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Abstract

This thesis contributes to the financial econometric literature in the areas of es-

timation, forecasting, and forecast evaluation, using high frequency financial data.

The thesis focuses on the use of this data to estimate risk parameters commonly

described at lower frequencies, e.g. using intraday data to estimate daily variance or

daily value-at-risk. A common theme in all chapters is that the use of high frequency

data can dramatically improve the solutions to common financial problems.

Chapter 2 demonstrates how a dependent bootstrap can be used to consistently

estimate a wide range of risk measures associated with a daily return, given a sequence

of intraday returns. Estimable parameters include variance, value-at-risk, expected

shortfall, semi-variance, skewness, kurtosis, and robust risk measures. Excluding the

case of variance, all estimators are, to the best of my knowledge, the first of their

kind in the literature: non-parametric, and consistent, in the presence of market

microstructure noise. The theory also contains a new result on the convergence of

bootstrapped parameters that is more generally applicable in the theoretical literature

on dependent bootstraps.

Chapter 2 also demonstrates an application of the proposed estimation method-

ology. The method is used to construct a consistent proxy for value-at-risk which

is used to rank value-at-risk forecast models in a dual-asymptotic framework. The

approach is shown via both simulation and empirical work to exhibit much greater

power to distinguish between competing value-at-risk forecasts than other tests in

the literature.

Chapter 3 extends the empirical application in Chapter 2 to 351 value-at-risk

forecast models, and to a larger dataset which spans two exchanges and two dis-

tinct forecasting intervals. A new class of value-at-risk forecast models based on

the estimation methodology from Chapter 2 are proposed, and are shown to provide

more accurate forecasts than all other models under consideration. More generally,

the results strongly suggest that value-at-risk forecasts that utilise simple time series

models of proxies based on intraday data significantly outperform forecasts which

utilise daily data exclusively.

Chapter 4 proposes a data-based method for ranking variance estimators con-

structed from intraday data. This paper draws from the literature on loss-based

forecast evaluation, but accounts for the inevitable dependencies that occur when

ranking estimators as opposed to forecasts. Under certain conditions, the method

is shown via simulation to exhibit greater power than other methods in the litera-

ture. The chapter also contains a new technical result on the product of near epoch

dependent processes that is widely applicable in the time-series literature.



Chapter 1

Introduction

Many important financial decisions are made precisely once per day. Examples in-

clude the allocation of capital cushions at financial institutions, and the portfolio

re-balancing decisions of a fund manager. These daily decisions are typically based

on some measure of the risk of a financial position. In the above examples, value-at-

risk and variance are the most common measures, respectively.

The daily cycle of decisions is usually taken to imply that these risk measures,

or parameters, are studied at a daily frequency. That is, that they are parameters

of the distribution of a daily return on a risky asset. This distribution is unknown,

and so the risk parameters are not directly observable. Further complicating the

analysis of these parameters is the fact that they appear to change from day to day.

Despite these problems, the importance of these parameters for financial decision-

makers has ensured that a significant portion of the existing financial econometrics

literature is devoted to their estimation and forecast. Building more accurate forecasts

is useful as it allows economic agents to make better-informed financial decisions.

Continuing with the above two examples, improved accuracy in value-at-risk forecasts

enables financial institutions to allocate capital cushions that are large enough to

afford sufficient protection from adverse market movements, yet not so large as to

be wasteful. Improved accuracy in variance forecasts enables fund managers to more

accurately estimate the optimal portfolio weights on any given day. Building more

accurate estimates is useful for many reasons, although two stand out in particular.

First, under certain modelling assumptions, these estimates can be used as proxies for

the true risk parameters in ex post forecast evaluation procedures. Second, accurate

estimates themselves are frequently useful as predictive variables in forecast models.

Analysis of daily risk parameters was significantly altered with the introduction

of high frequency, or intraday, data. Under certain modelling assumptions, consistent

estimation of daily variance1 is now available. The first such estimator, commonly re-

ferred to as “realised variance”, is the sum of squared intraday returns, and was shown

1Application of intraday data to value-at-risk has been less common in the literature, although
is central to this thesis.
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to converge to daily variance in a continuous-time framework by Merton (1980).2 The

consistency of the estimator is achieved as the number of intraday transactions grows.

The benefit of using realised variance as a proxy for true daily variance in a forecast

evaluation context was made very clear by Andersen & Bollerslev (1998), who de-

bunked the findings in several earlier studies that relied on squared daily returns as a

proxy. Further, there is growing evidence that volatility forecasts themselves can be

greatly improved by employing these consistent estimators as predictors.3 The statis-

tical gains provided by realised variance have also been shown to have a measurable

economic benefit. Fleming, Kirby & Ostdiek (2003) extend the results in an earlier

paper4 on this subject and find that a typical risk-averse investor would be willing

to pay 50 to 200 basis points per year to use forecasts based on realised variance,

instead of forecasts based on daily returns, in a volatility timing strategy.

In recent years, the availability of high frequency financial data has massively

increased. For many markets, the limit has been reached: every transaction and

quotation is now available for the interested empiricist. This has spurred a large

collection of econometric papers analysing estimates and forecasts of risk measures

using this high frequency data. The material in this thesis is taken from three papers

that sit firmly within this collection. All three papers are available on the Social

Science Research Network (see footnotes 5, 6, and 7) and are co-authored with my

doctoral supervisor, Christopher Heaton. However, I am the sole author of this thesis,

and any mistakes or omissions are mine alone.

To date, most of the existing literature on high frequency data has focused on

intraday data-based estimators of daily variance. Intraday data-based estimation of

other daily risk parameters has, thus far, been largely overlooked in the literature.

Chapters 2 and 3 address this gap, with a particular focus on value-at-risk. In

Chapter 4, I provide a method for empirically ranking the large number of intraday

data-based variance estimators in the literature.

In the remainder of this introduction, I provide some more technical details on

the contents of these chapters.

Across all three chapters, it is worth making a careful distinction between an

estimate and a forecast. For the purposes of this thesis, an estimate of a parameter

on day t is assumed to be constructed using data, intraday or otherwise, from day t,

and only day t. A forecast of a parameter on day t is assumed to use data from any

day up to and including day t− 1.

A paper titled Bootstrapping Daily Returns5 provides the material for Chapter 2.

This chapter is about the construction of estimators using intraday data. Specifically,

it is demonstrated that a stationary bootstrap can be used to estimate a wide range

2Specifically, in the appendix of that paper.
3See Section 3.4.
4Fleming, Kirby & Ostdiek (2001).
5 Bowers & Heaton (2014a).
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of risk measures associated with the distribution of a daily return. Consistency is

achieved as the number of intraday observations grows. Examples of parameters

which can be estimated by this procedure include variance, quantiles (e.g. value-at-

risk), expected shortfall, semi-variance, skewness, kurtosis, and L-estimators. Except

for the case of variance, which has been studied extensively, the proposed estimators

of these parameters are, to my knowledge, the first of their kind in the literature:

consistent, non-parametric, intraday data-based estimators that are robust to market

microstructure effects. Chapter 2 also contains a new result on the convergence of

bootstrapped parameters. Applications for this class of estimators include parameter

estimation, forecast, and forecast evaluation. Regarding parameter estimation, the

methods discussed in Patton (2011a) are used to demonstrate that the proposed

variance estimator has accuracy comparable to the popular realised kernels estimator

of Barndorff-Nielsen, Hansen, Lunde & Shephard (2008b), and that it significantly

outperforms 5-minute realised variance. Regarding forecast evaluation, Chapter 2

demonstrates how the estimators can be used, in combination with the framework in

Patton & Li (2013), to construct a single coherent framework for the evaluation of

forecast models of any of the aforementioned risk measures. For the specific case of

value-at-risk, this framework is shown to exhibit much greater power to distinguish

between competing forecast models than other methods in the literature.

A paper titled An Empirical Analysis of Value-at-Risk Forecasting Models6 pro-

vides the material for Chapter 3. This chapter extends the value-at-risk application in

Chapter 2 to a much wider range of models and across a much larger dataset. Chap-

ter 3 also introduces a new class of value-at-risk forecasting models based on simple

time series models of the value-at-risk estimator proposed in Chapter 2. These new

models are shown to yield accurate forecasts. More generally, this chapter provides

strong evidence to support the use of high frequency data in value-at-risk forecasts.

A paper titled Ranking Intraday Volatility Estimators Using Empirical Criteria7

provides the material for Chapter 4, which considers the problem of ranking intraday

variance estimators, such as realised variance,8 purely via empirical criteria. This

topic was first considered in Patton (2011a), and then extended in Patton & Sheppard

(2009). These authors overcame the difficulties associated with this problem by

requiring a specific time series model for the true volatility dynamics. In contrast,

the method in Chapter 4 allows for a wide variety of popular time series models,

as well as generalizing some other technical assumptions. Further, this chapter also

contains a new result on the product of near epoch dependent processes which applies

generally in the time-series literature.

Chapters 2 and 3 concern the construction of estimators, and the application of

6 Bowers & Heaton (2014b).
7 Bowers & Heaton (2014c).
8See Andersen & Bollerslev (1998) or Barndorff-Nielsen & Shephard (2002a).
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these estimators to forecast models and forecast evaluation. In contrast, Chapter 4

concerns empirical ranking of estimators. Because of this, I do not provide a literature

review for the thesis as a whole, but rather refer the interested reader to the smaller

reviews contained within each chapter. I also employ variable definitions in these

chapters which are consistent with the prior literature on which each chapter draws,

rather than using a single set of notation for the entire thesis.

I conclude this introduction with a description of the data sources and code, as

these are common to all chapters. All data are sourced from the Thomson Reuters

Tick History database, via an Application Programming Interface provided by the

Securities Industry Research Centre of Asia-Pacific (SIRCA)9 and written in the R

programming language.10 All high frequency data were cleaned following the proce-

dures recommended in Barndorff-Nielsen, Hansen, Lunde & Shephard (2009).11 Some

additional cleaning was deemed necessary for the empirical work in Chapter 3. This

is described in detail within that chapter. All code was written and executed in

Matlab. Extensive use was made of Kevin Sheppard’s Oxford MFE Matlab toolbox,

which is publicly available from http://www.kevinsheppard.com/MFE_Toolbox as

of 2014-04-01. Additional code for estimating the optimal block length of a station-

ary bootstrap, written by Andrew Patton and Kevin Sheppard, was also used and

is publicly available from http://public.econ.duke.edu/~ap172/code.html as of

2014-04-01. Source code is available upon request.

9http://www.sirca.org.au/.
10R Core Team (2014).
11Some minor tweaks were necessary when working with Australian exchange data due to differing

exchange rules.
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Chapter 2

Bootstrapping Daily Returns

2.1 Introduction

In this chapter I propose the use of standard bootstrapping techniques to estimate a

class of interesting functions of the distribution of daily asset returns using intraday

data. This class of functions includes the variance, quantiles such as value-at-risk

(VaR), expected shortfall or conditional VaR, semi-variance, kurtosis, L-estimators,

and other moments (if they exist). In what follows, this approach to estimation will

be referred to as the Bootstrapped Return Method (BRM). Consistency is achieved

as the number of intraday observations grows. The method proposed is robust to

market microstructure effects.

The BRM has a range of possible applications including parameter estimation,

forecasting, and forecast evaluation. In the present chapter, the ability of the BRM

to equal or exceed competing methods in the topics of parameter estimation and

forecast evaluation is demonstrated, while Chapter 3 focuses on the ability of the

BRM to produce superior forecasts.

An intuitive description of the BRM follows: it is well-known that under mild

regularity conditions, the distribution of a sample mean can be consistently and

non-parametrically estimated using a dependent bootstrap. Given a sequence of

intraday returns, the daily return is a re-scaled sample mean, and so its distribution

function can be consistently estimated. In this chapter, this result is extended to

cover Riemann-Stieltjes integrals of uniformly integrable functions over the daily

return distribution, allowing for estimation of a variety of interesting parameters. To

the best of my knowledge, this result is new in the literature. In this chapter I focus

on the stationary bootstrap of Politis & Romano (1994b), but the result holds for

any re-sampling procedure that estimates the distribution with uniform consistency.

It is worth emphasizing that this approach is an unusual application for a boot-

strap. Typically, a bootstrap is used to perform inference on a test statistic that itself

is an estimator of some unknown parameter of interest. For example, Goncalves &

5



Meddahi (2009) use a bootstrap to estimate confidence intervals for the popular

realised variance estimator, where the unknown parameter of interest is quadratic

variation. In the present paper, the “test statistic” is a daily return, the probability

limit of which is not of direct interest. However functions of the distribution of this

“test statistic” are of interest, and so the application of a bootstrap is appropriate.

The chapter proceeds as follows: In Section 2.2 the modelling assumptions are

described and the main theoretical statement is presented and proven. This section

also contains a proposition regarding convergence of integrals that, to the best of my

knowledge, is new in the literature. In Section 2.3 I provide examples where the theory

applies. In Section 2.4 the empirical ranking methods proposed in Patton (2011a) are

used to demonstrate that the BRM variance estimator strongly outperforms 5-minute

realised variance and has performance comparable to realised kernels.12 These conclu-

sions are also supported by simulations. In Section 2.5 I describe a unified framework

for evaluating forecast models with the BRM, and then consider its application to

VaR. Both simulation and empirical work are used to demonstrate that the frame-

work has much greater power to distinguish between competing forecast models than

other methods in the literature. In Section 2.6 I summarize the results and discuss

other possible applications and extensions of the BRM. Appendix 2.B discusses some

important differences between discrete-time and continuous-time modelling, while

Appendix 2.C provides a brief review of the stationary bootstrap.

2.2 Modelling Assumptions and Theory

This is not the first paper to explore the idea of resampling intraday random vari-

ables. Goncalves & Meddahi (2009) employ the iid bootstrap of Efron (1979) and

the Wild bootstrap of Wu (1986) to estimate confidence bounds for the popular re-

alised variance estimator.13 Note that both these bootstrap methodologies require

an independent sequence.

The present chapter differs significantly in two ways. First, as discussed in Sec-

tion 2.1, I am not concerned with the estimation of confidence bounds for an esti-

mator. Rather, I am interested in direct estimation of a range of parameters. This

is an unusual application for resampling methods, although it poses no additional

theoretical challenges once one accepts that a daily return can be conceptualized as

a test statistic. Second, I aim to use as much information as possible in the con-

struction of the estimators. Thus it is apparent that a modelling framework that can

accommodate dependence, and preferably heterogeneity, in the intraday sequence is

needed.14

12Barndorff-Nielsen, Hansen, Lunde & Shephard (2008a).
13See also Dovonon, Goncalves & Meddahi (2013) and Goncalves, Hounyo & Meddahi (Forthcom-

ing).
14Hwang & Shin (2013) have independently proposed using a dependent bootstrap with intraday
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Let Yt,n, n = 1, ..., N denote sequential, non-overlapping increments in some ob-

servable intraday process from any day t, such that
∑

n Yt,n = Rt,N , where Rt,N

denotes a daily return. Let ∆ = N−1, and assume:

Yt,n =
√

∆Xt,n. (2.1)

Consider the following modelling assumptions:

Assumptions 2.1

1. for r > 2 and δ > 0,

(a) Xt,n is L2+δ near epoch dependent (NED) of size −1 on a strong mixing

base of size −(2 + δ)(r + δ)/(r − 2), for any N ,

(b) E |Xt,n|r+δ <∞ and EX2
t,n > 0, ∀n,

2. EXt,n obeys the homogeneity condition described in Goncalves & White (2002)15

and additionally E
∑

nXt,n = 0, and

3. pN → 0 and Np2N → ∞, as N → ∞, where pN denotes the parameter of the

geometric distribution used in construction of the stationary bootstrap indices.

Remark 2.1 Assumption 2.1.1a allows for intraday increment sequences that exhibit

weak dependence. This is necessary since microstructure effects typically induce

serial correlation at high frequencies. Assumptions 2.1.1a, 2.1.1b, and 2.1.2 allow for

heterogeneity in the intraday sequence, as well as infinite higher order moments. This

is important since the variance of intraday sequences typically varies throughout the

day. Both assumptions are needed for the theorems that follow since they allow a

bootstrap central limit theorem to be invoked for each daily return.

Remark 2.2 The literature on high frequency financial data typically employs a

continuous-time modelling framework. Specifically, the most popular assumption

for the intraday price process is that of a continuous-time semi-martingale plus mi-

crostructure noise term.16 In contrast, Assumption set 2.1 is a discrete-time frame-

work. A discussion of how Assumption set 2.1 and Equation (2.1) compare to the

commonly employed continuous-time framework is interesting, although not neces-

sary for the theory to follow. The interested reader is referred to Appendix 2.B at

the end of this chapter.

data. However, their results pertain only to the construction of confidence intervals for a specific
bias-corrected realised variance estimator and only under very specific modelling assumptions for
microstructure effects.

15Let µn = EXn and let µ̄N =
∑N

n=1 µn. Then the homogeneity condition is satisfied if

N−1
∑N

n=1(µn − µ̄N )2 is o(N
1
2 ).

16See, for example, all references in Footnote 30, excluding Merton (1980).
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Remark 2.3 Assumptions 2.1.1a and 2.1.1b, along with Equation (2.1), imply the

weak dependence in the intraday sequence is modelled in observation time, not calen-

dar time. This is useful as it implies the assumption set is robust to intraday sequences

that exhibit non-uniform partitions in calendar time, as long as the vanishing vari-

ance implied by Equation (2.1) holds. However, there is an additional subtlety worth

emphasizing: Assumption 2.1.1a allows for arbitrary dependence between Yt,n and

Yt,n+s for finite integers s, but it implies asymptotic independence as s → ∞. This

means that if the sequence Yt,1, ..., Yt,N is mapped onto a finite calendar interval -

such as is implicitly done when employing continuous time mathematics - then the

degree of dependence between any two distinct (in calendar time) increments will

vanish as N → ∞. This is a typical approach to modelling microstructure effects.

For example, Barndorff-Nielsen et al. (2008a) similarly tie the degree of dependence

to observation time such that the dependence between any two distinct (in calendar

time) noise terms vanishes as the sampling frequency increases. Further, intraday

data support this assertion. When N is small, as it is for illiquid equities, one can

observe significant sample correlations between intraday returns separated by hours

of calendar time. In contrast, when N is large, 5 minutes is typically a sufficient span

for sample correlations between intraday returns to be statistically insignificant. The

downside to this modelling assumption is that it implies that asymptotically, the

dependence between |Yt,n|p and |Yt,n+s|p vanishes as s→∞. There is some evidence

against this within the data, e.g. the autocorrelation function of some squared in-

traday return sequences is persistent. Interestingly, the simulations in Section 2.4

suggest the method proposed in this chapter may be robust to such effects. A more

thorough theoretical treatment of this issue is left for future work.

Remark 2.4 Assumption 2.1.2 explicitly assumes daily returns are mean zero, al-

though it allows for some heterogeneity in the first moment within the day. ERt,N = 0

is probably violated in practice. However, typically the location parameter of a daily

return is so close to zero relative to the dispersion parameter that assuming a zero

mean is of little consequence. In the present case, the assumption is necessary for

identification because the scaling term in Equation (2.1) prevents consistent estima-

tion of ERt,N . It is worth emphasizing that assuming ERt,N = 0 is common for these

types of problems.17 A discussion on why this assumption is preferable to employing

a noisy estimator of ERt,N can be found in Ait-Sahalia et al. (2005). It is also worth

pointing out that for estimation of naturally centred characteristics, such as vari-

ance, the zero-mean assumption is irrelevant. It is, of course, relevant for estimation

of non-centred parameters, e.g. quantiles.

Remark 2.5 Equation (2.1) implies the variance of each intraday increment vanishes

in N . It might be argued that the existence of an exchange regulated minimum

17See Merton (1980) or Ait-Sahalia, Mykland & Zhang (2005).
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tick size implies that placing a strictly positive lower bound on the variance of an

increment would be sensible. In practice, a close examination of real-world equity

data suggests that as N increases to ultra-high frequencies, the probability of a new

increment being exactly equal to zero increases towards unity. This implies that a

framework in which the variance of increments vanishes asymptotically is appropriate.

Further, vanishing variance is appropriate for sequences that are not affected (or

minimally affected) by the exchange regulated minimum tick size; e.g. a volume-

weighted average of the best bid and best ask series.

A second argument against vanishing variance is the possibility of jumps in the in-

traday sequence. Since I work in discrete time, rather than continuous, the definition

of “jump” needs to be treated carefully. Consider the following two possibilities:

1. a jump is modelled as a spike in variance over an interval of time where the

interval is bounded below by a strictly positive constant, or

2. a jump is modelled as a discrete price jump at a fixed point in time.

The first definition is explicitly allowed for by the modelling assumptions of this

chapter since in discrete time the result is simply a heteroskedastic sequence. This

model is not unreasonable, as jumps are typically caused by surprise announcements

to which some market participants may be slower to respond than others. Further,

recent research suggests that bursts of volatility, such as are described by the first def-

inition, are often incorrectly identified as jumps as described by the second definition,

and that true jumps are relatively rare.18

If the second definition obtains, then, given a jump, the variance of at least one

intraday return will not vanish for any N . This violates the modelling assumptions

since Assumption 2.1.1b implies Xt,n must have non-zero, finite variance, and hence

Equation (2.1) implies the variance of Yt,n must vanish as N grows.19 Given this,

consistency will not obtain. Interestingly, this does not appear to cause problems in

practice. Empirically, the variance estimator proposed in this chapter is close in value

to the popular realised kernels estimator of Barndorff-Nielsen et al. (2008a). This is

true irrespective of the presence of jumps.20 In contrast, the variance estimator

proposed in this chapter deviates significantly from the bipower variation estimator

of Barndorff-Nielsen & Shephard (2004) on days that contain jumps, and in a fashion

similar to realised kernels. More detail, as well as evidence to support this claim, can

be found in Appendix 2.A.

Next, let Y ∗t,n denote a stationary bootstrap draw21 from Yt,n, n = 1, ..., N , and

18Bajgrowicz, Scaillet & Treccani (2013).
19Intuitively, the theory relies on no single intraday increment dominating (in terms of variance)

the entire sequence of intraday increments.
20Jumps are detected following Barndorff-Nielsen & Shephard (2006).
21See Patton, Politis & White (2009) for a description of a data-driven method to estimate band-

width.

9



let R∗t,N =
∑

n Y
∗
t,n. Also, for r ∈ R, let FN(r) = P(Rt,N ≤ r) and F ∗N(r) =

P∗(R∗t,N − E∗R∗t,N ≤ r) denote unconditional and conditional (respectively) cumula-

tive distribution functions (cdf), where E∗ and P∗ denote expectation and probability

conditional on the observable sequence Yt,n, n = 1, ..., N , and, as is well known for

the stationary bootstrap, E∗R∗t,N ≡ Rt,N .

Proposition 2.2.1 Given Assumption set 2.1 and Equation (2.1), it follows that:

sup
r∈R
|F ∗N(r)− FN(r)| P−→ 0, as N →∞. (2.2)

Proof The proof of Proposition 2.2.1 is immediate since the modelling assumptions

for Xt,n match those of Theorem 2 of Goncalves & de Jong (2003), and, by construc-

tion, Rt,N = N
1
2 X̄N , with EX̄N = 0. �

Remark 2.6 The proof of Proposition 2.2.1 relies on Central Limit Theorems. That

is, both FN(r) and F ∗N(r) are converging to the same Normal limiting distribution.

This implies that asymptotically, the BRM is estimating parameters of Normal ran-

dom variables. Nonetheless, I claim the BRM yields nonparametric estimates. The

basis for this claim lies in finite sample arguments. Specifically, it has been established

that the stationary bootstrap22 of test statistics such as the sample mean is second-

order correct in an Edgeworth expansion.23 This implies that in finite sample, the

BRM captures not only the Normal limiting function, but also the next term which

is of order O(N−1/2). The remaining terms in the expansion which are not captured

are of order o(N−1/2). Stated simply, the BRM is able to capture deviations from

Normality in finite sample and so there is no need to assume that daily returns are

Normal. In this sense, the BRM is nonparametric. In contrast, employing an existing

consistent estimator of daily variance, such as realised kernels, in combination with a

Normal assumption, would result in a fully parametric estimator of a characteristic of

the daily return distribution. Such an estimator would be invalid for the application

in Section 2.5, as it would unfairly advantage any forecasting models that employ the

same parametric assumption. More to the point, such an estimator would very likely

be less accurate than the BRM when the daily return violates Normality.

