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Abstract
A popular approach to modelling longitudinal observations is using mixed models with

random effects for subjects. Recent developments in joint regression modelling presents

an alternative approach to longitudinal analysis which utilises copulas to flexibly model

dependence structures for correlated data. The performance of copula-based regression

models has, to date, not been quantified in comparison to random effect based models and

other popular methods.

This thesis provides a preliminary analysis of some of the situations in which copula-based

joint regression models may be more appropriate than mixed models for longitudinal regres-

sion analysis. The models are compared across a range of simulated longitudinal datasets

generated from a flexible bivariate distribution, and applied to three real-world datasets. The

results of the analysis indicate that in caseswhere the outcome variablesmarginal distributions

are skewed and there is rank correlation between regression outcome variables, measured

by Kendall’s tau, mixed models provide biased parameter estimates while copula-based joint

regression models provide unbiased estimates with generally lower standard errors than other

alternative methods such as generalised linear models or generalised estimating equations.



Contents

Abstract iv

Contents v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Models for correlated data . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Random effect models . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Marginal models . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Copula models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Introduction to copulas . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Conditional copula regression . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Generalised copula regression . . . . . . . . . . . . . . . . . . . . 18

2 Simulation 23

2.1 Selection of a bivariate distribution . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



vi Contents

2.2.4 The effect of marginal skew on estimate bias . . . . . . . . . . . . 35

2.2.5 Exploration of an extreme case . . . . . . . . . . . . . . . . . . . . 39

3 Applications 42

3.1 ASX200 share prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Avocado prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Triglyceride levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Conclusion 49

5 Discussion 50

References 51

Supplementary Materials 54

5.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Example bias case . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.3 Full simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



1 Introduction

1.1 Background

Dependence between random variables often develops when repeated observations are taken

from a sampling unit, for example, cholesterol levels over time for a single patient, or where

observations are made from similar sampling units, for example, grades from students in the

same classroom. If independence is assumed between these correlated variables, observations

will exhibit lower than expected variancewhich causes both bias and inefficiency in coefficient

estimation (Laird and Ware, 1982).

To understand the true effect of covariates, it is of interest to understand both the structure

of the dependence, i.e. which observations are more or less dependent, and how this depen-

dence interacts with covariates, i.e. what factors drive different dependencies for different

observations. A number of approaches have been developed to date for accounting for de-

pendence between observations in univariate regression, the most popular of which being

random effect models (Laird and Ware, 1982) and generalised estimating equations (GEE)

(Liang and Zeger, 1986). These methods introduce an adjustment to univariate methods

which account for the dependence structure between observations. Both frameworks have

been extended substantially since their early inception to apply to a much broader range of

response distributions and covariate shapes. More recently, approaches for joint modelling

of multivariate dependent data in a regression framework have emerged through the use of

copulas, which provide an alternative to the former models.

Models for Correlated Data

Initially developed for only normal response distributions, random effects for covariate in-

tercepts and slopes have been incorporated in multiple generalised regression frameworks

including generalised additive models (GAMs) (Hastie and Tibshirani, 1990) and generalised

additive models for location scale and shape (GAMLSS) (Stasinopoulos et al., 2017), making

them a very popular tool for modelling correlated data.
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Generalised additive models for location scale and shape (GAMLSS) (Stasinopoulos et al.,

2017) provide a flexible regression framework which extends generalised additive modelling

(Hastie and Tibshirani, 1990) to allow for multiple parameters of a target distribution to be

modelled simultaneously. In addition, the range of potential distributions that can be fit is

extended beyond the exponential family to any distribution with computable derivatives.

Generalised estimating equations (GEEs) have also been extended to apply to a much broader

range of potential use cases. Vector generalised additive models (Yee and Wild, 1996,

Wild and Yee, 1996) have extended generalised estimating equations to incorporate additive

covariates and allow for multivariate fitting of dependent variables while focussing on the

marginal distributional fits.

Adjustments for dependence incorporated in GEEs and models with random effect terms

are an approximate approach for accounting for multivariate data features in a univariate

regression framework. A copula-based joint regression approach directly models the full

multivariate distribution, allowing for an extremely high level of flexibility in describing the

underlying data. While copula approaches are available for multivariate distributions of any

dimension, this thesis will focus on the bivariate case.

Copula Regression

Copulas provide a convenient method for deconstructing a bivariate distribution into a combi-

nation of two independent marginal distributions and a copula function (Nelsen, 2007, Trivedi

and Zimmer, 2007). If the marginal distributions are continuous, the copula function will be

unique and if either of the margins are discrete, the copula can be uniquely determined. By

Sklar’s theorem (Sklar, 1973) any continuous bivariate distribution can be represented by two

independent marginal distribution functions and a copula function defining the dependence

structure.

Copulas have been used broadly in economics and finance time series analysis, particularly in

portfolio risk (Palaro and Hotta, 2006, Pitt et al., 2006) and insurance loss estimation (Krämer

et al., 2013). However, much of the analysis has focussed on Gaussian and unconditional

copulas (Kolev and Paiva, 2009), which have limited applications due to the highly restrictive

assumptions.
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One of the key developments in copula regression was Patton’s (2006) introduction of a

framework for conditioning a copula on a variable (covariate). This allows for dependence

structures to be modelled after the effect of covariates are removed, leaving the true residual

dependence structure and significantly expanding the applications of copulas in a regression

context. This method is referred to as conditional copula regression. A large amount of

literature has focussed on the development of likelihood-based tests for the existence and

significance of covariates in a conditional copula regression framework (Acar et al., 2011,

Gijbels et al., 2011, Acar et al., 2013, Craiu and Sabeti, 2012, Sabeti et al.).

Generalised Additive Copula Regression

Marra and Radice (2017) and Vatter and Chavez-Demoulin (2015) introduce the first ap-

proaches to flexible copula-based joint regression. Both approaches combine univariate

models for marginal distributions, generalised additive models for location, scale and shape

(gamlss) (Stasinopoulos et al., 2017) and generalised additive models (GAM) (Hastie and

Tibshirani, 1990) respectively, with a fit for a copula to capture the dependence structure

between the variables of interest.

Marra and Radice (2017) and Vatter and Chavez-Demoulin (2015) differ in their approach

to optimisation of the joint likelihood function, with Vatter and Chavez-Demoulin (2015)

opting to maximise marginal and copula likelihoods separately while Marra and Radice

(2017) introduce a simultaneous estimation approach for the joint likelihood of the copula

and marginal distributions.

Klein et al. (2015) have also introduced an alternative approach to Marra and Radice (2017)

and Vatter and Chavez-Demoulin (2015) for multivariate regression which incorporates

copula methods into generalised estimating equations, building on vector generalised additive

models developed by Wild and Yee (1996).

Purpose of this thesis

This thesis focuses on the applications of copula-based joint regression models for correlated

data, with direct comparisons to current popular methods for adjusting for variable depen-

dence in univariate regression, in particular, incorporating random effect terms in mixed

models and the use of generalised estimating equations.



4 Introduction

There is a potential for copula-based joint regression approaches to be extended to the

multivariate case, but analysis of the efficiency of copula based models in higher than two

dimensions falls outside the scope of this investigation.

1.2 Models for correlated data

1.2.1 Random effect models

Random effect models have significantly evolved from their initial inception by Laird and

Ware (1982), now being incorporated in the vast majority of generalised regression toolsets.

The core component of these models is the introduction of a random variable which accounts

for within-subject variation and is conditioned on in the model definition.

Linear Mixed Models

Laird and Ware (1982) introduced the first random effect models: a general family of two-

stage models for adjusting for the correlation of repeated observations in linear models using

random effect terms. The model explicitly captures individual and population characteristics

separately.

For a set of m sampling units, i = 1, ...,m, which are measured at ni time points, j = 1, ..., ni,

we consider the outcome variable yi = (yi1, ..., yini ). Then for each sampling unit we have the

model equation:

yi = xiα + zibi + ei

where α is a p × 1 vector of population parameters, bi ∼ N(0,D) is a m × 1 vector of

independent individual random effects, xi is the ni× p design matrix of covariates linked to α,

zi is the ni ×m design matrix of covariates linked to bi, and ei ∼ N(0, Ri) and are independent

error terms.

In this model, each of the yi are assumed to be marginally independent normal with mean

vector xiα and covariance matrix θi = Ri + ziDzT
i .

Model estimation uses a two-stage method and is fit using expectation maximisation, where
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individual characteristics are considered the missing data. In the first stage of the model,

population parameters, individual effects and within-subject variation are fit, followed by the

second stage where between-subject variation is fit.

Stage 1 - bi and α are fit as fixed effects with ei treated as an independent normal random

variable. This allows for an initial model fit assuming independent observations.

Stage 2 - α is treated as fixed and bi and ei are allowed to vary to account for correlation

between observations within a sampling unit. bi is fit as a normally distributed random

variable centred at zero with covariance matrix D, which is size m ×m and positive definite.

ei is fit as a normally distributed random variable with a covariance matrix Ri which is size

ni × ni and positive definite.

Laird andWare (1982) demonstrate that a Bayesian approach to estimation leads to parameter

estimates and variances which are identical to those which are achieved through direct

sampling of the expected distributions.

Generalised Linear Mixed Models

Breslow and Clayton (1993) expanded upon Laird andWare (1982)’s linear mixed models by

introducing an approach for inference using random effects for any exponential family linear

model. In line with a generalised linear modelling framework, generalised linear mixed

models (GLMMs) introduce a link function and variance function to the formulation of linear

mixed models.

For a given random effect bi and response variable yi for groups j = 1, .., ni related to

explanatory vectors xi and zi, the model has

E(yi |b) = µi = h(xiα + zibi), var(yi |b) = φV(µi), g(µi) = ηi, ηi = xiα + zibi,

where V(·) is the variance function which depends on µi, φ is the dispersion parameter, and

g(·) is a link function which relates the linear predictor ηi to the conditional mean µi and

h(·) = g−1(·) is the inverse link function,.

As in linear mixed models, b has a m−dimensional multivariate normal distribution with

mean 0 and m × m covariance matrix D.
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A key contribution of Breslow andClayton (1993) is in the introduction of the use of penalised

quasi-likelihood as an approximate procedure for inference in GLMMs. A quasi-likelihood

function is requiredwhen fitting distributions in the presence of overdispersionwhich presents

in the full exponential family of models. The difficulty in attempting to optimise the full

likelihood directly lies in the multiple integrations required within the full likelihood function

and its derivatives.

Breslow and Clayton (1993) describe an approximation to the quasi-likelihood function

which provides a pseudo quasi-likelihood approach for optimising the likelihood function

more efficiently, resulting in score equations which can be solved as an iterated weighted

least squares problem using Fisher scoring.

Random effects have also been incorporated into recent generalised modelling frameworks,

including generalised additive models (Hastie and Tibshirani, 1990) which allows for smooth

terms of explanatory variables to be incorporated as fixed effects alongside random effects;

and generalized additive models for location shape and scale (Stasinopoulos et al., 2017)

which provide the ability to model multiple parameters of a target distribution beyond the

mean, and vastly increase the range of potential outcome distributions which can bemodelled.
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1.2.2 Marginal models

Marginal models are an alternative approach to the use of random effect terms for adjusting

for dependence in a univariate regression framework. The key difference between marginal

models and random effect models is that marginal models do not make any assumption

surrounding the distributional properties of the dependence. The response variable only

relies on fixed covariates and does not have a random effect term.

Generalised Estimating Equations

Liang and Zeger (1986) introduced generalised estimating equations (GEEs) for the estima-

tion of covariate effects for longitudinal data. GEEs differ from random effects in that a

joint distribution for repeated observations is not introduced, instead weak convergence as-

sumptions for the joint distribution are imposed which give consistent estimates of regression

parameters and a model is only fit for the marginal distributions.

