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“An approximate answer to the right problem is worth a good deal more than an exact

answer to an approximate problem.”

John Tukey



Abstract

Heterogeneity in observed data is a common feature that statisticians have to deal with

when analyzing data. Estimating these changes in an observed process not only helps

to better model the underlying phenomena, but also facilitates the process of making

more informed decisions. In health informatics, when analyzing patients’ genomes with

complex diseases, it is a pivotal step in finding disease-causing genes or active regions of

the genome that has functional importance when characterizing these diseases. Change-

point analysis methods are among the best approaches that can be used to address

this problem of locating important genomic variations in genomes. Detection of these

variations helps researchers and practitioners to assess disease progression, prognosis

and e�cacy of treatments. Thus, at patient level it helps to provide more improved

personalized medicine to alleviate a disease.

The overall research aim of this thesis is to introduce the Cross-Entropy (CE) method,

a model-based stochastic optimization procedure that nests under the branch of evolu-

tionary computing techniques, to estimate both the number of change-points and their

locations in biological sequences. Particularly we focused on analyzing array comparative

genomic hybridization (aCGH) data and DNA read count data obtained through next

generation sequencing (NGS) methods. Several variants of the CE method are proposed

in this work to detect change-point locations in both continuous and discrete (count)

data. Di↵erent model selection criteria are used in the CE method to estimate the opti-

mal number of change-points. It is known that evolutionary computing methods consume

more computational resources due to the nature of their implementation. In this thesis

we propose two alternative solutions to ameliorate this e�ciency issue of the general CE

algorithm. At first, we develop a multi-core parallel implementation of the CE algorithm

in the R statistical computing environment. Later, for the first time in the literature, we

combine two powerful sequential detection techniques with the CE method to further in-

crease its e�ciency. We further explore the feasibility of incorporating auxiliary informa-

tion to the process of change-point detection in the CE method with the use of generalized

additive model for location, scale and shape (GAMLSS). A series of extensive simulations

were performed in multiple publications to establish the procedures and to ascertain their

e�cacy. We apply the proposed variants of the CE method to both aCGH and DNA

read count data obtained through NGS methods to detect copy number variations. The

methods discussed in this thesis are freely available as an R package named “breakpoint”

at the website http://cran.r-project.org/web/packages/breakpoint/index.html.

http://cran.r-project.org/web/packages/breakpoint/index.html


This thesis contains four peer-reviewed publications, which include a book chapter, a

journal article and two conference papers. It further includes details of an R package

developed to detect multiple change-points in continuous and count data based on the

methods developed in this thesis.
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Chapter 1

Introduction and Thesis Outline

1.1 Change-point problem

The change-point problem (or disorder problem) is commonly described as the problem

of identifying changes of the parameter(s) of interest at unknown times and estimating

their corresponding locations in stochastic processes. We utilize change-point models

to detect these changes in order to provide an improved, detailed interpretation of the

underlying properties of the process. The standard practice in statistical modelling is

to consider homogeneity of the parameter(s) of interest across the entire data sequence

[29]. However, in real life this assumption is frequently violated in many scenarios. This

heterogeneity may be due to a change in mean, variance, skewness, distributional family

or any other characteristic of the observed data. Thus, there exist change-points (or

break-points, disorder points, structural breaks etc.) that divide an entire process into

piece-wise homogeneous sections with respect to the parameter(s) of interest. These sec-

tions are commonly referred to as segments or regimes. The ultimate goal of change-point

analysis is to “correctly answer the question of whether the data obtained are generated

by one or by many probabilistic mechanisms” [29]. From the statistical point of view, a

change-point is a location or time point such that the observations follow a particular dis-

tribution up to that point and follow a di↵erent distribution after that point. Therefore,

one should carefully consider these change-points as well as their corresponding locations

before developing a statistical model to carryout further analysis [29]. In the last few

decades the change-point problem has received increasing attention for these reasons

and has attracted a wide range of applications in many scientific streams. These mod-

els are employed in biological sequences analysis, financial and economic data analysis,

1
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EEG analysis, signal processing, surveillance and security system analysis, oceanographic

studies, industrial quality control, etc.

In the literature, there exists a number of methodologies that attempt to solve this issue

addressing di↵erent aspects or dimensions of the change-point problem. Broadly, there

are two main classes of change-point problems. They are “retrospective (o↵-line or a

posteriori)” and “sequential (on-line or prospective)”. In the retrospective change-point

problem the entire data set is considered to obtain inferences about the change-points.

In the retrospective case, the process of obtaining inferences about the change-points can

be considered as a static process. However, in the sequential change-point problem data

get updated continually and the future observations are not known. Therefore, it follows

a dynamic process in obtaining inferences about the change-points. The retrospective

change-point problem tests for a single or multiple change-points in an observed data

sequence, while the sequential change-point problem looks for the first time a change

is detected. In general, both of these statistical diagnosis problems are concerned with

the detection of change-points in stochastic processes and the estimation of their corre-

sponding locations. Furthermore, they can be formulated as a model selection problem.

In the literature, there are number of methodologies available to solve both of these

change-point problems using frequentist as well as Bayesian approaches.

In this thesis, we are primarily interested in addressing the retrospective multiple change-

point problem with a special interest in detecting abrupt changes in genomic sequences.

The majority of the current detection methods are deterministic and use dynamic pro-

gramming or di↵erent smoothing techniques to obtain the estimates of change-points.

These approaches limits the search space of the problem due to di↵erent assumptions

made in the methods and do not represent the true nature of the uncertainty associated

with the unknown change-points in genomic sequences. The ultimate objective of this

work is to develop and introduce more improved methodologies to accurately address

the uncertainty associated with the change-points and their locations.

In genomic sequences, the change-point locations (loci) are the core estimates that fa-

cilitate to find disease-causing genes in many complex health problems. Thus, it helps

to develop better diagnostic methods as well as to alleviate the disease, which is the

ultimate goal. Therefore, the accuracy of change-point locations is considered as one

of the most important factors when analyzing the e↵ectiveness of a proposed proce-

dure. In this thesis, we propose to utilize an evolutionary computing technique: the

Cross-Entropy (CE) method, which is a model-based stochastic optimization procedure

to estimate number of change-points and locations in genomic sequences more precisely.
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Later, for the first time in the literature of change-point problems, we combine power-

ful sequential change-point detection techniques, such as the cumulative sum method

and Shiryaev-Roberts procedure with the CE method to obtain estimates of both the

number as well as the locations of change-points in biological sequences. Moreover,

a multi-core parallel implementation is introduced to improve computational e�ciency

of the proposed procedures. The R package “breakpoint” is created based on some

of the proposed methodologies in this thesis and it is freely available on R CRAN

(http://cran.r-project.org/web/packages/breakpoint/index.html).

1.2 Review of segmentation methods

In the literature there exists a number of methodologies that can be utilized to detect

change-points in observed data sequences. Broadly these methodologies can be applied

to solve both the retrospective (o↵-line) and prospective (online) classes of change-point

problems. First, we shall review some of the main techniques available in the literature

and in sections 1.3 and 1.4 we provide a review of the two broader classes of change-point

problems in general.

Recursive segmentation methods

In the recursive segmentation methods, the observed data sequence is segmented recur-

sively into domains with a homogeneous composition [86]. The process of segmentation

is repeated until no statistically significant improvement is achieved. Binary segmen-

tation [136, 138], circular binary segmentation [100, 161] and wild binary segmentation

[56] are some of the popular recursive segmentation methods in the literature. In these

methods, based on a statistical test (non-parametric or model-based) the most significant

change-point is identified at first and that location is kept in the memory. Then, the

original sequence is partitioned into two independent segments based on the identified

change-point and searched for any significant change-points. This process of splitting the

sequence is carried out until no statistically significant change-point is found. These re-

cursive segmentation approaches have obtained significant attention in the change-point

analysis literature due to the simplicity in the implementation and the e�cient com-

putation time. However, numerous studies have raised questions about the behavior of

these recursive methods when there are slight departures from the model assumptions

[98]. In bioinformatics, the circular binary segmentation method [161] is used as one

http://cran.r-project.org/web/packages/breakpoint/index.html
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of the gold standards in detecting change-points in biological sequences of continuous

measurements, such as micro-array data.

Sliding window analysis

Sliding window is a naive and a popular approach in determining the variability along

data sequences [83, 99, 121, 155]. In terms of bioinformatics applications, it is being

used to perform sequence alignment in biological sequences [155], to detect isochores

[99], to investigate evidences for recombination [25] and to determine variation within

a gene [121]. However, technically it lacks multiple attributes to be considered as an

optimal segmentation approach. This is mainly due to the fact that, it averages out the

observation with respect to a pre-determined size of sliding window [162]. The choice

of window size is a crucial step in forming the analysis and the averaging e↵ect is also

questionable in some circumstances. For example if the window size is five, we obtain

the first point by taking the average of the 1-5 observations, second point by taking the

average of 2-6 observations , and so on until the end of the data sequence [155] . If the

length of the observed data sequence is “n” and the window size is “W”, then the length

of the average points sequence is n�W + 1. However, the choice of an optimal window

size has been an open research question for more than two decades [155].

Dynamic programming methods

Dynamic programming (DP) is a general optimization method which provides a frame-

work to solve a complex problem with the use of multistage optimization approach.

Simply, it transforms or splits the complex problem into a pool of simpler problems to

obtain an optimal solution. The mathematical formulation of the DP was first intro-

duced in [19] as a technical report. In bioinformatics there are many variants of the

DP methods developed to perform protein folding, sequence alignment and comparison

[1], gene recognition, copy number variation detection and structural predictions of the

biological sequences. We refer to [59] for a gentle review of DP in bioinformatics. Many

variants of DP have been proposed to detect multiple change-points in a given time series

or sequence [10–12, 75, 76, 92] while improving many computational drawbacks in the

standard DP implementation.
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Hidden Markov models

Hidden Markov Models (HMM) are one of the popular techniques in temporal pattern

recognition. The general idea was initially conveyed in [154] as a solution to a non-linear

filtering problem. Later, with the work of [18] to establish its mathematical properties,

it attracted a wide audience in di↵erent scientific streams to apply the HMM in practice

and to further improve its capabilities. For instance, HMMs have been applied in speech

recognition [123], fault detection [149] and computational biology [55, 80, 107]. In change-

point analysis, HMMs are commonly used to obtain inferences about the change-points in

an observed data sequence. In a change-point problem when forming the HMM the data

are referred to as the observations and the unknown segments are defined as the hidden

states. The hidden states a↵ect the transition probabilities within each segment, whereas

at each segment boundary a transition between states occurs. In bioinformatics, HMM

was developed to segment biological sequences [107] with respect to the composition of

the basic nucleotides. Later, [55] first proposed HMMs to detect copy number variations

in biological sequences, followed by further extensions proposed in [14, 164, 165]. HMMs

are popular mainly due to the fact that they produce statistically sound post inferences

about the change-points. However, at the initial stages the ambiguity in the process of

selecting prior probability distributions for the unknown states is considered as one of

the drawbacks of the HMMs.

Penalized likelihood methods

The derivation of the likelihood concept by Fisher [53, 54] opened up a wide spectrum

of applications in statistical modelling. In change-point analysis, the use of likelihood

approaches is an essential and inevitable step in majority of the methods proposed in the

literature. This is mainly due to the fact that change-point analysis can be considered

as a model selection problem. The first application of the use of penalized likelihood

methods in change-point analysis was proposed in the seminal paper by Yao [172]. In

[172], the Bayesian information criterion (BIC; [135]) was used to estimate the number

of change-points in an observed data sequence, which is independent and normally dis-

tributed. It was found in [172] that the BIC provides weak consistency when estimating

the true number of change-points. Later, a quasi-likelihood based method with a modified

Schwarz criterion was proposed in [26] that utilizes a data-driven approach to select the

penalty parameter of the original BIC. Recently, multiple change-point detection meth-

ods developed on the least absolute shrinkage and selection operator (Lasso; [157, 158])
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were proposed in [159]. However, it was found that the Lasso-type approaches in change-

point analysis generally tend to over-estimate the true number of change-points [139].

Thus, to overcome this issue, an adaptive Lasso method was proposed recently with a

post change-point analysis by using multivariate t simultaneous confidence intervals in

[139].

Evolutionary algorithms

Evolutionary algorithms (EAs) are population-based metaheuristic optimization algo-

rithms, which nests under the wider scope of evolutionary computation techniques [13].

The attention on EAs have significantly increased over the last decades mainly due to the

exponential growth in technological advancements. The computational time of a process

in a computer has significantly reduced over time due to these improvements. There are

a wide variety of EAs currently being developed in many scientific streams. These EAs

are mainly utilized to solve optimization-related search problems. Change-point analysis

can also be considered as a mixture of estimation and optimization problems. On one

hand the estimates of the change-points have to be obtained, and on the other hand, the

solution has to be optimized over the range of the feasible solution set. Thus, it naturally

contains the characteristics that can be solved by utilizing EAs. In the literature, there

are multiple publications on applying di↵erent variants of the genetic algorithm[34, 42],

which is a sub-class of EAs to solve the change-point estimation problem [70, 85, 113]. We

refer to [103] for a detailed review on some of the evolutionary computation techniques

utilized in bioinformatics. Later, the Cross-Entropy (CE) method [49] was considered to

estimate change-point locations in binary data. However, their method was not devel-

oped to estimate the number of change-points.

In this thesis, we contribute to the existing literature on EAs by considering further

extensions, modifications and applications of the the cross-entropy method, which is

one of the EAs to estimate the unknown change-point locations in di↵erent biological

sequences [115–117, 119, 120, 167].

1.3 Retrospective class of change-point problems

In the retrospective (or o↵-line, a posteriori) change-point problem, we observe the entire

sample at once to obtain the estimates for both the number of change-points as well as

their locations. The retrospective change-point problem was first introduced by Page
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[101]. In his paper, some attributes of the single change-point problem were discussed.

Over the years there have been significant methodological advancements in the branch

of retrospective change-point problem. We refer [20, 36, 41, 65, 102, 144, 146] for more

information about di↵erent methodologies as well as for detailed reviews of them.

We shall define the single change-point and multiple change-point problem in the domain

of retrospective class of change-point problems. This is mainly due to the scope of this

thesis, where in the context of analyzing biological sequences, we observed the entire

data sequence before hand. Thus, the change-point analysis on the biological sequences

can be primarily attributed to the retrospective class of change-point problems.

1.3.1 Single change-point problem

In the single change-point problem, we detect only one abrupt change in the parameter(s)

of interest. The single change-point problem has been addressed by various authors using

both frequentist and Bayesian approaches. The pioneering work of Shewart [140], Page

[101, 102], Roberts [129], Shiryaev [141–143], Hinkley [65] and Lorden [87] initiated the

discussion about di↵erent approaches that can be utilized to solve the single change-point

problem with the use of sequential detection techniques. In the Bayesian context, Smith’s

[146] contributions are imperative for the evolution of advanced Bayesian techniques for

the change-point problem.

The general formulation of the single change-point problem is as follows. Consider a

sequence of observations y = (y1, y2, . . . , yL) of length L. Let y
i

’s, i = 1, . . . , L are

independent random variables with probability distribution functions G1, G2, . . . , GL

.

Let c be defined as the unknown location of the change-point (1 < c < L) in the observed

data sequence. In general, the single change-point problem is to test the following null

hypothesis,

H0 : G1 = G2 = . . . = G
L

,

versus the alternative,

H1 : G1 = G2 = . . . = G
c�1 6= G

c

= . . . = G
L

.
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If the distributions G1, . . . , GL

belong to a common parametric distribution family G(✓),

then the change-point problem can be illustrated as a hypothesis test on population

parameters ✓
i

, i = 1, . . . , L:

H0 : ✓1 = ✓2 = . . . = ✓
L

= ✓ (unknown),

versus the alternative,

H1 : ✓1 = . . . = ✓
c�1 6= ✓

c

= . . . = ✓
L

.

Figure 1.1 is an example of a single change-point process. It illustrates a change in the

mean of normally distributed random variables.
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Figure 1.1: Single change-point problem.

1.3.2 Multiple change-point problem

In the multiple change-point problem (MCCP), we encounter more than one change-

point in the process. It is the natural extension of the single change-point problem. The
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general formulation of the problem is as follows.

Let y = (y1, y2, . . . , yL) be a sequence of independent random variables with probability

distribution functions G1, G2, . . . , GL

, respectively. Let c1, c2, . . . , cN be the unknown

locations of N , the number of change-points, where c1 < c2 < . . . < c
N

. The sequence of

observations are divided into N +1 segments based on the N change-points. In general,

the change-point problem is to test the following hypothesis,

H0 : G1 = G2 = . . . = G
L

,

versus the alternative,

H1 : G1 = . . . = G
c1�1 6= G

c1 = . . . = G
c2�1 6= G

c2 = . . . = G
cN�1 6= G

cN . . . = G
L

.

Figure 1.2 is an example of a multiple change-point process. It illustrates multiple

changes in the mean of normally distributed random variables.
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Figure 1.2: Multiple change-point problem.
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1.4 Sequential class of change-point problems

In the sequential (or quickest, prospective) change-point problem, a sequence of random

variables is observed on-line, that is, future observations are not known. The goal of

these methods is to identify a change as soon as possible and to avoid false alarms. In

general, the sequential change-point problem is considered as the origin of the change-

point analysis, where much of the earlier work was initiated and carried out to solve

quality control issues in industrial processes [65, 101, 102, 129, 140, 141]. To date there

are two main procedures that have been extensively studied in this area: the Cumulative

Sum (CUSUM) procedure [101] and the Shiryaev-Roberts (SR) procedure [129, 141–143].

We refer to [82] for a detailed review of sequential change-point methods.

The sequential problem can be described in mathematical terms as follows. Let {Y
n

}
n�1

be independent random variables which are observed sequentially, one by one. Suppose

that initially the sequence is in so-called “controlled” state for n = 1, 2, . . . , ⌧ �1, that is,

the random variables are distributed with f0(y), a common probability density function

(pdf) with parameter values of ✓0. At some unknown moment “⌧” a breakage occurs

and the observed sequence runs “out of control”, which means that after the breakage

(change-point) the probabilistic characteristics of the sequence have changed. From

moment “⌧” we observe random variables with f1(y), f1(y) 6= f0(y), another probability

density function with a di↵erent set of parameter values ✓1, ✓0 6= ✓1. Our objective is to

detect the change-point as soon as it occurs with a minimum number of false alarms. In

other words, in the sequential change-point problem, we would like to detect the moment

“⌧” as quickly as possible after it has occurred and, at the same time, we would like to

keep the false alarm rate at a low pre-defined level.

1.5 Biological background

One of the major breakthroughs of modern science has been the elucidation of the chem-

ical nature of the gene. The transmission of traits from parents to o↵spring depends on

the transfer of a specific giant molecule that carries a coded blueprint in its molecular

structure. This complex molecule, the basic component of the chromosome, is deoxyri-

bonucleic acid, or in abbreviated form, DNA [166]. It is the heredity material or the

information carrier in humans and in all living organisms. DNA consists of two long

polymers of nucleotides. The information in DNA is stored as a code made up of four

chemical bases known as Adenine (A), Guanine (G), Cytosine (C) and Thymine (T) (see
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Figure 1.3: The structure of DNA.
Source:http://www.ncbi.nlm.nih.gov/books/NBK26821/

Figure 1.3). The order or the sequence of these chemical bases determines the informa-

tion available for building and maintaining a living organism. The DNA molecules are

packed into thread-like structures called chromosomes in the nucleus of each cell (see

Figure 1.4). In almost every cell of a human being, there are 23 pairs of chromosomes,

which makes 46 chromosomes in total. The sex chromosomes determine the gender (male

if XY or female if XX) and all other chromosomes are known as autosomes. Figure 1.5

is a photograph of a person’s chromosomes and it is called a karyotype.

The information carried in DNA molecule can be divided into a number of separable

units, which we identify as the genes. More specifically, a gene is a particular segment of

a DNA that codes for a specific protein [58, 106]. Bases in the gene determines the order

in which amino acids are put together to make the protein. In this modern era a gene is

defined as “a locatable region of genomic sequence, corresponding to a unit of inheritance,

which is associated with regulatory regions, transcribed regions, and or other functional

http://www.ncbi.nlm.nih.gov/books/NBK26821/
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sequence regions” [104, 106]. Thus, genes are the basic unit of inheritance that ferry a

characteristic from parent to o↵spring. It is estimated that there are around 20,000 to

25,000 protein-coding genes in the human genome. These genes account for only about

two percent of our DNA.

Figure 1.4: The composition of a chromosome.
Source:http://ghr.nlm.nih.gov/handbook/basics/chromosome

In health informatics, detection and characterization of genomic structural variations are

essential in identifying disease-causing genes that have functional importance in causing

genome-wide complex diseases, such as cancer, autism, immune disorders, etc. These

complex genetic alterations in the human genome are key driving forces behind tumour

development and progression. They also a↵ect the degree of response to drugs, vaccines,

pathogens and other forms of cure to genomic diseases. In the last few decades, there

has been a significant improvement in sequencing technologies as well as data analyz-

ing methodologies, which aim to detect these important variations. These structural

alterations can be inherited through germline or be somatically acquired. Copy number

variation (CNV) is a form of structural variation in the genome. CNV is defined as “a

segment of DNA that is one kilobase (kb) or larger and is present at a variable copy

number in comparison with a reference genome” [51]. Recent studies have shown that

around twelve percent of the human genome varies in copy number [125] which includes

important genetic information [32]. Furthermore, it is confirmed through multiple stud-

ies that CNV plays an important role in genetic susceptibility to common diseases [37]

http://ghr.nlm.nih.gov/handbook/basics/chromosome
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such as cancer [30, 40, 68, 108], autism [137], HIV [61], immune disorders [50], intellec-

tual disabilities [78], etc. In the literature, there are multiple platforms and developed

procedures to detect CNV [33, 69, 72, 88, 170] with the use of advanced technologies. In

this thesis, I shall briefly discuss the array comparative genomic hybridization and some

of the next generation sequencing techniques that are used in detecting CNVs.

Figure 1.5: A karyotype of the the human chromosomes.
Source:http://ghr.nlm.nih.gov/handbook/basics/howmanychromosomes

1.5.1 Array-based comparative genomic hybridization

Array comparative genomic hybridization (aCGH) is one of the most popular techniques

that is commonly used to detect and map copy number variation in DNA sequences.

It is developed on the principles of the conventional comparative genomic hybridization

(CGH) technique [72], which produces a map of DNA sequence copy number with

respect to chromosomal locations. The CGH method was developed to detect small-

scale chromosomal aberrations that are not visible through the microscope. It bridges

the gap between techniques that look for large chromosomal variations (e.g. karyotyping)

and those that concentrate on a specific region or section of DNA (targeted sequencing).

In CGH experiments, the di↵erentially-labelled test and control genomes are hybridized

to metaphase chromosomes. The metaphase stage of a chromosome is defined as “the

process that separates duplicated genetic material carried in the nucleus of a parent cell

http://ghr.nlm.nih.gov/handbook/basics/howmanychromosomes
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Figure 1.6: The composition of a gene.
Source:http://ghr.nlm.nih.gov/handbook/basics/gene

into two identical daughter cells”. A chromosome is most condensed at this stage and it

facilitates to identify the structure for further studies. Metaphase chromosomes are used

in traditional and spectral karyotyping to identify large-scale genomic abnormalities. In

the traditional karyotyping, researchers are able to view the full set of chromosomes

in black and white. However, in the spectral karyotyping a multi-colored picture of

chromosomes is obtained. In a standard CGH experiment, a tumor sample labeled red

(Cy5) is hybridized to a reference normal sample labeled green (Cy3). The fluorescent

signal intensity of the tumor DNA relative to the reference DNA along the chromosome

is linearly plotted to identify CNVs [33, 72].

The aCGH technique uses slides arrayed with small segments of DNA as the targets for

analysis [88] in contrast to the use of metaphase chromosomes in CGH. Figure 1.7 shows

the complete process of aCGH analysis. The aCGH technique o↵ers high resolution for

CNV detection. Moreover, the ability to detect di↵erent types of alterations in a single

process is one of the advantages of the CGH technique [156]. It has been also proven

that aCGH is a powerful tool to detect submicroscopic chromosomal abnormalities in

individuals with idiopathic mental retardation and various birth defects. Refer [33, 156]

for a detailed review of DNA micro-arrays and CNV detection.

http://ghr.nlm.nih.gov/handbook/basics/gene
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Figure 1.7: Diagram of the aCGH process

1.5.2 Next generation sequencing

The discovery of the use of dideoxy nucleotides for chain termination by Sanger et al.

[133] marked a milestone in the history of DNA sequencing. This concept provided a

basis for the development of automated Sanger sequencing [9, 148] which has been the

method of choice for DNA sequencing for almost two decades.

In the last decade a revolution occurred in the field of DNA sequencing. This was due

to the development of new high-throughput sequencing technologies, known as Next-

Generation Sequencing (NGS) technologies, that are now widely adopted [62, 93]. These

technologies are considered as the successors to the first-generation sequencing meth-

ods (e.g. aCGH). They are also known as ultra-high-throughput or massively parallel
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genomic sequencing technologies. These technologies have fundamentally changed the

way in which we think about genetic and genomic research, opening new frontiers and

new pathways that were not even thinkable or achievable with Sanger sequencing. They

have provided the opportunity for a global investigation of multiple genomes and tran-

scriptomes across the genome at single base resolution, in an extremely e�cient and

timely manner at much lower costs compared to the previous (e.g. Sanger sequencing)

sequencing methods. One of the main advantages o↵ered by NGS technologies is their

ability to produce an incredible volume of data, cheaply, that in some cases exceeds one

billion of short reads per instrument run. Applications that have already benefited from

these technologies include: disease-targeted sequencing [126], polymorphism discovery

[147], non-coding RNA discovery [94], large-scale chromatin immunoprecipitation [71],

gene-expression profiling [15], clinical studies [171], mutation mapping and whole tran-

scriptome analysis [63, 91]. Thus, the advent of the next generation sequencing (NGS)

technologies have greatly increased the availability of data with a high level of sensitivity.

As a result it has also opened up avenues to develop novel computational and statistical

methodologies to e↵ectively analyze these data.

1.6 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 provides an overview

of the theory and methodologies utilized in this thesis. It contains detailed informa-

tion about the Cross-Entropy (CE) method and its convergence properties, the multiple

change-point problem and the sequential change-point problem. Furthermore, it gives

an overview of the parallel computing techniques that can be carried-out in the R sta-

tistical computing environment both in the UNIX and WINDOWS operating systems.

