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Recently, functional graphs, i.e., graphs generated from a polynomial function

over Finite Fields Fp , have received renewed interest, due to their applications

in Computer Science. In this thesis, we study new functional graphs of degree

two generated by a polynomial and its twist.

We perform a computational analyses of these functional graphs by devel-

oping new algorithms, and optimizing their implementation performances

(including multi-threading). Our results show that (i) most graphs are strongly

connected or have only two components (including one giant component and

one small component of two or three vertices); (ii) every connected component

of the graph have many Hamiltonian cycles (growing exponentially with the

finite field); (iii) these Hamiltonian cycles can be used to construct balancing

binary sequences. Also the Hamiltonian property makes these graphs distinct

to well-known random mappings where the expected cycle length is about
p

p.

These experimental results were used to guide several theoretical analysis and

then compared with the relevant mathematical proofs.
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1 INTRODUCTION

1.1 MOTIVATION

Randomness is an important concept in computer science as it is required as source

of random numbers or random decisions in many fields such as statistical analysis using

a Monte-Carlo simulation or in cryptography where there is a requirement for a random

seed used to generate cryptographic hashes. There is an inherent problem with computer

generated random numbers in that number generating algorithms are deterministic in

nature where at best a complicated analogue to randomness can be used, referred to as

pseudo-randomness. Generation of pseudo-random sequences is only practical if they are

unpredictable, so algorithms that produce an unpredictable sequence of pseudo-random

numbers that are similar to a truly random process have been an area of study for some

time.

One such method of pseudo-random number generation is the concept of a random walk,

where some transformation function f (x) is used to dictate the next step along an iterative

path from x. In Equation (1.1) this process is illustrated where for an element x in a finite

field Fq of q elements, the next value is determined by some function f (x), which is in turn

used as the input for the next step. This mapping can be visualized as a functional graph

where each edge is the transformation of x → f (x) between elements of Fq as shown in

Figure 1.1. In this thesis, we will only focus on the case where q = p prime.

Given x0 : x1 = f (x0), x2 = f (x1), ..., xq = f (xq−1) (1.1)

The choice of generator function f (x) for these random walks has been experimented

with for several decades, and there have been some notable number theoretic functions

examined in this way, such as the Collatz conjecture defined by the generator function

( f (n) = n/2 if n ≡ 0 mod 2, f (n) = 3n +1 if n ≡ 1 mod 2) , discussed in [Lagarias, 1985] as

one of many research papers, where computing resources have been directed at processing

this function for large input values of n, research is yet to find a positive integer that does

not end its random walk in a cycle of 4 → 2 → 1 → 4. Similarly, theoretical analysis has

attempted to prove this conjecture but there remains no theoretical proof that there is or is

not a positive integer for this mapping that does not eventually reach a value of 1.

As more powerful computing has become available the ability to test theoretical conjec-

tures with experimental analysis has become a tool for number theoretic analysis that was
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Figure 1.1: Random walk visualization as a functional graph.

previously out of reach. Even without an exact proof it may be possible to empirically inves-

tigate these problems to gain some insight. This modern approach to have computational

and theoretical analysis to work together has become a valuable tool for the analysis of

number theoretic functions. In this way, both approaches are enhanced as theoretical expec-

tations guide computational analysis for investigation. Conversely, computational findings

demonstrate expected, uncovering unexpected results that encourage further theoretical

analysis.

Flajolet and Odlyzko [Flajolet and Odlyzko, 1990] discuss analysis of random mappings

and how computationally driven pseudo-random mappings compare with truly random

mappings. Focusing on using random walks as pseudo-random number generators that

map a field of positive integers onto itself, a framework for analyzing random mappings is

introduced and the analysis conducted in [MacFie and Panario, 2012] shows the application

of this framework. A combinatorial construction of the mapping is developed and any

asymptotic behavior investigated. Second, they performed a singularity analysis over the

construction to identify interesting properties and exceptions to the established general case.

The mappings are analyzed as directed graphs as shown in Figure 1.1 where visualization

aids investigation of specific combinations of variables, for small finite fields.

More recently, similar analysis method has been used to investigate the use of small degree

polynomials over finite fields as the generator functions of pseudo-random mappings. These

studies have discovered the idiosyncrasies of each polynomial studied such as length of

tails and cycles as well as interesting features, and a measure of similarity to truly random

mappings. Useful result such as the prevalence of squared-size loops and many partitions
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which limit the usefulness of the mappings due to splitting the field into smaller sets of

elements with which to generate pseudo-random sequences.

Investigating untested functions to assess the properties of their functional graphs creates

the possibility of finding a more suitable mapping for applications such as random gen-

erators. Building on the results of previous studies, the generator function was altered to

improve the connectivity of the resulting functional graphs. The new generator is expected

to produce new characteristics in the pseudo-random mappings that are a more suitable

source of pseudo-random sequences. If successful, an improved generator function that

provides consistent, hard to predict pseudo-random sequences could be developed and

applied to such fields as cryptographic protocols, random seed generation and contribute

to broadening the pool of knowledge around number theoretic functions more generally.

1.2 FUNCTIONAL GRAPHS OF POLYNOMIALS

Using random walks of polynomial functions as generators of random sequences has

been applied as unpredictable pseudo-random number generators [Blum et al., 1986] and

algorithms for factorization [Pollard, 1975, Brent, 1980], both of which have application for

cryptography.

In the case of pseudo-random number generators, the f (x) = x2 mod N generator func-

tion (where N is a product of distinct primes both congruent to 3 mod 4) was compared with

the f (x) = 1/P generator function (where P is some prime). While both generators produced

well mixed sequences of pseudo-random numbers, the 1/P generator was demonstrated

to be predictable with only limited knowledge of the generated sequences, where as the

x2 mod N generator had no simple way to predict other elements in generated binary

sequences. This illustrated the need for cryptographically strong pseudo-random number

generators which are polynomial time unpredictable, in that there are no polynomial time

algorithms that allow prediction of generated sequences [Blum et al., 1986].

Factorization algorithms for prime factors [Pollard, 1975] using a Monte Carlo method

apply the generator function f (x) = x2 −1 mod p (p ∈ P ) and used the random walk gener-

ated to provide a sequence of pseudo-random numbers to iteratively test for prime factors.

The average number of iterative steps that this method takes to find a factor is of order of
p

p steps and that the sequence is periodic due to the modulus. Variations of the generator

function were discussed showing that all permutations of f (x) = x2 +b should be equally

useful for this method excepting where b =−2.
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Later, [Flajolet and Odlyzko, 1990] investigated these random mappings, that were attract-

ing interest, and developed a framework to characterize random mappings through the use

of generator functions to profile the statistics over all permutations of variables accepted

by generators followed by singularity analysis for any exceptions or significant features.

Importantly the use of directed functional graphs is introduced to represent the generated

mappings, and graph features are used to better understand the nature of these maps. The

term asymptotic analysis is coined where for all permutations of generator parameters that

are investigated, how the limiting case for the various features behaves as the functional

graphs become large. This gives us a measure of what can be expected from these features

from a typical graph. This paper also begins study of automated analysis, or computer

experimentation to implement this framework for analysis of specific generator functions.

The features discussed include tree or branch length, maximum cycle length, connected

components among other features, and some important results are found. Similar to the

result from [Pollard, 1975], the maximum cycle length is of the order
p

p for a finite field of

p elements, Fp . Another result is that random functional graphs have generally a few large

trees that are connected to one giant component, which is demonstrated with computer

analysis of the DES cryptographic system as a generator function for pseudo-random maps.

Figure 1.2: Functional Graph generated from f (x) = x3 +1 (mod 31) .
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As an example of using directed functional graphs to visualize a random mapping, a

simple directed graph generated by the equation f (x) = x3 +1 mod 31 is shown in Figure

1.2. This process of generating a number sequence using a random walk is the basis of what

is studied in this thesis. Note that the addition of the modulus for the generator equation

creates a limit on the field of integers to the size of the modulus and forces the end of the

sequence into a cycle. Starting at x = 5, it is clear that the modulus creates a finite field, and

so the iterative path becomes a cycle of size 5. Iterating from vertex 5 for example, gives the

sequence: 5 → 2 → 9 → 17 → 16 → 5. Also note that the degree of the generator function is 3

though is not a regular degree three graph, and that this is defining the number of inbound

edges, or the ’in degree’ of each node, with a few exceptions.

Following on from these papers, [Vasiga and Shallit, 2004] directly looks at two quadratic

cases from [Pollard, 1975] for the general case discussed of f (x) = x2 mod p and the excep-

tion case of f (x) = x2 −2 mod p due to its involvement with Mersenne numbers. Applying

the asymptotic analysis framework discussed in [Flajolet and Odlyzko, 1990] to analyze

these two functions to investigate the cautionary note and explain with a quantitative anal-

ysis as to why the features of the mapping f (x) = x2 −2 mod p are not good for Pollards

factorization algorithm and further number theoretical analysis of Mersenne and Fermat

prime numbers.

In [Konyagin et al., 2016] the complimentary set of quadratic mappings for the f (x) =
x2 + a mod p is studied where all permutations for a mod p are considered except for

a = 0,−2, and proves that this generator will test all permutations of quadratic functions up

to isomorphism, which is a reduction from the complete quadratic form f (x) = ax2 +bx + c

mod p. The paper investigates the nature of isomorphic graphs for this generator and con-

tinues with the framework from [Flajolet and Odlyzko, 1990] to profile these permutations

of a for a large number of primes. The results concerning the number of components are

particularly interesting as the average number of components per graph is around 7, with

the minimum being 1 and the maximum over one hundred for these large primes on the

order of 500,000.

