
Robust Digital Watermarking of Multimedia Objects

by

Gaurav Gupta,

Dissertation

Presented to

Department of Computing,

Macquarie University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Macquarie University

August 2008

The Dissertation Committee for Gaurav Gupta
certifies that this is the approved version of the following dissertation:

Robust Digital Watermarking of Multimedia Objects

Committee:

Professor Josef Pieprzyk, Supervisor

Dr Hua Xiong Wang, Co-Supervisor

Contents

Contents

List of Tables v

List of Figures vii

List of Algorithms ix

Acknowledgments xiii

Abstract xv

Statement of Candidate xix

List of Publications xxi

Notations Used xxiii

Chapter 1 Introduction 1

1.1 Digital Watermarking . 1
1.2 Digital Fingerprinting . 3
1.3 Motivation . 3
1.4 Contributions . 4

Chapter 2 Background 7

2.1 Fundamental Mathematics . 7
2.2 Statistics . 9
2.3 Cryptography . 11
2.4 Hash Functions . 15
2.5 Natural Language Documents . 16
2.6 Software . 21

i

Contents

2.7 Databases . 25

Chapter 3 Overview of watermarking 27

3.1 Approaches to Watermarking . 30
3.2 Text and Natural Language Watermarking 32
3.3 Software Watermarking . 39
3.4 Database Watermarking . 56
3.5 Conclusion . 73

Chapter 4 Natural Language Watermarking 74

4.1 Current Scenario . 75
4.2 Outline of Proposed Scheme . 76
4.3 Proposed Scheme . 78
4.4 Analysis . 86
4.5 Experimental Results . 88
4.6 Conclusion . 89

Chapter 5 Software Watermarking 91

5.1 Description of Myles and Jun Watermarking Scheme 94
5.2 Proposed Attack . 97
5.3 Implementation Details and Results 100
5.4 Surviving the Debugging Attack . 103
5.5 Analysis . 106
5.6 Conclusion . 106

Chapter 6 Semi-blind and Reversible Database Watermarking 109

6.1 Introduction . 109
6.2 Related Work and Agrawal-Kiernan Scheme 110
6.3 Analysis of Agrawal-Kiernan Watermarking Scheme 113
6.4 Modified Algorithms . 116
6.5 Analysis . 117
6.6 Conclusion . 124

Chapter 7 Blind and Reversible Database Watermarking 125

7.1 Introduction . 125
7.2 Model of Adversary . 129
7.3 Proposed Scheme . 130

ii

Contents

7.4 Experimental Results . 131
7.5 Analysis . 135
7.6 Conclusion . 138

Chapter 8 Conclusion and future research 139

8.1 Thesis Summary . 139
8.2 Future Research Directions . 142

Bibliography 144

Vita 154

iii

List of Tables

List of Tables

3.1 Comparative study of text watermarking schemes 40

3.2 Comparative study of software watermarking schemes 55

3.3 Meal table . 58

3.4 Combination table . 59

3.5 Version 1 of combination table . 60

3.6 Version 2 of combination table . 60

3.7 Original Table . 62

3.8 Watermarked with bit 1 . 62

3.9 Watermarked with bit 0 . 63

3.10 Foreign exchange rates . 68

3.11 Foreign exchange rates (watermarked) 68

3.12 Table with modified primary key . 69

3.13 Table with binary representation of numerical values 71

3.14 Watermarked table with binary representation of numerical values . 71

3.15 Owner identification possibilities . 72

4.1 Natural language and text watermarking methods 76

4.2 Pseudo-randomization of watermarking sequence 80

4.3 Comparison of empirical results with theoretical values 81

4.4 Illustration of majority voting . 86

4.5 Text modification with increasing watermark size 89

4.6 Text amplification with increasing watermark size 89

6.1 Original foreign exchange rates relation 114

6.2 Watermarked foreign exchange rates relation 114

6.3 Probability of success for bit flipping attack 119

v

List of Tables

6.4 Detecting watermarks in multi-party environment 121

vi

List of Figures

List of Figures

3.1 Bishop’s crosier (Australia), 16th century 28

3.2 Watermarks in Australian currency bill 28

3.3 Watermarks in German currency bill 29

3.4 Watermark in Spanish document from 17th century 29

3.5 Magnified view of watermark from Figure 3.4 30

3.6 Inserting intermediate code without effecting output 42

3.7 61× 73 = 3.64 + 2.63 + 3.62 + 4.61 + 1.60 in Radix-6 encoding [29] . 45

3.8 Planted Planar Cubic Tree [29] . 45

3.9 Watermarks 010 and 111 resulting in the same watermarked graph . 50

3.10 Launching an attack on second-LSB based watermarking 64

4.1 Generating a paragraph permutation using AES 79

4.2 Keys required to get a valid permutation using AES-128 82

5.1 Branch function modifying return addresses 93

5.2 Function set F invoked using secret input parameter keyAM 96

5.3 Fingerprint branch function modifies the return address itself 107

5.4 Calling instruction modifies address using key returned by fingerprint
branch function . 107

6.1 Owner identification . 122

6.2 Multiple watermarking scenario - dotted lines denote distortion and
solid lines denote watermarking . 122

7.1 Effect of changing fraction of tuples marked on detection 134

7.2 Effect of changing percentage of marks that need to be detected to
establish watermark presence . 134

vii

List of Figures

7.3 Effect of changing attack levels on detection 135

viii

List of Algorithms

List of Algorithms

1 Euclid’s algorithm . 8

2 Euclid’s extended algorithm . 8

3 RSA key generation . 13

4 RSA encryption . 13

5 RSA decryption . 13

6 RSA digital signature generation [68] 15

7 RSA digital signature verification [68] 15

8 Watermark insertion changing inter-word spacing 34

9 Watermarking using collocationally-based synonymy 36

10 Natural language watermarking [14] 40

11 QP watermark insertion [75, 76] . 48

12 QP watermark extraction [75, 76] . 49

13 QPS watermark insertion[70] . 51

14 QPS watermark extraction [70] . 52

15 Watermark insertion in numeric set 58

16 Uniform distribution attack . 64

17 Watermark insertion [11] . 66

18 Watermark detection [11] . 66

19 Sentence sequence generation . 80

20 Natural language watermark insertion 85

21 Watermark insertion [11] . 111

22 Watermark detection [11] . 112

23 Reversible and semi-blind watermark insertion 117

24 Reversible and semi-blind watermark detection 118

25 Semi-blind owner identification . 119

26 Reversible and blind watermark insertion 132

ix

List of Algorithms

27 Reversible and blind watermark detection 133
28 Blind owner identification . 137

x

To Gunjan for all her love and support. And my parents and Tina for being the

wonderful people they are

Acknowledgments

Acknowledgments

In our life, we come across many people who inspire and motivate us, who help

us become a better person and a better professional. I would like to take this

opportunity to thank them for all they have done for me.

Firstly, I thank Josef for his tremendous support, not only for my research,

but also for my academic and teaching interests. Thanks to Huaxiong as well for

providing excellent guidance in the brief absence of my main supervisor. I appreciate

the assistance provided by Daniel, Saurabh, Krystian, Vijaykrishnan, and Simon

during various stages of my research. I thank Mohan for introducing me to the

interesting topic of digital watermarking during my master’s degree and taking the

time to supervise me for my master’s dissertation. I would also like to thank all my

friends who have made a positive difference in my life - Gunjan, Ravi, Maya, Anjali,

Jagrat, Colwin, Gautam, Urvi, Mohit, Reema, Meeta, Teju, Eric, Raghu, Radhika,

Daniel, Menno, and Tanja. I thank Gunjan’s parents, Shekhar and Shobha, for their

belief as well.

Thanks to Prof. Banerjee for bringing out the best in me during my under-

graduation. He is the best teacher I have ever had and a huge inspiration for me.

Very special thanks to Michelle for taking the time to read my thesis and giving her

valuable feedback, it is really appreciated.

Most importantly, I thank my parents and my sister for being so kind, loving,

and nurturing, despite the brat that I was. They always showed confidence in me

and support and appreciated me for what I am.

xiii

Acknowledgments

I also want to acknowledge my late friend, Ashish, one of the nicest guy I

have ever met, one who was the best at everything he did (and made us jealous in

the process). I know he is in a better place; may his soul rest in peace.

The last part is the trickiest one; I want to acknowledge Gunjan’s support

during all the seven years that we’ve been together and four years that we have been

married (not that I am keeping a count!), but at the same time thanking her for

all she has done makes her indirect contributions towards this thesis look so petty.

I would just like to take a moment to appreciate how she appreciated my work,

instilled confidence in me and applauded every little success I had in my research

as if I had won an Olympic medal. So, far all that, and more, I love you Gunjan.

xiv

Abstract

Abstract

Robust Digital Watermarking of Multimedia Objects

Publication No.

Gaurav Gupta

Macquarie University, 2008

Supervisor: Professor Josef Pieprzyk

Digital watermarking has generated significant research and commercial interest in

the past decade. The primary factors contributing to this surge are widespread use

of the Internet with improved bandwidth and speed, regional copyright loopholes in

terms of legislation; and seamless distribution of multimedia content due to peer-

to-peer file-sharing applications.

Digital watermarking addresses the issue of establishing ownership over mul-

timedia content through embedding a watermark inside the object. Ideally, this

watermark should be detectable and/or extractable, survive attacks such as digi-

tal reproduction and content-specific manipulations such as re-sizing in the case of

images, and be invisible to the end-user so that the quality of the content is not

xv

Abstract

degraded significantly. During detection or extraction, the only requirements should

be the secret key and the watermarked multimedia object, and not the original un-

marked object or the watermark inserted. Watermarking scheme that facilitate this

requirement are categorized as blind. In recent times, reversibility of watermark

has also become an important criterion. This is due to the fact that reversible wa-

termarking schemes can provided security against secondary watermarking attacks

by using backtracking algorithms to identify the rightful owner. A watermarking

scheme is said to be reversible if the original unmarked object can be regenerated

from the watermarked copy and the secret key.

This research covers three multimedia content types: natural language doc-

uments, software, and databases; and discusses the current watermarking scenario,

challenges, and our contribution to the field. We have designed and implemented a

natural language watermarking scheme that uses the redundancies in natural lan-

guages. As a result, it is robust against general attacks against text watermarks.

It offers additional strength to the scheme by localizing the attack to the modified

section and using error correction codes to detect the watermark. Our first con-

tribution in software watermarking is identification and exploitation of weaknesses

in branch-based software watermarking scheme proposed in [71] and the software

watermarking algorithm we present is an improvised version of the existing wa-

termarking schemes from [71]. Our scheme survives automated debugging attacks

against which the current schemes are vulnerable, and is also secure against other

software-specific attacks. We have proposed two database watermarking schemes

that are both reversible and therefore resilient against secondary watermarking at-

tacks. The first of these database watermarking schemes is semi-blind and requires

the bits modified during the insertion algorithm to detect the watermark. The

second scheme is an upgraded version that is blind and therefore does not require

anything except a secret key and the watermarked relation. The watermark has a

89% probability of survival even when almost half of the data is manipulated. The

xvi

Abstract

watermarked data in this case is extremely useful from the users’ perspective, since

query results are preserved (i.e., the watermarked data gives the same results for a

query as the unmarked data).

The watermarking models we have proposed provide greater security against

sophisticated attacks in different domains while providing sufficient watermark-

carrying capacity at the same time. The false-positives are extremely low in all

the models, thereby making accidental detection of watermark in a random ob-

ject almost negligible. Reversibility has been facilitated in the later watermarking

algorithms and is a solution to the secondary watermarking attacks. We shall ad-

dress reversibility as a key issue in our future research, along with robustness, low

false-positives and high capacity.

xvii

Statement of Candidate

Statement of Candidate

Statement of Candidate

I certify that the work in this thesis entitled “Robust Digital Watermarking of

Multimedia Objects” has not previously been submitted for a degree nor has it

been submitted as part of requirements for a degree to any other university or

institution other than Macquarie University.

I also certify that the thesis is an original piece of research and it has been

written by me. Any help and assistance that I have received in my research work

and the preparation of the thesis itself have been appropriately acknowledged.

In addition, I certify that all information sources and literature used are indi-

cated in the thesis.

Signature:

Gaurav Gupta - 40478890

Sydney, 08-August-2008

xix

List of Publications

List of Publications

1. Gaurav Gupta, Josef Pieprzyk, and Huaxiong Wang. An Attack-Localizing

Watermarking Scheme for Natural Language Documents. In Proceedings of

ACM Symposium on Information, Computer and Communications Security

(ASIACCS) 2006, pages 157 - 165, Taipei, Taiwan, May 2006

2. Gaurav Gupta and Josef Pieprzyk. A Low-Cost Attack on Branch-Based Soft-

ware Watermarking Scheme. In Proceedings of Fifth International Workshop

on Digital Watermarking (IWDW) 2006, pages 282-293, Jeju Island, South

Korea, November 2006

3. Gaurav Gupta and Josef Pieprzyk. Software Watermarking Resilient to De-

bugging Attacks. In Journal of Multimedia, Volume 2, Number 2, pages 10-16,

Academy Publisher, April 2007

4. Gaurav Gupta and Josef Pieprzyk. Reversible and Semi-blind Relational

Database Watermarking. In Proceedings of International Conference on Sig-

nal Processing and Multimedia Applications (SIGMAP) 2007, pages 283-290,

Barcelona, Spain, July 2007

5. Gaurav Gupta and Josef Pieprzyk. Reversible and Blind Database Water-

marking Using Difference Expansion. In Proceedings of e-Forensics 2008, Ade-

laide, Australia, January 2008

6. Gaurav Gupta and Josef Pieprzyk. Source Code Watermarking Based on

xxi

List of Publications

Function Dependency Oriented Sequencing. In Proceedings of Fourth Inter-

national Conference on Intelligent Information Hiding and Multimedia Signal

Processing (IIHMSP) 2008, Harbin, China, August 2008

xxii

Notations Used

Notations Used

1. {a1, . . . , an}: set of n elements.

2. H(x): hash of x.

3. R : relation

4. r : tuple

5. Ai : ith attribute

6. r.Ai : ith attribute in tuple r

7. Aj
i : jth LSB of ith attribute where LSB stands for least significant bit

8. r.Aj
i : jth LSB of ith attribute in tuple r

9. r.P : primary key of tuple r

10. ‖ : concatenation

11. H() : one-way hash function

12. R
ins(p)−−−−→ Rw : relation Rw is the result of party p inserting its watermark in

relation R,

13. Rw
det(p)−−−→ R : original relation R is restored by the party p from the water-

marked relation Rw

14. |x| : size of x in bits

xxiii

Notations Used

15. abs(x) : absolute value of x

16. bxc: greatest integer smaller than x (floor function)

17. dxe: smallest integer greater than x (ceiling function)

18. Distance for attribute r.Ai: δr.Ai = minr̃ 6=r{abs(r.Ai − r̃.Ai)}

xxiv

Chapter 1

Introduction

1.1 Digital Watermarking

Traditionally, copyright logos and company seals have been used to prove ownership
and authenticity, respectively. Such measures are sufficiently secure provided that
the documents can only be transferred and copied physically. However, this is
rarely the case in the digital era. With the increasing popularity of peer-to-peer
(P2P) software and fast Internet connections, multimedia objects are manipulated,
modified, and transferred illegally over the Internet. Hence, it is no longer sufficient
for the objects to merely contain a visible logo. Digital watermarking involves
placing a copyright mark in a multimedia object so that the owner can establish
his/her right on the multimedia content. Numerous research projects including
those described in [99, 62, 63, 60, 73, 15, 36, 58, 64, 84, 104, 61, 106, 105, 107,
97, 108] provide formal definitions and requirements of watermarking and propose
watermarking models catering for these conditions. The essential characteristics of
a digital watermarking scheme are,

1. detectability/ extractability: The watermark should establish the owner’s iden-
tity during the detection/extraction phase otherwise the watermark is useless.
In extractable watermarking schemes, the output of the owner identification
algorithm is a bitstring corresponding to the owner’s identity, while in de-
tectable watermarking schemes, the output is true/false for a particular po-
tential owner.

2. robustness: This refers to the capability of the watermarking scheme to survive

1

Chapter 1. Introduction

deliberate (for example, modifying, adding, deleting part of the data) and
unintentional attacks (for example, digital reproduction and photocopying).
Thus, the watermark should be detectable even in an object modified by the
attacker.

3. imperceptibility: The embedded watermark should not degrade the quality of
the multimedia content significantly and should not interfere with the user’s
interaction with the multimedia object. For example, in images, following are
the two drawbacks of visible/ perceptible watermarks.

(a) the watermark deteriorates the image quality.

(b) attackers can crop the watermark area to erase the watermark.

4. low false positive: False positive is the situation where a company’s watermark
is detected in an object which was not actually marked by the company. In
simpler terms, it means accidently detecting a watermark in an object. The
probability of such an event should be as small as possible. False positive
rates of 10−9 or lower are generally considered acceptable. This implies that
the watermark will be accidently detected in one out of one billion random
objects. For example, [11] has a false positive rate of around 10−10.

5. randomness: The watermark should be pseudo-randomly distributed across
the multimedia object and this distribution should be based on a secret key
owned by the owner so that the attacker cannot locate the watermark position.

6. blindness: The only element required to detect the watermark in a supposedly
watermarked object is a secret key K that is independent of the multimedia
object and known to the owner of the object. Especially, the original object
should not be required to detect the watermark.

7. limited distortion: This relates to the extent to which quality of the multi-
media object is degraded after watermarking. The distortion should be kept
within a tolerable range. What exactly is the tolerable range is determined by
the specific situation. Some fields such as military organizations would like
to maintain data quality to a certain extent even after watermarking their
data while television agencies might be more liberal towards the distortion
introduced by watermarking so that the viewer gets low quality data and has
to pay for the high quality version. An example of tolerance criteria in the

2

1.2. Digital Fingerprinting

case of relational databases is query preservation. relations in a database are
watermarked, the attributes should not be modified beyond a certain range
otherwise the database is likely to return wrong results to queries. Limit-
ing the distortion directly results in satisfying the imperceptibility condition
discussed above.

8. reversibility : We should be able to re-generate the original document from
the watermarked document. This makes online content distribution simpler
since the clients can download trial versions and generate full versions with-
out having to re-download the entire object again. Majority of the existing
watermarking schemes do not address this requirement, but we demonstrate
the advantages of reversibility including its application in fighting secondary
watermarking attacks (where an attacker watermarks an already watermarked
relation and claims ownership of the content).

1.2 Digital Fingerprinting

While watermarking establishes the publisher’s identity, fingerprinting identifies the
buyer to whom the multimedia object is sold. If the buyer distributes the object
illegally, then its identity should be extractable from the multimedia content. A
unique mark has to be inserted in copies sold to different users. These marks are
called digital fingerprints. An important requirement of fingerprinting schemes is
to be resistant against collusion attacks. Let the multimedia object be distributed
to n users. A collusion attack is when c out of n users collude and either erase the
fingerprint mark completely or modify the object such that it points to one of the
n− c users who are not a part of the conspiracy/ collusion. Boneh and Shaw have
proposed collusion secure codes in [16].

1.3 Motivation

In recent years, telecommunication technology has improved at a rapid pace, resi-
dential and corporate Internet connections have become extremely fast with massive
download limits. Freely and cheaply available Internet has steered many individuals
towards illegal file sharing and distribution. Median Internet speeds are estimated
to be 61 megabits per second (Mbps) in Japan, 45Mbps in South Korea, 17Mbps in
France and 7Mbps in Canada [21]. Also, video compression schemes such as DivX

3

Chapter 1. Introduction

enable a typical-length Hollywood movie to be packed in approximately 700MB. A
file of this size can be downloaded in as little as 90 seconds with such fast Internet
connections. Digital watermarking and fingerprinting have extensive commercial
applications in the software distribution, online music industry, digital content dis-
tribution, and in countering the threat of illegal file sharing via peer-to-peer net-
works. Some of the typical scenarios in which digital watermarking would be useful
are as follows.

• Companies want to make their text reports available to the public while main-
taining their ownership over the document.

• Organizations develop applications and want to establish their ownership over
whole or part of the software.

• GPS companies implementing state-of-the-art real-time software systems for
generating maps want to protect the software from being duplicated by rivals.

To understand watermarking, various models were studied, analyzed and
compared. The weaknesses in the current watermarking techniques were identified
and addressed. These include vulnerability to debugging attacks in software water-
marking, irreversibility and susceptibility to secondary watermarking in database
watermarking. We also made significant progress in understanding the multimedia-
specific watermarking techniques. This is critical given that watermarks are embed-
ded in different multimedia objects by exploiting the inherent redundancies which
vary from one multimedia object to another. For example, software objects have
instruction-based redundancy since it is possible to convert one set of instructions
to another set without effecting the output of the program. On the other hand, nat-
ural language documents have word or sentence based redundancy and so we can
replace a word by one of its synonym without causing significant loss of document
quality. The development of new watermarking techniques are based on tools from
Cryptology (such as hashing algorithms or pseudo-random generators) and Coding
Theory (such as majority voting and traitor tracing codes).

1.4 Contributions

Our major contributions to the field are listed below.

4

1.4. Contributions

1. Natural Language Watermarking [49] : We have designed semantics-based nat-
ural language watermarking scheme that can survive any format-based or
synonymy-based attacks. The watermarking scheme embeds a watermark
that identifies the owner (publisher) and a fingerprint that identifies the user
(buyer). The scheme uses Boneh-codes [16] to construct the fingerprint codes
and is resistant against collusion attacks in which multiple attackers conspire
to try and destroy the watermark. It also localizes the attack to the section of
the document modified by the attacker. The other sections in the document
are not effected by the manipulation. Apart from the trivial format-based
attacks, the watermark can also survive text addition, deletion, modification
(through transformations) and paragraph shuffling attacks.

2. Software Watermarking [43, 46, 48] : We have proposed a simple yet effective
scheme that exploits the condition C and C++ programming languages place
on the source codes to embed watermark in a source file. A program containing
n functions can embed an n− bit watermark inside it.

We have identified that the branch-based watermarking scheme [71], which is
one of the stronger of the developed software watermarking techniques suffers
from trivial debugging attacks where the attacker can launch an mostly au-
tomated attack by using debugger capabilities such as breakpoints and stack
tracing. We have shown such an attack on this scheme and presented a modi-
fied scheme [46] that survives this category of attack and has no adverse effect
on other counts of security or watermark carrying capacity.

3. Database Watermarking [44, 47] : The major weaknesses that were identified
in watermarking schemes published in [86, 42, 61, 62, 101, 102, 103] (most of
them based on [11, 12]) were as follows,

(a) lack of query preservation, where answers to queries on watermarked
databases are different from answers to the same queries on the original
database, thereby causing a serious usability problem, and,

(b) susceptibility to secondary watermarking, where it is impossible to detect
the correct owner when the attacker embeds his/her watermark on top
of owner’s watermark

We have proposed two reversible watermarking schemes [44, 47] that regener-
ate the original database relation from the watermarked relation and showed

5

Chapter 1. Introduction

how this can help us identify the correct owner in case multiple parties wa-
termark it sequentially. The schemes also addresses query-preservation, thus
providing better usability from the user’s perspective.

6

Chapter 2

Background

2.1 Fundamental Mathematics

In this section, we provide an overview of fundamental mathematical theorems that
lie at the core of, and provide the framework for cryptographic and security tech-
niques. Some of the elements we discuss are Euclid’s algorithm, prime numbers
and Chinese remainder theorem. Below are fundamental definitions that frequently
appear throughout this thesis.

Definition 2.1.1 The set of integers {. . . ,−2,−1, 0, 1, 2, . . .} is denoted by Z.

Definition 2.1.2 Let a, b be two integers. Then a divides b if there exists c ∈ Z,
such that b = ac. If a divides b, this is represented by a | b.

Definition 2.1.3 An integer c is said to be a common divisor of integers a, b if
c | a, c | b.

Definition 2.1.4 Greatest Common Divisors: Greatest common divisor, or gcd,
of two integers a, b such that a < b is the highest integer g ≤ a which divides both a

and b.

The application of gcd in modulo arithmetic make them interesting for cryp-
tographers. Euclid’s algorithm provided in Algorithm 1 provides us with a method
of finding gcd, g of two integers a, b. Euclid’s extended algorithm described in
Algorithm 2 find integers x, y such that ax + by = d.

7

Chapter 2. Background

Input : Integers a, b, such that a > b
Output: gcd(a, b)=g, such that g | a, g | b
while b 6= 0 do

temp = a (mod b);
a = b;
b = temp;

end
Return a;

Algorithm 1: Euclid’s algorithm

Input : Integers a, b, such that a > b,
Output: gcd(a, b)=g, x, y such that g | a, g | b, ax + by = d
if b==0 then

d = a, x = 1, y = 0;
else

x1 = 0, x2 = 1, y1 = 1, y2 = 0;
while b 6= 0 do

q = b(a/b)c;
r = a− qb;
x = x2 − qx1;
y = y2 − qy1;
a = b;
b = r;
x2 = x1;
x1 = x;
y2 = y1;
y1 = y;

end
d = a;
x = x2;
y = y2;
Return (d, x, y);

end
Return a;

Algorithm 2: Euclid’s extended algorithm

8

2.2. Statistics

Definition 2.1.5 An integer p ≥ 2 is called prime if its only positive divisors are
1 and p. Otherwise, p is said to be composite.

Definition 2.1.6 Two integers a, b are called relatively prime or coprime if gcd(a, b)=1.

2.1.1 Chinese Remainder Theorem (CRT)

Theorem 2.1.1 If the integers n1, n2, . . . nk are pairwise relatively prime, then the
system of simultaneous congruences,

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

.

.

.
x ≡ ak (mod nk)

has a unique solution modulo n =
∏k

i=1 ni.

The application of CRT lies in performing calculations in RSA, discussed in
Section 2.3.2. The calculations in RSA are made modulo n where n is a product of
two large primes p, q, that are either 1024, 2048, or 4096-bit integers. Using CRT,
the time requirement on these operations is greatly reduced.

2.2 Statistics

2.2.1 Probability Theory

Definition 2.2.1 An experiment is a process that may result in different individual
outcomes, called simple events. The set of all possible occurrences is called sample
space S. Sample space S is a collection of simple events {s1, s2, . . . , sn}.

Definition 2.2.2 An event E is a subset of sample space S. The probability of
occurrence of E, P (E) =

∑n
i=1 P (si), where si ∈ E.

Definition 2.2.3 If E ∈ S is an event,

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

9

Chapter 2. Background

3. P (φ) = 0 (φ is empty set)

4. P (Ē) = 1− P (E)

Definition 2.2.4 Two events E1, E2 are mutually exclusive if P (E1
⋂

E2) = 0.

Theorem 2.2.1 For two mutually exclusive events, P (E1
⋃

E2) = P (E1) + P (E2)

Definition 2.2.5 Let E1, E2 be two events such that P (E2) > 0. The conditional
probability of E1 occurring given E2 has occurred (or simple E1 given E2) is given
by,

P (E1 | E2) =
P (E1

⋂
E2)

P (E2)
(2.1)

Definition 2.2.6 Two events E1, E2 are independent if P (E1
⋂

E2) = P (E1)P (E2).

Theorem 2.2.2 (Bayes’ Theorem) For any two events E1, E2 with P (E2) > 0),

P (E1 | E2) =
P (E1)P (E2 | E1)

P (E2)
(2.2)

2.2.2 Binomial Distribution

Definition 2.2.7 Let n, k be non-negative integers. The binomial distribution(
n

k

)
is the number of different ways of choosing k objects from n objects.

2.2.3 Entropy

Claude Shannon proposed the concept of entropy in his famous work, A mathemat-
ical theory of communication [83].

Definition 2.2.8 The information entropy of a random variable X, that can take
on possible values {x1, . . . , xn} is

Ent(X) = −
n∑

i=1

p(xi) log2 p(xi) (2.3)

The notion of entropy suggests uncertainty associated with a random vari-
able. It is a quantification of information contained in a message. For example,
tossing a coin has two outcomes with equal probability, so the entropy of a coin toss
is 1 (substituting p(x1) = p(x2) = 0.5 in Equation 2.3). On the other hand for a

10

2.3. Cryptography

dice having six sides entropy is −∑6
i=1

1
6 log2(

1
6) = − log2(

1
6) = 2.585. Entropy is

a tool for defining amount of information contained in one random variable about
another random variable. The entropy of English language is between 1.0 and 1.5
bits per letter [81].

2.3 Cryptography

Cryptography deals with data security techniques such as encryption, signatures,
hashing, oblivious transfer and secret sharing to name a few basic ones. Encryption
refers to encoding messages with secret key(s) such that it is hard to decrypt the
encoded message for anyone who does not have the key(s). Hardness here can be
measured in terms of time/ effort/ memory one might need to decrypt messages by
performing an exhaustive search of the key space. Generally, time and memory are
the two major metrics used in determining the security of cryptographic schemes,
also known as cryptosystems.

Cryptosystems can be classified into two categories based on the number of
message bits processed at a given time.

1. Stream Ciphers: Encrypt individual characters/ digits/ bits of plaintext one
at a time, using an encrypting operation which may vary with time.

2. Block Ciphers: Encrypt fixed sized groups of characters/ digits/ bits of plain-
text at a time using an encryption algorithm.

Both stream and block ciphers can be used to build other cryptographic
constructs such as MACs, hash functions and pseudorandom number generators.
However, block ciphers are better understood and they offer greater security. The
main appeal of stream ciphers is their efficiency. Cryptosystems are classified in the
following two categories based on the keys they use at encryption and decryption
ends.

1. Private key/ Symmetric cryptosystems

2. Public key/ Asymmetric cryptosystems

2.3.1 Private Key Cryptography

Private key cryptography or symmetric cryptography is the process of scrambling
(encryption) plaintext (original message) into ciphertext (encrypted message) using

11

Chapter 2. Background

a secret key. The decryption from ciphertext to plaintext is performed using the
same key. Advanced encryption standard (AES) [31, 32], a modified version of
Rijndael, is the most widely accepted and used symmetric key cryptosystem. It was
designed by Belgians cryptographers Joan Daemen and Vincent Rijmen as a part
of the AES selection process and was announced on November 26, 2001. The key
size in AES can be 128, 192, or 256 bits and it processes data blocks of 128 bits.
Messages that are not a multiple of 128 bits are padded with one ‘1’ followed by
’0’ bits to increase the message length to a multiple of 128 bits. The details of this
cryptosystem, including the design and functioning can be found at NIST website
[32].

Key-distribution is the major concern with symmetric cryptosystems. If two
parties A and B who have never met before or transmitted a message to each other
wish to communicate, then distribution of the cryptographic key is an issue.