Proposition 2.2.1 states that the difference between the conditional bootstrap cdf

and the true cdf of a daily return converges uniformly to 0 in probability. But much

more is also true. Let q(λ, F ) = inf{r ∈ R|λ ≤ F (r)} denote the quantile function of

the cdf F :

Proposition 2.2.2 Given Assumption set 2.1 and Equation (2.1), it follows that:

|q(λ, F ∗N)− q(λ, FN)| P−→ 0, as N →∞, (2.3)

22Along with several other block bootstrap procedures.
23Lahiri (2003) Chapter 6.
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and for any Borel function g : RK → R locally continuous at its argument:

|g(q(λ1, F
∗
N), ..., q(λK , F

∗
N))− g(q(λ1, FN), ..., q(λK , FN))| P−→ 0, (2.4)

as N →∞.

Proof Discussion of Equation (2.3) is provided in Politis & Romano (1994b) and

Goncalves & de Jong (2003), and proof can be found in Chapter 1 of Politis, Romano

& Wolf (1999). Equation (2.4) follows from an application of Slutsky’s Theorem. �

Proposition 2.2.2 motivates the use of the BRM to estimate many interesting

characteristics of the daily return distribution, some of which are discussed below.

However, it does not provide a theoretical justification for use of the BRM to estimate

moments, or, more generally, integrals over the cdf. For that the following proposition

is required which, to my knowledge, is new in the literature:

Proposition 2.2.3 Consider a function g(r) : R→ R that is bounded over any finite

interval and has bounded total variation over any finite interval. If g(r) is uniformly

integrable with respect to FN(r) and F ∗N(r), then Equation (2.2) is sufficient for:

I(g) =

∣∣∣∣∫ ∞
−∞

g(r)dF ∗N(r)−
∫ ∞
−∞

g(r)dFN(r)

∣∣∣∣ P−→ 0, as N →∞. (2.5)

Proof : ∀a ∈ R:

I(g) ≤
∣∣∣∣∫ a

−a
g(r)dF ∗N(r)−

∫ a

−a
g(r)dFN(r)

∣∣∣∣+

∣∣∣∣∫ −a
−∞

g(r)dF ∗N(r)

∣∣∣∣
+

∣∣∣∣∫ −a
−∞

g(r)dFN(r)

∣∣∣∣+

∣∣∣∣∫ ∞
a

g(r)dF ∗N(r)

∣∣∣∣+

∣∣∣∣∫ ∞
a

g(r)dFN(r)

∣∣∣∣ . (2.6)

Applying integration by parts to the first right-hand-side term, and recalling the

definition of uniform integrability, it follows from Equation (2.6) that ∀ε > 0, ∃a ∈ R
such that 0 < a <∞ and:

I(g) ≤ 2 sup
r∈[−a,a]

|g(r)| sup
r∈R
|F ∗N(r)− FN(r)|+

∣∣∣∣∫ a

−a
(F ∗N(r)− FN(r)) dg(r)

∣∣∣∣+ ε

≤

(
2 sup
r∈[−a,a]

|g(r)|+ V a
−a(g)

)
sup
r∈R
|F ∗N(r)− FN(r)|+ ε,

(2.7)

where the second inequality follows from the definition of the Riemann-Stieltjes in-

tegral, and V a
−a(g) is the total variation of g(r) over [−a, a]. Both supr∈[−a,a] |g(r)|

and V a
−a(g) are bounded by assumption, so the required result follows from Equation

(2.2). �

The following corollary will also prove useful:
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Corollary 2.2.4 Under the assumptions of Proposition 2.2.3, ∀(a, b) ∈ R2

∣∣∣∣∫ b

a

g(r)dF ∗N(r)−
∫ b

a

g(r)dFN(r)

∣∣∣∣ P−→ 0, as N →∞. (2.8)

Proof If g(r) satisfies the assumptions of Proposition 2.2.3 then so must g(r)I{a <
r < b} where I{·} is the indicator function, and the result follows from Proposi-

tion 2.2.3. �

Choose g(r) = |r|q. It is well known that the existence of moment number q + δ

on the underlying process, for any δ > 0, is sufficient for uniform integrability of

g(r).24 It immediately follows that Assumption 2.1.1b is sufficient for the bootstrap

to consistently estimate any absolute moment up to the second of the underlying

distribution. For the special case of the variance of the underlying distribution, this

result was already known, see Goncalves & de Jong (2003) Theorem 1. However note

the difference in the assumption set: Goncalves & de Jong (2003) use assumptions

2.1.1a to 2.1.3 to obtain their result. In contrast, I require only the standard bootstrap

distributional result, i.e. Equation (2.2). It follows that if the sufficient conditions for

Equation (2.2) are weakened in future work, Proposition 2.2.3 need not be revisited.

2.3 Examples

In this section, several examples of parameters that can be estimated by the BRM are

provided, and methods for building the corresponding estimators are described. All

the estimators discussed below are both non-parametric and consistent as N → ∞.

To the best of my knowledge, this makes them the first of their kind in the literature,

with the exception of variance (Example 3).

Example 1 (quantiles): As discussed in Proposition 2.2.2, quantiles can be es-

timated consistently. From a computational perspective, a quantile can be obtained

by sorting R∗t,N,b − Rt,N , b = 1, ..., B in ascending order then choosing the bλBc ele-

ment. In what follows, this is referred to as the BRM quantile estimator and, since

VaR is just a quantile, it will be used extensively in Section 2.5 to proxy true VaR.

Importantly, since the stationary bootstrap is second-order correct in an Edgeworth

expansion, the BRM quantile estimator is non-parametric (as well as consistent), and

so is the first estimator of its kind in the literature.25 Prior to the BRM quantile

estimator, a parametric assumption was necessary to consistently estimate VaR, e.g.

one might employ a consistent and non-parametric estimator of daily variance and

then (parametrically) transform it to VaR using the inverse Normal function.

Example 2 (expected shortfall): Choose g(r) = r in Corollary 2.2.4 and set

a = −∞ and b = q(λ, FN), where, for simplicity, assume q(λ, FN) is locally continuous

24Davidson (1994) Theorem 12.10.
25See Remark 2.6 for more detail.
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at λ. The uniform integrability requirement is guaranteed by Assumption 2.1.1b.

Corollary 2.2.4 then guarantees consistent estimation of expected shortfall,26 also

known under these conditions as conditional-VaR or tail-VaR. From a computational

perspective, one simply identifies the λ-quantile, as in Example 1, and then takes

the average of all centred, re-sampled returns that lie below the quantile. Given

the recent proposal of the Basel committee to switch metrics from VaR to expected

shortfall, this example could prove important for future work.27 It is worth adding

that there is a prevalent view in industry that it is virtually impossible to obtain: 1)

a consistent and non-parametric estimator of expected shortfall, and 2) a method of

empirically verifying an expected shortfall forecast via a backtest.28 As this chapter

demonstrates, both views are incorrect.29

Example 3 (variance): Choose g(r) = r2, a = −∞, and b = ∞ in Propo-

sition 2.2.3 to demonstrate that the BRM variance estimator is consistent. The

uniform integrability requirement is guaranteed by Assumption 2.1.1b. From a com-

putational perspective, apply the sample variance formula to R∗t,N,b, b = 1, ..., B; note

that the ERt,N = 0 assumption is not required for this estimator as the parameter is

naturally centred. To the best of my knowledge, this is the only risk measure where

other consistent and non-parametric estimators using intraday data already exist in

the literature.30

Example 4 (downside variance): Choose g(r) = r2, and set a = −∞, and b = 0.

The uniform integrability requirement of Corollary 2.2.4 is guaranteed by Assumption

2.1.1b. The corollary then guarantees consistent estimation of semivariance, also

known as downside risk or downside variance. Harry Markowitz has been a consistent

advocate of the semivariance as a measure of risk since 1959.31 Taking the square root

of downside variance yields a consistent estimator for semi-deviation (via Slutsky’s

Theorem). Note, if we instead choose b ∈ R, then this is known as target semi-

deviation. From a computational perspective, simply take the sample variance of all

centred re-sampled daily returns less than b, and then take the square root if desired.

Obviously, for upside risk, set b =∞ and a = 0.

Example 5 (higher moments): Set g(r) = r3 or g(r) = r4, in Proposition 2.2.3.

Assuming the uniform integrability assumption is satisfied, the BRM can then be

used to estimate Skewness or Kurtosis consistently,32 given appropriate scaling by

26For more detail on expected shortfall, see Acerbi & Tasche (2002).
27Basel Committee On Banking Supervision (2012).
28For example Rowe (2012).
29See Section 2.5 for more detail on how to empirically verify an expected shortfall forecast via

backtest.
30 A short-list of other papers proposing intraday data-based variance estimators includes Merton

(1980), Zhou (1996), Andersen & Bollerslev (1998), Barndorff-Nielsen & Shephard (2002a), Zhang,
Mykland & Ait-Sahalia (2005), Christensen & Podolskij (2007), Barndorff-Nielsen et al. (2008a),
and Jacod, Li, Mykland, Podolskij & Vetter (2009).

31Markowitz (1991).
32To compute the statistic, simply apply the corresponding sample formula to the re-sampled
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a consistent variance estimator - see Example 3. As discussed in Example 1, since

the stationary bootstrap is second-order correct in an Edgeworth expansion, these

estimates are still of interest, even though asymptotically FN(r) and F ∗N(r) both

converge to the Normal. Note, Skewness and Kurtosis are frequently provided as

interesting summary statistics for a dataset of daily returns.33

Example 6 (L-estimators): Proposition 2.2.2 guarantees consistent estimation

of, for example, linear combinations of order statistics; i.e. L-estimators.34 Examples

include the λ-quantile range, the median absolute deviation, or numerous other ro-

bust estimators of scale and asymmetry.35 From a computational perspective, apply

the appropriate transformation to the quantile estimators, which are constructed as

in Example 1. These estimators may be of interest to investors wishing to inves-

tigate tail-thickness or asymmetry of the distribution of daily returns, when doubt

exists over the existence of the third and fourth moments and therefore the uniform

integrability requirement in Example 5 above.

2.4 Estimating Daily Variance

In this section, the performance of the BRM variance estimator is compared to re-

alised variance and realised kernels36 using both simulations and the empirical meth-

ods proposed in Patton (2011a). Given an appropriate choice of kernel function and a

particular continuous-time semi-martingale plus noise modelling framework, realised

kernels is known to be consistent and have asymptotic variance equal to the fully

parametric case. The implication is that realised kernels likely provides an upper

bound on the performance one might expect from a fully non-parametric estimator.

5-minute realised variance is considered due to its considerable popularity.

It is worth emphasizing that the purpose of this section is not to argue that the

BRM variance estimator outperforms all other approaches.37 This would be a diffi-

cult task indeed. Rather, the aim is to demonstrate that for a particular task that

has received comprehensive treatment in the literature, the BRM approach has per-

formance comparable to the best-case non-parametric estimator. Strong performance

in this specific application of the BRM implies that we might expect to see strong

performance when applying the BRM to other, less explored, characteristics of the

distribution (such as quantiles - see Section 2.5).

Evaluation of the BRM variance estimator, realised variance, and realised kernels

is done in two ways. First, in Section 2.4.1, I evaluate the estimators in simulated

daily returns.
33See for example Andersen, Bollerslev, Diebold & Ebens (2001) table 1.
34Huber (1981).
35Hogg (1974).
36Barndorff-Nielsen et al. (2008a).
37See Footnote 30 for a list of estimators.
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environments that adhere to Assumption set 2.1 and Equation (2.1), as well as simu-

lated environments that adhere to the popular continuous-time semi-martingale plus

noise framework.38 Second, in Section 2.4.2, I evaluate the estimators using the

empirical methods proposed in Patton (2011a) across 20 of the largest (by market

capitalization) equities listed on the New York Stock Exchange.

2.4.1 Simulations

Six environments are simulated to evaluate the proposed variance estimator. The

first four environments satisfy Assumption set 2.1 and Equation (2.1), hence the

notation from Section 2.2 is used to describe them (the t subscript is dropped as it

is not relevant). The final two environments are a form of the continuous-time semi-

martingale plus noise model, and so are misspecified for the methodology proposed

in this chapter (see Appendix 2.B for more detail). However, I include them to

demonstrate the surprising fact that the BRM still works well in the presence of this

model when common specifications of the variance of the noise process are employed.

I describe these last two environments using p̃s to denote the latent log-price and ps

to denote the observed log-price.

The environments are simulated for N = {390, 1170, 4680, 23400}, corresponding

to 1 minute, 20 second, 5 second, and 1 second increments respectively on an exchange

opened for 61
2

hours. Their definitions follow:

SE1 Xn = βXn−1 + un, where β = −0.5, and un|Wn
iid
v N (0,Wn), where Wn is

a random walk independent of un, with the variance of each increment set to

0.01∆W 2
0 and W0 = 0.0000897,

SE2 identical to SE1 except un =
√

0.0000897ũn, where ũn denotes iid draws from

the Skewed-T distribution of Hansen (1994) with degrees of freedom 3 and skew

parameter −0.5 (note, by construction this distribution has a zero mean and

unit variance),

SE3 Xn = un + βun−1, where β = −0.5, and un is defined as in SE1, but now

W0 = 0.000158,

SE4 identical to SE3 except un =
√

0.000158ũn, where ũn is defined as in SE2,

SE5 23401 observations39 of ps are simulated using an Euler discretization of the

continuous-time model dp̃s = 1
100
νs

(
κ1dW1,s + κ2dW2,s +

√
1− κ21 − κ22dW3,s

)
,

where Wi,s denotes a Wiener process, with the GARCH diffusion from Patton

(2011a), Goncalves & Meddahi (2009) and Andersen & Bollerslev (1998), i.e.

38See Appendix 2.B.
39The lower sampling frequency datasets are obtained by skipping the appropriate number of

simulated observations.
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dν2s = 0.035(0.636− ν2s )dt+ 0.144ν2sdW1,s, where κ1 = −0.576 and κ2 = 0, and

where ps = p̃s + εs with εs
iid
v N (0, σ2

ε ), where the variance of the microstruc-

ture noise term is calculated following Ait-Sahalia et al. (2005) and Huang &

Tauchen (2005), see for example Patton (2011a) equation 20, and

SE6 identical to SE5 except with the two factor affine diffusion from Andersen,

Bollerslev & Meddahi (2005) and Bollerslev & Zhou (2002): ν2t = ν21,t + ν22,t,

where dν21,t = 0.5708(0.3257−ν21,t)dt+0.2286ν1,tdW1,t and dν22,t = 0.0757(0.1786−
ν22,t)dt+ 0.1096ν2,tdW2,t, where κ1 = 0.9 and κ2 = −0.4; see also Chernov, Gal-

lant, Ghysels & Tauchen (2003) .

SE1 is an AR(1) process with Normal errors. The presence of the random walk

component ensures the variance of the errors is heterogenous. SE2, on the other

hand, has homogenous variance, but replaces the Normal errors with a Skewed-T

error. SE3 and SE4 replicate SE1 and SE2, except the AR(1) structure is replaced

with an MA(1) structure. Interestingly, this implies that both SE1 and SE3 violate

Assumption 1a, since the autocorrelation function of squared intraday returns does

not vanish. This is a deliberate modelling choice designed to test how robust the

BRM methodology is to long memory in the square of intraday returns, which is a

valid concern for high frequency financial data.40

When simulating an AR(1), I “warm-up” using ` = 100 observations, u−99, ..., u0,

where for simplicity I assume Vun = W0, n ≤ 0, i.e. constant variance in the warm-up.

Also, let:

β2
[a,b] =

(
b∑

j=a

βj

)2

. (2.9)

It is straightforward to show that the true variance of a daily return for SE1 and SE2

is:

Vrt,N = ∆

(∑̀
n=1

β2
[n,N+n−1]Vu0 +

N∑
n=1

β2
[0,N−n]Vun

)
, (2.10)

while true variance of a daily return for SE3 and SE4 is:

Vrt,N = ∆

(
VuN + β2Vu0 + (1 + β)2

N−1∑
n=1

Vun

)
. (2.11)

The coefficients for SE1 to SE4 are chosen to provide a challenging sequence of

heterogeneous increments that exhibits strong negative serial correlation, and (for the

Skewed-T distribution) negatively-skewed, fat tails. The variances of the residuals of

SE1 to SE4 are chosen to yield an annualized return volatility of approximately 10%.

For each of these simulated models Table 2.1 provides the Mean Absolute Error

40The continuous-time modelling assumptions for realised kernels explicitly allow for many kinds
of dependence, including long-memory, in the volatility process.
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(MAE) for the BRM variance estimator, realised kernels, and realised variance at the

5 minute sampling frequency. MAE is estimated using 5000 iterations over each of

the above simulated environments, for each sampling frequency N . The results are

scaled so the best performing estimator has unit MAE. The bias of each estimator is

also investigated, and to this end, Table 2.2 provides the average percentage deviation

of each estimator from the true variance, i.e. 100(ln θ̂ − lnθ). Average percentage

deviation is a more intuitive measure of bias in these simulations since true variance

is small in magnitude and not constant.

As can be seen in Table 2.1, for SE1 to SE4, the BRM variance estimator performs

almost as well as realised kernels, and given SE1 and SE2, actually outperforms it

for large N , likely because the kernel function in realised kernels is optimized for a

modelling framework where the variance of increments does not vanish in N . This

is particularly encouraging as the stationary bootstrap is known to be less efficient

than many other block bootstrap methods.41 The similar performance is not surpris-

ing, as the BRM variance estimator, when using a stationary bootstrap, can itself

be reformulated as a kernel estimator (asymptotically); albeit the kernel function ex-

hibits different properties to those required by realised kernels.42 Note that the BRM

variance estimator does not appear to be negatively affected by the long memory in

squared returns present in SE1 and SE3.

Table 2.2, for SE1 to SE4, demonstrates that bias is something of a problem

for the BRM variance estimator, although it is mostly alleviated by large N . This

is a well-known issue with the stationary bootstrap variance estimator, as the bias

vanishes at rate O(1/b), where b is the average block length.43 The implication is that

further reductions in the bias of the BRM variance estimator, and consequently the

MAE (and MSE), are possible through the use of bootstrapping procedures with bias

that vanishes at faster rates. For example, the tapered block bootstrap of Paparoditis

& Politis (2002) is known to have a bias that vanishes at rate O(1/b2). However, I

leave investigation of the performance of other block bootstrap procedures to future

work.

As discussed, SE5 and SE6 are misspecified for the BRM variance estimator. Sur-

prisingly, Table 2.1 indicates that its MAE is not that far off realised kernels, and

Table 2.2 indicates that the impact of the model misspecification on the bias is only

visible when N = 23400. It is interesting that the BRM variance estimator consis-

tently outperforms 5-minute realised variance, even for large N , which, as discussed

in Appendix 2.B, is the scenario in which the most errors accumulate. Admittedly,

the main problem faced by 5-minute realised variance in SE5 and SE6 is the simu-

lation design which, following Patton (2011a), ensures the bias for 5-minute realised

41Lahiri (1999) as well as the corrections provided in Nordman (2009).
42Politis & Romano (1994b) Lemma 1.
43Lahiri (1999).
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Table 2.1: Mean Absolute Error of Daily Variance Estimators

SE1 SE2

N RV5 RK BRMVE N RV5 RK BRMVE

390 1.67 1.00 1.47 390 1.22 1.00 1.12

1170 1.15 1.00 1.26 1170 1.03 1.00 1.04

4680 1.35 1.00 1.04 4680 1.10 1.00 1.00

23400 1.99 1.09 1.00 23400 1.46 1.08 1.00

SE3 SE4

N RV5 RK BRMVE N RV5 RK BRMVE

390 4.11 1.00 1.41 390 2.19 1.00 1.11

1170 2.03 1.00 1.39 1170 1.29 1.00 1.08

4680 1.48 1.00 1.28 4680 1.15 1.00 1.06

23400 1.85 1.00 1.18 23400 1.39 1.00 1.02

SE5 SE6

N RV5 RK BRMVE N RV5 RK BRMVE

390 1.53 1.00 1.22 390 1.56 1.00 1.23

1170 1.91 1.00 1.36 1170 1.89 1.00 1.35

4680 2.57 1.00 1.75 4680 2.57 1.00 1.73

23400 3.62 1.00 2.53 23400 3.63 1.00 2.50

RV5 = 5-minute realised variance; RK = realised kernels; BRMVE = Bootstrap Return Method
variance estimator. Mean Absolute Errors are scaled so that for any row the smallest is equal to
unity.

variance is 20%, even when N = 23400. This value is reflected in Table 2.2.

2.4.2 Empirical

Next, I compare the performance of the BRM variance estimator, realised kernels,

and 5-minute realised variance using empirical data from the New York Stock Ex-

change. A visual of how the BRM variance estimator compares to realised kernels is

provided in Figure 2.1, which presents the time-series of both estimators at different

levels of zoom. When viewing 4 years of data, the two time-series are visually indis-

tinguishable. Even when zoomed in on the seven months of the global financial crisis

period, the two series track each other closely. It is only at the highest level of zoom

provided (a two month interval) that the differences become easily distinguishable.

For the most part, the two series appear to track each other closely. This is promising,

as it implies the BRM procedure, when used to estimate variance, closely tracks one

of the most accurate and popular intraday data-based variance estimators (realised
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Table 2.2: Average Percentage Deviation of Daily Variance Estimators

SE1 SE2

N RV5 RK BRMVE N RV5 RK BRMVE

390 22.7 -2.14 7.88 390 12.5 -11.7 -2.45

1170 6.97 -1.95 7.18 1170 1.74 -7.34 1.73

4680 0.64 -1.16 5.03 4680 -1.47 -3.39 2.86

23400 -1.02 -0.51 3.34 23400 -1.61 -1.42 2.25

SE3 SE4

N RV5 RK BRMVE N RV5 RK BRMVE

390 55.8 3.16 8.73 390 45.0 -5.21 -0.38

1170 22.0 0.50 8.99 1170 14.5 -6.38 1.83

4680 5.30 -0.70 6.47 4680 2.33 -3.01 4.13

23400 -0.21 -0.44 4.51 23400 -1.34 -1.91 2.99

SE5 SE6

N RV5 RK BRMVE N RV5 RK BRMVE

390 21.1 -0.52 8.03 390 20.8 -0.44 7.89

1170 20.8 -0.12 8.61 1170 20.5 -0.20 8.30

4680 20.7 0.56 8.50 4680 20.7 0.35 8.14

23400 20.8 0.88 11.6 23400 21.1 0.96 11.7

RV5 = 5-minute realised variance; RK = realised kernels; BRMVE = Bootstrap Return Method
variance estimator. The table provides the average deviation of each estimator from true variance,
expressed as a percentage.
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kernels). This suggests we might expect the BRM procedure to similarly provide

good estimates when applied to other parameters of the daily return distribution.

Figure 2.1: Three plots of the variance estimators at different levels of zoom. The solid line is the
BRM variance estimator, the dashed line is realised kernels.

Although they closely resemble each other, it is still interesting to test whether

one estimator is more accurate than another in a probabilistic framework. A theo-

retical comparison is not feasible due to differences in the modelling framework of

the BRM variance estimator versus realised kernels and 5-minute realised variance.

However, an empirical procedure for comparing intraday data-based variance estima-

tors is proposed in Patton (2011a), and a large-scale application of this procedure is

undertaken in Liu, Patton & Sheppard (2013). I employ essentially the same method

as Liu et al. (2013). In particular, I utilise the Model Confidence Set44 methodology

of Hansen, Lunde & Nason (2011) with the QLIKE loss function, and employ one-

44A description of this procedure can be found in Chapter 3 Appendix 3.A.
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Table 2.3: Estimators in the Model Confidence Set (QLIKE)

Estimator Total

5-minute realised variance 2

realised kernels 16

BRM Variance Estimator 20

step-ahead 30-minute realised variance as a proxy for the true variance. Importantly,

the theoretical results in Patton (2011a) demonstrate that in large sample, the rank-

ings obtained using this proxy are consistent to those that would be obtained using

true variance. For robustness, I also consider the MSE loss function.

Every intraday transaction from 1st January, 2004 to 31st December, 2011 is used,

resulting in just over 2000 daily observations for each estimator. I analyse 20 of the

largest ticker codes (by market capitalization) over this interval.45 For these assets,

one might expect anywhere between 3000 and 10000 distinct transactions46 on any

given day.

Table 2.3 contains the total number of times an estimator was in the Model

Confidence Set, where the aggregation is performed across the 20 ticker codes, and

the method used was that of Patton (2011a) with the QLIKE loss function. In all

20 cases, the Model Confidence Set contained the BRM variance estimator, while it

contained realised kernels in 16 of the 20 cases. This suggests the performance of

the two estimators is comparable, with the BRM variance estimator perhaps being

slightly ahead. Importantly, we can be confident that the test has power to reject

poor estimators, since 5-minute realised variance is only in the Model Confidence Set

for 2 of the 20 cases. It is worth adding that the results for Realized Kernels and

5-minute realised variance are consistent with those in Liu et al. (2013), although

that study does not include the BRM variance estimator.

