be aware of the significant paths so as to align

their beams in the direction of those paths. The channel estimation for mmWave systems is finding

the best beam directions resulting in a desirable SNR for the connection, which is also known as beam

alignment (BA). There have been efforts dealing with the channel estimation for mmWave systems in

the literature. In the sequel, we will elaborate on related studies.
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1.2.1 Existing Methods for Channel Estimation in mmWave Systems

A mmWave cellular system with multi-antenna BSs and multi-antenna mobile stations (MSs) is

considered in [6]. Also, hybrid beamforming is incorporated, so the BSs and MSs have multiple

RF chains. A narrowband block-fading model represents the channel between BS and MS in this

network. This channel is, then, expressed in terms of propagation paths, antenna array response

vectors at BS and MS, the complex gains of the paths and the azimuth angles of departure and arrival.

Note that along with considering uniform linear arrays (ULAs), only the azimuth is considered so

two-dimensional beamforming is applied in the horizontal plane.

It is assumed that BS sends equal symbols in successive time slots and theMS also makes measure-

ments in successive time slots in [6]. Due to the sparsity of the mmWave channel, a sparse formulation

for channel estimation is introduced, after quantizing AoA/AoDs. Compressive sensing (CS)-based

methods can be employed for such sparse estimations where the number of nonzero elements of an

unknown vector is known to be small relative to the length of the vector (see chapter 2). An adaptive

CS technique is used in [6] due to the superior performance in low-SNR scenarios which occur in

mmWave systems.

A codebook based on a hybrid analog/digital approach is presented in [6] for constructing the

beamforming vectors applied by BS andMS. The designed codebook is called a hierarchical codebook

and contains several levels or stages. Each of the levels has beamforming vectorswhich generate certain

beamwidths covering specific ranges of angles. These angles are further divided into certain subranges

of angles corresponding to other beamforming vectors in the next level. In each level, compared to

the previous level, a search over a smaller angular space is carried out. The beamforming vectors of

each level are used in updating the channel estimation algorithm. In other words, transceivers first use

wider beams and then, based on the feedback exchanged between them, they refine the beams to finally

find the best beam pair with the desired resolution. It must be pointed out that the codebook proposed

in [6] with its very low complexity has superior performance compared to analog-only beamforming

codebooks due to digital as well as analog processing. It also can be used for ULAs and non-ULAs.

Using the proposed hierarchical codebook, channel estimation is presented for two different cases:

First, for the channel with merely one path, for which an upper bound of the probability of error for the

channel estimation is proposed, and then the method is extended for the case where there are multiple

paths.

Let K be the number by which each angle range is divided in the next level of the codebook

design in [6]. Providing the desired angle resolution for channel estimation is 2π
N , estimation time for
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each path is proportional to K2 logK N [18]. This shows that [6] achieved substantial improvement in

comparison to exhaustive search-based methods for BA problems. However, in order to have a robust

channel estimation for fast channel variations, the speed of this channel estimation should be increased.

In addition, the time delay caused by performing many measurements in high SNR scenarios can be

decreased as done in [18]. Note that in the exhaustive search which is a simple approach for BA,

transceivers use all possible combinations of generated beams to probe the whole angular space in

order to find the best beam pair. This method is particularly favorable since narrow beams can be used

at the transceivers to obtain high SNRs [19].

A fast channel estimation based on overlapped beam patterns is proposed in [18]. When beams

are overlapped, they have intersections in certain angular ranges in the angular space or they cover

a certain angular range simultaneously. Using such beams leads to estimating channels in less time

compared to non-overlapped beam designs, as shown in [18].

Two channel estimation methods are introduced in [18], considering the sparse nature of mmWave

wireless systems and using overlapped beams in the angular domain. The basic assumptions including

the channel model and the structure of arrays in [18] are the same as that of [6].

To develop the first channel estimation method proposed in [18], first the vector of measurements

at the receiver are taken, assuming that the same pilot signal is sent for M time slots by the BS and the

UE makes measurements in a sequence of M time slots. Consequently, using the maximum likelihood

technique, AoA/AoDs are extracted based on the measurements. This method works in a multi-level

manner similar to that of [6]. The fading coefficients corresponding to AoA/AoDs of the best path

are estimated from all the measurements of all hierarchical levels so as to get more accurate values

whereas in [6], these coefficients are based entirely on the measurement of the final level.

Furthermore, a scheme to adaptively estimate the channel, by taking into account the maximum

value of probability of estimation error, is discussed in [18]. A constraint is checked, based on

this algorithm, and if it is not fulfilled, additional measurements will be requested. Satisfying the

constraint is examined after completing measurements in each level dividing the angular space in sub-

ranges. For this technique, a lower bound of the minimum signal-to-energy ratio corresponding to a

definite number of channel measurements is also studied, and it is shown that, for a given probability of

estimation error, utilizing this scheme results in a 6 dB gain for the energy-to-noise ratio in comparison

to the algorithm in [6]. It is worth noting that apart from [18], the temporal correlations between

two channel realizations can be used to improve the BA efficiency, which is called beam tracking or

channel tracking in the literature [20][21].
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From the analytical point of view, a direct comparison between the hierarchical channel estimation

and the exhaustive search is not provided in [18], although some bounds related to the performance

of the proposed approach are derived. Analytical assessment is considered for the two approaches

in [22] to gain more insight, by employing analog beamforming and assuming the same number of

pilot symbols.

Probability of misalignment is used as a performance measure in [22]. A misalignment happens

whenever transceivers cannot estimate the beam pair contributing to the highest channel gain.

Upper and lower bounds of probability of misalignment for hierarchical search are derived in [22]

under the assumption of a single path. It is shown that the upper and lower bounds closely follow each

other when the training sequence is large. Moreover, the misalignment probability for hierarchical and

exhaustive search is studied asymptotically, and the superior performance of the exhaustive search as

compared to hierarchical search in case of large training sequences is shown. It is also interesting that

this result holds for low SNR non-asymptotic cases.

In the next step, it is demonstrated that in low SNR scenarios the exhaustive search has lower mis-

alignment probability than the hierarchical search for multi-path channels and imperfect beamforming

patterns. Nonetheless, both techniques show the same performance for high SNR cases.

In [22], the study is limited to a single user scenario where the BS communicates with only one

user. There is potential to extend misalignment characterization of hierarchical design and exhaustive

search to the case where there exist multiple users in the mmWave system. Also, transceivers in

mmWave systems are capable of generating multiple beams since they use directional beamforming.

In [22], however, the study is focused on single beam transmission. The misalignment probability of

hierarchical design or exhaustive search could be investigated for the scenario where one BS and one

user both have the capability of simultaneously generating multiple beams try to find the best beam

pair.

Beamspace multi-user MIMO (MU-MIMO) [23] or high-dimensional MU-MIMO [24] can be

employed to make use of the full potential of mmWave systems. In this scenario, a BS generates

multiple orthogonal beams and transmits them to multiple users simultaneously, and each user can

generate one or more beams. The misalignment probability of different BA designs could also be

explored for this case. Moreover, the performance of hierarchical designs and exhaustive search in

channel estimation of beamspace MU-MIMO is not clear.

Note that in the above-mentioned studies, i.e. [6] and [18], a set of phase shifters are employed

for the hybrid structures. It would be interesting to compare the effects of phase shifters and antenna
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switches in hybrid beamforming structures for channel estimation of mmWave systems. Generally,

using switches at UEs leads to lower power consumption and lower complexity. However, switch-

based approaches show inferior array gain due to the relatively small number of active antennas equal

to the number of RF chains [25].

A channel estimation for mmWave systems is investigated in [26] using switches in lieu of phase-

shifters in the transceivers’ structures. Also, the sensitivity of a CS-based method exploited in [25] to

the array phase mismatch is studied in [26].

In practice, there are often some uncertainties about the array response including gain and phase

mismatch. Performance of CS-based methods is dependent upon the basis by which the sparse

representation is obtained. Using a priori known basis can cause performance degradation when the

mismatches are considered in the systemmodel [27]. In fact, finding the basis of the sparse channel for

CS-based methods can be a very difficult task when there are array uncertainties; therefore, CS-based

methods might not be effective in such cases.

The channel estimation technique proposed in [26] is not sensitive to mismatches. The presented

approach also has lower complexity in comparison to the CS-based approach presented in [25]. Note

that the proposed approach in [26] can be used for other array structures such as planar arrays since it

is a basis-free design.

In addition, the strong incoherence property for mmWave channels is discussed in [26]. If a matrix

has the strong incoherence property, then with high probability it can be reconstructed with a known

number of uniformly sampled entries and the reconstructed matrix is error-free [28]. In [26], it is

shown that strong coherence property holds for mmWave channels without phase mismatches.

Returning to the exhaustive and hierarchical searches, we now consider multi-user scenarios. The

main disadvantage of the exhaustive search is that it brings about a large training overhead because

of the large number of measurements. The hierarchical search can be employed to reduce the total

number of measurements by performing the search in a closed-loop fashion. However, in multiuser

scenarios, the hierarchical search might not be an efficient approach since it needs to be carried out for

every single user, and the training overhead depends linearly upon the number of users. Employing

the CS tool is a new approach to BA in order to exploit the sparse nature of the mmWave channels.

Non-adaptive CS approaches are specifically useful for multiuser scenarios because each UE can

estimate its own channel separately, which means that growing the number of users leads to no extra

training overhead.

