
Towards A Security

Management System For

Composite Web Services

By

Haiyang Sun

A thesis submitted in fulfilment of the requirements

for the Degree of Doctor of Philosophy

Department of Computing

August 2012

mailto:the_dude@lebowski.com

ii

c© Haiyang Sun, 2013.

mailto:the_dude@lebowski.com

iii

Except where acknowledged in the customary manner,

the material presented in this thesis is, to the best of my

knowledge, original and has not been submitted in whole

or part for a degree in any university.

Haiyang Sun

mailto:the_dude@lebowski.com

iv

Dedication

to my parents, Bingyi Sun and Wenrong Feng,

and to my wife Lanshi Wang

v

vi Dedication

Acknowledgements

This PhD thesis was made possible with the help of my dear colleagues from the De-

partment of Computing at Macquarie University. First of all, I would like to thank my

supervisor, Professor Jian Yang, for supervising my research work over the four years

PhD study. Her critical questions and valuable advices enable me to make steady

progress on my research and keep me on track. I also thank my associate supervisor,

Dr. Weiliang Zhao, for his support and valuable guidance. His advices on the re-

search methodology are important for me to achieve the research work. Special thanks

Dr. Aries Tao Tao and Dr. Daisy Daiqin He. Discussions with them give me much

inspiration on my research. Their supports and helps are greatly appreciated.

Also many thanks are given to the administration team in the Department of Com-

puting at Macquarie University. Wonderful research environment they provide is es-

sential for me to accomplish the thesis. I want to appreciate the Faculty of Science

at Macquarie University as well. The financial supports they provided for attend-

ing the international academic conferences help me to exchange the ideas with other

international researchers.

I also want to thank Dr. Blaine Xin Wang from Department of Computing at

Victoria University, Dr. Huiyuan Zheng, Mr. Mahbub Hassan, and Dr. Trang Nguyen

from Department of Computing at Macquarie University for reviewing my thesis and

correcting typo errors.

Finally, I would like to thank my families, who support me all along with my

research. The completion of the thesis would not have been possible without my father

vii

viii Acknowledgements

and mother’s encouragement, support and patience, and without my wife’s perpetual

love and understanding.

List of Publications

1. Haiyang Sun, Weiliang Zhao, Jian Yang, and Jianwen Su, ”TiCoBTx-Net: A

Model to Manage Temporal Consistency of Service Oriented Business Collabo-

ration”, IEEE Transactions on Services Computing, Volume 5, Number 2,

pp.207–219,2012, IEEE Computer Society.

2. Haiyang Sun, Jian Yang, and Weiliang Zhao, ”A Temporal Rule-based Verifica-

tion System for Business Collaboration Reliability”, Journal of Theoretical

and Applied Informatics, Volume 16, Number 2, pp. 65-68, 2009.

3. Haiyang Sun, Jian Yang, and Lai Xu, ”CoBTx-Net: A Model to Verify Reliabil-

ity of Collaborative Business Transaction”, Journal of Information System

Frontier, Volume 11, Number 3, pp. 257-272, 2009, Springer.

4. Haiyang Sun, Weiliang Zhao, and Surya Nepal, ”PASOAC-Net: A Petri-Net

Model to Manage Authorization in Service-Based Business Process”, in Pro-

ceedings of the 10th International Conference on Service Oriented Computing

(ICSOC 2012), Shanghai, China, November 2012, Springer. (Accepted)

5. Haiyang Sun, Jian Yang, Weiliang Zhao, and Surya Nepal, ”SOAC-Net: A Model

to Manage Service-Based Business Process Authorization”, in Proceedings of the

International Conference on Service Computing (IEEE SCC 2012), Hawaii,

USA, June 2012, IEEE Computer Society.

6. Haiyang Sun, Weiliang Zhao, Jian Yang, and Guizhi Shi, ”SOAC Engine: A

ix

x List of Publications

System to Manage Composite Web Service Authorization”, in Proceedings of the

12th International Conference on Web Information System Engineering,(WISE

2011), Lecture Notes in Computer Science 6997, pp.334-335, Sydney, Australia,

October 2011, Springer.

7. Haiyang Sun, Weiliang Zhao, and Jian Yang, ”Managing Conflict of Interest

in Service Composition”, in Proceedings of 18th International Conference on

Cooperative Information Systems (CoopIS 2010), Lecture Notes in Computer

Science 6426, pp.273-290, Crete, Greece, October 2010, Springer.

8. Haiyang Sun, Weiliang Zhao, and Jian Yang, ”SOAC: A Conceptual Model to

Manage Service Oriented Authorization”, in Proceedings of the IEEE Interna-

tional Conference on Service Computing (IEEE SCC 2010), pp.546-553, Miami,

USA, July 2010, IEEE Computer Society.

9. Haiyang Sun, Jian Yang, Xin Wang, and Yanchun Zhang, ”A Verification Mecha-

nism for Secured Message Processing in Business Collaboration”, in Proceedings

of the Joint International Conferences on Asia-Pacific Web Conference (APWeb

2009) and Web-Age Information Management (WAIM 2009), Lecture Notes in

Computer Science 5446, pp.480-491, Suzhou, China, April 2009, Springer.

10. Haiyang Sun, Xin Wang, Jian Yang and Yanchun Zhang, ”Authorization Pol-

icy Based Business Collaboration Reliability Verification”, in Proceedings of The

Sixth International Conference on Service-Oriented Computing (ICSOC 2008),

Lecture Notes in Computer Science 5364, pp.579-584, Sydney, Australia, Decem-

ber 2008, Springer.

11. Haiyang Sun, and Jian Yang, ”Enforcing Business Collaboration Consistency in

Business Transaction Net”, in Proceedings of the IEEE Joint Conference on E-

Commerce Technology and Enterprise Computing, E-Commerce and E-Services

(IEEE CEC&EEE 2008), pp.223-230, Washington DC, USA, July 2008, IEEE

Computer Society.

xi

12. Haiyang Sun, and Jian Yang, ”Exploiting CoBTx-Net to Verify the Reliability

of Collaborative Business Transactions”, in Proceedings of the 2nd IEEE Asia-

Pacific Conference on Service Computing (IEEE APSCC 2007), pp.415-422,

Tsukuba Science City, Japan, December 2007, IEEE Computer Society.

13. Haiyang Sun, and Jian Yang, ”CoBTx-Net: A Model for Reliability Verification

of Collaborative Business Transaction”, in Proceedings of the First International

Workshop on Collaborative Business Processes (WCBP 2007)- in conjunction

with the 5th International Conference on Business Process Management (BPM

2007), Lecture Notes in Computer Science 4928, pp.220-231, Brisbane, Australia,

September 2007, Springer.

14. Haiyang Sun, and Jian Yang, ”BTx-Net: A Token Based Dynamic Model for

Supporting Consistent Collaborative Business Transactions”, in Proceedings of

the IEEE International Conference on Service Computing (IEEE SCC 2007),

pp.490-497, Salt Lake city, USA, July 2007, IEEE Computer Society.

xii List of Publications

Abstract

A web service can be operated in a distributed environment with a large number of

resources with evolving contents. These resources can be various types of applications

that come from different organizations, e.g., component web services. A web service

that composes multiple component services (resources) is called composite web service

that can provide comprehensive and value-added function to service consumer. In

order to acquire the support from these resources, the composite web service must

be able to satisfy authorization policies of these resources. Interacting with service

consumers is imperative for the execution of a composite web service. But, a service

consumer can access the specific functions of a composite service, only after it can

satisfy the authorization policies of the composite web service. Execution policies are

used to manage the sequence of operation invocations within a composite web service,

i.e., business logic. Therefore, without coordination management on these policies, a

composite web service may not be able to perform properly, particularly in a process

environment.

Currently, it is still lack of an effective approach to address the issue of security

management in composite web service by considering both service consumers and com-

ponent services, and taking various types of authorization constraints into account to

manage and coordinate the service consumer access and component service support.

In this thesis, we propose a service oriented conceptual model (SOAC) as an exten-

sion of role based access control that can facilitate the administration and management

of access for service consumers as well as component services supports in composite

xiii

xiv Abstract

web services. Various types of conflict of interest are identified due to the complicated

relationships among service consumers and component services. A process model,

SOAC-Net, is also developed based on our designed conceptual model SOAC. The

SOAC-Net is a Petri-Net based process model that represents an authorization flow,

i.e., the sequence of the accesses by service consumers and the sequence of the supports

from components services. A set of authorization policies, e.g., authorization synchro-

nization policy and authorization dependency policy, are designed based on SOAC-Net

to coordinate the access and the support in a process environment. Verification on

improper authorization policy definition is proposed based on SOAC-Net to detect the

unreliable execution of composite web service. A service oriented authorization control

engine (SOAC engine) is developed as an implementation of the proposed authorization

framework of composite web services.

In summary, this research throws new light on the current state of the art in autho-

rization management under the loosely-coupled composite web service environments.

Contents

Dedication v

Acknowledgements vii

List of Publications ix

Abstract xiii

List of Figures xix

List of Tables xxiii

1 Introduction 1

1.1 Background . 1

1.1.1 Service Composition . 2

1.1.2 Service Authorization . 5

1.2 Research Problem . 7

1.2.1 Motivating Scenario . 7

1.2.2 Complicated Coordination of Authorization Policies 14

1.2.3 Dynamicity of Component Services and Service Consumer . . . 16

1.2.4 Conflict of Interest . 17

1.2.5 Compliance of Business Logic 20

1.2.6 Authorization Policy Verification 22

xv

xvi Contents

1.2.7 Limitation of Existing Work . 22

1.3 Research Methodology . 24

1.4 Contribution of the Thesis . 26

1.4.1 SOAC Conceptual Model . 27

1.4.2 SOAC-Net Process Model . 29

1.4.3 Authorization Policies Enforcement 30

1.4.4 Authorization Policies Verification 34

1.4.5 SOAC-Engine . 36

1.5 Organization of the Thesis . 36

2 Preliminary 41

2.1 Introduction . 41

2.2 Service Oriented Architecture and Business Process Management . . . 43

2.2.1 Service Oriented Architecture 43

2.2.2 Business Process Management 49

2.3 Authorization Models . 51

2.3.1 Role-Based Access Control . 51

2.3.2 Authorization Model in Web Service Domain 55

2.3.3 Authorization Model in Business Process Management 59

2.4 Petri-Net . 63

2.4.1 Petri-Net with Variation . 63

2.4.2 Petri-Net with Verification . 65

2.4.3 Petri-Net with Service Composition 67

3 The Conceptual Model-SOAC 71

3.1 Introduction . 71

3.2 Conceptual Model of Service Oriented Authorization Control 74

3.2.1 Service Provision Specification 74

3.2.2 Service Realization Specification 76

3.2.3 Integration of Service Provision and Service Realization 77

3.3 Function Specifications of SOAC . 79

Contents xvii

3.3.1 Service Provision Administrative Operation- SP −AO 80

3.3.2 Service Realization Administrative Operation- SR−AO 83

3.3.3 Session Operation- SE − O . 84

3.4 Conclusion . 86

4 Conflict of Interest 89

4.1 Introduction . 89

4.2 Management of Conflict of Interest . 91

4.2.1 Conflict of Interest between Service Consumers 92

4.2.2 Conflict of Interest between Resources 94

4.2.3 Conflict of Interest between Service Consumers and Resources . 96

4.3 Advanced Management of Conflict of Interest 104

4.3.1 Conflict of Interest for One Service Consumer 104

4.3.2 Conflict of Interest for One Resource 108

4.3.3 Conflict of Interest for One Pair of Service Consumer and Re-

source . 111

4.4 Conclusion . 118

5 Process Model- SOAC-NET 119

5.1 Introduction . 119

5.2 Authorization Policies . 124

5.2.1 Authorization Synchronization Policies 124

5.2.2 Authorization Dependence Policies 126

5.3 Specification of SOAC-Net . 130

5.3.1 Structure of SOAC-Net . 141

5.3.2 Execution of SOAC-Net . 151

5.4 Conclusion . 157

6 Authorization Policy Verification 161

6.1 Introduction . 161

6.2 Verification Mechanism . 163

xviii Contents

6.3 Conclusion . 174

7 Tool Support 177

7.1 Introduction . 177

7.2 System Architecture . 179

7.3 System Demonstration . 182

7.4 Conclusion . 190

8 Conclusion and Future Work 193

8.1 Conclusion . 193

8.2 Future Work . 197

References 201

Bibliography 201

List of Figures

1.1 Architecture of Composite Web Service 3

1.2 Motivating Scenario for Financial Lease 8

1.3 Execution Sequence of Financial Lease 12

1.4 Research Methodology . 24

1.5 Authorization Policies for Synchronization and Dependency 34

1.6 Organization of the Thesis . 37

2.1 Web Service Reference Architecture . 45

2.2 Web Service Orchestration and Choreography Reference Model 46

2.3 Workflow Management Coalition’s Reference Model (c© WFMC) 50

2.4 Role Based Access Control (RBAC) Conceptual Model) 52

2.5 A Family of Role Based Access Control Models 52

2.6 Various Types of Petri-Nets . 64

3.1 Service Oriented Authorization Control (SOAC) Conceptual Model . . 75

4.1 Conflict-Free Role Relationship Check (CF-R-RC) 92

4.2 Conflict-Free Resource Type Relationship Check (CF-RT-RC) 95

4.3 Conflict-Free Role & Resource Type Relationship Check (CF-R2T-RC) 97

4.4 Conflict-Free Pair of Role & Resource Type Relationship Check (CF-

PR2T-RC) . 100

4.5 Conflict of Interest for One Service Consumer 105

xix

xx List of Figures

4.6 Conflict of Interest for One Resource 110

4.7 Conflict of Interest for One Service Consumer and Resource 111

4.8 Conflict of Interest for One Pair of Service Consumer and Resource . . 116

4.9 Authorization Policies for Avoiding Conflict of Interest 117

5.1 Construction Process of Role-Flow . 132

5.2 Construction Process of Resource Type-Flow 134

5.3 Constraints-Net:C1 . 135

5.4 Constraints-Net:C2 . 136

5.5 Constraints-Net:C3 . 137

5.6 Constraints-Net:C4 . 137

5.7 Constraints-Net:C5 . 139

5.8 SOAC-Net . 140

5.9 From Role-Flow to Role-Net . 141

5.10 From Resource Type-Flow to Resource Type-Net 143

5.11 From Constraint-Flow C1 to Constraint-Net C1 144

5.12 From Constraint-Flow C2 to Constraint-Net C2 145

5.13 From Constraint-Flow C3 to Constraint-Net C3 146

5.14 From Constraint-Flow C4 to Constraint-Net C4 147

5.15 Single Transition Can Not Be Used in C5 148

5.16 From Constraint-Flow C5 to Constraint-Net C5 150

5.17 SOAC-Net . 152

5.18 Example of Execution Mechanism of Constraint-Net C5 (I) 154

5.19 Example of Execution Mechanism of Constraint-Net C5 (II) 156

6.1 Improper Authorization Policy Definition I 162

6.2 Example for Verification Mechanism . 169

7.1 System Architecture of SOAC Engine 180

7.2 SOAC Engine . 182

7.3 User Administration . 183

List of Figures xxi

7.4 Role Administration . 184

7.5 Authorization Mapping Tree . 184

7.6 Conflict of Interest Identification . 185

7.7 Role Mapping . 186

7.8 Bad Mapping . 186

7.9 Authorization Mapping Tree 2 . 187

7.10 Authorization Mapping Tree 3 . 188

7.11 Grouped Conflict of Interest Identification 188

7.12 Role Mapping 2 . 189

7.13 Bad Mapping 2 . 189

7.14 SOAC-Net Simulation . 191

xxii List of Figures

List of Tables

3.1 Service Provision Administrative Operation - SP −AO 80

3.2 Service Realization Administrative Operation - SR−AO 81

3.3 Session Operation - SE − O . 85

xxiii

xxiv List of Tables

1
Introduction

1.1 Background

In the past few decades, changes in the economic environment, such as globaliza-

tion, mass customization, and new competitive pressure, have forced organizations to

search for innovations and gain competitive advantages. A key factor to maintain the

competitiveness is the capability to cooperate with existing partners and potential cus-

tomers in a standardized way, which can significantly enhance the business partner

relationships [1]. However, the difficulty of seamless communications becomes an ob-

stacle to impede achieving the goal of standardization, where the legacy systems of

each organization can be developed by C#, JAVA, or VB.NET. The various types of

communication methods in different applications cause the seamless impossible. Web

Services technology is developed to break the barrier, where the internal legacy systems

1

2 Introduction

at each organization can be encapsulated by an XML-based standardized web inter-

face [2, 3]. Through the interface, the organization can collaborate with its business

partners dynamically, freely and on-demand [4].

Now, web services have accounted for a major part of the IT industry [38]. Compa-

nies can increasingly focus on their core expertise areas and use IT services to address

all their peripheral needs. Through web services technology, the companies can easily

outsource their peripheral needs to other organizations which are more specialized in

the area. Web service technology brings a totally new business interaction paradigm

to change the business world [5].

When seamless communication barriers are broken by the service technology, the

single web service at each organization can be composed together to provide compre-

hensive and value-added service functions to service consumers, when single web service

is not enough to catering for the various types of customer requirements.

1.1.1 Service Composition

The service technologies have an aim to allow effective composition of discrete services

into end-to-end service aggregation [6]. The nature of web services creates the oppor-

tunity for building composite services by combining existing elementary or complex

services (referred to as component services or resources of composite web service) [51].

A composite web service is operated in a distributed environment involving multiple

parties with dynamic availability, and a large number of these resources/component

services with evolving contents. Through the creation of alliances between the services,

the composite web services are built up to provide comprehensive service functions to

service consumers. When the services are composed together, the following features

can be identified,

• Loose coupling: Since web service technology can provide seamless communica-

tions when services are composed together, their relationships are loosely coupled

during interaction. Loose-coupling describes a type of distributed application

components composition where each component is independent and composed

1.1 Background 3

Figure 1.1: Architecture of Composite Web Service

together in multiple ways without detailed specification on how to collaborate in

advance. It establishes the components collaboration in a highly dynamic fashion

and on-demand basis.

• Autonomy: Each web service is autonomous. It does not disclose the informa-

tion of the internal legacy system that it encapsulates, nor does it expose any of

its internal business rules and policies used to manage its deployment. Each web

service is well self-contained.

• Business Logic: The web services interact according to specific business logic.

When web services are composed together to provide comprehensive function

to service consumer, the service interactions between service consumers and the

composite web service, or the interactions between the composite service and

its composing component web services all need to comply with a well-defined

execution sequence, i.e. a business logic.

In Fig. 1.1, we introduce an Architecture of Composite Web Service, in which var-

ious component services are composed together to provide support to the composite

4 Introduction

web service, and the functions of the composite web service are used by multiple ser-

vice consumers. In Fig. 1.1, the composite web service is categorized into three parts,

(1) web service usage interface, (2) composite web service business logic,

and (3) imported web service interface. In web service usage interface, op-

erations are attached with the interface and are illustrated as grey circles, e.g. 5

operations can be identified in Fig. 1.1. In web service environment, the functions of

the service are realized by different operations. Through these operations, web ser-

vice consumers can access the function of the composite web service. Composite web

service business logic is used to control the execution sequence of these opera-

tions. It is also a guide to a service consumer on how to use and access the operations

of the composite web service. Imported web service interface is from the compo-

nent web services, that support the composite web service to provide comprehensive

functions to service consumers. Imported web service interface is the projection

of component web service interface.

In Fig. 1.1, one component service can provide support to multiple operations of

the composite web service. For example, component service B can provide support

on both operations 1 and 2 in a composite web service. On the other hand, one

operation of a composite web service can be supported by various component services.

For instance, operation 1 can be supported by all component services A, B and C. The

same rules will also be implemented between composite service and service consumer,

where one operation within the composite web service can be accessed by multiple

service consumers, and one service consumer can access multiple operations of the

composite web service.

The business interactions between a service consumer and a composite web service

are called Service Provision; while Service Realization is identified for the business

interactions between a composite web service and component services.

Based on Fig. 1.1, the features of a service composition can be further described as:

1. Loosely Coupled: The service consumer and the component service can not be

identified in advance. All interactions between a service consumer and a compos-

ite web service at service provision part, and all interactions between a composite

1.1 Background 5

web service and a component service at service realization part are based on de-

mand and in a dynamical fashion. For example, a component service may just

be able to provide support once for a composite web service, and then becomes

unavailable. The composite web service therefore will seek another component

service to replace the previous one. Their relationship is not bound together.

2. Autonomy: Each web service, as service consumer, composite web service, or

component service, bears own internal policies and rules to govern their own

executions, and can not be exposed to others. For example, it is impossible

for a composite web service to perceive how its component services provide the

support, nor can a service consumer find how the operations of a composite web

service are achieved. All types of web services are autonomous.

3. Business Logic: The composite web service business logic part in Fig. 1.1

presents that, both service consumers and component services need to comply

with the execution sequence of a composite web service. They must follow the

business logic to execute.

All features identified above in service composition make the security management

in a composite web service unpredictable, complex, and difficult.

1.1.2 Service Authorization

Security is an eternal issue in web environment [99]. To protect the privacy and con-

fidential information, security management in web environment mainly focuses on ac-

cess control, i.e. authorization. It will restrict who can touch the sensitive information

and guarantee that only the qualified entity can access the necessary data, information

or knowledge, at the right time and right place [29–31].

Recently, there are three types of authorization control methods that are popularly

used in industry and attract most researches in academic domain. They are Discre-

tionary Access Control (DAC), Mandatory Access Control (MAC), Role-based Access

Control (RBAC), that are presented as follows,

6 Introduction

• DAC: In DAC, users as the subject are granted permissions to access the objects

based on its entity or its belonging group. User bears the full control on its

granted permissions, i.e. the user can propagate its granted permissions to other

users.

• MAC: In MAC, a central controller as an administrator deploys authorization

rules that are enforced to decide if the subject can access the object. All per-

missions granted to the subject to work on the object are managed by the au-

thorization rules. Since the authorization rules are centrally managed by the

administrator, no user as the subject can propagate the granted permissions to

others. In MAC, each subject is granted only necessary permissions.

• RBAC: In Role Based Access Control (RBAC) [7–9, 52], users acquire permis-

sions through their roles rather than that they are assigned permissions directly.

This greatly reduces the administrative overhead associated with individual users

and permissions. For example, when a user bears 10 permissions on 50 objects

(the permissions can be Read, Write, or Update, etc., and the objects can be

databases, tables or specific business applications), and the user is leaving the

company, how many steps are needed for a security administrator to handle the

situation? Without RBAC, 10×50=500 steps! The administrator has to find

each of the 50 objects, identify the permissions, and finally erase the 500 links

on the users. However, in RBAC, a role is linked to the 10 permissions on the 50

objects. The administrator only needs 1 step to erase the links between the user

and the role. Hence, we can conclude, that by adopting RBAC, the authorization

management becomes efficient.

In web service paradigm, operations are used to represent the functions of each

web service. Hence, the information of the operations, e.g. name and communication

methods, and the information on how the operations work, e.g. the operation execu-

tion time, sequence, and the content of the message that the operation can process,

become the confidential information to public [32, 33]. Not every service consumer can

access the operations of a composite web service. From the component service point

1.2 Research Problem 7

of view, also not every composite web service can access the component service’s op-

erations. Each operation of the web service should be secured and protected to avoid

any malicious access or misuse [34].

Hence, a successful execution of a composite web service is possible only if the

following two types of authorization policies are satisfied: (a) authorization policies

of component services that a composite web service must comply with in its execu-

tion; and (b) authorization policies of a composite web service that service consumers

must follow to acquire the operations of the composite service. Furthermore, execu-

tion policies need to be applied to realize business logics of a composite web service

through a sequence of task invocations among service consumers, component services,

and operations of a composite web service. Therefore, without a proper coordination

among these policies, a composite web service may not be able to execute successfully,

e.g., imperative support from a specific component service could be missing, unau-

thorized service consumer access can occur during the execution of a composite web

service, or the authorization can cause conflict of interest for a composite web service.

Hence, there is a need of an effective authorization model that brings all types of poli-

cies together for a composite web service executing successfully without breaking any

authorization and business rules. However, how to manage the composite web service

authorization in such environment becomes an issue that has not been tackled yet. The

next section will present what research problems should be solved in order to manage

the composite web service authorization.

1.2 Research Problem

1.2.1 Motivating Scenario

Before elaborating the research problems in terms of composite web service autho-

rization, let us take a motivating scenario firstly. Financial Lease is a composite web

service that can provide the business equipment finance and leasing solutions. When

Financial Lease receives a lease application from a customer, it firstly assesses the value

8 Introduction

Figure 1.2: Motivating Scenario for Financial Lease

1.2 Research Problem 9

of the product that the customer wants to lease from a product supplier and seeks a

specific funder who can provide financial support. A guarantor for the customer must

be confirmed to lower the risk of bad debt. The lease application will be confirmed

to customer and his/her lawyer, once the credit history check of the customer and

guarantor is finished. The rental on the leased product will be paid regularly. After

the agreed period, the customer or his/her lawyer can advice the Financial Lease a

lease finalization notice at any time, that will enable Financial Lease to start the in-

ternal finalization process. The customer has two after-lease choices, (1) purchasing

the product with a small-amount cost, or (2) returning the product. Regarding to the

purchase, funder will be involved to calculate the cost to be paid by the customer;

while for returning the product, supplier will carry out the maintenance check on the

product. Once the product has been purchased or returned, the whole lease process is

terminated.

Based on the example (See Fig. 1.2), we can observe that three types of service

consumers, Customer, Guarantor, and Lawyer, and four types of component services,

Supplier (A), Credit Assessor (B), Funder (C), and Lease Agent (D), are in-

volved in the execution of Financial Lease. Each type of service consumer and each

type of component service can include a large number of web services. For example, in

Fig. 1.2, there are N web services that can be used to represent Customer. Moveover,

in Fig. 1.2, there are at least three web services that can be used to represent the

Supplier. On the other hand, a web service can play as multiple types of service

consumers and component services. For example, in Fig. 1.2, a web service can play

as both Supplier and Lease Agent.

In Fig. 1.2, the Financial Lease service is categorized into three parts as introduced

in Fig. 1.1 which illustrates the Architecture of Composite Web Service at subsection

1.1.1. The three parts are (1) web service usage interface, (2) composite web

service business logic, and (3) imported web service interface.

In web service usage interface of Financial Lease, there are 8 operations iden-

tified and illustrated as grey circles. They are as follows,

1. Lease Application is used to receive the lease application from approved web

10 Introduction

service (as a service consumer). Note, not every web service can obtain the right

to submit lease application.

2. Guarantor Confirmation is used to receive the information of guarantor.

3. Lease Confirmation is an operation used to send the result of lease application

after the web service that submits lease application sends a result enquiry.

4. Monthly Bill is an operation accessed by the web services that are qualified to

repay the rental.

5. Lease Finalization is used to receive the lease finalization notice.

6. Purchase is used to receive the purchase notification and payment information.

7. Return is an operation accessed by the web service that needs to return the

rented product.

8. Lease Termination is an operation used to close the lease case.

The functions of Financial Lease service are realized by the 8 operations in web

service usage interface. Composite web service business logic is used to con-

trol the execution sequence of these 8 operations. In the composite web service

business logic of Financial Lease service at Fig. 1.2, the operations of Lease Ap-

plication, Guarantor Confirmation, Lease Confirmation and Monthly Bill are

required to execute sequently; while Monthly Bill needs to be executed repeatedly

for repaying rental at each month of the leasing period. After that, Lease Finaliza-

tion should be performed, followed by an exclusive choice between the operations of

Purchase and Return. The lease finishes when the choice is determined and the op-

eration of Lease Termination is reached. The composite web service business

logic of Financial Lease service at Fig. 1.2 is also a guide to service consumer and

component service on how to access and support the operations of the Financial Lease.

Imported web service interface in Fig. 1.2 comes from the different types of

1.2 Research Problem 11

component web services, that support the composite web service to provide compre-

hensive functions to service consumer. Imported web service interface is the pro-

jection of component web service interface. In Fig. 1.2, the different types of imported

web service interfaces are as follows,

• Supplier as a type of component service is illustrated as A in imported web

service interface in Fig. 1.2 to provide support on the operations of Lease

Application and Return. Three web services in Fig. 1.2 can be used to represent

as Supplier.

• Credit Assessor is a type of component service that needs to support the op-

eration of Guarantor Confirmation as B in imported web service interface

of Financial Lease service in Fig. 1.2.

• Funder is a type of component service that can provide support on the opera-

tions of Lease Application, Monthly Bill, and Purchase, as C in imported web

service interface of Financial Lease service in Fig. 1.2.

• Lease Agent is a type of component service that can provide support on the

operations of Lease Application, Monthly Bill, Return and Purchase, as D in

imported web service interface of Financial Lease service in Fig. 1.2.

Until now, (1) from web service usage interface, we know that there are 8 op-

erations of Financial Lease that need to be accessed by three types of service consumers.

(2) From composite web service business logic, we know that the 8 operations

of Financial Lease service are executed based on a well-defined business logic. (3)

From imported web service interface, we know that the identified 8 operations of

Financial Lease service require four types of component services to provide support.

Here, how the three types of service consumers and four types of component services

are able to access and support the 8 operations of composite web service is described

below in details,

12 Introduction

Figure 1.3: Execution Sequence of Financial Lease

• Service Consumer: (1) Customer should be able to access all operations.

(2)Guarantor Confirmation can only be made by Guarantor. Guarantor can

start the lease on behalf of the customer and help repay the rental. (3) Lawyer af-

ter lease finalization stage can, on behalf of its client, deal with any rest activities.

Furthermore, Lawyer is necessary to involve in operations of Lease Confirmation

and Lease Finalization with Customer.

• Component Service: (1) Funder is used to provide financial support. (2)

Supplier is the product provider. (3) Lease Agent can provide both product

and fund to Financial Lease, since the Lease Agent will seek its own Funder and

Supplier. However, the return rate for Funder and for Lease Agent is different

since Lease Agent will always be used to take high risk application. (4) Credit

Assessor is used to evaluate the credit history of Guarantor and Customer as

the third party.

In Fig. 1.3, we illustrate an execution sequence of Financial Lease service, where

each operation of Financial Lease service is depicted as a rectangle in the process.

1.2 Research Problem 13

The three types of service consumers (Customer, Guarantor, and Lawyer) and the

four types of component services (Funder, Supplier, Lease Agent, and Credit

Assessor) are identified to access and support these sequenced operations. A Ser-

vice Consumer table is used to illustrate three types of service consumers, and their

associated access policies on operations. For a specific service consumer, a white cir-

cle indicates that access on specific operation is granted to the service consumer and

black cross means that access is denied. Four types of component services, Funder,

Supplier, Lease Agent, and Credit Assessor, are illustrated in Component Service

table in Fig. 1.3. The circles with horizon stripes represent that this type of component

service can support the specific operation; while black crosses share the same seman-

tics in Service Consumer table. The sequence of interactions among service consumers,

component services, and operations of Financial Lease are numbered in Fig. 1.3. We

only describe the Request interactions in the figure, while the corresponding Reply

interactions are not depicted to keep the diagram concisely.

We can observe from the above example that the service consumer accesses and

the component service supports are not only regulated by their specific authorization

policies, but also need to be restricted by the business constraints enacted during the

execution of a composite web service. Otherwise, authorization issues can be raised

to cease the execution of a composite web service. These business constraints can be

categorized as follows,

1. Each type of service consumer and component service can only be used to access

and support the operations of the Financial Lease when they are needed by the

execution of an operation.

2. The Guarantor can repay the rental on behalf of the Customer, only if the lease

application is also submitted by the Guarantor.

3. The Lease Agent can issue the monthly bill, only if it is the financial provider.

4. The Lease Agent can be used to deal with the purchase of a product, if the lease

application is processed by a Lease Agent.

14 Introduction

5. The Lease Agent can be used to deal with the return of a product, if the lease

application is processed by a Lease Agent.

6. The Credit Assessor can support for assessing the credit history check, only

after the guarantor information can be confirmed.

7. Operation Monthly Bill can be supported by Funder or Lease Agent and ac-

cessed by Customer or Guarantor. To avoid fraudulent activity, a Guarantor

can pay the rental on behalf of a Customer to access the operation Monthly Bill

only if a Funder issues the bill. This constraint is used when an entity can play as

both Lease Agent and Guarantor. Obviously, if the entity pays the bill issued

by itself, it may eventually do harm to a Customer’s interest.

8. If a Lawyer and a Lease Agent are together to deal with the return of a product,

then the lease application must be submitted directly by a Customer and the

product should be provided by the Lease Agent. The application submitted by

an applicant in person will lower the risk of dispute on the product of return

which is dealt with by a Lease Agent and a Lawyer, since the Customer can

involve enough during the lease period.

The authorization of composite web services is different from traditional authoriza-

tion in a close system due to the dynamic and complex relationships among service

consumers and component services. The authorization of composite web service should

also be managed in a process environment. In the following sections, we will present

the research problems that ought to be dealt with to manage composite web service

authorizations, based on the above motivating scenario.

1.2.2 Complicated Coordination of Authorization Policies

The component services are normally remote resources (the term resource will be

used interchangeably with component service in the thesis), that can provide sup-

port to the operations of a composite web service. They can belong to different security

1.2 Research Problem 15

domains and have their own access policies. Granting the permissions to a service con-

sumer on accessing the operations of a composite web service should not only confirm

whether the service consumer is qualified, but also need to take access policy of the

components service into account, i.e. the availability of the support from component

services should be guaranteed.

However, the characteristics of these resources are different from that of objects of

Role-based Access Control in close systems. In traditional authorization system, the

object that needs to be accessed belongs to this authorization system. The availability

of the object can be completely identified and managed by the authorization system.

For example, in database domain, the object that needs to be accessed can be a table

within a database, and it can be totally controlled by the authorization system in the

database.

In web service environment, a composite web service needs to access the opera-

tions of component services, i.e. resources, to acquire their functional support. The

component services can belong to different organizations, come from different security

domains, and have different security and interest requirements. Hence, the authoriza-

tion system of the composite web service can not control the object to be accessed,

since the object, i.e. the operation of these resources, belongs to the component service

and is managed under the scope of authorization system in a component service, not

a composite web service. The authorization system of the composite web service can

only identify the public resources’ authorization requirements, e.g., what credential is

needed to obtain the right to access the operation of a specific component service. It

means that, from composite web service point of view, only the projection of a compo-

nent service, i.e., the public authorization requirements, can be identified. To confirm

the availability of a resource’s support, a composite web service has to examine if the

credential required by its component services can be prepared. This changes the con-

firmation on the availability of the object from a static and stable environment (within

a close system, the availability of the object is seldom changed frequently), into a dy-

namic and instable environment (within a web service environment, the resource can

change frequently).

16 Introduction

Therefore, the authorization system of a composite web service should not only

manage the access of service consumers, but also need to create a mechanism to manage

the support from component services. Obviously, without the support from a specific

component service, the operation that needs the support should not be accessed by the

service consumer. Coordination on the authorization policies of a composite web service

and those of component services is required. The authorization policies of a composite

web service are used to decide if the specific service consumer is qualified for accessing

specific operations of the composite web service; while the authorization policies of

component web services are identified by the composite web service to decide if the

support from the component services can be acquired. The complicated coordination

on these two types of authorization policies changes the basic authorization question

”who can do what?” to a more complicated one as ”who can do what under what

kind of support”.

Let us take an example from the motivating scenario. The operation of Lease

Application needs to be accessed by Customer or Guarantor, and needs to be sup-

ported by Funder, Supplier, and Lease Agent. Hence, when deciding if a web service

can access the operation of Lease Application as a Customer or a Guarantor, the

Financial Lease service should confirm if the one or several web services can be used

to provide support on the operation of Lease Application as Funder, Supplier or

Lease Agent, i.e. if the public authorization requirements of these web services can

be satisfied by Financial Lease service.

Unfortunately, the existing role-based models in web service paradigm have not

brought the administration of component services into the picture.

1.2.3 Dynamicity of Component Services and Service Con-

sumer

Web services technologies facilitate the integration of the loosely-coupled distributed

applications. Hence, a large amount of component web services can be used as resources

to support a composite web service’s operations; while the quantity of service consumers

1.2 Research Problem 17

can also be large. As illustrated in Fig. 1.2, the system of the composite web service

needs to deal with not only a large number of users (service consumers) but also great

amounts of resources (component services).

Moreover, the resources and service consumers are normally prone-to-change. Since

component services and service consumers are both out of control of a composite web

service, they can change their availability or authorization requirements at any time

according to their own interests, without advanced notification to the composite web

service (the relationships among different web services are loosely-coupled.). For ex-

ample, if a web service as Funder changes its authorization policy from asking for

occupational loan certificate to requiring the leasing qualification, then all the opera-

tions of financial lease service that can be supported by the service as Funder need to

be involved with updating this authorization policy change accordingly.

However, if the changes occur frequently or happen in many web services, efficient

authorization management is needed to reduce the administrative overhead in autho-

rization of composite web services.

1.2.4 Conflict of Interest

A conflict of interest occurs when an individual is involved in multiple interests, one of

which could possibly corrupt the motivation for an act in the other. Conflict of Interest

is important and yet challenging in managing authorization of a composite web service,

especially when the backend resources (component services) are taken into the picture.