The marginal density of yi j is assumed to be exponential family in the following formulation

f (yi j) = exp[{yi jθi j − a(θi j) + b(yi j)}φ]

so the first two moments of yit are

E(yi j) = a′(θi j) and var(yi j) = a′′(θi j)/φ

where

yi j is the outcome variable for unit i = 1, ...,m and measurement j = 1, ..., ni,

yi = {yi1, ..., yini } and xi = {xi1, ..., xini },

θi j = h(ηi j) where ηi j = xi jα,

α is the set of population parameters linking xi j to yi j,

and φ is the dispersion parameter.

The estimators of α are consistent and the estimators of the variance are consistent under a

weak assumption that a weighted average of the correlation matrices estimated converge to a

single matrix.

The estimating equations take correlation into account to increase the efficiency of the

estimators using a working correlation structure Ri which is symmetric and of size ni × ni.
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Liang and Zeger (1986) define their generalised estimating equations as

m∑
i=1

DT
i V−1

i Si = 0

where Vi is equal to the covariance of yi if Ri is the true structure of the correlation and is

defined as

Vi = A
1
2
i Ri A

1
2
i /φ

where

Ai = diag{a′′(θi j)}

and Di = d{a′i(θ)} dα and Si = yi − a′i(θ).

Ri has the freedom to be specified in any number of forms including, for example,:

• Independence: Ri = Ini ,

• Compound symmetric / exchangeable: components of Ri are corr(Yit,Yi,t+1) = ρ for

t = 1, ..., n−1. The compound symmetric GEE provides the same correlation structure

as random intercept models where the marginal distributions are normal (Laird and

Ware, 1982) with corr(yit, yit ′) = ρ∀t , t′,

• Auto-regressive: corr(yit, yit ′) = ρ
|t−t ′ |,

• Totally unspecified: 1
2n(n − 1) parameters are introduced to the model for the structure

of Ri.

Liang and Zeger (1986) demonstrate that misspecification of Ri can lead to significant re-

ductions in efficiency of the estimator, especially when correlation is higher. For this reason,

a comprehensive understanding of the underlying correlation structure is required prior to

application.
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1.3 Copula models

This section provides an overview of the theory of copulas and how they are integrated into

regression frameworks from their first incorporation in unconditional linear models to the

most recent improvements in flexible copula-based joint regression modelling.

1.3.1 Introduction to copulas

Trivedi and Zimmer (2007) provide a detailed overview of the development of multivariate

models and their initial applications in finance. They cite, in particular, Sklar (1973), and the

development of the proof for a unique copula, Joe (1997), who provides a detailed survey of

copula methods, and Nelsen (2007), who compiles a broad range of applications of copulas.

The joint cumulative distribution of a set of random variables (Y1, ...Ym) is defined as:

F(y1, ..., ym) = Pr[Yi ≤ yi; i = 1, ...,m]

Sklar’s Theorem (1973) states that an m-dimensional copula is a function, C(.), mapping the

unit m-cube [0, 1]m to the unit interval [0, 1], which satisfies the following conditions:

1. C(1, ..., 1, an, 1, ..., 1) = an for every n ≤ m where an is the argument in position n of

the function and all an in [0,1],

2. C(a1, ..., am) = 0 if an = 0 for any n ≤ m,

3. C is m-increasing.

These same rules can also be described as below:

1. Given all other realisations are known to be marginal probability one, the uncertain

outcome is entirely dependent on themarginal probability of the last, unknown variable,

2. The probability of all outcomes is zero if any outcome’s marginal probability is zero,

3. The value of C at any point is non-negative and increasing in each argument.
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Using a copula approach we can describe a multivariate distribution in terms of its marginal

distributions. This can be achieved by using the cumulative distribution function of each

marginal distribution, Fi(yi), where yi = F−1
i (ui), which will be distributed as uniform

on interval [0, 1], U(0, 1), and expressed as a copula function. That is, we describe the

multivariate cdf F(y1, ...ym) as:

F(y1, ..., ym) = F(F−1
1 (u1), ..., F−1

m (um))

= Pr[U1 ≤ u1, ...,Um ≤ um]

= C(u1, ..., um).

If y ∼ F, and F is continuous, then

(F1(y1), ..., Fm(ym)) ∼ C,

and if U ∼ C, then

(F−1
1 (u1), ..., F−1

m (um)) ∼ F .

To enable adjustment of the shape of the copula, a copula parameter, θ, referred to as the

dependence parameter, is included in this formulation:

F(y1, ..., ym) = C(F1(y1), ..., Fm(ym); θ).

If all the marginal distributions, Fi are continuous, then the copula function C is unique. If

any one of the marginal distributions is discrete then the copula function will not be unique

to that multivariate distribution but can be uniquely determined, i.e. there is only one copula

function which can exist that is defined by those margins but that copula is not necessarily

unique to those margins.

Copula distributions

Copula functions are able to capture a broad range of dependence distributions. There are a

number of commonly used copulas which utilise only one parameter but are able to describe

a varying set of shapes. These include the Gaussian, Clayton, Frank, Gumbel, Joe, AMH,

Frank, Plackett and Hougaard copulas (Trivedi and Zimmer, 2007, Joe, 1997) among others.

The t-copula is also commonly used as an extension to the Gaussian copula with an additional

parameter for degrees of freedom for capturing heavier tail dependence. Figure 1.1 illustrates

a number of examples of the flexible shapes which these copulas can capture.
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Figure 1.1: Nine copula functions

There are four key methods for generating copulas (Trivedi and Zimmer, 2007):

1. Method of inversion: Given a joint distribution, F(y1, y2), derive the marginal distri-

butions F(y1) and F(y2), then derive the resulting copula. Unfortunately this requires

the full description of the joint distribution as a starting point.

2. Algebraic methods: Begin with a relationship between marginals based on indepen-

dence, then introduce a dependence parameter i.e. introduce a parameter for description

of the joint distribution as a function of the independent marginals.

3. Mixtures and convex sums: Given a copula, C, its lower and upper bounds, CL and

CU , and the independence copula, CP, a new copula can be constructed using a convex

sum , e.g. the convex sum of the upper bound and independence copulas is also a

copula, CM = π1CP + (1 − π1)CU , where πi ∈ [0, 1].

4. Archimedean copulas: class of functions ϕ which are convex and decreasing of
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the form C(u1, u2; θ) = ϕ(ϕ−1(u1) + ϕ
−1(u2)) with conditional density ∂

∂u2
C(u1, u2) =

ϕ′(u2)
ϕ′(C(u1,u2))

.

Initial copula estimation in regression

Pitt et al. (2006)was the first to introduce a computational approach for estimatingmultivariate

copula regression models with any discrete or continuous marginals, using a general Bayesian

approach. Prior to Pitt’s approach, copula modelling was severely limited by requiring

Gaussian marginal distributions. A Markov chain Monte Carlo simulation is used to sample

from the resulting distribution for inference. Note that Pitt et al. (2006) only demonstrates

this approach for the case of a Gaussian copula.

Pitt et al. (2006) demonstrates the need for non-normal marginal distributions in the case

of t-distributed US industrial CAPM returns, where parameter estimation error is signif-

icantly reduced by capturing the heavier tails in returns with the t-distribution. Another

example used was for multivariate count data of health care utilisation, which requires a

zero-inflated geometric distribution, something that couldn’t be captured reasonably with a

normal approximation.

Consider a sample yi j for i = 1, ..., n and j = 1, 2, where yi j depend on explanatory variables

xi j with parameters β j linking xi j to yi j . For j = 1, 2 we have:

Denote the marginal density functions as

f j(y j |x j ; β j) =
∂Fj(y j |x j ; β j)

∂y j

and the copula function as

C
{
(F1 |x1; β j), (F2 |x2; β j); θ

}
then copula density is then written as

c(F1(·), F2(·)) =
∂

∂y1∂y2
C

{
(F1 |x1; β j), (F2 |x2; β j); θ

}
=

∂C{·}
∂F1∂F2

f1(·) f2(·)
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The log likelihood for the sample is

`n(β1, β2, θ) = logLn((y1 |x1; β1), (y2 |x2; β2)); θ)

=

n∑
i=1

2∑
j=1

log f ji(y ji |x ji; β j)

+

n∑
i=1

C12[F1(y1i |x1i; β1), F2(y2i |x2i; β2); θ].

This log likelihood decomposes into two parts which can be estimated using full maximum

likelihood by solving the score equations based on:

`n(β1, β2, θ) = `1,n(β1, β2) + `2,n(β1, β2, θ).

It is also possible to maximise the likelihood using maximisation by parts (two step sequential

likelihood maximisation).

1.3.2 Conditional copula regression

Patton (2006) introduces a novel approach for conditioning copulas on a covariate, signifi-

cantly expanding the types of applications copulas can be used for to any standard regression.

Prior to this approach, there was no simple way to exclude the effect of a confounding variable

on a copula dependence structure between two variables.

Patton (2006) demonstrates that confounding variables to a dependence structure can intro-

duce high levels of bias in estimates if not accounted for. Patton (2006) uses a clear example

of Deutsche Mark-US Dollar and US Dollar-Yen joint distributions which have a step change

in dependence following the conversion of the Mark to the Euro in 1999 (see figure 1.2).

Without conditioning on the period of time before and after the currency conversion, there is

a large confounding effect on estimates of the dependence. Patton describes the structure of

a conditional copula by conditioning each component on a variable, i.e.,

Let FY1 |X(y1 |x) be the conditional distribution of Y1 |X = x

Let FY2 |X(y2 |x) be the conditional distribution of Y2 |X = x

Let FY1Y2 |X(y1y2 |x) be the joint conditional distribution of Y1Y2 |X = x
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Figure 1.2: Example from ’Modelling asymmetric exchange rate dependence’ (Patton, 2006)

Assuming FY1 |X(y1 |x) and FY2 |X(y2 |x) are continuous for all x, then there exists a unique

conditional copula C(.|x) such that:

FY1Y2 |X(y1y2 |x) = C(FY1 |X(y1 |x), FY2 |X(y2 |x)|x)

∀(y1, y2, x) ∈ R × R × RX

where RX is the range of X . Note that the same conditioning must be used for both the

marginal distributions and the copula for the joint distribution to hold. The density function

is then defined as below, assuming both FY1 |X, FY2 |X are once differentiable and FY1Y2 |X,C are

twice differentiable:

fY1Y2 |X(Y1y2 |x) = fY1 |X(y1 |x) × fY2 |X(y2 |x) × c(u, v |x)

∀(y1, y2, x) ∈ R × R × RW

The MLE can then be calculated using the log of this density function.
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Covariate selection

Due to the significant effect of confounding variables on copula models, it is essential to be

able to identify the cases in which a conditioning variable is required and what its effect is.

Gijbels et al. (2011) demonstrate how local measures of Kendall’s tau and Spearman’s rho

association can be used to identify whether a covariate needs to be conditioned upon for

a copula fit. The approach utilises non-parametric localised estimates of the association

measures across the range of potential covariates to motivate the need for conditioning on the

variable where there is a significant trend.

Kendall’s tau represents the degree of concordance between two random variables realizing

values between -1 and 1 and is calculated as

τ = 2P((Y1 − Y ′1)(Y2 − Y ′2) > 0) − 1,

where (Y ′1,Y
′
2)

T is an independent realisation of the random variables describing the random

vector (Y1,Y2)
T .

There is a direct relationship between conditionalKendall’s tau, τ(X) = 4E[H(Y1,Y2 |X)|X]−1

where H is the joint distribution function of (Y1,Y2)
T , and the copula parameter θ(X), with

parametrisation by either being equivalent (Sabeti et al.).

As described by Nelsen (2007), the copula function can also be used to calculate this quantity:

τ = 4
∫ ∫

C(u1, u2)dC(u1, u2) − 1.

As a measure of dependence, Kendall’s tau has the advantage that is is not reliant on the

relative scale of observations, as is the case with Pearson correlation. Kendall’s tau compares

the relative rank of observations between the dependent random variables being considered.