Analyzing the channel estimation problem for a multi-user mmWave system is crucial owing to
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the fact that 5G aims to significantly increase the number of connected users to the network. In the

sequel, some approaches which focus more on multiuser scenarios will be discussed.

Generally, BA methods whose training overhead scales sublinearly with the number of users are

of interest. Considering this fact, all the users are simultaneously trained in [29]. A multi-antenna BS

equipped with some RF chains communicates with a generic multi-antenna mobile station with one

RF chain in [29].

The received matrix at theMS after the training procedure in [29] is formulated in terms of training

signals. Then, by quantizing the AoA/AoDs, using the idea of virtual channel representation [14][13],

the sparse formulation is expressed, where the sparse vector contains path gains associated with

the quantized beam directions. The elements of the sensing matrix are generated based on angles

randomly selected from quantized angle sets, and CS is leveraged to recover the sparse vector. The

orthogonal matching pursuit algorithm discussed in subsection 2.2.2 is employed in [29] due to its

low complexity.

Non-uniformly distributed angle sets are considered in [30], and it is proved that the rows of

the array response matrices resulting from these non-uniform quantized angles are orthogonal. This

orthogonality holds when the number of quantized angles is higher than or equal to the number

of antennas and helps in designing pilot beam patterns and reducing the mutual coherence of the

equivalent sensing matrix in the CS formulation. The mutual coherence of a sensing matrix is given

by the maximum value of all the inner products between any two distinct normalized columns, as

explained in section 2.1.

Pilot beam patterns are designed based on minimizing the total coherence of the equivalent sensing

matrix in [30]. Note that the total coherence, as defined in [30], is the sum of the squared inner products

of any two distinct columns of a sensing matrix. This design includes optimizing the baseband and RF

processors jointly, and since it is hard to do so, just the baseband processors are designed and unitary

matrices are employed as the RF processors. Moreover, the random permutation of the columns of

the matrices used as the RF processors is suggested to improve the performance of the proposed pilot

beam patterns.

Some other CS-based BA methods which are suitable and efficient for multiuser scenarios have

been proposed in [31–34]. These methods rely on the assumption that the instantaneous channel stays

constant during the BA process . In practice, this assumption might not be generally correct since

mmWave systems have large Doppler spread resulting in rapidly changing channels, albeit in dense

mmWave networks line of sight paths which are dominant tend to have only very slowly varying path
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gains [29][35].

Second order statistics of the channel is used in [36] in order to propose a robust method against

the significant variation of the channel. A multiuser scenario where ULAs are deployed at the BS and

users is considered. It is assumed that AoA/AoDs do not significantly vary over the BA period since

the angle coherence time is very much longer than the channel coherence time. The angle coherence

time is the time during which AoA/AoDs of scatterers vary significantly. In order to exploit the

sparsity of the channel, the frequency domain channel matrix is quantized with respect to AoA/AoDs

after presenting the channel and the details of the OFDM signalling employed.

In [36], the BS and UEs generate the same beam patterns for a comb of subcarriers with each

RF chain. The beam patterns are generated based on the pseudo-random BF vectors at the BS and

random BF vectors at the UEs. The BF vectors at the BS and the UEs are the linear combination of the

columns of the discrete Fourier transform (DFT) basis after quantizing the angles. Also, the number

of the narrow beams which are constant during the measurements depends on the SNR before BF.

The BS sends beacon slots each of which is one OFDM symbol and probes the channel using

beamforming vectors selected from the pseudo-random beamforming codebook known by all the

users, during the channel probing process. It is assumed that beacon OFDM symbols are orthogonal

in frequency domain. Each user applies beamforming vectors from its own codebook in the sensing

step. The users, then, estimate the strongest multipath component and send the information of the

strongest multipath component back to the BS. Next, the BS sends an acknowledgement. If an error

occurs during this process and the BS cannot send the correct acknowledgement back to the user, the

user starts the BA process again after a specified time period has elapsed.

The channel estimation in [36] is carried out using the fact that the strong paths are associated

with components of the channel matrix which have large second moment. Therefore, the optimization

problem for the channel estimation is presented in terms of a sparse unknown vector based on the

second moments of the channel matrix components. This convex optimization problem is a non-

negative least squares (NNLS) problem since the unknown vector is non-negative. The unknown

sparse vector in [36], owing to its non-negativity, can be recovered using numerical methods for

NNLS such as the gradient projection without onerous computational complexity.

In conventional BA schemes often there are several rounds in which signals are exchanged between

the BS and users to refine the beams for finding the best beam pair. This is problematic when the

channel changes. The approach proposed in [36] circumvents this problem using second order statistics

and the fact that the angles themselves only change slowly. Also, all the users are simultaneously
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trained using this approach.

After making the measurements in CS-based BA methods, the structure of the resulting sensing

matrix has a key role in reliably reconstructing the sparse vector. It has been shown that if the

components of the sensing matrix are generated based on some distributions such as i.i.d random

Gaussian or Bernoulli, the sparse vector can be recovered with high probability when the number of

measurements is more than a lower bound [37][38]. In [29], the sensing matrix used for the sparse

recovery is obtained based on random BF which is unstructured. The UEs must have access to the BF

codebook deployed by the BS in order to estimate the channel using the CS methods. Therefore, the

BF codebook of the BS must be transmitted to the UEs or stored in them, bringing about signalling or

storage overhead. Also, the number of nonzero elements in the sensing matrix might be large when

employing random BF codebooks, and this increases the computational burden at the UEs. In [36],

the sensing matrix used for the sparse recovery is obtained based on pseudo-random BF codebooks at

the BS and random codebooks at the UEs. So, the UEs can obtain the pseudo-random BS codebooks

in a structured way. Even though this reduces the signalling overhead, the sensing matrix still has

a random structure and it is not guaranteed that a specific realization of the random sensing matrix

works.

A structured random CS method is incorporated in [39] in order to reduce the signalling or storage

overhead resulting from unstructured random BF codebooks at the BS. In [39], a column of the DFT

matrix is selected as a beamformer to generate a beam in the first stage and in the second stage

the beam is spread over the entire angular range using a unimodular sequence. After employing

the notion of virtual channel representation, the sparse formulation based on circulant matrices is

given. The circulant matrices are constructed using the DFT basis and the unimodular sequence.

Employing the circulant matrices lead to a circulant convolution between the virtual representation of

the channel matrix and the circulant matrices, spreading the information of the virtual representation

of the channel uniformly in the angle domain. This process which is based on a CS technique has

comparable recovery performance to that of completely random measurements [40].

A beam discovery technique using the idea of linear block codes is proposed in [41] to reduce the

number of measurements needed for channel estimation. The work in [41] assumes perfect sparsity

where AoA/AoDs are always along the quantized angles; therefore, the number of nonzero values in

the virtual model of the channel is exactly the same as the number of clusters in the mmWave channel.

In channel coding, error syndromes are calculated using the parity check matrix. Then, error patterns

via a look-up table are determined, and finally the codewords are obtained. Likewise, finding the
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positions of clusters in the virtual channel model is similar to finding the error patterns of a codeword

as stated in [41]. So, beam patterns for making the measurements are designed based on the parity

check matrix of linear block codes.

There exist two major challenges in designing suitable training beam patterns for mmWave chan-

nels. Firstly, since the number of antennas tend to be large in mmWave channels, examining all

possible combinations of beam pairs between the BS and UEs would be a daunting task, so reducing

the number of measurements is of interest. Deploying CS methods is a promising solution because of

the sparse structure of the mmWave channels.

Second, making the measurements in the training step should not impose difficulties from signal

processing point of view. Generating BF vectors completely randomly works well with CS methods

in terms of sparse recovery. However, some issues arises by employing random BF codebooks:

1. Owing to the unstructured nature of the random BF employed at the BS, all the random BF

vectors must be signalled to or stored in the UEs. The signalling or storage overhead owing to

this issue becomes more significant in cellular systems where different BSs use different random

codebooks [39].

2. RandomBF codebooksworkswell with high probability; however, it is not guaranteed that a spe-

cific realization of the sensing matrix resulting from random BF codebooks always works [42].

3. The number of nonzero components of the sensing matrix resulting from the random BF

codebooks might be large, and this makes the measurement process slow since the number of

calculations increases [43]. This constrains the latency achievable in the mmWave systems,

which is obviously unfavorable in realizing 5G’s objectives.

To address the above-mentioned issues, one potential solution can be using deterministic sensing

matrices for CS-based BA methods. In deterministic CS structures, the number of nonzero elements

of the sensing matrix can be reduced, which contributes to faster measurement process and lower

amount of computational burden at the UEs’ receiver. Also, the storage or signalling overhead in

the mmWave systems can be considerably reduced due to the fact that the UEs can generate the

deterministic sensing matrix by just knowing a few parameters.

In this dissertation, inspired by a deterministic CSmethod, we address theBAproblem formmWave

channels. The main accomplishments of this dissertation are summarized as follows:

• We propose two deterministic sensing matrices. We construct the first deterministic sensing

matrix in section 4.3 by performing aKronecker product between twoDeVore’s sensingmatrices.
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The process of generating the DeVore’s sensing matrix is explained in section 4.2. Also, we

construct the second deterministic sensingmatrix in section 4.4 by doing a row-by-rowKronecker

product between rows of two matrices which include DeVore’s sensing matrices and circular

shifts of DeVore’s sensing matrices.