The existing role based access control approaches use the mechanism of Separation of

Duty to deal with conflict of interest focusing on service consumers only. However, with

the involvement of component services, the conflict of interest in terms of composite

web service authorization can not only occur for service consumer or resource only, it

can also happen between service consumers and resources, and even between pairs of

service consumers and resources. Let us take several examples below,

• Conflict of Interest by Service Consumer/s: The Financial Lease service

needs service consumers to play as Customer, i.e. the entity which needs the

18 Introduction

lease, and Guarantor, i.e. the entity which can guarantee the Customer’s lease,

to access its operations. If the same service or the services with shared interest

play as both Customer and Guarantor, the conflict of interest can occur between

the service consumer and Financial Lease service. The interest of Financial Lease

service is to use Guarantor to lower the risk of bad debt of Customer on the

lease. The service consumer plays as both Customer and Guarantor can cause

that the risk of bad debt of Customer’ lease increases as the service consumer

is guaranteing the lease application of itself. The influence of Guarantor on the

lease is totaly missing, resulting in the damage of Financial Lease’s interest.

• Conflict of Interest by Resource/s: Various types of resources are needed

to support the operations of Financial Lease service, e.g. Credit Assessor and

Funder. If the same service or the services with shared interest play as both

Funder and Credit Assessor, the conflict of interest can occur between the Fi-

nancial Lease service and the resources. The interest of Financial Lease service is

to use the correct credit history report to lower the risk of bad debt of Customer’s

lease. The service that plays as both Funder and Credit Assessor can modify

the credit history report of Customer and Guarantor to reach the credit limit of

Financial Lease service. Their goals aim to release the loan as much as possible

to Financial Lease service. (Of course, the true credit history report can satisfy

the credit limit of Funder, but not the credit limit of Financial Lease service).

Hence, the Financial Lease will falsely estimate the risk of bad debt of Customer

that can cause the interest damage.

• Conflict of Interest by Service Consumer and Resource: A web service

or services with shared interest can play as both service consumer that requires

access on the operations and resource that is needed to support the operations.

However, conflict of interest can occur between Financial Lease service and the

web service as both service consumer and resource. For example, when a web

service plays as both Credit Assessor and Customer, the conflict of interest

occurs between Financial Lease service and the web service. The interest of

1.2 Research Problem 19

Financial Lease service is to judge the lease application under a fair and correct

evaluation of the credit history of the Customer. The web service as both Credit

Accessor and Customer can modify the credit history report of itself to catering

for the credit requirements of Financial Lease, which makes it generate a wrong

decision on the lease release. The interest of Financial Lease service is broken by

the web service as both Credit Assessor and Customer.

• Conflict of Interest by Group of Service Consumer and Resource: The

service consumer and the resource that can access and support on the same

operation can be grouped together. The group of web services that play as dif-

ferent groups of service consumer and resource should not cause any conflict

of interest in composite web service authorization. For example, when a ser-

vice consumer plays as a Military Customer, and the goods it requests to rent

need to be supplied by part manufactory as a Vehicle Engine Supplier, it

will violate the law if Financial Lease service also uses the same manufactory

that plays as Vehicle Engine Accessory Supplier to supply the engine ac-

cessory to the same service consumer as a Commercial Customer. In this case,

the group of Military Customer and Vehicle Engine Supplier and the group

of Commercial Customer and Vehicle Engine Accessory Supplier are mutu-

ally exclusive. They can not be assigned simultaneously to the same group of

service consumer and resource, to avoid the conflict of interest. This conflict of

interest is identified to prevent the following two things happening at the same

time. The first thing is to assemble the engine for military use with the en-

gine accessory for civil use and the second thing is to rent engine and engine

accessory from the same part suppliers who can juggle with the different types

of products it provides. In a summary, if the manufactory as Vehicle Engine

Supplier to provide engine to a service consumer as Military Customer, it

should not provide engine accessory to the same service consumer that is identi-

fied as Commercial Customer; vise versa.

20 Introduction

Therefore, it is necessary to specify authorization policies to detect and control

the various types of conflict of interest in a composite web service. Authorization in

composite services must prevent conflict of interest by service consumer, by resource,

and even by service consumer and component service, and pair of them.

1.2.5 Compliance of Business Logic

The value-added function can be provided by composite service to service consumers

once it composes multiple component services [101]. However, obtaining permissions

is imperative for the service consumers before accessing the specific function of the

composite web service; while satisfying authorization constraints of component ser-

vices is the key factor, for which the composite web service can acquire their support.

Furthermore, each function of a composite web service can be accessed and supported

by multiple service consumers and component services. To achieve the composite ser-

vice functions, a certain business logic is inherently set up within the composite service,

which therefore requires these accesses of service consumers and supports of component

services to comply with.

Based on the motivating scenario, we can observe that, (1) an operation of a com-

posite service can be accessed and supported by multiple types of service consumers and

component services, and (2) the inherently business logic set up within Financial Lease

service requires the compliance of the access of service consumer and the supports of

component services. A question that should be significantly marked is ”how the service

consumer and the component service can pale others to be selected to work on the spe-

cific operations during the execution process of Financial Lease service”. The failure

of coordinating on the large number of accesses of service consumers and supports of

component services in the business process can cause various security issues.

For example, when the Guarantor finishes accessing the operation Guarantor Con-

firmation, its permission to access this operation should be revoked to avoid duplicated

submissions of guarantor information, which may cause cheating. Let us take another

example. In Fig. 1.3, Monthly Bill operation can be supported by Funder or Lease

Agent and accessed by Customer or Guarantor. A Guarantor can pay the rental on

1.2 Research Problem 21

behalf of the Customer to access the Monthly Bill operation only if the bill is issued by

a Funder, rather than a Lease Agent. This constraint can be used to avoid fraudulent

activity, where both the Lease agent and the Guarantor are not the really lender and

borrower, and cheating can be made by their privately negotiation.

Therefore, we can conclude that, the accesses of the service consumers and the

supports of the component services are not only regulated by specific authorization

constraints to guide what the service consumer can access and what the component

service can support; but also restricted by the business authorization constraints en-

acted during the execution process of a composite service to maintain the security

(See the 11 business authorization constraints listed in section 1.2.1). These business

authorization constraints can be categorized as follows,

• Synchronization: The sequence of the accesses and supports by service con-

sumers and component services needs to synchronize with the execution sequence

of the operations. The service consumer and the component service should not

be able to access and support the operations that have been executed in the busi-

ness process, nor can they access and support the operations that will occur in

the future. They can only access and support the operation when the operation

is executing in the business process, and the permission to access and support

on the specific operation should be revoked immediately when the operation is

finished.

• Dependency: The access and support on an operation may depend on the

other access or support on specific operation. The execution of depended access

or support is a necessary precondition of the execution of the depending access

or support. The security of a composite web service can be maintained if the

depended access or support can be performed before the depending one.

In a summary, the accesses of three service consumers and the supports of four com-

ponent services in Fig. 1.3 must be synchronously sequenced with the business logic of

Financial Lease service. Within the access sequence and the support sequence, each

access and support must also satisfy the dependency requirements to cater for business

22 Introduction

security demands. Hence, an effective and efficient authorization management must be

proposed to coordinate these accesses and supports during the execution of the com-

posite web service, based on these identified authorization constraints. Unfortunately,

this type of management is still missing in the domain of web service authorization.

1.2.6 Authorization Policy Verification

The access of service consumer and the support of resource are necessary key factors,

for which the operation of the composite web service can be executed with its business

logic. It means that, the operation within a business process can not be successfully

executed if the needed access from service consumer and/or the necessary support

from component service are missing. Hence, the execution of a composite web service

can become unreliable, where for specific operations within the execution sequence of

composite web service, the service consumers that can access the operations and the

resources that are needed to provide supports on the operations are missing or can not

perform their designated functions due to the improper authorization policy definition.

The whole execution of the composite web service can even be suspended and stepped

into a dead state. Verification on the authorization policy to guarantee the normal

execution of the composite web service becomes a must.

For example, the operation of Lease Confirmation requires that at least one com-

ponent service is available as a Credit Assessor on evaluating the credit history of

Customer and Guarantor. However, within the authorization system of Financial Lease

service, if no component service is defined to be able to work as a Credit Assessor,

the whole execution of Financial Lease is suspended due to the missing of Credit

Assessor, i.e., an improper authorization policy definition.

1.2.7 Limitation of Existing Work

Based on the research problems identified above, we can conclude that it is necessary to

have a well-defined framework to manage the authorization of composite web services,

which could (1) take the authorization constraints of component services (resources)

1.2 Research Problem 23

into consideration, (2) provide efficient way to manage the large quantity of service

consumers and resources, (3) have the capability to identify and control a series of

types of conflict of interest in the authorization of composite web services at both

design time and runtime, (4) provide mechanism to manage the composite web service

authorization in a process environment, and (5) ensure that the authorization policy

is defined properly to facilitate the execution of a composite web service based on the

well-defined business logic.

We can find that, the MAC, DAC, and traditional RBAC are all not suitable for

the service-oriented authorization management. MAC and DAC are not suitable for

the composite web service authorization due to their limitation on the efficiency. With-

out involving the mechanism of role, the administrative overhead on these two access

control methods is very high. On the other hand, role-based access control (RBAC)

is not suitable for composite web service authorization since it has not taken Resource

into account. Note the Resource particulary can not be fully controlled in the context

of service environment. Researches in [60, 61, 70] are the representative work where

role-based models are implemented in web service paradigm. In these work, roles are

assigned to service consumers for service authorization. However, they either do not

put resource into the picture, or they simply employ an unrealistic assumption that

there is a global coordination on the internal authorization policies of each autonomous

web services (service consumer, composite web service and component service) to en-

force the access control in service composition. As we introduced in previous section,

each type of web service is autonomous and their relationships are loosely coupled.

Global coordination on the internal authorization policies of each type of web service

can not be implemented.

Other representative works are mainly focusing on managing authorization in busi-

ness process. Researches in [74, 75] mainly focus on managing synchronization be-

tween the execution sequence of the operations and the access sequence of the ser-

vice consumer. The support sequence of the component service is totally ignored in

process-based composite service management. Furthermore, much representative re-

search work, e.g., [76], design constraints for avoiding conflict of interest within the

24 Introduction

Figure 1.4: Research Methodology

accesses of service consumers. Dependency constraints are still missing, particularly,

when they become more and more complex by involving the support of component

services. Verification on these authorization policies in business process is completely

not touched.

In a summary, existing work can not solve all the research problems identified

in previous sections for managing composite web service authorization. A well-defined

framework to manage the authorization of composite web services should be developed,

that can comprehensively coordinate the access of service consumers and the support

of component services. In next section, we will introduce the research methodology

adopted by this thesis.

1.3 Research Methodology

We need to design a framework to manage composite web service authorization and

tackle all issues identified in previous section. We adopt a research methodology by

initially designing a conceptual model, named service oriented authorization control

(SOAC). The reason to design conceptual model is that, (1) we need to clearly identify

which elements in a composite web service are involved in authorization management,

(2) clarify their relationships, and (3) examine if new elements are needed; if yes, then

1.3 Research Methodology 25

new elements which can contribute to the authorization management of the composite

web service are designed in the SOAC conceptual model. Based on the designed SOAC

conceptual model, the research problems of ”Complicated Coordination of Autho-

rization Constraints” and ”Dynamicity of Component Services and Service

Consumers” are solved.

After designing the conceptual model, analysis work should be carried out based

on the model to evaluate how the conceptual model can facilitate the management

of composite web service authorization. As shown in Fig. 1.4, conflict of interest

management can be enforced based on the SOAC conceptual model. By analyzing the

relationships of different elements with the same type in SOAC, various types of conflict

of interest can be identified and avoided at both design time and runtime. Moreover,

conflict of interest management can also be extended by analyzing the relationships

of different authorizations for one element only. By enforcing the different types of

authorization policies, the issue of ”conflict of interest” is tackled.

However, only designing a conceptual model can not explore the issue regarding to

the ”Compliance of Business Logic”. In SOAC conceptual model, we can only answer

the question of ”who can do what under what kind of support”. The question on

top of ”what to do” still can not be answered, i.e. ”how to do”. In order to answer this

question, we have to derive a process model from the conceptual model to overcome

the above limitation. Therefore, as shown in Fig. 1.4, a process model named SOAC-

Net is developed based on the Petri-Net model. In terms of details of Petri-Net,

we will introduce in Chapter 2. By introducing the process model, how to manage

the composite web service authorization under an environment of business process

can be solved. Authorization policies can be designed based on the process model to

enforce the composite web service authorization to comply with the business logic of

the composite web service. Furthermore, Petri-Net based process models provide many

formal verification mechanisms to guarantee the execution of the process model. The

research problems ”Compliance of Business Logic” and ”Authorization Policies

Verification” then can be solved.

26 Introduction

In a summary, our research methodology adopts the design ideas, (1) designing con-

ceptual model, (2) constructing process model, and (3) based on the conceptual model

and the process model, authorization policies are defined to avoid conflict of interest

and to enforce and verify the authorization under the business process environment.

In Fig. 1.4, we use black rectangles to represent the core models, SOAC conceptual

model and SOAC-Net process model. The SOAC-Net process model is derived from

the conceptual model. We use yellow rectangles to represent authorization policies.

In Fig. 1.4, authorization policies are defined based on the conceptual model to avoid

conflict of interest. In terms of process model, authorization policies are designed to

enforce authorization synchronization policies and authorization dependency policies.

These two types of authorization policies working on the process model are used to

manage that the composite web service authorization can be executed properly under

the business process environment. Based on the process model, authorization policies

enforcement is used to examine if the authorization policies are fulfilled during the ex-

ecution of a composite web service. Authorization policies verification is used to detect

if the authorization policies are defined correctly and properly. We use blue rectan-

gles to describe the two methods, Enforcement and Verification, in Fig. 1.4, which are

linked to the process model. Finally, based on the conceptual model, administrative

functions are developed to manage the elements and their associated relationships.

All the administrative functions will be used to design the SOAC-Engine, an system

that can implement all types of authorization policies based on the conceptual model

and process model, to manage the composite web service authorization. We use the

green rectangles in Fig. 1.4 to illustrate the two parts that are related with the system

implementation.

1.4 Contribution of the Thesis

In this thesis, in order to solve the problems on managing composite web service au-

thorization, we design the Service Oriented Authorization Control (SOAC) conceptual

1.4 Contribution of the Thesis 27

model. In SOAC model, all elements involving in the composite web service authoriza-

tion are identified. The relationships between the elements are illustrated. However,

SOAC model is still not strong enough to solve the problems on managing compos-

ite web service under the environment of business process, since the business logic of

a composite web service is not considered in SOAC. Hence, we also design a process

model named as SOCA-Net, that is developed based on the Petri-Net. Then we can not

only answer the question ”who can do what under what kind of support”, but also can

tackle the issue ”how to do” on top of the ”what to do”. Authorization policies in terms

of avoiding conflict of interest are defined based on the conceptual model to prevent the

authorization causing conflict. Authorization policies in terms of synchronization and

dependency are defined based on the process model to ensure the authorization under

the business process environment correct and proper. All above authorization polices

will be enforced based on the conceptual model and the process model respectively.

Moreover, authorization policies verification enacted on the process model is used to

ensure that the authorization policies are defined correctly based on the process model.

The research contributions of this thesis are presented in details as follows.

1.4.1 SOAC Conceptual Model

The SOAC conceptual model will handle composite web service authorization by deal-

ing with not only a large number of service consumers, but also huge amounts of com-

ponent web services, i.e. resources. SOAC conceptual model is a general framework

for the authorization of composite web services as an extension of role based access

control. This new conceptual model is based on the idea that the authorization of a

composite web service to a service consumer should take the authorization constraints

of the component services into consideration.

Therefore, in SOAC, by introducing the concept of Resource, the authorization

policies of the component service are considered together with the authorization policies

of the composite web service when judging if the permissions can be granted to a service

consumer. The resource is used to support the operation of the composite web service.

Following the same philosophy of role based access control (RBAC), we also identified

28 Introduction

the element of Service Consumer as the entity that requires to access the operations

of the composite web service. The two concepts, Role and Resource Type, are

introduced in SOAC in order to reduce the administrative overhead in authorization

management. Based on the characteristics of resources and service consumers, we

classify resources and service consumers, map them into resource types and roles, and

use resource types and roles to map with the Operation of a composite web service.

Then the resource can provide support on the operation as specific resource type; while

service consumer can access the operation as specific role.

Hence, SOAC is divided into two parts, service provision and service realization

(See Fig. 1.1). In service provision part, the mappings between the elements of Service

Consumer, Role, and Operation are illustrated. In service realization part, the map-

pings between the elements of Resource, Resource Type and Operation are presented.

The mappings between the elements of Role (R), Operation (Op), and Recourse Type

(ReT) integrate the service provision and service realization together. The access to

the composite web service can be assigned to a service consumer if all the autho-

rization policies of the composite web service and its resources can be satisfied. The

concept Session is introduced at integration of service provision and service realiza-

tion in SOAC. It is designed mainly for checking the conflict of interest in terms of

authorization at runtime.

In summary, by introducing the concept of Role and Resource Type, the adminis-

trative overhead is dramatically reduced. When a service consumer or a resource needs

to change its access requirements or support conditions on a specific operation, we just

need change its belonging role or resource type. Relevant mapping between the role and

the specific operation and the mapping between the resource type and the operation

can remain. Moreover, by introducing the element of Resource and Resource Type,

the authorization in composite web service not only considers ”who can do what”, but

also takes ”who can do what under what kind of support” into account, since granting

permission to service consumer to access the specific operation will also depend on the

availability of the resource that is also mapped with the specific operation as a resource

type.

1.4 Contribution of the Thesis 29

1.4.2 SOAC-Net Process Model

In this thesis, we design a Petri-Net based process model named SOAC-Net, which

is developed based on the proposed conceptual model SOAC. SOAC-Net takes all

elements and their associated relationships identified in SOAC into account. SOAC-

Net is a Petri-Net based process model. The advantages of Petri-Net’s graphically

and mathematically founded modeling formalism with various algorithms for design

and analysis make it a good candidate for modeling authorization flow in composite

web services. SOAC conceptual model is lack of capability to capture the authorization

policies used to manage the composite web service authorization under the environment

of business process. Therefore, it is necessary to develop the process model.

SOAC-Net is used to represent an authorization flow that is the sequence of the

access by service consumers and the sequence of the supports from components services.

The authorization flow separated from the control flow of the operations can enforce

the authorization policies regarding to the synchronization and dependency on top

of the execution policy of a composite web service. This separation can facilitate the

authorization management in business process environment on access control level only

without delving into activity execution sequence level. The coordination on the accesses

of service consumers and the supports of component services during the execution

process of a composite web service is also facilitated by the enforcement of various

types of authorization policies based on SOAC-Net.

SOAC-Net is divided into three parts, role-flow, resource type-flow, and constraint-

flow. In SOAC-Net, a role-flow and a resource type-flow are derived from the execution

sequence of the operations and associated authorization mappings, i.e. the mappings

between role and operation, and the mappings between resource type and operation,

that can be identified in SOAC conceptual model. These two types of flows are tightly

synchronized with the execution sequence (control flow) of the operation. But they

are not the same as the control flow since they have capability to manage the ac-

cess sequence of role and the support sequence of resource type within one operation,

where the control flow can only be used to coordinate the execution sequence between

operations. Constraint-Flow is used to represent the various types of authorization

30 Introduction

dependency policies based on the role-flow and resource type-flow.

1.4.3 Authorization Policies Enforcement

Conflict of Interest

Authorization Policies in terms of conflict of interest are designed based on the SOAC

conceptual model. We categorize the authorization policies into two parts, (1) Au-

thorization Policies for Avoiding Conflict of Interest between Different El-

ements with The Same Type and (2) Authorization Policies for Avoiding

Conflict of Interest between Different Authorizations for One Element.

Authorization Policies for Avoiding Conflict of Interest between Dif-

ferent Elements with The Same Type are used to avoid the conflict of interest

occurred between elements with the same type, e.g. conflict of interest between two

service consumers or conflict of interest between two resources. The relationships be-

tween two elements with the same type in SOAC can be defined as Exclusive or Non-

exclusive. Exclusive relationship means that two elements of SOAC, e.g., two service

consumers, two roles, or two operations, are ostracized each other; while Non-exclusive

relationship means that two elements of SOAC are not ostracized each other. The

relationship between elements with the same type in different authorizations should be

the same; Otherwise, conflict of interest will occur. For example, if Opa and Opb are

exclusive operations, then the relationship between Ri and Rj that are mapped to the

operations Opa and Opb respectively, should reflect the exclusive relationship of the

mapped operations, i.e Ra and Rb are also exclusive roles. If Ra and Rb are assigned to

service consumer SCn and SCm, respectively, then the relationship between the service

consumers SCn and SCm must be matched with the relationship between the mapped

roles. If service consumers SCn and SCm are non-exclusive with each other, then SCn

and SCm can not be assigned roles Ri and Rj respectively at the same time since the

two roles have the exclusive relationship. If they are assigned with the roles, conflict

of interest occurs.

1.4 Contribution of the Thesis 31

Authorization Policies for Avoiding Conflict of Interest between Differ-

ent Elements with The Same Type highlights the relationships between different

service consumers and/or different resources. However, in some circumstance, it is

not easily to identified the relationship between two different service consumers or re-

sources, due to the features of web service environment where each service does not

want to expose its internal relationships with others. Therefore, we develop the second

type of authorization policies focusing on the possible conflict of interest related with

one service consumer, one resource, and one pair of service consumer and resource, i.e.,

Authorization Policies for Avoiding Conflict of Interest between Different

Authorizations for One Element. Conflict of Interest that can be avoided by en-

forcing this type of authorization policies can occur, when one service consumer or one

resource is assigned with exclusive roles or resource types. By this way, we can identify

conflict of interest without needing to know the relationship between different service

consumers and resources.

Each type of authorization policies to avoid conflict of interest is classified into

static policies and dynamic policies, that are related with the design time conflict of

interest and runtime conflict of interest. In some circumstance, it is forbidden to map

the elements that can cause the conflict of interest. This is a kind of strictest way

to manage composite web service authorization. All possible conflict of interest are

prevented at design time. On the other hand. In some circumstance, we do not need

such strictest way. A more flexible management method will be required. It is a type of

trade-off between flexibility and security. Hence, we restrict that the mapping that can

cause conflict of interest can be created at design time, in case of the situation where the

mapping will not be activated simultaneously. Without simultaneously activating the

assigned exclusive roles or exclusive resource types, the service consumers or resources

can be assigned with these role and resource types at the same time, but not be able

to activate them at the same time. For example, a person can be assigned as role of

Teller and Desktop Supervisor in a bank branch, where Desktop Supervisor will

verify the work of Teller. We can loose the security by allowing that a person can

be assigned both roles at the same time, but requiring that he can not activate both

32 Introduction

roles simultaneously. Hence, he can not verify the work made by himself, but he can

also work as Desktop Supervisor to verify the work of other Tellers. In this case,

the security restriction on avoiding conflict of interest is enforced at runtime.

The conflict of interest can occur in service provision part caused by the service

consumer, and can happen in service realization part caused by the resource. The

conflict of interest can also happen at integration part of SOAC by both service con-

sumer and resource, and even by the groups of service consumers and resources. we

can identify the four types of authorization policies at both categories-(1) for different

elements with the same type, and (2) for different authorizations with one element, and

at both design time and runtime. These four types of authorization policies in terms

of conflict of interest are defined based on each part of the SOAC conceptual model.

They are presented as follows,

• For service provision part, authorization policies can be used to avoid the conflict

of interest for different service consumers with the same type, and for different

authorizations with one service consumer.

• For service realization part, authorization policies can be used to prevent the

conflict of interest for different resources with the same type, and for different

authorizations with one resource.

• For the integration of service provision and service realization, the conflict of

interest between service consumers and resources can occur, if the relationship

between the service consumers and the resources is not the same as the relation-

ship of their mapped role and resource type. Moreover, the authorization policies

can also be used to avoid one web service to play as conflicted role and resource

type simultaneously.

• At integration part of service provision and service realization, conflict of interest

between one pair of service consumer/resource and other pairs of service con-

sumer/resource is another new type of conflict of interest which can be identified

in SOAC. A service consumer and a resource are put in one pair when the ser-

vice consumer requests the access of the operation of a composite web service

1.4 Contribution of the Thesis 33

and the operation needs the support of the resource. The relationships between

pairs of role/resource type reflect the relationships between operations mapped

to these pairs of role/resource type. If two pairs of service consumer/resource

have the relationship Exclusive or Non-exclusive, the pairs of mapped roles and

resource types must have the same relationship as Exclusive or Non-exclusive.

This type of authorization policies can also avoid assigning two conflicted pairs

of role/resource type to one pair of service consumer/resource.

Synchronization

The sequence of accesses and supports by role (a group of service consumers) and

resource type (a group of component services) respectively on the operations of the

composite web service must be consistent with the operation execution sequence, i.e.

a role-flow and a resource type-flow must be synchronized with the control flow of

operations. The reason is that, a service consumer as assigned role or a resource as

mapped resource type is not able to access or support the past operations (the opera-

tions that have been accessed or supported) unless the business logic of the composite

web service allows, nor can they access or support the operations that are needed in

the future but not now. Without this synchronization restriction on the role-flow and

resource type-flow, the service consumer and the resource can obtain the right to access

and support any operation without considering the well-defined execution sequence of

the operations. Such chaos and disordered authorization could do harm to the whole

execution of the composite web service, where the needed service consumer or resource

is not available, or the service consumer and the resource do extra and unnecessary

work causing security issue. Therefore, we need to devise synchronization policies to

restrict the access sequence of role and the support sequence of resource type based

on the control flow of the operations in the composite web service. Authorization syn-

chronization policy is divided into two types, (1) Role Synchronization Policy and (2)

Resource Type Synchronization Policy. (See Fig. 1.5)

34 Introduction

Figure 1.5: Authorization Policies for Synchronization and Dependency

Dependency

Authorization Dependence Policies restrict that a role or a resource type is not able

to access or support the operations, until another role or another resource type has

already accessed or supported specific operations. However, although the depended

access or support has been made, the execution of the depending access or supports

is not a must. The depended access or support is only a necessary condition for the

depending access or support, but not a sufficient condition. Authorization Dependence

Policies are separated into 5 categories, (1) between roles, (2) between resource types,

(3) between roles and resource types, (4) between resource types and roles, and (5)

between groups of roles and resource types. By defining the dependency policies, we

can further restrict the access sequence of role and the support sequence of resource

type on top of their synchronization with the execution sequence of the operations.

(See Fig. 1.5)

1.4.4 Authorization Policies Verification

Authorization policies are enforced based on the process model SOAC-Net. However,

checking whether all policies defined in SOAC-Net are correct is still an issue that is not

1.4 Contribution of the Thesis 35

tackled. The improper authorization policy definition can even cause the cancelation

of the execution of a composite web service due to the missing of necessary accesses

and supports from service consumers and resources, respectively. Therefore, we need

to provide a verification mechanism on the authorization policies based on SOAC-Net

to ensure the defined authorization policies can consistently work with the execution

of the operations. We call authorization flow that can consistently work with the

execution sequence of the operations of composite web service as reliable authorization

flow. However, when an authorization flow becomes unreliable, a dead state definitely

occurs in SOAC-Net, i.e., the necessary role or resource type is missing that causes

the service consumer or resource not being able to access and support the operations.

For example, if an important operation is not mapped with any role, how can service

consumer as specific role access the operation? Then how the composite web service

can execute further with an operation without any access from service consumer?

Petri-Net [44] provides a set of verification mechanisms[46], and its graphically

and mathematically founded modeling formalism with various algorithms for design

and analysis[45] makes it a good candidate for modeling authorization flow. Dead

marking is a property of Petri-Net based process model that can be used to detect

the dead state in SOAC-Net. Dead Marking in Petri-Net model means a markings

having no enabled binding elements. In Petri-Net model, markings are used to model

the steps of the execution of the Petri-Net based process model. When a marking has

no enabled binding elements, it means, that the marking can not be moved into next

marking, i.e., the process mode is in a dead state. Hence, based on the property of

Dead Marking, we develop a new property for the purpose of authorization reliability

verification based on SOAC-Net, authorization-embedded dead marking freeness, which

can verify the Improper Authorization Policy Definition. Formal verification approach

associated with the property is also presented.

36 Introduction

1.4.5 SOAC-Engine

The SOAC Engine is developed with JAVA and Oracle, and resided in local web server

where the composite web service is running. It transfers the authorization messages be-

tween service consumer and the engine, and between the engine and the component web

service through Application Interface. Authorization Management Interface of

SOAC Engine is used by administrator to (1) set the elements of SOAC and their re-

lationships, (2) identify the conflicted relationships among elements, and (3) manage

the authorization policies for both composite web services and resources.

The SOAC Engine includes four component packages: (1) Authorization Administrative

Management manages the elements of SOAC and their relationships, e.g., querying the

assigned roles for specific service consumer. (2) Credential Management manages cre-

dentials for service consumers and resources. (3) Authorization Decision Making

performs the policy compliance checking to make authorization decisions. The conflict

of interest is checked in this packages. (4) The Authorization Enforcement controls

the enforcement of authorization policies related with the composite web service and

its component services.

1.5 Organization of the Thesis

In this thesis, we provide a general authorization framework to manage the composite

web service authorization. Conceptual model and associated process model are devel-

oped. Based on the models, various types of authorization policies are enforced and

verified to guarantee the successful composite web service authorization. The rest of

this thesis is organized as follows,

Chapter1 As show in Fig. 1.6, we start in Chapter 1 by providing an introduction to the

research. In this chapter we introduce the reader to the main topics of the thesis,

identify the research issues, and outline the research proposal to resolve these

issues.

1.5 Organization of the Thesis 37

Figure 1.6: Organization of the Thesis

Chapter2 Next, in Chapter 2 we analyze related work in this area to identify current short-

comings and problems based upon which we extrapolate the requirements for

our approach. We firstly review the work in Service Oriented Computing (SOC),

where service composition is one of the main part in the area. We also examine

the works in Business Process Management (BPM), which facilitates the man-

agement on the execution sequence of a web service composition. Secondly, we

will overview the research in existing authorization model, like MAC, DAC, and

RBAC. We will particularly analyze the existing family of RBAC models, where

our proposed model are derived from. Finally, preliminary knowledge regarding

to the Petri-Net and its associated verification methods is presented.

Chapter3 As show in Fig. 1.6, in Chapter 3, we are stepping into the core part of the

thesis. In this chapter, we will propose the conceptual model of service oriented

38 Introduction

authorization control (SOAC). Elements and their relationships in SOAC will be

exposed in this chapter. Various types of administrative functions on manag-

ing these elements and relationships are also introduced in this chapter. These

functions are programmed in SOAC Engine as our implementation.

Chapter4 Chapter 4 mainly focuses on managing conflict of interest in terms of authoriza-

tion based on the conceptual model SOAC. We will examine the relationships

between the same type of elements in deferent authorizations to avoid conflict

of interest. Furthermore, a series of extended authorization policies are used to

avoid conflict of interest for one element in different authorizations, e.g. one

service consumer or one resource. Both types of authorization policies to avoid

conflict of interest are classified into four categories at design time and runtime.

These four categories are classified based on the features of a service composition,

i.e. at different parts of service composition-service provision, service realization,

and integration part.

Chapter5 In Chapter 5, a Petri-Net based process model SOAC-Net is developed based on

the conceptual model SOAC. Authorization Synchronization Policies and Autho-

rization Dependency Policies are proposed in this chapter. These two types of

authorization polices can be enforced based on the SOAC-Net.

Chapter6 In Chapter 6, we tackle the issue of Improper Authorization Policy Definition that

can cause the authorization flow unreliable. Based on the verification methods

originating from the common Petri-Net, we develop the property, authorization-

embedded dead marking freeness, to verify the reliability of authorization flow.

Chapter7 In Chapter 7, we propose a SOAC Engine as our implementation. SOAC Engine

is developed based on the SOAC conceptual model and SOAC-Net process model.

It can provide authorization to service consumer by considering the situation of

the component web service. The authorization will be granted based on the en-

forcement of the authorization policies. Verification on the authorization policies

is also provided by SOAC Engine for the system administrator.

1.5 Organization of the Thesis 39

Chapter8 In Chapter 8, we provide concluding remarks of this thesis and discuss directions

for future research.

40 Introduction

2
Preliminary

2.1 Introduction

Business Process Management (BPM) is a novel technology addressing how the or-

ganizations can identify, model, develop, deploy, and manage their business processes

including processes that involve IT system and human interaction [10]. The Service

Oriented Architecture (SOA) paradigm defines the concept of applications consisting

business process as service unit. A group of service units are composed and executed

together as an orchestrated sequence of messaging and event processing. Consequently,

the confluence of SOA and BPM is resulting in a new process-centric paradigm that

delivers the enterprise business logic in web service interaction as a combined effect of

business process logic and application control logic. In this chapter, we will briefly intro-

duce the relevant terminology and technology of Business Process Management(BPM)

41

42 Preliminary

as well as Service Oriented Architecture (SOA), since the principle and theme of our

authorization models in service composition are derived from the convergence of these

two areas.

Followed by introducing on BPM and SOA, reviewing the state of art on existing

authorization management based upon a historical point of view is also necessary, espe-

cially for us to compare their advantages and limitations in the literature. Role based

access control (RBAC) has become the most popular security mechanism implemented

in industry products and attracts more and more researchers to focus on maturing the

RBAC models. Hence, in this chapter, a family of RBAC models will be addressed in

details. There are also many role-based authorization models that have been created

in web service domain. However, they are not suitable for managing composite web

service authorization. The advantages and the limitations of their work will also be

exposed in this chapter. Authorization in business process management is another type

of related work that should be stated in details in this chapter. Our proposed autho-

rization model in this thesis is developed based on the existing role-based authorization

models in both web service domain and business processes environment.

Since Petri-Net is the formalization intended to support the construction and devel-

opment of our process model, its variation and corresponding verification mechanism

are also presented in this chapter.

The rest of this chapter is organized as follows. Section 2.2 introduces the Business

Process Management and Service oriented Architecture. A review of state of art on

authorization models is presented in section 2.3. Finally, section 2.4 introduces the

Petri-Net with its variation and verification methods.

2.2 Service Oriented Architecture and Business Process Management43

2.2 Service Oriented Architecture and Business Pro-

cess Management

2.2.1 Service Oriented Architecture

SOA is a novel philosophy for building distributed applications in which the elementary

unit is a service. In SOA, a web service is a platform-independent, loosely-coupled,

self-contained programmable web enabled application that can be described, published,

discovered, coordinated and configured using XML artefact for the purpose of devel-

oping distributed inter-operable applications [13].

Under XML artefact, the service is standardized as several protocols for web service

publishing and discovering, such as Web Service Description Language(WSDL), Simple

Object Access Protocol (SOAP), and Universal Description, Discovery, and Integration

(UDDI). Moreover, a series of extended web service specifications are created for the

service orchestration and choreography, which state the service composition and service

interaction respectively.

In a word, by using web service technologies in SOA , enterprise can flexibly solve

enterprise-wide and cross-enterprise interaction challenges and thereby quickly address

business challenges and opportunities [12].

Web Service Infrastructure

In order to implement the function of the web service such as platform-independent,

the web service specifications require [16]:

1. A common syntax to standardized the data structure and formats,

2. A mechanism to define that a message regulated by common data format must in-

teract with other remote sites according to the specific interaction forms through

a series of binding on mapping message into a transport protocol,

3. An interface to describe service,

4. A name and directory of a service to locate where it is.

44 Preliminary

XML as a markup language can provide standard syntax for all of web service spec-

ifications through common XML schema mechanism which can define the format and

structure of each specification according to own functional requirements.

Simple Object Access Protocol - SOAP is a standard for exchanging XML-

formatted messages among web services [17]. It standardizes the message transfer-

ring among the organizations into a common data format, and defines PRC-style and

Document-style as the interaction models for message transferring. SOAP is naturally

wired with HTTP to receive and send transport protocol packets.

Web Service Description Language - WSDL is an XML format for describ-

ing network service as a set of endpoints operations on messages containing either

document-oriented or procedure-oriented information [18]. WSDL separates the ser-

vice endpoint into abstract definition and concrete definition. In former one, the mes-

sages which are the abstract description of the data being exchanged and the port

types which are abstract collection of operations are stated. In latter one, it binds data

format specification for a particular port type with the concrete protocols e.g SOAP

or HTTP.

Universal Description,Discovery, and Integration - UDDI is a platform-independent,

XML-based registry for organizations to list services of themselves on the Internet. It

defines a set of services supporting the description and discovery of (1) businesses, orga-

nizations, and other Web services providers, (2) the Web services they make available,

and (3) the technical interfaces which may be used to access those services [19]. Three

inter-related components are included: white pages which define the address and other

key points of service contact, yellow pages which classify the information according to

the industry based upon the industrial taxonomies, and green pages that describe the

service including the references to the specifications for webs service and pointers to

the file and URL based discovery mechanism.

2.2 Service Oriented Architecture and Business Process Management45

Figure 2.1: Web Service Reference Architecture

Through the three XML-based standardized protocols, the web service infrastruc-

ture can implement the platform-neutral interactions in the loosely coupled web envi-

ronment, see Fig. 2.1. Three entities involve in the web service reference architecture:

service provider, service requester, and service registry. Obviously, WSDL provides

standard service interface which hides the heteronomous system platforms in each en-

tity, e.g J2EE for service requester and .NET for service provider respectively. SOAP

encapsulates the message transferred between the entities with the specific binding

which is independent to the transport protocol. The service provider, to begin with,

registers the service in the service registry which stores the necessary information of

the service in the UDDI repository [103]. As soon as the service requester queries the

service in service registry, ideal service information including the contact and loca-

tion information will be returned to the service requester so that the service requester

will know how and where to interact with service provider on the loosely coupled web

environments.

Web Service Composition

Generally, In order to provide value-added service to the service consumer, also known

as service requester in Web Service Reference Model, the organization will compose

a series of component services together to provide comprehensive functions to service

46 Preliminary

Figure 2.2: Web Service Orchestration and Choreography Reference Model

consumers by complex coordinations [102]. Therefore, A composite service is also a

service that aggregates multiple component services and adopts the functions of theses

component service based upon specific business logic. The term orchestration and

choreography are two views on service composition. SOC as a distributed application

integration paradigm is then constructed and dynamically facilitated from these two

aspects [38].