Chapters 3 and 4 contain two peer-reviewed publications that discuss the implementation

of the CE method to detect multiple change-points in biological sequences of continu-

ous measurements. Chapter 3 includes a peer-reviewed journal article that introduces

the CE method to detect multiple change-points in aCGH data. Chapter 4 contains a

peer-reviewed book chapter that introduces two hybrid algorithms combining powerful

sequential detection techniques with the CE method to detect multiple change-points

in continuous measurements. The work in chapter 4 can be considered as a significant

improvement to the methodology proposed in chapter 3. Chapters 5 and 6 focus on

the implementation of the CE method to detect multiple change-points in NGS data.

Chapter 5 contains a peer-reviewed full conference paper that introduces the CE method



Chapter 1. Introduction and Thesis Outline 17

to detect copy number variation in NGS read count data. Chapter 6 contains a peer-

reviewed conference paper that utilizes Generalized additive models for location scale

and shape (GAMLSS [127]) to detect copy number variation in NGS data with the use

of auxiliary information. Chapter 7 describes the ‘breakpoint’ R package [114] that is

developed on some of the methodologies discussed in the thesis to detect multiple change-

points in continuous and count data. Finally, chapter 8 concludes the thesis providing a

summary and a discussion of the overall findings together with future research directions.





Chapter 2

Methods

In this section of the thesis, we provide detailed information on the methodologies uti-

lized in the subsequent chapters corresponding to multiple publications. Those methods

discussed briefly in the papers, are elaborated and generalized to obtain an overview of

the scope of the thesis.

2.1 The General Cross-Entropy Method

The Cross-Entropy (CE) method [44, 130–132] is a general model-based stochastic opti-

mization technique developed on one of the fundamental principles of modern information

theory called Kullback-Leibler [81] information (or cross-entropy). The CE method was

first introduced by Reuven Y. Rubinstein in 1997 [132] as an adaptive importance sampler

for estimating probabilities of rare events. Later, with further developments [130, 131],

it was extended to solve complex combinatorial, continuous and multi-extremal opti-

mization problems [79, 130]. The CE method has been successfully applied in solving a

wide range of traditionally hard test problems including the maximal-cut problem, the

traveling salesman problem (TSP) and the quadratic assignment problem [131]. Ad-

ditionally, the CE method has been applied to bu↵er allocation problems [4], queuing

models for telecommunication systems [43], tra�c assignment problems [89], probability

density estimation [22], medical image segmentation [169], prototype-based learning [24],

DNA sequence alignment [73], binary data segmentation [49], vehicle routing [35] etc.

In general, the CE method is summarized by a three-step iterative procedure:

19
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• Step 1: Simulate candidate solutions for the problem based on a statistical distri-

bution.

• Step 2: Calculate the performance function score relative to the problem that

needs to be solved.

• Step 3: Update the parameters of the statistical distribution (in step 1) in order

to obtain an improved solution set in subsequent iterations by minimizing the

cross-entropy.

The CE method carries out all its computations in the optimization steps based on a

statistical distribution (parametrized probability distribution) and it is similar to the

estimation of distribution algorithms [57]. The probabilistic approach in the CE al-

gorithm transfers information from the current best solutions to the next iteration in

order to increase the probability that similar solutions appear in subsequent iterations.

This model-based approach is a key feature of the CE method as compared to the other

competing stochastic optimization methodologies, such as simulated annealing [77], tabu

search [60] and genetic algorithms [67], which are operating directly on a population of

candidate solutions [38].

2.1.1 The Kullback-Leibler Information

The Kullback-Leibler (K-L) information [81] is a fundamental concept in information

theory. It measures the dissimilarity or directed distance between two probability distri-

butions. It is also known as K-L discrepancy, distance, CE divergence or K-L number.

Many statistical procedures including the likelihood and penalized likelihood methods

directly or indirectly utilize the K-L information to make inferences. The CE method is

developed on the principles of the K-L information.

Let F and G be two probability distributions with probability distribution functions f

and g that are defined on the same sample space Y of length L. Then the expectation

I
KL

(F,G) = E
f

ln

 
f(Y )

g(Y )

!

is the K-L information of G with regard to F , I
KL

(F,G) is the information lost when

G is used to approximate F . We can obtain the formulas for discrete and continuous

probability distributions as follows.
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I
KL

(F,G) =

8
>>>><

>>>>:

P
L

i=1 f(yi)ln

 
f(y

i

)

g(y
i

)

!
if F and G are discrete distributions, and

R
1

�1
f(y)ln

 
f(y)

g(y)

!
dy if F and G are continuous distributions.

Properties of the K-L information:

1. I
KL

(F,G) � 0 (i.e. it is always non-negative);

2. I
KL

(F,G) = 0 only if f(y) = g(y) (i.e. the two distributions are identical);

3. I
KL

(F,G) 6= I
KL

(G,F) in general (i.e. it is not symmetric);

4. I
KL

is invariant under transformations of the sample space.

2.1.2 The General CE algorithm for optimization

Consider the global optimization of a real-valued deterministic performance function

F (Y), which is evaluated by a candidate solution vector ofY = (Y1,Y2, . . . ,YM

) defined

on the feasible solution space of Y . The objective of this optimization problem is to find

the maximum of F over Y and the corresponding maximizer Y⇤. We can define this

problem as

F (Y⇤) = �⇤ = argmax
Y 2 Y

F (Y),

where the �⇤ is the global maximum of F (Y) and Y⇤ is the corresponding optimal

solution. In the CE method, the deterministic optimization problem is translated into an

associated stochastic problem (ASP) and then rare event simulation techniques discussed

in [131, 132] are used to solve the original problem. Let the ASP be defined [131] as

follows:

P⌫(F (Y) � �) = E⌫I{F (Y)��}, (2.1)

where Y is drawn from a parametric distribution with probability distribution function

f(·;⌫) and ⌫ is the parameter vector of its that controls the sampling of the candidate

solutions. P⌫ is the probability measure associated with f(·;⌫). The left-hand-side of

equation 2.1 is the probability under f(·;⌫) that {F (Y) � �}. E⌫ is the expectation



Chapter 2. Methods 22

operator and I{·} is an indicator function. Equation 2.1 can be estimated using a log-

likelihood estimator with parameter ⌫,

⌫̂⇤ = argmax
⌫

1

M
elite

MeliteX

i=1

I{F (Yi)��}lnf(Yi

;⌫),

where M
elite

 M is the size of the candidate solutions simulated from the statistical

distribution f(·;⌫) where F (Y
i

) � �.

The general CE algorithm can be described as follows.

Algorithm 1 The general CE algorithm.

1. Parameter initialization: Set initial parameters of the statistical distribution as

⌫̂(0). Set iteration counter t = 1.

2. Update �̂(t) : Generate M samples Y1,Y2, . . . ,YM

from f(·; ⌫̂
t�1) and calculate

the performances F (Y1), F (Y2), . . . , F (Y
M

) for the candidate solutions. These

values are then sorted in increasing order, F(1)  . . .  F(M). Let �(t) be the

(1 � ⇢) quantile of F (Y) satisfying

P⌫(t�1)(F (Y) � �(t)) � ⇢,

P⌫(t�1)(F (Y)  �(t)) � 1 � ⇢.

The estimate of �̂(t) is computed as

�̂(t) = F(d(1�⇢)Me).

3. Update ⌫̂(t) : Given ⌫̂(t�1) we obtain estimates for the ⌫̂(t) by utilizing the CE

(or KL divergence) technique. The optimization problem can be obtained as

⌫̂ = argmax
⌫

E⌫̂(t�1)I{F (Yi)��̂

t}lnf(Yi

;⌫).

We obtain the following optimization problem if we utilize the best perform-

ing fraction of the samples (M
elite

) to update the parameters of the statistical

distribution.

⌫̂ = argmax
⌫

1

M
elite

MeliteX

i=1

I{F (Yi)��}lnf(Yi

;⌫). (2.2)
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4. Smooth update of ⌫̂(t) (Optional):

The smooth updating of the parameters [131] can be utilized to decrease the

probability of the CE procedure converging too quickly to a sub-optimal so-

lution. Thus, it will prevent the CE algorithm from being trapped at local

optimums. Let the constant smoothing coe�cient be defined as a (0  a  1).

The smoothed update of ⌫̂(t) can be obtained as:

⌫̂(t) = a⌫̃(t) + (1 � a)⌫̂(t�1).

where ⌫̃(t) is the parameter estimates obtain in the current iteration by utilizing

2.2. If a = 1 the update will not be smoothed.

5. If the stopping criterion (SC, see 2.1.7) is met, then stop the process and identify

the solution that maximizes the performance function. Otherwise, set t = t+1

and repeat steps 2 to 4 until the SC is satisfied.

Detailed information about the convergence properties of the CE algorithm discussed

in this thesis can be found in [90] and [38]. Convergence properties of two versions

of the CE method was discussed in [90]. They have named the first version Graphed-

Based CE Algorithm/Conservative Modification (GBCE/CM), which uses a smoothed

parameter update scheme. The other version was named Graphed-Based CE Algorithm/-

Conservative Modification with Lower Bound (GBCE/CMLB), which has a normalized

probability updating rule. The procedures followed in [64] to prove the convergence of

two ant colony optimization algorithms were directly adopted in [90] to form theoretical

convergence results of the CE methods. Later, in [38], convergence properties of the

CE method for discrete optimization was discussed in detail. They have proved several

convergence properties of the CE method that uses an “elite sample” to obtain param-

eter estimates with smoothed updating schemes. The work presented in this thesis falls

under the branch of discrete optimization. Thus, the convergence properties of the CE

method discussed in [38] is directly related.

2.1.3 The CE method for retrospective MCPP

The change-point problem can be described as a combinatorial optimization problem.

The CE method is one of the best evolutionary computing techniques that utilizes a

stochastic framework to solve both estimation and optimization problems. Thus, it makes
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an ideal methodology to address the change-point problem which has a greater amount

of uncertainty in the parameters of interest. In real world applications, the number of

change-points and their corresponding locations are not known in advance. Our goal in

this thesis is to propose e↵ective and e�cient procedures to estimate both the number

and the locations of change-points in genomic data sequences by using the CE method.

Identifying critical change-points in genomic sequences is a crucial step in understanding

the genetic mechanism of complex diseases. The discovery of these change-points in

genomic sequences helps researchers and practitioners to further improve the treatment

procedures, drug development and assess disease progression.

In the context of MCPP, the CE method is used to solve the complex discrete opti-

mization problem in this thesis. Similar combinatorial optimization problems including

the maximal cut problem, optimal bu↵er allocation, DNA sequence alignment and the

travelling salesman problem have been successfully solved by utilizing the CE method

[4, 49, 73, 131, 169]. The general structure of the algorithm is discussed in this section.

More specific implementations of the CE method along with relevant applications are

discussed in chapters 3, 4, 5 and 6.

Recall the change-point problem from Chapter 1, with the number of change-points

denoted by N , the length of the observed data sequence by L, change-point location

vector by C and the elite sample fraction by ⇢.

The CE algorithm for estimating the locations of change-points (given the value of N):

Algorithm 2 The CE algorithm for estimating the locations of change-points.

1. Given the value of N , set the initial parameters of the statistical distribution

f(·;⌫0) that simulates the change-point locations. The parameter vectors are

N dimensional. Set the iteration counter t = 1.

2. Generate M random samples C(1),C(2), . . . ,C(M) from the statistical distribu-

tion with parameters ⌫t�1, where C(i) = (c(i)1 , c(i)2 , . . . , c(i)
N

), i = 1, 2, . . . ,M .

3. For each i = 1, 2, . . . ,M sort the simulated change-point locations in ascending

order and calculate the performance function score F for each candidate solu-

tion. Sort the F score in descending order if the model selection criterion is

defined as finding a maximum, otherwise sort it in ascending order.
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4. Let the size of the best performing fraction of the samples be defined as

M
elite

= ⇢ ⇥ M . Based on the size of the M
elite

sample, we obtain the upper

quantile of the candidate solutions with respect to the performance function

score. This elite sample is used to calculate and update the parameters (⌫t)

of the statistical distribution considered in the step 1. The parameters of the

statistical distribution can be updated either using the smoothing technique

discussed in Section 2.1.2 or without any smoothing.

5. If the process has met a stopping criterion, we stop the algorithm and obtain

the current solution as estimates for the locations of the change-points.

The above algorithm 2 defines the general work-flow of the CE method in estimating the

locations of the change-points with respect to the number of change-points (N). The flow

chart in Figure 2.1 further illustrates the procedure. In order to estimate the number

of change-points, we propose to utilize one or more model selection criteria. In this

thesis, we have explored the feasibility of applying the Bayesian information criterion

[135] and the modified Bayesian information criterion [174] to estimate the number of

change-points.

An overview of the overall algorithm to find both the number of change-points and their

corresponding locations is as follows:

Algorithm 3 Overall algorithm to estimate both the number and their locations of
change-points.

1. Define the search space for the number of change-points, i.e., define the minimum

(N
min

) (default is set at 0) and the maximum number of change-points (N
max

).

2. For each value of N from N
min

to N
max

, carry-out the CE algorithm 2.1. Obtain

the optimal solution of change-point locations and its performance function score

(i.e., Information Criterion (IC) score).

3. Plot the IC score vs. N and find the value of N that minimizes (or maximizes) the

IC. We denote this N value as Ñ and it is used as the estimate for the number of

change-points.

4. Finally, the value of Ñ and the corresponding locations are given as the optimal

estimates for the number of change-points and their locations.
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Given&N,&Simulate&change1point&loca4ons&
based&on&the&sta4s4cal&distribu4on.&Let&the&

sample&size&be&M.&

For&each&candidate&solu4on,&
calculate&the&performance&func4on&

score.&&

Sort&the&performance&func4on&score&
and&obtain&the&Melite(sample.&

Use&the&Melite(sample&to&update&the&
parameters&of&the&sta4s4cal&

distribu4on.&

Check&whether&the&condi4on&of&the&
stopping&criterion&is&met&or&not.&If,&

No&Yes&

Obtain&the&op4mal&solu4on&for&the&
change1point&loca4ons.&

Figure 2.1: Flow chart of the CE algorithm in MCPP.
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2.1.4 External and Internal parameters of the CE algorithm

We classify the parameters of the CE algorithm into two broader categories based on

their impact on the overall performance. The classification of the parameters not only

simplify the overall nature of the algorithm, it also provides a better overview to the

end-user to appropriately alter the parameter values with a proper understanding of its

overall impact to the algorithm.

2.1.4.1 External parameters

We define the “external” parameters as the non-core parameters that have marginal

impact to the overall performance of the CE algorithm. They are the minimum and

maximum number of change-points (N
min

and N
max

) and the segment width (h). Seg-

ment width (aberration width) h is defined as the minimum allowed distance between

two adjacent change-points.

2.1.4.2 Internal parameters

The “internal” parameters are defined as the core (or crucial) parameters that directly

a↵ect the performance of the CE algorithm. They are the simulated sample size (M),

elite sample fraction (⇢), cut-o↵ value for the stopping criterion (", see page 49) and

smoothing coe�cient (a).

2.1.5 Statistical distributions to simulate change-point loca-

tions

One of the major steps in the CE algorithm is to select an appropriate statistical distribu-

tion to simulate change-point locations. In this thesis, we have proposed two statistical

distributions to simulate change-point locations in the CE algorithm. They are the four-

parameter beta distribution and the truncated Gaussian distribution. They both can be

utilized in analyzing aCGH data as well as the NGS data.
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2.1.5.1 Four-parameter beta distribution

The four-parameter beta distribution is the generalization of the standard beta distri-

bution which is defined on the interval [0, 1]. It is also known as the generalized beta

distribution [2]. In the change-point problem, locations of the change-point estimates

may vary along the length of the observed data sequence. Thus, the support of the stan-

dard beta distribution needs to be expanded to equal the length of the sequence. The

beta distribution is characterized by two positive shape parameters ↵ and �. The prob-

ability density function of the four-parameter beta distribution defined on the interval

[L
L

, L
U

] with shape parameters ↵ and � is given by

f(y | ↵, �, L
L

, L
U

) =

8
><

>:

�(↵ + �)

�(↵)�(�)
· (y � L

L

)↵�1(L
U

� y)��1

(L
U

� L
L

)↵+��1
if L

L

 y  L
U

,

0 otherwise,

where L
L

is the lower limit and L
U

is the upper limit satisfying L
L

< L
U

< 1, two

shape parameters ↵, � > 0 and the gamma function �(·) is defined as

�(z) =

Z 1

0

tz�1e�t dt for all z > 0.

The cumulative distribution function (cdf) of the four-parameter beta distribution is

F (y | ↵, �, L
L

, L
U

) =

8
>>><

>>>:

0 if y < L
L

,

�(↵ + �)

�(↵)�(�)

R
y

LL

(t � L
L

)↵�1(L
U

� t)��1

(L
U

� L
L

)↵+��1
dt if L

L

 y  L
U

,

1 y > L
U

.

In this thesis, we have considered utilizing the method of moments (MoM) technique

[39, 105], rather than the maximum likelihood estimation [31, 52] to obtain parameter

estimates for the four-parameter beta distribution [2]. This is mainly because there

are no closed form solutions for the parameters of the four-parameter beta distribution

under the maximum likelihood approach, thus it requires more computational resources

to generate estimates. In contrast to that, the MoM approach is an e�cient estimation

procedure that gives reasonably accurate estimates for the parameters of interest. We
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can obtain mean (µ) and variance (�2) of the four parameter beta distribution as below

[2].

µ = E(Y ) = L
L

+ (L
U

� L
L

)
↵

↵ + �
, (2.3)

�2 = E(Y 2) � [E(Y )]2 = (L
U

� L
L

)2 · ↵�

(↵ + �)2(↵ + � + 1)
. (2.4)

Method of Moments

The method of moments (MoM) is a population parameter estimation technique that

depends on the law of large numbers [39, 105]. The MoM technique is a three-step

procedure.

1. Derive equations of the theoretical moments with respect to the parameters of

interest.

2. Compute corresponding sample moments based on the observed data.

3. Equate the sample moments to the theoretical moments to obtain a system of equa-

tions and solve it to obtain the corresponding MoM estimates for the population

parameters.

In the MCPP, the lower and upper limits of the four-parameter beta distribution is

known. They are the starting and end location points of the observed data sequence.

We can obtain the MoM estimates for the two-shape parameters by equating the first

two theoretical moments (2.3 and 2.4) to the corresponding sample moments [2] as:

ȳ =
1

L

LX

i=1

y
i

= L
L

+ (L
U

� L
L

)
↵̂
MoM

↵̂
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,
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i

� ȳ)2 = (L
U

� L
L

)2 · ↵̂
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,

where ȳ and s2 are the unbiased estimates of the sample mean and sample variance of

the observed data sequence. We obtain the MoM estimates for ↵ and � as:
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ȳ � L

L

L
U

� L
L

!"
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2.1.5.2 Truncated Gaussian distribution

The truncated Gaussian (or normal) distribution [128] is a variant of the general Gaussian

distribution, which is defined on the range of (�1,+1). Generally, there are three

versions of the truncated normal distributions that are defined on specific boundary

conditions. The three versions are defined with a support of [LB,+1), (�1, UB] and

[LB,UB] respectively. The third version of the truncated Gaussian distribution with

bounded support in both directions (a.k.a. two-sided truncated normal distribution

[128]) is the most appropriate distribution to simulate locations of change-points in

the CE method under the MCPP. The two-sided truncated normal distribution was

considered in [49] to simulate change-point locations in the context of segmenting binary

data.

Let us define the two-sided truncated normal distribution as simply the normalized re-

striction of normal distribution N(µ, �2) on a bounded interval [L
L

, L
U

], �1 < L
L

<

L
U

< +1. The probability density function of the two-sided truncated normal distri-

bution is given by:

f(y | µ, �2, L
L

, L
U

) =

8
>>>><

>>>>:

1p
2⇡�2

exp
⇣�(y � µ)2

2�2

⌘

�
⇣L

U

� µ

�

⌘
� �

⇣L
L

� µ

�

⌘ if L
L

 y  L
U

,

0 otherwise,

where �(·) is the cumulative distribution function of the standard normal distribution.

The maximum likelihood method is used to obtain parameter estimates for µ and �2.

2.1.6 Model selection

In the MCPP, the goal is to obtain estimates for both the number of change-points and

their locations. A performance function (F ) is used in the CE method to evaluate the



Chapter 2. Methods 31

fitness of each candidate solution. In [49] the log-likelihood function is considered as the

F to assess the performance of solutions in the CE procedure. The aim of their paper

was only to obtain estimates of the change-point locations and they did not consider

estimating the number of change-points. To fill this gap, in this thesis, we propose

using di↵erent model selection criteria not only to obtain estimates of the change-point

locations, but also to estimate the number of change-points.

In the literature, there are a few popular model selection criteria that have been proposed

in di↵erent contexts. The Akaike Information Criterion (AIC) [3] and the Bayesian

Information Criterion (BIC) [135] are the most widely known and applied model selection

procedures. All these model selection methods can be categorized as penalized likelihood

methods. They choose a model that maximizes a criterion of the form

ll
model

(✓̂) � p(✓̂),

where ll
model

is the model log-likelihood, ✓̂ is the maximum likelihood parameter estimates

and p is the penalization (penalty) function. We can further classify these penalized

likelihood approaches into two broader categories based on the way in which the penalty

function is defined. The first category can be defined as methods in which the penalty

function is precisely formulated [3, 135, 174]. The other category contains methods

where the values of the penalty function parameters are obtained by direct simulation

[26], data driven methods [84], or cross-validation [21, 157, 158]. In this thesis, we

only consider to use several methods under the first category which has an explicit

formulation of the penalty function. Particularly, we use the general BIC [135] (see 5.6)

and the modified Bayesian Information Criterion [174] (see 3.1) for model selection when

analyzing biological sequences with the CE method.

2.1.7 Stopping Criteria

In the CE algorithm one has to define a stopping criterion to terminate the iterative

process. Several methodologies are discussed in [49, 73, 79, 131]. We will elaborate the

three methods discussed in [131] in the context of change-point problem. They can be

described as follows.

1. Selecting a maximum number of iterations. Let us define that number as T . Thus,

at time t = T , the process is stopped and the corresponding solution is considered

the optimal solution for the problem.
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2. Require a minimum performance improvement. Compare the performance function

score for upto “t⇤” and setup a cut-o↵ value for the di↵erences. In other words, if

the di↵erence of scores from F
t�t

⇤ to F
t

is less than a cut-o↵ value ("), then stop

the process and report the best solution found [119].

3. Setting up a cut-o↵ value for the dispersion of the solutions in the elite sample

[49, 116, 119, 167]. In [49, 119] a cut-o↵ value for the variance of the elite sample

solutions was considered. In this thesis, we propose to use a cut-o↵ value to the

median absolute deviation [66] of the solutions in the elite sample [116, 167].

The second and the third stopping criteria are discussed in this thesis.

2.2 Sequential change-point problem

The sequential problem of statistical diagnosis considers identifying a change in a stochas-

tic process as quickly as possible with a pre-defined (controlled) false alarm rate. There-

fore, sequential methods of statistical diagnosis are also known as quickest detection

techniques. In the sequential detection problem, we observe data on-line (i.e., data are

updated sequentially, one-by-one) and raise an alarm once a change is detected. The qual-

ity of a sequential detection technique is mainly characterized by the “average detection

delay” and “average time between false alarms”. In the literature many methodologies

have been developed as on-line approaches to detect change-points. Some of the most

popular methods are Shewhart method [140], Page’s cumulative sum (CUSUM) method

[101], Shiryaev-Roberts (SR) procedure [129, 141–143] and exponentially-weighted mov-

ing average method [129]. In this thesis, we will discuss the CUSUM and SR procedures.

Both CUSUM and SR procedures are based on Wald’s theory for sequential hypothesis

testing [163] with certain optimality conditions.

The general sequential change-point problem can be described as follows.

Let {y
n

}
n�1 be independent random variables which are observed sequentially, one by

one. Here, n is the current sample size. Each y value follows a probability density function

(pdf) y
j

⇠ f(y
j

;✓), depending on some deterministic parameter(s) ✓. Suppose at time

⌧ a change in the process has occurred. This change is modelled by an instantaneous

modification of the value of ✓ at time ⌧ . We shall define the parameter values of the

probability distribution as ✓ = ✓0 before the change-point at time ⌧ , and ✓ = ✓1 after

the change-point.
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Hypothesis to test :

H0 : There is no change in the sequence (in-control),

H1 : A change occurred at time ⌧ = k for 0  k < 1 (out-of-control).

Under H0, the pdf becomes:

f0(yn

| H0) =
nY

j=1

f(y
j

;✓0),

and under H1, the pdf can be written as:

f1(yn

| H1) =
k�1Y

j=1

f(y
j

;✓0)
nY

j=k

f(y
j

;✓1), k  n.

In order to decide between H0 and H1, we can perform a likelihood ratio test. The

likelihood ratio is as follows:

LR
k

=
f1(yn

| H1)

f0(yn

| H0)
=

nY

j=k

f(y
j

; ✓̂1)

f(y
j

; ✓̂0)
, (2.5)

where ✓̂0 and ✓̂1 are the maximum likelihood estimates of the pre-change and post-change

pdf parameter values. In the simplest setting, let us assume we know the parameter

values of the pre and post change pdf of the observed sequence. In this case, we can

develop an algorithm based on the on-line or sequential detection techniques to estimate

the change time. In the on-line approach, sample after sample, sequentially we can test

the two hypotheses. The general form of a sequential change-point detection algorithm

can be formulated below.
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Algorithm 4 General form of a sequential change-point detection algorithm
Initialization

while the algorithm is not stopped do
obtain the current sample

test for the two hypotheses and decide between H0 and H1

if H1 decided then
store the detection time and estimate the change-point location

stop or reset the algorithm

end

end

2.2.1 Motivating example

Let us consider a sequence of observations y
j

, j = 1, 2, . . ., that are normally distributed

with a common variance �2. Our interest is to estimate a process change in the mean

levels. The pre-change parameters of the distribution can be denoted as ✓0 = {µ0, �2}
and the post-change parameters are denoted as ✓1 = {µ1, �2}. For simplicity and without

loss of generality, we assume that µ0 = 0 and �2 = 1, then

f0(yj | µ0, �
2) =

1p
2⇡

exp

⇢
�
y2
j

2

�
,

f1(yj | µ1, �
2) =

1p
2⇡

exp

⇢
�(y

j

� µ1)2

2

�
.