• We design the pilot beam patterns (BF vectors) for the BA process based on the proposed

deterministic sensing matrices.

• Our proposed approach results in significant reduction of number of measurements compared

to the exhaustive search.

• We show that our proposed method contributes to significant overhead reduction compared to

the random or structured random BF methods.

• We show that in some scenarios our proposed approach presents an improvement in terms of

performance compared to other methods.

1.3 Thesis Organization

In chapter 2, we provide an overview to compressed sensing. The system model is introduced in

chapter 3. The process of constructing proposed deterministic sensing matrices and designing the

pilot beam patterns are presented in chapter 4. In chapter 5, simulation results are presented. Finally,

chapter 6 concludes the thesis.



Chapter 2

An Overview of Compressive Sensing

A signal is sparse when its vector representation in a basis has only a few nonzero elements. A signal

may not be sparse in general but it might exhibits sparsity by applying some transformations. To be

more accurate, the signal representation is sparse only in a certain basis. The topic of compressed

sensing (CS) is about reconstructing sparse signals using a small number of measurements. Objectives

of CS include efficient reconstruction of sparse signals by minimizing the number of measurements,

perfect recovery in the noiseless case, and robustness results for scenarios with noise [44].

2.1 General Mathematical Model for CS

In order to represent the CS reconstruction formulation, we start with the following equation,

y = Φx, (2.1)

where ym×1,Φm×n and xn×1 are the measurement vector, measurement matrix and input signal respec-

tively. The number of measurements are much fewer than the input signal dimension, i.e, m � n;

therefore, (2.1) is heavily undetermined.

AssumeΨ as the basis inwhich x can be represented as a sparse vector, using the linear combination

of Ψi which are columns of Ψ the vector x can be written as,

x =
n∑

i=1
siΨi = Ψs, (2.2)

where sn×1 is the equivalent sparse representation of x, i.e., s has only a few nonzero elements. Here,

we assume s is an L-sparse vector having at most L � n nonzero values ( or its level of sparsity is L ).
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Referring to (2.1) and (2.2), the sparse problem can be written as follows,

y = Θs, (2.3)

where the reconstruction matrix or sensing matrix Θm×n is defined as Θ = Φ × Ψ.

Properties of Θ determine the possibility of perfect recovery. The restricted isometry prop-

erty (RIP) is a sufficient condition for stable reconstruction. Stable reconstruction indicates that small

changes in the measurements should cause small changes in the reconstruction [45][46].

The RIP is defined as follows: Θ satisfies the RIP of order L if for all L-sparse vectors u and a

constant 0 < δL < 1 which is not too close to one [47], the following condition holds:

1 − δL ≤
‖Θu‖2
‖u‖2

≤ 1 + δL . (2.4)

Given Θ, L and δL , it is an arduous task to verify RIP [48]. An alternative condition which is easier

to verify is the mutual incoherence property. To measure the mutual coherence of Θ the following

expression is used,

µ(Θ) = max
i, j

|〈θi,θ j〉|

‖θi‖2‖θ j ‖2
, (2.5)

where θi are the columns of Θ and 〈.〉 indicates the inner product between these columns.

The value of µ is bounded between the Welch bound
√

n−m
m(n−1) and one, i.e., µ ∈

[√
n−m

m(n−1),1
]
, and

a small value of µ is desirable [38][49]. Indeed, the mutual incoherence property ( which indicates

small values of µ ) is a stronger condition than RIP and from the mutual incoherence property can be

implied that RIP is satisfied but the converse does not hold [50]. In addition, the mutual coherence

parameter and the RIP constant are related according to the following preposition.

Proposition 1 [51] Θ with unit-norm columns and the coherence parameter µN satisfies RIP of order

L with constant δL = (L − 1)µN

The structure of the sensing matrix Θ has a key role in successful recovery. It has been shown that

random sensing matrices with elements constructed from Gaussian or Bernoulli distributions satisfy

RIP of order L for m ≥ O(L log (n/L)) with high probability [52]. However, employing random

sensing matrices owing to generating and storing their components might pose practical limitations

from signal processing point of view. The alternative approach is using structured measurement

matrices such as Toeplitz and circulant matrices or deterministic sensing matrices [38].
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(a) l2-norm (b) l1-norm

Figure 2.1: The intersection of the line Θs = y with the l2 and l1 balls [44].

Extracting the sparse vector s can be stated as an l0-optimization problem:

min
s
‖s‖0 subject to Θs = y, (2.6)

where ‖s‖0 indicates the non-convex l0-norm counting the number of nonzero entries of s. Problem

(2.6) has been shown to be NP-hard in general since it searches over all possible combinations, which is

a computationally onerous task [53]. One of the alternative methods is employing linear programming

to find a similar solution in near polynomial time. In this method known as basis pursuit (BP), l1-

norm which has the most similarity to l0-norm [44][54] is employed to approximate (2.6) as a convex

optimization problem as follows:

min
s
‖s‖1 subject to Θs = y, (2.7)

where ‖s‖1 is the l1-norm of s and it adds up absolute values of all components of s. It is worth noting

that the estimate of x is obtained after the reconstruction of the estimate of s, by the inverse transform

used to represent x as a sparse vector s.

In order to understand why l1-norm can find the sparse solution better than l2-norm, we can

consider Fig. 2.1. The feasible set is the line Θs = y in this example illustrating l1-norm and l2-norm

in two dimensions. Using l2-norm in lieu of l1-norm in (2.7), the solution is a point on the line Θs = y

with the minimum Euclidean distance from the origin. As seen in Fig. 2.1(a), this point locates away

from the coordinate axes; therefore, it does not give a sparse solution. However, for the l1-norm case

shown in Fig. 2.1(b), the intersection of the l1-norm ball and the line Θs = y lies on the coordinate

axis, i.e., l1-norm leads to a sparse solution [44].
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It is important to mention that the fundamental results of [53] and [55] show that satisfying RIP

makes l0-norm and l1-norm problems equivalent with high probability. Based on this fact, Gaussian

and Bernoulli random matrices which satisfy RIP lead to the same sparse solution for l0-norm and

l1-norm problems with high probability.

Different CS reconstruction approaches have been proposed thus far. Convex, greedy, thresholding,

combinatorial, non-convex and Bayesian are the classifications for these approaches. Measurements

in practical scenarios come with perturbation resulting from noise. This makes it necessary for

practical CS approaches to be robust against noisy measurements. Convex and greedy approaches

among the aforementioned ones are robust to noise [38]. To be exact, in sparse reconstruction when

measurements are contaminated with noise, the basis pursuit, which is one of the convex approaches,

and greedy approaches can provide good results if the sensing matrix satisfies RIP of order 2L with

an RIP constant δ2L which is not too close to one [42]. In the next section, some of the convex or

greedy approaches will be discussed.

2.2 CS Approaches for Noisy Recovery

When measurements are perturbed with noise, the sparse problem in (2.3) can be rewritten as follows:

y = Θs + n, (2.8)

where n is the noise.

Basis pursuit which is discussed in the previous section, basis pursuit denoising (BPDN), Dantzig

selector and least absolute shrinkage selection operator (LASSO) are convex approaches which all have

been used to solve the problem of noisy recovery. Also, matching pursuit (MP), orthogonal matching

pursuit (OMP) and their variants such as compressive sampling matching pursuits (CoSaMP) or

regularized OMP are greedy algorithms which have been used for CS noisy recovery. In the following,

these approaches are concisely reviewed. Note that we will only review MP and OMP for greedy

algorithms and we refer the reader to [38] and [56] for more details about the variants of MP and OMP.
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2.2.1 Convex Approaches

By relaxing the equality constraint in (2.7) in order to consider noise effect, the BPDN formulation

can be presented as follows

min
s
‖s‖1 subject to

1
2
‖y −Θs‖22 ≤ ε, (2.9)

where ‖.‖2 indicates the Euclidean norm or l2-norm and the constraint limits the squared error between

y and Θs to be less than or equal to ε . BPDN can also be cast in a Lagrangian form as follows

min
s

λ‖s‖1 +
1
2
‖y −Θs‖22, (2.10)

where the value of λ controls the trade-off between reconstruction accuracy and sparsity of the solution.

Algorithms such as fixed-point continuation and primal dual interior-point method are employed to

solve (2.10). By swapping the constraint with the objective function in (2.9), the LASSO formulation

is obtained and is written as follows

min
s

1
2
‖y −Θs‖22 subject to ‖s‖1 ≤ ε . (2.11)

Dantzig selector formulation is also similar to (2.9). The only difference is that the squared error

between y and Θs is measured by l∞-norm as follows

min
s
‖s‖1 subject to

1
2
‖y −Θs‖2∞ ≤ ε, (2.12)

where ‖a‖∞ selects the element with the maximum absolute value from a.

Solvers for convex problems can be employed to solve the above-mentioned problems. We refer

the reader to [38] for more details regarding the different solvers.