In the extreme example, if the matched pairs between two dependent datasets receive the

same ranked size within their own datasets but one increases exponentially while the other

is linear, Kendall’s tau will indicate complete concordance while Pearson correlation may

be weak due to the relationship’s non-linearity. This shape and scale invariant property

of Kendall’s tau becomes extremely important when attempting to identify an appropriate

dependence structure, as the scale and shape of marginal distributions are eventually stripped
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away through the modelling process and the remaining dependence structure is all that is

required to be modelled by the copula function.

Gijbels et al. (2011) demonstrate the use of non-parametric localisedKendall’s tau on a dataset

of life expectancies at birth for males and females in 222 countries. Joint life expectancies

for males and females are modelled with a fitted copula for joint dependence and a non-

parametric fit of log10(GDP) as the covariate. There is a clear decrease in localised Kendall’s

tau and Spearman’s rho estimators as log10(GDP) increases, which demonstrates the need

for conditioning based on this variable to identify the underlying dependence structure and

describe its shape. Further recommendations for the practical use of associations in copula

regression including review of scatterplots of pairs followed and a review of non-parametric

estimators of dependence across the range of each variable are also proposed by Veraverbeke

et al. (2011).

Simulation studies indicate that the performance of association measure estimators on an

integrated square error basis are in close agreement with those of the copula, but that the

estimation of Kendall’s tau is very sensitive to the bias of the underlying copula estimator

(Gijbels et al., 2011).

Note that there are also cases where a covariate only affects the marginal distributons and is

not required to be conditioned on in the copula. In these cases, such a model could hold one

less parameter and would require a separate estimation method (Gijbels and Veraverbeke,

2015).

Fitting covariates

Building on the algebraic form for the conditional copula developed by Patton (2006), Acar

et al. (2011) introduce an approach for modelling a copula parameter which varies with

one covariate. A non-parametric approach based on local likelihood is introduced, which

identifies the case where the copula parameter changes with a single covariate.

Let Y1 and Y2 be continuous variables of interest and X a continuous covariate which might

affect the dependence between Y1 and Y2. Assuming the marginals are known, then we can

find U1i and U2i being the cumulative distributions of the marginal distributions and the
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following conditional model:

(U1i,U2i)|Xi ∼ C(u1i, u2i |θ(xi)),

where θ(xi) = g−1(η(xi)), i = 1, ..., n.

A local-likelihood framework is used to identify whether there is a significant latent variable

affecting the copula shape. The local maximum likelihood estimator can be found via Newton

Raphson iteration from the likelihood function, L:

∂L(β, x, p, h)
∂β

= 0

where h is the bandwidth determining the size of the local neighbourhood and p is the local

polynomial fit of degree p. Acar et al. (2011) proposes an optimal bandwidth for local fits

based on cross validated maximum likelihood.

Acar et al. (2011) demonstrate the ability of the approach to identify both a linear and

quadratic conditioning variable and find that the estimator accuracy quickly deteriorates

when the incorrect form for the copula function is selected. Applying the approach to the

Twin Births dataset, Acar et al. (2011) demonstrate that there is an age specific dependence

structure in the twins dataset. Acar et al. (2013) later introduce a general approach for testing

the statistical significance of covariates and their transformations in the form of calibration

functions, against alternatives within a conditional copula modelling framework.

We can extend conditioning on a covariate to conditioning on some function of a covariate

as below. This function is termed the calibration function as it calibrates the support of the

copula function. The form of the conditional copula is written:

(U1,U2)|X = x ∼ Cx

(
u1, u2 |θ(x) = g−1(η(x))

)
Tomake this useful for inference, there is a need to test the significance and relative efficiency

of different forms for η(x).

Assuming the conditional marginal distributions are known, Acar et al. (2013) introduces

likelihood tests for comparing three different cases of interest for shapes of η(x) for a single

covariate: constant, linear and semi-parametric. Below is the likelihood test comparing the
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linear and semi-parametric case:

Ln(Ho) =

n∑
i=1

`(a0 + a1Xi,U1i,U2i)

Ln(H1) =

n∑
i=1

`(η(Xi),U1i,U2i)

Acar et al. (2013)’s approach assumes the conditional marginal distributions are known. It is

worth noting that the choice of the marginal distributions and how they incorporate covariates

could have a significant effect on the choice of calibration function.

1.3.3 Generalised copula regression

Sabeti et al. propose the use of additive models for bivariate copula regression and outline

potential approaches to, and tools for, model selection and computation.

Building on the development of a mathematical form for conditional copulas (Patton, 2006),

and the approach for incorporating and comparing single covariates in fitting a copula function

(Acar et al., 2011, 2013), Sabeti et al. introduce an additive model framework to provide a

method for analysing the relationship between more than one covariate with a non-parametric

form and the copula function.

Consider randomvariablesYi1,Yi2 dependent on covariate Xi ∈ R
p. Assume eachYi’smarginal

distribution is modelled with normal regression. So we assume the marginal distributions

are:

Yi j ∼ N(XT
i β j, σ

2
j ), j = 1, 2, i = 1, .., n

and the joint density is

f (Yi1,Yi2 |X j) =

2∏
j=1

1
σj
φ

(
Yi j − XT

i β j

σj

)
×

× c(1,1)
[
Φ

(
Yi1 − XT

i β1

σ1

)
× Φ

(
Yi2 − XT

i β2

σ2

)�����θ(Xi)

]
, i = 1, ..., n,
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where

φ is the probability density function of the standard normal distribution,

Φ is the cumulative density function of the standard normal distribution,

c(1,1) = ∂2C(u, v |θ)/∂u∂v, and,

θ is the copula parameter which depends on Xi.

Since many copulas require the parameter θ to be restricted to a subset of R, a link function

is introduced to the model for θ, g(θ) = η(X).

Utilising the additive model of Hastie and Tibshirani (1990), the form for η(X) when p > 1

is as below:

η(X) = α0 +

p∑
i=1

ηi(Xi).

The computational approach utilises a Markov chain Monte Carlo approach to sample from

the posterior distribution. Covariates are assumed to be independent random variables with a

normal distributon for βi and inverse gaussian for σ2
i . Sabeti et al. demonstrate the approach

for a given set of covariate splines.

Sabeti et al. proposes model selection based on cross validated, pseudo marginal likelihood

(CVML):

CV ML(M) =
n∑

j=1
log p(Y1 j,Y2 j |D− j,M),

whereM is a model that maximises the CVML and D− j is the remaining data after removing

covariates and response variables for the jth item.

A Monte Carlo estimator for this value is:

�CV ML(M) =
n∑

j=1
− log

[
1
M

M∑
m=1

p(Y1 j,Y2 j |ω
(m),M)−1

]
whereω(m), the parameters of themodel, are draws from the posterior distribution π(ω|D,M).

Simulations demonstrate that as the dimension of the covariate vector increases, the efficiency

of the estimators decreases and further work is required to understand if computational

difficulty becomes too intensive for large covariate vectors. The CVML criteria is applied
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to the twin births data. The selected copula agrees with that chosen by the likelihood-based

model selection criteria of Acar et al. (2013).

Vatter and Chavez-Demoulin (2015) introduce a computational approach for estimating gen-

eralised additive models with dependence structures as an extension to work by Sabeti et al.

and Acar et al. (2013).

Vatter and Chavez-Demoulin (2015) describe the model for the dependence structure as a

generalised additive model for the conditional concordance measure Kendall’s tau because it

has a simpler interpretation and it is easier to compare across copula families:

τ(x, θ) = g

{
zT β +

K∑
k=1

hk(tk)

}
,

where

g is a strictly increasing link function expressing the relationship between the GAM and τ,

z and t are subsets of x,

β is the vector of parameters,

hk are smooth functions, and

θ is the vector of all parameters.

This can be estimated by maximising the penalised log likelihood,

`c(θ, γ) = `c(θ) −
1
2
θT p(γ)θ,

with p(γ) being a d × d block diagonal matrix with K + 1 blocks, and γ is the vector of

smoothing parameters. Iteratively re-weighted ridge regression is used as the estimation

procedure. The estimator is proven to be
√

n-consistent and asymptotically normal.

Vatter and Chavez-Demoulin (2015) apply the approach to a simulated time-varyingGaussian

copula with quadratic, sinusoidal and exponential covariate effects. Interestingly, estimation

becomes significantly more difficult for highly correlated covariates, which results in higher

error. The method is also applied to foreign exchange pairs for EUR/USD and USD/CHF

paired with a seasonality filter, and a GARCH model showing positive results for inference.
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Generalised Joint Regression Models

Marra and Radice (2017) have designed and implemented a computational tool for fitting

flexible copula-based joint regressionmodels. Copula dependence andmarginal distributions

are estimated simultaneously and parameters rely on their own set of covariate effects includ-

ing linear, non-linear, random and spatial effects. The approach differs from that of Vatter

and Chavez-Demoulin (2015) who optimise the marginal distribution fits and and conditional

copula separately, whereas Marra and Radice (2017) introduce simultaneous estimation of

both fits.

For Marra and Radice (2017)’s approach, a joint cumulative distribution function for random

variables Y1,Y2 conditional on covariates is expressed as

F(y1, y2 |ϑ) = C(F1(y1 |µ1, σ1, ν1), F2(y2 |µ2, σ2, ν2); ζ, θ)

where

ϑ = (µ1, σ1, ν1, µ2, σ2, ν2, ζ, θ),

Fi, j = 1, 2 are marginal cumulative distribution functions of Y1,Y2,

µ j, σj, ν j are the parameters of the marginal distributions of Y1,Y2,

θ and ζ are the copula dependence parameters.

For each parameter of the marginal distributions there is a link function, g−1(·), and linear

predictor, η. The log-likelihood for the copula model can then be written as

`(δ) =

n∑
i=1

log{C(F1(y1 |µ1, σ1, ν1), F2(y2 |µ2, σ2, ν2); ζ, θ)} +
n∑

i=1

2∑
j=1

log( f j(y ji |µ ji, σji, ν ji)

where copula density c is

c(F1(y1i), F2(y2i)) =
∂2C{F1(y1i), F2(y2i)}

∂F1(y1i)∂F2(y2i)

and we can define a parameter vector for estimation, δ = (βT
µ1, β

T
µ2, β

T
σ1, β

T
σ2, β

T
ν1, β

T
ν2, β

T
ζ , β

T
θ ).

Marra and Radice (2017) propose the use of the penalised log likelihood to achieve greater

smoothness in their estimators, so the function to maximise incorporates a penalty to the pure

likelihood maximisation:

`p(δ) = `(δ) −
1
2
δT Sδ,
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where S depends on the kind of specific quadratic penalty that is chosen, the choice of basis

function and the choice of smoothing parameter.



2 Simulation

2.1 Selection of a bivariate distribution

This thesis adopts a simulation approach to compare the performance of flexible copula-based

regression with random effect based regression, for modelling longitudinal data. To develop a

fair comparison between the copula and random effect approaches, a simulation of a bivariate

distribution which is neither strictly a parametric copula dependence structure nor a random

effect related dependence structure is required.

A range of bivariate distributions which introduce dependence through multiplicative means

were identified (Balakrishnan and Lai, 2009). These bivariate distributions would be of

the form Y1 = UW , Y2 = VW where Y1 and Y2 are the random variables representing

repeated observations at time 1 and 2 on the same individual and W is a random variable

which introduces dependence between Y1 and Y2 (Balakrishnan and Lai, 2009). The selected

distribution is the bivariate gammaofNadarajah andGupta (2006), which induces dependence

between two gamma distributions by multiplying by a common beta distribution with some

restriction on choice of parameters. The approach is as follows:

1. Generate three independent random variables:

W ∼ Beta(α, β)

U ∼ Gamma(α + β, 1/µ1)

V ∼ Gamma(α + β, 1/µ2)

2. Let Y1 = WU and Y2 = WV , inducing a dependence between Y1 and Y2 and creating the

realisations (y1, y2) of the required distribution.

Yeo and Milne (1991) describe the properties of mixed beta-gamma distribution ofY1 andY2.
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The resulting marginal distributions are:

Y1 ∼ Gamma(α, 1/µ1), E(Y1) = α/µ1

Y2 ∼ Gamma(α, 1/µ2), E(Y2) = α/µ2

with a linear correlation coefficient of

corr(Y1,Y2) = ρ =

√
αβ

α + β + 1
.