Another significant result is that the average number of elements in a cycle is around

866 for primes of the order again of 500,000, with a minimum cycle size of 2 elements and

a maximum between 3000 and 4000 elements. This is just over the expected result of
p

p

and justifies the expectation from [Pollard, 1975, Flajolet and Odlyzko, 1990]. This paper is

followed by [Mans et al., 2017] where the more precise relationship for average cycle size

in all graphs is found to be
√
πp/2, and unexpectedly that the average size of the cycles

from connected graphs is lower than that of unconnected graphs. Other graph features are
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quantified such as tree size and number of trees with size one.

1.3 FUNCTIONAL GRAPHS OF POLYNOMIALS AND THEIR TWIST

From papers mentioned in the previous section, much of the form and features of the

graphs generated from quadratic polynomials is known. The cycles will be roughly the

square root of the size of the finite field of elements, the graphs are often unconnected

and may have many components and that the functional graphs have both tree and cycle

features as well as isomorphic properties. For the purposes of generating long sequences of

unpredictable pseudo-random numbers using a graph feature that incorporates as much of

mapped field as possible is desirable. Previously mentioned generator functions are limited

by having multiple trees branching off each cycle, splitting the vertices into smaller features,

and often unconnected graphs creating multiple cycles with additional trees for functional

graph. Using the largest cycle in these functional graphs as a sequence generator is shown

to use only the square root of the field size on average.

It is desirable to avoid the creation of unconnected graphs, increase the size of the cycle

and reduce the number of trees, or remove them entirely so that longer sequences of pseudo-

random numbers may be generated from the largest cycle in each graph. By introducing

multiple solutions for the outbound degree by introducing a squared term, two possible

edges out of each vertex are created such that y2 = f (x). Following this, to find the next

vertex on the random walk the square root of f (x) must be found where ±y mod p are

solutions. This is more likely to produce strongly connected functional graphs than that of

the example graph in Figure 1.2 due to the increase in out-degree for all vertices.

Not all edges will have solutions however, as only those with rational solutions along the

curve f (x) have outbound edges. This leaves about half of the vertices without solutions

which will end the sequence at a stopping point with no cycle. To generate these missing

edges a twist term is added to the equation when there is no solution. This twist term is

referred to here as λ which can be any rational number in FP that is not quadratic residue

modulus prime p. Adding this alternate twisted function defines a set of equations as

described in Equation (1.2) where C0 is the untwisted function, and C1 is the twisted function

that is used if there is no solution found with C0. The notation G(λ, f (x)) describes a graph

with these parameters for a given prime p where the function and the twist are neatly shown.

C0 : y2 = f (x) mod p, p ∈ P.

C1 : λy2 = f (x) mod p, p ∈ P.
(1.2)

9



Intuitively, this generator function should produce more connection in the graphs and

are unlikely to have trees or branches. In fact we will show that they are strongly connected

and have many Hamiltonian cycles per connected graph or component as opposed to the

functional graph shown in Figure 1.2. Given the strongly connected expectations there was

also the prospect of finding Hamiltonian cycles which could be of the maximum size cycle.

Generator functions of the form y2 = f (x) have not been tested before, so the techniques

and algorithms used from previous studies such as cycle detection redesigned for this new

type of generator. There are twice as many edges to traverse when searching the functional

graphs and the presence of cycles smaller than Hamiltonian mean a cycle may encounter the

same vertices from a different origin as there must be as many inbound edges as outbound

edges. The complexity of generators of the form y2 = f (x) could be as high as 2p given each

graph has p vertices and each vertex has two out edges. As such, this thesis will design

efficient algorithms to investigate these new functional graphs.

1.4 HAMILTONIAN CYCLES

Following on from the expectation that Hamiltonian functional graphs are generated with

the twisted polynomial function, there is a practical application in cryptography if it can

reliably produce graphs that have a Hamiltonian cycle. The Hamiltonian cycle is this special

case where there is a cycle that passes through each element of the functional graph.

The Hamiltonian cycle is a well-known computational problem. Testing if a cycle in

the graph is Hamiltonian can be done in polynomial time but typically finding an Hamil-

tonian cycle quickly becomes difficult as the size of the graph increased. Algorithmic

techniques exist to avoid calculating all possible paths, in particular for directed Hamil-

tonian cycles (e.g., [Kühn and Osthus, 2012]) but they remain computationally expensive

in the general case. The problem of finding a Hamiltonian Cycle for a given graph is the

basis of public key cryptography in digital communications which is related to another

difficult computational problem (i.e., the factorization of primes factors from large num-

bers [Diffie and Hellman, 1976, Rivest et al., 1978]) as well as other proposed cryptographic

methods such as using the NP-Complete knapsack problem [Merkle and Hellman, 1978].

Analyzing the number of Hamiltonian cycles in a given graph becomes clearly more

difficult as this involves the same process of finding all Hamiltonian cycles. In this thesis,

this is particularly challenging as there are many functional graphs for each prime, and

ideally the analysis needs to be done for large primes. If these graphs are tested for the
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existence of a Hamiltonian cycle and it turns out there is not one then the time complexity is

also out of reach using an exhaustive search of all possible paths. We will show that these

problems quickly become intractable as the size of the finite field grows. Finding practical

algorithms for functional graphs must be done by exploiting features of the graph, as they

deviate from the general case, and by designing short cuts for processing specific cases to

reduce the complexity. The generator functions for the graph described in Section 1.3 allow

a simpler case for Hamiltonian analysis as the graphs are of small degree.

Finding efficient solutions to specific cases of intractable problems has been well studied.

While the general case of many problems remain intractable, under certain conditions

the complexity of the problem is reduced significantly and the use of probabilistic and

heuristic techniques are often used to solve questions around the existence of a solution,

such as determining the existence of a Hamiltonian cycle is unlikely. Frieze and Haber

[Frieze and Haber, 2015] devised a near linear time heuristic algorithm for finding Hamilto-

nian cycles for a limited set of directed functional graphs where they are of degree at least

three. By targeting a specific case of functional graphs it is possible to exploit the features

and in this case, as the ratio of edges to vertices increases the algorithm becomes more effi-

cient to the limiting case of complexity O(n1+o (1)). It is also worth noting that this method

determines if the functional graph tested is Hamiltonian by finding one Hamiltonian cycle

and so ignores any additional Hamiltonian cycles after the first. For the purposes of finding

all Hamiltonian cycles this heuristic is not suitable. A similar heuristic method is used for

a broader set of functional graphs in the un-directed case in [Baniasadi et al., 2014], and a

probabilistic heuristic for directed graphs in [Frieze, 1988]. In [Hefetz et al., 2016] a heuristic

for testing if a graph is Hamiltonian is developed from a proof in 1960 that asserts that a

functional graph of degree more than half the number of vertices, and discuss the probability

of a functional graph being Hamiltonian as the degree is reduced below this.

1.5 SUMMARY OF CONTRIBUTION

Functional graphs of a polynomial and its twist as described in Section 1.3 have not yet

been studied, and as outlined the generator function allows us to specify a great variety of

different polynomials to use the enhancements of twist and forcing out-degree of two. This

thesis will focusing on the linear case, where f (x) = x +a. This is a contrast to the previous

literature that has focused on x2 +a but as the y2 term and the twist make this generator

much more complicated already the linear function will not produce simple functional
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graphs. So our general twisted Equations (1.2) become the following in Equations (1.3).

C0 : y2 = x +a mod p, p ∈ P.

C1 : λy2 = x +a mod p, p ∈ P.
(1.3)

Figure 1.3 is a visualization of a small directed graph G(6, x +6) for prime p = 7, generated

by the function described by Equations (1.3). Graphs where p = 7 can be calculated by hand

without too much trouble from Equations (1.3) and some of our intended outcomes are

evident in the small graphs. Tracing around the outer edge of the connected graph it is easy

to find a Hamiltonian cycle, and to count the edges and see that each vertex aside from

vertex one has out-degree two.

Figure 1.3: Example of directed graph F (x) = x +a mod p

The analysis framework described in [Flajolet and Odlyzko, 1990] will be applied where all

combinations of variables λ and a for primes p up to infeasibility. This involves developing

and writing software tools to perform this combinatorial analysis and visualize the functional

graphs to inspect any features that are discovered in the process. Asymptotic results are

determined for the functional graphs, the connectivity of the graphs is investigated for
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both connected and unconnected graphs and cycle properties including an analysis of

Hamiltonian graphs.

Computational analysis conducted in collaboration with theoretical work is outlined in

[Mans et al., 2019]. In this way, computational analysis is used to confirm theoretical expec-

tations and conversely, use the results of computational analysis to uncover unexpected

features of these graphs that are useful to theoretical development. The contribution this

research makes is to examine the pseudo-random generator function outlined here and

provide computational analysis that supports theoretical research into a new method of

generating strongly connected Hamiltonian graphs that produce extended pseudo-random

sequences to that of previous studies and to highlight any features found that may be of use

to pseudo-random number generation, cryptographic techniques and number theoretical

knowledge more generally.

The investigation conducted in this thesis has discovered that the twisted polynomial

generator produces almost entirely connected graphs, and that these graphs are strongly

connected graphs despite all being small degree graphs that have a maximum in-degree

and out-degree of two. Another key finding is that all connected graphs and unconnected

components are Hamiltonian, and all have a great many Hamiltonian cycles, the number

of which grows exponentially proportionately to the field size. And since all graphs are

Hamiltonian, the cycle size is a one to one mapping of the finite field, which greatly improves

on previous polynomial generator cycle sizes averaging the square root of the finite field size.

