Comparison of detrital and metamorphic zircon from metapelites in the Rayner Complex, east Antarctica: provenance and age of deposition investigated via U-Pb and Hf-analysis and interpretation of Th/U ratio, CL zonation and morphology.

K.R. Murray

ABSTRACT

In East Antarctica's Archaean-Proterozoic Rayner Complex, metasedimentary gneisses at Stillwell Hills in Kemp Land are interfolded with orthogneisses. At Cape Bruce and Forbes Glacier in MacRobertson Land, metasediments form more continuous exposures that are intruded by the Mawson Charnockite (c.980Ma) (Halpin et al 2005; Young & Black 1991). Detrital and metamorphic zircon grains from six metapelitic samples were analysed for U-Pb age, TDMC, EHf, Th-U ratio, length, CL zoning and morphology. This detailed analysis helped to determine their age of deposition as sediments, when they were metamorphosed and the provenance of the grains within each sample. Colbeck Gneiss from Cape Bruce (AC34) recorded a 207/206Pb maximum depositional age of 1258±23 Ma. A metapelitic lens within Painted Gneiss in Forbes Glacier (90024) recorded a maximum depositional age of 1251±27 Ma. These dates correlate with Young and Black (1991) whole rock analysis of these two Proterozoic gneisses. To better understand the regional history of Stillwell Hills, four metapelites were dated to determine their relative age compared with host Stillwell orthogneiss. This work indicates that even the oldest inherited zircons in these four metapelite samples are a minimum 340Ma younger than the youngest dated zircon from Archaean Stillwell orthogneiss (Halpin et al 2005). In order of deposition, Pink Gneiss (FS0214) maximum depositional age is 1317±51 Ma; followed by Green layered sequence (GS01) at 1316±33 Ma, Garnet-sillimanite metapelite (SW54) at 1260±47 Ma and Rusty gneiss (FS0223) the youngest at 1178±84 Ma. Petrogenesis of the majority of zircon grains in all six samples could be traced to felsic igneous events. Considering Antarctic basement rock is formed from igneous mafic granitoids (Veevers & Saeed 2011), this felsic trend indicates that most detritus originated not from Archaean basement protoliths, but younger, more crustally evolved, sources. All samples, to a greater or lesser extent, contained zircon grains whose U-Pb age, T_{DM^c}, εHf, Th-U ratio and CL patterns indicated shared provenance. Only two known rock types were identified as possible sources of provenance, which trended towards felsic igneous petrogenesis. Metamorphism shown by igneous zircon grains indicated regional peak metamorphism at Kemp or Macrobertson Land; after erosion, transportation and deposition from mostly unknown igneous protoliths.

1. Introduction

In Archaean-Proterozoic metasedimentary rare outcrops, such as those existing in Rayner Complex (and neighbouring Napier Complex) east Antarctica, detrital zircons often provide the most reliable data concerning the age, T_{DM}^c and ɛHf of source rocks. Due to their resistance to weathering and erosion cycles, analysis of detrital zircon grains within exposed metapelites in ice-covered East Antarctica may suggest likely shared provenance with adjacent exposed terrains. Inherited cores of igneous zircon can often provide an identifiable geochemical portrait of their original source rock (Belousova et al 2002, p.620). However, this study does not suggest that the limited number of samples described is indicative of substantial subglacial lithologies of Kemp and MacRobertson Lands.

In order to conclusively prove provenance between a zircon's current place of deposition and its potential source region, evidence must be provided that the source region was exposed and undergoing erosion, and that a sediment transport system existed between both regions (Howard et al 2009, p.288). This is

almost impossible to prove from sampling isolated outcrops in Antarctica; especially when high grade metamorphism has erased any record of sediment transport directions.

For sediment deposited today and in the most recent past, ice drainage basins in Antarctica often provided a pathway between the highest exposed topography and low-lying coastally-exposed outcrops (Figure 1). Relatively recent glacial ice can be dated and flow directions inferred. However, in the case of Archaean and Proterozoic sediment deposition, detrital zircon could be shed from highlands now residing on other continents that were once part of Gondwanaland; or from lithologies now completely eroded.

Figure 1. Veevers & Saeed (2011) model of an ice-drainage basin, illustrating the sedimentary transport of detrital zircon from a distal provenance upflow, to low-lying coastal exposures, before eventual outflow offshore (Veevers & Saeed 2011, p.3).

Provenance studies of detrital and metamorphic zircon at Stillwell Hills, Cape Bruce and Forbes Glacier.

Detrital and metamorphic zircon grains were sampled from Colbeck Gneiss at Cape Bruce (sample AC34), a garnet-cordierite-rich lens from Painted Gneiss at Forbes Glacier (sample 90024), metapelitic layers interfolded with Stillwell Orthogneiss in Stillwell Hills (samples FS0214 and GS01) and two proximal metapelites also from Stillwell Hills (SW54 and FS0223) (Figure 2).

Information gathered from detrital zircon grains from these limited coastal exposures contained many concordant 207/206Pb-dated grains outside known age-clusters in proximal outcrops. Such age-gaps may provide information on the geochemistry of distal source rocks that exist within the subglacial ancient drainage basin servicing the Rayner Complex. Veevers & Saeed (2011) gathered data on detrital zircon to map known ages of rock outcrops in Antarctica and also predict ages of bedrock from subglacial sources upflow (Figure 3).

Figure 3. Ages of ice-covered Antarctic bedrock is shown in grey, from data collected from detrital zircon. Known age-clusters of currently exposed outcrops are shown in black, for both Antarctica and its Gondwanan neighbours. Antarctic ice-covered cratons contain rocks with age clusters aaaa to d+, set within orogenic fold belts of age cluster d+. Rayner Complex (striped horizontal lines behind Napier Complex (NC)) forms part of neoproterozoic Eastern Ghats-Rayner Orogen. Other abbreviations relevant to potential provences of detritus in the Rayner Complex include SPCM (southern Prince Charles Mountains) and GSM-VSH (Gamburtsev Subglacial Mountains – Vostok Subglacial Highlands) (Veevers & Saeed 2011, p.5).

2. Methods of analysis, presentation and interpretation of data.

Zircon grains were collected and prepared from crushed samples using standard techniques. Under binocular microscope zircons were mounted in epoxy blocks and polished for further analysis. Approximately 60-100 grains were analysed per sample. CL imagery was used to reveal zircon grains' internal structure (inherited cores, and igneous/metamorphic rims). Cathodoluminescence (CL) microscopy and Back-scattered electron (BSE) imaging was performed on a FEI Quanta 600 MLA environmental scanning electron microscope at the Central Science Laboratory, University of Tasmania.

U-Pb analysis

U-Pb zircon analyses were performed on a 193 nm excimer laser (Resolution M-50), equipped with a twovolume ablation cell and coupled with a quadrupole ICP-MS (Agilent 7700x), at the School of Earth Sciences, University of Tasmania.

Common-lead corrections, for small contributions of common Pb, were not applied to this data. Isoplot v.3 (Ludwig 2003) was used for U-Pb Concordia and Probability Density Plots. Age clusters were based on the 207Pb/206Pb ages for all grains. Data are presented in age probability plots (Ludwig 2003) which show the number of analyses within each 20 million-year interval.

Age data alone cannot distinguish between two zircon grains of similar age from dissimilar provenances. For the purpose of clarifying provenance, U-Pb ages and Hf-isotope measurements from single grains of zircon were analysed (Belousova et al 2002).

Hf-isotopes

Hf-isotope zircon analyses were performed on a New Wave UP-213 Nd:YAG laser ablation microprobe attached to a Nu Plasma multi-collector (MC)-ICPMS system, GEMOC, Macquarie University.

Spot size was between 60-40 μ m. The fluence, or laser's ablation energy, was 2J/cm².

Cores, overgrowths and rims were analysed in separate ablations. CL images were used to ensure that the same portion of the zircon grain was analysed.

During the period in which data was collected, repeated measurements of reference zircons demonstrated the accuracy and precision of the technique.

Analysis if Mud Tank zircon gave

176Hf/177Hf = 0.282516±16 (2sd, n=12)

which is within error of the long-term value obtained in the laboratory of 0.282522 ± 42 (2sd, n = 2335) (Griffin et al 2007).

Analysis of Temora gave

176Hf/177Hf = 0.28687+23/-22 (2sd, n = 8)

which is within error of the long-term value obtained in the laboratory of 0.282684 ± 14 (2sd, n = 24) (Xu et al 2004).

For the calculation of ϵ Hf values, which give the difference between the sample and a chondritic reservoir in parts/10⁴, we have adopted the chondritic values of Blichert-Toft et al (1997).

The model of Blichert-Toft et al (1997) was also used to calculate model ages TDM and TDM^c. TDM model age gives a minimum age for magma formed from depleted-mantle at the time of the zircon grain's petrogenesis. It is calculated from the measured ¹⁷⁶Lu/¹⁷⁷Hf of each zircon grain. TDM^c is considered a more realistic crustal model age. It assumes that at the time of zircon petrogenesis, the grain's magmatic source was similar to an average continental crust (Veevers & Saeed 2011).

 ϵ Hf values and model ages used in the figures were calculated using the value of the ¹⁷⁶Lu decay constant of 1.93x10⁻¹¹ (Blichert-Toft et al 1997).

Tables of analytical data for metapelite samples 90024, AC34, FS0214, FS0224, SW54, GS01 are available in Appendix A.

Letter symbols of zircon age clusters from East Antarctica, relevant to my samples, were adopted from the comprehensive system used by Veevers & Saeed (2008). This age range was expanded to incorporate all concordant ages recorded in detrital zircon from the six samples used in this study (Table 1). Because of the large number of 207/206Pb-aged grains occurring at the 2500Ma border between Archaean and Proterozoic, age cluster **aa'** and **aaa** were expanded up to this boundary. Age cluster **a** was also expanded 100Ma.

Table 1. Cluster of	zircon ages of bedrock i	n East Antarctica	(modified from	Veevers 2000;	Veevers et al
2006, Veevers and	Saeed 2008).				

Code	Ga	Ma
d+	0.50 - 0.70	500 - 700
ddd	0.80 - 1.00	800 - 1000
с	0.90 - 1.30	900 - 1300
bb	1.30 - 1.40	1300 - 1400
а	1.40 - 1.80	1400 - 1800
aa	1.90 - 2.10	1900 - 2100
aa'	2.20 - 2.50	2200 - 2500
aaa	2.50 - 2.95	2500 - 2950
aaaa	3.0 - 3.35	3000 - 3350

Adopting Wang et al (2011) interpretation of Th/U ratios, every zircon grain was placed in one of three categories: felsic magmatic, mafic-intermediate magmatic and metamorphic grains either grown or recrystallised during metamorphic events. The Th/U ranges of the two igneous rock types overlap in Table 2, leading some scientists to disregard this method of Th/U ratio interpretation.

In many instances, a zircon grain retains its original magmatic Th/U ratio, even after undergoing metamorphism. According to Wang et al (2011), metamorphic zircon has Th/U < 0.1. A metamorphosed grain was either formed during a metamorphic event, or underwent intense metamorphism after petrogenesis. To help identify cases where a metamorphosed rock retained its original magmatic Th/U ratio, CL zoning and Th/U ratios were compared. This provided a more definitive answer to each grain's petrogenesis and subsequent magmatic and metamorphic history. Using this method enabled, for example, a clearer interpretation as to whether a homogenous rim was caused by a metamorphic or

igneous event. For grains which displayed metamorphic CL zoning (ghost oscillatory zoning or sector zoning), but recorded a magmatic Th/U ratio, this led to a better understanding of their original host rock type.

Using Th/U ratios to further classify zircon grains according to their stage of magmatic zircon crystallization enabled clearer differentiation of the magmatic or metamorphic provenance of zircon populations, that could not be distinguished through analysis of ϵ Hf, morphology, CL zoning, 207/206 ages or T_{DM^c} (Wang et al 2011, p.170).

Table 2. Statistical data on U and Th contents providing the basis for my categorization of Th/U ratios from igneous zircon grains; sourced from felsic or mafic-intermediate magmatic host rocks (Wang et al 2011, p.168).

	Zircon in granitic rocks			Zircon in mafic to intermediate rocks		
	Data n=1684			Data <i>n</i> =667		
	U (ppm)	Th (ppm)	Th/U	U (ppm)	Th (ppm)	Th/U
Range	23-10799	3-9089	0.01-3.79	17-3948	5-9690	0.02-6.82
Mode	125	75	0.40	75	75	0.70
Median	350	140	0.52	270	170	0.81
Mean	600	310	0.59	450	450	0.93

Wang et al (2011) explained the causes of differing Th/U ratios as follows.

Early stage zircon (ESZ) has Th/U \ge 0.1 – 0.2, forming during a low growth rate of zircon, with high and constant temperature within a deep magma chamber. It crystallized in near-equillibrium with magma.

This low Th/U ratio was caused by U and Th often being excluded from zircon lattice due to partition coefficients. U and Th were therefore unlikely to be enriched at the interface between zircon and melt because of their larger diffusion rate (Wang et al 2011, p.169).

Late stage zircon (LSZ) has Th/U peaking between 0.2 - 0.7. LSZ formed during a time of high zircon growth rate caused by Zr oversaturation with decreasing temperature; during the final emplacement of magma. This Zr oversaturation enabled U and Th to enter easily (Wang et al 2011, p.169).

Middle stage zircon (MSZ) has the highest Th/U ratio, beginning from 2.0 - 2.5. Similar to LSZ, MSZ formed during a time of high growth rate because of Zr oversaturation with decreasing temperature. But unlike LSZ, MSZ formed during the ascent of magma. Unlike ESZ, MSZ crystallised in disequilibrium with the melt, because U and Th content of the zircon were not controlled by zircon-melt partition coefficients. Extremely high Th/U magmatic ratios indicate extreme disequilibrium with the melt. There is also evidence that the zoning seen by CL imagery is indicative of crystallization under local disequilibrium conditions, where U and Th contents of zircon can vary significantly (Wang et al 2011, p.169).

For classification of zircon CL zoning, the methodology of Halpin et al 2005 was adopted (Table 3).

Table 3. Zircon core and rim classification as interpreted by CL imaging and morphology (modified from Halpin et al 2005, p.697).

Zircon	Description	CL response	Interpretation	Samples
type				
C1	Common oscillatory zoning, may get	Mod to low	Magmatic, may be partially	90024, AC34, FS0214,
	'ghost' structures, mostly elongate,		recrystallised or modified	FS0223
	some stubby with rounded terminations			
C2	Homogenous, may get faint/patchy	Low to mod	Metamorphic and highly	90024, AC34, FS0214,
	zoning, commonly rounded/stubby		modified magmatic grains	FS0223,
				SW54
C3	Most diverse internal zoning; radial	Low to mod	Crystallised from/grown in	90024, AC34,
				FS0214,
	and irregular sector zoning, planar		presence of anatectic melt	FS0223
	growth banding		at high temperatures	SW54
C4	Broad concentric zoning, stubby	Mod to low	Metamorphic recrystallisation/	FS0214
	to elongate		growth	
		Mod to		
R1	'Bleached' appearance, broadly	high	Recrystallisation/modification	90024, SW54,
	homogeneous, may preserve patchy		of pre-existing zircon during	
	concentric zoning		metamorphism	
R2	Variable thickness and often	Mod to low	Growth of new zircon during	90024, AC34,
				FS0214,
	discontinuous, homogeneous		metamorphism	FS0223,
				SW54, GS01

Age of deposition

In this study, age of deposition has utilised Young and Black (1991) Rb-Sr whole rock ages of Colbeck Gneiss and Painted Gneiss to help pinpoint maximum age of deposition. Young and Black (1991) suggested initial deposition occurred before c.1250Ma. This has been interpreted to imply that all zircons younger than c.1250Ma must have formed during or been affected by metamorphism.

Therefore, grains greater than or equal to 1250Ma in 207/206Pb age, with minimal Pb-loss and a high percentage of concordance, formed the focus group. Oscillatory or concentric CL zoning and a Th/U ratio within Wang et al (2011) igneous range helped confirm the grain's igneous detrital origin. Only detrital igneous grain cores (not grown in situ) were considered. CL imagery also assisted in interpreting the degree of metamorphism. Zircons with recrystallisation features such as homogenous (potentially

metamorphic), sector or chaotic CL zoning were avoided. Metamorphic episodes might have disturbed or reset original U-Pb age of detrital grains. However, most samples had undergone such widespread metamorphism, that some CL modification was unavoidable. Local igneous and metamorphic events were also taken into consideration.

3. Regional Geology

Mesoproterozoic Rayner Complex is formed partly from older reworked crust from neighbouring Archaean Napier complex, composed of rocks dated c.3800-2500Ma and anorthosites dated c.1450-1500Ma (Harley & Kelly 2007, p.156) (See later section: 'Comparison with properties of known rock types from Kemp and MacRobertson Lands'). A significant portion of the exposed outcrops in Rayner Complex are also composed of Proterozoic sediments and younger intrusives like c.960Ma charnockites. The known rock types reached granulite facies possibly during a combination of metamorphic events between c.1000-980Ma and c.930-920Ma, known as the Rayner Structural Episode (RSE) (Harley & Kelly 2007) (Figure 4).

Kemp Land (Stillwell Hills samples FS0214, FS0223, GS01 and SW54), underwent this metamorphic event c.930-920Ma. Metapelitic mineral assemblages occurring in Rusty Gneiss (FS0223) suggest peak metamorphic conditions of T \approx 870 - 930 °C at P \approx 7.6 – 8.9 kbar (Halpin et al 2007a, p.1323). Halpin et al (2007c) suggests Si-undersaturated metapelite hosted by pink gneiss (FS0214) indicated 'clockwise P-T-t evolution with post-peak decompression-cooling', whilst the addition of leucosome transgressing strong foliation suggests temperatures high enough to cause partial melting (Halpin 2007c, p.114). These factors suggest high-P and high-T metamorphic conditions were met (Ellis 1983; Kelly & Harley 2004).

In MacRobertson Land (Cape Bruce sample AC34 and Forbes Glacier sample 90024), this metamorphic event occurred c.1000-980Ma, and yet the P-T conditions were quite different, with the mineral assemblage of MacRobertson Land and northern Prince Charles Mountains suggesting lower-P conditions and a P-T path dominated by near-isobaric cooling (Halpin et al 2007b, p. 683).

Peak metamorphism is reported to have occurred at lower P-T conditions; with $P \approx 5-7$ Kbar and T>700 °C (Dunkley et al 2002).

Ice coverage between Kemp and MacRobertson Lands, and the intense deformation suffered by rocks in Kemp Land, makes confirmation of the structural relationship between these two regions difficult. It is possible that RSE metamorphic age discrepancy reflects a two-stage collision between the Ruker Terrane and the Mawson Continent (which included eastern India) and a microcontinent that included Archaean Napier complex (Harley & Kelly 2007, p.156) (See Eastern Ghats-Rayner Orogen in Figure 3).

Figure 4. Geological history of Kemp and MacRobertson Lands, including deformational events and differing P-T-t conditions of peak metamorphism during RSE. Known rock types of Trail (1970) are shown, though various layers incorporated within these rock types (including metapelitic layers from Stillwell Hills) are conspicuously absent. Also shown is Archaean cratonic material from Napier complex, reworked during the Rayner Orogeny (Halpin et al 2005, p.686).

4. Results

4.1 Initial Hf ratio vs. age

In the plot of Initial Hf vs age, with the Chondritic Unfractionated Reservoir (CHUR) reference line at zero, zircons that plot above the line had host magmas derived in part from juvenile mantle (fertile) sources and those below the line from older reworked (recycled) crustal material (Figure 5). Zircon populations that contain clusters of grains plotting above and below the line, had a mix of host magmas generated by a combination of juvenile depleted mantle and older reworked crustal sources (Veevers & Saeed 2011). The higher the zircon plots towards the reference line of the Depleted Mantle (DM), the more likelihood of composition from a single pure depleted mantle source. Sample 90024 from Forbes Glacier and sample FS0214 from Stillwell Hills both contain zircon grains of near-identical composition to the Depleted Mantle that existed during their petrogenesis (TDM).

Samples 90024, AC34 from MacRobertson Land and GS01 from Stillwell Hills, Kemp Land, contain a significant number of grains with magmatic composition comparable to CHUR. Whereas the majority of grains from samples FS0214, FS0223 and SW54 are mostly composed of recycled crustal material.

Figure 5. Initial Hf vs age of detrital and metamorphic zircon populations from metapelitic samples 90024. AC34, FS0214, FS0223, SW54 and GS01.

Initial Hf vs age

4.4 MacRobertson Land samples

Sample AC34: Colbeck Gneiss (metapelitic gneiss), Cape Bruce

Metasedimentary and granitic gneiss, known as Colbeck Gneiss (sample AC34), is suspected of being part of a conformable sequence with Forbes Glacier's Painted Gneiss (90024). It was intruded (as was Painted Gneiss) by Mawson charnockite at Cape Bruce (Halpin et al 2007b, p.684). In Figure 6, brown biotite with its perfect cleavage is intergrown with sillimanite, the highest temperature form of Al₂SiO₅. In this thin section, sillimanite occurs both as prismatic crystals, diamond-shaped in cross-section, and as needle-like crystals within other minerals. This rock has been metamorphosed in the lower pressure part of the granulite facies. Cordierite has low birefringence and low relief, common in alumina-rich rocks that have been thermally metamorphosed (MacKenzie & Adams 2009)

Figure 6. Textural relationships in metapelitic sample AC34 from Cape Bruce, MacRobertson Land. Mineral assemblage: sillimanite – biotite – spinel – magnetite – cordierite – quartz – feldspar. (Sample AC34, thin section in plane and crossed polar light).

Maximum age of deposition

Nd model ages of detrital zircon from Mawson charnockite of between c.2200-1600Ma indicates sample AC34 was deposited before sample 90024. Both Colbeck Gneiss and Painted Gneiss were underlain by Palaeoproterozoic basement (Young & Black 1991). In this study, after a single inherited grain from age cluster **aaa**, a steady stream of regular zircon ages begins with age cluster **aa**, **a** and onwards. With minimal Pb-loss, igneous oscillatory (C1) core grain 6A from age cluster **c** is dated 1258±23Ma. Th/U ratio of 0.47 is well within Wang et al (2011) felsic igneous range and concordance is 104%. However, patchy CL zonation in the R1 rim indicates possible modification of pre-existing zircon during metamorphism at a later date (Figure 7).

Figure 7. CL image of grain 6A, sample AC34, Cape Bruce. (Black circle shows location of U-Pb analysis).

Concordia diagram

Because of the multiple populations of zircon grains from different provenances in this study, and also because of Pb-loss suffered during c.945Ma RSE, the lower intercept on the Concordia diagrams in all six metapelite samples are poorly constrained. The upper intercept age of the chord represents a minimum crystallization age for the igneous population of grains in each sample.

In sample AC34, 88 analyses from cores and rims of detrital and metamorphic zircon grains yield an upper intercept age of 2050 ± 110 Ma (1se) and poorly-constrained lower intercept age of 1003 ± 27 Ma. (MSWD = 13). (Figure 8a).

Probability Density Plot

In AC34, the single peak occurs slightly earlier than sample 90024 at c.900Ma (age cluster **c**), but the overall population density curve between both MacRobertson Land samples is very similar (Figure 8b).

Figure 8. a) Concordia diagram and b) Probability Density Plot of total age population for sample AC34, Cape Bruce.

U-Pb and Hf-analysis of sample AC34

In sample AC34, 87 zircon grains were analysed (See Appendix A). 19 grains underwent Hf-analysis (Table 4). Grains were 207Pb/206Pb aged between 2650±40Ma (age cluster **aaa**) and 838±30Ma (age cluster **ddd**).

TDM peaks occurred between 2.03-1.40Ga and 2.89-2.05Ga. Th/U ratios between 1.04 – 0.01 indicate a wide range of igneous and metamorphic formation; from mafic-felsic middle-to-late stage and ESZ magmatic crystallization to highly metamorphic ratios.

Igneous grains with Th/U ratio $\ge 0.1 - 0.2$ are interpreted as ESZ, forming deep in a magma chamber during low growth rate and high and constant temperature; crystallizing in near-equillibrium with magma (Wang et al 2011, p.169). Grains with Th/U ratio peaking between 0.2 - 0.7 are interpreted as LSZ; forming during final magma emplacement and a high crystal growth rate due to Zr oversaturation with decreasing temperature and final emplacement of magma. Grains with Th/U ratio beginning 2.0 - 2.5 are interpreted as MSZ, forming during the ascent of magma; with high growth rate and in disequilibrium with the melt (Wang et al 2011, p.169). The higher the Th/U ratio, the greater the disequilibrium.

In this sample, there was only one distinctly inherited granitic grain (4) in its own age cluster; with Archaean age of 2650 ± 40 Ma and the oldest T_{DM^c} of 3.07Ga. ϵ Hf of 0.60 (fertile) indicated a depleted mantle source close to CHUR standard, which already contained a mix of juvenile and recycled crustal material. This grain also had lowest initial Hf and third-lowest 176Lu/177Hf and 176Yb/177Hf ratios.