The bivariate distribution is fully described by its probability density function,

f (y1, y2) = CΓ(β)(y1y2)
α+β−1

(
y1
µ1
+

y2
µ2

) α−1
2 −(α+β)

exp
[
−

1
2

(
y1
µ1
+

y2
µ2

)]
Wα+ 1−α

2 ,α+β−α
2

(
y1
µ1
+

y2
µ2

)
,

for y1 > 0,y2 > 0 and where the constant C is given by

1
C
= (µ1µ2)

α+β
Γ(α + β)Γ(α)Γ(β),

and Wλ,µ is the Whittaker function (Abramowitz and Stegun, 1972),

Wλ,µ(p) =
pµ+

1
2 exp(−p/2)

Γ(µ − λ + 1/2)

∫ ∞

0
tµ−λ−1/2(1 + t)µ+λ−1/2 exp(−pt)dt .

The parameters of the mixing beta distribution fully define the dependence structure between

the two marginal gamma distributions.

Dependence structures can be visualised by plotting the cumulative distribution functions

of the marginal distributions against each other (Trivedi and Zimmer, 2007). In the context

of a regression, the shape and parameters of the marginal distribution need to be calculated

to allow this, however in a simulation, the simulation parameters can be employed for the

transform. Some examples of the shapes taken by the dependence structure of this bivariate

distribution are shown in figure 2.1.

All the dependence structures from this bivariate gamma incorporate a skew towards lower

value dependence with differing strength of overall dependence, and a differing extent to

which higher value dependence is also exhibited. The highest rank correlation within the

dependence structure is realised when α is low and β is high. This is shown in figure 2.1 and

table 2.1.
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Figure 2.1: Dependence structure for the bivariate gamma of Nadarajah and Gupta (2006)

under varying parameters for the multiplicative beta distribution. Cumulative distribution

functions of the marginals are plotted against one another as a bivariate density plot.

The second parameter of the multiplicative beta distribution, β, has no effect on the marginal

distributions of Y1 and Y2 but is an important component in defining the dependence between

the two variables. α and β together determine the strength of the rank correlation of the

dependence structure. α has the added effect of increasing marginal skewness with lower

values. This relationship is shown in table 2.1.
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Tau β

α 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1-1.2 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2 2-2.2

0.2-0.4 0.38 0.51 0.60 0.65 0.68 0.71 0.73 0.75 0.77 0.78

0.4-0.6 0.25 0.37 0.45 0.51 0.55 0.58 0.61 0.63 0.65 0.67

0.6-0.8 0.18 0.28 0.36 0.42 0.46 0.49 0.53 0.55 0.58 0.59

0.8-1 0.15 0.23 0.30 0.36 0.40 0.43 0.47 0.49 0.51 0.54

1-1.2 0.12 0.20 0.26 0.31 0.35 0.38 0.42 0.44 0.47 0.48

1.2-1.4 0.10 0.17 0.23 0.27 0.32 0.35 0.38 0.40 0.43 0.45

1.4-1.6 0.09 0.15 0.20 0.25 0.28 0.31 0.35 0.37 0.40 0.41

1.6-1.8 0.08 0.14 0.18 0.22 0.26 0.29 0.32 0.34 0.37 0.38

1.8-2 0.07 0.13 0.17 0.21 0.23 0.27 0.30 0.32 0.34 0.36

2-2.2 0.06 0.12 0.15 0.19 0.23 0.25 0.28 0.30 0.32 0.34

Skew α

Margin 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1-1.2 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2 2-2.2

µ = 1 4.06 3.00 2.49 2.17 1.95 1.79 1.66 1.56 1.47 1.40

µ = 2 4.06 3.00 2.49 2.17 1.95 1.79 1.66 1.56 1.47 1.40

Table 2.1: Average values of marginal skewness and Kendall’s tau for differing values of α

and β of the generating distribution.

2.2 Model specification

There are five defining characteristics of the bivariate gamma which need to be captured for

accurate modelling of the full bivariate distribution:

• The mean and dispersion of the marginal gamma for time 1, µ1 and σ1,

• The mean and dispersion of the marginal gamma for time 2, µ2 and σ2, and

• The dependence structure between the two marginals which is captured through a

dependence parameter θ.
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In a copula-based model, each of these parameters is modelled directly. There is a fit for each

marginal distribution: µ1 and σ1 for the first marginal distribution, and µ2 and σ2 for the

second marginal distribution, and a copula fit to the dependence structure with parameter θ.

In a generalised linear mixed modelling framework, the same five parameters are captured

but slightly differently. The most comparable model is the generalised linear mixed model

with a random effect term and time-dependent σ. The model has:

• a parameter for the intercept at time 1, βµ1, which estimates µ1,

• a parameter for time, βµt , which combines with βµ1 to estimate µ2,

• an estimate for the intercept of the dispersion parameter, βσ1, which estimates σ1,

• a parameter for the effect of time on the dispersion of the distribution, βσt which

combined with βσ1 estimates σ2, and

• a parameter for the variance of the random effect, θ.

This analysis compares both the full generalised linear mixed model and the copula model

described above as well as three other models as a comparison point:

• a generalised linear model which only has a single dispersion parameter σ so does not

capture differing dispersion between time points, and no parameter for adjusting for

dependence between observations (3 parameters total),

• a generalised estimating equations approach which includes a parameter for the de-

pendence but does not directly capture the differing dispersion between time points (4

parameters total),

• a generalised linear mixed model with a random effect but without a time dependent

sigma (4 parameters total).
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Overview of each model

Table 2.2 summarises the models run for each simulation and their associated parameters.

Model No. Parameters Components estimated

Generalised linear model (GLM) 3 µ1, µ2, σ

Generalised estimating equation (GEE) 4 µ1, µ2, σ, θ

Generalised linear mixed model (GLMM no sig) 4 µ1, µ2, σ, θ

Generalised linear mixed model (GLMM) 5 µ1, µ2, σ1, σ2, θ

Generalised joint regression model (GJRM) 5 µ1, µ2, σ1, σ2, θ

Table 2.2: Summary of specified models and associated parameters

As the response variable is gamma for each marginal, log link functions for µ j and σj are

appropriate.

The generalised linear model can be used as a baseline comparison point which does not

adjust for dependence or differing dispersion between time points. The model structure is:

log(µi) = βµ1 + βµtt

t =


0, if time = 1

1, if time = 2

where

βµ1 is the intercept,

βµt is the coefficient for time,

σ2 is the estimate for the dispersion parameter.

Generalised estimating equations take into account the dependence between marginals. The

model requires one additional parameter for modelling the dependence between the time

points:

log(µi) = βµ1 + βµtt

t =


0, if time = 1

1, if time = 2
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where

βµ1 is the intercept,

βµt is the coefficient for time,

σ2 is the estimate for the dispersion parameter, and

an additional parameter, θ, for covariance is incorporated.

The generalised linear mixed model introduces a dependence parameter θ for the random

effect and adjusts the structure of the model.

log(µi j) = βµ1 + βµtt + bi j, j = 1, 2, i = 1, ...,m

log(σj) = βσ1 + βσtt,

t =


0, if time = 1

1, if time = 2

where

βµ1 is the intercept,

βµt is the coefficient for time,

βσ1 is the estimate for the dispersion parameter at time 1, and

βσt is the estimate for the effect of time on the dispersion, and

an additional parameter, θ, is estimated for the random effect, b j ∼ N(0, θ).

For the generalised joint regression model, the following structure is used:

log(µ1) = βµ1,

log(µ2) = βµ2,

where

βµ1 is the intercept for the mean at time 1,

βµ2 is the intercept for the mean at time 2,

σ1, σ2 are estimated as the dispersion parameters for the marginal distributions at time 1 and 2, and

θ is the estimate for the copula parameter.
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2.2.1 Simulations

Simulations of Nadarajah and Gupta (2006)’s bivariate gamma have been run across the

range of shapes of the distribution for a comparison of mean estimates. The distribution

was simulated for mixing beta distribution parameters α in (.2, .3, ..., 2.0, 2.1) and β in

(.2, .3, ..., 2.0, 2.1), and marginal pre-mix means of µ1 = 1 and µ2 = 2.

Six specific models are fit for the estimate of the mean at time one and two as a comparison:

• Generalised linear model (GLM)

• Generalised estimating equation (GEE)

• Generalised linear mixed model with a random effect for units (GLMM no sig)

• Generalised linear mixed model with a random effect for units and a differing estimate

for σ2 at time one and time two (GLMM)

• Generalised joint regression model with a Clayton copula (GJRM Clayton)

• Generalised joint regression model with a Normal copula (GJRM Normal)

The code used for simulations in this chapter is available in the supplementary materials,

section 5.1.3.

2.2.2 Software

This section provides a short overview of the software used to fit the various models to the

bivariate distribution in this simulation.

For GLMs, the base R function glm in the core R package stats (R Core Team, 2018) is

used. The package provides the functionality to fit any exponential family GLM and extract

parameter estimates and diagnostics of fit.

GEEs are fit using geepack (Hojsgaard et al., 2006), a modern alternative to older GEE

methods with significantly increased computational speed.
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For mixed models with random effects, multiple packages were tested and compared. The

three main packages were glmer from lme4 (Bates et al., 2015), gamm from mgcv (Wood,

2017) and gamlss (Stasinopoulos et al., 2017). glmer (Bates et al., 2015) allows for fitting

any exponential family mixed model in a linear modelling framework. gamm (Wood, 2017)

provides the functionality for fitting any mixed model and incorporates the ability to fit

smooth covariates in an additive model framework. gamlss (Stasinopoulos et al., 2017) is a

highly flexible regression toolkit which provides the ability to fit any parametric distribution,

and incorporates the ability to fit random effects. The package also incorporates a very broad

range of tools for model diagnostics and interrogation. Initial testing comparing the three

packages did not indicate significant differences in the estimates between them.

Copula-based regression models and copula fit diagnostics was completed using GJRM, the

package developed by Marra and Radice (2017). The package provides a comprehensive

computational framework for modelling joint random variables with copulas for dependence

fits, includes the functionality to test multiple dependence structures for the appropriate fit

and incorporates gamlss (Stasinopoulos et al., 2017) for fitting marginal distributions.

2.2.3 Results

The following four parameter estimates and their errors for each of the models have been

compared across the range of realisations:

• Mean and standard error of β̂µ1, the estimate for the mean at time 1,

• Mean and standard error of β̂µ2, the estimate for the mean at time 2.

Parameter estimates at time 1

In terms of standard error for the estimate at time 1, the GLM, GEE and Copula models show

a consistent trend of increasing parameter standard error with higher values of τ, while the

two random effect models exhibit generally decreasing standard error with increasing values

of τ of realisations. See figure 2.2 and differences in average mean estimates in table 2.3.
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Model / Tau 0-0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8+

GLM 0.0765 0.0794 0.0915 0.1402 0.2099

GEE 0.0765 0.0794 0.0915 0.1378 0.1855

GLMM no sig 0.0710 0.0561 0.0469 0.0512 0.0538

GLMM 0.0720 0.0557 0.0443 0.0000 0.0494

GJRM (Clayton) 0.0779 0.0788 0.0916 0.1375 0.2034

GJRM (Normal) 0.0780 0.0789 0.0929 0.1495 0.2671

Table 2.3: Median standard error for estimates of βµ1

Figure 2.2: Bias and standard error estimates for the mean of the gamma distribution at time

1 across all realisations of the simulated bivariate gamma.

The red line on the left six charts is the line representing zero bias in the model estimates.

The grey line on the right six charts is the smoothed curve fit to the error of the given model.

The red line on the right six charts is the smoothed curve fit to the GLM error as a reference

point.
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For the same realisations, the GLM, GEE and Copula models exhibit no particular bias in the

parameter estimate for time 1 while the GLMMs have a significant bias especially where τ is

higher (see Table 2.4). Regardless of the presence of the additional parameter for estimating

σ at both time points, this bias is still exhibited in the GLMM estimates.