2.3.2 Public Key Cryptography

Unlike private key cryptography, the public key cryptography applies two different
keys for encryption and decryption. Each party that wishes to perform crypto-
graphic operations needs to have a pair of keys, one is public and the other secret.
The essential security requirement is that any body who knows the public key is not
able to determine the secret key. Each party P has a pair of keys in this model, a
private key and a public key. As the names suggest, only P knows his/her private
key while P’s public key is published in a public directory so that anyone can look it
up. Messages encrypted with A’s public key can be decrypted with A’s private key
and messages encrypted with A’s private key can be decrypted with A’s public key.
If the sender uses the public key of the receiver, then the public-key cryptography is
used for confidentiality. If the sender uses their secret key to create a cryptogram,
then the public-key is used for authentication and the cryptogram is called a digital
signature. Some of the most widely used public key cryptosystems are RSA, Ra-
bin, ElGamal, McEliece and Merkle-Hellman. A brief discussion on RSA, which is
arguably the most popular amongst them, is given below.

RSA Cryptosystem

Ron Rivest, Adi Shamir and Len Adleman invented this cryptosystem in 1977 [80].
The algorithm utilizes the hardness of factoring problem to encrypt messages. RSA

12

2.3. Cryptography

key generation algorithm is provided in Algorithm 3. RSA encryption and decryp-
tion algorithms are summarized in Algorithm 4 and Algorithm 5 respectively.

Input : Primes p, q
Output: Public key (n, e) and private key d
n = p× q;
φ = (p− 1)× (q − 1);
Select random e, 1 < e < φ, such that gcd(e, φ) = 1;
Compute d, 1 < d < φ, such that e× d ≡ 1 (mod φ);

Algorithm 3: RSA key generation

Input : Plaintext m (0 ≤ m < n), Recipient’s public key (n, e)
Output: Ciphertext c
c = me (mod n);

Algorithm 4: RSA encryption

Input : Ciphertext c (0 ≤ m < n), Recipient’s private key d
Output: Plaintext m
m = cd (mod n);

Algorithm 5: RSA decryption

RSA algorithm is based on the computational hardness of factoring of the
modulus. So the most obvious way of attacking the system is to try to factorize the
modulus n. Most of the factorization algorithms (such as quadratic sieve) construct
a quadratic congruence X2 = Y 2 (mod n) as the congruence is likely to produce
the factors of n. However, certain design issues must be considered to avoid easy
factoring by opponent. One of the major attacks on RSA is using non-trivial square
roots of 1 (mod n). Assume that x is a non-trivial root of 1 (mod n), i.e., 1 < x <

(n− 1), x2 ≡ 1 (mod n). Then n | (x2 − 1) or n | ((x− 1)(x + 1)), also n - (x− 1),
n - (x+1) since 1 < x < (n−1). Thus gcd(n, x−1)= p or q (using Euclid’s theorem.
As an illustration, take n = 77, we find two non-trivial square roots of 1 to be 34, 43.
Thus gcd(77,33) gives us p = 11 and thereby q = 7.

Digital Signatures

A digital signature is a number dependent on the message and a secret key known
only to the sender of that message. In cases of dispute, a third party must be

13

Chapter 2. Background

able to resolve the issue without needing to know the sender’s secret key. The
following definition of digital signatures is taken from [110]. A digital signature
scheme contains the following components:

• A security parameter k, which is chosen by the user when he creates his public
and secret keys.

• A message space M ⊆ {0, 1}+, which is the set of messages to which the
signature algorithm may be applied.

• A signature bound B, which is an integer bounding the total number of sig-
natures that can be produced with an instance of the signature scheme.

• A key generation algorithm G, which any user A can use on input 1k (i.e. k

in unary) to generate in polynomial time a pair (P k
A, Sk

A) of matching public
and secret keys.

• A signature algorithm σ, which produces a signature σ(M, SA) for a message
M using the secret key SA. Here, σ may receive other inputs as well.

• A verification scheme V , which tests whether S is a valid signature of message
M using the public key PA. (i.e., V (S, M, PA) will be true if and only if it is
valid.)

Digital signatures serve the following purposes.

1. Authentication: It ensures that the sender of the message is in fact the real
sender.

2. Data integrity : It gives the assurance that the message has not been tampered
with since it is sent.

3. Non-repudiation: It provides a proof so the sender cannot deny sending the
message.

In general, public key cryptography, and specifically RSA, provide an excel-
lent way of implementing digital signature schemes.

In RSA public key digital signature scheme, the plaintext space and cipher-
text space is both Zn = {0, 1, 2, . . . , n− 1} where n is a product of two primes p, q.

14

2.4. Hash Functions

Digital signatures can be created by reversing the roles of encryption and decryp-
tion because the encryption transformation is a bijection. The RSA digital signature
generation algorithm and verification algorithm are provided in Algorithm 6 and Al-
gorithm 7 [68], where R is a one to one mapping function from the message space
to the signature space, called the redundancy function.

Input : Plaintext m, Sender’s private key d, public key (n, e)
Output: Digital signature s for message M
m̃ = R(m);
s = m̃d (mod n);

Algorithm 6: RSA digital signature generation [68]

Input : Digital signature s, Sender’s public key (n, e)
Output: Message authentication status
m̃ = se (mod n) ;
if m̃ ∈MR then

Recover message m = R−1(m̃);
else

Reject signature;
end

Algorithm 7: RSA digital signature verification [68]

2.4 Hash Functions

The following is a definition for a hash function (in the unrestricted sense) due to
[68]:

Definition 2.4.1 A hash function H : {0, 1}∗ → {0, 1}n is an operation that trans-
forms an input x of arbitrary bit length to an output y = H(x) of fixed bit length n

(compression) and given x it is easy to compute y = H(x) (ease of computation.

IN addition to the above two properties of compression and ease of compu-
tation, the three desirable properties of unkeyed hash functions are provided below
[68].

1. Preimage resistance: Given output y, it should be computationally infeasible
to find x′ such that H(x′) = y.

15

Chapter 2. Background

2. 2nd preimage resistance: Given input x, it should be computationally infeasible
to find x′ such that H(x′) = H(x). In this case, the user is provided with one
input x and is free to choose the second input x′.

3. Collision resistance: It is computationally infeasible to find two inputs x, x′

such that H(x) = H(x′). In this case, the user is free to choose both inputs.

Some examples of hash functions are MD4, MD5 and SHA-1. For more
information, please refer to [68]. In particular, we will be concentrating on a special
category of hash functions, known as Message Authentication Code (MAC). The
following definition of MAC is from [68].

Definition 2.4.2 A message authentication code (MAC) algorithm is a family of
function hk, parameterized by a secret key k, with the following properties:

1. ease of computation - for a known function hk, given a value k and an input
x, hk(x) is easy to computer. This result is called the MAC-value or MAC.

2. compression - hk maps an input x of arbitrary finite bit length to an output
hk(x) of fixed bit length n.

3. computation-resistance - given zero or more-text-MAC pairs (xi, hk(xi)), it is
computationally infeasible to compute any text-MAC pair (x,hk(x)) for any
new input x 6= xi (including possibly for hk(x) = hk(xi) for some i)

MACs are also known as keyed hash functions. In this work, hash function
refers to keyed hash function or MAC, if the type is not specified. An example
of MAC is MD5-MAC which is constructed using MD5 hash function. Details of
MD5-MAC can be found in [68].

In this research, we use hash functions to determine whether a section of the
digital object (for example, a tuple in a database relation or a sentence in a natural
language document) will carry a watermark bit or not. The same hash function is
re-used during detection phase to locate the sections of the digital object carrying
the watermark bits.

2.5 Natural Language Documents

In this section, we give an introduction to natural language documents and, in
particular, structure of the English language. Natural language documents are a

16

2.5. Natural Language Documents

special category of text documents which have linguistic construction. They satisfy
the rules of the grammar of a particular language. For example, a document writ-
ten in the English language should satisfy the rules of English grammar. Natural
language processing (NLP) deals with analyzing natural language documents for
several purposes including text analysis, pattern matching, forecasting and more.
Further information about NLP can be found in [66, 55]. There are several elements
of a natural language, and some of them can be used to embed watermark bits by
exploiting the redundancy in these languages. It is possible to convert a sentence in
English to an equivalent sentence with little change to the meaning.

Since most of the documents on Internet are in English language, we will
be discussing English language elements and structure in this work. The charac-
teristics of other languages are similar with some variations. The components of
English language are called parts of speech. Traditional grammar classifies words
based on eight parts of speech, verb, noun, pronoun, adjective, adverb, preposition,
conjunction, and interjection [3]. The parts of speech are explained below [4, 5, 6, 7].

1. A verb expresses existence, action, or occurrence. For example, in “Dad is
loading the luggage”, ‘loading’ is a verb.

(a) The main verb is the most important verb in a sentence; without it, the
sentence would not be complete. For example, in “He took my wallet”,
‘took’ is the main verb.

(b) Auxiliary verbs are words that can be used with the main verb to impart
additional meaning, modify tense, or lay emphasis. Some of the auxiliary
verbs are ‘do’, ‘don’t’, ‘does’, ‘doesn’t’, ‘did’, ‘didn’t’, ‘be’ and ‘have’. For
example, in “He had taken my wallet”, ‘had’ is the auxiliary verb.

2. A noun is used to name a person, place, thing, quality, or action and can
function as the subject or object of a verb, the object of a preposition, or an
appositive. Noun can be used as a subject or an object in a sentence [6]. For
example, in “Michelle is brilliant”, ‘Michelle’ is a noun.

(a) The subject of a sentence is the noun, pronoun or noun phrase that pre-
cedes and governs the main verb.

(b) The object of a verb is created, affected or altered by the action of a
verb, or appreciated or sensed by the subject of the verb. For example,

17

Chapter 2. Background

in “Colwin played soccer”, ‘Colwin’ is the subject while ‘soccer’ is the
object.

3. A pronoun is a word that substitutes a noun or a noun-phrase (a noun-phrase
is described shortly). For example, in “When John went to the pub, he was
sober”, ‘he’ is a pronoun referring to ‘John’.

4. An adjective describes a noun. It describes the quality, state or action that a
noun refers to. For example, in “This is a ridiculous requirement”, ‘ridiculous’
is an adjective.

5. An adverb is a word that that describes the action of a verb, an adjective,
another adverb, a noun or a pronoun. Basically, most adverbs tell you how,
where, or when something is done. In other words, they describe the manner,
place, or time of an action. For example, in “He generally arrives on time”,
‘generally’ is an adverb.

6. A preposition is a word that links a noun, pronoun or gerund (gerund is a verb
that acts as a noun, usually achieved by adding “-ing” to the verb) to other
words. For example, in “He is going to London”, ‘to’ is the preposition.

7. A conjunction is a word like and, but, when, or etc., which connects words,
phrases or clauses. For example, in “He is eating pasta and she is having
pizza”, ‘and’ is the conjunction.

8. An interjection is a word or short phrase used in speech to gain attention,
to exclaim, protest or command. Interjections can be used to show emotion
such as surprise or shock. Interjections are often found at the beginning of a
sentence, especially in speech, and are commonly followed by an exclamation
mark or a comma. For example, in “Ah! That’s a good book!”, ‘Ah’ is the
interjection.

Sometimes a group of words can provide the same functionality as a single
word. Such groups are called phrases. Two important phrases are given below:

1. Noun Phrases are either a single noun or pronoun or groups of words contain-
ing a noun or pronoun that function as subjects or objects in sentences.

2. Verb phrases are groups of words that express action or state of being [7].

18

2.5. Natural Language Documents

A complement is a word or words used after a verb to complete a predicate
construction.

Patterns define the order in which the parts of speech can be arranged to
construct a meaningful sentence. The five basic sentence patterns in English are as
follows [8].

1. Subject + Verb
Examples: I play. Tanja eats. They walk.

2. Subject + Verb + Object
Examples: I bought a car. Menno plays the guitar. They heard rumors.

3. Subject + Verb + Complement
Examples: I am busy. Colwin became famous. They seem nice.

4. Subject + Verb + Indirect Object + Direct Object
Examples: I gave her a present. Ms. Narayan teaches us English.

5. Subject + Verb + Object + Complement
Examples: I left the stove on. We elected Colwin class monitor. They called
her Didi.

Tenses are used to convey the time frame of a particular event. The three
tenses in English language are given below [8].

1. Past : expressing action that has occurred in the past, as in “She rode the
bike”; “He slept”.

2. Present : expressing action in the present time, as in “She rides the bike”; “He
is sleeping”.

3. Future: expressing action that has yet to take place, as in “She will ride the
bike”; “He will sleep”.

They can each be further broken into the following categories [8].

1. Simple

(a) Simple past tense is used for past actions that happened either at a spe-
cific time, which can either be given by a time phrase (yesterday, last
year, etc.) or understood from the context. For example, “She taught
computing”.

19

Chapter 2. Background

(b) Simple present tense is used to show permanent characteristics of people
and events or what happens regularly, habitually or in a single completed
action. For example, “He drives a car”,

(c) Simple future tense is often called will, because we make the simple future
tense with the modal auxiliary will. For example, “He will drive a car”.

2. Continuous

(a) Past continuous tense is used for actions and states that were unfinished
at a certain time in the past or to stress the duration of something. For
example, “She was teaching computing”.

(b) Present continuous tense is used for actions that have begun but not
finished. It can also be used to talk about future arrangements. For
example, “He is driving a car”,

(c) Future continuous tense is used for actions that will be unfinished at a
certain time in the future, or for things that will happen in the normal
course of events, rather than being part of your plans and intentions. For
example, “He will be driving a car”.

3. Perfect

(a) Past perfect tense is used for actions that happened before related past
events or times. For example, “When they chose her, she had taught
computing”.

(b) Present perfect tense is used for unfinished past actions. For example,
“He has driven a car for two years”.

(c) Future perfect tense is used for actions to be completed before a specific
future time, but the exact time is unimportant. For example, “He will
have driven a car in five years”.

4. Perfect Continuous

(a) Past perfect continuous tense is used for actions that were unfinished
when another action, etc., took place. For example, “He had been driving
a car”.

20

2.6. Software

(b) Present perfect continuous tense is used to emphasize the duration of a
recent past activity. It can also be used for actions that began in the past
and are still going on now. For example, “He has been driving a car”.

(c) Future perfect continuous tense is used used for actions that will be un-
finished, but have reached a certain stage. For example, “He will have
been driving a car for three years by then”.

Syntax and semantics should be addressed while structuring a document in
the English language document.

1. Syntax : This is the order in which the components within a sentence should
be arranged to make sense. For example, there are many possible syntaxes in
English language. One of the simplest of such valid syntaxes is given below
[92].

(NP1) → (linking verb) → (NP2)

where NP1 and NP2 are noun phrases. A sentence that satisfies the above
syntax is “Dogs chew bones”.

2. Semantics: Semantics refer to the meaning the document conveys to the
reader. Depending on the language, the same text message can have mul-
tiple meanings. Such languages are called ambiguous languages. For example,
The pencil is rolling near the eraser, can you pass it to me? can either mean
that you are being asked to pass the pencil (with higher probability) or the
eraser (with lower probability). Ambiguous languages are beneficial for our
purpose since we can convert a text message in one syntax to another text
message with different syntax but with similar semantics.

2.6 Software

Software is a set of programs working together to achieve a pre-defined set of tasks.
The programs that form a software are sets of instructions written in the same or
different languages. For further information about design of programming languages,
please refer to [37, 82, 38, 41]. The categories of programming languages area are
as follows.

21

Chapter 2. Background

1. Low-level languages: Languages that interact directly with the computer hard-
ware. Following are the sub-categories of low-level languages.

(a) Machine-level languages: Programs are strings of 0s and 1s where each
bitstring pattern has a particular meaning.

(b) Assembly-language languages: Program instructions are from a set of
predefined operations such as move, store, etc.

2. High-level languages: Programs are written in human-understandable terms
and then translated to low-level language. High-level languages are further
categorized as the following.

(a) Compiled languages: Program is translated to machine-code, which is
saved separately . This process is called compilation, and is followed by
running the compiled program, called execution. For subsequent execu-
tions of the program, compilation need not be done, thus saving time.

(b) Interpreted languages: Program is interpreted instruction by instruction
and compilation is not performed. Programs written in these languages
take longer to execute since they have to be interpreted each time they
are executed.

The most commonly used programming languages are C, C++, and Java and we
design our watermarking schemes with these languages in mind. While C and C++
facilitate direct memory manipulation using pointers, Java prohibits memory ma-
nipulations to provide greater security. The common characteristics of these three
languages are as follows.

• Basic data types: Data stored in these languages can be of integer type
(boolean, integer), floating-point type (float, double), symbolic type (char,
string).

• Sequential execution: Under normal circumstances, the instructions are ex-
ecuted sequentially and this order can be manipulated by using goto (not
recommended), break, and continue operations.

• Control Statements: There are two kinds of control statements in these lan-
guages,

22

2.6. Software

1. Repeat Statements: To perform the same operation(s) multiple times, a
programmer can use one of the three repeat statements for, while and
do-while. These statements are also called loops because of their inherent
nature.

2. Conditional Statements: This refers to selecting a course of action de-
pending on some condition. We can deploy conditional statements such
as if, if-else and switch.

• Functions/ Methods: For tasks that need to be repeatedly performed with
same or different parameters, programmers can write functions or methods.
These functions are called from a particular statement and after completing
execution, they return back to the calling statement with some return value
or message.

• User-defined data types: C enables grouping of multiple elements of different
types together as structures. C++ and Java have classes that provide the same
facility as structures. But a programmer can do much more in classes, such
as including functions or methods, defining friend functions and inheritance
(discussed shortly below).

• Arrays: A collection of elements of similar type can be stored in a set called
arrays.

Object Oriented Paradigm (OOP) provides a framework for software devel-
opment. The fundamental principles of OOP [59] are as follows.

1. Encapsulation: Encapsulation is hiding data implementation by restricting
access to accessors and mutators. An accessor is a method that returns values
of one or more data members the object itself. However, accessor methods are
not restricted to attributes but can be any public method that gives informa-
tion about the state of the object. Mutators are methods, generally public,
that are used to modify the state of an object by modifying attribute values,
while hiding the implementation of exactly how the data gets modified. Mu-
tators are another portion of the encapsulation property, except this time it is
the set method that lets the caller modify the member data behind the scenes.

2. Abstraction: Abstraction represents a model or some other focused represen-
tation for an actual entity. Data abstraction is the development of classes,

23

Chapter 2. Background

objects, and types in terms of their interfaces and functionality, instead of
their implementation details. It is the development of a software object to
represent an object we can find in the real world. Encapsulation hides the
details of that implementation.

Abstraction is used to manage complexity as software developers use abstrac-
tion to simplify complex systems into smaller and manageable components.
Programmers are constantly aware of the functionalities to be provided by
the subsystems that are in the development stage. Hence, programmers are
not burdened by considering the ways in which the implementation of later
subsystems will affect the design of earlier development.

One of the key members of the development team for Object Oriented Tech-
nology, Grady Booch, defines abstraction as “An abstraction denotes the es-
sential characteristics of an object that distinguish it from all other kinds of
object and thus provides crisply defined conceptual boundaries, relative to the
perspective of the viewer.” [17]

3. Inheritance: Two objects can have either of the following relationships.

• “has a”,

• “uses a” or,

• “is a”

“Is a” is the inheritance way of object relationship. Take the example of a
library system. A library lends books, magazines, audio cassettes, and more.
At a fundamental level, all four types represent assets of the library that
can be loaned out to people. However, even though the four types can be
viewed as belonging to the same category, they are not identical. They have
some differences as well; a book has an ISBN and a magazine does not, audio
cassette has a play length and video microfilm cannot be checked out overnight.

Because of such underlying differences, each of these assets of the library should
be represented by its own class definition. But the common characteristics
can be put in a superclass, or, base class. Without inheritance though, each
class must independently implement the characteristics that are common to
all loanable assets. All assets are either checked out or available for checkout.
All assets have a title, a date of acquisition and a replacement cost. Rather

24

2.7. Databases

than duplicate functionality, inheritance allows you to inherit functionality
from another base class.

4. Polymorphism: Polymorphism means one interface, different behavior. Poly-
morphism refers to having multiple methods all with the same name, but
slightly different functionality. Some of the common methods that need poly-
morphic behavior are add, areEqual, print, sort and isEmpty. There are two
basic types of polymorphism: overriding (also called run-time polymorphism),
and overloading (also called compile-time polymorphism). For method over-
loading, the compiler determines which method will be executed when the code
is compiled. Which method will be used for method overriding is determined
at runtime based on the dynamic type of an object.

Object Oriented Principles can be of assistance for hiding the watermark
inside the class definition by utilizing the access modifiers and hiding the watermark
in inaccessible areas of the software.

2.7 Databases

Databases refer to structured data being stored in computer systems. A further
refined term, relational database refers to a special class of databases, that are
arranged in relations or tables. Data can be accessed and the output can be rear-
ranged, filtered, and manipulated without having to modify the tables. Relational
databases are collections of relations or tables where each table contains one or more
columns (attributes) and rows (tuples). Information about every entity is stored in
a different tuple and attributes specify the type of information.

Each table should have a special attribute called primary key. If the table
does not have an inherent primary key, an extra attribute is appended to the table
containing unique values for each tuple (similar to a serial number). The primary
key must be unique for every tuple and is used to identify a particular entity. For
example, passport numbers serve as primary key for the relation “Passengers”.

Two tables t1 and t2 are said to be related if they have at least one attribute
in common. For most purposes, the common attribute A is the primary key in one
of the tables, say t1. The attribute A is called a foreign key in the other table (t2).

If there is no attribute guaranteed to be unique for each tuple, then we cannot
define a primary key directly. In this case, we create a primary key using one of the

25

Chapter 2. Background

following methods.

1. A combination of several attributes serves as a primary key. Such a primary
key is called composite key. For example, {Room,Day,Time} is a primary key
for a Lecture relation.

2. The database management software adds an extra attribute to the table called,
such as ID.

Query is the most important process in a database system. Although there
is no authoritative definition of a query, it can be termed as performing a operation
on a relational database to read data from or write data to or update data in one
or more database tables. The data to be read, written or updated can be selected
using conditions in a query. Standard query language (SQL) provides a framework
for querying a relational database. Following is the basic structure of an SQL query:
SELECT <attribute(s)>
FROM <table(s)>
WHERE <criteria>

This section has described the basic building blocks of a database system.
Please refer to [33, 35] for more details.

26

Chapter 3

Overview of watermarking

In this chapter, we introduce the background of paper-based watermarking that was
used as early as 1282 A.D., and describe the current digital watermarking scenario.
We also discuss approaches to, and techniques for, digital watermarking. Several
important watermarking schemes are described and analyzed as well, in order to
gain an understanding of the current watermarking standards and opportunities.

Historically, the paper on which documents were written or paintings were
drawn contained inherent marks that helped identify the paper itself, its region,
owner’s identity and also time period. Paper-based watermarking refers to adding
an impression incorporated in the paper making process. The impression shows the
name of the paper and/or the company logo. Watermarking is also applied to detect
any manipulations on the paper document - if someone tries to modify the text, the
watermark would be affected as well. Digital watermarking can be perceived as a
technology-specific instance of watermarking that achieves watermark embedding
and detection in digital multimedia objects.

In 1804, G. Fischer, a German anatomist, entomologist and paleontologist,
published the list of watermarks, Beschreibung einiger typographischen Seltenheiten
[91], in which he stated that the oldest watermark in existence was on paper pro-
duced in 1301. However, C. Briquet discovered a watermark printed on paper pro-
duced in 1282 [20]. Watermarks from the 14th century have also been mentioned in
historical articles [34]. The oldest known watermark kept in Australia is Bishop’s
Crosier from the 16th century [93], shown in Figure 3.1. We provide some illustra-
tions of watermarks from 16th century to the 20th century. Figure 3.2 and Figure 3.3
show currency watermarks [10]. Figure 3.4 shows a Spanish document containing

27

Chapter 3. Overview of watermarking

watermark from 17th century [9]. A magnified view of the watermark is given in
Figure 3.5.

Figure 3.1: Bishop’s crosier (Australia), 16th century

Figure 3.2: Watermarks in Australian currency bill

28

Figure 3.3: Watermarks in German currency bill

Figure 3.4: Watermark in Spanish document from 17th century

29

Chapter 3. Overview of watermarking

Figure 3.5: Magnified view of watermark from Figure 3.4

The basic purpose of digital watermarking still remains the same as that of
traditional paper-based watermarking. However, computer science and telecommu-
nication technology allows watermarking to be applied to a whole range of multi-
media objects such as image, audio, video, databases, software and text documents.
Watermarking techniques have also improved considerably to survive various possi-
ble attacks such as resizing (in images) or modifying numerical values (in databases).

3.1 Approaches to Watermarking

There are many watermarking schemes within the industry; however, the water-
marking method that is used depends upon the purpose of watermarking the object
in the first place. Following are the categories of watermarking, containing both the
method of watermarking along with the intended purpose.

• Perceptibility : The degree of watermark perceptibility and visibility.

1. Perceptible Watermarking : When the purpose of watermarking is to dis-
courage someone from copying a multimedia object and reduce its quality
deliberately, the watermark is made quite visible and this technique is
called perceptible watermarking. This type of watermarking is effective
only if the user is law-abiding and we can assume that (s)he would not
copy the object if aware of the copyright status of the object.

30

3.1. Approaches to Watermarking

2. Imperceptible Watermarking : In most cases, not only do we want to
make the user aware of the ownership, we also desire to embed an invis-
ible mark in the object. Following are the advantages of imperceptible
watermarking.

– Watermark does not reduce the quality of the multimedia object.

– It is difficult for the attacker to locate the watermark, thereby making
the watermarking more robust.

The user can be an active attacker where (s)he either copies, modifies,
or redistributes the multimedia object knowing that it is copyrighted.
This category of watermarking is called imperceptible watermarking. An
imperceptible watermark should be invisible to the user and should not
significantly deteriorate the quality of the multimedia object.

• Purpose: What is the objective of watermarking?

1. Tamper-proofing : The purpose of embedding this watermark type is to
detect tampering with the multimedia object.

2. Owner-identification: The objective of watermarking is to establish own-
ership over a multimedia object.

• Robustness: Refers to degree of robustness and resilience against attacks. This
criterion also measures the effectiveness of watermarking as tamper-proofing
or owner-identifying.

1. Fragile Watermarking : Fragile watermarks are easily destroyed by minor
modifications on multimedia objects. Therefore, they find applications
in tamper-detection where the owner might want to detect manipulation
on the object.

2. Robust Watermarking : Robust watermarks are embedded to establish
ownership and therefore are effectively robust and resilient against differ-
ent attacks. Ideally, even major or extensive attacks should not destroy
the watermark.

• Detectable/ Extractable: Where the actual watermark is extracted or its pres-
ence simply detected.

31

Chapter 3. Overview of watermarking

1. Extractable Watermarking : Meaningful watermarks (for example “ c©:

IBM Corporation”) are embedded in multimedia objects. The water-
mark can contain information like owner identity and time stamps. The
same watermark when extracted from the multimedia object establishes
ownership.

2. Detectable Watermarking : The embedded watermark is only detected as
present/absent. Thus, information like owner identity or time stamps,
are not required for detectable watermarks.

• Requirements for watermark detection: Does the watermark detection algo-
rithm need inputs other than the watermarked content and some secret key?

1. Non-Blind Watermarking : The original multimedia object (or a part of
it) is required in addition to the watermarked document during detection.

2. Semi-blind watermarking : The bits modified in the original object are
supplied to the detection algorithm along with the watermarked object.

3. Blind Watermarking : Blind watermarking does not require the original
object during detection. The only objects needed for watermark detection
are the watermark object and a secret key known to the owner.

• Reversibility : Ability to reverse a watermarking procedure and thereby recover
the original content from the watermarked content..

1. Irreversible: Once the watermark is embedded, the original object cannot
be generated from the watermarked object.

2. Reversible: The original object can be regenerated from the watermark
object using the secret key and the watermarked object. This category of
watermarking is rarely discussed in the literature, but we have identified
reversibility as a solution to secondary watermarking attacks. We present
and analyze this solution in Chapters 6, 7.

3.2 Text and Natural Language Watermarking

Text and natural language watermarking have become commercially important with
the ever-growing rise of business interest in digital text content such as e-books,
blog entries, document repositories and online distribution of literature. In recent

32

3.2. Text and Natural Language Watermarking

years, we have seen several lawsuits involving copyright infringement of textual
objects. Therefore, it becomes increasingly crucial to place imperceptible and de-
tectible/extractable copyright marks in natural language documents. Firstly, we
differentiate between two terms commonly (yet incorrectly) perceived to be inter-
changeable; natural language watermarking and text watermarking.

Text Watermarking Natural Language Watermarking

Text need not have meaningful structure. Text should have a linguistic structure.
Text need not follow grammatical rules. Text needs to follow grammatical rules.
Susceptible to reproduction attacks. Reproduction attacks are ineffective.
Watermark embedded in formatting. Watermark embedded in structure.

In one of the early works in format-based text watermarking, [50] inserts
watermark in a text document by changing inter-word spacing. The research pro-
vides a good indicator of the capabilities and limitations of general format-based
text watermarking schemes. It calculates average inter-word spacing for differ-
ent lines, S(i), then for each line, a watermark is determined by a sine wave
Wn = C1.a1. sin(φ1(n− p) + ϕ1), where,

• n is the line number

• p is the index of the fist line in the workplace after which a watermarking sine
wave will reside

• Wn represents the desired watermark of a text line with an index of n

• φ1 and ϕ1 are the radian frequency and initial phase angle of the sine wave
respectively

• C1 is a constant determining the amplitude of the sine wave; and

• a1 is the mean of S(i)s for different lines.

The new average inter-word spacing, S′an, is calculated as S′an = San + Wn,
where San is the original inter-word spacing. Finally the words in each text line are
modified by applying the parameters obtained above with document characteristics.
This method can be implemented for both private and public watermarking. The
detailed insertion process is shown in Algorithm 8. The detection is non-blind and

33

Chapter 3. Overview of watermarking

re-inserts the watermark and compares the result with the watermarked copy, and if
they match, it detects the watermark successfully. The following are the two major
drawbacks of the watermarking scheme.

1. The scheme is vulnerable to reproduction (photocopying), reformatting and
resizing attacks.

2. The scheme requires the original document to detect the watermark and hence
is a non-blind watermarking scheme.

Input : Document D, Lines {S1, S2, . . . , Sn}, secret key K
Output: Watermarked document
forall lines Si in document do

d=number of words in line Si;
if d > K then

St=total inter-word space in line Si;
Pxli=width of line in pixels;
Average inter-word space Sai = St

d−1 ;
Wi = C1.a1. sin(φ1(i− p) + ϕ1);
S′ai

= Sai + Wn;

Stc =
S′ai

−Sai

d−1 ;
if Stc ≥ 0 then

Shrink in word width ESi = bStc.
Pxli∑d

i=1 Pxli
c;

else
Expansion in word width ESi = dStc.