Unfortunately, when the analysis was repeated with the MSE loss function, the

Model Confidence Set algorithm exhibited no ability to distinguish between the three

estimators. The problem is that a small number of observations during the global

financial crisis period (especially September to October of 2008) dominate the sample

and this effect is greatly exacerbated when the MSE loss function is employed. The

intervals on either side of the global financial crisis period provide insufficient data

to distinguish between the models at standard significance levels.

In summary, these results suggest that in practice there is little difference between

the BRM variance estimator and the current best-case non-parametric estimator of

daily variance; realised kernels. With this in mind, I now consider another possible

45 The ticker codes are AXP, BAC, C, DIS, HD, JPM, KO, MCD, MRK, PEP, SLB, WFC, CVX,
GE, HPQ, IBM, JNJ, PG, UNH, and WMT.

46That is, transactions occurring at distinct times.
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application of the BRM: quantile estimation.

2.5 Evaluating Value-at-Risk Models

2.5.1 Forecast Evaluation Methods

In this section I discuss how the BRM can be combined with the framework in Patton

& Li (2013) and many of the loss-based tests from the forecast evaluation literature

to construct a single, unified framework for evaluating competing forecast models for

almost any risk measure of the daily return distribution. The effectiveness of this

framework is demonstrated for the specific case of VaR forecast evaluation.

By employing a loss-based test, one directly tests the accuracy of a forecast for

a target sequence. In the present case the problem is particularly difficult since the

target sequence is a characteristic of an unknown distribution and so is unobservable.

One possible solution is to replace the latent target sequence with a conditionally

unbiased proxy, as in Hansen & Lunde (2006a) and Patton (2011b). Unbiased proxies

are easy to construct for some target sequences, e.g. variance,47 but less obvious for

other targets, such as quantiles.

More recently, Patton & Li (2013) construct an asymptotic framework in which,

given a consistent and non-parametric proxy, one can apply a battery of tests from the

loss-based forecast evaluation literature.48 A sufficient condition is that the proxy and

distance metric satisfy Patton & Li (2013) assumptions C2 and C3, which, roughly

speaking, bound the proxy error, and bound the corresponding error in the loss

differential caused by using the proxy in place of the unobservable target variable.

Intuitively, the asymptotic theory relies on the proxy error on any given day vanishing

at a sufficiently fast rate such that the total contribution of the proxy errors across

all days is negligible. Further intuition can be found by examining Table 2 in Patton

(2011b). From a practical perspective, the assumptions are mild if N � T , where T

denotes the number of days used by the forecast evaluation procedure. It is worth

adding that Laurent, Rombouts & Violante (2013) independently discuss these same

ideas.

Patton & Li (2013) include a methodology for constructing proxies from intra-

day data for several characteristics of the distribution of a daily return, but do not

extend their work to quantiles such as VaR. Further, their proxies are not robust to

microstructure effects, except in the case where one can apply the subsampling and

averaging approach of Zhang et al. (2005), an approach that is only (currently) well

understood for estimation of variance.

47A squared daily return, or low sampling frequency realised variance are common proxies.
48A by no means complete list includes: Diebold & Mariano (1995), West (1996), White (2000),

Hansen (2005), Romano & Wolf (2005), and Hansen et al. (2011).

22



Importantly, the BRM yields consistent and non-parametric proxies for almost

any risk measure, and is robust to microstructure effects, so N can be maximized.

It follows that given Assumptions C2 and C3 in Patton & Li (2013), the BRM in

combination with the Patton and Li framework and many of the tests from the

loss-based forecasting literature provide a single unified framework for evaluation of

forecast models for almost any risk measure of the daily return distribution.

I emphasize: to the best of my knowledge, prior to the BRM, consistent and non-

parametric proxies that are robust to microstructure effects are only available for

the daily variance. Obviously, obtaining VaR from one of these variance estimators

necessitates a parametric assumption (typically Normality). In contrast, the ability

of dependent bootstraps to reflect departures from Normality is well understood

based on Edgeworth expansion arguments.49 Note that consistent fully parametric

estimators of daily VaR have been proposed in the literature.50 However, their use

in the stated framework would unfairly advantage any forecasting model that utilizes

the same parametric assumptions.

The effectiveness of this framework in evaluating VaR forecast models is now

examined. Prior to this chapter, VaR forecast evaluation has primarily relied on

an analysis of the coverage of a given forecast sequence; that is, an analysis of the

number of VaR violations over a given interval, along with the manner in which

they occur. Although several sophisticated tests have been proposed in this sphere,

see in particular the Conditional Coverage (CC) test of Christoffersen (1998) and

the Dynamic Quantile (DQ) test of Engle & Manganelli (2004)51, they all suffer

from the information loss inherent in analysing a transformation of a VaR forecast

and corresponding actual return into a binary random variable. As pointed out in

Engle & Manganelli (2004), this inevitably leads to low power at rejecting forecasting

models that generate the correct number of VaR violations, but are nonetheless wildly

inaccurate. For example, consider a forecast equal to an iid random variable that

takes value (−1)A with probability 0.95 and A with probability 0.05, A > 0. For

arbitrarily large A, this forecast will generate the correct coverage for 5% VaR, even

though it is massively inaccurate for the true VaR sequence.

The BRM proxy in combination with the Patton & Li (2013) framework should

exhibit more power at rejecting misspecified VaR forecasting models than existing

techniques based on coverage, since even small deviations from the forecast target

can be penalized. In what follows, this is investigated using both simulations and

empirical work to compare the BRM quantile estimator proxy approach to the CC

and DQ test.52

49See Lahiri (2003) example 4.8 and chapter 6.
50See Giot (2005), Giot & Grammig (2006), and Dionne, Duchesne & Pacurar (2009).
51A finite sample improvement based on quantile regression has been proposed by Gaglianone,

Lima, Linton & Smith (2011). Their method has identical asymptotic properties to the DQ test.
52Some previous work has been done to leverage loss-based forecast evaluation tests in the VaR
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First, power is investigated using the BRM quantile estimator proxy with the

test of Diebold & Mariano (1995) to estimate simulated expected loss differentials

between misspecified VaR forecasting models and the true forecasting model. These

simulated power curves are contrasted with the simulated power curves of the CC

and DQ test to reject the same misspecified models.

Second, the BRM quantile estimator proxy is combined with the Model Confidence

Set53 of Hansen et al. (2011) to determine which of five popular VaR forecasting

models are in the Model Confidence Set across twenty publicly listed stocks on the

NYSE. I also investigate the recommendations of the CC and DQ tests. Particular

attention is paid to how the results match a priori theoretical rankings.

2.5.2 Simulations

In the simulation, true volatility is generated using the popular GARCH(1,1) model

of Bollerslev (1986), i.e. σ2
t = (1−α− β) +αr2t−1 + βσ2

t−1, with parameters following

Christoffersen (1998), i.e. α = 0.1 and β = 0.85. Given V[rt,N |Ft−1] = σ2
t , the

concurrent daily return rt is generated by summing N intraday returns simulated

via a zero-mean AR(1) with coefficient of −0.5 and Normal residuals with constant

intraday variance. Let ψ denote the AR(1) coefficient, and let:

ψ2
[a,b] =

(
b∑

j=a

ψj

)2

(2.12)

I “warm-up” the AR(1) with ` = 100 observations. For any t, the variance of the

AR(1) residual is obtained from the GARCH daily variance using

Vut,n = N

(∑̀
n=1

ψ2
[n,N+n−1] +

N∑
n=1

ψ2
[0,N−n]

)−1
Vrt,N , ∀n. (2.13)

This guarantees the daily return will have the correct variance.

Since the residuals of the AR(1) process are Normal, it immediately follows that

V aRλ,t = σtΦ
−1
λ , where Φ(·) denotes the standard Normal cumulative distribution

function. Next, a forecast of V aRλ,t is constructed using V aR
[i]
λ,t = σ

[i]
t Φ−1λ , i = 1, 2, 3,

where σ
[i]
t is generated by one of three misspecified GJR-GARCH(1,1,1) models, ie

σ2
t = (1−α−β−δ)+αr2t−1+δr2t−1I{rt−1 < 0}+βσ2

t−1. The following parameterizations

sphere, see Lopez (1998), Bao, Lee & Saltoglu (2006), and Sener, Baronyan & Menguturk (2012).
However, these approaches require ad hoc assumptions. Moreover, they exhibited poor performance
relative to the DQ test in my early simulations and so were dropped from the final version of this
chapter. The simulation results are available upon request.

53A description of this procedure can be found in Chapter 3 Appendix 3.A.
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are utilized:

i = 1⇒ β = 0.85, α = 0.08, δ = 0.02, (2.14a)

i = 2⇒ β = 0.85, α = 0.06, δ = 0.04, and (2.14b)

i = 3⇒ β = 0.85, α = 0.04, δ = 0.06. (2.14c)

Note that i = 1 indexes a minor deviation from the true volatility process through

the introduction of a small leverage effect. Thus whenever rt−1 > 0, V aR
[1]
λ,t will be

slightly biased for V aRλ,t. Similarly, V aR
[2]
λ,t will exhibit a medium bias, while V aR

[3]
λ,t

will exhibit a large bias.

I perform a Diebold & Mariano (1995) bivariate comparison54 of each misspecified

model with the true VaR sequence, where, utilizing the Patton & Li (2013) framework,

the BRM quantile estimator is used to proxy the true latent VaR. Ideally, the test

should reject the null hypothesis of equal expected loss in favour of the true model.

I report results for the MAE loss function55, although note that results for the MSE

loss function were near-identical.

I also perform CC and DQ tests on each misspecified model. Ideally, the test

will reject the null hypothesis of correct coverage for all three models, since each is

misspecified. Power curves are constructed for T = {20, 50, 150, 400, 1100}, which

closely correspond to the log-scale {3, 4, 5, 6, 7}.
First however, I evaluate the size of each statistical test. For the CC and DQ

tests, this is simply done by testing the true VaR sequence. For the BRM quantile

estimator approach, the size is evaluated by performing a bivariate comparison of

V aRλ,t + Z1,t and V aRλ,t + Z2,t, where Z1,t and Z2,t are both iid zero-mean Normal

with variance 0.01.

For all tests, I consider λ = {0.05, 0.01}, i.e. the 5% and 1% VaR quantiles. Size

and power rejection frequencies are obtained by averaging over 5000 iterations. To

keep the simulation run-time feasible, I set N = 1170 for each day, regardless of

T . Interestingly, this implies N ≈ T rather than N � T when T = 1100. It is

noteworthy that the BRM quantile estimator approach suffers no ill-effects in this

situation.

As Table 2.4 shows, the BRM quantile estimator approach has near-perfect sta-

tistical size across both quantiles, even for very small T . In contrast, the CC and DQ

tests both exhibit some size distortion for small samples. Of particular note, the CC

and DQ tests have more difficulty with the 0.01 quantile. This makes sense, since

54Confidence bounds for the estimator of the expected loss differential are obtained by regressing
the loss difference sequence on a constant and using Newey & West (1987) standard errors. I chose
this approach instead of the more common bootstrap approach since it significantly reduces the
run-time of the simulation while still providing consistent estimates of the confidence bounds.

55In cases where the proxy is noisy and unbiased, it is known that the use of the MAE loss function
can lead to inconsistent rankings, see Hansen & Lunde (2006a) or Patton (2011b). However, in the
dual-asymptotic framewok of Patton & Li (2013), this problem vanishes.
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Table 2.4: Simulated Test Sizes

T = 20 50 150 400 1100

0.05 quantile

CC 0.40 0.09 0.03 0.04 0.06

DQ 0.10 0.06 0.05 0.05 0.05

BRMQE/DM 0.06 0.06 0.05 0.05 0.05

0.01 quantile

CC 0.85 0.63 0.24 0.03 0.02

DQ 0.11 0.08 0.06 0.04 0.04

BRMQE/DM 0.06 0.05 0.05 0.05 0.05

CC = Conditional Coverage; DQ = Dynamic Quantile; BRMQE/DM = Bootstrap Return Method
quantile estimator combined with Diebold & Mariano (1995).

these tests both rely on VaR violations, which are rare events for small quantiles.

The real difference between the tests can be seen upon an analysis of the power

to reject a misspecified model. Table 2.5 contains power curves for the 0.05 quantile,

while Table 2.6 contains the corresponding numbers for the 0.01 quantile. For the

CC and DQ tests, elements where Table 2.4 indicates significant size distortion have

been replaced with a asterisk, since analysis of power in the presence of size distortion

is not meaningful.

Across both quantiles and all three models, the BRM quantile estimator approach

demonstrates an exceptional ability to reject a false null hypothesis. Of particular

note: for the forecast model with minor misspecification (i = 1), the BRM quantile

estimator approach is able to identify that the model is misspecified 70% of the time,

using only 20 observations.

In contrast, the CC and DQ tests only demonstrate a reasonable amount of power

for model i = 3, i.e. the most severely misspecified forecast model. For i = 1 and

i = 2, i.e. minor and medium misspecification, the CC and DQ tests show little

ability to detect the misspecification.

The simulation results suggest that employing the BRM quantile estimator in

conjunction with loss-based forecast evaluation tests should yield much more powerful

recommendations than existing, coverage-based, approaches, such as the CC and DQ

tests. With this in mind, I now turn to an empirical application.
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Table 2.5: Simulated Power Curves: 0.05 Quantile

T = 20 50 150 400 1100

Model i = 1

CC * * 0.04 0.06 0.12

DQ * 0.08 0.07 0.09 0.13

BRMQE/DM 0.65 0.76 0.81 0.85 0.88

Model i = 2

CC * * 0.08 0.15 0.32

DQ * 0.11 0.11 0.18 0.37

BRMQE/DM 0.73 0.85 0.93 0.99 1.00

Model i = 3

CC * * 0.14 0.31 0.69

DQ * 0.15 0.20 0.37 0.74

BRMQE/DM 0.80 0.92 0.99 1.00 1.00

CC = Conditional Coverage; DQ = Dynamic Quantile; BRMQE/DM = Bootstrap Return Method
quantile estimator combined with Diebold & Mariano (1995).

Table 2.6: Simulated Power Curves: 0.01 Quantile

T = 20 50 150 400 1100

Model i = 1

CC * * * 0.04 0.06

DQ * 0.10 0.08 0.09 0.12

BRMQE/DM 0.65 0.77 0.82 0.86 0.90

Model i = 2

CC * * * 0.09 0.23

DQ * 0.13 0.13 0.20 0.34

BRMQE/DM 0.73 0.85 0.93 0.99 1.00

Model i = 3

CC * * * 0.23 0.56

DQ * 0.18 0.22 0.39 0.67

BRMQE/DM 0.80 0.92 0.99 1.00 1.00

CC = Conditional Coverage; DQ = Dynamic Quantile; BRMQE/DM = Bootstrap Return Method
quantile estimator combined with Diebold & Mariano (1995).
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2.5.3 Empirical

In this section the BRM quantile estimator is used in combination with the Model

Confidence Set56 of Hansen et al. (2011), to evaluate five VaR forecasting models.

Specifically, three conditional volatility models with Normal innovations and two

naive moving window schemes are considered:

1. GJR-GARCH(1,1,1),

2. GARCH(1,1),

3. JP Morgan’s RiskMetrics (RM),

4. Naive Historical Simulation with moving window of 250 observations (NHS250),

and

5. a moving window of 500 observations (NHS500).

I chose these models in particular, not just for their simplicity and popularity, but

also because intuition suggests an a priori ranking. Specifically, the naive historical

simulations are expected to have the worst performance since they respond slowly to

shifts in VaR. RiskMetrics should outperform the naive historical simulation since it

will be quicker to respond to shifts in VaR (via the conditional variance). However,

the innovation and conditional volatility parameters in RiskMetrics are bound to be

0.06 and 0.94 respectively, so it exhibits no parameter freedom. The GARCH(1,1)

is essentially a RiskMetrics model, but with parameter freedom; thus, given a large

estimation window, it is likely that GARCH(1,1) will outperform RiskMetrics. Fi-

nally, GJR-GARCH(1,1,1) introduces a leverage effect on top of the GARCH(1,1)

specification, which is generally agreed to exist in equity markets, hence a priori it is

expected to have the best overall performance. Support for this set of a priori rank-

ings can be found in, for example, Glosten, Jagannathan & Runkle (1993), Berkowitz

& O’Brien (2002), and Gaglianone et al. (2011).

The Model Confidence Set for twenty of the largest NYSE equities is obtained.57

VaR forecasts are calculated from January 2010 to December 2011, so that T ≈ 500.

The length of this interval was limited to 2 years to ensure N � T . This interval in

particular is chosen since it is the latest in my dataset and thus is the most likely to

exhibit large N . For the stated assets, one typically observes N ≈ 5000, which should

be sufficient for the regularity conditions in Patton & Li (2013). Note, the parameters

of the GARCH and GJR-GARCH models are estimated using the six years of data

immediately prior to the forecast interval, i.e. January 2004 to December 2009, which

yields approximately 1500 observations.

56A description of this procedure can be found in Chapter 3 Appendix 3.A. The MAE loss function
is employed. Results with the MSE loss function were very similar.

57See Footnote 45 for a list of ticker codes.
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Table 2.7: VaR Model Recommendations Across 20 Assets

0.05 quantile GJR-GARCH GARCH RM NHS250 NHS500

CC 17 16 19 18 9

DQ 18 15 18 11 1

BRMQE/MCS 19 18 14 6 0

0.01 quantile GJR-GARCH GARCH RM NHS250 NHS500

CC 18 17 18 17 19

DQ 13 15 10 15 13

BRMQE/MCS 19 18 14 6 0

CC = Conditional Coverage; DQ = Dynamic Quantile; BRMQE/MCS = Bootstrap Return Method
quantile estimator combined with the model confidence set of Hansen et al. (2011); RM = RiskMet-
rics; NHS = Naive Historical Simulation

After performing the BRM quantile estimator combined with Model Confidence

Set for each asset, a forecasting model is regarded as “recommended” if it is in the

Model Confidence Set for that asset. I also perform CC and DQ tests for each

forecasting model/asset combination and define a model to be recommended if the

tests fails to reject the null hypothesis.

The results are contained in Table 2.7. Each number in the table depicts the

number of times a given forecast model is recommended by a given test. Thus the

maximum possible score is 20, i.e. the forecasting model is recommended for all 20

assets, and the minimum score is 0 (not recommended for any assets). Ideally, a

statistical test will recommend the single best forecasting model in all 20 cases, and

will not recommend any other forecasting model.

Table 2.7 demonstrates that for the 0.05 quantile, the BRM quantile estimator

with model confidence set recommendations exactly match our a priori expecta-

tions; that is, GJR-GARCH is recommended for the largest number of assets, and as

we move down the forecast model rankings, the number of recommendations drops

monotonically. Of particular interest, the model that is expected to have the worst

performance is rejected for all 20 assets. Interestingly, for the 0.05 quantile, the DQ

test also has quite good performance, although it is not able to reject the historical

simulation with window length of 250 as often as the approach advocated in this

chapter. The CC test has poor performance, showing little ability to distinguish be-

tween the five forecasting models, except for a mild ability to single out the worst

performer.

For the 0.01 quantile, the performance of the BRM quantile estimator approach is

identical in aggregate to the 0.05 quantile, although there were some small differences

in the individual results for each ticker code. In contrast, both the CC and DQ tests
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show no ability to distinguish between the five forecasting models. This result it not

unexpected, since these tests will always have more difficulty with smaller quantiles

since a VaR break is a rarer event. This contrast is striking, since the 0.01 quantile

is favoured by most industry practitioners.

Figure 2.2 provides some intuition for the results in Table 2.7. For IBM on the

New York Stock Exchange, the time-series of the BRM quantile estimator (the VaR

proxy) is provided, along with the forecasts of the best and worst performing models

(GJR-GARCH and NHS500), over the forecast interval of January 2010 to December

2011. As expected, GJR-GARCH responds quickly to changes in the VaR proxy, while

NHS500 is much slower to respond (and is initially much too large in absolute value

due to after-effects of the global financial crisis). This results in the NHS500 lying

much further, on average, from the VaR proxy, which explains its poor performance

in Table 2.7.

Figure 2.2: Two daily return VaR forecasts and the daily return VaR proxy over the forecast
interval, January 2010 to December 2011, for IBM data, expressed as a percentage. The proxy
(BRM quantile estimator) is the solid line, a GJR-GARCH forecast is the dashed line, and a naive
historical forecast is the dotted line.

More generally, the time-series of the BRM proxy is also of independent interest as

it is the first consistent, non-parametric proxy for true VaR available in the literature.

To this end, Figure 2.3 provides the plot of this time-series for IBM on the New York

Stock Exchange for both the estimation and forecast interval, i.e. January 2004 to

December 2011.

In summary, combining the BRM with tests from the forecast evaluation literature

is a novel and powerful approach to evaluating VaR forecasting models, especially for

the industry standard 0.01 quantile. Under simulation, this approach has power

to reject misspecified models far exceeding that of coverage-based evaluation tests.

Empirically, this approach yields sensible results that match a priori expectations

and provide firmer recommendations than coverage-based tests.
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Figure 2.3: Time-series of the daily return BRM quantile estimator from January 2004 to Decem-
ber 2011 for IBM, expressed as a percentage.

2.6 Conclusion

In this chapter, a bootstrap-based estimator for a range of financial risk measures

using intraday data is proposed. For the specific case of the variance, the estimator

is shown to have performance comparable to realised kernels; arguably the best-case

non-parametric estimator previously proposed in the literature.

It is also shown that this approach to estimation can be combined with the frame-

work in Patton & Li (2013) in order to evaluate forecasting models of an important

set of measures of risk. For the specific case of value-at-risk, this novel approach

is shown to convincingly outperform existing popular forecast evaluation methods

based on coverage, particularly for smaller quantiles, with respect to both size and

power.

In this chapter, I focus on the stationary bootstrap. However, if the appropriate

regularity conditions are satisfied, there is nothing in the theory to prevent researchers

from using other resampling methods. For example, the tapered block bootstrap of

Paparoditis & Politis (2001) or the extended tapered block bootstrap of Shao (2010)

may yield faster rates of convergence for the bias of the estimator. Of particular inter-

est, given the extraordinarily general regularity conditions, the subsampling approach

of Politis & Romano (1994a) could potentially enable the analysis of infinite variance

intraday sequences, paving the way for a robust test of the conditional Normality of

daily returns.

Given that the framework of Patton & Li (2013) can accommodate multivariate

intraday data, it would also be interesting to extend the methods in this chapter to a

multivariate framework. Intuitively, if an intraday sequence on two assets is sampled

at identical times throughout the day, then it is possible that application of an identi-

cal resample scheme to both intraday sequences will preserve the correlation structure

of the assets. An immediate application is the consistent and non-parametric esti-

mation of market betas.

Finally, in the present chapter, only consistency of the BRM was proven, since this
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is all that was needed for the application in Section 2.5. In particular, an asymptotic

distribution theory for BRM estimators was not discussed. One possible approach to

this problem is iterative application of the bootstrap.58 I am currently investigating

all of these applications and extensions.

Appendix 2.A Impact of Jumps on the Bootstrap

Return Method

In this appendix, the output of the BRM variance estimator is contrasted with that

of realised kernels59 and bipower variation60. In a continuous-time modelling frame-

work, realised kernels is consistent for quadratic variation, which incorporates the

variation of both the continuous and jump component. In contrast, bipower varia-

tion is consistent for integrated variance (assuming no microstructure noise), which

incorporates only the variation of the continuous component. Theoretical comparison

of the BRM variance estimator to these two estimators is not meaningful, since the

BRM uses a discrete-time modelling framework. However, an empirical comparison

of their output provides some intuition of how the BRM responds when a single obser-

vation violates the vanishing variance assumption, that is, a jump, in continuous-time

parlance.

Let j = 1, ..., 20 index the set of 20 New York Stock Exchange ticker codes listed

in Footnote 45, and let t = 1, ..., T index the set of trading days from January 2004

to December 2011, so T ≈ 2000. For each asset and trading day I calculate the BRM

variance estimator (BRMj,t), realised kernels (RKj,t), and 5-minute bipower variation

(BPj,t). A metric for the percentage deviation of one estimator from another is:

dj,t,X:Y = 100 (ln(Xj,t)− ln(Yj,t)) , (2.15)

where X, Y ∈ {BRM,RK,BP}. It is interesting to compare sample means of dj,t,X:Y

on days with jumps versus days without jumps. Using the jump detection procedure

proposed in Barndorff-Nielsen & Shephard (2006),61 for each asset, I construct a set

containing the indices of all days with jumps, and denote it Jj. Kj contains the

indices of days without jumps, i.e. the complement of Jj on 1, ..., T . For each asset,

consider the statistic constructed by differencing sample means as follows:

δ̄j,X:Y =
1

|Jj|
∑
t∈Jj

dj,t,X:Y −
1

|Kj|
∑
t∈Kj

dj,t,X:Y (2.16)

58Lahiri (2003) chapter 1.
59Barndorff-Nielsen et al. (2008a).
60Barndorff-Nielsen & Shephard (2004).
61I use a 5-minute sampling frequency for realised variance, bipower variation, and tripower

quarticity.
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Figure 2.4: The three lines describe the difference in average percentage deviations of variance
estimators on jump versus non-jump days, i.e. Equation (2.16), across 20 assets. The solid line
corresponds to the BRM variance estimator versus bipower variation, the dashed line corresponds
to the BRM variance estimator versus realised kernels, and the dotted line corresponds to realised
kernels versus bipower variation.