Orchestration deals with the description of the interactions in which a given ser-

vice can engage with other services as well as the internal steps between these in-

teractions. Business Process Execution Language for Web Service (BPEL4WS) is the

leading specification in this view of point [36]. Choreography captures collaborative pro-

cesses involving multiple services and especially their interactions seen from a global

perspective. The representative specifications in choreography point of view are Web

Service Choreography Interface (WSCI) and Web Service Choreography Description

Language (WS-CDL) (See Fig. 2.2).

In a word, the orchestration refers to an executable business process that can in-

teract with both internal and external web services at message level which include the

2.2 Service Oriented Architecture and Business Process Management47

business logic and task execution order [37]. Orchestration always represents control

from one party’s perspective. Choreography mainly focuses on collaborative behavior of

the organization. In choreography, the public message exchanges between organizations

are more concerned–rather than a specific business process executed in an individual

organization. Choreography tracks the public message sequences among collaborative

organization from a global view only.

For example, in Fig. 2.2, from global view, the web services in three organizations

are interacted together. The web service choreography will only focus on these public

interactions among the web services, and ignore how each web service involve in these

interactions. All service interactions can be identified from web service choreography.

On the other hand, we choose organization A’s view to illustrate the web service or-

chestration in Fig. 2.2. From service orchestration point of view, each organization

involving in these web service interactions in Fig. 2.2 has their own opinions on these

service interaction. If we take organization B’s orchestration view as example, then

services and associated service interactions in organization C can not be viewed com-

pletely through organization B’s orchestration view since they are not interleaved with

the services in organization B. In web service orchestration, the business logic of the

web services of the organization and associated service interactions are the concerns.

Our authorization models are developed from web service orchestration’s point of

view, i.e the composite web service’s point of view, where the authorization manage-

ment mechanism will be implemented to control the access and support from service

consumer and component service that interact with the composite web service. How

the service consumer or the component web service to interact with other web service

and how to manage the related authorization issues in terms of the service consumer

and component web service on the other web services are not taken into account in our

authorization framework. We believe that, each web service involving in the multiple

and cross organizational business interactions should bear its own authorization man-

agement systems. An central controlled authorization system developed based on web

service choreography’s point of view is not realistic. Here below, several representative

web service protocols in web service composition are introduced in details.

48 Preliminary

Business Process Execution Language for Web Service - BPEL4WS is an

XML-based executable langauge which defines a model and a grammar for illustrat-

ing the behavior of a business process based on the interactions with the services of

other participants [41]. BPEL4WS is developed from web service orchestration’s point

of view. BPEL4WS composes a series of services within one organization as service

orchestration, some of which may require interacting with other services resided in the

process of organization’s collaborators, and some of which may not as internal actions.

BPEL4WS defines the service process from individual organization point of view that is

distinguished with the service choreography which takes care of the observable behavior

of each participant in the business collaboration only, treated as the business interac-

tion. BPEL4WS has become a basic XML-based specification of service composition

which can generate value-added nest service.

BPEL4WS uses partnerLink Type, partnerLink, and Endpoint References to de-

scribe the cross-enterprise business interactions in which the business process of each

organization interacts through web service interface with the processes of other organi-

zations. Moreover, a series of basic activities to illustrate the behavior of the business

interactions and the structure activities to map the process sequences in each organiza-

tion are defined in BPEL4WS. Detailed workflow patterns and communication patterns

that the BPEL4WS provide can be recognized in [47]. Data handling and fault handler

associated with event handler are encapsulated in the Scope to coordinate the execu-

tion of the process under a consistency manner. Message correlation is also included

to ensure the reliability of message transferring in and out of the organization.

Web Service Choreography Interface - WSCI is an XML-based interface de-

scription language that describes the flow of message exchanged by web service par-

ticipating in choreographed interactions with other service [40]. WSCI is a dynamic

interface of web service operated with the static interface of web service-WSDL. WSDL

only defines the content of the service, such as the name and type of the required mes-

sage, or the portTypes which provide operations to deal with the messages. However,

2.2 Service Oriented Architecture and Business Process Management49

WSCI mainly focuses on the execution order of the operations and messages of interac-

tions defined in the WSDL. These interactions are then observed as the behavior of the

participant. Another WSCI global model is introduced to accentuate the connection

of the behavior of the participants and the behavior of its collaborators.

Web Service Choreography Description Language - WS-CDL is an XML-

based language that describes peer-to-peer collaborations of participants by defining,

from a global view point only, their common and complementary observable behavior

where ordered message exchanges result in accomplishing a common business goal [39].

Through describing the components of roleType, relationType, informationType, to-

kenType and channelType, WS-CDL describes a choreography of business interactions

among the participants which can represent their observable behavior only.

2.2.2 Business Process Management

A business process is a real-world activity consisting of a set of logically related tasks

that produce a business outcome according to the correct business rules, when per-

formed in the appropriate sequence [5]. Business process management is to support

business process using methods, techniques, and softwares to design, enact, control and

analyze operation process including human, organizations, applications, documents and

other sources of information.[11] There are four stages during the lifecycle of business

process: design, process configuration, process enactment, and diagnosis [35]. In de-

sign phase, based on the business requirements, the process is modeled and created. In

configuration phase, the process is configured according to the system, e.g. workflow

system [20, 21]. The process is performed in the process enactment phase. Finally, the

diagnosis phase monitors, analyzes and optimizes the process [10].

Therefore, technology of business process management is, to a few extent, related

to the workflow technology, which means that passing paper from person to person in

enterprise is presented as flowchart. Workflow technology is responsible for managing

the flow of work and informationalize the content of documents, thereby enabling work

50 Preliminary

Figure 2.3: Workflow Management Coalition’s Reference Model (c© WFMC)

automated and paperless. The Workflow Management Coalition (WFMC) defines the

workflow reference model such as Fig. 2.3 [15] which generally describes the architec-

tures of workflow management systems and summaries the main components in the

systems and the associated interfaces. The heart of the workflow system in the refer-

ence model is the Workflow Enactment Service [14], which ensures the right activities

are carried out in the right order and by the right people. The Process Definition

Tools illustrate the processes and the organizations used by the Workflow Enactment

Service. Through Workflow Client Applications, a work item can be specified to the

individual employee to perform the task, while the Invoked Application is the software

application executed for the specific task. All of workflow tracking case control are

distracted to the Administration and Monitoring Tools. However, BPM is a further

step on workflow to accomplish the business objective. Not only inherited the flowl-

ization, BPM also provides simulation, verification and validation of process design,

and collects and interprets the real-time date. In a summary, BPM supports various

phases of operational business process from design, configuration, enactment, even to

diagnosis [25–28, 104].

2.3 Authorization Models 51

Nowdays, with the emergence of cross-organizational business process, BPM is fur-

ther conflated with the SOA technology, a forefront of enabling a desired degree of

process independence [22–24]. Service Oriented Computing (SOC) is then generated

as an innovative distributed computing to implement the integration of business ser-

vice applications in the multiple heterogeneous system platforms and collaborate the

autonomous organization as a whole.

2.3 Authorization Models

2.3.1 Role-Based Access Control

Role based access control is a very popular security mechanism implemented widely

in industry products and has attracted a lot of research interest in academic domain,

recently. In [52, 53], a basic Role-based Access Control (RBAC) model is presented.

The security policy in RBAC does not directly grant permissions to users but to ap-

propriate roles. In Fig. 2.4, a complete RBAC conceptual model is presented, that we

will introduce in details later. The RBAC model shown in Fig. 2.4 has experienced

evolvement since 1970s. As shown in Fig. 2.5, RBAC0 is a basic RBAC model, where

only the major elements and associated relations, e.g. User, Role, Permission, Object,

and Session, are presented. RBAC1 is evolved from RBAC0, where role hierarchy is

added on top of the basic RBAC model. In RBAC2, several authorization constraints

are added to restrict the mappings between elements based on RBAC0, to satisfy

specific business security requirements. The consolidated model RBAC3 is from the

combination of RBAC1 and RBAC2, i.e the model shown in Fig. 2.4.

Basic Model-RBAC0

In basic model RBAC0, most elements related with the authorization are identified as

well as their associated relationships. User (U) in RBAC model represents the subject,

i.e. an entity that requires the right to access. It can be human being in normal

52 Preliminary

Figure 2.4: Role Based Access Control (RBAC) Conceptual Model)

Figure 2.5: A Family of Role Based Access Control Models

security system in commercial company or organization. It also can be an application

or even a paragraph of program code which requires the right to do something.

Role (R) in RBAC is a core idea that contributes the popularity of RBAC security

mechanism. Role is a group concept that can encapsulate a type of users. It is generally

a position in commercial company or organization, e.g. programmer, accountant, or

HR Supervisor. In normal RBAC system, the roles can represent the structure of an

organization.

Permission (P), also known as access right or privilege, is a behavior that can

be operated on the object by the subject. For example, the permission in database

domain can be Read, Write, Update, Open etc. These permissions can be implemented

2.3 Authorization Models 53

on specific object.

Object (O) is the entity that can be accessed by the subject. The objects in

database domain, for example, can be tables, columns, and even a database. Since

the permission can only be used on specific object, their relationship becomes stable.

Hence, sometimes, the permission and the object are mapped together as a group idea

PRMS, or called permissions only. For example, the read, write and update permissions

can only be used on tables in database, and open permission is only used on database.

Therefore, sometimes, read-table, write-table, and update-table are grouped together

to be mapped with role. If a role is mapped with the permission, e.g. read, then read-

table will be assigned to the role automatically for concision. The mappings between

elements will be introduced in details later in this section.

Session (Se) is created when a user is activating a subset of assigned roles. When

the user stops activating the roles, the session is terminated by the system.

Now let us introduce the mapping relations between these elements. User Role

Assignment (URA) is used to create the relations between user and roles. It is a many-

to-many relation where a user can be mapped with multiple roles and a role can be

assigned to multiple users. Role Permission Assignment (RPA) is used to create the

relations between roles and PRMS (the relations between permissions and objects has

been introduced already.). It is also a many-to-many relation, where a role can be

mapped with multiple PRMS, i.e. with multiple permissions on specific objects, and a

PRMS can be mapped to multiple roles. Through these two assignments, a user can

ultimately obtain specific permissions on specific objects from the assigned roles. This

greatly reduces the administrative overhead on managing user-to-permission relations

directly. The efficient advantage has been introduced in section 1.1.2. Moreover, the

role-permission (also known as PRMS) is stable and not easy to change. It can be pre-

defined in a security system. On the other hand, the user-role relation is more dynamic

and needs improvised management, e.g. to decide which role the user belong to. By

introducing the concept Role in RBAC, the total authorization work is separated as

determining the relation of role-permission (or PRMS) and determining the relation

of user-role. Since without deep knowledge of the business, it is hard to set up the

54 Preliminary

role-permission relations as it is about determining the structure of the organization.

Therefore, once relation of role-permission is set up, it is seldom to require change.

However, determining which role the user should belong to is easier and may occur

frequently for system administrator on conferring or revoking the relations according

to the specific business policy of the company, e.g., when HR supervisor issues an

assignment on George as a Sales Team Leader (STL), the system administrator just

needs to create the relation of George-STL based on the assignment from HR Supervisor

without the deep knowledge on what the sales team leader can do.

As shown in Fig. 2.4, User Session (USe) is a mapping between user and sessions.

It is a one-to-many relation where a user can create multiple sessions, and a session

can only belong to one user. Role Session (RSe) is a mapping between the session

and the activated roles by users. It is a many-to-many relation where both role and

session can be mapped each other with multiple across relations. By introducing the

concept Session, how the user activates the assigned roles at runtime can be considered

by RBAC.

Role Hierarchy-RBAC1

The basic model of RBAC exposes the advantages of RBAC by introducing the concept

Role and Session. However, naturally, based on the structure of the organization, there

exists a relationship between roles, i.e. role hierarchy. For example, sales person and

sales team leader (STL) are two roles within an organization. Obviously, the STL is

the supervisor of sales permission, whose rights include the right of the sales person as

well. In RBAC1, the role hierarchy is presented, that is mathematically reflected as

partial order, where the senior role can inherit the permissions of the junior role.

Constraints-RBAC2

In RBAC2, various types of constraints are introduced to restrict the mapping between

the elements, particularly for the relation between role and user. The constraints can

be summarized as follows,

2.3 Authorization Models 55

• Separation of Duties (SoD): SoD [56, 57, 100] is used to restrict that a user can

not be assigned exclusive roles to avoid conflict of interest. For example, the roles

of purchase manager and account payable manager can not be assigned to one

user, since cheating on purchase can occur. SoD can be enforced at both design

time and rumtime. At design time, a user can not be assigned with exclusive

roles. At runtime, a user can be assigned with exclusive roles, just in case that

the user can not activate the exclusive roles simultaneously. The constraint used

at design time is called Static SoD; while the constraint used at runtime is called

dynamic SoD.

• Cardinality: This constraint is used to restrict the amount of assignment of roles

to a user. For example, the role of CEO in a commercial company can only be

assigned to one user.

• Binding of Duties (BoD): BoD, on the contrary of SoD, is used to restrict that if

a user is assigned with specific role, then another role must also be assigned to

this user, i.e. the role is bound with another role on assigning to the same user.

There are still many other constraints enacted on RBAC2 to restrict the authoriza-

tion. Here we just present three main constraints.

Consolidated Model-RBAC3

RBAC3 is consolidated from the RBAC1 and RBAC2. Therefore, the constraints in

RBAC2 can also be enforced for the role hierarchy.

2.3.2 Authorization Model in Web Service Domain

However, traditional RBAC model is only suitable for authorization management

within individual organization. In RBAC, the object (also known as resource) is as-

sumed as a constant concept, which quantity is small, and can be fixed in advance and

less changed. However, in loosely-coupled web service environment, resource that is

56 Preliminary

needed to support the function spreads across-organizational boundary and is composed

in highly dynamic fashion. Hence, the dynamicity of resource in service environment

makes the authorization management in composite web service complicated. Research

has been done in service composition security by enhancing RBAC. We shall look into

some representative works in the area.

In [58], the authors propose a policy integration framework for merging hetero-

geneous Role Based Access Control policies of multiple domains into a global access

control policy, where the conflicts that arise among the RBAC policy of individual

domain can be solved by an integer programming based approach. Moreover, the au-

thors in [59] propose a model named distributed Role Based Access Control (dRBAC)

to manage authorization for systems that can span multiple administrative domains.

These researches both distinguish themselves from previous traditional RBAC by be-

ing implemented in a distributed environment. However, web service environment is

different from the distributed environment in that the web services are self-contained

and autonomous; while the applications in distributed domain to some extent share

the similar background and require an integration management from a global view.

Therefore, most approaches designed for distributed authorization management are to

develop a global view management based on the authorization management within in-

dividual domain. However, in web service environment, the web services are loosely

coupled and belong to different organizations without sharing any background or man-

agement. It means, an authorization management from global view in web service

environment is not realistic.

Therefore, most security experts become focusing on the authorization management

in web service domain. The authors in [60] propose an access control model CWS-

RBAC which takes the composite service into consideration. In CWS-RBAC, a global

role is assigned to service consumer to gain the permission to access the composite

service and a local role mapped from global role is assigned to service consumer to

access the other component services. The authors in [61] propose another concept-Role

Composition where two types of roles are composed together, global role and local

role. The paper analyzes how the local role issued by the individual component service

2.3 Authorization Models 57

is mapped to the global role from the composite services. In that case, if the service

consumer is assigned with the global role, then it automatically bears the permissions of

bound local role on the component service. However, by using such access approaches,

the ”role” as a concept used by specific service to manage the authorization is part of

internal security policy within each web service and can not be identified by the other

services. For example, the composite web service can not identify which role that it

can be assigned by the component web service that it needs to access. All that the

composite web service can perceive are what permissions can be granted based on what

type of credential, i.e, the authorization constraints (the public part of authorization

policy of each web service). Hence, the mapping of the global role issued from the

composite service with the local role generated in other component services is not

realistic.

The authors in [62] develope another extended RBAC model, WS-RBAC. Three

new elements are introduced into the original RBAC model, named enterprise, business

process and web services. The authorization constraints are described in WS-Policy [42]

and WS-PolicyAttachment [43]. However, these two standards are designed for message

level web services security. The security methods regarding to protect the information

of the operations of web service are totally missing.

In [63, 64], the authors propose a RBAC framework to manage access control in

WS-BPEL [41], named RBAC-WS-BPEL, and specify the authorization constraints

on the execution activities, i.e., web service’s functions. In this framework, the role is

assigned to user (human) to gain the permissions on the activities. A language named

BPCL to express these constraints based on XACML [65] and an algorithm to check

the consistency of the access control model are developed. However, it only focuses on

managing authorization of web service in terms of which staff in the organization can

be granted rights to deal with the message received from specific operations of the web

service in this organization. The protection on preventing the service confidential from

illegal access of other web service is totally ignored. The framework can not support

the composite service authorization where service consumer should be the subject to be

granted the right to access the operation of composite web service, but not the human

58 Preliminary

being within the organization.

In [66, 67], the authors propose a logic framework for reasoning about the access

control for WS-BPEL. The exchange of requests between business partners for sup-

plying or declining missing credential is considered. However, how to coordinate the

access control of component service with the authorization of composite web service

is not taken into account. The paper only provides reasoning methods in terms of

detecting if the credential that the service consumer can provide is matched with the

credential that the composite service requires. They believe if the entity of the service

consumer can be identified by the credential, then the access right can be granted to

service consumer where the authorization management regarding to the component

service is missing.

In [70, 71], the authors provide an enforcement and verification approach to guar-

antee that a service choreography can be successfully implemented between a set of

web services (service consumer and the composite web service), based on their autho-

rization constraints. However, the paper did not mention how to manage the access

control after the authorization constraints of the composite web service are satisfied.

The authorization constraints of the supporting resources are totally ignored.

In [68, 69], the authors propose an authorization specification for WS-BPEL, where

the involvement of human being is also considered. However, the papers, like [63, 64],

also emphasize the involvement of human being on handling the message received from

specific operations of web service within one organization. The access management

on which operation of the web service can be accessed by what service consumer is

completely not touched.

Conflict of interest is a major concern in traditional RBAC models. In order to

deal with conflict of interest, static and dynamic separation of duty mechanisms are

defined in RBAC standard [54, 55]. The authors in [72] have discussed the conflict

of interest in the authorization of web services. However, this research deals with

the authorization of web services using the same way as those authorizations in close

systems. In particular, the features of composite web services have not been taken into

consideration. It is lack of existing works to identify and deal with possible types of

2.3 Authorization Models 59

conflict of interest for service consumers, for component services, and between service

consumers and component services in composite web services.

Although plenty of existing enhanced RBAC mechanisms and approaches have been

presented which focus on managing access control in service composition, they are still

insufficient in:

1. ignoring the dynamic nature of composite web services that requires resources

based on-demand;

2. missing an efficient way to the administration of the resources in service-oriented

authorization;

3. hard coding the roles issued from resources and composite service;

4. lack of authorization rules for preventing conflict of interest in composite web

service authorization.

Therefore, an extended RBAC model is required to manage composite web service

authorization by taking both authorization policies of component service and composite

web service into account. Authorization constraints, e.g. separation of duties, also

should be considered within the new model.

2.3.3 Authorization Model in Business Process Management

Another major domain where the RBAC authorization model is implemented a lot is

business process, also known as workflow authorization management.

The authors in [73] have proposed a role based access control method through

Petri-Net workflows. Role authorization rights are granted according to the state of

the workflow. The access control matrices are also deployed at this stage to define the

role authorization policies. However, the authorization conflicts and errors regarding

to the mutually exclusive role assignments that can cause unreliable business process

is missing.

In [74], the authors propose a workflow authorization model (WAM) and an au-

thorization template (AT) to realize the synchronization of authorization flow with

60 Preliminary

workflow. However, the authorization constraints in terms of business process or work-

flow should not be limited on synchronization between authorization flow and workflow

only. Dependency policy that is used to restrict the authorization in a workflow also

should be taken into account, but is completely ignored in [74]. Moreover, the paper

uses a Petri-Net based process model to describe the workflow, which can not be used in

composite web service authorization. In service composition environment, the access

sequence of service consumers and the support sequence of component web services

generate two parallel flows that both should be synchronized with the control flow of a

business process. The process model in [74] can not be used to expose the authorization

constraints between the access sequence and the support sequence.

Authors in [75] extend the above WAM by using Colored Petri-Net to enforce

more policies, e.g. separation of duty (SoD) and binding of duty (BoD). However,

the important depending policy is still missing in [75]. Furthermore, unfortunately,

the Colored Petri-Net based process model is also not suitable to describe the two

authorization sequences, i.e. access sequence and support sequence, in composite web

service authorization.

In [76], the authors propose a constrained workflow systems where local and global

cardinality constraints as well as SoD and BoD are enforced. However, all above

authorization models in workflow environment do not take resource into account, and

can not be used in web service environment. The authorization dependency policies

are also missing in the existing models.

In [77], the authors mainly extend the RBAC by adding an element of Workflow

which consists of multiple tasks to enforce the separation of duties (SoD) in workflow

environment. The conflicted role, conflicted permissions, conflicted users and conflicted

tasks are all considered in terms of when the policy of SoD should be enforced to

avoid the conflicted authorizations. However, by adopting the authorization methods

proposed in [77] in composite web service environment, the question of how the service

consumer can orderly access the tasks (operations) of the workflow based on the business

logic without causing any conflict is answered. But the questions of how the component

service can orderly support the task of the workflow and how to coordinate the access of

2.3 Authorization Models 61

service consumer and the support of component service to avoid any conflict of interest

are still missing in [77].

The authors in [78, 79] present an extended RBAC model in workflow environment

named RWAM (RBAC96 Workflow Authorization Model). Both role hierarchy and

constraints are considered with RWAM. The authorization flow is synchronized with

the execution of the normal workflow by a temporal policy. However, the tasks within

a workflow may be executed flexibly without complying with any strict time table.

Hence, this method is hard to manage the synchronization between the authorization

flow and the workflow, when the execution time of the tasks in workflow is undecidable.

In [80], the authors propose algorithms to check the consistency of constraints

and assign users and roles to tasks that constitute the workflow in such a way that

no constraints are violated. Both static and dynamic authorization constraints are

expressed as clauses in a logic program. However, the reason that the work presented

in [80] is still not suitable for composite web service environment is that the access

sequence and support sequence are not simultaneously considered in authorization

management. Their coordination on enforcing authorization constraints can be merely

expressed in the normal workflow model.

In [81], the authors propose a flexile access control with dynamic checking features

for handling workflow changes and exceptions. Temporal RBAC is used to synchro-

nize the authorization flow with the execution of the workflow. Unfortunately, the

dependency policy and synchronization policy are missing and not presented in [81].

Moreover, only adopting temporal rules to synchronize the authorization flow with

workflow can not effectively manage the changes of the initiation time or finalization

time of the tasks within a workflow.

In [82], the authors use an extension for the Business Process Modeling Notation

(BPMN) to express authorizations within the workflow model, enabling the support of

resource allocation pattern, e.g. SoD, Role based allocation, case handling, or history

based allocation. BPMN is a standard for business process modelling that provides a

graphical notation for specific business process in a business process diagram, based

on a flowcharting technique very similar to activity diagrams from Unified Modeling

62 Preliminary

Language (UML). BPMN adopts traditional Role Based Access Control mechanism

to restrict the authorization, where each organization involved in a business process

mainly considers a question, who can access the activities of mine. However, the BPMN

based authorization model in workflow environment still does not take component web

service into account, and can not be used in composite web service environment. In

a composite web service, in addition to thinking about how to prevent unauthorized

access on the operations of composite web service, how to access the operations of a

component web service should also be taken into account by the composite web service,

and the coordinations on these two types of authorization should be concentrated, but

is still ignored by BPMN. The authorization synchronization policies and dependency

policies are also missing in the model.

In a summary, the existing authorization models in workflow environment, also

known as business process, can not be used to express the composite web service

authorization lies in,

1. The formal methods, e.g. Petri-Net based process model, BPMN based model or

state machine based model, used to describe the business process or workflow can

only express access sequence of the service consumer and the workflow. Therefore,

only the synchronization between the access sequence of the service consumer and

the execution sequence of the workflow can be considered. However, in composite

web service authorization environment, the support sequence of the component

web service should also be taken into account. Also, with the involvement of

the support sequence, the synchronization should not only be between the access

sequence and the execution sequence of the workflow, but also be between the

support sequence and the execution sequence of the workflow. Moreover, the

issue for synchronizing the access sequence with the support sequence becomes

another problem that should be tackled in composite web service authorization

management.

2. In addition to the authorization synchronization policy, authorization dependency

policy is another one that is used to restrict the access of service consumer and

2.4 Petri-Net 63

the support of component service. Unfortunately, no research work has designed

any approach to express this type of authorization policy. Only popular policies

of SoD, BoD and Cardinality are considered in these works. However, in binding

policy, if specific access of service consumer is enabled, then the bound access of

service consumer must be executed. The two accesses of service consumers are

completely bound. But in dependency policy, the depending access of service

consumer can be performed only after the depended access of service consumer

is executed. But the execution of the depended access of service consumer does

not means that the depending access of service consumer must be enabled. It is

only the necessary condition that the depending access of service consumer can

be enabled, but not the sufficient condition. Although it is a nuance between the

policy of BoD and dependency, this type of policy still plays important role in

authorization management that attention be paid.

Therefore, a process model should be developed to catch both the sequence of

access and the sequence of support as authorization flow. Execution sequence of the

workflow should also be described by the process model. Moreover, the authorization

synchronization policy and authorization dependency policy ought to be enforced based

on the new designed process model.

2.4 Petri-Net

2.4.1 Petri-Net with Variation

Petri-Net is a net theory advanced by Dr. Petri in 1962 [44]. The advantages of its

graphically and mathematically founded modeling formalism with various algorithms

for design and analysis [45] make it a good candidate for modeling the authorization

flow.

Definition 1 A Petri-Net is a tuple N=(P,T,F), where:

• P is a set of places graphically represented as circles.

64 Preliminary

Figure 2.6: Various Types of Petri-Nets

• T is a set of transitions graphically represented as dark bars. P∩T = Null.

• F⊆{P×T}∪{T×P} is the flow relation between places and transitions.

Marking of a Petri-Net is an allocation of tokens to the places of the net formally

defined as a function M: P→ R|P |, where R|P | is a |P | × 1 vector with |p| elements.

The marking reflects the state of the Petri-Net after each firing. In a marking k, if

a token in p, then Mk(P)=1, otherwise Mk(p)=0. M0 is the initial Marking of the

Petri-Net.

Definition 2 A Marked Petri-Net is a tuple S=(N,M0) where N is Petri-Net, M0 is

the initial marking.

Through initial marking, we observe that the Petri-Net can reach a series of mark-

ings according to the firing of transitions. A transition t is enabled under M written as

M [t>, if •t ⊆M, where•t={y∈P|(y,x)∈F ∩ x∈T}. A firing sequence among multiple

transitions ti (i=1..n) can be written as M[t1>M’[t2>M”..., where the firing sequence

σ={t1,t2,...}.

Through investigating the marking M, we can observe a series of characteristics of

Petri-Net using several analysis tools. Here we introduce two matrixes named Incident

matrix [46] and Transitive matrix [50].

2.4 Petri-Net 65

Definition 3 For the Petri-Net N with n transitions and m places, the incident matrix

A=[aij] is an m × n matrix [46]and its typical entry is given by

aij = a+ij − a−ij

where:

a+ij =

 1 (i, j) In F

0 (i, j) Not In F
a−ij =

 1 (j, i) In F

0 (j, i) Not InF

i ∈ T and j ∈ P

Definition 4 a labeled place transitive matrix[50]:

LBP = A−Diag(t1, t2, ..., tn)(A+)T

where A−=[a−ij] and (A+)T=[a+ij]
T (T represents transpose matrix), ti(i=1,2,...,n) is:

|ti| =

 1 fire ti

0 not fire ti

Also we use L∗BP to extend the original transitive matrix in which t in LBP is

replaced by t/d in L∗BP , if a transition t appears d times in the same column of LBP .

Colored Petri-Net (CPN) [49] in Fig. 2.6 is an extension of Petri-Net in which

tokens are assigned with values. In service interactions, various types of messages

can be transferred within or cross organizations. Therefore, the message types can

be represented as colored tokens in CPN. Another extension of Petri-Net in Fig. 2.6

is Hierarchical Petri-Net (HPN) [48] in which different views in supporting different

levels of abstraction and refinement can be specified. In this THESIS, we call it net

refinement or refinement when a transition or place can be represented as one or more

HPNs. Timed Petri-Net is also an extension of basic Petri-Net by adding temporal

semantics [95, 96]. In the future, we will extend our Petri-Net process model proposed

in this thesis by considering the temporal influence on the authorization.

2.4.2 Petri-Net with Verification

In this section, we will illustrate the property of Petri-Net based process model, that

is related with our proposed authorization policy verification approaches addressed in

66 Preliminary

Chapter 6. That is Dead Marking Freeness. Dead Marking Freeness means that

all markings have enabled transition. Formally,

∀Mk ∈M,∃t ∈ T M → t

where → is the performance of transition enabling.

The Petri-Net provides a formal approach on verifying Dead Marking by using

transitive matrix [97, 98]. If the net is dead marking freeness, then for each mark-

ing there exists transition th (h=1..n) to be fired. The labeled transitive matrix L∗BP

illustrates the relation of •th (pre-places of transition th) and th
• (post-places of tran-

sition th) according to the specific fired transition th. We set a Reachable Marking

MR
k = Mk−1 · L∗BP to indicate which transition will be fired from state K-1 to state K.

Obviously, MR
k 6= Mk in that MR

k is used to analyze which transition is fired during the

process rather than illustrating the status of the whole net after kth firing, although

MR
k can be easily transformed to Mk.

The transitive matrix L∗BP [50] is an m×m matrix, where m denotes the amounts

of the places in a specific Petri-Net based process model. A transition t will be the

element of the transitive matrix L∗BP at row i and column j, if place i is the pre-place

of the transition and place j is the post-place of the transition. Through the transitive

matrix LBP , the structure of specific Petri-Net based process model is transferred into

a form of matrix.

The labeled transitive matrix L∗BP (m×m) is extended from the original transitive

matrix LBP in which th in L∗BP is replaced by th/d in L∗BP , if th appears d times in the

same column of L∗BP . It means that, if a transition th has d pre-places, then to enable

the transition in time, tokens must be able to arrive all d pre-places in time and each

token provides 1/d strength to support the enable of the transition th.

Marking M is a 1×m matrix to represent each step of the movement of the token in

the process model. An element in a specific marking is equal to 1 at row 1 and column

j, if there exists a token at the place j in this step of token movement; otherwise, the

element is 0 in the marking. For example, marking M1=[1, 0, 0] represents that a

token is in place 1; while marking M2=[0, 1, 0] means that a token is moved into place

2.4 Petri-Net 67

2 from place 1 after one step token movement (M1 →M2).

The token movement in the Petri-Net based process model could become true if and

only if specific transition in the model could be enabled and fired in time to consume

tokens from pre-place and deposit tokens in the post-place. However, if the transition

can not be enabled and fired, the token movement will be ceased in this transition and

is called dead marking. Here we introduce a verification method to see if a Petri-Net

based process model is dead marking free at the k step of token movement (k=1 to x,

where x represents how many steps are needed for the token to move from initial place

to final place in the process model). Before token moves from Marking MK−1 to MK ,

We use Mk−1 to be computed with L∗BP to get a temporary 1×m matrix M∗
k , called

Reachable Marking. In M∗
k , if there exists an element more than or equal to 1 at column

y (y could be any column), then we believe that marking Mk could be transferred from

marking Mk−1 where token is moved from specific place in Mk−1 to place y in Mk, i.e.

the Petri-Net based process model is dead marking free. The specific transition can be

enabled and fired to support the marking transfer.

2.4.3 Petri-Net with Service Composition

Petri-Net is a technique used widely for business process modeling and verification. We

shall look into some of the representative work in the area.

In [83, 94], the authors introduce PNML (Petri-Net Markup Language) to transfer

the composite service into Petri-Net model and implement algorithm based on the

model to verify the reliability of composition. However, the authors do not take into

account the interactions between web services of different organizations. It means that

the component service is not included within the Petri-Net model which makes it not

suitable for our composite web service authorization management.

In [84], the authors provide method to transfer BPEL4WS [41] to CP-Nets for

verifying web service composition. Another modified model based on Hierarchical CPN

in [85] is introduced later to detect the reliability issues of web service workflow. A series

of net properties are presented, such as reachability, boundness and dead transition etc.

However the model based on the Hierarchical CP-Net is constructed from a centralized

68 Preliminary

global view which includes all the detailed information of participants. This assumption

can not be held in the peer-to-peer loosely coupled web service environment.

In [86], the authors construct a verification framework for web service composition.

protocol conformance as the requirement of business interaction is presented to check

the correlation of the complex conversations among multiple organizations. However,

verification on authorization policy is totally missing in the process model.

The authors in [87, 88] introduce a property soundness for verifying the reliability of

WF-Net, a Petri-Net based workflow model. However without the presence of the cross-

organizational service interaction, the work can not be used by individual organizations

for managing service composition, which requires modeling both service consumer,

component service, and their associated interactions with the composite web service.

In [89], the authors link the algebraic metamodel to the Petri-Net representation for

describing the service composition. Unfortunately, the authors only present a math-

ematical formalism to describe the coarse-grained service composition without any

introduction on the external component service support on the composite web service.

The WS-Net [90] (Web Service Net) describes the web service components in three

levels to simulate the business interactions among service composition. However, in

WS-Net, both service consumers and component services that are needed to interact

with composite web service are set up in advance, which is not suitable for the features

of service composition. In service composition, the service consumers and component

service are loosely coupled with the composite web service. It is not realistic to identify

which service consumer can access the composite web service and which component

service can support the composite web service, in advance.

In a summary, the existing Petri-Net based process model can not be used to model

and verify the authorization management in composite web service lies in,

1. No petri-net based process model can describe both the sequence of access of

service consumer and the sequence of support of component web service, as well

as the execution sequence of the composite web service.

2.4 Petri-Net 69

2. No verification approaches have been proposed to detect the improper authoriza-

tion policy definitions.

Hence, a new Petri-Net based process model is needed based upon the proposed

conceptual model in this thesis. From next chapter, we will start to introduce the core

part of the thesis, where the conceptual model, the process model, the authorization

policy based on the two models, and the authorization policy verification method are

presented in details.

70 Preliminary

3
The Conceptual Model-SOAC

3.1 Introduction

In this chapter, we will mainly focus on presenting the conceptual model of service

oriented authorization control (SOAC), which can be used to manage the composite

web service authorization. In web service environment, a web service can compose

multiple component web services in a loosely-coupled environment. Web service tech-

nologies provide a technical foundation for seamlessly composing individual component

web services into a cohesive one [51]. However, how to manage the access on the com-

posite web service becomes a challenge in loosely-coupled environment. The research

problems are identified as follows:

1. Complicated Coordination on Authorization Policies: Each web service,

e.g. financial lease service or funder in motivating scenario in Chapter 1, bears

71

72 The Conceptual Model-SOAC

specific authorization policies to restrict the access on its operations. The Fi-

nancial Lease service is a composite web service and its operations are supported

by multiple component web services provided by other business partners. It is

not enough to enforce the authorization policies of the Financial Lease service

without considering the characteristics of these component services. For exam-

ple, in Fig. 1.2 in Chapter 1, the operation Lease Application is supported by the

component web services A, C and D from other organizations that can provide

fund and product. Hence, without properly handling the authorization policies of

the component web services, the Financial Lease service can not ensure if the au-

thorization to access the specific Financial Lease’s operations can be supported.

For instance, if the authorization to access the Lease Application operation has

been assigned to a specific service consumer, but Financial Lease service fails to

obtain the authorization from the other component web services, then the op-

eration can not be enacted and the unnecessary disclosure of Lease Application

operation occurs. This is the result of lack of coordination on the authorization

policies in Financial Lease service and its supporting component web services.

Therefore, granting the access on the Financial Lease service to a service con-

sumer needs to consider not only the service consumers but also the component

services. We should not only understand ”who should do what?”, but also need

to know ”who should do what under what kind of support”.

2. Dynamicity of Component Service and Service Consumer: Web services

are autonomous and interact with each other in a loosely-coupled environment.

Many web services compose component services in a highly dynamic manner.

For example, if a component service changes its authorization constraints from

asking Financial Lease service for professional lease certificate to requiring loan

qualification, then all the service operations in Financial Lease service that can

be supported by the component web service need to update their identifications

on the component service’s authorization constraints. Moreover, there are huge

amounts of web services that can provide the same or similar operations. For

3.1 Introduction 73

example, in Fig. 1.2 in Chapter 1, component services Funders 1 to 3, and Lease

Agents 1 to 3 can all provide financial support to Financial Lease service. Hence,

if the changes occur frequently and/or happen in thousands of web services, then

an efficient way to administrate these changes is needed. At this stage, the

dynamicity of web service impedes the efficiency of service-oriented authorization

management.

Therefore, efficient management on service-oriented authorization by coordinating

the policies in different web services is needed. Role Based Access Control (RBAC) [52]

is a widely accepted approach to restrict system access to authorized users. In RBAC,

users acquire permissions through their roles rather than they are assigned permissions

directly. This greatly reduces the administrative overhead associated with individual

user and permission. However, web services technologies facilitate the integration of the

loosely-coupled distributed applications. There may be a large amount of component

web services which are used as resources to support the composite web service’s opera-

tions. The quantity of service consumers can also be large. As illustrated in Fig. 1.2 in

Chapter 1, the system of the composite web service (Financial Lease Service) needs to

deal with not only a large number of users (service consumers) but also great amounts

of resources (component services). Moreover, the characteristics of these resources are

different from those of objects of RBAC in close systems. Hence, traditional RBAC is

not suitable for the service-oriented authorization management since it has not taken

the Resource into account. Note the Resource particularly can not be fully controlled

by composite web service in the context of service environment.