Pxli∑d
i=1 Pxli

e;
end
Interval Ivi = bPxli

ESi
c;

Duplicate/Remove vertical lines at interval Ivi;
end

end
Algorithm 8: Watermark insertion changing inter-word spacing

Amongst synonymy-based watermarking schemes, a fundamental model is
proposed in [56]. This model describes the general scenario in synonymy-based text
watermarking, where words and phrases are replaced by synonyms, thereby intro-
ducing tolerable distortion in the text document.

34

3.2. Text and Natural Language Watermarking

In the field of synonymy-based text watermarking, the notion of absolute
synonyms and equivalences is put forth in [15]. According to the study, the terms
are defined as follows.

• Absolute synonyms are a set of words that can replace each other in context

without any change in meaning. For example {sofa, settee}.

• Equivalences are a set of words that can replace each other with some degree
of change. Equivalences cannot replace each other unconditionally. Abbrevia-
tions and full forms are examples of equivalences as in {UK, United Kingdom},
since you cannot replace one by another in the sentence “UK stands for United
Kingdom”.

Researchers exploit the absolute synonymy to embed a message in [15]. Based
on a shared dictionary, first synonym pairs are generated for the document. Next,
based on the message, corresponding synonym group is chosen.

Let the message be Md, and p word pairs w0, . . . wp−1 are identified with wi

having ki corresponding synonym pairs. In this first step, the message is encrypted
using a secret key K to M . The first word pair is changed to one of the corresponding
synonym pair depending on the message digit M0. If M0 is greater than the number
of pairs available, then it is changed to the synonym pair M0 (mod ki) and the
rest of the message (M0/ki) is forwarded to the next pair. For example, let 5 word
pairs exist with number of synonym pairs 6,3,8,4, and 5. If the message is 231, it
cannot be contained in the first pair. The first pair is changed to synonym number
231 (mod 6) = 3 and the remaining message 231/6=38 is forwarded. The second
pair cannot contain this message so it is changed to synonym 38 (mod 3) = 2 and
remaining message 38/3=12 is forwarded. This process continues till the entire
message is embedded. The message embedding is formally represented below with
Algorithm 9 describing the embedding process. The detection process works in the
exact way to extract the encrypted mark M and decrypts it with K to reveal the
message Md.

The most serious weakness of the scheme is that the selection of words that
carry the mark is not based on a secret key. The secret key is actually used to
encrypt the message as the first step of insertion process, and to decrypt the message
as the last step of the detection process. Hence, anybody can extract the encrypted
message (since the synonymy dictionary is publicly available) and destroy it.

Following are the disadvantages of this category of watermarking scheme.

35

Chapter 3. Overview of watermarking

Input : Message Md, Document D, Key K
Output: document Dm containing message Md

Encrypt Md with K to get M ;
Get word pairs w0, . . . wp−1 from D;
i = 1;
while watermark to be embedded do

Synonyms for wi = {sp1, . . . , spki};
if i < p then

ni = Mi−1 (mod ki);
Mi = Mi−1

ki
;

wi = spni ;
else

np = Mp−1;
wp = spnp ;

end
i = i + 1;

end
Algorithm 9: Watermarking using collocationally-based synonymy

• Watermarking scheme is non-blind since you need a shared dictionary at em-
bedding and receiving end.

• Watermark detection would fail upon reshuffling the document.

• Watermarking scheme is not reversible so that the original document cannot
be extracted from the watermarked copy.

• Synonym pairs are not weighed which results in significant loss of meaning.

Atallah et. al present the first significant research works in natural lan-
guage watermarking in [14]. The main significance of their work is that it illus-
trates the fundamental differences between format/synonymy-based watermarking
and semantic-based watermarking and the advantages of the latter approach against
format/synonymy-based text watermarking. It provides a scheme for inserting a wa-
termark in a natural language document. If a selected sentence does not yield the
bit(s) needed it to yield, an attempt is made to generate the correct bit sequence
by transforming the sentence without any significant meaning change. Standard
transformations described in post-Chomskian generative syntax are tried for this
purpose. There are few but very productive syntactic transformations that change

36

3.2. Text and Natural Language Watermarking

the structure of a sentence while preserving its overall meaning. These are given
below.

• Adjunct movement

• Clefting

• Passivization

Let the original sentence be “the dog chased the cat”. The following set of notation
is used during the parsing of sentences, which is done using Link Parser [1].

• S connects subject-nouns to finite verbs

• NP represents Noun Phrase

• VP represents Verb Phrase

• ADVP represents Adverbial Phrase

• SBAR represents Complement Sentence

• WHNP represents Relative Pronoun Phrase (pronoun that points to another
noun in the sentence)

Original sentence:

(S (NP the dog)
(VP chased

(NP the cat)))

Adjunct Movement: An adjunct, like a prepositional phrase or adverbial
phrase, can occupy several well-defined positions in a sentence. For example, the
adverbial phrase often can be inserted in any of the positions marked by ADVP,
and when originally found in one of these, can be moved to any of the others:

(S (ADVP often)
(S (NP the dog)

37

Chapter 3. Overview of watermarking

(VP (ADVP often)

chased

(NP the cat)

(ADVP often))))

Clefting: Clefting adds emphasis to the sentence and can most easily be
applied to the mandatory subject of a sentence. In this case, pointing to the dog.

(S (NP it)
(VP was

NP (NP the dog)

(SBAR (WHNP that)

(S (VP chased

(NP the cat)))))))

Passivization: Any sentence with a transitive verb can be passivized. Iden-
tifying the syntactic structure of such a sentence is simple, even in the output of a
very basic syntactic parser. A transitive verb has a subject NP1 and an object NP2
which is the complement that occupies the sister-node of the verb. Ignoring factors
like tense, aspect, number, and modal auxiliaries (which are easily implemented),
the following is the passive sentence generated out of this input, where PP stands
for prepositional phrase.

(S (NP the cat)
(VP was

(VP chased

(PP by

(NP the dog)))))

38

3.3. Software Watermarking

A change to the syntax of a sentence can also be achieved through sentence-
initial insertion of semantically empty transitional phrases like generally speaking,
basically, or it seems that.

(S (NP it)
(VP seems

(SBAR that

(S (NP the dog)

(VP chased

(NP the cat))))))

The sentences are ranked in the document according to their size and the
first chunk of the watermark is inserted in the sentence following the least-ranked
sentence, si−1. A marker is a sentence whose successor in the sorted sentence set is
chosen to contain the watermark. The watermark bits are stored in the binary string
Bi corresponding to si, until relevant bits of Bi match the desired value. Finally
the position of si is modified in the sorted sentence sequence. The pseudo-code is
provided in Algorithm 10.

A summarization of the current text and natural language watermarking
scenario is provided in Table 3.1 containing security offered by text watermark-
ing schemes from the three classes (format-base, synonymy-based, and semantics-
based).

3.3 Software Watermarking

Software watermarking is the process of watermarking the source code so that lim-
ited manipulation of the source would not alter the watermark beyond recognition,
and thereby preserving owner identity. It is fairly complex to re-engineer the source
code from executables but it cannot be entirely rejected. Owner identification in
the software industry becomes even more crucial to ensure that open source soft-
ware remain freely available since an attacker might try to modify an open source
code and create an application with differing user interface but essentially the same
processing algorithms. This application may be made available for a cost in the

39

Chapter 3. Overview of watermarking

Input : Document D, Watermark W , Key p (prime number)
Output: Watermarked Document Dw

Watermark W = {w1, . . . , wm} ; // wi is a bit
Sentences in document {s1, . . . , sn};
For all i, size of si ¡ size of si+1;
j = 1;
while watermark to be embedded do

while sj+1 has been chosen as a marker do
Remove sj from S;
j = j + 1 (mod n);

end
sj chosen to contain watermark;
Marker sentence is sj−1;
Tj is the syntactic tree representation of sj ;
Number nodes of Tj according to pre-order traversal;
forall nodes i ∈ Tj do

if i + H(p) is a quadratic residue modulo p then
i = 1;

else
i = 0;

end
end
Bj is bitstring generated from post-order traversal of Tj ;
Bj is called node encoding of sj ;
Insert β bits in the LSB of Bj to get B′

j ;
Apply transformations to sj to get s′j having node encoding B′

j ;
Move sj to maintain sorted order of S;

end

Algorithm 10: Natural language watermarking [14]

Format-based Synonymy-based Synonymy-based Semantics-based
Attack [50] [56] [15] [14]

Reformatting Insecure Secure Secure Secure
Data deletion Insecure <Secure> <Secure> <Secure>
Data addition Insecure <Secure> <Secure> <Secure>

Data Reordering Insecure <Secure> <Secure> <Secure>
Synonym-substitution Insecure Insecure <Secure> Secure

Rephrasing Insecure Insecure Insecure <Secure>

(<Secure> implies partial security)

Table 3.1: Comparative study of text watermarking schemes

40

3.3. Software Watermarking

software market.Thus the attacker is effectively profiting from someone else’s work
which was, in the first place, aimed at providing convenience to the general user
without any monetary benefits in return.

3.3.1 Taxonomy of Software Watermarking

Software watermarking is categorized as follows.

1. Static vs. dynamic watermarks: In static watermarking, watermark is inserted
in the data section or the physical code of the program, while in dynamic
watermarking; it is embedded in the execution of the program.

2. Visible vs. invisible watermarks: Watermarks are explicitly placed inside the
software in visible watermarking, but in the case of invisible watermarking,
they are generally generated during the execution of the program in the case
of invisible watermarking.

Software watermarking schemes can also be classified based on the elements
exploited in order to embed the watermark into the following sub-categories.

1. Graph based software watermarking: The watermark is encoded in the con-
trol flow graph (CFG) of the software. This class of watermarking exploits
redundancies in software execution such as branch instructions and function
or methods calls. If a program C with CFG is modified such that the program
changes to C ′ but there is no effect on the output of the software, we can
say that the two programs are equivalent from the users’ perspective. This
happens when intermediate nodes are added to the execution path but the
end-result is preserved. Let b1 be a sequential code block that branches to
another block b2. If we add instruction(s) imed, such that b1 branches to imed,
which in turn branches to b2, there is no net effect on the programs execution.
However the CFG changes and the watermark is embedded in its encoding.
Figure 3.6 illustrates this pseudo-code insertion. Watermarking algorithms
from this family are presented in [90, 29, 28, 27, 26].

2. Register based software watermarking: Register allocation can be enforced
and manipulated to embed the watermark. If two variables are not used
simultaneously at any given time during program execution, then the same

41

Chapter 3. Overview of watermarking

? ?

?

b1

b2

b1

b2

imed

Figure 3.6: Inserting intermediate code without effecting output

register can be allocated to store these variables. This situation is exploited
by several watermarking models [75, 76, 79, 78, 77, 95, 57, 70, 106].

3. Thread based software watermarking: These schemes alter the threads that
execute particular sections of the code. The obvious drawback of such schemes
is to have a multi-threading environment in which the program is written.
These schemes are not extremely popular due to their language-dependency.
One such scheme is proposed in [72].

4. Obfuscation based software watermarking: In this category, the watermark is
either statically embedded in dummy methods/ functions/ instructions or the
classes are manipulated by splitting or merging multiple classes to encode the
watermark in the class encoding. Models from this category [39, 69, 74, 51]
are described further in this chapter.

3.3.2 Attacks on Software Watermarks

There are two categories of attacks on any watermarked multimedia object; generic
and multimedia-specific. Generic attacks reorder, add, delete, and modify data
while multimedia-specific attacks exploit the object characteristics to identify the
watermark location and delete the watermark. The attacks on watermarked software
that are software specific are given below.

1. Decompilation/ recompilation: In this attack, the attacker decompiles the ma-
chine code into a high level code and recompiles the program.

42

3.3. Software Watermarking

2. Variable restructuring : The attacker might change variable names, variable
scopes and variable ordering to erase the watermark if embedded in variable
structure.

3. Synonymous instructions substitution: Instructions in programming languages
can usually be replaced by other instructions which perform the exact task.
For example, in C/C++/Java, a programmer can replace for loop with while
or do-while loop. The attacker can change such instructions in hope to erase
the watermark.

4. Addition/ deletion/ displacement of dead code: If the watermark is embedded
in dead code (code that never gets executed), an attacker can modify such
dead code to erase the watermark.

5. Re-ordering of independent code blocks: If there are multiple code blocks that
are mutually independent, they can be re-ordered without having an adverse
effect on the output of the program. But a watermark that is embedded in
such an ordering would be destroyed by such operation.

6. Checking unreachable code: If there is unreachable code in the program, the
attacker can delete it. If the watermark detection algorithm uses input pa-
rameters such as program size, the watermark will not be detected.

7. Register re-allocation: Assume that watermark is hidden in the ordering of
registers holding the variables. An attacker can re-order this register allocation
and thereby modify the watermark encoding.

8. Re-assigning thread sequence: Certain software watermarking schemes embed
watermark in the sequence in which threads are executed. This can be attacked
by reassigning thread priorities and sequence of execution.

9. Class manipulation: If the watermark is embedded in the obfuscation of
classes, then the classes can be merged or split to eliminate the watermark.

These attacks need to be dealt with, while maintaining semantic correctness
of software and preserving basic principles of programming (such as encapsulation,
data abstraction for object oriented programming).

43

Chapter 3. Overview of watermarking

3.3.3 Review of Software Watermarking Schemes

Amongst the different categories of software watermarking, the most general cate-
gory is the branch-based software watermarking since it targets the very basic char-
acteristic of a software - branching. Each software can be interpreted as a graph
and thus it is a generic approach of watermarking that can be extended to almost
any source code written in any language. Hence, we first describe research that deal
with graph-based approach to watermarking.

The ground work in graph-based software watermarking has been carried out
by Venkatesan et al in [90]. The basic principle is to convert the software and the
watermark code into digraphs. The software to graph encoding works as follows.

1. The nodes of the graphs are basic blocks of codes (sequential code).

2. The edges of the graphs are function calls from one block to another.

New edges are introduced between the two graphs implemented by adding
function calls between the software and watermark code. This scheme lacks any form
of error-correcting codes and is susceptible to reordering of instructions, adding of
new function calls. Another problem in the scheme is that the random walk men-
tioned in the work is not truly random. The node to be visited next is determined
based on probability. This also gives away information to the attacker. Alternatively,
a pseudo-random permutation of the nodes which will be visited can be generated.
Collberg and Thomborson later presented other models based on improvement over
this scheme in [28, 27].

Several graph encodings can be used to encode the software and the wa-
termark code. Some of these encoding have been provided in [29], and are briefly
described below:

1. Radix-k encoding : This is a circular linked list representation, where a null-
pointer encodes 0, self-pointer means 1, pointer to next node means 2 and so
on. A list of length m can encode an integer in the range [0, (m + 1)m − 1].
For m = 255, 2040 bits can be encoded. There are two pointers in every node;
the right pointer holds the location of the next field as in a normal linked
list, while the left pointer encodes a base-k digit. In a Radix-5 encoding, the
number 266 would be encoded 2×53 +3×51 +1×50 and therefore, we would
need six nodes; one header node (n0), node n1 pointing to the next node n2

44

3.3. Software Watermarking

Figure 3.7: 61× 73 = 3.64 + 2.63 + 3.62 + 4.61 + 1.60 in Radix-6 encoding [29]

Figure 3.8: Planted Planar Cubic Tree [29]

and thereby encoding the digit 2, n2 pointing to node n5 (leaving n3, n4),
thereby encoding digit 3 and n5 self-pointing and encoding digit 1. Figure 3.7,
taken from [29], illustrate a radix-6 encoding that corresponds to value 4453
(61× 73).

2. Planted planar cubic trees (PPCT): PPCT is a binary tree with an additional
node, called the header, pointing to the root. All the leaf nodes form a circular
linked list from the rightmost leaf → leftmost leaf → header → rightmost leaf.
Each node has two pointers, l and r. Right pointer of a leaf node points to
the node itself (right(vleaf) = vleaf). Figure 3.8, taken from [29], provides an
illustration of a PPCT.

3. Repetitive PPCT : Each node of a PPCT is made redundant to get n nodes

45

Chapter 3. Overview of watermarking

from each node. Successful recovery of majority of the n nodes results in
correct recovery of original node.

A code that builds the watermark graph is embedded in the software. This
code is executed upon a special input I (acting as the secret key).

PPCTs are re-used in [28] and it also introduces reducible permutation
graphs (RPG), having better error-correcting properties for graph embedding. An
RPG has the following properties.

1. header node has in-degree zero, out-degree one. Any node in the graph can be
reached from here.

2. preamble nodes follow the header node and have no forward edges, except
those used in graphs Hamiltonian path.

3. body are edges between these nodes encode a self-inverting permutation.

4. footer node has out-degree zero. It is reachable from any node in the graph.

Modifications to the above mentioned work on RPG, capacity improvement
and security analysis is performed in [27]. In [26], Collberg et al. propose two
watermarking methods one for Java bytecode and another for native assembly code.
Watermarking Java bytecode is done through first splitting a numeric watermark
into multiple values so that a subset can recover the watermark and then inserting
each of these numeric values in the program using false predicates. The problem with
this scheme is that the attacker can identify the variables whose values are always
fixed for different input and can eliminate them. Native code watermarking is done
through the use of branch function calls. These are calls which from address A, but
return control to some other address A. The encoding used is to embed watermark
bit 0, A < A, and to embed watermark bit 1, A > A. The problem identified by the
authors is that the attacker can detect functions modifying their return address, and
the solution suggested is to use helper functions (which are intermediate functions)
so that a chain is formed that ultimately returns control to A′. As an example
A → f1 → f2 → f3 → . . . → fn → A′. Function fn effectively modifies the return
address A → A′, which is equivalent to A → fn → A′. Hence the solution is not
really effective. Furthermore, the scheme requires each branch call to be preceded
by an unconditional branch statement to the instruction after the branch call so as
to bypass it. An automated tool can detect such a sequence (unconditional branch

46

3.3. Software Watermarking

call followed by another branch call) and upon casual analysis, the attacker can
destroy the watermark. [88] by Thomborson et al. again uses PPCTs and repetitive
or redundant PPCTs to embed watermarks.

In the field of watermarking through register allocation, Qu and Potkonjak
have proposed several watermarking models to embed watermarks in software using
graph coloring [75, 76, 79, 78, 77, 95, 57]. The edge-adding watermarking technique
from [75, 76] is implemented in [70].

For a graph G = (V, E) where V is the set of vertices and E the set of edges
between these vertices. The graph can be colored in the following two ways.

1. Vertex coloring : If (v1, v2) ∈ E, v1 and v2 cannot have the same color. That
is, vertices having an edge between them cannot have the same color.

2. Edge coloring : If e1 = (v1, v2) and e2 = (v2, v3) or e2 = (v1, v3), e1 and e2

cannot have the same color. That is, edges that have a common vertex or
edges that are adjacent to each other cannot have the same color.

Definition 3.3.1 Given a graph G = (V, E), a set of 3 vertices {v1, v2, v3} is con-
sidered a triple and represented as (v1, v2, v3) ∈ T if

1. v1, v2, v3 ∈ V , and

2. (v1, v2), (v1, v3), (v2, v3) /∈ E

If vertex vi does not belong to any triple, we represent this as vi /∈ T .

Definition 3.3.2 Given a graph G = (V, E), a set of 3 vertices {v1, v2, v3} is con-
sidered a colored triple and represented as (v1, v2, v3) ∈ CT if

1. v1, v2, v3 ∈ V , and

2. (v1, v2), (v1, v3), (v2, v3) /∈ E, and

3. v1, v2, v3 are all colored the same color

We also represent as vi /∈ CT if vertex vi does not belong to any colored triple.

We use the vertex coloring method for our purpose. The color of a vertex v is
represented as c(v). A software can be viewed as a graph with variables as vertices
and an edge E = (v1, v2) in the graph indicates that the variables v1 and v2 are live

47

Chapter 3. Overview of watermarking

concurrently and cannot be assigned the same register and thereby cannot have the
same color. Thus, based on the watermark bits, we introduce edges into the graph
and change the graph coloring. The major disadvantage of these schemes however
is that they are non-blind and require unmarked software copy as well to compare
and detect/ extract watermark.

The original QP embedding and extraction algorithms are provided in Al-
gorithm 11 and Algorithm 12 respectively. Implementation of the QP algorithm is
performed as follows,

1. Track registers used for storing different variables during the programs execu-
tion

2. Each variable is represented as a vertex in a graph

3. If two variables are stored in two different registers, they are connected oth-
erwise not.

4. Using QP algorithm, disconnected vertices are connected depending on wa-
termark bits and physically realized by changing registers that store these
variables.

Input : Graph G = ({V }, {E}), Watermark W = {w1, w2, . . . , wn}
Output: Watermarked Graph G′ = ({V }, {E′})
x=1;
while i <= n do

if there are two vertices vx1 , vx2 nearest to vx, not connected to vx

then
if wi == 0 then

Add (vx, vx1) to E;
else

Add (vx, vx2) to E;
end
i = i + 1;

end
x = x + 1;

end
Return G′ = (V,E′);

Algorithm 11: QP watermark insertion [75, 76]

48

3.3. Software Watermarking

Input : Graph G = ({V }, {E}), Watermarked Graph G′ = ({V }, {E′})
Output: Watermark detection status
x=1;
while i <= n do

if Can find vertices vx1 , vx2 nearest to vx that are not connected to
vx then

if c(v′x) 6= c(v′x1
) then

W ′ = W ′‖0;
Add (vx, vx1) to E;

else
W ′ = W ′‖1;
Add (vx, vx2) to E;

end
i = i + 1;

end
x = x + 1;

end
if G==G’ then

Watermark detected;
else

Watermark not detected;
end
Return W ′;

Algorithm 12: QP watermark extraction [75, 76]

49

Chapter 3. Overview of watermarking

1

>>
>>

>>
> 2

¡¡
¡¡

¡¡
¡¡

1
>>

>>

>>
>>

2
¡¡

¡¡

¡¡
¡¡

1
>>

>>

>>
>>

2
¡¡

¡¡

¡¡
¡¡

1
>>

>>

>>
>>

2
¡¡

¡¡

¡¡
¡¡

3 4 3 4 3 4 3 4

(a) Watermark 010

1

>>
>>

>>
> 2

¡¡
¡¡

¡¡
¡¡

1
>>

>>

>>
>>

2
¡¡

¡¡

¡¡
¡¡

1
>>

>>

>>
>>

2
¡¡

¡¡

¡¡
¡¡

1
>>

>>

>>
>>

2
¡¡

¡¡

¡¡
¡¡

3 4 3 4 3 4 3 4

(b) Watermark 111

Figure 3.9: Watermarks 010 and 111 resulting in the same watermarked graph

The deficiency in the original QP algorithm is that it sometimes maps more
than one watermarks to the same resultant graph. Hence, in these situations, detec-
tion would always return one particular watermark irrespective of which watermark
is actually contained in the watermarked graph. An example is provided in Fig-
ure 3.9. This example illustrates how watermarks 010 and 111 both result in the
same watermarked graphs thereby making it impossible to deterministically identi-
fying the actual watermark inserted. Figure 3.9 a) shows the steps in embedding
watermark 000 while Figure 3.9 b) illustrates watermark 111 being embedded.

The problem of a single watermarked copy corresponding to multiple water-
marks is addressed in [70] and a solution to overcome this is proposed. In [70], the
message is embedded as follows.

Given a graph G(V, E), and a watermark W = {w1, w2, . . . , wn}, the set of
vertices V is sorted to {v1, v2, . . . , vm}. For each vertex vi, find two nearest vertices
vi1 and vi2 that are not connected to vi , where nearest means i2 > i1 > i (mod n),
the edges (vi, vi1), (vi, vi2) /∈ E and (vi, vj) ∈ E for all i < j < i1, i1 < j < i2. If wi

= 0, add edge (vi, vi1), else add edge (vi, vi2). The edges that are added represent
fake interferences and force a new coloring of the graph. The embedding process is
provided in Algorithm 13.

The watermark is recognized as follows.

50

3.3. Software Watermarking

Input : Graph G = ({V }, {E}), Watermark W = {w1, w2, . . . , wn}
Output: Watermarked Graph G′ = ({V }, {E′})
x=1;
while i <= n do

if vx /∈ T then
If possible, find vertices vx1 , vx2 nearest to vx that are not
connected to vx;
if c(vx1) == c(vx2) == c(vx) & vx1 /∈ T & vx2 /∈ T then

if wi == 0 then
Add (vx, vx1) to E;

else
Add (vx, vx2) to E;

end
i = i + 1;

end
end
x = x + 1;

end
Return G′ = (V,E′);

Algorithm 13: QPS watermark insertion[70]

Given a graph G(V,E), for each pair of vertices (vi, vj), j > i (mod n), which
are not connected by an edge and are different colors, one bit of the message can
be obtained. The bit extraction is done by examining how many vertices occur
between vi and vj which are not connected to vi. The detection process is provided
in Algorithm 14.

A further improvement to the original QP algorithm is proposed in the form
of QPI algorithm by Zhu and Thomborson in [106, 107]. The main advantage of
this work is that the watermark is extractable and not merely recognizable/detectable.
The definition of the the two candidate vertices vi1 and vi2 for vertex vi is modified by
introducing the ordering constraint to be non-cyclic rather than the previous notion
of cyclic ordering in [75, 76]. As an example, let there be six vertices v1, v2, . . . , v6.
While trying to find a candidate vertex to be connected to v5, vertices v1, v6 are
selected. The algorithm in [75] will take v6 > v5 and v1 > v6 since it goes in a
cyclic manner but the new algorithm [106, 107] takes v1 < v5 and v6 > v5. With the
modified scheme, two watermarks do not map to the same watermarked relation.
Following are the drawbacks of the scheme that need attention.

• The watermarking scheme is non blind since it requires the original graph to

51

Chapter 3. Overview of watermarking

Input : Graph G = ({V }, {E}), Watermarked Graph G′ = ({V }, {E′})
Output: Watermark detection status
x=1;
while i <= n do

if vx /∈ T then
If possible, find vertices vx1 , vx2 nearest to vx that are not
connected to vx;
if c(vx1) == c(vx2) == c(vx) & vx1 /∈ T & vx2 /∈ T then

if c(v′x) 6= c(v′x1
) then

W ′ = W ′‖0;
Add (vx, vx1) to E;

else
W ′ = W ′‖1;
Add (vx, vx2) to E;

end
i = i + 1;

end
end
x = x + 1;

end
if G==G’ then

Watermark detected;
else

Watermark not detected;
end
Return detection status;

Algorithm 14: QPS watermark extraction [70]

52

3.3. Software Watermarking

extract the watermark.

• The work does not address security against secondary watermarking.

A straightforward yet effective technique to insert watermark is presented in
[72], although with an enormous increase in software size. If watermark bit=0, all
sections of a code block executed by a single thread. If watermark bit=1, different
sections of a code block executed by different threads.

Building up on the scheme proposed by Monden et al. [69], a watermarking
scheme that inserts explicit watermark instructions in dummy methods is proposed
in [39]. The new scheme sets the access permission for all the methods and mem-
bers public, thereby obfuscating the classfiles. The very object oriented technology
principles are compromised since encapsulation and data abstraction conditions are
violated. Also any class can modify data of any class, which is a critical problem.

Pieprzyk describe a watermarking model [74] that embeds digital signature
in the software and verifies the software for the following purposes,

1. Integrity

2. Authority

3. Fingerprint

For a given instruction, there can be n variations that have the same semantic
effect. If there are m such instructions, then total combinations are n ∗ m. An
enumerated list of such combinations is created and combination suitable to insert
a particular digital signature is chosen (consisting of author, owner, buyer, seller
information). Jarek et al. [51] use similar principle of possible combinations being
used for insertion of digital signature, but on classes instead of instructions.

3.3.4 Summary

Table 3.2 provides a summary of comparison between various proposed software
watermarking techniques. According to our analysis, branch-based watermarking
schemes are more secure than other categories because they exploit the inherent
redundancies in softwares. Obfuscation based watermarking appears to be most

53

Chapter 3. Overview of watermarking

fragile since it embeds the watermark in the encoding of classes and instructions.
Obfuscation based software watermarking schemes can be compared with format-
based text watermarking schemes since both embed watermark in the format and
not the data itself.

54

3.3. Software Watermarking

A
tt

a
ck

[9
0
]

[2
9
]

[2
8
]

[2
7
]

[2
6
]

[8
8
]

[7
0
]

[7
2
]

[3
9
]

[7
4
]

[5
1
]

O
b
je

ct
re

n
a
m

in
g

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

In
se

cu
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

<
S
ec

u
re

>
D

ec
o
m

p
il
e

a
n
d

R
ec

o
m

p
il
e

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

In
se

cu
re

<
S
ec

u
re

>
S
ec

u
re

S
ec

u
re

S
ec

u
re

C
o
d
e

R
e-

o
rd

er
in

g
<

S
ec

u
re

>
<

S
ec

u
re

>
<

S
ec

u
re

>
In

se
cu

re
<

S
ec

u
re

>
S
ec

u
re

In
se

cu
re

In
se

cu
re

In
se

cu
re

In
se

cu
re

S
ec

u
re

A
d
d
in

g
n
o
-e

ff
ec

t
co

d
e

<
S
ec

u
re

>
<

S
ec

u
re

>
<

S
ec

u
re

>
S
ec

u
re

<
S
ec

u
re

>
S
ec

u
re

In
se

cu
re

In
se

cu
re

In
se

cu
re

In
se

cu
re

S
ec

u
re

S
y
n
o
n
y
m

o
u
s

O
b
je

ct
S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

In
se

cu
re

In
se

cu
re

<
S
ec

u
re

>
C

h
ec

k
in

g
u
n
re

a
ch

a
b
le

co
d
e

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

In
se

cu
re

<
S
ec

u
re

>
S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

C
h
ec

k
in

g
d
ea

d
co

d
e

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

In
se

cu
re

<
S
ec

u
re

>
S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

S
ec

u
re

O
v
er

h
ea

d
in

ti
m

e,
si

ze
H

ig
h

H
ig

h
H

ig
h

H
ig

h
L
ow

H
ig

h
L
ow

H
ig

h
L
ow

L
ow

L
ow

T
ab

le
3.

2:
C

om
pa

ra
ti

ve
st

ud
y

of
so

ft
w

ar
e

w
at

er
m

ar
ki

ng
sc

he
m

es

(<
S
ec

u
re

>
im

p
li
es

p
a
rt

ia
l
se

cu
ri

ty
)

55

Chapter 3. Overview of watermarking

3.4 Database Watermarking

Database watermarking is a relatively new comer with a growing interest and in-
creased research activity in the last five years. A typical scenario that requires
database watermarking is when a company C provides confidential customer data
to an external organization ORG (eg. call center). To ensure that ORG does not
exploit the information and doesn’t sell it, C embeds its watermark in the database
relation. Another application is in web services, where data provider D makes a
database relation available online for remote queries. An attacker may try to steal
the relation using multiple intelligent queries. To prevent this, D watermarks the
databases before making them available online using a blind or non-blind water-
marking scheme. In a blind watermarking model, only the watermarked media and
a secret key are required to detect/extract watermark whereas in a non-blind wa-
termarking scheme, the unmarked multimedia object is also required in addition to
the watermarked copy and secret key. This creates a situation where the unmarked
object needs to be stored at a secondary secure location.

