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Abstract

Pricing problems of financial derivatives are among the most important ones in Quanti-

tative Finance. Since 1973 when a Nobel prize winning model was introduced by Black,

Merton and Scholes the Brownian Motion (BM) process gained huge attention of profes-

sionals. It is now known, however, that stock market log-returns do not follow the very

popular BM process. Derivative pricing models which are based on more general Lévy

processes tend to perform better.

Carr & Madan (1999) and Lewis (2001) (CML) developed a method for vanilla options

valuation based on a characteristic function of asset log-returns assuming that they follow

a Lévy process. Assuming that at least part of the problem is in adequate modeling of

the distribution of log-returns of the underlying price process, we use instead a nonpara-

metric approach in the CML formula and replaced the unknown characteristic function

with its empirical version, the Empirical Characteristic Functions (ECF). We consider

four modifications of this model based on the ECF. The first modification requires only

historical log-returns of the underlying price process. The other three modifications of

the model need, in addition, a calibration based on historical option prices. We compare

their performance based on the historical data of the DAX index and on ODAX options

written on the index between the 1st of June 2006 and the 17th of May 2007. The result-

ing pricing errors show that one of our models performs, at least in the cases considered

in the project, better than the Carr & Madan (1999) model based on calibration of a

parametric Lévy model, called a VG model.

Our study seems to confirm a necessity of using implied parameters, apart from an ad-

equate modeling of the probability distribution of the asset log-returns. It indicates that

to precisely reproduce behaviour of the real option prices yet other factors like stochastic

volatility need to be included in the option pricing model. Fortunately the discrepan-

cies between our model and real option prices are reduced by introducing the implied
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parameters which seem to be easily modeled and forecasted using a mixture of regression

and time series models. Such approach is computationaly less expensive than the explicit

modeling of the stochastic volatility like in the Heston (1993) model and its modifications.
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2.2.2 Other Lévy processes used for option pricing . . . . . . . . . . . . . 16

3 Option pricing for Lévy processes 18
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Chapter 1

Introduction

In this project we are concerned with accurate and numerically efficient methods for pric-

ing of European options. The modern mathematical theory of option pricing started

from the Nobel Prize winning model of Black & Scholes (1973) (BS model) and Merton

(1973). The BS model assumes that the logarithmic returns of the underlying stock follow

a Brownian Motion with a constant variance σ2 > 0. It has been, however, observed that

the real option prices did not exactly trade according to the BS model. The differences

have been conveniently reported by calibrating the BS model to the real option prices

and reporting the resulting parameter σ∗ as implied volatility. The implied volatility has

had over years a persisting U -shape as a function of strikes and this phenomena has been

labeled as a ’volatility smile’. The smile has changed over years and became quite flat on

its right hand side, yet the label ’volatility smile’ is still being used referring to deviations

between the model and real option prices. Even more, by including also time to option

expiration, the volatility curve evolved into a volatility surface. Accurate modelling of

the volatility surface became one of the central problems in the theory of option pricing.

The BS model evolved in various directions, including modelling the stochastic be-

haviour of volatility (e.g. Heston (1993)) and more sophisticated modelling of assets log-

returns via Lévy processes. Among the most popular generalizations of the log-normal

assumption of returns are the Normal Inverse Gaussian (NIG) (Barndorff-Nielsen, Kent

& Sørensen 1982), Variance Gamma (VG) (Madan & Seneta 1990), (Carr, Madan &

Chang 1998) and Hyperbolic (Barndorff-Nielsen & Halgreen 1977), (Eberlein & Keller

1995) distributions. These classes of distributions are included in the class of Generalized

Hyperbolic (GH) distributions, introduced by Barndorff-Nielsen & Halgreen (1977).
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Introduction

Prause (1999), Eberlein & Prause (2002) modelled the log-returns with a Generalized

Hyperbolic (GH) distribution, which resulted in a slight improvement of the shape of the

implied volatility surface. However, this improvement is not yet quite satisfactory.

Some other models are based on other specific (non-GH) distributions such as the

Jump-Diffusion model (Merton 1976), Double Exponential Jump-Diffusion model (Kou

2002), Stochastic Volatility (SV) model (Heston 1993), or more sophisticated Lévy SV

models used by Barndorff-Nielsen, Nicolato & Shephard (2002) and Carr, Geman, Madan

& Yor (2003).