The three lines in Figure 2.4 correspond to δ̄j,BRM :BP (solid line), δ̄j,BRM :RK

(dashed line), and δ̄j,RK:BP (dotted line). As can be seen, the dashed line for δ̄j,BRM :RK

hovers stochastically around zero, indicating that the difference in average percent-

age deviation of the BRM variance estimator from realised kernels is roughly the

same, regardless of whether the day contains a jump. In contrast, the solid line

for δ̄j,BRM :BP hovers stochastically around 20 percent. This indicates that on days

containing jumps, the BRM variance estimator is approximately 20 percent larger

than bipower variation (on average). Interestingly, almost identical performance is

observed in δ̄j,RK:BP (dotted line). That is, on days containing jumps, realised kernels

is also approximately 20 percent large than bipower variation (on average). In sum-

mary, the evidence suggests that empirically, the BRM variance estimator responds

to the presence of jumps in much the same manner as realised kernels, incorporating

the extra variation into the daily variance estimator.

Appendix 2.B A Comparison of Modelling Assump-

tions

In this appendix, the modelling assumptions of the present chapter are contrasted

with the popular continuous-time modelling framework from the extant literature.

The basic approach to continuous-time modelling of intraday return sequences models

increments as discrete realizations of a continuous-time semi-martingale. This is the

approach taken by Goncalves & Meddahi (2009); specifically, they employ a stochastic

volatility model for the log-price.
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It is well known that intraday return data violate this continuous-time model at

the highest frequencies. In particular, microstructure effects such as bid-ask bounce

induce a weak dependence structure on the data. One approach to duplicating this

feature of the data is to hypothesize the existence of a latent “efficient” log-price

process that is a continuous-time semi-martingale. The observed log-price process is

set equal to the latent continuous-time semi-martingale plus an additive noise term

that may be weakly dependent. This model can be found in, for example, Zhou

(1996) or Zhang et al. (2005). I will refer to this model as the CSMN (Continuous

Semi-Martingale plus Noise).

The CSMN differs from the modelling assumptions in the present chapter in three

important respects. Specifically, in a CSMN framework:

1. it is the properties of a hypothesized, unobservable process that are of interest,

2. the variance of the intraday return sequence is stochastic, and can exhibit long-

memory, and

3. the variance of an individual intraday return does not vanish as N →∞.

Regarding the first point above, there is some economic justification for the hy-

pothesized, unobservable price process, although it is rarely stated in the econometric

literature. For example, Jouini & Kallal (1995) demonstrate that the absence of arbi-

trage is equivalent to the existence of an equivalent probability measure that is able

to transform a process between the best bid and best ask prices into a martingale.

That is to say, a fundamental theorem of asset pricing can exist, even in the presence

of microstructure effects. From a more practical perspective, for returns that span

a long interval of time, the properties of a latent return and an observed return are

likely to be similar.

However, it is worth emphasizing that the approach advocated in this chapter

is strictly simpler in the sense that it does not depend on a no-arbitrage condition

or any underlying economic theory. Further, the modelling assumptions are easier

to verify in any particular case since they apply directly to the observable data. In

short, the modelling approach in the present chapter can be recommended over the

CSMN framework by appealing to Occam’s razor: among competing models, the one

with fewest assumptions should be selected.

The inability of the modelling assumptions in this chapter to address the second

point above, are, in my opinion, the weakest feature of the BRM procedure. Interest-

ingly, the BRM variance estimator was not negatively affected by the simulated I(1)

volatility process for intraday returns in Section 2.4. Nonetheless, a more thorough

theoretical treatment of this issue in future work on this topic is desirable.

I have already discussed the third point above in some detail in Section 2.2, as

well as Appendix 2.A but there are two additional points worth mentioning.
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First, although the majority of papers in the literature have focused on the CSMN

framework, i.e. non-vanishing variance of increments,62 there is some precedent for

vanishing variance.63 Interestingly, the relevant asymptotic theory for a microstruc-

ture noise term with variance vanishing in N has been thoroughly treated in the

continuous-time framework, and is frequently used in Physics.64 An interesting pos-

sibility for future work would be an investigation of whether the discrete-time results

in this chapter also apply in continuous time given an asymptotic framework where

the variance of microstructure noise vanishes in N .

Second, it turns out the CSMN model with non-vanishing variance of increments

is not meaningful in a re-sampling context. Intuitively, in a CSMN framework, the

noise terms form a telescoping sum, such that all but the first and last term cancel

when one constructs a daily return. However, if one samples with replacement from

the intraday sequence using a dependent bootstrap, then a telescoping sum exists

only in each re-sampled block. Thus the number of noise terms in the re-sampled

daily return will increase with the number of blocks. In turn, this implies a seemingly

paradoxical result: even though the variance of the observable daily return is modelled

as finite for any N , the variance of a re-sampled daily return diverges with N . I

conclude this discussion with Proposition 2.B.1, which proves this assertion for a

simple specification of CSMN.

Proposition 2.B.1 Let p̃s denote a latent log-price process generated by the

continuous-time Ito process dps = σdWs, where Ws denotes a Wiener process and

0 < σ < ∞ is a constant diffusion parameter. Let ps = p̃s + εs, where εs de-

notes mean-zero iid microstructure noise with non-zero, finite variance. Consider

n = 0, 1, ..., N realizations of this process on the finite interval [t − 1, t], each spaced

at the constant time increment ∆ ≡ N−1. Define qn = psn − psn−1 and rt,N =
∑

n qn,

and let r∗t,N denote a SB resample of rt,N . Then:

Vrt,N = σ2 + 2Vε,∀N, while V∗r∗t,N →∞, as N →∞, almost surely, (2.17)

where V∗ denotes variance conditional on Ws, εs, and the resampling indices.

Proof The stated continuous-time model exhibits the discretization:

p̃n − p̃n−1 =
√

∆σZn, (2.18)

where Zn
iid
v N (0, 1), see Merton (1980) Appendix A. Adding in the microstructure

noise, we get:

pn − pn−1 =
√

∆σZn + εn − εn−1. (2.19)

62See footnote 30.
63See Rosenbaum (2009) or Large (2011).
64Jacod & Protter (2011) Chapter 16.
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Thus:

rt,N =
N∑
n=1

qn (2.20a)

=
N∑
n=1

√
∆σZn +

N∑
n=1

εn −
N∑
n=1

εn−1 (2.20b)

=σN
1
2 Z̄N + εN − ε0, (2.20c)

which demonstrates that Vrt,N = σ2 + 2Vε.
Employing the notation from Appendix 2.C, assume for simplicity that L1 + ...+

LK = N and that the sequences Z1, ..., ZN and ε0, ε1, ..., εN wrap in a circle so that

ZN+1 = Z1 and εN+1 = ε0. Thus:

V∗r∗t,N =
N∑
n=1

q∗n (2.21a)

=
K∑
k=1

Lk−1∑
i=0

√
∆σZIk+i +

K∑
k=1

Lk−1∑
i=0

(εIk+i − εIk+i−1) (2.21b)

=
√

∆σ
K∑
k=1

Lk−1∑
i=0

ZIk+i +
K∑
k=1

(εIk+Lk−1 − εIk−1), (2.21c)

=
√

∆σ
K∑
k=1

Lk−1∑
i=0

ZIk+i +
K∑
k=1

εIk+Lk−1 −
K∑
k=1

εIk−1, (2.21d)

=S1,K + S2,K − S3,K . (2.21e)

S1,K is by definition a stationary bootstrap re-sample of σZn, n = 1, ..., N , which

converges to σ2 by Politis & Romano (1994b) Theorem 2.

Naively, one might guess there are 2K terms in S2,K and S3,K combined. However,

this ignores the possibility that Ik + Lk − 1 = Ij − 1, k = 1, ..., K, j = 1, ..., K. If

this event occurs, then obviously two of the error terms will cancel. This possibility

is examined now. In the analysis that follows, I drop the −1 term from the subscript

of S2,K and S3,K , since it is irrelevant.

Independence of Ik and Lk implies that

P(Ik + Lk 6= I1 ∩ ... ∩ Ik + Lk 6= IK) =
K∏
j=1

P(Ik + Lk 6= Ij). (2.22)

Independence also implies that for j 6= k:

P (Ik + Lk 6= Ij) = P(Ik 6= Ij) =
N − 1

N
. (2.23)

For j = k, note that it is possible that Ik + Lk = Ik, since I assume the indices wrap
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in a circle for the stationary bootstrap. However, the definition of the geometric

distribution guarantees that:

P(Ik + Lk 6= Ik) >
N − 1

N
. (2.24)

Taken together, it follows that:

P(Ik + Lk 6= I1 ∩ ... ∩ Ik + Lk 6= IK) >

(
N − 1

N

)K
. (2.25)

Using a binomial expansion:

(
N − 1

N

)K
= 1 +

K∑
k=1

(−1)k · 1

k!
· K!

(K − k)!
· 1

Nk
. (2.26)

Since:
K!

(K − k)!
< Kk, (2.27)

for any integer k > 0, it follows that:∣∣∣∣ K!

(K − k)!
· 1

Nk

∣∣∣∣ < (KN
)k
→ 0, (2.28)

if K diverges at a slower rate than N . This is a condition of the stationary bootstrap.

Thus: (
N − 1

N

)K
→ 1, as N →∞. (2.29)

Therefore it has been shown that as N →∞, each noise term in S2,K will not cancel

with a noise term in S3,K , almost surely. It follows that the number of noise terms

that remain is 2K almost surely. Some of the noise terms that remain may stack,

that is, the same noise term may be encountered several times. However, this will

only increase the overall variance of the two sums. Taken together, the analysis is

sufficient to assert that:

V∗r∗t,N ≥ σ2 + 2KVε, as N →∞, a.s.. (2.30)

Since K →∞ as N →∞, this proves the result. �

Appendix 2.C The Stationary Bootstrap

In this appendix, the stationary bootstrap is reviewed for the benefit of any readers

who may be unfamiliar with it. Consider the sequence of random variables: XN =

{X1, ..., XN}. The stationary bootstrap provides a consistent and non-parametric
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method for estimating the distribution of a wide class of test statistics constructed

from XN . In this chapter, the “test statistic” of interest is a daily return, so attention

can be restricted to the sample mean, defined:

X̄N ≡ N−1
N∑
n=1

Xn. (2.31)

To describe the stationary bootstrap method requires some additional notation: Let

I1, I2, ... denote an iid sequence from the discrete uniform distribution over the inte-

gers 1, ..., N . Let L1, L2, ... denote an iid sequence from the geometric distribution

characterized by the probability pN . Let K denote the smallest integer such that

L1 + ... + LK ≥ N . Consider the countably infinite sequence Yn that forms a circle

over XN , so that Y1 ≡ X1, ..., YN ≡ XN , YN+1 ≡ X1, YN+2 ≡ X2, ....

A stationary bootstrap resample of XN is obtained by sampling K blocks of se-

quential observations from Y1, Y2, ... . The kth block (k = 1, ..., K) is defined:

Bk = {YIk , YIk+1, ..., YIk+Lk−1}, (2.32)

and the full resample is defined:

{X∗1 , ..., X∗N} ≡ {B1, ...,BK}. (2.33)

Note, since the size of block BK is random, it may happen that L1 + ... + LK > N .

If this occurs, standard practice is to truncate the length of the final block so that

there are exactly N re-sampled observations.

The only quantity that requires estimation in this process is pN ; the parameter

of the geometric distribution that determines the average block length. The optimal

choice for pN will be determined by the type of weak dependence exhibited within XN .

If data are close to iid then setting pN = 1 is a sensible choice, and the SB simplifies to

the iid bootstrap of Efron (1979). If the data exhibit strong serial dependence, then

pN should be chosen closer to 0. Several methods have been proposed for data-driven

estimates of pN .65

The re-sampled mean can now be defined:

X̄∗N = N−1
N∑
n=1

X∗n. (2.34)

Given a weak dependence condition and an appropriate moment bound on Xn, and

requiring that pN → 0 and Np2N → ∞ as N → ∞, X̄∗N can be characterized as

an infinite sum over (asymptotically) independent blocks. Thus given appropriate

regularity conditions, a CLT follows. Specifically, let TN =
√
N(X̄N − EX̄N) and

65In particular, see Patton et al. (2009).
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T ∗N =
√
N(X̄∗N−X̄N). Politis & Romano (1994b) provide a set of sufficient conditions

for:

sup
x∈R
|P (TN ≤ x)− P∗ (T ∗N ≤ x)| P−→ 0, as N →∞, (2.35)

where P∗ indicates the probability is conditional on XN . The conditions for this result

are significantly weakened in Goncalves & White (2002) and Goncalves & de Jong

(2003).
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Chapter 3

An Empirical Analysis of

Value-at-Risk Forecasting Models

3.1 Introduction

The number of value-at-risk (VaR) forecasting models proposed in the literature is

daunting, particularly to market participants with limited research time. Choosing

the most accurate forecasting model(s) is of measurable value to such participants.

For example, accurate VaR forecasts save large financial institutions from setting

aside too much working capital when satisfying Basel Committee requirements.

In this chapter I provide a set of recommendations pertaining to the most accurate

VaR forecasting models. Since the modelling frameworks of different forecasting mod-

els are frequently not nested, choosing the best forecast models based on theoretical

criteria is not possible. Instead, I analyse the empirical accuracy of the forecasting

models ex post.

This is not the first paper to rank VaR forecast models based on empirical criteria.

A brief survey of other results in the literature is provided in Section 3.4. The appeal

of the present chapter is three-fold:

• the evaluation approach proposed in Chapter 2 is used and, as discussed in that

chapter, is much more powerful than the procedures used in other comparable

studies,

• a new class of VaR forecasting models that employ the intraday data-based VaR

estimator from Chapter 2 is proposed and shown to yield accurate forecasts,

and

• the analysis is of a large scale; 351 VaR forecast models are considered on

equity data spanning two distinct exchanges and covering the global financial

crisis period as well as the more stable period that immediately followed.
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The methodology used in the present chapter is exactly that described in Sec-

tion 2.5 of Chapter 2, so this chapter is essentially an expansion of the empirical

VaR analysis from Chapter 2 to a larger dataset and incorporating a larger set of

VaR forecast models. For this reason, I will not dwell on the exact details of the

methodology since they are readily available in Chapter 2.

Using this method, I rank forecasting models across a wide range of equities from

the New York Stock Exchange (NYSE) and my home market, the Australian Stock

Exchange (ASX). I focus on forecasting VaR during the Global Financial Crisis and

the period of (relatively) lower volatility that followed.

Briefly, the results indicate that forecast models that utilize intraday data strongly

outperform those that use daily data. Of particular interest: a class of simple time

series models defined over the Bootstrap Return Method (BRM) Quantile Estimator

(proposed in Chapter 2) are the best performers. Among models that do not exploit

intraday data, it is shown that, contrary to several other findings in the literature,

unit-root conditional volatility models that employ a Gaussian assumption perform

well. This set of models includes the oft-maligned RiskMetrics of JPMorgan. These

findings are consistent both during and after the global financial crisis. It is also

worth noting that, unsurprisingly, the ability to distinguish between forecast models

is reduced during the global financial crisis.

The rest of the chapter proceeds as follows: in Section 3.2, the exact details

of the methodology are briefly summarised, and the issue of parameter estimation

error is discussed. In Section 3.3 I discuss the VaR forecast models that are to

be compared. In Section 3.4 some empirical results and rankings from the prior

literature are reviewed. Section 3.5 provides some additional detail on the data and

computational choices, and then the empirical results are presented and discussed

in Section 3.6. Section 3.7 concludes. In Appendix 3.A the Model Confidence Set

procedure is discussed, and in Appendix 3.B a more comprehensive set of results

tables are provided.

3.2 Method

Let Xt, t = 1, ..., T denote T realizations of the unobservable random variable of

interest; true VaR. Let Yt,k denote a forecast of Xt, constructed from time t − 1

information, where there are K different forecasts indexed k = 1, ..., K, and where

Yt,k possibly depends on a parameter vector. Let X̃t denote a proxy for Xt, where X̃t

is constructed from information from the interval [t− 1, t]. Where it is appropriate,

I write X̃t,N to indicate a proxy that is constructed from an intraday sequence of

length N from the interval [t− 1, t].

Let L(Xt, Yt,j) denote a loss function (i.e. a distance measure). The best forecast

model is defined as the one that minimises expected loss, i.e. EL(Xt, Yt,j). Given
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two forecast models, the simplest approach is to define the loss differential: dt =

L(Xt, Yt,j) − L(Xt, Yt,i) and then test the null hypothesis H0 : Edt = 0 (see Diebold

& Mariano (1995) and West (1996)).

Evaluating VaR forecast models is difficult for two reasons. First, VaR is unob-

servable. This problem is resolved by replacing Xt with a proxy, X̃t, and defining the

proxy loss differential: d̃t = L(X̃t, Yt,j) − L(X̃t, Yt,i). Under conditions described in

Patton & Li (2013) and Chapter 2, the rankings implied by analysis of Ed̃t and the

rankings implied by analysis of Edt are the same with unit probability in large sample

. A detailed description of the framework is in Chapter 2. Second, there are typi-

cally more than two forecast models of interest. This problem is solved by employing

the Model Confidence Set of Hansen et al. (2011). This procedure controls for the

family-wise error rate implicit in analysing more than 2 models. The procedure is

described in Appendix 3.A.

Employing the Patton & Li (2013) framework, in combination with the BRM

Quantile estimator as a proxy for the true VaR, results in VaR forecast evaluations

tests that are much more powerful than existing methods in the literature, such

as the Conditional Coverage test of Christoffersen (1998), the Dynamic Quantile

test of Engle & Manganelli (2004), and the regulatory loss-function approach found

in, for example, Lopez (1998), Bao et al. (2006), and Sener et al. (2012). This is

demonstrated in Chapter 2 and so the point will not be further expounded upon

here.

This section is concluded with a brief discussion on the issue of parameter es-

timation. Some of the forecast models considered in this chapter have parameter

vectors which must be estimated. This introduces an additional source of error into

the forecast evaluation procedure, which some researchers are interested in explicitly

accounting for.66 For the purposes of the present chapter, it is assumed that the

audience is not interested in explicitly accounting for this additional source of error.

The stated goal of this chapter is to provide a set of rankings for practitioners. Since

estimation error is of concern for practitioners, I believe it should inherently be a

part of the forecast evaluation procedure. For example, consider two forecast models,

j and i. Assume that if the population parameters of both models are known, then

model j will exhibit slightly better forecast accuracy than model i. However, assume

also that the parameters of model j are much more difficult to estimate accurately,

and that inaccurate parameter estimation results in reduced forecast ability. In this

hypothetical, it is likely that a practitioner will prefer to use model i over model j.

The rankings provided in this chapter should reflect this, and so I do not explicitly

attempt to remove the effects of estimation error from the forecast evaluation proce-

dure. Nonetheless, it is also worth noting that several of the estimation choices in this

chapter will possibly result in the issue of estimation error being moot. For example,

66See West (1996), Clark & McCracken (2001), and Giacomini & White (2006).
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the estimation period is always longer than the forecast period which implies the

estimation error may satisfy a negligibility criteria.67 Further, a rolling estimation

window is employed which is known in some cases to render the issue of estimation

error moot, at least asymptotically.68

3.3 Models

In this chapter, the analysis is limited to the one-day ahead forecast horizon, since

this is the most popular horizon in industry. The VaR forecast models considered

can be divided into four categories, labelled:

1. historic VaR,

2. historic volatility,

3. conditional volatility, and

4. CAViaR (Conditional Autoregressive Value-at-Risk by Regression Quantiles).69

Further, within each category, I consider the sub-categories of those forecast models

that utilize intraday data versus those that do not. Note that forecasts based on

option-implied volatility are not included. This is because these forecasts are for the

volatility of a return spanning from the current time to the expiration of the contract.

Converting this forecast into a one-day ahead forecast is not possible without making

additional strong assumptions. Additional assumptions are also necessary to choose

the appropriate set of option strike prices to consider.

The models are now described, by category.

3.3.1 Historic Value-at-Risk

This category includes the naive historic method and basic time series models of a

proxy for the true VaR (specifically, the BRM Quantile Estimator).

The naive historic method is the simplest to implement and easily the most pop-

ular among large financial institutions.70 Let R(s)(t, τ) denote the order statistics of

the sequence Rt−τ+1, ..., Rt. Then the empirical λ-quantile at time t is R(bλτc)(t, τ).

In other words, at time t, sort all daily returns over the window [t − τ + 1, t],

and then choose the bλτc element of the sorted sequence. The forecast is then

Yt = R(bλτc)(t − 1, τ). In this chapter, I consider τ = {100, 250, 500}. Clearly,

this method does not employ intraday data.

67West (1996) Theorem 4.1.
68Giacomini & White (2006).
69Engle & Manganelli (2004).
70See Berkowitz & O’Brien (2002) and Mehta, Neukirchen, Pfetsch & Poppensieker (2012).
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In contrast, all other methods in this category employ intraday data, since they

utilize the proxy for VaR proposed in Chapter 2; the BRM Quantile Estimator,

denoted X̃t. I consider several basic time series models over the proxy, with both

fixed and optimized parameter choices. In the cases where parameters are chosen

optimally, this is done at 3-month rolling windows by minimizing the loss over the

most recent historical window of 1000 days. The time series models considered are:

1. random walk: Yt = X̃t−1,

2. moving average: Yt = τ−1
∑τ

s=1 X̃s, for τ = {5, 10, 20, 50, 100, 250},

3. exponential smoothing: Yt = βYt−1+(1−β)X̃t−1, for β = {0.1, 0.25, 0.5, 0.75, 0.9},
as well as choosing β optimally as described above,

4. exponentially weighted moving average: Yt = (
∑τ

s=1 β
s)−1

∑τ
s=1 β

sX̃s, for each

combination of β = {0.1, 0.25, 0.5, 0.75, 0.9} and τ = {5, 10}, as well as choosing

β optimally as described above, and

5. smooth transition exponential smoothing: Yt = αtX̃t−1 + (1 − αt)Yt−1, where

αt = 1/(1 + exp(β + γVt−1)), for Vt =
∣∣∣Yt − X̃t

∣∣∣ (MAE adjustment) and Vt =

(Yt−X̃t)
2 (MSE adjustment), with β and γ chosen optimally as described above.

This is the first paper in the literature to examine time series models defined over

the BRM Quantile Estimator.

3.3.2 Historic Volatility

This category consists entirely of the basic time series models described above, but

applied to estimates of the variance. The VaR forecast is then obtained from a

variance forecast using several different methods.

Specifically, I consider the following three estimates of variance:

1. squared return,

2. 5-minute realised variance,71 and

3. realised kernels.72

I apply each of the basic time series models described above73 to each of these

estimates, which results in a variance forecast, denoted σ̂2
t . Each variance forecast is

then transformed to a VaR forecast using each of the following two methods:

71See Andersen & Bollerslev (1998) or Barndorff-Nielsen & Shephard (2002b).
72Barndorff-Nielsen et al. (2008b).
73Random walk, moving average, exponential smoothing, exponentially weighted moving average,

and smooth transition exponential smoothing.
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1. Normality: Yt = σ̂tΦ
−1(λ), where Φ−1 is the inverse Gaussian distribution

function and λ is the quantile probability.

2. Filtering: let Zt = σ̃−1t Rt denote a standardized return. The VaR forecast is

then σ̂tZ(b1000λc)(t− 1, 1000), ie multiply the volatility forecast by the empirical

quantile of the standardized returns over the most recent 1000 days. This

method is used in, for example, Barone-Adesi, Giannopoulos & Vosper (2002),

who set σ̃2
t = σ̂2

t (the forecast). I also consider σ̃2
t equal to 5-minute realised

variance and realised kernels, since given simple modelling assumptions it is

straightforward to show that the accuracy of the empirical quantile increases

as V(σ̃−1t − σ−1t )→ 0, where σt denotes true volatility.

There is reason to believe that parametric assumptions other than Normality

would be suitable.74 However, in order to keep the total number of VaR forecast

models tractable, I consider only the Normal assumption, and rely on the filtering

method to capture situations in which the Normal assumption is not appropriate.

I consider every possible combination of estimator, time series model, and VaR

transform method described above. Any combination that uses 5-minute realised

variance or realised kernels is defined to be an intraday data-based method.