This section outlines relevant database watermarking schemes, primarily
Agrawal and Kiernan’s model proposed in [11, 12], which serves as the basis on
many other database watermarking schemes. A numeric set watermarking scheme
[85] is discussed here before proceeding to the central discussion about database
watermarking.

A watermarking scheme for numeric data set is proposed in [85]. The problem
can be stated as embedding a bitstream watermark W = {w1, . . . , wm} in a data
set S = {s1, . . . , sn} ⊂ R and creating a watermarked version V = {v1, . . . , vn} ⊂ R
under usability condition (to ensure that the resulting data is useful from the user’s
perspective). This can be achieved by limiting the distortion for each data set within
a range [gmin, gmax]. Various metrics can be used to measure usability such as mean
squared error such that the following holds.

(si − vi)2 < gi ∀i = 1, 2, . . . , n gi ∈ R (3.1)∑
(si − vi)2 < gmax gmax ∈ R (3.2)

During the insertion process, the numeric set S is split into buckets Sis using
Equation 3.3. In the actual implementation, a one-way, secretly keyed, crypto-

56

3.4. Database Watermarking

graphic hash of the set of most significant bits (MSB) of the normalized version of
the items is used to achieve this [85]. We embed a single bit in each subset using
an encoding convention and check for data usability bounds. If usability bounds
are exceeded, a different encoding parameter variations is tried, and if still there is
no success, we try to mark the subset as invalid, and if still there is no success, we
ignore the current set. This leaves an invalid watermark bit encoded in the data
that will be corrected by majority voting at extraction time. The encoding con-
vention is determined by a confidence factor c and confidence violators hysteresis
v0, v1 that are input to the insertion algorithm. The watermark is modeled by the
percentage of the “confidence violators” present in data subsets for given c, v0, v1.
The insertion process is provided in Algorithm 15 and the detection process works
similarly in terms of dividing the numeric set into subsets and determining whether
the bit extracted is valid or not.

Si = {sj ∈ S|(ki)bitj = 1}, i = 1, . . . ,m (3.3)

It is quite evident from [85] that usability plays a big role in determining the
overall quality of a watermarking scheme, especially when database relations are the
objects. Gross-Amblard proposed one of the few watermarking models that address
the usability issue in detail [40]. Usability is measured in terms of query results. If
the results of a given set of queries are preserved for a watermarked relation, the
watermarking is said to be query-preserving, and is desirable. The notions of local
and global distortions are presented in [40] which achieve the property of query-
preservation. The user can execute queries q1, q2, . . . , qk on the database relations.
The proposed watermarking scheme respects the following conditions.

1. the watermarking scheme transforms the database relation into several ver-
sions, and results in a small distortion on the query results q1(u′), q2(u′), . . . , qk(u′)
and the owner acts as any user u′.

2. the scheme can prove ownership based on answers to the above k queries only.

We are going to use Table 3.3 and Table 3.4 to explain the concepts from
[40]. The tuple weight W (tj) is the numerical value associated with that tuple. In
case of multiple numerical values in a tuple, the summarizing value or the most
valuable value is selected for computing weight. For example, the weight of a tuple
in Table 3.4 is the cost of the meals.

57

Chapter 3. Overview of watermarking

Input : Numeric set S = {s1, . . . , sn} ⊂ R, Watermark
W = {w1, . . . , wm} ⊂ {0, 1}, Key K = {k1, . . . , km},
confidence factor c, confidence violators hysteresis v0, v1

Output: Watermarked numeric set Sw

index(si) = H(ks, MSB(NORM(si)), ks);
Divide S into subsets based on index(si);
d = 1;
while watermark to be embedded do

avg(Sd) =
∑

xj

|Sd| ∀xj ∈ Sd;

δ(Sd) =
√∑

(avg(Sd)xj)2

|Sd| ∀xj ∈ Sd;
fc = |xj |xj > avg(Sd) + c× δ(Sd) vc(Sd) = |fc|;
if vc(Sd) > v1 × |Sd| then

mark = 1;
else

if vc(Sd) < v0 × |Sd| then
mark = 0;

else
mark = invalid;

end
end
d = d + 1;

end
Algorithm 15: Watermark insertion in numeric set

Meal Type Code
Breakfast B1
Breakfast B2
Breakfast B3

Lunch L1
Lunch L1
Dinner D1
Dinner D2
Dinner D3

Table 3.3: Meal table

58

3.4. Database Watermarking

Code Item 1 Item 2 Item 3 Item 4 Item 5 Cost($)
B1 Omelette Cereal Milk Apple Juice Coffee 10.50
B2 Omelette Fruits Milk Apple Juice Coffee 11.50
B3 Cereal Fruits Milk Orange Juice Tea 9.60
L1 Sandwich Fries Juice - - 8.60
L2 Noodles Wings Juice - - 9.60
D1 Steak Corn Salad Cake Wine 20.90
D2 Steak Fries Salad Pie Beer 18.90
D3 Burger Fries Salad Cake Beer 18.90

Table 3.4: Combination table

A Weight function f for any attribute in the table is defined in the papers
as sum of the weights of tuples in a query result. Function f is used to control the
distortions on query results (the operation

∑
in the weight function can be mod-

ified to mean,min, max without effecting the overall quality of the watermarking
scheme). The weight function and an example is provided below,

f(Ai) =
∑

W (tj : Ai ∈ tj) (3.4)

f(Breakfast) = Weight(B1) + Weight(B2) + Weight(B3) = 22.10
f(Lunch) = Weight(L1) + Weight(L2) = 18.20

f(Dinner) = Weight(D1) + Weight(D2) + Weight(D3) = 58.70

Local distortion caused by modification on a database is defined as |W (tj)−
W ′(tj)| and global distortion is defined as |f(Ai) − f ′(Ai)|. Given a constant c, a
watermarking scheme is said to respect c-local distortion assumption if |W (tj) −
W ′(tj)| <= c. Furthermore, given a constant d, a watermarking scheme is said to
respect d-global distortion assumption if |f(Ai)− f ′(Ai)| <= d.

For example, let Table 3.5 and Table 3.6 be two different variations of Ta-
ble 3.4. For c, d = 1, combination 1, respects 1-local distortion but not d-global dis-
tortion because |f(Dinner)− f(Dinner′)| = 2 and also f(Lunch)− f(Lunch′) = 2.
Combination 2 however respects both 1-local distortion and d-global distortion be-
cause none of the tuple weights are modified beyond 1.00 and f(Breakfast) −
f(Breakfast′) = 0.40, f(Lunch)−f(Lunch′) = 0.40 and |f(Dinner)−f(Dinner′)| =
0.

59

Chapter 3. Overview of watermarking

Code Item 1 Item 2 Item 3 Item 4 Item 5 Cost($)
B1 Omelette Cereal Milk Apple Juice Coffee 9.90
B2 Omelette Fruits Milk Apple Juice Coffee 10.50
B3 Cereal Fruits Milk Orange Juice Tea 8.60
L1 Sandwich Fries Juice - - 9.60
L2 Noodles Wings Juice - - 10.60
D1 Steak Corn Salad Cake Wine 19.90
D2 Steak Fries Salad Pie Beer 17.90
D3 Burger Fries Salad Cake Beer 18.90

Table 3.5: Version 1 of combination table

Code Item 1 Item 2 Item 3 Item 4 Item 5 Cost($)
B1 Omelette Cereal Milk Apple Juice Coffee 10.90
B2 Omelette Fruits Milk Apple Juice Coffee 11.20
B3 Cereal Fruits Milk Orange Juice Tea 9.90
L1 Sandwich Fries Juice - - 8.70
L2 Noodles Wings Juice - - 9.90
D1 Steak Corn Salad Cake Wine 20.00
D2 Steak Fries Salad Pie Beer 19.80
D3 Burger Fries Salad Cake Beer 18.90

Table 3.6: Version 2 of combination table

60

3.4. Database Watermarking

Active weighted elements: (W) The elements that are modified in a particular
version of watermarking activity are included in active weighted elements. In the
given example, {B1, B2, B3, L1, L2, D1, D2} are active weighted elements while D3
is not an active weighted element since it is not modified in versions combination 1
or combination 2. As a result, we only have W elements to watermark.

If we can find 2l distinct distortions respecting both c-local distortion and
d-global distortion for predefined c, d, then we can embed a distinct l−bit watermark
in each variation of the relation and distribute it to a different server, thereby being
able to identify any of the 2l malicious servers.

The paper focuses on limiting global distortion and restricts the value of c

to 1. The marking algorithm M inputs relation set and global distortion limit R, d

respectively and outputs a distorted relation set R′ containing a l − bit watermark
such that Pr(R′ respects d−global distortion)> 0.75.

Let R′′ be a d′-global distortion of R. The detection algorithm D inputs all
possible query answers from suspect server using R′′ and Pr(D outputs m)> 1 − δ

where δ is the failure probability of the detector D.

Amongst the LSB-modifying watermarking schemes, that are usually suscep-
tible to random bit flipping attacks, we discuss here a second-LSB based database
watermarking proposed in [97]. It inserts a watermark in a relational database table
by pseudo-randomly grouping attributes and changing the least significant digit of
the attributes of the same group to the same digit if the bit to be inserted is 1,
otherwise introducing no change. Consider the original relation in Table 3.7 as an
example. Let the underlined attributes belong to the same group and the watermark
bit is 1, then a random value c ∈ {0 . . . 9} (say 8) is generated, and the least sig-
nificant digit of these attributes is changed to c. In this case, the resulting relation
is Table 3.8. In the case that watermark bit is 0, then the watermarked relation is
given in Table 3.9.

More is the number of the 1-bit in the watermark, more are the changes
introduced by the embedding algorithm. An all-0-bit watermark does not introduce
any change in the document. Hence the modification in the database relation is
proportional to the number of 1’s in the watermark.

If all attributes of the relation having the same least significant digit (LSD)
are grouped together, then one or more of these groups also contain the group G

embedding a watermark bit 1. If the LSD of attributes in these groups are modified

61

Chapter 3. Overview of watermarking

primary key attribute
January 53
February 63
March 41
April 56
May 89
June 39
July 77

August 102
September 65
October 59

November 91
December 76

Table 3.7: Original Table

primary key attribute
January 58
February 63
March 48
April 56
May 89
June 39
July 78

August 102
September 65
October 59

November 91
December 78

Table 3.8: Watermarked with bit 1

62

3.4. Database Watermarking

primary key attribute
January 53
February 63
March 41
April 56
May 89
June 39
July 77

August 102
September 65
October 59

November 91
December 76

Table 3.9: Watermarked with bit 0

uniformly to 0, 1, . . . , 9, 0, 1, 2 . . ., then the distribution of G is also modified accord-
ingly thereby destroying the watermark bit with a high probability. Algorithm 16
formally describes the attack. This attack focuses on randomization and therefore
only watermark bits 1 will be attacked by this method. From the embedder’s per-
spective, an apparent security measure against this kind of attack would be to have
very few 1’s in the embedded watermark but this would lead to a high probability of
false positives. In order to limit the false positive probability below a pre-determined
threshold, there must be a lower bound on the ratio 1’s to 0’s in the watermark. We
implemented our attack in C++ and tested the first prototype with single attribute
relations and then with multi-attribute relations. We have achieved 20-25% attack
success with 40-45% modification. The source code for the attack can be found in
the appendix. Summarization of results is given in Figure 3.10.

3.4.1 Agrawal-Kiernan Database Watermarking Scheme

Agrawal and Kiernan present a watermarking scheme that modifies LSBs of pseudo-
randomly selected numerical attributes in a relational database [11, 12]. Following
are the parameters to the watermarking algorithm.

• Database relation R.

• Number of tuples, η, in R.

63

Chapter 3. Overview of watermarking

Input : Watermarked relation R
Output: Attacked relation R′

for k =1 to 10 in steps of 1 do1

counterk = random (mod 1)0;2

end3

for tuple r ∈ R do4

for attributes Ai ∈ r do5

Ai = (Ai/10) ∗ 10 + counterAi ;6

counterAi = (counterAi + 1) (mod 1)0;7

end8

end9

Algorithm 16: Uniform distribution attack

10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

Percentage tuples modified

A
tta

ck
 S

uc
ce

ss
 P

er
ce

nt
ag

e

10−bit watermark
8−bit watermark

Figure 3.10: Launching an attack on second-LSB based watermarking

64

3.4. Database Watermarking

• Number of attributes, υ, in R available for watermarking.

• Number of LSBs, ξ, available for watermarking.

• Fraction of tuples, 1/γ, to be watermarked.

• Significance level, α, for watermark detection.

• Minimum number of correctly marked attributes, τ , for successful detection.

The basic operation in the watermark inserting algorithm is a message au-
thenticated code given in Equation 3.5, where ‖ represents concatenation and H is
a one-way hash function.

F(r.P) = H(K‖H(K‖(r.P)) (3.5)

The watermark insertion algorithm is given in Algorithm 17. The algorithm
selects pseudo-randomly the tuples, the attributes and the bit to be watermarked.
The size of the mark inserted is γ bits. Since the embedding procedure involves a se-
quential and independent watermark bit embedding in tuples, the detection process
is essentially re-visiting the tuples (in any given order, since they are independently
marked) and trying to detect or validate the watermark bit in that tuple.

The detection algorithm is provided in Algorithm 18. The detection algo-
rithm checks whether the detected bit matches the actual bit or not. Identification
of the correct tuple, attribute, and bit position relies on F(r.P) where r.P is the
primary key of the rth tuple. In the algorithm, τ is the minimum number of bits
that need to be detected correctly such that the probability of falsely detecting τ

out of totalcount bits is less than α.
The attacks considered by the authors include the following.

A1: Bit attack : Attacker updating some bits in numerical attributes.

A2: Randomization attack : Attacker assigns random values to some bits.

A3: Rounding attack : Attacker rounds off certain number of bits.

A4: Translation attack : Attacker transforms numerical values to suit another unit
of measurement.

A5: Subset attack : Attacker extracts a subset of tuples or attributes.

65

Chapter 3. Overview of watermarking

Input : relation R, private key K, fraction 1
γ , LSB usage ξ, Markable

attributes {A1, A2, . . . , Aυ}, primary key P
Output: Watermarked relation Rw

forall tuples r ∈ R do1

if F(r.P) (mod γ) = 0 then2

Mark attribute i = F(r.P) (mod υ);3

Mark bit j = F(r.P) (mod ξ);4

r.Aj
i = H(K‖r.P) (mod 2);5

end6

end7

Algorithm 17: Watermark insertion [11]

Input : relation R, private key K, primary key P , fraction 1
γ , LSB

usage ξ
Output: Watermark Status ∈ {true, false}
matchcount = 0;1

totalcount = 0;2

forall tuples r ∈ R do3

if F(r.P) (mod γ) = 0 then4

Marked attribute i = F(r.P) (mod υ);5

Marked bit j = F(r.P) (mod ξ);6

if H(K‖pk) (mod 2) = r.Aj
i then7

matchcount = matchcount + 1;8

end9

totalcount = totalcount + 1;10

end11

end12

τ = min(θ) : B(θ,totalcount,1/2) < α ;13

if matchcount ≥ τ then14

return true;15

else16

return false;17

end18

Algorithm 18: Watermark detection [11]

66

3.4. Database Watermarking

A6: Mix and match attack : Attacker applies A4 on multiple relations and create
a new merged relation.

A7: Additive attack : Attacker watermarks an already watermarked relation with
his/her watermark.

A8: Invertibility attack : If the detection algorithm returns detected for a random
key chosen by the attacker, then (s)he can claim ownership of that relation.

During detection, each tuple is individually checked for containing the wa-
termark bit. If an attacker inserts new tuples, it does not distort the watermark
arrangement. There is a probability of 1

γ detection algorithm selecting the tuple
added by the attacker. Even if the added tuple is selected, the bit will be identified
as correctly marked or incorrectly marked with equal probabilities. Thus, an at-
tacker may be successful in causing detection of one incorrect bit with a probability
of 1

2∗γ but at the same time might actually contribute to the successful detection of
the watermark while trying to destroy the watermark with the same probability.

The watermark detection status depends on the ratio of number of the cor-
rectly detected bits, k, to the number of the total tuples identified as marked, n.
If an attacker deletes some tuples, both these values are reduced and thus there is
very little effect on the overall ratio k

n . This provides security against subtractive
attacks.

Bit flipping attacks (as a family) are also ineffective with high probability
since the identification of correct tuples, attributes and LSBs is dependent on the
keyed-MAC.

The watermarking scheme appears to be satisfactorily secure against dis-
tortive attacks. However, there is no discussion on query preservation or data us-
ability and the scheme suffers from certain drawbacks in terms of database usability
and correctness. The following example from Table 3.10 explains situations in which
lack of query preservation might be a concern. The primary key in Table 3.10 is
Currency Code. Let the watermark insertion algorithm modify the relation to Ta-
ble 3.11.

In such a situation, the following two queries will return incorrect results as
in the following cases.

Select Country from ForEx where Selling rate < 130. (returns Australia
only in unmarked relation and returns Australia, New Zealand in watermarked re-

67

Chapter 3. Overview of watermarking

Currency Code=P Nation Buying rate Selling rate
AUD Australian 133 125
INR Indian 4500 4300
THB Thailand 3740 3510
SLR Sri Lanka 4430 4210
NZD New Zealand 151 134

Table 3.10: Foreign exchange rates

Currency Code=P Nation Buying rate Selling rate
AUD Australian 133 125
INR Indian 4500 4300
THB Thailand 3740 3510
SLR Sri Lanka 4530 4310
NZD New Zealand 151 124

Table 3.11: Foreign exchange rates (watermarked)

lation).

Select Currency Code from ForEx where Buying rate is maximum. (re-
turns India in unmarked relation and returns Sri Lanka in watermarked relation).

This shows that the watermarking scheme does not preserve queries, and
this is a major drawback. A possible solution to this problem is that attributes
are marked at most by φi = minimum(|rj .Ai − rk.Ai|), ∀i, j, k. The upper limit
on modification of ith attribute can be derived from φi. This would guarantee
query-preservation for the current relation but not for any future updates. But no
watermarking scheme can guarantee query-preservation for unrestricted expansion
of the relation. An informal proof this claim is given here. Let the smallest difference
between values of attribute Ai be φi and the minimum value of Ai be rs.Ai. If rs.Ai

is watermarked by a query-preserving watermarking scheme, it’s new value can be
in the range of rs.Ai ± (φi − δ). Without loss of generality, let it be rs.Ai + φi −
δ. Inserting a tuple rt with rt.A − i = rs.Ai − φi + δ (which is the old value of
rs.Ai) in the relation would return rt as an answer to the query Select r from

R where Ai is minimum. This is despite the fact that the actual value of rs.Ai

68

3.4. Database Watermarking

Currency Code=P Nation Buying rate Selling rate
aud Australian 133 125
inr Indian 4500 4300
thb Thailand 3740 3510
slr Sri Lanka 4530 4310
nzd New Zealand 151 124

Table 3.12: Table with modified primary key

is minimum. Thus, the best result we can achieve is to ensure that the current
relation instance is watermarked in a query-preserved format while understanding
that future modifications on the relations may distort query results.

Secondly, the scheme uses a fixed precision parameter ξ irrespective of the
attribute it watermarks. This is a drawback since some attributes are more sensitive
than others. For example, Quantity of potatoes exported from Australia can accept
a modification of a few hundreds or even thousands but buying rate and selling rate
can tolerate a modification of only a few cents. It is therefore recommended that the
number of LSBs considered for watermarking should be a function of pre-defined
sensitivity of the attributes. The number of usable LSBs would be {ξ1, ξ2, . . . , ξυ},
where υ attributes are available for watermarking.

Presence of a primary key is a pre-requisite for watermarking. Without it, the
algorithm cannot identify the tuples to be marked and detected correctly. Although
this is not a completely unreasonable or impractical requirement, it does limit the
capability of the watermarking scheme in theoretical terms. What is more important
is that the tuples, attributes, and LSBs to be watermarked are determined using a
MAC on the primary key’s value, F(r.P). If the primary key values are scaled or
modified by a constant value (for example, by prefixing or suffixing with a constant
bitstring or changing cases), the binary value would differ, which would result in
failure during watermark detection as in Table 3.12.

In conclusion, the list below shows the major problems with the existing
scheme of Agrawal and Kiernan.

1. The number of LSBs that can be used for watermark insertion are not depen-
dent on the sensitivity of the attribute but is fixed for all attributes. This can
result in the relation being unusable from a user’s perspective.

69

Chapter 3. Overview of watermarking

2. Distance between different values of the same attributes is not taken into
consideration which may alter query results.

3. The scheme relies on the primary key to identify the tuple, attribute and
LSB to be marked. The attacker can perform format-based modifications
on the primary key, thereby still retaining the usability of the primary key
while changing its bit-value. As a simple example, the attacker can change
the primary key from lower case to upper case and vice versa. The function
F(r.P ′) would therefore be different from F(r.P).

4. The scheme does not protect against secondary watermarking. The attacker
can choose his/her own parameter list (pk′, γ′, υ′, ξ′) and insert a new water-
mark. This watermark will probabilistically destroy the original watermark
and deterministically establish the ownership of the attacker over the relation.

However, if we change the equation r.Aj
i = H(K‖r.P) (mod 2) in Algorithm 17

to the following,

r.Aj
i = H(K‖pk)⊕ r.Aj

i (mod 2)

where r.Aj
i is the jth bit of the ith attribute in the current tuple, then the wa-

termarking scheme would become reversible. The problem with the proposed
solution is that during the new version of detection algorithm, the condition
for successful match is that H(K‖pk) ⊕ r.Aj

i (mod 2) should be the same as
jth LSB where r.Aj

i is the old bit at that position. Hence, the existing solution
results in a non-blind watermarking scheme, which is a drawback.

To work around this problem, the bits changed during insertion algorithm
(r.Aj

i) can be concatenated and used as a watermark W . Hence, the water-
mark is effectively generated during the insertion algorithm’s execution. The
new condition to increment matchcount would be if H(K‖pk)⊕wl (mod 2) is
same as r′.Aj

i , (1 ≤ l ≤ |W |). These modifications result in the scheme being
both reversible and blind.

Consider the relation in Table 3.13. Say, H(K‖pk)⊕r.A2
1 is even. Hence, the

new bit is 0 and w1 = 1. The watermarked relation is given in Table 3.14.

H(K‖pk)⊕ w1 (mod 2) = r′.A2
1 = 0 ⇒ matchcount = matchcount + 1

70

3.4. Database Watermarking

Currency Code=P Nation Buying rate Selling rate
AUD Australian 1011 1100
INR Indian 100010 100101
THB Thailand 11101 11010
SLR Sri Lanka 111110 111111
NZD New Zealand 1101 1110

Table 3.13: Table with binary representation of numerical values

Currency Code=P Nation Buying rate Selling rate
AUD Australian 1001 1100
INR Indian 100010 100101
THB Thailand 11101 11010
SLR Sri Lanka 111110 111111
NZD New Zealand 1101 1110

Table 3.14: Watermarked table with binary representation of numerical values

To highlight the strength provided by these modifications, consider the fol-
lowing situation,

Role players: Owner Charles, Data Server David, Judge Jones

Charles claims that a relation R belongs to him and that he watermarked
it using insert(pk, γ, υ, ξ). He also claims that the version David has, is stolen.
David claims that it’s his relation watermarked with insert(pk′, γ′, υ′, ξ′). Jones

demands the parameter set Pc, Pd for detecting the watermark from Charles and
David respectively.

In the first sequence, Jones executes the detection program with Pc to
get watermark detected status S11 and reverses the relation to it’s original state R1

and runs the detection program again with Pd to get S12.
In the second sequence, Jones executes the detection program, this time,

with Pd first to get watermark detected status S21 and reverses the relation to it’s
original state R2 and runs the detection program again with Pc to get S22. Table 3.15
summarizes the possible outcomes assuming both the parties HAVE inserted their
watermarks at some point of time.

71

Chapter 3. Overview of watermarking

S11‖S12 S21‖S22 Outcome
00 11 Belongs to Charles
11 00 Belongs to David

Table 3.15: Owner identification possibilities

1. If Charles is the legitimate owner, then David has inserted his watermark
after Charles, the judge would successfully detect David′s watermark in R

and Charles′ watermark in R1. Hence, S11 = S12 = 0 and S21 = S22 = 1 (row
1).

2. If David is the actual owner of the relation, and Charles′ claims are false,
then Charles has inserted his watermark after David (row 2).

The next point to investigate is in what conditions can a pirate (assumed)
David destroy the watermark of Charles (assuming there exists one). There are two
conditions of this to happen,

1. Charles’ watermark is destroyed inadvertently because of David inserting his
watermark : Since the watermarking is reversible, the original state of the
relation can be obtained from detection algorithm on Davids watermarked
copy. This will provide the watermarked copy of Charles. Hence, the original
watermark cannot be accidently destroyed.

2. David destroys Charles watermark on purpose: This condition is already dis-
cussed in the original paper by Agrawal and Kiernan.

This scenario can be extended to identification of the correct owner when n

parties watermark the relation. The condition is that when each user’s watermark
is correctly detected, the user whose watermark is detected at last is the correct
owner. This can be carried out intelligently without using (n!) sequences.

In this section, we have seen that following are the major issues surrounding
database watermarking schemes, and these shall be addressed during discussion of
our proposed watermarking schemes in Chapters 6, 7.

1. Watermark robustness

2. Data usability

72

3.5. Conclusion

3. Limited distortion

4. Reversibility

5. Resilience against secondary watermarking

3.5 Conclusion

The current chapter describes and analyzes the important works in the field of
text, software and database watermarking. It also discusses the generic attacks and
attacks specific to watermarked multimedia objects of different types. In particular,
we are interested in the following three works.

1. Natural language watermarking [14]: Atallah et. al described a semantics-
based natural language watermarking in this work. We improve this scheme
by localizing the attack, if any, to the section of the document modified and
thereby improve the watermark resilience.

2. Software watermarking [71]: Myles and Jin presented a software watermarking
scheme using branch-manipulations but the scheme is vulnerable to debugger-
based automated attacks. We present an alternative scheme to survive such
automated attacks.

3. Database watermarking [11]: Agrawal and Kiernan proposed a fundamental
database watermarking scheme that uses the primary key to identify the values
to be watermarked during detection and values from which watermark should
be extracted during detection. This scheme has very high security against most
attacks except secondary watermarking attacks and the watermark-carrying
capacity is sufficiently satisfactory and can be changed using fraction of tuples
to be watermarked. We would like to build on this watermarking model to
propose a design that is both secure and reversible so that secondary water-
marking attacks can be defeated and also original relations can be regenerated
from watermarked relations.

73

Chapter 4. Natural Language Watermarking

Chapter 4

Natural Language

Watermarking

If we consider the total internet traffic, then a bulk of the data transferred is in
form of emails, blogs, web pages, instant messenger conversations, document attach-
ments (written in several languages), memos, and other form of textual information.
While most of this data might be publicly available and of little value, some of the
information is quite important for governmental and private organizations from a
commercial and/or security perspective. These organizations would like to estab-
lish their ownership over the documents in case there is a leak of information from
within the organization or because of an outside attack. This is the major objective
of natural language watermarking.

Natural languages are difficult to watermark because text manipulations are
guided by strict rules in terms of grammar, syntax, semantics, context-based se-
lection of a word from a set of synonymous words, etc; while in the case of other
media, there is large amount of redundant information to manipulate. For exam-
ple, human visionary system cannot distinguish between an original image and a
watermarked image with the last few LSBs in certain pixels flipped. Similar is the
case with audio and video files. But in text documents, grammatical rules need to
be preserved while making any changes. There has been significant work done in
format-based text watermarking using inter-word and inter-space spacing, justifica-
tion, alignment, character height and width, etc [18, 19, 24, 25, 54, 67, 98]. The
common problem these techniques have is that watermark cannot survive reformat-
ting and reproduction attack as they introduce loss of formatting information in

74

4.1. Current Scenario

the document. Alternatively, the attacker can simply re-type the entire document
which would be watermark-free.

Synonym substitution watermarking schemes such as [56] are resilient to the
above mentioned trivial attacks but not to random synonym substitutions made by
the attacker. Even more importantly, words cannot always be replaced by their
exact synonyms. Hence, the quality of the documents is depreciated by synonym
substitution.

4.1 Current Scenario

Recent focus in natural language watermarking has been on syntactic watermarking
[14, 100], where language syntax structures are modified to embed watermarks.
Notable progress has been made in [14], where watermark bits are embedded in
sentences using the following transformations.

1. Adjunct movement: Inserting an adjunct (for example, Usually, Generally,
etc) at many of the possible positions in a sentence.

2. Clefting: Explicit emphasis on the mandatory subject in the sentence. (for
example, the sentence “We are concerned with < subject >” is converted
to the sentence “It is < subject > we are concerned with”)

3. Passivization: Changing of voice from active to passive and vice versa. (for
example, the sentence “He led me” is converted to “I was led by him”)

4. Combination of the above.

The scheme proposed by Atallah et. al [14] discussed in Section 3.2 has the
following drawbacks.

1. introduces a considerable overhead because of parsing each sentence, number-
ing the nodes and creating a hash for each node.

2. requires a marker of the sentence to be added and consequently, reduces the
watermark-carrying capacity.

3. becomes vulnerable to multiple sentence transformation attacks.

Table 4.1 summarizes the central ideas of the marking schemes that can be
found in the literature.

75

Chapter 4. Natural Language Watermarking

Modifications made based on watermark bit Scheme
Interword spacing [18, 24, 67, 98]
(example - 10-pixels if bit=0; 11-pixels otherwise)
Interline spacing [18, 67, 98]
(example - 10-pixels if bit=0; 11-pixels otherwise)
Abbreviation and Synonym substitution x [56]
(example - must if bit=0; should otherwise)
(example - a.m. if bit=0; A.M. otherwise)
Sentence structures [14]
(example - He led me if bit=0; I was led by him otherwise)

Table 4.1: Natural language and text watermarking methods

4.2 Outline of Proposed Scheme

In the proposed watermarking scheme, the sequence of the paragraphs and sen-
tences used to embed the watermark is permuted. This causes the attack to be
limited to a small section and not affecting other sections of the document. So if
one paragraph of the document is modified by the attacker, only the watermark
bits from that paragraph are affected. Watermark bits are physically embedded by
modifying the sentences word counts. Error-correcting codes and majority voting
are used to embed watermark bits at multiple locations providing increased secu-
rity against attacks. The watermark contents are signed using private key of user
and publisher which prevents the publisher from framing an innocent user. The
watermark bitstream contains a collusion-secure code (described in detail later) to
identify colluding users.