Carr & Madan (1999) and Lewis (2001), which will be referred to as CML, derived

a general option pricing model based on a characteristic function of logarithmic returns

driven by a fairly general Lévy process. The CML model has been used by Carr & Madan

(1999) in the case of a parametric sub-family of Lévy processes, called VG processes,

introduced by Madan & Seneta (1990). It has also been used assuming full knowledge

of the characteristic function by Lewis (2001). We suggest in our project to use in the

CML the empirical characteristic function, capturing in this way possibly other than the

VG infinitely divisible distributions corresponding to the real asset log-returns. We show

that the CML method of option pricing based on the empirical characteristic function is

strongly convergent to the CML option value based on the characteristic function. Hence

it can be considered as a strongly consistent estimator of the CML option price. In this

way our method is nonparametric and does not require perfect knowledge of the charac-

teristic function of the log-returns.

In fact we introduce and consider four nonparametric models. In Model 1 we just

replace the characteristic function in the CML formula with empirical characteristic func-

tion based on historical data. This model does not reproduce very precisely real option

prices. Let us note that another alternative approach consisting in estimation of param-

eters of distributions of log-returns and, next, using the estimated parameters in option

pricing, is not providing satisfactory results (cf. Carr & Madan (1999), Ait-Sahalia, Wang

& Yared (2001)). These and our results for Model 1 suggest that other market factors

should in fact also be included into option pricing models. One of such a factor is stochas-

tic volatility.

To achieve a better option pricing we introduced some implied parameters p∗n and w∗n

which will be given proper interpretation in Chapter 5. Our Model 2 is based on the

ECF and has p∗n as an implied parameter. Model 3 is based on the ECF and uses w∗n as

2



Introduction

an implied parameter. Model 4, apart from being based on the ECF, uses two implied

parameters: p∗n and w∗n. Not surprisingly, Model 4, with the two implied parameters per-

forms best, even better than the 3-parameter model of Carr & Madan (1999).

We tested our model on historical data of DAX index and ODAX options written on

the index and we obtained several series of the implied parameters p∗n and w∗n. Like in the

case of the classical implied volatility σ∗ referring to the BS model it is plausible that the

dynamic of our implied parameters p∗n and w∗n can be described by a simple model. In

our project we explore modeling of p∗n and w∗n by a mixture of regression and time series

model. This allows a simple forecast of the implied parameters for the next day. We

present results of our preliminary exploration of the performance of option pricing with

the use of the forecasted parameters and we obtained the best results for Model 4.

In our case it is evident that the fitted parameters are showing some dynamics. There-

fore, testing performance of the option pricing on out-of-sample data does not seem ap-

propriate. Instead, it is desirable to suggest some time-series models for the implied

parameters. By forecasting the parameters we are going even beyond the scope of the

available so far papers, by trying to achieve good pricing environment for a near future,

e.g. for the next day (cf. Remark 11 in Section 5.5).

In Chapter 2 we briefly introduce Lévy processes and include a few examples of Lévy

processes. In particular we describe in more detail the VG distribution, its properties,

and the corresponding VG process.

In Chapter 3 we present a brief introduction to the European option pricing. We show

two methods of pricing European options: by conditional integration and by Fourier

Transformation technique. We present the Mean Martingale Correcting Term (MMCT)

w as a convenient parameter describing the risk-neutral probability measure. For the sake

of completeness we include in Chapters 2 and 3 some classical results and provided their

proofs in Appendix A.

In Chapter 4 we present our new nonparametric method to price options with the use

of the ECF. This section includes a detailed description of our four option pricing models.

The first model requires only historical log-returns of the underlying price process. The

other three modifications of the model need, in addition, real option prices for calibration

of implied parameters.

In Chapter 5 we present performance of our model based on historical data of DAX

index and ODAX options written on the index between the 1st of June 2006 and the 17th

3
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of May 2007. The resulting pricing errors show that our Model 4 performs better, than

that of the CML.

In Chapter 6 we present concluding remarks about our project and we discuss direc-

tions for expansion of the present research.

For the clarity of exposition we collected proofs and technical references in Appen-

dices A and B, respectively. In Appendix C we included the MATLAB R© code used in

our project.
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Chapter 2

Lévy processes used in option pricing

It has been known since long that the Brownian Motion (BM) is not a perfect model

for market stock log-returns. Many authors have extended the model to more general

processes. We are choosing to work in this project with Lévy processes which are known

to have many nice features. Our working example is a 3-parameter1 Variance Gamma

(VG) process introduced by Madan & Seneta (1990) and Carr et al. (1998). This process

is a particular case of a class of a 5-parameter Generalized Hyperbolic (GH) processes

introduced by Barndorff-Nielsen & Halgreen (1977). Prause (1999) remarks that the

GH distributions tend to overfit and are computationally demanding. Since the VG

distributions are closed under convolution, it is also convienient to use it for modelling

Value at Risk (VaR). Therefore we choose to focus on the VG process, which is one of

the most popular tractable semi heavy-tailed Lévy process.

In this chapter we present a definition and some examples of Lévy processes. Next we

introduce the VG process and discuss its distributional properties.