More complex volatility forecast models that incorporate intraday data do exist,75

and have even been used in a VaR forecast context.76 However, I avoid these more

complex variants here in order to keep the overall number of forecast models tractable,

and also because it is illustrative to draw direct comparison between the two intraday

variance proxies (5-minute realised variance and realised kernels) and the intraday

VaR proxy (BRM Quantile Estimator). This is facilitated by restricting attention to

the same set of simple time series models across all three proxies.

3.3.3 Conditional Volatility

This category consists entirely of conditional volatility models from the GARCH

family, transformed to VaR using several different methods.

The standard framework for conditional volatility models daily returns as Rt =
√
htZt, ht ⊥⊥ Zt, Zt

iid
v (0, 1), with ht known conditional on time t − 1 information.

The literature is then characterized by different models for ht. Rather than cite a

large number of individual papers, I refer the interested reader to the summaries in

Hansen & Lunde (2005a) or Poon & Granger (2003).

Following the findings in Hansen & Lunde (2005a), I use only the first lag of

relevant conditioning variables in all conditional volatility models. The models are:

74Giot & Laurent (2004).
75See Anderson & Vahid (2007), Koopman, Jungbacker & Hol (2005), Brownlees & Gallo (2010),

Shao, Lian & Yin (2009), Patton & Sheppard (2009) and Shephard & Sheppard (2010) in a univariate
framework, and Noureldin, Shephard & Sheppard (2012) in a multivariate framework.

76See Giot & Laurent (2004) and Clements, Galvao & Kim (2008).
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• TARCH family: hδt = ω+α |Rt−1|δ+γI(Rt−1 < 0) |Rt−1|δ+βhδt−1, δ ∈ {1, 2}; this

is RiskMetrics for {ω = 0, γ = 0, α = 0.06, β = 0.94, δ = 2}, GARCH(1,1) for

{γ = 0, δ = 2}, GJR-GARCH(1,1,1) for δ = 2, IGARCH for {α+β = 1, δ = 2}
and IAVARCH for {α + β = 1, δ = 1} - I also consider the models defined by

conditions {δ = 1, γ = 0} (TARCH11) and δ = 1 (TARCH111),

• AGARCH: ht = ω + α(Rt−1 − γ)2 + βht−1,

• NAGARCH: ht = ω + α(Rt−1 − γ
√
ht−1)

2 + βht−1, and

• APARCH: hδt = ω + α(|Rt−1| − γRt−1)
δ + βhδt−1 .

Estimation of the parameters of these models requires specification of the distri-

bution of Zt. I consider every combination of the above models with the Normal,

Student-T, and Skewed-T77 distributions, except RiskMetrics which explicitly as-

sumes Normality.

The VaR transform is obtained using the relevant parametric assumption (Normal,

Student-T, or Skewed-T) or the filtering method described above. The only intraday-

based models in this category are those that use 5-minute realised variance and

realised kernels in the filtering method.

3.3.4 CAViaR

CAViaR models (Conditional Autoregressive Value-at-Risk by Regression Quantiles)

are described in detail in Engle & Manganelli (2004). They are analogous to condi-

tional volatility models, but where the quantity of interest is the quantile. I consider

the following variations:

• Adaptive: Yt = Yt−1 + β((1 + exp(G(Rt−1− Yt−1)))−1− λ, for positive, large G,

where λ denotes the quantile probability.

• Symmetric absolute value: Yt = β1 + β2Yt−1 + β3 |Rt−1|.

• Asymmetric slope: Yt = β1 + β2Yt−1 + (β3I(Rt−1 > 0)Rt−1 + I(Rt−1 < 0))Rt−1.

• Indirect GARCH(1,1): Yt = (β1 + β2Y
2
t−1 + β3R

2
t−1)

1/2.

None of the CAViaR models use intraday data.

This concludes the list of models. In total, the descriptions above result in 351

different forecast methods for VaR.

For many of the models, numerical optimization is required. I employed the

patternsearch algorithm from Matlab’s global optimization toolbox, with checks to

ensure that termination of the routine was due to the mesh falling below a tolerance

77Hansen (1994).
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of 1e-6. In testing, this approach proved more robust than gradient-based methods.

The exception to this is the conditional volatility models, where all parameters are

estimated using Kevin Sheppard’s Matlab toolbox, discussed in Chapter 1.

3.4 Literature

There is a vast literature on VaR forecast models. In this section, I limit the discussion

to the most prominent papers.

The primary question this paper attempts to address is whether there is an ad-

vantage to using intraday data in a forecast context. Results on this topic are mixed.

Giot & Laurent (2004) find no appreciable difference between an APARCH condi-

tional volatility model, transformed to VaR using a Skewed-T assumption, and a time

series model of realised volatility. They evaluate the forecasts using the Likelihood

Ratio test of Kupiec (1995) and the Dynamic Quantile test of Engle & Manganelli

(2004). However, it is worth emphasizing that since both these tests analyse VaR

breaks, it is possible that competing models exhibit correct coverage and are there-

fore considered equal, even though one model may be significantly more accurate (in

terms of distance from true VaR) than another. That is to say, the results in Giot

& Laurent (2004) are not inconsistent with intraday data-based forecasts providing

greater accuracy. Similar results can also be found in Angelidis & Degiannakis (2008).

Brownlees & Gallo (2010) find that VaR forecasts based on several intraday vari-

ance estimators generally outperform standard conditional volatility models, although

they do not significantly outperform VaR forecasts based on daily range volatility es-

timators. The analysis is done in a loss-based framework, employing the tick loss

of Komunjer (2005), sometimes also called the linear regulatory loss function.78 As

discussed in Chapter 2, this approach lacks power relative to the approach advocated

in this chapter - nonetheless, the result is notable and worth keeping in mind when

considering the results of the present chapter.

Similar results to those of Brownlees & Gallo (2010) can also be found in Clements

et al. (2008) and Shao et al. (2009). Of particular interest, the novel approach

to forecast evaluation in Fuertes & Olmo (2013) provides evidence that intraday

models do not encompass inter-day models, and vice-versa. This suggests that useful

information exists in both intraday and inter-day forecasts, although does not provide

a recommendation as to which is more accurate. In that paper, combined forecasts

are suggested.

Using the Mincer-Zarnowitz regression, further support for realised volatility

based forecasts of VaR can be found in Andersen, Bollerslev, Diebold & Labys

(2003), although the primary focus of that paper is volatility forecasts. Similarly,

78Sener et al. (2012).
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using the test for Superior Predictive Ability79, Koopman et al. (2005) find evidence

that realised volatility based forecasts (for volatility) are more accurate than standard

stochastic volatility models, as well as GARCH.

For many risky assets intraday data may not be available. In Section 3.6 I also

consider the best performing among the set of daily data-based models and so it is

of interest to consider the literature on these models here.

Fully parametric or filtered historical methods that incorporate an asymmetric

leverage term tend to perform well, e.g. GJRGARCH. More general conditional

volatility models, such as GARCH, also have good performance if the source of ran-

domness is assumed to follow a Skewed-T distribution. Support for these observa-

tions can be found in Christoffersen (1998), Giot & Laurent (2003), Bao et al. (2006),

Kuester, Mittnik & Paolella (2006), and Sener et al. (2012). Sener et al. (2012) also

find that CAViaR methods that incorporate asymmetry obtain good performance, al-

though the results of Kuester et al. (2006) do not agree with this. However, Kuester

et al. (2006) acknowledge that the poor performance of basic CAViaR methods is

likely due to serial correlation early in their sample (which goes back to 1971). They

propose an AR(1) adjustment in their paper for this early period which achieves much

better performance. Since there is little evidence of serial correlation in daily returns

in the data used for the present chapter, I do not consider this adjustment.

Kuester et al. (2006) also note that GARCH-Normal models, i.e. GARCH with a

Normal assumption for Zt, tend to perform better for the larger quantiles; specifically,

0.08 and above, while the GARCH-Skewed-T performs better for smaller quantiles.

This is part of a broader set of results across almost the entire VaR forecast evaluation

literature that suggests that different forecast models tend to perform better for

different quantiles; see also for example Christoffersen, Hahn & Inoue (2001). Given

the increased power of the methods used in the present chapter, it will be interesting

to examine whether this trend continues.

There are also several papers that emphasize that the most popular VaR forecast

method, the naive historical simulation, performs very poorly compared to the basic

GARCH-Normal parametric model; see for example, Berkowitz & O’Brien (2002) or

Gaglianone et al. (2011).

3.5 Data and Computational Choices

Before stating the results, a brief discussion of the data and computational choices

beyond what is provided earlier is necessary.

The analysis in the present chapter is performed on 50 New York Stock Exchange

and 50 Australian Stock Exchange publicly listed companies, spanning January 2004

to December 2013. As discussed in Chapter 1, all data are cleaned following the

79Hansen (2005).
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methods discussed in Barndorff-Nielsen et al. (2009). Post cleaning, I visually inves-

tigated any remaining jumps of large magnitude. I am satisfied that the aforemen-

tioned cleaning methods are sufficient for the New York Stock Exchange data, but

not sufficient for the Australian data. Therefore an additional clean was imposed on

the Australian data. For each transaction, I examine the median of the next 6 and

previous 6 transactions. If the present transaction deviates from both medians in the

same direction by more than 10 times the most common non-zero absolute increment

on that day, then it is removed.80 Even after this additional measure, I chose to

completely remove 19 from the (approximate) 125,000 asset/day combinations in the

dataset due to large swathes of suspicious transactions.81

In this chapter, a “day” is defined to be the interval between the first and last

transaction in a given day. A return over this span is referred to as a daily return,

and similarly 5-minute realised variance, realised kernels, and the BRM Quantile

Estimator are also calculated over this span.

I do not consider the overnight return as this would contradict the asymptotic as-

sumptions of several of the estimators used in this chapter, and therefore the asymp-

totic conditions of the Patton & Li (2013) framework. This is because incorporating

the overnight return prevents the mesh of the partition of intraday returns from

approaching zero. An alternate possibility would have been to scale all intraday esti-

mates up to a 24 hour span using a parameter estimated across all days.82 Although

feasible, the asymptotics are non-trivial since consistency of an intraday estimator on

a given day now requires a dual asymptotic framework, where both the number of

intraday returns, and number of days, grows. In particular, it is not clear how such

a dual-asymptotic framework would affect the dual-asymptotic framework in Patton

& Li (2013).

I do not use auction determined opening and closing prices for two reasons. First,

such a price is theoretical, i.e. transactions do not necessarily occur at this price.

Second, surprisingly, these prices are frequently some distance from the first and last

(respectively) transaction of the day, suggesting that participants may be “gaming”

the auction with unrealistic bids.

From the estimators and daily returns defined above, all VaR forecasts are com-

puted. Any forecast model parameters are estimated using a 1000 day window, at

rolling 3 month intervals. This means the first legitimate forecast is made on 2nd

January, 2008, and so the two forecast intervals considered are January 2008 to De-

cember 2010, and January 2011 to December 2013. The former is defined to be the

global financial crisis period. The interval from January 2004 to December 2007 is

80i.e. it is removed if above both medians, or below both medians, but is not removed if above
one and below the other.

81An example of “suspicious” is transaction prices around $10 for most of the day, except for a
short interval where they plummet to around $0.01.

82Hansen & Lunde (2005b).
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used to “warm-up” the forecast models, as well as providing the initial parameter

estimation period.

For quantiles λ = {0.01, 0.05} and for both the Mean Absolute Error (MAE) and

Mean Square Error (MSE) loss functions, I apply the Model Confidence Set algorithm

to 3 sets of models. The first set consists of every model discussed in Section 3.3. For

the second set, consider that I employ the BRM Quantile Estimator both as a proxy

for true VaR and as a predictor in basic time series models. This is perfectly valid as

long as the proxy error is a martingale difference sequence. Although this assumption

is common in the literature,83 for the sake of rigour, the second set of models omits

all those that employ the BRM Quantile Estimator as a predictor. Finally, the third

set omits all models that incorporate intraday data. That is, any model that uses

5-minute realised variance, realised kernels, or the BRM Quantile Estimator as a

predictor are omitted.

The above procedure is performed on the 50 most liquid stocks on the New York

Stock Exchange and Australian Stock Exchange over the sample period, since this

should yield N � T . I am satisfied that N is sufficiently large for the NYSE assets,

but for the ASX assets I also check the results against an analysis of only the 20 most

liquid stocks due to liquidity concerns for the rest. These results were consistent with

those obtained using all 50 stocks.

The statistic of interest is the number of times a given model appeared in the

Model Confidence Set, expressed as a proportion, by summing across assets. In this

way, I identify forecast models that work well for a large cross section of individual

equities, in the hope that such models will exhibit good performance in other equity

sequences not included in the dataset.

3.6 Results

For simplicity, in this section I only provide data on the very best performing models

in each subset, and further, only provide the New York Stock Exchange results, since

they are very similar to Australian Stock Exchange results. A more comprehensive

set of tables can be found in Appendix 3.B.

Table 3.1 demonstrates that when all models are considered, the best performing

forecasts are the time series models defined over the consistent proxy from Chapter 2:

the BRM Quantile Estimator. The result is consistent across both quantiles, across

both forecast intervals, and across both exchanges.

This result is indicative of a dominant theme across the extended set of results.

Forecast models that incorporate intraday data outperform those that don’t. Further,

the forecast models need not be sophisticated. In fact, a simple exponential smooth-

ing rule with a fixed parameter choice is the overall best performing model. The

83See Patton (2011a) or Andersen et al. (2003).
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Table 3.1: Members of Model Confidence Set: All Models

0.01 quantile 2008-2010 2011-2013 Average

ES(β = 0.5) on BRMQE 0.78 0.78 0.78

STES:MSE(Opt) on BRMQE 0.66 0.60 0.63

ES(Opt) on BRMQE 0.46 0.64 0.55

0.05 quantile 2008-2010 2011-2013 Average

ES(β = 0.5) on BRMQE 0.84 0.90 0.87

STES:MSE(Opt) on BRMQE 0.72 0.64 0.68

ES(Opt) on BRMQE 0.54 0.66 0.60

BRMQE = Bootstrap Return Method Quantile Estimator, ES = Exponential Smoothing,
STES:MSE = Smooth Transition Exponential Smoothing with Mean Square Error Adjustment,
Opt = model parameters estimated optimally

success of exponential smoothing is not overly surprising. Exponential smoothing

has an ARIMA(0,1,1) representation, and I(1) processes have long been considered

reasonable models for volatility. Given the relationship between volatility and quan-

tiles, it is not unreasonable to conjecture that the time series of VaR should exhibit

similar qualities.

The success of the fixed parameter rule over an optimally chosen parameter is

more surprising. This suggests that the appropriate smoothing parameter is similar

across all assets and close to 0.5 (although it is worth adding that 0.75 performs well

for Australian stocks). In particular, it would appear that attempting to estimate

the parameter optimally for each individual asset can prove sub-optimal, due to the

additional source of parameter estimation error in the forecast. It would seem that

better performance could be achieved by estimating a single parameter using data

from all assets, such as is explicitly done by RiskMetrics in the daily data case.

In Table 3.2 I remove all BRM Quantile Estimator based forecast models from

the feasible set. Interestingly, the best model is still an exponential smoothing with

fixed parameter of 0.5, albeit this time defined over realised kernels, with the inverse

Gaussian distribution used to transform the volatility forecast to VaR.

This result strengthens the argument that VaR forecasts based on intraday data

outperform those based on daily data, since there is no reason to believe that VaR

forecasts based on time series models of realised kernels would be unfairly advantaged

by the use of the BRM Quantile estimator as a proxy for true VaR. As discussed, it

is also not surprising that an I(1) model is a reasonable choice for realised kernels,

and, given the results in Table 3.1, the dominance of the fixed parameter rule seems

reasonable.

An interesting result worth emphasizing is the dominance of forecasts based on
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Table 3.2: Members of Model Confidence Set: No Bootstrap Return Method Quantile
Estimator

0.01 quantile 2008-2010 2011-2013 Average

ES(β = 0.5) on RK, Normal 0.76 0.56 0.66

ES(β = 0.75) on RK, Normal 0.30 0.72 0.51

STES:MAE(Opt) on RK, Normal 0.58 0.36 0.47

0.05 quantile 2008-2010 2011-2013 Average

ES(β = 0.5) on RK, Normal 0.72 0.48 0.60

ES(β = 0.75) on RK, Normal 0.34 0.68 0.51

STES:MAE(Opt) on RK, Normal 0.68 0.32 0.50

RK = realised kernels, ES = Exponential Smoothing, STES:MAE = Smooth Transition Exponential
Smoothing with Mean Absolute Error Adjustment, Opt = model parameters estimated optimally,
Normal = volatility forecast transformed to VaR with inverse Gaussian cdf

realised kernels over forecasts based on 5-minute realised variance. Of course, this is

not a direct test of the efficacy of these estimators, but their relative performance in

forecasting applications is nonetheless a question of interest. I note that this result,

for the most part, accords with the findings in Liu et al. (2013), who perform direct

tests of these estimators. This is not to say 5-minute realised variance is not useful.

Analysis of Table 3.5 in Appendix 3.B indicates that a fixed parameter exponential

smoothing model for 5-minute realised variance, with inverse Gaussian transform to

obtain VaR, performed well, especially in the 2011-2013 period. In contrast, daily

data-based methods do not even make an appearance in this table.

A final point worth mentioning from Table 3.2 is the dominance of the Normal as-

sumption to obtain VaR from a volatility forecast. There has previously been evidence

in the literature that daily returns, standardized by intraday volatility estimators, ap-

pear close to Normal.84 However, the results in Table 3.2 suggest (indirectly) that

the Normal assumption is also good for returns standardized by volatility forecasts

based on intraday measures. In particular, it is interesting that this assumption out-

performs empirical quantiles estimated from filtered data. This could be because of

the additional estimation error inherent in estimating empirical quantiles, or it could

be due to other forms of nonstationarity in daily returns aside from that caused by

heteroskedasticity.

Although the primary purpose of this chapter is to compare the performance of

VaR forecasts based on intraday data versus those based on daily data, it is also of

interest to examine the dominant models from the subset of daily data-based models.

As discussed in Section 3.4, there has been some suggestion in the literature that

for equity data, conditional volatility models that incorporate asymmetry and utilize

84Andersen et al. (2001).
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Table 3.3: Members of Model Confidence Set: No Intraday Models

0.01 quantile 2008-2010 2011-2013 Average

RiskMetrics 0.76 0.82 0.79

IAVARCH:Normal, Parametric 0.90 0.68 0.79

IGARCH:Normal, Parametric 0.88 0.52 0.70

0.05 quantile 2008-2010 2011-2013 Average

RiskMetrics 0.72 0.60 0.66

IAVARCH:Skewed-T, Parametric 0.84 0.38 0.61

IAVARCH:Normal, Parametric 0.86 0.34 0.60

Parametric = volatility forecast transformed to VaR using parametric assumption from model esti-
mation. Note, RiskMetrics uses inverse Gaussian cdf

a Skewed-T distribution will outperform. In contrast, I find the best VaR forecasts

result from I(1) conditional volatility models combined with a Gaussian assumption.

Of particular note: the oft-maligned RiskMetrics of JPMorgan is the overall best

performer.

It is possible that these results are simply a feature of the forecast interval under

analysis, or the forecast evaluation method employed. However, given the results in

Table 3.1 and Table 3.2, I suggest that estimation error might be the determining

factor. RiskMetrics is a fixed parameter model and so exhibits no parameter esti-

mation error. While parameter estimation is part of IGARCH and IAVARCH, these

models are notable among conditional volatility models in that both of them impose

a parameter constraint such that the resulting process is I(1). If the true process

is I(1), this constraint will significantly reduce the estimation error. Previous stud-

ies that find in favour of asymmetric models with a Skewed-T assumption generally

estimate parameters over a much longer estimation window than that used in the

present chapter, hence estimation error is less likely to be a determining factor in

these studies. In the present chapter, I was constrained by the need for good quality

intraday transactions data over the entire estimation and forecast interval - which is

difficult to obtain for the Australian Stock Exchange prior to 2004.

A further result that can be garnered from all three tables, as well as the additional

tables in Appendix 3.B, is that in all the tests performed, the best performing forecast

models are fairly constant, across equity exchanges, across forecast intervals, and even

across both quantiles. This is a reassuring result for any practitioners who adopt a

one-size-fits-all rule in their risk modelling, although it is worth emphasizing that, in

this chapter, only equity data are considered. Results could differ dramatically for

other asset types.

One final point worth mentioning is the poor performance of empirical quantiles
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based on daily data. In most cases, this approach is not included in a Model Confi-

dence Set for any of the assets analysed. This result accords with the literature, as

discussed in Section 3.4. Nonetheless, it is something of a concern, given the popu-

larity of this model in industry. On the basis of the present study, application of this

model appears entirely irrational85 given the excellent performance of RiskMetrics,

which is just as easy to implement.

3.7 Conclusion

In this chapter, I perform the first large-scale evaluation of VaR forecast models using

the BRM Quantile estimator as a proxy for true VaR in combination with tests from

the loss-based forecast evaluation literature. As discussed in Chapter 2, this approach

exhibits greater power to distinguish between competing VaR forecasts than other

comparable methods. The approach is used to address the question of whether there

is any advantage to using VaR forecast models that utilize intraday data.

I find strong evidence in favour of simple time series models for intraday data-

based estimators. In particular, time series models for the BRM Quantile Estimator

yielded particularly accurate forecasts, while time series models for realised kernels,

combined with an inverse Gaussian transform to obtain VaR, were also good per-

formers. In particular, these methods appear to strongly dominate daily data-based

forecasts across all forecast intervals, both quantiles, and for both the New York

Stock Exchange and the Australian Stock Exchange data.

It is worth emphasizing that this chapter contains the first application of time

series models to the BRM Quantile Estimator. For this initial, exploratory study,

the analysis was deliberately constrained to simple time series models. However, the

strong results for this approach suggest that future work could look at the develop-

ment of more sophisticated time series models for this estimator. A paper devoted

entirely to the time series properties of the BRM Quantile Estimator would likely

prove a valuable addition to the literature.

Appendix 3.A The Model Confidence Set

In this appendix the Model Confidence Set (MCS) of Hansen et al. (2011) is described.

I begin the discussion by noting that the use of the MCS within the framework

described in Patton & Li (2013) is theoretically justified.86 The procedure itself

works as follows.

LetM0 denote the set of all forecast models, k = 1, ..., K, and letM⊆M0. Let

M∗ denote the MCS, that is, the set of all forecast models with minimum expected

85Of course, forecast accuracy may not be the primary incentive in industry.
86See Section 4.3 of Patton & Li (2013).
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forecast error. This set may only contain one element. The MCS algorithm is a

step-wise procedure that consists of a hypothesis test, followed by an elimination

rule. Initially, set M = M0. At each step, test the null hypothesis that all models

in M are equivalent. If the null hypothesis is rejected, then apply the elimination

rule to remove the worst performing models from M. This procedure is repeated

until the null hypothesis of equivalence is accepted, at which point denoteM as M̂∗,

i.e. an estimator of the MCS. For a given confidence level α, Hansen et al. (2011)

show that asymptotically, P(M∗ ⊂ M̂∗) ≥ 1 − α, and further, that asymptotically,

P(k ∈ M̂∗) = 0, ∀k /∈ M∗, where k denotes a forecast model. In words, we can

reasonably expect the MCS to contain the true set of best models with a given

confidence level and further, we can reasonably expect it not to contain inferior

models. It is worth adding that in the ideal case where the MCS contains only one

model, Hansen et al. (2011) show that asymptotically P(M∗ = M̂∗) = 1.

A strength of the MCS algorithm is that if the equivalence test lacks power, then

the algorithm will terminate quite early, and the resulting MCS will contain many

models. If, on the other hand, the data contain more information, then the equiv-

alence test will have greater power, and the resulting MCS will contain a smaller

number of models. In practice, this means that the power of the testing procedure

may be evaluated by counting the number of models in the MCS. In the present anal-

ysis, this is used to demonstrate that greater power to distinguish between competing

models obtains when one employs the Mean Absolute Error loss function in place of

the Mean Square Error, and also when one examines data from outside the global

financial crisis period.

A second strength of the MCS algorithm is that it controls for the pairwise error

rate associated with testing more than two forecast models. In other words, it implic-

itly controls for K, i.e. the size of M0. For example, if M0 contains a large number

of purely random processes, none of them are likely to be singled out by the MCS

algorithm as the best model. In contrast, if one performs a large number of bivariate

comparisons in a Diebold & Mariano (1995) type framework, then one is likely to

find an independent random process with strong apparent forecasting ability, purely

by chance.