4.2.1 Type of Adversary

The attacker is assumed to have the capabilities to do the following.

1. add and/or delete sentences from the document.

2. swap sentences within the same or between different paragraphs.

3. make natural language transformations on sentences.

4. shuffle paragraphs in the document.

5. collude with other users to compare and modify the document.

76

4.2. Outline of Proposed Scheme

4.2.2 Mathematical Model and Definitions

Mathematical Model

We represent the watermarking scheme as WS, where

WS =< {P, Wi,K}, {ξ, ζ, ψ} > (4.1)

P is a collection of paragraphs {p1, p2, . . . , py}

pi is the ith paragraph and contains xi sentences, i.e. pi = {si1, si2, . . . , sixi}

dij is the number of tokens/words in sij

Wi = {w1, w2, . . . , wn} is the watermark to be inserted where, ∀i, wi ∈ {0, 1}

K is a k-bit secret key

Watermark insertion ξ : Wi×P×K → P (w), where P (w) is watermarked text

Watermark extraction ζ : P (w) ×K → We (extracted watermark)

Watermark verification ψ : We ×Wi → {true/false}

Definitions

• di = |si| gives the number of words in sentence si

• di = {di,1, di,2, . . . , di,ki} where di,j ∈ {0, 1}, ki = dlog2 die is the binary repre-
sentation of di with bi1 as the LSB and so on.

• Watermark W = {w1, w2, . . . , wm} where wi is the ith bit of the watermark.

• Lexicographically sorted permutations for a set of n elements are ρn
1 , ρn

2 , . . . , ρn
n!.

ρn
i gives the ith permutation of n elements. %n

i,j gives the value of the jth ele-
ment in ρn

i .

77

Chapter 4. Natural Language Watermarking

• Majority Voting - ∀i, ai ∈ {0, 1}.

majority(a1, a2, . . . , an) =

{
1 if |ai = 1| > n

2

0 otherwise

• Text document P = {p1, p2, . . . , py} ={
{sα1+1, . . . , sα1+x1}, . . . , {sαy+1, . . . , sαy+xy}

}

where pi is the ith text paragraph and si is the ith text sentence.

pi = {sαi+1, sαi+2, . . . , sαi+xi}

αi =

{
0 if i = 1∑i−1

j=1 xj if 2 ≤ i ≤ y

• |pi| defines number of sentences it contains.

• τ = number of paragraphs in which each watermark bit is embedded.

4.3 Proposed Scheme

In order to limit distortions caused by modifications made by the attacker, we
permute the sequence of sentences and paragraphs used to embed the watermark.
Sentences and paragraphs are not physically permuted but only the sequence in
which they will be picked to embed the watermark is permuted. Embedding each
watermark bit in multiple paragraphs (say µ) results in any µ

2 + 1 unmodified bits
results in successful recovery of the watermark.

4.3.1 Sequence Permutation

In the current implementation, we have used AES algorithm to generate pseudo-
random permutations. With AES, the key size k ∈ {128, 192, 256}. However, there
are several other methods to generate permutations.

1. The set of paragraph indices {1, 2, . . . , y} is sorted in ascending order of the
number of sentences they contain to G = {g1, g2, . . . , gy} such that for i < j,
we have |pgi | ≤ |pgj |. This helps to counter the paragraph shuffling attack.

2. In binary notation, δ = dlog2 ye bits are required to represent index of any
given paragraph in a set of y paragraph.

78

4.3. Proposed Scheme

AES

-

-

-

V ‖ index

Key K

Output O,
Potential Index

=O%β + 1

Figure 4.1: Generating a paragraph permutation using AES

3. Vector V is a k-bit vector initialized to the secret Viv.

4. For any index i, input to AES is V ‖i and key is K. The first δ bits of encrypted
output (mod y) gives the paragraphs position θi in the new sequence.

5. If V generates a valid permutation (∀(i, j), i 6= j, 1 ≤ i ≤ y, 1 ≤ j ≤ y, θi 6= θj),
final test vector Vf=V , otherwise reject V , repeat step 3,4 with V = V + 1.

6. The new paragraph sequence is given by {θ1, θ2, . . . , θy}. This essentially
means that pθi is used before pθj if i < j. As an example, if the sequence
set is {5, 1, 2, 3, 4} such that θ1 = 5 and θ2 = 1, then paragraph 5 is used
before paragraph 1 in watermark embedding.

7. For 1 ≤ i ≤ y, ρxi!
(θi)K (mod xi!)

is the new sequence of the sentences to be used
within the paragraph i. This permutation is generated using Algorithm 19. It
generates xi

th permutation from a lexicographically sorted set of permutations.

8. The resulting paragraph sequence is Θ = {θ1, θ2, . . . , θy} and the sentence se-
quence is given in Table 4.2

As an illustration, let a document contain 5 paragraphs {a, b, c, d, e} with 7,
8, 5, 3, and 6 sentences respectively. Let the new paragraph sequence be {4, 1, 2,
5, 3} and the new sentence sequence be {2, 1, 3} for paragraph d (which is now
in first position), {5, 3, 7, 2, 4, 1, 6} for paragraph a, {8, 1, 4, 2, 3, 7, 5, 6} for
paragraph b, {3, 4, 6, 2, 5, 1} for paragraph e, and {1, 4, 3, 2, 5} for paragraph
c. This means that the sequence of paragraphs used to embed watermark will be

79

Chapter 4. Natural Language Watermarking

x = xi;1

for l = 1; l ≤ xi; l = l + 1 do2

oldindex[l] = l;3

end4

j = θK
i (mod x!);5

q = 1;6

if x > 0 then7

s = d j
(x−1)!e;8

j = j (mod (x− 1)!);9

newindex[q] = oldindex[s];10

for l = s; l ≤ x− 1; l = l + 1 do11

oldindex[l] = oldindex[l + 1];12

end13

q = q + 1;14

x = x− 1;15

end16

Algorithm 19: Sentence sequence generation

{
{ρx1!

(θ1)K (mod x1!),1
, . . . , ρx1!

(θ1)K (mod x1!),x1
}, . . .

{
{t(1,1), t(1,2), . . . , t(1,x1)},

{ρxy !

(θy)K (mod xy!),1
, . . . , ρ

xy!

(θy)K (mod xy !),xy
}
}

{t(y,1), t(y,2), . . . , t(y,xy)}
}

Table 4.2: Pseudo-randomization of watermarking sequence

80

4.3. Proposed Scheme

Number of elements Keys searched
Empirical result Theoretical Value

2 1.88 2
3 4.44 4.5
4 7.33 10.6667
5 16.16 26.04171
6 64.27 64.8
7 145.22 163.401
8 516.55 416.102
9 1140.77 1067.63
10 3381.77 2755.73
11 6240.94 7147.66
12 15307.72 18613.9
13 37694.88 48638.8
14 108803.61 127463
15 433622.72 334865
16 1097114.16 881658
17 2004049 2330000
18 6203832.22 6150000
19 16376576.78 16300000

Table 4.3: Comparison of empirical results with theoretical values

paragraph d, then paragraph a, b, e and finally c. While using d (which contains 3
sentences) the sequence of sentences used for watermark embedding will be sentence
2, sentence 1 and finally sentence 3; and so on for sentences in other paragraphs.

For generating a permutation of a set containing y elements, the first element
can be chosen in y ways, the second in (y − 1) ways and so on, and the total com-
binations (with repetitions) are yy, hence, the probability of getting a permutation
when choosing elements with repetitions is given be the following equation.

P (θi 6= θj , ∀i,∀j, i 6= j) = (
y!
yy

) (4.2)

Results of the experiments conducted to generate permutations using AES-
128 confirm the results. Table 4.3 compares empirical results with theoretical values.

81

Chapter 4. Natural Language Watermarking

2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

7

set size

K
ey

s
se

ar
ch

ed
 to

 fi
nd

 n
on

−
co

lli
di

ng
 s

et
s

experimental
theoretical

Figure 4.2: Keys required to get a valid permutation using AES-128

4.3.2 Watermark Composition

While constructing the watermarking, it is important to consider the following re-
quirements.

1. Watermark can identify the publisher and user successfully.

2. Publisher cannot frame an innocent user.

3. Watermark can withstand collusion attacks.

To satisfy the first requirement, the watermark simply needs to have two
components - a publisher component and a user component. But by this method,
the publisher can generate any desired watermark and thus frame an innocent user.
Hence we adopt the following protocol.

1. The publisher sends user a watermark Wu carrying the user identity.

2. User signs Wu with his private key Pru and sends publisher the signed user
component SPru(Wu).

82

4.3. Proposed Scheme

3. Publisher verifies the correctness by verifying the signed user component with
the user’s public key Puu. He then appends the document specific publisher
component Wp to the signed user component and signs it with his private key
Prp.

4. Final watermark Wi is SPrp(Wp||SPru(Wu)).

The court can verify the watermark with the public keys of publisher and
user. Neither the publisher, nor the user can tamper with the watermark without
the knowledge of the other person’s private key. A small problem with this scheme is
that since the user components of various users will differ, hence multiple users can
collude and destroy the watermark. Hence Wu needs to be encoded such that col-
luding users can successfully be identified. For this purpose, we use the logarithmic
length c-secure codes proposed in [16]. These codes can successfully identify at least
one of the c colluding users from a group of n users. Given integers N and c, and an
error tolerance metric ε > 0, set n = 2c, L = 2c log(2N/ε), and D = 2n2 log(4nL/ε).
The code Γ′(L,N, n, d) (details in [16]) is c− secure with ε-error.

Let the codeword for the user for which the document is being watermarked
be Wu = {w1, w2, . . . , wLd(n−1)}. The Boneh-code enables us to identify collud-
ing parties of at most c = n/2 users with a probability of 1 − ε. For further de-
tails about these collusion-secure codes, please refer to [16]. Now the watermark
SPrp(Wp||SPru(Wu)) satisfies all three requirements mentioned at the beginning of
the section and can be embedded.

4.3.3 Watermark Insertion

Before proceeding to the watermark insertion algorithm, we describe how watermark
bits will be physically carried in the document. Let the number of words in a sentence
si be di and the binary representation of di be di,1, di,2, . . . , di,z such that di,1 is the
LSB. We utilize di,1 and d1,2 to carry the watermark. If we want to embed two bits
w1 and w2 in a sentence si, then,

1. Set di,1 = w1, di,2 = w2. Let the new value of d be d′.

2. Transform the sentence such that it contains d′ number of words using one or
more of the following (and other) transformations,

83

Chapter 4. Natural Language Watermarking

(a) Change of voice from active to passive and vice versa. Example, “The
cops arrested Teju” ↔ “Teju was arrested by the cops”.

(b) Addition/deletion of an adjunct to/from the sentence. Example, “The
company praised Reema” ↔ “It was the company which praised Reema”.

(c) Addition/Removal of optional articles. Example, “Owen was cutting up
the trees for Christmas” ↔ “Owen was cutting up trees for Christmas”.

(d) Grouping of multiple subjects. Example, “Meeta married Rinkle” ↔
“Meeta and Rinkle got married”.

(e) Addition/removal of coordinate conjunctions. Example, “Maya started
to sing and Anjali began playing the guitar” ↔ “Maya started to sing,
Anjali began playing the guitar”.

(f) Introducing, or eliminating “then” from the if ... then pair of correlative
conjunctions. Example “If this is what Gautam wants, then this is what
he’ll get” ↔ “If this is what Gautam wants, this is what he’ll get”.

Given the information on how we are going to store watermarking bits in the
document, the watermark embedding algorithm is given below.

1. All the sentences are marked as unused.

2. Choose the paragraphs corresponding to the next τ unused indices from the
new paragraph sequence. (Go to start of sequence if end of sequence reached).

3. Take the first available unused sentences (using new sentence sequence) from
the τ paragraphs and embed the first γ bits in them using Algorithm 20, where
each watermark bit is inserted µ = τβ

γ times. The watermark bit is physically
embedded using English language transformations (discussed in [14]). For
example, for a sentence “This is not so difficult to understand” having word
count of 7 (0111) if we need to reduce one word from it to embed the watermark
bits (10) in the 2 LSBs of its word count, preserving its meaning, we can change
the sentence to “Understanding this is not so difficult” which has a word count
of 6 (0110).

It should be noted that the details of computational feasibility of performing
English language transformations, including loss of quality in terms of meaning
is out of scope of our research and has, therefore, been omitted. It is a topic

84

4.3. Proposed Scheme

of interest for researchers in natural language processing (NLP) and it is our
understanding that numerous research projects are addressing this issue. In
our project, we transformed the sentence after manual inspection.

4. Delete the γ watermark bits embedded in the first step from the watermark.

5. Mark the sentences chosen in step 2 as used and if all the sentences of a
paragraph are marked as used, mark the paragraph as used.

6. Repeat steps 2-5 till the entire watermark is embedded.

The pseudo-code for the above procedure is provided in Algorithm 20.

counter = 1;1

for l=1 to 1 to y − 1 in steps of 1 do2

ql = {st(l,1) , st(l,2) , . . . , st(l,xl)
};3

end4

Q = {q1, q2, . . . , qy};5

for i = 1; i ≤ m; i+ = β do6

for j = 1 to τ in steps of 1 do7

temp = (j + counter)((mod y));8

st′j = st(temp,1)
;9

bj = |st′j |;10

qtemp = qtemp − st(temp,1)
;11

if qtemp = φ then12

Q = Q− qtemp;13

y = y − 1;14

end15

end16

for j=1;j ≤ τ
2 ;j++ do17

for l=1;l ≤ β;l = l + 1 do18

bjl = w((j+l−1) (mod γ))+((counter−1)×γ);19

b(j+ τ
2
)(β−l+1) = bjl;20

end21

transform sentences according to new d by applying English22

language transformations;
end23

counter = (counter + τ)((mod y));24

end25

Algorithm 20: Natural language watermark insertion

85

Chapter 4. Natural Language Watermarking

Copy Watermark bits
w0 w1 w2 w3 w4

1 0 0 1 1 1
2 1 0 1 0 1
3 0 0 0 0 0

4 0 0 1 0 1
5 0 1 1 1 1
output w0 = 0 w1 = 0 w2 = 1 w3 = 0 w4 = 1

Table 4.4: Illustration of majority voting

4.3.4 Watermark Extraction and Verification

First, the permuted sequence of sentences is generated as in insertion (Algorithm 19).
We then extract the watermark bits from the LSBs of the sentences identified as
carrying the watermark bits. Finally, majority-voting is applied on the multiple
instances of each watermark bit. Table 4.4 shows working of majority voting.

The extracted watermark We is compared to the inserted watermark Wi and
if the Hamming Distance is less then a maximum tolerance value Ω, the watermark is
acceptable, otherwise it is rejected (collusion detection is performed using algorithm
suggested in [16]).

4.4 Analysis

4.4.1 Attacks

We discuss the various attacks possible on the watermarked document and degree
of resilience offered by our scheme.

1. Reformatting/Reproducing attacks: The watermark is carried in the
structure of the sentences and not the formatting information (such as in-
terword or interline spacing, font characteristics, indentation, etc). Hence,
changing these attributes does not alter the watermark.

2. Sentence addition/ deletion: Addition or deletion of a sentence si results
in the sentence sequence being distorted for the paragraph (say pj) containing
si. But each watermark bit carried in sentences of pj is embedding in µ − 1
sentences in other paragraphs and can be correctly extracted using majority

86

4.4. Analysis

voting (explained in 4.3.4). Hence, the watermark can withstand this attack.
In the worst case, if the attacker adds or deletes µ

2 sentences carrying the same
watermark bits, the watermark might be destroyed. Thus, the watermark can
survive at least µ

2 − 1 additions/deletions (lower bound).

3. Text swapping: Text swapping refers to selecting two sentences si ∈ pj and
si′ ∈ pj′ from a document and swapping them. The sentence sequence is not
disturbed in this case and only watermark bits corresponding to the swapped
sentences are affected. Like in sentence addition/ deletion, the other µ − 1
instances of the watermark bits result in correct watermark retrieval. Here
also, the watermark can withstand at least µ

2 − 1 swaps.

4. Paragraph shuffling: In 4.3.1, we first sort the paragraph sequence according
to cardinality before carrying out the permutation operation. Hence, even if
the paragraphs are shuffled by the attacker, the original permutation will be
restored when extracting the watermark. Hence, the scheme is totally secure
against paragraphs being shuffled.

5. Collusion attack: Boneh-code is inserted as the user component Wu. If
an illegal copy is discovered, then the algorithm described in [16] is executed
which outputs the member(s) of the collusion with high probability.

6. Cryptographic attacks: AES lies at the core of our scheme as it is used
to generate permutations. First the attacker needs O(2k) time to perform an
exhaustive search on K. For each potential K, however, the attacker would
need to generate potential index sets, which requires O(2k) time. Hence the
time complexity of an exhaustive search attack is O(22k). More importantly,
a key K ′ different to key used to embed the watermark (K) can still, with
high probability, generate a valid permutation. This permutation is different
to permutation generated while watermark embedding and this introduces an
uncertainty effect where the attacker cannot be sure of the correctness of a
permutation generated by a random key.

4.4.2 False Positive Probability

The probability of an m-bit watermark matching another watermark extracted from
a randomly picked document is 2−m. Since each bit of the watermark is actually
embedded at µ positions, µ

2 + 1 of those µ bits should match corresponding bit

87

Chapter 4. Natural Language Watermarking

of our watermark. This makes the actual probability of having False Positives =
2−(m+µ

2
+1). This is lower than probability of false positives in [14].

4.4.3 Watermarking Capacity

The optimal capacity utilization is when a document contains
∑y

j=1 xj sentences and
each sentence carries β bits. Every watermark bit is embedded in µ = τβ

γ sentences.

Hence the watermarking capacity of our scheme is
β×∑y

j=1 xj

µ =
γ×∑y

j=1 xj

τ .

4.5 Experimental Results

4.5.1 Implementation Details

The experiments were carried out in Unix using C language on Pentium-4, 2.4
GHz processor. Usage of C as a programming language makes the implementation
extremely efficient in terms of time. Quartz digital signature scheme was utilized
for producing digital signatures since the size of these signatures is very small (128-
bits). Java implementation provided by Wolf [94] was used to generate signatures.
Transformation of sentences to embed the watermark bit was done manually. The
automation of the process of transforming sentences is an NLP topic and out of our
research scope.

4.5.2 Results

We used 5 sample documents of varying sizes (from 16505 words to 46271 words)
and paragraph structures to embed watermarks of 5 sizes constructed using quartz
digital signature scheme (which produces 128-bit digital signatures) and analyzed
the results of the experiments. It should be noted that the watermark embedded
essentially consists of user’s and publisher’s signatures) and optionally other infor-
mation like timestamp, metadata, padding and so on. The number of bits that
change are proportional to the watermark size as indicated in Table 4.5.

The net change in document size is fairly constant for a specific document.
The change in document size is less than 1% in most of the cases (refer to Table 4.6).
Hence, quantitatively speaking, there is minimal distortion to the document. It was
observed that the documents with larger paragraphs had fewer changes as com-
pared to documents with smaller paragraphs. This also suggests that the paragraph

88

4.6. Conclusion

Watermark Size Bit Changes
(in bits) document 1 document 2 document 3 document 4 document 5

320 1802 1762 1431 1269 1280
400 1903 1895 1507 1436 1334
480 2003 2037 1589 1522 1438
560 2182 2121 1657 1631 1526
640 2301 2266 1717 1726 1604

Table 4.5: Text modification with increasing watermark size

Watermark Size Words Added
(in bits) document 1 document 2 document 3 document 4 document 5

320 -8 8 0 1 -14
400 -11 2 -4 -16 -12
480 -15 -5 -17 -1 -19
560 -14 -5 -20 -10 -26
640 -11 -7 -24 17 -14

Table 4.6: Text amplification with increasing watermark size

structure, and thereby the permutation we select play a key role in determining the
number of words that will be added or deleted from the document.

4.6 Conclusion

Our scheme is shown to be resilient against document reproduction, reformatting,
synonym substitution, text addition, text deletion, text swapping and paragraph
shuffling. Previous watermarking schemes [18, 19, 24, 25, 54, 56, 65, 67, 98] are
not secure against majority of these attacks. Compared to [14], our scheme provides
higher security (deterministic resilience to at least µ

2−1 changes against probabilistic
resilience to single change in [14]) against text addition, text deletion, text swapping
and total security against paragraph shuffling. It is also secure against collusion at-
tacks through the adoption of Boneh-codes. An exhaustive cryptographic attack on
the scheme takes O(22k) time (k being the size of key used). With high probability,
the scheme can successfully identify at least one of the colluding users in event of a
collusion attack. The capacity of the scheme is

γ×∑y
j=1 xj

τ watermark bits.

89

Chapter 4. Natural Language Watermarking

Areas of improvement and future topics of research in this field include the
following.

1. Increasing the capacity of the scheme by using an error correcting code in-
stead of the currently used repetitive correcting code or majority-voting: In
the existing scheme, each watermark bit is embedded in multiple paragraphs
making it a repetitive code that reduces the watermark-carrying capacity of
a document. Instead, if error-correcting codes are utilized, capacity would
significantly improve.

2. Extending the scheme to multilingual documents incorporating the grammat-
ical aspects of various languages: In the current implementation, only English
documents are watermarked. Watermarking other documents would required
analysis of grammar rules of that language. This is more of an implementation
issue than a design issue as the underlying principle is the same.

90

Chapter 5

Software Watermarking

In 2005, Myles and Jin proposed a software watermarking scheme based on con-
verting jump instructions or unconditional branch statements (UBSs) by calls to a
fingerprint branch function (FBF) that computes the correct target address of the
UBS as a function of the generated fingerprint and integrity check. If the program
is tampered with, the fingerprint and integrity checks change and the target ad-
dress will not be computed correctly. We propose an attack based on tracking stack
pointer modifications to break the scheme and provide implementation details of
the attack. The key element of the attack is to remove the fingerprint and integrity
check generating code from the program after disassociating the target address from
the fingerprint and integrity value. Using the debugging tools that give a control to
the attacker to track stack pointer operations, we perform both subtractive and wa-
termark replacement attacks. The major steps in the attack are automated resulting
in a fast and low-cost attack.

Once the loopholes in previously proposed models were identified and the
attack was successful, we were in a position to suggest a modified software water-
marking model, which is resistant to such attacks. Detailed discussion on current
software watermarking schemes was carried out in Section 3.3. We briefly revisit the
current scenario here. Software watermarking is classified in the following categories.

• Graph-based software watermarking: The software is treated as a graph Gs

with sequential blocks of code as nodes and transfer instructions such as func-
tion calls and branch statements as edges connecting the nodes. The water-
mark is a separate code and realized as a graph Gw. The two graphs Gs and
Gw are connected by inserting additional edges (implemented as branch state-

91

Chapter 5. Software Watermarking

ments). The resulting watermarked graph is Gs′ = Gs + Gw and source code
s′ is decoded from Gs′ .

Venkatesan et al. [90] proposed the first graph-based software watermarking
scheme. The central idea is to convert the software and the watermark code
into digraphs and add new edges between the two graphs implemented by
adding function calls between the software and watermark code. This scheme
lacks error-correcting capabilities and is susceptible to re-ordering of instruc-
tions and addition of new function calls. Another problem in the scheme is
that the random walk mentioned in their work (refers to the next node to be
added in the watermarked software graph being selected randomly from the
software graph and the watermark graph) is not actually random. The node
visited next is based on the number of remaining nodes belonging to software
graph Ns and the number of remaining nodes belonging to watermark graph
Nw. The next node is chosen from the watermark nodes with probability of

Nw
Nw+Ns

and from the software nodes with a probability of Ns
Nw+Ns

. In a typical
scenario, Ns À Nw, hence the watermark is skewed towards the tail of the
watermarked program. This information is useful for probabilistic attacks.
Alternatively, a pseudo-random permutation of the nodes to be visited can be
generated. For further literature in graph-based software watermarking, the
reader is referred to [26, 27, 28, 29, 88]. None of these schemes are secure
against instruction and block re-ordering attacks.

• Register-based software watermarking: Registers used to store variables are
changed depending on the watermark bit to be embedded by replacing higher
level language code with an inline assembly code. The attacker intends to
re-allocate variables in registers if the watermark has to be removed. Register-
based software watermarking based on the QP algorithm (named after authors
Qu and Potkonjak) [75, 76] is presented in [70]. It modifies registers used to
store variables depending on which variables are required at the same time.
The scheme is susceptible to register re-allocation attacks. A secondary wa-
termark destroys the old watermark and inserting bogus methods renders the
original watermark useless by changing the interference graph.

• Thread-based software watermarking: Nagra et al. [72] propose encoding the
watermark in the sequence of the threads that are executed. For example,
there are 3 threads; T1, T2, T3, T1 → T2 → T3 encodes watermark (000)2 and

92

b

b

b

2

1

3

Branch Function F

a1

a2

a3

a1

a

a

aa2

3

1

b2

b3

bjump

jump

jump

Figure 5.1: Branch function modifying return addresses

T1 → T3 → T2 encodes watermark (001)2 and so on. However, without any
additional error-control mechanism, changing threads that execute piece of a
code would destroy the watermark. Again, there has been no attack claiming
to break the watermark using suggested approach.

• Obfuscation-based software watermarking: This class of watermarking is ap-
plicable to object-oriented software. Class C with functions {f1, f2, . . . , fn} is
partitioned into k subclasses {C1, C2, . . . , Ck} and the watermark is encoded
in the allocation of the functionalities. Examples of such proposed schemes
are given in [30, 39, 87].

• Branch-based software watermarking: Collberg et al. introduce the notion of
branch function [26]. Jump instructions or unconditional branch statements
(UBSs) are replaced by calls to the branch function (for the sake of consistency,
by branch, we mean an unconditional branch statement from now on) and
modifies its own return address in order to return the control to the target
of the branch statement (Figure 5.1). If the program contains a branch from
lbegin to lend, several pit stops are added so that the control-flow graph becomes
lbegin → a1 → a2 → . . . → lend (lbegin has a jump instruction to a1, a1 has a
jump instruction to a2 and so on). Pit stops are inserted using following rule.

address(ai) < address(ai+1), if watermark bit wi = 1
address(ai) > address(ai+1), if watermark bit wi = 0

Finally all the jump instructions are replaced by call to the branch function
that determines the correct target address based on the calling address and
returns the control to it.

Obvious attacks on such a scheme are adding an additional pit stop or deleting
an existing pit stop to disturb the chain (thereby modify the watermark) yet

93

Chapter 5. Software Watermarking

keep the origin and target the same (hence keeping the execution path intact).
Making similar changes, inserting secondary watermark is trivial.

Myles and Jin proposed an alternative fingerprinting model in [71]. The un-
derlying concept remains the same, that is, a branch function transferring con-
trol to the target of the UBS, but in this case, the branch function contains
the fingerprint-generating code, hence the name Fingerprint Branch Function
(FBF). FBF also computes an integrity check on the source code to ensure
that it is not modified. In the following section, we discuss this scheme in
detail and analyze its flaws and weaknesses.

5.1 Description of Myles and Jun Watermarking Scheme

Branch statements are replaced by calls to an FBF which returns control to the tar-
get address. The target address is generated through a recursive process of deriving
new key from previous key and checking the program for integrity. Additionally, an
integrity check branch function (ICBF) is inserted in the program that verifies the
integrity of FBF. When a program is manipulated, the keys derived and/or integrity
check value change and hence the target address changes as well. The modified tar-
get address can be valid (belonging to code section of the program), which will
result in incorrect execution of the program, or it can be invalid (lying outside the
code section) resulting in a runtime error. Thus the program is secured against
manipulation. We now discuss the two algorithms in the scheme, embed that inserts
the watermark in the software and recognize that extracts the watermark from the
watermarked software.

1. embed(P,AM, keyAM , keyFM) → P ′, FM

2. recognize(P ′, keyAM , keyFM) → AM, FM

where

• P is the original software,

• AM is the authorship mark,

• keyAM is the secret input sequence to generate a trace of the program used to
embed the watermark - the same for all copies of watermarked software,

94

5.1. Description of Myles and Jun Watermarking Scheme

• keyFM is an initial secret key for deriving further keys; different for each copy
of the watermarked program,

• FM is the fingerprint mark,

• P ′ is the watermarked software

5.1.1 Watermark Insertion

The steps involved in the embed algorithm are as follows.

1. Let α be the set of all functions in P . Run the program with a secret input
sequence keyAM .

2. Obtain set F of functions that lie in the execution path when the program is
run with input sequence keyAM , let β = α− F .

3. The number of UBSs in functions that belong to F is n and the number of
UBSs in functions from β is m.

4. Insert the two integer arrays; T of size n and R of size m in the data section
of the program.

5. Compute displacement di between source si and target ti of UBSs in functions
that belong to F , so for instructions of the form si : jmp ti, the displacement
di = ti − si

6. In the program P , insert FBF ξ that performs the following tasks,

(a) Initializes k0 = keyFM .

(b) For 1 ≤ i ≤ n,

i. Computes integrity check value vi.

ii. Computes key ki from (ki−1, vi, AM) by applying a one-way hash
function SHA1.

ki = SHA1[(ki−1

⊕
AM)‖vi] (5.1)

(c) Stores di at h(ki)th location in array T (T [h(ki)] = di), where h is a hash
function, h : {k1, k2, . . . , kn} → {1, 2, . . . , m}(n ≤ m).

95

Chapter 5. Software Watermarking

PROGRAM P

When executed with
secret input sequence Key

.

.

.

3

2

1

main

AM

Set F of functions executed

f

f

f

Figure 5.2: Function set F invoked using secret input parameter keyAM

7. Compute displacements ei between source si and target ti of UBSs in functions
that belong to β.

8. Insert ICBF φ in the program that,

(a) Computes integrity check value υi. This value confirms the integrity of
code section of the program containing ξ.

(b) Stores displacement ei in array R at index computed as a one-way hash
function of υi (R[h(ui)] = ei). The hash function h is the same that was
used in Step 6.(c).

9. Replace all UBSs in F by calls to ξ and UBSs in β by calls to φ.

The fingerprint is generated as the embedding process executes. The final
fingerprint is combination of all derived keys - FM = k1‖k2‖ . . . kn. Users ui, uj

have distinct initializing keys keyFMi , keyFMj , hence final fingerprints FMi, FMj

are different.

96

5.2. Proposed Attack

5.1.2 Watermark Recognition

The recognize algorithm is run with the inputs P ′, keyAM , keyFM and outputs the
authorship mark AM and fingerprint mark FM . When the program is run with the
secret input keyAM , the function set F is executed, which generates the fingerprint
mark FM = k1‖k2‖ . . . kn by initializing k0 = keyFM and deriving successive keys
using Equation 5.1. The authorship mark AM can be extracted by isolating the
one-way hash function ki = SHA1[(ki−1

⊕
AM)‖vi].