Model / Tau 0-0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8+

GLM 0.0332 -0.0103 -0.0052 0.0515 -0.0564

GEE 0.0332 -0.0103 -0.0052 0.0398 -0.1039

GLMM no sig -0.1644 -0.3231 -0.4120 1.7724 2.1497

GLMM -0.1757 -0.3117 -0.2317 2.0494 2.3190

GJRM (Clayton) 0.0398 -0.0012 -0.0047 0.0437 -0.0663

GJRM (Normal) 0.0329 -0.0045 -0.0156 -0.0851 -0.3531

Table 2.4: Median bias for estimates of βµ1

On the other hand, the Clayton GJRM provides comparable time 1 standard error estimates

to the GEE and GLM while maintaining minimal bias.

Note that the normal copula GJRM exhibits slightly higher standard error estimates, above

that of the GLM and GEE, and is slightly biased for very high τ. This bias and higher

standard error is due to the normal copula not being an appropriate fit for the high skewness

and correlation in the joint dependence structure in these cases.

Parameter estimates at time two

Across all realisations of the bivariate distribution, all models remain relatively unbiased in

their estimates of the mean at time two across the differing values of τ (rank correlation)

except for the time-variant sigma GLMM. See figure 2.3 and table 2.6.

For the estimate of the effect of time 1, the copula models significantly outperform the GLM

and GEE in terms of standard error across the range of realisations and values of τ while the

random effect continues to present the same trend of decreasing standard errors for parameter

estimates when there is higher tau.
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Model / Tau 0-0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8+

GLM 0.1082 0.1122 0.1294 0.1983 0.2968

GEE 0.1082 0.1122 0.1294 0.1948 0.2623

GLMM no sig 0.1004 0.0793 0.0663 0.0724 0.0762

GLMM 0.0998 0.0861 0.0872 0.0922 0.0909

GJRM (Copula) 0.0776 0.0796 0.0932 0.1363 0.1993

GJRM (Normal) 0.0776 0.0804 0.0947 0.1497 0.2646

Table 2.5: Median standard error for estimates of βµ2

Figure 2.3: Bias and standard error estimates for the mean of the gamma distribution at time

2 across all realisations of the simulated bivariate gamma.

The red line on the left six charts is the line representing zero bias in the model estimates.

The grey line on the right six charts is the smoothed curve fit to the error of the given model.

The red line on the right six charts is the smoothed curve fit to the GLM error as a reference

point.
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The GLMM with the additional parameter for σ presents a significantly higher variation

in observed bias than even the comparable GLMM without the additional parameter. In

part, this increased bias for the random effect model with the additional parameter may be

explained by the model’s increased difficulty in converging, with multiple of these models

failing to converge even over an extremely large number of iterations and being excluded

from the charts in Figures 2.2 and 2.3.

Model / Tau 0-0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8+

GLM -0.0164 -0.0215 -0.0196 -0.0461 0.1072

GEE -0.0164 -0.0215 -0.0196 0.0083 0.1072

GLMM no sig -0.0256 0.0042 -0.0262 0.0177 0.0280

GLMM -0.0255 -0.1255 -0.5133 -0.8388 -1.0586

GJRM (Copula) -0.0196 -0.0192 -0.0174 0.0049 0.0704

GJRM (Normal) -0.0158 -0.0226 -0.0116 -0.0078 0.1626

Table 2.6: Median bias for estimates of βµ2

2.2.4 The effect of marginal skew on estimate bias

Further analysis of the drivers of bias for the random effect model indicates that marginal

skewness also plays a key role alongside rank correlation.

Across the set of realisations it is clear that increasing marginal skewness holding τ constant

or increasing τ and holding skewness constant will increase time 1 bias for the random effect

models. This is shown in table 2.7 for the time-variant-σ random effect model and table 2.8

for the non-time-variant-σ random effect model with no apparent differences in the trend of

the bias between the two models. Interestingly, note that the GLM, GEE and GJRM with

Clayton copula remain relatively unbiased across all values of τ and marginal skewness.

However, the GJRM with Normal copula becomes biased when marginal skewness and τ

are very high, likely because at this point the shape of the dependence is highly skewed and

non-normal so the fit is not appropriate. These bias results are shown in tables 2.9, 2.10, 2.11

and 2.12. The values in the tables are calculated on the difference between the transformed

results (eβi ) and the true simulated intercept.
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Marginal Skewness

Tau 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5

0-0.1 -0.06 -0.05 -0.09

0.1-0.2 -0.14 -0.18 -0.08

0.2-0.3 -0.18 -0.28 -0.55 -0.61

0.3-0.4 -0.10 -0.25 -0.54 -0.67 -0.91 -0.77

0.4-0.5 -0.28 -0.34 -0.49 -0.79 -0.91 -0.88 -0.95

0.5-0.6 -0.32 -0.58 -0.61 -0.82 -0.88 -0.93

0.6-0.7 -0.79 -0.76 -0.89 -0.98

0.7-0.8 -0.90 -0.90 -0.98

0.8-0.9 -0.98

Table 2.7: Average bias for time-variant sigma random effect model for differing values of τ

and marginal skew of the base distribution

Marginal Skewness

Tau 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5

0-0.1 -0.06 -0.05 -0.11

0.1-0.2 -0.09 -0.15 -0.08

0.2-0.3 -0.16 -0.22 -0.38 -0.45

0.3-0.4 -0.18 -0.26 -0.39 -0.49 -0.72 -0.78

0.4-0.5 -0.26 -0.32 -0.42 -0.59 -0.76 -0.75 -0.91

0.5-0.6 -0.28 -0.52 -0.59 -0.75 -0.84 -0.97

0.6-0.7 -0.73 -0.78 -0.86 -0.97

0.7-0.8 -0.81 -0.90 -0.96

0.8-0.9 -0.98

Table 2.8: Average bias for non-time-variant sigma random effect model for differing values

of τ and marginal skew of the base distribution.
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Marginal Skewness

Tau 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5

0-0.1 -0.01 0.00 0.03

0.1-0.2 -0.01 -0.01 0.10

0.2-0.3 0.00 -0.02 -0.06 -0.03

0.3-0.4 0.01 -0.01 -0.01 0.05 -0.04 0.00

0.4-0.5 -0.01 -0.02 0.01 0.05 -0.11 0.13 0.42

0.5-0.6 0.05 -0.03 0.05 -0.04 0.13 -0.03

0.6-0.7 -0.03 0.01 -0.04 -0.13

0.7-0.8 0.24 0.02 0.08

0.8-0.9 0.21

Table 2.9: Average bias for GJRMwith Clayton Copula for differing values of τ and marginal

skew of the base distribution.

Marginal Skewness

Tau 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5

0-0.1 -0.01 0.00 0.03

0.1-0.2 -0.01 -0.01 0.10

0.2-0.3 -0.01 -0.02 -0.05 -0.02

0.3-0.4 0.00 0.00 0.00 0.07 0.00 0.08

0.4-0.5 0.00 -0.02 0.01 0.07 -0.01 0.23 0.67

0.5-0.6 0.07 0.00 0.11 0.05 0.26 0.30

0.6-0.7 0.09 0.15 0.18 0.35

0.7-0.8 0.51 0.34 0.75

0.8-0.9 1.52

Table 2.10: Average bias for GJRMwithNormal Copula for differing values of τ andmarginal

skew of the base distribution
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Marginal Skewness

Tau 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5

0-0.1 -0.01 0.00 0.03

0.1-0.2 -0.01 -0.01 0.10

0.2-0.3 -0.01 -0.02 -0.06 -0.04

0.3-0.4 0.00 -0.01 -0.01 0.05 -0.04 0.03

0.4-0.5 0.00 -0.02 -0.01 0.02 -0.08 0.14 0.44

0.5-0.6 0.05 -0.04 0.05 -0.04 0.06 -0.03

0.6-0.7 -0.05 -0.01 -0.04 -0.10

0.7-0.8 0.20 -0.01 0.05

0.8-0.9 0.18

Table 2.11: Average bias for the GLM for differing values of τ and marginal skew of the base

distribution

Marginal Skewness

Tau 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5

0-0.1 -0.01 0.00 0.03

0.1-0.2 -0.01 -0.01 0.10

0.2-0.3 -0.01 -0.02 -0.06 -0.04

0.3-0.4 0.00 -0.01 -0.01 0.05 -0.04 0.03

0.4-0.5 0.00 -0.02 -0.01 0.02 -0.08 0.14 0.44

0.5-0.6 0.05 -0.04 0.05 -0.04 0.06 error

0.6-0.7 -0.05 -0.01 -0.04 error

0.7-0.8 0.20 -0.01 error

0.8-0.9 error

Table 2.12: Average bias for the GEE for differing values of τ and marginal skew of the

base distribution. Note the cells denoted as ’error’ are cases where the GEE has provided an

extreme estimate which results in an extremely large difference which cannot be displayed

but seems likely to be a convergence error.
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2.2.5 Exploration of an extreme case

It is informative to refer to an extreme case of the bivariate distribution with pre-mixing

means as µ1 = 1, µ2 = 2, beta parameters as α = .25 and β = 1.75, giving E(Y1) = 0.25

and E(Y2) = 0.125. The shape and dependence structure of the simulated dataset is shown in

figure 2.4.

Figure 2.4: From top left to bottom right: 1. Distribution of time one marginal gamma, 2.

Distribution of the secondmarginal gamma for time two, 3. Scatterplot of the time two against

time one marginal gamma, 4. Scatterplot of the uniform transform of the time two marginal

gamma against the uniform transform of the time one marginal gamma, 5. Scatterplot of a

simulation of a fitted Clayton copula, 6. Scatterplot of a simulation of a fitted Normal copula

It’s apparent from the plot of the two uniform transforms of the marginals against one

another (plot 4) that there is a symmetrically decreasing dependence for larger values of both

variables. As can be seen in the fifth chart, the Clayton copula clearly captures this decreasing

dependence while the normal copula maintains the same level of dependence throughout.

The rank correlation is very high with a Kendall’s tau of 0.75 and positive skewness is high
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at 4.0 and 3.6 for margins for time one and two respectively.

Model βµ1 βµ2 SE(βµ1) SE(βµ2)

Generalised linear model -1.4882 -0.6414 0.1743 0.2466

Generalised estimating equations -1.4882 -0.6414 0.1737 0.2453

Generalised linear mixed model (4) -4.4295 -0.7473 0.0523 0.0739

Generalised linear mixed model (5) -3.9410 -1.3765 0.1042 0.1042

Generalised joint regression model (Clayton) -1.4480 -0.7324 0.1922 0.1915

Generalised joint regression model (Normal) -1.1967 -0.6519 0.2284 0.2300

Simulated true intercepts -1.3862 -0.6931

Table 2.13: Extreme case simulation: parameter estimates and standard errors from the six

models against the simulation parameters.

As can be seen in table 2.13, the bias for the generalised linear mixed models is immediately

apparent at over three times the true intercept for time one and almost twice the true value

for the effect of time two over time one for the time-variant-σ GLMM. As was seen during

simulations, the GLMMs exhibit extremely low error alongside the high levels of bias.

The Clayton copula is the most appropriate copula fit in this case and exhibits the lowest error

for the effect of time but has a slightly higher error than the GEE and GLM for the estimate

at time one. However, in general, across the range of simulations, errors for estimates at time

one were similar between the GEE, GLM and copula models. Note the symmetric nature of

the error estimates for the copula model compared to the GLM, GEE and GLMMs.

Part of the issue with the random effect models may be that they seem to be assigning an

extremely large proportion of model variance to the random effect component. To ensure

no single optimisation package or method was at fault, multiple packages which incorporate

random effects have been tested including gamlss, lme4 and mgcv. These methods provided

similar estimates of the time 1 and time 2 parameters provided above.