All existing role-based models in web service paradigm have not brought the ad-

ministration of resource into the picture. Actually, the quantity of resources can be

very large and they can be prone-to-change, which should be considered in web service

authorization. In research work [60, 61, 70], roles are assigned to service consumers for

service authorization. However all these researches have not put the resource into the

picture or they simply employ an unrealistic assumption that there is a global coor-

dination on internal authorization policies of each autonomous web service to enforce

the access control in service composition.

74 The Conceptual Model-SOAC

In this chapter, we propose an innovative conceptual model for authorization of

web services, named Service Oriented Authorization Control (SOAC). The conceptual

model will handle the web service authorization by dealing with not only a large num-

ber of service consumers, but also huge amounts of resources. Authorization policies

of the component web service and the supported composite web service are integrated

together for making authorization decision to a service consumer. Furthermore, ad-

ministrative functions are also presented to enforce the web service authorization from

a system perspective.

The rest of chapter is organized as follows. Section 2 describes the conceptual

model with the major features and detailed specifications. Section 3 discusses the

administrative functions. Concluding remarks is presented in Section 4.

3.2 Conceptual Model of Service Oriented Autho-

rization Control

In this section, we describe the conceptual model SOAC in details. Service Oriented

Authorization Control (SOAC) is used for managing the authorization of composite

web service. SOAC is divided into two parts, service provision and service realiza-

tion (See Fig. 3.1). We express the SOAC conceptual model by using the notation

of Entity-Relationship (E-R) Diagram. In Fig. 3.1, rectangles represent elements

and diamonds represent relationships. The functions and relationships defined in Def-

initions 5 to 7 are used to describe the different parts of SOAC and are mainly used in

Function Specification of SOAC in section 3.3.

3.2.1 Service Provision Specification

In service provision, a service consumer can get the authorization by fulfilling con-

straints of the composite service (See Constraint enacted between the elements of Role

(R) and Service Consumer (SC) in Fig. 3.1). In Fig. 3.1, we define service consumer

as the element that requires to access the composite web service’s operations (Op).

3.2 Conceptual Model of Service Oriented Authorization Control 75

Figure 3.1: Service Oriented Authorization Control (SOAC) Conceptual Model

Since service consumers are prone to change and the quantity of consumers can be vary

large, directly specifying the assignment of operations to individual service consumers

needs tedious administration efforts. In SOAC, we follow the philosophy of RBAC to

have the concept role to encapsulate the service consumers that can satisfy the au-

thorization constraints of composite web services. A role will be assigned to a service

consumer based on its characteristics (typically a credential that a service consumer

submits to the composite web service). Each role binds with a group of operations that

can be accessed. The roles guarantee that the composite web service’s operations can

only be accessed by the qualified service consumers. The mappings between service

consumers and roles are considered in the service provision part of SOAC with the

following formal specification.

Definition 5 The service provision in SOAC includes:

• SC, R ,and Op are elements representing Service Consumer, Role, and Opera-

tion.

• SCA ⊆ SC × R, a many-to-many relationship to map service consumer to role

assignment. Formally, ∀sc∈SC, ∀r∈R, (sc, r)∈SCA⇒ sc.credential = r.credential,

76 The Conceptual Model-SOAC

where the credential that the service consumer submits is consistent with the cre-

dential that the role requires.

• assigned sc:(r:R) → 2SC, the mapping of role r onto a set of service con-

sumers. Formally, assigned sc(r)={sc∈SC|(sc, r)∈SCA}.

• OPA ⊆Op×R, a many-to-many relationship to map operation to role assign-

ment.

• assigned op:(r:R) → 2Op, the mapping of role r onto a set of operations.

Formally, assigned op(r)={op∈Op | (op, r) ∈OPA}.

3.2.2 Service Realization Specification

Due to the feature of Dynamicity of resources, it is unrealistic to specify the rela-

tionships between resources and the supported operations of composite web services

individually. Resource type is defined for a set of resources by identifying their char-

acteristics and authorization constraints (See Fig.3.1). The composite web service can

bear multiple resource types that cover many resources. The resources can be accessed

to support the operation if the operation is mapped with a resource type that covers

these resources. Resources are linked with resource types with constraints. (See Con-

straint between the elements of Resource Type (ReT) and Resources (Re) in Fig. 3.1).

The mappings between resources and resource types are the major concerns in service

realization part of SOAC. Notes, based on its characteristics, a resource can belong to

multiple resource types. The formal specification of service realization is as follows.

Definition 6 The service realization in SOAC includes:

• Op, ReT, and Re are elements representing Operation, Resource Type, and

Resource.

• SPA ⊆ Op × ReT, a many-to-many relationship to map operation to resource

type.

3.2 Conceptual Model of Service Oriented Authorization Control 77

• assigned ret:(ret:ReT) → 2Op, the mapping of resource type ret onto a set of

operations. Formally, assigned ret(ret)={op∈Op|(op, ret)∈SPA}.

• RTA ⊆Re×ReT, a many-to-many relationship to map resource to resource type.

Formally, ∀re∈Re, ∀ret∈ReT, (re, ret)∈RTA ⇒ re.constraint = ret.constraint,

where the constraint that restricts the access on the resource is consistent with

the constraint that the resource type can fulfill.

• assigned re:(ret:ReT) → 2Re, the mapping of resource type ret onto a set of

resources. Formally, assigned re(ret)={re∈Re|(re, ret)∈RTA}.

3.2.3 Integration of Service Provision and Service Realization

Service provision and service realization in SOAC must be considered together for au-

thorization of composite web services. In Fig. 3.1, the mappings between the elements

of Role (R), Operation (Op), and Recourse Type (ReT) integrate the service provi-

sion and service realization. (For the concision of Fig. 3.1, the element of Operation

is diagrammatically separated in service realization part and service provision part.)

The access to the composite web service can be assigned to a service consumer if all

the constraints of the composite web service and its resources can be satisfied. In

service provision, the service consumer is assigned a specific role for the access to the

operations; while in service realization, the operations are mapped with resource types

that cover all resources required.

In order to check conflict of interest at runtime, element Session is introduced at

integration of service provision and service realization in SOAC (see Fig. 3.1). There are

two layers of sessions, Independent Layer and Compound Layer. In independent layer,

Consumer Independent Session (CISe) is used to check runtime conflict of interest in

service provision; while Resource Independent Session (RISe) is used to check runtime

conflict of interest in service realization.

After a service consumer starts to send a message to the composite web service for

accessing its operations, the service consumer activates the assigned specific roles in a

consumer independent session. Without receiving message from service consumer, the

78 The Conceptual Model-SOAC

composite web service can also activate specific resource type for the resource. In some

circumstance, without knowing if the service consumer will use the assigned role to send

a message, the composite service can pass some relevant information for activating the

resource type to prepare the support for the composite service in advance. A resource

independent session is generated in such situation.

In the compound layer, a compound session is established when the message from

service consumer is transferred to the resource. In this case, specific resource type is

activated by the resource as well as the role is activated by the service consumer in a

compound session, i.e., the service consumer with an assigned specific role is accessing

the operation of composite web service that is being supported by the resource which

is included in the activated resource type. Below is the formal definition of Session.

Definition 7 Session includes two layers, Independent Layer and Compound Layer.

In independent layer, two sessions, Consumer Independent Session (CISe) and Re-

source Independent Session (RISe), are included; while in Compound Layer, a session

named Compound Session (CSe) is included. They are formally presented as follows:

• Consumer Independent Session (CISe) is a session for the mapping of a

service consumer sc on a set of activated roles {r1..rj}, j≥1.

• Resource Independent Session (RISe) is a session for the mapping of a

resource re on a set of activated resource types {ret1..retk}, k≥1.

• Compound Session (CSe) is a sessioin for the mapping of a pair of service

consumer and resource < sc, re > on a set of activated roles and resource types

{< r1, ret1 >..< rj, retk >}, (Note, the operations that the service consumer sc

requires to access are the same operations that the resource re can provide support

to.) where:

◦ r1..rj, j≥1, is a subset of roles assigned to and activated by the specific

service consumer sc.

◦ ret1..retk, k≥1 is a subset of resource types assigned and activated by the

specific resource.

3.3 Function Specifications of SOAC 79

• sc cise:(sc:SC)→2CISe, the mapping of service consumer sc onto a set of con-

sumer independent sessions CISe.

• cise r:(seci:CISe)→ 2R, the mapping of consumer independent session seci

onto a set of roles.

• re rise:(re:Re)→2RISe, the mapping of resource re onto a set of resource inde-

pendent sessions RISe.

• rise ret:(seri:RISe)→ 2ReT , the mapping of resource independent session seri

onto a set of resource types.

• sc cse:(sc:SC)→ 2CSe, the mapping of service consumer sc onto a set of com-

pound sessions CSe.

• cse r (sec:CSe)→ 2R, the mapping of compound session sec onto a set of roles.

• re cse(re:Re)→2CSe, the mapping of resource re onto a set of compound session

CSe.

• cse ret(sec:CSe) →2ReT , the mapping of compound session sec onto a set of

resource types.

3.3 Function Specifications of SOAC

In this section, we present the function specifications of SOAC. These functions pro-

vide the facilities for maintaining the SOAC conceptual model components, e.g., the

element sets and relations. The Session is also taken into consideration to manage

the activations of the specific elements. Three categories of functions are presented:

(1) Service Provision Administrative Operation (SP −AO); (2) Service Realization

Administrative Operation (SR−AO); and (3) Session Operation (SE − O). These

functions will be used as administrative functions in implementation tool in Chapter

7. The notation used to formalize the operations is a subset of the Z notations. The

representation schema in the formal specification of the operations is:

80 The Conceptual Model-SOAC

Table 3.1: Service Provision Administrative Operation - SP −AO

SP −AOele

(1) AddServiceConsumer(serviceConsumer:NAME)

(2) DeleteServiceConsumer(serviceConsumer:NAME)

(3) AddRole(role:NAME)

(4) DeleteRole(role:NAME)

(5) AddOperation(operation:NAME)

(6) DeleteOperation(operation:NAME)

SP −AOrela

(7) AssignServiceConsumer(serviceConsumer,role:NAME)

(8) DeassignServiceConsumer(serviceConsumer,role:NAME)

(9) GrantOperationAccess(operation,role:NAME)

(10) RevokeOperationAccess(operation,role:NAME)

SchemaName(Declaration) / Predicate; ...;Predicate . .

All the data types and operations used in the formal specification have been defined

in SOAC described in previous sections of this paper. NAME is an abstract data type

used to represent the identifiers of the elements in SOAC.

3.3.1 Service Provision Administrative Operation- SP −AO

There are three elements in service provision part of SOAC-Service Consumer (SC),

Role (R), and Operation (Op), and two relationships among the elements-Assign and

Grant (See grey rectangle in Fig. 3.1). Hence, SP −AO are separated into two aspects

SP −AOele and SP −AOrela to manage the elements and relationships respectively.

The operations (1)∼(6) (See Table. 3.1) are SP −AOele used to add and delete

elements in service provision part. Due to space limit, we only describe the operation

(3) and (4). Let us take operation (4) as example. In operation (4), an existing role is

3.3 Function Specifications of SOAC 81

Table 3.2: Service Realization Administrative Operation - SR−AO

SR−AOele

(11) AddResourceType(resourceType:NAME))

(12) DeleteResourceType(resourceType:NAME)

(13) AddResource(resource:NAME)

(14) DeleteResource(resource:NAME)

SR−AOrela

(15) SupportOperation(operation,resourceType:NAME)

(16) AbandonOperation(operation,resourceType:NAME)

(17) ContainResource(resource,resourceType:NAME)

(18) ExcludeResource(resource,resourceType:NAME)

deleted. If the role is activated by the specific service consumer in independent session

or compound session, then the associated session should be deleted firstly. Further-

more, the mapping functions and relations associated with the deleted role also need

to update to erase the effect of this role. Then the role can be deleted from the set R.

(3) AddRole(role:NAME)/

role/∈R; R’=R∪{role};

assigned sc’=assigned sc∪{role7→ ∅};

assigned op’=assigned op∪{role7→ ∅};.

(4) DeleteRole(role:NAME)/

role∈R;

[∀ seci ∈CISe • role ∈ cise r(seci)⇒

DeleteConsumerIndependentSession(seci)];

[∀ sec ∈CSe • role ∈ cse r(sec)⇒

DeleteCompoundSession(sec)];

SCA’=SCA\{sc:SC • sc7→ role};

82 The Conceptual Model-SOAC

assigned sc’=assigned sc\{role7→assigned sc(role)};

OPA’=OPA\{op:Op • op 7→ role};

assigned op’=assigned op\{role7→assigned op(role)};

R’=R\{role};.

The operations (7)∼(10) (See Table. 3.1) are SP −AOrela used to add and delete

relationships in service provision part. For example, Operation (7) is used to create

the relationships between the elements of Role (R) and Service Consumer (SC).

(7) AssignServiceConsumer(serviceConsumer, role:NAME)/

serviceConsumer∈SC; role∈R;

(serviceConsumer7→r)/∈SCA;

SCA’=SCA∪{serviceConsumer7→r};

assigned sc’=assiged sc\{role7→assigned sc(role)}∪

{role7→(assigned sc(role)∪serviceConsumer)}; .

(8) DeassignServiceConsumer(serviceConsumer,role:NAME)/

serviceConsumer∈SC; role∈R;

(serviceConsumer7→role)∈SCA;

[∀seci:CISe • seci∈sc cise(serviceConsumer)∧

role∈cise r(seci)⇒DeleteConsumerIndependentSession(seci)];

[∀sec:CSe • sec∈sc cse(serviceConsumer)∧

role∈cse r(sec)⇒DeleteCompoundSession(sec)];

SCA’=SCA\serviceConsumer7→role;

assigned sc’=assigned sc\{role7→assigned sc(role)}∪{role7→(assigned sc(role)\

{serviceConsumer})};.

3.3 Function Specifications of SOAC 83

3.3.2 Service Realization Administrative Operation- SR−AO

There are also three elements included in SR−AO- Operation (Op), and Resource

Type (ReT), and Resource (Re). However, the element of Operation has already men-

tioned in previous sub section. We only introduce the left two elements in SR−AOele.

Moreover, two relationships-Support and Contain are included in SR−AOrela (See

white rectangle in Fig. 3.1).

Operations (11)∼(14) (See Table. 3.2) are used to create and delete elements of

resource type and resource. They follow the same rules enacted in SP −AOele. Op-

erations (15)∼(18) (See Table. 3.2) aim to create and delete the relationships-Support

and Contain in service realization part by using the same rules in SP −AOrela. Op-

eration (11) and (12) are used to add and delete resource type respectively.

(11) AddResourceType(resourceType:NAME)/

resourceType/∈ReT;

ReT’=ReT∪{resourceType};

assigned ret’=assigned ret∪{resourceType7→ ∅};

assigned re’=assigned re∪{resourceType7→ ∅}; .

(12) DeleteResourceType(resourceType:NAME)/

resourceType∈ReT

[∀ seri∈RISe • resourceType∈rise ret(seri)⇒

DeleteResourceIndependentSession(seri)];

[∀ sec∈CSe • resourceType∈cse ret(sec)⇒

DeleteCompoundSession(sec)];

SPA’=SPA\{Operation:op • opeartion7→resourceType};

assigned ret’=assigned ret\

{resourceType7→assigned ret(resourceType)};

RTA’=RTA\{resource:Re • resource7→resourceType};

assigned re’=assigned re\

{resourceType7→assigned re(resourceType)};

84 The Conceptual Model-SOAC

ReT’=ReT\{resourceType}; .

3.3.3 Session Operation- SE − O

SE − O is used to maintain the element of Session and associated relationships, which

reflects the activation of the corresponding elements. Six commands are developed in

SE − Oele based on the creation and deletion of CISe, RISe, and CSe (See Operations

(19)∼(24) in Table. 3.3). The operations (25)-(38) are SE − Orela used to maintain

the relationships associated with the element of session. Due to space limit, we do

not list the operations in Table 3.3. Let us take the operation (21) as an example to

illustrate the SE − O. Firstly, an ars is created which represents the activated roles

and resource types included in this new compound session. The mapping functions

sc cse(serviceConsumer) and re cse(resource) are also updated to reflect the new com-

pound session. Finally, the cse r(sec) and cse ret(sec) are updated to point to the

activated roles and resource types from the compound session sec. Operation (22) is

used to delete compound session.

(21) CreateCompoundSession(serviceConsumer,resource,operation:NAME;

ars:2NAME;sec:CSe)/

serviceConsumer∈SC; operation∈Op;

ars⊆{(role:R, resourceType:ReT)|(serviceConsumer7→role)∈SCA,

(Resource7→resourceType)∈RTA};

sec /∈CSe; CSe’=CSe∪{sec};

sc cse’=sc cse\{serviceConsumer7→sc cse(serviceConsumer)}∪

{serviceConsumer7→(sc cse(serviceConsumer)∪{sec})};

re cse’=re cse\ {resource7→re cse(resource)}∪

{resource7→(re cse(resource)∪{sec})};

cse r’=cse r∪{sec 7→ars}; cse ret’=cse ret∪{sec 7→ars};.

3.3 Function Specifications of SOAC 85

Table 3.3: Session Operation - SE − O

SE − Oele

(19) CreateConsumerIndependentSession

(serviceConsumer:NAME;ars:2NAME;seci:NAME)

(20) DeleteConsumerIndependentSession

(serviceConsumer,seci:NAME)

(21) CreateResourceIndependentSession

(resource:NAME;ars:2NAME;seri:NAME)

(22) DeleteResourceIndependentSession

(resource,seri:NAME)

(23) CreateCompoundSession

(serviceConsumer,resource,operation:NAME;

ars:2NAME;sec:NAME)

(24) DeleteCompoundSession

(serviceConsumer,resource,operation,sec:NAME)

SE − Orela

(25) ActivateServiceConsumerCISe

(serviceConsumer,seCi:NAME)

(26) ActivaterResourceRISe(resource,seri:NAME)

(27) ActivateCSe(serviceConsumer,resource,sec:NAME)

(28) DeactivateServiceConsumerISe

(serviceConsumer,seci:NAME)

(29) DeactivateResourceRISe(resource,seri:NAME)

(30) DeactivateCSe(serviceConsumer,Resource,sec:NAME)

(31) ContainRoleCISe(role,seci:NAME)

(32) ContainRoleCSe(role, sec:NAME)

(23) ContainResourceTypeRISe(resourceType,seri:NAME)

(34) ContainResourceTypeCSe(resourceType,sec:NAME)

(35) ExcludeRoleCISe(role,seci:NAME)

(36) ExcludeRoleCSe(role,sec:NAME)

(37) ExcludeResourceTypeRISe(resourceType,seri:NAME)

(38) ExcludeResourceTypeCSe(resourceType,sec:NAME)

86 The Conceptual Model-SOAC

(22) DeleteCompoundSession(serviceConsumer,resource,

operation,sec:NAME)/

serviceConsumer∈SC;sec∈CSe;

operation∈Op;

sec∈sc cse(serviceConsumer);

sec∈re cse(resource);

sc cse’=sc cse\{serviceConsumer7→sc cse(serviceConsumer)}∪

{serviceConsumer7→(sc cse(serviceConsumer)\{sec})};

re cse’=re cse\ {resource7→re cse(resource)}∪

{resource7→(re cse(resource)\{sec})};

cse r’=cse r\{sec 7→cse r(sec)};

cse ret’=cse ret\{sec 7→cse ret(sec)};

CSe’=CSe\{sec}; .

3.4 Conclusion

Although plenty of existing enhanced RBAC mechanisms and approaches have been

presented which focus on managing access control in service composition, they are still

insufficient in: (1) missing the administration of the resources in service-oriented autho-

rization and (2) ignoring the dynamicity of service environment where the composite

web service composes resources based on-demand.

Research work in this chapter provides an extension of classical RBAC approach

with the capability to address the authorization issues of the composite web service,

brought in by the large number of dynamic service consumers and component web

services. A novel conceptual model has been developed for managing the service-

oriented authorization in the loosely-coupled environment of web services. Beyond

the existing approaches for web services authorization, our approach considers the

authorization constraints of the component web services explicitly. The merits of SOAC

lie in: (1) the coordination of the authorization constraints of composite web services

and component web services; and (2) the introduction of the more constant concepts

3.4 Conclusion 87

of role and resource type to represent the concepts of service consumer and resource

which are dynamic and volatile. In this chapter, three categories of administrative

functions of SOAC are also proposed.

In the next chapter, we will develop mechanisms to elaborate the causes and so-

lutions regarding to conflicts of interest in web service authorization. Detailed and

formalized authorization policies in terms of conflict of interest in composite web ser-

vice authorization based on SOAC will also be studied.

88 The Conceptual Model-SOAC

4
Conflict of Interest

4.1 Introduction

Conflict is the struggle of persons, where two or more persons oppose each other in

interaction and may cause the personal interest insufficient. It is a situation in which a

person has a private or personal interest sufficient to appear to influence the objective

exercise of his or her official duties as a public official, an employee or a professional.

A conflict of interest occurs when an individual is involved in multiple interests, one of

which could possibly corrupt the motivation for an act in the other. However, conflict

of interest also happens between the owners of web services and this finally becomes the

conflict of interest between services when the owners are not transparent in web service

environment. Conflict of Interest is a main concern when authorizing permissions to

the entity that requires access right in composite web service environment. Conflict of

89

90 Conflict of Interest

Interest is important and yet challenging in managing authorization of composite web

service, especially when the backend resources (component services) are taken into the

picture.

A service consumer or a resource can be involved in multiple interests regarding

to the authorization granted by the composite web service. For example, when a web

service plays as both Credit Assessor and Customer, the conflict of interest occurs

between Financial Lease service and the web service. The interest of Financial Lease

service is to decide the lease application under a fair and correct evaluation of the credit

history of the Customer. The web service as both Credit Accessor and Customer

can modify the credit history report of itself to catering for the credit requirements of

Financial Lease, which makes it generate a wrong decision on the lease. The interest

of Financial Lease service is broken by the web service as both Credit Assessor and

Customer. To avoid the conflict of interest, the web service can not be authorized for

the lease application if itself provides the ”evaluate” support. It is necessary to specify

authorization rules to detect and control a various types of the conflict of interest in

composite web service.

Conflict of interest in terms of authorization in composite web service can be cate-

gorized into two parts. In former one, the conflict of interest is examined between the

two elements with the same type in SOAC. For example, we will check the relationship

of two service consumers, two resource, or two roles. We define the relationships of two

elements as exclusive and non-exclusive, and furthermore, require the same type of ele-

ment in different authorizations should keep the same type of relationships. Otherwise,

conflict of interest between different elements is occurred. Let us take an example in

Fig. 1.2, the operations of Lease Application and Guarantor Confirmation have been

defined as Exclusive relationship. Hence, the roles of Customer and Guarantor that are

mapped to the operations of Lease Application and Guarantor Confirmation respec-

tively should have the relationship of Exclusive as well. However, if two web services

who share the interest are used to mapped to Customer and Guarantor respectively,

then conflict of interest occurs as these two web services bear non-exclusive relationship

which is not consistent with the relationship of mapped roles.

4.2 Management of Conflict of Interest 91

In former one, in order to check the conflict of interest, we have to expose the rela-

tionships between service consumers or between resources as exclusive or non-exclusive.

However, in web service environment, due to the feature of autonomy of web service,

the relationships of the web service to other services may not be easily detected or

advised. For example, sometimes, it is hard to decide if two web services share the

interests. Hence, in the later classification of management on conflict of interest, we

focus on analyzing the conflict of interest for one service consumer and one resource on

different authorizations. It can ensure that all authorizations for one service consumer

or one resource, even for one group of service consumer and resource, are conflict-free.

Both types of management on conflict of interest will be presented at design time

and runtime, and classified into four categories according to in which part of service

composition they can occur, e.g in service provision part, in service realization part, or

at integration part of service provision and service realization.

In this chapter, section 2 will present the first type of conflict of interest between

different elements. Section 3 will introduce the second type of conflict of interest for

one element. Conclusion will be in the last section.

4.2 Management of Conflict of Interest

In this section, we will examine the conflict of interest for different elements with

the same type. Four types of Conflicts of Interest are identified based on SOAC.

Authorization rules are defined to prevent the various types of conflict of interest in

this category at both design time and run time.

The relationships between two elements with the same type in SOAC are defined

as Exclusive ⊗ or Non-exclusive 	. Exclusive relationship means that two elements

of SOAC, e.g., two service consumers, two roles, or two operations, are ostracized

each other; while Non-exclusive relationship means that two elements of SOAC are

not ostracized each other. The relationship between elements with the same type in

different authorizations should be the same; Otherwise, conflict of interest will occur.

92 Conflict of Interest

Figure 4.1: Conflict-Free Role Relationship Check (CF-R-RC)

4.2.1 Conflict of Interest between Service Consumers

In service provision, the relationship between two service consumers should be the

same as the relationship between the assigned roles for these two consumers to prevent

conflict of interest. In Fig. 4.1, if Opa and Opb are exclusive (Opa ⊗ Opb), then the

relationship between Ri and Rj that are mapped to the operations Opa and Opb respec-

tively should reflect the exclusive relationship (Opa⊗Opb⇒Ri⊗Rj). The relationship

between assigned roles for service consumers SCn and SCm must be matched with

the relationship between these two consumers. If service consumers SCn and SCm are

non-exclusive with each other (SCn 	 SCm), then SCn and SCm can not be assigned

roles Ri and Rj respectively at the same time because the roles have the exclusive

relationship.

Two special cases are illustrated in Fig. 4.1, where (1) two service consumers become

the same one in special case A, and (2) two operations become the same one in special

case B. Moreover, the relationship between the element and itself can be non-exclusive

or exclusive according to its situation.

For example, in motivating scenario, if we introduce a new operation named Pay-

ment Verification after the operation of Monthly Bill, that is used to verify the monthly

4.2 Management of Conflict of Interest 93

rental from Customer, the operations of Monthly Bill and Payment Verification are

exclusive operations that need to be mapped to different roles, and such roles are recog-

nized as exclusive roles as Customer/Guarantor and Verifier. If a service consumer

is assigned with both Customer/Guarantor and Verifier (Special case A in Fig.4.1),

the conflict of interest will occur, since Customer/Guarantor and Verifier must have

relationship-Exclusive for accessing exclusive operations.

Let us take another example. ”Double Check” policy is enforced in Financial Lease

service on the operation of Payment Verification, i.e., two financial institutes are re-

quired to ensure the monthly rental from Customer. In order to avoid fraudulent

payment assessment on rental payment, an exclusive relationship between the Initial

Verifier and Second Verifier must be enforced. Westpac Financial Service and St.

George Financial Consulting Company are two financial institutes with non-exclusive

relationship because they belong to the same financial group. Westpac Financial Ser-

vice and St. George Financial Consulting Company can not be assigned the roles

Initial Verifier and Second Verifier to do payment verification for one transac-

tion due to their non-exclusive relationship.

To prevent conflict of interest among service consumers, the following authorization

rule named Static Conflict-Free Role Relationship Check (S-CF-R-RC) is specified as

follows:

Authorization Rule 1 S-CF-R-RC: Let SC be a set of Service Consumers. Let R

be a set of Roles. There is no conflict of interest between service consumers, formally

∃ri ∈ R,∃scm ∈ SC, (ri, scm) ∈ SCA, if there exists a subset of Role R named R̃a, which

includes all roles that have been mapped with service consumers, and the relationships

between ri and roles in R̃a are the same as the relationships between scm and service

consumers that have been mapped to the roles in R̃a. Formally, ∃R̃a ⊆ R-{ri}, ∀ rj ∈

R̃a, (rj, assigned sc(rj)) ∈ SCA, ∀r′j ∈ R-{ri}-R̃a, assigned sc(r′j) = ∅, RL(ri, rj) =

RL(scm, assigned sc(rj)), where RL(element, element)={exclusive (⊗), non-exclusive

()} reflecting the exclusive, or non-exclusive relationships between elements.

94 Conflict of Interest

As an alternative solution, roles can be assigned without using the above autho-

rization rule but the conflict of authorization between consumers will be checked at

run time. The mappings between service consumers and roles can be stored in the

system at design time. The conflict of interest between consumers is checked when

the assigned roles are activated simultaneously by a specific consumer. The autho-

rization rule named Dynamic Conflict-Free Role Relationship Check (D-CF-R-RC)

is specified as follows:

Authorization Rule 2 D-CF-R-RC: Let SC be a set of Service Consumers. Let R

be a set of Roles. There is no runtime conflict of interest between service consumers,

formally ∃ri ∈ R,∃scm ∈ SC, (ri, scm) ∈ SCA, and ri ∈ RSi(SCSi(scm)) and/or

ri ∈ RSc(SCSc(scm)), if there exists a subset of Role R named R̃b, which includes all

roles that are being activated, and the relationships between ri and all roles in R̃b are the

same as the relationships between scm and service consumers that are activating these

roles in R̃b. Formally, ∃R̃b ⊆ R-{ri}, ∀rk ∈ R̃b, ∃scn ∈ SC, rk ∈ RSi(SCSi(scn))

and/or rk ∈ RSc(SCSc(scn)), ∀r′k ∈ R-R̃b-ri, ∀sc′n ∈ SC, r′k /∈ RSi(SCSi(sc′n)), and

r′k /∈ RSc(SCSc(sc′n)), RL(ri, rk) = RL(scm, scn).

4.2.2 Conflict of Interest between Resources

If two resources have the relationship Exclusive or Non-exclusive, the mapped resource

types for these two resources must have the same relationship as exclusive or non-

exclusive to prevent conflict of interest.

In Fig.4.2, if Opa and Opb have exclusive relationship (Opa⊗Opb), then the relevant

resource types ReTi and ReTj should be exclusive (Opa ⊗Opb ⇒ ReTi ⊗RetTj). The

relationship between the resource types mapped with resources Rek and Reh must be

the same as the relationship between these two resources. If the resources Rek and Reh

are non-exclusive with each other (Rek 	Reh), e.g., belonging to one company group,

then Rek and Reh can not be mapped to resource types ReTi and ReTj respectively

at the same time, since ReTi and ReTj are exclusive. To avoid conflict of interest, two

resources with relationship ⊗ or 	 must be included in the associated two resource

4.2 Management of Conflict of Interest 95

Figure 4.2: Conflict-Free Resource Type Relationship Check (CF-RT-RC)

types with the same relationship ⊗ or 	.

Two special cases are described in Fig.4.2, where operations (Special Case A in

Fig.4.2) and resources (Special Case B in Fig.4.2) become one operation and one re-

source respectively. Let us take an example as special case B in Fig. 4.2. For the

security reason, Lease Application and Guarantor Confirmation are exclusive opera-

tions in Financial Lease service, where the mapped resource type, Funder and Credit

Assessor, are exclusive. Hence, if web service as a resource plays as both Funder and

Credit Assessor, non-exclusive relationship exists between the resource and itself,

and the resource can not be included in resource types Funder and Credit Assessor

at the same time.

We devise the authorization rule named Static Conflict-Free Resource Type Rela-

tionship Check (S-CF-RT-RC) on the mapping of resources and resource types to

prevent the conflict of interest between resources. Here we formally define the autho-

rization rule at design time as follows:

Authorization Rule 3 S-CF-RT-RC: Let Re be a set of Resources. Let ReT be

a set of Resource Types. There is no conflict of interest between resources, formally

∃reti ∈ ReT,∃reh ∈ Re, (reh, reti) ∈ RTA, if there exists a subset of ReT named

96 Conflict of Interest

R̃eTa that includes all resource types that have been mapped with resources, and the

relationships between reti and resource types in R̃eTa are the same as the relationships

between reh and the resources mapped with resource types in R̃eTa. Formally ∃R̃eTa ⊆

ReT-{reti}, ∀ retj ∈ R̃eTa, (retj, assigned re(retj)) ∈ RTA, ∀ret′j ∈ ReT-{reti}-R̃eTa,

assigned re(ret′j) = ∅, RL(reti, retj) = RL(reh, assigned re(retj)).

Alternatively, the resource can be mapped to resource types without using the above

authorization rule, but the conflict of interest between resources will be checked at run

time. The mappings between resources and resource types can be stored in system at

design time. The conflict of interest between resources are checked when the resource

types are activated simultaneously by employing the resources to provide supports

to the operations. Here we formally define the Dynamic Conflict-Free Resource Type

Relationship Check (D-CF-RT-RC) on preventing runtime conflict of interest between

resources.

Authorization Rule 4 D-CF-RT-RC: Let Re be a set of Resources. Let ReT be a

set of Resource Types. There is no runtime conflict of interest between resources, for-

mally ∃reti ∈ ReT,∃reh ∈ Re, (reh, reti) ∈ RTA, and reti ∈ RTS(RES(reh)), if there

exists a subset of ReT named R̃eTb includes all resource types that are being activated

and the relationships between reti and resource types in R̃eTb should be the same as the

relationships between reh and resources that are employed to support operations by spe-

cific resource types in R̃eTb. Formally, ∃R̃eTb ⊆ ReT-{reti}, ∀retk ∈ R̃eTb, ∃rel ∈ Re,

retk ∈RTS(RES(rel)), ∀ret′k ∈ ReT-R̃eTb-{reti}, ∀re′l ∈ Re, ret′k /∈ RTS(RES(re′l)),

RL(reti, retk) = RL(reh, rel).

4.2.3 Conflict of Interest between Service Consumers and Re-

sources

Resources and service consumers can have relationship as exclusive or non-exclusive

that must be the same as the relationship of mapped roles and resource types. The

relationship between a resource type and a role reflects the relationship between the

4.2 Management of Conflict of Interest 97

Figure 4.3: Conflict-Free Role & Resource Type Relationship Check (CF-R2T-RC)

operation that the role need to access and the operation that the resource type can

support. The conflict of interest between service consumers and resources can occur,

if the relationship between the service consumers and the resources is not the same as

the relationship of mapped role and resource type.

Two special case are also presented in Fig. 4.3, where (1) the operation that the role

need to access and the operation that the resource type can support are the same one

(Special Case A in Fig. 4.3), and (2) the service consumer and the resource are the same

web service (Special Case B in Fig. 4.3). In special case A at Fig. 4.3, the operation

that the resource type ReTj supports is what the role Rj need to access (Opa = Opb).

Their relationship is non-exclusive (Opa	Opb). If the relationship between the mapped

service consumer SCm and resource Rek is exclusive (SCm ⊗ Rek), e.g., the Chinese

manufactory as the resource to provide product and the USA military customer as

the service consumer to rent the product, the mapping between the service consumer

SCm to the specific role Rj and the mapping between the resource Rek to the specific

resource type ReTj can not be made simultaneously.

Let us take another example, in special case B at Fig. 4.3, a web service plays

as both a service consumer and a resource(SCm = Rek). Their relationship is non-

exclusive (SCm 	 Rek). If the operation that the web service supports as resource is

98 Conflict of Interest

exclusive with the operation that the web service need to access as the service consumer

(Opa ⊗ Opb), there is a conflict of interest between the consumer and the resource. If

the web service is assigned with specific role Ri to access the operation Opa, it can not

be mapped to resource type ReTj to support operation Opb; vise versa.

We define authorization rule named Static Conflict-Free Role & Resource Type

Relationship Check (S-CF-R2T-RC) to prevent the conflict of interest between the

consumer and the resource. The formal specification is as follows:

Authorization Rule 5 S-CF-R2T-RC: Let Re be a set of Resources, and SC be a

set of Service Consumers. Let R be a set of Roles, and ReT be a set of Resource Types.

There is no conflict of interest between service consumer and resource if (1) and (2)

are satisfied:

1. service consumer scm and role ri can be mapped in SCA, formally ∃ri ∈ R, ∃scm ∈

SC, (ri, scm) ∈ SCA, if there exists a set named R̃eTa that is a subset of Re-

source Types and includes all resource types that have been mapped with specific

resources; The relationships between ri and resource types in R̃eTa should be

the same as the relationships between scm and the resources that are mapped

with the resource types in R̃eTa. Formally, ∃R̃eTa ⊆ ReT, ∀ retj ∈ R̃eTa,

(retj, assigned re(retj)) ∈ RTA, ∀ret′j ∈ ReT − R̃eTa, assigned re(ret′j) = ∅,

RL(retj, ri) = RL(assigned re(retj), scm).

2. resource type reti and resource reh can be mapped in RTA, formally ∃reti ∈

ReT,∃reh ∈ Re, (reh, reti) ∈ RTA, if there exists a set Ra as a subset of Roles

that includes all roles which have been assigned to specific service consumers,

and the relationships between reti and all roles in Ra should be the same as the

relationship between reh and service consumers that are assigned as specific roles

in Ra. Formally, ∃R̃a ⊆ R, ∀ rj ∈ R̃a, (rj, assigned sc(rj)) ∈ SCA, ∀r′j ∈ R−R̃a,

assigned sc(r′j) = ∅, RL(reti, rj) = RL(reh, assigned sc(rj)).

The mappings between roles and service consumers, and the mappings between

resources and resource types can be made without using the above authorization rule.

4.2 Management of Conflict of Interest 99

The conflict of interest between service consumers and resources will be checked at

runtime. The mappings between role and service consumer, and the mapping between

resource and resource type can be stored in system at design time. The conflict of

interest between service consumer and resource is checked when the assigned role and

resource type are activated simultaneously in the execution of the composite web service

requested by the specific service consumer. The authorization rule named Dynamic

Conflict-Free Role & Resource Type Relationship Check (D-CF-R2T-RC) is specifies

as follows:

Authorization Rule 6 D-CF-R2T-RC Let Re be a set of Resources, and SC be a

set of Service Consumers. Let R be a set of Roles, and ReT be a set of Resource Types.