Metamorphic Th/U ratios <0.1 are shown in bold in Table 4. This does not mean that only the grains with metamorphic Th/U ratios underwent metamorphism or were of metamorphic origin. It is likely that many igneous grains in this sample underwent partial recrystallisation or modification; but retained a Th/U ratio within the igneous range of Wang et al (2011). But when Th/U ratio interpretation is used in conjunction with the zircon's CL image, a clearer understanding of the grain's geohistory can emerge.

Table 4. Sample AC34: Hf-analysis and Th/U ratios of										
selected grains	Age	olbeck Gneiss,	Cape Bruce Zircon	T(DM) crustal						
Clusters	(Ma)	Sample	Туре	(Ga)	εHf	Th/U ratio				
aaa (n=1)	2650	AC34-4	C1	3.07	0.60	0.46				
aa	2099	AC34-70	C1	2.29	6.24	0.80				
(n = 2)	2078	AC34-27	C3	2.37	4.81	0.51				
а	1792	AC34-5	C1	2.57	-2.10	0.86				
(n = 6)	1741	AC34-68A	C3	2.75	-5.57	0.23				
	1490	AC34-34	C1	2.74	-8.58	0.59				
	1440	AC34-78	C1	2.44	-4.31	0.55				
	1406	AC34-2A	C1	1.74	6.53	0.60				
	1396	AC34-44	C1	2.39	-4.17	0.53				
bb (n=1)	1315	AC34-85	C1	2.05	0.33	0.39				
c	1182	AC34-36	C1	2.19	-3.50	0.88				
(n = 11)	1167	AC34-87	C1	2.08	-1.91	0.70				
	1132	AC34-3	C1	2.06	-2.11	0.72				
	1115	AC34-14	C2	1.99	-1.18	0.84				
	1094	AC34-23	C1	2.00	-1.57	0.78				
	1072	AC34-18	C1	2.08	-3.11	0.30				
	1054	AC34-48	C1	1.88	-0.12	0.69				
	1012	AC34-2B	R2	1.79	0.86	0.01				
	993	AC34-26	C1	1.82	0.06	1.04				
	956	AC34-68B	R2	1.81	-0.25	0.01				
	908	AC34-55	C3	1.74	0.38	0.06				

The first age cluster (**aa**) contains 5 grains, dated between 2099±25Ma and 1895±26 Ma. Th/U ratios indicate mixed petrogenesis between mafic-to-felsic igneous events. CL zoning includes igneous oscillatory patterns (C1), but also metamorphic indicators of ghost oscillatory (C1) and sector zoning (C3). Crystal morphology was mostly equant.

Age cluster **bb**, dated 1396±28Ma to 1315±62Ma, contains felsic-granitic grains 85 and 44 with ϵ Hf of 0.33 to -4.17, revealing a mix of both fertile and recycled sources. Older grain 44 had more enriched recycled ϵ Hf, whilst younger grain 85 had higher ϵ Hf fertile source; indicating a higher percentage of depleted mantle magma in the mix.

The most significant age cluster (c) contains 66 zircon grains. 19 grains underwent Hf-analysis. ϵ Hf ranged between 0.86 (close to CHUR) to -3.50 revealing a mix of both fertile and recycled magma content. The highest ϵ Hf in this sample, belonging to grain 2B, might indicate petrogeneisis during a felsic igneous event. Strongly metamorphosed Th/U ratio of 0.01 and chaotic (C2) zoning has erased previous history of this ovoid grain's formation.

The youngest age cluster (**ddd**) contained 2 grains aged 883±39Ma and 838±30MA. Although Hf-analysis was not undertaken, ghost oscillatory (C1) CL zoning reveals a history of igneous petrogenesis and

partial metamorphism after deposition at Cape Bruce; with metamorphic Th/U of 0.07. Younger grain 84 reveals sector (C3) CL zoning; which combined with a Th/U ratio of 0.09 indicates possible metamorphic petrogenesis.

45 grains have a metamorphic Th/U ratio <0.1. Metamorphic ages range from c.1057Ma (age cluster **c**) to c.838Ma (age cluster **ddd**), with Th/U ratios 0.09 - 0.01. The majority are in age cluster **c**, metamorphosed during the Rayner Structural Episode (RSE).

The CL zoning of cores with a metamorphic Th/U ratio are mostly sector (C3) or homogenous/patchy/chaotic (C2). A minority retain ghost oscillatory zoning (C1) from igneous formation before subsequent metamorphism.

CL response ranged from low to high.

Grain morphology range from mostly ovoid (sub-round to sub-angular) to characteristically metamorphic equant (sub-round) crystal shapes. In this sample, only a few metamorphic grains are elongate; with the majority of elongated grains having magmatic Th/U ratios.

Sample 90024: Garnet-cordierite-rich lens from Painted Gneiss

Sample 90024 comes from a garnet-cordierite-rich lens, from within a layer of felsic gneiss referred to as Painted Gneiss. Painted Gneiss forms inclusions in the c.985-955Ma Mawson Charnockite, Mawson Coast (Halpin et al 2007b). (See sample 90030 in section: 'Comparison of properties of known rock types in Kemp and MacRobertson Lands).

In Figure 9, spinel and magnetite inclusions are enclosed within high relief garnet (<2mm across) and low relief cordierite (<1mm across). Cordierite is common in alumina-rich rocks which have been thermally metamorphosed. Cordierite and garnet are replaced by high relief colourless sillimanite and brown biotite at grain edges. Sillimanite is the highest temperature form of Al2SiO5 and in this rock it forms within garnet. Note spinel and ilmenite surrounded by a double corona of (inner) sillimanite and (outer) garnet.

Figure 9. Textural relationships in metapelitic sample 90024 from Forbes Glacier. Mineral assemblage: Garnet – biotite – cordierite – sillimanite – spinel – magnetite – quartz (Sample 90024, thin section in plane and crossed polar light).

Maximum age of deposition

Rb-Sr whole rock ages of c.1250 – 1150Ma in Painted Gneiss (90024) suggested initial deposition occurred before c.1250Ma (Young & Black 1991). To ascertain maximum age of deposition, igneous oscillatory-zoned (C1) core of grain 3A was chosen from age cluster **c.** With felsic igneous Th/U ratio of 0.57, its core is 207/206Pb dated 1251±27 Ma. The core of grain 3A retains 98% concordance. The bleached CL zonation of this grain's (R1) outer rim suggests the existing grain underwent some modification during metamorphism at a later date (Figure 10).

Figure 10. Grain 3A from sample 90024, Forbes Glacier, MacRobertson Land. (Blue circle A indicates location of U-Pb analysis in the core).

Concordia diagram

In sample 90024, 86 analyses from cores and rims of detrital and metamorphic zircon grains yielded an upper intercept age of 2156 ± 120 Ma (1se) and poorly constrained lower intercept age of 964 ± 21 Ma. (MSWD = 10.5) (Figure 11a).

Probability Density Plot

In sample 90024, a single peak occurs c.950Ma (age cluster \mathbf{c}) (Figure 11 b).

Figure 11. a) Concordia diagram and b) Probability Density Plot of total age population for sample 90024, Forbes Glacier.

U-Pb and Hf-analysis of sample 90024

76 zircon grains were U-Pb analysed from sample 90024 (See Appendix A). 20 of these grains also underwent Hf-analysis (Table 4).

Grain 207Pb/206Pb ages ranged between 2522 \pm 22Ma (age cluster **aaa**) and 692 \pm 131Ma (age cluster **d**+). TDM peaks occured at 2.03-1.47Ga and 3.17-2.66Ga. (There is a TDM gap between 2.03-2.66Ga). Th/U ratios between 1.06 – 0.08 incorporate mafic-to-felsic igneous Early stage zircon (ESZ), Middle stage zircon (MSZ) and Late stage zircon (LSZ) crystallization, as well as one grain that fell within Wang et al (2011) range for metamorphic zircon. (Metamorphic Th/U ratios <0.1 are shown in bold in Table 5).

Table 5. Sample 90024: Hf-analysis and Th/U ratios of selected grains from Painted gneiss (garnet-cordierite-rich lens). Forbes Clacier, MacRobertson land								
gilliss (gui liet (coruiern	<i>c</i> rich iens), r c	n bes Glueier	T(DM)	son iunu			
Zircon Age	Age		Zircon	crustal				
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio		
aaa (n=1)	2522	90024-15	C1	2.75	4.10	0.41		
aa	2488	90024-42	C2	3.65	-10.96	0.39		
(n = 2)	1986	90024-60	C1	2.04	8.91	0.59		
а	1615	90024-83	C3	2.30	0.06	0.46		
(n = 3)	1536	90024-51	C1	1.48	12.42	0.82		
	1406	90024-81	C1	2.21	-1.08	0.59		
bb (n=1)	1333	90024-37	C2	1.79	4.84	0.20		
c	1300	90024-77	C1-bk	2.15	-1.35	0.26		
(n = 15)	1280	90024-14	C1	2.21	-2.72	0.25		
	1251	90024-3A	C1	2.08	-0.89	0.57		
	1150	90024-75	C1	1.98	-0.54	0.58		
	1144	90024-36	C1	1.85	1.55	0.85		
	1105	90024-63A	C1	1.71	3.28	1.06		
	1084	90024-41	C1-bk	2.05	-2.59	0.50		
	1084	90024-22	C1-bk	1.81	1.37	0.42		
	1081	90024-3B	R2	1.88	0.13	0.10		
	1057	90024-50A	C1	1.98	-1.67	0.53		
	1046	90024-71	C1	2.14	-4.53	0.43		
	982	90024-63B	R1	1.99	-2.87	0.70		
	931	90024-23	R2	1.97	-3.21	0.08		
	907	90024-73	R1	1.85	-1.58	0.21		
	889	90024-50B	R1	1.90	-2.58	0.43		
d+ (n=1)	692	90024-20	C1	2.39	-13.17	0.32		

Properties of the total zircon grain population, divided into age clusters, in sample 90024

The oldest three grains, being single representatives of older age clusters (**aaa, aa', aa**), were possibly eroded contemporaneously with the younger grains of age cluster **a**. Howard et al (2009) documented

such a case in the Gawler Craton, where erosion occurring between 1870-1850Ma produced detrital zircon age populations of c.2520, 2450 and 2000Ma (Howard et al 2009, p.284).

Age cluster **a** contains four grains 207/206Pb-aged between 1615±44 and 1406±31 Ma. ϵ Hf ranges from 12.42 to -1.08 (fertile – recycled) and T_{DM^c} between 2.30-1.48 Ga.

In age group **bb**, grains 37 and 77 are dated 1333 ± 29 and 1300 ± 48 Ma respectively. ϵ Hf ranges from 4.82 to -1.35 (fertile – recycled) and T_{DM^c} between 2.15-1.79 Ga.

The most significant age cluster **c** contains 67 grains ranging in age from 1280 ± 67 to 901 ± 141 Ma. Their ϵ Hf of 3.28 to -3.21 (fertile-recycled) is fairly constrained; revealing a juvenile-crustal signature. T_{DM^c} lies between 2.21 - 1.71 Ga.

Age cluster **ddd** contains 7 grains, aged between 891±46Ma and 838±107 Ma. Hf-analysis of one grain recorded ϵ Hf of -2.58 (recycled) and T_{DM^c} of 1.90Ga.

Age cluster **d+**, the youngest grain recorded in any of the metapelitic samples, has ϵ Hf of -13.17; indicative of substantial recycled crustal content and T_{DM^c} of 2.39Ga. All grains in sample 90024 have retained a magmatic Th/U ratio signature, except for one grain in age cluster **c**.

4.5 Kemp Land samples: Stillwell Hills

The four metapelitic gneissic layers from Stillwell Hills discussed in this study (FS0214, SW54, GS01, FS0223) are tightly-to-isoclinally folded, deformed and dismembered within Archaean Stillwell Hills felsicmafic orthogneiss (See sample SW268 in later section: 'Comparison of properties of known rock types from Kemp and MacRobertson Lands). Extreme deformation, probably during RSE, has made confirmation of depositional age of these four metapelitic layers problematic (Figure 12). This study was in part undertaken to use detrital and magmatic zircon grains from these metapelitic samples, to shed some light on their ages of deposition within the Stillwell Hills region of Kemp Land.

Figure 12. Field mapping of Stillwell Hills rock units, with locations of all four metapelite samples from Stillwell Hills used in this study (FS0223, SW54, GS01, FS0214). Included are proximal known rock types Stillwell Orthogneiss (well-layered) (SW268) and Stillwell Charnockite (SW242A).

Sample FS0214: Pink Gneiss, Keel Island, Stillwell Hills

Pink Gneiss is a massive-to-migmatic felsic gneiss with minor foliation evident, dominated by 'perthitic alkali feldspar, quartz and plagioclase with minor garnet and biotite' (Halpin et al 2007c, p.102).

In figure 13, very minor patches of garnet are clearly visible only under crossed polars. Minor magnetite grows between the crystal boundaries of polygonal alkali feldspar and quartz. Abundant alkali feldspar (65%) envelop smaller quartz crystals. Plagioclase is not evident in this thin section.

Figure 13. Textural relationships in Pink Gneiss FS0214. Mineral assemblage: quartz – magnetite – K-feldspar – garnet – biotite (just at bottom of photo). (Sample FS0214, thin section shown in plane and crossed polar light).

Maximum age of deposition

A steady stream of grains flowed in regular intervals consistently from the very first age cluster **aa**, through age cluster **aa** and onwards. The igneous C1 core of subrounded elongate grain 30, in age cluster **bb**, has ghost oscillatory CL zoning and felsic igneous Th/U ratio of 0.23 (Figure 14). Dated 1317±51Ma, concordance is 93%.

Figure 14. Grain 30 from sample FS0214, Stillwell Hills. (Black circle shows location of U-Pb analysis.)

Concordia Diagram

In sample FS0214, 78 analyses from cores and rims of detrital and metamorphic zircon grains yield an upper intercept age of $2398\pm95Ma$ (1se) and poorly constrained lower intercept age of $971\pm36Ma$. (MSWD = 12) (Figure 15a).

Probability Density Plot

In sample FS0214, peaks occur at c.1500Ma and 1000Ma (Figure 15b).

Figure 15. a) Concordia diagram and b) Probability Density Plot of total age population for sample FS0214, Stillwell Hills.

U-Pb and Hf-analysis of sample FS0214

Dated between 2646±83Ma (age cluster **aaa**) and 858±82Ma (age cluster **ddd**), a T_{DM} peak occurs 2.70-2.38Ga. Th/U ratios ranging 0.69 – 0.01 indicate mafic-felsic LSZ and ESZ crystallisation, as well as metamorphic grains.

67 grains were sampled within 1se concordance. 10 grains were rejected. Grains 49A, 78, 86, 93A, 12A and 101 were rejected due to common Pb and Pb loss. Grains 43A and 104 were rejected due to Pb loss throughout. Grain 3 was rejected due to the mix of old core and rim, with Pb loss and some common Pb loss. Grain 27 was rejected due to Common Pb loss and the U-Pb analysis hole drilling into a monazite inclusion (See Appendix A). 20 grains underwent Hf-analysis (Table 6).

(massive-migmatic), Keel Is, Stillwell Hills, Kemp Land								
Zircon Age	Age		Zircon	T(DM) crustal				
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio		
aaa	2637	FS0214-37A	C1	2.52	9.24	0.42		
(n = 3)	2583	FS0214-58A	C1	2.52	8.61	0.69		
	2580	FS0214-24	C1	2.65	6.46	0.34		
aa	2478	FS0214-10	C1	2.75	3.65	0.50		
(n = 2)	2446	FS0214-23B	R2	2.72	3.67	0.30		
a	1600	FS0214-36A	C2	3.26	-15.82	0.06		
(n = 6)	1522	FS0214-14	C2	3.44	-19.89	0.05		
	1514	FS0214-16B	R2	3.34	-18.32	0.03		
	1509	FS0214-95	C1-C3	3.27	-17.14	0.17		
	1454	FS0214-46	C1	3.21	-16.92	0.08		
	1440	FS0214-69	C3	3.40	-20.21	0.08		
bb (n=1)	1343	FS0214-61	C2	3.40	-21.45	0.01		
c	1291	FS0214-102	C1-bk	3.37	-21.63	0.04		
(n = 8)	1269	FS0214-97	C3	3.45	-23.24	0.12		
	1235	FS0214-44	C1	3.24	-20.23	0.05		
	1047	FS0214-79B	C4	3.62	-29.05	0.04		
	975	FS0214-82	C2	3.57	-29.16	0.34		
	957	FS0214-37B	C3	3.32	-25.14	0.60		
	950	FS0214-42	C2	3.32	-25.17	0.43		
	909	FS0214-06	C1	3.49	-28.70	0.50		

Table 6. FS0214: Hf-analysis and Th/U ratios of selected grains from Pink gneiss

Archaean age cluster aaa contains 6 grains, dated 2646±83Ma to 2508±43Ma. Hf-analysis records ɛHf 9.24 to 6.46 fertile/depleted mantle content and TDM^c from 2.65-2.52Ga.

Proterozoic age cluster aa' contains 8 grains, dated 2478±32Ma to 2207±50Ma. Hf-analysis records an intermediate igneous signature of ɛHf 3.67 to -18.32 fertile-recycled content and TDMC from 3.34-2.72Ga.

Age cluster aa contains 3 grains, dated 2096±28Ma to 1929±53Ma, with Th/U ratio indicating felsic igneous petrogenesis.

Age cluster a contains 18 grains, many of which have undergone metamorphism. Dated 1643±74Ma to 1422±50Ma, Hf-analysis records εHf -15.82 to -20.21 strongly recycled content and T_{DM^c} from 3.44-3.21Ga.

Age cluster **bb** contains 5 grains, dated 1348±62Ma to 1317±51Ma. Hf-analysis on one grain records an enriched metamorphic signature of ɛHf -21.45 recycled and TDM^c of 3.40Ga.

Age cluster c contains 35 grains, dated 1291±57Ma to 904±93Ma. Hf-analysis records an enriched metamorphic signature of ɛHf -20.23 to -29.16 recycled crustal source and TDMc from 3.62-3.24Ga.

Age cluster **ddd** contains 2 grains, dated 887±93Ma to 858±82Ma. Th/U ratio indicates granitic-felsic provenance, chaotic CL zonation and equant morphology.

21 grains have a metamorphic Th/U ratio <0.1. Metamorphic ages range from c.1643Ma (age cluster a) to 1047Ma (age cluster c), with Th/U ratios 0.08 - 0.01. The majority are in age cluster c, metamorphosed during the Rayner Structural Episode (RSE). The predominant CL zoning is homogenous/patchy/chaotic (C2) with only a few grains showing sector zoning (C3) or ghost oscillatory (C1).

CL response ranges from mod-low to mod-high.

Grain morphology ranges from ovoid, elongate, to the characteristically metamorphic equant (sub-round to sub-angular) crystal shapes. In this sample, there is no characteristic difference between metamorphic and magmatic grain-shapes.

GSO1: Green layered sequence, Keel Island, Stillwell Hills

The Green layered sequence is made up of various layers of differing provenances. It is green where diopside-bearing assemblages predominate (Halpin et al 2007c, p.104). The gneissic layers can include assemblages of garnet, sillimanite, biotite and orthopyroxene, plus optional of cordierite, garnet, sapphire, spinel and corundum. The protolith of the metapelitic gneiss layer is sedimentary in origin.

In Figure 16, a metapelitic layer of GS01 contains an assemblage of garnet-orthopyroxene-biotite gneiss. Porphyroblastic garnet incorporates brown poorly-orientated lathes of biotite and inclusions of dark brown ilmenite. Porphyroblastic orthopyroxene shows irregular cracks and faint cleavages. Low relief plagioclase grows in light patches bordering garnet porphyroblasts. A peak metamorphic assemblage is indicated by the inclusion of all these minerals, although biotite can also indicate retrograde metamorphism.

Figure 16.Textural relationships in metapelite GSO1 from Kemp Land. Mineral assemblage: biotite - orthopyroxene – ilmenite - plagioclase – garnet. (Purple colour is marker-pen on the thin section.) (Sample GS01, thin section in plane and crossed polar light).

Maximum age of deposition

The grains in sample GS01 have undergone such extensive metamorphism, the youngest igneous grain with minimal Pb-loss and 97% concordance, is an outer core from grain 96 in age cluster **bb** (Figure 17). Dated 1316±33 Ma, with felsic igneous Th/U ratio of 0.15, the C1 outer core contains ghost structures with moderate CL response.

Younger grain 103 was discarded not only because of a lower concordance, but because its CL image showed metamorphic sector zonation within the dark core.

Figure 17. Grain 96 from sample GS01. (Blue circle shows location of U-Pb analysis).

Concordia Diagram

In sample GS01, 81 analyses from cores and rims of detrital and metamorphic zircon grains yield an upper intercept age of $1619\pm35Ma$ (1se) and poorly constrained lower intercept age of $967\pm22Ma$. (MSWD = 1.5). (Figure 18a).

Probability Density Plot

The four samples from Stillwell Hills, Kemp Land have more individualistic age population clusters, but share similar aged peaks.

In GS01, peaks occur at c.1525Ma and c.925Ma (Figure 18b).

Figure 18. a) Concordia diagram and b) Probability Density Plot of total age population for sample GS01, Stillwell Hills.

U-Pb and Hf-analysis of sample GS01

In sample GS01, 70 grains were U-Pb dated within 1se concordance. Grain 100 was rejected due to common Pb and Pb loss and grain 94 from reverse discordance and Pb loss (Appendix A). 19 grains underwent Hf-analysis (Table 7).

207/207Pb dated between 1715±44Ma (age cluster **a**) and 829±56Ma (age cluster **ddd**), T_{DM} peaks occurred between 2.03-1.60Ga, 2.41-2.00Ga and 2.86-2.41Ga. Th/U ratios range between 0.92 – 0.06 (mafic-to-felsic and metamorphosed) indicating MSZ, LSZ and ESZ magmatic crystallization, as well as some metamorphic grains.

Age cluster **a** is dated between 1715±44Ma and 1425±54Ma. 14 grains were also Hf-analysed, with ϵ Hf - 0.97 (close to CHUR) to -10.51 (recycled/enriched content). T_{DM}^c is dated between 2.85-2.22Ga.

Age cluster **bb** is U-Pb dated between 1370 ± 33 Ma and 1306 ± 29 Ma. Despite 5 grains recording an igneous Th/U ratio >0.1, all bar one have metamorphic CL zoning patterns. Crystal shapes range between ovoid and equant; with low – high CL response.

Age cluster **c** is U-Pb dated between 1297±30Ma and 905±28Ma. Four grains were Hf-analysed with ϵ Hf 3.37 to -13.99 fertile-recycled content. T_{DM^c} is dated between 2.86-1.60Ga.

Age cluster **ddd**, dated between 897±43Ma and 829±56Ma, have felsic-granitic Th/U ratios and ovoid – equant morphology. CL zoning ranges from patchy-chaotic, homogenous (C2) and sector (C3).

15 grains have a metamorphic Th/U ratio <0.1 (shown in bold in Table). Metamorphic ages range from 1668Ma (age cluster a) to 905Ma (age cluster c), with Th/U ratios 0.09 - 0.01. The majority are in age cluster **a**, when both Kemp and MacRobertson Lands were undergoing multiple metamorphic events (Halpin et al 2005).

Overall, CL zoning is mostly metamorphic sector (C3), with two homogenous (C2) and one oscillatory (C1) grain. CL response ranged from low to high.

Grain morphology is equant (sub-round), apart from four ovoid-shaped grains. In this sample, grains with equant morphology trend towards those with a metamorphic Th/U ratio.

Zircon Age	Age		Zircon	T(DM) crustal		
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio
а	1715	GS01-42	C1	2.55	-2.67	0.23
(n = 14)	1706	GS01-20A	C1	2.68	-5.00	0.19
	1648	GS01-22	C1	2.71	-6.23	0.23
	1607	GS01-68/70	C2	2.61	-4.99	0.34
	1598	GS01-86	C2	2.85	-9.05	0.23
	1593	GS01-105	C3	2.41	-1.94	0.39
	1592	GS01-14A	C1-bk	2.48	-3.05	0.08
	1582	GS01-102	C2	2.41	-2.10	0.06
	1578	GS01-97A	C1	2.50	-3.70	0.09
	1540	GS01-87	C3	2.74	-8.07	0.28
	1465	GS01-10	C1-bk/C2	2.63	-7.22	0.07
	1437	GS01-101A	C1-bk	2.81	-10.51	0.14
	1433	GS01-17	C1	2.40	-3.81	0.06
	1425	GS01-85A	C1	2.22	-0.97	0.34
bb	1326	GS01-9	C2	2.72	-10.35	0.19
(n = 2)	1316	GS01-96	C2	2.70	-10.24	0.15
с	1233	GS01-101B	C3	2.86	-13.99	0.45
(n = 4)	978	GS01-52	C3	1.60	3.37	0.92
	942	GS01-31	C3	2.32	-8.75	0.52
	936	GS01-85B	R2	2.24	-7.49	0.23
ddd (n=1)	852	GS01-11B	R2	2.00	-4.64	0.21

Table 7. GS01: Hf-analysis and Th/U ratios of selected grains from Green-layered metapelitic gneiss, Keel Is, Stillwell Hills, Kemp Land

Sample SW54: Garnet-Sillimanite Metapelite, south of Ives Tongue, Stillwell Hills

Halpin et al (2007c) describes Garnet-Sillimanite Metapelite as laterally expansive and outcropping in a basin-structure towards the north of the field area. Mostly consisting of garnet, sillimanite and alkali feldspar with or without biotite and magnetite, the sillimanite mode is variable (mostly 30-50%); defining a strong lineation.