We can calculate the LR
k

by utilizing (2.5):
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k

=
nY
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Let µ̂1 be the maximum likelihood estimate of the post-change data sequence mean

µ̂1 =

P
n

j=k

y
j

n � (k � 1)
.

Then

LR
k

= exp

8
><

>:

⇣P
n

j=k

y
j

⌘2

2(n � k + 1)

9
>=

>;
. (2.6)

2.2.2 Cumulative sum procedure

The cumulative sum (CUSUM) algorithm was first introduced in [101] as an improvement

to the sensitivity aspects of the Shewart charts. There are di↵erent derivations of the

CUSUM algorithm in the literature [17]. The formal online approach is based upon a

repeated use of the sequential probability ratio test [17]. In the context of observing

a current sample and testing for multiple hypotheses regarding a change has occurred,

this is another form of the CUSUM procedure, which we discuss in this thesis. Detailed

information about the exact or near optimality conditions of the CUSUM procedure can

be found in [87, 95, 109]. In the CUSUM approach, the stopping time is defined as

T
AC = inf{n � 1 : W

n

� A
C

}. (2.7)

Here, W
n

in 2.7 is known as the CUSUM statistic and A
C

> 0 is an unknown positive

threshold that controls the false alarm rate in the CUSUM procedure. We will define

W
n

for the case described in section 2.2.1 as

W
n

= max
1 k  n

LR
k

= max
1 k  n

nY

j=k

f(y
j

; ✓̂1)

f(y
j

; ✓̂0)
= max

1 k  n

exp

8
><

>:

⇣P
n

j=k

y
j

⌘2

2(n � k + 1)

9
>=

>;
, k = 1, 2, . . . .

2.2.3 Shiryaev-Roberts procedure

The CUSUM procedure uses a frequentist approach (maximum likelihood) to obtain

an estimate for the change-point. A Bayesian formulation was proposed in [141, 143]

assuming a geometric prior distribution for the change-point. Thus, it has formulated
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the optimal sequential change-point problem as an optimal stopping problem. Later

[129] extended the work of [141] to a more general context, where it made no assumption

on the prior distribution of the change-point. Di↵erent optimality conditions of the SR

procedure were discussed extensively in [109, 111, 112].

The stopping time of the SR procedure is defined as

T
ASR = inf{n � 1 : R

n

� A
SR

}, (2.8)

where R
n

is known as the SR statistic and A
SR

> 0 is an unknown positive threshold that

controls the false alarm rate. We will define R
n

in the context of the example considered

in section 2.2.1.

R
L

=
nX

k=1

LR
k

=
nX

k=1

nY

j=k

f(y
j

; ✓̂1)

f(y
j

; ✓̂0)
=

nX

k=1

exp

8
><

>:

⇣P
n

j=k

y
j

⌘2

2(n � k + 1)

9
>=

>;
, k = 1, 2, . . . .

There are currently few studies that discuss the performance di↵erences of the CUSUM

and SR procedures in detail [96, 110, 153]. A comprehensive asymptotic study was per-

formed in [110] to compare the e↵ectiveness of the two procedures in detecting a change

in the drift of the Brownian motion. They have found that the CUSUM performs better

than the SR procedure for changes that occur at the beginning and the SR performs bet-

ter than the CUSUM with respect to the conditional average detection delay [96, 110].

However, it is noted in [96] that the performance di↵erences of the two procedures are

significant for small changes, visible for moderate changes and not significant at all for

large changes.

2.3 Parallel programming in R

Being an evolutionary computing method the CE method naturally requires a higher

order of computer resources to carry out its computations. This factor is considered

as one of the bottlenecks of the CE method [119] especially in the context of detecting

change-points in biological sequences. To mitigate this problem, we have proposed an im-

plementation of the CE algorithm by utilizing multi-core parallel computing techniques

[114–117, 120, 167] in the R statistical computing environment [122]. The proposed par-

allel computing procedures were applied in both Microsoft Windows and UNIX operating
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systems [167]. We refer to [45] for a detailed review of parallel computation techniques

in general and refer to [134] to obtain detailed information on parallel computing in theR

statistical software.

R is a powerful and extensive open source statistical environment, but the default be-

haviour of R is to execute arguments serially or in a non-parallel way. Thus, a step-by-

step (or line-by-line) approach is taken in command execution. However, with the use

of other R packages it is possible to carry out parallel calculations. In R, there are three

main streams of code (program) parallelization [134]. They are:

• computer cluster-based parallel computation,

• grid computing,

• multi-core systems-related parallel computation.

In this thesis, we only consider multi-core parallel computation techniques in R to e�-

ciently perform calculations of the CE method both in Microsoft Windows and UNIX

operating systems [167]. In muti-core parallel computation, we distribute a common set

of R commands to run on the available cores in the computer. Even though the overall

process is controlled by the common set of R commands that is initially specified, the

assignment of those instructions to the cores are controlled by the operating system.

In Microsoft Windows, we have developed a SNOW (Simple Network Of Workstations)

parallel process by utilizing the snow [160], doSNOW [6] and foreach [7] packages. The

doSNOW R package works as the foreach parallel adapter for the snow package. In

UNIX, we used doMC [5], parallel [122] and foreach [7] to form a multi-core parallel

computing environment.
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3.1 Summary

This chapter discusses a study in which we present the Cross-Entropy (CE) Method,

as described in Chapter 2, to detect multiple change-points (break-points) in biological

sequences of continuous measurements. Particularly, we applied the CE method to detect

copy number variations (CNVs) in array comparative genomic hybridization (aCGH)

data.

There exists a number of methods that have been developed to detect CNVs using

high-throughput sequencing techniques. The aCGH data falls under the branch of first

generation high-throughput sequencing technologies. Even though there exists a wide

spectrum of methodologies, the majority of currently available detection methods are

sub-optimal in finding change-points. These methods do not represent the underlying

uncertainty of the number as well as the locations of the change-points precisely. Fur-

thermore, there is currently no attempt to utilize model-based evolutionary stochastic

methods to estimate the number and their corresponding locations of change-points in

aCGH data. In order to fill this gap in the current literature, we have proposed the CE

method, which is a model-based stochastic evolutionary computing technique, to detect

multiple change-points in aCGH data.

The proposed CE algorithm contains several improvements over its erstwhile implemen-

tations [49, 119]. We have proposed to incorporate the modified Bayesian information

criterion [174], as described in Chapter 2, to e↵ectively estimate the number of change-

points. A detailed simulation study was carried out to obtain the optimal set of pa-

rameters from the CE algorithm. Furthermore, we compared the performance of the

CE algorithm with four other well-known methods: the circular binary segmentation

method (R package name - DNACopy [161]) proposed in [100, 161]; an e�cient segmen-

tation method proposed in [98] using the least angle regression [46] and models selection

methods (R package name - cumSeg [97]); the Pruned Exact Linear Time proposed in

[76] (R package name - changepoint [74, 124]); and a Bayesian change-point detection

method discussed in [47, 48] (R package name - bcp [47, 48]) based on the product parti-

tion model [16]. All four methods are freely available as R packages in the comprehensive

R archive network [122]. A comprehensive simulation study was carried out using artifi-

cially generated data with di↵erent aberration widths and signal strengths. We applied

the proposed CE method to three publicly available aCGH data sets to identify CNVs.

The first data set on fibroblast cell lines, was introduced in [150] and further discussed

in [98, 161]. The second data set contains cDNA (complementary DNA) aCGH data

from glial brain tumours, and was introduced in [28]. The last real data example is on
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breast cancer cell lines data, originally published in [108]. In general, it was revealed in

both the analysis of artificially generated and real data that the proposed CE method

performs evenly or better than competing techniques in terms of detecting the number

of change-points and their locations. In the simulation study, it was further observed

that the CE method is more e↵ective in estimating the change-point locations than the

change-point number. However, in terms of processing time, being an evolutionary com-

puting algorithm, the CE method consumes more computational resources than other

methods. In order to mitigate this computational drawback of the general CE method,

we have implemented a parallel computation approach to increase its e�ciency both in

WINDOWS and UNIX operating systems. The proposed methodology is freely available

as an R package (package name: breakpoint) at the Comprehensive R Archive Network

(http://cran.r-project.org/web/packages/breakpoint/index.html).

http://cran.r-project.org/web/packages/breakpoint/index.html
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Abstract

Array comparative genome hybridization (aCGH) is a widely used methodology to de-

tect copy number variations of a genome in high resolution. Knowing the number of

break-points and their corresponding locations in genomic sequences serves di↵erent bi-

ological needs. Primarily, it helps to identify disease-causing genes that have functional

importance in characterizing genome wide diseases. For human autosomes the normal

copy number is two, whereas at the sites of oncogenes it increases (gain of DNA) and

at the tumour suppressor genes it decreases (loss of DNA). Majority of the current

detection methods are deterministic in their set-up and use dynamic programming or

di↵erent smoothing techniques to obtain the estimates of copy number variations. These

approaches limit the search space of the problem due to di↵erent assumptions considered

in the methods and do not represent the true nature of the uncertainty associated with

the unknown break-points in genomic sequences. We propose the Cross-Entropy method,

which is a model-based stochastic optimization technique as an exact search method, to

estimate both the number and locations of the break-points in aCGH data. We model

the continuous scale log-ratio data obtained by the aCGH technique as a multiple break-

point problem. The proposed methodology is compared with well established publicly

available methods using both artificially generated data and real data. Results show

that the proposed procedure is an e↵ective way of estimating number and especially the

locations of break-points with high level of precision.

Availability: The methods described in this article are implemented in the new R

package breakpoint and it is available from the Comprehensive R Archive Network at

http://CRAN.R-project.org/package=breakpoint.
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Introduction

Complex genetic alterations in the human genome is one of the key driving forces behind

tumour development and progression. It also a↵ects the degree of response to drugs,

vaccines, pathogens and other forms of cure to genomic diseases. In the last decade,

there has been a significant improvement in the sequencing technologies as well as the

data analyzing methodologies, which aim to detect these important variations. These

structural alterations can be inherited through germline as well as be somatically ac-

quired. Copy number variations (CNVs) is a form of structural variation in the genome.

CNV is defined as a DNA segment that is 1 kb or larger and present at variable copy

number in comparison with a reference genome [15]. Recent studies have shown that

around 12% of the human genome vary in copy number [32] which includes important

genetic information. Furthermore, it has been identified that CNV plays an important

role in genetic susceptibility to common diseases [37] such as cancer [1, 6, 19, 26], autism

[38], HIV [16], immune disorders [13], intellectual disabilities [21], etc.

Comparative genome hybridization to DNA micro-arrays (aCGH) is one of the most

popular techniques that can be utilized to detect and map copy number variation in DNA

sequences. It measures copy number variations of an individual’s DNA with respect to

a reference or pool of reference DNAs at a fixed set of genomic locations. Thus, CNV

detection in aCGH data is essentially a multiple break-point (or change-point) problem.

Refer [7] for a detailed review on CNV using DNA microarrays.

Reviewing the literature on break-point modelling in aCGH data, [4] discussed some of

the methodologies that were used to segment DNA sequences. They have proposed a

local segmentation method called split polynomial fitting. Furthermore, [3] proposed

a quasi-likelihood approach to DNA sequence segmentation with the use of a simula-

tion based modified version of the Schwarz criterion [34]. A non-parametric approach

based on the circular binary segmentation (CBS) procedure was proposed in [52] to de-

tect abrupt changes in the mean levels of aCGH data. A test statistic based on mean

di↵erences to identify the number of break-points is utilized in the CBS. Later, [40]

applied fused lasso method to the hot spot detection in aCGH data. [42] proposed a

scan statistic based on summing a chi-squared statistic for each individual sample in

order to detect simultaneous change-points in multiple sequences. [26] proposed cumSeg

procedure which uses lars algorithm and a generalized version of the BIC to estimate

break-points in aCGH data. They have provided a detailed comparison study with other

competing methodologies to signify the advantages of their proposed approach. A fast

Bayesian change-point detection method bcp was proposed in [6] with the use of Product
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Partition Models (PPM), which is originally proposed by [2]. Recently, a Pruned Exact

Linear Time (PELT) method is introduced in [17] to detect multiple break-points in a

sequence of observations with di↵erent specifications. Refer [19] for a detailed review of

some of the methodologies available. Furthermore, various approaches to detect multiple

break-points in DNA sequences were discussed in [29] and [39] with respect to di↵erent

measurement scales.

In general, the problem of finding break-points in a sequence of observations is a two-fold

problem. First, an estimate of the number of break-points is obtained. Then, based on

the estimated number, corresponding locations are identified. In this study, we propose

the Cross-Entropy (CE) method [33] to successfully solve both of these optimization

problems simultaneously. Even though both the problems of estimating the number as

well as the locations are important, the locations (loci) are the core estimates that we are

ultimately interested in, since it facilitates the process of finding disease-causing genes

in genomic sequences.

This paper introduces the CE method proposed in [2, 12] to detect number of break-

points as well as their corresponding genome locations in aCGH data. In this study, our

method assumes that within each segment the aCGH data are approximately distributed

as normal. A simulation study was carried out to obtain the best possible values for the

parameters of the CE method for the case of continuous measurements, in which they are

pivotal in the performance of the methodology. The work in this paper is significantly

di↵erent from [2, 12] in multiple aspects. Firstly, this paper considers continuous scale

measurements (aCGH data) to estimate break-points and their locations as opposed

to the count data used in [2] and binary data used in [12]. Thus, it outreaches to

wider audience to utilize the CE method in detecting break-points in genomic data.

Secondly, we implement a multi-core architecture based parallel implementation of the

CE method as compared to the non-parallel versions discussed in [2, 12]. Moreover, in

[12] the CE method is only used to obtain the locations of the break-points and not

as an optimization methodology to estimate the number of break-points. However, this

study as well as [2] utilizes the CE method as a stochastic optimization technique to

obtain both the number and the corresponding locations of break-points. Furthermore,

in [12] the model log-likelihood is considered as the performance function in the CE

method, whereas in this paper we introduce an information criterion as the performance

function to facilitate the process of estimating the number of break-points. In terms of

the parameter estimation procedure, the approach followed in [12] is completely di↵erent

from the approach considered in this paper. In the proposed CE method, there is no

supposition that break-points are uniformly distributed along the sequence contrary to
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the equally spaces assumption considered in [12]. Furthermore, in the proposed CE

procedure users can specify the minimum aberration width (segment width) to control

the number of break-points based on the user requirements. Thus, it adds more versatility

to the CE method to control false alarms and to meet user specifications.

In this study, we propose an improved version of the CE algorithm compared to that

used in [2]. We developed a parallel implementation of the CE algorithm with the use of

a di↵erent objective function as well as a more robust stopping criterion, to significantly

improve the e�ciency levels of the CE algorithm. In [2] the general Bayesian Information

Criterion (BIC) was used as the objective function in the CE algorithm. In this study we

propose to utilize the modified Bayesian Information Criterion discussed in [43], which is

theoretically justified for the break-point problem. The proposed methodology is freely

available as an R package (“breakpoint”) from the Comprehensive R Archive Network

(http://CRAN.R-project.org/package=breakpoint).

The paper is structured as follows. Section 2 introduces the multiple break-point prob-

lem in mathematical terms and describes in detail the CE method and the work-flow

associated with the algorithm in segmenting aCGH data. It also discusses the modified

BIC used in this study. Section 3 presents a detailed simulation study that is carried

out to obtain the best set of parameter values for the CE method in detecting multiple

break-points in aCGH data. Section 4 discusses the advantages of the parallel imple-

mentation of the CE method over the non-parallel standard implementation. Section

5 presents the results of numerical experiments both for artificially generated and real

data. Comparison studies were carried out to compare the proposed methodology with

some of the best performing techniques available in the literature to estimate the number

of break-points as well as their corresponding locations. We conclude the paper with a

general discussion and future research directions.

Methods

The Multiple Break-Point Problem

Let us formulate the multiple break-point problem in mathematical terms. Consider a

sequence of observations y = (y1, y2, . . . , yL) of length L, in which y
i

’s are independently

distributed Gaussian random variables.
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A segmentation of the sequence is specified by the number of break-points N and the

positions of the break-points C = (c1, c2, . . . , cN), where 1 = c0 < c1 < · · · < c
N

<

c
N+1 = L + 1. In this context, a break-point is a boundary between two adjacent

segments. The value of c
i

is the sequence position of the rightmost character of the

segment to the left of the i-th break-point. Segments are numbered from 0 to N as there

will be one or more segments than the number of break-points. The model assumes

that within each segment the observations are distributed as normal with mean µ and

common variance �2. Both the piecewise constant means and the common variance are

not known in advance.

Modified Bayesian Information Criterion (mBIC)

We utilized the modified BIC [43] as the performance function to be used in the CE

algorithm. In [43], authors have mentioned that the classic BIC proposed in [34] is not

theoretically justified for break-point problem due to the fact that the likelihood function

does not satisfy the standard regularity conditions (see page 1 in [43]). A detailed

simulation study has been carried out in [43] to signify the performance di↵erences of

the mBIC over the classic BIC. We refer the reader to [43] for more details. In this study,

we considered the mBIC (Theorem 2 in [43]) developed for the independent normally

distributed observations with unknown constant variance and piecewise constant means:

log
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N
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where M
N

is defined as the Gaussian model with N number of break-points and M0 is

the simplest Gaussian model with no break-points.

The Cross-Entropy method

The Cross-Entropy (CE) method [33] is an evolutionary computing technique originally

developed to estimate probabilities of rare events. Later, the introduction of CE mini-

mization has lead path not only to estimate probabilities of rare events but also for solving

complex combinatorial and multi-extremal optimization problems. The CE method is

developed on the Kullback-Leibler divergence [18], which is one of the fundamental con-

cepts of modern information theory. Generally the CE method is an iterative procedure

and each iteration consists of two main phases:

• simulate a random solution set (vectors, trajectories, etc.) based on a specified

random mechanism (e.g. statistical distribution),

• score each of the solution set based on a performance function and update the

parameters of the random mechanism to produce an improved solution set in the

next iteration.

Thus, the CE method is an iterative optimization procedure. It starts with a parametrized

sampling distribution from which a random sample is generated as possible solutions for

the problem. Then, each solution or the combinatorial arrangement is given a score based

on a performance function. A fixed number of best performing combinatorial arrange-

ments are retained and it is denoted as the elite sample. This elite sample is subsequently
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used to update the parameters of the sampling distribution in the next iterations. Thus,

adaptive parameters are utilized in each iteration. The sampling distribution eventually

converges to a degenerate distribution about a locally optimal solution, which ideally

will be globally optimal [25, 38].

In this study, the process of multiple break-point detection is considered as a combi-

natorial optimization problem. We utilized the variant of the CE method discussed in

[2] with further modifications and improvements to analyze biological sequences of con-

tinuous measurements. The proposed methodology gives more flexibility to the user in

terms of specifying the minimum aberration width or the segment width (h). A stopping

criterion (SC) based on Median Absolute Deviation (MAD) was used as opposed to the

variance based SC proposed in [2]. Median is a robust measure of location, that is not

a↵ected by extreme values contrary to the standard deviation, which is sensitive to out-

liers. Empirically we found out that the performance of the algorithm with MAD was

better than the standard deviation (SD), especially in terms of the processing time with-

out compromising its accuracy. We refer the readers to Section 2 of the supplementary

material on the comparative analysis of the CE method with the use of MAD and SD.

Furthermore, a multi-core architecture based parallel implementation of the algorithm

was introduced in order to carry out the calculations more e�ciently.

The CE method for break-point problem is a model-based iterative stochastic optimiza-

tion procedure that starts with a parametrized sampling distribution, from which a

random sample of size M is generated with respect to the number of break-points (N).

We used a four-parameter beta distribution as the sampling distribution to simulate

break-points. Each combinatorial arrangement was scored for its performance based on

the performance function F , where, the mBIC was used as the F to score each of the

arrangements. Then we obtained a best performing fraction of the samples based on the

performance function score. We defined this sample as elite sample and M
elite

= ⇢ ⇥ M

as its size, where rho (⇢) was defined as the elite sample fraction. This elite sample was

used to update the parameters of the sampling distribution until a SC is met. The MAD,

which is a robust estimator for dispersion [1] was used as the SC.

In the CE method, there are few parameters to be specified prior to the initialization. We

categorized these parameters into two groups based on their impact to the performance

of the CE algorithm. We defined them as “internal” and “external” sets of parameters.

The internal parameters are the core parameters that directly a↵ect the performance of

the CE algorithm. They are the sample size (M), elite sample fraction (⇢) and the cut-o↵
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value for the SC ("). The external parameters; segment width (h) and the maximum

number of break-points (N
max

); are the non-core parameters for the performance of

the CE algorithm. These parameters only a↵ect the overall processing time but not

the internal performance of the CE algorithm. The external parameters can freely be

changed by the user based on their requirements. However, changes in the internal

parameters have to be done with caution.

Based on the user-defined external set of parameters (N
max

, h), the CE algorithm can

be outlined as follows:

1. Choose initial values for a0 = (1, 1, . . . , 1) and b0 = (1, 1, . . . , 1). In this case we

have set both parameters equal to one and both parameter vectors are N dimen-

sional. Set t = 1.

2. Generate a random sample C(1),C(2), . . . ,C(M) from the Beta(at�1, bt�1) distribu-

tion, where C(i) = (c(i)1 , c(i)2 , . . . , c(i)
N

), i = 1, 2, . . . ,M .

3. For each i = 1, 2, . . . ,M order c(i)1 , . . . , c(i)
N

from smallest to largest and set C(i) =

(c(i)1 , c(i)2 , . . . , c(i)
N

), where C(i) is the break-point vector defined earlier.

4. Evaluate the performance score F of each C(1),C(2), . . . ,C(M). Obtain the elite

sample (M
elite

), which is the best performing combinations of the break-point lo-

cations.

5. For all j = 1, 2, . . . , N estimate the two shape parameters at = (at1, a
t

2, . . . , a
t

N

),

bt = (bt1, b
t

2, . . . , b
t

N

) using the elite sample and update the current parameter set.

6. If the SC is met, then stop the process and identify the combination of the locations

of break-points C(i) that optimizes the performance function F . Otherwise set

t = t+ 1 and iterate from step 2.

The SC considered in the CE procedure is:

SC : Stop the process if max
j

MAD
j

< ",

where,

MAD
j

= Median
i=1,2,...,M

���c(i)
j

� Median
⇣
c(1)
j

, c(2)
j

, . . . , c(M)
j

⌘���

for all j = 1, 2, . . . , N .

The final solution is a single vector of break-point locations (C).
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Selection of best parameter values for the CE algo-

rithm

We carried out two simulation studies to obtain the best set of internal parameters for

the CE algorithm. In the first study, we fixed the cut-o↵ value for the SC (") as 0.01.

An artificially spiked-in data set having four break-points with aberration widths (w) of

80, 70, 100, 75 and 125 was considered for the first simulation study. The length of the

sequence is 450. The corresponding signal-to-noise ratio (SNR) values that we used to

generate data for each of the segments were 0, 2, 1, 3.5 and 4. The SNR is defined as the

ratio of the mean of the aberration width divided by the standard deviation of the super

imposed Gaussian noise [19]. The standard deviation of the Gaussian noise was set as 0.25

in SNR calculations. The choice of standard deviation value is based on the real aCGH

examples [19]. We compared the results obtained from our methodology with four other

well-known methods: DNAcopy ([52], a.k.a CBS), cumSeg [26], changepoint [17] and bcp

[6]. In DNAcopy the default configuration was considered. In cumSeg, generalized BIC

with the penalty function of “log(log(n))” was utilized. In changepoint “cpt.mean” with

“PELT” specifications was utilized. Finally, for bcp a conservative threshold value of

0.25 was considered in posterior probabilities to obtain the break-points, since it does

not give the break-points explicitly as an output.

The external parameters (h, N
max

) were set as (5, 10) and we carried out the analysis

varying both the sample size (M) and elite sample fraction (⇢) value, which is used to

obtain the elite sample of size M
elite

. The set of parameter values considered for M

and ⇢ are: M = {100, 200, 300, 400, 500} and ⇢ = {0.02, 0.03, 0.04, . . . , 0.1}. In each of

the combinations of M and ⇢, we generated 100 random sequences with respect to the

aforementioned aberration widths and SNR values.

Figure 5.2 shows the average RMSE of the results with respect to di↵erent M and ⇢

values. The error profile for M = 100 is comparatively higher than the other M values.

In general, a logarithmic decline in the error rates can be seen in all the profiles with

the increase of ⇢ values. Thus, the average RMSE values are a↵ected by the changes in

⇢ values. However, the changes in the average RMSE values are not in larger scale after

the ⇢ value of 0.06 irrespective of the M value. It can also be observed that there is a

gradual reduction in the RMSE values with the increase of M values. However, after

M = 300 advantages of increasing the M value is not significant at all. Table 3.1 shows

the average RMSE values for the CE method as well as the other four methods. In terms

of the accuracy of estimates the proposed CE method outperforms competing methods



Chapter 3. Multiple Break-Points Detection in aCGH Data via the CE Method 51

0.
03

5
0.

04
0

0.
04

5
0.

05
0

0.
05

5

Rho

Av
er

ag
e 

R
M

SE

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M=100
M=200
M=300
M=400
M=500

Figure 3.1: Average RMSE values of the CE method with respect to di↵erent M
and ⇢ values

Table 3.1: Average RMSE values of the CE method for di↵erent M and rho(⇢)
values

rho (⇢)
M

100 200 300 400 500
0.02 0.0551 0.0409 0.0394 0.0367 0.0367
0.03 0.0451 0.0378 0.0372 0.0369 0.0355
0.04 0.0404 0.0369 0.0374 0.0359 0.0361
0.05 0.0404 0.0371 0.0356 0.0363 0.0359
0.06 0.0377 0.0362 0.0355 0.0352 0.0357
0.07 0.0380 0.0361 0.0364 0.0355 0.0362
0.08 0.0377 0.0361 0.0363 0.0359 0.0360
0.09 0.0361 0.0363 0.0357 0.0360 0.0357
0.1 0.0366 0.0372 0.0359 0.0362 0.0356

in all the situations even at lower ⇢ values. It is observed that there is a significant

reduction in the average RMSE especially at lower ⇢ values with the increase of M

values. However, the reduction in average RMSE at higher ⇢ values is not significant
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Figure 3.2: Average processing time (s) of the CE method with respect to di↵erent
M and ⇢ values

Table 3.2: Average RMSE values of the other four methods

Method Average RMSE
DNAcopy 0.0572
cumSeg 0.0639
changepoint 0.1272
bcp 0.0776

at all. This agrees with the discussion in [38], that the e↵ect of elite sample to the

performance of CE algorithm is not significant at higher M values, even though there is

a substantial e↵ect of ⇢ values at lower M values.