There is no runtime conflict of interest between service consumer and resource if (1)

and (2) are satisfied:

1. service consumer scm can activate assigned role ri, formally ∃ri ∈ R,∃scm ∈

SC, (ri, scm) ∈ SCA, and ri ∈ RSc(SCSc(scm)), if there exists a subset of Re-

source Types named R̃eTb that includes all resource types that are activated (when

resources mapped to these resource types are required to provide support to oper-

ations), and the relationship between ri and all resource types in R̃eTb should be

the same as the relationship between scm and resources that are activating the re-

source types in R̃eTb. Formally, ∃R̃eTb ⊆ ReT, ∀retg ∈ R̃eTb, ∃reh ∈ Re, retg ∈

RTS(RES(reh)), ∀ret′g ∈ ReT − R̃eTb, ∀re′h ∈ Re, ret′g /∈ RTS(RES(re′h)),

RL(retg, ri) = RL(reh, scm).

2. resource type reti is being activated by resource reh, formally ∃reti ∈ ReT,∃reh ∈

Re, (reh, reti) ∈ RTA, and reti ∈ RTS(RES(reh)), if there exists a subset of R

named R̃b that includes all of roles that have been activated, and the relation-

ship between reti and roles in R̃b should be the same as the relationship between

reh and service consumers that activate the roles in R̃b. Formally, ∃R̃b ⊆ R,

∀rg ∈ R̃b, ∃scm ∈ SC, rg ∈ RSc(SCSc(scm)), ∀r′g ∈ R-R̃b, ∀sc′m ∈ SC,

r′g /∈ RSc(SCSc(sc′m)), RL(reti, rg) = RL(reh, scm).

100 Conflict of Interest

Figure 4.4: Conflict-Free Pair of Role & Resource Type Relationship Check (CF-PR2T-
RC)

Conflict of interest between one pair of service consumer/resource and other pairs

of service consumer/resource is another new type of conflict of interest which can be

identified in SOAC. A service consumer and a resource are put in one pair when the

service consumer requests the access of the operation of a composite web service and

the operation needs the support of the resource. The relationships between pairs of

role/resource type reflect the relationships between operations mapped to these pairs

of role/resource type. If two pairs of service consumer/resource have the relationship

Exclusive or Non-exclusive, the pairs of mapped roles and resource types must have

the same relationship as Exclusive or Non-exclusive

For example, in Fig. 4.4, if the operations are exclusive (Opa⊗Opb), the relationship

between the pairs of mapped roles and resource types must also be exclusive (Opa ⊗

Opb ⇒ (Ri, ReTi)⊗(Rj, ReTj)). Note, here the relationship between operations will be

reflected by the relationship between the pairs of roles and resource types rather than

considering the relationship between roles or resources types individually which are

4.2 Management of Conflict of Interest 101

discussed in previous sections. If the relationship between two pairs of service consumer

and resource are non-exclusive ((SCnReh) 	 (SCm, Rek)), the pairs of mapped roles

and resource types must also be non-exclusive to prevent the conflict of interest.

Two special cases are illustrated in Fig. 4.4, where (1) the pairs of service con-

sumer and resource are the same one (Special case A in Fig. 4.4 (SCm = SCn and

Reh = Rek)), and (2) the operations in different authorizations are the same one (Spe-

cial cased B in Fig. 4.4 (Opa = Opb)). Let us take an example in special case A.

We separate the role of Customer in motivating scenario as Commercial Customer

and Military Customer who will rent product for civil use and military use respec-

tively. The resource type Supplier is also separated into Vehicle Engine Supplier,

Vehicle Engine Accessory Supplier, and Other Supplier, according to the prod-

uct that the supplier can provide. The operation of Lease Application is also separated

into Lease Application for Engine, Lease Application for Engine Accessory, and Lease

Application for Others.

Therefore, when a service consumer is mapped with the role Military Customer,

and the goods it orders need to be supplied by part manufactory mapped with re-

source type Vehicle Engine Supplier, it will violate the law if Financial Lease service

also uses the same manufactory that is mapped with resource type Vehicle Engine

Accessory Supplier to supply the engine accessory to the same consumer that is

mapped with role Commercial Customer.

In this case, the exclusive relationship between the operations of Lease Application

for Engine and Lease Application for Engine Accessory requires that the relation-

ship between the pair of Military Customer and Vehicle Engine Supplier and the

pair of Commercial Customer and Vehicle Engine Accessory Supplier are exclu-

sive also. If the two pairs of role and resource type are mapped to the same pair of

service consumer and resource with a non-exclusive relationship, the conflict of interest

occurs.

This conflict of interest is identified to prevent the following two things happening

at the same time. The first thing is to assemble the engine for military use with the

engine accessory for civil use and the second thing is to purchase engine and engine

102 Conflict of Interest

accessory from the same part suppliers. We can observe that the service consumer can

be mapped with both roles Military Customer and Commercial Customer without

causing conflict of interest between customers, e.g., when the goods it rents are not

provided by the same component service. We can also observe that the manufactory

(the resource) can be mapped with both resource types Vehicle Engine Supplier and

Vehicle Engine Accessory Supplier without causing conflict of interest between

resources, e.g., when the products it provides are not for the same service consumer.

The conflict of interest occurs when the service consumer is mapped with both roles and

the resource is mapped with both resource types. In a summary, if the manufactory

(a resource) as Vehicle Engine Supplier to provide engine to a service consumer

as Military Customer, it should not provide engine accessory to the same service

consumer that is identified as Commercial Customer; vise versa.

We set up authorization rule named as Static Conflict-Free Pair of Role & Resource

Type Relationship Check (S-CF-PR2T-RC) to prevent conflict of interest between two

pairs of service consumer/resource. Here we formally define the authorization rule at

design time as follows:

Authorization Rule 7 S-CF-PR2T-RC Let Re be a set of Resources, and SC be a

set of Service Consumers. Let R be a set of Roles, and ReT be a set of Resource Types.

There is no conflict of interest between one pair of service consumer/resource and

another pair of service consumer/resource, formally ∃ri ∈ R,∃scm ∈ SC, (ri, scm) ∈

SCA, ∃reti ∈ ReT,∃reh ∈ Re, (reh, reti) ∈ RTA, assigned op(ri)∩ assigned ret(reti) 6=

∅, if there exists a set named R̃eTa that is a subset of Resource Types and includes all

resource types which have been mapped with specific resources, and exists a set named

R̃a that is a subset of Roles and includes all roles which have been assigned to specific

service consumers; There must exist a resource type (retk) and a role (rk) that map to

the same operations; the relationship between (reti, ri) and (retk, rk) should be the same

as the relationships between (reh, scm) and pairs of resources and service consumers

that are mapped to retk and rk respectively. Formally, ∃R̃eTa ⊆ ReT, ∀ retj ∈ R̃eTa,

(retj, assigned re(retj)) ∈ RTA, ∀ret′j ∈ ReT− R̃eTa, assigned re(ret′j) = ∅, ∃R̃a ⊆ R,

4.2 Management of Conflict of Interest 103

∀ rj ∈ R̃a, (rj, assigned sc(rj)) ∈ SCA, ∀r′j ∈ R − R̃a, assigned sc(r′j) = ∅, ∃rk ∈

R̃a,∃retk ∈ R̃eTa, assigned op(rk) ∩ assigned ret(retk) 6= ∅, RL((reti, ri), (retk, rk)) =

RL ((reh, scm), (assigned re(retk), assigned sc(rk))).

Without using the above authorization rules, the conflict of interest between pairs

of service consumer and resource can be checked at runtime. The mapping between

service consumer and role, and the mapping between resource type and resource are

stored in system. The conflict of interest between pairs of service consumer/resource

is checked when the associated roles and resource types are activated simultaneously.

The authorization rule named Dynamic Conflict-Free Pair of Role & Resource Type

Relationship Check (D-CF-PR2T-RC) is specified as follows:

Authorization Rule 8 D-CF-PR2T-RC Let Re be a set of Resources, and SC

be a set of Service Consumers. Let R be a set of Roles, and ReT be a set of Re-

source Types. There is no run time conflict of interest between one pair of service

consumer/resource and another pair of service consumer/resource, formally ∃ri ∈

R,∃scm ∈ SC, (ri, scm) ∈ SCA, ∃reti ∈ ReT, ∃reh ∈ Re, (reh, reti) ∈ RTA, assigned op(ri)∩

assigned ret(reti) 6= ∅, ri ∈ RSc (SCSc(scm)), and reti ∈ RTS(RES(reh)), if there

exists a subset of ReT named R̃eTb which includes all resource types that are be-

ing activated, and there also exists a subset of R named R̃b which includes all roles

that are being activated. There must exist a resource type retk belonging to R̃eTb

and a role rk belonging to R̃b that are supporting and accessing the same operations

respectively; The relationship between (reti, ri) and (retk, rk) should be the same as

the relationship between (reh, scm) and pairs of resources and service consumers that

are activating retk and rk respectively. Formally ∃R̃eTb ⊆ ReT, ∀retx ∈ R̃eTb,

∃rey ∈ Re, retx ∈ RTS(RES(rey)), ∀ret′x ∈ ReT − R̃eTb, ∀re′y ∈ Re, ret′x /∈

RTS(RES(re′y)), ∃R̃b ⊆ R, ∀rx ∈ R̃b, ∃scy ∈ SC, rx ∈ RSc(SCSc(scy)), ∀r′x ∈

R̃b, ∀sc′y ∈ SC, r′x /∈ RSc(SCSc(sc′y)), ∃rk ∈ R̃b,∃retk ∈ R̃eTb, assigned op(rk)

∩ assigned ret(retk) 6= ∅, ∃scn ∈ SC, rk ∈ RSc(SCSc(scn)), ∃reg ∈ Re, retk ∈

RTS(RES(reg)), RL((reti, ri), (retk, rk)) = RL((reh, scm), (reg, scn)).

104 Conflict of Interest

4.3 Advanced Management of Conflict of Interest

In this section, the conflict of interest for one element in SOAC will be checked and

prevented. The four types of Conflicts of Interest are identified based on SOAC

from one service consumer’s and/or one resource’s perspective. Each type of conflict

of interest can be detected and controlled at design time or at runtime. If the conflict

of interest is dealt at design time, it is referred to as Static Conflict of Interest (S-CoI).

If the conflict of interest is dealt at runtime, it is referred to as Dynamic Conflict of

Interest (D-CoI).

For service provision, S-CoI or D-CoI can be used to avoid the conflicted autho-

rizations to one service consumer. For service realization, S-CoI or D-CoI can be used

to prevent the conflicted authorizations to one resource. For the integration of service

provision and service realization, S-CoI or D-CoI can be used to avoid assigning this

web service to one conflicted pair of role and resource type, when the web service is

a service consumer and a resource simultaneously. They can also avoid assigning two

conflicted pairs of role/resource type to one pair of service consumer and resource.

4.3.1 Conflict of Interest for One Service Consumer

In service provision, a service consumer is assigned with specific roles to gain the per-

missions to access the relevant operations. Hence, in SOAC, a service consumer can

be mapped with multiple roles and the roles are mapped with various operations. The

mapping between a Role and an Operation is much more stable than that between a

Role and a Service Consumer. The reason is that the service consumer is normally

unknown in advance and changing dynamically. For instance, the service consumer

can terminate the lease application and restart a new lease application at any time.

Mappings between role and operation are not changed such frequently. Hence, the rela-

tionship between different roles can be used as a reflection of the relationship between

different operations that are mapped with those roles respectively. This relationship

can be conflicted or non-conflicted. To avoiding the conflict of interest in terms of one

consumer, we can prevent the service consumer from mapping with conflicted roles

4.3 Advanced Management of Conflict of Interest 105

Figure 4.5: Conflict of Interest for One Service Consumer

simultaneously.

As an example, the amount of rental on specific goods varies based on the purpose

of customer on how to deal with the product after leasing period. Hence, Operations

Purchase and Return should be avoided to both be accessible by one service consumer.

Due to the mappings between operations and roles are stable (not prone to changing),

the relationships between roles can reflect the relationships between their mapped

operations. Based on the exclusive relationship between the operations of Purchase

and Return, we should define the role Customer Purchase and Customer Return that

are mapped to operations Purchase and Return respectively as conflicted roles. The

static conflict of interest (S-CoI) in service provision can be avoided if we do not enable

the mappings between one service consumer and the two conflicted roles simultaneously.

In Fig. 4.5, we use white diamonds to represent operations and white circles to

represent roles. A white rectangle represents a service consumer. If a role is assigned

to the service consumer, the mappings between the role and the operations and the

mapping between the role and the service consumer become effective. At the upper part

of Fig. 4.5, the service consumer is not mapped to R1 and R5. The mapping between

R1 and Opa and other mappings related to R1 and R5 are ineffective represented with

106 Conflict of Interest

grey lines. In the diagram, we assume that there is conflict of interest if operations

Opa and Opc are accessed by the same service consumer. The relationship between R1

and R4 that are mapped to the operations Opa and Opc respectively have the conflict

of interest. R3 and R5 have the conflict of interest due to the similar assumption on

the relationship between Opg and Opf . When a service consumer SC is effectively

mapped with R2, R3, and R4 as the upper part of Fig. 4.5, the mappings between the

service consumer and the roles R1 and R5 are conflicted ineffective mappings (grey dash

lines). Conflicted ineffective mappings mean that even the service consumer bears the

credential to be qualified for specific role, the mappings between the service consumer

and the role still can not be effective, since it can cause conflict of interest for the

service consumer. In a word, the creation of a mapping should not cause the service

consumer to be assigned with two conflicted roles. The conflicted ineffective mappings

can be changed to ineffective mappings. For example, R1 and R4 are conflicted roles.

when the mapping between R4 and service consumer becomes ineffective, the mappings

between R1 and service consumer is changed from conflicted ineffective mapping to

ineffective mapping. It means, at this time, if the service consumer can satisfy the

authorization constraint for R1, the mapping between the service consumer and R1

can become effective which will not cause conflicted roles R1 and R4 assigned to the

service consumer simultaneously.

We provide following formal definition to introduce the authorization rule that can

be implemented to avoid conflict of interest in service provision.

Definition 8 Type(e)={R, Op, SC, ReT, Re} is a function to return the type of

the element in SOAC, where e represents a set of elements.

For example, Type(Ri)=R means that the type of the set of elements Ri in SOAC

is role.

Definition 9 Conflict(ea,eb)={TRUE, FALSE}, is a boolean function to illustrate if

two sets of elements (ea, eb) with same type (role and resource type can be treated as

same type to compare) are conflicted or not.

4.3 Advanced Management of Conflict of Interest 107

Definition 10 Maps(ea, eb)={e Map, C ie Map, nC ie Map} is a function to illus-

trate the type of mapping between two elements with different types at design time,

where ea, and eb can be two elements with different types, i.e., Type(ea)6=Type(eb).

e Map represents effective mapping, C ie Map represents Conflicted Ineffective Map-

ping, and nC ie Map represents Non-Conflicted Ineffective Mapping.

We define an authorization rule named Static Conflict-Free Role Authorization (S-

CF-RA) to restrict the conflict of interest regarding to the mappings between one

service consumer and its associated roles. The main idea of S-CF-RA is that if a map-

ping between a role and a service consumer becomes effective, then the role must not

be conflicted with other roles that have been assigned to this service consumer. The

formal specification is as follows,

Authorization Rule 9 S-CF-RA: Let SC be a set of Service Consumers. Let R be

a set of Roles. There is no conflict of interest for service consumer scm (scm ∈SC)

to be mapped with ri (ri ∈R), i.e. the mapping between scm and ri can be effective,

if there exists a subset of Roles named R̃a (|R̃a| ≥0), which includes all roles that

have been mapped with the service consumer scm, and the relationships between these

roles in the set of R̃a+ri are not conflicted. Formally, Maps(scm, ri)=e Map, if R̃a =

assigned sc(scm), ∀R̃c ⊆R̃a, Conflict(R̃a, R̃c+ri)=FALSE.

As an alternative solution, the mappings between the service consumer and roles

can be stored in the system at design time. The conflict of interest will be avoided at

runtime by controlling the simultaneous activations of assigned roles for the specific

service consumer. In the lower part of Fig. 4.5, we can observe that, only R3 and R4 are

activated by the service consumer SC, where their mappings to the service consumer

are changed from effective mappings to activated mappings. R2 is not activated in that

circumstance since its activation may cause conflict of interest for the service consumer

SC at runtime. In this case, the mapping between SC and R2 can not be activated.

The following specification describes the types of mappings at runtime.

108 Conflict of Interest

Definition 11 Mapd(ea, eb)={C e Map, nC e Map, C ie Map, nC ie Map, a map}

is a function to illustrate the types of mapping between two elements with different

types at runtime, where ELEa and ELEb are two elements with different types, i.e.,

Type(ea)6=Type(eb). C e Map represents Conflicted Effective Mapping; while nC e Map

represents Non-Conflicted Effective Mapping. C ie Map represents Conflicted Ineffec-

tive Mapping and nC ie Map represents Non-Conflicted Ineffective Mapping. a Map

means Activated Mapping.

When the assigned role is activated by the service consumer, a consumer indepen-

dent session (CISe) is introduced. We can restrict the mappings among the service

consumer, CISe, and roles, to avoid the conflict of interest for this service consumer

who has the session at runtime. The authorization rule named Dynamic Conflict-Free

Role Authorization (D-CF-RA) is specified as follows,

Authorization Rule 10 D-CF-RA: Let SC be a set of Service Consumers. Let R

be a set of Roles, and CIS be a consumer independent session. There is no conflict of

interest for service consumer scm (scm ∈SC) to activate ri (ri ∈R), i.e. the mappings

among scm, CIS, and ri is activated mapping, if there exists a subset of Role named R̃a

(|R̃a| ≥0), which includes all roles that have been activated by the service consumer scm

in session CIS, and the relationships between these roles in the set of R̃a+ri are not

conflicted. Formally, Mapd(scm, CIS)=a Map and Mapd(CIS, ri)=a Map, if R̃a =

cise r(sc cise(scm)), ∀R̃c ⊆R̃a, Conflict(R̃a, R̃c+ri)=FALSE.

4.3.2 Conflict of Interest for One Resource

In service realization, the mappings between operations and resource types are much

more stable than the mappings between resource types and resources, due to the same

reason when considering the mappings among service consumers, roles, and operations.

The relationships between resource types actually reflect the relationships between the

mapped operations. The static conflict of interest (S-CoI) in service realization con-

siders the mappings between one resource and multiple resource types at design time,

where one resource can not be simultaneously mapped with two conflicted resource

4.3 Advanced Management of Conflict of Interest 109

types. In Fig.4.6, black diamonds represent resources, and black circles represent re-

source types. The upper part of Fig.4.6 shows the conflict of interest in service realiza-

tion at design time; while the lower part shows runtime conflict of interest (that will

be discussed later). At the upper part, Opf⊗Opb⇒ReT2⊗ReT5, i.e., the relationship

between ReT2 and ReT5 is conflicted since the mapped operations Opf and Opb are

conflicted. Hence, when the resource re is effectively mapped ReT3, ReT4, and ReT5,

we can observe from the diagram that the mapping between resource re and ReT2 is

conflicted ineffective mapping; while the mapping between Resource re and ReT1 is

ineffective mapping. The difference between these two mappings is, that the mapping

between re and ReT1 can become effective mapping at any time; while the mapping

between ReT2 and re can not be changed until its conflicted resource type ReT5 is not

effectively mapped to re.

Let us take an example for S-CoI in service realization. For avoiding price cheat,

Lease Application and Monthly Bill are mutually exclusive (conflicted) operations in Fi-

nancial Lease, which require involving different suppliers, Value Supplier who values

the price of the product that the customer wants to rent and Maintenance Supplier

who provides the machine and maintenance service. The resource types for the Value

Supplier and Maintenance Supplier are conflicted with each other. If one resource

is mapped to both value Supplier and Maintenance Supplier, static conflict of

interest occurs in service realization.

We devise the authorization rule named Static Conflict-Free Resource Type Au-

thorization (S-CF-RTA) for the mappings between resources and resource types to

prevent the conflict of interest at design time. Here we formally specify the authoriza-

tion rule as follows,

Authorization Rule 11 S-CF-RTA: Let ReT be a set of Resource Types. Let Re

be a set of Resources. There is no conflict of interest for resource ren (ren ∈Re) to be

mapped with retj (retj ∈ReT), i.e. the mapping between ren and retj can be effective,

if there exists a subset of Resource Type named R̃eTa (|R̃eTa| ≥0), which includes

all resource types that have been mapped with the resource ren, and the relationships

110 Conflict of Interest

Figure 4.6: Conflict of Interest for One Resource

between these resource types in the set of R̃eTa+reti are not conflicted. Formally,

Maps(ren, retj)=e Map, if R̃eTa = assigned re(ren), ∀R̃eTc ⊆R̃eTa, Conflict(R̃eTa,

R̃eTc+retj)=FALSE.

Alternatively, the mappings between resources and resource types can be stored

in system at design time. The conflict of interest for the resource are checked when

the resource types are activated simultaneously by employing the resource to provide

support to the operations. In the lower part of Fig. 4.6, the resource is activating ReT5

to provide support to Opb. Because the ReT3 and ReT5 are conflicted with each other

at runtime, the resource can not activate ReT3 in the system simultaneously with ReT5.

The authorization rule of the Dynamic Conflict-Free Resource Type Authorization (D-

CF-RTA) is defined as follows,

Authorization Rule 12 D-CF-RTA: Let ReT be a set of Resource Types. Let

Re be a set of Resources, and RIS be a resource independency session. There is no

conflict of interest for resource ren (ren ∈Re) to activate retj (retj ∈ReT), i.e. the

mapping among ren, RIS, and retj are activated mapping, if there exists a subset of

4.3 Advanced Management of Conflict of Interest 111

Figure 4.7: Conflict of Interest for One Service Consumer and Resource

Resource Type named R̃eTa (|R̃eTa| ≥0), which includes all resource types that have

been activated by the resource ren, and the relationships between these resource types

in the set of R̃eTa+reti are not conflicted. Formally, Mapd(ren, RIS)=a Map and

Mapd(RIS, retj)=a Map if R̃eTa = rise ret(re rise(ren)), ∀R̃eTc ⊆R̃eTa, Conflict

(R̃eTa, R̃eTc+retj)=FALSE.

4.3.3 Conflict of Interest for One Pair of Service Consumer

and Resource

One web service can play as both a resource and a service consumer simultaneously.

A new kind of conflict of interest specifies the situation when the role and the resource

type are mapped with the same web service. For example, the qualified credit or-

ganization can be assigned a resource type Fixed Asset Evaluation Organization

to evaluate the credit history of service customers with fixed asset. If a credit or-

ganization with fixed asset submits a lease application to Financial Lease and it is

112 Conflict of Interest

qualified to provide fixed asset evaluation as well, then the conflict of interest can oc-

cur when the credit organization is assigned as both Customer with Fixed Asset and

Fixed Asset Evaluation Organization. The credit organization should not have a

chance to evaluate a lease application of itself.

At the upper part of Fig. 4.7, a web service is assigned as R1, R2, and R4; while

it works as resource types ReT2 and ReT3 simultaneously. The mappings between the

web service and these elements are effective mappings. However, the mapping between

the service and ReT1 is conflicted ineffective mapping, since ReT1 has the conflict of

interest with R4, and R4 is currently effectively mapped with the service. The same

circumstance occurs due to the conflict between R3 and ReT3. It makes the mapping

between R3 and the web service conflicted ineffectively, as ReT3 is currently effectively

mapped with the service.

We devise the authorization rule named Static Conflict-Free Role and Resource

Type Authorization (S-CF-R2TA) to prevent the conflict of interest in terms of the

web service that plays as conflicted role and resource types simultaneously at design

time. Here we formally define the authorization rule as follows,

Authorization Rule 13 S-CF-R2TA: Let SC be a set of Service Consumers and R

be a set of Roles. Let ReT be a set of Resource Types and Re be a set of Resources.

There is no conflict of interest for resource ren (ren ∈Re) and service consumer scm

(scm ∈SC) (ren = scm) to be mapped with retj (retj ∈ReT) or ri (ri ∈R), if there

exists a subset of Resource Type named R̃eTa (|R̃eTa| ≥0) which includes all resource

types that have been mapped with the resource ren, there exists a subset of Role named

R̃a (|R̃a| ≥0) which includes all roles that have been mapped with the service con-

sumer scm, and the relationships between these resource types and roles in the set of

R̃eTa+R̃a+reti or the set of R̃eTa+R̃a+ri are not conflicted. Formally,

• Maps(ren, retj)=e Map if R̃a =assigned sc(scm) (ren = scm), R̃eTa=assigned re(ren)),

∀R̃c ⊆R̃a, ∀R̃eTc ⊆R̃eTa, Conflict(R̃eTa+R̃a, R̃eTc+R̃c+retj)=FALSE, or

• Maps(scm, ri)=e Map, if R̃a =assigned sc(scm) (ren = scm), R̃eTa=assigned re(ren))

(ren = scm), ∀R̃c ⊆R̃a, ∀R̃eTc ⊆R̃eTa, Conflict(R̃eTa+R̃a, R̃eTc+R̃c+ri)=FALSE.

4.3 Advanced Management of Conflict of Interest 113

The mappings between a web service and assigned roles, and the mappings between

the same web service and the assigned resource types can be made at design time

without enforcing the above authorization rule. The conflict of interest for a web

service that can play both as a service consumer and a resource simultaneously will

be checked at runtime, when the assigned role and resource type are activated at the

same time by the web service. For example, a web service can be simultaneously

assigned the resource types of Fixed Asset Evaluation Institute and the role of

Customer with Fixed Asset without causing any conflict of interest. However, the

conflict of interest can occur only after the two assigned role and resource types are

activated by the web service at the same time, where its lease application can be

evaluated by itself. At the lower part of Fig. 4.7, ReT2 is assigned to the web service.

But it can not be activated since it conflicts with R1 that is being activated by the web

service. R2 can not be activated in the lower part of Fig. 4.7 due to the same reason

between R2 and ReT3. The authorization rule named Dynamic Conflict-Free Role and

Resource Type Authorization (D-CF-R2TA) is specified as follows,

Authorization Rule 14 D-CF-R2TA: Let SC be a set of Service Consumers and

R be a set of Roles. Let ReT be a set of Resource Types and Re be a set of Resources.

There is no conflict of interest for resource ren (ren ∈Re) and service consumer scm

(scm ∈SC) (ren = scm) to activate retj (retj ∈ReT) or ri (ri ∈R), if there exists a

subset of Resource Type named R̃eTa (|R̃eTa| ≥0) which includes all resource types that

have been activated by resource ren, there exists a subset of Role named R̃a (|R̃a| ≥0)

which includes all roles that have been activated by service consumer scm, and the

relationships between these resource types and roles in the set of R̃eTa+R̃a+retj or the

set of R̃eTa+R̃a+ri are not conflicted. Formally,

• Mapd(ren, retj)=a Map if R̃a =cise r(sc cise(scm)) (ren = scm),

R̃eTa=rise ret(re rise(ren)), ∀R̃c ⊆R̃a, ∀R̃eTc ⊆R̃eTa,

Conflict(R̃eTa+R̃a, R̃eTc+R̃c+retj)=FALSE,

• Mapd(scm, ri)=a Map, if R̃a =cise r(sc cise(scm)) (ren = scm),

R̃eTa=rise ret(re rise(ren)) (ren = scm), ∀R̃c ⊆R̃a, ∀R̃eTc ⊆R̃eTa,

114 Conflict of Interest

Conflict(R̃eTa+R̃a, R̃eTc+R̃c+ri)=FALSE.

There is another type of conflict of interest identified in this paper that is related

with pair of service consumer/resource, where the service consumer and the resource

are played by different web services. A service consumer and a resource can be put

into one pair when the service consumer requests the access of an operation and the

operation needs the support from the resource. However, the conflict of interest can

occur among differen authorizations in terms of the pair of specific service consumer

and resource. Let us take an example. When a service consumer is mapped with the

role Military Customer, and the goods it requests to rent need to be supplied by part

manufactory mapped with resource type Vehicle Engine Supplier, it will violate the

law if Financial Lease also use the same manufactory that is mapped with resource type

Vehicle Engine Accessory Supplier to supply the engine accessory to the same

consumer that is mapped with role Commercial Customer. In this case, the pair

of Military Customer and Vehicle Engine Supplier and the pair of Commercial

Customer and Vehicle Engine Accessory Supplier are mutually exclusive. They

can not be assigned simultaneously to the same pair of service consumer and the

manufactory which works as a resource. If the two pairs of roles and resource types

are mapped to the same pair of service consumer and resource, the conflict of interest

occurs. This type of conflict of interest is identified to prevent the following two things

happening at the same time. The first thing is to assemble the engine for military use

with the engine accessory for civil use and the second thing is to rent engine and engine

accessory from the same part suppliers. We can observe that the service consumer can

be mapped with both roles Military Customer and Commercial Customer without

causing conflict of interest if it rents vehicles. We can also observe that the manufactory

can be mapped with both resource types Vehicle Engine Supplier and Vehicle

Engine Accessory Supplier without causing conflict of interest if they are rented by

Commercial Customer only. The conflict of interest occurs when the service consumer

is mapped with both roles and the resource is mapped with both resource types. In

a summary, if the manufactory as Vehicle Engine Supplier to provide engine to a

service consumer as Military Customer, it should not provide engine accessory to the

4.3 Advanced Management of Conflict of Interest 115

same service consumer that is identified as Commercial Customer; vise versa.

In the upper part of Fig. 4.8, the service consumer is mapped with R3 and R4. R1

and R5 are conflicted with R3 and R4, so R1 and R5 can not be effectively mapped

with the service consumer. The R2 and the service consumer are not mapped currently.

The resource is effectively mapped to resource type ReT1, ReT3 and ReT4. ReT2 is

conflicted with ReT1, so ReT2 can not be effectively mapped with the resource. ReT5

and the resource are not mapped currently. The pairs of role/resource type ReT4/R2

and ReT1/R1 are conflicted pairs, compared with the effective pairs of ReT3/R3 and

ReT3/R4 respectively. If any pair of them is mapped with the service customer and the

resource, it will cause the conflict of interest (See grey dash line with circles at both

sides at the upper part of Fig. 4.8).

We design the authorization rule named Static Conflict-Free Pair of Role and Re-

source Type Authorization(S-CF-PR2TA) to prevent the conflict of interest for one

pair of service consumer/resource. Here we formally define the authorization rule at

design time as follows,

Authorization Rule 15 S-CF-PR2TA: Let SC be a set of Service Consumers and

R be a set of Roles. Let ReT be a set of Resource Types and Re be a set of Resources.

There is no conflict of interest for resource ren (ren ∈Re) and service consumer scm

(scm ∈SC) (ren 6= scm) to be mapped with retj (retj ∈ReT) and ri (ri ∈R), if there

exists a subset of Resource Type named R̃eTa (|R̃eTa| ≥0) which includes all resource

types that have been mapped with the resource ren, there exists a subset of Role named

R̃a (|R̃a| ≥0) which includes all roles that have been mapped with the service consumer

scm, and the relationships between the pairs of these resource types and roles in the set

of {< ˜ReTa + retj,R̃a + ri>} are not conflicted. Formally,

• Maps(ren, retj)=e Map, if R̃a =assigned sc(scm)), R̃eTa=assigned re(ren)) (ren 6=scm),

∀R̃c ⊆R̃a, ∀R̃eTc ⊆R̃eTa, Conflict({<R̃eTa,R̃a>},{<R̃eTc+retj,R̃c>})=FALSE,

• Maps(scm, ri)=e Map, if R̃a =assigned sc(scm)), R̃eTa=assigned re(ren)) (ren 6=

scm), ∀R̃c ⊆R̃a, ∀R̃eTc ⊆R̃eTa, Conflict({<R̃eTa,R̃a>},{<R̃eTc,R̃c+ri>})=FALSE.

116 Conflict of Interest

Figure 4.8: Conflict of Interest for One Pair of Service Consumer and Resource

The conflict of interest for one pair of service consumer and resource can also

be checked at runtime, when the associated roles and resource types are activated

simultaneously. At the lower part of Fig. 4.8, the service consumer and the resource

activate R4 and ReT4 respectively. The pair R4/ReT3 can not be activated because

it has the conflict of interest with the pair R4/ReT4. The authorization rule named

Dynamic Conflict-Free Pair of Role and Resource Type Authorization (D-CF-PR2TA)

is used to restrict this type of conflict of interest at runtime and is specified as follows,

Authorization Rule 16 D-CF-PR2TA: Let SC be a set of Service Consumers and

R be a set of Roles. Let ReT be a set of Resource Types and Re be a set of Resources.

4.4 Conclusion 117

Figure 4.9: Authorization Policies for Avoiding Conflict of Interest

There is no conflict of interest for resource ren (ren ∈Re) and service consumer scm

(scm ∈SC) (ren 6= scm) to activate retj (retj ∈ReT) and ri (ri ∈R), if there exists

a subset of Resource Type named R̃eTa (|R̃eTa| ≥0) which includes all resource types

that have been activated by the resource ren, there exists a subset of Role named R̃a

(|R̃a| ≥0) which includes all roles that have been activated by the service consumer scm,

and the relationships between the pairs of these resource types and roles in the set of

{< ˜ReTa + retj,R̃a + ri>} are not conflicted. Formally,

• Mapd(ren, retj)=a Map if R̃a =cse r(sc cse(scm)), R̃eTa=cse ret(re cse(ren))

(ren 6=scm), sc cse(scm)=re cse(ren), ∀R̃c ⊆R̃a, ∀R̃eTc ⊆R̃eTa,

Conflict({<R̃eTa,R̃a>},{<R̃eTc+retj,R̃c>})=FALSE,

• Mapd(scm, ri)=a Map, if R̃a =cse r(sc cse(scm)), R̃eTa=cse ret(re cse(ren))

(ren 6= scm), sc cse(scm)=re cse(ren), ∀R̃c ⊆R̃a, ∀R̃eTc ⊆R̃eTa,

Conflict({<R̃eTa,R̃a>},{<R̃eTc,R̃c+ri>})=FALSE.

118 Conflict of Interest

4.4 Conclusion

This chapter addresses the conflict of interest issue regarding to both service consumers

and component services in composite web services. In Fig. 4.9, the two categories of

conflict of interest are presented. Four types of conflict of interest at each category are

identified for different elements in SOAC and for one element in SOAC. Authorization

policies at both design time and run time to deal with various types of conflict of

interest are also provided.

However, the operations of the composite web service will be executed according a

well-defined business logic, i.e. a workflow. How to manage the composite web service

authorization in the workflow environment is still not tackled. In next chapter, we will

introduce a process model SOAC-Net developed based on the Petri-Net. Authorization

policies based on the SOAC-Net are designed and enforced to ensure the composite web

service authorization correct and proper.

5
Process Model- SOAC-NET

5.1 Introduction

In this chapter, we will present a Petri-Net based process model named SOAC-Net

which is developed based on the SOAC conceptual model. A composite web service in

modern organization can be operated in a distributed environment involving multiple

parties with dynamic availability and a large number of resources with evolving con-

tents. These resources can be various types of applications that come from different

organizations, e.g., component web services. Therefore, these resources can belong to

different security domains, and have different security and interest requirements. In

order to acquire the support from these resources, a composite web service must be

able to satisfy these resources’ authorization policies. On the other hand, interacting

with service consumer is imperative for the execution of a composite web service. But

119

120 Process Model- SOAC-NET

the service consumer can access the specific operations of a composite web service,

only after it can satisfy the authorization policies of the composite service. Execution

policies are used to manage the sequence of operation invocations within a composite

web service, i.e., business logic. Therefore, without coordination on these policies, a

composite web service may not be able to perform properly. For example, supposing

an operation in a composite web service can only be invoked once, if no proper policies

coordination is put in place, multiple invocations by the same service consumer can

occur. Supposing operation A and operation B are a pair of sequenced operations in a

composite web service. Multiple service consumers can invoke operation A; while op-

eration B can only be accessed by one service consumer. A constraint is set up in the

composite web service as the service consumer who can invoke operation B must have

already invoked operation A. Now if operation A is accessed by a service consumer who

is not granted permission to invoke operation B, then no service consumer is allowed

to access operation B. So composite web service is discontinued. Such dependency be-

tween service consumer accesses also need to be identified between resource supports,

and even between service consumer access and resource support which makes policy

coordination complex.

Traditional workflow uses control flow to strictly constrain the sequence of the oc-

currence of the activities. However, in reality, particular in web service environment,

the operations of composite web services, service consumers, and component web ser-

vice are interacted in a highly loosely-coupled environment. This causes that the col-

laboration among these web services is dynamic and flexible without easy controlling.

Still strictly constraining the sequence of interactions is not realistic. Hence, when

traditional control flow is losing the capability in directing the execution of a hard-

coded process in web service environment, authorization sequence becomes a necessary

control to restrict the access of specific operations in composite web service. How to

manage the service consumer accesses and the resource supports in a composite web

service then becomes an issue that is not tackled yet.

Based on the motivating scenario in section 1.2.1, we can observe that, (1) an oper-

ation within a composite web service can be accessed and supported by multiple types

5.1 Introduction 121

of service consumers and resources, and (2) the inherently business logic (execution

policy) set up within the composite web service Financial Lease requires the compli-

ance of the service consumer accesses and the resource supports. Hence, an effective

authorization management should be performed on coordinating the service consumer

accesses and the resource supports in a process environment. Otherwise, authorization

issues can be raised to cease process execution.