The code used for this example case simulation and analysis is available in the supplementary

materials, section 5.1.1.
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Observations on Computational Complexity

During the development of these simulations, the random effect models, compared to each

of the other models, required significantly longer amounts of time to run and this dif-

ference widened with increasing sample size. To demonstrate this at a high level, the

extreme case in the section above has been rerun ten times for different sample sizes of

n = 100, 500, 1, 000, 5, 000, and 10, 000 with the same randomisation seed and hardware.

In table 2.14, average runtimes across the 10 models at each sample size are provided

alongside a scaled calculation of runtime per 1,000 observations. Note that across the range

of sample sizes, the runtime for the random effect models is approximately 5-10 times higher

than the two copula models which include the same number of parameters. While these

total runtime values are not particularly impactful in this case due to the small sample sizes,

as model sample sizes increase in the era of big data, it’s likely that these computational

differences will become increasingly more noticeable.

Average model runtime (s) Runtime per 1,000 obs (s)

Sample 100 500 1,000 5,000 10,000 100 500 1,000 5,000 10,000

GLM 0.01 0.01 0.02 0.10 0.20 0.06 0.02 0.02 0.02 0.02

GEE 0.01 0.04 0.07 0.37 0.65 0.12 0.07 0.07 0.07 0.06

RE (4) 0.11 0.31 9.90 4.29 20.33 1.05 0.61 9.90 0.86 2.03

RE (5) 0.42 1.71 1.41 7.57 14.73 4.25 3.42 1.41 1.51 1.47

GJRM (N) 0.08 0.18 0.35 1.68 3.81 0.83 0.37 0.35 0.34 0.38

GJRM (C) 0.06 0.19 0.35 1.64 3.71 0.62 0.38 0.35 0.33 0.37

Table 2.14: Average model runtimes across different sample sizes

These operations were performed on a Windows operating system with an i7-8750H CPU at

2.2GHz with 32GB RAM without overclocking.
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Three datasets are introduced which have similar distributional properties to those described

in simulations. The parameters compared in each table of results are as follows:

• β1, the estimate for the mean at time 1,

• βt , the estimate for the incremental effect of time 2 over time 1,

• SE(β1) and SE(βt), the standard errors of both of the estimates.

Note that in this setting, compared to the simulation setting, the marginals are not known in

advance so both their parameters and shape must be estimated and fit to be able to create

the chart of the uniform transform of the variables against one another and to interrogate the

shape of the dependence structure.

3.1 ASX200 share prices

The dataset to be considered is share prices on the first trading day of 1998 and 2018

for ASX200 stocks which are included in the index on both dates, resulting in 143 shares

(ASXHistoricalData.com). It is of interest to understand the amount by which these stocks

have increased in value and the way in which differently priced shares are correlated between

time points.

Share prices at times 1 and 2 are weakly correlated, with Pearson correlation of 0.29 and

Kendall’s tau of 0.35. The marginal distributions are highly positively skewed with skewness

of 3.6 and 4.2 for themargins at time 1 and 2 respectively. The charts in figure 3.1 demonstrate

that while the prices at both time points are not strongly correlated overall, there is a larger

degree of dependence for lower priced shares. This can be seen in Figure 3.1 in the higher

density towards the left of the bivariate density plot of the dependence structure (right plot).
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Joe Gumbel Hougaard FGM AMH Clayton Normal Frank Plackett

-668 -664 -664 -663 -660 -659 -659 -655 -654

Table 3.1: ASX200 Share Prices: AIC values for each copula fit to the dependence structure

Figure 3.1: ASX200 Share Prices: left to right: scatterplot of raw observations at time 2

against time 1 with a fitted loess curve, scatterplot of the uniform transform of both marginals

with a fitted loess curve, plot of bivariate density calculated using the package kde

Each of the models applied in the previous chapter have been applied to this dataset: a GLM,

GEE, random effect model, random effect model with additional parameter for sigma at both

time points, and nine joint regression models with the same marginal structure but a different

copula function. Results are shown in table 3.2.

AIC can be used to select themost appropriate copula to fit to the distribution and is calculated

in table 3.1. In this case the Joe copula appears to be the most appropriate.

The random effect models provide vastly different estimates for time 1 and time 2 compared

to the copula, GLM and GEE, with significantly lower errors. This is consistent with the

simulations in the previous chapter, in that the random effect model estimates are extremely

different to all the other models with lower errors, but potentially have quite a high bias due

to the high level of marginal skew with some rank correlation in the dataset.

Note that the copula models perform significantly better than the comparable GLM in terms

of error for time 1 and 2, and present a similar error to the GLMM with the additional

parameter for σ fit for both time points without the difference in estimate.
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Model β1 βt SE(β1) SE(βt) eβ1 eβ2

GLM 1.3260 1.0836 0.1702 0.2408 3.77 11.13

GEE 1.3260 1.0836 0.1345 0.0576 3.77 11.13

Random Effect 0.5989 0.2226 0.0804 0.1137 1.82 2.27

Random Effect w/ Sig 0.2595 2.0866 0.0000 0.1510 1.30 10.44

Clayton 1.3989 1.0504 0.1177 0.1562 4.05 11.58

Normal 1.3733 1.0647 0.1123 0.1544 3.95 11.45

Joe 1.3843 1.0811 0.1142 0.1577 3.99 11.77

Gumbel 1.4203 1.0847 0.1149 0.1580 4.14 12.24

Frank 1.4314 1.0298 0.1084 0.1488 4.18 11.72

AMH 1.3960 1.0581 0.1150 0.1536 4.04 11.64

FGM 1.3859 1.0455 0.1068 0.1469 4.00 11.37

Plackett 1.4085 1.0054 0.1075 0.1469 4.09 11.18

Hougaard 1.4203 1.0847 0.1149 0.1580 4.14 12.24

Table 3.2: ASX200 Share Prices: estimates for the mean and standard error of parameters fit

to the ASX200 data

3.2 Avocado prices

The dataset considered is the average price of conventional and organic avocados across

54 regions in the United States at two time points, 1 April 2015 and 25 March 2018 (Hass

AvocadoBoard). The dateswere chosen based on being the first and lastweeks of observations

available.

Prices at times 1 and 2 are reasonably strongly correlated with a Pearson correlation of 0.72

and a Kendall’s tau of 0.54. However, note that the marginal distributions are not highly

skewed with margin one being only very weakly positively skewed with a skewness of 0.46

and margin two having a skewness close to zero at -0.18. The bivariate dependence is slightly

skewed to lower value dependence but still exhibits higher value dependence as can be seen

in the right hand chart of bivariate density in figure 3.2.
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FGM Joe Frank Plackett AMH Gumbel Hougaard Clayton Normal

-41 -32 -25 -23 -23 -23 -23 -21 -19

Table 3.3: Avocado Prices: AIC values for each copula fit to the dependence structure

Figure 3.2: Avocado Prices: left to right: scatter-plot of raw observations at time 2 against

time 1 with a fitted loess curve, scatter-plot of the uniform transform of both marginals with

a fitted loess curve, plot of bivariate density calculated using the package kde

AIC can be used to select the most appropriate copula to fit to the distribution and has been

calculated in table 3.2. In this case the FGM copula appears to be the most appropriate.

Each of the models applied in the previous chapter have been applied to this dataset: a GLM,

GEE, random effect model, random effect model with additional parameter for sigma at both

time points, and nine joint regression models with the same marginal structure but a different

copula function. Results are shown in Table 3.4.

For this example, the random effect models provide only slightly differing estimates to the

GLM and copula models at approximately 13 percent and 8 percent lower than GLM time 1

estimates and 13 percent higher and 16 percent lower than GLM time 2 estimates.

While in this example, rank correlation, τ, is high, marginal skew is extremely weak which

may explain the lower level of difference between the GLMM and other estimates.
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Model β1 βt SE(β1) SE(βt) eβ1 eβ2

GLM 0.2634 0.0344 0.0239 0.0338 1.30 1.35

GEE 0.2634 0.0344 0.0266 0.0011 1.30 1.35

Random Effect 0.2310 0.0454 0.0096 0.0135 1.26 1.32

Random Effect w/ Sig 0.2430 0.0292 0.0181 0.0181 1.28 1.31

Clayton 0.2514 0.0660 0.0243 0.0239 1.29 1.37

Normal 0.2634 0.0346 0.0264 0.0217 1.30 1.35

Joe 0.2646 0.0304 0.0287 0.0219 1.30 1.34

Gumbel 0.2724 0.0301 0.0274 0.0214 1.31 1.35

Frank 0.2264 0.0594 0.0284 0.0214 1.25 1.33

AMH 0.2791 0.0452 0.0221 0.0204 1.32 1.38

FGM 0.2517 0.0421 0.0245 0.0198 1.29 1.34

Plackett 0.2442 0.0488 0.0271 0.0212 1.28 1.34

Hougaard 0.2724 0.0301 0.0274 0.0214 1.31 1.35

Table 3.4: Avocado Prices: Estimates for the mean and standard error of parameters fit to the

Avocado data

3.3 Triglyceride levels

The dataset considered is observations of triglyceride levels during a clinical trial of hormone

replacement therapy. There were 72 participants at baseline and 24 months after the start of

treatment (Nand et al., 1999).

It it of interest to understand how trigliceryde levels change over time for trial participants and

whether there is any difference in dependence for individuals with different starting levels of

triglycerides.

Observations at time 1 (0 months) and time 2 (24 months) are reasonably correlated with a

pearson correlation of 0.62 and a Kendall’s tau of 0.48. The marginal distributions for time

one and two are slightly positively skewed with skewness of 1.14 and 1.27.
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Clayton FGM Joe AMH Gumbel Hougaard Normal Frank Plackett

-74 -71 -71 -68 -68 -68 -67 -62 -62

Table 3.5: Tryglyceride Levels: AIC values for each copula fit to the dependence structure

Figure 3.3: Tryglyceride Levels: left to right: scatter-plot of raw observations at time 2 against

time 1 with a fitted loess curve, scatter-plot of the uniform transform of both marginals with

a fitted loess curve, plot of bivariate density calculated using the package kde

AIC can be used to select the most appropriate copula to fit to the distribution and are shown

in table 3.5. In this case the Clayton copula appears to be the most appropriate, as was the

case in for the simulated distribution in chapter 2.

Each of the models applied in the previous chapter have been applied to this dataset: a GLM,

GEE, random effect model, random effect model with additional parameter for sigma at both

time points, and nine joint regression models with the same marginal structure but a different

copula function. Results are shown in Table 3.6.

In this example, the GLMM provides an almost three times higher estimate for the intercept

at time 1 compared to the GLM, GEE and Clayton copula model but estimates for the effect

of time 2 are similar between each of the models. The combination of a moderate marginal

skew with a moderate rank correlation, τ, may be the reason for the large differences.

The code used for the analysis of these datasets is available in the supplementary materials,

section 5.1.2.
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Model β1 βt SE(β1) SE(βt) eβ1 eβ2

GLM -0.0569 0.1249 0.0559 0.0791 0.94 1.07

GEE -0.0569 0.1249 0.0582 0.0062 0.94 1.07

Random Effect -0.1475 0.1487 0.0307 0.0434 0.86 1.00

Random Effect w/ Sig -0.0976 0.0792 0.0516 0.0516 0.91 0.98

Clayton -0.0076 0.0727 0.0681 0.0482 0.99 1.07

Normal -0.0579 0.1234 0.0609 0.0483 0.94 1.07

Joe -0.0666 0.1387 0.0601 0.0502 0.94 1.07

Gumbel -0.0477 0.1258 0.0607 0.0505 0.95 1.08

Frank -0.0473 0.0978 0.0571 0.0501 0.95 1.05

AMH -0.0037 0.0887 0.0588 0.0463 1.00 1.09

FGM -0.0458 0.1124 0.0571 0.0461 0.96 1.07

Plackett -0.0395 0.0901 0.0568 0.0493 0.96 1.05

Hougaard -0.0477 0.1258 0.0607 0.0505 0.95 1.08

Table 3.6: Tryglyceride Levels: Estimates for the mean and standard error of parameters fit

to the Triglycerides data



4 Conclusion
Simulations were run of a two time point longitudinal dataset generated from a bivariate

distribution with gamma marginal distributions and varying non-standard dependence struc-

tures. It was identified across these simulations that random effect based regression models

provide biased estimates of the mean of the dataset at time 1 and, in some cases, time 2, even

though the marginal distributions are correctly specified. Results of the simulations indicate

that the higher the skewness of the marginal distributions or the rank correlation between the

outcome variables, measured by Kendall’s tau, the more pronounced the bias of the random

effect based model is likely to be. Concerningly, in the majority of cases analysed, where

random effect model estimates are biased, the models also provide lower estimates of standard

error compared to other tested models for the fitted biased parameters.