Another discovery of this thesis is a feature of the generator allows these Hamiltonian cycles

to be used to generate balancing binary sequences.

1.6 STRUCTURE OF THESIS

Section one already outlined research intentions and reviewed existing literature that sup-

ports the approach taken in this thesis to enhance existing functional graphs of polynomials

for the purpose of sequence generation. Section two discusses the development of software

tools, methods and algorithms that produces the mapping from the generator function,

as well as the methods used to visualize the functional graphs produced by the random

mappings for small finite fields.

Section three discusses the algorithm used to analyze the connectivity of the functional

graphs, the results found from the computational analysis and compares them with theoret-

ical expectations. Specifically an asymptotic analysis of the connected and unconnected

graphs is conducted including unconnected component analysis. Assessment of exceptions

to the asymptotic results including some cases of isomorphic conditions is also demon-
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strated.

Section four conducts a similar analysis on functional graph cycles for connected graphs

establishing that the graphs are Hamiltonian and counting the number of Hamiltonian cycles

produced. Discussion include a comparison of theoretical expectations and experimental

results, with some comments on the limitations of the analysis due to complexity. A method

of producing balancing binary sequences is discovered and analyzed as a potential source

of pseudo-random binary sequences, and some special cases are analyzed and compared

with theoretical assessments.

Finally in Section 5 the results of this thesis are discussed and measured against the

expected benefits while also considering some of the drawbacks encountered in this ap-

proach. Possible uses for the generator are discussed from the properties discovered in these

functional graphs and future research directions are considered.
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2 BUILDING EXPERIMENTATION TOOLS

2.1 DEVELOPMENT ENVIRONMENT

The analysis tools developed and used to study the functional graphs generated by Equa-

tions (1.3) are written in C++, which was chosen for processing efficiency over higher level

programming languages and also compatibility with numerical tools for large integer han-

dling [Shoup, 2019] written specifically for C++. Microsoft Visual Studio was used as the

IDE for this project due to prior experience with the tools, and that it integrated well with

the development environment that was running Windows 10 and using 64-bit Microsoft

compilers.

All code was first developed as single-threaded code with centralized variables for ease of

debugging, and then multi-threaded if required. Once the code was tested, it was recompiled

for Linux for use with The National Computing Infrastructure (NCI)[NCI, 2018], a dedicated

high performance Linux cluster of 84,656 cores over 4416 nodes, housed at the Australian

National University. Access to the NCI was granted through partnership with Macquarie

University. Intel compilers recommended by NCI user documentation were used to compile

for Linux executable code and some code changes were made in text to be compatible from

the Windows executable code due to some differences in compilers.

The code was largely written using native C++ vectors for the ease of not needing to

define the size which was particularly useful for vectors of temporary vertices which could

be pushed back and indexed easily for iteration over graph vertices. C++ structs were

used to create data structures to hold all data for edge tables and results, which allowed

for thread safety in multi-threaded code when calling functions and passing data. In all

environments, code was optimized to run on multiple threads where it made sense to do so

using the boost C++ libraries [Anthony Williams and Vicente J. Botet Escriba, 2017] as C++

does not have native threading modules. The Boost libraries were chosen for compatibility

with available boost modules installed on the NCI. Collected data was exported from the

application by printing to command line which was saved to text file for import to Microsoft

Excel for display and analysis. Design and development of code was an iterative process of

experimentation where results were examined and design was reassessed for improvements

to existing code and also for new research objectives as they were discovered.

Much of this project was iterative, and if the experiment was consuming significant

processing time, iterations were run in on multiple threads to utilize many processor cores.

The benefits of using the NCI for processing were that the NCI has significantly more cores to

process iterative jobs and many experiments can be run concurrently on different compute
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nodes. The multi-threaded jobs were somewhat inefficient, running at a large fraction of

the maximum processing power that was attributed to on-processor resource management

where the memory management for multiple cores accessing memory for iterative tasks

will be impacted by threads competing for memory space. Multi-threading efficiency was

observed to vary due to processor architecture and also the size of the primes. For example,

the efficiency of multi-threading using the NCI increased for larger primes, which seems

counter intuitive but may be explained by the larger tasks taking longer to process and so

transfer between memory levels may be less frequent on the processor, reducing a bottle-

neck.

Multi-threaded code was developed and tested first on the Windows desktop computer

running a quad core processor with a maximum of 3 threads to avoid the use of Hyper-

threading and to avoid starving the operating system of resources, both of which would

hinder performance. Once tested, the code was reformatted to run under the NCI compilers

for Linux and recompiled to run as batch tasks on single nodes, which consisted of two

processors of either eight or twelve cores each, providing a single processing unit of 16 or

24 cores depending on which queue was used (or available). Later, the windows desktop

was upgraded to an AMD Ryzen Threadripper2 32 core processor which had the benefit of

additional on CPU resources as well as a higher overall processing speed compared with

previous environments including the NCI and allowed for quick testing multi-threaded

tasks and high performance processing of a single multi-threaded task. Processing was

again limited to n −1 threads for an n-core processing node to avoid over threading leading

to degraded performance due to on processor resource limitations. Hyper-threading is

formally switched off on the NCI due to it having a negative impact on scientific processing

similarly due to processor resource limitations and thread handling bottlenecks. Given

the abundance of processors and that most tasks ran at close enough to full load this was

still a great advantage. Little time was spent investigating processing speeds and compiler

optimization as it was outside the scope of this project, just the minimum time necessary

was spent to achieve good performance.

Load balancing multi-threaded code was manually tuned so that tasks were not allowed

to be queued over a certain limit of tasks in memory so that there was never a wait for new

tasks, but also the tasks in memory never grew to a size that would use too much memory

while waiting for a processing thread from the thread pool. To achieve this, the thread pool

was monitored while queuing tasks and a small threshold of tasks was set that would halt

queuing until the tasks dropped below this threshold. Manual tweaking of the task pool and

the job queuing process sleep period would allow the queue to be full and ready to process
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new jobs, but keep memory usage of queued threads to a minimum.

Likewise, the output data structs of the threads were cleared early by calculating results

such as averages on the fly as the size of the data for all permutations becomes large if all

stored together and processed later. This thread-balancing was done to prevent an out of

memory error as if all threads were queued or all processed task results were left in memory

the combined data structs of mapping tables and result data would create a prohibitive

memory requirement. Another consideration was that recursive functions might not be

inherently thread safe using structs to pass data on threads for later analysis of Hamiltonian

cycles.

Message Passing Interface (MPI) parallel computing libraries were investigated to run

analysis over multi-node batch jobs with the NCI however, the usage constraints and re-

coding time limited the advantages over submitting multiple single node batch jobs using

multi-threading to use all of the available cores of a single compute node.

2.2 IMPLEMENTING THE MAPS FROM FUNCTION PARAMETERS

The developed tools to generate the mapping table require the three function parameters

p the prime modulus, λ the twist coefficient and a the constant, all of which are in Fp . λ has

two extra conditions where any λ must be excluded that are quadratic residue for Equation

(1.3), and roughly half of the remaining λ values are also removed due to isomorphism as

explained in [Mans et al., 2019] due to the condition G(λ, x +a) is isomorphic to G(λ−1, X +
λa), where isomorphic functional graphs will have identical results for graph feature analysis.

Removing any λ that is quadratic residue for a given prime modulus p is done by creating

a list of all squares modulus p ∈ Fp . Any integer x ∈ Fp found in the list is a quadratic residue

modulus p and so is excluded. An example table of squares modulus p = 31 is shown in

Figure 2.1, showing there is symmetry about the modulus. Taking x =±11 mod 31 gives the

pair x = 11,20 with a quadratic residue of 28. Allowing for x = 0, this means there are p −1/2

non-zero quadratic residue values in F31

Figure 2.1: Example table of squares modulus 31

Reduction due to isomorphism is more complicated as for each non-quadratic residue λ

there will be a modular inverse non-quadratic residue such that λ×λ−1 = 1 mod p, where

λ can be its own modular inverse. By looping through the available λ values the modular

inverse condition is tested and the larger of the two values is removed. Where λ is found
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that is its own modular inverse, it still needs to be processed. This reduces the field of useful

λ by half, plus one if there is an odd number of λ values.

Algorithm 1 Mapping and Edge Table Generation
Require: Prime p, Twist λ, Constant a, Array of Squares y2,
1: for all i ∈ p do . Build the in-bound edge function table
2: MappingTable[i ] ← Calculate preceding vertices xC 0 and xC 1 from i

3: for all i ∈ Fp do . Transform the mapping table to the edge table by indexing from x instead of to x.
4: for xC 0 & xC 1 do
5: if y0 = undefined then
6: EdgeTable← Set Edges from Mapping Table([xC 0, xC 1] → i ) as (x → y0) and Twist T [0,1]
7: else
8: EdgeTable← Set Edges from Mapping Table([xC 0, xC 1] → i ) as (x → y1) and Twist T [0,1]

9: if y0 and y1 = 0 then
10: EdgeTable ← Set Twist T = 2

11: return E d g eTable

Algorithm 1 shows the process used to generate the mapping table as a two-dimensional

vector from the above three parameters and a table of squares for Fp . Solutions are calculated

for (1.3) in reverse for both C0 and C1 by rearranging the equation for x as shown in Equations

(2.1). This is done so there is no direct computation of a square root term and a table of

squares can be can pre-calculated for Fp as this is more efficient than calculating the squares

during iterations and calculating squares is easier than calculating roots. The effect of

reversing the equation is that rather than finding the outgoing edges from vertex x, ie.

xn −→ xn+1, we are instead calculating the incoming edges to x, i.e. xn−1 −→ xn . To represent

the previous edge of each vertex, these in-bound edges are labeled from vertex xC 0 and xC 1

for the two rearranged equations.