5.2 Proposed Attack

Objective of the attacker is to convert the fingerprinted program P ′ to the original
program P . Since the displacements in T are permuted, determining the correct
target address of UBSs is computationally infeasible. Even if the size of T is small,
the program can have error-guards that intentionally corrupt the program after
a specific number of run-time errors, making hit-and-trial attack impossible. The
function φ checks the integrity of ξ, adding to the security of the scheme and thereby
making the attack more difficult.

In ξ, the integrity check is done and a key is generated. The key is then
mapped to the index in the displacement array where the correct displacement
is stored. Security of the scheme depends on the correct execution path being a
function of keys and integrity checks. If the key generated or the integrity value
is incorrect, the displacement is wrong, and therefore the execution path is wrong.
We concentrate our attack on this dependence. As soon as we can disassociate the
correct execution path from the keys and integrity check, the code generating keys
and integrity check can be deleted. The authors of [71] claim that the attacker
needs to analyze the data section of the program to notice any changes and read the
displacement array. This claim is fallacious as an attacker can track register values,
including the stack pointer (SP) at,

1. Entry point of ξ: SP = spi1

2. Exit/ Return instruction of ξ: SP = spi2

The difference spi2 − spi1 gives the displacement value di. Identification of
the instructions participating in fingerprint generation is also achievable. According

97

Chapter 5. Software Watermarking

to [71], “In the second phase of the algorithm, the branches in each function f that
belongs to F are replaced by calls to the FBF”. We can create a mapping of functions
being called by other functions and thereby create sets of functions which all point
to one particular function. ξ can be identified by the stack-pointer modifying state-
ments and the set F can be identified as the set of functions calling ξ. Therefore,
keyAM is no longer required to identify the set of functions participating in water-
marking. Within the set F , each instruction calling ξ and having memory address
sp1 can now be replaced by an unconditional branch to the instruction at sp2. This
can be achieved using inline assembly programming. For example, in C++, a user
can make use of inline assembler asm [2]. As a result, the displacement and hence
the correct target address is no longer a function of the key and integrity check. An
example of such a block modifying the stack pointer is given below,

asm {
1: pop ECX;

2: add ECX, dis;

3: push ECX;

}

In the above code, statement 1 extracts the current value of Stack Pointer
into register ECX. Statement 2 adds the intended displacement dis to the popped
value and statement 3 pushes back the modified value onto the Stack. The Stack
Pointer now contains a modified return address. If dis is positive, the new address at

is greater than the original return address ar (at > ar) and the control is transferred
forward. If it is negative (at < ar), control is transferred backwards. Observe that
φ calls can similarly be replaced by the original UBSs.

After changing calls to ξ and φ by UBSs, the two functions (ξ, φ) can be
deleted. When the recognize algorithm is run with input keyAM , keyFM , the inputs
are unused dead variables, the algorithm doesn’t output the fingerprint mark FM

and the recognition algorithm fails. The resulting software is equivalent to an un-
watermarked software.

Summarizing this process, the steps performed by the attacker are as follows.

1. Identify ξ: This task is accomplished by locating stack-pointer modifying state-

98

5.2. Proposed Attack

ments. For example, in C/C++, searching for asm blocks. If a program
contains multiple asm blocks, the ones with modification operation on ESP
(Stack Pointer) requires to be targeted.

2. Identify F : After identifying ξ, the fact that only the functions that belong to
F call ξ can be utilized to identify F .

3. Displacement computation: Stack pointer values are recorded at the entry and
exit points of ξ (spi1 and spi2 respectively) and displacement di is equal to
spi2 − spi1 . Target instructions are determined from calling instruction and
displacement. In our implementation, we use breakpoints to track the register
values.

4. Replacement of ξ calls to UBSs: If the purpose of the attack is to remove the
watermark, the function calls to ξ are replaced by UBSs to obtain the original
watermarked code.

5. Creating a modified watermarked program: The attacker can embed his/her
own authorship mark AM ′ after removing the original authorship mark AM .
For a successful attack, (AM ′, FM ′) should be recognized on running recognize
algorithm with parameters P ′, keyFM , keyAM where FM ′ 6= FM .

(a) For all f that belong to F , compute the displacement between the calling
address and the target address and store in an array along with the calling
address.

(b) Replace the UBSs by call to a new Fingerprint branch Function, ξ̃.

(c) ξ̃ need not compute integrity check but simple calculates a new key
based on the old key and attacker’s authorship mark AM ′.

ki = SHA1[ki−1

⊕
AM ′]. (5.2)

Comparing (1) and (2), k′i 6= ki, 1 ≤ i ≤ n.

(d) Map the keys to correct displacement using hash,
h : {k′1, k′2, . . . , k′n} → {1, 2, . . . , m}(n ≤ m)
T [h(k′i)] = di

99

Chapter 5. Software Watermarking

The key sequence FM ′ generated is different from the original key sequence
FM as the individual keys are different shown by the following proof.

k′1 6= k1, k
′
2 6= k2, . . . , k

′
n 6= kn

⇒ {k′1, k′2, . . . , k′n} 6= {k1, k2, . . . , kn}

⇒ {k′1, k′2, . . . , k′n} 6= FM

⇒ FM′ 6= FM

The recognition algorithm now outputs FM ′, AM ′ when executed with the
inputs P ′, keyAM , keyFM .

In terms of efficiency, the overall complexity of attack depends on complexi-
ties of steps 3 and 4 as others are one-off steps. Steps 3 and 4 have linear complexity
and hence the attack has O(n) complexity. Steps 1 and 2 are automated and no
human inspection is required to identify ξ and F .

5.3 Implementation Details and Results

We have implemented the watermarking scheme in Visual C++ and carried out
the attack using the same. The features useful in doing so are the debug lookup
windows - disassembly and register. The stack pointer value can then be tracked by
using breakpoints under debugging mode and there is minimal manual intervention
or inspection required. The following is disassembled code of the watermarked pro-
gram used to compute displacement values.

Function fi that belongs to F calling FBF ξ in statement 94:

0041198C rep stos dword ptr es:[edi]

0041198E mov eax,dword ptr [a]

00411991 cmp eax,dword ptr [b]

100

5.3. Implementation Details and Results

00411994 jle greater+2Bh (41199Bh)

00411996 call fingerprint (411271h)

0041199B push offset string " is greater \n" (4177A8h)

004119A0 mov esi,esp

004119A2 mov eax,dword ptr [b]

004119A5 push eax 004119A6 mov ecx,dword ptr [__imp_std::cout

(41A350h)]

004119AC call dword ptr

[__imp_std::basic_ostream<char,

std::char_traits<char>>::operator<< (41A354h)]

004119B2 cmp esi,esp

004119B4 call @ILT+425(__RTC_CheckEsp) (4111AEh)

004119B9 push eax 004119BA call

std::operator<<<std::char_traits<char> > (411168h)

004119BF add esp,8 004119C2 jmp l1+27h (4119EBh)

004119C4 push offset string " is greater \n" (4177A8h)

004119C9 mov esi,esp

004119CB mov eax,dword ptr [a]

__

Fingerprint branch\index{branch} function code modifying return address:

00414AF2 mov eax,ebp

101

Chapter 5. Software Watermarking

00414AF4 add eax,4

00414AF7 mov ebx,esp

00414AF9 mov esp,eax

00414AFB pop ecx

00414AFC sub eax,eax

00414AFE add eax,0Ah

00414B01 add ecx,dword ptr [dis (419334h)]

00414B07 push ecx 00414B08 mov esp,ebx

__

Register values are tracked while the program is executed and the following results
are obtained,
Statement 00414AF2: EIP stores calling address, EIP=00411996.
Statement 00414AFB: Return address, stored in the stack pointer, is popped into
ECX, ECX = 0041199B.
Statement 00414B01: ECX adds displacement value to calling address, ECX =
004119C4.
Statement 00414B07: ECX value is pushed onto stack pointer. fingerprint(); returns
control to this address.

__

In a nutshell, instruction 94 calls fingerprint(); which returns control to instruction
98 (the target of the original UBS) based on the value of dis looked up from array
T . The attacker can thus compute the difference between ECX value at statement
80 (ECX80) and ECX value at statement 83 (ECX83) to find the value of displace-
ment, then replace fingerprint(); call at statement 94 by UBS transferring control
to Ψ(Φ(94) + ECX83 − ECX80) (where Φ(x) denotes address of instruction x and

102

5.4. Surviving the Debugging Attack

Ψ(y) represents instruction at address y).

We have presented a successful low-cost attack on the branch-based water-
marking scheme proposed in [71]. The cost of the attack is low in terms of hardware
resources required since the only resources required are a functional computer with
sufficient memory, storage and speed. The attack is efficient as manual inspection
is required only during the step in which displacement values are noted from the
disassembly register window. Even this is a debugger-specific constraint and in the-
ory, it can be automated, however, we are unaware of an existing debugger that can
perform this task. We provided an implementation of our scheme and some prac-
tical examples. The work lays a strong foundation for attacking similar software
watermarking models [26, 27, 28, 29, 88] that depend on branching and inserting
bogus functions in the program in order to embed a watermark. We also demon-
strate that tracking registers and branches is a trivial task using debugging tools and
hence opens up a very interesting question of how can the watermarking schemes
survive attacks with such advanced capabilities? The next step, of designing a more
secure software watermarking model deals with creating more complex dependency
of inherent functionality of the program on the keys generated so that the attacker
cannot remove fingerprint code without affecting the correct execution of the pro-
gram. This can be done by introducing parameters other than displacement to bind
the program’s execution to the keys generated.

5.4 Surviving the Debugging Attack

The basic assumption we take is that the source code is available to the attacker for
inspection. This is a strong assumption taking into account that most commercial
softwares do not come with the source codes. However, we take into consideration
the growing popularity of open source software as well. Plus, having a stronger
assumption and thereby an easier attack, our watermarking scheme results in get-
ting stronger (if it can survive the attacks). Manual inspection of the source code
is practically infeasible, given that it can run into hundreds of thousands of code
lines. Thus the attacker tries to minimize the size of source code that (s)he manu-
ally inspects. Debugging mechanisms provide strength to the attacks in such cases
by reducing the size of code to be inspected to potentially a few hundred lines.
According to [45], in order to identify FBF , the attacker relies on either,

103

Chapter 5. Software Watermarking

• FBF containing assembly level code or,

• Stack Pointer value differing at entry and exit of FBF .

We have a typical scenario, where a source instruction Is needs to transfer
control to a target instruction It. Is calls FBF which manipulates the stack pointer
and returns the control to It. Addressing the first indicator, the code that performs
stack pointer modifications can always be written in a higher language and thus it
is not necessary that FBF contains assembly level code.

The stack pointer modification in FBF is the basis of attack. If FBF does
not perform this extremely visible and conspicuous stack pointer modification and
only returns the value of generated key to Is, then Is can add compute the displace-
ment, add it to the stack pointer and transfer control to It. Given this process, the
attack FBF cannot be identified and all subsequent steps of the attack fail. An-
other advantage is that the attacker can no longer get the values of all displacement
values by placing two breakpoints at the start and end of FBF (which is the case
in [71]). This can be achieved by shifting the stack pointer modification instruction
from FBF to function containing Is.

To get the values of displacements in the new model, the attacker would
need to place breakpoints before and after each source instruction Is. In the previ-
ous model, the attacker would have had to place only two breakpoints; at the start
and end of FBF irrespective of the number of unconditional branch statements, and
thus the amount of work attacker had to do was independent of code size. But now
the amount of work attacker needs to perform manually is directly proportional to
the number of unconditional branch statements present in functions from F .

Another strong assumption in our attack is that only unconditional branch
statements in functions belonging to F call FBF . If certain bogus calls to FBF
are inserted while embedding the watermark, this assumption in not true. Thus
identifying F is not possible for the attacker through methods pointed out by us.
The action taken by FBF when called by these bogus statements is pre-defined
during embedding.
The modified algorithm embed2 is given below.

1. Let F be the set of functions that lie in the execution path when the program

104

5.4. Surviving the Debugging Attack

is run with input sequence keyAM , let F̄ be the set of the remaining functions
in P .

2. Let the number of unconditional branch statements in functions in F and F̄

be n and m respectively.

3. Add two arrays to the data section of the program - DTF of size n and DTF̄

of size m.

4. Let the displacement between the source and target of the ith unconditional
branch statements in functions from F be di = ti − si, where si is the
source/origin and ti is the target/destination.

5. In P , insert fingerprint branch function FBF which implements the following
steps.

(a) k0 = keyFP .

(b) For 1 ≤ i ≤ n,

i. Check integrity value ICi of section Si of code.

ii. Generate ki using ki−1, ICi, AM from the one-way hash function
SHA1.

ki = SHA1[(ki−1

⊕
AM)‖ICi] (5.3)

6. Return ki to the calling instruction Is.

7. Is looks up the displacement that is indexed by hash of the key and stored in
table DTF in data section of the program. DTF [h1(ki)] = di, where h1 is a
hash function mapping the keys to the indices,

h1 : {k1, k2, . . . , kn} → {1, 2, . . . , ñ}(n ≤ ñ).

8. Is transfers control to sp + di where sp is the current value of stack pointer,
using higher language code.

9. Insert integrity check branch function ICBF in P that checks integrity IC′i
of code containing FBF

10. Return IC′i to the calling instruction Īs.

105

Chapter 5. Software Watermarking

11. Īs looks up the displacement that is indexed by hash of the key and stored in
table DTF̄ in data section of the program. DTF̄ [h2(IC′i)] = d̄i, where h2 is a
hash function mapping the integrity checks to the indices,
h2 : {IC′1, IC′2, . . . , IC′m} → {1, 2, . . . , m̃}(m ≤ m̃).

12. Īs transfers control to sp + di where sp is the current value of stack pointer,
using higher language code.

13. Replace unconditional branch statements in F and F̄ by calls to FBF and
ICBF respectively.

Steps 6–8 and 10–12 are modified such that the control transfer is shifted
from FBF and ICBF to F and F̄ , respectively.

5.5 Analysis

Following are two major modifications to the watermarking algorithm of Myles and
Jun.

1. strict usage of higher language code to perform stack pointer modifications.

2. shifting the stack pointer modification from the fingerprint branch function
FBF to the source instruction of the unconditional branch statement.

Figures 5.3 and 5.4 illustrate the differences between the watermarking
scheme of Myles and Jun and our proposed scheme. While in the former, FBF per-
forms the key, displacement and target address computation, in the latter scheme
it only performs key computation and returns the value of the key to the source
instruction. The source instruction then computes target address as a function of
displacement, which in turn is computed from the key. Thus an attacker has to
place n pairs of breakpoints to find the correct target addresses. Thus, manual
component complexity increases from O(1) in the previous scheme to O(n) in our
proposed scheme. Security against other attacks such as additive or subtractive
attacks remains the same as in [71].

5.6 Conclusion

We have presented modifications on the watermarking scheme from [71] so that
the watermarking scheme can withstand debugging attacks like the one suggested

106

5.6. Conclusion

s1(source 1) Function FBF

. Compute Key

t1(target 1) Displacement

. Target

sn(source n) .

. Return

tn(target n)

+3

]];;;;;;;;;;;;;;;;;;;;;;;;;;;;

AI

uukkkkkkkkkkkkkk

��

��

Figure 5.3: Fingerprint branch function modifies the return address itself

s1(source 1) Function FBF

. Compute Key

t1(target 1) .

sn(source n) .

. Return

tn(target n)

+3

k1444
444

444
4444

444
4

YY44444444444444444���
�
�
�
�
�
� =E

����������������������������

����������������������������

kn
SSSSSSS

iiSSSSSS

���
�
�
�
�
�
�

Figure 5.4: Calling instruction modifies address using key returned by fingerprint
branch function

107

Chapter 5. Software Watermarking

in [45]. The attacker needs much more extensive manual inspection (O(n)) of the
watermarked program in order to remove the watermark. This can prove to be
infeasible given that software sizes can easily run into thousands of lines of code.
The key to surviving the attack is shifting the stack pointer manipulation operation
from the fingerprint branch function to the original unconditional branch statements.

The proposed watermarking scheme makes it more difficult and more tedious
for an attacker to locate manipulative functions such as FBF , ICBF but does not
rule out eventual location and deletion of these functions. It is desirable to formulate
a watermarking scheme belonging to the family of stack modifying functions that is
completely secure against debugging attacks. To accomplish this goal, one needs to
hide the dependency of target instruction calculation on key generation process from
the user. This is an open problem in the field of branch based software watermarking.

108

Chapter 6

Semi-blind and Reversible

Database Watermarking

6.1 Introduction

We discussed Agrawal and Kiernan’s watermarking model in Section 3.4 and identi-
fied several shortcomings with their scheme which may lead to successful attacks on
watermarked relations. One major concern was that the scheme lacked reversibility,
that is, ability to revert back to the original relation from the watermarked relation.
This leads to the possibility of successful secondary watermarking attacks. In this
section we present a modified scheme that is reversible and semi-blind. We call the
scheme semi-blind because it does not require the original database to detect water-
mark but the insertion algorithm stores the original bits selected for modification
as an embed trace ET , which is input to the detection algorithm. Size of ET is pro-
portional to the number of tuples being marked. Previous watermarking schemes
such as those studied in [86] have also presented similar semi-blind watermarking
models. Our scheme is an enhancement of the irreversible watermarking model pro-
posed by Agrawal and Kiernan [11]. We show that secondary watermark attacks
are feasible on the schemes from [11]. Further, we modify the model to eliminate
this shortcoming and propose an additional algorithm to identify the rightful owner
from n contenders.

109

Chapter 6. Semi-blind and Reversible Database Watermarking

6.2 Related Work and Agrawal-Kiernan Scheme

Several relational database watermarking models have been proposed in [11, 12, 86,
40, 42, 61, 62, 101, 102, 103]. These schemes are irreversible with the exception of
[102] and do not preserve queries (only the scheme described in [40] preserves query
results). Irreversible watermarking implies that the original relation cannot be re-
stored from the watermarked relation. Ownership disputes might be unresolved if
an attacker successfully embeds a secondary watermark. But if the watermarking
is reversible, the original database can be restored and the correct owner identified
using suitable algorithm (discussed in section 6.4.1).

Agrawal and Kiernan [11] were the first to present a database watermarking
scheme that modifies LSBs of numerical attributes (selected using the private key
and tuple’s primary key value). This key-based attribute selection is common to
other proposals [12, 61].

6.2.1 Agrawal-Kiernan Scheme

In Section 3.4. we have discussed the Agrawal and Kiernan database watermarking
scheme in details. In this section, we briefly re-visit the algorithm once again. The
watermarking scheme consists of two algorithms; insertion, and detection. The
bits modified during insertion are checked for correctness in the detection algorithm
for establishment of watermark presence. Parameters to the insertion algorithm are
as follows.

• Database relation R

• Number of tuples η

• Number of modifiable attributes υ, {A0, A1, . . . , Aυ}

• Number of modifiable LSBs ξ

• Fraction of tuples to be watermarked 1/γ

• Private key K

Let the secret parameter set given be φ = (K, γ, υ, ξ). Algorithm 21 illus-
trates the watermark insertion process. Tuples are selected using message authen-
tication code (MAC) F(r.P) defined as H(K‖H(K‖(r.P)) [81] and appropriate bit

110

6.2. Related Work and Agrawal-Kiernan Scheme

in the tuple set to H(K‖r.P) (mod 2) till ω = η
γ bits are marked. Converse proce-

dure is applied on the watermarked copy to detect the watermark (Algorithm 22)
by verifying the modified bit is equal to H(K‖r̃w.P) (mod 2). The primary key
value is unchanged. Parameters to the watermark detection algorithm are water-
marked database relation Rw containing η tuples and υ attributes {A0, A1, . . . , Aυ},
number of LSBs modified ξ, fraction 1/γ of tuples watermarked, upper bound α on
probability of falsely detecting watermark, minimum number τ of correctly marked
attributes for successful detection, and private key K.

Input: relation R, private key K, fraction 1
γ , LSB usage ξ

Output: Watermarked relation Rw

forall tuple r ∈ R do1

if F(r.P) (mod γ) = 0 then2

i = F(r.P) (mod υ);3

j = F(r.P) (mod ξ);4

r.Aj
i = H(K‖r.P) (mod 2);5

end6

end7

return R;8

Algorithm 21: Watermark insertion [11]

Equation 6.1 gives the binomial probability of having at least k successes
from n trials where probability of success in a single trial is p. During detection, at
least τ bits need to be detected correctly in order to extract the correct watermark or
in other words the probability of τ out of ω bits matching by sheer chance B(τ, ω, 1

2)
should be less than the upper bound α of false positive probability.

B(k, n, p) =
n∑

i=k

(
n

i

)
pi(1− p)n−i (6.1)

6.2.2 Security Provided by Agrawal-Kiernan Scheme

While discussing the security of the scheme, Agrawal and Kiernan consider the
following collection of attacks.

A1: Bit flipping attack : Updating some bits in numerical attributes.

A2: Randomization attack : Assigning random values to some bits.

111

Chapter 6. Semi-blind and Reversible Database Watermarking

Input: Watermarked relation R̃w, private key K, fraction 1
γ , LSB usage

ξ
Output: detection Status ∈ {true, false}
totalcount = matchcount = 0;1

forall tuple r̃w ∈ R̃w do2

if F(r.P) (mod γ) = 0 then3

i = F(r.P) (mod υ);4

j = F(r.P) (mod ξ);5

if r̃w.Aj
i = H(K‖r̃w.P) (mod 2) then6

matchcount = matchcount + 1;7

end8

totalcount = totalcount + 1;9

end10

end11

τ = min{θ : B(θ, totalcount, 1/2) < α} ; // B defined in12

Equation 6.1
if matchcount ≥ τ then13

return true;14

end15

return false;16

Algorithm 22: Watermark detection [11]

112

6.3. Analysis of Agrawal-Kiernan Watermarking Scheme

A3: Rounding attack : Rounding off a fixed number of bits.

A4: Translation attack : Transforming numerical values to another data type.

A5: Subset attack : Removing a small subset of tuples or attributes.

A6: Mix and match attack : Applying A4 on multiple relations and merging them.

A7: Additive attack : Re-watermarking an already watermarked relation.

A8: Invertibility attack : Checking if detection returns true for a random key.

Inserting new tuples to destroy watermark will not succeed as F(r.P) iden-
tifies marked tuple and two tuples cannot have the same primary key. Success of
removing the watermark by deleting tuples depends on the parameter γ. Proba-
bility of destroying watermark by deleting a few tuples is extremely low when the
fraction of tuples marked when γ is high. If γ is high for a fixed n, 1/γ is low and
hence the fraction of tuples marked are low. Thus the probability of the attacker
modifying the watermarked tuples is low. Bit flipping attacks (A1–A3) are proba-
bilistically ineffective since the identification of correct tuples, attributes and LSBs
is dependent on MAC. Additive and invertibility attacks are still feasible.

6.3 Analysis of Agrawal-Kiernan Watermarking Scheme

Based on our observations, Agrawal and Kiernan scheme has the following major
weaknesses.

1. Susceptibility of secondary watermarking: Secondary watermarking refers
to an attacker who is trying to insert his watermark in an already watermarked
relation. The scheme does not protect against secondary watermarking as the
attacker can choose his/her own parameter list φ̃ and insert a new watermark
in the original watermarked relation. The new watermark will establish the
ownership of the attacker over the relation and might also destroy the original
watermark. If the watermarking is reversible, the actual owner’s watermark
can be recovered from the reversed relation.

2. Lack of query-preservation: If an attribute r.Ai = x1 is modified to x2,
then query “Select r from R where r.Ai = x1” cannot be preserved. Thus,
it is obvious that not all queries are preservable in watermarked database.

113

Chapter 6. Semi-blind and Reversible Database Watermarking

Currency Nation Buying Selling
code rate rate
AUD Australia 133 125
INR India 4500 4300
THB Thailand 3740 3510
SLR Sri Lanka 4430 4210
NZD New Zealand 151 134

Table 6.1: Original foreign exchange rates relation

Currency Nation Buying Selling
code rate rate
AUD Australia 133 125
INR India 4500 4300
THB Thailand 3740 3510
SLR Sri Lanka 4530 4310
NZD New Zealand 151 124

Table 6.2: Watermarked foreign exchange rates relation

Distance δr.Ai , that refers to the minimum difference between value of r.Ai

from values of Ai in other tuples, is not considered in [11], due to which
queries might not be preserved. If we change value of an attribute beyond it’s
distance, the ordering of the tuples is modified when the relation is sorted on
that attribute and hence query results change. Consider the following relations
that contains foreign exchange rate data of some countries against 100 US
Dollars. Table 6.1 is the original relation and Table 6.2 is the watermarked
relation. Result of queries “Select Nation from ForEx where Selling

rate<130” and “Select Currency from ForEx where Buying rate is

maximum” are different when executed on the original and watermarked
relations.

3. Lack of tolerance of attributes: The number of LSBs that can be used
for watermarking are not dependent on the tolerance of the attributes. This
results in the possibility that the relation becomes unusable from a user’s per-
spective. Tolerance is different from distance. For example, even if population
of the two countries differ by millions, modifying population values beyond a

114

6.3. Analysis of Agrawal-Kiernan Watermarking Scheme

couple of thousands might render the data useless. Hence, the number of bits
that one can change does not depend only on distance, but also on tolerance.

We propose the following modifications to eliminate each of these weaknesses.

1. secondary watermarking To defeat secondary watermarking attacks, the
step r.Aj

i = H(K‖r.P) (mod 2) in Algorithm 21 is changed to the following,

ET = ET ‖r.Aj
i ,

r.Aj
i = H(K‖r.P‖r.Aj

i) (mod 2)

Bit r.Aj
i is concatenated to embed trace ET and then modified. The scheme

is semi-blind and reversible, since the original values can be restored from
ET . The size of ET is proportional to n

γ . At the detection time, the value
of matchcount is incremented only if r̃w.Aj

i == H(K‖r̃w.P‖ET [totalcount])
(mod 2), where i, j, totalcount, matchcount are counters updated during the
detection.

The owner stores ET at a secondary location. (ET ,K) is the watermark de-
tection key. Subsection 6.4.1 discusses how the rightful owner is identified if
multiple parties watermark a relation in some sequence. Implementation is
given in Algorithm 25.

2. Query preservation The value of an attribute r.Ai should be modified by
less than the distance δr.Ai . Thereby, the number of bits available for wa-
termarking are blog2(δr.Ai)c (For example, if the smallest difference between
values of an attribute in two rows is 57.68, then only 5 bits can be used for
watermarking as log2(57.68) = 5.85 and b5.85c = 5). This would guarantee
query-preservation for the existing relation. Since the watermarking scheme
is reversible, it facilitates incremental watermarking. The steps involved in
incremental watermarking are,

(a) Restore relation to unmarked version.

(b) Add (or delete) required tuples (or attributes).

(c) Re-watermark the updated relation.

3. Tolerance Since each attribute has a different tolerance limit beyond which
it should not be modified, it is recommended that the number of LSBs to

115

Chapter 6. Semi-blind and Reversible Database Watermarking

utilize for watermarking should be a function of tolerance of the attributes.
Hence, ξi LSBs of attribute Ai can be modified. The list of all these values
Ξ = {ξ1, ξ2, . . . , ξυ}, where υ attributes are available for watermarking.

6.4 Modified Algorithms

With the above modifications, the secret parameter list for watermark detection
becomes φ = (K, ET , γ, υ, Ξ). We present a reversible and semi-blind watermarking
scheme that comprises of the following three algorithms.

• insertion

• detection

• owner identification

The algorithms are presented in Algorithm 23, Algorithm 24, and Algo-
rithm 25 respectively. They contain comments illustrating the purpose served by
various steps. The acronym WM refers to watermark in the three algorithms.

6.4.1 Identifying Rightful Owner

In this additional algorithm, ownership disputes can be resolved through backtrack-
ing. If R

ins(p1)−−−−→ R1 is followed by R1
ins(p2)−−−−→ R2, then R2

det(p2)−−−−→ R1 will show that
the restored relation R1 has already been watermarked by another party (p1) and
hence p2 is not the original owner. For all potential owners ui, we compare relations
restored Rrestored after detecting watermark of party ui, and if it matches any other
party’s watermarked relation Rw within a preset tolerance limit ε, then ui is elimi-
nated from the list of possible owners. Each party supplies its secret parameter list
φ. and the relation Rw on which it claims ownership.

We do not need all the watermarking parties to be traced and forced to par-
ticpate in the owner identification process. The algorithm can identify the rightful
owner from a subset of the watermarking parties. Therefore, if the rightful owner
OR of a relation R gets the information about some parties who claim ownership
on a similar version of R, then OR can prove its ownership on R even without the
knowledge of all parties who have watermarked different versions of R.

116

6.5. Analysis

Input: relation R, private key K, fraction γ, number of markable
attributes υ, LSB usage Ξ = {ξ1, ξ2, . . . , ξυ}

Output: Watermarked relation Rw, Embed Trace ET
count = 0 ; // index in WM to be generated1

forall tuples r ∈ R do2

if F(r.P) (mod γ) = 0 then3

i = F(r.P) (mod υ); // identify attribute4

j = F(r.P) (mod ξ)i; // identify bit5

if j < blog2(δr.Ai)c then6

ET [count] = r.Aj
i ; // store old value in WM7

count = count + 1; // next watermark bit’s index8

r.Aj
i = H(K‖r.P‖r.Aj

i) (mod 2) ; // modify bit in9

relation

end10

end11

end12

Algorithm 23: Reversible and semi-blind watermark insertion

6.5 Analysis

The attacker Mallory needs to flip at least τ̄ = ω− τ + 1 marked bits to carry out a
successful attack, where ω = η

γ [11]. Let us assume that Mallory somehow knows the
values of ξ and υ and randomly chooses ζ tuples. The probability that this attack
will succeed when Mallory flips Aξ

i for all υ attributes in all randomly selected ζ

tuples is given in Equation 7.4 [11], and the values are provided in Table 6.3. For
our modified watermarked scheme, ξ =

∑υ
i=1 ξi

υ . Note that if the attacker flips more
than 50% bits, the watermark will be detected when the all bits in the relation are
flipped. This also gives us a fair idea about the value of γ that should be chosen. It
should be fairly low and somewhere in between 10 and 100 as the attack is ineffective
for values in this range.