Figure 5.3 exhibits the processing time with respect to di↵erent M and ⇢ values. It

is observed that the overall processing time significantly increases with the increase

of sample size M (Note: computation times are relative to a 2.3GHz Intel Core i7

processor with 8GB physical RAM in Mac OS X Version 10.6.8). It further reveals

that the processing time has an approximate linear type relation with the sample size
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M . Furthermore, at all the M values the processing time is linearly increasing with the

increase of ⇢ values. Thus, it shows that there is an impact of the choice of ⇢ values and

the M values to the e�ciency level of the CE algorithm. Therefore, we need to consider

an optimal choice of M and ⇢ values that balance the trade-o↵ between the precision

and processing time. We propose to consider M of 200 and ⇢ value of 0.06 as the default

values for the CE algorithm based on the simulation results.
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Figure 3.3: Sensitivity of estimating the number of break-points for aberration
widths of 5, 10, 20 & 40 (From top left to bottom right)

The second simulation study was carried out to determine the best parameter value for

the cut-o↵ value in the SC ("). The M and ⇢ values were set at 200 and 0.06 as identified

in the first simulation study. A range of values from 0.001 to 0.1 were considered for

the ". We carried out 100 simulations for each " value with four break-points with a

similar framework considered in the first simulation study. It is observed that there is

no significant impact of the " value on both the precision and processing time based on

the range of values considered for the ". Therefore, we set the default value for the " as

0.01 in the CE algorithm. More details are in supplementary material: Section 1.
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Comparison of parallel and non parallel implementa-

tion of the CE method

The proposed CE methodology utilized a multi-core architecture based parallel imple-

mentation in both WINDOWS and UNIX type operating systems with the use of R

statistical computing environment [35]. In [2], it has been identified that the processing

time as the major drawback of the CE method. Being an evolutionary optimization

technique the CE algorithm naturally yields higher computing time. Non-parallel im-

plementation also adds an extra burden on the overall processing time. In this paper,

we solve this critical bottleneck of the CE method to a greater extent with the use of

parallel computing techniques.

In this study the parallel implementation was carried out in multiple cores by utilising

the parallel [35], doMC [11] and doSNOW [10] R packages. The doSNOW R package

registers the SNOW [37] parallel back-end with the use of foreach R package [14] in

WINDOWS operating systems. In UNIX like operating systems parallel computation

was carried out with the help of doMC, parallel and foreach R packages.

We carried out a similar simulation study as described in Section 3 for parameter selec-

tion for the CE algorithm. Where, four break-points were incorporated with the same

SNR values with " value of 0.01 as the cut-o↵ value for the SC and ⇢ value of 0.06 was

considered to obtain the elite sample. We repeated the analysis with di↵erent sample

sizes (100, 1000 and 10000) to illustrate the significance of the proposed parallel imple-

mentation of the CE algorithm over the non-parallel version. In each of the sample sizes

100 random sequences were simulated to obtain the average results. Table 3.3 shows the

processing time of the proposed methodology with the parallel and non-parallel imple-

mentation for di↵erent sample sizes in MAC OS X and WINDOWS OS. The parallel

implementation of the methodology has significantly improved the e�ciency level of the

proposed methodology when compared with the non-parallel implementation.

On average, in MAC OS X there is more than 100% improvement (1-fold) in parallel

implementation with regard to the three sample sizes considered. In Windows OS the

proposed parallel implementation enjoys a significant improvement over the non-parallel

implementation with more than 200% (2-fold) improvement. Thus, it is evident that the

proposed parallel implementation of the CE algorithm significantly reduces the process-

ing time in both MAC OS X and Windows OS.
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Figure 3.4: Sensitivity score of estimating the true locations of break-points for
aberration widths of 5, 10, 20 & 40 (From top left to bottom right)

Table 3.3: Average processing time (in seconds)
for non-parallel and parallel implementations for

di↵erent sample sizes

Sample size (L)
100 1000 10000

MAC OS X1

non-parallel 5.52 15.87 38.78
Parallel 2.38 7.14 18.58
Improvement (%) 131.93 122.27 108.72

WINDOWS OS2

non-parallel 8.92 24.14 46.86
Parallel 2.84 7.02 14.95
Improvement (%) 214.08 243.87 213.44
1 Relative to Mac OS X Version 10.6.8,
2.3GHz Intel Core i7 processor with 8GB
physical RAM.

2 Relative to Windows 7, 2.0GHz Intel Core
i7 processor with 8GB physical RAM
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Numerical Results

In this section, we include results of numerical experiments to assess the performance of

the proposed methodology in identifying the correct number of break-points (N) as well

as their locations (C). We considered an artificially generated data set having two break-

points, with di↵erent aberration widths as well as di↵erent signal-to-noise (SNR) ratios.

Then, we applied our methodology and four other competing approaches (DNAcopy ,

cumSeg, changepoint and bcp) on three well-known publicly available real aCGH data to

further signify the importance of the proposed methodology.

Results on artificially generated data

An artificially generated data set having two break-points with aberration widths of 5,

10, 20 and 40 probes and SNR of 0.5 to 4 with an increment of 0.25 was considered in

this simulation study. We set up the standard deviation of the Gaussian noise as 0.5 and

generated 100 random sequences in each of the SNR values to assess the e↵ectiveness of

the methodology. The length of the whole sequence was 100 probes. We introduced a

square wave of aberration to the middle of the sequence.

A sensitivity analysis was carried out both on the estimation of the number of break-

points as well as their locations. If the number of break-points estimated is equal to the

actual number, then it is considered as a valid result (true positive result). The ratio of

number of times that correctly identified the true number of break-points out of the total

runs is plotted against di↵erent SNR values to assess the sensitivity of identifying the

true number of break-points. Figure 5.6 shows the results. It is observed that none of

the methods have demonstrated superior performance in detecting the number of break-

points at low SNR values and small aberration widths. However, DNAcopy method has

performed better on average in low SNR values as well as in small aberration widths

followed by the proposed CE method. Note that, at small aberration widths changepoint

has significantly under-performed even at higher SNR values, while all other methods

have performed reasonably better.

In assessing the sensitivity of estimating the break-point locations, we utilized the pro-

cedure discussed in [18] and [26]. We defined the true number of break-points as N0

and the estimated number from the algorithm as N̂ . Let c0
j

; j = 1, . . . , N0, be the true

locations of the break-points. We gave a score (S1) of ‘1’ if the estimated break-point

location ĉ
j

2 [c0
j

�2, c0
j

+2] and ‘0’ otherwise. To account for the number of break-points
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Figure 3.5: Array-CGH profiles of chromosome 1, 3, 9 and 11 for fibroblast cell line
GM03563 data. Each column represents a chromosome and each row refers to a
di↵erent estimating methodology (i.e. row 1 - CE, row 2 - changepoint, row 3 -

cumSeg, row 4 - DNAcopy and row 5 - bcp, respectively)
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estimated (N̂) and its accuracy, we considered the same methodology used in [26], i.e.

S2 = �0.5|N0 � N̂ |. Finally, we considered the grand score of S = S1 + S2 as the sensi-

tivity score for the break-point location estimation. If the true number of break-points

(N0) and its locations were correctly estimated the grand score (S) equals to N0. Figure

3.4 shows the results. In terms of the accuracy of the estimated break-point locations,

it can be observed that the proposed methodology performs equally well or better than

the competing methods as the SNR value increases. However, at lower aberration widths

with lower SNR values, it is observed that the DNAcopy and bcp performs marginally

better than the other methods. A notable performance di↵erence can be observed in the

changepoint method. It has significantly underperformed at lower SNR values irrespec-

tive of the aberration widths. Furthermore, it can be observed that at lower aberration

widths the changepoint method has underperformed even at higher SNR values. It is

also visible that cumSeg and bcp behave in a similar pattern except at lower aberration

widths. In lower aberration widths and at lower SNR values bcp estimates the locations

of the break-points more precisely than the cumSeg even though it has a lower sensitivity

in estimating the break-point number. The performance of the DNAcopy method closely

follows the proposed CE method, except at the lower SNR values and lower abberation

widths the DNAcopy method performs marginally better. In general, DNAcopy shows a

relatively high level of sensitivity in estimating the true number of break-points followed

by the CE method at lower SNR values as compared to the other methods.

Validation on real aCGH data

Example 1: Fibroblast cell lines (GM03563) data

We use the fibroblast cell lines data set, which has already been discussed by sev-

eral authors in [26, 52]. These data has been introduced in [45] and freely avail-

able to download at http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_

S1.html. This data set has been referred as “Coriell data set” in [52] and it consists of

single experiments on 15 fibroblast cell lines. We analyzed the data in the fibroblast cell

line GM03563 with respect to the chromosomes 1, 3, 9, 11. In this data set break-point

locations were already known and verified by the spectral karyotyping method as well.

The real alterations were only found in chromosome 3 and 9 with a single break-point

(N = 1). Refer [26] for a detailed analysis on this data and a comparison study with few

other well known methods. Figure 3.5 shows the results.



Chapter 3. Multiple Break-Points Detection in aCGH Data via the CE Method 59

Figure 3.6: Array-CGH profiles of chromosome 7 (GBM29), 13 (GBM31), 19
(GBM11) and 20 (GBM12). Each column represents a chromosome and each row
refers to a di↵erent estimating methodology (i.e. row 1 - CE, row 2 - changepoint,

row 3 - cumSeg, row 4 - DNAcopy and row 5 - bcp, respectively)
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Figure 3.7: Array-CGH profiles for chromosome 1, 3, 9 and 11 of breast cancer cell
lines (MDA157) data. Each column represents a chromosome and each row refers to
a di↵erent estimating methodology (i.e. row 1 - CE, row 2 - changepoint, row 3 -

cumSeg, row 4 - DNAcopy and row 5 - bcp, respectively)
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In chromosome 9 only the proposed methodology CE has correctly identified the true

number of break-points as 1. Where as changepoint and DNAcopy have estimated zero

break-points leading to an under-estimation. The cumSeg and bcp methods have esti-

mated two break-points for chromosome 9 resulting in an over-estimation. Furthermore,

in [26], it has been identified that all other competing methodologies considered have

also failed to identify the correct number of break-points in chromosome 9. However, in

chromosome 3 all of the methods have correctly estimated N as 1 except for bcp which

over-estimates the true number. In chromosome 1 and 11 except for changepoint all

other methods have over-estimated the true number of break-points. For chromosome 1

CE and cumSeg have over-estimated the true number by 1 whereas both DNAcopy and

bcp have over-estimated the true number significantly. Processing time of the proposed

CE method and the other methods are detailed in the supplementary material: Section

3.1.

Example 2: Glioblastoma Multiforme (GBM) data

In this example we considered cDNA (complementary DNA) microarray based compar-

ative genomic hybridization data of glial brain tumours, which was introduced in [5].

The original study considered 54 gliomas (GBM) of varying histogenesis and tumour

grade. This data set has already been discussed in the literature by several authors

(see [19], [26]). GBM is a type of malignant brain tumour. We considered the GBM29,

GBM31, GBM11 and GBM12 cell lines data for the analysis. Particularly, we analysed

chromosome 7 in GBM29, chromosome 13 in GBM31, chromosome 19 in GBM11 and

chromosome 20 in GBM12 data.

It has been found in numerous microarray studies on gliomas that there exists copy

number variation in chromosomes 7, 10, 13, 19 and 22 ([5, 22]) as a mix of losses and

gains. Especially in GBM31 it has been identified a large region of loss on chromosome

13. Figure 5.8 shows the results. In GBM31 CE, changepoint and cumSeg show a

similar profile, where as the other methods have identified more break-points. However,

in GBM29 except for CE, cumSeg and changepoint all other methods have identified

more segments. In GBM11, only CE and cumSeg have estimated one break-point. Thus,

they both share a similar profile. It is observed that changepoint failed to estimate any

break-point, where as the the other two methods have estimated two or more break-

points. In GBM12 only the CE and bcp have estimated break-points. It can be noted

that bcp has identified several single-probe outliers in GBM29, GBM11 and GBM12.

These outliers can be a result of a real aberration, error in the experiment or some type
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of polymorphism as discussed in [19]. Furthermore, it is observed that in GBM11 and

GBM12 bcp estimates a large number of break-points as compared to the other methods.

Refer Section 3.2 of the supplementary material for processing time information.

Example 3: Breast cancer cell line (MDA157) data

We considered the breast cancer cell line (MDA157) data which has been discussed in

[26, 26, 40]. The cDNAmicroarray CGH was profiled across 6691 mapped human genes in

44 breast tumor samples and 10 breast cancer cell lines. This dataset can be downloaded

from http://www.pnas.org/content/99/20/12963/suppl/DC1.

We applied the proposed methodology as well as the other methods on four chromosomes

(6, 7, 10 and 19) of breast cancer cell line MDA157. Figure 5.4 shows the aCGH profiles

for the four chromosomes. We observe that the proposed CE method performs quite

similar to the DNAcopy and cumSeg. In chromosome 7 none of the methods except for

bcp have identified any break-point. Furthermore, changepoint method has not detected

any break-point in chromosome 6, where all other methods have estimated at least one

break-point and share a similar profile. In general, bcp method has over-estimated the

number of break-points in most of the cases, especially in chromosome 19 it is more

evident. Processing time information is detailed in the supplementary material: Section

3.3.

Discussion and Future Directions

In this study, we proposed an improved parallel implementation of the CE method, which

is a model-based stochastic optimization procedure, to detect multiple break-points in

array-CGH data with high level of accuracy. The proposed methodology was applied to

both artificially generated data and real aCGH experiment data to assess the performance

and to signify its e↵ectiveness.

The procedure discussed in this paper concentrates especially on the task of estimating

the true locations of the break-points with a high level of precision than the estimation

of the number of break-points. It was observed in both artificial and real data the CE

method performs equally well or better than the competing methods in terms of the

accuracy of the estimated locations of break-points. However, in terms of the computa-

tional time the proposed CE method is not as e�cient as the other methods considered

http://www.pnas.org/content/99/20/12963/suppl/DC1
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in this study (refer supplementary material for details on the computational time). This

is mainly due to the fact that the CE method is an evolutionary computing technique.

Therefore, it naturally inherits a higher order of computing resources as compared to the

most of the other methods.

Current implementation of the methodology does not detect single copy number changes

(i.e. trisomies and monosomies) and it is developed to detect changes of an aberration

width (h) of at least two probes. In the CE algorithm the default values of some of the

parameters can be altered to obtain the desired level of accuracy. For instance increasing

the sample size (M) render better estimates of the break-point locations as illustrated in

Figure 5.2. However, as a result of that it will increase the processing time (Figure 5.3).

While the results of this work are encouraging, there are plenty of opportunities available

for future research work. Especially on improving the processing time of the algorithm

by means of limiting the search space for estimating the number of break-points (N).

Present implementation of the method is developed as an exact search method, which

considers all possibilities from no break-point to the user specified maximum value for

the number of break-points. In the algorithm we call this maximum number of break-

points as N
max

. Even though this approach addresses the problem comprehensively, it

makes the process more computationally expensive as well. In order to overcome this

computational issue, in this study a parallel implementation of the methodology is carried

out in multiple cores utilising the parallel [35], doMC [11] and doSNOW [10] R packages .

These parallel computation techniques can be performed in Unix/Linux/MAC OS X and

Windows operating systems. All the computations are carried out in the R statistical

computing environment [35] and the proposed methodology is freely available as an R

package (“breakpoint”) from the Comprehensive R Archive Network (http://CRAN.R-

project.org/package=breakpoint).

We have initiated further investigations on this problem and propose several other direc-

tions that can be utilized to overcome the issue of e�ciency in the CE method apart from

the parallel implementation. For example, the use of faster sequential techniques [38] to

obtain initial estimates for the number of break-points and then use that information as

the input for the CE algorithm to estimate the locations of the break-points. This will

directly a↵ect the performance of the methodology in estimating the number as well as

the locations of the break-points, since it will limit the search space for the number of

break-points. Thus, making it more e�cient.
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4.1 Summary

This chapter describes a study in which we propose two hybrid algorithms, each combin-

ing a popular sequential detection technique that was discussed in Chapter 2 with the

Cross-Entropy (CE) method, to detect multiple change-points in biological sequences of

continuous measurements. This study can be considered as a major improvement to the

work in Chapter 3.

The motivation of this study was to amalgamate powerful sequential detection techniques

with the CE method to e↵ectively and e�ciently detect change-points in continuous

biological sequences. In Chapter 3, the CE method is used as an exact search procedure,

where it performs calculations for all possible solutions from no change-point to the

maximum value of change-points that a user has provided. Thus, it consumes significant

amount of computational resources and the CE method is not essentially optimized

near the true change-point location. To alleviate this issue, we proposed to obtain initial

estimates for the number and the locations of change-points by using powerful sequential

detection methods. Then, we initiate the CE algorithm with these preliminary estimates

to carry out the calculations and to obtain more refined final estimates.

The proposed improved implementations of the CE method, which incorporate sequential

detection techniques, were applied particularly to detect change-points in aCGH data.

In this study two hybrid algorithms were proposed [115, 116]. The first hybrid algorithm,

which combines the cumulative sum (CUSUM [101, 102] ) procedure and the CE method

was named “CUSUM-CE”. The second hybrid method was denoted as “SR- CE”, com-

bining both the Shiryaev-Roberts (SR) procedure [129, 141, 142] and the CE method. In

the CE algorithm, the log-likelihood function was used as the performance function to

obtain the final estimates. Furthermore, we conducted multiple hypothesis tests to iden-

tify the most significant change-points with an improved Bonferroni correction, which

was proposed in [145]. The Bonferroni correction is used to control the family-wise error

rate when conducting multiple hypothesis tests. The parallel implementation of the CE

method discussed in Chapter 3 was considered in this study when developing the hybrid

algorithms. A detailed simulation was carried out to study properties of the proposed

procedures and to analyze their segmentation capabilities. Finally, the proposed two

hybrid methods were utilized to find CNVs in two aCGH data sets. In order to compare
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the performance of the two procedures with other methods, the four well-known proce-

dures (DNACopy, cumSeg, changepoint, bcp) described in Chapter 3 and the general CE

procedure were considered.

The first example is on the fibroblast cell lines data [150] as considered in Chapter

3. We analyzed chromosomes 1, 3 and 7 of the GM03563 cell lines data. The second

example is on the breast cancer cell lines data originally discussed in [108]. We have

applied the proposed procedures on chromosomes 3, 5, 9 and 13 of MDA157 cell lines

data. The proposed two hybrid methods have performed significantly better than the

CE method proposed in Chapter 3, predominantly in e�ciency, where the proposed

hybrid approaches significantly improve computational time. Particularly, the CUSUM-

CE method’s improvement in processing time was more than two-fold. In general, it was

found, both in artificial and real data analysis, that the proposed two approaches have

performed evenly or better than the other competing methods.
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Abstract

Array comparative genomic hybridization (aCGH) is one of the techniques that can be

used to detect copy number variations in DNA sequences in high resolution. It has been

identified that abrupt changes in the human genome play a vital role in the progression

and development of many complex diseases. In this study we propose two distinct hy-

brid algorithms that combine e�cient sequential change-point detection procedures (the

Shiryaev-Roberts procedure and the cumulative sum control chart (CUSUM) procedure)

with the Cross-Entropy method, which is an evolutionary stochastic optimization tech-

nique to estimate both the number of change points and their corresponding locations

in aCGH data. The proposed hybrid algorithms are applied to both artificially gener-

ated data and real aCGH experimental data to illustrate their usefulness. Our results

show that the proposed methodologies are e↵ective in detecting multiple change-points

in biological sequences of continuous measurements.

Background

Change-point problems (or disorder problems, break-point problems) are used to model

heterogeneity in sequences of observations. This is essential in order to understand the

underlying properties of a process as a part of the statistical diagnosis of data. Primarily

it serves the purpose of checking and validating the homogeneity assumption of the data,

which is one of the main assumptions in statistical modelling. Thus, accounting for these

changes facilitates more improved and reliable estimates for unknown parameters. This
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is an imperative step in statistical modelling directly associated with the decision making

process. Change-point detection problem has received increasing attention due to these

reasons and has attracted wide range of applications in many scientific streams. These

change-point models are employed in health informatics, financial and economic data

analysis, signal processing, oceanographic studies, quality control, surveillance analysis,

etc.

In health informatics, detection and characterization of genomic structural variations

are essential in identifying disease causing genes that have functional importance in ex-

emplifying genome-wide complex diseases, such as cancer, autism, immune disorders,

etc. These structural variations in the human genome can be acquired somatically in

the lifespan as well as be inherited through germline. Copy number variation (CNV)

is one of the common and major types of structural variations in the human genome.

CNV is defined as a DNA segment that is 1kb or larger and present at variable copy

number in comparison with a reference genome [9]. It is identified in multiple studies

that CNV plays an important role in genetic susceptibility to common diseases [27, 38].

There are multiple platforms and procedures built to detect CNV in di↵erent perspec-

tives [3, 12, 20, 54]. The array comparative genomic hybridization (aCGH) is a popular

and a widely used methodology to detect CNVs in genome-wide studies. It is developed

on the principles of the conventional comparative genomic hybridization (CGH) tech-

nique [1], which produces a map of DNA sequence copy number with respect to the

chromosomal location. The CGH technique was firstly developed to detect copy number

changes in solid tumors. In CGH experiments, the di↵erentially labeled test and control

genomes are hybridized to metaphase chromosomes. The fluorescent signal intensity of

the test DNA relative to the reference DNA along the chromosome is linearly plotted to

identify CNVs. The aCGH technique uses slides arrayed with small segments of DNA as

the targets for analysis [20] in contrast to the use of metaphase chromosomes in CGH.

The aCGH technique o↵ers high resolution for CNV detection. Moreover, simultaneously

detection of di↵erent alterations types is one of the advantages of the CGH technique

[50]. Furthermore, it has been proven that aCGH is a powerful tool for detecting submi-

croscopic chromosomal abnormalities in individuals with idiopathic mental retardation

and various birth defects.

There is a large amount of literature on CNV detection in aCGH data. A method based

on fitting a mixture of three Gaussian distributions corresponding to gain, loss and

normal regions is considered in [11]. Later, a test based on moving averages proposed

in [26] to compute a threshold level to detect CNVs. In [24], a modified version of the

circular binary segmentation [40] introduced. Their methodology is termed as circular
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binary segmentation (CBS) method. A test based on the maximum of a likelihood ratio

is used in the CBS to detect CNVs. The method discussed in [24] is employed in

the popular DNAcopy R package [35, 52]. Di↵erent methods based on hidden Markov

models (HMMs) introduced in [38, 45]. Furthermore, a fast Bayesian change-point

detection method based on the product partition models [16] introduced in [48] and it

is deployed in the bcp R package [6]. A di↵erent approach for the problem discussed

in [21] which uses the “lars” algorithm [5] and a generalized version [53] of the BIC

[135] to estimate change-points in aCGH data. The methodology is freely available in

the cumSeg R package [22]. Recently, a Pruned Exact Linear Time (PELT) method is

introduced in [16]. The changepoint R package [17] employs the methods discussed in

[16]. Readers are referred to [19] for a detailed review on the segmentation methods on

aCGH data.

Detection of CNVs falls into the posteriori (retrospective or o↵-line) class of change-

point problems. In the posteriori change-point problem the data set is fixed and it is

not getting changed periodically as in the sequential (quickest or on-line) change-point

problem. There exists an extensive literature on both of these main classes of change-

point problems. Readers are referred to [15, 23, 27, 32, 34, 46, 47, 113] for a detailed

review on some of the techniques. The quickest change-point problem, a sequence of

random variables is observed on-line, that is, the future observations are not known.

Initially, we assume that the sequence considered is in so-called “controlled” state. But

at some unknown moment a breakage occurs and the sequence runs “out of control”. The

objective of sequential change-point analysis is to detect this breakage (change-point) as

soon as possible with a minimum number of false alarms. There are two well-known

sequential procedures discussed in the literature: the Shiryaev-Roberts (SR) procedure

[36, 41–43] and the Cumulative Sum (CUSUM) procedure [25].

The process of change-point analysis in both the retrospective and sequential change-

point methods deals with two main issues: detecting number of change-points and esti-

mating their locations. In this chapter, we propose novel hybrid algorithms that combine

sequential change-point techniques and the Cross-Entropy (CE), which is a model based

stochastic optimization technique. We emphasize that the hybrid algorithm in [113] is

based on a genetic algorithm and a local search procedure, whereas the proposed method

uses sequential change-point techniques and the CE algorithm. Our method utilizes a

sequential change-point detection methodology to provide initial estimates on the num-

ber as well as the locations of the change-points. Based on the initial estimates the

CE method is initiated to optimize the solution to provide more accurate estimates of

the number as well as their corresponding locations. We propose two new algorithms
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within this framework. The first approach, which combines the SR procedure and the CE

method, will be referred as the “SR-CE”. The second approach combines the CUSUM

procedure and the CE method. We will refer to this method as the “CUSUM-CE”. In this

study, we apply the proposed algorithms to aCGH data in order to detect CNVs. Notice

that the new hybrid algorithms can easily be extended or modified to solve change-point

problems in other research fields.

This chapter is organized as follows. First, we describe the multiple change-point prob-

lem. Then we provide details on the proposed hybrid algorithms, quickest change-point

detection methods and the CE method. In the numerical results section, we present

results on simulated data and two publicly available real data sets. Finally, in the dis-

cussion and conclusions section, we consider the strengths and limitations of the proposed

methodology and conclude the paper with future research directions.

Multiple Change-Point Problem

Let us consider a sequence of observations X = (x1, x2, . . . , xL

) of length L, in which the

x
i

’s are independently distributed Gaussian random variables. A segmentation of the

sequence is specified by the number of change-points N and the corresponding locations

of the change-points C = (c1, c2, . . . , cN), where 1 = c0 < c1 < · · · < c
N

< c
N+1 = L+ 1.

A change-point is defined as a boundary between two adjacent segments in this context.