2.2.2 Greedy Approaches

Greedy approaches deal with CS problems in an iterative fashion. Iterative steps are carried out based

on the correlation of the measurements and columns of the sensing matrix. The columns resulting in

high correlation, called atoms, are picked to update the solution. High speed, simple operation and

low computational complexity are the advantages of greedy approaches; however, they need to have

information about the sparsity of the result a priori.
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In MP, r ∈ Rm is defined as a residual vector. The column having maximum correlation with r is

found at each iteration. Mathematically speaking, in each iteration the index of the atom, i.e., λit , is

determined as follows

λit = arg max
k
|〈rit,θk〉|, (2.13)

where θk is the k-th column of Θ, it indicates the iteration counter and 〈.〉 denotes the inner product.

Note that r1 which is the residual in the first iteration is assumed equal to the measurement vector y.

In iteration it, sλit which is the λit-th index of the solution is updated with the scalar projection of rit

along θλit as follows

sλit =
〈rit,θλit 〉

‖θλit ‖2
, (2.14)

and the new residual is obtained by subtracting the vector projection from the previous residual as

follows

rit+1 = rit −
〈rit,θλit 〉θλit
‖θλit ‖

2
2

. (2.15)

The iterations are repeated until the norm of rit meets the desired threshold or the number of iterations

becomes equal to the sparsity level [38][49]. Note that the complexity of MP is O(mnT), assuming T

the number of iterations.

OMP is a variant ofMP,with the complexityO(mnL)where L is the number of nonzero components

of s. In this algorithm, the indexes of atoms are stored in a set Ω, and the atoms form the matrix

ΘΩ. Based on ΘΩ and employing the least square method, all coefficients of the solution are updated

simultaneously in each iteration. The index of the atom is found as follows

λit = arg max
k<Ωit−1

|〈rit,θk〉|, (2.16)

then the set of indexes is updated as Ωit = Ωit−1 ∪ {λit}, and finally, the solution and the residual are

obtained as given in (2.17) and (2.18) respectively.

ŝΩit = arg min
s
‖ΘΩit s − y‖22, (2.17)

rit+1 = y −ΘΩit ŝΩit . (2.18)
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System Model

We assume a mmWave wireless system comprising a BS with NT antennas and a generic UE with

NR antennas. The BS and the UE both have one RF chain and they are equipped with uniform linear

arrays (ULAs). The space between antenna elements in the arrays is d = λ
2 , where λ is the wavelength

and it is calculated by λ = c0
f0
, where c0 and f0 are the speed of light and the carrier frequency

respectively.

In addition, in this thesis, we assume that phase shifting as well as the amplitude control can be

performed in the analog domain. This is a practically feasible assumption for mmWave systems as it

has been shown in the literature [57][58]. In the next two sections, we describe the channel model and

the process of channel estimation.

3.1 Channel Model

Assuming θl ∈ [−
π
2 ,

π
2 ] and φl ∈ [−

π
2 ,

π
2 ] respectively the AoA and AoD of the lth propagation path

between the BS and UE, the array response vectors are given by

a(θl) =
1
√

NT
[1, e jπ sin(θl), ..., e j(NT−1)π sin(θl)]T, (3.1)

and

b(φl) =
1
√

NR
[1, e jπ sin(φl), ..., e j(NR−1)π sin(φl)]T . (3.2)

We also assume that AoAs and AoDs of the propagation paths have uniform distribution within the

angular range [− π2 ,
π
2 ].
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Since a small number of clusters contributes to the propagation paths in the mmWave chan-

nels [11][13], we use the clustered physical channel model as follows:

H =
√

NT NR

L

L∑
l=1

αlb(φl) aH(θl), (3.3)

where we assume that the physical channel includes L clusters of scatterers each of which creates a

propagation path and L � max{NT,NR} [36][59]. Also, αl ∼ CN(0, σ2
αl
) is the complex channel

gain of the lth propagation path. In addition, we assume that all path gains, i.e., αl , are constant during

the beam alignment (BA) procedure. This is relevant to dense mmWave networks [35].

In (3.3), the AoAs and AoDs have continuous values. To have a tractable channel model, we

approximate the channel model in (3.3) with a discrete representation using the idea of a virtual

channel model (or beamspace representation) introduced in section 1.2 [13][14]. To do so, we use the

following expressions to quantize the AoAs and AoDs [36]:

sin(θq
c1) =

2(c1 − 1)
NT

− 1; c1 = 1,2, ...,NT, (3.4)

sin(φq
c2) =

2(c2 − 1)
NR

− 1; c2 = 1,2, ...,NR, (3.5)

where θq
c1 and φq

c2 indicate the quantized angles. Since ULAs are employed at the BS and UE, the

array response vectors corresponding to all θq
c1 and all φq

c2 form orthonormal bases or unitary DFT

matrices [13][29]. In other words, the array response vectors a(θq
c1) and b(φq

c2) form respectively the

DFT matrices FNT and FNR as follows:

FNT = [a(θ
q
1),a(θ

q
2), ...,a(θ

q
NT
)], (3.6)

and

FNR = [b(φ
q
1),b(φ

q
2), ...,b(φ

q
NR
)], (3.7)

which can be obtained by

FNT (i1 ,i2)
= (NT )

− 1
2 e2π j(i1−1)( i2−1

NT
− 1

2 ), (3.8)
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Figure 3.1: The virtual channel representation.

and

FNR (i3 ,i4)
= (NR)

− 1
2 e2π j(i3−1)( i4−1

NR
− 1

2 ), (3.9)

where i1, i2 = 1,2, ...,NT and i3, i4 = 1,2, ...,NR.

Now, using the DFT matrices, we can represent the channel model by

H = FNRHvFH
NT
, (3.10)

where Hv is the virtual channel representation which is a sparse matrix with L components having

significant nonzero values corresponding to the AoAs and AoDs of the propagation paths. Note that

due to the quantization error, there are other components with relatively insignificant values in Hv. If

the AoAs and AoDs are exactly aligned with the quantized angles in (3.4) and (3.5), Hv has exactly L

components with nonzero values.

Fig. 3.1 illustrates the magnitude of Hv for a channel realization. In the example in Fig. 3.1,

it is assumed that the BS and UE both have 64 antennas, and there is only one strong propagation

path between them with θl = 60◦, φl = −45◦ and αl = 1. As seen, Hv has only one component

with a nonzero significant value, and this component locates on the grid point whose corresponding

quantized angles are the closest angles to the true angles. Also, components with very small values

can be seen, resulting from the quantization error.
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3.2 Channel estimation

In the training process, the BS transmits pilot signals xt using unit-norm transmit BF vectors wt ∈

CNT×1, where t denotes the t-th measurement. Then, the UE applies its unit-norm receive BF vectors

gt ∈ C
NR×1 to make the t-th measurement which is given by

yt = gH
t Hwt xt + gH

t nt, (3.11)

where nt ∼ CN(0, σ2
n I) is the noise vector. Without loss of generality, we assume that xt =

√
P,

where P is the average received power of the pilot signals.

By applying the vectorization identity vec(ABC) = (CT ⊗ A)vec(B) to both sides of (3.11) where

⊗ indicates the Kronecker product and defining h = vec(H), we can write

yt =
√

P(wT
t ⊗ gH

t )h + gH
t nt . (3.12)

Referring to (3.10), we can obtain h in terms of the virtual channel representation as follows:

h = vec(H) = (F∗NT
⊗ FNR)hv, (3.13)

where hv = vec(Hv).

In this thesis, we use the linear combinations of the columns of the DFT matrices to design the

beam patterns as described in [36]. The vectors w(1)t ∈ {0,1}NT×1 and g(1)t ∈ {0,1}NR×1 select the

columns of the DFTmatrices FNT and FNR respectively. Therefore, the transmit and receive BF vectors

can respectively be expressed as

wt = FNT

w(1)t
√

z1
, (3.14)

and

gt = FNR

g(1)t
√

z2
, (3.15)

where z1 and z2 indicate the number of ones in w(1)t and g(1)t . Note that each component of the vectors

w(1)t or g(1)t is related to one quantized angle. If a component of these vectors equals one, it indicates

that the antenna elements generate a narrow beam aligned with the corresponding quantized angle to

that component. In fact, the ones in the vectors w(1)t or g(1)t can be thought of as switching on the

corresponding narrow beams and the zeros are for switching off the corresponding narrow beams.
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Figure 3.2: Pilot beam patterns [36].

Multiple ones in the vectors w(1)t or g(1)t result in multiple narrow beams. To illustrate this, Fig. 3.2

which is presented in [36] can be considered. In this example, the BS and UE both have 10 antennas

and are measuring the channel using the vector w(1)t = [1,0,1,0,1,0,1,1,0,1]T (at the BS) and the

vector g(1)t = [0,1,0,1,1,0,1,0,1,0]T (at the UE). As seen, the antenna elements at the BS or UE are

capable of generating 10 narrow beams along with quantized angles. Out of all the 10 directions only

those narrow beams corresponding to the components of w(1)t or g(1)t with value one probe the channel

and make the measurement.

Using (3.12) to (3.15), we can write

yt =

√
P

z1z2
(w(1)

T

t FT
NT
⊗ g(1)

H

t FH
NR
)(F∗NT

⊗ FNR)hv +
1
√

z2
g(1)

H

t FH
NR

nt . (3.16)

Also, using the mixed-product property of the Kronecker product, i.e., the identity (A ⊗ B)(C ⊗ D) =

AC ⊗ BD and assuming P = 1, (3.16) can be rewritten as

yt =
1
√

z1z2
(w(1)

T

t ⊗ g(1)
T

t )hv + ñt, (3.17)

where ñt ∼ CN(0, σ2
n ), and as g(1)t is a real-valued vector (it contains only ones and zeros), g(1)

H

t has

been substituted with g(1)
T

t .