In contrast to the random effect models, copula-based joint regression models, in particular

the GJRM implementation (Marra and Radice, 2017), provide a relatively unbiased estimate

of the mean of the dataset for time 1 and time 2 across these simulations. Compared to

the GLM and GEE, the copula-based joint regression model also has the advantage that it

captures the dependence structure between the random variables so provides generally lower

standard error estimates for model parameters, especially for the estimate for time two.

The large differences in bias and standard error for parameter estimates between random effect

based models and copula-based joint regression models for longitudinal data indicate that a

clear approach is required for selecting when a random effect or copula-based model is more

appropriate for any given longitudinal dataset. The results of this study indicate that mixed

model with random effect terms may not be appropriate where marginal distributions of the

joint distribution are skewed and / or rank correlation is high. In these cases, random effect

based model estimates should be thoroughly interrogated, compared to alternative methods

prior to their use or be replaced with copula-based joint regression models.



5 Discussion
Both the random effect and copula-based joint regression frameworks can capture the same set

of parameters for a bivariate distribution, however, the random effect model has two restrictive

assumptions that the copula-based joint regression does not: the assumption of normally

distributed covariance for the randomeffect term, and, the same assumedmarginal distribution

for each time point. In principle it is possible to superimpose a random effect term on two

different marginal distributions however we are unaware of software for implementation of

such models. For this reason it does not seem surprising that many bivariate distributions

fall outside these assumptions and are therefore likely to cause biased or inefficient estimates

to be generated from a random effect model.

This thesis provides an initial method for identifying bivariate distributions for which random

effect based models are not appropriate, through reviewing whether marginal skewness and

rank correlation are present in the bivariate distribution. Further investigation into a broader

range of joint distributions may provide a more comprehensive set of rules for identifying

which bivariate distributions can reasonably have a random effect model applied to them.

Note that no additional covariates other than time were included in these simulations or

applications. Further work is required to understand the extent to which incorporating a

covariate impacts the bias and efficiency of copula based joint regression model estimates

as compared to random effect based models. An additional consideration in the case of

incorporating additional covariates to the copula-based joint regression model will be in

parameter comparability whereby a single covariate in random effect model framework may

require multiple parameters within the current copula-based joint regression frameworks.

Extensions of copula regression to longitudinal regression estimates in the multivariate case

have not been analysed in this thesis and pose an extremely large potential area for further

research. The greater flexibility, higher level of transparency and computational simplicity

of the copula regression poses significant opportunities for improving the methods used for

longitudinal analysis.



References
M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Washington, D.C.,

1972.

E. F. Acar, R. V. Craiu, and F. Yao. Dependence Calibration in Conditional Copulas: A

Nonparametric Approach. Biometrics, 67(2):445–453, 2011.

E. F. Acar, R. V. Craiu, and F. Yao. Statistical testing of covariate effects in conditional copula

models. Electronic Journal of Statistics, 7:2822–2850, 2013.

ASXHistoricalData.com. ASXMarket Data. https://www.asxhistoricaldata.com/. Accessed:

2018-03-28.

N. Balakrishnan and C. D. Lai. Continuous bivariate distributions. Springer Science &

Business Media, 2009.

D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects models using

lme4. Journal of Statistical Software, 67(1):1–48, 2015.

A. N. E. Breslow and D. G. Clayton. Approximate Inference in Generalized Linear Mixed

Models Approximate Inference in Generalized Linear Mixed Models. Journal of the

American Statistical Association, 88(421):9–25, 1993.

R. V. Craiu and A. Sabeti. In mixed company: Bayesian inference for bivariate conditional

copula models with discrete and continuous outcomes. Journal of Multivariate Analysis,

110:106–120, sep 2012.

I. Gijbels andN. Veraverbeke. Estimation of a Copula when a Covariate Affects onlyMarginal

Distributions. Scandinavian Journal of Statistics, 42:1109–1126, 2015.

I. Gijbels, N. Veraverbeke, and M. Omelka. Conditional copulas, association measures and

their applications. Computational Statistics and Data Analysis, 55(5):1919–1932, 2011.

Hass Avocado Board. US Hass Avocado Prices. https://www.hassavocadoboard.com/retail/

volume-and-price-data. Accessed: 2018-03-28.

https://www.asxhistoricaldata.com/
https://www.hassavocadoboard.com/retail/volume-and-price-data
https://www.hassavocadoboard.com/retail/volume-and-price-data


52 References

T. Hastie and R. Tibshirani. Generalized additive models. CRC Press, 1990.

S. Hojsgaard, U. Halekoh, and J. Yan. The r package geepack for generalized estimating

equations. Journal of Statistical Software, 15/2:1–11, 2006.

H. Joe. Multivariate models and dependence concepts. Chapman & Hall, 1997.

N. Klein, T. Kneib, S. Lang, and A. Sohn. Bayesian structured additive distributional

regression with an application to regional inequality in Germany. The Annals of Applied

Statistics, 9(2):1024–1052, 2015.

N. Kolev and D. Paiva. Copula-based regression models: A survey. Journal of Statistical

Planning and Inference, 139:3847–3856, 2009.

N. Krämer, E. C. Brechmann, D. Silvestrini, and C. Czado. Total loss estimation using copula-

based regression models. Insurance: Mathematics and Economics, 53(3):829–839, 2013.

N. M. Laird and J. H. Ware. Random-Effects Models for Longitudinal Data. Biometrics, 38

(4):963–974, 1982.

K. Liang and S. L. Zeger. Longitudinal Data Analysis Using Generalized Linear Models.

Biometrika, 73(1):13–22, 1986.

G. Marra and R. Radice. Bivariate copula additive models for location, scale and shape.

Computational Statistics and Data Analysis, 112:99–113, 2017.

S. Nadarajah and A. K. Gupta. Some bivariate gamma distributions. Applied Mathematics

Letters, 19(8):767–774, 2006.

S. L. Nand, B. G. Wren, B. A. Gross, G. Z. Heller, et al. Bone density effects of con-

tinuous estrone sulfate and varying doses of medroxyprogesterone acetate. Obstetrics &

Gynecology, 93(6):1009–1013, 1999.

R. B. Nelsen. An Introduction to Copulas, Second Edition. 2007.

H. P. Palaro and L. K. Hotta. Using Conditional Copula to Estimate Value at Risk. Journal

of Data Science, 4:93–115, 2006.

A. Patton. Modeling asymmetric exchange rate dependence. International Economic Review,

47(2):527–556, 2006.



References 53

M. Pitt, D. Chan, and R. Kohn. Efficient Bayesian inference for Gaussian copula regression

models. Biometrika, 93(3):537–554, sep 2006.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/.

A. Sabeti, M. Wei, and R. V. Craiu. Additive models for conditional copulas. Stat, 3(1):300–

312. doi: 10.1002/sta4.64. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.64.

A. Sklar. Random variables, joint distribution functions, and copulas. Kybernetika, 9(6):

449–460, 1973.

D. M. Stasinopoulos, R. Rigby, G. Heller, V. Voudouris, and F. De Bastiani. Flexible

Regression and Smoothing: Using GAMLSS in R. CRC Press, 2017.

P. K. Trivedi and D. M. Zimmer. Copula modeling : an introduction for practitioners. Now

Publishers, Boston, 2007.

T. Vatter and V. Chavez-Demoulin. Generalized additive models for conditional dependence

structures. Journal of Multivariate Analysis, 141:147–167, 2015.

N. Veraverbeke, M. Omelka, and I. Gijbels. Estimation of a Conditional Copula and Associ-

ation Measures. Scandinavian Journal of Statistics, 38:766–780, 2011.

C. J. Wild and T. W. Yee. Additive Extensions to Generalized Estimation Equation Methods.

Journal of the Royal Statistical Society. Series B (Methodological), 58(4):711–725, 1996.

S. Wood. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, 2

edition, 2017.

T. W. Yee and C. J. Wild. Vector Generalized Additive Models. Journal of the Royal

Statistical Society. Series B (Methodological), 58(3):481–493, 1996.

G. F. Yeo and R. K. Milne. On characterizations of beta and gamma distributions. Statistics

and Probability Letters, 11(3):239–242, mar 1991.

https://www.R-project.org/
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.64


Supplementary Materials

5.1 Code

5.1.1 Example bias case

1 #Importing required packages

2 require(gamlss); require(gee); require(lme4);

3 require(mgcv); require(geepack)

4

5 #Setting parameters for extreme case example

6 set.seed(1)

7 a=0.25; b=1.75; mu1=1; mu2=2; n=100

8

9 #Simulating bivariate gamma of Nadarajah and Gupta

10 w<-rbeta(n,a,b)

11 gamma_c_mu1<-w * rgamma(n,shape=a+b,scale=1/mu1)

12 gamma_c_mu2<-w * rgamma(n,shape=a+b,scale=1/mu2)

13

14 #Setting up data in correct format for random effect model

15 patient<-as.factor(seq(1:n))

16 dataset<-as.data.frame(rbind(cbind(patient,gamma_c_mu1,0)

17 ,cbind(patient,gamma_c_mu2,1)))

18 colnames(dataset)<-c("patient","random_variable","time")

19

20 #Running GLM, GEE and multiple GLMM packages

21 model_glm <- glm(random_variable~as.factor(time==1),data=dataset

22 ,family=Gamma(link = "log"),maxit=10000)

23 model_gee<-geese(random_variable~as.factor(time==1), id=patient

24 , data=dataset, family=Gamma(link="log")

25 , mean.link = "log", corstr = "exchangeable"

26 , control=geese.control(trace=TRUE, maxit=10000))

27 model_lme4<-glmer(random_variable~as.factor(time==1) + (1 | patient)

28 , data=dataset, family=Gamma(link="log"))

29 model_gamm<-gamm(random_variable~as.factor(time==1)

30 , random = list(patient=~1)

31 ,data=dataset, family=Gamma(link="log")

32 ,niterPQL=1000)

33 model_re_nosig <- gamlss(random_variable~as.factor(time==1)

34 + random(as.factor(patient))

35 , data=dataset, family=GA(), method=RS())

36 model_re <- gamlss(formula=random_variable~as.factor(time==1)
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37 + random(as.factor(patient))

38 , sigma.formula=~as.factor(time==1)

39 , data=dataset, family=GA() , method=RS())

40

41 #Running GJRM - note GJRM package is loaded after gamlss

42 require(GJRM)

43 eq.mu.1 <- gamma_c_mu1~1

44 eq.mu.2 <- gamma_c_mu2~1

45 fl <- list(eq.mu.1, eq.mu.2)

46 model_copula<-gjrm(fl, margins = c("GA" , "GA"), BivD = "C0"

47 , data=data.frame(gamma_c_mu1,gamma_c_mu2), Model="B")

48 model_copula_n<-gjrm(fl, margins = c("GA" , "GA"), BivD = "N"

49 , data=data.frame(gamma_c_mu1,gamma_c_mu2), Model="B")

5.1.2 Applications

1 #Lipids Data

2 require(sas7bdat)

3 lipid <- read.sas7bdat("LipidsData.sas7bdat")

4 lipids_merged<-(merge(lipid[lipid$MONTH==0,],lipid[lipid$MONTH==24,],by="PATIENT"))