A practical description of the equivalence test and elimination rule can be found in

Hansen et al. (2011). In particular, in the present analysis, I employ the equivalence

test and elimination rule constructed from t-statistics,87 with relevant confidence

bounds estimated using the stationary bootstrap of Politis & Romano (1994b). As

discussed in Hansen et al. (2011), sufficient conditions justifying this procedure are

that d̃t is a strictly stationary strong mixing process of size −r/(r−2), with non-zero

variance and E|d̃t|r+γ < ∞, r > 2, γ > 0, where d̃t denotes the proxy loss differen-

87See Section 3.2.1 of Hansen et al. (2011).
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tial,88 although it would not be unreasonable to conjecture that these conditions can

be weakened to those discussed in Goncalves & de Jong (2003)89

Appendix 3.B Additional Results

In this appendix I provide more comprehensive versions of the tables in Section 3.6.

For each table, I display the smaller of:

• the top 14 forecast models, and

• all models that appear in the Model Confidence Set with a proportion greater

than 0.2 for at least one of the time periods .

These tables contain results for the MAE loss function. The MSE loss function results

were very similar, albeit with slightly less power, and so are omitted.

88It is defined precisely in Section 3.2.
89A heterogeneous process exhibiting L2 near epoch dependence on a strong mixing base and a

moment bound of r + δ, r > 2, δ > 0.
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Table 3.4: Members of Model Confidence Set: All Models - New York Stock Exchange

0.01 quantile 2008-2010 2011-2013 Average

ES(β = 0.5) on BRMQE 0.78 0.78 0.78

STES:MSE(Opt) on BRMQE 0.66 0.60 0.63

ES(Opt) on BRMQE 0.46 0.64 0.55

EWMA(Opt)(τ = 10) on BRMQE 0.46 0.60 0.53

STES:MAE(Opt) on BRMQE 0.48 0.58 0.53

ES(β = 0.75) on BRMQE 0.34 0.54 0.44

EWMA(β = 0.75)(τ = 10) on BRMQE 0.34 0.30 0.32

EWMA(β = 0.5)(τ = 10) on BRMQE 0.56 0 0.28

EWMA(β = 0.5)(τ = 5) on BRMQE 0.46 0 0.23

ES(β = 0.25) on BRMQE 0.38 0 0.19

EWMA(Opt)(τ = 5) on BRMQE 0.38 0 0.19

ES(β = 0.5) on RK, Normal 0.32 0 0.16

STES:MAE(Opt) on RK, Normal 0.30 0 0.15

EWMA(β = 0.75)(τ = 5) on BRMQE 0.24 0 0.12

0.05 quantile 2008-2010 2011-2013 Average

ES(β = 0.5) on BRMQE 0.84 0.90 0.87

STES:MSE(Opt) on BRMQE 0.72 0.64 0.68

STES:MAE(Opt) on BRMQE 0.66 0.60 0.63

ES(Opt) on BRMQE 0.54 0.66 0.60

EWMA(Opt)(τ = 10) on BRMQE 0.60 0.60 0.60

ES(β = 0.75) on BRMQE 0.32 0.50 0.41

EWMA(β = 0.5)(τ = 10) on BRMQE 0.72 0 0.36

EWMA(β = 0.75)(τ = 10) on BRMQE 0.28 0.40 0.34

EWMA(β = 0.5)(τ = 5) on BRMQE 0.60 0 0.30

ES(β = 0.25) on BRMQE 0.44 0 0.22

EWMA(Opt)(τ = 5) on BRMQE 0.36 0 0.18

STES:MAE(Opt) on RK, Normal 0.30 0 0.15

ES(β = 0.5) on RK, Normal 0.28 0 0.14

ES(Opt) on RK, Normal 0.22 0 0.11

BRMQE = Bootstrap Return Method Quantile Estimator, RK = realised kernels, ES = Exponen-
tial Smoothing, EWMA = Exponentially Weighted Moving Average, STES:MSE[MAE] = Smooth
Transition Exponential Smoothing with Mean Square Error Adjustment [Mean Absolute Error Ad-
justment], Opt = model parameters estimated optimally, Normal = volatility forecast transformed
to VaR with inverse Gaussian cdf
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Table 3.5: Members of Model Confidence Set: No Bootstrap Return Method Quantile
Estimator - New York Stock Exchange

0.01 quantile 2008-2010 2011-2013 Average

ES(β = 0.5) on RK, Normal 0.76 0.56 0.66

ES(β = 0.75) on RK, Normal 0.30 0.72 0.51

STES:MAE(Opt) on RK, Normal 0.58 0.36 0.47

STES:MSE(Opt) on RK, Normal 0.46 0.38 0.42

ES(Opt) on RK, Normal 0.42 0.38 0.40

EWMA(Opt)(τ = 10) on RK, Normal 0.42 0.36 0.39

ES(β = 0.75) on RV5Min, Normal 0.24 0.42 0.33

EWMA(β = 0.75)(τ = 10) on RK, Normal 0.22 0.36 0.29

STES:MAE(Opt) on RV5Min, Normal 0.30 0.22 0.26

EWMA(β = 0.5)(τ = 10) on RK, Normal 0.26 0 0.13

STES:MSE(Opt) on RV5Min, Normal 0.24 0 0.12

ES(Opt) on RV5Min, Normal 0.22 0 0.11

EWMA(β = 0.75)(τ = 10) on RV5Min, Normal 0.22 0 0.11

ES(β = 0.9) on RK, Normal 0 0.22 0.11

0.05 quantile 2008-2010 2011-2013 Average

ES(β = 0.5) on RK, Normal 0.72 0.48 0.60

ES(β = 0.75) on RK, Normal 0.34 0.68 0.51

STES:MAE(Opt) on RK, Normal 0.68 0.32 0.50

EWMA(Opt)(τ = 10) on RK, Normal 0.52 0.34 0.43

STES:MSE(Opt) on RK, Normal 0.52 0.34 0.43

ES(Opt) on RK, Normal 0.52 0.30 0.41

EWMA(β = 0.75)(τ = 10) on RK, Normal 0.30 0.40 0.35

ES(β = 0.75) on RV5Min, Normal 0 0.42 0.21

EWMA(β = 0.5)(τ = 10) on RK, Normal 0.34 0 0.17

STES:MAE(Opt) on RV5Min, Normal 0.30 0 0.15

ES(β = 0.5) on RV5Min, Normal 0.26 0 0.13

ES(β = 0.25) on RK, Normal 0.26 0 0.13

EWMA(β = 0.5)(τ = 5) on RK, Normal 0.26 0 0.13

EWMA(Opt)(τ = 5) on RK, Normal 0.26 0 0.13

RK = realised kernels, RV5Min = 5-minute realised variance, ES = Exponential Smoothing, EWMA
= Exponentially Weighted Moving Average, STES:MSE[MAE] = Smooth Transition Exponential
Smoothing with Mean Square Error Adjustment [Mean Absolute Error Adjustment], Opt = model
parameters estimated optimally, Normal = volatility forecast transformed to VaR with inverse Gaus-
sian cdf
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Table 3.6: Members of Model Confidence Set: No Intraday Models - New York Stock
Exchange

0.01 quantile 2008-2010 2011-2013 Average

RiskMetrics 0.76 0.82 0.79

IAVARCH:Normal, Parametric 0.90 0.68 0.79

IGARCH:Normal, Parametric 0.88 0.52 0.70

GJRGARCH:Normal, Parametric 0.68 0.70 0.69

GARCH:Normal, Parametric 0.68 0.68 0.68

NAGARCH:Normal, Parametric 0.64 0.68 0.66

TARCH11:Normal, Parametric 0.66 0.60 0.63

AGARCH:Normal, Parametric 0.64 0.58 0.61

APARCH:Normal, Parametric 0.58 0.64 0.61

ES(β = 0.9) on SqRet, Normal 0.76 0.42 0.59

TARCH111:Normal, Parametric 0.54 0.60 0.57

MA(τ = 50) on SqRet, Normal 0.22 0.76 0.49

IAVARCH:Skewed-T, Parametric 0.74 0 0.37

NAGARCH:Skewed-T, Parametric 0.68 0 0.34

0.05 quantile 2008-2010 2011-2013 Average

RiskMetrics 0.72 0.60 0.66

IAVARCH:Skewed-T, Parametric 0.84 0.38 0.61

IAVARCH:Normal, Parametric 0.86 0.34 0.60

IGARCH:Skewed-T, Parametric 0.74 0.40 0.57

GJRGARCH:Normal, Parametric 0.62 0.44 0.53

AGARCH:Skewed-T, Parametric 0.62 0.44 0.53

NAGARCH:Normal, Parametric 0.64 0.42 0.53

IGARCH:Normal, Parametric 0.78 0.28 0.53

GJRGARCH:Skewed-T, Parametric 0.54 0.50 0.52

TARCH11:Student-T, Filtered 0.46 0.58 0.52

AGARCH:Normal, Parametric 0.64 0.40 0.52

AGARCH:Student-T, Filtered 0.42 0.62 0.52

IAVARCH:Skewed-T, Filtered 0.50 0.54 0.52

ES(β = 0.9) on SqRet, Normal 0.70 0.30 0.50

SqRet = Squared Returns, ES = Exponential Smoothing, MA = Moving Average, Normal = volatil-
ity forecast transformed to VaR with inverse Gaussian cdf, Parametric = volatility forecast trans-
formed to VaR using parametric assumption from model estimation. Note, RiskMetrics uses inverse
Gaussian cdf, Filtered = volatility forecast transformed to VaR using filtering method
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Table 3.7: Members of Model Confidence Set: All Models - Australian Stock Ex-
change

0.01 quantile 2008-2010 2011-2013 Average

STES:MSE(Opt) on BRMQE 0.88 0.84 0.86

ES(β = 0.75) on BRMQE 0.90 0.80 0.85

ES(Opt) on BRMQE 0.78 0.82 0.80

STES:MAE(Opt) on BRMQE 0.74 0.86 0.80

ES(β = 0.75) on RK, Normal 0.72 0.66 0.69

EWMA(Opt)(τ = 10) on BRMQE 0.70 0.56 0.63

EWMA(β = 0.75)(τ = 10) on BRMQE 0.70 0.54 0.62

ES(Opt) on RK, Normal 0.44 0.68 0.56

STES:MAE(Opt) on RK, Normal 0.34 0.76 0.55

STES:MSE(Opt) on RK, Normal 0.28 0.70 0.49

ES(β = 0.9) on RK, Normal 0.24 0.56 0.40

EWMA(β = 0.5)(τ = 10) on RK, Normal 0.42 0.38 0.40

ES(β = 0.9) on BRMQE 0.28 0.48 0.38

EWMA(Opt)(τ = 10) on RK, Normal 0.36 0.36 0.36

0.05 quantile 2008-2010 2011-2013 Average

STES:MAE(Opt) on BRMQE 0.86 0.96 0.91

STES:MSE(Opt) on BRMQE 0.88 0.90 0.89

ES(β = 0.75) on BRMQE 0.92 0.82 0.87

ES(Opt) on BRMQE 0.82 0.84 0.83

EWMA(β = 0.75)(τ = 10) on BRMQE 0.76 0.52 0.64

ES(β = 0.75) on RK, Normal 0.64 0.60 0.62

EWMA(Opt)(τ = 10) on BRMQE 0.70 0.48 0.59

ES(Opt) on RK, Normal 0.38 0.54 0.46

STES:MAE(Opt) on RK, Normal 0.28 0.60 0.44

STES:MSE(Opt) on RK, Normal 0.24 0.56 0.40

EWMA(β = 0.75)(τ = 10) on RK, Normal 0.34 0.34 0.34

ES(β = 0.9) on BRMQE 0.22 0.44 0.33

EWMA(Opt)(τ = 10) on RK, Normal 0.32 0.28 0.30

ES(β = 0.9) on RK, Normal 0.22 0.36 0.29

BRMQE = Bootstrap Return Method Quantile Estimator, RK = realised kernels, ES = Exponen-
tial Smoothing, EWMA = Exponentially Weighted Moving Average, STES:MSE[MAE] = Smooth
Transition Exponential Smoothing with Mean Square Error Adjustment [Mean Absolute Error Ad-
justment], Opt = model parameters estimated optimally, Normal = volatility forecast transformed
to VaR with inverse Gaussian cdf
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Table 3.8: Members of Model Confidence Set: No Bootstrap Return Method Quantile
Estimator - Australian Stock Exchange

0.01 quantile 2008-2010 2011-2013 Average

ES(β = 0.75) on RK, Normal 0.88 0.86 0.87

ES(Opt) on RK, Normal 0.60 0.78 0.69

STES:MAE(Opt) on RK, Normal 0.44 0.82 0.63

STES:MSE(Opt) on RK, Normal 0.36 0.76 0.56

EWMA(β = 0.75)(τ = 10) on RK, Normal 0.54 0.54 0.54

ES(β = 0.9) on RK, Normal 0.36 0.60 0.48

EWMA(Opt)(τ = 10) on RK, Normal 0.48 0.48 0.48

ES(β = 0.5) on RK, Normal 0.30 0.32 0.31

EWMA(β = 0.9)(τ = 10) on RK, Normal 0.22 0.36 0.29

ES(β = 0.75) on RV5Min, Normal 0.30 0 0.15

STES:MAE(Opt) on RV5Min, Normal 0 0.26 0.13

EWMA(β = 0.75)(τ = 10) on RV5Min, Normal 0.24 0 0.12

STES:MSE(Opt) on RV5Min, Normal 0 0.22 0.11

0.05 quantile 2008-2010 2011-2013 Average

ES(β = 0.75) on RK, Normal 0.92 0.84 0.88

ES(Opt) on RK, Normal 0.62 0.80 0.71

STES:MAE(Opt) on RK, Normal 0.48 0.84 0.66

STES:MSE(Opt) on RK, Normal 0.34 0.78 0.56

EWMA(β = 0.75)(τ = 10) on RK, Normal 0.52 0.44 0.48

EWMA(Opt)(τ = 10) on RK, Normal 0.48 0.48 0.48

ES(β = 0.9) on RK, Normal 0.32 0.56 0.44

ES(β = 0.5) on RK, Normal 0.24 0.26 0.25

EWMA(β = 0.9)(τ = 10) on RK, Normal 0.24 0.24 0.24

ES(β = 0.75) on RV5Min, Normal 0.34 0 0.17

EWMA(β = 0.75)(τ = 10) on RV5Min, Normal 0.32 0 0.16

EWMA(β = 0.75)(τ = 5) on RK, Normal 0.28 0 0.14

STES:MAE(Opt) on RV5Min, Normal 0 0.24 0.12

RK = realised kernels, RV5Min = 5-minute realised variance, ES = Exponential Smoothing, EWMA
= Exponentially Weighted Moving Average, STES:MSE[MAE] = Smooth Transition Exponential
Smoothing with Mean Square Error Adjustment [Mean Absolute Error Adjustment], Opt = model
parameters estimated optimally, Normal = volatility forecast transformed to VaR with inverse Gaus-
sian cdf
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Table 3.9: Members of Model Confidence Set: No Intraday Models - Australian Stock
Exchange

0.01 quantile 2008-2010 2011-2013 Average

IAVARCH:Normal, Parametric 0.66 0.90 0.78

IAVARCH:Skewed-T, Parametric 0.72 0.80 0.76

RiskMetrics 0.82 0.58 0.70

IGARCH:Normal, Parametric 0.64 0.72 0.68

TARCH11:Normal, Parametric 0.38 0.90 0.64

TARCH11:Skewed-T, Parametric 0.46 0.82 0.64

IGARCH:Skewed-T, Parametric 0.62 0.66 0.64

GARCH:Normal, Parametric 0.40 0.82 0.61

TARCH111:Skewed-T, Parametric 0.44 0.78 0.61

GJRGARCH:Normal, Parametric 0.44 0.76 0.60

TARCH111:Normal, Parametric 0.38 0.76 0.57

GARCH:Skewed-T, Parametric 0.38 0.74 0.56

AGARCH:Normal, Parametric 0.36 0.74 0.55

AGARCH:Skewed-T, Parametric 0.34 0.74 0.54

0.05 quantile 2008-2010 2011-2013 Average

IAVARCH:Normal, Parametric 0.66 0.84 0.75

RiskMetrics 0.82 0.54 0.68

IGARCH:Normal, Parametric 0.74 0.58 0.66

TARCH11:Normal, Parametric 0.44 0.86 0.65

IGARCH:Skewed-T, Parametric 0.64 0.64 0.64

IAVARCH:Skewed-T, Parametric 0.56 0.72 0.64

TARCH111:Normal, Parametric 0.36 0.80 0.58

IAVARCH:Student-T, Parametric 0.68 0.48 0.58

IAVARCH:Student-T, Filtered 0.60 0.54 0.57

IAVARCH:Skewed-T, Filtered 0.60 0.52 0.56

CAViaR(Indirect GARCH) 0.52 0.60 0.56

GARCH:Normal, Parametric 0.38 0.72 0.55

CAViaR(Symmetric Absolute Value) 0.58 0.50 0.54

GARCH:Skewed-T, Parametric 0.34 0.72 0.53

Parametric = volatility forecast transformed to VaR using parametric assumption from model esti-
mation. Note, RiskMetrics uses inverse Gaussian cdf, Filtered = volatility forecast transformed to
VaR using filtering method
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Chapter 4

Ranking Intraday Volatility

Estimators Using Empirical

Criteria

4.1 Introduction

This chapter is concerned with the problem of ranking intraday volatility estimators

purely via empirical criteria. Volatility estimators based on intraday data have proven

very useful in the literature in recent times. For example, Andersen & Bollerslev

(1998) famously use the realised variance estimator90 to improve statistical methods

for evaluating volatility forecast models, while Andersen et al. (2003) incorporate

realised variance into the forecast itself. Since then, the literature has seen a prolif-

eration of methods for estimating daily variance, or in a continuous time framework,

quadratic variation, from intraday data.91

Despite the fact that choosing the most accurate from among these estimators

would be useful in both a forecasting and forecast evaluation context, the topic has

received surprisingly little attention over the past decade. Typically, attention has

focused on theoretical optimality92, rather than empirical optimality, but this is of

limited use when modelling assumptions are open to debate. Further, most of the

analysis that does exist is limited to the theoretically optimal sampling frequency of

realised variance.

A notable exception is Patton (2011a) (with an extension in Patton & Sheppard

(2009)), who states a set of sufficient conditions under which several tests from the

90First proposed in Merton (1980).
91 A short list of candidates includes realised variance, see Merton (1980) and Barndorff-Nielsen

& Shephard (2002a); the estimator of Zhou (1996); the two-scale realised variance of Zhang et al.
(2005); the multi-scale realised variance of Zhang (2006); the realised range estimator of Christensen
& Podolskij (2007); the realised kernels of Barndorff-Nielsen et al. (2008a); and the pre-averaging
approach of Jacod et al. (2009).

92See Bandi & Russell (2008) and Barndorff-Nielsen et al. (2008a).
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extensive literature on volatility forecast evaluation can be used directly to evaluate

volatility estimators, with one potential application being a purely data-driven ap-

proach to selecting the optimal sampling frequency for realised variance. In order to

accomplish this, Patton assumes a specific parametric model for the true dynamics

of the volatility process, and describes it as an “initial approximation”. Specifically,

Patton (2011a) considers two models for volatility: a random walk, and a stationary

AR(p) process for which the order of p is assumed to be known. He notes that em-

pirical evidence in support of these parametric models is mixed. Thus, an approach

that allows for a wider variety of volatility processes is desirable.

In essence, the contribution of this chapter is to propose a trade-off in modelling

assumptions. Patton (2011a) makes strict assumptions regarding the true volatility

process, but broad assumptions regarding the choice of loss function. In this chapter,

the opposite is true: the choice of loss function is restricted, but the range of allowable

volatility processes is broad. This trade-off is desirable as the true volatility process

is unobservable, and so verifying strict assumptions on this process is difficult. In

contrast, the choice of a loss function is transparent, and the restriction in this chapter

is a popular one.

Specifically, I assume that the volatility process belongs to a particular class of

near epoch dependent processes. It is worth emphasising that the class of near epoch

dependent processes includes the stationary AR(p) model assumed by Patton (2011a).

The class also includes a wide range of weakly dependent processes, including many

popular conditional volatility and stochastic volatility models, e.g. autoregressive

moving average, GARCH variants, log-normal stochastic volatility, and autoregressive

conditional duration, given appropriate parameter restrictions.93

The cost of this generality is the restriction of attention to the popular Mean

Squared Error (MSE) loss function. In many cases, this cost is worth bearing. The

MSE is a popular choice of loss function in practical work. Furthermore, it is a

member of the set of robust loss functions described in Patton (2011b), which is a

necessary condition for the use of loss-based evaluation tests when the proxy error

has non-zero variance. A particular moment restriction is also assumed. However, it

is shown below that, given a reasonable true data generating process, this restriction

is satisfied by any estimator conforming to a particular quadratic form. Specific

examples include realised variance, two-scales realised variance, multi-scale realised

variance and realised kernels.

Regarding performance, it is shown via simulation that the approach advocated

in the present chapter typically outperforms that of Patton (2011a) with a stationary

AR(1) assumption and MSE loss function. In cases where the true variance strongly

violates a random walk assumption, the approach advocated in this chapter also

93See Hansen (1991), Engle & Russell (1998), Carrasco & Chen (2002), Davidson (2002), and
Davidson (2004).
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outperforms the approach of Patton with a random walk assumption and MSE loss

function. Interestingly, the simulations also suggest that the size and power of the

approach advocated in this chapter is approximately invariant to the variance of the

proxy error. This is important, because all methods discussed in this paper, including

those of Patton (2011a), require an unbiased proxy, and the most reliable candidate

in this regard is daily squared returns, which are particularly noisy. Importantly, the

size and power of the methods proposed in Patton (2011a) deteriorate as the variance

of the proxy error increases.

Empirically, the restriction to the MSE loss function can be problematic for time-

intervals that include large spikes in volatility, since a small number of days with

large volatility will dominate the analysis.94 Despite this, the approach advocated in

the present chapter generates results that match a priori expectations.

A final point worth mentioning is that the proofs in Appendix 4.A include a

technical lemma on the product of near epoch dependent processes which, to the

best of my knowledge, is new in the literature and of general application.

The remainder of this chapter is arranged as follows: Section 4.2 defines a set

of common notation, while Section 4.3 examines the prior literature. Section 4.4

provides the main results. The theory is analysed in Section 4.5 using several simu-

lations. Section 4.6 contains a short empirical example, then Section 4.7 concludes.

All proofs are contained in Appendix 4.A.

4.2 Notation

The notation in this chapter follows Patton (2011a) and Patton & Sheppard (2009),

and differs from the rest of the thesis. Let θt denote the latent parameter of interest; in

the present application, this is the daily variance of a risky asset. A set of estimators

for θt are denoted xj,t, j = 1, ..., J . An estimator xj,t can be decomposed into latent

variance and estimation error, i.e. xj,t = θt + uj,t. A proxy for θt is denoted θ̃t, and

it can similarly be decomposed into latent variance and proxy error, i.e. θ̃t = θt + ũt.

All random variables are transformations from the underlying space of events Ω, and

I use F tt−1 to denote the σ-algebra generated by random variables from the span

[t− 1, t].

The accuracy of xj,t for θt is analysed using a distance measure known as a loss

function, denoted L(·, ·). The main problem investigated in this chapter is the esti-

mation of the expected loss differential, defined:

E∆L(θt,xt) ≡ EL(θt, xi,t)− EL(θt, xj,t),∀i 6= j, (4.1)

and the subsequent statistical testing of null hypotheses based on the expected loss

94QLIKE generally works better in these types of situations.
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differential. Since the assumption set allows E∆L(θt,xt) to be dependent on t, the

actual parameter of interest is:

γ ≡ T−1
T∑
t=1

E∆L(θt,xt). (4.2)

For ease of notation, the sample mean of any arbitrary random variable at is

denoted a while the sample variance is denoted V̂a. The sample covariance of any

two arbitrary random variables at and bt is denoted ĉov (a, b).

4.3 Literature

Empirical evaluation of volatility forecast models is a popular topic in financial econo-

metrics. It is a more difficult problem than standard forecast evaluation, as the vari-

able of interest, θt, is latent. The typical approach is to replace the latent variance

with a conditionally unbiased proxy, denoted θ̃t. Popular choices include squared

returns or low sampling frequency realised variance.95

Replacing θt with θ̃t is a reasonable approach if the proxy error, ũt, is mean-

zero and independent of the forecast error, as the effect of ũt will vanish given a

suitable large number law. Specifically, in a conditional volatility framework, Hansen

& Lunde (2006b) and Patton (2011b) show that model rankings obtained using θ̃t will

be asymptotically consistent with the model rankings obtained using θt, assuming

the loss function belongs to a class of “robust and homogeneous” loss functions.96

Intuitively, this works since θ̃t ∈ F tt−1, while the forecasts belong to F t−1t−2 , so the proxy

error and appropriately transformed forecast errors can be treated as uncorrelated

(given certain regularity conditions).