In Figure 19, random decussate lathes of biotite and anhedral quartz grew between the boundaries of multi-twinned plagioclase and polygonal garnet. Tartan-twinned microcline is apparent in the bottom left corner. Dark inclusions of magnetite grow within and on the rim of poikiloblastic garnet.

Figure 19. Textural relationships in Garnet-sillimanite metapelite SW54. Mineral assemblage: microcline – plagioclase – garnet – magnetite – K-feldspar – quartz – sillimanite (Blue colour is marker pen on the thin section). (Sample SW54, thin section under plane and crossed polar light).

Maximum age of deposition

The core of grain 48A in age cluster **c** has one of the highest concordance of 93% in the sample and minimal Pb loss. Dated 1260 ± 47 Ma (Figure 20), this igneous rounded grain records a felsic igneous Th/U ratio of 0.11. Its C1 ghost oscillatory core belongs to a grain which reveals metamorphic sector zoning in its outer rims. Most grains in this sample showed definite signs of metamorphism in their CL image.

Figure 20. Grain 48A from sample SW54, Stillwell Hills. (Black circle indicates location of U-Pb analysis).

Concordia diagram

In sample SW54, 78 analyses from cores and rims of detrital and metamorphic zircon grains yield an upper intercept age of 2277 ± 170 Ma (1se) and poorly constrained lower intercept age of 906 ± 12 Ma. (MSWD = 3.6). (Figure 21a).

Probability Density Plot

In SW54, a single peak occurs at c.950Ma (Figure 21b).

Figure 21. a) Concordia diagram and b) Probability Density Plot of total age population for sample SW54, Stillwell Hills.

U-Pb and Hf-analysis of sample SW54

Dated between 1620Ma (age cluster **a**) and 850Ma (age cluster **ddd**), a T_{DM} Peak occurs 2.09-1.99Ga. Th/U ratios range between 0.7 - 0.07 indicating mafic-felsic LSZ and ESZ magmatic crystallization and metamorphic grains.

61 grains were U-Pb dated, with two grains (41A and 100A) rejected due to being a mix of detrital seed and core and having common Pb and Pb loss (See Appendix A). 6 grains in total underwent Hf-analysis (Table 8).

metapelite, south of Ives Tongue, Stillwell Hills, Kemp Land								
Zircon Age	Age		Zircon	T(DM) crustal				
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio		
a (n=1)	1620	SW54-98A	C3	2.34	-0.42	0.48		
с	1141	SW54-41C	R 1	2.63	-11.28	0.67		
(n = 9)	1025	SW54-98B	C3	2.67	-13.54	0.70		
	960	SW54-89B	C3	2.76	-15.84	0.65		
	948	SW54-41D	R2	2.77	-16.06	0.56		
	948	SW54-41B	C1	2.69	-14.73	0.18		
	940	SW54-25A	C3	2.72	-15.41	0.55		
	925	SW54-25B	R2	2.69	-15.14	0.48		
	924	SW54-3	C3	2.85	-17.83	0.60		
	907	SW54-89C	R2	2.75	-16.32	0.07		
ddd (n=1)	850	SW54-62	C2	2.77	-17.43	0.54		

Table 8. SW54: Hf-analysis and Th/U ratios of selected grains from Garnet-sillimanite	
metapelite, south of Ives Tongue, Stillwell Hills, Kemp Land	

Age cluster **aa** has a single inherited grain 86, 207/206Pb dated 2097±28Ma. No Hf-analysis was undertaken, but chaotic CL zoning combined with equant morphology and Th/U ratio 0.08 indicates metamorphism.

Single grain 89A in age cluster **bb** is dated 1341±33Ma, with Th/U ratio of 0.18 indicating igneous petrogenesis; and yet sector (C3) CL zoning indicates at least partial metamorphism.

This first significant age cluster (c) is U-Pb dated between 1260 ± 47 and 904 ± 34 Ma. Five grains were Hfanalysed, with ϵ Hf -11.28 to -17.83 strongly recycled content. T_{DM^c} is dated between 2.85-2.63Ga.

The youngest age cluster (**ddd**) of 7 grains is U-Pb dated between 893 ± 31 and 820 ± 75 Ma. They all have igneous Th/U ratios >0.1 and yet several show metamorphic sector zoning. Hf-analysis of one grain from this cluster recorded ϵ Hf -17.43 recycled crustal content, T_{DM^c} of 2.77Ga and granitic Th/U ratio of 0.54.

Only 2 grains have a metamorphic Th/U ratio in this sample, despite the majority of grains in this sample displaying sector zoning characteristic of metamorphism.

FS0223: Rusty Gneiss, Ives Tongue, Stillwell Hills

Halpin et al (2007c) describes this metapelitic layer as an iron-stained, medium-to-coarse-grained metapelitic gneiss; consisting of garnet, sillimanite, quartz, perthitic alkali feldspar, biotite, rutile and ilmenite, with or without plagioclase, magnetite and iron sulphide.

A strong foliation (trending north-south in Figure 22) is defined by prismatic and fine-grained sillimanite, biotite, alkali feldspar, rutile inclusions and quartz. Rusty gneiss contains abundant leucosomes (not visible in the thin section), which mostly lie parallel to the main gneissosity (Halpin et al 2007c, pp.104-106). In this coarse-grained assemblage, poikiloblastic garnet is rimmed by fine-grained biotite lathes.

Figure 22. Textural relationships in Rusty Gneiss FS0223. Mineral assemblage: rutile – biotite – garnet – K-spar – sillimanite – quartz. (Sample FS223, thin section shown in plane and crossed polar light).

Maximum age of deposition

Age cluster **c** contains the second oldest felsic igneous grain 40, dated 1178±84Ma (Figure 23). The outer-core has a C2 patchy-homogenous CL image and only 79% concordance, indicating possible modification from later metamorphic events. Its Th/U ratio of 0.16 is within Wang et al (2011) felsic igneous range; but due to signs of metamorphism and this lower concordance, the maximum date recorded by this sample is poorly constrained.

Figure 23. Grain 40 of sample FS0223, Stillwell Hills. (Black circle indicates location of U-Pb analysis).

Concordia diagram

In sample FS0223, 64 analyses from cores and rims of detrital and metamorphic zircon grains yield an upper intercept age of 1440 ± 250 Ma (1se) and poorly constrained lower intercept age of 911 ± 29 Ma. (MSWD = 0.76) (Figure 24a).

Probability Density Plot

In FS0223, a single peak occurs at c.950Ma, the same as sample SW54. (Figure 24b).

Figure 24. a) Concordia diagram and b) Population Density Plot for total age population of sample FS0223.

U-Pb and Hf-analysis of sample FS0223

Grains are dated between 1457 \pm 82Ma (age cluster **a**) and 814 \pm 87Ma (age cluster **ddd**), T_{DM} peaks occur between 1.90-1.35Ga and 2.09-1.90Ga. Th/U ratios between 0.2 – 0.01 indicate mafic-felsic LSZ and ESZ as well as metamorphic grains.

63 grains were sampled within 1se concordance of 207/206Pb age. Grain 5A was rejected due to common Pb and Pb loss (See Appendix A). 12 grains underwent Hf-analysis (Table 9).

Age cluster **a** contains single inherited grain 19, aged 1457 \pm 82Ma, with the highest ϵ Hf -3.80 recycled, and a strongly metamorphosed Th/U ratio of 0.01. Surprisingly, it has the youngest grain T_{DM^c} of 2.42Ga. It also has the highest 176Lu/177Hf and 176Yb/177Hf ratios. It was metamict at 1457Ma.

Age cluster **c** contains 47 grains, dated 1178±84Ma to 906±67Ma. Hf-analysis records a massive jump in the enriched metamorphic signature of ϵ Hf -11.80 to -18.14 recycled crustal source and T_{DM^c} from 2.87-2.63Ga.

Age cluster **ddd** contains 15 grains, dated 898±87Ma to 814±87Ma.

(Iron-stained metapelitic), Ives Tongue, Stillwell Hills, Kemp Land								
Zircon Age	Age		Zircon	T(DM) crustal				
Clusters	(Ma)	Sample	Туре	(Ga)	εHf	Th/U ratio		
a (n=1)	1457	FS0223-19	C2	2.42	-3.80	0.01		
c	1155	FS0223-36	C2	2.67	-11.80	0.07		
(n = 10)	1029	FS0223-88	C2	2.78	-15.22	0.04		
	1003	FS0223-89	C2	2.63	-13.16	0.09		
	979	FS0223-76	C2	2.71	-14.74	0.10		
	970	FS0223-10	C2	2.77	-15.80	0.15		
	962	FS0223-56	C2	2.78	-16.17	0.09		
	953	FS0223-92	C3	2.74	-15.62	0.08		
	945	FS0223-5	C2	2.67	-14.47	0.20		
	938	FS0223-59	R2	2.78	-16.47	0.07		
	915	FS0223-35	C1-bk/C2	2.87	-18.14	0.14		
ddd (n=1)	836	FS0223-91	C1-bk/C2	2.71	-16.49	0.06		

Table 9, FS0223: Hf-analysis and Th/U ratios of selected grains from Rusty gneiss

39 grains have a metamorphic Th/U ratio <0.1. Metamorphic ages range from 1161Ma (age cluster **c**) to 814Ma (age cluster **ddd**), with Th/U ratios 0.08 - 0.01. The majority are in age cluster **c**, metamorphosed during the Rayner Structural Episode (RSE). CL zoning is divided evenly between homogenous/patchy/chaotic (C2) and sector zoning (C3). No sign of oscillatory zoning remains, indicative of either metamorphic petrogenesis or more likely, complete recrystallisation during high-temperature high-pressure metamorphism.

CL response ranges from mod-low to mod-high.

Grain morphology includes ovoid (sub-round to sub-angular), elongate (sub-round to sub-angular) and characteristically metamorphic equant (sub-round) crystal shapes. In this sample, there is no apparent trend between metamorphic and magmatic grain-shapes.

4.6 Th/U ratio vs age

As illustrated in figure 25, all six metapelite samples from Kemp and MacRobertson Land (FS0214, FS0223, GS01, SW54, 90024, AC34), contain a majority of grains with magmatic Th/U ratio >0.1. The highest ratios, signifying mafic-intermediate igneous petrogenesis (Wang et al 2011), are recorded in age cluster **c**. The exception to this is sample FS0214, which had the most mafic-intermediate igneous events occurring during earlier age clusters **a**, **aa**' and **aaa**.

Apart from SW54, there was a preference for lower felsic-granitic Th/U ratios in most age groups. This might indicate that the majority of igneous events forming zircon in Rayner Complex contained strong felsic crustal content. Otherwise, it is possible that the higher nucleation rate of zircon in felsic magma has biased the samples (Howard et al 2011).

The lowest Th/U ratios <0.1 in all samples belong to metamorphic grains, mostly from age cluster **c**; indicative of the widespread metamorphism throughout Kemp and MacRobertson Land during RSE.

Considering that both magmatic high and metamorphic low Th/U ratios co-existed during age cluster c, in all samples bar FS0214, it appears that RSE launched a major period of new zircon growth in both Kemp and MacRobertson Land coastlines.

4.7 Grain length vs age

In all metapelitic samples from Kemp and MacRobertson Land, both the longest and the shortest grain lengths were formed during age cluster **c**, during RSE. Earlier age clusters **aaa**, **aa**, **aa**' tended to fall within the mid-length range of zircon grains.

The vast majority of grains in sample 90024 came from age cluster **c**, with some of the longest and most elongate grains (up to 310μ m). The middle-length range contained some grains from older age clusters **aaa**, **aa**, **aa**', as well as a good representation from age cluster **c**. Some of the shortest length grains also came from age cluster **c**, intermixed with earlier and later age clusters **a**, **bb**, **ddd** and **d**+.

As per 90024, the majority of grains in sample AC34 came from age cluster **c**, making it difficult to pinpoint a definite trend. The longest grains (up to $220\mu m$) came from age cluster **c**, as did the shortest grains. It is interesting to note that the minority of grains coming from earlier age clusters **aa** and **a**, fell in the middle-length range.

In sample FS0214, there was a definite trend in age versus length. Apart from the longest grain (250µm) coming from age cluster **a**, the remaining longest grains (185-210µm) all came from age cluster **c**.

Figure 25. Age vs Th/U plots for metapelitic samples 90024, AC34, GS01, FS0214, FS0223 and SW54.

The middle-length range of grains was almost entirely composed of grains from earlier age clusters **aaa**, **aa**', **aa** and **a**. The shortest length grains contained a mix of **aaa**, **aa**, **a**, **bb**, **c** and **ddd** age clusters.

In sample FS0223, the longest grains (220-150 μ m) all came from age cluster **c**, as did the majority of mid-length grains. The shortest grains came from an interwoven mix of age clusters **c** and **ddd**.

Sample GS01 bucked the trend of the longest grains coming predominantly from age cluster **c**. The longest grain (250 μ m) in this sample came from the earliest age cluster **ddd**; followed by grains from earlier age clusters **a**, **bb** and **c**.

The mid-length grains (120 μ m) were predominantly from age cluster **a**. Similar to previous samples, the shortest grains were predominantly from age cluster **c**.

In sample SW54, the longest grains (400-220 μ m) were from age cluster **c**, as were the mid-length and shortest grains; which included a tiny minority of earlier and later age clusters **a**, **aa**, **bb** and **ddd**.

4.8 Comparison to properties of six known rock types from Kemp Land and MacRobertson Land:

In order to prove or disprove provenance of zircon grains from samples 90024, AC34, FS0214, FS0223, SW54 and GS01, a summary of the properties of six known rock types, previously documented in Kemp and MacRobertson Lands (Halpin et al 2005) was undertaken. This was especially important to understand the order of deposition for the Stillwell Hills samples; where a series of deformation events had interwoven these metapelites inextricably with Stillwell Hills orthogneiss (SW268).

Sample 90030: Mawson Charnockitic Orthogneiss, Mawson Station, MacRobertson Land

Halpin et al (2005) U-Pb and Hf-analysed a total of 8 zircon grains, which were emplaced and in part metamorphosed during the Proterozoic (Table 10). A single TDM Peak occurred between 1.87-1.79Ga. Th/U ratio was 2.16 - 0.15, all within range of mafic-felsic magmatic petrogenesis and indicating ESZ, LSZ and MSZ crystallisation.

Proterozoic age cluster **c** contained 6 grains, dated 1063±11Ma to 920±11Ma. ϵ Hf ranged from -6.20 to - 10.71 recycled and T_{DM^c} of 2.19-2.05Ga.

Age cluster (**ddd**) contained 2 grains, dated 853 ± 15 Ma to 846 ± 14 Ma. ϵ Hf ranged from -11.12 to -12.84 recycled and T_{DM^c} of 2.21-2.13Ga.

Table 10. Sample 90030: K-feldspar megacrystic charnockite, Mawson Station,									
MacRobertson Land									
Zircon Age	Age		Zircon	T(DM) crustal					
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio			
c	1063	90030-9	C1	2.05	-6.2	0.98			
(n = 6)	1008	90030-7	C3	2.09	-7.92	0.75			
	996	90030-11	C1	2.19	-10.02	0.9			
	987	90030-6	C3	2.14	-9.25	0.84			
	961	90030-18	C1	2.09	-8.55	0.87			
	920	90030-10	C1	2.16	-10.71	0.15			
ddd	853	90030-13	C3	2.13	-11.12	2.16			
(n = 2)	846	90030-12	C3	2.21	-12.84	0.81			

Sample SW242: Stillwell Hills K-feldspar megacrystic charnockite (charnockitic gneiss), Kemp Land

Halpin et al (2005) published data on sample SW242A of Stillwell Hills K-feldspar megacrystic charnockite (Table 11). A total of 16 zircon grain were U-Pb and Hf-analysed, which were emplaced and underwent partial metamorphism during the Proterozoic. A single TDM peak occurred 2.54-2.15Ga. Th/U ratio was 7.22 – 0.48, all within range of mafic-granitic LSZ and MSZ magmatic petrogenesis.

Proterozoic age cluster **a** contained 10 grains, dated $1574\pm11Ma$ to $1406\pm10Ma$. ϵ Hf ranged from -6.37 to -16.07 recycled and T_{DM^c} of 2.91-2.4Ga.

Age cluster **bb** contained 3 grains, dated $1397\pm11Ma$ to $1306\pm11Ma$. ϵ Hf ranges from -13.42 to -17.24 recycled and T_{DM^c} of 2.88-2.61Ga.

Age cluster **c** contained 3 grains, dated 1283 \pm 10Ma to 1034 \pm 10Ma. ϵ Hf ranges from -16.24 to -22.42 recycled and T_{DM^c} of 2.89-2.63Ga.

Zircon Age	Age		Zircon	T(DM) crustal		тьді
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	ratio
а	1574	SW242A-7	C1	2.68	-10.51	1.01
(n = 10)	1562	SW242A-21	C1	2.89	-14.85	2.36
	1535	SW242A-22	C1	2.48	-7.13	4.3
	1509	SW242A-13	C1	2.91	-16.07	0.87
	1499	SW242A-20	C1	2.68	-11.72	2.3
	1490	SW242A-28	C1	2.72	-12.67	3.41
	1480	SW242A25	C1	2.4	-6.37	7.22
	1479	SW242A-16	C1	2.53	-8.9	1.01
	1458	SW242A-23	C1-bk	2.46	-7.9	2.61
	1406	SW242A-8	C1	2.77	-14.98	0.53
bb	1397	SW242A-3	R1	2.88	-17.24	0.77
(n = 3)	1380	SW242A-10	C1	2.67	-13.44	0.48
	1306	SW242A-27	C1	2.61	-13.42	6.01
c	1283	SW242A-18	C3	2.89	-19.32	0.75
(n = 3)	1151	SW242A-11	C1	2.63	-16.24	0.61
	1034	SW242A-5	C1-bk	2.84	-22.42	0.74

Table 11. Sample SW242A: K-feldspar megacrystic charnockite, Stillwell Hills, Kemp Land

Sample SW268: Stillwell Hills felsic-mafic orthogneiss, Kemp Land.

Halpin et al (2005) published data on a total of 11 zircon grains, which were U-Pb and Hf-analysed (Table 12). All were emplaced and metamorphosed during the Archaean. One TDM peak occurred between 3.86-3.56Ga. Th/U ratio was 0.61 - 0.12, all within range of felsic-granitic magmatic petrogenesis and incorporating ESZ and LSZ.

Archaean age cluster **aaaa** contained 11 grains, dated 3467±29Ma to 2978±8Ma. ϵ Hf ranges from -1.9 to -16.36 recycled and T_{DM^c} of 4.36-3.79Ga.

southern Stillw	southern Stillwell Hills, Kemp Land											
Zircon Age	Age		Zircon	T(DM) crustal								
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio						
aaaa	3467	SW268-8	C1-bk	3.98	-4.04	0.61						
(n = 11)	3400	SW268-12	C1-bk	4.18	-8.15	0.15						
	3390	SW268-14	C1-bk	3.79	-1.9	0.24						
	3367	SW268-2	C1	3.97	-5.09	0.3						
	3362	SW268-16	C1	3.86	-3.38	0.26						
	3338	SW268-3	C1	4.02	-6.35	0.15						
	3100	SW268-5	C1	4.24	-12.97	0.14						
	3091	SW268-22	C1-bk	4.03	-11.45	0.12						
	3084	SW268-24	C1-bk	4.21	-12.69	0.12						
	3048	SW268-9	C1	3.92	-8.26	0.37						
	2978	SW268-4	C1	4.36	-16.36	0.26						

La GWACO, GAILLANDI HELLA Calat c. **T** 11 11 0 .41. 11 1

Sample BH290: Homogenous felsic orthogneiss, Broka and Havstein Islands, Kemp Land

Halpin et al (2005) U-Pb and Hf-analysed a total of 14 zircon grains; all but two were emplaced and metamorphosed during the Archaean (Table 13). TDM peaks occurred between 2.43-1.46Ga and 2.87-2.43Ga. Th/U ratio was 0.43 - 0.05, with both felsic-granitic magmatic and metamorphic ranges recorded. with no clear trend in regard to age clusters. Th/U ratio ≥0.1-0.2 are interpreted as ESZ, whilst Th/U ratio between 0.2 and 0.7 are interpreted as LSZ. Th/U ratio <0.1 are interpreted has having either formed during metamorphism or undergone intense metamorphism after petrogenesis.

Age cluster aaaa contained 6 grains, dated 3538±7Ma to 3084±26Ma. EHf ranged from 34.69 to -1.97 fertile-recycled and TDMC of 3.59-1.59Ga. One grain had metamorphic Th/U ratio of 0.07.

Archaean age cluster aaa contained 6 grains, dated 2956±8Ma to 2520±9Ma. EHf ranged from 40.35 to -13.08 fertile-recycled and TDM^c of 4.13-0.6Ga. Four grains had metamorphic Th/U ratios <0.1.

Proterozoic age cluster aa' contained 1 grain, dated 2393±8Ma. EHf was -17.89 recycled and TDMC was 4Ga. Th/U ratio 0.16 was within magmatic range.

Age cluster c contained 1 grain, dated 944±11Ma. EHf is -38.87 recycled and T_{DM^C} was 4.12Ga. Th/U metamorphic ratio was 0.06.

Kemp Land						
Zircon Age	Age		Zircon	T(DM) crustal		
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio
aaaa	3538	BH290-22	C3	1.59	34.69	0.21
(n = 6)	3490	BH290-14	C1	3.5	3.93	0.37
	3355	BH290-13	C3	3.59	0.9	0.43
	3292	BH290-7	C4	2.58	16.26	0.23
	3188	BH290-19	C4	3.29	3.6	0.16
	3084	BH290-16	C1	3.56	-1.97	0.07
aaa	2956	BH290-17	C2	4.13	-12.98	0.05
(n = 6)	2706	BH290-8	C2	0.6	40.35	0.18
	2582	BH290-1	C2	3.85	-13.08	0.06
	2580	BH290-27	C2	3.85	-13.01	0.14
	2545	BH290-4	C2	3.74	-11.65	0.07
	2520	BH290-28	C4	0.68	36.82	0.05
aa' (n=1)	2393	BH290-6	C3	4	-17.89	0.16
c (n=1)	944	BH290-23	C2	4.12	-38.87	0.06

Table 13. Sample BH290: Homogenous felsic orthogneiss, Broka and Havstein Islands, Kemp Land

OG614: Felsic layer of composite orthogneiss, Oygarden Group, Kemp Land

A total of 11 zircon grains were U-Pb and Hf-analysed; emplaced and partly metamorphosed during the Archaean (Halpin et al 2005) (Table 14). TDM Peaks occurred between 3.22-2.76Ga and 3.71-3.22Ga. Th/U ratio was 0.56 – 0.25, within felsic-granitic magmatic range, crystallizing during LSZ.

Archaean age cluster **aaaa** contained 11 grains, dated $3594\pm8Ma$ to $3188\pm9Ma$. ϵ Hf ranged from 17.41 to -9.36 fertile-recycled and T_{DM^c} was 4.09-2.44Ga.

Table 14. Samp	ole OG61	4: Felsic layer	of composite	e orthogneiss	, Oygarde	n Group,
Kemp Land						
Zircon Age	Age		Zircon	T(DM) crustal		
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio
aaaa	3594	OG614-13	C3	3.59	3.81	0.56
n = 11)	3554	OG614-3	C3	3.47	5.34	0.4
	3478	OG614-19	C3	3.56	2.96	0.42
	3443	OG614-1	C3	3.7	0.23	0.54
	3441	OG614-4	C3	3.06	10.43	0.25
	3434	OG614-16	C3	3.64	0.98	0.51
	3420	OG614-7	C3	3.58	1.78	0.27
	3401	OG614-11	C3	3.35	5.35	0.3
	3367	OG614-8	C3	3.81	-2.57	0.41
	3204	OG614-5	C3	2.44	17.41	0.37
	3188	OG614-6	C3	4.09	-9.36	0.58

OG235: Homogenous felsic orthogneiss, Rippon Point, border of Napier Complex

A total of 12 zircon grains were U-Pb and Hf-analysed; emplaced and partly metamorphosed during the Archaean and late Proterozoic (Halpin et al 2005) (Table 15). A single TDM peak occurred 3.76-3.54Ga. Th/U ratio was 0.26 - 0.04, with both magmatic and metamorphic Th/U ratios. Magmatic Th/U ratios ≥ 0.1 in this sample, are categoried as forming from felsic magma between ESZ and LSZ. Th/U ratios < 0.1 are categorized as metamorphic.

Archaean age cluster **aaaa** contained 2 grains, dated $3269\pm9Ma$ to $3017\pm9Ma$. ϵ Hf ranged from -7.61 to - 10.79 recycled and T_{DM^c} was 4.05Ga. One grain had metamorphic Th/U ratio 0.04.

Age cluster **aaa** contained 8 grains, dated 2930±9Ma to 2504±9Ma. ϵ Hf ranged from -13.57 to -22.33 recycled and T_{DM^c} was 4.38-4.05Ga. Four grains had metamorphic Th/U ratios <0.10.