P(A) =
ω∑

i=τ̄

(
ω

i

) (
η − ω

ζ − i

)

(
η

ζ

) (6.2)

Without the knowledge of ξ, γ, υ, Mallory’s task is much tougher. To com-
pensate for the lack of knowledge, Mallory might need to choose an estimated ξ′

117

Chapter 6. Semi-blind and Reversible Database Watermarking

Input: Watermarked relation R̃w, Secret parameter list
φ = (K, ET , γ, υ,Ξ)

Output: {Watermark Status ∈ {true, false}, Restored relation R}
R = R̃w;1

matchcount = 0 ; // matching WM bits counter2

totalcount = 0 ; // total WM bits counter3

forall tuples r̃w ∈ R̃w do4

if F(r̃w.P) (mod γ) = 0 then5

i = F(r̃w.P) (mod υ); // identify marked attribute6

j = F(r̃w.P) (mod ξ)i; // identify marked bit7

if j < blog2(δr̃w.Ai)c then8

if H(K‖r̃w.P)⊕ ET [totalcount] (mod 2) = r̃w.Aj
i then9

matchcount = matchcount + 1; // bit authenticated10

r̃w.Aj
i = ET [totalcount]; // restore bit in relation11

end12

totalcount = totalcount + 1;13

end14

end15

end16

τ = min(θ) : B(θ, totalcount, 1/2) < α; // threshold check17

if matchcount ≥ τ then18

return {true, R};19

else20

return {false, R̃w};21

end22

Algorithm 24: Reversible and semi-blind watermark detection

118

6.5. Analysis

Input: Potential owners U = {u1, u2, . . . , un}. Secret parameter list of
each ui, Iui = {Ki, ET i, γi, υi, Ξi}, tolerance ε, Potential owners’
versions of the watermarked relation {R1, R2, . . . , Rn}

Output: Owner O
forall ui ∈ U do1

if detect(Ri, Iui) == {false,R′
i} then2

U = U \ ui;3

end4

if detect(Ri, Iui) == {true, Rrev
i } then5

if {uj : detect(Rrev
i , ui) == {true, Rtemp}, ∀j 6= i} 6= null then6

U = U \ ui;7

end8

end9

return U ;10

end11

Algorithm 25: Semi-blind owner identification

γ bits flipped success probability
10000 40% 0.64
1000 46% 0.44
100 48% 0.11
10 >50% ≈ 0

Table 6.3: Probability of success for bit flipping attack

119

Chapter 6. Semi-blind and Reversible Database Watermarking

and flip that bit of each of the attribute which degenerates the data quality. The
security analysis for [11] also holds for our scheme as the underlying operations are
retained.
The advantages of our reversible watermarking scheme as compared to [11] are as
follows.

1. Ownership resolution amongst n parties

A publisher releases its watermarked relation in the public domain, where n

users distort the relation and embed their watermarks in the obtained relation.
Each of these users then distribute their watermarked copies that other users
then watermark and this process repeats. Thus we get a tree-like structure of
watermarked relations. At some stage in future, the original publisher finds
similar relations to his floating around in the public domain and takes the
owners of these relations to court over copyright violation.

If we model parties watermarking relations as nodes of a tree where the actual
owner is the root of the tree, then the probabilities with which the owner
will be correctly identified despite nodes from n levels of the tree abstaining
from participation is given by (1−P(A))n. These probabilities are calculated
taking into consideration the modifications the attacker might make in the
relation before watermarking it. The probability that an attacker will succeed
in destroying the watermark is P(A) and hence the probability of the relation
surviving an attack is 1 − P(A). The probability of a relation surviving n

sequential attacks is (1−P(A))n. It is extremely rare that the relation will be
distributed beyond three or four levels as there usually a few companies dealing
with similar data and furthermore distorting the data too much or too many
times by a single entity would destroy the quality and usability of the data. It
is shown in [11] that the attacker has a probability of 11% success if he changes
48% of the tuples assuming γ = 100. Hence, if only C and d3 participate in the
correct algorithm, C will be identified as the correct owner with a probability
of 89% since parties from only one level (d1, d2) abstain. This probability is
100% if C, d1 participate or C, d2 participate. In general, successful detection
of the correct watermark occurs with the probability of 0.89n where n levels
abstain from participation for γ = 100. Thus the probability of finding rightful
owner if two levels abstain is 0.89 ∗ 0.89 = 0.79.

Consider a company C that drags five data servers d1, d2, d3, d4 and d5 to

120

6.5. Analysis

R0 Rrev
0 R1 Rrev

1 R2 Rrev
2 R3 Rrev

3 R4 Rrev
4 R5 Rrev

5

C 1 n.a. n.a. 0.89 n.a. 0.89 n.a. 0.79 n.a. 0.79 n.a. 0.79
d1 n.a. σ 1 n.a. n.a. σ n.a. 0.89 n.a. 0.89 n.a. 0.89
d2 n.a. σ n.a. σ 1 n.a. n.a. σ n.a. σ n.a. σ
d3 n.a. σ n.a. σ n.a. σ 1 n.a. n.a. σ n.a. σ
d4 n.a. σ n.a. σ n.a. σ n.a. σ 1 n.a. n.a. σ
d5 n.a. σ n.a. σ n.a. σ n.a. σ n.a. σ 1 n.a.

Table 6.4: Detecting watermarks in multi-party environment

court for copyright violation of a relation, each party having a slightly different
version of the same relation. The actual situation is described in Figure 6.2.
A dotted line represents a relation being distorted by a party in an attempt
to destroy any watermark it contains. We assume that γ < 100 for all the
parties who have watermarked the relation, which gives a high probability of
the watermark being preserved if the relation is distorted or re-watermarked
(Table 6.3). Hence, with a high probability, C’s watermark is detected in R̃1

and R̃2 while d1’s watermark is detected in R̃3, R̃4, R̃5.

In Algorithm 25, each party (including the actual owner) ui first proves its
ownership on the watermark relation it has distributed by detecting its water-
mark in the relation and if the watermark is detected and watermark of any
other party is detected in the relation obtained from de-watermarking R, then
it is clear that ui inserted its watermark in an already watermarked relation
and so, ui cannot be the actual owner of the relation. Figure 6.1 illustrates
an example where for i = 1 to 10, parties di watermark relation to obtain
watermarked copy Ri. The rightful owner is d1 who watermarked the origi-
nal relation R0 and knows about d5, d6, d8 claiming ownership of R5, R6, R8

respectively. These relations look very similar to R1, so d1 takes d5, d6, d8

to court where the judge runs Algorithm 25 that identifies d1 as the rightful
owner and prosecutes d5, d6, d8 for copyright violation. Experimental results
confirm this as well. In the experiments, all parties except the original owner,
distort the relation to a certain extent before inserting their watermarks. We
used distortions varying from 20% to 40% in our experiments.

2. Situations requiring original dataset

121

Chapter 6. Semi-blind and Reversible Database Watermarking

R0

?

d1

R1

R4

=
~

d2 d3

R2 R3

R5 R6 R7

R8 R9

R

	

	

d4 d5 d6 d7

d8 d9

R

R	

Figure 6.1: Owner identification

R

insert(C)
²²

R0

d1 d2

R̃1

insert(d1)

²²

R̃2

insert(d2)

²²
R1

d3
d4

d5

R2

R̃3

insert(d3)

²²

R̃4

insert(d4)

²²

R̃5

insert(d5)

²²
R3 R4 R5

Figure 6.2: Multiple watermarking scenario - dotted lines denote distortion and
solid lines denote watermarking

122

6.5. Analysis

Often, companies require precise data where a difference of even one bit might
be disastrous such as stock markets and military operations. Once a relation is
watermarked in [11], it cannot be restored to it’s original state if needed. Since
our watermarking scheme is reversible, the original data can be restored by
executing the detection algorithm. It is also possible to distribute low-quality
data free of cost and users can then purchase the key to extract original data.

6.5.1 Semi-Blindness

As mentioned in 6.1, the two alternatives to facilitate reversibility are as fol-
lows.

(a) Store original bits at a secondary location before modifying (our proposed
solution) or

(b) Original bits and watermark bits should be recoverable from modified
bits.

There are a few ways of implementing the second option. Algorithm 23, state-
ment 9 can be replaced by r.Aj

i = H(K‖r.P)⊕r.Aj
i (mod 2). But an attackerA

can run the insertion algorithm with inputs (Rw,K ′, γ′, υ′,Ξ′) and get output

R′,W ′ such that R′ ins(A)−−−−→ Rw. Also R
ins(C)−−−−→ Rw, thus making it impossible

to decide who (owner/ attacker) watermarked the relation first. Thus the this
solution is vulnerable to pre-image attacks.

There have been reversible watermarking algorithms, primarily for images
[13, 89]. These schemes facilitate watermarking by encoding watermark bit
and original value in the modified value at the cost of watermarking capac-
ity. Another option is to use lossless compression to first compress the original
bits, append watermark bits and embed resulting bitstream [22]. Since lossless
compressions are sensitive to modifications, such schemes are not very resilient
as suggested in [52].

The first challenge in designing a blind reversible scheme for database relations
is that lossless compression technique is not resilient against attacks. The sec-
ond problem is that adapting reversible image watermarking schemes is harder

123

Chapter 6. Semi-blind and Reversible Database Watermarking

because neighboring attributes or tuples do not have correlation unlike images,
which is a prerequisite for schemes such as [13]. Our next research endeavor is
to implement a fully blind database watermarking model by working around
these two limitations.

6.6 Conclusion

The watermarking scheme proposed by Agrawal and Kiernan is irreversible, resulting
in problems during owner identification in case of additive or secondary watermark-
ing attacks. Our modified scheme is reversible and thus the rightful owner can be
identified from n candidates. The major advantages of our proposed scheme are as
follows,

1. It provides query preservation.

2. It identifies rightful owner if relation is watermarked by multiple parties.

3. It facilitates reversibility.

The current model requires modified bits to be stored at a secondary location
(ET). Chapter 7 eliminates this requirement and proposes a reversible blind water-
marking scheme. The second enhancement is watermarking relations that do not
contain a primary key. Concatenated attributes in a tuple can act as a primary key
in such cases. However, the possibility of duplicate attributes makes identification
of marked tuples difficult. One possibility is to treat tuples with duplicate attributes
as a single tuple.

124

Chapter 7

Blind and Reversible Database

Watermarking

7.1 Introduction

Database watermarking models are presented in previous works such as [11, 12, 86,
40, 42, 61, 62, 101, 102, 103]. A typical database watermarking scenario is when
a publisher C creates a database relation R and sells it to O. If O is a traitor, it
illegally sells the relation to others. To prevent this, C embeds a watermark W in
R. Similarly, if a data provider D uploads relation R for remote query process, an
attacker might reconstruct the original relation by assembling query results. Hence,
D uploads a watermarked relation.

A blind watermarking scheme requires only watermarked object and a se-
cret key to detect watermark while a non-blind watermarking scheme requires the
unmarked multimedia object in addition to the first two inputs. The major disad-
vantage of a non-blind watermarking scheme is that one needs to store the unmarked
object at a secure secondary storage location and feed it back to the detection al-
gorithm later.

Reversible watermarking provides a mechanism to revert the watermarked
relation back to the original unmarked relation using a secret key. The key advan-
tages of reversibility are as follows.

1. It allows for trial version of multimedia content, that can be later upgraded

125

Chapter 7. Blind and Reversible Database Watermarking

to the full version by reversing it. As an example, a company may want to
distribute low quality (in terms of usability and precision) relations free of
cost and then require customers to purchase a key that is needed to revert the
relation to high quality original relation. This is impossible for irreversible
watermarking schemes.

2. It permits to introduce higher distortion in the data since original data can
be regenerated by reversing the watermarking.

We determine the requirements of database watermarking model, feasible at-
tacks, and propose a reversible and blind database watermarking scheme addressing
these concerns.

Several reversible and blind image watermarking schemes have been pro-
posed. Data compression based reversal [22] compresses the least significant bits
(LSBs) of n pixels selected into m bits, where m < n. These m bits and n − m

watermark bits are then inserted in the n selected pixels. However, data compres-
sion based watermarking schemes are extremely fragile since the lossless algorithms
are not modification-resistant. Histogram shifting techniques [23] exploit the no-
tion that neighboring pixels have high correlation and depending on the watermark
bit, the histogram bins are circularly upgraded (if watermark=1) or downgraded (if
watermark=0). Since database relation values do not possess correlation similar to
images, histogram shift technique is irrelevant for our purpose. Difference expansion
based watermarking [13, 89] integrates a watermark bit to an n-element vector such
that the original vector and the watermark bit can be retrieved from the modified
vector.

There are three categories of reversible image watermarking models based
on data compression, difference expansion, and histogram shifting. Histogram ex-
pansion techniques [23] rely on neighboring image blocks having similar histogram
values. Since this assumption does not hold for databases, we shall not consider this
category any further. Data compression techniques studied in [22] work as follows:

1. Select pseudo-randomly pixels that will carry watermark. Let these pixels be
from the set {p1, . . . , pn}.

2. Quantify the pixels using the secret element L so the parameters are remainder
ri = pi − pi

L ∗ L, quantified pixel set p′i = pi
L ∗ L.

126

7.1. Introduction

3. Compress the remainders using CALIC lossless compression algorithms from
[96] to m values (m < n).

4. Add the m compressed remainders and n −m watermark values to residues
{p′1, . . . , p′n}.

p′′i = p′i +

{
r′i if i ≤ m

wi−m if m < i ≤ n

During detection, the remainders and the watermark bits are extracted and
the original pixels reconstructed using decompression. Data compression based
watermarking schemes are extremely fragile since the lossless algorithms are not
modification-resistant.
The following example shows watermark values w1, w2, w3 (integers between 0 and
7) being embedded in 9 pixels (given by the array p), where {r1, . . . , r6} are com-
pressed remainders.

p =

34 45 37
48 60 63
39 72 57

p’=

32 40 32
48 56 56
32 72 56

r =

2 5 5
0 4 7
7 0 1

r’ =

r1 r2 r3

r4 r5 r6

w1 w2 w3

127

Chapter 7. Blind and Reversible Database Watermarking

p”=

32 + r1 40 + r2 32 + r3

48 + r4 56 + r5 56 + r6

32 + w1 72 + w2 56 + w3

Difference expansion based watermarking performs invertible arithmetic op-
erations on integers. A scheme to embed n− 1 watermark bits in n vectors is given
in [13] and a specific case for n = 2 is described in [89] called pairwise difference
expansion. For completeness, we will introduce the latter scheme here.

Given two adjacent pixels’ values from a grayscale image, we compute average
a and difference d using Equation 7.1.

a = b(x + y)
2

c, d = x− y (7.1)

This operation is invertible as x and y can be computed from a and d using
Equation 7.2.

x = a + b(d + 1)
2

c, y = a− bd
2
c (7.2)

The integer d is now changed to d′ = 2 ∗ d + b and x′, y′ are computed from
a, d′ and watermark bit b to be inserted using Equation 7.3.

x′ = a + b(d
′ + 1))

2
c, y′ = a− bd

′

2
c (7.3)

The new pixel values are x′, y′. One can re-calculate a, d′ from x′, y′ using
Equation 7.1. The watermark bit is simply the LSB of d′ and d = bd′

2 c. Now from
a, d one can compute the values of x, y using Equation 3. As a working example,
consider two pixels x = 106, y = 100. From Equation (1), a = 103, d = 6, assuming
b = 1, d′ = 2 ∗ 6 + 1 = 13. x′ = 103 + b(13 + 1)/2c = 110, y′ = 103 − b(13/2)c =
97. Hence, the new pixel values are x′ = 110, y′ = 97. At the receiver’s end
a = b(110 + 97)/2c = 103, d′ = 110 − 97 = 13. b = lsb(d′) = 1, d = bd′/2c = 6.
x = 103 + b(6 + 1)/2c = 106, y = 103 − b(6/2)c = 100. Thus we can successfully
recover the watermark bit and original pixel values from the modified values.

We denote the process of reversing a pair as {xr, yr} = Reverse{x, y}.

128

7.2. Model of Adversary

7.2 Model of Adversary

The set of possible attacks a watermark should survive are as follows.

A1: Random bitwise flipping attacks, i.e. some bits selected at random (probably
with uniform probability distribution) are modified.

A2: Subtractive attack, i.e. some tuples chosen at random are deleted.

A3: Sorting, i.e. some tuples and/or attributes are chosen at random and their
positions are changed. An ordering criteria maybe chosen by the attacker and
the relation is then sorted in ascending or descending order based on that
criteria thereby resulting in a differently sorted relation.

A4: secondary watermarking, i.e. a watermark is superimposed on the water-
marked relation.

The degree of secrecy and randomness in selecting the tuples and attributes
that will be marked along with proportion of the tuples selected for marking de-
termines the security level of watermark against the attacks A1 and A2. The
assumption that primary key cannot be modified by the attacker ensures that at-
tack A3 is not successful since the correct order can be re-established using primary
key values (for example, sorting tuples in ascending order of primary key). We focus
on providing security against secondary watermarking.

Assume that Alice watermarks a relation R to create watermarked rela-
tion Ra. An attacker Mallory might make some modifications in Ra before re-
watermarking it with a secondary watermark to create relation Rm, Watermarks of
Mallory and Alice are detected in Rm with probabilities 1 and p, respectively. So
the incorrect party (Mallory) is output as the owner with probability 1 − p, and
with probability p, owner is either Mallory or Alice. The problem can be averted
by designing reversible watermarking algorithms as explained below.

Considering the same situation again when Alice and Mallory both water-
mark a relation, when the judge needs to determine the rightful owner, he asks
both Alice and Mallory to detect their watermarks in their watermarked documents
Ra and Rm, respectively. They reverse their relations to the original documents R

and R′
a, respectively (as Mallory might have made some modifications in Ra before

129

Chapter 7. Blind and Reversible Database Watermarking

inserting the watermark). Alice’s watermark is detected in the reversed relation of
Mallory but Mallory’s watermark is not detected in the reverse relation of Alice,
which proves that the sequence of watermarking was Alice followed by Mallory and
thus establishes Alice as rightful owner. Recently, a reversible scheme for database
watermarking was proposed in [45]. The inserting algorithm stores the original
bits that are later modified in an embed map. During the detection algorithm, the
marked bits are sequentially replaced by bits from the embed map. This approach
is weak in the following situations,

• the adversary deletes one of the tuples, then the bits from the tuples positioned
after the deleted ones will be distorted.

• the scheme is essentially non-blind since the information about the watermark
needs to be stored in a safe location.

• the database has to be updated and re-watermarked, one needs to reverse the
entire relation (incremental watermarking).

Thus the main objective of our scheme is to eliminate these three shortcom-
ings of [45] and still provide security against secondary watermarking attacks.

7.3 Proposed Scheme

The two primary objectives of our watermarking model are reversibility and blind-
ness. Difference expansion is the most suitable method to facilitate reversibility
in database watermarking since the markable data is in numeric format. In order
to utilize the reversible watermarking based on difference expansion, we select two
attributes Ai and Aj , from the same tuple to carry the watermark bit. We need
to select the two attributes so that the distortion is within the bounds. We also
need to ensure that the distortion is tolerable by checking that the change is lim-
ited to the ξ least significant bits. Let the tuple selected for watermarking be r

and the attributes be Ai, Aj . The bit embedded is lsb(H(K‖r.P)). Thus, when the
detection algorithm is run and bit is extracted, it is compared to lsb(H(K‖r.P)) for
determining successful recovery. Since the attacker cannot modify the primary key,
lsb(F(r.P)) enables us to identify marked tuples and difference expansion facilitates
reversal. The insertion and detection algorithms are provided in Algorithm 26 and

130

7.4. Experimental Results

Algorithm 27 respectively.

In lines 6, 7 of Algorithm 26, we ensure that in case the unmarked attributes
were reversed, the difference between the reversed values and unmarked values
should exceed distortion tolerance. This condition can detect the attributes which
are not marked because of exceeding distortion limits. The condition is rechecked
in lines 12, 13 of Algorithm 27 once the unmarked values are computed from the
marked attributes.

In the detection algorithm, we also check that a significant proportion of
marks are detected in the multimedia object in order to establish beyond reasonable
doubt that the object is in fact watermarked. The significance level can be deter-
mined by parameter α as in [11]. We use percentage of marks detected, prctng, as
a simpler and equally strict significance level metric. Considering prctng to ensure
mark presence reduces the chances of false positives if prctng is sufficiently large
(experimental results show 85% and over is desirable).

7.4 Experimental Results

We carried out experiments with 1000 files having 200 to 300 tuples and 10 to 20
attributes each. The software generated the relations, inserted the the watermark,
made modifications of the watermarked relations, and detected the watermark in the
attacked files. Changing fractions did not have major effect on detectability of wa-
termark (with the exception when fraction is equal to 33%). As tolerance increases,
probability of false positives increases and probability of detection also increases.
With increasing attack levels, detection probability reduces and is confirmed by the
experimental results. The worst case scenario occurred when the attacker modified
48 out of every 100 tuples. In such a situation, 89 out of 100 times, the watermark
was still detected corroborating the theoretical value suggested by Equation 7.5.2.
Overall, 9 different fractions, 10 different attack levels, and five different tolerance
levels were introduced and watermark was detected in 42167 out of 46045 water-
marked files with a cumulative probability of 91.5%.

131

Chapter 7. Blind and Reversible Database Watermarking

Input: relation R, private key K, fraction γ, number of markable
attributes υ, LSB usage Ξ = {ξ1, ξ2, . . . , ξυ}

Output: Watermarked relation Rw

forall tuples r ∈ R do1

if F(r.P) (mod γ) = 0 then2

i = F(r.P) (mod υ); // identify attribute 13

j = F(r.P
2) (mod υ); // identify attribute 24

x = max(Ai, Aj), y = min(Ai, Aj);5

{xr, yr} = Reverse{x, y};6

if abs(x− xr) > ξ1 OR abs(y − yr) > ξ2 then7

a = bx+y
2 c, d = x− y;8

b = lsb(H(K‖r.P)) ; // bit to embed9

d′ = 2 ∗ d + b;10

x′ = a + bd′+1
2 c, y′ = a− bd′

2 c;11

if Ai > Aj then12

δ1 = abs(Ai − x′);13

δ2 = abs(Ai − y′);14

if δ1 < ξi AND δ2 < ξj then15

Ai = x′, Aj = y′;16

end17

else18

δ2 = abs(Ai − x′), δ1 = abs(Ai − y′);19

if δ2 < ξi AND δ1 < ξj then20

Ai = y′, Aj = x′;21

end22

end23

end24

end25

end26

Algorithm 26: Reversible and blind watermark insertion

132

7.4. Experimental Results

Input: Watermarked relation R̃w, Secret parameter list
φ = (K, γ, υ,Ξ), prcntg

Output: {Watermark Status ∈ {true, false}, Restored relation R}
R = R̃w, matchcount = 0 , totalcount = 0;1

forall tuples r̃w ∈ R̃w do2

if F(rw.P) (mod γ) = 0 then3

i = F(rw.P) (mod υ); // identify marked attribute4

j = F(rw.P
2) (mod υ); // identify marked bit5

x′ = max(Ai, Aj), y′ = min(Ai, Aj);6

a′ = bx′+y′
2 c, d′ = x′ − y′;7

b = lsb(d′) d = bd′
2 c;8

x = a′ + bd+1
2 c, y = a′ − bd

2c;9

{xr, yr} = Reverse{x, y};10

if abs(x− xr) > ξ1 OR abs(y − yr) > ξ2 then11

if Ai > Aj then12

δ1 = abs(Ai − x), δ2 = abs(Ai − y);13

if δ1 < ξi AND δ2 < ξj then14

if b = lsb(H(K‖r.P)) then15

Ai = x, Aj = y;16

matchcount = matchcount + 1;17

end18

totalcount = totalcount + 1;19

end20

else21

δ2 = abs(Ai − x), δ1 = abs(Ai − y);22

if δ2 < ξi AND δ1 < ξj then23

if b = lsb(H(K‖r.P)) then24

Ai = y, Aj = x;25

matchcount = matchcount + 1;26

end27

totalcount = totalcount + 1;28

end29

end30

end31

end32

end33

if matchcount
totalcount ≥ prctng then34

return {true, R};35

else36

return {false, R̃w};37

end38

Algorithm 27: Reversible and blind watermark detection
133

Chapter 7. Blind and Reversible Database Watermarking

0 5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% tuples marked

P
ro

ba
bi

lit
y

of
 s

ur
vi

vi
ng

 a
tta

ck

Figure 7.1: Effect of changing fraction of tuples marked on detection

75 80 85 90 95
0.75

0.8

0.85

0.9

0.95

% tuples to be detected

P
ro

b
a

b
ili

ty
 o

f
w

a
te

rm
a

rk
 e

st
a

b
lis

h
m

e
n

t

Figure 7.2: Effect of changing percentage of marks that need to be detected to
establish watermark presence

134

7.5. Analysis

5 10 15 20 25 30 35 40 45 50
0.88

0.89

0.9

0.91

0.92

0.93

0.94

% tuples modified

Pr
ob

ab
ilit

y
of

 s
ur

vi
vi

ng
 a

tta
ck

Figure 7.3: Effect of changing attack levels on detection

7.5 Analysis

We shall now analyze the capacity and security properties of the watermarking
scheme as compared to previous schemes such as [11, 45] and the advantages our
schemes proposes over the previous schemes.

7.5.1 Capacity

In our scheme, γ tuples out of every 100 tuples are selected for watermarking. Thus
the capacity of our scheme is given by C = η

γ , where η is the total number of
tuples. The capacity is, theoretically, the same as the capacity of previous scheme
mentioned in [11]. Distortion levels Ξ used in our schemes are much higher. The
modified values can later be reversed back to original values upon purchase of full
version of the data set. Allowing higher distortion results in more attributes selected
for marking actually getting marked thereby increasing the capacity in practice.

7.5.2 Security

In terms of security, the possible attacks to consider are given in Section 7.2. Next
we discuss the security of our proposed solution.

135

Chapter 7. Blind and Reversible Database Watermarking

Random bitwise flipping attack. If we assume that the attacker has
complete knowledge of Ξ and υ. The attacker can now choose randomly tuples ζ

and flip all the ξi LSBs of attribute Ai (1 ≤ i ≤ υ) in those tuples. This attack
is successful if the attacker can toggle sufficient marked bits such that detection
algorithm detects less than τ watermarked bits correctly. Hence the attacks succeeds
only when attacker modifies at least ω − τ + 1 watermarked bits, where ω = η

γ

is the total number of tuples marked. The probability of this attack is given by
Equation 7.5.2 (see [11]). This probability is the same as [11, 45]. For γ = 50,
the worst case scenario is when attacker changes 48% of the tuples and the success
probability of attack is merely 11% as confirmed by experiments and shown in
Figure 7.3. If the attacker changes more than half the tuples, a) the usability would
be assumed to be severely affected, and, b) watermark would be detected in the
bitwise complemented relation.

P(A) =
ω∑

i=τ̄

(
ω

i

) (
η − ω

ζ − i

)

(
η

ζ

) (7.4)

Subtractive attack: This type of attack is similar to the previous attack
in that the attacker has to again remove at least ω − τ + 1 marked tuples out of
η tuples such that the detection algorithm detects less than τ matches. The prob-
ability of this attack is same as the previous attack (random bitwise flipping attack).

Sorting: If an attacker re-sorts the tuples based on any attribute, it does
not effect the detection algorithm. Since the watermark detection is carried out of
each tuple independently, any change in order does not effect the outcome of the
detection algorithm. Sorting attack was given significant importance while deciding
difference expansion method to be used.

Secondary watermarking: Let us consider a situation where Alice water-
marks relation R resulting in relation Ra (R

ins(Alice)−−−−−−→ Ra) and distributes it for
trial. The attacker Mallory modifies Ra to R′

a and re-watermarks R′
a resulting in re-

lation Rm. R′
a still contains Alice’s watermark with a high probability p and Alice’s

136

7.5. Analysis

watermark is successfully removed by Mallory with a probability 1− p (According
to experimental results, p ≈ 0.89 for γ = 50). Rm contains Mallory’s watermark
with probability 1 since it has not been modified after watermark insertion. Let Ra

accidently contain Mallory’s watermark with a negligible probability δ (δ ≈ 0).

The judge asks Alice and Mallory to run detection algorithm on Ra and
Rm respectively. Both Mallory’s and Alice’s watermarks are successfully detected
in their respective relations. Mallory’s restored relation is R′

a and Alice’s restored
relation is R. With a high probability p, Alice’s watermark is detected in R′

a but
Mallory’s watermark is detected with an extremely low probability δ in R. Thus it
becomes evident that Mallory inserted the watermark in the relation already water-
marked by Alice and thereby Alice is the rightful owner. In this way, the current
watermarking scheme defeats secondary watermarking attacks.

The watermarking scheme identifies the correct owner if more than two par-
ties insert their watermarks in the relation. A modified version of Algorithm 25 is
executed with the only difference that we do not require the embed map to detect
the watermark. Algorithm 28 provides the modified procedure.

Input: Potential owners U = {u1, u2, . . . , un}. Secret parameter list of
each ui, Iui = {Ki, γi, υi, Ξi}, tolerance ε, Potential owners’
versions of the watermarked relation {R1, R2, . . . , Rn}

Output: Owner O
forall ui ∈ U do1

if detect(Ri, Iui) == {false,R′
i} then2

U = U \ ui;3

end4

if detect(Ri, Iui) == {true, Rrev
i } then5

if {uj : detect(Rrev
i , ui) == {true, Rtemp}, ∀j 6= i} 6= null then6

U = U \ ui;7

end8

end9

return U ;10

end11

Algorithm 28: Blind owner identification

137

Chapter 7. Blind and Reversible Database Watermarking

7.6 Conclusion

We have proposed a reversible and blind database watermarking model. The max-
imum distortion introduced to the attributes is limited to the tolerance parameter
Ξ. It is, in practice, desirable to have distortion on the higher side since the wa-
termarking is reversible. The distorted database is available to everyone and the
accurate database can be purchased upon payment by users by reversing the wa-
termarking. The proposed scheme is successful in achieving the major objective
of eliminating the shortcomings of irreversible schemes like [11] mentioned in Sec-
tion 6.1. The capacity of the proposed watermarking scheme is high and the attack
resistance probability between 89 and 98 percent. Our future research is directed
towards increasing the watermark carrying capacity and level of attack resistance
in a reversible and blind watermarking model.

138

Chapter 8

Conclusion and future research

8.1 Thesis Summary

During this research, we focussed on developing efficient constraint-based water-
marking techniques for digital multimedia objects belonging to natural language
documents, software and databases. During the course of this PhD, several water-
marking requirements such as robustness, blindness and reversibility, were identified.
These requirements were incorporated in the subsequent models of watermarking.
With greater understanding of the requirements, we were able to construct more
comprehensive and effective watermarking schemes. The improvements included lo-
calization of attack to distorted section in natural language documents, resilience
against automated debugger-based attacks in software codes, and security against
secondary watermarking attacks through reversibility in database watermarking.
We have analyzed our proposed watermarking schemes in terms of security and ca-
pacity. We demonstrated that our watermarking schemes are secure against the
various possible attacks while having low probability of false positives and have suf-
ficient watermark-carrying capacity to establish ownership. We implemented our
schemes using C (Natural language watermarking), C++ (Software and database
watermarking) and Java (AES permutations for natural language watermarking)
languages on Windows platform.