However, in a volatility estimation framework, θ̃t ∈ F tt−1 and xj,t ∈ F tt−1, so

the proxy error and estimation errors are likely to be contemporaneously dependent,

particularly for intraday variance estimators (of which there are many).97 The impli-

cation of this is that model (or estimator) rankings obtained using the proxy may be

inconsistent with model rankings obtained using the true variance.98

Patton (2011a) addresses this issue by stating a set of sufficient conditions under

which the model rankings will be preserved if θ̃t ∈ F∞t . The simplest way to ac-

complish this is to set θ̃t = yt+1, where yt denotes a proxy such as squared returns

or low sampling frequency realised variance.99 Assuming yt+1 − θt+1 is a martingale

difference sequence and θt is a random walk, this approach ensures the proxy error

95See Poon & Granger (2003) or Hansen & Lunde (2005a).
96Patton (2011b).
97See footnote 91.
98Patton (2011a) Proposition 1b.
99Patton (2011a) Assumption P2.
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and an appropriate transformation of the estimation errors will be uncorrelated. This

in turn justifies the use of the numerous popular statistical tests from the volatility

forecasting literature.100 Alternatively, Patton also allows for θt to follow an AR(p)

process, although this introduces new parameters which must be estimated.

In my opinion, there are two drawbacks to Patton’s approach. First, the as-

sumption of a particular model for true variance is, at best, an approximation. If

true variance follows a unit root process, e.g. RiskMetrics, then the random walk

approximation could be quite good. Interestingly, Hansen & Lunde (2010) fail to

reject the null hypothesis of a unit root for many of the Dow Jones 30 assets. On the

other hand, Wright (1999) strongly rejects non-stationarity in the volatility of stock

returns and exchange rates, implying that the empiricist may be forced to use the

AR(p) approximation.

Second, even if the random walk assumption is correct, by setting θ̃t = yt+1, an

additional source of error is introduced into the proxy, i.e. yt+1 − yt. If yt is itself

quite volatile, this additional error will be large. In finite samples, this will impact

on the efficiency of any statistical procedure.

In the present chapter I set θ̃t = yt, which eliminates the additional source of

error, and avoids the need to assume a specific time series model for θt. Of course,

this also introduces the problem of contemporaneous dependence between the proxy

error and the estimation errors. However, by restricting attention to the MSE loss

function, I show that it is possible to estimate the inevitable contemporaneous depen-

dence between ũt and uj,t using two additional covariance parameters and a moment

restriction, and so retrieve a consistent and asymptotically Normal estimator for the

true expected loss differential. Furthermore, this approach does not require ũt to be a

martingale difference sequence. The process is described in detail in the next section.

4.4 Modelling Assumptions and Theory

In this section I derive an expression for the true expected loss differential, provide an

estimator for this expression, and then show that it obeys a central limit theorem and

a bootstrap central limit theorem. To accomplish this, I provide a technical lemma on

the product of near epoch dependent processes (contained in Appendix 4.A) which,

to the best of my knowledge, is new in the literature and of general application.

The first proposition provides an expression for the true expected loss differen-

tial in terms of population moments of observable random variables, given arbitrary

dependence between the proxy error and estimation error. The proposition employs

the following assumptions:

100See, for example, Diebold & Mariano (1995), West (1996), White (2000), Hansen (2005), Ro-
mano & Wolf (2005) and Hansen et al. (2011).
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Assumptions 4.1

1. L(x, y) = (x− y)2, i.e. L(·, ·) is the MSE loss function,

2. Eũt = 0, i.e. the proxy is unconditionally unbiased, and

3. cov(θt, uj,t)− cov(θt, ui,t) = 0, ∀i, j.

Remark 4.1 Assumption 4.1.1 states that L(·, ·) denotes the MSE loss function,

which is one of the most popular distance measures in use. It is also a member of the

set of homogeneous, robust loss functions discussed in Patton (2011b), and further,

is the only symmetric loss function that is a member of this set. Proposition 4.4.1

will demonstrate that restricting attention to this loss function allows the dependence

between the proxy error and estimation error to be captured by two covariance terms.

Remark 4.2 Assumptions 4.1.2 and 4.1.3, respectively, allow the proxy error to be

averaged out via a law of large numbers, and eliminate some nuisance parameters.

These assumptions are somewhat analogous to Assumption P1 in Patton (2011a),

which requires E[ũt|θt,Ft−1] = 0. Assumption 4.1.2 is strictly weaker than P1, both

because conditional unbiasedness is a stronger assumption than unconditional un-

biasedness, and because I do not assume the proxy error is a martingale difference

sequence. Assumption 4.1.3 is weaker than P1 in some respects, but stronger in

others. Using the law of iterated expectations it is simple to demonstrate that P1

necessarily implies that cov(ũt, θt) = 0. In contrast, Assumption 4.1.3 places no re-

striction on the covariance between the proxy error and latent variance, but does

restrict the covariance between the estimation error and latent variance.

Remark 4.3 As is made clear in the proofs provided in Appendix 4.A,101 Assump-

tion 4.1.3 is necessary for identification in the present framework, so a more detailed

consideration of this assumption is useful.

Let qn,t =
√
νn,tzn,t, n = 1, ..., Nt, define a sequence of intraperiod returns, where∑

n νn,t = θt and zn,t
iid
v (0, 1), with E[zn,t|νm,t] = 0, ∀n,m, and E[z2n,t|νm,t] = 1, ∀n,m.

Let xj,t denote an estimator that can be expressed as a quadratic form of intraperiod

returns, i.e.

xj,t =
Nt∑
n=1

Nt∑
m=1

an,mqn,tqm,t, (4.3)

where an,m is the (n,m) element of a non-stochastic weighting matrix. Sun (2006)

and Andersen, Bollerslev & Meddahi (2011) demonstrate that a large number of

estimators can be expressed in this form, including realised variance (of any sampling

frequency), two-scales realised variance, multi-scale realised variance and realised

101Equation (4.26).
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kernels. By definition, uj,t = xj,t − θt, so (4.3) implies that:

cov (θt, uj,t) =
Nt∑
n=1

Nt∑
m=1

cov
(
θt, am,n

√
νn,tνm,tzn,tzm,t

)
− cov (θt, θt) . (4.4)

The stated assumptions are sufficient for the double sum covariance term to vanish

whenever n 6= m, and to reduce to cov(θt,
∑

n an,nνn) whenever n = m. Thus (4.4)

will reduce to zero if an,n = 1, ∀n. It turns out that this condition is satisfied for

almost all quadratic form intraday variance estimators, including realised variance (of

any sampling frequency), Subsampled realised variance, two-scales realised variance,

and realised kernels.102 Thus we might reasonably expect Assumption 4.1.3 to be

satisfied for most realised variance-type estimators.

Next, I derive an expression for the true expected loss differential in terms of

observable random variables. Note, to keep the notation simple, xt is assumed to

store two estimators: xj,t and xi,t. This does not imply any loss in generality.

Proposition 4.4.1 Assume 4.1.1 to 4.1.3. Then:

E∆L(θt,xt) = E∆L(θ̃t,xt) + 2
(

cov(xj,t, θ̃t)− cov(xi,t, θ̃t)
)
. (4.5)

Proof See Appendix 4.A.

The next step is to construct an estimator based on Proposition 4.4.1 and demon-

strate a CLT. Consider the additional assumptions:

Assumptions 4.2

∃δ > 0, r > 2 such that:

1. uj,t and ũt are L (2+δ)(2+2δ)
δ

-NED (near epoch dependent) of size −1 on a strong

mixing process of size −(2 + δ)(r + δ)/(r − 2), and

2. θt is L2+2δ-NED of size −1 on a strong mixing process of size −(2 + δ)(r +

δ)/(r − 2).

Remark 4.4 Assumptions 4.2.1 and 4.2.2 provide the properties of the estimation

errors, proxy error and latent variance. The assumptions allow for serial dependence

and heterogeneity in these random variables, as well as arbitrary contemporaneous

dependence between them. They also imply that all the random variables of interest

will obey a central limit theorem, and so motivate the construction of an estimator

for the expected loss differential with an associated asymptotic distribution.

102Andersen et al. (2011).
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Remark 4.5 I am referring to the same δ and r in both assumptions 4.2.1 and 4.2.2.

Thus there is a trade-off in the moment bound of uj,t and the moment bound of θt.

Lemma 4.A.1 demonstrates why this trade-off is required. In practice, I envisage δ

as small, so that only a low moment bound is required for θt. I do not see this as

overly restrictive for uj,t as most estimators are asymptotically Normal around θt, so

higher moments on the estimation error might reasonably be expected to exist.

Remark 4.6 The mixing size and moment bound in assumptions 4.2.1 and 4.2.2 are

required for Proposition 4.4.3, but are slightly stronger than is required for Proposi-

tion 4.4.2. For simplicity, I only write the stronger form.

Remark 4.7 Regarding Assumption 4.2.2, note that determining that a particular

process is NED typically needs to be done on a case-by-case basis. It is not my aim in

this thesis to extend the literature in this regard. Instead, I refer the interested reader

to Davidson (2002), where a wide variety of interesting time series models are shown to

satisfy the NED condition, including Auto-regressive Moving Average processes (thus

Patton’s AR(p) assumption is nested by the present modelling assumptions), GARCH

processes, and switching and threshold auto-regressions.103 Also, Carrasco & Chen

(2002) show that a wide variety of conditional and stochastic volatility models are

stationary, geometric ergodic and β-mixing with exponential decay. These properties

are all a strict subset of Assumption 4.2.2 and so all the results of that paper apply,

although I emphasize that Assumption 4.2.2 is much more general than the conditions

of that paper.

Remark 4.8 The weak dependence of the true variance process implied by 4.2.2 may

not be necessary in some cases. As in Patton (2011a), it is only necessary that the

sample mean loss differential obeys a central limit theorem, and additionally in the

present paper, the difference of two covariance estimators, see Equation 4.6. These

central limit theorems may still obtain, even if θt is I(1), as long as a suitable co-

integrating relationship exists. A more thorough theoretical treatment of this point

is deferred to future work.

Next, consider the estimator:

γ̂ = ∆L(θ̃t,xt) + 2
(

ĉov(x1, θ̃)− ĉov(x2, θ̃)
)
. (4.6)

Proposition 4.4.2 Assume each sum in γ̂ has non-zero variance.104 Then given

assumptions 4.1.1 to 4.2.2:

√
T (γ̂ − γ)

d−→ N (0, V ), (4.7)

103See Davidson (2004) for some interesting extensions, as well as Hansen (1991) for the
GARCH(1,1) case.
104This rules out degenerate scenarios such as telescoping sum representations.
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where V <∞.

Proof See Appendix 4.A.

Proposition 4.4.2 provides a set of sufficient conditions under which γ̂ obeys a

CLT, which allows the use of γ̂ in the Diebold & Mariano (1995) and West (1996)

tests for bivariate comparison of two estimators. Estimating the variance of the test

statistic for these two tests via analytical methods may prove problematic, so instead,

the next proposition justifies the use of the stationary bootstrap of Politis & Romano

(1994b) to estimate the standard error of γ̂. A stationary bootstrap also allows the

use of the Reality Check test of White (2000), the Superior Predictive Ability test of

Hansen (2005), the stepwise multiple testing method of Romano & Wolf (2005), the

test of Hsu, Hsu & Kuan (2010), the Model Confidence Set of Hansen et al. (2011),

and the hybrid test of Song (2012).

Two additional assumptions are needed to justify the use of a stationary boot-

strap:

Assumptions 4.3

1. let Xt represent any of the random variables in the set {uj,t, u2j,t, ũt, θt, θtuj,t},
∀j, and let µX = T−1

∑
t EXt, then T−1

∑
t(EXt − µX)2 = o(T−

1
2 ), and

2. pT ∈ (0, 1), pT → 0 and Tp2T →∞, where pT is the parameter of the geometric

distribution used to determine each block length in the stationary bootstrap of

Politis & Romano (1994b).

Remark 4.9 Assumption 4.3.1 is Assumption 2.2 from Goncalves & White (2002)

and constrains the degree of heterogeneity of the random variables under analysis.

It allows for non-stationarity, but rules out some behaviour such as first moments

trending to infinity. A more detailed discussion can be found in the aforementioned

paper.

Remark 4.10 Assumption 4.3.2 is a standard assumption given application of the

stationary bootstrap of Politis & Romano (1994b), who also show that pT = O(T−
1
3 )

is an optimal rate of convergence.

In what follows, ∗ is used to indicate a stationary bootstrap re-sample of a random

variable. Then P(
√
T (γ̂∗T − γ̂T ) ≤ c) denotes the empirical stationary bootstrap cdf

of γ̂, conditional on the observable data, such that it is an estimate of the true

cdf P(
√
T (γ̂T − γ) ≤ c). Note, for clarity, the dependence of γ̂ on the number of

observations T is made explicit:
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Proposition 4.4.3 Let d denote any metric suitable for weak convergence. Given

assumptions 4.1.1 to 4.3.2:

d
(
P∗
(√

T (γ̂∗T − γ̂T ) ≤ c
)
,P
(√

T (γ̂T − γ) ≤ c
))

P−→ 0, c ∈ R. (4.8)

Proof See Appendix 4.A.

In summary, it has been shown that γ̂, defined in (4.6), is a consistent and asymp-

totically Normal estimator for the true expected loss differential. Further, it is also

shown that the density of γ̂ can be estimated using the stationary bootstrap. This

motivates the use of γ̂ in the large battery of tests from the volatility forecasting liter-

ature, including those whose construction requires the use of a dependent bootstrap.

4.5 Simulation

In this section, I perform a similar simulation exercise to that conducted in Patton

(2011a). First, I show that for four popular continuous-time models from the liter-

ature, the approach advocated in this chapter typically outperforms that of Patton

(2011a) with the AR(1) assumption, and has comparable performance to the random

walk assumption. Second, I show that for three different auto-regressive specifica-

tions, the approach advocated in this chapter outperforms that of Patton for both

the AR(1) and random walk assumption. This is particularly interesting since for

two of these specifications, the AR(1) assumption is correctly specified. Third, I

consider the case where Patton (2011a) Assumption P1 is violated by a proxy error

with an MA(1) structure. Finally, I provide simulation-based evidence that suggests

the approach proposed in this paper is invariant to the variance of the proxy error.

In contrast, the same simulations demonstrate that the power of both approaches

described in Patton (2011a) deteriorates as the variance of the proxy error increases.

This result is important since the best way to ensure realised variance is an unbiased

proxy is to lower the sampling frequency, thus increasing the variance of the proxy

error.

All simulations are performed over 5000 iterations. The first four simulations

model log-price increments via a standard Euler discretization of the zero-drift model:

d ln p#t =
1

100
νt

(
κ1dW1,t + κ2dW2,t +

√
1− κ21 − κ22dW3,t

)
. (4.9)

The diffusion parameter νt is scaled by 1
100

to convert it from percentage units to

fractional units, as log-price increments are, strictly speaking, expressed in fractional

units. Volatility dynamics - expressed in percentage units - are simulated using each

of the following four models:
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1. The GARCH diffusion from Patton (2011a), Goncalves & Meddahi (2009) and

Andersen & Bollerslev (1998): dν2t = 0.035(0.636− ν2t )dt+ 0.144ν2t dW1,t.

2. The log-normal diffusion from Patton (2011a) and Andersen et al. (2005):

d ln ν2t = −0.0136(0.8382 + ln ν2t )dt+ 0.1148dW1,t.

3. The two factor diffusion from Patton (2011a), Goncalves & Meddahi (2009) and

Huang & Tauchen (2005): ν2t = exp(−1.2 + 0.04ν21,t + 1.5ν22,t), where dν21,t =

−0.00137ν21,tdt+ dW1,t and dν22,t = −1.386ν22,tdt+ (1 + 0.25ν22,t)dW2,t.

4. The two factor affine diffusion from Andersen et al. (2005) and Bollerslev

& Zhou (2002): ν2t = ν21,t + ν22,t, where dν21,t = 0.5708(0.3257 − ν21,t)dt +

0.2286ν1,tdW1,t and dν22,t = 0.0757(0.1786− ν22,t)dt+ 0.1096ν2,tdW2,t.

For GARCH and Log-normal diffusion, κ1 = −0.576 and κ2 = 0;105 for the two factor

diffusion, κ1 = κ2 = −0.3;106 and for the two factor affine diffusion, κ1 = 0.9 and

κ2 = −0.4.107

T = 500 periods are simulated, where each period contains N = 720 steps indexed

n = 1, ..., N . Log prices are corrupted with additive microstructure noise via the

model ln pn,t = ln p#n,t + ξn,t, where ξn,t
iid
v N (0, σ2

ξ,t), and pn,t is the observable price.

Following Patton (2011a), Ait-Sahalia et al. (2005) and Huang & Tauchen (2005),

σ2
ξ,t is the solution to:

2σ2
ξ,t

5
390

Vrt + 2σ2
ξ,t

= 0.2, (4.10)

where rt denotes a single period return. In other words, the proportion of variance

of a 5 minute log-price increment that is attributable to microstructure noise is set

to 20%. Note, a closed form solution to (4.10) is σ2
ξ,t = 1

624
θt.

Diebold & Mariano (1995) tests are used to compare a base case estimator to

five other estimators. For each of the five estimators, I test the null hypothesis

H0 : EL∆(θt,xt) = 0 against HA : EL∆(θt,xt) 6= 0. The present chapter suggests

testing H0 by estimating EL∆(θt,xt) using the estimator from Proposition 4.4.2. For

the remainder of the paper, this estimator will be denoted γ̂[BH]. This approach

is contrasted with the method suggested in Patton (2011a) Proposition 2, i.e. the

random walk case, and Patton (2011a) Proposition 3, i.e. the AR(p) case. Regarding

Patton (2011a) Assumption P2, following Patton & Sheppard (2009), unit weight is

placed on the proxy at time t + 1, and in the AR(p) case, I set p = 1. I denote

these specifications of Patton’s estimator γ̂[P :RW ] and γ̂[P :AR], respectively. The MSE

loss function is used for both γ̂[P :RW ] and γ̂[P :AR]. This is because it provides the

most transparent comparison between the different methods, as γ̂[BH] must also use

105See Patton (2011a), Andersen et al. (2005), or Andersen, Benzoni & Lund (2002).
106See Patton (2011a) or Goncalves & Meddahi (2009).
107See Andersen et al. (2005) or Chernov et al. (2003).
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the MSE loss function. However, Patton notes that the simulation results in Patton

(2011a) Table 1 are similar for MSE and QLIKE. For both methods, the variance

of the test statistic is estimated using 500 draws from the stationary bootstrap of

Politis & Romano (1994b) with optimal block length selected following Politis &

White (2004) and Patton et al. (2009).

Following Patton (2011a), I focus on 30-minute realised variance as the unbiased

proxy of choice for all simulations, although I investigate other proxies at the end of

this section.

All estimators are simulated as in Patton (2011a). That is:

xj,t = θt + ζj,t, (4.11)

where j = {b, 1, 2, 3, 4, 5}, where b stands for the base case. The estimation error is:

ζj,t = ωũt + (1− ω)σuZ1,j,t +
√
σ2
ζ,j − σ2

ζ,0Z2,j,t, (4.12)

where (Z1,j,t, Z2,j,t)
T iid
v N (0, I). The first term on the right hand side of Equation

(4.12) ensures the proxy and estimation error are correlated. The correlation coeffi-

cient is set to ρ = 0.5. This is ensured by setting ω and σ2
u using:

ω =
ρσζ,0

V̂ũ
, and (4.13)

σ2
u =

(1− ρ2)V̂ũσ2
ζ,0

(V̂ũ− 0.5σζ,0)2
. (4.14)

Set σ2
ζ,0 = 0.1V̂θ,and then the magnitude of the noise for each estimator can be

controlled by σ2
ζ,j = λjV̂θ, where λj controls the size of the noise for estimators 1 to

5. Note that the source of randomness for the estimation error and the true volatility

models is independent, so Assumption 4.1.3 is satisfied.

The size of the statistical method is tested by setting λj = 0.1, j = {b, 1}, which

causes the last term in (4.12) to vanish. Thus the base case and estimator 1 have

identical expected loss, ie a true null. λj, j = {2, 3, 4, 5} is set to {0.15, 0.2, 0.5, 1}
respectively, so that as j increases, the expected loss increases and rejection of H0 :

E∆L(θt,xt) = 0 grows progressively easier. This facilitates a study of the power of

the statistical method.

Table 4.1 demonstrates that γ̂[BH] and γ̂[P :RW ] have appropriate size across all four

volatility models, as the rejection frequency is generally close to 0.05. In contrast,

γ̂[P :AR] slightly over-rejects a true null hypothesis, except for the two factor diffusion

from Patton (2011a) where γ̂[P :AR] shows significant size distortion in the form of

under-rejection.

Next I consider the power of the statistical tests. When volatility follows the

74



Figure 4.1: Power curves for the four diffusion processes

The rejection frequencies are on the Y-axis. The filled line with a circle marker denotes the estimator
from Equation 4.6. The dashed line with a square marker denotes the estimator from Patton (2011a)
with the random walk assumption. The dotted line with a diamond marker denotes the estimator
from Patton (2011a) with the AR(1) assumption. T = 500 in all four plots.

Test sizes corresponding to Figure 4.1

GD LD TFD1 TFD2

γ̂[BH] 0.050 0.061 0.062 0.055

γ̂[P :RW ] 0.057 0.055 0.069 0.058

γ̂[P :AR] 0.070 0.072 0.006 0.069

Table 4.1: γ̂[BH] is the estimator from Equation (4.6), while γ̂[P :RW ] and γ̂[P :AR] are the estimators
from Patton (2011a) with the random walk and the AR(1) assumption respectively. GD = GARCH
diffusion, LD = lognormal diffusion, TFD1 = two factor diffusion from Patton (2011a), and TFD2
= two factor affine diffusion from Andersen et al. (2005).
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GARCH diffusion, all three methods have near-identical performance, while for the

lognormal diffusion, γ̂[P :RW ] and γ̂[P :AR] slightly outperform γ̂[BH]. This is probably

because the log-diffusion volatility dynamics are quite mild, so the loss of efficiency

that γ̂[P :RW ] and γ̂[P :AR] suffer due to using a proxy from time t+1 is minor. γ̂[BH], on

the other hand, always suffers some loss of efficiency due to the burden of estimating

two additional covariance parameters.

For the more challenging two factor diffusion from Patton (2011a), γ̂[BH] and

γ̂[P :RW ] exhibit near-identical performance. In contrast, γ̂[P :AR] exhibits very poor

performance; it is mostly unable to reject a false null across all estimators. Inter-

estingly, Patton (2011a) also observed poor performance when true volatility follows

this model.

The most challenging volatility dynamics are provided by the two factor affine

diffusion which exhibits larger movements in latent volatility, as well as a strong

correlation between the volatility equations and the log-price increment equation. For

this model, Figure 4.1 demonstrates that γ̂[BH] has superior power to both γ̂[P :RW ]

and γ̂[P :AR].

Next, I propose four additional simulations to further demonstrate the robustness

of γ̂[BH]. In the first three simulations, daily variance is modelled via the AR(1)

process:

θt = µ+ φθt−1 + ηt, (4.15)

for the specifications {µ = 0.15, φ = 0.8}, {µ = 0.2, φ = 0.5}, and {µ = 1.75, φ =

−0.75}. Thus the first simulation is the closest to a random walk, while the third is

a strong violation of the random walk model. The second lies between the two. For

all the auto-regressive models, ηt
iid
v N (0, 0.01), with constant intraday dynamics.

Log-price increments are modelled using iid standard Normals multiplied by the

corresponding intraday volatility.

The fourth simulation employs the GARCH diffusion for which all three ap-

proaches had near identical performance (see Figure 4.1). However, this time the

proxy error is modelled as a zero-mean MA(1) process, scaled such that it has sample

variance equal to the sample variance of the estimation error of 30 minute realised

variance. This ensures that the only real difference between the simulation results

for the GARCH diffusion in Figure 4.1 and the present case is the MA(1) component

of the proxy error. This is designed to violate the martingale difference sequence

assumption for the proxy error in Patton (2011a). The comparative power of the

three approaches across these four models is illustrated in Figure 4.2.

Table 4.2 demonstrates that, as before, γ̂[BH] and γ̂[P :RW ] have appropriate rejec-

tion rates of a true null hypothesis across all four volatility models. γ̂[P :AR] slightly

under-rejects a true null hypothesis for the AR(1) with coefficient of 0.5, and exhibits

significant size distortion for AR(1) with coefficient of −0.75.
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Figure 4.2: Power curves for AR(1) processes and MA(1) proxy error

The rejection frequencies are on the Y-axis. The filled line with a circle marker denotes the estimator
from Equation 4.6. The dashed line with a square marker denotes the estimator from Patton (2011a)
with the random walk assumption. The dotted line with a diamond marker denotes the estimator
from Patton (2011a) with the AR(1) assumption. T = 500 in all plots.