The value of c
i

is the sequence position of the rightmost character of the segment to the

left of the i-th change-point. The segments are numbered from 0 to N as there will be

one or more segments than the number of change-points. The model assumes that within

each segment the observations are distributed as normal with mean µ
i

, i = 0, 1, . . . , N

and variance �2. Both mean and variance are not known in advance and maximum

likelihood method is used to obtain estimates. The joint distribution of x conditional on

N , C = (c1, c2, . . . , cN), µ = (µ0, µ1, . . . , µN

), and �2 is given by:

f(X | N,C,µ, �2) =
NY

n=0

"
cn+1�1Y

i=cn

1p
2⇡�2

exp

⇢
�(x

i

� µ
n

)2

2�2

�#
. (4.1)
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The corresponding log-likelihood of the model is

ll(X | N,C,µ, �2) =
NX

n=0

"
��

n

2
ln (2⇡�2) � 1

2

cn+1�1X

i=cn

 
x
i

� µ
n

�

!2#
, (4.2)

where the length of the n-th segment is defined as �
n

= c
n+1 � c

n

.

Framework of the Algorithms

The proposed algorithms combine a sequential procedure with the CE method to detect

multiple change-points in biological sequences of continuous measurements. We consider

both the SR procedure and CUSUM procedure to combine with the CE method to

form a hybrid framework to detect multiple change-points. In general, the SR-CE and

CUSUM-CE hybrid algorithms can be summarized as follows:

1. Run a sequential procedure (either SR or CUSUM) along the sequence of observa-

tions to obtain initial estimates for the number (N) as well as the locations (C) of

change-points.

2. Based on the estimates of N and C, initiate the CE algorithm to obtain an opti-

mized locations of change-points.

3. For all pairs of adjacent segments, perform a two sample t-test to identify the least

important change-point that associated with the highest p-value with respect to

the significance level (↵). The p-values are adjusted on the Bonferroni correction

[44] to control the family wise error rate in multiple hypothesis testing. Thus,

we eliminate the least significant change-point from the solution and update the

solution vector with the other estimates.

4. Initiate the CE algorithm with the new set of change-point locations.

5. Repeat steps 3 and 4 until all change-points found are significant. Return C:

the vector of change-point locations. The length of this vector is the number of

change-points.
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Quickest change-point detection

The sequential change-point problem can be described in mathematical terms as fol-

lows. Let {X
n

}
n�1 be independent random variables which are observed sequentially,

one by one. Suppose that initially the sequence is in so-called “controlled” state for

n = 1, 2, . . . , ⌧ � 1, that is, the random variables are distributed with f0(x), a common

normal probability density function with mean µ0 and variance �2. At some unknown mo-

ment ⌧ a breakage occurs and the observed sequence runs “out of control”, which means

that after the breakage (change-point) the probabilistic characteristics of the sequence

are changed. From moment ⌧ we observe random variables with f1(x), f1(x) 6= f0(x),

another normal probability density function with mean µ1 and variance �2. Our objec-

tive is to detect the change-point as soon as feasible and with as few as possible false

alarms. In other words, in the sequential change-point problem, we would like to detect

the moment ⌧ as quickly as possible after it has occurred and, at the same time, we

would like to keep the rate of false alarms at a low predefined level.

There are two main cases in the sequential change-point problem [48]. In the simplest

situation, we know the probability density functions before and after the breakage, which

may be unrealistic assumption. In the second case, we assume that the f0(x) is known

before the change-point, whereas the f1(x) is unknown. In what follows we assume that

the µ0 is known (it can be estimated from an archive of data) and the µ1 is unknown

and must be estimated from the data, the �2 is fixed. For the sake of simplicity of the

formulas below (and without loss of generality), we can assume that µ0 = 0 and �2 = 1.

We have two statistical hypotheses: the null hypothesis H0: there is no change-point

versus the alternative hypothesis H1 : a breakage happens at time ⌧ = k � 0. The

sequential decision rule can be constructed as follows. Let X
n

= (X1, X2, . . . , Xn

) be a

vector of the first n � 1 values. The probability density functions of X
n

under either of

these hypotheses are given by

p(X
n

| H0) =
nY

j=1

f0(Xj

),

p(X
n

| H1) =
k�1Y

j=1

f0(Xj

)
nY

j=k

f1(Xj

), k  n.
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Then we can calculate the likelihood ratio, which can be used to test H0 versus H1, as

follows

LR
k

=
nY

j=k

f1(Xj

)

f0(Xj

)
=

nY

j=k

1p
2⇡

exp
�
�1

2(Xj

� µ̂1)2
 

1p
2⇡

exp
�
�1

2X
2
j

 = exp

( �P
n

j=k

X
j

�2

2(n � k + 1)

)
,

where µ̂1 =
P

n

j=k

X
j

/(n � k + 1), is an estimate of the µ1 based on the last n � k + 1

observations.

There are two common characteristics of a sequential detection procedure: the average

run length (ARL) to false alarm (the expected number of values to an alarm assuming

that there is no breakage) and the average delay to detection (the expected delay between

a change and its detection). The objective is to find a sequential procedure that minimizes

the average detection delay with restriction on the ARL to false alarm.

In this chapter, we consider two main procedures: the Shiryaev-Roberts (SR) procedure

[36, 41–43] and the CUSUM procedure [25]. Various probabilistic properties of these

methods are discussed in [28–30].

The SR procedure stops and raises an alarm at time

T
ASR = inf{n � 1 : R

n

� A
SR

},

where

R
n

=
nX

k=1

LR
k

=
nX

k=1

exp

( �P
n

j=k

X
j

�2

2(n � k + 1)

)
, n = 1, 2, . . .

is the SR statistic, and A
SR

is a positive threshold that controls the false alarm rate.

The stopping time of the CUSUM procedure is defined by

T
AC = inf{n � 1 : W

n

� A
C

},

where

W
n

= max
1kn

LR
k

= max
1kn

exp

( �P
n

j=k

X
j

�2

2(n � k + 1)

)
, n = 1, 2, . . .

is the CUSUM statistic, and A
C

is an unknown threshold that controls the false alarm

rate in the CUSUM procedure.

In order to identify the thresholds A
SR

and A
C

we generate an artificial sequence with a

single change-point and apply the SR and the CUSUM procedures for the sequence. We
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Table 4.1: The average run length (ARL), CPU time and the probability of
detecting the true change-point for di↵erent values of the threshold A

SR

A 700 800 900 1000 2000 3000 4000 5000 6000 7000
p 0.411 0.432 0.472 0.493 0.629 0.679 0.715 0.739 0.765 0.779
ARL 108 107 109.3 109 110.5 112.8 113.2 115.7 113.5 116.7
CPU time 0.23 0.39 0.58 0.65 0.82 1.07 1.21 1.34 1.46 1.48
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Figure 4.1: The probability of detecting the true change-point depending on the
value of the threshold A

SR

.

assume that the first several observations are in “controlled” state. Therefore, the esti-

mates of the initial (unknown) parameters of the probability density function f0(x) can

be obtained using these first observations. In this study, we consider random observations

with normal distribution Normal(µ0, 1) before the change-point and with Normal(µ1, 1)

after the change-point, where µ0 = 0, µ1 = 1. We use 2000 as the length of the se-

quence and 100 as the number of observations utilized for estimating the parameters of

the initial distribution. After simulating this experiment 2000 times, it is clear that the

threshold A
SR

should be quite large (see Table 4.1). For instance, if A
SR

= 5000, then

the probability of detecting the true change-point is 0.739.

Note that p, the probability of detecting the true change-point, increases as the threshold

A
SR

increases (see Figure 4.1). We can conclude that for long sequences we should use
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Figure 4.2: CPU time depending on the value of the threshold A

SR

.

Table 4.2: The ARL and CPU time for di↵erent values of µ1 � µ0, ASR

= 5000

µ1 � µ0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 5 7
ARL 324.9 162.9 125.7 115.7 109.5 103.7 103.0 102.4 99.2 95.0
CPU time 2.10 1.94 1.65 1.39 1.13 1.02 0.92 0.94 0.87 0.85

large values of the threshold A
SR

, for example, A
SR

> 5000, in order to detect the

change-point with a high probability.

Table 4.3: The ARL and CPU time for di↵erent values of µ1 � µ0, ASR

= 7000

µ1 � µ0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 5 7
ARL 351.8 172.7 129.7 116.7 108.7 107.4 106.2 105.5 102.1 99.0
CPU time 2.47 2.03 1.82 1.46 1.31 1.27 1.15 0.98 0.94 0.88

Since the estimates of the positions of the change-points will be used as the initial values

for the CE method, we should emphasize that these estimates are found with some delay.

Table 4.2 and Table 4.3 show how the ARL depends on the value of µ1�µ0. These tables

also demonstrate that the ARL is significantly large for small di↵erences between µ1 and

µ0. Note for rather long sequences this delay is not an issue whereas for relatively short

sequences we should use a higher value of the A
SR

and reduce the length of the region

used for estimating unknown parameters of f0(x).
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Table 4.4: The average run length (ARL) and the probability of detecting the true
change-point for di↵erent values of the threshold A

C

A 1000 5000 7000 10000 12000 15000 18000 19000 20000 21000
p 0.269 0.583 0.642 0.672 0.701 0.694 0.728 0.743 0.752 0.748
ARL 101.1 101.7 111.4 112.6 110.5 112.3 114.3 114.2 115.5 115.4
CPU time 0.63 1.17 1.26 6.047 1.34 1.54 1.48 1.48 1.49 1.53
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Figure 4.3: The probability of detecting the true change-point depending on the
value of the threshold A

C

.

We repeat the same simulation for the CUSUM procedure. Using the simulated se-

quences, we estimate the threshold A
C

(note that A
C

is significantly larger than A
SR

)

(see Table 4.4). For large values of A
C

the probability of detecting the true change-point

increases very slow. It is customary that the value of the False Discovery Rate (FDR)

less than 0.25 is used as a popular threshold [49]. We use higher values of A
C

and A
SR

,

since the probabilities of detecting the true change-point in the both cases are larger

than 0.75.

The Cross-Entropy Method

The Cross-Entropy (CE) method [131] is a model-based evolutionary stochastic opti-

mization framework which was originally developed as a method to estimate rare event
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Figure 4.4: CPU time depending on the value of the threshold A

C

.

probabilities. It can be used to solve both estimation and optimization problems. The

CE method is developed on the basis of the Kullback-Leibler divergence [18]. The pro-

cess of multiple change-point detection can be viewed as a combinatorial optimization

problem. In the context of combinatorial optimization problems, the CE method is an

iterative procedure that starts with a parametrized sampling distribution from which M

number of random samples generated. Then, each combinatorial arrangement is scored

for its performance using an objective function F . A fixed number of best performing

combinatorial arrangements are selected based on the performance score and it is re-

ferred as the elite sample. We define the size of this elite sample as M
elite

. Let us define

M
elite

= ⇢ ⇥ M , where ⇢ is the elite sample fraction. The elite sample is used to update

the parameters of the sampling distribution based on a smoothing rule. This process is

iterated until a stopping criterion (SC) is met or user defined number of iterations. The

sampling distribution eventually converges to a degenerate distribution about a locally

optimal solution, which ideally will be globally optimal [38].

There are few parameters that have to be specified prior to the initialization of the

CE method in the context of multiple change-point problem. They are the minimum

aberration width (h), lower and the upper limit for the search space of number of change-

points (let us define the lower limit as N
min

and upper limit as N
max

), sample size M ,
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elite sample fraction ⇢, smoothing parameter vector � and a cut-o↵ value for the SC

("). In this study, truncated normal distribution is utilized as the parametrized sampling

distribution to simulate locations of the change-points based on the user defined minimum

aberration width h. We simulate M = 200 number random solutions. The value of ⇢

is considered as 0.05, smoothing parameter values of � and � [49] is used for µ and

� respectively and " is set as 0.01. The performance function used in the study is the

model log-likelihood based on the simulated change-point locations.

Based on these user defined set of parameters and the initial estimates from a sequential

method, the CE algorithm can be summarized as below:

1. Set the change-point locations obtained from a sequential procedure as the initial

values for the mean vector µ0 and set all components of the standard deviation

vector (�2)0 as 52 in order to simulate locations from the truncated normal distri-

bution. Both vectors of parameters are N -dimensional. Set t = 0.

2. Increase t by 1. Simulate a random sample C(1),C(2), . . . ,C(M) from

Normal(µt�1, (�2)t�1) distribution, where C(i) = (c(i)1 , c(i)2 , . . . , c(i)
N

), i = 1, 2, . . . ,M .

3. For each i = 1, 2, . . . ,M order c(i)1 , . . . , c(i)
N

from smallest to largest and set C(i) =

(c(i)1 , c(i)2 , . . . , c(i)
N

), where C(i) is the change-point vector as defined earlier.

4. Evaluate the log-likelihood function (the performance score) of each C(1),C(2),

. . . ,C(M). Obtain the elite sample, which is the best performing combinations of

the change-point locations. Melite is the size of the elite sample.

5. For all j = 1, 2, . . . , N calculate maximum likelihood estimates of the mean and the

standard deviation µ̂t = (µ̂1, µ̂2, . . . , µ̂N

)t, (�̃2)t = (�̃2
1, �̃

2
2, . . . , �̃

2
N

)t by using the

elite sample. Based on the smoothing rule update the parameters in the truncated

normal distribution as below,

µt = �µ̂t + (1 � �)µ̂t�1, (�2)t = �(�̃2)t + (1 � �)(�̃2)t�1.

6. If the stopping criterion (SC) is met, then stop the process and identify the com-

bination of the locations of change-points C(i) that optimizes the performance

function. Otherwise set t = t + 1 and iterate from step 2. In this study, we

use a SC based on the Mean Absolute Deviation (MAD) [10], which is a robust

measurement on dispersion.
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SC is : Stop the process if max
j

MAD
j

< ", for all j = 1, 2, . . . , N .

where

MAD
j

= Median
i=1,2,...,M

���c(i)
j

� Median
⇣
c(1)
j

, c(2)
j

, . . . , c(M)
j

⌘���

for all j = 1, 2, . . . , N .

Bonferroni Correction for Multiple Hypothesis Testing

The Bonferroni correction is a conservative method that can be used to control the overall

significance level (↵) or the family wise error rate (FWER) when conducting multiple

hypotheses tests. If T1, T2, . . . , Tn

is a set of n statistics with corresponding p-values

P1, P2, . . . , Pn

for testing hypotheses H1, H2, . . . , Hn

, the general Bonferroni multiple test

procedure is performed by rejecting H
i

: i = 1, . . . , n if the p-value (P
i

) is less than or

equals to ↵/n [44]. Thus, the Bonferroni inequality,

P

(
n[

i=1

⇣
P
i

 ↵

n

⌘)
 ↵ (0  ↵  1) ,

ensures that the probability of rejecting at least one hypothesis when all are true is no

greater than the significance level ↵, which is the type I error rate.

Numerical Results

We include results of numerical experiments to validate and assess the proposed hybrid

algorithms. First, an artificially generated data set is considered with di↵erent signal-to-

noise ratio (SNR) values as well as with di↵erent segment widths. The SNR is defined as

the segment mean divided by the standard deviation of the Gaussian noise in the process

as considered in [19]. Finally, two of the well-known publicly available real aCGH data

sets are considered to further demonstrate the e↵ectiveness of the proposed methodology.

In order to assess the performance of the proposed SR-CE and CUSUM-CE algorithms

over the standard CE method [33] a comparison study is carried out; which is the

primary focus of this study. The variant of the CE method discussed in this study utilizes

a multi-core architecture based parallel implementation in the R statistical software [35].

Furthermore, for the completeness of the study, we compare the results obtained through

the proposed methodology with another four well established change-point detection
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methods in the literature: DNAcopy [52], bcp [6], changepoint [17] and cumSeg [22].

In all of these methodologies we consider the default parameter values in the respective

algorithms [19], as most user will be exercising.

Results on Artificially Generated Data

Let us consider a random sequence of length 3500 with 10 abrupt change-points which

results in having 11 segments. The standard deviation of the Gaussian noise is set as 1

in all the segments. Table 4.5 shows the parameter values used for the simulation study.

We follow the general work flow discussed in the framework of algorithms. First, based

on a sequential procedure initial estimates of the change-point locations are obtained.

Second, the CE algorithm is initiated based on these pre-estimates. We utilize the pa-

rameter values for the CE algorithm as described earlier with the smoothing parameters

� = 1 and � = 1. A significance level (↵) of 0.001 [13] is considered in the two sample

t-test to assess the statistical significance of the identified change-points. The Bonferroni

correction is used to control the family wise error rate in multiple hypothesis testing [44].

In the standard CE method, we set N
min

as 1 and N
max

as 20 as the search space for

the number of change-points.

Table 4.5: Parameter values for the simulation study

Segment
1 2 3 4 5 6 7 8 9 10 11

Length 200 550 150 250 500 250 400 600 200 150 250
SNR 0 2 4 2.5 0 2 3 4 2.5 3.5 1
Mean* 0 2 4 2.5 0 2 3 4 2.5 3.5 1
*SNR=Mean/S.D., Standard Deviation is set as 1

Table 4.6 shows the initial estimates for the locations obtained by the two sequential

procedures. It is observed that both methods have over estimated the true number

of change-points as expected, even though the processing time for both methods are

less than a second. The mean profile plots of the original data, hybrid algorithms and

the other methods are shown in Figure 5.2. It is observed that the proposed SR-CE

and CUSUM-CE procedures have correctly identified the true number of change-points

(N = 10) as compared to the marginal over estimation (N = 12) given by the CE

method. Except for the cumSeg method all other methods have over-estimated number

of change-points, where the former method has under estimated the number of change-

points. We observed that the over-estimation problem in changepoint and in bcp is severe
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than the other competing methods. However, when considering the average root mean

square error (RMSE) both the proposed procedures and the general CE method have

e↵ectively segmented data with almost overlapping mean profiles. Table 5.1 shows the

summary statistics on the performance of the proposed methods with the standard CE

method.

Table 4.6: Initial estimates of locations and processing time of SCE-SR and
SCE-CUSUM methods

Sequential
Proce-
dure

Initial Estimates for Loca-
tions

Avg. Proc.
time (s)

SR 207, 422, 585, 755, 908, 1058,
1154, 1509, 1653, 1910, 2094,
2310, 2749, 2914, 3107, 3205,
3259

0.394

CUSUM 209, 755, 910, 1154, 1578, 1654,
1926, 2308, 2914, 3107, 3207,
3262

0.923

Both of the proposed methods and the CE method have resulted with lower average

RMSE rates. The SR-CE gives the lowest average RMSE rate with an approximate

average improvement of 10% over the CE method. The notable performance achievement

in the proposed procedures when compared to the CE method is on the overall processing

time. It is observed that both SR-CE and CUSUM-CE have performed significantly

better than the general CE method, which even utilizes a multi-core architecture based

parallel implementation. Among the two proposed methods, CUSUM-CE procedure

performs better than the SR-CE when considering the overall processing time. The

SR-CE procedure gives a significant improvement of around 91% ,while CUSUM-ce the

improvement is more than two-folds (233%) as compared to the processing time of the

CE method.

Table 4.7: Summary statistics on the performance of hybrid frameworks and the
CE method

SR-CE
CUSUM-
CE

CE method

Average RMSE 0.083 0.094 0.092
Median Processing Time(s)* 19.868 11.419 37.977
*Relative to a 2.3 GHz Intel Core i7 processor (Mac OS X 10.9) with 8GB RAM.
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Figure 4.5: Mean profile plots of the proposed algorithms and the other methods
for the artificial data.
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Results on Real Data

Fibroblast cell lines data

This example considers a cDNA microarray-based CGH data of fibroblast cell lines which

was originally discussed in [45]. The data set it is freely available to download from http:

//www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html. The data set con-

sists of a single experiment on 15 fibroblast cell lines and it has already been discussed

by several authors [21, 52] in the literature. We analyze the data in the fibroblast cell

line GM03563 with respect to the chromosomes 1, 3 and 7. By spectral karyotyping, real

alteration (a single change-point) is only found in chromosome 3 out of the considered

chromosomes.

Table 4.8: Initial estimates of change-point locations for the chromosomes 1, 3 and
7 of the GM03563 cell line data

Procedure
Chromosome

1 3 7
SR 122 57 131
CUSUM 81 59 161

By utilizing the SR and CUSUM procedures, we obtain initial estimates of the change-

point locations for the chromosomes 1, 3, 7 as in Table 4.6 separately. We initiate the

CE algorithm with the same set of parameters considered in the artificial data example

for all three chromosomal level data of GM03563 cell line. The standard CE method

is initiated with the default parameter set with N
min

= 1 and N
max

= 10. Figure

4.6 shows the array CGH profiles for the three chromosomes based on the proposed

methods as well as the other competing methods. In chromosome 1, both the proposed

hybrid methods have correctly identified the true number of change-points as “zero”, as

opposed to a single change-point estimation given by the CE method. For chromosomes

3 and 7, both the proposed algorithms and the CE method have given the same results

estimating the correct number as well as the locations of the change-points. Considering

the performances of the other methods, all other methods except for the changepoint

have failed to estimate the number of change-points as zero for the chromosome 1. In

fact all of them have over-estimated the true number. In general, the bcp method tends

to over-estimate the true-number of change-points.
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Figure 4.6: Array CGH profiles for the chromosomes 1, 3 and 7 in GM03563 cell
line.

Table 4.9 shows the overall processing time. It is observed that both the proposed

procedures are highly computationally e�cient than the CE method. Furthermore, on

average CUSUM-CE procedure is faster than the SR-CE procedure.

Breast tumor data

In this example we consider the breast cancer cell line (MDA157) data which was orig-

inally discussed in [27]. The cDNA microarray CGH was profiled across 6691 mapped

human genes in 44 breast tumor samples and 10 breast cancer cell lines. This dataset is
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Table 4.9: Processing time (s) for the GM03563 cell line data

Method
Chromosome

1 3 7
SR-CE 0.079 0.126 0.112
CUSUM-CE 0.124 0.072 0.069
CE 2.533 2.435 3.151

discussed in the [159] and [21] and can be downloaded from http://www.pnas.org/

content/99/20/12963/suppl/DC1.

Table 4.10: Initial estimates of change-point locations for the chromosomes 3, 5, 9
and 13 of MDA157 cell line data

Procedure
Chromosome

3 5 9 13
SR 83, 174, 280, 387 84, 180, 250,328 126,181 97
CUSUM 82, 146, 326 60, 144, 234, 328 129,169 86

We apply our proposed algorithms as well as the other methods on chromosomes 3, 5,

9 and 13 data to estimate the underlying copy number variations. Figure 4.7 shows

the aCGH profile plots for all the chromosomes. We observe that the proposed two

procedures have behaved in a similar way in all chromosomes. Also, except for the

chromosome 5, in all other cases CE method has also performed similar to SR-CE and

CUSUM-CE procedures. In chromosome 9, changepoint method has not detected any

change-points, whereas bcp has highly over-estimated the number of change-points. In

general, our methods have similar profiles to cumSeg and DNAcopy procedures.

Table 4.11: Processing time (s) for MDA157 cell line data

Method
Chromosome

3 5 9 13
SR-CE 1.145 1.108 0.184 0.071
CUSUM-CE 0.643 0.994 0.251 0.071
CE 4.426 3.922 4.462 3.036

Discussion and Conclusions

We have proposed two novel hybrid algorithms (SR-CE, CUSUM-CE) that utilize pow-

erful sequential change-point detection techniques (SR and CUSUM procedures) and a

model based stochastic optimization technique (CE method) to estimate both the number

and the locations of change-points in biological data of continuous measurements. This

http://www.pnas.org/content/99/20/12963/suppl/DC1
http://www.pnas.org/content/99/20/12963/suppl/DC1
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Figure 4.7: Array CGH profiles for the chromosomes 3, 5, 9 and 13 in MDA157 cell
line

is the first-of-its kind implementation in the change-point literature that utilize on-line

change point detection techniques to obtain initial estimates for a posteriori change-point

problem and merge them with a model based stochastic optimization method (CE) to

further improve the estimates on both the number and their corresponding locations.

We compare the performance of the proposed hybrid algorithms with the standard CE

algorithm, which does not use results from the sequential techniques as an input. Fur-

thermore, for the completeness we have further compared our procedures with four other

established change-point techniques. The e↵ectiveness of the proposed methodology is

assessed both in terms of artificially generated and real data. In all of the studies, it
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was found that the hybrid methods perform significantly better than the standard CE

method both in terms of the precision and the processing time. In the standard CE

method processing time is considered as one of the drawbacks in its implementation.

Thus, incorporating sequential techniques has solved not only this critical issue for a

greater extent, but also it has improved the detection power as well. Furthermore, use

of the sequential techniques provide an upper limit for the search space for the number

of change-points in the CE method. In the standard CE method user has to define these

lower and upper search limit unknowingly. Thus, sequential techniques provide an impor-

tant support for the standard CE method to perform more e�ciently. While the results

of this work are encouraging, there are plenty of avenues available as future research

directions. In our study, it was identified that the sequential procedure is sensitive to the

aberration width (i.e., segment width) resulting to favour analysis of longer sequences

over the shorter sequences. Therefore, a versatile implementation of the methodology

is worth for probing, which will work e↵ectively in short as well as long sequences of

data. Finally, the proposed procedures only developed to detect changes in mean levels

of continuous measurements. We hope to extend these procedures to detect changes in

the variance as well.
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5.1 Summary

In the previous two chapters we discussed the application of the CE method along with

di↵erent modelling techniques to detect change-points in aCGH data. In this chapter we

further investigate the applicability of the CE method to detect change-points in next

generation sequencing data. In this study we apply the Cross-Entropy (CE) method

as described in Chapter 2 to detect multiple change-points (break-points) in biological

sequences of discrete measurements. Particularly we applied the CE method to detect

CNVs in DNA read count data obtained through next generation sequencing (NGS)

techniques. To our knowledge, this is the first application of the CE method to detect

multiple change-points in DNA read count data.

The motivation of this work was to model DNA read count data as it is, without conduct-

ing any transformation on the read counts, to find change-points with the use of the CE

method and other model selection techniques. By the time of the publication, in the lit-

erature there were few methods available to detect CNVs in read count data, and among

them, the majority have used transformation techniques on read counts to perform anal-

ysis. Furthermore, most of the methods were developed with a direct comparison of a

reference sequence. Our aim in this work was to introduce a direct modelling approach

to detect CNVs in read counts that does not need to be compared with a reference

sequence.

The standard practice in statistical modelling is to model count data either by using

Poisson or negative binomial distributions. Due to the observed over-dispersion in the

read counts we ruled out the use of the Poisson distribution. Thus, we modelled the

DNA read count data with a negative binomial distribution. Also, for the first time

in the application of the CE method, we have proposed using the four-parameter beta

distribution as described in Chapter 2 to simulate the change-point locations in the CE

algorithm for the multiple change-point problem. Earlier in [49], the truncated normal

distribution was used in the CE method to detect change-points in binary data. We

carried out a detailed simulation study to illustrate the performance di↵erences of the

CE method with the use of the four-parameter beta distribution and with the truncated

normal distribution. It was observed that the CE method with the four-parameter beta

distribution performs better than the CE method with the truncated normal distribution.

