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Abstract

Pricing problems of financial derivatives are among the most important ones in Quanti-

tative Finance. Since 1973 when a Nobel prize winning model was introduced by Black,

Merton and Scholes the Brownian Motion (BM) process gained huge attention of profes-

sionals. It is now known, however, that stock market log-returns do not follow the very

popular BM process. Derivative pricing models which are based on more general Lévy

processes tend to perform better.

Carr & Madan (1999) and Lewis (2001) (CML) developed a method for vanilla options

valuation based on a characteristic function of asset log-returns assuming that they follow

a Lévy process. Assuming that at least part of the problem is in adequate modeling of

the distribution of log-returns of the underlying price process, we use instead a nonpara-

metric approach in the CML formula and replaced the unknown characteristic function

with its empirical version, the Empirical Characteristic Functions (ECF). We consider

four modifications of this model based on the ECF. The first modification requires only

historical log-returns of the underlying price process. The other three modifications of

the model need, in addition, a calibration based on historical option prices. We compare

their performance based on the historical data of the DAX index and on ODAX options

written on the index between the 1st of June 2006 and the 17th of May 2007. The result-

ing pricing errors show that one of our models performs, at least in the cases considered

in the project, better than the Carr & Madan (1999) model based on calibration of a

parametric Lévy model, called a VG model.

Our study seems to confirm a necessity of using implied parameters, apart from an ad-

equate modeling of the probability distribution of the asset log-returns. It indicates that

to precisely reproduce behaviour of the real option prices yet other factors like stochastic

volatility need to be included in the option pricing model. Fortunately the discrepan-

cies between our model and real option prices are reduced by introducing the implied
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parameters which seem to be easily modeled and forecasted using a mixture of regression

and time series models. Such approach is computationaly less expensive than the explicit

modeling of the stochastic volatility like in the Heston (1993) model and its modifications.
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2.1 Introduction to Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . 5
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