The measurement vector y can be formed at the UE by stacking all the measurements and it can

be written as follows:

y = Shv + ñ, (3.18)
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where the sensing matrix S is given by

S =
1
√

z1z2

©­­­­­­­«

w(1)1
T
⊗ g(1)1

T

w(1)2
T
⊗ g(1)2

T

...

w(1)k

T
⊗ g(1)k

T

ª®®®®®®®¬
. (3.19)

Note that k denotes the number of measurements and ñ in (3.18) is the noise vector.

Since hv has a sparse structure, a proper sensing matrix S (as discussed in chapter 2) should be

employed for a good reconstruction of hv. As seen, the structure of S depends on the vectors w(1)t and

g(1)t which make the transmit and receive BF vectors. In fact, the vectors w(1)t and g(1)t show how the

measurements are made in the angular domain. In the next chapter, we design these vectors based on

deterministic sensing matrices.



Chapter 4

Pilot Beam Pattern Design

In this chapter, we propose two deterministic sensingmatrices, and based on the proposed deterministic

sensing matrices, we design the structure of pilot beam patterns for the beam alignment (BA) process.

We construct the first deterministic sensingmatrix by doing aKronecker product between twoDeVore’s

sensing matrices. To construct the second deterministic sensing matrix, rather than performing

Kronecker product between two DeVore’s sensing matrices, we use a novel row-by-row Kronecker

product between the rows of two matrices which include DeVore’s sensing matrices and circular shifts

of DeVore’s sensing matrices. In the sequel, the process of constructing the proposed deterministic

sensing matrices and designing the pilot beam patterns are explained.

Since we need to have a deterministic sensing matrix for the sparse formulation, the beamform-

ing (BF) codebooks at the BS and UE should have a deterministic structure. As we showed in the

previous chapter, each measurement is made based on the Kronecker product of the two vectors w(1)t
T

and g(1)t
T
. Therefore, if we can obtain the sensing matrix by performing a Kronecker product between

two matrices U and V, the rows of U and V (after applying a transpose operation) can be used respec-

tively as w(1)t at the BS and g(1)t at the UE to generate the pilot beam patterns for the channel estimation.

The two following prepositions show that indeed this is possible when U and V themselves are sensing

matrices.

Proposition 2 [60] Let U and V satisfy RIP of order L with RIP constants δL,U and δL,V respectively,

also define S = U ⊗ V. S satisfies RIP of order L with the RIP constant δL,S ≤ δL,UδL,V + δL,U + δL,V.

Proposition 3 [61] If µ(U) and µ(V) are the mutual coherence of U and V respectively, and µ(S) is

the mutual coherence of S where S = U ⊗ V, we have µ(S) = max{µ(U), µ(V)}.

In this thesis, we use the approach proposed by DeVore in [62] to construct U and V. DeVore

designed binary deterministic sensing matrices with dimensions p2 × pr+1 with mutual coherence r
p ,

where p is a prime power and 1 ≤ r < p. Also, the DeVore’s matrix with normalized columns satisfies
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RIP of order L <
p
r + 1 with RIP constant δL = (L − 1) rp

If we use the DeVore’s approach, U and V respectively with dimensions p2
1 × pr1+1

1 and p2
2 × pr2+1

2

can be constructed. So, using preposition 3, the sensing matrix S can be constructed by the Kronecker

product of U and V, which has µ(S) = max{ r1
p1
, r2

p2
}. Note that the idea of making sensing matrices by

doing Kronecker product between two other sensing matrices is originally introduced in [61] for the

compressive sensing context. We employ this technique to design the pilot beam patterns (BF vectors)

for the channel estimation process.

It is worth pointing out that we use the row-normalized version of U and V, owing to the fact

that we use unit-norm BF vectors in the channel estimation process. In the DeVore’s matrix, the

number of ones in each row is a constant value. Assuming that there are cU ones in each row of U,

by multiplying the matrix by normalization factor 1√
cU
, all the rows of U become normalized. In fact,

referring to (3.14), we assume that z1 = cU and we define w̃t =
w(1)t√

z1
. By the same token, and referring

to (3.15), we have z2 = cV where cV is the number of ones in each row of V. Also, we define g̃t =
g(1)t√

z2
.

Note that the normalization mentioned does not change the mutual coherence of U and V.

As we will discuss later in this chapter, obtaining the sensing matrix S by just using the Kronecker

product between other two sensing matrices limits the number of pilot beam patterns which can be

used by the BS and UE to probe the channel. This in fact degrades the performance. As an alternative

approach, we construct another sensing matrix using U and V, but rather than performing Kronecker

product between U and V, we use the Kronecker product between the rows of two matrices which

include U, circular shifts of U and V. Throughout the rest of this thesis, we will call the first and

second approach respectively the matrix-by-matrix Kronecker product (MbMKP) approach and the

row-by-row Kronecker product (RbRKP) approach.

The construction of the binary sensing matrices by DeVore’s approach is done using finite fields,

so in the following section we will concisely review some properties of the finite fields, which are

required for constructing the DeVore’s sensing matrix.

4.1 Finite Fields

To define a field, first Abelian groups should be defined [63]. A set G with a binary operation + form

an Abelian group, which is denoted by {G,+,0}, if the following properties are satisfied:

1. The operation + is commutative. This indicates that for any a, b ∈ G, we have a + b = b + a.
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2. The operation + is associative. This indicates that for any a, b, c ∈ G, we have (a + b) + c =

a + (b + c).

3. The operation + has an identity element, i.e., if we denote the identity element by 0, for any

a ∈ G we have a + 0 = 0 + a = a.

4. For any element a ∈ G, there exist an (additive) inverse of a, i.e., −a ∈ G where a + (−a) =

(−a) + a = 0

A finite set F with two binary operations + (addition) and · (multiplication) is a finite field (or a Galois

field) denoted by {F,+, ·} if the following properties hold:

1. {F,+,0} is an Abelian group.

2. {F − {0}, ·,1} is an Abelian group, which indicates that the nonzero elements of the field with

multiplication form an Abelian group whose identity element is denoted by 1. For any nonzero

a ∈ F, the multiplicative inverse is denoted by a−1.

3. The multiplication is distributive over the addition, i.e., a · (b + c) = (b + c) · a = a · b + a · c.

Note that when the order of the field, i.e., the number of the elements of the field, is finite, it is denoted

by GF( . ). The binary field GF(2)with modulo-2 addition and multiplication is an example of a finite

field.

Let q be the order of a finite field then GF(q) exists if and only if q = pm, where p is a prime

number and m is a positive integer [63]. When q = p, the finite field with modulo-p addition and

multiplication can be denoted by GF(p) = {0,1,2, ..., p − 1}, which is also called a prime field. For

example, GF(3) = {0,1,2} is a finite field with modulo-3 addition and multiplication. In the case

that q = pm, the finite field is known as an extension of GF(p), and p is called the characteristic of

GF(pm). To construct extension fields, polynomials over GF(p) are used.

A polynomial with degree m over GF(p) is defined as

g(X) = g0 + g1X + g2X2 + · · · + gmXm (4.1)

where 0 ≤ i ≤ m, gm , 0 and gi ∈ GF(p). For addition and multiplication of polynomials over finite

fields, the addition and multiplication of coefficients are done modulo-p.

A polynomial is called monic if gm = 1. Also, a polynomial is irreducible if it is not the product of

two lower degree polynomials over the same finite field. A polynomial which is monic and irreducible
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Table 4.1: Addition and Multiplication Over GF(4) [63].
+ 0 1 X X + 1
0 0 1 X X + 1
1 1 0 X + 1 X
X X X + 1 0 1

X + 1 X + 1 X 1 0

· 0 1 X X + 1
0 0 0 0 0
1 0 1 X X + 1
X 0 X X + 1 1

X + 1 0 X + 1 1 X

is a prime polynomial. To generate GF(pm), a prime polynomial, say t(X), over GF(p) is used. If we

consider all the polynomials over GF(p) with degree less than m, the set of all such polynomials with

addition modulo-p and multiplication modulo-t(X) constitute the finite field GF(pm). Note that the

number of these polynomials is pm. Also, to do the multiplication modulo-t(X), first, two polynomials

are multiplied, then the remainder of dividing the resulting polynomial by t(X) is obtained [63]. It is

worth mentioning that all the nonzero elements of GF(pm) can be obtained by powers of X .

For instance, we can consider the example given in [63]. t(X) = X2 + X + 1 is a prime polynomial

over GF(2). This polynomial has m = 2, so we can use it to construct GF(22) = GF(4). All the

polynomials which have degree less than m = 2 over GF(2) are 0, 1, X and X + 1. The set of all these

polynomials with addition modulo-2 and multiplication modulo-t(X) form the Galois filed GF(4).

Addition and multiplication of these polynomials are given in Table 4.1. Note that for this example

we have X = X1, X + 1 = X2 and 1 = X3, which shows that all nonzero elements of GF(4) can be

written using powers of X .

In the following section, we will explain the process of generating DeVore’s sensing matrix using

the finite fields [62].

4.2 DeVore’s Sensing Matrix

The process of constructing the DeVore’s matrix using prime order finite fields is explained in this

section, the same method can be applied for constructing the DeVore’s matrix using extension finite

fields. Note that we use the similar notation adopted in [62].