C0 : xC 0 = x2 −a mod p

C1 : xC 1 =λ× (x2 mod p)−a mod p
(2.1)

The table shown in Figure 2.2 is the result of line 1 and 2 in Algorithm 1 where the preceding

vertices are found for each vertex in the field P . This in itself is sufficient for building an edge

table to visualize graphs but since these directed graphs are to be analyzed iteratively, looking

up edges from a table like Figure 2.2 is poorly indexed. It is better to have an orderly table

Figure 2.2: Mapping table of [C0,C1] → x for inputs p = 31 ,λ= 3, a = 1

to look up the outbound edges for each vertex as done in a random walk. The remainder
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of Algorithm 1 takes each edge from the mapping table and re-index from x to y0 and y1,

also taking note of whether the edge came from C0 or C1 as this defines if the path used

the twist function or not. The final edge table is shown for the same functional graph in a

table in Figure 2.3. For the edge table, the corresponding twist value is shown and marked

also as a colour code (blue and T = 0 for no twist via C0, red and T = 1 for twisted function

C1). As you can see by comparing tables the relationship for the function path is lost when

looking at outbound edges where it is clearly defined from the table of inbound edges. The

exception is edges leading to the zero vertex will be one from each the twisted and the

non-twisted function so this is tested in the algorithm and assign this special case a twist T

of 2 to differentiate it.

Figure 2.3: Edge Table for inputs p = 31 ,λ= 3, a = 1

Algorithm 1 was decided upon after investigation of the form of the functional graphs

by hand for small p and theoretical expectations outlined in [Mans et al., 2019], proves this

generator function yields a digraph where every vertex has in-degree and out-degree of

two, with the exception of the zero vertex having an in degree of one and the preceding

vertex with and out-degree of one. As the degree of the directed graph is 2 and always

has a rational solution (or solutions), i.e. all but one vertices have two inbound edges and

two outbound edges which means processing time is saved that would be required for a

graph with arbitrary vertex degrees. The exception being the zero vertex having only one

in edge, however this can be viewed as having the same solution for both the twisted and

untwisted functions as shown in Figures 2.2 and 2.3. To represent this the label ‘2‘ is used

as the function indicator to differentiate from the other edges and designate these values

in green on tables and graphs. This label of ‘2‘ will be used in other algorithms to quickly

identify the zero vertex.

2.3 GRAPH VISUALIZATION TOOLS

From the edge table created in the previous section it is trivial to output a text script, for-

matted to execute in MATLAB to use the ’digraph’ graphing tools available in the application.
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An example of the MATLAB diagraph output is shown in Figure 2.4 where the numbered

vertices are joined by the edges defined in Table 2.3 and the edges are color coded to match

the twisted (red) or untwisted (blue) function choice. The special case of the zero or double

edge mentioned earlier is in green.

The use of a visualization of these functional graphs is important for analyzing the topology

of the map and unit testing. By following through the mapping table, it is easy to verify

(for small graphs!) that the edges are as expected and also to test specific input variables

individually to consider theoretical proofs.

Figure 2.4: Example generated functional graph for inputs p = 31 ,λ= 3, a = 1

Figure 2.4 is the MATLAB generated functional graph from the edge table in Figure 2.3

where one can follow the edges on the table around the graph from vertex to vertex and

check the function path by colour. The in-bound edges from Figure 1 allow one to work

backwards along the directed path. This visualization is used in the following sections to

analyze interesting features of these functional graphs of polynomials and their twist that

are discovered from iterative analysis.
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3 CONNECTED GRAPH ANALYSIS

3.1 GRAPH COMPONENT DETECTION ALGORITHM

The generated edge tables from Section 2.1 of this thesis are used by a component detec-

tion algorithm to profile the corresponding functional graph. Examining all graphs for a

prime number is time consuming and had to be limited to smaller prime numbers. However,

as outlined by [Flajolet and Odlyzko, 1990] these functional graphs are profiled statistically

by looking at all permutations of variables over a range of prime numbers. From these

computational results asymptotic trends are analyzed, and from these observations are then

explored for any exceptions to the general case.

A connected component consists of vertices that are all connected by edges in a graph,

where a graph will have one or more connected components. A strongly connected compo-

nent is one where any vertex is reachable from any other vertex in the graph component. The

connected components are tested for maximum and minimum numbers of components,

maximum and minimum component sizes and what the averages of these values are over

a range of primes. This gives an indication of how these features compare with previous

studies. This component detection algorithm is designed to measure these properties and is

iterated over all combinations of λ and a values for as many prime numbers as feasible.

Algorithm 2 Graph Component Detection
Require: As Input: Prime p, vector<x,y> EdgeTable

1: Sn ⇐ 1

2: for i : 0 → (p −1) do

3: if S[i ] is Undefined then .Only processes vertex if not already assigned a set in vector ’S’

4: j ⇐ i

5: while S[EdgeTable[ j , y0]] and S[EdgeTable[ j , y1]] Undefined do . Iterate along first edge until flagged vertex found

6: Z [] ⇐ EdgeTable[ j , y0],EdgeTable[ j , y1] . from the j th vertex, add both adjacent vertices y0 and y1 to visited set vector ’Z[]’

7: S[EdgeTable[ j , y0]],S[EdgeTable[ j , y1]] ⇐−1 . Flag all checked edges with temporary set

8: j ⇐ EdgeTable[ j , y0] . Iterate the path

9: if S[EdgeTable[ j , y0]] Xor S[EdgeTable[ j , y1]] > 0 then .One existing set found, on y0 OR y1

10: Assign all Z [] to the existing set found.

11: Z [] ⇐ clear

12: else if S[EdgeTable[ j , y0]] and S[EdgeTable[ j , y1]] > 0 then . Two existing sets found, merge all to one set.

13: Merge sets and assign all Z [] to merged set.

14: Z [] ⇐ clear

15: else . Loop found without any assigned vertices

16: Sn ⇐ Sn +1

17: S[Z []] ⇐ Sn . Assign all stored vertices to new set

18: Z [] ⇐ clear

19: for i : 0 → (p −1) do . Loop through Set vector ’S’ and merge all partial sets

20: if S[i ] 6= S[EdgeTable[i , y0]] and/or i 6= S[EdgeTable[i , y1]] then . Partial sets found

21: Merge sets S[i ],S[EdgeTable[i , y0]],S[EdgeTable[i , y1]]

return S[]
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Algorithm 2 is a new algorithm designed to exploit the specific form of the degree two

in and out edges of graphs generated to perform a component detection test for a given

edge table, generated as described in Section 2 of this thesis. From an edge table an iterative

process can be used to discover how many connected components there are in the functional

graph by walking through the edges and sorting the vertices into sets that are connected

to each other. This becomes an optimization problem to test all combinations of λ and a

values for large primes p which will become limited by the size of p and will have roughly

p2/4 graphs to test per p given all a ∈ Fp are looped through. Due to quadratic residue

eliminating half of λ values and isomorphism removing roughly half of the remaining λ are

left with near one quarter of the λ ∈ Fp as discussed in Section 2.2 of this thesis.

Given that this is a special case of graph to profile, i.e. a two-regular digraph, every vertex

will have exactly two outbound edges so the problem is reduced in complexity compared

with higher degree graphs and graphs with unknown or variable degrees. From Algorithm 2,

the process of sorting the vertices of a graph into component sets is to test for adjacency to

other vertices. This algorithm uses a native C++ vector ‘S[]‘ (not the actual C++ set class) to

store the set label assigned to each vertex, where the index is the x value from the edge table.

Looping through the vertices in P a check for an previously assigned set for the vertex in the

set vector ‘S[]‘. If not, then iterate through the edge table along the y0 path, testing both y0

and y1 for each vertex and for every vertex found not to be set, assigning it a temporary set

of −1 to indicate that the vertex has been visited on this iteration of the while loop. Figure

3.1 visualizes the vertices captured by the adjacency testing iteration for a subsection of a

functional graph G(λ, x +a).

Figure 3.1: Adjacency testing iteration for Algorithm 2

This loop continues along the x → y0 iterations as defined by the edge table until an

existing set is found, or a −1 flag is found, indicating that the algorithm has walked around a

loop. In the case of finding an existing set, the walk stops and the algorithm loops through

the ‘S[]‘ vector and assign all vertices flagged with −1 to the adjacent set found. It is possible

that two different adjacent sets are found on y0 and y1 for a given vertex and in this case we
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pick one and merge the two sets as well as the −1 flagged vertices. In the case where a loop

is found, there is no set assigned so a new set is created and all flagged vertices are assigned

to this new set.

This creates a number of sets that will almost certainly be subsets of component vertices

as there has not been an exhaustive search of the graph on each iteration of the while loop

and the algorithm has only been walking along one edge of the two out-bound edges. The

advantage of this method is it keeps the logic simple and requires little resources to keep

track of an growing set of vertices. This is important for multi-threaded processing as any

stored path information will impact on processor resources. Recursive testing is also not

safe for this test due to potential for stack overflow as the finite field is increased.

This method still takes advantage of the graphs regular form to test two vertices per step

and reduces the number of loops required to merge sets when compared with just testing

two edges per adjacency test and moving to the next iteration as longer path sections means

a reduction in loops to merge sub paths. This method is hitting a compromise between

additional logic that slows the processing and adds additional memory requirements, and

many small path sections that are expensive to merge.