Restricting when the service consumer accesses and the resource supports can/can’t

be used on specific operation during the execution of a composite web service is an

initial step to maintain the composite web service running properly. For example, sup-

posing the Guarantor finishes accessing the operation Guarantor Confirmation, the

permission to access this operation should be revoked immediately from the Guarantor

to avoid repeated submissions of guarantor information. Furthermore, although multi-

ple service consumers or resources can access or support the same operations, not all of

them can become effective which may suspend the execution of composite web service.

In Fig. 1.3, Monthly Bill operation can be supported by Funder or Lease Agent and

accessed by Customer or Guarantor. To avoid fraudulent activity, a Guarantor can

pay the rental on behalf of the Customer to access the Monthly Bill operation only if

the bill is issued by a Funder, rather than a Lease Agent, i.e., during the execution of

operation Monthly Bill, the invocation by Guarantor depends on the Funder support.

This constraint is used when an entity can play as both Lease Agent and Guarantor.

Obviously, if the entity pays the bill issued by itself, it may eventually do harm to

Customer’s benifit. Funder as a financial provider can not play as a Guarantor. Hence,

the Guarantor can pay the bill issued from Funder only. In a summary, Guarantor

becomes ineffective if the operation Monthly Bill is supported by Lease Agent. Sup-

posing Customer also can not be used due to another dependency restriction, the BP

will be suspended since both users, Customer and Guarantor, become unavailable to

invoke operation Monthly Bill.

Therefore, we can conclude that, the service consumers accesses and the resource

supports are not only regulated by specific authorization policies to guide what the

user can access and what the resource can support, but also restricted by the business

122 Process Model- SOAC-NET

constraints enacted during the execution of business process to maintain the security

in a process environment. These business constraints can be categorized as follows,

• Synchronization: The sequence of the service consumers accesses and the se-

quence of resource supports should both synchronize with the execution sequence

of the operations in a composite web service. When an operation is ready to ex-

ecute in a process instance, the relevant service consumers and resources that

can access and support the operation should be invoked. Once the operation fin-

ishes, the permissions assigned to service consumers and resource to access and

support the operation should be revoked immediately. The service consumer and

resource that can access and support the next operation in the process instance

then should be ready. In above example, when the operation Guarantor Con-

firmation starts, the authorization to access the operation should be granted to

Guarantor. When the operation finishes, the authorization of Guarantor access

on the operation should be revoked immediately.

• Dependency: A service consumer access or a resource support on specific opera-

tion in a composite web service may depend on another achieved service consumer

access or resource support. In the above example, the access of the Guarantor on

the operation of Monthly Bill depends on the support of the Funder on the same

operation. If the Funder is used to support the Monthly Bill, then the Guarantor

can be used to access the operation. Otherwise, the access of Guarantor on the

operation of Monthly Bill should be restricted.

In a summary, to maintain the security during the execution of a composite web ser-

vice as motivating scenario, the accesses of three service consumers, and the supports

of four resources should be synchronously sequenced with the composite web service

Financial Lease. Within the sequence of service consumer accesses and the sequence of

resource supports, each access and support must also satisfy the dependency require-

ments to cater for business security demands. Existing works, e.g., [74, 75], mainly

focus on managing synchronization between the execution sequence of the operations

5.1 Introduction 123

and the sequence of service consumer accesses. They do not take the sequence of re-

sources supports into account. Furthermore, much representative research works, e.g.,

[76], design constraints for avoiding conflict of interest within the service consumer

accesses. Dependency constraint is still missing. Particularly, dependency constraints

can not only be enabled between service consumer accesses, but can also be executed

between resource supports, and even between service consumer access and resource

support, which become more complex with the involvement of resource support man-

agement.

Hence, an authorization management based on the execution sequence of a compos-

ite web service should be developed to maintain the security in a process environment.

In this chapter, two types of authorization policies, (1) Authorization Synchronization

Policies and (2) Authorization Dependence Policies, are included to state the above

business security demands. A process model SOAC-Net incorporated with SOAC is

designed to represent authorization flow. An authorization flow is the sequence of

service consumer accesses and the sequence of resources supports with associated au-

thorization constraints, that is different from the control flow within normal workflow

model, e.g., workflow-net [87]. The authorization flow can reflect the control flow

of business process by enforcing synchronization policy. It can also enforce the de-

pendency policy on top of the execution policy of the composite web service, which

facilitates the authorization management on access control level only without delving

into task execution sequence level.

The rest of this chapter is organized as follows. In section 2, both authorization

synchronization policies and authorization dependency policies based on SOAC-Net

are formally defined. In section 3, we will examine the SOAC-Net in depth, including

its structure and execution policies. An example of execution of SOAC-Net will also

be presented in this section. Conclusion will be presented in the last section.

124 Process Model- SOAC-NET

5.2 Authorization Policies

It is still not enough for managing composite web service authorization, if we only

know which service consumer can access the operation and which resource can be

used to support the operation. We should also design policy to control how they

can access and support the operations under a specific business logic. We define two

types of Authorization Policies to control the access sequence of service consumers and

the support sequence of resources, (1) Authorization Synchronization Policies and (2)

Authorization Dependence Policies.

5.2.1 Authorization Synchronization Policies

The sequence of accesses and supports by role (a group of service consumers) and

resource type (a group of component services) respectively on the operations of a

composite web service must be consistent with the operation execution sequence, i.e.

a role-flow and a resource type-flow must be synchronized with the control flow of

operations. The reason is that, a service consumer as assigned role or a resource

as mapped resource type can not be able to access or support the past operations

(the operations that have been accessed or supported) unless the business logic of the

composite web service allows, nor can they access or support the operations that are

needed in the future but not now. Without this synchronization restriction on the role-

flow and resource type-flow, the service consumer and the resource can obtain the right

to access and support any operation without considering the well-defined execution

sequence of the operations. Such chaos and disordered authorization could do harm to

the whole execution of the composite web service, where the needed service consumer

or resource is not available, or the service consumer and the resource do extra and

unnecessary work causing security issue. Therefore, we need to devise synchronization

policies to restrict the access sequence of role and the support sequence of resource type

based on the control flow of the operations in a composite web service. Authorization

synchronization policy is divided into two types, (1) Role Synchronization Policy and

(2) Resource Type Synchronization Policy.

5.2 Authorization Policies 125

Constraint 1 Role Synchronization Policy: Let OP be a set of Operations,

and R be a set of roles. Let F be a set of execution sequences between operations,

Op→Op∈F. (Notes, → represents the execution sequence of elements that will not

repeatedly stated in the other constraints.) The role-flow is consistent with control-

flow, if there exist operations opi and opj, whose execution sequence can be recorded

as opi→opj∈F, then all roles that are mapped to opi and all roles that are mapped

to opj must access the operations opi and opj based on the same execution sequence

opi→opj∈F.

In role synchronization policy, by setting up the sequence of role access to be con-

sistent with the execution sequence of the mapped operations, the synchronization

between the role-flow and the control-flow of operations is achieved. The role can not

access the operation unless it starts to execute. When the execution of the operation

finishes, the role access on the operation is revoked. For example, the Guarantor can

start to access the operation Guarantor Confirmation when the operation can start to

execute. When the operation Guarantor Confirmation finishes, the permission assigned

to Guarantor to access the operation should be revoked immediately.

Constraint 2 Resource Type Synchronization Policy: Let OP be a set of Op-

erations, and ReT be a set of resource types. Let F be a set of execution sequences

between operations, Op→Op∈F. The resource type-flow is consistent with control-

flow, if there exist operations opi and opj, whose execution sequence can be recorded as

opi→opj∈F, then all resource types that are mapped to opi and all resource types that

are mapped to opj must support the operations opi and opj based on the same execution

sequence opi→opj∈F.

Resource type synchronization policy is used to synchronize the sequence of resource

type supports with the execution sequence of operations. It requires that the resource

type can support the operation only when it is the operation’s turn to execute. When

the execution of the operation finishes, the support of the resource type on the operation

is revoked. For example, when the operation of Lease Application starts, the Funder

should be available in terms of securing financial support amount. After the operation

126 Process Model- SOAC-NET

finishes, the support from Funder should be revoked immediately to avoid the variation

of the financial support amount made by the Funder.

5.2.2 Authorization Dependence Policies

Authorization Dependence Policies restrict that a role or a resource type is not able

to access or support the operations, until the other role or the other resource type has

already accessed or supported specific operations. Authorization Dependence Policies

are separated into 5 categories, (1) between roles, (2) between resource types, (3)

between roles and resource types, (4) between resource types and roles, and (5) between

groups of roles and resource types (See Fig. 3.1). Here below, the 5 types of dependency

policies are defined as follows,

Constraint 3 Role Dependency Policy (Cr→r): Let OP be a set of Operations,

and R be a set of roles. OPA⊆R×OP is a set of relations of assigned roles on op-

erations. A role dependency policy Cr→r can be written as opaa → opab, where opaa

and opab ∈OPA, and opab depends on opaa, i.e. without opaa, opab can not be used in

role-flow.

Role dependency policy (Cr→r) is used to restrict that the role access on specific

operation depends on another role access in role-flow. This is different from role syn-

chronization policy which is used to restrict the sequence of role accesses consistent with

the execution sequence of operations. Formally, when ri×opi=opaa, and rj×opj=opab,

only after opaa has been used in role-flow, then opab can be used. For example, in

the motivating scenario at Chapter 1, the access of the Guarantor on the operation of

Monthly Bill depends on the access of the Guarantor on the operation of Lease Appli-

cation. It means that the Guarantor can repay the rental on behalf of Customer only

if the Lease Application is also submitted by the Guarantor. A role dependency policy

can be written as Guarantor×Lease Application→Guarantor×Monthly Bill .

Constraint 4 Resource Type Dependency Policy (Cret→ret): Let OP be a set of

Operations, and ReT be a set of resource types. SPA⊆ReT×OP is a set of relations

5.2 Authorization Policies 127

of assigned resource types on operations. A resource types dependency policy Cret→ret

can be written as spaa → spab, where spaa and spab ∈SPA, and spab depends on spaa,

i.e. without spaa, spab can not be used in resource type-flow.

Resource type dependency policy (Cret→ret) bears the same semantics like role de-

pendency policy (Cr→r). It is used to restrict the support of a resource type on a

specific operation to depend on another support of resource type within resource type-

flow. This is also different from resource type synchronization policy which is used to

restrict the sequence of resource type support consistent with the execution sequence

of the operations. Formally, when reti×opi=spaa, and retj×opj=spab, only spaa has

been used in resource type-flow, then spab can be used. For example, in the motivating

example at Chapter 1, the support of Lease Agent on the operation of Monthly Bill

depends on the support of the Lease Agent on the operation of Lease Application. It

means that Lease Agent can be used to issue bill only the Lease Agent is used to

support the lease application. A resource type dependency policy can be written as

Lease Agent×Lease Application→Lease Agent×Monthly Bill .

Let us take another example. In the motivating scenario, the Lease Agent can be

used to deal with the purchase of a product or the return of a product, if the lease ap-

plication is processed by a Lease Agent. These two resource type dependency policies

can be written as Lease Agent×Lease Application→Lease Agent×Return , and

Lease Agent×Lease Application→Lease Agent×Purchase . Dependency policies

can not only be used within role-flow and resource type-flow, but also be used between

role-flow and resource type-flow. The role access on specific operation can depend on

the support of a resource type, and vise versa.

Constraint 5 Role Resource Type Dependency Policy (Cr→ret): Let OP be a

set of Operations, R be a set of roles, and ReT be a set of resource types. R×OP⊆OPA

is a set of relations of assigned roles on operations, and ReT×OP⊆SPA is a set of

relations of assigned resource types on operations. A role resource type dependency

policy Cr→ret can be written as opaa → spaa, where opaa ∈OPA and spaa ∈SPA, and

spaa depends on opaa, i.e. without opaa, spaa can not be used in resource type-flow.

128 Process Model- SOAC-NET

Role resource type dependency policy (Cr→ret) is used to restrict a support of a

resource type on specific operation to depend on a role access in role-flow. When

reti×opi=spaa, and rj×opj=opaa, only after the role rj has been used to access the

specific operation opj, the resource type reti can then support the operation opi. For

example, in the motivating scenario at Chapter 1, the support of Credit Assessor

on the operation of Lease Confirmation depends on the access of the Guarantor on

the operation of the Guarantor Confirmation. It means that, the Credit Assessor

can evaluate the credit history of Customer and Guarantor only after the Guarantor

has confirmed its information. A role resource type dependency policy can be written

as Guarantor×Guarantor Confirmation→Credit Assessor×Lease Confirma-

tion .

Constraint 6 Resource Type Role Dependency Policy (Cret→r): Let OP be a

set of Operations, R be a set of roles, and ReT be a set of resource types. R×OP⊆OPA

is a set of relations of assigned roles on operations, and ReT×OP⊆SPA is a set of

relations of assigned resource types on operations. A resource type role dependency

policy Cret→r can be written as spaa → opaa, where opaa ∈OPA and spaa ∈SPA, and

opaa depends on spaa, i.e. without spaa, opaa can not be used in role-flow.

Resource type role dependency policy (Cret→r) is a reverse policy of role resource

type dependency policy, in which it enables the role access on specific operation to

depend on the support of a resource type. When reti×opi=spaa, and rj×opj=opaa,

only after the resource type reti has been used to support the specific operation opi,

the role rj can then access the operation opj. In the motivating scenario, the access of

Guarantor on the operation Monthly Bill depends on the support of Funder on the

operation Monthly Bill. It means that the operation Monthly Bill can be accessed by

the Guarantor, only after the bill has been issued by the Funder, rather than Lease

Agent. A resource type role dependency policy can be written as Funder×Monthly

Bill→Guarantor×Monthly Bill .

All dependency policies defined until now are used to restrict role access and re-

source type support from single element’s point of view, e.g., a role access depends on

5.2 Authorization Policies 129

another role access. However, they are lack of capability to describe the dependency

restriction between the groups of role accesses and resource type supports, where a role

and a resource type are grouped and their access and support depends on the access

and support of another grouped role and resource type.

Constraint 7 Group of Role and Resource Type Dependency Policy(Cr×ret→r×ret):

Let OP be a set of Operations, R be a set of roles, and ReT be a set of resource types.

R×OP⊆OPA is a set of relations of assigned roles on operations, and ReT×OP⊆SPA

is a set of relations of assigned resource types on operations. A group of role and re-

source type dependency policy Cr×ret→r×ret can be written as (opaa, spaa)→ (opab, spab),

where opaa and opab ∈OPA, spaa and spab ∈SPA, and the group of opaa and spaa de-

pends on the group of opab and spab, i.e. without both opaa and spaa, opab and spab

can not both be used in role-flow and resource type-flow, respectively.

Group of role and resource type dependency policy (Cr×ret→r×ret) (See Fig. 3.1) is

used to restrict a role access and a resource type support to depend on the access and

support of another group of role and resource type. A role and a resource type can

be grouped when they are both working on the same operation. When reti×opi=spaa,

retj×opj=spab, ri×opi=opaa, and rj×opj=opab, only the role ri and the resource type

reti have both been used to access and support the specific operation opi, the role rj

and the resource type retj can then be both used to access and support the operation

opj. In the motivating scenario at Chapter 1, the access of Lawyer and the support

of Lease Agent on the operation of Return depends on the access of Customer and

the support of Lease Agent on the operation of Lease Application. It means that, if

Lawyer and Lease Agent are together to deal with the Return of the product, i.e, the

none real supplier of the product and the none real user of the product, then the lease

application must be submitted directly by the Customer and the product should be

provided by the Lease Agent. The application submitted by the applicant in person

can lower the risk of dispute on the product of return based on an assumption that, the

more the Customer involves, the less the dispute can occur. A group of role and resource

type dependency policy can be written as <Customer×Lease Application, Lease

130 Process Model- SOAC-NET

Agent×Lease Application>→<Lawyer×Return, Lease Agent×Return>.

5.3 Specification of SOAC-Net

With the support of resource, SOAC is still not enough to manage composite web

service authorization in process environment. The operations of the composite web

service need to be accessed and supported by the service consumers and the compo-

nent services according to an execution sequence, i.e., the business logic of composite

web service. We need to extend our question by adding ”How to do” on top of the

previous question ”what to do”. The service consumer and the resource should not

only understand what can access and support, but also need to find out the sequence

of access and support based on the business logic of operations.

Therefore, we develop a process model named as SOAC-Net to represent the autho-

rization flow, where the two types of authorization policies defined in last section can

be enforced. SOAC-Net is divided into three parts, role-flow, resource type-flow, and

constraint-flow. In SOAC-Net, a role-flow and a resource type-flow are derived from

the execution sequence of the operations and associated authorization mappings, i.e.

the mappings between role and operation, and the mappings between resource type

and operation. These two types of flows are tightly synchronized with the execution

sequence (control flow) of an operation. But they are not the same as the control

flow since they have capability to manage the access sequence of role and the sup-

port sequence of resource type within one operation, where the control flow can only

be used to coordinate the execution sequence between operations. Constraint-Flow is

used to represent the various authorization dependency policies based on the role-flow

and resource type-flow.

A role-flow is defined as a sequence of role accesses on specific operations based on

the entire control flow and is constructed based on two steps (as shown in Fig. 5.1).

Please note, the rolw-flow can not only deal with sequential execution sequence, but

also can handle the other types of control flow patterns.

Step 1 The accesses of the roles on the operations is sequenced based on the operation

5.3 Specification of SOAC-Net 131

execution sequence, where the roles that can access the same operation are put

together. The role access on operation can be obtained from the given authoriza-

tion mappings, i.e. the mapping between the role and the operation (See Line 5

in Algorithm 1).

Step 2 If the relationship of the roles put together for accessing the same operation is

exclusive choice, then role or-split and role or-join are used to set up the accesses

of these roles on the operation into different branches. One of the branches will be

selected during the role-flow execution. On the other hand, if the multiple roles

need to concurrently access the same operation, role and-split and role and-join

are used to divide these role accesses on the operation into different branches

that execute concurrently. These four operators can be used as nested structure.

By using this construction method, a role-flow is developed that can not only

synchronize the execution sequence of the operations, but can also manage the

role accesses within one operation (See Line 7 in Algorithm 1).

Let us take an example. In Fig. 5.1, the execution sequence of operations and the

associated authorization mappings between roles and operations are given before step

1 to describe the motivating scenario. Then based on the provided information, the

roles that can access the same operations are put together as the execution sequence

of the operations that they can access (See the roles in clouds in Fig. 5.1 after step

1.). We can observe that the sequence of role access is matched with the sequence of

operation execution after step 1 in Fig. 5.1. After step 2, the access pattern of the role

that can access the same operation is determined as exclusive choice or Concurrency.

Therefore, a role-flow is finally constructed as the diagram in Fig. 5.1 after step 2.

In role-flow, the operation will be used as a token to move from one node to another

one based on the execution sequence of composite web service. Each node in role flow

represents a specific role access on a specific operation. It means that, when a specific

operation is required to be executed by the business logic of a composite web service,

the token as the operation will be flowed to specific nodes that can access the oper-

ation. When the operation finishes its executing, the token as the specific operation

132 Process Model- SOAC-NET

Figure 5.1: Construction Process of Role-Flow

will continue to flow to the next nodes that require to access the next operation in the

business process according to the business logic of a composite web service. The syn-

chronization between role-flow and control flow of the operations can then be ensured.

Through this way, the authorization management system can control when the role

can be used to access the specific operation based on the business logic. Here below,

we present an algorithm to construct role-flow.

A resource type-flow is defined as a set of resource type supports on specific opera-

tions, and its construction method is similar to the method of constructing a role-flow,

It also needs two steps (as shown in Fig. 5.2).

Step 1 The supports of the resource type on the operations are sequenced based on the

operation execution sequence, where the resource types that can support the

same operation are put together. The resource type supports on operation can

5.3 Specification of SOAC-Net 133

be obtained from the given authorization mappings, i.e. the mapping between

the resource type and the operation (See Line 5 in Algorithm 2).

Step 2 If the relationship of the resource types that are put together for supporting the

same operation is exclusive choice, then resource type or-split and resource type

or-join are used to set up the supports of these resource types on the operation

into different branches. One of the branches will be selected during the resource

type-flow execution. On the other hand, if the multiple resource types need to

concurrently access the same operation, resource type and-split and resource type

and-join are used to divide these resource type supports on the operation into

different branches that execute concurrently. These four operators can be used

as nested structure. By using this construction method, a resource type-flow is

developed that can not only synchronize the execution sequence of the operations,

but can also manage the resource types supports within one operation (See Line

7 in Algorithm 2).

Let us also take an example of the motivating scenario. In Fig. 5.2, the execution se-

quence of operations and the associated authorization mappings between resource type

and operations are given before step 1 to describe the motivating scenario. Then based

on the provided information, the resource types that can support the same operations

are put together as the execution sequence of the operations (See the resource types

in clouds in Fig. 5.2 after step 1.). We can observe that the sequence of resource types

supports is matched with the sequence of operation execution after step 1 in Fig. 5.2.

After step 2, the support pattern of resource type that can support the same operation

is determined as exclusive choice or Concurrency. Therefore, a resource type-flow is

finally constructed as the diagram in Fig. 5.2 after step 2. The execution sequence

of the operations used to construct resource type-flow is different with the execution

sequence of the operations used to construct role-flow, since some of the operations in

the motivating scenario do not require the support from component web services.

In resource type-flow, an operation is also used to pass from one resource type

support to the other depending on when the specific operation should be supported

134 Process Model- SOAC-NET

Figure 5.2: Construction Process of Resource Type-Flow

by a specific resource type. This can ensure the synchronization between resource

type-flow and control flow of the operations. Here below, we present an algorithm to

construct role-flow.

Constraint-flow is constructed based on the authorization dependency policies. An

constraint node is used to link role accesses or resource type supports depending on

the specific dependency policy that the constraint node represents. The incoming link

of the constraint node comes from the depended role access or resource type support;

while the outgoing link of the constraint node points to the depending ones. When

the depended role access or resource types support finishes dealing with the specific

operation, the constraint node will be activated by the incoming link. Through the

outgoing link of the constant node, the depending role access or resource type support

can be used on specific operations when they are needed. Otherwise, without the

activation of the linked constraint nodes, they are not available.

5.3 Specification of SOAC-Net 135

Figure 5.3: Constraints-Net:C1

In the motivating scenario, a role dependency policy (C1r→r) is defined as Guarantor

×Lease Application→Guarantor×Monthly Bill , where the Guarantor can access

the operation of Monthly Bill only if the Lease Application is also accessed by the Guar-

antor. This policy can be illustrated in constraints-flow as Fig. 5.3. In Fig. 5.3, a node

with blue horizon stripes is used as constraint node to represent the policy. The incom-

ing link of this node comes from the node in role-flow that represents the Guarantor

access on the operation of Lease Application. The outgoing link of this constraint node

points to the node in role-flow that represents the Guarantor access on the operation

of Monthly Bill. Therefore, when the node in role-flow representing the Guarantor

access on the Lease application finishes its activation, i.e. the Guarantor has been

used to access the Lease Application, the related constrain node in constraints-flow is

activated. It means that the node in role-flow representing the Guarantor access on

the operation of Monthly Bill and pointed by the constraint node can be able to be

activated. Note, it is also acceptable that the operation of Monthly Bill is accessed by

another role-Customer. allowing the Guarantor to access the Monthly Bill does not

mean that the operation of Monthly Bill must be accessed by the Guarantor. Under

136 Process Model- SOAC-NET

Figure 5.4: Constraints-Net:C2

this policy, the Customer who can also access the Monthly Bill is welcome as well.

In the motivating scenario, three resource type dependency policies (C2ret→ret) are

defined as,

1. Lease Agent×Lease Application→Lease Agent×Monthly Bill ;

2. Lease Agent×Lease Application→Lease Agent×Return ;

3. Lease Agent×Lease Application→Lease Agent×Purchase .

These policies are illustrated in Fig. 5.4. In Fig. 5.4, three constraint nodes rep-

resenting the above three authorization dependency policies respectively are used to

link the specific nodes in resource type-flow. For example, the incoming link of the

node used to represent the first policy comes from the node representing the support

of Lease Agent on the operation of Lease Application. Its outgoing link points to the

node in resource type-flow that represents the support of Lease Agent on Monthly Bill.

The outgoing links of the nodes representing the second and the third policies point

5.3 Specification of SOAC-Net 137

Figure 5.5: Constraints-Net:C3

Figure 5.6: Constraints-Net:C4

to the nodes in resource type-flow that represent the support of lease agent on the

operations of Purchase and Return, respectively. Their incoming links are the same as

that of node representing the first policy. By enforcing these policies in constraint-net,

the supports of Lease Agent on Monthly Bill, Purchase, and Return, can be imple-

mented based on a precondition that the support of Lease Agent on the operation

Lease Application has already been performed.

In Fig. 5.5, we use the constraint node to represent the role resource type autho-

rization dependency policy (C3r→ret). In the motivating scenario, a role resource type

dependency policy is defined as Guarantor×Guarantor Confirmation→Credit

138 Process Model- SOAC-NET

Assessor×Lease Confirmation . It restricts that only after the Guarantor Confir-

mation has been accessed by the Guarantor, i.e. the information of the Guarantor has

been collected, the support of Credit Assessor on the operation Lease Confirmation

then can be performed. In Fig. 5.5, the incoming link of the constraint node comes

from the node in role-flow that represents the Guarantor access on the operation of

Guarantor Confirmation. Its outgoing link points to the node in resource type-flow that

represents the support of Credit Assessor on the operation of Lease Confirmation.

Therefore, the Credit Assessor can not be used to support the Lease Confirmation

unless the related constraint node is activated by the execution of the node in role-flow

representing the Guarantor access on the operation of Guarantor Confirmation.

In Fig. 5.6, a resource type role authorization dependency policy (C4ret→r) in the

motivating scenario is illustrated, where if the Guarantor can access the operation of

Monthly Bill to repay the rental depends on if the bill is issued by Lease Agent. We

can observe in Fig. 5.6 that a constraint node is used to link the nodes in role-flow and

resource type-flow, respectively. The incoming link of the constraint node comes from

the node that represents the support of Lease Agent on operation of Monthly Bill.

The outgoing link of the constraint node points to the Guarantor access on Monthly

Bill. Hence, without the activation of the Lease Agent’s support on Monthly Bill, the

Guarantor access on Monthly Bill can not come to true by enforcing this policy.

Fig. 5.7 presents a new type of authorization dependency policy in the motivating

scenario, i.e., Group of Role and Resource Type Dependency Policy(C5r×ret→r×ret),

where the Lease Agent and Lawyer can deal with (support and access) the operation

of Return under the condition that the operation of Lease Application has already

been handled (supported and accessed) by Lease Agent and Customer. In Fig. 5.7,

the incoming link of the constraint node that represents the dependency policy C5

comes from both nodes in role-flow and resource type-flow, which represent the Lease

Agent support and the Customer access on the operation of Lease Application, respec-

tively. The outgoing link of that constraint node points both the nodes representing

the support of Lease Agent and the access of Lawyer on the operation of Return. By

5.3 Specification of SOAC-Net 139

Figure 5.7: Constraints-Net:C5

enforcing this authorization policy, the operation Return can be supported by Lease

Agent and can be accessed by Lawyer under the condition that they are not both used

simultaneously to handle the operation of Return. If they have to, the precondition

that the operation Lease Application which is dealt by Customer and Lease Agent

must be satisfied firstly.

In summary, the construction processes of role-flow and resource type-flow should

comply with the authorization synchronization policy, which makes role accesses and

resource type supports follow the business logic of a composite web service, i.e., when

the role and resource type can access and support the operation respectively is deter-

mined. The constraint-flow is classified into five categories and used to restrict the role

access and resource type supports based on the authorization dependency policy, i.e.

which role and resource type can be used to access and support the operation is decided.

In Fig. 5.8, we present a complete view on SOAC-Net.

Therefore, based on the example above, we can understand that in order to properly

140 Process Model- SOAC-NET

Figure 5.8: SOAC-Net

manage composite web service authorization, we need to develop a model which can

explicitly present the authorization flow, capture the authorization policies and enforce

them during the execution of the composite web service. The advantages of Petri-Net’s

graphically and mathematically founded modeling formalism with various algorithms

for design and analysis make it a good candidate for modeling authorization flow in

composite web services. Here, we design a Petri-Net based process model named SOAC-

Net, to enforce the various types of authorization policies in composite web service

authorization. SOAC-Net is separated into three parts, Role-Net, Resource Type-

Net, and Constraints-Net. Each part is used to model the relevant authorization flow.

5.3 Specification of SOAC-Net 141

Figure 5.9: From Role-Flow to Role-Net

For example, role-flow is represented by role-net, resource type-flow is represented

by resource type-net, and constraint-net in SOAC-Net models the constraint-flow. By

integrating the three parts, SOAC-Net as an infrastructure can be used to enforce both

the authorization synchronization policies and authorization dependency policies. In

the next section, we will present the structure of SOAC-Net in details.

5.3.1 Structure of SOAC-Net

Role-Net

Role-Net is used to enforce the Role Synchronization Policy. In role-net (See

Fig. 5.9), we use each transition (the black rectangle) to represent a role access on

specific operation. We use token that flows between the transitions in role-net to

142 Process Model- SOAC-NET

represent the operations. When the transition consumes one token, it means that the

operation (token) has been accessed by the role (the transition). The new generated

tokens by this transition will represent the next operation that need to be accessed

according to the business logic of the composite web service. Fig. 5.9 illustrates how to

transfer the role-flow into role-net. Since each node in role-flow is absolutely matched

with the transitions in role-net, we can conclude that the semantics of role-flow is

inherently passed to role-net. Since the role synchronization policy can be enforced in

role-flow, it can also be enforced in role-net to restrict on when the role can be used to

access the specific operation. It is formally defined as follows,

Definition 12 Role-Net is a tuple N = (P r, T r, F r, ir, or)

• P r is a set of places, graphically represented as circles,

• T r is a set of transitions, graphically represented as black bars. Transition is used

to represent role access on specific operation in role-net. T e⊂T r is a set of empty

transitions as or-split, or-join, and-split, or and-join,

• F r=(P r×T r)∪(T r×P r),

• ir and or are input place and output place, respectively, to initially deposit a token

and finally collect token in role-net.

Resource Type-Net

Resource Type-Net is used to enforce the Resource Type Synchronization Pol-

icy. Based on the same theory of Role-Net, the resource type should follow a specific

sequence to provide support to the operations of the composite web service. In Re-

source Type-Net (See Fig. 5.10), we use each transition to represent a resource type

support on a specific operation. The token that flows between the transitions is used

to represent each operation that the resource type (transition) supports. Through this

way, when the resource type can be used to support the operation during the execu-

tion sequence of the operations can be clearly captured. Therefore, we should not only

know what resource type can be granted to the specific resource, but also can perceive

5.3 Specification of SOAC-Net 143

Figure 5.10: From Resource Type-Flow to Resource Type-Net

how they can be used, i.e., based on what kind of sequence. Fig. 5.10 illustrates how

the Resource Type-Net can represent the resource type-flow. The formal definition of

resource type-net is defined as follows,

Definition 13 Resource Type-Net is a tuple O = (P ret, T ret, F ret, iret, oret),

• P ret is a set of places, graphically represented as circles,

• T ret is a set of transitions, graphically represented as black bars. Transition is

used to represent resource type support in resource type-net. T e⊂T ret is a set of

empty transitions as or-split, or-join, and-split, or and-join,

• F ret=(P ret×T ret)∪(T ret×P ret),

• iret and oret are input place and output place respectively, to initially deposita

token and finally collect token in resource type-net.

144 Process Model- SOAC-NET

Figure 5.11: From Constraint-Flow C1 to Constraint-Net C1

Constraints-Net

Constraints-Net is used to enforce the five Authorization Dependency Policies.

For policies C1r→r, C2ret→ret, C3r→ret, and C4ret→r, single transition is used to repre-

sent each policy (See Fig. 5.11, Fig. 5.12, Fig. 5.13, and Fig. 5.14 as the examples

from the motivating scenario). Each transition in constraint-net is linked from one

transition in role-net or resource type-net and pointed to another transition in role-

net or resource type-net. Hence, without token movement through the transition in

constraints-net, the relevant role-net or resource type-net which is pointed by the tran-

sition in constraints-net can not accumulate enough tokens to fire, according to the

basic execution policy of Petri-Net. We can use this method to realize the dependency

between roles, between resource types, even between role and resource type.

For example, in the Resource Type Role Dependency Policy (C4ret→r) in

Fig. 5.14, the incoming link of the transition is from resource type-net and the outgoing

link of the transition points to a transition in role-net. Therefore, without performing

the support of relevant resource type, no token can be passed to the role-net through

the transition in constraints-net. The pointed transition in role-net can not be fired, i.e.

5.3 Specification of SOAC-Net 145

Figure 5.12: From Constraint-Flow C2 to Constraint-Net C2

this role can not be used to access the specific operation. The dependency relationship

of the role access on that resource type support is realized by this resource type role

dependency policy.

The Group of Role and Resource Type Dependency Policy (C5r×ret→r×ret)

is different from the other four dependency policies (See Fig. 5.16). In constraint-

flow C5 in Fig. 5.7, the incoming links of the constraint node come from the nodes in

role-flow and resource type-flow respectively, and the outgoing links of the constraint

node also point to the nodes in role-flow and resource type-flow. The semantics of the

constraint node in constraint-flow C5 is, that the role access and the resource type

support pointed by the constraint node can be freely executed without the restriction

of the authorization policy, when only one of them is performed. If both of the role

access and the resource type support pointed by the constraint node require to run

(They do not have to run simultaneously. They can be required to run one by one),

then both the role access and the resource type support linked to the constraint node

through incoming link must have already been performed firstly.

Hence, we can not only use one transition to represent the constraint node in

146 Process Model- SOAC-NET

Figure 5.13: From Constraint-Flow C3 to Constraint-Net C3

constraint-flow C5 in Fig. 5.7. For example, in Fig. 5.15, the execution of the group

of role access C (Depending Role Access (Ding-RA)) and resource type support D

(Depending Resource Type Support (Ding-RTS)) depends on the execution of the

group of the role access A (Depended Role Access (Ded-RA)) and resource type support

B (Depended Resource Type Support (Ded-RTS)). All four transitions representing

Ding-RA, Ding-RTS, Ded-RA, and Ded-RTS are linked to the single transition C5 in

constraint-net that tries to represent the Group of Role and Resource Type Dependency

Policy (C5r×ret→r×ret). However, in this case, we can find that even the role access C or

the resource type support D needs to run individually, both role access A and resource

type support B are required to be executed firstly. This is not consistent with the

semantics of the Group of Role and Resource Type Dependency Policy, which is only

5.3 Specification of SOAC-Net 147

Figure 5.14: From Constraint-Flow C4 to Constraint-Net C4

performed when both of the role access C and the resource type support D require to

run.

Therefore, in this type of authorization dependency policy, the transition is sepa-

rated into three types (See Fig. 5.16).

• Te is a transition used as and-split to pass the token that comes from the Ding-

RA or Ding-RTS that has been executed, into different paths in constraint-net

C5.

• Tx is a transition, whose execution is used to notify Ding-RA or Ding-RTS that

has not been executed, that its partner in the same group has been executed. It

148 Process Model- SOAC-NET

Figure 5.15: Single Transition Can Not Be Used in C5

means that, after Tx is executed, the token deposited at post-place of Tx makes

it become one of pre-places of transition that represents Ding-RA or Ding-RTS

which does not need to run. Hence, after the execution of Tx, the other Ding-RA

or Ding-RTS can not be freely executed, if its pre-place in constraint-net C5 can

not accumulate enough tokens. The restriction starts to constrain Ding-RA or

Ding-RTS that has not been executed yet.

• The transition Ty is a transition that can be enabled by accumulating two tokens

from the executions of Ded-RA or Ded-RTS respectively. Hence, the execution of

Ty represents that both Ded-RA and Ded-RTS have been successfully executed.

The token deposited at post-place of Ty (also known as the post-place of Tx) then

makes the place accumulate enough tokens to enable the transition in Ding-RA

or Ding-RTS that wants to perform and is restricted by policy C5. In summary,

the restriction on the Ding-RA or Ding-RTS is released after post-place of Tx

accumulates enough tokes (one from Tx and one from Ty).

The execution mechanism of constraint-net C5 will be introduced in details in the

next section. In summary, the constraint-net C5 needs to check two indicators. The

first indicator is used to examine if either Ded-RA or Ded-RTS has been executed. Ty

is designed for this purpose. This indicator can decide if the restriction of the policy

5.3 Specification of SOAC-Net 149

can be released for Ding-RA or Ding-RTS. The second indicator is used to announce

that one of the Ding-RA and Ding-RTS has been executed. Then the other Ding-RA

or Ding-RTS that has not been executed needs to be restricted by the policy unless

both Ded-RA or Ded-RTS has been already performed. Tx is therefore designed as

the second indicator. In constraint-net C5, Te is the transition used to coordinate the

execution of the two indicators. The formal definition of constraint-net is defined as

follows,

Definition 14 Constraints-Net is a tuple C = (P c, T c, F c, W, Count), Where:

• P c is a set of places, graphically represented as circles,

• T c is a set of transitiond, graphically represented as black bars. Transition is used

to represent a constraint in Constraints-net C1 to C4 (See Fig. 5.3 to Fig. 5.6).

For constraint-net C5, transition is separated as follows,

− T e⊂T c is a set of empty transitions as and-split to simultaneously split the

token movement pathes to Tx⊂T c and Ty⊂T c.

− Tx⊂T c represents an indictor to show, when Group B depends Group A, if a

role or a resource type in group B has already been used to deal with specific

operation, i.e., if the constraint should be enabled.

− Ty⊂T c represents an indictor to show if both role and resource type in group

A have been executed, i.e., if the enabled constraint can be released.