Proterozoic age cluster **aa**' contained 2 grains, dated 2471 ± 10 Ma to 2454 ± 10 Ma. ϵ Hf ranged from -24.70 to -27.57 recycled and T_{DM}^c was 4.63-4.47Ga. Th/U ratio was within magmatic range.

Table 15. Sample OG235: Homogenous felsic orthogneiss, Rippon Point, border of											
Napier Comple	ex										
Zircon Age	Age		Zircon	T(DM) crustal							
Clusters	(Ma)	Sample	Туре	(Ga)	٤Hf	Th/U ratio					
aaaa	3269	OG235-18	C2	4.05	-7.61	0.04					
(n = 2)	3017	OG235-10	C2	4.05	-10.79	0.11					
aaa	2930	OG235-13	C2	4.31	-16.18	0.12					
(n = 8)	2798	OG235-3	C2	4.05	-13.57	0.07					
	2725	OG235-2	C4	4.38	-19.98	0.14					
	2702	OG235-1	C2	4.16	-16.57	0.09					
	2675	OG235-23	C2	4.16	-16.9	0.07					
	2607	OG235-14	C2	4.31	-20.4	0.14					
	2516	OG235-11	C2	4.34	-22.07	0.09					
	2504	OG235-5	C2	4.35	-22.33	0.12					
aa'	2471	OG235-24	C2	4.47	-24.7	0.27					
(n = 2)	2454	OG235-15	C2	4.63	-27.57	0.13					

5. Discussion

5.1 Probability Density Plots

In 90024, a single peak occurs c.950Ma (age cluster **c**) (Figure 11b). At Mawson Station, in the vicinity of Forbes Glacier at 954±12Ma, charnockite was emplaced. (Halpin et al 2005, p. 692). A trend of regional metamorphism combined with igneous charnockitic emplacement was effecting Archaean and Paleaoproterozoic cratonic blocks in east Antarctica during RSE, from Meso-to-Neoproterozoic continental collision (Zhao et al 1997, p.37). This combination of events most likely contributed to the population density peak at c.950Ma, through zircon growth and recrystallisation in the metapelite.

In AC34, the single peak occurs slightly earlier than sample 90024 at c.900Ma (age cluster **c**), but the overall population density curve between both MacRobertson Land samples is extremely similar (Figure 8b). At 910 \pm 18Ma at Cape Bruce, metamorphic events formed paragneiss and orthogniess. Pegmatite was also emplaced penecontemporaneously at Cape Bruce (Halpin et al 2005, p.693). It is possible that this combination of events caused the peak in population density within this sample.

The four samples from Stillwell Hills, Kemp Land have more individualistic age population clusters, but share similar aged peaks.

In GS01, peaks occur at c.1525Ma and c.925Ma (Figure 18b). In FS0214, peaks occur at c.1500Ma and 1000Ma (Figure 15b). In FS0223, a single peak occurs at c.950Ma (Figure 24b). In SW54, a single peak also occurs at c.950Ma (Figure 21b). This trend in peak ages may be due to major zircon growth or the resetting of ages during the RSE in Stillwell Hills at c.945Ma (Halpin et al 2007c, p.116). In sample FS0214, this major influx of zircon growth and recrystallisation occurs slightly later at c.1000Ma. RSE is recorded to have occurred in MacRobertson Land between c.1000-980Ma (Harley & Kelly 2007). This event may have provided detritus shed from sources proximal to MacRobertson Land; or from unknown subglacial sources upflow.

The second major peak occurring c.1500-1525Ma in GS01 and FS0214 is harder to trace. Magmatism and metamorphism is recorded in proximal Oygarden Islands c.1600Ma (Halpin et al 2005, p.691). Erosion of some igneous detrital grains may have migrated east from there. Another possibility is Pb-loss from c.1600 Ma zircons from Stillwell Charnockite (SW242A). This might give rise to a major peak at c.1500-1525Ma, from discordant zircon ages displayed in both Concordia diagrams for samples GS01 and FS0214.

5.2 Provenance of the grains: known rock types as potential sources of detrital grains in Kemp and MacRobertson Land metapelite samples (90024, AC34, GS01, FS0214, FS0223, SW54).

To ascertain whether detrital zircon grains contained within the six metapelite samples from Kemp and MacRobertson Lands had been previously eroded from older-to-contemporaneous proximal known rock types, data gathered on both groups were sorted by 207/206Pb age and cross-referenced (Table 16). Known rock types (90030, OG235, OG614, SW268 and SW242A) are highlighted in colour and bold font. Metamorphic Th/U ratios are also highlighted in bold.

To determine whether a detrital zircon grain from a metapelitic sample fitted the profile of contemporaneous zircons from a known rock type, 207/206Pb age (plus 1se) provided a starting point. Zircon grains older and younger than the ages of zircons from known rock types were not considered. This interpretation of data was backed up by T_{DM^c} . This crustal model age was extremely useful in sorting provenance. When searching for zircons eroded from known rock types, T_{DM^c} was kept within the known

crustal model age of this rock. Th/U ratios of known rock types were also considered when selecting zircons of similar provenance.

There were only a few grains from the six metapelite samples that shared a similar geological profile to one of the known rock types in Kemp and MacRobertson Lands. Whenever this occurred, the known rock type was listed beside the specific grain, in the column 'Possible Source' in Table 16. In most cases, however, a potential protolith for each grain was not identifiable and therefore the 'Possible Source' column was left blank.

 Table 16. 207/206Pb age-sorted properties from 6 metapelite samples (90024, AC34, FS0214, FS0223, GS01

and SW54) cross-referenced with known rock types from Kemp and MacRobertson Lands (90030, OG235, OG614, SW268,

SW242A)

Possible	Age	Age				Zircon	T(DM) crustal		Th/U
Source	Clusters	(Ma)	1σ ±	Sample	Location	Туре	(Ga)	٤Hf	ratio
	aaaa	3594	8	OG614-13	Oygarden Group	C3	3.59	3.81	0.56
	aaaa	3554	9	OG614-3	Oygarden Group	C3	3.47	5.34	0.4
	aaaa	3538	7	BH290-22	Broka & Havstein Is	C3	1.59	34.69	0.22
	aaaa	3490	26	BH290-14	Broka & Havstein Is	C1	3.5	3.93	0.37
	aaaa	3478	8	OG614-19	Oygarden Group	C3	3.56	2.96	0.42
	aaaa	3467	29	SW268-8	Stillwell Hills (south)	C1-bk	3.98	-4.04	0.61
	aaaa	3443	9	OG614-1	Oygarden Group	C3	3.7	0.23	0.54
	aaaa	3441	8	OG614-4	Oygarden Group	C3	3.06	10.43	0.25
	aaaa	3434	8	OG614-16	Oygarden Group	C3	3.64	0.98	0.51
	aaaa	3420	7	OG614-7	Oygarden Group	C3	3.58	1.78	0.27
	aaaa	3401	8	OG614-11	Oygarden Group	C3	3.35	5.35	0.3
	aaaa	3400	27	SW268-12	Stillwell Hills (south)	C1-bk	4.18	-8.15	0.15
	aaaa	3390	9	SW268-14	Stillwell Hills (south)	C1-bk	3.79	-1.9	0.24
	aaaa	3367	8	SW268-2	Stillwell Hills (south)	C1	3.97	-5.09	0.3
	aaaa	3367	9	OG614-8	Oygarden Group	C3	3.81	-2.57	0.41
	aaaa	3362	9	SW268-16	Stillwell Hills (south)	C1	3.86	-3.38	0.26
	aaaa	3355	23	BH290-13	Broka & Havstein Is	C3	3.59	0.9	0.43
	aaaa	3338	8	SW268-3	Stillwell Hills (south)	C1	4.02	-6.35	0.15
	aaaa	3292	26	BH290-7	Broka & Havstein Is	C4	2.58	16.26	0.23
	aaaa	3269	9	OG235-18	Rippon Point, Napier	C2	4.05	-7.61	0.04
	aaaa	3204	9	OG614-5	Oygarden Group	C3	2.44	17.41	0.37
	aaaa	3188	21	BH290-19	Broka & Havstein Is	C4	3.29	3.6	0.16
	aaaa	3188	9	OG614-6	Oygarden Group	C3	4.09	-9.36	0.58
	aaaa	3100	8	SW268-5	Stillwell Hills (south)	C1	4.24	-12.97	0.14
	aaaa	3091	26	SW268-22	Stillwell Hills (south)	C1-bk	4.03	-11.45	0.12
	aaaa	3084	28	SW268-24	Stillwell Hills (south)	C1-bk	4.21	-12.69	0.12
	aaaa	3084	26	BH290-16	Broka & Havstein Is	C1	3.56	-1.97	0.07
	aaaa	3048	9	SW268-9	Stillwell Hills (south)	C1	3.92	-8.26	0.37

	aaaa	3017	9	OG235-10	Rippon Point, Napier	C2	4.05	-10.79	0.11
	aaaa	2978	8	SW268-4	Stillwell Hills (south)	C1	4.36	-16.36	0.26
	aaa	2956	8	BH290-17	Broka & Havstein Is	C2	4.13	-12.98	0.06
	aaa	2930	9	OG235-13	Rippon Point, Napier	C2	4.31	-16.18	0.12
	aaa	2798	9	OG235-3	Rippon Point, Napier	C2	4.05	-13.57	0.07
	aaa	2725	9	OG235-2	Rippon Point, Napier	C4	4.38	-19.98	0.14
	aaa	2706	26	BH290-8	Broka & Havstein Is	C2	0.6	40.35	0.19
	aaa	2702	9	OG235-1	Rippon Point, Napier	C2	4.16	-16.57	0.09
	aaa	2675	10	OG235-23	Rippon Point, Napier	C2	4.16	-16.9	0.07
	aaa	2650	40	AC34-4	Cape Bruce, Mawson	C1	3.07	0.60	0.46
	aaa	2637	34	FS0214-37A	Keel Is, Stillwell H	C1	2.52	9.24	0.42
	aaa	2607	10	OG235-14	Rippon Point, Napier	C2	4.31	-20.4	0.14
	aaa	2583	46	FS0214-58A	Keel Is, Stillwell H	C1	2.52	8.61	0.69
	aaa	2582	26	BH290-1	Broka & Havstein Is	C2	3.85	-13.08	0.06
	aaa	2580	50	FS0214-24	Keel Is, Stillwell H	C1	2.65	6.46	0.34
	aaa	2580	29	BH290-27	Broka & Havstein Is	C2	3.85	-13.01	0.14
	aaa	2545	25	BH290-4	Broka & Havstein Is	C2	3.74	-11.65	0.07
	aaa	2522	22	90024-15	Forbes Glacier, Mawson	C1	2.75	4.10	0.41
	aaa	2520	9	BH290-28	Broka & Havstein Is	C4	0.68	36.82	0.06
	aaa	2516	9	OG235-11	Rippon Point, Napier	C2	4.34	-22.07	0.09
	aaa	2504	9	OG235-5	Rippon Point, Napier	C2	4.35	-22.33	0.12
BH290	aa'	2488	32	90024-42	Forbes Glacier, Mawson	C2	3.65	-10.96	0.39
	aa'	2478	32	FS0214-10	Keel Is, Stillwell H	C1	2.75	3.65	0.50
	aa'	2471	10	OG235-24	Rippon Point, Napier	C2	4.47	-24.7	0.27
	aa'	2454	10	OG235-15	Rippon Point, Napier	C2	4.63	-27.57	0.13
	aa'	2446	44	FS0214-23B	Keel Is, Stillwell H	R2	2.72	3.67	0.30
	aa'	2393	8	BH290-6	Broka & Havstein Is	C3	4	-17.89	0.17
	aa	2099	25	AC34-70	Cape Bruce, Mawson	C1	2.29	6.24	0.80
	aa	2078	33	AC34-27	Cape Bruce, Mawson	C3	2.37	4.81	0.51
	aa	1986	19	90024-60	Forbes Glacier, Mawson	C1	2.04	8.91	0.59
	a	1792	44	AC34-5	Cape Bruce, Mawson	C1	2.57	-2.10	0.86
	a	1741	30	AC34-68A	Cape Bruce, Mawson	C3	2.75	-5.57	0.23
	a	1715	44	GS01-42	Keel Is, Stillwell Hills	C1	2.55	-2.67	0.23
	a	1706	46	GS01-20A	Keel Is, Stillwell Hills	C1	2.68	-5.00	0.19
	a	1651	26	GS01-86	Keel Is, Stillwell Hills	C2	2.85	-9.05	0.23
	a	1648	78	GS01-22	Keel Is, Stillwell Hills	C1	2.71	-6.23	0.23
	a	1620	33	SW54-98A	Sth of Ives Tongue,SW	C3	2.34	-0.42	0.48
	a	1615	44	90024-83	Forbes Glacier, Mawson	C3	2.30	0.06	0.46
	a	1607	96	GS01-68/70	Keel Is, Stillwell Hills	C2	2.61	-4.99	0.34
	a	1600	44	FS0214-36A	Keel Is, Stillwell H	C2	3.26	-15.82	0.06
	a	1593	56	GS01-105	Keel Is, Stillwell Hills	C3	2.41	-1.94	0.39
	0	1592	42	GS01-14A	Keel Is, Stillwell Hills	C1-bk	2.48	-3.05	0.08

		1	1						
	a	1582	21	GS01-102	Keel Is, Stillwell Hills	C2	2.41	-2.10	0.06
	a	1578	58	GS01-97A	Keel Is, Stillwell Hills	C1	2.50	-3.70	0.09
	a	1574	10	SW242A-7	Stillwell Hills	C1	2.68	-10.51	1.01
	a	1562	11	SW242A-21	Stillwell Hills	C1	2.89	-14.85	2.36
	a	1540	34	GS01-87	Keel Is, Stillwell Hills	C3	2.74	-8.07	0.28
	a	1536	35	90024-51	Forbes Glacier, Mawson	C1	1.48	12.42	0.82
	a	1535	11	SW242A-22	Stillwell Hills	C1	2.48	-7.13	4.3
	a	1522	44	FS0214-14	Keel Is, Stillwell H	C2	3.44	-19.89	0.05
	a	1514	37	FS0214-16B	Keel Is, Stillwell H	R2	3.34	-18.32	0.03
	a	1509	10	SW242A-13	Stillwell Hills	C1	2.91	-16.07	0.81
	a	1509	64	FS0214-95	Keel Is, Stillwell H	C1-C3	3.27	-17.14	0.17
	a	1499	12	SW242A-20	Stillwell Hills	C1	2.68	-11.72	2.3
SW242A	a	1490	30	AC34-34	Cape Bruce, Mawson	C1	2.74	-8.58	0.59
	a	1490	11	SW242A-28	Stillwell Hills	C1	2.72	-12.67	3.41
	a	1480	10	SW242A25	Stillwell Hills	C1	2.4	-6.37	7.22
	a	1479	11	SW242A-16	Stillwell Hills	C1	2.53	-8.9	1.01
	a	1465	34	GS01-10	Keel Is, Stillwell Hills	C1-bk/C2	2.63	-7.22	0.07
	a	1458	11	SW242A-23	Stillwell Hills	C1-bk	2.46	-7.9	2.61
	a	1457	82	FS0223-19	Ives Tongue, SW	C2	2.42	-3.80	0.01
	a	1454	51	FS0214-46	Keel Is, Stillwell H	C1	3.21	-16.92	0.08
	a	1440	18	AC34-78	Cape Bruce, Mawson	C1	2.44	-4.31	0.55
	a	1440	97	FS0214-69	Keel Is, Stillwell H	C3	3.40	-20.21	0.08
	a	1437	35	GS01-101A	Keel Is, Stillwell Hills	C1-bk	2.81	-10.51	0.14
	a	1433	40	GS01-17	Keel Is, Stillwell Hills	C1	2.40	-3.81	0.06
	a	1425	54	GS01-85A	Keel Is, Stillwell Hills	C1	2.22	-0.97	0.34
	a	1406	23	AC34-2A	Cape Bruce, Mawson	C1	1.74	6.53	0.60
	a	1406	19	SW242A-8	Stillwell Hills	C1	2.77	-14.98	0.53
	a	1406	31	90024-81	Forbes Glacier, Mawson	C1	2.21	-1.08	0.59
	bb	1397	11	SW242A-3	Stillwell Hills	R1	2.88	-17.24	0.77
	bb	1396	28	AC34-44	Cape Bruce, Mawson	C1	2.39	-4.17	0.53
	bb	1380	10	SW242A-10	Stillwell Hills	C1	2.67	-13.44	0.48
	bb	1343	78	FS0214-61	Keel Is, Stillwell H	C2	3.40	-21.45	0.01
	bb	1333	29	90024-37	Forbes Glacier, Mawson	C2	1.79	4.84	0.20
SW242A	bb	1326	35	GS01-9	Keel Is, Stillwell Hills	C2	2.72	-10.35	0.19
SW242A	bb	1316	33	GS01-96	Keel Is, Stillwell Hills	C2	2.70	-10.24	0.15
	bb	1315	62	AC34-85	Cape Bruce, Mawson	C1	2.05	0.33	0.39
	bb	1306	11	SW242A-27	Stillwell Hills	C1	2.61	-13.42	6.01
	c	1300	48	90024-77	Forbes Glacier, Mawson	C1-bk	2.15	-1.35	0.26
	c	1291	57	FS0214-102	Keel Is, Stillwell H	C1-bk	3.37	-21.63	0.04
	c	1283	10	SW242A-18	Stillwell Hills	C3	2.89	-19.32	0.75
	c	1280	67	90024-14	Forbes Glacier, Mawson	C1	2.21	-2.72	0.25
	c	1269	127	FS0214-97	Keel Is, Stillwell H	C3	3.45	-23.24	0.12

	c	1251	27	90024-3A	Forbes Glacier, Mawson	C1	2.08	-0.89	0.57
	c	1235	69	FS0214-44	Keel Is, Stillwell H	C1	3.24	-20.23	0.05
	c	1233	51	GS01-101B	Keel Is, Stillwell Hills	C3	2.86	-13.99	0.45
	c	1182	40	AC34-36	Cape Bruce, Mawson	C1	2.19	-3.50	0.88
	c	1167	26	AC34-87	Cape Bruce, Mawson	C1	2.08	-1.91	0.70
	c	1155	82	FS0223-36	Ives Tongue, SW	C2	2.67	-11.80	0.07
	c	1151	11	SW242A-11	Stillwell Hills	C1	2.63	-16.24	0.61
	c	1150	73	90024-75	Forbes Glacier, Mawson	C1	1.98	-0.54	0.58
	c	1144	61	90024-36	Forbes Glacier, Mawson	C1	1.85	1.55	0.85
SW242A	c	1141	68	SW54-41C	Sth of Ives Tongue,SW	R 1	2.63	-11.28	0.67
	c	1132	32	AC34-3	Cape Bruce, Mawson	C1	2.06	-2.11	0.72
	c	1115	28	AC34-14	Cape Bruce, Mawson	C2	1.99	-1.18	0.84
	c	1105	47	90024-63A	Forbes Glacier, Mawson	C1	1.71	3.28	1.06
	c	1094	29	AC34-23	Cape Bruce, Mawson	C1	2.00	-1.57	0.78
	c	1084	29	90024-41	Forbes Glacier, Mawson	C1-bk	2.05	-2.59	0.50
	c	1084	62	90024-22	Forbes Glacier, Mawson	C1-bk	1.81	1.37	0.42
	c	1081	58	90024-3B	Forbes Glacier, Mawson	R2	1.88	0.13	0.10
	c	1072	30	AC34-18	Cape Bruce, Mawson	C1	2.08	-3.11	0.30
	c	1063	11	90030-9	Mawson Station	C1	2.05	-6.2	0.98
	c	1057	59	90024-50A	Forbes Glacier, Mawson	C1	1.98	-1.67	0.53
	c	1054	54	AC34-48	Cape Bruce, Mawson	C1	1.88	-0.12	0.69
	c	1047	99	FS0214-79B	Keel Is, Stillwell H	C4	3.62	-29.05	0.04
	c	1046	125	90024-71	Forbes Glacier, Mawson	C1	2.14	-4.53	0.42
	c	1034	10	SW242A-5	Stillwell Hills	C1-bk	2.84	-22.42	0.74
	c	1029	117	FS0223-88	Ives Tongue, SW	C2	2.78	-15.22	0.04
SW242A	c	1025	74	SW54-98B	Sth of Ives Tongue,SW	C3	2.67	-13.54	0.70
	c	1012	34	AC34-2B	Cape Bruce, Mawson	R2	1.79	0.86	0.01
	c	1008	13	90030-7	Mawson Station	C3	2.09	-7.92	0.75
SW242A	c	1003	84	FS0223-89	Ives Tongue, SW	C2	2.63	-13.16	0.09
	c	996	13	90030-11	Mawson Station	C1	2.19	-10.02	0.9
	c	993	29	AC34-26	Cape Bruce, Mawson	C1	1.82	0.06	1.04
	c	987	12	90030-6	Mawson Station	C3	2.14	-9.25	0.84
	c	982	49	90024-63B	Forbes Glacier, Mawson	R1	1.99	-2.87	0.70
	c	979	87	FS0223-76	Ives Tongue, SW	C2	2.71	-14.74	0.10
	c	978	84	GS01-52	Keel Is, Stillwell Hills	C3	1.60	3.37	0.92
	c	975	91	FS0214-82	Keel Is, Stillwell H	C2	3.57	-29.16	0.34
	c	970	80	FS0223-10	Ives Tongue, SW	C2	2.77	-15.80	0.15
	c	962	75	FS0223-56	Ives Tongue, SW	C2	2.78	-16.17	0.09
	c	961	13	90030-18	Mawson Station	C1	2.09	-8.55	0.87
SW242A	c	960	59	SW54-89B	Sth of Ives Tongue,SW	C3	2.76	-15.84	0.65
	c	957	90	FS0214-37B	Keel Is, Stillwell H	C3	3.32	-25.14	0.60
	c	956	44	AC34-68B	Cape Bruce, Mawson	R2	1.81	-0.25	0.01

		-							
	c	953	76	FS0223-92	Ives Tongue, SW	C3	2.74	-15.62	0.08
	c	950	109	FS0214-42	Keel Is, Stillwell H	C2	3.32	-25.17	0.43
SW242A	c	948	62	SW54-41D	Sth of Ives Tongue,SW	R2	2.77	-16.06	0.56
	c	948	55	SW54-41B	Sth of Ives Tongue,SW	C1	2.69	-14.73	0.18
	c	945	86	FS0223-5	Ives Tongue, SW	C2	2.67	-14.47	0.20
	c	944	11	BH290-23	Broka & Havstein Is	C2	4.12	-38.87	0.07
	c	942	58	GS01-31	Keel Is, Stillwell Hills	C3	2.32	-8.75	0.52
SW242A	c	940	60	SW54-25A	Sth of Ives Tongue,SW	C3	2.72	-15.41	0.55
	c	938	65	FS0223-59	Ives Tongue, SW	R2	2.78	-16.47	0.07
	c	936	24	GS01-85B	Keel Is, Stillwell Hills	R2	2.24	-7.49	0.23
	c	931	58	90024-23	Forbes Glacier, Mawson	R2	1.97	-3.21	0.08
SW242A	c	925	40	SW54-25B	Sth of Ives Tongue,SW	R2	2.69	-15.14	0.48
SW242A	c	924	71	SW54-3	Sth of Ives Tongue,SW	C3	2.85	-17.83	0.60
	c	920	11	90030-10	Mawson Station	C1	2.16	-10.71	0.15
	c	915	61	FS0223-35	Ives Tongue, SW	C1-bk/C2	2.87	-18.14	0.14
	c	909	100	FS0214-06	Keel Is, Stillwell H	C1	3.49	-28.70	0.50
	c	908	53	AC34-55	Cape Bruce, Mawson	C3	1.74	0.38	0.06
	c	907	53	90024-73	Forbes Glacier, Mawson	R1	1.85	-1.58	0.21
	c	907	21	SW54-89C	Sth of Ives Tongue,SW	R2	2.75	-16.32	0.07
	ddd	889	73	90024-50B	Forbes Glacier, Mawson	R1	1.90	-2.58	0.43
	ddd	853	15	90030-13	Mawson Station	C3	2.13	-11.12	2.16
	ddd	852	25	GS01-11B	Keel Is, Stillwell Hills	R2	2.00	-4.64	0.21
SW242A	ddd	850	68	SW54-62	Sth of Ives Tongue,SW	C2	2.77	-17.43	0.54
	ddd	846	14	90030-12	Mawson Station	C3	2.21	-12.84	0.81
	ddd	836	69	FS0223-91	Ives Tongue, SW	C1-bk/C2	2.71	-16.49	0.06
	d+	692	131	90024-20	Forbes Glacier, Mawson	C1	2.39	-13.17	0.32

5.2 Broka and Havstein Islands orthogneiss (BH290) as a potential source for similar detrital grains found within the 6 metapelitic samples

After a detailed comparison of all detrital zircon grains from the six metapelite samples, only one grain aged c.2488Ma matched the U-Pb and Hf-analysis data of BH290 (Table 17).

A felsic grain from a lens in Painted Gneiss (90024), Forbes Glacier, fell within all known parameters of sample BH290.