The final step of the algorithm is to merge the sets that are subsets of larger sets. To do

this, one last loop through all the of the vertices in the graph is required to test that the edge

and the two adjacent vertexes are in the same set. If there are two or even three different

sets, these are merged once again by picking one set label and looping through S[] setting

all other values to the retained set. The result is a vector of set values indexed by the vertex

number which can then be used to count distinct sets and the number of vertices contained

in them. If there is only one set then the graph is a connected graph. Any number of sets

greater than one is a graph with some unconnected components which will need further

investigation.

3.2 GRAPH CONNECTIVITY

The proportion of connected functional graphs generated from a polynomial function is a

key feature this thesis is aiming to improve from previously studied functional graphs with

the choice of generator functions as described by Equations (1.3). Ideally a high proportion

of graphs per prime number that are connected graphs would be produced by this gener-

ator and it was expected that this would be the case. Experimentally, the same approach

as initially discussed in [Flajolet and Odlyzko, 1990] is used, where asymptotic results are
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assessed before any exception analysis. These graphs are processed for all combinations

of values for λ and a > 0 where p ≤ 5003, and sample values at p = 10007 and p = 20011

excluding λ values for quadratic residue or isomorphic duplicate as discussed previously.

In Table 3.1 the results of this iterative analysis are shown where the number of connected

graphs per prime p has been collected as a percentage (GC %), the number of connected

graphs (GC ), and the number of disconnected digraphs (GU ). Along side these values are

the asymptotic approximations (p2 −p)/4 for connected graphs, and p/4 for disconnected

digraphs. These values are guided by fitting a curve and the 1/4 term is fairly clearly in line

with the λ/4 reduction due to the number of iterations. Another observation from early

results was that any a = 0 graph would always have a self-loop on zero, which makes the

zero element an connected component of size one having both edges on the same self-loop.

As such all a = 0 tests are excluded from results. Figure 3.2 shows examples of graphs where

a = 0.

p GC % GC (p2 −p)/4 GU p/4 p GC % GC (p2 −p)/4 GU p/4

5 75% 3 5 1 1.25 101 98.96% 2474 2525 26 25.25

7 91.67% 11 10.5 1 1.75 149 99.31% 5438 5513 38 37.25

11 90% 27 27.5 3 2.75 199 99.51% 9851 9850.5 49 49.75

13 88.89% 32 39 4 3.25 293 99.65% 21242 21389 74 73.25

17 90.63% 58 68 6 4.25 397 99.74% 39104 39303 100 99.25

19 94.44% 85 85.5 5 4.75 499 99.8% 62125 62125.5 125 124.75

23 96.21% 127 126.5 5 5.75 599 99.83% 89551 89550.5 149 149.75

29 95.92% 188 203 8 7.25 691 99.86% 119197 119197.5 173 172.75

31 96.67% 232 232.5 8 7.75 797 99.87% 158204 158603 200 199.25

37 96.91% 314 333 10 9.25 887 99.89% 196471 196470.5 221 221.75

41 97.5% 390 410 10 10.25 997 99.9% 247754 248253 250 249.25

43 97.62% 451 451.5 11 10.75 1249 99.92% 389064 389688 312 312.25

47 98.01% 541 540.5 11 11.75 1499 99.93% 561375 561375.5 375 374.75

53 97.93% 662 689 14 13.25 1747 99.94% 762565 762565.5 437 436.75

59 98.28% 855 855.5 15 14.75 1999 99.95% 998501 998500.5 499 499.75

61 98.22% 884 915 16 15.25 2477 99.96% 1532024 1533263 620 619.25

67 98.48% 1105 1105.5 17 16.75 2999 99.97% 2247751 2247750.5 749 749.75

71 98.65% 1243 1242.5 17 17.75 3499 99.97% 3059875 3059875.5 875 874.75

73 98.61% 1278 1314 18 18.25 3989 99.97% 3975038 3977033 998 997.25

79 98.78% 1541 1540.5 19 19.75 4493 99.98% 5043392 5045639 1124 1123.25

83 98.78% 1701 1701.5 21 20.75 5003 99.98% 6256251 6256251.5 1251 1250.75

89 98.86% 1914 1958 22 22.25 10007 99.99% 25032511 25032510.5 2501 2501.75

97 98.96% 2280 2328 24 24.25 20011 100% 100105027 100105027.5 5003 5002.75

Table 3.1: Connected / unconnected graphs and related functions per prime number.

The clear observation from Table 3.1 is that nearly all graphs per prime p are connected,

and as p becomes large GC % approaches 100% due to the number of connected graphs

growing quadratically while the unconnected graphs grow linearly. This is of great interest
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and impactful as the increase in the number of connected graphs help to create a gener-

ator that produces almost entirely connected graphs. Theoretical analysis discussed in

[Mans et al., 2019] proves all graphs are strongly connected despite the small degree of two

which is an important result itself, and helps explain the prevalence of connected graphs.

Figure 3.2: Examples of graphs where a = 0

3.3 UNCONNECTED GRAPH CHARACTERISTICS

From the previous section it is shown that while nearly all graphs are connected, there

are always a small number of graphs that are unconnected. Table 3.1 shows the number of

unconnected graphs is linear and grows with p at the rate of roughly p/4. From Table 3.2

the unconnected graph characteristics are shown for the maximum number of components

per prime p (CM a x), the minimum size of the smallest component (SCM a x), the maximum

size of the smallest component (SCM a x) and the average size of the smallest component

(SC A v g ). The format of Table 3.2 was decided after some preliminary testing of individual

graphs with the visualization tools which showed unconnected graphs having generally two

components and that one component is nearly the size of the field Fp .

The first observation for the test running through all primes to p = 5003 for the same

variables as previously, there were never more than two components found. Second, most

unconnected graphs had a small component with only 2 vertices, and by inspecting the

graph ratios and the average small component size it is shown that with the exception of two

small primes the smallest component is of at most size 3. There are two exceptional primes,

p = 17 and p = 31 where both have a small component size of 6.

These results are fairly uniform for all primes tested and from Sections 3.1 and 3.2 it is
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shown that the twisted polynomial generator function is consistently producing a majority

of connected graphs, as well as some small fraction of graphs that are unconnected yet still

contain all but two or three vertices of the entire field Fp .

p CM a x SCM i n SCM a x SC A v g p CM a x SCM i n SCM a x SC A v g

5 2 2 2 2 101 2 2 3 2.04

7 2 2 2 2 149 2 2 3 2.03

11 2 2 3 2.33 199 2 2 2 2

13 2 2 3 2.25 293 2 2 3 2.01

17 2 2 6 3.17 397 2 2 3 2.01

19 2 2 3 2.20 499 2 2 3 2.01

23 2 2 2 2 599 2 2 2 2

29 2 2 3 2.13 691 2 2 3 2.01

31 2 2 6 2.50 797 2 2 3 2.01

37 2 2 3 2.10 887 2 2 2 2

41 2 2 2 2 997 2 2 3 2

43 2 2 3 2.09 1249 2 2 2 2

47 2 2 2 2 1499 2 2 3 2

53 2 2 3 2.07 1753 2 2 2 2

59 2 2 3 2.07 1999 2 2 2 2

61 2 2 3 2.06 2477 2 2 3 2

67 2 2 3 2.06 2999 2 2 2 2

71 2 2 2 2 3499 2 2 3 2

73 2 2 2 2 3989 2 2 3 2

79 2 2 2 2 4493 2 2 3 2

83 2 2 3 2.05 5003 2 2 3 2

89 2 2 2 2 10007 2 2 2 2

97 2 2 2 2 20011 2 2 3 2

Table 3.2: Unconnected graph characteristics per prime number.

3.4 GIANT COMPONENT GRAPHS

Following an asymptotic analysis from Sections 3.1 and 3.2, the exceptions to the general

case are investigated and characterized where possible. Knowing when these graphs will

not behave as the general case is important for applications. For instance, there will be

p unconnected graphs associated with any prime p. For larger primes, the percentage of

all graphs for the prime p that are unconnected will become insignificant due to the total

number of graphs growing quadratically.

First the obvious exceptions to the general case of unconnected graphs are investigated,

where there are three cases where there are graphs that have a small component greater than

3 vertices. Testing all values for λ, a ∈ Fp for all p ≤ 5003 it is found that only three graphs

that have a small component greater than three and these are shown in Figures 3.3 and
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3.4. While interesting, given that these graphs are found at small values of p the generator

stabilizes quickly as p becomes large and these exceptions disappear.

Figure 3.3: Exceptional digraphs for p = 17 where small component size over 3

Figure 3.4: Exceptional digraph for p = 31 where small component size over 3

The small component for the remainder of unconnected graphs were found to always

be three vertices or less, so the other component must be nearly the size of p. Once again

looking at the asymptotic case, as prime p becomes large, from Table 3.2 the average smallest
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component of unconnected graphs (SC AV G ) approaches 2. So the largest component of the

two will be p −2 vertices on average for large p. This is important and useful as it means

the maximum cycle size in the largest component is still close to p vertices. It may become

insignificant for larger p as the proportion of unconnected graphs is linear with p where as

the total number of graphs is proportional to p2.