• F c=(P c×T c)∪(T c×P c)∪(T ret×P c)∪(P c×T ret)∪(T r×P c)∪(P c×T r), where, Tx•×T r

and Tx•×T ret (Tx•={p∈P c| (Tx×p)∈F c}) can be weak relation or normal re-

lation depending on the amount of tokens in Tx•. (1) If no token is deposited in

Tx•, then the relation between Tx• and the transition in role-net or resource type-

net becomes a weak relation that will not affect the execution of the transition, i.e.

Tx• is not counted as one of pre-places of the transition. (Note, the transition

in role-net and resource type-net can be fired if and only if all the pre-places of

the transition have accumulated enough tokens.) In this case, the transition in

150 Process Model- SOAC-NET

Figure 5.16: From Constraint-Flow C5 to Constraint-Net C5

5.3 Specification of SOAC-Net 151

role-net or resource type-net can be fired freely without considering if the token

has been deposited in the pre-place which links with the transition by weak rela-

tion. (2) When at least one token is deposited in Tx•, the relation between Tx•

and the transition in role-net or resource type-net becomes normal relation. If a

pre-place of a transition is link to the transition by a normal transition, then the

transition can be fired under the condition that all pre-places with normal relation

must have accumulated enough tokens.

• W:F c→IN is a weight function on the relation between place and transition. It

reflects how many tokens are needed to pass the relation (IN represents Integer).

For example, W:(•Ty, Ty)→2 (•Ty={p∈P c| (p, Ty)∈ F c}), W:(Tx•, Tr)→2 and

W:(Tx•, Tret)→2. All other weight of relation are equal to 1.

• Count:P c→ IN is a function to calculate the amount of tokens at each place. The

result of this function on a specific place can be used to decide if the relation

between the transition and this place is a weak relation or a normal relation.

In Fig. 5.17, a complete view of SOAC-Net based on the motivating example is

presented, where role-net, resource type-net, and each category of constraint-net are

illustrated.

5.3.2 Execution of SOAC-Net

The SOAC-Net execution complies with the general execution policy of Petri-Net,

where the transition is enabled when all pre-places are filled by enough tokens, con-

sume all tokens in pre-places and generate new tokens for all post-places. A weight

function W:F c→IN is used in constraints-net to evaluate how many tokens accumu-

lated in pre-place is enough to enable the relevant transition. At beginning, two tokens

are deposited at each initial place of role-net and resource type-net. Once the tokens

reach the final place of each net, we assume that the authorization flows are success-

fully executed. However, the execution mechanisms designed for Group of Role and

152 Process Model- SOAC-NET

Figure 5.17: SOAC-Net

5.3 Specification of SOAC-Net 153

Resource Type Dependency Policy (C5r×ret→r×ret) is complicated, which will be

introduced in details in this section.

For example, in Fig. 5.18, the group of Lease Agent support and Lawyer access on

the operation of Return depends on the group of Lease Agent support and Customer

access on the operation of Lease Application. A constraint-net C5 is used to realize the

dependency policy. In Fig. 5.18, initially, only one token arrives at the pre-place of the

transition (Lease Agent support on Return) in resource type-net. All the other ac-

cesses and supports related with that dependency policy are still not executed. Hence,

there is no token deposited in Tx• in constraint-net C5. The relation between Tx•

and the transition (Lease Agent support on Return) is a weak relation, that will not

affect the fire of this transition (See Step 1 in Fig. 5.18). After its firing, one token

will be passed to Te in constraint-net C5 and the other one will be moved into the

post-place of this transition in resource type-net (See Step 2 in Fig. 5.18). The

token in the pre-place of Te in constraint-net C5 will be split into •Ty and •Tx after Te

firing (See Step 3 in Fig. 5.18). At this time, Tx can be enabled and fired to deposit

one token from •Tx to Tx•. When Count(Tx•)=1, the relation between Tx• and the

transition (Lawyer access on Return) in role-net becomes a normal relation, i.e., Tx•

becomes one of the pre-places of the transition to affect its firing. Since W:Tx•×Tr=2

and W:Tx•×Tret=2, one token in Tx• now is not enough to enable the normal relation

with weight 2. Therefore, even if the pre-place of the transition (Lawyer access on Re-

turn) in role-net has accumulated enough tokens, the transition still can not be fired,

since its pre-place (Tx•) in constraints-net C5 has not accumulated enough tokens to

pass the relation with weight 2. The Group of Role and Resource Type Depen-

dency Policy (C5r×ret→r×ret) is enforced on the Lawyer access on Return (See Step

4 in Fig. 5.18).

From the above example, we can observe, that without the execution of depended

role access and resource type support, one of the depending role access and resource

type support can not be performed if the other one has already been executed. That

is the function of the constraint-net C5. In this example, we can further observe that,

154 Process Model- SOAC-NET

Figure 5.18: Example of Execution Mechanism of Constraint-Net C5 (I)

5.3 Specification of SOAC-Net 155

it does not matter which element in depending group to fire firstly. The execution

mechanism of constraint-net C5 can automatically restrict the execution of the other

element in the depending group, when one element in the group has been fired. Al-

though several steps are needed in constraint-net C5, we assume that the time interval

between the fire of one element and the restriction on the execution of the other el-

ement is so small that it can be ignored. So we can ignore the situation where two

elements in depending group are required to be executed at the same time.

The restriction of Constraint-Net C5 can be released if both elements in a depended

group have finished execution. For example, in Fig. 5.19, two tokens arrive at the pre-

places of the transition (Customer access on Lease Application) in role-net and the

transition (Lease Agent support on Lease Application) in resource type-net, respec-

tively (See Step 5 in Fig. 5.19). After their firing, two tokens are deposited in •Ty
in Constraint-Net C5 and the other tokens are moved in post-places of these transi-

tions in role-net and resource type-net (See Step 6 in Fig. 5.19). Hence Ty can be

fired as both pre-places of Ty have accumulated enough tokens. Note, the execution of

one of the elements in a depended group is not enough to enable Ty since it can only

deposit one token in •Ty, and the weight of the relation between Ty and this •Ty is 2

W:•Ty×Ty=2. Now, both pre-places of Ty have enough tokens, one with 2 tokens from

the execution of depended elements and the other with 1 token from Te. Ty then can

be fired to consume all tokens and one token can be deposited in Ty•, also known as

Tx• (See Step 7 in Fig. 5.19). Now, Count(Tx•)=2, means that enough tokens have

been accumulated to pass the relation between Tx• and the transition (Lawyer access

on Return). If the pre-place of this transition in role-net has already accumulated

enough tokens, then it can fire now, i.e. the restriction of Constraint-Net C5 has been

released (See Step 8 in Fig. 5.19).

156 Process Model- SOAC-NET

Figure 5.19: Example of Execution Mechanism of Constraint-Net C5 (II)

5.4 Conclusion 157

5.4 Conclusion

In this chapter, we propose a Petri-Net based process model, SOAC-Net, based on

our conceptual model of service oriented authorization control. Currently, SOAC-Net

is the only process model that takes the component services (resources) into account

in managing composite web service authorization in process environment. In SOAC-

Net, two types of authorization synchronization policies and five types of authorization

dependency policies are enforced.

However, with more and more authorization policies are defined based on SOAC-

Net, how to determine whether they are defined properly becomes a challenge. The

improper authorization policy definition can cause the suspension of the execution of

a composite web service. Hence, in the next chapter, a mechanism will be introduced

based on SOAC-Net to verify the reliability of SOAC-Net in terms of authorization

policy definition.

158 Process Model- SOAC-NET

Algorithm 1 Algorithm for Constructing Role-Flow
Input: R, OP, OPA⊆OP×R, F⊆OP→OP

Output: E⊆OPA→OPA

{Based on the operation’s execution sequence F, and the mapping OPA between

Role R and Operation OP, a sequence of role accesses E is constructed}

Steps:

1: while NOT the end of F do

2: /*Check if the operation opi is mapped with roles by using the inverse function

of assigned op(r∈R)*/

3: if assigned op−1(opi ∈OP)6= ∅ then

4: /*Select all roles that are mapped with opi into R
′
, a subset of Role R. */

5: ∃ R
′⊆R, ∀ ri∈R

′
, ri × opi=OPA

′⊆OPA, ∀ rj∈R-R
′
, rj × opi 6⊆OPA;

6: /*Relationship() is a recursive function on finding all relationships of

Exclusive-Choice or Concurrency between different OPAs or none for one OPA

within the set of OPA
′
.*/

7: W=Relationship(OPA
′
);

8: E=Sequence(E,R
′
,W); /* Based on the set of role R

′
and the set of rela-

tionships W, the roles mapped with opi are added in the role-flow E with the

relationships within OPA
′
. */

9: end if

10: Next(opi∈ OP); /*Select the next operation F*/

11: end while

5.4 Conclusion 159

Algorithm 2 Algorithm for Constructing Resource Type-Flow
Input: ReT, OP, SPA⊆OP×ReT, F⊆OP→OP

Output: D⊆SPA→SPA

{Based on the operation’s execution sequence F, and the mapping SPA between

Resource Type ReT and Operation OP, a sequence of resource type supports F is

constructed}

Steps:

1: while NOT the end of F do

2: /*Check if the operation opi is mapped with resource types by using the inverse

function of assigned ret(ret∈ReT)*/

3: if assigned ret−1(opi ∈OP) 6= ∅ then

4: /*Select all resource types that are mapped with opi into ReT
′
, a subset of

resource type ReT. */

5: ∃ ReT
′⊆ReT, ∀ reti∈ReT

′
, reti × opi=SPA

′⊆SPA, ∀ retj∈ReT-ReT
′
,

retj × opi 6⊆SPA;

6: /*Relationship() is a recursive function on finding all relationships of

Exclusive-Choice or Concurrency between different SPAs or none for one SPA

within the set of SPA
′
.*/

7: W=Relationship(SPA
′
);

8: D=Sequence(D,ReT
′
,W); /* Based on the set of resource type ReT

′
and

the set of relationships W, the resource types mapped with opi are added in

the resource type-flow D with the relationships within SPA
′
. */

9: end if

10: Next(opi∈ OP); /*Select the next operation F*/

11: end while

160 Process Model- SOAC-NET

6
Authorization Policy Verification

6.1 Introduction

Authorization policies can be enforced based on the process model SOAC-Net to man-

age the composite web service authorization. However, how to decide whether all

policies defined in SOAC-Net are correct becomes an issue that is not tackled. There-

fore, we need to provide a verification mechanism based on SOAC-Net to ensure the

defined authorization policies can consistently work with the execution of the compos-

ite web service. In a word, there at least exists one execution path in SOAC-Net to

comply with the business logic of the composite web service execution. The existence of

the path in SOAC-Net means that there exist proper service consumers and resources

as specific roles and resource types that can access and support the operations of the

composite web service, when they are needed according to the business logic of the

161

162 Authorization Policy Verification

Figure 6.1: Improper Authorization Policy Definition I

composite web service. The whole business process of the composite web service will

be suspended or even terminated due to the unavailable support or access. We call

such authorization flow that can consistently work with the workflow of the composite

web service as reliable authorization flow.

However, with more and more authorization policies being defined based on the

process model SOAC-Net, the possibility of improper authorization policy definition

becomes higher. When authorization policy is not defined properly, the necessary role

or resource type may be missing, which makes service consumer or resource not be

able to access and support the operations. Such missing can eventually suspend the

whole business process, and cause the process terminated. When we use authorization

synchronization policies to construct the role-flow and resource type-flow based on

the business logic of a composite web service, we can find that, if the role-flow or

resource type-flow are affected by the improper authorization policies, they will step

into a dead state, i.e., a state in which the process is suspended. For example, in

Fig. 6.1, operations 1 to 5 are used to construct a normal workflow of the operations

of the composite web service. Rolea to Rolec are mapped to the operations. However,

there is no role mapped to operation 2 that is key operation in the execution path of

6.2 Verification Mechanism 163

the common workflow. When we develop a role-flow based on the business logic of a

composite web service, we can find that the role-flow is put into a dead state where no

service consumer can access operation 2 as a specific role during the business process.

Petri Net [44] provides a set of verification mechanisms[46], and its graphically and

mathematically founded modeling formalism with various algorithms for design and

analysis[45] makes it a good candidate for modeling authorization flow (Therefore, a

Petri-Net based process model has been developed in last chapter). Various properties

of Petri Net, including reachability, dead marking, Soundness, etc., are well presented

in the literature. These properties have already been used for verifying the reliability of

service composition and workflow[83–86, 88]. In this chapter, we propose a reliability

property based on SOAC-Net to cater for the novel semantics of authorization flow,

named authorization-embedded dead marking freeness. This new property based on

SOAC-Net can be used to verify the improper authorization policy definition.

The rest of this chapter is organized as follows. In section 2, the verification mech-

anism is presented in details including formal method and example. Conclusion is

presented in the last section.

6.2 Verification Mechanism

In this section, we will introduce a verification mechanism to verify the Improper Au-

thorization Policy Definition based on SOAC-Net, i.e., to confirm in which step of

SOAC-Net the authorization policies is defined improperly.

Currently, the mechanism that can be used to verify the improper authorization

policy in SOAC-Net is only acyclic. In future, a more general mechanism should be

developed to work on SOAC-Net which consists of different types of workflow patterns,

including looping.

The transitive matrix L∗BP [50] is an m×m matrix, where m denotes the amount

of the place in a specific Petri-Net based process model. A transition t will be the

element of the transitive matrix L∗BP at row i and column j, if place i is the pre-

place of the transition and place j is the post-place of the transition. Through the

164 Authorization Policy Verification

transitive matrix L∗BP , the structure of a specific Petri-Net based process model is

transferred into a form of matrix. We extend the transitive matrix by associating it

with the authorization information, called authorization-embedded transitive matrix,

and use it to detect the Improper Authorization Policy Definition. The authorization

information in the matrix can be the name of role , resource type, constraint name in

related transition, or even Te. For example, in role-flow, the transition R2 is between

the pre-place i and post-place j. Then R2 as the authorization information will be put

in the ith row and jth column of transitive matrix. If the authorization information is

missing due to improper authorization policies definition, then an empty set symbol

will be put in a relevant position in the transitive matrix.

Before presenting the verification method, we firstly describe the syntax of two

types of matrix algebraic operator � and 4 which are used by the verification method

on the property of authorization dead marking freeness.

Please note, the definition is regarding to how to build an authorization embedded

transitive matrix. The elements in the transitive matrix are sets including the autho-

rization information, which is quite different with traditional transitive matrix. The

grammar of definition follows BNF-like notation:

M ::= M1 �M2|M14M2

Where:

• M1�M2: Given an n×m matrix M1, an m×n matrix M2, and an n×n matrix M3

where M1=[cij] , M2=[dji], and M3=[eii] (i=1..n, j=1..m). Then

M3 = M1 �M2 ⇒ [eii] =
m⋃
j=1

([cij] ∩ [dji])

• M14M2: Given an n×m matrix M1, an m×n matrix M2, and an n×n matrix

M3 where M1=[cij] , M2=[dji], and M3=[eii] (i=1..n, j=1..m). Then

M3 = M14M2 ⇒ [eii] =
m⊎
j=1

([cij]× [dji])

6.2 Verification Mechanism 165

Where [cij]× [dji] is a relation, i.e, the element in [cij] is mapped to the element

in [dji].
⊎

is an operator where it puts a sequence of available relations into a

set. The available relation should not include any empty set operator . Since [cij]

and [dji] can be a set to include multiple elements,
⊎m

j=1[cij]× [dji] will generate

a set of relations where each element in [cij] needs to be mapped to each element

in [dji]

Let us see two examples to describe the two proposed algebraic operators.

M1 =


∅ {a, b}

{c, e} ∅

{e} {c}


M2 =

 {e} ∅ {c}

{c, e} {b} {a}



Mx = M1 �M2 =


∅ {b} {a}

{e} ∅ {c}

{c, e} ∅ ∅



My = M14M2 =


{a× c, a× e, b× c, b× e} {a× b, b× b} {a× a, b× a}

{c× e, e× e} ∅ {c× c, e× c}

{e× e, c× e, c× c} {c× b} {e× c, c× a}


The proposed algebraic operators guarantee that each result of matrix computing

is still a matrix to which we can again apply algebraic operators. Below we formally

define how these two operators can be used.

Definition 15 An authorization-embedded transitive matrix:

Lau
BP = (A−)TP �Diag(t1, ..., tn) � A+

where A−=[a−ij] and A+=[a+ij] are n×m matrices (n transitions, m places). TP means

transpose matrix, and Diag() represents diagonal matrix.

166 Authorization Policy Verification

a−ij =

 U (full set) (pj, ti) ∈ F r ∩ F ret ∩ F c

∅ (empty set) (pj, ti) /∈ F r ∩ F ret ∩ F c

a+ij =

 U (full set) (ti, pj) ∈ F r ∩ F ret ∩ F c

∅ (empty set) (ti, pj) /∈ F r ∩ F ret ∩ F c

th(h=1,2,...,n) is the transition in a specific position to represent the authorization

information, e.g. the name of role in role flow, resource type in resource type flow or the

constraint in constraint-net. the authorization information can be formally described

as:

th =



r r represents a role in Role-Net

ret ret represents a resource type in Resource Type-Net

c c represents a constraint in constraints 3 to 6

Tx and Ty Tx and Ty represent the transition in constraint 7

Te Te represents an empty transition where it pass, split, or collect the tokens only.

Lau
BP is used to represent the structure of the Petri-Net based process model from

an authorization aspect. Marking M is a 1×m matrix to represent each step of the

movement of the token in the process model. m is the amount of place in SOAC-Net.

If there exists a token at the place j in a specific step of the token movement, the jth

element in the marking (at row 1 column j) is equal to the value of the token. The

value of the token is a series of operations that need to be accessed and supported

during the execution of a composite web service. All other elements in the marking is

∅. For example, marking M1=[op1, ∅, ∅] represents that a token op1 is in place 1; while

marking M2=[∅, op2, ∅] means that a token is moved into place 2 from place 1 after

one step token movement (M1 → M2). The token movement from place 1 to place 2

represents a transition between these two places is fired. The value of token is changed

during the token movement.

The relation between the transition and its pre-places is restricted by the weight

function. Only enough tokens, i.e the amount of token is equal to or more than the

weight of the relation, are accumulated, the transition then can be fired, and the firing

will cause the token to move from the pre-place of the transition to the post-place of

6.2 Verification Mechanism 167

the transition, i.e. from marking MK−1 to marking MK . However, if the transition can

not be enabled and fired due to the missing of the authorization information, the token

movement will be ceased in this transition in SOAC-Net and is called authorization

dead marking, a kind of dead marking caused by the authorization error. Here we

introduce a verification method to see if a SOAC-Net is authorization-embedded dead

marking free at the kth step of token movement (k=1 to v, where v represents how

many steps are needed for the token to move from the initial place to the final place in

the process model). Before a token moves from Marking MK−1 to MK , we use Mk−1 to

compute with Lau
BP to get a temporary 1×m matrix M∗au

k . Hence, we call the matrix

M∗au
k as temporary marking. In M∗au

k , we need to check if MK−1 is an authorization

dead marking. If yes, then MK can not be realized from MK−1 and a dead marking is

detected.

Formally,

M∗au
k = MK−14 Lau

BP ⇒ s[1j] =
m⊎
i=1

(c[1i]× a[ij])

where j=1..m, M∗au
k =s[1j], MK−1=c[1i], and Lau

BP=a[ij].

Definition 16 A SOAC-Net is authorization dead marking free if

CountSet(s[1j])

CountSet(a[ij])
≥ min(Weight(pi × {•pj}))

Where CountSet()→ IN is a function to count how many elements exist in a set.

CountSet(a[ij])<>0 and s[1j] and a[ij] are defined in M∗au
k .

Since M∗au
k =s[1j] where j represents the jth place (pj) in M∗au

k , s[1j]=∅ means that

there is no way that a token can be deposited at the jth place (pj) in Mk after a specific

transition is fired to make the marking from Mk−1 to MK . Therefore, if all elements

in M∗au
k are empty, i.e. s[1j]=∅, j=1..m, then the dead marking occurs as there is no

place can be deposited a token after a transition firing, i.e., the marking is dead at

Mk−1 and Mk will never be fired. On the other hand, if s[1j] is a set which includes the

relation of role×operation, resource type× operation, or any other relations, then it is

possible that a token can be deposited at the jth place (pj) in Marking MK from Mk−1,

168 Authorization Policy Verification

if enough tokens have been accumulated to enable the transition to fire. Hence, we will

examine if enough tokes have been accumulated to cause the deposition of the tokes

at the jth place in marking MK . The examine will be carried out based on the amount

of relations in s[1j]. CountSet(s[1j]) is used to calculate how many relations exist in all

non-empty places (pj j=1..m). a[ij] is a set in Lau
BP that includes all transitions after

the place pi, before place pj. CountSet(a[ij]) is used to calculate the amount of the

transitions in a[ij]. Weight(pi×{•pj}) is used to calculate the weight of the relations

of the place pi and the transitions between pi and pj (written as •pj). There can be

multiple transitions between pi and pj. min() is a function to select the minimum

weight on the relations between place pi and the pre-transitions of pj.

The transition can fire only if the amount of tokens deposited in pi is equal to

or more than the weight of the relation. We use CountSet(s[1j])/CountSet(a[ij]) to

compare the minimum weight. Since a[ij] can include multiple transitions between the

same pre-place and the same post-place, in Lau
BP an element at the ith row and the

jth column becomes a set to include these transitions. When MK−14Lau
BP , one token,

also known as one operation in the ith place at MK−1, will construct a relation with

each transition in the set a[ij]. In s[1j], at the jth position, we can have the amount of

relations as the amount of tokens at the ith place (pi) in MK−1 multiply the amount of

transitions at the ith row and the jth column in a[ij] at Lau
BP . Obviously, we can not use

this amount of the relations to compare with the weight of the relations between pi and

all transitions in {•pj}, since the amount of the relations in s[1j] can be increased with

the amount of elements in a[ij]. For example, if a[ij] includes three elements representing

three transitions between place pi and place pj, then one token at c[1i] (Mk−1) can cause

three relations in s[1j]. We can not use the three relations to compare the weights

between place pi and each transition. Hence, we use CountSet(s[1j])/CountSet(a[ij]) to

erase the influence caused by the amount of transitions in a[ij]. The result will precisely

calculate how many tokens have been accumulated in pi.

Since there can be multiple transitions between place pi and place pj, the relations

between place pi and these transitions can also be multiple. The amount of tokens

in pi only needs to be greater than the minimum weight between place pi and these

6.2 Verification Mechanism 169

Figure 6.2: Example for Verification Mechanism

transitions, i.e. at least the transition with the minimum weight can be fired. Hence,

we use min(Weight(pi×{•pj})) to compare with the amount of CountSet(s[1j])
CountSet(a[ij])

.

In summary, if the amount of the relations at the jth position in s[1j] divided by

the amount of the transitions between place pi and pj is still greater than the amount

of the minimum weight of the relations between place pi and all transitions in {•pj},

then we can say that tokens can be moved from pi to pj so that marking MK−1 can

step forward to MK .

In Fig. 6.2, we take part of SOAC-Net as an example, where part of role-net and

constraint-net C1 are included. Firstly, we need construct an authorization-embedded

transitive matrix Lau
BP of this part of SOAC-Net. Since Lau

BP = (A−)TP �Diag(t1, ..., tn)�

A+, the (A−)TP , Diag(t1, ..., tn), and A+ should be built up based on the structure of

our example diagram in Fig. 6.2. (A−)TP is an m×n matrix where m is equal to the

amount of places and n is equal to the amount of transitions. In Fig. 6.2, (A−)TP is

a 11×10 matrix where m=11 and n=10, i.e we have 11 places and 10 transitions in

Fig. 6.2. U in (A−)TP represents Full Set. In below (A−)TP , there is a full set U at the

3rd row and 4th column. It means there is a relation as P3×T4 in Fig. 6.2. ∅ at the ith

170 Authorization Policy Verification

row and jth column in (A−)TP means that there is no relation of Pi×Tj (See Fig. 6.2).

(A−)TP =



U U ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ U ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ U ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ U ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ U ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ U ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ U ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ U U ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ U

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ U ∅


Diag(t1, ..., tn) is an n×n diagnose matrix where n is the amount of transitions. th

(h=1..n) is the value of transition, e.g., the name of role, empty name (for Te), or the

name of the constraint that the transition represents. Hence, the Diag(t1, ..., tn) below

is a 10×10 matrix, where Cu represents Customer, Gu represents Guarantor, and La

represents Lawyer.

Diag(t1,...,tn)

=



Cu ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ Gu ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ Gu ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ Te ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ Cu ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ La ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ Te ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ Cu ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ Gu ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ C1


A+ is an n×m matrix where a Full Set U at ith row and jth column in A+ represents

6.2 Verification Mechanism 171

the existence of relation of Ti×Pj. For example, at below A+, there is a U full set at

the 10th Row and the 11th Column. It means that in Fig. 6.2, there is a relation as

T10×P11.

A+ =



∅ U ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ U ∅ ∅ ∅ ∅ ∅ ∅ ∅ U ∅

∅ ∅ U ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ U ∅ U ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ U ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ U ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ U ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ U ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ U ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ U


Hence, the authorization-embedded transitive matrix Lau

BP of this part of SOAC-Net

is Lau
BP = (A−)TP �Diag(t1, ..., tn) � A+, as below,

Lau
BP =



∅ {Cu,Gu} ∅ ∅ ∅ ∅ ∅ ∅ ∅ Gu ∅

∅ ∅ Gu ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ Te ∅ Te ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ Cu ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ Te ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ La ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ Te ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {Cu,Gu} ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ C1

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ Gu ∅ ∅


Marking M0 as the initial marking is [LA, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅] (See Fig. 6.2),

where only token LA is deposited as Place P1. Hence, we can calculate temporary

172 Authorization Policy Verification

matrix M∗au
1 =M04Lau

BP .

M∗au
1 =

[
∅ {LA× Cu,LA×Gu} ∅ ∅ ∅ ∅ ∅ ∅ ∅ {LA×Gu} ∅

]
where there are two sets {LA×Cu, LA×Gu} and {LA×Gu} that are non-empty at

the 2nd and 10th positions inM∗au
1 respectively, i.e., M∗au

1 =s[1j] j=1..11, s[1,2]={LA×Cu,

LA×Gu}, s[1,10]={LA×Gu}. Hence, according to Definition 16, CounetSet(s[1,2])=2,

CountSet(s[1,10])=1.

Let us examine CountSet(s[1,2])=2 firstly. In Lau
BP (a[ij], i=1..m, j=1..m), when

j=2, only a[1,2]={Gu,Cu}, and all other elements in the 2nd column are ∅, e.g, a[2,2]

to a[11,2] (CountSet(∅)=0), that can not be used in Definition 16. Hence, we only need

check CountSet(a[1,2])=2. Now, we can conclude that CountSet(s[1,2])/CountSet(a[1,2])=1

where i=1 and j=2. In Fig. 6.2, there are two transitions between Pi (i=1) and

Pj(j=2), i.e. T1 and T2. Hence, min(weight(P1×•P2))=1 since weight(P1, T1)=1

and Weight(P1, T2)=1. Now, in the temporary matrix M∗au
1 in Fig. 6.2, for the 2nd

position, i.e. j=2,

CountSet(s[1, 2])/CountSet(a[1, 2]) = min(weight(P1 × •P2)) = 1

where i=1 and j=2.

According to Definition 16, the part of SOAC-Net is authorization dead marking

free in M0, i.e. M0 can be transferred into M1 based on the fire of a specific transition.

In this example, the place P2 will be deposited a token in M1 after the firing of a specific

transition, since the corresponding position in M∗au
1 that satisfies the Definition 16 is

the 2nd position.

Now let us examine CountSet(s[1,10])=1 where j=10. For all elements in a[i,10],

i=1..11, (in Lau
BP), only a[1,10]={Gu} and all other elements in the 10th column of Lau

BP

are ∅ that can not be used in Definition 16 because of CountSet(∅)=0. Hence, we can

only take CountSet(a[1,10])=1 into account. CountSet(s[1,10])/ CountSet(a[1,10])=1

where i=1, j=10. min(weight(p1×•p10))=1 since there is only one transition between

p1 and p10, i.e., T2, and p1×T2=1. Now, in the temporary matrix M∗au
1 in Fig. 6.2, for

the 10th position, i.e. j=10,

6.2 Verification Mechanism 173

CountSet(s[1, 10])/CountSet(a[1, 10]) = min(weight(P1 × •P10)) = 1

where j=10 and i=1.

According to definition 16, the part of SOAC-Net is authorization dead marking free

in M0, i.e. M0 can be transferred into M1 based on the fire of a specific transition. In

this example, the place P10 will be deposited a token in M1 after the firing of a specific

transition, since the corresponding position in M∗au
1 that satisfies the Definition 16 is

the 10th position.

In summary, after T1’s firing, M1=[∅, GC, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅], where a token is

deposited in P2 at marking M1. On the other hand, if T2 is fired, M1=[∅, GC, ∅, ∅, ∅,

∅, ∅, ∅, ∅, GC, ∅], where tokens can be deposited in both P2 and P10 at marking M1.

We can conclude that in marking M0, the part of SOAC-Net in Fig. 6.2 is authorization

dead marking free.

However, in Fig. 6.2, if the role information is missing for accessing the operation of

Guarantor Confirmation, then the part of SOAC-Net will become authorization dead

marking, that can be verified by our proposed mechanism. In this case, the original

Lau
BP will be changed as Lau∗

BP as below,

Lau∗

BP =



∅ {Cu,Gu} ∅ ∅ ∅ ∅ ∅ ∅ ∅ Gu ∅

∅ ∅ ∅∗ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ Te ∅ Te ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ Cu ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ Te ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ La ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ Te ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {Cu,Gu} ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ C1

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ Gu ∅ ∅



174 Authorization Policy Verification

We can observe that in above Lau∗
BP , the original role information {Gu} that represents

Guarantor is missing, and changed as ∅∗ at the 2nd row and the 3rd column in Lau∗
BP .

If we assume that marking is changed from M0 to M1 by the firing of transition T1,

then M1= [∅, GC, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅]. We can calculate temporary matrix M∗au
2

as M∗au
2 =M14Lau∗

BP .

M∗au
2 =[∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅]

Hence, for all elements inM∗au
2 , CountSet(s[1j])=0 where j=1..11, and CountSet(s[1j])/

CountSet(a[ij])=0 where i=1..m, j=1..m. On the other hand, we know that the mini-

mum weight of relations in SOAC-Net is 1, i.e, min(weight(Pi×•Pj))=1. Therefore,

CountSet(s[1j])/CountSet(a[ij]) < min(weight(Pi × •Pj)) = 1

where i=1..11, j=1..11.

According to Definition 16, the above example of SOAC-Net becomes authorization

dead marking at marking M1, in case of the missing of role information on the operation

of Guarantor Confirmation.

Currently, the verification mechanism is only suit for the business process with

sequence workflow only, and the complexity of the verification mechanism is N2.

6.3 Conclusion

With more and more authorization policies defined in authorization system, how to

manage the improper authorization policy definition becomes a difficulty that impedes

the composite web service authorization management. These improper authorization

policy definition can even cause the missing of important authorization information on

specific operations and lead to the suspension of the normal execution of a composite

web service. In this chapter, we propose a property, named authorization dead marking

freeness to verify improper authorization policy definition based on SOAC-Net. The

associated verification mechanism is also introduced. This verification mechanism can

be implemented at both design time and runtime to detect the missing of important

authorization information caused by the improper authorization policy definition based

6.3 Conclusion 175

on SOAC-Net.

176 Authorization Policy Verification

7
Tool Support

7.1 Introduction

In this chapter, an overview of tool support is presented, named SOAC Engine [91],

which is developed based on conceptual model SOAC and process model SOAC-Net

proposed in previous chapters. The purpose of this implementation is to demonstrate

the functionality of an authorization engine in a service system. It has been developed

with the following features:

• SOAC Engine is developed based on our conceptual model, SOAC, which is an

extension of role based access control for the authorization of composite web ser-

vices [92, 93]. In SOAC Engine, the authorization of a composite web service to

a service consumer takes the constraints of the component services into consid-

eration. The authorization engine will consider ”who can do what under what

177

178 Tool Support

kind of support”.

• Two concepts, Role and Resource Type, are introduced in SOAC Engine in order

to reduce the administrative overhead in the authorization management. Based

on the characteristics of component services and service consumers, we classify

component services and service consumers and map them into resource types and

roles.

• Authorization rules are embedded in SOAC Engine to prevent conflict of interest

in terms of composite web service authorization at both design time and runtime.

• SOAC Engine provides an internal embedded Petri-Net process model simulation

to model the SOAC-Net based on the authorization relationship of elements in

SOAC.

• Authorization policy enforcement and verification on the SOAC-Net are deployed

in the Petri-Net Process Model Simulation.

The technical significance of SOAC Engine can be presented as follows: (1) it is

a first authorization engine that manages the web service authorization from only

the composite service’s point of view, rather than global view. (2) It can solve the

conflict of interest in composite web service authorization caused by the involvement

of the component services. (3) A Petri-Net simulation is embedded within the SOAC

Engine to enforce and verify the authorization policies based on SOAC-Net. By itself,

the problem of web service authorization from composite service’s point of view that

we address is challenging, and the method we provide here for avoiding conflict of

interest in terms of authorization and managing authorization policy in a business

process environment is unique and notably differs from any existing works in the area,

which focus on either non-composite service environment [64] or manage composite

web service authorization from a global point of view [61].

The rest of the chapter is organized as follows. Section 2 describes system archi-

tecture of SOAC-Engine. A demonstration of SOAC-Engine is presented in section 3.

We conclude our implementation in Section 4.

7.2 System Architecture 179

7.2 System Architecture

The SOAC Engine (See Fig. 7.1) is developed with JAVA and Oracle, and resided

in local web server which transfers the access request and authorization notification

between Service Consumer and the engine through Application Interface. The

local web server can also be used to collect the support from resources and manage

their information through Authorization Management Interface of SOAC Engine.

This interface is used by administrator and/or system developer as well to (1) set

the elements of SOAC and their relationships, (2) identify the conflicted relationships

among elements, (3) manage the authorization policies coordination for both composite

web service and resource, and (4) define authorization dependency policy according to

business security requirements.

The SOAC Engine includes four component packages: Authorization Administrative

Management, Credential Management, Authorization Decision Making, and Authorization

Enforcement, as follows,

• Authorization Administrative Management, is used to manage the elements of

SOAC and their relationships, e.g., adding a role, or querying the assigned roles

for specific service consumer. In Authorization Administrative Management,

the elements of SOAC and their relationships in both service provision part and

service realization part are defined and managed by using the 18 administrative

operations, the black circles in Fig. 7.1. These components manage service con-

sumers, roles, resources, resource types and the mapping relationships of service

consumer/role and resource/resource type. The resource type is a new concept in

our proposed authorization framework which has not been used in existing autho-

rization systems. In Authorization Administrative Management, the business

logic of operations of the composite web service is also stored in database. Static

and dynamic conflict free authorization rules in terms of identifying the conflict

of interest at both design time and runtime are also recoded in database within

Authorization Administrative Management. Authorization dependency pol-

icy based on business security requirements defined by system administrator is

180 Tool Support

Figure 7.1: System Architecture of SOAC Engine

7.2 System Architecture 181

another type of authorization rules recorded in Authorization Administrative

Management.

• Credential Management processes and manages credentials for service consumers

and resources. The SOAC Engine will not bring new features for this package

comparing to existing authorization engines.

• In Authorization Decision Making, authorization decision is made based on (1)

the checking of Conflict of Interest (CoI) and (2) the verification of SOAC-Net.

– The conflict of interest may be checked using the static authorization rules

or the dynamic authorization rules according to different system contexts

or design choices. For detecting Static CoI, four authorization rules, S-

CF-R-AC, S-CF-RT-AC, S-CF-R2T-AC, and S-CF-PR2T-AC are checked

by the static conflict of interest detector in the package of authorization

decision making. For detecting Dynamic CoI, four authorization rules, D-

CF-R-AC, D-CF-RT-AC, D-CF-R2T-AC, and D-CF-PR2T-AC are checked

by the dynamic conflict of interest detector in the package of authorization

decision making (Regarding to each type of conflict of interest, please refer

to section 3 in chapter 4.) For checking Dynamic CoI, Session Management

facilitates the management tasks related with sessions. In Fig. 7.1, black

circles on Session Management represent the another 20 operations for a se-

ries of session management tasks. SOAC engine has the capabilities beyond

existing authorization systems to identify and detect the conflict of interest

focusing on one resource, a pair of service consumer and resource.

– The verification of SOAC-Net is another factor that affects the authoriza-

tion decision. Based on the business process and authorization dependency

policy (See Fig. 7.1), a SOAC-Net can be modeled within a simulator, where

a Petri-Net based process model can be executed. Role-Net, Resource Type-

Net and Constraint-Net are constructed respectively. Based on the devel-

oped SOAC-Net, verification mechanism on the property of authorization

182 Tool Support

Figure 7.2: SOAC Engine

dead marking can be deployed. If improper authorization policy definition

is identified, alert will be issued to notify the authorization decision.

Authorization Decision Making performs the policy compliance checking to

make authorization decisions. The conflict of interest is checked and the verifi-

cation on SOAC-Net is performed in this package.

• The Authorization Enforcement controls the enforcement of authorization de-

cisions related with the composite web service and its component services. Au-

thorization Synchronization Policy should be enforced when granting the autho-

rizations.

7.3 System Demonstration

In this section, we will demonstrate the SOAC-Engine. In Fig. 7.2, an administrator

interface is presented where the administrator can login into the engine by fill the user

name and password.

7.3 System Demonstration 183

Figure 7.3: User Administration

The functions of SOAC Engine are separated into four parts, (1) Administrative

Functions, (2) Authorization Control, (3) Authorization Relationship, and (4) Admin-

istrator (See the left-hand side at Fig. 7.3). The elements of SOAC and their re-

lationships are designed by Administrative Functions and Authorization Relationship.