	Age	Age	1σ			Zircon	T(DM) crustal		Th/U
Source	Clusters	(Ma)	±	Sample	Location	Туре	(Ga)	e Hf	ratio
BH290	aa'	2488	32	90024-42	Forbes Glacier, Mawson	C2	3.65	-10.96	0.39

In sample 90024, the second-oldest felsic grain 42 is dated Proterozoic 2488±32Ma in its C2 patchyhomogenous outercore (Figure 26). This zircon had the second-lowest ϵ Hf -10.96, indicating enriched recycled crustal content. It also had the lowest initial Hf, lowest 176Lu/177Hf and 176Yb/177Hf and oldest T_{DM^c} of 3.65Ga.

Figure 26. CL image of sample 90024 grain 42: Zircon grain with similar U-Pb and Hf-analysis to zircon grains from Broka and Havstein Islands Homogenous felsic orthogneiss, This grain potentially eroded from this known rock type, to be deposited within a metapelitic lens in Painted Gneiss, Forbes Glacier. (Blue circle shows location of U-Pb analysis ablation. Red circle shows location of Hf-analysis ablation).

5.3 Stillwell Hills Charnockite (SW242A) as a potential source for similar detrital grains found within the 6 metapelitic samples

When comparing detrital grains from the six metapelitic samples and potentially having been eroded and transported from Stillwell Hills Charnockite, consideration was given to the wide range of Th/U ratios shown by zircons from SW242A. T_{DM^c} , ϵ Hf and age criteria was strictly adhered to. 12 zircon grains spread across four of the metapelitic samples, matched the U-Pb and Hf-analysis profile of Stillwell Hills Charnockite (Table 18). Mostly from Stillwell Hills samples GS01, FS0223 and especially SW54, a single grain from Colbeck Gneiss AC34 also fitted all known parameters of Stillwell Hills Charnockite (Figure 27).

In Colbeck Gneiss sample AC34, grain 34 dated 1490±30, recorded the lowest ϵ Hf -8.58, indicating recycled crustal material was instrumental in the granitic igneous growth of this oscillatory core; with the sample's third-oldest T_{DM}^c of 2.74Ga.

In Stillwell Hills, sample GS01, Grain 9, dated 1326 \pm 35Ma at its homogenous (C2) outer-core, had enriched ϵ Hf of -10.35 and a granitic Th/U ratio of 0.59. Grain 96, dated 1316 \pm 33Ma at its matching homogenous (C2) outer-core, had ϵ Hf -10.24; indicating a provenance containing strikingly similar recycled crustal content. Its lower felsic Th/U ratio might indicate either ESZ or partial metamorphism. T_{DM^c} is dated between 2.72-2.70Ga for these two grains.

In sample FS0223, grain 89 has patchy (C2) zonation, ovoid morphology and a metamorphic Th/U ratio of 0.90. It contains the second-youngest T_{DM^c} of 2.63Ga.

In sample SW54, grain 25A showed radial-irregular (C3) sector zoning, whilst dark homogenous rim 25B had extremely low CL response.

Grain 41C and D zones were within parameters of zircon sampled from SW242A. 41C homogenous (C2) outer-core, dated c.1141Ma contains patchy concentric zoning (from recrystallising its 41B inner-core). ɛHf -11.28 recycled crustal content and Th/U ratio 0.67 indicates petrogenesis within a graniticintermediate igneous protolith. 41C also has recrystallised in contact with homogenous R2 dark rim of 41D.

41D's extremely low-CL response, homogenous zoning, varying thickness and continuity is characteristic of a typical R2 rim. Dated c.948Ma during RSE, this outer-rim records ɛHf -16.06 recycled crustal content and Th/U ratio of 0.56; possibly lowered by partial metamorphism. The finest bleached R1 rim highlights one end of this ovoid (sub-angular) crystal.

Grain 98B also fell within SW242A parameters. Dated c.1025Ma, this outer-core continued the metamorphic C3 radial sector zoning seen within its inner 98A core. EHf -13.54 dramatically increases the recycled crustal content of this equant (sub-rounded) grain. Th/U ratio 0.70 places this outer-core's petrogenesis within an intermediate igneous event. It is possible that the 207/206Pb date of 98B has been reset to the metamorphic event which gave igneous 98B its sector zonation. A moderate-low CL response R2 rim has begun to homogenously recrystallise the top-right sub-angular corner of 98B.

Grain 89B sector zoned (C3) outer-core is dated 960±59Ma in cluster (c). Recycled crustal signature of εHf -15.84 and the third-oldest T_{DM}^c of 2.76Ga, is typical of the trend of younger crusts having lower εHf enriched crustal content. 89B also has the second-lowest initial Hf, and the third-highest 176Lu/177Hf and 176Yb/177Hf ratios.

Grain 3 dated 924±71, has sub-angular equant morphology and radial-to-irregular sector (C3) zoning, with ɛHf, Tom^c and igneous Th/U ratio within SW242A parameters.

Table 18. S	tillwell Hills	Charno	ckite so	ource-sorted pro	operties of detrital zircon from	m metapelite s	amples		
	Age	Age	1σ			Zircon	T(DM) crustal		Th/U
Source	Clusters	(Ma)	±	Sample	Location	Туре	(Ga)	٤Hf	ratio
SW242A	a	1490	30	AC34-34	Cape Bruce, Mawson	C1	2.74	-8.58	0.59
SW242A	bb	1326	35	GS01-9	Keel Is, Stillwell Hills	C2	2.72	-10.35	0.19
SW242A	bb	1316	33	GS01-96	Keel Is, Stillwell Hills	C2	2.70	-10.24	0.15
SW242A	c	1141	68	SW54-41C	Sth of Ives Tongue,SW	R 1	2.63	-11.28	0.67
SW242A	c	1025	74	SW54-98B	Sth of Ives Tongue,SW	C3	2.67	-13.54	0.70
SW242A	c	1003	84	FS0223-89	Ives Tongue, SW	C2	2.63	-13.16	0.09
SW242A	c	960	59	SW54-89B	Sth of Ives Tongue,SW	C3	2.76	-15.84	0.65
SW242A	c	948	62	SW54-41D	Sth of Ives Tongue,SW	R2	2.77	-16.06	0.56
SW242A	c	940	60	SW54-25A	Sth of Ives Tongue,SW	C3	2.72	-15.41	0.55
SW242A	c	925	40	SW54-25B	Sth of Ives Tongue,SW	R2	2.69	-15.14	0.48
SW242A	c	924	71	SW54-3	Sth of Ives Tongue,SW	C3	2.85	-17.83	0.60
SW242A	ddd	850	68	SW54-62	Sth of Ives Tongue,SW	C2	2.77	-17.43	0.54

Grain 62 core was mostly homogenous (C2) zonation, rounded-angular morphology.

Figure 27. Zircon grains with zones of similar provenance to Stillwell Hills Charnockite (SW242A); CL imagery of detrital grains from metapelitic samples AC34, GS01, FS0223 and SW54. (Blue circle shows location of U-Pb analysis ablation. Red circle shows location of Hf-analysis ablation).

5.4 Possible location of distal unknown sources in Gamburtsev Subglacial Mountains - Vostok Subglacial Highlands craton, east Antarctica.

Veevers and Saeed (2011) published the currently known properties of detrital zircon from the sub-glacial bedrock of Gamburtsev Subglacial Mountains - Vostok Subglacial Highlands craton (GSM-VSH), east Antarctica (Figure 28).

A distal source like GSM-VSH craton is ideally located to provide a widening fan of detritus to both Kemp and MacRobertson Lands' metapelite samples. A large and ancient ice drainage basin, it is possible that the sources of some of the unknown detrital zircon within metapelite samples from Kemp and MacRobertson Lands are contained within this craton under the ice (Refer to figure 4).

However, the properties of detrital zircon collected from GSM-VSH are not entirely within the same U-Pb and Hf-analysis parameters of the six metapelitic samples. It may be that data collected in this study enlarges the previously published range of detrital zircon from subglacial GSM-VSH rock units, in the same way that the known age clusters of detrital zircon in east Antarctica were expanded to account for the wider range of 207/206Pb ages.

It is equally plausible that unknown sources for detrial zircon in the six metapelitic samples originated from other continents attached to east Antarctica at different times during Gondwanaland's geohistory.

		GSM-VSH
T _{DM} peaks	1.6- 2.4- 3.7-:	1.0 Ga 1.6 2.4
d+	maf Iow [,] EHf T _{DM} c	ic granitoid -HREE-c hosts 9 to -28 fertile-recycled 2.5-1.3 Ga
с	maf Iow- EHf T _{DM} C	ic granitoid HREE-c hosts 11 to -28 fertile-recycled 1.8-1.3 Ga
aa	maf EHf T _{DM}	ic granitoid 0 to -20 recycled 2.7-2.5 Ga
aaa	grar ɛHf Т _{DM}	nitoids 1 to -8 3.2 Ga
aaaa	maf EHf T _{DM}	ic granitoid 0 to -20 recycled 3.6-3.5 Ga

Figure 28. Known properties of bedrock of subglacial GSM-VSH complex, directly upflow from Kemp and MacRobertson Lands, east Antarctica; from studies of detrital zircon. (Veevers & Saeed 2008; 2011).

6. Conclusion

1. Analysis of 207/206Pb-dated detrital and metamorphic zircon grains gave a maximum age of deposition for Colbeck Gneiss (AC34) at Cape Bruce, MacRobertson Land as 1258±23 Ma.

2. Maximum age of deposition for the younger Painted Gneiss (90024) at Forbes Glacier, MacRobertson Land, was 1251±27 Ma.

3. The order and maximum age of deposition of four metapelitic layers at Stillwell Hills is as follows: The oldest of the Stillwell Hills metapelitic samples, Pink Gneiss (FS0214) maximum depositional age was interpreted as having occurred 1317±51 Ma. This was followed by Green layered sequence (GS01) at 1316±33 Ma, Garnet-sillimanite metapelite (SW54) at 1260±47 Ma and Rusty gneiss (FS0223) the youngest at 1178±84 Ma.

4. Detrital zircon from all six metapelitic samples overwhelmingly originated from felsic igneous events. Metamorphism could be traced to peak regional metamorphic events occurring proximal to their place of deposition in Kemp or MacRobertson Lands.

5. Two known rock types from Kemp and MacRobertson Land, Broka and Havstein Islands homogenous felsic orthogneiss and Stillwell Hills orthogneiss, may have contributed detrital zircon grains to some of the metapelite samples.

6. It is possible that unknown sub-glacial (or already eroded) sources proximal either to Kemp or MacRobertson Lands or from distal GSM-VSH sub-glacial craton provided detrital zircon to the 6 metapelitic samples. However, it is equally plausible that the source of these detrital grains came not from the interior of Antarctica, but upflow from neighouring continents adjoining east Antarctica in Archaean and proterozoic times, as part of the Gondwanaland supercontinent.

Acknowledgements

To Dr.Nathan Daczko and Dr.Jacqueline Halpin, thank you for teaching me everything I ever wanted to know about CL-imaging, U-Pb and Hf-analysis of zircon. Thank you for your patience, kindness and generosity of time and knowledge. Thanks also to Jacqui for sharing all the samples mentioned in this paper, which she personally collected from east Antarctica.

To my husband, Cameron, thanks for doing the work of two parents whilst I worked on this; and for staying up to keep me company all the times I worked late.

To my mum, Patricia Myers, thanks for giving me the courage and determination to pursue an opportunity you never had.

To my kids, Aiden, Heath, Kyle and Neve, here's to the good times ahead!

Appendix A:	Table 2: Sam	ole AC34				Ratios for cor	Icordia										
Sample	Analysis no	o. CL zoning	Ę	2	Th/U	238U/206Pb +	/-1 std err 20	77Pb/206PI	+/-1 std err	Common Pb 207Pb/206Pb	206Pb/238U 207 corr	1s 2	:06/238 age 1	H-15	207/206 age	+/-1s co	nc.
AC34-4 aaa	my27a125	ghost oscillatory	49	107	0.46	2.08	0.04	0.1797	0.0044	1.058	2487.3	56.0	2526	52	2650	40	96
AC34-70 aa	my27a195	oscillatory	135	169	0.80	2.62	0.03	0.1301	0.0018	1.011	2084.5	22.7	2087	22	2099	25	6
AC34-27	my27a150	sector	47	92	0.51	2.63	0.03	0.1286	0.0024	1.010	2079.4	25.7	2079	25	2078	33	100
AC34-42	my27a165	ghost oscillatory	123	189	0.65	2.62	0.03	0.1273	0.0017	1.011	2090.8	20.7	2086	20	2062	24	101
AC34-64	my27a185	ghost oscillatory	161	210	0.77	2.85	0.05	0.1224	0.0026	0.996	1933.5	31.4	1941	<u>9</u>	1992	8	97
AC34-52	my27a176	oscillatory	168	623	0.27	3.13	0.04	0.1160	0.0017	0.981	1776.5	20.2	1790	2	1895	26	94
AC34-5 a	my27a126	ghost oscillatory	30	35	0.86	3.31	0.05	0.1096	0.0026	0.972	1692.8	24.0	1703	24	1792	44	<u>9</u> 2
AC34-68A	my27a188	ghost oscillatory	38	164	0.23	3.46	0.04	0.1066	0.0017	0.966	1623.9	17.0	1635	17	1741	8	94
AC34-34	my27a158	oscillatory	110	186	0.59	3.91	0.04	0.0931	0.0015	0.950	1467.4	14.8	1469	15	1490	80	66
AC34-78	my27a204	oscillatory	321	283 283	0.55	3.97	0.04	7060.0	0.000	0.948	1449.2	12.6	1448	13	1440	9	101
AC34-2A	my27a122	oscillatory	166	277	09.0	4.01	0.04	0.0891	0.0010	0.947	1438.1	13.0	1436	13	1406	23	102
AC34-44 bb	my27a166	ghost oscillatory	326	616	0.53	4.01	0.04	0.0886	0.0013	0.947	1438.3	14.2	1435	15	1396	28	103
AC34-85	my27a210	ghost oscillatory	88	227	0.30	4.25	0.07	0.0850	0.0027	0.940	1365.1	23.4	1362	24	1315	62	104
AC34-6A c	mv27a127	homogenous	183	392	0.47	4.42	0.04	0.0825	0.0010	0.936	1317.6	11.7	1314	12	1258	23	104
AC34-74A	my27a199	ghost oscillatory	54	108	0.50	4.84	0.07	0.0801	0.0022	0.927	1210.5	16.5	1210	17	1198	<u>99</u>	101
AC34-36	my27a160	oscillatory	172	196	0.88	4.98	0.06	0.0794	0.0016	0.924	1179.8	13.5	1180	14	1182	40	100
AC34-79	my27a205	homogenous	46	121	0.38	5.78	0.08	0.0790	0.0023	0.911	1023.0	13.6	1029	14	1171	57	88
AC34-21	my27a145	osc illatory	73	135	0.54	5.36	0.11	0.0788	0.0037	0.917	1099.3	22.0	1102	22	1168	94	94
AC34-87	my27a216	osc illatory	341	487	0.70	5.16	0.05	0.0788	0.0010	0.921	1140.9	11.3	1142	12	1167	26	8
AC34-38A	my27a161	chaotic	82	305	0.27	4.85	0.05	0.0781	0.0013	0.927	1212.9	12.3	1210	13	1149	ŝ	105
AC34-39	my27a163	chaotic	170	434	0.39	5.11	0.05	0.0776	0.0010	0.922	1152.2	10.5	1151	1	1136	26	101
AC34-3	my27a124	chaotic	131	183	0.72	5.07	0.05	0.0774	0.0012	0.922	1160.9	11.2	1159	÷	1132	32	102
AC34-66	my27a187	oscillatory	136	268	0.51	5.13	0.05	0.0771	0.0013	0.921	1150.3	11.6	1149	12	1124	35	102
AC34-14	my27a139	osc illatory	400	473	0.84	5.11	0.05	0.0768	0.0011	0.922	1153.7	10.7	1152	÷	1115	28	103
AC34-15A	my27a140	oscillatory	75	185	0.40	5.25	0.06	0.0768	0.0017	0.919	1124.9	13.2	1124	13	1115	44	101
AC34-22	my27a146	oscillatory	144	314	0.46	4.87	0.06	0.0762	0.0019	0.926	1208.6	14.6	1203	15	1100	49	109
AC34-23	my27a147	osc illatory	318	408	0.78	5.39	0.05	0.0760	0.0011	0.917	1096.8	10.1	1097	10	1094	20	100
AC34-81	my27a207	chaotic	72	<u>8</u>	0.18	5.92	0.07	0.0755	0.0014	0.909	1002.1	5	1005	12	1083	8	8
AC34-75	my27a201	chaotic	30	8	0.41	5.78	0.13	0.0755	0.0035	0.911	1027.2	22.5	1029	33	1082	<mark>94</mark>	<u>9</u> 2
AC34-18	my27a143	oscillatory	151	499	0.30	5.38	0.05	0.0751	0.0011	0.917	1099.4	9.8	1098	10	1072	8	102
AC34-77	my27a203	homogenous	829	848	0.98	5.22	0.05	0.0748	0.0008	0.920	1133.4	10.8	1130	÷	1063	22	106
AC34-11B	my27a136	chaotic	e	265	0.01	6.25	0.06	0.0746	0.0015	0.905	952.2	9.3	<mark>9</mark> 56	10	1057	40	6
AC34-48	my27a168	oscillatory	261	379	0.69	5.64	0.08	0.0745	0.0020	0.913	1052.7	14.3	1053	15	1054	54	1 00
AC34-11A	my27a135	oscillatory	212	386	0.55	5.85	0.07	0.0745	0.0018	0.910	1016.4	12.7	1018	13	1054	<mark>9</mark>	97
AC34-40	my27a164	oscillatory	89	257	0.27	6.04	0.06	0.0741	0.0013	0.908	984.8	10.1	987	9	1045	36	94
AC34-6B	my27a128	patchy	Q	220	0.02	5.93	0.06	0.0738	0.0013	0.909	1003.5	9.5	1005	9	1037	34	97
AC34-17	my27a142	ghost oscillatory	8	185	0.54	5.87	0.06	0.0729	0.0017	0.910	1014.6	10.5	1015	÷	1012	48	10
AC34-2B	my27a123	chaotic	C	228	0.01	5.90	0.06	0.0729	0.0012	0.909	1009.1	10.1	1009	10	1012	34	100
AC34-38B	my27a162	chaotic	n	291	0.01	6.04	0.07	0.0727	0.0014	0.908	986.8	10.7	988 988	7	1005	40	8

Appendix A. Summary of U-Pb and Hf data for AC34, 90024, FS0213, GS01, SW54 and FS0223.

Appendix A:	Table 2: Samp	ole AC34				Ratios for conc	ordia										
Sample	Analysis no	o, CL zoning Th	2	-	P	238U/206Pb +/-1	stderr 20	17Pb/206PI+/	-1 std err Common Pb	207 Pb/206Pb 206Pb/23	BU 207 corr1	s 206	(238 age +/-	-1s 20	7/206 age 4	·/-1s co	é
AC34-61	my27a183	patchy	46	401	0.11	6.21	0.06	0.0724	0.0011	0.906	961.9	9.3	863	10	986	32	97
AC34-60	my27a182	sector	43	658	0.07	6.29	0.06	0.0723	6000.0	0.905	949.2	8.5	951	6	9 <u>9</u> 3	26	<u>96</u>
AC34-26	my27a149	ghost oscillatory	442	423	1.04	5.73	0.06	0.0722	0.0010	0.912	1038.6	10.3	1037	-	993	29	104
AC34-69	my27a190	sector	97	222	0.44	5.71	0.07	0.0720	0.0017	0.912	1043.0	12.5	1041	13	986	49	105
AC34-50	my27a170	sector	34	526	0.06	6.23	0.06	0.0720	0.009	0.905	958.3	0.0	959	6	985	27	97
AC34-94A	my27a224	ghost oscillatory	12	474	0.03	5.85	0.06	0.0718	0.0010	0.910	1018.6	<u>6</u> .5	1017	10	980	29	104
AC34-54	my27a177	sector	23	511	0.05	6.15	0.07	0.0716	0.0015	0.906	971.0	10.6	971	11	975	43	100
AC34-91A	my27a220	oscillatory	160	573	0.28	5.92	0.06	0.0716	0.0012	0.909	1007.8	9.8	1006	10	973	35	103
AC34-90A	my27a218	sector	24	346	0.07	6.15	0.06	0.0714	0.0013	0.906	970.6	9.8	671	10	<mark>990</mark>	36	100
AC34-56	my27a179	chaotic	36	603	0.06	6.19	0.06	0.0711	0.000	0.906	965.1	8.7	<u>9</u> 65	6	961	26	100
AC34-71B	my27a197	homogenous	43	437	0.10	6.37	0.06	0.0711	0.0013	0.904	0.000	<u>8</u> .5	940	6	980	36	<mark>86</mark>
AC34-9	my27a129	chaotic	29	510	0.06	6.28	0.06	0.0710	0.0008	0.905	952.5	8.3	953	6	928	24	<mark>8</mark>
AC34-10	mv27a130	homogenous	21	358	0.06	6.14	0.06	0.0710	0.0011	0.906	972.5	9.2	972	6	928	31	101
AC34-68B	my27a189	patchy	e	246	0.01	6.10	0.07	0.0710	0.0015	0.907	979.6	10.8	679	÷	956	44	102
AC34-33	my27a157	homogenous	35	589	0.06	6.35	0.06	0.0709	0.000	0.904	942.6	8.4	943	6	925	26	<mark>8</mark>
AC34-15B	my27a141	chaotic	27	480	0.06	6.50	0.06	0.0709	0.0010	0.902	920.8	8.3	922	6	954	8	26
AC34-12	my27a137	sector	8	68	0.06	6.29	0.06	0.0708	0.0008	0.905	950.4	8.2	950	œ	950	23	100
AC34-95	my27a226	patchy	33	488	0.07	6.27	0.06	0.0707	0.0010	0.905	953.6	8.6 8.6	953	6	948	30	101
AC34-97	my27a228		42	469	0.09	6.26	0.06	0.0706	0.0011	0.905	955.1	8.5	995	6	946	31	101
AC34-74B	my27a200	patchy	e	312	0.01	6.18	0.07	0.0706	0.0015	0.906	967.8	10.1	67	10	944	44	102
AC34-24	my27a148	sector	37	629	0.06	6.30	0.06	0.0705	0.0010	0.905	950.4	8.8	950	6	942	28	101
AC34-65	my27a186	chaotic	47	545	0.09	6.38	0.06	0.0705	6000.0	0.904	937.9	8.3	938	÷	942	28	100
AC34-49	my27a169	ghost oscillatory	29	574	0.05	6.42	0.06	0.0704	0.0011	0.903	932.4	8.7	933	6	940	31	<mark>66</mark>
AC34-90B	my27a219	sector	55	766	0.07	6.27	0.06	0.0703	0.0010	0.905	954.1	8.3	953	6	938	28	102
AC34-76	my27a202	chaotic	34	. 208	0.06	6.48	0.07	0.0703	0.0011	0.902	924.1	0.0	925	6	937	83	<mark>66</mark>
AC34-93	my27a223	sector	30	662	0.04	6.24	0.08	0.0702	0.0013	0.905	959.1	11.9	958	12	934	30	103
AC34-73	my27a198	sector	47	681	0.07	6.39	0.06	0.0702	0.0010	0.904	937.5	8.3	937	6	<mark>933</mark>	30	100
AC34-71A	my27a196	sector	79	999	0.12	6.28	0.06	0.0702	0.0013	0.905	952.9	8.8	952	6	933	38	102
AC34-94B	my27a225	homogenous	36	520	0.07	6.46	0.06	0.0701	0.0011	0.903	927.5	8.3	928	œ	930	31	100
AC34-89	my27a217	sector	49	534	0.09	6.38	0.06	0.0700	0.0011	0.904	939.7	0.0	<u> 630</u>	6	929	31	101
AC34-96	my27a227	chaotic	35	283	0.06	6.32	0.06	0.0700	0.0011	0.904	947.8	8.9	947	6	929	32	102
AC34-32	my27a156	sector	20	448	0.11	6.41	0.06	0.0700	0.0011	0.903	934.2	8.7	934	6	928	32	101
AC34-86	my27a215	sector	23	582	0.04	5.99	0.07	0.0699	6000.0	0.908	997.6	11.0	265	-	925	26	108
AC34-91B	my27a221	homogenous	53	884	0.03	6.18	0.06	0.0698	0.0008	0.906	968.1	<mark>8.5</mark>	366	6	922	23	105
AC34-35	my27a159	sector	44	392	0.11	6.25	0.06	0.0697	0.0011	0.905	958.2	9.2	657	6	921	31	104
AC34-51	my27a175	oscillatory	ø	365	0.02	6.08	0.06	0.0697	0.0011	0.907	983.2	9.8	981	10	920	32	107
AC34-1	my27a121	sector	28	416	0.07	6.06	0.05	0.0697	6000.0	0.907	987.3	8.7	385	6	919	28	107
AC34-30	my27a155	sector	35	483	0.07	6.36	0.06	0.0696	0.0010	0.904	941.7	<mark>8</mark> .5	941	6	918	31	103
AC34-57	my27a180	sector	38	689	0.06	6.31	0.06	0.0696	0.0008	0.904	950.1	8.5	949	6	916	24	104

opendix A:	Table 2: Sampi	e AC34				Ratios for c	concordia										
ample	Analysis no.	CL zoning	F	5	Th/U	238U/206Pb	+/-1 std err	207Pb/206P	+/-1 std err	Common Pb 207Pb/206Pb	206Pb/238U 207 corr	15	206/238 age +/-1s	207/20	6 age +	'-1s cc	ü
C34-80	my27a206	chaotic		31 50	11 0.0	06 6.43	0.07	0.0696	0.0010	0.903	932.5	9.2	<u> 6</u> 32	Ø	915	30	102
C34-92	my27a222	homogenous		33 66	4 0.0	05 6.36	0.06	0.0695	0.0009	0.904	942.4	8.2	941	60	912	27	100
VC34-19	my27a144	sector		46 99	3000	05 6.41	0.06	0.0694	0.0007	0.903	935.4	7.9	<u> 3</u> 35	-	912	2	10
VC34-46	my27a167	patchy		20 37	0.0	15 6.22	0.06	0.0694	0.0012	306.0	963.3	9.4	961	9	910	34	10
VC34-55	my27a178	ghost oscillatory		26 46	10 0.0	36 6.70	0.08	0.0693	0.0018	006:0	896.8	10.9	897	F	808	<mark>2</mark> 3	8
VC34-63	my27a184	sector		44 51) ⁻ 0	08 6.44	0.06	0.0693	0.0011	0.903	930.7	8.7	630	0	906	31	10
VC34-13	my27a138	sector		38 56	0.0	07 6.41	0.06	0.0692	0.0008	0.903	935.0	8.0	<u> 6</u> 34	00	904	25	10
VC34-58	my27a181	homogenous		22 119	H 0.0	12 5.76	0.06	0.0692	0.0013	0.911	1037.2	10.9	1032	÷	<mark>903</mark>	39	14
VC34-82 ddc	d my27a208	oscillatory		32 45	10	77 6.77	0.07	0.0685	0.0013	006:0	888.4	9.0	888	6	883	39	101
VC34-84	my27a209	sector		44 51	6 0.1	00 7.44	0.07	0.0670	0.0010	0.894	812.0	7.8	813	60	838	30	6