Test sizes corresponding to Figure 4.2

AR(1)0.8 AR(1)0.5 AR(1)-0.75 MA(1)PE

γ̂[BH] 0.049 0.059 0.051 0.058

γ̂[P :RW ] 0.057 0.059 0.056 0.052

γ̂[P :AR] 0.065 0.021 0.001 0.059

Table 4.2: γ̂[BH] is the estimator from Equation (4.6), while γ̂[P :RW ] and γ̂[P :AR] are the estimators
from Patton (2011a) with the random walk and the AR(1) assumption respectively. AR(1)0.8,
AR(1)0.5, and AR(1)-0.75 represent the AR(1) model for true variance with coefficients of 0.8, 0.5,
and −0.75 respectively. MA(1)PE represents the GARCH diffusion with MA(1) proxy error.
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Figure 4.2 shows that across all three auto-regressive models, γ̂[BH] outperforms

both of Patton’s approaches. This is particularly interesting, as for the first two

auto-regressive models, γ̂[P :AR] is correctly specified. The results suggest that the

additional estimation error inherent in using the AR(1) correction term in Patton

(2011a) Proposition 3 is not justified by the overall reduction in bias. Thus if the em-

piricist suspects true variance follows a weakly dependent process that is not “close”

to a random walk, Figure 4.2 provides strong evidence that the approach advocated

in the present chapter should be used.

Figure 4.2 also demonstrates that, surprisingly, γ̂[P :AR] slightly outperforms when

an MA(1) proxy error structure is introduced to the GARCH diffusion. Further,

γ̂[P :RW ] only exhibits a slight reduction in power relative to the pure GARCH diffusion

case. This is good news for the approach of Patton (2011a) as it suggests that

violations of the martingale difference property of Patton (2011a) assumption P1 do

not appear to translate to overall loss of power or size distortion.

I conclude this section with some simulation-based evidence that suggests that the

method proposed in this paper is approximately invariant to the variance of the proxy

error, while the power of the approaches proposed in Patton (2011a) deteriorates as

the variance of the proxy error increases. To demonstrate this result, I use the same

GARCH diffusion simulation that generated the results in Table 4.1, but this time

I repeat the simulation for four proxies: true variance, 5-minute realised variance,

30-minute realised variance, and squared daily returns.108

Figure 4.3: Power curves for different proxies

The rejection frequencies are on the Y-axis. The left-side plot depicts power curves for the estimator
advocated in this paper. The right-side plot depicts power curves for the estimator from Patton
(2011a) with the random walk assumption. In both plots, the line-style indicates which proxy is
being used. A dotted line indicates true variance, a dashed line indicates 5-minute realised variance,
a solid line indicates 30-minute realised variance, and a dot-dash line indicates squared daily returns.
T = 500 in all plots.

Figure 4.3 contains results for γ̂[BH] and γ̂[P :RW ]. The results for γ̂[P :AR] are omitted

as they are very similar to those for γ̂[P :RW ]. Figure 4.3 demonstrates that the size

108The variance of the proxy error is zero when true variance is used as a proxy, but it increases
as the sampling frequency of realised variance is lowered (squared daily returns are the limit of this
process).
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and power of γ̂[BH] is unaffected by the choice of proxy. In contrast, γ̂[P :RW ] has

more power when the proxy is true variance, but less power, and some small size

distortion, when the proxy is a squared daily return. This is an important finding,

since all approaches discussed require an unbiased proxy and currently, a squared

daily return is the most reliable proxy if the main priority is zero bias.

In summary, Figure 4.3 suggests that the methodology advocated in this chapter

should be preferred when the variance of the proxy error is large. Further, Figure 4.2

suggests that the methodology advocated in this chapter should be used in situa-

tions where true variance is suspected to deviate significantly from the random walk

assumption. In cases where the random walk assumption provides a good approxima-

tion, and the variance of the proxy error is not large, the approach advocated in this

chapter still provides a useful complement to the approach of Patton (2011a) with a

random walk assumption. Given its sporadic reliability, the approach of Patton with

an AR(1) assumption should probably be avoided.

4.6 Empirical

In this section I examine estimates of the expected loss differential generated by the

approach proposed in the present chapter and the approaches of Patton (2011a),

and I compare these estimates to those of a naive approach that does not account

for possible dependence between the forecast error and proxy error. The analysis is

performed on IBM - a publicly listed asset on the New York Stock Exchange - over

the interval January 2004 to December 2007.

I estimate the expected loss differential between different sampling frequency re-

alised variance estimators. All frequencies are specified in calendar time. I set 5-

minute realised variance as the base-case sampling frequency and the alternative

cases are a range of sampling frequencies from 1 second up to 90 minutes. I use

30-minute realised variance as the conditionally unbiased proxy.109 Note that this

rules out a comparison of 5 and 30 minute realised variance, since the proxy must be

different to the estimators under consideration to apply the method proposed in this

chapter.

Figure 4.4 contains the estimated expected loss differentials obtained using the

approach proposed in the present chapter, as well as the random walk and AR(1)

approaches proposed in Patton (2011a). It also contains a sequence of naive expected

loss differentials that are obtained simply by applying the MSE loss function without

any lag methods or adjustments. A Diebold & Mariano (1995) test is performed for

109Ideally, one would choose squared daily returns as a proxy since by construction it must be
unbiased (assuming daily returns are mean zero). However, squared returns are usually too noisy
for statistical significance to obtain in the results. In contrast, the higher the chosen sampling
frequency, the more likely that the proxy will not be unbiased. The 30-minute frequency balances
these various concerns.
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all three sequences with confidence intervals generated via a stationary bootstrap.

Rejections of the null are indicated with a mark on each plot-line.

Figure 4.4: Four different estimates of the expected loss differential across a range of realised
variance sampling frequencies. Rejections of the null hypothesis of the expected loss differential
equal to zero are marked. The methods are: 1) the estimator from equation 4.6 (full line with
square marker), 2) the approach of Patton (2011a) with the random walk assumption (dashed line
with circle marker), 3) the approach of Patton (2011a) with the AR(1) assumption (dotted line with
diamond marker), and 4) the naive MSE estimate (dot-dash line with cross marker). Note, no tests
are performed at the 5 and 30 minute frequencies as they correspond to the base case frequency and
the proxy frequency.

The most important point to take away from Figure 4.4 is that the approach

advocated in the present chapter and the approaches of Patton (2011a) generate

very similar estimates. This is a reassuring result, as the assumption sets employed

by these methods are quite different. It is worth emphasizing that results for the

approach recommended in this chapter match the a priori expected pattern: the

very low and very high sampling frequencies perform poorly relative to 5 minute

realised variance, and I am able to reject the null hypothesis of equal expected loss

in several of these extreme cases.

In contrast, the naive estimate of the expected loss differential is markedly differ-

ent. It generates an unlikely sequence of estimates of the expected loss differential;

one that is close to monotonically increasing as the sampling frequency decreases.

Further, the naive estimate finds that the 60 minute sampling frequency significantly

outperforms the 5 minute sampling frequency - a very unlikely result for an asset

that is as liquid as IBM.

Taken together, these points suggest that a correction such as the one proposed

in this chapter, is almost certainly a good idea for any empiricist attempting to rank

variance estimators via empirical criteria. Taking the simulation results into account,

the empiricist would use the approach advocated in this chapter if the true variance

process appears to be weakly dependent, and the approach of Patton (2011a) with

the random walk assumption if the true variance process is suspected to be close to

a random walk.

A second point worth noting is that the methods show little ability to reject the
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null hypothesis of equal expected loss across the mid-range sampling frequencies.

This is unfortunate, since statistical significance in this region would allow the meth-

ods discussed in this paper to serve as a model-free approach to determining the

optimal sampling frequency for realised variance. One might imagine that a stronger

statistical significance could be obtained by increasing the number of observations.

In practice, this approach often fails, as the poor ability to reject the null hypothesis

is usually the result of a small number of days dominating the sample. For example,

if the interval of analysis was increased to include the global financial crisis period

(2007 to 2009) of spiking volatility, then statistical significance would almost certainly

decrease.

Currently, the only solution to this problem is to employ a loss function that

places less weight on outliers, such as the QLIKE loss function advocated in Patton

(2011b). Unfortunately, QLIKE exhibits asymmetric loss, which may be undesirable

given the utility functions of economic agents. Further, QLIKE is incompatible with

the methods proposed in this paper, and as demonstrated in Patton (2011a), for some

popular models of true volatility it will lead to significant size distortions. Thus it

must be regarded as an imperfect solution.

One other possible solution to this problem is to employ a robust estimator, such

as the trimmed mean, with the MSE loss function. However, preliminary work under-

taken by the present author on this topic suggests that the unconditional distribution

of the loss differential sequence is frequently asymmetric, so ad hoc rules would be

needed to adjust a robust location estimator. For this reason, fat-tails in the loss

differential sequence must still be regarded as an open problem deserving of future

work.

4.7 Conclusion

This chapter presents a new methodology for estimating the expected loss differential

between two estimators (or forecasts) when the latent quantity of interest is replaced

by a proxy. The method is robust to arbitrary contemporaneous dependence be-

tween the proxy error and estimation errors. This is particularly important if one is

attempting to evaluate the empirical performance of intraday variance estimators, as

opposed to forecasts. The chapter also contains, in Appendix 4.A, a new result on the

product of near epoch dependent processes that applies generally to the time-series

literature.

The approach advocated in this paper builds on the initial work on this problem

by Patton (2011a) by proposing a trade-off: specific modelling assumptions for the

true volatility process are generalized, at the cost of restricting attention to the MSE

loss function. The present approach explicitly nests that of Patton (2011a) with a

stationary AR(p) assumption, since the near epoch dependence assumption explic-
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itly nests autoregressive models with coefficients inside the unit circle. Further, the

present approach outperforms the stationary AR(p) assumption in most of the simu-

lations considered in Section 4.5. In contrast, the present approach has performance

comparable to that of Patton (2011a) with a random walk assumption, as long as

the true variance process is “close” to a random walk. In cases where the random

walk assumption is strongly violated, the evidence presented suggests that the present

approach should be preferred.

Although popular, the MSE loss function restriction can prove problematic for

certain time-intervals. Since this loss function emphasizes large losses, periods that

include large spikes in volatility can result in loss of statistical power, since a small

number of observations dominate the analysis. For example, analysis using the MSE

loss function will not perform well during the global financial crisis period.

Ultimately, I recommend that in any analysis an empiricist uses the method sug-

gested in this chapter alongside the method of Patton (2011a) with the random walk

assumption and both MSE and QLIKE loss functions. Sensible conclusions can then

be obtained given careful consideration of both the data and the differing assumption

sets of each approach.

Appendix 4.A Proofs

This appendix contains proofs of Proposition 4.4.1 to Proposition 4.4.3. However,

before providing these proofs, we require a technical lemma on the product of near

epoch dependent processes which, to the best of my knowledge, is new in the litera-

ture.

Lemma 4.A.1 Let Xt be Lr-NED of size −φX on any process Vt and let Yt be Ls-

NED of size −φY on Vt, where r, s ≥ 1 and φX , φY > 0. Then if `p ≤ r and `q ≤ s,

where (1/p) + (1/q) = 1, then XtYt is L`-NED of size −min{φX , φY } on Vt.

Proof This proof is a straightforward extension of the proof of Theorem 17.9 in

Davidson (1994).

In what follows, I use the shorthand Em• ≡ E[•|F t+mt−m ]. Also, let dXt and dYt denote

a sequence of positive (finite) constants associated with Xt and Yt respectively, and

let νXm = O(m−φX ) and νYm = O(m−φY ) denote the sequence of mixing coefficients

associated with Xt and Yt respectively, so that by definition, ||Xt − EmXt||r ≤ dXt ν
X
m

and ||Yt − EmYt||s ≤ dYt ν
Y
m, where ||•||r ≡ (E| • |r)1/r. Consider:

||XtYt − EmXtYt||` (4.16a)

= ||Xt(Yt − EmYt) + (Xt − EmXt)EmYt − Em(Xt − EmXt)(Yt − EmYt)||` (4.16b)

≤ ||Xt(Yt − EmYt)||` + ||(Xt − EmXt)EmYt||` + ||Em(Xt − EmXt)(Yt − EmYt)||` ,
(4.16c)
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where (4.16c) follows from Minkowski’s Inequality. I derive an appropriate upper

bound for each of these three norms separately. For the first two norms, note that

Holder’s Inequality implies that for any random variables A and B:

||AB||` ≤
∣∣∣∣A`∣∣∣∣1/`

p

∣∣∣∣B`
∣∣∣∣1/`
q

= ||A||`p ||B||`q , (4.17)

where (1/p) + (1/q) = 1. So for the first norm, note that:

||Xt(Yt − EmYt)||` ≤ ||Xt||`p ||Yt − EmYt||`q (4.18a)

≤ ||Xt||`p d
Y
t ν

Y
m, (4.18b)

where the final term follows if `q ≤ s. For the second norm, note that:

||(Xt − EmXt)EmYt||` ≤ ||Xt − EmXt||`p ||EmYt||`q (4.19a)

≤ ||Yt||`q d
X
t ν

X
m , (4.19b)

where the final term follows if `p ≤ r. For the third norm, note that:

||Em(Xt − EmXt)(Yt − EmYt)||` (4.20a)

=(E |Em(Xt − EmXt)(Yt − EmYt)|`)1/` (4.20b)

≤(EEm |(Xt − EmXt)(Yt − EmYt)|`)1/` (4.20c)

=(E |(Xt − EmXt)(Yt − EmYt)|`)1/` (4.20d)

= ||(Xt − EmXt)(Yt − EmYt)||` (4.20e)

≤ ||Xt − EmXt||`p ||Yt − EmYt||`q (4.20f)

≤dXt νXmdYt νYm, (4.20g)

where (4.20c) follows from Jensen’s Inequality (for conditional expectations), (4.20d)

follows from the Law of Iterated Expectations, (4.20f) follows from Holder’s Inequality

(as discussed above), and (4.20g) follows if `p ≤ r and `q ≤ s.

Combining the three upper bounds demonstrates that:

||XtYt − EmXtYt||` ≤ dtνm, (4.21)

where:

dt = max{||Xt||`p d
Y
t , ||Yt||`q d

X
t , d

X
t d

Y
t }, (4.22)

and:

νm = νXm + νYm + νXmν
Y
m = O(m−min{φX ,φY }). (4.23)

As discussed, sufficient conditions for this are `p ≤ r and `q ≤ s. These are also

sufficient conditions for ||Xt||`p <∞ and ||Yt||`q <∞, thus the result follows. �
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Remark 4.11 Let r = s = p = q = 2. Then the conditions of Lemma 4.A.1 are

only satisfied for ` ≤ 1, so XtYt is L1-NED. This special case is precisely Theorem

17.9 of Davidson (1994). More generally, the proof of Lemma 4.A.1 reveals that ` is

essentially determined by Holder’s inequality, and so if min{r, s} is small, ` can be

kept close to min{r, s} if max{r, s} is allowed to be correspondingly large. This result

is particularly useful in circumstances such as the present chapter, where I wish to

keep the bound on the moments of latent variance as low as possible, but am happy

for the bound on the moments of the estimation error to be large.

Remark 4.12 A straightforward application of Lemma 4.A.1 implies that both uj,tθt

and u2j,t are L2+δ-NED of size −1 on a strong mixing process of size −(2 + δ)(r +

δ)/(r−2), r > 2, and δ the same as that referred to in assumptions 4.2.1 and 4.2.2.110

This result will be used extensively in the proofs that follow.

Proof of Proposition 4.4.1 Using Assumption 4.1.1, a Taylor expansion of L(θ̃t, xj,t)

around (θt, xj,t) yields:

L(θ̃t, xj,t) = L(θt, xj,t) + 2(θt − xj,t)(θ̃t − θt) + (θ̃t − θt)2. (4.24)

Taking the difference of (4.24) for two estimators, j and i, yields:

∆L(θt,xt) = ∆L(θ̃t,xt) + 2(xj,tθ̃t − xi,tθ̃t − xj,tθt + xi,tθt), (4.25)

as the last term in (4.24) does not depend on j or i and so vanishes. Taking expecta-

tions of both sides of (4.25), and adding and subtracting (Exj,t)(Eθt) + (Exi,t)(Eθt)
yields:

E∆L(θt,xt) =E∆L(θ̃t,xt) + 2
(

cov(xj,t, θ̃t)− cov(xi,t, θ̃t)
)

+ 2
(

cov(ui,t, θt)− cov(uj,t, θt)
)
, (4.26)

where Assumption 4.1.2 was used to convert Eθt to Eθ̃t. The final term in (4.26)

vanishes by Assumption 4.1.3. Proposition 4.4.1 immediately follows. �

Proof of Proposition 4.4.2 The proof proceeds by demonstrating that γ̂ can be

decomposed into a linear function of terms that, when scaled by
√
T , will each satisfy

a CLT.

Exploiting Assumption 4.1.1, γ̂ admits the decomposition:

γ̂ = u2j − u2i + 2((uj − ui)θ − uj − ui θ − uj − ui ũ). (4.27)

110Obviously, the bound on the moments of u2j,t could actually be made much tighter, but the one
stated here is sufficient for the purposes of this chapter.
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Assumptions 4.2.1 and 4.2.2, along with Lemma 4.A.1, guarantee that each of

{uj,t, u2j,t, uj,tθt, θt, ũt} are L2+δ-NED of size −1 on a strong mixing process of size

−(2 + δ)(r + δ)/(r − 2), δ > 0, r > 2. Using Davidson (1994) Equation 24.29, it is

straightforward to verify that each process will, when centred and scaled appropri-

ately, obey the conditions of the central limit theorem in Davidson (1994) Theorem

24.6 and Corollary 24.7 (the above conditions are actually slightly stronger than is

required by the theorem and corollary). This immediately takes care of the first

two RHS terms of (4.27). For the third term, note that the CLT is sufficient for

θ
m.s.−→ Eθ ≡ µθ, so an application of Cramér’s theorem111 demonstrates that:

θ
(√

T uj − ui − (µuj − µui)
)

d−→ µθZ, (4.28)

where Z is a zero-mean Normal random variable. The argument for the fourth term

is identical to the third: simply replace θ with ũ. Since a central limit theorem holds

for each right-hand side term in (4.27), it immediately follows from the continuous

mapping theorem112 that γ̂ obeys a CLT. Note that Assumption 4.1.3 guarantees the

asymptotic distribution of γ̂ is centred on γ. �

Proof of Proposition 4.4.3 As in Proposition 4.4.2, γ̂∗T admits the following

decomposition:

γ̂∗T = u2∗j − u2∗i + 2((u∗j − u∗i )θ∗ − u∗j − u∗i θ∗ − u∗j − u∗i ũ∗). (4.29)

Assumptions 4.2.1 and 4.2.2, along with Lemma 4.A.1, guarantee that each of

{uj,t, u2j,t, uj,tθt, θt, ũt} are L2+δ-NED of size −1 on a strong mixing process of size

−(2 + δ)(r + δ)/(r − 2), δ > 0, r > 2. In combination with assumptions 4.3.1 and

4.3.2, all assumptions of Goncalves & de Jong (2003) Theorem 2 are satisfied, so the

first two RHS terms of (4.29), scaled by
√
T , obey a stationary bootstrap CLT. For

the third term, since
√
T u∗j − u∗i obeys a stationary bootstrap CLT, it remains to

show that θ∗
m.s.−→ µθ, and then to apply Cramér’s theorem,113 much as was done in

the proof of Proposition 4.4.2. By construction of the stationary bootstrap, θ∗t is a

stationary sequence (even if θt is not), and E[θ∗t |θ1, ..., θT ] = θ. Let µθ = T−1
∑

t Eθt,
then assumption 4.2.2 is sufficient for θ

m.s.−→ µθ and for θ∗
m.s.−→ θ, and so θ∗

m.s.−→ µθ.

The argument for the fourth term is identical, simply substitute ũ for θ.

Having demonstrated a stationary bootstrap CLT for the RHS terms of (4.29),

a bootstrap CLT for γ̂∗ now follows immediately upon application of the continuous

mapping theorem. This argument is used in, for example, Politis & Romano (1994b)

Theorem 3. �

111Davidson (1994) Theorem 22.14.
112Davidson (1994) Theorem 22.11.
113Davidson (1994) Theorem 22.14.
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Chapter 5

Conclusion

This thesis is concerned with estimation and forecast of daily risk parameters using

high frequency financial data. The material is drawn from three distinct papers that

are available on the Social Science Research Network.114

Accurate forecasting of daily risk parameters is important, since these parameters

are used in the every-day decisions of financial institutions. For example, value-at-risk

is used to determine the magnitude of the capital cushions held by financial institu-

tions. Poor forecasts will lead to over or under-allocation of capital to the cushion.

The former implies inefficient investment of capital, while the latter implies that in

the event of a crisis, sufficient capital may not be available to prevent foreclosure.

The role of accurate estimates is a little more subtle. Under certain modelling

conditions, accurate estimates can be used to proxy the true target of interest in

forecast evaluation procedures. Moreover, the estimates themselves may prove useful

as predictive variables in forecast models.

Chapter 2 contributes to this topic by providing a methodology for consistently

estimating a wide variety of risk parameters associated with the distribution of a

daily asset return. The only requirement is an appropriate sequence of intraday

data. The procedure is referred to as the Bootstrap Return Method. Two specific

applications were considered. First, it was shown that the Bootstrap Return Method

variance estimator has performance comparable to realised kernels.115 Second, a

single unified framework that combines the Bootstrap Return Method with the dual-

asymptotic approach to forecast evaluation of Patton & Li (2013) was described, and

for the specific case of value-at-risk, this framework was shown to exhibit much greater

power at distinguishing between competing forecast models than other methods in

the literature.

There are many interesting theoretical extensions to the Bootstrap Return Method.

For example, extending it to a multivariate framework, deriving an asymptotic dis-

tribution theory, or investigating the possibility of other re-sampling methods.

114See Bowers & Heaton (2014a), Bowers & Heaton (2014b), and Bowers & Heaton (2014c).
115Arguably the best performing intraday data-based variance estimator.
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In Chapter 3, the empirical analysis of value-at-risk in Chapter 2 is expanded

to include a large suite of value-at-risk forecast models, and to utilize data from

two exchanges, spanning two distinct time periods.116 The results provide strong

evidence that forecast models that employ intraday data outperform those that utilize

only daily data. Further, several simple time series models of the Bootstrap Return

Method value-at-risk estimator are shown to outperform all other forecast methods

considered.

Possible extensions of this chapter include the analysis of more sophisticated time

series models, as well as the investigation of forecast models of other parameters

that are estimable via the Bootstrap Return Method, such as Expected Shortfall. It

may also be illustrative to investigate possible co-integrating relationships between

the Bootstrap Return Method variance estimator, Quantile estimator, and Expected

Shortfall estimator.

Chapter 4 contributes to the topic by providing a method for determining which

intraday data-based estimates of daily variance are the most accurate. The method

generalizes modelling assumptions in the initial work on this topic117 at the cost

of restricting the distance metric used in evaluation to the Mean Square Error loss

function. As described in Chapter 4 this restriction limits the usefulness of the

methods in periods when volatility spikes, since the effect of a small number of large

volatility measurements are over-weighted by the choice of loss function. For this

reason, I regard the method proposed in Chapter 4 as a step towards an ideal solution,

rather than an ideal solution itself. Empiricists are encouraged to use the method in

Chapter 4 to complement that in Patton (2011a), rather than to replace it.

Future work on this topic could seek other loss functions besides the Mean Square

Error where the approach advocated in Chapter 4 can be applied. Another alternative

is to design indirect tests of the variance estimators. For example, one could analyse

the properties of the standardized return series (daily returns divided by volatility

estimate) and see if they accord with rational modelling assumptions.

I would like to conclude this thesis by emphasizing a common theme: that high

frequency data can be used to greatly improve estimation and forecasts of classical

daily financial parameters. In Chapter 2, it was shown estimators derived from an

intraday sequence can be used to greatly improve the power of forecast evaluation

procedures. In Chapter 3, it was shown that forecasts based on intraday data outper-

form those based on only daily data. In Chapter 4, the proposed method was used

to demonstrate that higher frequency realised variance estimators are more accurate

than those with very low frequencies (especially the limiting case of squared daily

returns).

116Specifically, the global financial crisis period (2008 to 2010) and the period of relatively lower
volatility that followed (2011 to 2013).
117Patton (2011a).
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I think that there is a lot more work to be done before we can declare a thorough

understanding of the data-generating-process behind high frequency financial data.

The literature on complete modelling of the order book is still in its formative stages,

while other issues such as the fixed exchange regulated minimum tick size are largely

ignored.118 In this thesis, as with most scientific work, I provide only incremental

steps on the path to understanding, in the hope that one day in the future a fuller

picture can be obtained.

118Rosenbaum (2009) does look into this issue, although is forced to assume a minimum tick size
that vanishes as the number of intraday observations grows. A more general discussion of some of
the issues can be found in Jacod & Protter (2011) Chapter 16.
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