[Mans et al., 2019] characterized functional graphs for the case when the smallest compo-

nent is of size three. A small component of size three is a special case where λ= 2 and a = 1

or when λ= 1/2 and a = 2. First note that these are isomorphic as discussed earlier where

functional graphs have a conjugate pair of λ and λ−1, so in our analysis there will only be

one of these as the conjugate graph will have been eliminated in the isomorphic reduction

of tested λ values per prime p. Secondly, these conditions will only arise when λ= 2 is not

quadratic residue. Interestingly they will also produce the same small component of [0,±1],

or [0,±2] for λ = 2 or 1/2 respectively. Figure 3.5 shows this condition for both λ = 2 and

the inverse which in this case for p = 11, λ = 6 as 6×2 = 1 mod 11. Note that the large

component edges are reversed, but otherwise the two graphs are clearly isomorphic. Also

note that the inverse path has the opposite edge colouring, corresponding with an inverted

function path.

Figure 3.5: Graph of p = 11,λ= 2, a = 1 and λ= 1/2 mod 11, a = 2

The smallest component of an unconnected graph of size 2 can also be predicted, once

again from [Mans et al., 2019], there will be an unconnected graph with a component of size
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two where the conditions λ 6= −1 and a = 2(λ+1)/(λ−1)2 are met. Moreover, the vertices

that make up the component will be 2/(1−λ) and 2/(λ−1). As an example of this, using

p = 11 again the condition for an unconnected component of size two is met by the variables

λ= 2 and a = 6. This creates a small component with the vertices 2 and 9, i.e. ±2 mod 11.

This holds true using the visualization tools to create Figure 3.6, and it is easy to follow the

calculations through to get the resulting graph features from the proposition.

Figure 3.6: Graph of p = 11,λ= 2, a = 6 demonstrating small component of two
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4 HAMILTONIAN CYCLE ANALYSIS

The form of these functional graphs is known from analysis in Section 3 and it is expected

in almost all cases a strongly connected, single component graph and also what to expect

from the few cases that are unconnected. Here an algorithm is designed to count the

Hamiltonian cycles and analyze the sequences generated from these graphs. The details of

why this is an important feature is discussed in Section 1.4 of this thesis.

4.1 HAMILTONIAN CYCLE COUNTING ALGORITHM

Running a short computational analysis for all connected graphs for some small primes

found that there was at least one Hamiltonian cycle for each graph tested. Once this was

established, a count of the Hamiltonian cycles for all graphs G(λ, x+a) for a ∈ Fp where a > 0,

for small p was conducted as an asymptotic analysis. The initial plan to exhaustively find all

Hamiltonian cycles for all graphs was proven to be out of reach even for small primes. The

expectation of the number of Hamiltonian cycles was exceeded by far, and is much too large

to allow complete characterization. The functional graphs generated an astonishing number

of Hamiltonian cycles per graph and the number of Hamiltonian cycles was increasing

exponentially with the size of the primes.

The algorithm was then optimized as shown in Algorithm 3 using a recursive backtracking

depth-first search, built as a new algorithm that exploits the consistent two in-bound and

two out-bound edges. This algorithm would normally cause a risk of creating a stack overflow

for larger primes, however as large primes are not able to be processed this algorithm can be

safely used. Another refinement was to eliminate the double counting of Hamiltonian cycles

due to the final element always having two paths to the zero element which is achieved by

testing the vertex path for a length of length of p −1, and for the second to last vertex which

is easy to determine from the edge table (or more specifically the mapping table as shown

in Figure 2.2. This change in algorithm produced a 60% improvement in processing speed

when measured on single threaded performance with the main saving expected to be due

to the recursive backtracking nature that can eliminate many vertex permutations without

having to reference stored sub-paths in memory.

Given the edge table from Section two as an input, a vector of Boolean values is built as

a flag for each vertex in Fp as a quick reference to prevent reprocessing assigned vertices.

Another vector is used to hold the vertices in order of visit along the path generated by suc-
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Algorithm 3 Hamiltonian Cycle Counting (Recursive)
Require: EdgeTable, Visited[], Path[], HCc
1: if Path[].length = Hamiltonian Length and Path[Last Node] = Origin then . Condition for Hamiltonian Cycle
2: HCc ⇐ HCc +1
3: return . After HC found, terminate recursion

4: for i = y0[Path[Last Node]], y1[Path[Last Node]] do . For both next edges from edge table
5: if !Visited[i ] then . Process if not already in path
6: Path[] ⇐ i . Push vertex to path
7: Visited[i ] ⇐ True . Set the visited flag to true
8: Call Recursive (EdgeTable, Visited[], Path[], HCc ) . Recursive with new variables
9: Path[] ⇐ Clear last element . Backtrack up the stack, pop last vertex in path
10: Visited[i ] ⇐ false . Backtrack up the stack, reset flag to not visited
return HCc

cessive recursive calls and a pointer to a counter variable to be incremented by any instance

of recursion that returns true for a Hamiltonian cycle. As a diagnostic, any Hamiltonian

cycle found is printed to the command line.

For every vertex from the zero vertex, there are two possible paths as defined from the

edge table. Each possible next vertex is tested to see if it has already been visited, and if

not is submitted as a new recursive instance with the current path extended for the tested

vertex, and an updated visited vector. This process ends for two conditions, where either

(i) a Hamiltonian cycle is found when the recursive path is p elements in size and ends at

the origin of the cycle, in this case it is always zero as all tests use 0 as the origin or (ii), the

path is eliminated when encountering a recurrent vertex before the expected length of the

cycle. The final vertex is determined from the p −1 element as due to the zero condition

both edges from that vertex will go to zero and save one step from the processing with the

rationale this reduces the possible paths to 2(p−1).

4.2 HAMILTONIAN CYCLES ON CONNECTED GRAPHS

The primary interest in Hamiltonian cycle analysis is to get an idea of how successful the

choice of generator function is for generation of Hamiltonian cycles. An initial depth-first

search algorithm was developed to test for Hamiltonian cycles in all functional graphs for

small primes. Tests were limited to connected graphs, which as shown previously were the

vast majority of the graphs per prime. Also, as for previous tests nearly half of the λ values

were excluded and hence roughly half of the functional graphs due to isomorphism, as well

as the exclusion of any graphs where a = 0.

This proved to be an efficient test, where every graph up to 101 had at least one Hamil-

tonian cycle. This was an excellent result as it proved the choice of functions did produce
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Hamiltonian cycles and it was possible that a Hamiltonian cycle would be found for all

connected graphs generated this way. This prompted theoretical speculation that lead to a

proof as discussed in [Mans et al., 2019] where the strongly connected nature of the graphs

generated caused all connected graphs to have a Hamiltonian cycle. Further to this, it is

proven that any connected components of unconnected graphs will too have at least one

Hamiltonian cycle.

The code that leveraged the cycle detection algorithm was quickly written to test all

connected graphs for a prime number and a test function of a simple brute-force, depth-

first search was implemented to count the number of Hamiltonian cycles. The results of

this test are in Table 4.1. Testing of the multi-threaded performance against single thread

performance for prime p = 41 showed a speed multiple of approximately 25 times when

run over 28 threads which gives an efficiency of approximately 90 percent for processor

utilization.

Asymptotic analysis was applied to the Hamiltonian cycles generated by connected graphs,

with the results shown in 4.1 for the minimum, maximum and average number of Hamilto-

nian cycles counted per graph for each prime number. Clearly from Table 4.1 the average of

Hamiltonian cycles per graph grew exponentially with p and quickly came to a point where

calculations became unfeasible, even with the use of a much more powerful workstation.

Using regression analysis from fitted trend lines the average number of Hamiltonian cycles

was related to the prime p by 0.3e0.3p . This result is better than expected in terms of finding

Hamiltonian cycles as each graph could supply a great deal of Hamiltonian cycles.

There are so many Hamiltonian cycles that profiling large primes is not feasible. With

such a large number of Hamiltonian cycles, reducing the brute force algorithm to a efficient

algorithm becomes difficult, and from discussion in Section 1.4 of this thesis, it is a compu-

tationally intensive problem and without some efficient refinement from the general case

remains unfeasible for larger primes. An un-optimized, brute-force, depth first search will

have 2p possible paths and even with some small improvements to the algorithm, you can

see from 4.1 that the time taken to count Hamiltonian cycles is also exponential. It is clear at

this point that running multi-threaded analysis is pointless as once an unfeasible prime is

reached for processing a factor of 28 threads is not going to take the analysis much further

than just the next prime number.

Algorithm 3 was developed as discussed in the previous section, to optimize Hamiltonian

cycle counting tools for small primes which uses recursive back tracking. Since large primes

are already excluded by complexity the stack depth for recursion is not going to be large

enough to cause a stack overflow.
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While counting Hamiltonian cycles with such a large number per graph will be unfeasible

for even slightly larger primes, it is clear that the generator function Equation (1.3) produces

a large number of Hamiltonian cycles per graph. Looking at the maximum and minimum

Hamiltonian cycle count there is some anomaly for prime p = 31, where the minimum

Hamiltonian cycle count is less than the previous prime number. By inspecting the maxi-

mum and minimum graph for prime p = 31 as shown in Figure 4.1 there are clear differences

in form. This is likely due to the relatively small prime numbers analyzed and this trend will

likely stabilize for larger p.

p Max HC Min HC AVG HC # Graphs Processing Time

5 2 1 1.34 3 -

7 3 1 1.55 11 -

11 10 1 3.67 27 -

13 22 1 6.32 32 -

17 72 1 18.31 58 -

19 148 4 34.04 85 -

23 423 5 93.70 127 -

29 2840 34 666.14 188 -

31 5410 30 1206.09 232 -

37 45546 448 7906.60 314 3 seconds

41 175428 1223 28473.25 390 13 seconds

43 255558 2222 53999.00 451 33 seconds

47 1273729 6576 195723.00 541 3 minutes

53 6795031 63363 1297780.00 662 36 minutes

59 52305140 353112 - 855 9.3 hours

Table 4.1: Hamiltonian Cycle count results using modified DFS, over 28 threads.