	Appendix.	A: Table 1: Sample 90	024	È	/U Ra	tios for conce	ordia										
mple	Analysis n	o.CL zoning Tr	>	ĉ	ttio 23	8U/206Pb +/-1	std err 20	7Pb/206P1+/-	1 std err Common Pb	207 Pb/206 Pb 206 Pb/238	3U 207 corr 1s	206	//238 age +/-1s	207/20	06 age +/-	15 00	ġ
0024-15 aaa	my27a029	chaotic	55	132	0.41	2.13	0.02	0.1665	0.0022	1.053	2465.5	27.8	2478	26	2522	22	8
002:4-42 aa'	my27a060	homogencus unzo	24	62	0.39	2.13	0.05	0.1631	0.0031	1.053	2475.4	63.6	2478	59	2488	32	100
0024-60 aa	my27a078	oscillatory zoning	445	759	0.59	2.63	0.03	0.1220	0.0013	1.010	2090.8	21.1	2076	21	1986	19	105
90024-83 a	my27a105	irregular concentr	149	320	0.46	3.81	0.05	0.0995	0.0023	0.953	1492.3	19.9	1502	20	1615	44	<mark>9</mark> 3
90024-51	my27a070	chaotic	154	188	0.82	3.83	0.04	0.0954	0.0018	0.952	1492.0	16.7	1495	17	1536	35	97
90024-45A	my27a062	patchy	108	658	0.16	5.48	0.06	0.0893	0.0012	0.916	1064.3	10.6	1081	11	1410	26	77
90024-81	my27a103	oscillatory zoning	409	693	0.59	4.36	0.07	0.0891	0.0015	0.937	1326.3	20.3	1331	21	1406	9	<u>9</u> 2
90024-37 bb	my27a056	oscillatory & trans	124	619	0.20	4.51	0.05	0.0858	0.0013	0.934	1288.6	14.9	1291	15	1333	29	97
90024-77	my27a099	oscillatory zoning	206	779	0.26	4.77	0.07	0.0843	0.0021	0.928	1223.1	18.1	1227	19	1300	48	94
90024-14 c	my27a028	oscillatory zoning	52	204	0.25	4.75	0.08	0.0835	0.0029	0.929	1229.3	19.9	1232	20	1280	67	96
9002:4-3A	my27a017	oscillatory	245	432	0.57	4.77	0.04	0.0822	0.0011	0.928	1225.1	10.8	1227	1	1251	27	86
90024-44	my27a061	ghost oscillatory	62	74	0.83	6.33	0.10	0.0784	0.0031	0.904	937.0	14.3	946	14	1157	79	82
90024-75	my27a097	oscillatory	158	271	0.58	5.22	0.08	0.0781	0.0029	0.920	1129.1	16.4	1130	17	1150	73	86
90024-36	my27a055	oscillatory	138	163	0.85	5.17	0.08	0.0779	0.0024	0.921	1139.7	18.1	1140	19	1144	6	100
90024-35A	my27a049	sector	43	116	0.37	6.28	0.09	0.0764	0.0028	0.905	946.8	13.7	953	14	1106	73	86
90024-63A	my27a081	oscillatory zoning	255	241	1.06	5.96	0.07	0.0764	0.0018	0.909	994.8	10.9	666	÷	1105	47	06
90024-67	my27a085	patchy	768	2666	0.29	5.42	0.06	0.0759	0.0014	0.916	1091.3	12.0	1091	12	1093	37	100
90024-35B	my27a050	sector	42	102	0.41	6.32	0.09	0.0758	0.0024	0.904	941.5	12.9	947	13	1091	64	87
90024-41	my27a059	oscillatory zoning	276	553	0.50	5.36	0.05	0.0756	0.0011	0.917	1104.1	10.2	1103	10	1084	29	102
90024-22	my27a039	chaotic	47	112	0.42	5.84	0.08	0.0756	0.0023	0.910	1016.8	14.2	1020	15	1084	62	94
90024-3B	my27a018	ghost oscillatory/s	. 8	321	0.10	5.80	0.08	0.0755	0.0022	0.911	1022.4	13.7	1025	14	1081	28	<u>9</u> 2
90024-84	my27a106	chaotic	8	176	0.19	6.52	0.08	0.0752	0.0019	0.902	913.6	11.1	<mark>919</mark>	1	1073	20	86
90024-85	my27a107	oscillatory zoning	247	733	0.34	5.46	0.05	0.0751	0.0009	0.916	1085.0	10.1	1084	10	1072	24	101
90024-33	my27a047	ghost irregular col	35	96	0.36	6.34	0.09	0.0749	0.0025	0.904	939.5	13.0	944	13	1065	99	68
90024-10A	my27a022	chaotic	24	234	0.10	4.79	0.09	0.0748	0.0036	0.928	1230.9	23.5	1222	24	1063	67	115
90024-69	my27a087	irregular concentr	30	112	0.27	6.47	0.10	0.0747	0.0025	0.903	921.9	13.6	927	14	10.59	89	88
90024-50A	my27a068	oscillatory zoning	264	494	0.53	5.93	0.08	0.0746	0.0022	0.909	1001.9	13.7	1004	14	10.57	59	6
90024-74	my27a096	homogencus unzo	43	148	0.29	6.46	0.08	0.0745	0.0020	0.903	922.3	11.0	927	11	10.56	55	88
90024-46A	my27a064	ghost oscillatory	8	113	0.26	6.16	0.09	0.0745	0.0021	0.906	966.5	13.1	0/6	13	1056	28	92
90024-17B	my27a035	sector	35	139	0.25	6.37	0.09	0.0743	0.0027	0.904	935.5	13.2	940	13	1048	74	8
90024-71	my27a089	oscillatory zoning	72	168	0.43	5.84	0.17	0.0742	0.0046	0.910	1017.4	28.8	1019	20	1046	125	97
90024-58	my27a076	homogenous unzo	42	8	0.45	6.40	0.09	0.0740	0.0025	0.903	932.4	13.2	936	13	1043	68	8
90024-92	my27a118	homogenous unzo	19	91	0.21	6.12	0.08	0.0740	0.0019	0.907	973.0	12.5	976	13	10.42	52	94
90024-1	my27a015	osc illatory	218	304	0.72	5.60	0.05	0.0734	0.0014	0.914	1059.9	10.2	1058	10	1026	8	103
90024-29	my27a044	homogenous unzo	19	139	0.14	6.42	0.08	0.0733	0.0024	0.903	929.6	12.0	9 33	12	1021	65	91
90024-39	my27a057	chaotic	43	123	0.35	6.35	0.08	0.0731	0.0023	0.904	939.3	12.2	942	12	1016	64	<mark>6</mark> 3
90024-34	my27a048	patchy	26	159	0.17	6.37	0.07	0.0730	0.0020	0.904	936.8	10.5	940	11	1013	2 6	<mark>6</mark> 3
90024-82	my27a104	sector	36	195	0.19	6.37	0.09	0.0729	0.0020	0.904	937.5	12.7	940	13	1010	28	<mark>6</mark> 3
90024-62	my27a080	sector	43	170	0.25	6.43	0.08	0.0728	0.0017	0.903	929.6	11.2	932	1	1009	48	<mark>8</mark> 5
90024-90	my27a117	chaotic	20	8	0.31	6.28	0.09	0.0728	0.0023	0.905	951.1	12.8	953	13	1008	64	9 2
90024-59	my27a077	sector	<mark>5</mark> 3	118	0.45	6.29	0.09	0.0727	0.0023	0.905	949.7	12.8	952	13	1006	64	<u>9</u> 2
90024-49	my27a067	chaotic	8	124	0.26	5.99	0.08	0.0725	0.0020	0.908	994.5	13.2	395	13	666	56	100

	Appendix A	V: Table 1: Sample 5	10024		Th/U Ratio	is for conc	ordia									-	
Sample	Analysis no	o. CL zoning	⊃ ₽		Ratio 238U	/206Pb +/-1	std err 20	7Pb/206P +/-1	std err d	Common Pb 207Pb/206Pb	206Pb/238U 207 corr	1s	206/238 age +/-1s	20	7/206 age +/-	1s 60	ë
90024-46B	my27a065	chaotic	23	179	0.13	6.29	0.07	0.0724	0.0019	0.905	949.3	11.	951	7	2007	52	<mark>92</mark>
90024-18	my27a036	chaotic	42	<mark>94</mark>	0.45	6.21	0.09	0.0721	0.0025	0.906	961.2	13.7	7 962	4	066	72	97
90024-26	my27a042	chaotic	40	86	0.46	6.39	0.10	0.0720	0.0023	0.904	935.2	14.(937	44	986	99	<u>9</u> 2
90024-638	my27a082	irregular concentr	212	303	0.70	6.20	0.07	0.0719	0.0017	906:0	963.8	11.8	365	4	982	<mark>4</mark> 9	<mark>86</mark>
90024-94	my27a120	chaotic	15	<mark>9</mark>	0.17	6.06	0.07	0.0719	0.0022	0.907	984.8	12.(985	4	<u>982</u>	62	100
90024-64	my27a083	chaotic	48	0 6	0.48	6.29	0.09	0.0718	0.0023	0.905	950.2	13.2	3 951	4	980	65	97
90024-6	my27a020	ghost oscillatory	32	88	0.36	6.25	0.09	0.0717	0.0026	0.905	956.4	14.	3 957	9	977	215	<mark>86</mark>
90024-88	my27a110	rregular concentr	39	152	0.25	6.48	0.09	0.0717	0.0021	0.903	922.8	12.(925	4	977	<mark>9</mark> 9	96
90024-10B	my27a023	chaotic	31	174	0.18	6.28	0.07	0.0717	0.0019	0.905	951.7	11.1	953	÷	976	<u>8</u> 3	<mark>98</mark>
90024-61	my27a079	chaotic	35	118	0.29	6.22	0.09	0.0716	0.0024	0.905	960.5	13.	961	ę	974	89	<mark>66</mark>
90024-11	my27a024	sector	38	188	0.20	6.07	0.09	0.0715	0.0028	0.907	984.2	15.(984	15	972	80	101
90024-12A	my27a025	sector	36	121	0.30	6.31	0.08	0.0714	0.0023	0.904	947.7	12.	949	4	970	65	<mark>98</mark>
90024-72	my27a090	chaotic	28	176	0.16	6.21	0.14	0.0713	0.0034	0.906	963.1	21.5	963	8	967	96	100
90024-40	my27a058	sector	49	209	0.23	6.47	0.08	0.0713	0.0018	0.903	925.4	10.5	3 927	7	965	51	<u>96</u>
90024-7	my27a021	ghost oscillatory	28	116	0.24	6.22	0.08	0.0712	0.0020	0.905	961.1	12.	961	업	964	99	100
90024-66	my27a084	sector	46	126	0.37	6.37	0.09	0.0712	0.0022	0.904	939.8	12.	5 941	0	963	64	<mark>98</mark>
90024-78	my27a100	homogenous unzo	28	192	0.15	6.43	0.07	0.0712	0.0017	0.903	930.8	10.	932	9	963	20	67
90024-13	my27a027	chaotic	33	106	0.31	6.18	0.09	0.0709	0.0025	0.906	967.6	13.	1 967	ę	954	71	101
90024-76	my27a098	sector	39	146	0.27	6.44	0.08	0.0708	0.0020	0.903	930.3	11.5	1 931	4	952	57	86
90024-27	my27a043	oscillatory	146	397	0.37	5.98	0.06	0.0708	0.0014	0.908	908.8	0	1 997	ę	950	40	105
90024-47	my27a066	sector	42	129	0.32	6.47	0.09	0.0702	0.0022	0.903	926.1	12.5	2 926	4	<mark>9</mark> 34	<u>8</u> 3	<mark>6</mark>
90024-23	my27a040	chaotic	13	164	0.08	6.41	0.08	0.0701	0.0020	0.903	934.3	1	5 934	ę	<u>9</u> 31	80	100
90024-17A	my27a030	ghost oscillatory	62	452	0.14	6.13	0.06	0.0701	0.0012	100.0	975.5	9.	1 974	9	930	35	105
90024-31	my27a045	sector	37	8	0.41	6.22	0.09	0.0700	0.0027	0.906	962.8	13.7	7 962	4	930	78	103
90024-32	my27a046	chaotic	33	156	0.21	6.40	0.08	0.0697	0.0022	0.903	937.1	11.5	3 937	÷	920	64	102
90024-93	my27a119	homogenous unzo	4	80	0.05	6.16	0.08	0.0696	0.0020	906.0	971.3	12.(696	얻	916	28	106
90024-2	my27a016	sector	61	140	0.44	6.25	0.08	0.0696	0.0019	0.905	957.8	11.5	956	ę	916	57	104
90024-19	my27a037	chaotic	47	137	0.34	6.29	0.08	0.0696	0.0023	0.905	952.6	12.(951	4	915	67	104
90024-79	my27a101	chaotic	33	128	0.26	6.48	0.09	0.0694	0.0022	0.903	925.6	12.4	1 925	0	911	65	102
90024-25	my27a041	chaotic	34	113	0.30	6.30	0.09	0.0694	0.0022	0.904	9:096	13.(949	1 3	911	64	104
90024-73	my27a095	sector	44	209	0.21	6.45	0.07	0.0693	0.0018	0.903	929.4	10.	929	9	205	53	102
90024-5	my27a019	patchy	26	105	0.25	6.13	0.08	0.0692	0.0023	0.906	976.2	12.)	7 973	0	904	20	108
90024-56	my27a075	chaotic	44	101	0.44	6.46	0.09	0.0691	0.0025	0.903	929.0	12.)	928	ς Ω	902	74	103
90024-68	my27a086	chaotic	40	162	0.24	6.17	0.08	0.0691	0.0018	0.906	971.1	12	596	4	901	<mark>63</mark>	107
90024-70	my27a088	chaotic	28	127	0.22	6.10	0.19	0.0691	0.0047	0.907	981.3	30.	3 978	33	901	141	109
90024-89A dde	d my27a115	oscillatory zoning	37	254	0.15	6.48	0.07	0.0687	0.0015	0.903	927.0	- 6	1 926	9	891	46	104
90024-50B	my27a069	chaotic	40	<mark>36</mark>	0.43	6.44	0.10	0.0687	0.0024	0.903	931.7	14.	3 930	ę	889	73	105
90024-80	my27a102	sector	42	122	0.35	6.27	0.10	0.0680	0.0022	0.905	956.8	14.(5 954	15	869	99	110
90024-86	my27a108	chaotic	32	174	0.19	6.57	0.08	0.0680	0.0017	0.902	915.2	10.	914	7	867	52	105
90024-898	my27a116	chaotic	12	91	0.13	5.89	0.07	0.0678	0.0018	0.910	1017.1	11.1	3 1011	12	861	99	117
90024-87	my27a109	chaotic	98	<u>92</u>	0.40	6.31	0.09	0.0674	0.0027	0.904	951.7	13.2	948	4	850	85	112
90024-458	my27a063	chaotic	34	212	0.16	6.19	0.07	0.0672	0.0015	0.906	970.6	10.2	1 966	£	843	46	115

	Appendix A: Table 4: Sam	nple FS0214		æ	Ratios for conc	cordia										
Sample	Analysis no GL zoning	£	_	Th/U	238U/206Pb +/-	1 std err 20	7Pb/206P +/-	1 std err (Common Pb 207Pb/206Pb 206	SPb/238U 207 cori 15	2	06/238 age +/-1	15	07/206 age +/-	15	ö
FS0214-10 aa'	OC27b019 oscillatory	66	198	0:50	2.17	0.09	0.1621	0.0031	1.050	2437.3	102.4	2446	26	2478	32	<mark>6</mark>
FS0214-20	OC27b029 oscillatory	121	212	0.57	2.52	0.09	0.1594	0.0027	1.019	2096.5	79.4	2158	፩	2450	20	88
FS0214-23B	OC27b039 homogenous	99	219	0:30	2.20	0.06	0.1591	0.0042	1.046	2401.9	65.8	2411	8	2446	44	<mark>6</mark>
FS0214-57	OC27b069 homogenous	08	107	0.83	2.58	0.05	0.1511	0.0050	1.014	2061.5	44.3	2110	44	2358	57	<mark>8</mark> 0
FS0214-23A	OC27b038 oscillatory	72	208	0.34	2.74	0.06	0.1496	0.0031	1.002	1943.0	41.7	2003	4	2341	35	<mark>86</mark>
FS0214-74A	OC27b085 chaotic	65	118	0.55	2.84	0.05	0.1465	0.0046	0.996	1883.6	35.3	1943	8	2306	54	84
FS0214-16A	OC27b026 oscillatory	77	271	0.28	2.87	0.11	0.1427	0.0025	0.995	1872.4	72.9	1926	76	2261	30	85
FS0214-103	OC27b124 oscillatory	83	163	0.51	3.35	0.07	0.1384	0.0039	0.970	1616.5	33.6	1683	35	2207	20	76
FS0214-40 aa	OC27b049 chaotic	142	390	0.36	3.70	0.06	0.1298	0.0021	0.957	1483.8	22.6	1543	24	2096	28	74
FS0214-81	OC27b093 oscillatory	161	384	0.42	3.95	0.08	0.1196	0.0024	0.949	1409.9	27.9	1456	8	1951	36	75
FS0214-87	OC27b103 oscillatory	30	275	0.14	3.36	0.18	0.1182	0.0035	0/6/0	1650.4	87.6	1679	<u>9</u>	1929	53	87
FS0214-70 a	OC27b081 homogenous	0	215	0.04	4.10	0.10	0.1010	0.0040	0.944	1388.7	33.0	1408	8	1643	74	<mark>86</mark>
FS0214-99	OC27b121 oscillatory	195	167	1.17	5.01	0.09	0.0989	0.0037	0.923	1146.8	19.5	1173	8	1603	70	73
FS0214-36A	OC27b045 chaotic	17	277	0.06	3.96	0.07	0.0987	0.0023	0.948	1438.1	23.4	1450	24	1600	44	<mark>91</mark>
FS0214-14	OC27b024 patchy	15	313	0.05	3.90	0.15	0.0947	0.0022	0.950	1467.7	54.6	1472	22	1522	44	67
FS0214-16B	OC27b027 chaotic	14	437	0.03	3.87	0.15	0.0943	0.0019	0.951	1480.4	54.4	1483	8	1514	37	<mark>98</mark>
FS0214-93B	OC27b109 chaotic	31	212	0.14	4.29	0.07	0.0943	0.0027	0.939	1338.5	20.0	1350	2	1514	54	<mark>68</mark>
FS0214-95	OC27b111 chaotic	29	353	0.17	3.94	0.07	0.0940	0.0032	0.949	1455.2	27.0	1459	8	1509	64	76
FS0214-85	OC27b101 homogenous	10	247	0.04	4.48	0.12	0.0940	0.0055	0.934	1283.3	33.7	1298	34	1509	110	<mark>86</mark>
FS0214-77A	OC27b088 ghost oscillato.	2 ∠	277	0.02	4.33	0.09	0.0932	0.0047	0.938	1328.1	28.9	1339	8	1493	<u> 3</u> 2	<mark>06</mark>
FS0214-91	OC27b107 homogenous	80	290	0.28	4.67	0.08	0.0926	0.0025	0.930	1235.9	20.4	1251	2	1479	52	8 5
FS0214-76	OC27b087 chaotic	F	295	0.04	4.18	0.08	0.0918	0.0033	0.942	1376.9	25.3	1383	8	1464	69	94
FS0214-46	OC27b059 chaotic	27	349	0.08	3.99	0.08	0.0913	0.0025	0.948	1441.6	27.3	1443	8	1454	5	<mark>66</mark>
FS0214-88	OC27b104 homogenous	9	287	0.02	4.25	0.13	0.0910	0.0037	0.940	1357.1	39.2	1363	4	1446	27	94
FS0214-56A	OC27b067 sector	÷	265	0.04	4.48	0.08	0.0910	0.0023	0.934	1289.3	21.2	1299	8	1446	48	<mark>06</mark>
FS0214-69	OC27b080 homogenous	-70	231	0.08	4.06	0.11	0.0907	0.0046	0.945	1419.3	38.4	1421	ଞ	1440	67	<mark>66</mark>
FS0214-41	OC27b050 chaotic	33	304	0.11	3.92	0.06	0.0904	0.0021	0.950	1467.4	23.3	1465	24	1435	44	102
FS0214-73	OC27b084 homogenous	19	231	0.08	5.25	0.11	0.0903	0.0028	0.919	1107.8	23.5	1125	24	1432	60	79
FS0214-71	OC27b082 ghost oscillatory	v 14	275	0.05	4.52	0.07	0.0898	0.0024	0.934	1280.1	20.3	1289	21	1422	50	91
FS0214-15 bb	OC27b025 oscillatory	73	203	0.36	5.89	0.23	0.0864	0.0028	0.910	995.3	37.1	1011	ଞ	1348	62	75
FS0214-61	OC27b073 homogenous	N	255	0.01	4.46	0.11	0.0862	0.0035	0.935	1302.8	30.3	1305	<u>ب</u>	1343	78	26
FS0214-79A	OC27b091 chaotic	-100	233	0.08	4.94	0.09	0.0857	0.0031	0.925	1180.7	21.8	1189	22	1332	71	<mark>89</mark>
FS0214-96	OC27b112 chaotic	14	286	0.05	4.90	0.09	0.0852	0.0029	0.926	1190.5	21.8	1198	8	1321	99	<mark>9</mark>
FS0214-30	OC27b043 ghost oscillato.	ry 101	435	0.23	4.78	0.08	0.0851	0.0022	0.928	1218.6	18.7	1224	19	1317	51	<mark>0</mark> 3
FS0214-102 c	OC27b123 homogenous	16	441	0.04	4.40	0.09	0.0839	0.0025	0.936	1321.1	26.0	13.19	27	1291	57	102
FS0214-97	OC27D113 chaotic	22	189	0.12	4.86	0.13	0.0830	0.0054	0.926	1202.1	31.5	1206	8	1269	127	<mark>9</mark> 2
FS0214-106	OC27b126 patchy	13	366	0.03	5.51	0.10	0.0817	0.0023	0.915	1066.4	19.2	1074	8	1239	54	87
FS0214-44	OC27b058 chaotic	15	308	0.05	5.12	0.11	0.0816	0.0029	0.921	1145.7	25.0	1150	26	1235	69	<mark>93</mark>
FS0214-90	OC27b106 patchy	9	175	0.06	5.89	0.13	0.0811	0.0037	0.910	1001.1	21.7	1011	8	1224	8	8 33
FS0214-77B	OC27b089 chaotic	99	108	0.52	6.45	0.12	0.0809	0.0041	0.903	917.9	17.6	930	<u>6</u>	1219	9	76
FS0214-58B	OC27b071 chaotic	46	117	0.39	6.54	0.15	0.0783	0.0036	0.902	907.6	19.9	917	8	1153	<mark>9</mark> 2	79
FS0214-47	OC27b060 chaotic	42	145	0.29	6.42	0.12	0.0772	0.0035	0.903	925.4	17.6	933	99	1126	9	83