We addressed three categories of multimedia objects (in chronological order),

1. Natural language watermarking : Identifying the three approaches to water-
marking text (format-based, synonymy-based and semantic-based) was the
first task in this project. It became evident that the first two categories are

139

Chapter 8. Conclusion and future research

not very robust against generic attacks, and that the watermark should be
contained in the meaning of the text rather than the formatting or wording.
We proposed a format-based natural language watermarking scheme that ad-
dressed robustness, capacity imperceptibility requirements, also incorporating
error-correction codes for higher resilience against attacks.

2. Software watermarking : Several approaches are adopted to watermark soft-
ware source code, amongst which, the more effective methods are register allo-
cation, class obfuscation and branch modifications. While register allocation
is susceptible to automated attacks, and class obfuscation is applicable to only
object-oriented programming languages (and in that too, violates fundamental
programming principles), branch modification is a robust way of watermark-
ing source codes. It is also applicable to a wider, more diverse range of the
programming languages. The wide application of branching is because it is
a fundamental operation in programming and almost all languages support
branching in some form. We analyzed a branch based watermarking scheme
proposed in [71] that converts jump instructions to function calls such that the
added function transfers the control to the correct destination, generating the
watermark as well. We identified a crucial loophole that can be exploited by an
attacker to identify the fingerprint branch function in an automated manner
and also re-calculate the original target of jump instruction thereby destroying
the watermark. This loophole was fixed in our proposed scheme. The new wa-
termarking scheme is resilient against automated attacks and needs extensive
manual inspection of the program to identify and eliminate the fingerprint
branch function.

3. Database watermarking : The current database schemes are mostly modified
versions of [11, 12] by Agrawal and Kiernan. The strength of the scheme lies in
its simplicity; the tuples are independently watermarked under the condition
that primary key cannot be modified by the attacker and therefore, tuples that
carry watermark bits can symmetrically be identified at insertion and detec-
tion steps. This scheme offers high strength against additive, subtractive and
bit-flipping attacks but does not sufficiently address secondary watermarking
attacks. An attacker’s watermark may destroy the original author’s water-
mark. To reduce this possibility, we proposed facilitating reversibility so that
the original relation can be regenerated from the watermarked relation. Given

140

8.1. Thesis Summary

that the watermarking is done reversibly, the original author can be identified
through back-tracking as described in Sections 7.5.2, 6.5. Using this approach,
in conjunction with the base watermarking scheme of [11, 12], we can achieve
a robust watermarking model that is resilient against secondary watermarking
attacks. We have presented two reversible database watermarking schemes
accompanied with a semi-blind scheme requiring an embed map in addition
to the watermarked relation and secret key to reverse the relation and detect
the watermark and the second eliminating this constraint to provide a blind
watermarking that requires just the watermarked relation and secret key to
detect the watermark.

Another aspect of watermarking schemes that we identified is the environ-
ment in which the watermarking schemes should be implemented. Understanding
this environment is critical in order to fully realize the watermarking potential.
For example, in a peer-to-peer multimedia distribution environment, the publishers
must direct their attention towards either the uploaders of digital content or the
downloaders. This provides a focussed approach towards building a watermarking
model.

Study of different types of multimedia objects showed us the constraints
that apply to each, and how these constraints directly result in boundaries for wa-
termarking schemes. For example, attributes should not be modified in databases
beyond a certain limit unless the watermarking is reversible otherwise the queries
on the database might return distorted results. Similarly, the natural language do-
main has grammatical constraints that limit the watermark-carrying capacity of the
documents. In software watermarking, we need to preserve the software interference
graph for typical user inputs. Hence, the watermark component in a watermarked
software should not interfere with its functionality unless a specific input is given to
the program to detect watermark.

A practical issue identified with watermarking environment is the ability to
discourage illegal distribution using bogus media uploading. Multimedia objects on
a peer-to-peer network usually originate from a single uploader from whom multiple
primary entities download the multimedia object. These primary entities may then
choose to themselves upload the media or exclude themselves from further distribu-
tion. From publishers’ point of view (such as Universal Studios or Warner Brothers),
if one or more fake multimedia copies are uploaded, then it would lead primary en-
tities into downloading garbage since nobody can verify the data. By the time the

141

Chapter 8. Conclusion and future research

primary entities realize this, they already waste a significant amount of bandwidth
and virtually nobody wants to be the primary downloader since the uploaded copies
are not verified. Publishers are already uploading bogus copies of their multimedia
objects. This is a very effective scheme against illegal content distribution online.

Characteristics of standard watermarking scheme are robustness, blindness,
detectability, high watermark-carrying capacity, and low false positives. In addition
to these characteristics, we propose another feature that a watermarking scheme
should satisfy reversibility. Reversibility is critical because the original multimedia
object can be re-generated from the watermarked copy and therefore, it also provides
greater watermark-carrying capacity by placing lesser constraints. At the same
time, reversible watermarking provides a solution against secondary watermarking
attacks.

8.2 Future Research Directions

The watermark community views reversibility as a desirable feature of a water-
marking scheme, but not classify it as an essential characteristic. This is because
reversibility introduces several challenges when designing a watermarking model,
such as ability to deterministically identify marked tuples versus rejected tuples.
However, reversibility should be given greater importance in the process of design-
ing a watermarking scheme and researchers should strive to make their watermark-
ing models reversible. We believe that reversibility should be included as a core
requirement in future watermarking model proposals, and be met rigorously in or-
der to establish effectiveness of the watermarking scheme. Also, the reversibility
requirement is independent of the multimedia object that is being watermarked.
Reversibility can be achieved through different methods including signal transfor-
mations and arithmetic operations. Reversibility can sometimes be easier to achieve
in some categories of multimedia objects such as images and databases than in other
categories like natural language documents.

So far in the field of copyright protection, watermarking has been the focus
of study, primarily due to the relative ease of implementation as compared to fin-
gerprinting. But with the popularity of peer-to-peer technology, it is important to
insert fingerprints in addition to the watermarks so that the primary source of such
distribution can also be identified. To facilitate this, research should be carried out
in constructing robust and short collusion-secure codes like the one proposed in [16].

142

8.2. Future Research Directions

In terms of extending watermarking schemes to novel multimedia objects,
HTML and XML documents, DNA sequences, numeric sets and graphs, digital
maps, statistical results and emails should also be considered. Each multimedia
object has its own set of watermark-carrying constraints, and simultaneously offers
some kind of watermarking channel that can be exploited. XML documents, es-
pecially, are of interest given the increasing popularity of these types of database
repositories. Since the data inside these documents can directly be used and trans-
formed into other forms, such as address books and list of customers, this opens
avenues for commercial applications, thereby making watermarking of XML docu-
ments useful and lucrative.

143

Bibliography

Bibliography

[1] Link Parser. AbiWord, available at http://www.abisource.com/downloads/link-
grammar/4.3.5/link-grammar-4.3.5.tar.gz.

[2] MSDN Visual C++ Language Reference. Microsoft, available at
http://msdn.microsoft.com/en-us/library/45yd4tzz(VS.80).aspx.

[3] The Parts of Speech. University of Ottawa, available at
http://www.arts.uottawa.ca/writcent/hypergrammar/partsp.html.

[4] English Grammar Key Words, Terms, Definitions. EnglishGuide, available at
http://englishguide.us/key-terms.

[5] Online Dictionary, Encyclopedia and Thesauru. available at
http://www.thefreedictionary.com/.

[6] iscribe. available at http://www.iscribe.org/english/def.html.

[7] L. Sue Baugh. Essentials of English Grammar. McGraw-Hill, 2nd edition, 1993.

[8] David Crystal. The Cambridge Encyclopedia of Language . Cambridge University
Press, 2nd edition, 1997.

[9] True Spanish documents. National Park Services, available at
http://www.nps.gov/archive/tuma/TrueDocs.html.

[10] World currencies. Corpus Christi Coin and Currency Inc., available at
http://www.cccoin1.com/worldcurrency.htm

[11] R. Agrawal and J. Kiernan. Watermarking relational databases. In Proceedings of the
28th International Conference on Very Large Databases VLDB, 2002.

[12] Rakesh Agrawal, Peter J. Haas, and Jerry Kiernan. Watermarking relational data:
framework, algorithms and analysis. The VLDB Journal, 12(2):157–169, 2003.

[13] A.M. Alattar. Reversible watermark using the difference expansion of a generalized
integer transform. IEEE Transactions on Image Processing, 13(8):1147–1156, 2004.

144

Bibliography

[14] M.J. Atallah, V. Raskin, M. Crogan, C. Hempelmann, F. Kerschbaum, D. Mohamed,
and S. Naik. Natural language watermarking: design, analysis, and a proof-of-concept
implementation. In Proceedings of 4th Information Hiding Workshop, LNCS, pages
185–199, Pittsburgh, Pennsylvania, 2001. Springer-Verlag, Heidelberg.

[15] Igor A. Bolshakov. A method of linguistic steganography based on collocationally-
verified synonymy. In In Proceedings of 4th International Workshop on Information
Hiding, IH 2004, volume 3200 of LNCS, pages 180–191. Springer Verlag, 2005.

[16] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. Advances
in Cryptology CRYPT0 95, Lecture Notes in Computer Science, 963:452 – 465, 1995.

[17] Grady Booch. Object oriented design with applications. Benjamin-Cummings Pub-
lishing Co., Inc., Redwood City, CA, USA, 1991.

[18] J. Brassil, S. Low, N. F. Maxemchuk, and L. O’Gorman. Hiding information in
documents images. In Proceedings of Conference on Information Sciences and Systems
(CISS-95), 1995.

[19] J.T. Brassil, S. Low, N.F. Maxemchuk, and L. O’Gorman. Marking text features
of document images to deter illicit dissemination. In Proceedings of the 12th IAPR
International Conference on Computer Vision and Image Processing, volume 2, pages
315 – 319, Jerusalem, Israel, October 1994.

[20] Charles Briquet. Les filigranes. Publisher: Hacker Art Books; Facsimile Ed edition
(June 1985), 1907.

[21] Leslie Cauley. U.S. Net access not all that speedy. USA today, available at
http://www.usatoday.com/tech/news/techpolicy/2007-06-25-net-speeds N.htm

[22] Sharma G.-Tekalp M.A. Saber-E. Celik, M.U. Reversible data hiding. In Proceedings
of International Conference on Image Processing, volume 2, pages 157–160, September
2002.

[23] Chin-Chen Chang, Wei-Liang Tai, and Min-Hui Lin. A reversible data hiding scheme
with modified side match vector quantization. In AINA ’05: Proceedings of the
19th International Conference on Advanced Information Networking and Applications,
pages 947–952, Washington, DC, USA, 2005. IEEE Computer Society.

[24] N. Chotikakamthorn. Electronic document data hiding technique using inter-character
space. In Proceedings of The 1998 IEEE Asia-Pacific Conference on Circuits and
Systems, IEEE APCCAS 1998, pages 419–422, Chiangmai, Thailand, November 1998.

[25] N. Chotikakamthorn. Document image data hiding technique using character spacing
width sequence coding. In Proceedings of International Conference on Image Process-
ing, ICIP 1999, volume 2, pages 250–254, Kobe, Japan, October 1999.

145

Bibliography

[26] Christian Collberg, Edward Carter, Saumya Debray, Andrew Huntwork, Cullen Linn,
and Mike Stepp. Dynamic path-based software watermarking. In Proceedings of
Conference on Programming Language Design and Implementation, volume 39, pages
107–118, June 2004.

[27] Christian Collberg, Andrew Huntwork, Edward Carter, and Gregg Townsend. Graph
theoretic software watermarks: Implementation, analysis, and attacks. In Proceedings
of 6th Information Hiding Workshop, LNCS, volume 3200, pages 192–207, 2004.

[28] Christian Collberg, Stephen Kobourov, Edward Carter, and Clark Thomborson.
Error-correcting graphs for software watermarking. In Proceedings of 29th Workshop
on Graph Theoretic Concepts in Computer Science, pages 156–167, 2003.

[29] Christian Collberg and Clark Thomborson. Software watermarking: Models and dy-
namic embeddings. In Proceedings of Principles of Programming Languages 1999,
POPL’99, pages 311–324, 1999.

[30] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and
obfuscation - tools for software protection. In IEEE Transactions on Software Engi-
neering, volume 28, pages 735–746, August 2002.

[31] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In CARDIS ’98:
Proceedings of the The International Conference on Smart Card Research and Appli-
cations, pages 277–284, London, UK, 2000. Springer-Verlag.

[32] Joan Daemen and Vincent Rijmen. ADVANCED ENCRYPTION STANDARD
(AES). available at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.

[33] C. J. Date. Introduction to Database Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[34] Vjekoslav Dorn. A contribution to the history of spectacles in croatia. Documenta
Ophthalmologica, 86(2):173–189, 1994.

[35] Ramez A. Elmasri and Shankrant B. Navathe. Fundamentals of Database Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[36] Zhihao Zhang Fei Guo, Jianmin Wang and Deyi Li. A new scheme to fingerprint xml
data. In In Proceedings of Workshop on Knoledge Discovery from XML Documents,
KDXD 2006, volume 3915 of LNCS, pages 85–94. Springer Verlag, 2006.

[37] Alice E. Fischer and Frances S. Grodzinsky. The anatomy of programming languages.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[38] Daniel P. Friedman, Christopher T. Haynes, and Mitchell Wand. Essentials of pro-
gramming languages (2nd ed.). Massachusetts Institute of Technology, Cambridge,
MA, USA, 2001.

146

Bibliography

[39] Kazuhide Fukushima and Kouichi Sakurai. A software fingerprinting scheme for
java using classfiles obfuscation. In Proceedings of Information Security Applications,
LNCS, volume 2908, pages 303–316, 2004.

[40] David Gross-Amblard. Query-preserving watermarking of relational databases and
xml documents. In Proceedings of the 20th ACM Symposium on Principles of Database
Systems, pages 191–201, June 2003.

[41] Carl A. Gunter. Semantics of Programming Languages: Structures and Techniques.
Foundations of Computing. MIT Press, 1992.

[42] Fei Guo, Jianmin Wang, and Deyi Li. Fingerprinting relational databases. In SAC
’06: Proceedings of the 2006 ACM symposium on Applied computing, pages 487–492,
New York, NY, USA, 2006. ACM Press.

[43] Gaurav Gupta and Josef Pieprzyk. A low-cost attack on branch-based software wa-
termarking schemes. In Proceedings of Fifth International Workshop on Digital Wa-
termarking (IWDW), pages 282–293, 2006.

[44] Gaurav Gupta and Josef Pieprzyk. Reversible and semi-blind relational database
watermarking. In Proceedings of Second International Conference on Signal Processing
and Multimedia Applications (SIGMAP), pages 283–290, 2007.

[45] Gaurav Gupta and Josef Pieprzyk. Reversible and semi-blind relational database
watermarking. In Proceedings of International Conference on Signal Processing and
Multimedia Applications, July 2007.

[46] Gaurav Gupta and Josef Pieprzyk. Software watermarking resilient to debugging
attacks. Journal of Multimedia, 2(2):10–16, 2007.

[47] Gaurav Gupta and Josef Pieprzyk. Reversible and blind database watermarking using
difference expansion. In Proceedings of eForensics, pages 1–6, January 2008.

[48] Gaurav Gupta and Josef Pieprzyk. Source code watermarking based on function
dependency oriented sequencing. In Proceedings of Fourth International Conference
on Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP), pages
282–293, 2008.

[49] Gaurav Gupta, Josef Pieprzyk, and Hua Xiong Wang. An attack-localizing watermark-
ing scheme for natural language documents. In Proceedings of the 2006 ACM Sym-
posium on Information, computer and communications security (ASIACCS), pages
157–165, New York, NY, USA, 2006. ACM.

[50] D. Huang and Y. Hong. Inter-word distance changes represented by sine waves for
watermarking text images. IEEE Transactions on Circuits and Systems for Video
Technology, 11(12):1237–1245, December 2001.

147

Bibliography

[51] Darek Michalek Jarek Pastuszak and Josef Pieprzyk. Copyright protection of object-
oriented software. In Information Security and Cryptology - ICISC 2001: 4th Inter-
national Conference, pages 186–199, Seoul, Korea, December 6-7, 2001.

[52] Chwei-Shyong Tsai Yen-Ping Chu Jen-Bang Feng, Iuon-Chang Lin. Reversible water-
marking: Current status and key issues. International Journal of Network Security,
2(3):161–171, May 2006.

[53] H.P. Ji, J.E. Sook, and H. Young. A new digital watermarking for text document im-
ages using diagonal profile. In Proceedings of Second IEEE Pacific Rim Conference on
Multimedia, PCM 2001. LNCS, volume 2195, pages 748–755, Beijing, China, October
2001. Springer-Verlag, Heidelberg.

[54] H.P. Ji, J.E. Sook, and H. Young. A new digital watermarking for text document im-
ages using diagonal profile. In Proceedings of Second IEEE Pacific Rim Conference on
Multimedia, PCM 2001. LNCS, volume 2195, pages 748–755, Beijing, China, October
2001. Springer-Verlag, Heidelberg.

[55] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Computational Linguistics and Speech Recogni-
tion. Prentice Hall, January 2000.

[56] Mohan S. Kankanhalli and K. F. Hau. Watermarking of electronic text documents.
Electronic Commerce Research, 2(1-2):169–187, 2002.

[57] Farinaz Koushanfar, Gang Qu, and Miodrag Potkonjak. Intellectual property me-
tering. In IHW ’01: Proceedings of the 4th International Workshop on Information
Hiding, pages 81–95, London, UK, 2001. Springer-Verlag.

[58] Julien Lafaye and David Gross-Amblard. Xml streams watermarking. In In Proceed-
ings of Data and Applications Security, 2006, volume 4127 of LNCS, pages 74–88.
Springer Verlag, 2006.

[59] Raymond Lewallen. 4 major principles of Object-Oriented Programming, available at
http://codebetter.com/blogs/raymond.lewallen/pages/59908.aspx.

[60] Qiming Li and Ee-Chien Chang. On the possibility of non-invertible watermarking
schemes. In In Proceedings of 6th International Workshop on Information Hiding, IH
2006, volume 4437 of LNCS. Springer Verlag, 2004.

[61] Yingjiu Li and Robert Huijie Deng. Publicly verifiable ownership protection for rela-
tional databases. In Proceedings of the 2006 ACM Symposium on Information, com-
puter and communications security, ASIACCS 2006, pages 78–89, Taipei, Taiwan,
2006. ACM.

148

Bibliography

[62] Yingjiu Li, Huiping Guo, and Sushil Jajodia. Tamper detection and localization for
categorical data using fragile watermarks. In DRM ’04: Proceedings of the 4th ACM
workshop on Digital rights management, pages 73–82, New York, NY, USA, 2004.
ACM Press.

[63] Yingjiu Li, Vipin Swarup, and Sushil Jajodia. Fingerprinting relational databases:
Schemes and specialties. IEEE Transactions on Dependable and Secure Computing,
02(1):34–45, 2005.

[64] Yanmei Fang Limin Gu and Jiwu Huang. Revaluation of error correcting coding in wa-
termarking channel. In In Proceedings of Chinese American Networking Symposium,
CANS 2005, volume 3810 of LNCS, pages 274–287. Springer Verlag, 2005.

[65] S.H. Low, N.F. Maxemchuk, J.T. Brassil, and L. O’Gorman. Document marking
and identification using both line and word shifting. In Proceedings of 14th Annual
Joint Conference of the IEEE Computer and Communications Societies. Bringing
Information to People, INFOCOM 1995, volume 2, pages 853–860, Boston, USA,
April 1995.

[66] Christopher D. Manning and Hinrich Schtze. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, June 1999.

[67] N. Maxemchuk and S. Low. Marking text documents. In Proceedings of International
Conference on Image Processing, pages 13–20, Washington, USA, October 1997.

[68] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[69] Akito Monden, Hajimu Iida, Ken ichi Matsumoto, Koji Torii, and Katsuro Inoue. A
practical method for watermarking java programs. In Proceedings of 24th International
Computer Software and Applications Conference (COMPSAC ’00), pages 191–197,
Washington, DC, USA, 2000. IEEE Computer Society.

[70] Ginger Myles and Christian Collberg. Software watermarking through register alloca-
tion: Implementation, analysis, and attacks. In Proceedings of International Confer-
ence on Information Security and Cryptology, LNCS, volume 2971, pages 274– 293,
2003.

[71] Ginger Myles and Hongxia Jin. Self-validating branch-based software watermarking.
In Proceedings of 7th Information Hiding Workshop, LNCS, volume 3727, pages 342–
356, 2005.

[72] Jasvir Nagra and Clark Thomborson. Threading software watermarks. In Proceedings
of 6th Information Hiding Workshop, LNCS, volume 3200, pages 208–223, 2004.

149

Bibliography

[73] Wilfred Ng and Ho-Lam Lau. Effective approaches for watermarking xml data. In
In Proceedings of 10th International Conference on Database Systems for Advanced
Applications, DASFAA 2005, volume 3453 of LNCS, pages 68–80. Springer Verlag,
2005.

[74] Josef Pieprzyk. Fingerprints for copyright software protection. In Proceedings of 3rd
Information Hiding Workshop, LNCS, pages 178–190, 1999.

[75] Gang Qu and Miodrag Potkonjak. Analysis of watermarking techniques for graph
coloring problem. In Proceedings of International Conference on Computer Aided
Design, pages 190–193, 1998.

[76] Gang Qu and Miodrag Potkonjak. Hiding signatures in graph coloring solutions. In
Proceedings of 3rd Information Hiding Workshop, LNCS, volume 1768, pages 348–367,
1999.

[77] Gang Qu and Miodrag Potkonjak. Fingerprinting intellectual property using
constraint-addition. In DAC ’00: Proceedings of the 37th conference on Design au-
tomation, pages 587–592, New York, NY, USA, 2000. ACM.

[78] Gang Qu, Jennifer L. Wong, and Miodrag Potkonjak. Optimization-intensive wa-
termarking techniques for decision problems. In DAC ’99: Proceedings of the 36th
ACM/IEEE conference on Design automation, pages 33–36, New York, NY, USA,
1999. ACM.

[79] Gang Qu, Jennifer L. Wong, and Miodrag Potkonjak. Fair watermarking techniques.
In ASP-DAC ’00: Proceedings of the 2000 conference on Asia South Pacific design
automation, pages 55–60, New York, NY, USA, 2000. ACM.

[80] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 26(1):96–99, 1983.

[81] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[82] Robert W. Sebesta. Concepts of Programming Languages. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998.

[83] C. E. Shannon. A mathematical theory of communication. Bell System Technology
Journal,, 27:379–423; 623–656, 1948.

[84] Ichiro Murase, Osamu Takizawa, Tustomu Matsumoto, Hiroshi Nakagawa, Shingo In-
oue and Kyoko Makino. A proposal on information hiding methods using XML. In
In Proceedings of 1st NLP and XML Workshop, November 2001.

[85] R. Sion, M.J. Atallah, and S. Prabhakar. On watermarking numeric sets. In 1st
International Workshop on Digital Watermarking, volume 2163, pages 130–146, Seoul,
Korea, November 2002. Springer-Verlag, Heidelberg.

150

Bibliography

[86] Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Rights protection for relational
data. IEEE Transactions on Knowledge and Data Engineering, 16(12):1509–1525,
December 2004.

[87] Mikhail Sosonkin, Gleb Naumovich, and Nasir Memon. Obfuscation of design intent
in object-oriented applications. In Proceedings of 3rd ACM workshop on Digital Rights
Management, pages 142–153, 2003.

[88] Clark Thomborson, Jasvir Nagra, Ram Somaraju, and Charles He. Tamper-proofing
software watermarks. In Proceedings of Australasian Information Security Workshop,
volume 32, pages 27– 36, 2004.

[89] Jun Tian. Reversible data embedding using a difference expansion. IEEE Transactions
on Circuits and Systems for Video Technology, 13(8):890–896, 2003.

[90] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. A graph theoretic ap-
proach to software watermarking. In Proceedings of 4th Information Hiding Workshop,
LNCS, volume 2137, pages 157–168, 2001.

[91] Johann Gotthelf Fischer von Waldheim. Beschreibung einiger typographischen Sel-
tenheiten. Google (Digitized version), 1804.

[92] Misty Wilson. All American: Language: Syn-
tax. University of Northen Carolina, available at
http://www.uncp.edu/home/canada/work/markport/language/grammar/spg2001/

[93] Andrea Wise, Kassandra Coghlan, and Bill Hamilton. Whistler’s
watermarks. National Gallery of Australia, available at
http://www.nga.gov.au/conservation/Watermarks/listing.cfm.

[94] M. Wolf. Covert channels in lan protocols. In Workshop on Local Area Network
Security, volume 396, pages 91–101, Karlsruhe, Germany, April 1989. Springer-Verlag,
Heidelberg.

[95] Greg Wolfe, Jennifer L. Wong, and Miodrag Potkonjak. Watermarking graph parti-
tioning solutions. In DAC ’01: Proceedings of the 38th conference on Design automa-
tion, pages 486–489, New York, NY, USA, 2001. ACM.

[96] Xiaolin Wu. Lossless Compression of Continuous-Tone Images via Context Selection,
Quantization, and Modeling. IEEE Transactions on Image Proceesing, 6(5):656–664,
2007.

[97] Xiangrong Xiao, Xingming Sun, and Minggang Chen. Second-LSB dependent robust
watermarking for relational database. In IAS ’07: Proceedings of the Third Interna-
tional Symposium on Information Assurance and Security, pages 292–300, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

151

Bibliography

[98] Il-Seok Oh Young-Won Kim, Kyung-Ae Moon. A text watermarking algorithm based
on word classification and inter-word space statistics. In Proceedings of Conference
on Document Analysis and Recognition (ICDAR03), 1995.

[99] Chuanxiang Ma Yu Fu, Cong Jin. A novel relational database watermarking algorithm.
In Proceedings of Pacific Asia Workshop on Intelligence and Security Informatics,
PAISI, 2007, LNCS, April 2007.

[100] Wen-Tai Hsieh Yuei-Lin Chiang, Lu-Ping Chang and Wen-Chih Chen. Natural lan-
guage watermarking using semantic substitution for chinese text. In Proceedings of
2nd International Workshop on Digital Watermarking, IWDW 2002. LNCS, volume
2939, pages 129–140, Seoul, Korea, October 2003. Springer-Verlag, Heidelberg.

[101] Yong Zhang, Xia-Mu Niu, and Dongning Zhao. A method of protecting relational
databases copyright with cloud watermark. Transactions of Engineering, Computing
and Technology, 3:170–174, 2004.

[102] Yong Zhang, Bian Yang, and Xia-Mu Niu. Reversible watermarking for relational
database authentication. Journal of Computers, 17(2):59–66, 2006.

[103] Z.H. Zhang, X.M. Jin, J.M. Wang, and D.Y. Li. Watermarking relational database
using image. In Proceedings of 3rd International Conference on Machine Learning and
Cybernetics, volume 3, pages 1739–1744, August 2004.

[104] Xuan Zhou, HweeHwa Pang, Kian-Lee Tan, and Dhruv Mangla. Wmxml: a system
for watermarking xml data. In In Proceedings of the 31st International Conference on
Very large data bases, VLDB 2005, pages 1318–1321. VLDB Endowment, 2005.

[105] William Zhu. Informed recognition in software watermarking. In Proceedings of Pacific
Asia Workshop on Intelligence and Security Informatics, PAISI, 2007, LNCS, April
2007.

[106] William Zhu and Clark Thomborson. Algorithms to watermark software through
register allocation. In Proceedings of Digital Rights Management: Technology, Issues,
Challenges and Systems, DRMTICS, 2005, LNCS, October 2005.

[107] William Zhu and Clark Thomborson. Extraction in software watermarking. In Pro-
ceedings of the 8th workshop on Multimedia and security, MM&SEC, pages 175–181,
New York, NY, USA, 2006. ACM.

[108] William Zhu and Clark Thomborson. Recognition in software watermarking. In MCPS
’06: Proceedings of the 4th ACM international workshop on Contents protection and
security, pages 29–36, New York, NY, USA, 2006. ACM.

152

Bibliography

[109] Umut Topkara and Mercan Topkara and Mikhail J. Atallah. The hiding virtues of
ambiguity: quantifiably resilient watermarking of natural language text through syn-
onym substitutions. In Proceedings of MM&Sec ’06: Proceedings of the 8th workshop
on Multimedia and security, pages 164–174, Geneva, Switzerland, 2006. ACM.

[110] Sha Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17:281–308,
1988.

153

Vita

Vita

Gaurav Gupta, son of Ishwar Chandra and Anupama Gupta, was born in Ratlam,

India at 04:55 on 25th November, 1980 and went to St. Paul H.S.S., Indore for

primary and secondary education.

He finished his undergraduate degree from Devi Ahilya University, Indore,

Indiaand postgraduate degree from National University of Singapore, Singapore.

His research interests include information security, intellectual property, copy-

right protection, information hiding, watermarking, and fingerprinting. He has also

lectured several undegraduate and postgraduate topics while at IIPS, India and

Macquarie University, Australia. His teaching interests include programming lan-

guages including C++ and Java, object oriented technology, data structures, and

information systems.

Permanent Address: 40, Aditya Nagar
A B Road
Indore - 452017
INDIA

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended

154

Vita

by Bert Kay, James A. Bednar, and Ayman El-Khashab.

155

Index

attribute, xxiii, xxiv, 23, 25, 26, 59, 62,
63, 65, 66, 68–70, 110, 113–118,
120, 132, 133, 136

blind, 56, 123–126, 138, 141
branch, 44, 46, 47, 91, 93, 94, 98, 99,

103–108, 140

copyright, 1, 33, 142

detection, 36, 50, 51, 61, 65–67, 69–72,
109–113, 115, 116, 120, 123, 125,
127, 130, 131, 134–137, 140

embedding, 36, 46, 48, 50, 56, 61, 65, 79,
81, 84, 86, 96, 104

extraction, 48, 49, 51, 77

FBF, 91, 94, 95, 98, 100, 103–106, 108

hash, 15, 16, 65, 75, 95–97, 99, 105, 106

ICBF, 94, 96, 105, 106, 108
imperceptibility, 2, 140
insertion, 39, 53, 65–67, 69, 70, 77, 83,

95, 109, 110, 116, 123, 130, 137,
140

invisible, 41

permutation, 46, 77–79, 81, 92
primary key, xxiii, 25, 62, 63, 65–67, 69,

70, 110, 111, 113, 124, 129, 130

relation, xxiii, 51, 56, 57, 61, 63, 64, 66–
72, 109–121, 123–126, 129, 130,
132, 133, 136, 137, 140, 141

reversible, 109, 110, 113, 115, 116, 120,
123–126, 129, 130, 138, 141, 142

robustness, 1, 72, 139, 140, 142

secondary watermarking, 70, 73, 109, 113,
115, 124, 129, 137, 140–142

secret key, 141
semi-blind, 70

transformation, 75

156