Furthermore, we compared the performance di↵erences of two stopping criteria that are

described in Chapter 2. A detailed simulation study was carried out to obtain best

parameters for the CE algorithm and to assess the performance of the proposed method.
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Finally, the proposed technique was applied on real DNA read count data obtained

through Illumina TruSeq exome capture of patients with celiac disease. The data were

provided by Dr. Vincent Plagnol (UCL Genetics Institute, University College London,

Grower Street, London, UK. An exome is simply defined as the protein-coding content

of the DNA, which comprises 1% - 2% of the genome. Targeted exome sequencing is a

cost-e↵ective sequencing technology as compared to whole genome sequencing methods.

It enables researchers to obtain a closer look at a specific region of the genome to discover

variants for many complex human diseases. We analyzed the DNA read counts corre-

sponding to chromosome 2 of a patient. It was revealed that the proposed CE procedure

with negative binomial modelling approach is an e↵ective way of segmenting DNA read

count data. A further extension of this work with zero-inflated modelling approach with

a parallel implementation of the CE method was proposed in [117].
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Abstract

We model DNA count data as a multiple change-point problem, in which the data are

divided in to di↵erent segments by an unknown number of change-points. Each segment

is supposed to be generated by unique distribution characteristics inherent to the under-

lying process. In this paper, we propose a modified version of the Cross-Entropy (CE)

method, which utilizes Beta distribution to simulate locations of change-points. Several

stopping criteria are also discussed. The proposed CE method applied on over-dispersed

DNA read count data, in which the observations are distributed as independent Nega-

tive Binomial. Furthermore, we incorporate the Bayesian Information Criterion (BIC) to

identify the optimal number of change-points within the CE method while not fixing the

maximum number of change-points in the data sequence. We obtain estimates for the

artificial data by using the modified CE method and compare the results with the general

CE method, which utilizes normal distribution to simulate locations of the change-points.

The methods are applied to a real DNA count data set in order to illustrate the usefulness

of the proposed modified CE method.

Introduction

Change-point models are utilized to detect heterogeneity in many scientific fields to give

an improved and more detailed interpretation of the properties inherent to the process.

These models can be employed in many areas like biomedical sequences, financial and

economic time series, quality control, signal processing, etc. There are two broader

classes of change-point models: retrospective (o↵-line methods) and sequential (on-line)

methods. Many authors have addressed the change-point problem both in terms of

Bayesian and frequentist point of view. There is a rich class of literature available in the
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Figure 5.1: The DNA structure. Source: US National Library of Medicine
(http://ghr.nlm.nih.gov/handbook/basics/dna)

methods developed to segment binary sequences as well as continuous data. However, in

the literature there exists only a handful of resources concentrating mainly on change-

point detection in count data and especially on deoxyribonucleic acid (DNA) read count

data.

DNA is the heredity material or the information carrier in humans and almost all the

living organisms. DNA consists of two long polymers of nucleotides. The information in

DNA is stored as a code made up of four chemical bases known as Adenine (A), Guanine

(G), Cytosine (C) and Thymine (T). The order or the sequence of these chemical bases

determines the information available for building and maintaining a living organism.

Reviewing the literature on change-point modelling in DNA sequences,[27] reviewed some

of the methodologies that were used to segment DNA sequences. They have proposed

and discussed a local segmentation method called split polynomial fitting. However,

they have not addressed methodologies related to change-point modelling in DNA count

data. On the more recent advances, [159] applied fused lasso method to the “hot spot”

detection in comparative genomic hybridization (CGH) data. Where, CGH [1] is a

technique for measuring DNA copy number of selected genes on the genome. Reference

[48] introduced an improved version of the computing package on change-point modelling

based on Product Partition Models (PPM), which was introduced by [16]. A scan statistic

based on summing a chi-squared statistic for each individual sample was proposed in

[173] to simultaneously detect change-points in multiple sequences. Furthermore, [151],

[152], [85] and [113] discuss di↵erent approaches to detect multiple change-points in DNA
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sequences. More recently with the development of next-generation sequencing data, [14]

proposed a novel approach named “CNAseg” to identify the copy number abnormalities

(CNAs) based on the number of reads.

The above literature on change-point modelling related to DNA sequences data con-

sidered competing methodologies on segmenting binary sequences and do not consider

the problem as a count data process. In the literature, count data modelling has been

discussed extensively by many authors mainly in the context of GLM. This comprises

of analysis when the over-dispersion is present or not and with many other attributes

[4]. However, the usage of change-point analysis on DNA count data within the GLM

context has not been addressed by many. The change-point analysis within the GLM

framework adds more information to the outcome of the study, as it better explains the

true nature of the underlying structure of the observations. Recently, [85] discussed a

genetic algorithm approach to model multiple change-points in count data. They have

considered count data related to a meteorology study in which the data are assumed

to be distributed as independent Poisson random variables. However, they have not

discussed any issues on over-dispersion of the data.

This paper contributes to the literature mainly in two aspects. Firstly, this proposes

an e�cient methodology to detect multiple change-points in DNA read count data, con-

sidering it as a combinatorial problem and discusses two competing stopping criteria.

Secondly, this models the data in each segment by utilizing the negative binomial distri-

bution while addressing the over-dispersion issue.

This paper utilizes a modified version of the Cross-Entropy (CE) method originally

proposed in [131] in order to identify the number of change-points as well as the locations

in DNA count data. Change-point modelling with the use of CE concept was first utilized

in [49] to detect multiple change-points in DNA binary sequences. They have proposed

a CE method using a normal distribution to simulate change-points in binary sequences.

However they have fixed the maximum number of change-points in advance and did

not search for an optimal combination of change-points that maximizes their proposed

performance function.

This paper proposes the four parameter beta distribution to simulate the locations of the

change-points within the CE method and does not place a restriction on the maximum

number of change-points. In each segment of the count data sequence is modeled by

using the negative binomial distribution. Bayesian Information Criterion (BIC) [7],[172]

is used to identify the number of change-points in the count data. Reference [172] shows

that the estimate on the number of change-points obtained by the BIC weakly converges
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to the true number of change-points. However, they have developed the methodology on

normally distributed data. Finally, the study will compare the results with the general

approach proposed as in [49] and discuss two stopping criteria that can be used to

optimize the process.

The paper is structured as follows. Section 2 introduces the multiple change-point prob-

lem in mathematical terms. In Section 3, we explain the modified CE method, underlying

distribution properties, BIC and the estimation of the parameters. Section 4 presents

the results of numerical experiments. Finally, Section 5 will conclude the paper with

future research directions.

The Multiple Change-Point Problem

Let us formulate the multiple change-point problem in mathematical terms. A count

data sequence y = (y1, y2, . . . , yL) of length L is given.

A segmentation of the sequence is specified by the number of change-points N and

the positions of the change-points C = (c1, c2, . . . , cN), where 0 = c0 < c1 < · · · <

c
N

< c
N+1 = L. In this context, a change-point is a boundary between two adjacent

segments. The value of c
i

is the sequence position of the rightmost character of the

segment to the left of the ith change-point. Segments are numbered from 0 to N as there

will be one or more segment than number of change-points. The model assumes that

within each segment, the observations are distributed as independent negative binomial

with probability p
n

and fixed dispersion parameter (size) of r, where 0  p
n

 1 for

n = 0, . . . , N . The dispersion parameter r can either be pre-specified or estimated

from the data. Then the joint distribution of y = (y1, y2, . . . , yL) conditional on N ,

C = (c1, c2, . . . , cN), and p = (p0, p1, . . . , pN) is given by

f(y1, y2 . . . , yL | N,C,p)

=
NY

n=0


cn+1Y

i=cn+1

�(r + y
i

)

y
i

!�(r)
(1 � p

n

)rpyi
n

�
. (5.1)

Note that this is one of the forms of negative binomial distribution, which is also known

as the gamma-poisson mixture distribution. The corresponding log likelihood of the
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model is

ll(N,C,p)

=
NX

n=0


cn+1X

i=cn+1

ln�(r + y
i

) �
cn+1X

i=cn+1

ln(y
i

!)

�� ln�(r) + �r ln(1 � p
n

) +
cn+1X

i=cn+1

y
i

ln(p
n

)

�
. (5.2)

where � = (c
n+1 � c

n

� 1) is the length of the segment.

Four parameter Beta distribution

The standard beta distribution with two shape parameters (↵ > 0, � > 0) is supported

on the range [0, 1]. In this study the location of the change-points may vary based on

the length of the data set. Therefore, two further parameters have to be introduced to

obtain beta random values in the specified range. Let us consider the minimum and the

maximum values of the distribution of beta values as L
L

and L
U

. Then, the probability

density function of the four parameter beta distribution is given by,

f(y | ↵, �, L
L

, L
U

)

=
1

B(↵,�)
(y � L

L

)↵�1 (L
U

� y)��1

(L
U

� L
L

)↵+��1
. (5.3)

The method-of-moment estimates of the shape parameters are

↵̂ = ȳ


ȳ(1 � ȳ)

s2
� 1

�
. (5.4)

�̂ = (1 � ȳ)


ȳ(1 � ȳ)

s2
� 1

�
. (5.5)

Note that since we have two additional parameters specifying the range of the beta

values, the ȳ (sample mean) and s2 (sample variance) values are replaced with

ȳ =
ȳ � L

L

L
U

� L
L

.
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and

s2 =
s2

(L
U

� L
L

)2
.

Modified Cross-Entropy Method for Multiple Change-

Point Problem

The standard Cross-Entropy method

The Cross- Entropy (CE) method [131] can be used for two types of problems:

1. Estimation

2. Optimization

In general the process of multiple change-point detection can be considered as either a

minimization or a maximization problem based on the nature of the performance function

(F ). Let X be a finite set of states and F be a real valued performance function on X.

We wish to find the optimum (minimum or maximum) of F over X and the state(s)

corresponding to this value.

The CE method is an iterative optimization procedure that starts with a parameterized

sampling distribution from which a random sample is generated. Then, each observation

or the combinatorial arrangement is scored for its performance as the solution to a spec-

ified optimization problem. A fixed number of best of these combinatorial arrangements

are referred to as the elite sample (M
elite

). This elite sample is subsequently used to

update the parameters for the sampling distribution. Thus, adaptive parameters are uti-

lized in each iteration. The sampling distribution eventually converges to a degenerate

distribution about a locally optimal solution which ideally will be globally optimal.

Let N
max

is the maximum number of change-points in this study that we wish to find.

We can represent the position of the change-points as a non decreasing N
max

– dimen-

sional vector. When the number of change-points is less than the maximum number

of change-points, some of the components of the vector will be repeated, indicating the

same change-point. The CE method in [49] considers truncated independent normal

distributions in order to simulate the locations of change-points. They have used the
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likelihood function as the performance function F to identify change-points in DNA

binary sequences. In each iteration the initial parameters are updated based on the

standard CE method until a convergence state is achieved. A variance based stopping

criterion is used to measure the fit of the combinations of change-points in each iteration.

Modified Cross-Entropy Method

The proposed modified CE method di↵ers from the standard CE method mainly in

three aspects. Firstly, this considers over-dispersed count data and each segment of the

sequence are assumed to be distributed as independent negative binomial distribution

with dispersion parameter r and probability p
n

. The dispersion parameter is estimated

from the data and held constant for each segment and the other parameter is estimated

for each of the segments. Secondly, Beta(↵, �) distribution on the support [L
L

, L
U

]

is used to simulate the locations of change-points. In each iteration the parameters

of the Beta(↵, �) distribution is updated until a stopping criterion is met. Finally, the

performance function F in this study is the Bayesian Information Criterion (BIC) [7],[172]

which is calculated for all the simulated combinations of change-points. The combination

which minimizes F under the corresponding N is considered as the optimum solution.

Therefore, a minimization problem is considered.

We choose initial values for both the vectors ↵ and � such that ↵
i

= �
i

= 1, which is

the standard uniform distribution on the interval [L
L

, L
U

], since we are dealing with a

four parameter beta distribution. Where L
L

and L
U

are the lower and upper bound of

the count data sequence. For each change-point vector (C) in the sample we obtain the

maximum likelihood estimate of p
n

with respect to the each of the segments and evaluate

the performance function F .

The performance function BIC that we wish to minimize is

F (C) = �2 ⇤ ll(N,C,p) + k ⇤ ln(L) (5.6)

Where, ll(N,C,p) is the log likelihood as in (2) of the count data sequence which is

distributed as negative binomial with (r, p) and k = 2 ⇤ (N + 1). The performance

function score is calculated in each iteration with respect to the change-point vector C

and L is the length of the count data sequence.
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In each of the iterations M
elite

sample is calculated considering the best performing com-

binations of change-points with respect to the performance function score. The process

is carried out until a convergence or a specific stopping criterion is achieved. In this

study two stopping criteria are discussed and evaluated. The first criterion is based on

the [49] and the other is based on the original CE method as in [131]. In each step, the

initial parameters of the beta distribution are updated accordingly. Then, locations of

the change-points are generated randomly according to the updated beta distribution.

The algorithm can be summarized as below:

1. Choose initial values for ↵0 and �0. Set t = 1. (In this case we have set both

parameters equal to one and both parameter vectors are N dimensional). Where,

↵0 = (1, 1, . . . , 1) and �0 = (1, 1, . . . , 1).

2. Generate a random sample C(1),C(2),. . . ,CM from the Beta(↵t�1, �t�1) distribu-

tion. Where M is the sample size and C = (c1, c2, . . . , cN) is the change-point

vector as defined earlier.

3. For each i = 1, . . . ,M order c(i)1 , . . . , c(i)
N

from smallest to biggest and set C(i) =

(c(i)1 , . . . , c(i)
N

).

4. Evaluate the performance of each C(1),C(2),. . . ,CM using (6). Let’s define the

M
elite

sample, which is the best performing combinations of the change-points as

M
elite

= ⇢ ⇤ M .

5. For all j = 1, 2, . . . , N estimate the two beta shape parameters as in (4) and (5)

from the M
elite

sample and update the current parameter set.

6. If the stopping criterion (SC) is met, then stop the process and identify the com-

bination of the locations of change-points (C(i)) that minimizes the BIC, which is

the optimal number of change-points. Otherwise set t = t+1 and iterate from step

2.
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The two stopping criteria (SCs) considered in this study are

SC1: Stop the process if max
j

(�2
j

)t < ✏

SC2: Stop the process if for some t � k, say k = 4,

F
t

= F
t�1 = · · · = F

t�k

The final solution will be a single vector of change-points.

Results

In this section, we include results of numerical experiments that illustrate the perfor-

mance of the modified CE method. First, we consider an artificial count data sequence

with a known distribution, in which observations of each segment are generated from

a negative binomial process. We carried out the analysis based on the two stopping

criteria distinctly under the standard CE method which utilizes a normal distribution

(CE-Normal) and the modified CE method which uses a beta distribution (CE-Beta) to

simulate the locations of change-points. The BIC criterion, which is the performance

function, is then used to identify the optimal combination of the change-points. This

will allow us to carry out direct comparison of the methods in terms of the Root Mean

Squared Error (RMSE) and running time.

Finally, a real DNA count data set is considered. We continue the process until a

convergence in the performance function is achieved or a stopping criterion is met. Since

we do not know the number of change-points in advance, an agreement between the

methods is considered by looking at the mean profile plots followed by a comparison

study on the processing time.

Example 1: Artificial Data Set

Let (y1, y2, . . . , y20000) be a sequence of independent negative binomial random variables

with the parameters given in the Table 5.1, where the dispersion parameter of the distri-

bution is held constant at 10. We generated 200 random sequences using these parameters

and carried out the analysis based on the CE algorithms with di↵erent stopping criteria.

First we carried out the analysis varying number of change-points (N) from 1 to 20 for

both CE-Beta and CE-Normal algorithms with respect to the two stopping criteria. Then

we obtained the best solution in each of the N situations which minimizes (6). Figure
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5.2 shows the BIC values for each of the N cases (from 8 to 20) for both algorithms.

Table II shows the average processing times on CE-Beta and CE-Normal with respect

to the stopping criteria.

Figure 5.2 shows that in both the algorithms with two stopping criteria, BIC score is

minimized when N equals to 9. More importantly, when considering the processing time

as in Table 5.2, there is a significant improvement in the proposed CE-Beta algorithm

when compared to the competing CE algorithms based on normal assumption.

The CE-Beta SC1 algorithm can be identified as the optimal CE algorithm on the basis of

processing time when compared with the other three algorithms considered in the study.

The processing time is considered as one of the most important aspects in combinatorial

studies especially when dealing with change-point modelling. Furthermore, Table 5.2

shows that the running time(s) in CE-Beta is significantly less than that of the competing

CE-Normal method with the two SCs. Note, that this study is carried out in a corei3

first generation 2.27GHz processor with 4GB RAM. Therefore, the processing time is

relative to this operation conditions.

Table 5.3 shows the average Root Mean Squared Error (RMSE) for each algorithm CE-

Beta and CE-Normal with two SCs under the optimal change-point numbers detected

(i.e. N equals to 9). The RMSE values indicate that even though the computing time is

highly superior under SC1 it gives less precision when compared with the SC2. Moreover,

it is noted that the RMSE value is lower in the proposed CE- Beta under SC1 method

than the competing CE- Normal method. Figure 3 shows the fit of the change-points

with the average counts over the sequence. It is noted that both methods under the two

stopping criteria correctly captured the major regions in the over dispersed count data

series.

Parameter smoothing: Rho (⇢)

We have considered smoothing up the parameter Rho (⇢), which is used to obtain the

Nelite sample. The RMSE and processing time(s) is obtained for the Rho values from

0.01 to 0.1 with the bin of 0.01 when N equals to 9. We have obtained the average

results based on 100 simulations under each of the Rho values.

Figure 5.4 indicates that the RMSE for the SC2 is lower than the SC1 algorithms both

in CE-Beta and CE-Normal cases. Furthermore, CE-Beta algorithms have lower RMSE

on average than that of the competing CE-Normal algorithms. Also, by looking at the
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Table 5.1: Negative binomial ”p” parameters for the artificial sequence with fixed
size of 10.

Positions Negative Binomial

Parameter(p)

1—2000 p0 = 0.05

2001—4000 p1 = 0.15

4001—6000 p2 = 0.40

6001—8000 p3 = 0.02

8001—10000 p4 = 0.20

10001—12000 p5 = 0.50

12001—14000 p6 = 0.10

14001—16000 p7 = 0.85

16001—18000 p8 = 0.18

18001—20000 p9 = 0.90

Figure 5.2: BIC vs. N for CE-Beta and CE-Normal with two SCs

Figure 5.4 it can be noted that the RMSE tends to scatter around 4 for the CE-Beta

cases and around 0 for the CE-Normal cases after Rho value of 0.05 .

However, based on the processing time (Figure 5.5) the SC1 algorithms outperform the

SC2 algorithms in both CE-Beta and CE-Normal cases. On average the CE-Normal
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Table 5.2: Total running time of CE-Beta and CE-Normal with two SCs.

Algorithm
Running Time(s)

SC1 SC2

CE-Beta 5322.01 12916.66

CE-Normal 8546.73 27460.3

Table 5.3: Average RMSE for both Beta and Normal with two SCs when N=9.

Algorithm
RMSE

SC1 SC2

CE-Beta 3.6603 0.0665

CE-Normal 4.9598 0.6885

Figure 5.3: Average count vs. sequence position for CE-Beta and CE-Normal with
two SCs

algorithms take more processing time than the CE-Beta cases.Therefore, we have to

consider a Rho value that will balance the trade-o↵ between the RMSE and the processing

time. We have used the Rho value as 0.05 in this study to obtain the results. This is

mainly based on the average RMSE results as discussed above.
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Figure 5.4: Plot of Average RMSE vs. Rho (⇢)

Figure 5.5: Plot of Average Processing time (s) vs. Rho (⇢)

Example 2: Real Data

This example considers a real DNA count data. The data correspond to the chromosome

2 of a subject in the study. Due to this being real data we do not know the true
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Figure 5.6: Part of the DNA count data

number of change-points in advance. Therefore, we look for agreement between the two

methodologies. We have considered the proposed CE- Beta method and the CE- Normal

method under the SC1 to compare the results. In order to calculate the Nelite fraction

of samples ⇢ value of 0.05 is used.

Figure 5.6 shows a portion of the DNA count data set that we have used in our study.

Since, the data are highly over-dispersed; negative binomial distribution will model the

process more informatively and accurately. Figure 5.7 shows the iterations results for the

CE-Beta and CE-Normal under SC1. The optimum number of change-points is obtained

by considering the combination of change-points that minimizes the BIC value. The BIC

is minimized when N equals to 28 for the CE-Beta and 24 for the CE-Normal under the

SC1. Table IV shows the running time for each of the cases under SC1 with number of

change-points equal to 28 and 24 respectively.

Figure 5.8, the mean profile plot shows the agreement of the two methods in identifying

the number of change-points in the DNA count data. In addition to the major regions

that has also been captured by the CE-Normal algorithm, the proposed method has also

identified few more small regions as well. Furthermore, as in Table IV the proposed

CE-Beta method is computationally e�cient compared to the CE-Normal method in

detecting the locations of change-points of the DNA count data as well.
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Figure 5.7: BIC vs. Number of change-points (N)

Figure 5.8: Average count vs. sequence position for CE-Beta and CE-Normal
under SC1 of DNA count data
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Table 5.4: Running time for the DNA count data with CE-Beta and CE-Normal
under SC1

Algorithm Running time (s)

CE-Beta 229.17

CE-Normal 555.54

Conclusion

A modified CE method is proposed with di↵erent stopping criteria. This proposed

method utilizes beta distribution to simulate location of change-points in over dispersed

count data. It was identified that the processing time under the proposed CE method is

significantly less than the original CE method with respect to the two stopping criteria.

However, CE algorithm with SC2 produced lower RMSE both in the proposed CE-Beta

as well as the CE-Normal at the cost of high processing time.

While the results of this work are encouraging, there are plenty of avenues available

for future research work, especially on smoothing up the CE algorithms and fine-tuning

its parameters. In addition to that it would be helpful to investigate the possibilities

of fine-tuning the penalty term in the BIC in the case of number of change-points is

not known. A modified BIC will certainly help to obtain more smooth results and will

more e↵ectively address the dimension of the models with the increase of number of

change-points.
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6.1 Summary

This chapter describes a further extension of the method discussed in Chapter 5. We

explored the feasibility of incorporating auxiliary information into the process of detect-

ing change-points with the CE method in DNA read count data. Generalized additive

models for location, scale and shape (GAMLSS) [127] were considered to model DNA

read count data. Apart from the issue of over-dispersion in the DNA read count data,

we further observed an abnormally high frequency of zero values (a significant clump at

zero). In order to account for this excess of zero observations and over-dispersion, we ap-

plied the zero-inflated negative binomial distribution (ZINB) to model DNA read count

data in the GAMLSS framework. The GAMLSS modelling approach was considered in

this work because of its extended capabilities in modelling more distributional parame-

ters of the response variable. Furthermore, the GAMLSS model relaxes the exponential

family assumption for the response variable by replacing it with a more general class

of distributions, including highly kurtotic and/or skew continuous and discrete distri-

butions. Therefore to model the extra variation and excess zeros we utilized the ZINB

distribution in the GAMLSS model. We denote this model as ZINB-GAMLSS in this

work. The exon length was considered as an explanatory variable when constructing the

regression model. To our knowledge, this is the first implementation that utilizes the

GAMLSS modelling framework with the CE method to detect change-points in NGS

data that also incorporates auxiliary information. The proposed procedure was applied

to the celiac disease data set as described in Chapter 5. We applied the method to DNA

read count data corresponding to chromosome 15 of a patient. A comparison study was

carried out with the negative binomial (NB), NB-GAMLSS, ZINB and ZINB-GAMLSS.

It was observed that the ZINB-GAMLSS model more smoothly detected change-points

in the read counts than the other methods.



Chapter 6. GAMLSS and Extended CE Method to Detect Multiple Change-Points in
DNA Read Count Data 125

GAMLSS and Extended Cross-Entropy Method to

Detect Multiple Change-Points in DNA Read Count

Data

W. J. R. M. Priyadarshana1,⇤, Georgy Sofronov1

1 Department of Statistics, Faculty of Science, Macquarie University, Sydney NSW 2109,

Australia.
⇤E-mail: madawa.weerasinghe@mq.edu.au

Abstract

We model DNA read count data obtained through next generation sequencing (NGS)

technologies as a multiple change-point process. This means that the data are divided

into di↵erent segments based on the number of change-points. Each segment of the

process is modeled by utilizing the zero-inflated negative binomial (ZINB), as well as

the negative binomial (NB) distribution in the Generalized additive models for location,

scale and shape (GAMLSS) framework. It is observed that ZINB and NB based models,

fit the data better than the competing Poisson model, in which the observed read counts

are highly over-dispersed as well as zero-inflated. Moreover, we have considered incor-

porating auxiliary information to further improve the change-point modelling process

by utilizing the GAMLSS framework. The extended Cross-Entropy (CE) method which

uses a four-parameter beta distribution is used to estimate the number of change-points

as well as their corresponding genome locations. Furthermore, parallel implementation

of the procedure results a significant improvement in total running time, in which the

procedures are highly computationally intensive. We apply the proposed methodology

to find change-points in DNA read count data obtained through Illumina TruSeq exome

capture of patients with celiac disease. Our results suggest that the proposed GAMLSS

based CE method is an e↵ective methodology to detect change-points in genome-wide

data.

Introduction

Discovering chromosomal aberrations in the genomic DNA is a widely discussed issue that

has been addressed through various scientific techniques based on di↵erent perspectives.
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It is an established fact that the variations in DNA copy number is a source of genetic

variation [Campbell et al., 2008] even though the full understanding of the e↵ect of these

is still on probe. Recent studies based on microarray technology have identified around

12% of the human genome and thousands of genes are variable in copy number. It is

predicted that the emerging technologies with high sensitivity level of data will further

expand this knowledge.

Prior to the advent of next generation sequencing (NGS) technologies, number of method-

ologies have been developed to detect multiple change-points mainly based on the array-

comparative genomic hybridization (aCGH) data. Analysis on aCGH data aims to find

changes in the mean of the fluorescence color ratios, usually on logarithm scale to detect

copy number variations in the human genome. See [Lai et al., 2005] for a review of the

aCGH based segmentation methods. However, the introduction of the next generation

DNA sequencing technologies and the resulted excess amount of data has increased the

complexity level of the process of partitioning the genome in to homogeneous segments

to a higher level.