Kathleen R	Murrav	Maior	Research	Project	Macquarie	University
Rutificentri		itiujoi	nescuren	i i ojeci,	macquarie	Onversity

	conc.	80	80	82	86	85	91	92	92	88	92	06	92	92	96	100	96	96	94	96	96	66	97	100	3 8	100	101	101	104	105	104
	+/-1s	109	87	100	87	80	66	76	80	92	91	<u> 9</u> 6	9	63	8	9	9	<u>9</u> 6	8	06	114	6	104	109	2	73	177	100	93	83	82
	207/206 age 4	1118	1111	1089	1081	1050	1047	1028	1026	1022	1021	1020	1009	1003	982	975	3 65	964	960	957	957	953	952	026	940	931	917	606	904	887	858
	s -	19	100	20	<u>е</u>	17	19	15	19	19	20	37	19	15	19	ŝ	20	20	19	23	26	8	20	23	8	37	25	8	17	19	36
	206/238 age +	898	884	896	928	894	999	951	940	911	935	918	923	924	931	978	913	928	206	916	911	940	925	925	925	929	928	921	943	932	803
		18.4	18.0	19.1	37.1	16.5	18.8	15.1	18.9	18.3	19.4	35.4	19.0	14.7	18.4	22.9	19.9	20.1	18.9	22.5	25.4	37.3	19.6	22.2	34.8	35.7	25.3	36.5	17.0	18.3	34.7
	06Pb/238U 207 cori 1	689.5	875.6	889.3	921.9	888.0	951.4	947.5	937.1	0.709	931.8	914.3	920.0	921.1	928.6	978.3	910.6	926.5	904.8	914.4	909.4	939.5	923.6	955.1	924.1	928.5	928.0	921.4	944.7	934.1	894.2
	common Pb 207Pb/206Pb 2	0.900	0.809	0.900	0.903	006:0	0.905	0.905	0.904	0.901	0.903	0.902	0.902	0.902	0.903	0.907	0.902	0.903	0.901	0.902	0.901	0.904	0.902	0.905	0.902	0.903	0.903	0.902	0.904	0.903	006:0
	/-1 std err	0.0042	0.0033	0.0038	0.0033	0.0033	0.0037	0.0028	0.0029	0.0033	0.0033	0.0034	0.0033	0.0022	0.0029	0.0032	0.0032	0.0033	0.0032	0.0031	0.0039	0.0031	0.0036	0.0038	0.0028	0.0025	0.0060	0.0034	0.0031	0.0031	0.0027
	07Pb/206P1+	0.0769	0.0756	0.0758	0.0755	0.0743	0.0742	0.0735	0.0734	0.0733	0.0732	0.0732	0.0728	0.0726	0.0719	0.0716	0.0713	0.0712	0.0711	0.0710	0.0710	0.0709	0.0708	0.0708	0.0704	0.0701	0.0696	0.0694	0.0692	0.0636	0.0677
ordia	std err	0.14	0.14	0.15	0.27	0.13	0.13	0.10	0.13	0.14	0.14	0.26	0.14	0.11	0.13	0.15	0.15	0.14	0.14	0.16	0.19	0.26	0.14	0.15	0.25	0.26	0.18	0.27	0.12	0.13	0.27
tatios for conce	38U/206Pb +/-1	6.69	6.80	6.70	6.46	6.72	6.26	6.29	6.37	6.59	6.41	6.53	6.49	6.49	6.44	6.10	6.58	6.46	6.62	6.55	6.59	6.37	6.48	6.26	6.48	6.45	6.46	6.51	6.35	6.43	6.73
Ľ	1/U 2	0.49	0.50	0.36	0.27	0.59	0.04	0.43	0.16	0.29	0.32	0.50	0.50	0.47	0.56	0.34	0.47	0.51	0.58	0.60	0.20	0.16	0.41	0.43	0.28	0.59	0.22	0.50	0.26	0.37	0.59
	F	109	151	144	158	184	175	172	151	135	126	130	127	375	170	116	115	126	144	152	174	140	136	110	170	175	126	114	151	134	178
-50214	2	54	76	52	42	109	¢	74	24	39	40	65	64	176	95	39	55	64	84	91	35	33	55	48	47	103	27	57	39	20	105
: Table 4: Sample F	CL zoning 1	chaotic	chaotic	ghost oscillatory	chaotic	chaotic	os cillatory	chaotic		homogenous	homogenous	sector	sector	chaotic	ghost oscillatory	chaotic	ghost oscillatory	chaotic	sector	homogenous	sector	homogenous	patchy	chaotic	sector	ghost oscillatory	ghost sector	irregular concentr	chaotic	chaotic	chaotic
Appendix A:	Analysis no	OC27b086	OC27b100	OC27b066	OC27b018	OC27b053	OC27b092	OC27b119	OC27b078	OC27b046	OC27b079	OC27b016	OC27b120	OC27b041	OC27b068	OC27b098	OC27b105	OC27b064	OC27b083	OC27b048	OC27b063	OC27b028	OC27b044	OC27b051	OC27b014	OC27b022	OC27b065	OC27b017	OC27b072	OC27b061	OC27b020
	Sample	FS0214-74B	FS0214-84B	FS0214-54	FS0214-7	FS0214-43B	FS0214-79B	FS0214-98A	FS0214-65	FS0214-36B	FS0214-67	FS0214-5	FS0214-98B	FS0214-25	FS0214-56B	FS0214-82	FS0214-89	FS0214-50	FS0214-72	FS0214-37B	FS0214-49B	FS0214-19	FS0214-35	FS0214-42	FS0214-1	FS0214-12B	FS0214-53	FS0214-6	FS0214-60	FS0214-48 ddd	FS0214-11

	Appendix A	A: Table 3: Sample	GS01		Rat	tios for conc	ordia										
Sample	Analysis no	o.CL zoning	⊃ ₽	-	h/U 238	3U/206Pb +/-1	std err 20	7 Pb/206P(+/-	1 std err Common Pb	07 Pb/206Pb 206Pb/238U	J 207 cori 15	20	6/238 age +/-1s	5	17/206 age 4	·/-1s	onc.
GS01-42 a	NV05a058	chaotic	33	141	0.23	3.25	0.04	0.1050	0.0025	0.975	1729.6	23.4	1728	23	1715	44	6
GS01-20A	NV05a038	chaotic	42	226	0.19	3.26	0.05	0.1045	0.0026	0.974	1727.0	26.6	1725	27	1706	46	101
GS01-66	NV05a074	sector	34	276	0.12	3.11	0.04	0.1043	0.0019	0.982	1809.5	22.5	1798	22	1702	33	106
GS01-13A	NV05a024	sector	17	292	0.06	3.41	0.04	0.1024	0.0013	0.968	1658.1	21.1	1659	22	1668	24	<mark>66</mark>
GS01-25	NV05a043	sector	32	<mark>66</mark>	0.32	3.85	0.07	0.1016	0.0035	0.952	1473.1	25.8	1487	26	1653	64	6
GS01-86	NV05a087	homogenous	65	277	0.23	3.18	0.07	0.1015	0.0014	879.0	1776.8	36.9	1764	37	1651	26	107
GS01-91	NV05a095	homogenous	43	318	0.13	3.22	0.04	0.1013	0.0016	0.976	1751.4	19.1	1741	19	1649	<mark>7</mark> 9	106
GS01-22	NV05a040	chaotc	41	175	0.23	3.62	0.08	0.1013	0.0043	0.960	1566.2	33.3	1573	34	1648	78	96
GS01-93	NV05a097	sector	37	507	0.07	3.36	0.03	0.0992	0.0011	0.970	1687.0	15.8	1680	16	1610	2	104
GS01-70	NV05a075	homogenous	30	<mark>86</mark>	0.34	3.59	0.08	0.0991	0.0051	0.961	1583.0	35.1	1585	35	1607	96	6 <mark>6</mark>
GS01-105	NV05a116	sector	39	<mark>6</mark> 6	0.39	3.83	0.06	0.0984	0.0029	0.952	1487.6	22.6	1496	23	1593	<u> 9</u> 9	94
GS01-14A	NV05a026	sector	58	709	0.08	3.57	0.05	0.0983	0.0022	0.962	1592.0	23.8	1592	24	1592	42	100
GS01-61	NV05a068	sector	26	151	0.17	4.60	0.16	0.0979	0.0042	0.932	1245.3	41.3	1267	43	1584	79	8
GS01-102	NV05a108	sector	00	521	0.06	3.65	0.05	0.0978	0.0011	0.959	1558.3	20.0	1560	2	1582	5	<u>6</u>
GS01-97A	NV05a101	sector	25	270	0.09	3.64	0.06	0.0975	0.0030	0.959	1565.2	26.4	1566	27	1578	<mark>89</mark>	<mark>6</mark>
GS01-71	NV05a076	sector	39	105	0.37	3.99	0.05	0.0968	0.0027	0.947	1432.3	17.9	1442	18	1562	5 3	92
GS01-15	NV05a028	sector	51	477	0.11	3.43	0.04	0.0959	0.0019	0.967	1660.0	21.2	1650	21	1546	38	107
GS01-87	NV05a088	sector	44	154	0.28	3.72	0.05	0.0956	0.0017	0.956	1534.5	19.0	1535	19	1540	34	10
GS01-18A	NV05a035	homogenous	29	73	0.39	3.86	0.13	0.0954	0.0062	0.951	1479.9	51.0	1484	<mark>5</mark> 2	1535	121	97
GS01-36	NV05a054	sector	61	372	0.16	4.06	0.05	0.0950	0.0017	0.945	1411.5	18.4	1420	19	1529	33	<mark>6</mark> 3
GS01-58	NV05a067	sector	57	617	0.09	3.93	0.04	0.0948	0.0011	0.949	1457.0	13.7	1462	4	1524	22	96
GS01-8	NV05a018	sector	99	069	0.10	3.97	0.04	0.0943	0.0013	0.948	1441.9	15.6	1447	16	1514	27	96
GS01-104B	NV05a115	patchy	167	845	0.20	3.76	0.03	0.0942	0.0009	0.955	1519.2	13.7	1519	4	1512	17	100
GS01-48	NV05a060	patchy	44	129	0.34	4.08	0.07	0.0937	0.0029	0.945	1407.7	22.9	1414	23	1501	2 0	94
GS01-95	NV05a099	sector	45	97	0.46	4.29	0.08	0.0924	0.0034	0.939	1342.6	25.0	1351	26	1475	69	92
GS01-10	NV05a020	sector	76	1113	0.07	3.81	0.07	0.0919	0.0016	0.953	1504.8	26.9	1502	28	1465	34	102
GS01-54	NV05a063	sector	40	<mark>9</mark> 2	0.42	4.50	0.06	0.0913	0.0022	0.934	1283.0	17.0	1294	18	1453	46	89
GS01-41	NV05a057	sector	37	459	0.08	4.37	0.06	0.0909	0.0014	0.937	1318.9	16.5	1327	47	1445	8	92
GS01-101A	NV05a106	ghost sector	48	346	0.14	4.28	0.05	0.0906	0.0017	0.939	1347.8	16.2	1354	17	1437	35	94
GS01-17	NV05a034	oscillatory	30	483	0.06	4.06	0.06	0.0904	0.0019	0.945	1419.0	19.9	1420	20	1433	40	66
GS01-85A	NV05a085	chaotic	42	123	0.34	4.05	0.07	0.0900	0.0026	0.946	1421.4	23.5	1422	24	1425	54	100
GS01-13B bb	NV05a025	chaotic	44	471	0.09	4.54	0.05	0.0874	0.0015	0.933	1276.6	12.7	1282	13	1370	8	94
GS01-97B	NV05a102	homogenous	21	1432	0.01	4.65	0.04	0.0868	0.0007	0.931	1249.5	10.4	1256	7	1356	16	8
GS01-34	NV05a053	sector	48	136	0.35	4.59	0.06	0.0866	0.0025	0.932	1264.4	17.3	1270	18	1352	<u>99</u>	94
GS01-30	NV05a047	chaotic	30	280	0.11	4.82	0.05	0.0864	0.0015	0.927	1208.1	13.1	1216	13	1347	33	6
GS01-63	NV05a073	sector	42	110	0.38	4.78	0.06	0.0858	0.0023	0.928	1217.0	15.8	1224	16	1333	52	92
GS01-18B	NV05a036	oscillatory	56	231	0.24	4.96	0.05	0.0857	0.0016	0.924	1176.5	12.3	1185	ę	1332	36	89
GS01-9	NV05a019	chaotic	52	269	0.19	4.55	0.05	0.0855	0.0015	0.933	1276.6	14.1	1279	14	1326	<mark>35</mark>	97
GS01-96	NV05a100	chaotc	44	290	0.15	4.55	0.05	0.0850	0.0014	0.933	1277.2	14.3	1280	15	1316	33	97
GS01-4	NV05a014	sector	35	444	0.08	4.62	0.05	0.0847	0.0018	0.931	1260.6	13.4	1263	14	1308	41	97
GS01-6	NV05a016	sector	29	318	0.09	4.65	0.05	0.0846	0.0013	0.931	1253.8	11.9	1257	12	1306	29	96

	Appendix A	V: Table 3: Sample	G S01			Ratios for con	cordia										
ample	Analysis no	o.CL zoning	Ę	_	24	238U/206Pb +/	-1 std err 20	7 Pb/206P +/-	1 std err Common Pb 20	7Pb/206Pb 206	Pb/238U 207 cori 1	5)6/238 age +/-1s	207/	206 age +/	-1s	uc.
SS01-103 c	NV05a114	sector	74	413	0.18	5.17	0.05	0.0842	0.0013	0.921	1131.9	9.8	1140	10	1297	30	88
GS01-76A	NV05a078	chaotic	45	184	0.24	5.09	0.09	0.0840	0.0022	0.922	1149.2	19.2	1157	20	1293	<mark>2</mark> 5	88
GS01-101B	NV05a107	sector	<u>5</u> 3	116	0.45	5.32	0.07	0.0815	0.0021	0.918	1104.3	14.1	1110	14	1233	51	06
GS01-3	NV05a013	sector	37	434	0.09	5.42	0.06	0.0802	0.0011	0.916	1086.6	11.5	1092	12	1202	27	9
GS01-79A	NV05a080	patchy	99	134	0.49	6.05	0.10	0.0784	0.0028	0.907	978.3	15.5	986	16	1156	70	85
GS01-11A	NV05a021	sector	36	225	0.16	5.45	0.06	0.0776	0.0015	0.916	1083.0	11.2	1085	Ļ	1137	8	96
GS01-19	NV05a037	homogenous	54	254	0.21	5.81	0.09	0.0776	0.0022	0.911	1018.6	15.0	1024	15	1136	57	6
GS01-57	NV05a066	sector	28	0 <mark>6</mark>	0.32	5.78	0.08	0.0774	0.0023	0.911	1023.4	14.0	1028	14	1133	<mark>99</mark>	9
GS01-56	NV05a065	chaotic	80	106	0.28	5.87	0.09	0.0762	0.0023	0.910	1010.6	14.8	1014	15	1101	09	92
GS01-92	NV05a096	ghost oscillatory	28	<mark>8</mark> 6	0.29	6.21	0.09	0.0762	0.0027	0.906	956.5	13.5	962	14	1100	71	87
GS01-90	NV05a094	patchy	35	107	0.32	5.99	0.07	0.0760	0.0020	0.908	9:066	12.2	<u> 9</u> 95	12	1095	54	9
GS01-29	NV05a046	sector	53	156	0.34	5.69	0.13	0.0749	0.0049	0.912	1042.7	24.5	1044	25	1066	131	86
GS01-50	NV05a061	sector	30	103	0.38	5.96	0.08	0.0749	0.0022	0.909	996.6	13.3	666	14	1065	<mark>9</mark> 9	<mark>94</mark>
GS01-38	NV05a056	homogenous	29	9 9	0.54	5.99	0.10	0.0737	0.0029	0.908	994.1	16.5	906	17	1033	79	96
GS01-26	NV05a044	chaotic	62	231	0.27	6.11	0.06	0.0732	0.0015	0.907	975.3	9.8	277	10	1019	4	96
GS01-24A	NV05a041	patchy	74	351	0.21	6.53	0.06	0.0725	0.0014	0.902	915.6	8.7	919	6	1001	39	92
GS01-72	NV05a077	homogenous	195	944	0.21	6.08	0.06	0.0724	0.000	0.907	981.5	8.7	982	0	966	26	8
GS01-52	NV05a062	sector	53	57	0.92	6.13	0.10	0.0717	0.0030	0.907	974.5	15.9	975	16	978	84	100
GS01-12	NV05a023	sector	36	101	0.35	5.67	0.13	0.0713	0.0031	0.913	1051.3	24.4	1048	25	<u> 9</u> 65	88	109
GS01-79B	NV05a081	homogenous	302	1639	0.18	6.14	0.06	0.0709	0.0007	0.906	974.1	8.7	973	6	954	20	102
GS01-98	NV05a103	homogenous	143	1016	0.14	6.40	0.05	0.0705	0.00.0	0.903	935.9	7.6	936	÷	944	26 26	66
GS01-20B	NV05a039	homogenous	0/	221	0.32	5.96	0.07	0.0705	0.0014	0.909	1003.0	11.1	1001	£	943	42	106
GS01-31	NV05a048	sector	02	133	0.52	6.36	0.08	0.0705	0.0020	0.904	941.4	12.0	941	12	942	<mark>28</mark>	100
GS01-37	NV05a055	sector	35	114	0:30	6.16	0.08	0.0705	0.0024	0.906	971.4	12.7	970	13	942	69	103
GS01-80	NV05a082	sector	138	244	0.57	6.06	0.06	0.0704	0.0014	0.907	985.7	10.0	984	10	939	42	105
GS01-14B	NV05a027	homogenous	162	953	0.17	6.09	0.10	0.0703	0.0019	0.907	981.6	15.8	980	16	936	2 6	105
GS01-85B	NV05a086	homogenous	260	1116	0.23	6.45	0.05	0.0702	0.0008	0.903	928.9	7.5	929	×	936	24	66
GS01-24B	NV05a042	homogenous	269	1778	0.15	6.35	0.05	0.0700	0.0006	0.904	942.9	7.7	942	°	930	19	101
GS01-7	NV05a017	sector	38	108	0.35	6.02	0.08	0.0700	0.0020	0.908	993.6	13.0	991	13	930	09	107
GS01-81	NV05a083	homogenous	211	871	0.24	6.44	0.06	0.0700	0.0009	0.903	930.3	7.8	<u>9</u> 30	80	928	26	100
GS01-55	NV05a064	ghost sector	251	1208	0.21	6.42	0.05	0.0700	2000.0	0.903	932.9	6.9	933	7	928	22	ģ
GS01-83	NV05a084	sector	104	973	0.11	6.08	0.05	0.0695	0.0007	0.907	985.0	8.2	<u>982</u>	÷	914	22	107
GS01-99	NV05a104	sector	170	846	0.20	6.37	0.05	0.0693	0.0008	0.904	941.2	7.7	940	°O	908	25	103
GS01-5	NV05a015	homogenous	58	701	0.08	6.52	0.06	0.0692	0.0009	0.902	920.6	8.4	920	0	905	28	102
GS01-16 ddd	NV05a033	patchy	139	308	0.45	6.50	0.07	0.0689	0.0015	0.902	922.8	10.2	922	10	897	43	103
GS01-76B	NV05a079	homogenous	177	988	0.18	6.50	0.06	0.0688	0.0008	0.902	923.4	7.6	922	~	892	23	103
GS01-88	NV05a093	chaotic	20	316	0.16	6.43	0.06	0.0680	0.0013	0.903	933.8	8.9	932	0	869	30	107
GS01-27	NV05a045	homogenous	22	106	0.54	6.15	0.07	0.0676	0.0022	0.906	6.679	11.6	971	12	858	99	113
GS01-11B	NV05a022	homogenous	187	878	0.21	6.50	0.05	0.0675	0.0008	0.902	925.4	7.5	923	00	852	25	108
GS01-47	NV05a059	sector	20	161	0.31	6.29	0.07	0.0667	0.0018	0.905	954.9	10.7	950	11	829	9 9	115

: SW54 55	=	Ē	Ratios for c	concordia	- 10000/40L00	1 of are Common	0/48900 48900/48200 48	100 Total 100		00/00 200 T	1200	1 000 900	-	4
5		2	2380/20862	0 +/-1 Std err	207 PD/206P1+	-/-1 sta err common		2380 207 00115	N	06/238 age +/-19	2071	zue age +	2 5	öuö
55 669	69	-	0.08 4.42	0.07	0.1300	0.0021	0.936	1246.9	19.3	1314	21	2097	28	63
285 595	995		0.48 3.92	0.07	0.0998	0.0018	0.950	1451.5	23.9	1465	25	1620	33	<u> 0</u> 6
83 452	152	ا	0.18 5.20	0.08	0.0861	0.0015	0.920	1123.6	16.2	1135	17	1341	33	85
62 559	559	_ ا	0.11 5.03	0.10	0.0826	0.0020	0.923	1163.6	21.7	1169	22	1260	47	<mark>6</mark> 3
66 69	66	-	0.66 6.54	0.11	0.0808	0.0028	0.902	905.7	14.8	918	15	1217	68	75
157 732	732	_	0.21 6.06	0.12	0.0803	0.0018	0.907	974.8	18.9	984	20	1205	44	82
57 86	86	-	0.67 6.37	0.10	0.0778	0.0027	0.904	932.5	14.8	940	15	1141	68	82
70 100	00	-	0.70 6.56	0.11	0.0748	0.0026	0.902	909.4	15.3	915	16	1064	69	86
63 84	84	-	0.74 6.44	0.12	0.0747	0.0028	0.903	925.8	17.5	931	18	1061	76	88
55 84	84	-	0.66 6.55	0.13	0.0736	0.0034	0.902	911.0	18.4	915	19	1030	92	80
56 82	82	-	0.69 6.72	0.12	0.0736	0.0032	0.900	889.7	16.1	895	16	1029	89	87
79 105	105		0.75 6.53	0.10	0.0734	0.0023	0.902	914.4	13.5	918	14	1026	65	6
92	<u>96</u>		0.70 6.27	0.10	0.0734	0.0027	0.905	951.4	15.6	954	16	1025	74	8
61 74	74		0.82 6.31	0.10	0.0734	0.0028	0.904	945.7	15.2	949	15	1025	78	<mark>63</mark>
61 82 (82		0.74 6.59	0.11	0.0734	0.0033	0.901	906.9	15.5	911	16	1024	6	89
78 88	88	_	0.88 6.25	0.14	0.0732	0.0039	0.905	953.8	21.4	956	22	1021	108	94
63 80	80		0.79 6.51	0.11	0.0729	0.0025	0.902	917.8	15.3	921	16	1011	02	91
70 102 (102		.69 6.66	0.12	0.0727	0.0025	0.901	898.2	16.3	<u>9</u> 02	17	1007	70	6
96 179 0	0 6/1	0	55 6.65	0.10	0.0725	0.0020	0.901	8.99.8	13.1	903	13	1001	55	06
60 95 0	95	0	.63 6.66	0.13	0.0725	0.0031	0.901	898.3	17.6	902	10	666	87	06
85 160 0	160	0	.53 6.52	0.09	0.0725	0.0020	0.902	917.0	12.2	920	12	666	99	92
60 83 (83		0.73 6.59	0.12	0.0724	0.0028	0.901	907.2	16.4	910	17	8 66	8	91
59 82	82	-	0.72 6.52	0.13	0.0722	0.0029	0.902	917.4	17.9	920	18	066	8	6 3
57 83	83	-	0.69 6.71	0.14	0.0721	0.0035	0.900	892.7	18.0	896	18	066	100	91
156 311	11	-	0.50 6.54	60.0	0.0721	0.0016	0.902	914.5	12.3	917	13	6 86	44	<mark>3</mark> 3
78 120	120	-	0.65 6.55	0.11	0.0719	0.0025	0.902	913.1	14.6	<mark>91</mark> 6	15	984	70	<mark>9</mark> 3
72 108	108	-	0.67 6.81	0.12	0.0718	0.0023	0.899	879.7	15.2	883	16	981	99	0 6
61 81	<mark>8</mark>	-	0.75 6.53	0.12	0.0718	0.0027	0.902	916.4	16.3	919	17	980	76	94
102 161	161	_	0.63 6.46	0.10	0.0717	0.0020	0.903	926.2	14.4	<mark>9</mark> 28	15	979	20	<u>9</u> 2
86 153	53	-	0.56 6.73	0.10	0.0717	0.0020	0.900	890.4	12.9	8 <u>0</u> 3	13	978	57	9
173 815	315	-	0.21 6.68	0.08	0.0717	0.0011	0.900	896.0	10.1	899	10	677	31	<mark>9</mark> 2
64 86	86	-	0.75 6.42	0.12	0.0716	0.0027	0.903	930.9	17.5	933	18	975	17	<u>96</u>
52 81	81	_	0.64 6.37	0.12	0.0716	0.0027	0.904	939.4	16.7	941	17	975	17	67
108 109	60	-	0.99 6.68	0.10	0.0716	0.0023	0.900	896.4	13.3	899	14	974	67	92
76 124	124		0.61 6.41	0.10	0.0716	0.0022	0.903	933.6	14.6	9 35	15	974	64	<u>9</u> 6
62 94	94	-	0.66 6.55	0.11	0.0716	0.0026	0.902	914.4	15.2	917	16	974	75	94
54 77	77	_	0.70 6.34	0.11	0.0714	0.0027	0.904	943.1	15.6	944	16	970	78	67
61 92	92	-	0.66 6.39	0.11	0.0714	0.0023	0.904	936.1	15.5	937	16	<u> 696</u>	99	26
64 80	80	_	0.79 6.42	0.11	0.0713	0.0024	0.903	931.4	16.1	9 33	16	996	68	26