Let F denote the finite field GF(p) and consider the set of ordered pairs SF = F × F which has p2

elements. Also, for any given integer r where 0 < r < p, define the set Pr to include all polynomials

(over F) of degree less than or equal r . Note that the number of such polynomials is pr+1. A generic

polynomial Q in set Pr can be written as Q(X) = a0 + a1X + · · · + ar Xr , where all the coefficients

a0,a1, ...,ar are the elements of F. A generic polynomial in Pr can be considered as a mapping Q

from F to F with the graph m(Q) which is the set of ordered pairs (X,Q(X)). Note that such a graph



32 Pilot Beam Pattern Design

Table 4.2: All the polynomials in Pr .
Lexicographically ordered coefficients Polynomials The ordered pairs (X,Q(X))

0 0 0 0 (0,0), (1,0), (2,0)
0 0 1 1 (0,1), (1,1), (2,1)
0 0 2 2 (0,2), (1,2), (2,2)
0 1 0 X (0,0), (1,1), (2,2)
0 1 1 X + 1 (0,1), (1,2), (2,0)
0 1 2 X + 2 (0,2), (1,0), (2,1)
0 2 0 2X (0,0), (1,2), (2,1)
0 2 1 2X + 1 (0,1), (1,0), (2,2)
0 2 2 2X + 2 (0,2), (1,1), (2,0)
1 0 0 X2 (0,0), (1,1), (2,1)
1 0 1 X2 + 1 (0,1), (1,2), (2,2)
1 0 2 X2 + 2 (0,2), (1,0), (2,0)
1 1 0 X2 + X (0,0), (1,2), (2,0)
1 1 1 X2 + X + 1 (0,1), (1,0), (2,1)
1 1 2 X2 + X + 2 (0,2), (1,1), (2,2)
1 2 0 X2 + 2X (0,0), (1,0), (2,2)
1 2 1 X2 + 2X + 1 (0,1), (1,1), (2,0)
1 2 2 X2 + 2X + 2 (0,2), (1,2), (2,1)
2 0 0 2X2 (0,0), (1,2), (2,2)
2 0 1 2X2 + 1 (0,1), (1,0), (2,0)
2 0 2 2X2 + 2 (0,2), (1,1), (2,1)
2 1 0 2X2 + X (0,0), (1,0), (2,1)
2 1 1 2X2 + X + 1 (0,1), (1,1), (2,2)
2 1 2 2X2 + X + 2 (0,2), (1,2), (2,0)
2 2 0 2X2 + 2X (0,0), (1,1), (2,0)
2 2 1 2X2 + 2X + 1 (0,1), (1,2), (2,1)
2 2 2 2X2 + 2X + 2 (0,2), (1,0), (2,2)

is a subset of SF .

After ordering the elements of SF lexicographically as (0,0), (0,1), ..., (p − 1, p − 1), we define a

vector vQ for each polynomial Q(X) in Pr such that it is indexed on SF and it takes one at any ordered

pair from the graph m(Q) and takes zero otherwise. Out of the first p components of the vector vQ, one

of them takes the value one and the rest take the value zero. Similarly, out of the second p components,

one of them takes the value one and the rest take the value zero, and so forth. Thus, the vector vQ has

exactly p ones.

Finally, we order all the vectors vQ where Q ∈ Pr lexicographically with respect to the coefficients

of the polynomials. The columns of the DeVore’s sensing matrix are these ordered vectors. Because

each vector vQ has p2 components and the number of all the polynomials in Pr is pr+1 which is also

the number of all vectors vQ, the dimensions of the DeVore’s sensing matrix is p2× pr+1 [62]. To make
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the process of generating the DeVore’s sensing matrix more clear, we provide the following example:

We will follow the process mentioned above to generate the DeVore’s sensing matrix with p =

3 and r = 2. With these values the resulting sensing matrix is 9 × 27. For this example, we

have GF(3) = {0,1,2} and consequently SF = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)}

which is ordered lexicographically. All the polynomials of degree less than or equal to r = 2 constitute

Pr . All these polynomials with lexicographically ordered coefficients are shown in Table 4.2. Also,

all the ordered pairs (X,Q(X)) of the graphs m(Q) corresponding to the polynomials are presented in

Table 4.2.

Now, to construct the vectors vQ, we consider the third column of Table 4.2 and the set SF . We

will describe how to construct vQ for the polynomial 2X2 + 2X + 1 in Table 4.2. Constructing vQ for

other polynomials is done in the same way. As mentioned, vQ is indexed on SF , so for this example

vQ is indexed on {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)}. The ordered pairs (X,Q(X))

of the graph m(Q) corresponding to the polynomial 2X2 + 2X + 1 are (0,1), (1,2) and (2,1) which are

indexed 2, 6 and 8 with respect to SF , so the second, sixth and eighth component of the vector vQ take

the value one and the other components are zero, i.e., vQ = [0,1,0,0,0,1,0,1,0]T .

Finally, to obtain the DeVore’s sensing matrix, we horizontally stack all the vectors vQ ordered

based on the first column of Table 4.2 which shows the lexicographical order of the coefficients of the

polynomials.

4.3 MbMKP Approach

So far, we have described how to construct DeVore’s sensing matrix. As mentioned in the beginning

of this chapter, for the MbMKP approach we use the Kronecker product of two DeVore’s sensing

matrices U and V to construct the sensing matrix S for our sparse formulation (3.19), so

S = U
p2

1×pr1+1
1
⊗ V

p2
2×pr2+1

2
. (4.2)

Because the number of the columns of U and V are pr1+1
1 and pr2+1

2 respectively, the number of the

columns of the sensing matrix S is pr1+1
1 × pr2+1

2 which is also the number of components of the sparse

vector hv in (3.18). The number of components of hv is the product of the number of antennas at

the BS (NT ) and the number of antennas at the UE (NR), so we assume that NT and NR are equal to

the number of columns of U and V respectively, i.e., NT = pr1+1
1 and NR = pr2+1

2 . In other words, in
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this thesis, the number of antennas at the BS and UE are assumed to be prime powers. Note that for

constructing DeVore’s sensing matrices U and V, p1 and p2 can be prime powers or prime numbers.

For example, to construct U, we can set p1 = 22 which is a prime power, and if we set r = 2 then

NT = pr1+1
1 = 64.

The matrices U and V can be written as follows:

U =

©­­­­­­­«

uT
1

uT
2
...

uT
p2

1

ª®®®®®®®¬
, V =

©­­­­­­­«

vT
1

vT
2
...

vT
p2

2

ª®®®®®®®¬
. (4.3)

We use each row of U as the vectors w̃t and each row of V as the vectors g̃t , i.e., we have w̃ j = u j

for j = 1,2, ..., p2
1 and g̃ j = vb for b = 1,2, ..., p2

2. Therefore, referring to (4.2) and (4.3), the sensing

matrix S will be given as

S =

©­­­­­­­«

uT
1 ⊗ V

uT
2 ⊗ V
...

uT
p2

1
⊗ V

ª®®®®®®®¬
=

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

w̃T
1 ⊗ g̃T

1

w̃T
1 ⊗ g̃T

2
...

w̃T
1 ⊗ g̃T

p2
2

w̃T
2 ⊗ g̃T

1

w̃T
2 ⊗ g̃T

2
...

w̃T
2 ⊗ g̃T

p2
2

...

w̃T
p2

1
⊗ g̃T

1

w̃T
p2

1
⊗ g̃T

2
...

w̃T
p2

1
⊗ g̃T

p2
2

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

. (4.4)

As seen, each vector w̃ j , where j = 1,2, ..., p2
1, is repeated p2

2 times for all the different vectors g̃b

where b = 1,2, ..., p2
2. This means that the BS repeats the same transmit BF vector (or the same beam

pattern) for p2
2 times while the UE probes the channel using its all possible beam patterns. Then, the

BS uses its second beam pattern and repeats it for p2
2 times while the UE again probes the channel

using its all possible beam patterns. This process continues until all possible combinations of the BS’s
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beam patterns and UE’s beam patterns are used to probe the channel.

For instance, if we use p1 = 4, p2 = 3, r1 = r2 = 2 which indicate NT = pr1+1
1 = 64 and

NR = pr2+1
2 = 27, there exist p2

1 = 16 and p2
2 = 9 different beam patterns for the BS and UE

respectively. The BS repeats the same beam pattern for 9 times while the UE measures the channel by

its different 9 beam patterns. This process is repeated until the BS uses its 16 different beam patterns.

Note that as mentioned in chapter 3 and illustrated in Fig. 3.2, each pilot beam pattern at the BS

or UE is formed by several narrow beams. Each nonzero value in the vectors w̃t or g̃t represents a

narrow beam. In other words, in the DeVore’s matrices U and V, each row which is considered as a

BF vector in our proposed scheme has several nonzero values, indicating that each pilot beam pattern

generated by the BS or UE to measure the channel consists of multiple narrow beams.

Returning to our example above, for any w̃t , out of 64 components, 16 components have a nonzero

value, so, there are 16 narrow beams in each pilot beam pattern of the BS. Also, for any g̃t , out of

27 components, 9 components are nonzero, which means that there are 9 narrow beams in each pilot

beam pattern of the UE. Note that in fact the DeVore’s approach determines the number of nonzero

values in each row of U and V or equivalently the number of nonzero values in w̃t and g̃t .