Authorization policies and the design of conflict of interest are defined in Authorization

Control.

In Fig. 7.3, we can add, modify, delete, and query the user, i.e the service consumer,

in SOAC Engine. We can observe in Fig. 7.3 that a user name Haiyang is assigned a

user ID u 002. In Fig. 7.4, all roles that have been defined in SOAC-Engine have been

listed.

When clicking the role of authorization relationship at left-hand side of Fig. 7.5, a

tree diagram is illustrated in Fig. 7.5, where all related authorization mappings of role

r 001 are illustrated. That can be used by administrator to query what authorization

mappings have been defined in SOAC-Engine. We can find that the user Haiyang with

user ID u 002 has been assigned to role r 001 in the engine.

184 Tool Support

Figure 7.4: Role Administration

Figure 7.5: Authorization Mapping Tree

7.3 System Demonstration 185

Figure 7.6: Conflict of Interest Identification

When you click the conflict of interest at authorization control at left-hand of

Fig. 7.6, the various types of conflict of interest can be defined based on the business

requirements. In Fig. 7.6, we can observe that role r 001 and role r 004 are conflicted

with each other.

Hence, when we click mapping for r 004, then we can start to map related operation

and user to this role (See Fig. 7.7). In Fig. 7.7, we can observe, that the user Haiyang

with user ID u 002 will be mapped with role r 004, and role r 004 is mapped to the

operation op 004 in the engine. However, since user u 002 has been assigned with role

r 001 and role r 001 is conflicted with role r 004 (See Fig. 7.6), the user Haiyang with ID

u 002 can not be assigned with conflicted role r 004. The information of unsuccessful

mapping is shown in Fig. 7.8.

The group of conflict of interest can also be avoided in SOAC engine. In Fig. 7.9,

we can observe that all elements related with user u 001(Gorge) are depicted in a tree

diagram. For the group of u 001 and re 008, they have already been assigned with

the group of role r 001 and resource type ret 002. In Fig. 7.10, all elements with role

r 002 have been illustrated, where resource re 008 has been used to provide support as

186 Tool Support

Figure 7.7: Role Mapping

Figure 7.8: Bad Mapping

7.3 System Demonstration 187

Figure 7.9: Authorization Mapping Tree 2

resource type ret 005.

In Fig. 7.11, the conflict of interest among the group of role and resource type is

illustrated, e.g., < R2,ReT5 > is conflicted with < R1,ReT2 > and < R3,ReT6 >.

When we want to map the user u 001 to role r 002 (See Fig. 7.12), the conflict of

interest for group of user u 001 and resource re 008 occurs (See Fig. 7.13). The reason

is that the group of user u 001 and resource re 008 has been mapped with group of role

r 001 and resource type ret 002, and resource re 008 has been mapped with resource

type ret 005. If user u 001 can be mapped to role r 002, then the conflicted groups of

< R2,ReT5 > and < R1,ReT2 > are both assigned to the group of < R1, RE8 >, that

can not be tolerated by SOAC engine (See Fig. 7.13).

In Fig. 7.14, a SOAC-Net simulation is illustrated when you click the Petri-Net in

authorization policy at Authorization Control. In authorization policy, the dependency

policy can be defined. Then the SOAC-Net simulator can model the SOAC-Net based

on the defined authorization mappings and policies, and the business logic of composite

188 Tool Support

Figure 7.10: Authorization Mapping Tree 3

Figure 7.11: Grouped Conflict of Interest Identification

7.3 System Demonstration 189

Figure 7.12: Role Mapping 2

Figure 7.13: Bad Mapping 2

190 Tool Support

web service. In Fig. 7.14, we can observe that, the Petri-Net simulator is separated

into five areas: Menus, Main drawing, Information, Matrix computing, and Monitor,

• Menus part consists of multiple icons to use the simulator, e.g. executing the

SOAC-Net.

• Main drawing is used to display the modeled SOAC-Net.

• Information area in simulator is used to illustrate the properties of each object

in the simulator, e.g., the properties of a place includes name, type, positions,

index and so on.

• Matrix computing is used to display each step of marking. When the SOAC-

Net runs, the marking will be changed according to each step of SOAC-Net. In

Fig. 7.14, a marking M0 is illustrated where only the position in marking for place

p1 and p11 are occupied by specific tokens. Note, E means ∅ in M0 in Fig. 7.14.

Since it is initial marking, the value of the token will be operation op 001.

• Monitor is used to display the verification result. If any authorization dead

marking occurs at specific step of SOAC-Net, alert will appear at Monitor area

to notify the administrator.

The Main Drawing area of SOAC-Net simulator is used to draw and display a

SOAC-Net. After drawing, the authorization policies will be associated with each

transition in SOAC-Net, and a labeled transitive matrix that is used to perform matrix

calculation will be built by system.

7.4 Conclusion

In this chapter, we present an authorization engine, named SOAC engine based on

our proposed conceptual model SOAC and process model SOAC-Net. Authorization

policies, for conflict of interest, synchronization, and dependency, are all supported by

the SOAC engine. In this chapter, we also demonstrate how the SOAC engine can

7.4 Conclusion 191

Figure 7.14: SOAC-Net Simulation

192 Tool Support

enforce authorization policies to avoid various types of conflict of interest. A Petri-Net

simulator is presented as well in this chapter to describe how the SOAC-Net is modeled

and how the verification based on SOAC-Net is performed.

8
Conclusion and Future Work

In this chapter, we summarize the contribution of this dissertation and discuss some

future research directions.

8.1 Conclusion

In this dissertation, we propose a security management system in composite web service

environment. Web service is autonomous and self-contained. Multiple web services

can be composed together to provide comprehensive function to service consumer in

a dynamic fashion and based on-demand. Hence, all web services are loosely-coupled.

Based on such environment, security management, i.e. authorization management, to

protect the information of the operations of composite web service becomes an issue

that is not tackled in recent research domain. Five research problems in composite web

193

194 Conclusion and Future Work

service authorization management are identified and solved by this dissertation.

• Complicated Coordination of Authorization Policies: The component ser-

vices that can provide support to the operations of the composite web service

have their own access policies. Granting the permissions to a service consumer

on accessing the operations of the composite web service should not only confirm

whether the service consumer is qualified, but also need to take access policy of

the components service into account, i.e. the availability of the support from

component service should be guaranteed. Obviously, without the support from

specific component service, the operation that needs the support should not be

accessed by the service consumer. A coordination on the authorization policies

of composite web service and those of component service is required. The ba-

sic authorization question ”who can do what?” should be changed to a more

complicated one as ”who can do what under what kind of support”.

In chapter three, a conceptual model named Service Oriented Authorization Con-

trol (SOAC) is proposed. In SOAC, an element named Resource is considered to

provide support on specific operations of composite web service that need to be

accessed by service consumer. Through this way, the support from component

service is taken into account when deciding if the permission should be granted

to service consumer.

• Dynamicity of Component Services and Service Consumer: A large

amount of component web services can be used as resources to support the com-

posite web service’s operations; while the quantity of service consumers can also

be large. Moreover, the resources and service consumers are normally prone-to-

change. Since component services and service consumers are both out of control

of composite web service, they can change their availability or authorization

requirements at any time according to their own interests, without advanced no-

tification to the composite web service (the relationship among web services are

loosely-coupled.). If the changes occur frequently or happen in many web ser-

vices, efficient authorization management is needed to reduce the administrative

8.1 Conclusion 195

overhead in authorization of composite web services.

In chapter three, the proposed SOAC conceptual model introduces two group

concepts Role and Resource Type to encapsulate the large-quantity and prone-

to-change service consumers and resources respectively. The operations of the

composite web service are not mapped to service consumer and resource directly.

Actually, they are mapped to these two group concepts. By this way, the frequent

and large-amount changes of service consumer and resource can not affect the au-

thorization management on the operation. Through managing the relationships

between service consumer and role, and between resource and resource type, the

administrative overhead is dramatically decreased as the relationships between

role and operation, and the relationship between resource type and operation are

kept stable.

• Conflict of Interest: The composite web service authorization management

should avoid any conflict of interest. In composite web service environment, with

the involvement of resource, the conflict of interest becomes complicated, in terms

of authorization.

In chapter four, we analyze each type of conflict of interest and provide relevant

authorization rules to avoid conflict of interest. We summarize the conflict of

interest in composite web service authorization from three factors as follows,

– Where does the conflict of the interest occur? : The conflict of interest can

occur at four places. (1) between service consumer and composite web

service, i.e., at service provision part, (2) between resource and composite

web service, i.e., at service realization part, (3) between resource, composite

web service, and service consumer i.e., at integration part, and (4) between

the groups of resource and service consumer, i.e, at service integration part.

– When does the conflict of interests occur? : (1) The conflict of interest can

occur at design time where no authorization should be given in terms of

conflict of interest. (2) The conflict of interest can occur at run time. Some-

times, there is a tradeoff between the security and flexibility in business

196 Conclusion and Future Work

requirement. In this case, the authorization that may cause conflict of in-

terest can be granted. However, these authorizations can not be activated

simultaneously so that the conflict of interest can be avoided at runtime.

– What does the conflict of the interest include? : (1) The conflict of interest

may include several elements, e.g., several service consumers or resources.

In this case, the conflict of interest is caused by the mismatch of the relation-

ship between these elements. (2) On the other hand, since the relationships

between the elements, e.g., between service consumer, are not easily to iden-

tify as the web services are autonomous and their relationships with other

web services can not be identified. Hence, another type of conflict of interest

which only includes one element, e.g., for one service consumer or for one

resource, is proposed. This type of conflict of interest can be caused by the

different authorizations for one element.

• Compliance of Business Logic: To achieve the composite service functions,

a certain business logic is inherently set up within the composite service, which

therefore requires these accesses of service consumers and supports of component

services to comply with. A question that should be significantly marked is ”how

the service consumer and the component service can pale others to be selected

to work on the specific operations during the execution process of Composite web

service” on top of the question ”what to do”. The failure of coordinating on the

large number of accesses of service consumers and supports of component services

in the business process can cause various security issues.

In chapter five, a process model named SOAC-Net is proposed based on the

conceptual model of SOAC in chapter four. SOAC-Net is a Petri-Net based

process model that can describe the access sequence of service consumer and

the support sequence of resource according to the business logic of composite

web service, i.e. authorization synchronization policy. The constraint-net that

is used to model the authorization dependency policy is also included in SOAC-

Net. Through enforcing these two types of authorization policies, SOAC-Net can

8.2 Future Work 197

be used to manage the composite web service authorization management in a

business process environment.

• Authorization Policy Verification: With more and more authorization poli-

cies are defined based on SOAC-Net to manage composite web service authoriza-

tion, the possibility of defining an improper authorization policy becomes larger

and larger. The improper authorization policy may cause the role access and

resource support missing at the time when they are needed. Hence, the normal

execution of composite web service can even be suspended due to the improper

authorization policy definition.

Therefore, in chapter six, we provide a verification mechanism to detect the im-

proper authorization policy definition based on SOAC-Net. A novel property

named authorization dead marking freeness is proposed. Through verifying this

property, the detect of improper authorization policy definition is transferred

to examine the marking of SOAC-Net, i.e, the each step of token movement in

SOAC-Net. If a marking of SOAC-Net becomes a dead marking, the relevant

authorization policy must be defined improperly.

Our proposed composite web service authorization management is realized by solv-

ing the above five identified research problems. Our solutions are embedded within an

authorization engine, named SOAC engine, introduced in chapter seven. SOAC engine

is developed based on the conceptual model SOAC and the process model SOAC-

Net. All authorization policies in terms of conflict of interest, synchronization and

dependency are implemented in SOAC engine. A Petri-Net model simulator is also

encapsulated within SOAC engine to provide process modeling and policy verification

function.

8.2 Future Work

In this dissertation, we have introduced a security system in terms of composite web

service authorization management. We believe that this is an important research area,

198 Conclusion and Future Work

which will attract a large number of attentions from the research community. This

thesis raises a number of issues for future work in both practical and theoretical terms:

• Hierarchy of Role and Resource Type: In traditional RBAC, hierarchy of

role is introduced in model of RBAC1, which brings the system administrator a

more flexible way to manage the access control. In hierarchy of role in RBAC,

the permission of junior role can be inherited by the senior role; while the senior

role also bears its exclusive permissions that can not be assigned to junior role.

In this case, the system administrator only needs to design the inheritance of

relationship between junior role and senior role, rather than repeatedly assigning

the permission mappings of junior role to the senior one.

In SOAC, the hierarchy of role is not included, nor contains the hierarchy of

resource type. In the future, we will extend the conceptual model SOAC to

include this significant feature of role-based access control model. We believe,

that by introducing a new group concept Resource Type, the involvement of

hierarchy of role and resource type can bring SOAC model more complicated.

• More Types of Authorization Policies: In this dissertation, we mainly focus

on the authorization policies in terms of conflict of interest, synchronization, and

dependency. However, the authorization policies in SOAC should not limited

only for these three types.

In the future, we will design more authorization policies in SOAC, e.g., autho-

rization binding policies, and authorization cardinality policies, to provide com-

prehensive authorization management in composite web service environment.

• Optimization Algorithm for Verification based on SOAC-Net: SOAC-

Net is a Petri-Net based process model, that can provide verification mechanism

on improper authorization policy definition. However, the verification methods

based on a Petri-Net based process model is time-consuming with the expansion

of process model.

8.2 Future Work 199

An optimization algorithm focusing on evaluating the complexity of existing ver-

ification techniques should be developed and implemented on SOAC-Net simu-

lator in SOAC engine, where the performance of the SOAC-Net model can be

simulated as well as optimized.

• Resolution of Detected Improper Authorization Policies: The verifica-

tion mechanism proposed in this thesis can be able to detect the result of improper

authorization policy definitions. However, the following steps to resolve the im-

proper authorization policy definitions is still an issue that is not tackled. Re-

defining the authorization policy may cascading affect the existing authorization

policies. Therefore, mechanism and algorithm should be developed to perform

the policy oriented investigation regarding to correcting improper authorization

policies.

200 Conclusion and Future Work

References

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-

oriented computing: A research roadmap. International Journal of Co-

operative Information Systems 17(2), 223 (2008). 1

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services - Con-

cepts, Architectures and Applications (Springer, 2003). 2

[3] M. Singh and M. Huhns. Service-oriented Computing - Semantic, Pro-

cesses, Agents (John Wiley and Sons Ltd, 2005). 2

[4] S. Dustdar and W. Schreiner. A survey on web services composition.

International Journal on Web and Grid Services 1(1), 1 (2005). 2

[5] E. Newcomer and G. Lomow.:Understanding SOA with Web Service,

Pearson Education, USA, 2005. 2, 49

[6] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, ”Introduction to

Web Services Architecture,” IBM Systems Journal, vol. 41, pp. 170-177,

2002. 2

[7] M. Sloman and E. Lupu, ”Security and management policy specifica-

tion,” IEEE Network, vol. 16, pp. 10-19, 2002. 6

[8] C. Yang, ”Designing secure e-commerce with role-based access control,”

201

202 References

International Journal of Web Engineering and Technology, vol. 3, pp.

73-95, 2007.

[9] J. S. Park and J. Hwang, ”Role-based access control for collaborative

enterprise in peer-to-peer computing environments,” Proc of ACM sym-

posium on Access control models and technologies, Como, Italy, pp. 93

- 99, 2003. 6

[10] Mike Havey.:Essential Business Process Modeling, O’Reilly, USA, 2005.

41, 49

[11] Wil M.P. can der Aalst, Arthur H.M. ter Hofstede, and Mathias Weske.:

Business Process Management: A Survey, in Proceedings of Interna-

tional Conference on Business Process Management, Lecture Notes on

Computer Science 2678, Springer, 2003, pp1-12. 49

[12] Michael P. Papazoglou and Willem-Janvan der Heuvel.: Web Services

Management: A Survey, Internet Computing, IEEE Volume 9, Issue 6,

Page(s):58-64, Nov.-Dec. 2005. 43

[13] Michael P. Papazoglou, and Jean-jacques Dubray.: A Survey of Web

service technologies. Technical Report DIT-04-058, Informatica e Tele-

comunicazioni, University of Trento, 2004. 43

[14] Vil van der Aalst and Kees van Hee.: Workflow Managmenet: Models,

Methods and System,MIT Press, 2002. 50

[15] Workflow Management Coalition. WFMC Home Page.

http://www.wfmc.org. 50

[16] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju.:

Web Service: Concept, Architechture and Applications, Spinger Press,

2004. 43

References 203

[17] Nilo Mitra and Yves Lafon.:Simple Object Access Protocol SOAP Ver-

sion 1.2, http://www.w3.org/TR/soap12, 2007 44

[18] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva

Weerawarana.: Web Services Description Language (WSDL) Version

2.0, http://www.w3.org/TR/2007/REC-wsdl20-20070626, June 2007.

44

[19] Luc Clement, Andrew Hately, Claus von Riegen, Tony

Rogers.:Universal Description Discovery and Integration,

http://uddi.org/pubs/uddi v3, 2004. 44

[20] J. F. Chang, ”Business Process Management System - Strategy and Im-

plementation”, Boca Raton, New York: Auerbach Publications, 2006.

49

[21] S. Roser and B. Bauer, ”A Categorization of Collaborative Business

Process Modeling Techniques,” Proc of IEEE International Conference

on E-Commerce Technology Workshops, Washington DC, USA, pp. 43-

54, 2005. 49

[22] A. Lindsay, D. Downs, and K. Lunn, ”Business Processes - Attempts to

Find a Definition,” Information and Software Technology, vol. 45, pp.

1015-1019, 2003. 51

[23] H. Smith and P. Fingar, Business Process Management: The Third

Wave: Meghan-Kiffer Press, 2003.

[24] N. Berente, B. Vandenbosch, and B. Aubert, ”Information flows and

business process integration,” Business Process Management Journal,

Emerald Ltd, vol. 15, pp. 119-141, 2009. 51

[25] F. Casati and A. Discenza. Modeling and managing interactions among

business processes. Journal of Systems Integration, 10(2):145-168, 2001.

50

204 References

[26] V. Popova and A. Sharpanskykh. Process-oriented organisation mod-

elling and analysis. Enterprise Information Systems Journal, 2(2):157-

176, 05 2008.

[27] A. Wombacher, B. Mahleko, and E. J. Neuhold. Ipsi-pf: A business

process matchmaking engine. In 2004 IEEE International Conference

on E-Commerce Technology (CEC 2004), 6-9 July 2004, San Diego,

CA, USA, pages 137-145. IEEE Computer Society, 2004.

[28] A. Wombacher, B. Mahleko, and E. J. Neuhold. Ipsi-pf - a business

process matchmaking engine based on annotated finite state automata.

Inf. Syst. E-Business Management, 3(2):127-150, 2005. 50

[29] J. Wang, ”A Web Services Secure Conversation Establishment Protocol

Based on Forwarded Trust,” Proc of International Conference on Web

Services, Chicago, Illinois, USA, pp. 569-576, 2006. 5

[30] M. Shehab, K. Bhattacharya, and A. Ghafoor, ”Web services discovery

in secure collaboration environments,” ACM Transactions on Internet

Technology, vol. 8, 2007.

[31] R. Kanneganti and P. Chodavarapu, SOA Security: Manning Publica-

tions, 2008. 5

[32] W. Tolone, G.-J. Ahn, T. Pai, and S. P. Hong, ”Access Control in

Collaborative Systems,” ACM Computing Surveys, vol. 37, pp. 29-41,

2005. 6

[33] M. T. Siponen and H. Oinas-Kukkonen, ”A review of information

security issues and respective research contributions,” ACM SIGMIS

Database, vol. 38, pp. 60-80, 2007. 6

[34] P. Chapin, C. Skalka, and X. S. Wang, ”Authorisation in Trust Man-

agement: Features and Foundations,” ACM Computing Surveys, vol.

40, 2008. 7

References 205

[35] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business

process management: A survey. In Business Process Management, In-

ternational Conference, BPM 2003, Eindhoven, The Netherlands, June

26-27, 2003, Proceedings, volume 2678 of Lecture Notes in Computer

Science, pages 1–12. Springer, 2003. 49

[36] Alistair Barros, Marlon Dumas and Phillipa Oaks.: Standards for Web

Service Choreography and Orchestration: Status and Perspectives, the

Proceedings of the First International Workshop on Web Service Chore-

ography and Orchestration for Business Process Management-BPM

2005. 46

[37] Chris Peltz.: Web Services Orchestration and Choreography, Computer,

vol.36, no.10, pp.46-52, Oct., 2003. 47

[38] Remco Dijkman, and Marlon Dumas.: Service-oriented Design: A

Multi-viewpoint Approach, Technical Report TR-CTIT-04-09 Centre

for Telematics and Information Technology, University of Twente, En-

schede. ISSN 1381-3625, 2004. 2, 46

[39] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,

and Yves Lafon.: Web Services Choreography Description Language

Version 1.0 (WS-CDL), http://www.w3.org/TR/ws-cdl-10/, 2004. 49

[40] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke

Kawaguchi, David Orchard, Pogliani, Karsten Riemer, Susan Stru-

ble, Pal Takacsi-Nagy, Ivana Trickovic, and Sinisa Zimek.:Web Ser-

vice Choreography Interface (WSCI) 1.0, http://www.w3.org/TR/wsci

,2002. 48

[41] OASIS Web Services Business Process Execution Language (WS-

BPEL) Technical Committee.: Web Services Business Process

Execution Language Version 2.0 (BPEL4WS), http://docs.oasis-

open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html, 2007. 48, 57, 67

206 References

[42] W3C. Web Services Policy 1.2 - Framework (WS-Policy) 2006. 57

[43] W3C. Web Services Policy 1.2 - Attachment (WS-PolicyAttachment)

2006. 57

[44] C.A Petri, Kommunikation mit Automaten. PhD Thesis, Institute frin-

strumentelle Mathematik, Bonn, 1962. 35, 63, 163

[45] C. Girault and R. Valk.:Petri Nets for System Engeneering: A Guide

to Modeling, Verification and Application, Springer, German, 2003. 35,

63, 163

[46] T. Murata.:Petri Nets:Properties,Analysis and Application, Proceed-

ings of the IEEE,77(4), IEEE, 1989, USA, pp.541-580. 35, 64, 65, 163

[47] Petia Wohed, Wil.M.P. van der Aalst, Marlon Dumas, and Arthur.H.M.

ter Hofstede.: Analysis of Web Services Composition Languages:The

Case of BPEL4WS, In Proceedings of the 22nd International Confer-

ence on Conceptual Modeling (ER), Chicago IL, USA, October 2003.

Springer Verlag. 48

[48] P. Huber, K. Jensen, and R.M. Shapiro.: Hierarchies in Colored Petri

nets, Advances in Petri Nets 1990, Springer, 1991, pp. 313-341. 65

[49] D.G. Stork, and R.J. van Glabbeek.:Token-controlled Place Refinement

in Hierarchical Petri Nets with Application Active Document Workflow,

the Int. Conf. on Application and Theory in Petri Nets, 2002, pp.394-

413. 65

[50] Y. Song and J. LEE.:Deadlock Analysis of Petri Nets Using the Tran-

sitive Matrix, the SICE Annual Conf., 2002, pp.689-694. 64, 65, 66,

163

[51] M. Papazoglou, D. Georgakopoulos.: Service-Oriented Computing.

Communications of the ACM 46(10) (2003) 25–28. 2, 71

References 207

[52] RS. Sandhu, E. Coyne, H. Feinstein, C. Youman.: Role-based Access

Control Models. IEEE Computer 29(2) (1996) 38–47. 6, 51, 73

[53] D. Ferraiolo, J. Cugini, R. Kuhn.: Role Based Access Control: Features

and Motivations. In: Proceedings of ACSAC. (1995). 51

[54] D. Ferraiolo, R. Sandhu et al.: Proposed NIST Standard for Role-

Based Access Control. ACM Trans. on Information and System Security

(TISSEC), 4(3), 224-274, (2001). 58

[55] G. Ahn and R. Sandhu.: Role-Based Authorization Constraints Speci-

fication. ACM Transactions on Information and System Security (TIS-

SEC), 3(4), 207-226, (2000). 58

[56] Ninghui L., Mahesh V. T., and Ziad. B: On Mutually-Exclusive Roles

and Separation of Duty. ACM Transactions on Information and System

Security (TISSEC), 10(2), (2007). 55

[57] Ninghui L., amd Qojia W.: Beyong Separation of Duty: An Algebra

for Specifying High-Level Security Policies. Journal of ACM, 55(3),

(2000). 55

[58] Basit S., James B.D. J., Elisa B., and Arif G.: Secure Interopera-

tion in a Multidomain Environment Employing RBAC Policies. IEEE

Transactions on Knowledge and Data Engineering, 17(11), (2005). 56

[59] Eric F., Tracy P., Lawrence P., Edward K., and Vijay K.: dRBAC:

Distributed Role-based Access Control for Dynamic Coalition Environ-

ments. in Proceedings of the 22nd International Conference on Dis-

tributed Computing Systems, pp.411-420, 2002. 56

[60] R. Wonohoesodo, and Z. Tari.: A Role Based Access Control for Web

Services. in Proceedings of SCC, (2004), 49–56. 23, 56, 73

208 References

[61] J. Fischer, and R. Majumdar.: A Theorey of Role Composition. in

Proceedings of ICWS, (2008), 49–56. 23, 56, 73, 178

[62] P. Liu and Z. Chen. An Access Control Model for Web Services in Busi-

ness Process In Proceedings of IEEE/WIC/ACM International Confer-

ence on Web Intelligence, 2004. 57

[63] E. Bertino, J. Crampton, and F. Paci Access Control and Authorization

Constraints for WS-BPEL In Proceedings of ICWS, 2006 57, 58

[64] F. Paci, E. Bertino, and J. Crampton.: An Access Control Framework

for WS-BPEL. International Journal of Web Service Research 5(3)

(2008) 20-43 57, 58, 178

[65] OASIS. ”eXtensible Access Control Markup Language TC

v2.0 (XACML),” http://docs.oasis-open.org/xacml/2.0/XACML-2.0-

OS-NORMATIVE.zip Nov, 2007; 57

[66] Hristo K., and Fabio M.: Interactive Access Control for Web Services.

In Proceedings of the 19th IFIP International Information Security Con-

ference (SEC) 2004. 58

[67] Hristo K., and Fabio M.: An Access Control Framework for Business

Processes for Web Services. In Proceedings of the 2003 ACM workshop

on XML security, 2003. 58

[68] X. Wang, Y. Zhang, H. Shi, J. Yang.: BPEL4RBAC: An Authorisation

Specification for WS-BPEL. In: Proceedings of WISE 2008. (2008)

381–395 58

[69] X. Wang, Y. Zhang and H. Shi.: Access Control for Human Tasks in

Service Oriented Architecture, Proc of 2008 IEEE International Con-

ference on e-Business Engineering (ICEB08), Xian China, pp 455–460,

2008. 58

References 209

[70] M. Mecella, M. Ouzzani, F. Paci, and E. Bertino.: Access Control

Enforcement for Conversation-based Web Service. in Proceedings of

the International World Wide Web Conference, (2006), 257–266. 23,

58, 73

[71] F. Paci, M. Ouzzani, and M. Mecella.: Verification of Access Control

Requirements In Web Servies Choreography. in Proceedings of SCC,

(2008), 5–12. 58

[72] C. Giblin and S. Hada.: Towards Separation of Duties for Services. the

6th Int. Workshop on SOA & Web Services Best Practices Committee,

OOPSLA, October 19, 2008, Nashville. 58

[73] K. Knorr. Dynamic Access Control through Petri Net Workflows. In

Proceedings of ACSAC, 2000. 59

[74] Vijayalakshmi Atluri and Wei-Kuang Huang.: An authorization model

for workflows . in Proc. of the 4th European Symposium on Research

in Computer Security (ESORICS’96), (1996). 23, 59, 60, 122

[75] Zhang Yi, Zhang Yong and Wang Weinong.: Modeling and Analyzing of

Workflow Authorization Management. Journal of Network and Systems

Management Volume 12, Number 4, 507–535, (2004). 23, 60, 122

[76] Tan, K., Crampton, J, and Gunter, C.A.: The consistency of task-

based authorization constraints in workflow. 17th IEEE Workshop of

Computer Security Foundations, 155–169, (2004). 23, 60, 123

[77] Reinhardt A. Botha, and Jan H. P. Eloff.: Separation of duties for

access control enforcement in workflow environments. IBM Systems

Journal Volume 40, Number 3, (2001). 60, 61

[78] Fan Hong and Guang-lin Xing: A Family of RBAC-Based Workflow

Authorization Models. Wuhan University Journal of Natual Sciences

Volume 10, Number 1, (2005). 61

210 References

[79] Guang-lin Xing, Fan Hong and Hui Cai: A Workflow Authorization

Model Based on Credentials. Wuhan University Journal of Natual Sci-

ences Volume 11, Number 1, (2006). 61

[80] Bertino, E., Ferrari, E., and Atluri, V.: The Specification and Enforce-

ment of Authorization Contraints in Workflow Management Systems.

ACM Transactions on Information and System Security (TISSEC), Vol-

ume 2, Number 1, pp.65–104, (1999). 61

[81] Le Yang and Yongsun Choi.: A Flexible Access Control Model for

Dynamic Workflow Using Extended WAM and RBAC. The 11th In-

ternational Conference on Computer Supported Cooperative Work in

Design (CSCWD), pp.488–497, (2007). 61

[82] Chritian Wolter and Andreas Schaad.: Modeling of Task-Based Au-

thorization Constraints in BPMN. in Proceedings of The International

Conference on Business Process Management, pp.64–79, (2007). 61

[83] Y. Chi, M. Tsai and C. Lee.: A Petri-net Based Validator in Relia-

bility of a Composite Service. the IEEE Int. Conf. on e-Technology,

e-Commerce and e-Service, 2005. pp.450-453. 67, 163

[84] Y. Yang, Q. Tan, J. Yu and F. Liu.: Transformation BPEL to CP-

Nets for Verifying Web Service Composition, the Int. Conf. on Next

Generation Web Services Practices, 2005. 67

[85] Y. Yang, Q. Tan, Y. Xiao, J. Yu and F. Liu.: Exploiting Hirachichi-

cal CP-Nets to Increase the Reliability of Web Services Workflow, the

Symposium on Application and the Internet, 2006. 67

[86] X. Yi and K.J. Kochut.: A CP-nets-based Design and Verification

Framework for Web Services Composition, the IEEE Int. Conf. on Web

Services, 2004. 68, 163

References 211

[87] Van der Aalst, Wil.M.P.:The Application of Petri Nets to Workflow

Management, The Journal of Circuits, Systems and Computers, 8(1),

pp. 21-66, 1998. 68, 123

[88] W.M.P. van der Aalst.: Verification of Workflow Nets, the 18th Int.

Conf. on Application and Theory in Petri Nets, 1997, pp. 407-426. 68,

163

[89] R. Hamadi, and B. Benatallan, ”A Petri Net-based Model for Web

Service Composition”, Proceedings of the 14th Australian Database

Conference, 2004,pp. 191-200. 68

[90] J. Zhang, C.K. Chang, J.Y. Chund, and S.W. Kim, ”WS-Net: a Petri-

net Based Specification Model for Web Services”, ICWS, 2004, pp. 420

- 427. 68

[91] H. Sun, W. Zhao, J. Yang, and G. Shi, ”SOAC Engine: A System to

Manage Composite Web Service Authorization”, in Proceedings of the

12th International Conference on Web Information System Engineer-

ing,(WISE 2011), Sydney, Australia, October 2011, Springer. 177

[92] H. Sun, W. Zhao, and J. Yang, ”Managing Conflict of Interest in Ser-

vice Composition”, in Proceedings of 18th International Conference on

Cooperative Information Systems (CoopIS 2010), Crete, Greece, Oc-

tober 2010, Springer. 177

[93] H. Sun, W. Zhao, and J. Yang, ”SOAC: A Conceptual Model to Manage

Service Oriented Authorization”, in Proceedings of the IEEE Interna-

tional Conference on Service Computing (IEEE SCC 2010), Miami,

USA, July 2010, IEEE Computer Society. 177

[94] S. Hinz, K. Schmidt, and C. Stahl, ”Transforming BPEL to Petri Nets”,

the Int. Conf. on Business Process Management, 2005. 67

212 References

[95] Haiyang Sun, Weiliang Zhao, Jian Yang, and Jianwen Su, ”TiCoBTx-

Net: A Model to Manage Temporal Consistency of Service Oriented

Business Collaboration”, IEEE Transactions on Services Comput-

ing. (Accepted) 65

[96] Haiyang Sun, Jian Yang, and Weiliang Zhao, ”A Temporal Rule-based

Verification System for Business Collaboration Reliability”, Journal of

Theoretical and Applied Informatics, 16(2):65-68, 2009 65

[97] Haiyang Sun, Jian Yang, Xin Wang, and Yanchun Zhang, ”A Veri-

fication Mechanism for Secured Message Processing in Business Col-

laboration”, in Proceedings of the Joint International Conferences on

Asia-Pacific Web Conference (APWeb 2009) and Web-Age Informa-

tion Management (WAIM 2009), Suzhou-China, April 2009, Springer.

66

[98] H. Sun, X. Wang, J. Yang, Y. Zhang.: Authorization Policy Based Busi-

ness Collaboration Reliability Verification. In: Proceedings of ICSOC.

(2008) 66

[99] M. Wu, J. Chen, and Y. Ding, ”Study on Role-Based Access Control

Model for Web Services and its Application,” Proc of International

Conference on Telecommunications and Informatics, Istanbul, Turkey,

2006. 5

[100] R. Simon and M. E. Zurko, ”Separation of duty in role-based envi-

ronments,” Proc of 10th Computer Security Foundations Workshop

(CSFW’97), Rockport, MA, USA, pp. 183 - 194, 1997. 55

[101] H. K. Kim, R. Y. Lee, and H. S. Yang, ”Frameworks for Secured Busi-

ness Process Management Systems,” Proc of Fourth International Con-

ference on Software Engineering Research, Management and Applica-

tions (SERA ’06), pp. 57-65, 2006. 20

References 213

[102] J. Yang and M. P. Papazoglou. Service components for managing the

life-cycle of service compositions. Journal of Information Systems 29,

97 (2004). 46

[103] S. Chandrasekaran, G. Silver, J. A. Miller, J. Cardoso, and A. P. Sheth.

Web service technologies and their synergy with simulation. In Proceed-

ings of the 2002 Winter Simulation Conference (WSC ’02), pp. 606-615

(San Diego, California, USA, 2002). 45

[104] A. Wombacher and M. Rozie. Piloting an empirical study on measures

for work-flow similarity. In 2006 IEEE International Conference on Ser-

vices Computing (SCC 2006), 18-22 September 2006, Chicago, Illinois,

USA, pages 94-102. IEEE Computer Society, 2006. 50

	Dedication
	Acknowledgements
	List of Publications
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.1.1 Service Composition
	1.1.2 Service Authorization

	1.2 Research Problem
	1.2.1 Motivating Scenario
	1.2.2 Complicated Coordination of Authorization Policies
	1.2.3 Dynamicity of Component Services and Service Consumer
	1.2.4 Conflict of Interest
	1.2.5 Compliance of Business Logic
	1.2.6 Authorization Policy Verification
	1.2.7 Limitation of Existing Work

	1.3 Research Methodology
	1.4 Contribution of the Thesis
	1.4.1 SOAC Conceptual Model
	1.4.2 SOAC-Net Process Model
	1.4.3 Authorization Policies Enforcement
	1.4.4 Authorization Policies Verification
	1.4.5 SOAC-Engine

	1.5 Organization of the Thesis

	2 Preliminary
	2.1 Introduction
	2.2 Service Oriented Architecture and Business Process Management
	2.2.1 Service Oriented Architecture
	2.2.2 Business Process Management

	2.3 Authorization Models
	2.3.1 Role-Based Access Control
	2.3.2 Authorization Model in Web Service Domain
	2.3.3 Authorization Model in Business Process Management

	2.4 Petri-Net
	2.4.1 Petri-Net with Variation
	2.4.2 Petri-Net with Verification
	2.4.3 Petri-Net with Service Composition

	3 The Conceptual Model-SOAC
	3.1 Introduction
	3.2 Conceptual Model of Service Oriented Authorization Control
	3.2.1 Service Provision Specification
	3.2.2 Service Realization Specification
	3.2.3 Integration of Service Provision and Service Realization

	3.3 Function Specifications of SOAC
	3.3.1 Service Provision Administrative Operation- SP-AO
	3.3.2 Service Realization Administrative Operation- SR-AO
	3.3.3 Session Operation- SE-O

	3.4 Conclusion

	4 Conflict of Interest
	4.1 Introduction
	4.2 Management of Conflict of Interest
	4.2.1 Conflict of Interest between Service Consumers
	4.2.2 Conflict of Interest between Resources
	4.2.3 Conflict of Interest between Service Consumers and Resources

	4.3 Advanced Management of Conflict of Interest
	4.3.1 Conflict of Interest for One Service Consumer
	4.3.2 Conflict of Interest for One Resource
	4.3.3 Conflict of Interest for One Pair of Service Consumer and Resource

	4.4 Conclusion

	5 Process Model- SOAC-NET
	5.1 Introduction
	5.2 Authorization Policies
	5.2.1 Authorization Synchronization Policies
	5.2.2 Authorization Dependence Policies

	5.3 Specification of SOAC-Net
	5.3.1 Structure of SOAC-Net
	5.3.2 Execution of SOAC-Net

	5.4 Conclusion

	6 Authorization Policy Verification
	6.1 Introduction
	6.2 Verification Mechanism
	6.3 Conclusion

	7 Tool Support
	7.1 Introduction
	7.2 System Architecture
	7.3 System Demonstration
	7.4 Conclusion

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	References
	Bibliography