5 gamma_c_mu1<-lipids_merged$TRG.x

6 gamma_c_mu2<-lipids_merged$TRG.y

7

8 #Stock prices over 10 years

9 ASX2018<-read.table("20180102.txt", header=FALSE, sep=",")

10 ASX1998<-read.table("19980102.txt", header=FALSE, sep=",")

11 ASX98_18<-merge(ASX1998,ASX2018,by="V1")

12 gamma_c_mu1<-ASX98_18$V6.x

13 gamma_c_mu2<-ASX98_18$V6.y

14

15 #Avocado prices

16 avo<-read.table("avocado prices.csv", header=T, sep=",")

17 gamma_c_mu1<-avo[avo$Date=="4/01/2015","AveragePrice"]

18 gamma_c_mu2<-avo[avo$Date=="25/03/2018","AveragePrice"]

19

20 #Setting up data in correct structure for random effect

21 n=length(gamma_c_mu1)

22 patient<-as.factor(seq(1:n))

23 dataset<-as.data.frame(rbind(cbind(patient,gamma_c_mu1,0)

24 ,cbind(patient,gamma_c_mu2,1)))

25 colnames(dataset)<-c("patient","random_variable","time")

26

27 #Loading required pacakges

28 require(gamlss); require(gee); require(geepack);

29

30 #Running each of the models for the application dataset
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31 model_glm <- glm(random_variable~as.factor(time==1), data=dataset

32 ,family=Gamma(link = "log"), maxit=10000)

33 model_gee<-geese(random_variable~as.factor(time==1), id=patient, data=dataset

34 , family=Gamma(link="log"), mean.link = "log",corstr = "exchangeable"

35 , control=geese.control(trace=TRUE,maxit=10000))

36 model_re_nosig <- gamlss(random_variable~as.factor(time==1)+random(as.factor(patient))

37 , data=dataset, family=GA(),method=RS())

38 model_re <- gamlss(formula=random_variable~as.factor(time==1)+random(as.factor(patient))

39 , sigma.formula=~as.factor(time==1), data=dataset, family=GA()

40 , method=CG(10000))

41

42 #Loading GJRM after gamlss to avoid overlapping packages

43 require(GJRM)

44

45 #Setting up GJRM equations

46 eq.mu.1 <- gamma_c_mu1~1

47 eq.mu.2 <- gamma_c_mu2~1

48 fl <- list(eq.mu.1, eq.mu.2)

49

50 #Running GJRM for each of the copulas tested

51 model_copula<-gjrm(fl, margins = c("GA" , "GA") , BivD = "C0"

52 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

53 model_copula_n<-gjrm(fl, margins = c("GA" , "GA") , BivD = "N"

54 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

55 model_copula_j<-gjrm(fl, margins = c("GA" , "GA") , BivD = "J0"

56 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

57 model_copula_g<-gjrm(fl, margins = c("GA" , "GA") , BivD = "G0"

58 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

59 model_copula_f<-gjrm(fl, margins = c("GA" , "GA") , BivD = "F"

60 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

61 model_copula_amh<-gjrm(fl, margins = c("GA" , "GA") , BivD = "AMH"

62 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

63 model_copula_fgm<-gjrm(fl, margins = c("GA" , "GA") , BivD = "FGM"

64 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

65 model_copula_pl<-gjrm(fl, margins = c("GA" , "GA") , BivD = "PL"

66 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

67 model_copula_h<-gjrm(fl, margins = c("GA" , "GA") , BivD = "HO"

68 ,data=data.frame(gamma_c_mu1,gamma_c_mu2),Model="B")

5.1.3 Full simulations

1 simulateCorrelatedVarNOGJRM <- function(n,a,b,mu1,mu2) {

2

3 set.seed(100)

4

5 #Loading required packages
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6 require(gamlss)

7 require(MASS)

8 require(gee)

9 require(VGAM)

10

11 #Simulating bivariate random variable according to functional input

12 w<-rbeta(n,a,b)

13 gamma_c_mu1<-w*rgamma(n,shape=a+b,scale=1/mu1)

14 gamma_c_mu2<-w*rgamma(n,shape=a+b,scale=1/mu2)

15

16 #Transforming data to format required for random effect models

17 patient<-as.factor(seq(1:n))

18 dataset<-as.data.frame(rbind(cbind(patient,gamma_c_mu1,0)

19 ,cbind(patient,gamma_c_mu2,1)))

20 colnames(dataset)<-c("patient","random_variable","time")

21

22 #Running generalised linear model for the realisation

23 model_glm <- glm(random_variable~as.factor(time==1)

24 , data=dataset

25 , family=Gamma(link = "log")

26 , maxit=1000)

27

28 #Running GLMM with no sigma time variable

29 model_re_nosig <- gamlss(random_variable~as.factor(time==1)+random(as.factor(patient))

30 , data=dataset

31 , family=GA())

32

33 #Running GLMM with sigma time variable

34 model_re <- gamlss(formula=random_variable~as.factor(time==1)+random(as.factor(patient))

35 , sigma.formula=~as.factor(time==1)

36 , data=dataset

37 , family=GA()

38 , start.from = model_re_nosig #Optional

39 , method=CG(1000))

40

41

42 #Running GEE

43 model_gee<-gee(random_variable~as.factor(time==1)

44 , id=patient

45 , data=dataset

46 , family=Gamma(link = "log")

47 , maxiter=25)

48

49 #Extracting coefficient estimates from each of the models

50 summary_glm<-c( summary(model_glm)$coeff[1]

51 ,summary(model_glm)$coeff[2]

52 ,summary(model_glm)$coeff[3]

53 ,summary(model_glm)$coeff[4]
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54 )

55 summary_gee<-c( summary(model_gee)$coeff[1]

56 ,summary(model_gee)$coeff[2]

57 ,summary(model_gee)$coeff[3]

58 ,summary(model_gee)$coeff[4]

59 )

60

61 invisible(capture.output(

62 summary_re_nosig<-c( summary(model_re_nosig)[1]

63 ,summary(model_re_nosig)[2]

64 ,summary(model_re_nosig)[4]

65 ,summary(model_re_nosig)[5]

66 )

67 ))

68 invisible(capture.output(

69 summary_re<-c( summary(model_re)[1]

70 ,summary(model_re)[2]

71 ,summary(model_re)[5]

72 ,summary(model_re)[6]

73 )

74 ))

75

76 summary_cop<-c( 0,0,0,0 #Blank as this is combined with GJRM function at a later point

77 )

78 summary_cop_n<-c( 0,0,0,0 #Blank as this is combined with GJRM function at a later point

79 )

80

81 #Calculating true simulated estimates for the distribution based on the parameters

82 actuals<-c( log(a*(1/mu1))

83 , -log(a*(1/mu1))+log(a*(1/mu2))

84 , 0

85 , 0

86 )

87

88 #Combining simulation estimates into a single table

89 output<-rbind(summary_glm

90 , summary_gee

91 , summary_re_nosig

92 , summary_re

93 , summary_cop

94 , summary_cop_n

95 , actuals)

96

97 colnames(output)<-c("Time 1 Intercept","Time 2 Intercept","Time 1 SE","Time 2 SE")

98

99 return(output)

100 }

101
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102 simulateCorrelatedVarGJRM <- function(n,a,b,mu1,mu2) {

103

104 set.seed(100)

105

106 #Loading required packages

107 require(GJRM)

108 require(MASS)

109

110 #Simulating bivariate random variable according to functional input

111 w<-rbeta(n,a,b)

112 gamma_c_mu1<-w*rgamma(n,shape=a+b,scale=1/mu1)

113 gamma_c_mu2<-w*rgamma(n,shape=a+b,scale=1/mu2)

114

115 eq.mu.1 <- gamma_c_mu1~1

116 eq.mu.2 <- gamma_c_mu2~1

117 fl <- list(eq.mu.1, eq.mu.2)

118 model_copula <- gjrm(fl

119 , margins = c("GA" , "GA")

120 , BivD = "C0"

121 , data=data.frame(gamma_c_mu1,gamma_c_mu2)

122 , Model="B")

123 model_copula_n <- gjrm(fl

124 , margins = c("GA" , "GA")

125 , BivD = "N"

126 , data=data.frame(gamma_c_mu1,gamma_c_mu2)

127 , Model="B")

128

129 #Extracting coefficient estimates from each of the models

130 #First four models are set as blank and run in a separate function

131 summary_glm<-c( 0,0,0,0

132 )

133 summary_gee<-c( 0,0,0,0

134 )

135 summary_re_nosig<-c( 0,0,0,0

136 )

137 summary_re<-c( 0,0,0,0

138 )

139 summary_cop<-c( model_copula$coefficients[1]

140 , model_copula$coefficients[2] - model_copula$coefficients[1]

141 , summary(model_copula)$tableP1[2] #SE for time 0

142 , summary(model_copula)$tableP2[2] #SE for time 1

143 )

144 summary_cop_n<-c( model_copula_n$coefficients[1]

145 , model_copula_n$coefficients[2] - model_copula_n$coefficients[1]

146 , summary(model_copula_n)$tableP1[2] #SE for time 0

147 , summary(model_copula_n)$tableP2[2] #SE for time 1

148 )

149 actuals<-c( 0
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150 , 0

151 , model_copula$tau #Capturing tau estimate from copula fits

152 , 0

153 )

154

155 output<-rbind(summary_glm

156 , summary_gee

157 , summary_re_nosig

158 , summary_re

159 , summary_cop

160 , summary_cop_n

161 , actuals)

162

163 colnames(output)<-c("Time 1 Intercept","Time 2 Intercept","Time 1 SE","Time 2 SE")

164

165 return(output)

166 }

167

168 results<-list()

169 a=.1+.1*1:20; b=.1+.1*1:20; mu1=1; mu2=2; n=100

170

171 #Code to iterate through various shapes of the bivariate distribution and fit the non-GJRM models

172 i=1; j=1; k=1; l=1; z=1;

173 start=Sys.time()

174 for (i in 1:length(a)) {

175 for (j in 1:length(b)) {

176 for (k in 1:length(mu1)) {

177 for (l in 1:length(mu2)) {

178 set.seed(z)

179 results[[z]] <- rbind(tryCatch({

180 simulateCorrelatedVarNOGJRM(n,a[i],b[j],mu1[k],mu2[l])}

181 , finally={simulateCorrelatedVarNOGJRM(n,a[i],b[j],mu1[k],mu2[l])})

182 , c(a[i],b[j],mu1[k],mu2[l]))

183 print(c(z,length(a)*length(b)*length(mu1)*length(mu2)

184 ,z/(length(a)*length(b)*length(mu1)*length(mu2))

185 , (Sys.time()-start)

186 , (Sys.time()-start) / (z/(length(a)*length(b)*length(mu1)*length(mu2))))

187 )

188 z = z + 1

189 }

190 }

191 }

192 }

193

194 save(results,file="results_NOGJRM.rds")

195

196 results<-list()

197 a=.1+.1*1:20; b=.1+.1*1:20; mu1=1; mu2=2; n=100
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198

199 #Code to iterate through various shapes of the bivariate distribution and fit the GJRM models

200 i=1; j=1; k=1; l=1; z=1;

201 start=Sys.time()

202 for (i in 1:length(a)) {

203 for (j in 1:length(b)) {

204 for (k in 1:length(mu1)) {

205 for (l in 1:length(mu2)) {

206 set.seed(z)

207 results[[z]] <- rbind(tryCatch({

208 simulateCorrelatedVarGJRM(n,a[i],b[j],mu1[k],mu2[l])}

209 , finally={simulateCorrelatedVarGJRM(n,a[i],b[j],mu1[k],mu2[l])})

210 , c(a[i],b[j],mu1[k],mu2[l]))

211 print(c(z,length(a)*length(b)*length(mu1)*length(mu2)

212 , z/(length(a)*length(b)*length(mu1)*length(mu2))

213 , (Sys.time()-start)

214 , (Sys.time()-start) / (z/(length(a)*length(b)*length(mu1)*length(mu2))))

215 )

216 z = z + 1

217 }

218 }

219 }

220 }
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