	Appendix A	V: Table 6: SW54			ä	atios for conc.	ordia										
Sample	Analysis no	o. CL zoning	ے ۲	F	1/U 25	38U/206Pb +/-1	std err 20;	7 Pb/206P +/-	1 std err Common Pb	207Pb/206Pb 206Pb/238U	207 cori 1s	20	6/238 age +/-1s	207/	'206 age +/-	15 CC	Ŀ,
SW54-7	oc05a022	sector	99	87	0.75	6.82	0.12	0.0713	0.0026	0.899	879.2	14.6	882	15	965	74	9
SW54-27	oc05a047		78	122	0.63	6.47	0.11	0.0712	0.0021	0.903	925.3	15.0	927	15	962	62	96
SW54-115A	0C05a110	chaotic	54	213	0.25	6.37	0.09	0.0711	0.0021	0.904	939.3	13.2	940	13	961	61	98
SW54-89B	oc05a098	sector	<u>0</u>	125	0.65	6.46	0.10	0.0711	0.0021	0.903	926.8	14.1	928	14	<mark>9</mark> 60	59	97
SW54-99A	oc05a103	chaotic	63	88	0.72	6.63	0.11	0.0709	0.0025	0.901	903.2	14.7	<u>305</u>	15	955	73	3 2
SW54-46	oc05a065	sector	70	94	0.74	6.58	0.10	0.0708	0.0024	0.901	910.9	13.6	912	14	953	70	9 6
SW54-41D	0C05a064	homogenous	96	172	0.56	6.52	0.10	0.0707	0.0021	0.902	918.8	13.7	920	14	<u>9</u> 48	62	97
SW54-41B	oc05a062	chaotic	38	214	0.18	6.06	0.10	0.0707	0.0019	0.907	986.5	15.7	<u>985</u>	16	<u>9</u> 48	55	104
SW54-70	0C05a086	sector	42	243	0.17	6.60	0.09	0.0707	0.0016	0.901	908.5	11.8	<u>9</u> 10	12	947	47	96
SW54-2A	oc05a016	sector	82	138	0.59	6.66	0.10	0.0706	0.0021	0.901	900.4	13.3	902	14	946	62	99
SW54-117	0C05a116	sector	85	130	0.66	6.45	0.10	0.0705	0.0021	0.903	929.1	14.1	<u>9</u> 30	14	944	62	66
SW54-107	oc05a109	sector	66	92	0.72	6.90	0.12	0.0704	0.0025	0.898	870.3	14.6	873	15	941	73	83
SW54-25A	0C05a044	sector	89	163	0.55	6.60	0.10	0.0704	0.0021	0.901	908.2	13.0	606	13	<u>9</u> 40	60	97
SW54-85	oc05a095	sector	65	91	0.72	6.69	0.12	0.0703	0.0026	0.900	896.1	15.6	897	16	<mark>936</mark>	75	<u>9</u> 6
SW54-90	0C05a100	sector	65	100	0.65	6.65	0.10	0.0703	0.0027	0.901	902.5	13.9	904	14	936	79	97
SW54-49	oc05a070	oscillatory	65	94	0.69	6.13	0.10	0.0702	0.0024	0.907	975.6	16.1	974	16	935 935	70	104
SW54-30	0C05a050	chaotic	55	8	0.67	6.54	0.11	0.0702	0.0029	0.902	916.8	14.7	917	15	934	85	80
SW54-22	oc05a039	sector	69	119	0.58	6.66	0.14	0.0702	0.0027	0.901	9.006	18.0	902	18	<mark>933</mark>	80	97
SW54-66	0C05a085	chaotic	105	186	0.57	6.32	0.09	0.0701	0.0018	0.904	947.8	12.9	947	13	932	52	102
SW54-47A	oc05a066	sector	52	272	0.19	6.49	0.09	0.0701	0.0016	0.902	923.2	12.5	923	13	<u>9</u> 31	46	66
SW54-106	oc05a108	sector	69	<u>86</u>	0.80	6.67	0.13	0.0701	0.0027	0.900	898.9	16.9	006	17	<u>9</u> 30	79	97
SW54-51A	oc05a076	sector	62	88	0.71	6.19	0.11	0.0699	0.0027	0.906	966.3	17.2	<u>965</u>	18	927	80	104
SW54-25B	oc05a045	homogenous	181	378	0.48	6.49	0.08	0.0699	0.0014	0.902	923.7	11.3	924	12	925	40	100
SW54-40A	oc05a059	sector	42	227	0.18	6.35	0.10	0.0699	0.0023	0.904	943.5	14.6	943	15	925	68	102
SW54-24A	oc05a042	sector	128	236	0.54	6.47	0.10	0.0699	0.0015	0.903	926.1	13.9	926	14	925	44	100
SW54-3	oc05a018	sector	85	141	0.60	6.52	0.13	0.0698	0.0024	0.902	920.1	17.3	920	18	924	7	0
SW54-14	oc05a028	sector	70	66	0.71	6.52	0.10	0.0698	0.0025	0.902	920.4	13.5	921	14	923	74	100
SW54-51B	oc05a077	homogenous	174	1108	0.16	6.46	0.08	0.0693	0.0009	0.903	928.3	11.0	928	11	206	27	102
SW54-58	oc05a081	sector	80	<mark>88</mark>	0.81	6.54	0.13	0.0693	0.0029	0.902	917.0	17.9	917	18	907	87	101
SW54-89C	oc05a099	homogenous	138	1855	0.07	6.43	0.07	0.0693	0.0007	0.903	932.2	10.2	<u>9</u> 31	1	206	2	03
SW54-100C	oc0.5a107	homogenous	89	146	0.61	6.51	0.09	0.0692	0.0021	0.902	921.9	12.8	921	13	904	63	102
SW54-99B	oc05a104	homogenous	169	591	0.29	6.56	0.09	0.0692	0.0011	0.902	914.4	12.6	<mark>9</mark> 14	13	904	34	0
SW54-115B dd	1d oc05a115	homogenous	170	760	0.22	6.57	0.09	0.0688	0.0010	0.902	913.7	12.2	913	13	8 <mark>9</mark> 3	31	102
SW54-52A	oc05a078	homogenous	72	115	0.63	6.55	0.11	0.0684	0.0023	0.902	917.3	15.2	916	15	881	69	104
SW54-82A	oc05a089	chaotic	73	114	0.64	6.46	0.11	0.0682	0.0022	0.903	929.5	14.8	928	15	875	99	<u>1</u> 06
SW54-40B	oc05a060	sector	71	<mark>06</mark>	0.79	6.51	0.10	0.0678	0.0023	0.902	923.2	14.0	921	14	863	7	107
SW54-62	oc05a083	patchy	63	118	0.54	6.93	0.12	0.0674	0.0022	0.898	870.1	14.8	869	15	850	68	102
SW54-32	oc05a055	sector	86	204	0.42	6.78	0.09	0.0670	0.0019	0.899	888.2	11.8	887	12	837	59	1 06
SW54-10	oc0.5a025	sector	63	87	0.73	6.61	0.12	0.0664	0.0024	0.901	911.6	16.2	606	16	820	75	11

	Appendix A	V: Table 5: FS0223			Rat	os for conce	rdia										
Sample	Analysis no	o.CL zoning Th	-	Ē	U 238	U/206Pb +/-1	std err 207	7Pb/206P +/-	1 std err Common Pb	207 Pb/206 Pb 206 Pb/2	238U 207 corr 15		06/238 age +	/-1s	207/206 age	+/-1s	CONC.
FS0223-19 a	0C27b144	sector	8	576	0.01	4.11	0.13	0.0915	0.0040	0.944	1400.6	43.9	1405	45	1457	82	96
FS0223-40 c	OC27b160	chaotic	24	149	0.16	6.41	0.13	0.0792	0.0034	0.903	925.4	18.8	935	19	1178	84	62
FS0223-59A	OC27b172	patchy	¢	551	0.02	5.64	0.15	0.0786	0.0033	0.913	1046.9	28.0	1052	29	1161	84	91
FS0223-36	OC27b153	chaotic	14	193	0.07	6.11	0.13	0.0783	0.0032	0.907	969.7	19.7	677	20	1155	82	85
FS0223-81	OC27b190	chaotic	12	171	0.07	6.11	0.16	0.0770	0.0029	0.907	971.5	24.7	977	25	1120	76	87
FS0223-53	OC27b167	patchy	9	214	0.03	6.39	0.14	0.0758	0.0031	0.904	931.5	20.1	937	2	1090	0	<mark>86</mark>
FS0223-17	OC27b143	sector	9	193	0.03	6.20	0.13	0.0754	0.0027	0.906	959.3	19.7	964	20	1078	71	<mark>68</mark>
FS0223-93	OC27b206	chaotic	20	121	0.41	6.14	0.21	0.0751	0.0040	0.906	968.8	32.6	973	34	1072	108	91
FS0223-94	OC27b207	chaotic	25	171	0.14	6.48	0.19	0.0747	0.0030	0.903	920.1	25.8	925	27	1060	80	87
FS0223-77	OC27b187	sector	12	441	0.03	6.31	0.17	0.0741	0.0020	0.904	944.2	25.2	948	26	1044	54	91
FS0223-58	OC27b171	sector	24	239	0.10	6.15	0.13	0.0739	0.0025	906.0	968.7	20.3	971	2	1040	69	<mark>8</mark> 3
FS0223-86	OC27b199	sector	47	192	0.25	6.32	0.16	0.0739	0.0026	0.904	943.1	23.2	947	24	1038	71	91
FS0223-4	OC27b129	sector	¢	181	0.04	6.40	0.13	0.0737	0.0031	0.903	932.2	19.0	<mark>9</mark> 36	19	1033	<mark>86</mark>	91
FS0223-67	OC27b181	patchy	14	321	0.04	5.31	0.19	0.0736	0.0038	0.918	1116.4	37.9	1112	30	1029	106	108
FS0223-88	OC27b201	sector	7	186	0.04	6.05	0.20	0.0735	0.0042	0.908	984.1	31.6	<u>986</u>	32	1029	117	<mark>96</mark>
FS0223-52	OC27b166	chaotic	20	261	0.08	6.25	0.14	0.0733	0.0023	0.905	954.1	20.9	967	22	1023	<u>99</u>	94
FS0223-8	OC27b134	chaotic	7	200	0.04	6.65	0.14	0.0732	0.0030	0.902	912.7	19.7	916	20	1019	82	<mark>06</mark>
FS0223-30	OC27b149	homogenous	12	162	0.07	6.25	0.12	0.0731	0.0029	0.905	953.8	17.9	956	100	1016	∞	94
FS0223-38	OC27b154	patchy	1 3	283	0.05	6.44	0.12	0.0727	0.0024	0.903	928.2	16.9	<u>9</u> 31	17	1005	99	<mark>83</mark>
FS0223-89	OC27b202	patchy	16	169	0.09	6.22	0.16	0.0726	0.0030	0.905	959.5	24.3	961	25	1003	84	<mark>96</mark>
FS0223-69	OC27b182	sector	27	252	0.11	6.31	0.16	0.0724	0.0024	0.904	946.3	23.3	948	24	366	89	9 6
FS0223-31	OC27b150	chaotic	20	187	0.11	6.32	0.13	0.0723	0.0029	0.904	945.1	19.6	947	20	365	82	96
FS0223-85	OC27b194	homogenous	35	170	0.21	6.37	0.19	0.0723	0.0030	0.904	938.2	26.9	940	28	365	85	96
FS0223-49	OC27b163	homogenous	26	190	0.14	6.49	0.12	0.0723	0.0030	0.902	921.7	16.2	924	17	365 265	85	<mark>8</mark> 3
FS0223-28	OC27b148	chaotic	16	498	0.03	6.23	0.16	0.0722	0.0029	0.905	957.9	23.3	959	24	8 66	83	97
FS0223-82	OC27b191	sector	12	167	0.07	6.48	0.16	0.0722	0.0029	0.903	923.3	22.5	926	33	992	8	<mark>83</mark>
FS0223-41	OC27b161	sector	0	154	0.06	6.57	0.15	0.0722	0.0035	0.902	910.4	19.8	913	30	992	100	92
FS0223-76	OC27b186	sector	<mark>1</mark> 9	194	0.10	6.27	0.18	0.0718	0.0031	0.905	953.1	26.6	954	27	619	87	97
FS0223-20	OC27b145	sector	34	230	0.15	6.53	0.13	0.0716	0.0030	0.902	915.8	18.4	918	19	976	<mark>8</mark> 5	<mark>9</mark> 4
FS0223-11	OC27b140	chaotic	ę	213	0.05	6.47	0.12	0.0716	0.0027	0.903	925.1	17.3	927	10	973	76	96
FS0223-10	OC27b139	homogenous	30	203	0.15	6.39	0.12	0.0714	0.0028	0.904	936.0	17.2	937	18	970	80	97
FS0223-1	OC27b127	sector	7	176	0.04	6.42	0.14	0.0714	0.0031	0.903	931.9	19.9	<u> 9</u> 33	20	968	87	96
FS0223-56	OC27b169	sector	<mark>9</mark>	205	0.09	6.20	0.13	0.0712	0.0026	906.0	963.4	20.0	963	2	962	75	90
FS0223-6	OC27b132	chaotic	29	166	0.17	6.41	0.14	0.0709	0.0032	0.903	933.6	19.9	934	20	955	92	80
FS0223-92	OC27b205	chaotic	16	192	0.08	6.29	0.17	0.0708	0.0026	0.905	951.0	24.7	951	5 2	953	76	10 10
FS0223-47	OC27b162	chaotic	21	195	0.11	6.52	0.14	0.0708	0.0027	0.902	918.8	19.2	920	20	952	79	97
FS0223-90	OC27b203	chaotic	<mark>9</mark>	198	0.09	6.39	0.16	0.0708	0.0026	0.904	937.2	22.3	938	33	951	76	<mark>6</mark>
FS0223-5B	OC27b131	chaotic	35	180	0.20	6.34	0.12	0.0706	0.0030	0.904	944.1	18.1	944	18	945	86	100
FS0223-57	OC27b170	chaotic	23	221	0.10	6.42	0.13	0.0705	0.0024	0.903	932.8	17.8	933	18	943	71	66
FS0223-59B	OC27b173	sector	10	273	0.07	6.35	0.11	0.0703	0.0022	0.904	943.5	15.5	943	16	938	65	101

	Appendix A	V: Table 5: FS0223			Raf	as for concor	dia										
Sample	Analysis no	CL zoning Th	2	F	/U 238	U/206Pb +/-1 s	td err 207P	b/206P +/	-1 std err C	ommon Pb 207Pb/206Pb	206Pb/238U 207 corr 1s	ā	06/238 age +/	/-1s 2	07/206 age 4	+/-1s	onc.
FS0223-51	OC27b165	chaotic	31	113	0.28	6.50	0.18	0.0703	0.0042	0.902	922.0	25.5	923	26	938	123	98
FS0223-79	OC27b188	chaotic	9	226	0.03	6.23	0.19	0.0702	0.0024	0:905	960.7	28.0	096	29	933	71	103
FS0223-55	OC27b168	sector	9	261	0.02	6.39	0.12	0.0701	0.0022	0:904	937.8	16.8	938	17	931	<mark>8</mark> 3	101
FS0223-13	OC27b142	chaotic	24	229	0.10	6.29	0.12	0.0698	0.0025	0:905	952.7	17.9	952	18	921	73	103
FS0223-87	OC27b200	sector	7	331	0.02	6.35	0.16	0.0697	0.0020	0.904	944.2	23.1	943	24	920	09	102
FS0223-35	OC27b152	homogenous	57	394	0.14	6.65	0.10	0.0695	0.0021	0:901	902.9	13.7	903	14	915	61	66
FS0223-65	OC27b180	chaotic	ŝ	192	0.04	6.41	0.16	0.0695	0.0029	0.903	935.9	23.0	935	24	913	84	102
FS0223-39	OC27b159	homogenous	24	133	0.18	6.45	0.13	0.0693	0.0033	0.903	930.4	18.7	930	19	907	8	102
FS0223-75	OC27b185	chaotic	2	268	0.08	6.36	0.17	0.0693	0.0022	0.904	943.1	24.6	942	25	906	67	104
FS0223-23 di	d OC27b146	chaotic	20	163	0.12	6.39	0.14	0.0690	0.0029	0.904	939.3	19.7	938	20	868	87	104
FS0223-7	OC27b133	chaotic	18	218	0.08	6.56	0.13	0.0688	0.0026	0.902	916.0	17.3	915	9	894	11	102
FS0223-27	OC27b147	chaotic	19	340	0.06	6.47	0.12	0.0686	0.0020	0.903	927.2	16.1	926	17	886	20	104
FS0223-62	OC27b174	sector	20	216	0.09	6.16	0.13	0.0682	0.0027	0.906	974.1	20.8	970	2	874	0	111
FS0223-70	OC27b183	sector	œ	275	0.03	6.48	0.15	0.0680	0.0023	0.902	926.7	21.4	925	22	868	71	107
FS0223-12	OC27b141	sector	7	204	0.03	6.37	0.14	0.0680	0.0026	0.904	942.0	19.8	63 0	20	868	.	108
FS0223-2	OC27b128	sector	46	184	0.25	6.64	0.14	0.0679	0.0030	0.901	905.4	18.9	904	19	865	92	105
FS0223-83	OC27b192	sector	22	203	0.11	6.78	0.16	0.0676	0.0027	0.899	887.3	20.5	886	21	857	84	103
FS0223-84	OC27b193	sector	10	172	0.06	6.21	0.17	0.0675	0.0031	0.906	966.2	25.6	962	26	852	<mark>9</mark> 2	113
FS0223-50	OC27b164	patchy	24	239	0.10	7.02	0.16	0.0674	0.0023	0.897	858.3	19.3	858	20	851	72	101
FS0223-72	OC27b184	sector	6	187	0.05	6.35	0.15	0.0670	0.0029	0.904	947.2	22.3	943	23	838	0 6	113
FS0223-91	OC27b204	homogenous	21	346	0.06	7.28	0.18	0.0669	0.0022	0.895	829.1	19.8	829	20	836	8	66
FS0223-80	OC27b189	chaotic	13	240	0.05	6.38	0.15	0.0666	0.0024	0.904	942.9	21.9	639	22	825	22	114
FS0223-64	OC27b179	chaotic	3	232	0.13	6.15	0.16	0.0664	0.0024	0.906	976.7	24.8	971	25	820	76	118
FS0223-34	OC27b151	sector	17	211	0.08	7.04	0.16	0.0662	0.0027	0.897	857.8	18.5	856	19	814	87	105

References

Andersen, T 2002, 'Correction of common Pb in U-Pb analyses that do not report 204Pb', *Chemical Geology*, vol. 192, pp.59-79.

Belousova, E, Griffin, W, O'Reilly, S & Fisher, N 2002, 'Igneous zircon: trace element composition as an indicator of source rock type', *Contributions to Mineral Petrology*, vol.143, pp.602-622.

Blichert-Toft, J, Chauvel, C & Albarède, F 1997 'The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system', *Earth and Planetary Science Letters*, vol.148, pp.243-258. Erratum: *Earth and Planetary Science Letters*, vol.154 (1998), p.349.

Dunkley, D, Clarke, G & White, R 2002, 'Structural and metamorphic evolution of the mid-late Proterozoic Rayner Complex, Cape Bruce, East Antartica', in J Gample, D Skinner & S Henrys (eds.), *Antarctica at the close of a millennium. The Royal Society of New Zealand Bulletin*, vol.35, The Royal Society of New Zealand, Wellington, pp.31-42.

Ellis, D 1983, 'The Napier and Rayner Complexes of Enderby Land, Antarctica – Contrasting styles of metamorphism and tectonism', in R Oliver, P James and J Jago (eds.), *Antarctic Earth Science,* Cambridge University Press, Cambridge, pp.20-24.

Gehrels, G, Valencia, V, Pullen, A & Baker, M 2006, 'Detrital zircon U-Th-Pb geochronology by LA-MC-ICPMS at the Arizona LaserChron Center', *Geological Society of America Abstracts with Programs*, vol.38, no.7, p.408.

Halpin, J, Gerakiteys, C, Clarke, G, Belousova, E & Griffin, W 2005, 'In-situ U-Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica', *Contributions to Mineral Petrology*, vol.148, pp.689-706.

Halpin, J, White, R, Clarke, G & Kelsey D 2007a, 'The Proterozoic P-T-t evolution of the Kemp Land coast, east Antarctica; constrains from Si-saturated and Si-undersaturated Metapelites', *Journal of Petrology*, vol.48, no.7, pp.1321-1349.

Halpin, J, Clarke, G, White, R & Kelsey, D 2007b, 'Contrasting P-T-t paths for neoproterozoic metamorphism in MacRobertson and Kemp Lands, east Antarctica', *Journal of Metamorphic Geology*, vol.25, pp.683-701.

Halpin, J, Clarke, G & White, R 2007c, 'Evolution of the Stillwell Hills, Rayner Complex, east Antarctica; a reworked cratonic margin', Halpin, J Thesis, University of Sydney, Sydney.

Harley, S & Kelly, N 2007, 'Ancient Antarctica: the Archaean of the east Antarctic shield', in *Earth's oldest rocks*, Developments in Precambrian Geology, Vol.15

Howard, K, Hand, M, Barovich, K, Reid, A, Wade, B & Belousova, E 2009, 'Detrital zircon ages: Improving interpretation va Nd and Hf isotopic data', *Chemical Geology*, vol.262, pp.277-292.

Howard, K, Hand, M, Barovich, K, Payne, J & Belousova, E 2011, 'U-Pb, Lu-Hf and Sm-Nd isotopic constraints on provenance and depositional timing of metasedimentary rocks in the western Gawler Craton: Implications for Proterozoic reconstruction models', *Precambrian Research*, vol.184, pp.43-62.

Kelly, N & Harley, S 2004, 'Orthopyroxene-corundum in Mg-Al-rich granulites from the Oygarden Islands, east Antarctica'. *Journal of Petrology*, vol.45, pp.1481-1512.

Ludwig, K 2003, 'Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel', *Berkeley Geochrological Centre Special Publication*, no.4.

MacKenzie, W & Adams, A 2009, 'A colour atlas of rocks and minerals in thin section', Manson Publishing Ltd, London.

Rignot, E, Bamber, J, van den Broeke, M, Davis, C, Li, Y, van de Berg, W & van Meijgaard, E 2008, 'Recent Antarctic ice mass loss from radar interferometry and regional climate modelling', *Nature Geoscience*, vol.1, pp.106–110.

Trail, D 1970, 'ANARE 1961 Geological Traverses on the Mac.Robertson Land and Kemp Land Coast', *Bureau of Mineral Resources Geology and Geophysics Report*, vol.135, pp.1-32.

Veevers, J (ed.), 2000, *Billion-year earth history of Australia & neighbours in Gondwanaland*, GEMOC Press, Sydney, pp. 1-400.

Veevers, J, Belousova, E, Saeed, A, Sircombe, K, Cooper, A & Read, S 2006, 'Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–500 Ma age, TDM of 2.0–1.0 Ga, and alkaline affinity', *Earth-Science Reviews*, vol.76, pp. 135–174.

Veevers, J & Saeed, A 2008, 'Gamburtsev Subglacial Mountains provenance of Permian–Triassic sandstones in the Prince Charles Mountains and offshore Prydz Bay: integrated U–Pb and TDM ages and host-rock affinity from detrital zircons', *Gondwana Research*, vol.14, pp.316–342.

Veevers, J & Saeed, A 2011, 'Age and composition of Antarctic bedrock reflected by detrital zircons, erratic and recycled microfossils in the Prydz Bay – Wilkes Land – Ross Sea – Marie Byrd Land sector (70° - 240°E)', *Gondwana Research*, Article in Press.

Wang, X, Griffin, W, Chen, J, Huang, P & Li, X 2011, 'U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients', *Acta Geologica Sinica*, English (ed.), vol. 85, no. 1, pp.164-174.

Xu, P, Wu, F, Xie, L & Yang, Y 2004, 'Hf isotopic compositions of the standard zircons for U-Pb dating, *Chinese Science Bulletin*', vol.49, no.15, pp.1642-1648.

Young, D & Black, L 1991, 'U-Pb zircon dating of Proterozoic igneous charnockites from the Mawson Coast, East Antarctica'. *Antarctic Science*, vol.3, pp.205-216.

Zhao, J-X, Ellis, D, Kilpatrick, J & McCulloch, T 1997, 'Geochemical and Sr-Nd isotopic study of charnockites and related rocks in the northern Prince Charles Mountains, East Antarctica: implications for charnockite petrogenesis and proterozoic crustal evolution', *Precambrian Research*, vol.81, pp.37-66.