Figure 4.1: Comparison of graphs with minimum and maximum Hamiltonian cycle count for p = 31 .

By inspecting the maximum and minimum graph for prime p = 31 as shown in Figure 4.1

there is a clear difference in form. The graph G(22, x +24) on the left has only 30 distinct
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Hamiltonian cycles when compared with G(3, x +15) which has 5410 distinct Hamiltonian

cycles. The maximum case shows a homogeneous graph with little in the way of exceptional

features. The minimum case has several graph features that restrict possible variations of

Hamiltonian cycles by forcing the cycle through the same sequence of vertices. For there to

be a Hamiltonian cycle in the minimum graph, there must be a sequence 12 → 25 → 7 →
0 → 24 → 6 → 10 → 17 → 14 → 21 and another sequence of 19 → 28 → 15 → 16 → 3. This

is limiting half of the vertices on the graph and so the possible permutations that can be

Hamiltonian cycles are reduced.

4.3 HAMILTONIAN CYCLE BINARY SEQUENCES

Analysis has shown there are many Hamiltonian cycles per connected graph and that

most graphs for 1.3 are connected. As a source of random binary numbers it might be

possible to use the choice of twisted or untwisted sub-equation from Equation (1.3), i.e.

using C0 indicates a 0 and C1 indicates a 1. This transforms the Hamiltonian cycles from

these functional graphs into binary sequences from the choice of generator function used for

each edge transition from vertex to vertex on the graph. These binary values are referenced

from the edge table generated by Algorithm 1.

The Hamming weight of a binary sequence is the decimal value for the sum of the binary

elements. Calculating the Hamming weight for each sequence, starting at vertex 0, the sum

of the zeros and ones was always p/2 or (p/2)+1. On inspection of the graphs it is easy to

see that this is due to the root of 0 mod p is always zero, and both equations have a solution

and as with previous sections, the special case for zero is highlighted with a 2. Excluding

the final edge on the Hamiltonian cycle, the hamming weight is always (p − 1)/2 for all

p ∈ P , so this clearly shows the binary sequences are always balancing. This is also proven in

[Mans et al., 2019].

Hamiltonian Cycle Function Path Hamming Weight

p:7 ,λ:3, a:1 0 1 3 5 4 2 6 0 0001112 3

0 1 4 5 3 2 6 0 0011012 3

p:7, λ:3, a:3 0 1 2 5 6 3 4 0 1010012 3

p:7, λ:3, a:4 0 2 4 6 1 5 3 0 0101102 3

0 5 4 6 1 2 3 0 0001112 3

p:7, λ:3, a:5 0 5 1 4 3 6 2 0 1110002 3

p:7, λ:3, a:6 0 3 4 6 5 2 1 0 1011002 3

p:7, λ:6, a:1 0 1 4 3 2 5 6 0 0010112 3

p:7, λ:6, a:2 0 3 4 6 1 2 5 0 0110102 3

p:7, λ:6, a:3 0 2 3 1 5 6 4 0 1110002 3

0 5 1 2 3 6 4 0 1001102 3
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0 5 6 3 1 2 4 0 1001012 3

p:7, λ:6, a:4 0 2 1 4 6 5 3 0 0110102 3

0 2 6 5 4 1 3 0 0110012 3

0 5 4 6 2 1 3 0 0001112 3

p:7, λ:6, a:5 0 4 3 1 6 5 2 0 1001012 3

p:7, λ:6, a:6 0 6 3 4 5 2 1 0 1101002 3

Table 4.2: Hamiltonian Cycle paths, Function Sequences and Hamming weights for p = 7.

An example of function paths is shown in Table 4.2. For all connected graphs where p = 7

displaying all Hamiltonian cycles per graphs, the function path created by these Hamiltonian

cycles and the Hamming weight or sum of the function path. The edges returning to zero

are labeled as before with a 2 to mark the special case and excluded this edge from analysis

as it is both a zero and a one. Notice that the Hamming weight for all paths is the same for

all graphs and cycles, and is always (p −1)/2. As described in [Mans et al., 2019], this finding

matches the theoretical expectations where there are an equal number of edges from both

the twisted and untwisted functions so the sequences generated from this process from the

Hamiltonian cycles must be balancing.

4.4 TYPE 1 HAMILTONIAN CYCLES

Function sequences will be a balanced set of zeros and ones and by limiting the function

sequences to certain patterns the number of valid Hamiltonian cycles will be reduced. The

most restrictive test is for any Hamiltonian cycle that creates a functional sequence that has

no repeated value for example 010101....0101, or a sequence of 1. There can only be one

of this special case of Hamiltonian cycle per graph where the inverse of the sequence is an

isomorphism when starting at the zero vertex on the graph. This is due to the graph feature

that two outbound edges from a vertex are always either both from the twisted or both from

the untwisted function so will both be zeros or both be ones.

The terminology from [Mans et al., 2019], definition 2.6 is used here. A Hamiltonian cycle

H of a connected component of a graph G(λ, f ) is said to be of Type n (n is a positive integer)

if in the cycle H there exist n consecutive edges (not including the edge going to the vertex

0) arised from the same equation (either Y 2 = f (X ) or λY 2 = f (X )), and there are no such

n +1 consecutive edges.

This analysis restricts the possible path through the graph that is permitted, and so Algo-

rithm 3 quickly eliminates possible paths and so become much more efficient to complete.
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However some additional logic is needed to track the length of each sequence as the se-

quence changes from a 0 to a 1 or a 1 to a 0. This is achieved by adding code to the recursive

algorithm to check the last n elements on the cycle path that correspond to the type of the

Hamiltonian cycle tested. For example a Type 1 Hamiltonian cycle would be testing for the

last vertex on the path and then looking at the next to see if the function path condition is

breached for the type of the Hamiltonian cycle and if so does not submit a new recursive

call to continue the depth first search.

Figure 4.2: Digraphs for p = 5 with Hamiltonian Cycles of Sequence 1.

Testing all connected graphs for p < 1000, with the exception of p = 5 there were no

connected graphs with Type 1 Hamiltonian cycles. Note that it is feasible to test for much

larger primes than was possible for a full Hamiltonian cycle search, due to the quick elimi-

nation of viable paths for a Type 1 Hamiltonian cycle. The two exceptions are shown in the

following Figures 4.2. These exceptions are due to the small size of p (i.e. the size of the

field Fp ) and hence the Hamiltonian cycle is not large enough to encounter a feature that

forces the function sequence to repeat an element for the Type 1 cycle. This system quickly

stabilizes as the size of the field increases and the opportunity for a Type 1 Hamiltonian

cycle becomes improbable. From this result a theoretical proof was discovered as described

in [Mans et al., 2019] for p > 17 there can be no graphs with Type 1 Hamiltonian cycles.

4.5 TYPE 2 AND TYPE 3 HAMILTONIAN CYCLES

Extending the type of Hamiltonian path to sequences of length 2 and 3 using the same

process as for Type 1 Hamiltonian cycles, but increasing the sequence limitation to match

36



the type. Results are shown in Table 4.3 for both Type 2 and Type 3 Hamiltonian cycles, and

for each case the percentage of graphs that have a Type 2 or 3 Hamiltonian cycle is tabulated,

and also the average number of these Hamiltonian cycles per graph where the graph has at

least one valid cycle of the type tested.

Type 2 Hamiltonian cycles are tested for p < 100 however the test for Type 3 Hamiltonian

cycles becomes unfeasible quickly and only the results for p ≤ 61 are possible. This is clearly

due to the number of Type 3 Hamiltonian cycles found and hence the paths becoming less

restricted and approaching the amount of work required for a search of all Hamiltonian

cycles.

p % Graphs Type 2 Avg HCs Type 2 % Graphs Type 3 Avg HCs Type 3

5 100 1.33 100 1.33

7 90.90 1.20 100 1.55

11 77.78 1.76 100 2.81

13 81.25 2.00 96.88 4.23

17 75.86 2.41 98.28 9.16

19 74.12 3.30 98.82 13.86

23 57.48 3.79 97.65 27.96

29 61.17 8.30 98.94 130.59

31 56.47 8.26 98.71 195.10

37 59.24 17.73 99.04 765.26

41 44.62 39.13 98.97 2054.62

43 42.79 32.31 99.11 3310.64

47 38.44 60.58 95.01 7960.04

53 43.96 107.67 99.09 35552.80

59 32.28 255.79 99.30 151503.00

61 38.91 322.48 99.21 247297.00

67 26.24 587.74 - -

71 28.24 1042.34 - -

73 39.98 1353.39 - -

79 21.09 3027.37 - -

83 20.05 4480.94 - -

89 24.66 10407.50 - -

97 24.52 31778.40 - -

Table 4.3: Hamiltonian Cycle count for Type 2 and 3 Hamiltonian cycles.

The occurrence of graphs with both Type 2 and Type 3 Hamiltonian cycles decreases

as p increases, though at different rates. This looks to be due to the likelihood of longer

function sequences being generated increases with the length of the cycles in a similar way

to that of a coin toss. The average number of Type 2 and Type 3 Hamiltonian cycles found

(averaging only graphs that do have these cycles) also show a similarly rapid growth to that

of all Hamiltonian cycles however with far less than that of all Hamiltonian cycles.
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5 DISCUSSION

5.1 COMPUTATIONAL ANALYSIS

Efficient algorithms for edge table generation, component detection and Hamiltonian

cycle detection are developed as analysis tools for functional graphs of polynomials and

their twist. Analysis has been demonstrated in this thesis for the linear case of f (x) = x +a,

however the algorithms can be applied to any polynomial f (x) and substituted into Equation

(1.2). As the functional graphs were found to produce two-regular digraphs, developed

algorithms could be made to consider this type of graph to minimize the computational

effort required.