If we consider the sensing matrix S in (4.4), we can see that the number of measurements are

p2
1p2

2 = 144. In our example, the BS uses p2
1 = 16 different pilot beam patterns to probe the channel

in all 144 measurements. On the other hand, we intuitively know that if we increase the number of

different pilot beam patterns, the possibility of finding the propagation paths between the BS and UE

increases. Indeed, if we increase the number of pilot beam patterns of the BS and UE up to 144,

the full potential in making independent and different measurements is exploited. So, just using 16

different pilot beam patterns for 144 measurements is not an efficient approach. Inspired by this fact,

we will propose RbRKP approach in the next section.

4.4 RbRKP Approach

As discussed, in the MbMKP approach, we used the Kronecker product of two DeVore’s sensing

matrices U and V (with normalized rows) to make the sensing matrix S. In this section, we use the

Kronecker product between each row of U (and its circular shifts) and each row of V. In so doing,

we can increase the number of different pilot beam patterns at the BS. Note that for this approach, the

number of rows of the two DeVore’s sensing matrices we employ must be equal, so in obtaining U

and V, we use p1 = p2, but r1 and r2 can be different; thus, the number of columns of U and V can be
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different.

If we denote by ⊗r the row-by-row Kronecker product of two matrices, referring to (4.3), the

matrix Ŝ which is obtained using row-by-row Kronecker product of U and V is given as

Ŝ
p2

1×pr1+r2+2
1

= U ⊗r V =

©­­­­­­­«

uT
1 ⊗ vT

1

uT
2 ⊗ vT

2
...

uT
p2

1
⊗ uT

p2
1

ª®®®®®®®¬
. (4.5)

We have observed numerically that the mutual coherence parameter for Ŝ is not less than 1, indicating

that Ŝ cannot be used as a sensing matrix for sparse reconstruction. We propose the following process

to obtain a sensing matrix, i.e., a matrix with the mutual coherence less than one, using Ŝ.

First, we need to define some matrices. If we circularly shift all the columns of the DeVore’s

sensing matrix U by i positions to the right, we get the matrix UCSi. Also, we define Ŝi which is the

row-by-row Kronecker product between UCSi and V. Mathematically speaking, we have

Ŝi = UCSi ⊗r V. (4.6)

Finally, by stacking Ŝ and all the matrices Ŝi for i = 1,2, ...,n vertically, we obtain the matrix B̂n as

follows:

B̂n =

©­­­­­­­«

Ŝ

Ŝ1
...

Ŝn

ª®®®®®®®¬
. (4.7)

We have provided Fig. 4.1 to numerically verify that the mutual coherence of the matrix B̂n

becomes less than one when n increases. In this figure, we have plotted the mutual coherence of the

matrix B̂n for three cases where NT = NR = 27, NT = NR = 64 and NT = NR = 125. For a certain

n, say n = ns, the matrix B̂n becomes a sensing matrix, i.e., its mutual coherence parameter becomes

less than one. The value of ns is provided in the figure for the three cases.

The process of constructing the sensing matrix B̂ns using the RbRKP approach is presented in

Algorithm 1.

Note that Algorithm 1 gives the first sensing matrix. After getting the first sensing matrix by

Algorithm 1, if we continue the process described, we will get other sensing matrices with more
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Figure 4.1: Mutual coherence of the matrix B̂n vs n

number of rows, which is required when we need to make more measurements.

We define the matrix Û which is constructed by stacking vertically U and all UCSi for i = 1,2, ...,ns,

and also, we define the matrix V̂ which is constructed by stacking vertically the matrix V for ns times,

i.e.,

Û =

©­­­­­­­«

U

UCS1
...

UCSns

ª®®®®®®®¬
, V̂ =

©­­­­­­­«

V

V
...

V

ª®®®®®®®¬
, (4.8)

so, it is obvious that B̂ns = Û ⊗r V̂.

Based on the RbRKP approach, the BS and UE use the rows of the matrices Û and V̂ respectively

to generate the pilot beam patterns. In other words, the rows of Û are used as the vectors w̃t at the BS

and the rows of V̂ are used as the vectors g̃t at the UE.

4.5 Beam Alignment Process

For the MbMKP approach, knowing p1 and r1, the BS can construct the DeVore’s sensing matrix

U. Also, the UE can construct the DeVore’s sensing matrix V with knowing p2 and r2. Since the

channel estimation is done by the UE, the UE must know the values of p1 and r1 to construct U and
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Algorithm 1 : Obtaining a sensing matrix by RbRKP approach.
Input p1, r1, r2 and n = 0
Output The sensing matrix B̂ns and the index ns

1: Generate the matrices U and V based on the DeVore’s approach.
2: Obtain Ŝ by row-by-row Kronecker product between U and V.
3: Repeat
4: Increment n.
5: Compute UCSn.
6: Compute Ŝn.
7: Stack vertically Ŝ and Ŝl for l = 1,2, ...,n to obtain B̂n.
8: Compute the mutual coherence for B̂n, i.e., µ(B̂n).
9: Until µ(B̂n) < 1.
10: B̂ns ← B̂n and ns ← n.

consequently S. So it is assumed that the BS signals the parameters p1 and r1 to the UE before the

process of BA starts, or it is assumed that these two parameters are stored in the UE’s memory. The

UE, knowing p1 and r1, makes the DeVore’s sensing matrix U and then it can construct the sensing

matrix S by the Kronecker product of U and V as discussed earlier. Measurements are made by the

BS and UE based on the pilot beam patterns which are generated using the rows of the matrices U and

V. Finally the UE estimates the channel using the sensing matrix S and the values of measurements.

For the RbRKP approach, the BS can construct the matrix Û by p1, r1 and ns. The UE can

also construct the matrix V̂ by knowing p2, r2 and ns. Note that as explained earlier for the RbRKP

approach p2 = p1. We assume that the values of p1, r1 and ns are sent to the UE by the BS before the

BA procedure or these values are stored in the UE’s memory. Therefore, the UE can construct Û and

consequently B̂ns . Note that based on Algorithm 1, for different values of p1, r1 and r2 the value of

ns is determined, so one assumption made here is that the BS knows the value of r2 used by the UE

or the UE sends the value of r2 to the BS before BA process. Equivalently, if the BS knows NR, the

value of r2 is obtained by the BS using NR = pr2+1
1 .

It should be pointed out that the number of measurements for the MbMKP is always equal to p2
1p2

2

which is constrained by the values of p1 and p2. For the RbRKP approach, the number ofmeasurements

are p2
1(ns + 1). As mentioned earlier, ns determines the first sensing matrix B̂ns constructed based on

Algorithm 1. For any n > ns, Algorithm 1 results in sensing matrices with p2
1(n + 1) number of rows.

When more measurements are needed sensing matrices constructed by n > ns can be used.
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Table 4.3: Overhead of Different Methods
Method Overhead
MbMKP O(log p1)

RbRKP O(log ns)

[39] O(M(r1 + 1) log p1)

Bernoulli Random BF O(Mpr1+1
1 )

4.6 Overhead Calculation

The overhead of the MbMKP approach depends on the values of p1 and r1 which can be signaled to

or stored in the UE by (log2 p1 + log2 r1) bits. We know that r1 < p1; therefore, the overhead of the

MbMKP approach is O(log p1).

The overhead of the RbRKP approach is calculated based the values of p1, r1, r2 and ns. The

values of p1, r1 and ns can be signaled to or stored in the UE by (log2 p1 + log2 r1 + log2 ns) bits. In

addition, the value of r2 can be sent to the BS by the UE (or it can be stored in the BS) with log2 r2

bits. Therefore, the overall overhead is (log2 p1 + log2 r1 + log2 r2 + log2 ns) bits. We know that

r1,r2 < p1, and without loss of generality we assume p1 < ns, so the overhead of the RbRKP approach

is O(log ns).

Table 4.3 compares the overhead of our approaches with that of in [39] and also the approach

which uses the Bernoulli random BF codebook. The overhead of the proposed approach in [39] is

O(M log NT ), where M is the number of measurements. Note that in our approaches NT = pr1+1
1 ,

and also the number of measurements in our approaches has no effect on the overhead. However, as

seen in Table 4.3, the overhead of the proposed approach in [39] and the approach using the Bernoulli

random BF codebook scale linearly with the number of measurements.



Chapter 5

Simulation Results

In this chapter, we present the simulation results and compare the performance of our proposed

approaches with other methods. As mentioned in chapter 4, the performance of our first proposed

approach (MbMKP) is limited, and the number of measurements is always constant for this approach.

So, in this chapter, we mostly present the results of our second proposed approach (RbRKP).

The simulation setup and performance metrics we have used in our simulations are described as

follows:

• The BS and UE are equipped with NT = NR = {27,64,125} antennas, i.e., the pairs of

{p1 = p2 = 3,r1 = r2 = 2}, {p1 = p2 = 4,r1 = r2 = 2} and {p1 = p2 = 5,r1 = r2 = 2} are

used. The number of antennas at the BS and UE are equal throughout all simulations. Also, the

numbers in the legend of the figures show the number of antennas.

• The AoAs and AoDs of propagation paths have uniform distribution within the angular range

[− π2 ,
π
2 ].

• The average power of the channel gain of lth propagation path is one, i.e., σ2
αl
= 1.