Reviewing the literature on change-point modelling of NGS data, [Xie and Tammi, 2009]

proposed a method called CNVseq to identify CNVs on the data generated through

shotgun sequencing. Later [Magi et al., 2012] reviewed some of the existing methodologies

to detect CNV in read count data. They have normalized the raw read counts and

conducted the segmentation based on the techniques mainly developed on aCGH data.

They also mentioned that there exist only few statistical procedures that utilize the raw

read counts to detect CNVs. In fact, most of the prevailing methods transform the

raw read counts by di↵erent normalization techniques to a stage, where they can utilize

the existing aCGH based segmentation methods. They have not considered utilizing

auxiliary information in the generalized linear models (GLM) context to detect multiple

change-points in the read count data.

In order to fill this gap in the literature of direct usage of the DNA read counts generated

by the NGS platforms, we propose a procedure which utilizes generalized additive models

for location, scale and shape (GAMLSS) statistical framework [Rigby and Stasinopoulos,

2005] to incorporate auxiliary information into the modelling process, and extended

Cross-Entropy method [Priyadarshana and Sofronov, 2012] to estimate the number of

change-points as well as their corresponding genome locations. We observe that the DNA

read counts we analyzed are highly over-dispersed as well as zero-inflated. Therefore,

the response variable is modelled by utilizing the zero-inflated negative binomial (ZINB)

as well as the negative binomial (NB) distribution in the GAMLSS framework.
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Multiple Change-Point Problem, GAMLSS Framework and CE

Method

Generalized additive models for location, scale and shape (GAMLSS)

The GAMLSS are a type of semi-parametric regression models use to model univariate

response with a set of covariates. It allows for modelling not only the expected mean but

other parameters of the distribution (e.g. location, scale and shape) of the response vari-

able as well. Therefore, it gives more flexibility in modelling process than the generalized

additive models, and GLMs.

Multiple Change-Point Problem

Let us formulate the multiple change point problem in mathematical terms. A count

data sequence y = (y1, y2, ..., yL) of length L is given. A segmentation of the sequence

is specified by the number of change points N and the positions of the change points

c = (c1, c2, ..., cN), where 1 = c0 < c1 < ... < c
N

< c
N+1 = L + 1. In this context,

a change point is a boundary between two adjacent segments. The value of c
i

is the

sequence position of the rightmost character of the segment to the left of the ith change-

point. Segments are numbered from 0 to N as there will be one or more segments than

number of change points. We model each segment of the DNA read count data utilizing

ZINB and NB distribution in the GAMLSS regression framework with the use of exon

length as the covariate.

Extended Cross-Entropy Method

The CE method [Rubinstein and Kroese, 2004] is a new generic approach to combinatorial

and multi-extremal optimization and rare event simulation. Broadly it can be used

to solve estimation and optimization problems. In this study, the process of multiple

change point detection is considered as a minimization problem. The CE method is an

iterative optimization procedure that starts with a parameterized sampling distribution

from which a random sample is generated. Then, each observation or the combinatorial

arrangement is scored for its performance, as the solution to a specified optimization

problem. A fixed number of best performing combinatorial arrangements are referred to

as the elite sample. This elite sample is subsequently used to update the parameters for

the sampling distribution. Thus, adaptive parameters are utilized in each iteration. The

sampling distribution eventually converges to a degenerate distribution about a locally

optimal solution, which ideally will be globally optimal.
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In this study we utilize the extended version of the standard CE method, proposed

in [Priyadarshana and Sofronov, 2012] with further modifications. We use a stopping

criterion (SC) based on Median Absolute Deviation (MAD) as opposed to the variance

based SC proposed in the original paper. Furthermore, a multi-core architecture based

parallel implementation of the algorithm is implemented in order to carry out calculations

more e�ciently.

Results and Conclusions

In this section, we include results of numerical experiments that illustrate the perfor-

mance of the proposed method. This example considers a DNA read count data ob-

tained from a study of celiac disease patients. All data were obtained from the Illumina

TruSeq exome capture technology. We analyze DNA read count data with respect to

chromosome 15 of a patient.

We compare the change-point modelling process with and without the e↵ect of auxiliary

information utilizing the extended CE method. In the case without any predictor vari-

ables, we model the read count data based on both NB and ZINB distributions. In the

process of utilizing auxiliary information and the GAMLSS implementation, we consider

natural logarithm of the exon length as a predictor variable. In the GAMLSS framework,

we carry out the change-point modelling procedure considering the distribution of the

response variable as zero-inflated negative binomial (ZINB-GAMLSS) as well as negative

binomial (NB-GAMLSS).

Figure 6.1 shows the mean profile plots of results for the case, with and without any

predictor variables. It is visible that in the ZINB set up, the GAMLSS approach and

the ZINB results have a higher level of concordance of estimated change-points, when

compared to the NB results. This may be due to the fact that ZINB better models

the observed read counts than the NB. It can be further noticed that in general NB

based models have estimated more change-points than the ZINB based models for this

particular DNA read count data. While the results of this work are encouraging, there are

plenty of avenues available for future research work, especially on the implementation of

GAMLSS framework and the incorporation of more predictor variables to the modelling

process. Furthermore, cluster level implementation of the methodology will certainly

improve the processing time, in which all these processes are highly computationally

intensive.
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Figure 6.1: Mean profile plots for NB, NB-GAMLSS, ZINB, ZINB-GAMLSS.
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Chapter 7

breakpoint: An R Package to Detect

Multiple Change-Points via the CE

Method

This chapter illustrates the use of an R package named “breakpoint” developed to de-

tect multiple change-points in continuous and discrete (count) data via the variants of

the CE method proposed in Chapters 3, 4 and 5. It can be freely obtained from the

CRAN [122] (http://cran.r-project.org/web/packages/breakpoint/index.html).

The package manual is included as an appendix (see Appendix B). The citation for the

R package is:

Priyadarshana, W. J. R. M. and Sofronov, G. (2014). breakpoint: An R Package for

Multiple Break-Point Detection via the Cross-Entropy Method. R package version 1.1.

Coding: 100% , writing: 100% , conception and design: 95%

Specific contribution of joint authors

Georgy Sofronov: Overall supervision of the project. Provided continual feedback and

suggestions.

7.1 Summary

In this thesis we have developed several algorithms based on the CE method as described

in Chapters 3 to 6 to detect the number of change-points and their locations, particularly

in biological sequences. These algorithms cover a broad spectrum of applications that

131
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can be utilized to detect multiple change-points in continuous (e.g., aCGH data) and

discrete measurements (e.g., DNA read count data). The current version of the package

(version 1.1.) is capable of analyzing both continuous and discrete measurements. The

package was originally prepared (version 1.0) along with the publication in Chapter

3, which discusses the use of CE method in detecting multiple change-points in aCGH

data. More recently an update to the package (version 1.1) was submitted with improved

capabilities and additional functions. All the calculations of the CE algorithm can also be

carried out with parallel computation techniques as described in Chapter 3. Additionally,

the breakpoint package implements the concept of smooth parameter update in the CE

algorithm as described in Chapter 2.

The normal distribution is used to model continuous data. The R function named

“CE.Normal” performs all the calculations of the CE algorithm to estimate the number

and the locations of the change-points. In the package there are two options available for

simulation of change-point locations in the CE algorithm. They are the four-parameter

beta distribution and the truncated normal distribution, as described in Chapter 2. The

median absolute deviation is used as the stopping criterion in the CE algorithm. The

modified BIC [174], described in Chapter 2, is used as the model selection criterion to

obtain the optimal solution for the number of change-points. Finally, a list containing

the number of break-points and the locations are reported.

The other two main functions “CE.NB” and “CE.ZINB” can be used to model count data

with the negative binomial distribution and zero-inflated negative binomial distribution

respectively. A model with zero-inflated negative binomial is preferred over the negative

binomial model when there exists an excess amount of zero observations beyond those

explained by over-dispersion. The general BIC [135] is used as the performance function

in the CE algorithm and the median absolute deviation is used as the stopping criterion.

These functions are also supported with the arguments and capabilities described in the

“CE.Normal” function. The mean profile plot of the segmented data can be obtained by

using the “profilePlot” function in the package.

In this chapter, we provide case studies to illustrate the capabilities of the functions

in the breakpoint R package. A series of extensive simulation studies and comparative

analyses were performed in [115–117, 119, 120, 167] to assess the performance of the

proposed procedures. The manual of the package is included in Appendix B.
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7.2 Case studies on analyzing continuous data

Two case studies are discussed in this section. The first study involves artificially gener-

ated data and the second study involves a real aCGH data set that is publicly available.

A detailed simulation study was performed in [167] to assess the overall e↵ectiveness of

the CE algorithm.

7.2.1 Artificially generated data: Normal

The following R script was used to simulate data from the normal distribution. Let

y = (y1, y2, . . . , yL) be a sequence of independent normal random variables with varying

mean values and a common standard deviation. Let the sequence have length L = 10000

and five change-points.

Data generation

segs <- 6 # Number of segments

M <- c(1500, 2200, 800, 2500, 1000, 2000) # Length of the segments

#chpnt.locs <- c(1501, 3701, 4501, 7001, 8001) # True change-point

locations

seg <- NULL

mu.vals <- c(10, 5, 0, 3, 8, 5) # Mean value for each segment

sd.val <- 2 # Value of the standard deviation for each segment

for(j in 1:segs){
seg <- c(seg, rnorm(M[j], mean = mu.vals[j], sd = sd.val))

}

simdata<- as.data.frame(seg)

Analysis with the four-parameter beta distribution

The “CE.Normal” function is used to perform the necessary calculations. We use parallel

computation and alter the aberration width to 10, but otherwise use default values.
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The option “distyp = 1” instructs the CE algorithm to use the four-parameter beta

distribution to simulate change-point locations.

library(breakpoint) # Load the installed R package

obj1 <- CE.Normal(simdata, distyp = 1, parallel = TRUE)

obj1

## $No.BPs

## [1] 5

##

## $BP.Loc

##

## 1501 3700 4508 7001 8002

profilePlot(obj1, simdata) # Mean profile plot

Figure 7.1 shows the simulated data, along with the mean profile plot depicting the

estimated change-points and means.

Analysis with the truncated normal distribution

The same “CE.Normal” function is used as earlier. We use parallel computation and

alter the aberration width to 10, but otherwise use default values. The option “distyp =

2” instructs CE algorithm to use the truncated normal distribution to simulate change-

point locations.

library(breakpoint) # Load the installed R package

obj2 <- CE.Normal(simdata, distyp = 2, h = 10, parallel = TRUE)

obj2

## $No.BPs

## [1] 6

##

## $BP.Loc
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Figure 7.1: Mean profile plot of the simulated data: CE with the four parameter
beta

##

## 1501 3701 4501 4513 7001 7997

profilePlot(obj2, simdata)

Figure 7.2 shows the mean profile plot of the simulated data with the estimated change

points. It is observed that the “CE.Normal” with the truncated normal distribution has

slightly over-estimated the true change-point number. We have discussed the perfor-

mance di↵erences of the CE method with the four parameter beta distribution and the

truncated normal distribution in Chapter 5. It was found that the CE method with the

four parameter beta distribution performs better than the CE method with the truncated

normal distribution both in terms of e�ciency and accuracy [119].
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Figure 7.2: Mean profile plot of the simulated data: CE with truncated normal

7.2.2 Real data

This example aCGH data set was first discussed in [168]. The paper analyzed aCGH

data of nine squamous cell carcinomas (SCCs), seven adenocarcinomas (AdCAs) and four

human papillomavirus (HPV)-immortalized keratinocyte cell lines. Here, we consider a

subset of this data set. We analyze log-ratio data corresponding to one AdCA and three

SCC cell lines. They are AdCA10, SCC27, SCC36 and SCC39. In those cell lines, we

particularly analyze the chromosome 11 data.

The “CE.Normal” function with the four-parameter beta distribution to simulate change-

point locations is used here to obtain the estimates of the change-points. First we shall

load the data file into the R environment. Then the “CE.Normal” function is used to

estimate the number of change-points and their locations. Figure 7.3 gives the combined

profile plots for the four cell lines.
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library(breakpoint) # Load the installed R package

wilting.data <- read.table(file=paste("/Users/MKMM/Desktop/Wilting.txt"),

sep="\t", header=T)

wilting.AdCA10.ch11 <- subset(wilting.data[,c(2,3,4)], wilting.data[,2]==11)

wilting.AdCA10.ch11.log2 <- as.data.frame(wilting.AdCA10.ch11[,3])

wilting.SCC27.ch11 <- subset(wilting.data[,c(2,3,5)], wilting.data[,2]==11)

wilting.SCC27.ch11.log2 <- as.data.frame(wilting.SCC27.ch11[,3])

wilting.SCC36.ch11 <- subset(wilting.data[,c(2,3,7)], wilting.data[,2]==11)

wilting.SCC36.ch11.log2 <- as.data.frame(wilting.SCC36.ch11[,3])

wilting.SCC39.ch11 <- subset(wilting.data[,c(2,3,8)], wilting.data[,2]==11)

wilting.SCC39.ch11.log2 <- as.data.frame(wilting.SCC39.ch11[,3])

obj1 <- CE.Normal(wilting.AdCA10.ch11.log2, distyp = 1, parallel = TRUE)

obj1

## $No.BPs

## [1] 2

##

## $BP.Loc

##

## 18 110

profilePlot(obj1, wilting.AdCA10.ch11.log2, x.label="Genomic Position",

y.label="Log2ratio Data")

obj2 <- CE.Normal(wilting.SCC27.ch11.log2, distyp = 1, parallel = TRUE)

obj2

## $No.BPs

## [1] 3

##
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## $BP.Loc

##

## 63 90 120

profilePlot(obj2, wilting.SCC27.ch11.log2, x.label="Genomic Position",

y.label="Log2ratio Data")

obj3 <- CE.Normal(wilting.SCC36.ch11.log2, distyp = 1, parallel = TRUE)

obj3

## $No.BPs

## [1] 2

##

## $BP.Loc

##

## 61 83

profilePlot(obj3, wilting.SCC36.ch11.log2, x.label="Genomic Position",

y.label="Log2ratio Data")

obj4 <- CE.Normal(wilting.SCC39.ch11.log2, distyp = 1, parallel = TRUE)

obj4

## $No.BPs

## [1] 4

##

## $BP.Loc

##

## 65 88 109 117

profilePlot(obj4, wilting.SCC39.ch11.log2, x.label="Genomic Position",

y.label="Log2ratio Data")

It was reported in [168] that there exists chromosomal abnormalities in the cell lines

considered in this example. Particularly, in the cell line AdCA10 chromosome 11, a
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Figure 7.3: Mean profile plots of chromosome 11 data. A: AdCA10, B: SCC27, C:
SCC36 and D: SCC39.

region of reduced copy numbers was identified. The CE method has also estimated two

change-points referring to these losses in copy number. In cell lines SCC27, SCC36 and

SCC39 both lost and gained regions of the chromosome 11 were observed. Our results

also support this conclusion (see Figure 7.3).

7.3 Case studies on analyzing count data

In this section we provide two case studies to illustrate the usage of the functions

“CE.NB” and “CE.ZINB” in the breakpoint R package, which can be used to detect
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change-points in discrete (count) data.

7.3.1 Artificially generated data: Negative Binomial Distribu-

tion

The negative binomial distribution, which is also known as the gamma-Poisson mixture

distribution, is used to model count data when the equi-dispersion assumption is vio-

lated. More specifically it is used in the literature to account for over-dispersion [8]. We

consider the particular parameterisation of the negative binomial distribution discussed

in Chapter 5.

We use the following R script to simulate the data set. Let y = (y1, y2, . . . , yL) be a

sequence of independent negative binomial random variables. The length of the sequence

is denoted by L. There are five change-points in the simulated data sequence.

Data generation

segs <- 6 # Number of segments

M <- c(1500, 2200, 800, 2500, 1000, 2000) # Length of each segment

#chpnt.locs <- c(1501, 3701, 4501, 7001, 8001) # True change-point locations

seg <- NULL

p <- c(0.45, 0.25, 0.4, 0.2, 0.3, 0.6) # Specification of the probabilities

for(j in 1:segs){
seg <- c(seg, rnbinom(M[j], size = 10, prob = p[j]))

}

simdata <- as.data.frame(seg)

Analysis with the four-parameter beta distribution

The “CE.NB” function is used to perform the calculations. We use parallel computation

and alter the aberration width to 10, but otherwise use default values. The option

“distyp = 1” instructs the CE algorithm to use the four parameter beta distribution to

simulate change-point locations.
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library(breakpoint) # Load the installed R package

obj1 <- CE.NB(simdata, distyp = 1, h = 10, parallel = TRUE)

obj1

## $No.BPs

## [1] 5

##

## $BP.Loc

##

## 1501 3699 4501 7001 8001

profilePlot(obj1, simdata)

Figure 7.4 shows the mean profile plot of the simulated data with the estimated change-

points. It is observed that the CE algorithm has correctly identified the number of

change-points and estimated the locations accurately.

Analysis with the truncated normal distribution

The “CE.NB” function is used as earlier. The option “distyp = 2” instructs the CE

algorithm to use the truncated normal distribution to simulate change-point locations.

library(breakpoint) # Load the installed R package

obj2 <- CE.NB(simdata, distyp = 2, h = 10, parallel = TRUE)

obj2

## $No.BPs

## [1] 4

##

## $BP.Loc

##

## 1501 4501 7001 8001

profilePlot(obj2, simdata)
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Figure 7.4: Mean profile plot of the simulated data: CE with the four parameter
beta

Figure 7.5 depicts the mean profile plot. The “CE.NB” with the truncated normal

distribution has slightly under-estimated the true number of change-points. We observe

a similar behaviour of the CE algorithm with the truncated normal distribution as seen

in the continuous data example.
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Figure 7.5: Mean profile plot of the simulated data: CE with truncated normal

7.3.2 Artificially generated data: Zero-Inflated Negative Bino-

mial

The Zero-Inflated Negative Binomial (ZINB) is used to model over-dispersion and excess

zero values in the observed count data. We use the “gamlss” R package [127] to simulate

data from the ZINB distribution.

The following R script is used to generate data from the zero-inflated negative binomial

distribution by using the gamlss R package.
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Data generation

library(gamlss) # Load gamlss package

segs <- 6 # Number of segments

M <- c(1500, 2200, 800, 2500, 1000, 2000) # Length of each segment

#chpnt.locs <- c(1501, 3701, 4501, 7001, 8001) # True change-point locations

seg <- NULL

p <- c(0.6, 0.1, 0.3, 0.05, 0.2, 0.4) # Specification of the probabilities

sigma.val <- c(1,2,3,4,5,6) # Specification of sigma values

for(j in 1:segs){
seg <- c(seg, rZINBI(M[j], mu = 300, sigma = sigma.val[j], nu = p[j]))

}

simdata <- as.data.frame(seg)

Analysis with the four-parameter beta distribution

The “CE.ZINB” function is used to perform the calculations. We use parallel computa-

tion and alter the aberration width to 10, but otherwise use default values. The option

“distyp = 1” instructs the CE algorithm to use the four parameter beta distribution to

simulate change-point locations.

library(breakpoint) # Load the installed R package

obj1 <- CE.ZINB(simdata, distyp = 1, h = 10, parallel = TRUE)

obj1

## $No.BPs

## [1] 5

##

## $BP.Loc

##

## 1476 3701 4494 7010 8023
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profilePlot(obj1, simdata)
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Figure 7.6: Mean profile plot of the simulated data: CE with the four parameter
beta

Figure 7.6 shows the mean profile plot of the simulated data. The CE method has

correctly identified the number of change-points with fairly accurate estimates for their

locations.

Analysis with the truncated normal distribution

The “CE.ZINB” function is used as earlier. The option “distyp = 2” instructs the CE

algorithm to use the truncated normal distribution to simulate change-point locations.
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library(breakpoint) # Load the installed R package

obj2 <- CE.ZINB(simdata, distyp = 2, h = 10, parallel = TRUE)

obj2

## $No.BPs

## [1] 5

##

## $BP.Loc

##

## 1494 3701 5136 7010 7774

profilePlot(obj2, simdata)

Figure 7.7 shows the mean profile plot of the simulated data. The CE method has

correctly identified the number of change-points with fairly accurate estimates for their

locations.

In this Chapter, we illustrated the main usage of the functions in the breakpoint R

package. In all the case studies, we execute the variants of the CE methods only once.

We refer to [115–117, 119, 120, 167] for detailed information about the performance of

the proposed procedures.
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Figure 7.7: Mean profile plot of the simulated data: CE with truncated normal





Chapter 8

Discussion and Future Directions

This chapter briefly recapitulates the proposed methods in the thesis with a particular

focus on implications for future research directions.

8.1 Summary

This thesis is divided into eight chapters. It contains information on four peer-reviewed

publications and one R package. In Chapter 1, a gentle introduction to the change-point

problem is given. It discusses the main classes of the general change-point problem,

namely the retrospective and sequential. It further provides an overview of the main

branches of segmentation methods in the literature. Lastly, it briefly introduces the

main biological concepts and methods discussed in the thesis.

In Chapter 2, we describe the methods that are used in the subsequent chapters. It

elaborates the briefly discussed concepts in multiple publications to obtain an overview

of the scope of the thesis. Particularly, it discusses in detail the CE algorithm and its

characteristics, the usage of the CE method in detecting multiple change-points and

the applicability of sequential techniques. We conclude Chapter 2 with an introduction

to the parallel computing techniques that can be performed in the R statistical com-

puting environment. It is known that evolutionary computing methods, including the

CE method, consume more computational resources, due to the nature of their imple-

mentation. In the CE method, the final solutions are obtained through a model-based

stochastic approach. It continually simulates a large number of sample solutions from a

statistical distribution and assesses their performance through a model selection criterion

until an optimal solution is reached. Because of this it takes significantly large amount
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of computational resources in comparison to dynamic programming algorithms. In this

thesis, we propose parallel computing techniques and hybrid algorithms to ameliorate

this e�ciency issue of the general CE algorithm.

Chapter 3 contains a peer-reviewed journal article, proposing a variant of the CE method

to detect multiple change-points in aCGH data. The four parameter beta distribution

is used in the CE method to simulate change-point locations, and the modified BIC is

used as the performance function in the CE method to estimate the number of change-

points. Extensive simulation studies are carried out to obtain best parameter values for

the CE algorithm and to compare its performance with other publicly available methods.

Finally, we apply the proposed method to three real aCGH experimental data sets to

further illustrate its usefulness.

Chapter 4 includes a peer-reviewed book chapter, extending the work in Chapter 3. We

propose two novel hybrid algorithms that merge powerful sequential techniques (i.e., the

cumulative sum method and the Shiryaev-Roberts procedure) with the CE method to

e↵ectively estimate both the number and locations of the change-points. A pair-wise

hypothesis test is used with an improved Bonferroni correction to test for the signifi-

cance of the estimated change-points. We found that the proposed hybrid procedures

significantly increase the e�ciency of the CE method.

Chapter 5 and 6, two peer-reviewed full conference papers, are devoted to the problem

of identifying change-points in discrete (count) data with the use of the CE method. In

Chapter 5, we propose a variant of the CE method to detect change-points in DNA read

count data. Several stopping criteria and simulation distributions for the CE algorithm

are discussed in this work. Chapter 6 extends the procedure proposed in Chapter 5 to

further incorporate auxiliary information in the CE algorithm to detect change-points

more e↵ectively. A generalized additive model for location, scale and shape (GAMLSS) is

used when modelling DNA read count data. The procedures proposed in these chapters

are used to detect multiple change-points in DNA read count data of patients with celiac

disease, obtained through the Illumina TruSeq exome capture method.

In Chapter 7, we provide details of the R package that is developed based on some of

the methods discussed in this thesis. The R package is freely available from the CRAN.

This chapter includes several case studies to exemplify its functions and capabilities.
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8.2 Discussion

In this thesis we have introduced the use of the Cross-Entropy method, a model-based

evolutionary computing technique, in estimating the number and location of change-

points in genomic sequences. Particularly we applied the proposed variants of the CE

method to detect copy number variations in aCGH and DNA read count data. In the

literature there are few studies that have used di↵erent evolutionary computing methods

(e.g. genetic algorithms, simulated annealing) to solve both the estimation and optimiza-

tion issues in the general change-point problem. The use of the CE method is still at its

inception in the change-point analysis literature, except for the work in [49], which used

the CE method to estimate change-point locations in binary data with a fixed number

of change-change points. However, we found that in the literature, the characteristics of

the CE method and its performance with respect to the change-point problem were never

discussed in detail. In this thesis, we aim to fill this gap by proposing several variants of

the CE method and discussing its characteristics. We contribute in multiple ways to the

existing literature of the use of the CE method in change-point analysis with a special

focus on analysing genomic sequences. The proposed variants of the CE method not only

estimate the change-point locations, but also estimate the number of change-points.

In general, the change-point analysis can be considered as a mixture of estimation and

optimization problem. It contains two major steps in finding a final solution. Firstly, one

has to estimate the optimal number of change-points. Secondly, optimal change-point

locations have to be estimated based on the number obtained in the first step. Because of

the complexity it involves, the majority of the earlier methods were developed to address

the second step of the change-point problem, with a known number of change-points,

or simply considered the single change-point problem. However, during the last few

decades, with the exponential development in the technological infrastructure, a number

of methods have been developed to address both the optimization and estimation prob-

lems simultaneously in di↵erent paradigms. The variants of the CE method proposed in

this thesis were also developed to address both the estimation and optimization problems

in the general change-point problem.

Being a stochastic approach, the CE method is an ideal candidate to represent the

uncertainty associated with the number and locations of the change-points. The model-

based approach in the CE method further enhances its capabilities, in which it provides

flexibility to incorporate many statistical modelling concepts to obtain best estimates. All

the major steps of the proposed variants of the CE method in this thesis are governed by a

particular statistical concept. A parametric statistical distribution is used in the stage of
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simulating change-point locations. Then a performance function, which is also based on a

model selection procedure, is used to obtain best solutions and to update the parameters

of the simulation distribution. The stopping criteria discussed in the thesis are also based

on statistical concepts of variance minimization. Overall, it provides a sound statistical

framework to detect multiple change-points in observed data sequences. However, we

observed that the general CE method consumes more computational resources, as is

reported in the literature. In this thesis we proposed enhancements to ameliorate this

problem. The first approach is to use multi-core parallel computation techniques, and the

other approach is to amalgamate sequential detection techniques with the CE method.