Computational analysis applying these developed algorithms was used to guide theo-

retical analysis by uncovering the various features of the functional graphs studied and

also to further test the relevant theoretical conjectures. Throughout Sections 2, 3 and

4 there are comparisons of analytical results to theoretical proofs cited in a collabora-

tive paper to be submitted [Mans et al., 2019], implementing a methodology outlined in

[Flajolet and Odlyzko, 1990] as discussed in Section 1.2.

The functional graph analysis conducted in this thesis is iterative due to the combinatorial

approach to asymptotic analysis: first testing on small instances before increasing the

size and optimizing the algorithms and their implementation. Multi-threaded techniques

are useful for this type of analysis, particularly when the computational complexity is a

result of the number of the combinatorial iterations. It is not however, as demonstrated

by the Hamiltonian cycle counting in Section 4 of this thesis, necessarily useful when the

complexity of individual combinatorial tests become complex. With the availability of many-

cored processors and cluster computing facilities, multi-threading and parallel processing

are yet becoming increasingly useful tools for number theoretic analysis.

5.2 FUNCTIONAL GRAPHS OF POLYNOMIALS AND THEIR TWIST

The computational analysis of functional graphs conducted in this thesis showed a num-

ber of useful features with the introduction of the new generator function shown in Equation

(1.3). Mostly connected graphs are produced, the graphs are strongly connected and with

the exception of the in-edges to the zero vertex the connected graphs are regular degree

two digraphs resulting in all connected graphs and all unconnected components being

Hamiltonian. Previous literature [Mans et al., 2017, Konyagin et al., 2016] where the gen-

erator f (x) = x2 + a produced out-degree one digraphs as discussed in Section 1.2 often
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produced unconnected graphs, small cycles and many trees, often with tree size of one

vertex. By contrast, these functional graphs of polynomial functions and their twist have

produced connected graphs with no trees, allowing our average cycle size to approach the

size of the finite field p as primes become large, an improvement from the unmodified

quadratic case from literature of
p

p which is useful for sequence generating applications.

Expectations of generating large Hamiltonian graphs have been exceeded and their num-

ber is growing exponentially with the size of the prime p. The initial expectation was that

the graphs were likely to contain one Hamiltonian cycle however it was discover that many

Hamiltonian cycles were present in each graph. The objective of the Hamiltonian cycle analy-

sis changed from the detection of Hamiltonian cycles to profiling the number of Hamiltonian

cycles present and analyzing their characteristics.

These graphs of degree-two are of higher degree than the degree-one functional graphs of

previously studied polynomial generators. This increases likelihood of connected graphs and

Hamiltonian cycles over that of previously studied polynomial generators. Also, the graph

components are all strongly connected which is surprising as the degree of two is sparse,

typically sparse graphs are not strongly connected. The combination of these features allows

for many permutations of vertices for Hamiltonian cycles, while still being much smaller

than the total number of possible permutations 2p .

5.3 BINARY SEQUENCES FROM POLYNOMIALS AND THEIR TWIST

The unanticipated large number of Hamiltonian graphs became a problem for our asymp-

totic analysis and became unfeasible for primes over p = 101. There is an exponential

increase in the number of Hamiltonian cycles generated for each graph and is too many

count rapidly. By limiting the number of Hamiltonian cycles to Type 2 or 3, there is a re-

duction in the number of Hamiltonian cycles considered and there is a processing saving

for detection and creating a limited set of Hamiltonian cycles may be useful for some ap-

plications. However, the number of Hamiltonian cycles of the type defined and tested still

produced an increasingly large number that was exponentially proportionate to the size

of the finite field. While the instances of prime numbers that were feasible was small, the

relationship between the field size and the exponentially large number of Hamiltonian cycles

produced is clear.

There was some downward trend in the percentage of graphs that contained Type 2 and 3

Hamiltonian cycles and for larger primes this may well impact the number of graphs per

type as the finite field grows in size. This will be in part due to the probability of a larger type

(i.e. a larger functional sequence) of Hamiltonian cycle being present in a graph increasing
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with the length of the cycle. The processing resources required for this experiment however

are prohibitive to investigate at this stage.

5.4 OTHER NOTABLE FEATURES AND APPLICATIONS

Where the application of the Hamiltonian cycle as a cryptographic hashing function was

suggested in theory as discussed in Section 1.6, the presence of multiple Hamiltonian cycles

increases their interest. Having many Hamiltonian cycles per graph means that there are

many sequences that are valid for a given functional graph and so decreases the difficulty of

finding a Hamiltonian cycle in an attempt to break the cipher.

The number of Hamiltonian cycles grows exponentially, but not as exponentially as the

complexity of testing all paths in a functional graph. As the finite field grows large, the

number of Hamiltonian cycles will still be relatively small and so will be still difficult to

discover via a brute-force search. Applying the polynomial and twist generator as a hashing

function will still require the detection of Hamiltonian cycles for large primes as hashes and

so will need a way of finding a Hamiltonian cycles to use as keys for a given graph defined by

the parameters of the generator function which would be a large prime p, and suitable λ

and a. This may well be done via some Heuristic method as discussed in Section 1.4.

A much simpler application is the use of the function paths as balancing binary sequences

of Hamiltonian cycles generated as discussed in Section 4.3 of this thesis. The Hamiltonian

cycles still need to be found and this again might be done with some heuristic method. While

this thesis has discovered the balancing nature of these sequences and the sequences do

appear random, further study is required on larger sequences from larger primes is required

to establish how well these sequences compare with truly random sequences.

5.5 FUTURE WORK

These polynomial generator functions have only been characterized for the linear case

in this thesis. A natural extension of this work would be to substitute the linear function

f (x) = x + a for higher order polynomials or other functions for f (x) to determine if the

effect of the twist and higher degree are consistent and to characterize these generators.

Other possibilities are to look at different types of modifications that might lead to Hamil-

tonian graphs with less Hamiltonian cycles, or other features that enhance applications of

functional graphs that leverage the strongly connected functional graphs of small degree

produced in this thesis.

The Hamiltonian cycle analysis conducted in this thesis was interested in asymptotic
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analysis focused on counting Hamiltonian cycles on all permutations of variables per prime.

This limited the study to small primes due to the complexity of the problem and the number

of Hamiltonian cycles produced per graph by this generator. To get a real understanding of

the randomness of the binary sequences generated from the function path of a Hamiltonian

cycle, the sequences need to be much larger. While this is difficult to achieve using the

algorithms implemented in this thesis, a heuristic method as discussed in Section 1.4 of this

thesis could be developed and run more quickly allowing the capture of a single or small

number of Hamiltonian cycles per graph that could then be analyzed and compared to

random maps.

Further investigation of multi-threading and parallel processing for number theoretic

analysis may also be of interest. As computing resources are increasingly being built with

more and more processors and cores, code will have to be written with these techniques to

take advantage of the new technology. Scientific processing becomes problematic however,

due to the same type of task being run over all cores which can be difficult to optimize

for the different processors and resources that the processors have available. As observed

in this thesis, processors running multi-threaded code across all cores tended to perform

bellow their full potential with varying effect due to compilers and memory resources of the

different processors. Further study into this may well improve computational techniques

for number theoretic analysis and scientific processing more generally.

41



6 CONCLUSION

In this thesis we have developed new, efficient algorithms to conduct a computational

analysis of functional graphs of polynomials and their twist over finite fields for the linear

case of f (x) = x+a, however the algorithms developed are applicable to all polynomial func-

tions f (x). The algorithms are further optimized using multi-threading to take advantage of

the iterative nature of the analysis and utilize processors with many cores that are available

with modern computers. While these optimization are useful, the complexity of the analysis

limits this study to smaller primes, particularly for the Hamiltonian cycle analysis.

The computational analysis of the functional graphs produced by this generator revealed

that nearly all functional graphs are strongly connected graphs, and the few unconnected

graphs have a giant, strongly connected component consisting of all but two or three vertices

in the finite field Fp . A surprising result is that though the functional graphs produced are

all 2-regular graphs, these sparse graphs and components are all strongly connected.

Cycle analysis of these functional graphs also discovered that all connected graphs and

unconnected components are Hamiltonian. In fact, all connected graphs have many Hamil-

tonian cycles, the number of which is exponentially proportionate to the size of the finite

field. A significant result of this analysis is that the size of the cycle is a one to one mapping

of the finite field, which much larger than that of other well-known random mappings

where the cycle length is close to
p

p. These properties may be useful for cryptographic

applications such as using Hamiltonian cycles for cryptographic hashing.

In addition to these findings, a feature of the twist property of the generator allows the

creation of balancing binary sequences from the use of the twisted or untwisted polynomial.

These sequences are then categorized into different types of Hamiltonian cycles by the

sequences generated and further characterized as a way of limiting the number of Hamil-

tonian cycles per functional graph. These balancing binary sequences may be useful for

pseudo-random number generation applications.

Experimental results were often limited to smaller primes due to complexity however

these findings were enough to guide theoretical proofs which were referenced throughout

this thesis. Between the experimental and theoretical results, the features of the functional

graphs are well characterized and understood. Further study of polynomials and their

twist focusing on higher order polynomials will help to better understand the effects of this

technique beyond the linear case.
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