• To reconstruct the sparse vector the orthogonal matching pursuit (OMP) algorithm is used.

• The ratio of the average received power of the pilot signals to the noise power is considered as

the SNR in our simulations, i.e., SNR = P
σ2
n
.

• The normalized mean square error is used as one of the performance metrics. NMSE is defined

as follows:

NMSE = 10 log10

(
E

[
‖Ĥ −H‖2F
‖H‖2F

] )
, (5.1)

where Ĥ is the estimate of the channel and ‖ . ‖F denotes the Frobenius norm.
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• In mmWave systems, typically the SNR in the beam alignment process (SNR before beamform-

ing) is very low [36][64]. Thus, it is reasonable that first the directions of the propagation paths

between the BS and UE are found, and then the path gains are estimated when the beams are

aligned in those directions by the BS and UE. So, in addition to NMSE which might not be an

effective performance metric in very low SNR regimes, as another performance metric, we use

the probability of correctly estimating (PCE) at least one of the directions of the propagation

paths, which is equivalent to the probability of correctly estimating at least one of the indexes

of the nonzero elements in the sparse vector hv.

• We use the SNR after BF (SNRAB) as another performance metric. If we denote by ε the index

of a nonzero element in hv after the beam alignment process, the indexes of the value one in the

vectors w(1)t and g(1)t are calculated by εw = b(ε − 1)/NRc + 1 and εg =
(
(ε − 1) mod NR

)
+ 1

respectively [39]. Then, the SNRAB is calculated as follows:

SNRAB =
|g(1)t

H
Hvw(1)t |

2

σ2
n

(5.2)

We compare the performance of our approaches with the following methods:

1. The method adopted in [36]. Based on this method, the number of ones in w(1)t and g(1)t are

constant but their positions are randomly permuted, which makes random BF vectors. We call

this method random permutation and we denote it by the abbreviation RdPerm. Note that in our

approach the number of ones and their positions in w(1)t and g(1)t are constant because we have

designed the BF vectors based on our proposed deterministic sensing matrices.

2. The method which is based on a structured random sensing matrix proposed in [39]. We denote

this method by the abbreviation StRd. Note that, in the StRd approach , BF vectors are designed

by complex linear combinations of the columns of the DFT matrix using the coefficients which

are unit magnitude complex values. By contrast, following the RdPerm approach, in designing

the BF vectors, we have used the linear combinations of the columns of the DFT matrix using

the coefficients having the value zero or one (see (3.14) and (3.15) ).

3. The method using Bernoulli random values (zeros and ones with p = 0.5 ) for the elements of

w(1)t and g(1)t . Hereafter, we denote this method by the abbreviation RdBR.

In order to compare the performance of other methods with our approach (RbRKP) for low SNR
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Figure 5.1: PCE vs number of measurements for StRd, RdPerm and RbRKP when SNR = -10 dB and L = 1.

scenarios, we have provided Fig. 5.1 and Fig. 5.2. The results of theses two figures are obtained for

SNR = -10 dB. As mentioned in the beginning of this chapter, PCE is a suitable performance metric

for low SNR scenarios. Therefore, we have used PCE as the performance metric for these figures.
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Figure 5.2: PCE vs number of measurements for StRd, RdPerm and RbRKP when SNR = -10 dB and L = 2.
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Figure 5.3: SNRAB vs SNR when the number of measurements is 45 and L = 1.

Fig. 5.1 and Fig. 5.2 which show PCE against the number of measurements are for the cases

when the channel has one and two clusters respectively. As illustrated in Fig. 5.1 and Fig. 5.2, our

approach (RbRKP) has better performance than RdPerm but worse than StRd. Note that the purpose

of compressed sensing is reconstructing the sparse vector with a very small number of measurements

compared to the length of the sparse vector. For the results in Fig. 5.1 and Fig. 5.2 the length of the

sparse vector hv is 4096. Having said that, as seen in Fig. 5.1 and Fig. 5.2, the performance of our

approach (RbRKP) is better than RdPerm for small number of measurements. Our approach (RbRKP)

performs worse compared to RdPerm for the large number of measurements, but as mentioned, the

large number of measurements is not useful in compressed sensing.

We have provided Fig. 5.3 and Fig. 5.4 to compare the SNRAB of other methods with our approach

(RbRKP) for low SNR scenarios. The results in Fig. 5.3 and Fig. 5.4 are obtained for the channel

with one and two clusters respectively. As seen, the values of the SNRAB for our approach (RbRKP)

are more than those of RdPerm and less than those of StRd. For Fig. 5.4, since the channel has two

clusters, for each channel realization, the average value of two SNRABs corresponding to the two

propagation paths is obtained. In other words, first the vectors w(1)t and g(1)t corresponding to the

direction of each propagation path are obtained, and then using (5.2), the SNRAB for each propagation

path is calculated. Finally, the average value of the two SNRABs is computed.

As mentioned in the beginning of this chapter, NMSE might not be a good performance metric
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Figure 5.4: SNRAB vs SNR when the number of measurements is 45 and L = 2.

because typically the SNR in the beam alignment process (SNR before BF) is very low for mmWave

systems. However, since NMSE has been widely used in the compressed sensing context, we have

provided some results for which we have used NMSE as the performance metric.

Fig. 5.5 and Fig. 5.6 compare the performance of our MbMKP approach with RdPerm and RdBR.
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Figure 5.5: NMSE vs SNR for MbMKP and RdPerm when L = 6.
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Figure 5.6: NMSE vs SNR for MbMKP and RdBR when L = 6.

Fig. 5.5 illustrates that the performance of our MbMKP approach becomes more comparable to

RdPerm when the number of antennas increases. Also, Fig. 5.6 shows that our MbMKP approach

outperforms RdBR when the number of antennas is 64 or 125.

Fig. 5.7 and Fig. 5.8 illustrate the performance of different methods in terms of the number of
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Figure 5.7: NMSE vs L for MbMKP and RdPerm when SNR = 10 dB.
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Figure 5.8: NMSE vs L for MbMKP and RdBR when SNR = 10 dB.

clusters or L. With increasing the number of antennas the performance of our MbMKP approach

becomes closer to RdPerm. Also, as seen in Fig. 5.8, the performance of our MbMKP approach is

better than RdBR when the number of antennas is 64 or 125.

Fig. 5.9 shows the results for our RbRKP approach and RdPerm. For this figure, the results are
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Figure 5.9: NMSE vs SNR for RbRKP and RdPerm when L = 2.
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Figure 5.10: NMSE vs SNR for RbRKP and StRd when L = 2.

obtained for a channel with two propagation paths. In low SNR regimes which are typically the case

for mmWave systems, our approach has superior performance in some situations. For example, when

the BS and UE are equipped with 125 antennas, our approach shows better performance in the SNR

range [-5 dB,0 dB].

Fig. 5.10 illustrates the performance of our RbRKP approach and StRd for the case when the

number of clusters is 2. As seen, for low SNR scenarios, our RbRKP approach presents improvement.

Note that for Fig. 5.9 and Fig. 5.10, the number of measurements for the cases with 27 antennas,

64 antennas and 125 antennas are respectively 45, 96 and 175.



Chapter 6

Conclusion

In this thesis, we have studied the beam alignment problem in a mmWave system consisting of a

multi-antenna BS and multi-antenna UEs. The BS and UEs are equipped with uniform linear arrays

and they have one RF chain. Since a small number of clusters contributes to the propagation paths

in the mmWave channels, we have used the clustered physical channel model which is adopted in

the literature. Following the standard approach in the literature, which uses the idea of virtual

channel model, we have presented the channel estimation problem by a sparse formulation. For sparse

formulations, compressed sensing tools are leveraged to reconstruct the sparse vector. The sensing

matrix in the sparse formulation has a key role in sparse recovery, and the structure of the sensing

matrix in the beam alignment problem is determined based on the beamforming (BF) vectors employed

by the BS and UEs. The literature has employed random or structured random sensing matrices which

impose significant overhead.

Inspired by existing deterministic sensing matrices from the theory of compressive sensing, we

have proposed two novel deterministic sensing matrices based on which we have designed the pilot

beam patterns.

We have shown that our proposed approach results in significant overhead reduction compared

to the proposed approach in [39]( the StRd approach) and the approach using a Bernoulli random

BF codebook. In terms of performance, our proposed approach presents improvement compared to

the proposed method in [36], but our proposed approach is not as good as the StRd approach. The

reason is that, in designing the BF vectors, we have used the linear combinations of the columns of

the DFT matrix using the coefficients having the value zero or one, whereas in the StRd approach,

BF vectors are designed by complex linear combinations of the columns of the DFT matrix using

the coefficients which are unit magnitude complex values. Therefore, the StRd approach uses BF

vectors which are much closer to the dominant eigenvector of the actual channel matrix, but at the

cost of a large overhead. It might not be entirely fair to compare the performance of our proposed
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approach with the StRd approach because the StRd approach employs a much wider class of possible

BF vectors, but we have compared the performance of our proposed approach with the StRd approach

to show the tradeoff between the performance and the overhead. Our proposed approach reduces the

overhead significantly at the cost of losing performance.

For future work, it is interesting to see whether it is possible to reduce the overhead significantly

and at the same time boost the performance. This can be achieved based on a complex deterministic

sensing matrix and BF vectors which are complex linear combinations of the columns of the DFT

matrix.
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