These approaches have greatly improved the e�ciency of the proposed procedures as

compared to the general CE method.

In our work, we observed that the performance of the CE method is mainly a↵ected by

the internal parameters discussed in Chapter 2, especially the simulation sample size (M)

and the elite sample fraction (⇢), as shown in Chapters 3 and 5. The impact of the cut-

o↵ value for the stopping criterion (") appeared marginal in the context of the analysis

performed in Appendix A. In the literature, the concept of parameter estimate smoothing

is discussed in detail. We incorporated smoothing into the CE algorithms in the proposed

R package [114]. The proposed procedures were tested in a series of simulation studies

conducted in [115–120, 167] and applied to real aCGH data and to DNA read count data.

Furthermore, in [115, 116, 167] we further compared the e↵ectiveness of the proposed

procedures with other popular publicly available methods.

The applications of the proposed procedures are not limited to analysing biological se-

quences. They can be easily extended and applied to other data sequences in di↵erent

scientific streams. For instance, we have applied the CE method to detect change-points

in the All Share Price Index (ASPI) data of the Sri Lankan stock market [118]. Thus,

the proposed methods are versatile in their applications.

8.3 Future directions

The studies presented in this thesis could lead to advancements in many directions. We

conclude our discussion by listing potential extensions and applications.
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Check for robustness to model assumptions violations

The statistical models considered in this thesis depend on certain assumptions. It would

be worth investigating the performance of the proposed procedures when the model

assumptions are violated. A similar study that was carried out in [98] could be adapted

here. The results would indicate the level of robustness of the proposed procedures.

Further investigation on hybrid methods

In Chapter 4, we proposed two novel hybrid algorithms that merged two sequential

detection techniques with the CE approach to obtain better estimates with a fraction of

the processing time observed in the general CE method. We propose to further explore

this initiative in two directions. Firstly, to incorporate the proposed procedures into the

R package as separate functions. Secondly, to further investigate the issues of developing

sequential techniques that can be applied to both short and long sequences as discussed

in [116].

Furthermore, it will be also beneficial to investigate the amalgamation of other faster de-

tection methods such as binary segmentation [136, 161] to obtain a preliminary estimate

for the number of change-points to initialize the CE algorithm.

Further investigations on incorporating auxiliary information to

the process of detecting change-points

We have initiated the work on incorporating auxiliary information to obtain improved

estimates of the change-points by using the GAMLSS modelling procedure in [120]. We

hope to extend this approach by adding more significant variables to the system and

assess their performance. Furthermore, it would be beneficial to estimate not only the

number of change-points and their locations, but also the parameter estimates of the

GAMLSS or any other model for each segment.
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Extensive study to compare the performances of di↵erent evo-

lutionary computing methods in the change-point problem

In the literature there exists a rich class of applications of evolutionary computing meth-

ods to solve di↵erent optimization and estimation problems. However, we found that

most of these methods are rarely used in the change-point literature (genetic algorithms

and simulated annealing being the main exceptions). It would be beneficial to carry out

an extensive study to compare the performances of these di↵erent evolutionary comput-

ing approaches in the context of change-point problem to obtain a better overview of

their e↵ectiveness.

Cluster level implementation

The excessive processing time is considered as the major drawback of the CE method.

This issue is already being discussed in the literature [23] and we also considered it in

our papers [117, 119]. Multi-core parallel computational techniques are one solution to

the problem, as we have proposed in [117, 167]. However, further processing e�ciency

can be achieved through a cluster level implementation of the CE method. Thus, a

comparative analysis can be conducted to identify the merits and drawbacks of di↵erent

implementations of the the CE method.

Extensions to the R package

The current implementation (version 1.1) of the “breakpoint” R package contains func-

tions to perform segmentation on both continuous and count data. We hope to incor-

porate further functions to validate the estimated change-points, as proposed in [116],

with the use of improved Bonferroni correction. Furthermore, we are in the process of

adding non-parametric tests (e.g., the Kolmogorov-Smirnov and Mann-Whitney tests)

and resampling-based multiple tests to further validate the estimated change-points.
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Supplementary Material to

“Multiple Break-Points Detection in

array CGH Data via the

Cross-Entropy Method

The supplementary material is structured as follows. Section 1 provides detailed results

of the second simulation study carried out in the ‘Selection of best parameter values

for the CE algorithm’ section to justify the choice of parameter value for the cut-o↵

value (") in the SC. In Section 2, a comparative analysis is carried out to identify the

advantages of the use of MAD in the CE algorithm over the use of SD. Section 3 concludes

the supplementary material with the results of processing time (in seconds) for the three

real aCGH data examples considered in the paper.

A.1 Choice of parameter value for the cut-o↵ value

(") in the SC

In this simulation study, we set the M and the ⇢ values at 200 and 0.06 in the CE

algorithm as suggested in the first simulation study. A range of values from 0.001 to

0.1 were considered for the ". For each value of " 100 simulations were carried-out. We

consider the Root Mean Square Error (RMSE) value as the performance measurement

in this study. Table 1 shows the average RMSE values for each of the " values. It can be
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identified that the impact of the " is less critical to the performance of the CE algorithm.

Therefore, in the CE algorithm we set 0.01 as the default value for the cut-o↵ value in

the SC.

Table A.1: Average RMSE based on 100 simulations for " values

cut-o↵ value (") Average RMSE
1 0.001 0.0357
2 0.002 0.0341
3 0.003 0.0353
4 0.004 0.0364
5 0.005 0.0357
6 0.006 0.0364
7 0.007 0.0370
8 0.008 0.0352
9 0.009 0.0354
10 0.01 0.0357
11 0.02 0.0356
12 0.03 0.0366
13 0.04 0.0353
14 0.05 0.0359
15 0.06 0.0369
16 0.07 0.0366
17 0.08 0.0350
18 0.09 0.0352
19 0.10 0.0379

A.2 Performance of the CE method with di↵erent

stopping criterion

In the paper, we have introduced the median absolute deviation (MAD, [1]) which is a

more robust dispersion measure to utilize in the CE algorithm as the stopping criterion,

as opposed to the standard deviation (SD) considered in [2]. We carried out a detailed

simulation study to explore the advantages of using the MAD over the SD in the CE

method. We set the parameters of the data generation process to be the same as in the

simulation study to obtain the best set of parameters to the CE method (Refer section

3 in the paper). We repeat the process for 100 times separately for the two stopping

criterion to obtain the average results. Table A.2 shows the average processing time and

average root mean square error rates for the CE method with the use of MAD and SD

as the stopping criterion. It is observed that the processing time of the CE method is

improved around 6% with the use of the MAD as compared to the use of SD. In terms
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of the accuracy both criterion perform similarly, where the use of SD marginally better

than the MAD.

Table A.2: Average processing time (s) and Average RMSE values for the CE
method with the use of MAD and SD

MAD SD
Average processing time 1.3950 1.4922
Average RMSE 0.0392 0.0371

A.3 Processing time for the real aCGH data exam-

ples

A.3.1 Processing time for fibroblast cell lines (GM03563) data

Table A.3 shows the processing time (s) of the CE method and other four methods for

the fibroblast cell lines (GM03563) data.

Table A.3: Processing time (s) for the proposed CE method and other methods for
the fibroblast cell lines (GM03563) data

Method Ch 1 Ch 3 Ch 9 Ch 11
CE 2.264 1.596 2.007 3.150
changepoint 0.018 0.011 0.014 0.014
cumSeg 0.048 0.130 0.127 0.028
DNAcopy 0.070 0.029 0.060 0.168
bcp 0.157 0.148 0.145 0.228

A.3.2 Processing time for GBM data

Table A.4 shows the processing time (s) of the CE method and other four methods for

the GBM data.

A.3.3 Processing time for MDA157 data

Table A.5 shows the processing time (s) of the CE method and other four methods for

the MDA157 data.



Appendix A. Supplementary Material to Chapter 3 158

Table A.4: Processing time (s) for the proposed CE method and other methods for
GBM data

Method
Ch 7 Ch 13 Ch 19 Ch 20

GBM29 GBM31 GBM11 GBM12
CE 7.976 6.203 4.858 4.939
changepoint 0.029 0.012 0.023 0.023
cumSeg 0.105 0.088 0.094 0.094
DNAcopy 0.113 0.046 0.219 0.047
bcp 0.823 0.361 0.408 0.766

Table A.5: Processing time (s) for the proposed CE method and other methods for
MDA157 data

Method Ch 6 Ch 7 Ch 10 Ch 19
CE 5.143 4.133 3.696 3.264
changepoint 0.239 0.014 0.015 0.016
cumSeg 0.039 0.046 0.036 0.045
DNAcopy 0.075 0.089 0.039 0.071
bcp 0.227 0.218 0.198 0.232

It is observed that the proposed CE method is not as computationally e�cient with the

other four methods considered in this study. This is mainly due to the evolutionary

computing nature that the CE method inherits. However, in the simulation study (refer

“Numerical Results” section in the paper) we have shown that in terms of the accuracy of

the break-point location estimates it outperforms all other competing methods considered

in the study.
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Package ‘breakpoint’
November 9, 2014

Type Package
Title An R Package for Multiple Break-Point Detection via the

Cross-Entropy Method
Version 1.1
Date 2014-11-08
Author Priyadarshana W.J.R.M. and Georgy Sofronov
Maintainer Priyadarshana W.J.R.M. <madawa.weerasinghe@mq.edu.au>
Description Implements the cross-entropy (CE) method, which is a model based stochastic optimiza-

tion technique to estimate both the number and their corresponding locations of break-
points in biological sequences of continuous and discrete measurements as described in Priyadar-
shana and Sofronov (2014, 2012a, 2012b).

License GPL(>=2)
Depends R (>= 2.5.0)
Imports ggplot2, MASS, msm, doMC, doSNOW, snow, foreach
Suggests parallel

R topics documented:
breakpoint-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
CE.NB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
CE.Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
CE.ZINB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ch1.GM03563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
profilePlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Index 11

breakpoint-package Multiple Break-Point Detection via the Cross-Entropy Method

Description

The breakpoint package implements variants of the Cross-Entropy (CE) method proposed in Priyadar-
shana and Sofronov (2014, 2012a and 2012b) to estimate both the number and the corresponding
locations of break-points in biological sequences of continuous and discrete measurements. The
proposed method is primarily built to detect multiple break-points in genomic sequences. However,
it can be easily extended and applied to other problems.

1
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2 CE.NB

Details

Package: breakpoint
Type: Package
Version: 1.1
Date: 2014-11-08
License: GPL 2.0

"breakpoint"" package provides estimates on both the number as well as the corresponding locations
of break-points. The algorithms utilize the Cross-Entropy (CE) method, which is a model based
stochastic optimization procedure to obtain the estimates on location. Model selection procedures
based on penalized likelihood methods are used to obtain the number of break-points. In analyzing
continuous data, it uses the modified BIC introduced by Zhang & Siegmund (2007). In discrete
data analysis it uses the general BIC. Current implementation of the methodology works as an
exact search method in estimating the number of break-points. A parallel implementation of the
algorithm can be carried-out in Unix/Linux/MAC OS X and Windows operating systems with the
use of "doMC", "parallel", "snow" and "doSNOW" packages.

Author(s)

Priyadarshana, W.J.R.M. and Sofronov, G.

Maintainer: Priyadarshana, W.J.R.M. <madawa.weerasinghe@mq.edu.au>

References

Priyadarshana, W. J. R. M., Sofronov G. (2014). Multiple Break-Points Detection in array CGH
Data via the Cross-Entropy Method, IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, no. 1, pp. 1, PrePrints, doi:10.1109/TCBB.2014.2361639, ISSN: 1545-5963.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a). A Modified Cross- Entropy Method for
Detecting Multiple Change-Points in DNA Count Data. In Proc. of the IEEE Conference on Evo-
lutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b). The Cross-Entropy Method and Multiple
Change-Points Detection in Zero-Inflated DNA read count data. In: Y. T. Gu, S. C. Saha (Eds.) The
4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-
54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Com-
binatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New
York.

Zhang, N.R., and Siegmund, D.O. (2007) A modified Bayes information criterion with applications
to the analysis of comparative genomic hybridization data. Biometrics, 63, 22-32.

CE.NB Multiple Break-point Detection via the CE Method with Negative Bi-
nomial Distribution
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CE.NB 3

Description

Performs calculations to estimate both the number of break-points and their corresponding locations
of discrete measurements with the CE method. Negative binomial distribution is used to model the
over-dispersed discrete (count) data. This function supports the simulation of break-point loca-
tions in the CE algorithm based on either the four parameter beta distribution or truncated normal
distribution. The general BIC is used to select the optimal number of break-points.

Usage

CE.NB(data, Nmax = 1�, eps = �.�1, rho = �.�5, M = 2��, h = 5, a = �.8, b = �.8,

distyp = 1, parallel = FALSE)

Arguments

data data to be analysed. A single column array or a data frame.

Nmax maximum number of break-points. Default value is 10.

eps the cut-off value for the stopping criterion in the CE method. Default value is
0.01.

rho the fraction which is used to obtain the best performing set of sample solutions
(i.e., elite sample). Default value is 0.05.

M sample size to be used in simulating the locations of break-points. Default value
is 200.

h minimum aberration width. Default is 5.

a a smoothing parameter value. It is used in the four parameter beta distribution to
smooth both shape parameters. When simulating from the truncated normal dis-
tribution, this value is used to smooth the estimates of the mean values. Default
is 0.8.

b a smoothing parameter value. It is used in the truncated normal distribution to
smooth the estimates of the standard deviation. Default is 0.8.

distyp distribution to simulate break-point locations. Options: 1 = four parameter beta
distribution, 2 = truncated normal distribution. Default is 1.

parallel A logical argument specifying if parallel computation should be carried-out
(TRUE) or not (FALSE). By default it is set as ‘FALSE’. In Windows OS sys-
tems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "mul-
ticore" functionalities are used to carryout parallel computations with the maxi-
mum number of cores available.

Details

The negative binomial (NB) distribution is used to model the discrete (count) data. NB model is
preferred over the Poisson model when over-dispersion is observed in the count data. A performance
function score (BIC) is calculated for each of the solutions generated by the statistical distribution
(four parameter beta distribution or truncated normal distribution), which is used to simulate break-
points from no break-point to the user provided maximum number of break-points. The solution that
minimizes the BIC with respect to the number of break-points is reported as the optimal solution.
Finally, a list containing a vector of break-point locations and the number of break-points are given
in the console.
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4 CE.NB

Value

A list is returned with following items:

No.BPs The number of break-points in the data that is estimated by the CE method

BP.Loc A vector of break-point locations.

Author(s)

Priyadarshana, W.J.R.M. <madawa.weerasinghe@mq.edu.au>

References

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a) A Modified Cross- Entropy Method for Detect-
ing Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary
Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b) The Cross-Entropy Method and Multiple
Change-Points Detection in Zero-Inflated DNA read count data, In: Y. T. Gu, S. C. Saha (Eds.) The
4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-
54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Com-
binatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New
York.

Schwarz, G. (1978) Estimating the dimension of a model, The Annals of Statistics, 6(2), 461-464.

See Also

CE.ZINB for CE with zero-inflated negative binomial, profilePlot to obtain mean profile plot.

Examples

#### Simulated data example ###

segs <- 6 # Number of segements

M <- c(15��, 22��, 8��, 25��, 1���, 2���) # Segment width

#true.locations <- c(15�1, 37�1, 45�1, 7��1, 8��1) # True break-point locations

seg <- NULL

p <- c(�.45, �.25, �.4, �.2, �.3, �.6) # Specification of ps for each segment

for(j in 1:segs){

seg <- c(seg, rnbinom(M[j], size =1�, prob = p[j]))

}

simdata <- as.data.frame(seg)

rm(p, M, seg, segs, j)

#plot(data[, 1])

## Not run:

## CE with the four parameter beta distribution ##

obj1 <- CE.NB(simdata, distyp = 1, parallel = TRUE) # Parallel computation

obj1

profilePlot(obj1, simdata) # To obtain the mean profile plot

## CE with truncated normal distribution ##

obj2 <- CE.NB(simdata, distyp = 2, parallel = TRUE) # Parallel computation
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CE.Normal 5

obj2

profilePlot(obj1, simdata) # To obtain the mean profile plot

## End(Not run)

CE.Normal Multiple Break-point Detection via the CE Method for Continuous
Data

Description

This function performs calculations to estimate both the number of break-points and their corre-
sponding locations of continuous measurements with the CE method. The normal distribution is
used to model the observed continuous data. This function supports the simulation of break-point
locations based on the four parameter beta distribution and truncated normal distribution. The
modified BIC proposed by Zhang and Siegmund (2007) is used to select the optimal number of
break-points.

Usage

CE.Normal(data, Nmax = 1�, eps = �.�1, rho = �.�5, M = 2��, h = 5, a = �.8,

b = �.8, distyp = 1, parallel = FALSE)

Arguments

data data to be analysed. A single column array or a data frame.

Nmax maximum number of break-points. Default value is 10.

eps the cut-off value for the stopping criterion in the CE method. Default value is
0.01.

rho the fraction which is used to obtain the best performing set of sample solutions
(i.e., elite sample). Default value is 0.05.

M sample size to be used in simulating the locations of break-points. Default value
is 200.

h minimum aberration width. Default is 5.

a a smoothing parameter value. It is used in the four parameter beta distribution to
smooth both shape parameters. When simulating from the truncated normal dis-
tribution, this value is used to smooth the estimates of the mean values. Default
is 0.8.

b a smoothing parameter value. It is used in the truncated normal distribution to
smooth the estimates of the standard deviation. Default is 0.8.

distyp distributions to simulate break-point locations. Options: 1 = four parameter beta
distribution, 2 = truncated normal distribution. Default is 1.

parallel A logical argument specifying if parallel computation should be carried-out
(TRUE) or not (FALSE). By default it is set as ‘FALSE’. In Windows OS sys-
tems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "mul-
ticore" functionalities are used to carryout parallel computations with the maxi-
mum number of cores available.
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Details

The normal distribution is used to model the continuous data. A performance function score (mBIC)
is calculated for each of the solutions generated by the statistical distribution (four parameter beta
distribution or truncated normal distribution), which is used to simulate break-points from no break-
point to the user provided maximum number of break-points. The solution that maximizes the
mBIC with respect to the number of break-points is reported as the optimal solution. Finally, a
list containing a vector of break-point locations and the number of break-points are given in the
console.

Value

A list is returned with following items:

No.BPs The number of break-points in the data that is estimated by the CE method

BP.Loc A vector of break-point locations.

Author(s)

Priyadarshana, W.J.R.M. <madawa.weerasinghe@mq.edu.au>

References

Priyadarshana, W. J. R. M., Sofronov G. (2014) Multiple Break-Points Detection in array CGH Data
via the Cross-Entropy Method, IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, no. 1, pp. 1, PrePrints, doi:10.1109/TCBB.2014.2361639, ISSN: 1545-5963.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012) A Modified Cross- Entropy Method for Detect-
ing Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary
Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Com-
binatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New
York.

Zhang, N.R., and Siegmund, D.O. (2007) A modified Bayes information criterion with applications
to the analysis of comparative genomic hybridization data. Biometrics, 63, 22-32.

See Also

profilePlot to obtain mean profile plot.

Examples

data(ch1.GM�3563)

## Not run:

## CE with four parameter beta distribution ##

obj1 <- CE.Normal(ch1.GM�3563, distyp = 1, parallel =TRUE)

profilePlot(obj1, simdata)

## CE with truncated normal distribution ##

obj2 <- CE.Normal(ch1.GM�3563, distyp = 2, parallel =TRUE)

profilePlot(obj2, simdata)

## End(Not run)



Appendix B. Supplementary Material to Chapter 7 168

CE.ZINB 7

CE.ZINB Multiple Break-point Detection via the CE Method with Zero-Inflated
Negative Binomial Distribution

Description

Performs calculations to estimate both the number of break-points and their corresponding locations
of discrete measurements with the CE method. Zero-inflated negative binomial distribution is used
to model the excess zero observations and to model over-dispersion in the observed discrete (count)
data. This function supports the simulation of break-point locations in the CE algorithm based on
the four parameter beta distribution and truncated normal distribution. The general BIC is used to
select the optimal number of break-points.

Usage

CE.ZINB(data, Nmax = 1�, eps = �.�1, rho = �.�5, M = 2��, h = 5, a = �.8,

b = �.8, distyp = 1, parallel = FALSE)

Arguments

data data to be analysed. A single column array or a data frame.

Nmax maximum number of break-points. Default value is 10.

eps the cut-off value for the stopping criterion in the CE method. Default value is
0.01.

rho the fraction which is used to obtain the best performing set of sample solutions
(i.e., elite sample). Default value is 0.05.

M sample size to be used in simulating the locations of break-points. Default value
is 200.

h minimum aberration width. Default is 5.

a a smoothing parameter value. It is used in the four parameter beta distribution to
smooth both shape parameters. When simulating from the truncated normal dis-
tribution, this value is used to smooth the estimates of the mean values. Default
is 0.8.

b a smoothing parameter value. It is used in the truncated normal distribution to
smooth the estimates of the standard deviation. Default is 0.8.

distyp distribution to simulate break-point locations. Options: 1 = four parameter beta
distribution, 2 = truncated normal distribution. Default is 1.

parallel A logical argument specifying if parallel computation should be carried-out
(TRUE) or not (FALSE). By default it is set as ‘FALSE’. In Windows OS sys-
tems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "mul-
ticore" functionalities are used to carryout parallel computations with the maxi-
mum number of cores available.

Details

Zero-inflated negative binomial (ZINB) distribution is used to model the discrete (count) data. ZINB
model is preferred over the NB model when both excess zero values and over-dispersion observed in
the count data. A performance function score (BIC) is calculated for each of the solutions generated
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by the statistical distribution (four parameter beta distribution or truncated normal distribution),
which is used to simulate break-points from no break-point to the user provided maximum number
of break-points. The solution that minimizes the BIC with respect to the number of break-points is
reported as the optimal solution. Finally, a list containing a vector of break-point locations and the
number of break-points are given in the console.

Value

A list is returned with following items:

No.BPs The number of break-points in the data that is estimated by the CE method

BP.Loc A vector of break-point locations.

Author(s)

Priyadarshana, W.J.R.M. <madawa.weerasinghe@mq.edu.au>

References

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a) A Modified Cross- Entropy Method for Detect-
ing Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary
Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b) The Cross-Entropy Method and Multiple
Change-Points Detection in Zero-Inflated DNA read count data, In: Y. T. Gu, S. C. Saha (Eds.) The
4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-
54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Com-
binatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New
York.

Schwarz, G. (1978) Estimating the dimension of a model, The Annals of Statistics, 6(2), 461-464.

See Also

CE.NB for CE with negative binomial, profilePlot to obtain mean profile plot.

Examples

#### Simulated data example ###

# gamlss R package is used to simulate data from the ZINB.

## Not run:

library(gamlss)

segs <- 6 # Number of segements

M <- c(15��, 22��, 8��, 25��, 1���, 2���) # Segment width

#true.locations <- c(15�1, 37�1, 45�1, 7��1, 8��1) # True break-point locations

seg <- NULL

p <- c(�.6, �.1, �.3, �.�5, �.2, �.4) # Specification of ps on each segment

sigma.val <- c(1,2,3,4,5,6) # Specification of sigma vlaues

for(j in 1:segs){

seg <- c(seg, rZINBI(M[j], mu = 3��, sigma = sigma.val[j], nu = p[j]))

}

simdata <- as.data.frame(seg)
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rm(p, M, seg, segs, j, sigma.val)

#plot(data[, 1])

## CE with the four parameter beta distribution ##

obj1 <- CE.ZINB(simdata, distyp = 1, parallel = TRUE) # Parallel computation

obj1

profilePlot(obj1, simdata) # To obtain the mean profile plot

## CE with truncated normal distribution ##

obj2 <- CE.ZINB(simdata, distyp = 2, parallel = TRUE) # Parallel computation

obj2

profilePlot(obj2, simdata) # To obtain the mean profile plot

## End(Not run)

ch1.GM�3563 Fibroblast cell line (GM03563) data

Description

Chromosome 1 of cell line GM03563

Usage

data("ch1.GM�3563")

Format

A single column data frame with 135 observations that corresponds to chromosome 1 of cell line
GM03563.

log2ratio normalized average of the log base 2 test over reference ratio data

Details

This data set is extracted from a single experiments on 15 fibroblast cell lines with each array
containing over 2000 (mapped) BACs spotted in triplicate discussed in Snijders et al.(2001). Data
corresponds to the chromosome 1 of cell line GM03563.

References

Snijders,A.M. et al. (2001) Assembly of microarrays for genome-wide measurement of DNA copy
number. Nature Genetics, 29, 263-26.
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Examples

data(ch1.GM�3563)

## Not run:

## CE with four parameter beta distribution ##

obj1 <- CE.Normal(ch1.GM�3563, distyp = 1, parallel =TRUE)

profilePlot(obj1, ch1.GM�3563)

## CE with truncated normal distribution ##

obj2 <- CE.Normal(ch1.GM�3563, distyp = 2, parallel =TRUE)

profilePlot(obj2, ch1.GM�3563)

## End(Not run)

profilePlot Mean profile plot

Description

Plotting function to obtain mean profile plot of the data based on the estimates of the break-points
through CE method. An R object created from the CE.Normal, CE.NB or CE.ZINB is required.
User can alter the axes names.

Usage

profilePlot(obj, data, x.label = "Data Sequence", y.label = "Value")

Arguments

obj R object created from CE.Normal, CE.NB or CE.ZINB.
data data to be analysed. A single column array or a data frame.
x.label x axis label. Default is "Data Sequence".
y.label y axis label. Default is "Value".

Author(s)

Priyadarshana, W.J.R.M. <madawa.weerasinghe@mq.edu.au>

See Also

CE.Normal, CE.NB, CE.ZINB.

Examples

data(ch1.GM�3563)

## Not run:

## CE with four parameter beta distribution ##

obj1 <- CE.Normal(ch1.GM�3563, distyp = 1, parallel =TRUE)

profilePlot(obj1)

## CE with truncated normal distribution ##

obj2 <- CE.Normal(ch1.GM�3563, distyp = 2, parallel =TRUE)

profilePlot(obj2)

## End(Not run)
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Index

⇤Topic data
ch1.GM�3563, 9

breakpoint (breakpoint-package), 1
breakpoint-package, 1

CE.NB, 2, 8, 10
CE.Normal, 5, 10
CE.ZINB, 4, 7, 10
ch1.GM�3563, 9

profilePlot, 4, 6, 8, 10
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