Let
(
Ω,F ,P

)
be a probability space.

2.1 Introduction to Lévy processes

Definition 1 A real valued stochastic process (Xt)t≥0, defined on
(
Ω,F ,P

)
, is called a

Lévy process if the following conditions are satisfied:

1The fourth parameter can be included as an additional drift.
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Lévy processes used in option pricing

a. Xt is right continuous with left hand side limits,

b. X0 = 0 with probability 1,

c. Xt has independent increments, i.e for any 0 ≤ r < s < t increment Xs − Xr is

independent of Xt −Xs,

d. Xt has stationary increments, i.e. the distribution of Xt+h − Xt is the same as of

Xh −X0,

e. Xt is stochasticaly continuous, i.e. for any ε > 0,

lim
h→0

P
(
|Xt+h −Xt| ≥ ε

)
= 0.

We shall refer to the parameter t > 0 as to time.

Definition 2 A characteristic function of a Lévy process Xt is given by

φXt(u) = EeiuXt ,

where u ∈ A ⊂ C and A is a strip of the form {z ∈ C|Im(z) ∈ (a, b)}, where a, b ∈ R are

specific for a given process.

Definition 3 A cumulant function of a Lévy process Xt is given by

ψXt(u) = log φXt(u)

where u ∈ A ⊂ C and A is a strip.

Definition 4 A probability distribution of a random variable X is called infinitely divisi-

ble if for any positive integer n there exist independent and identically distributed random

variables X1, . . . , Xn, such that r.v. X1 + . . .+Xn has the same distribution as X.

Since the increments of a Lévy process are independent and stationary, its probability

distribution is infinitely divisible, i.e. for any t > 0 and for any n ∈ N, we have the

following decomposition of Xt

Xt =
(
Xt −Xn−1

n
t

)
+ . . .+

(
X 2

n
t −X 1

n
t

)
+
(
X 1

n
t −X0

)
,

where a size of an increment in the decomposition is t
n
. This decomposition gives the

following relation

6



Lévy processes used in option pricing

φXt(u) = φPn
j=1

(
X j

n t
−X j−1

n t

)(u) =
n∏
j=1

φ(
X j

n t
−X j−1

n t

)(u) =
(
φX t

n

(u)
)n
, (2.1.1)

where the second and third equalities come from independence and stationarity properties

of increments of Xt. Also for any t > 0 we have

φXt(u) =
(
φX1(u)

)t
. (2.1.2)

We refer to Appendix A for a derivation of this relation.

In Chapter 4 we develop a method for pricing of European options, which relies on

(2.1.1) and (2.1.2).

Lemma 1 (Sato (1999)) If φXt(u) ia characteristic function of a Lévy process Xt, then

there exists a unique and continuous cumulant function ψ(u) such that

φXt(u) = etψ(u). (2.1.3)

A complete characterization of cumulant functions for Lévy processes is given by the

following Lévy-Khintchine representation.

Theorem 1 (Lévy-Khintchine formula). A probability distribution of a random variable

X is infinitely divisible if and only if there exist σ2 > 0,m ∈ R and a measure L satisfying

conditions

L({0}) = 0

and ∫ ∞

−∞
(1 ∧ |x|2)L(dx) <∞,

such that the characteristic function of X has the following representation

EeiuX = eψX(u) = exp

(
imu− σ2u2

2
+

∫ ∞

−∞
(eiux − 1− iux1|x|≤1(x))L(dx)

)
. (2.1.4)

Definition 5 We call L(dx) in formula (2.1.4) a Lévy measure, σ2 a Gaussian coefficient,

m a drift of the Lévy process, and (σ2,L,m) a generating triplet. If the Lévy measure

is absolutely continuous with respect to the Lebesgue measure, such that L(dx) = l(x)dx,

then l(x) is called a Lévy density function.

7



Lévy processes used in option pricing

By (2.1.3) we have the following representation for characteristic functions of Lévy

processes.

Corollary 1 A characteristic function of a Lévy process Xt takes form

EeiuXt = etψ(u) = exp
(
t
[
imu− σ2u2

2
+

∫ ∞

−∞
(eiux − 1− iux1|x|≤1(x))L(dx)

])
.

Below we present several examples of characteristic functions of simple Lévy processes

and their Lévy-Khintchine representations.

Example 1 A characteristic function of a linear drift Xt = µt has representation

φXt(u) = exp(tiµu).

Both the Gaussian coefficient σ2 and the Lévy measure L here equal to zero.

Example 2 A characteristic function of a Brownian Motion Xt = σWt has representa-

tion

φXt(u) = exp(−u
2σ2

2
t). (2.1.5)

In this case the Lévy measure L and the drift m are equal to zero.

Example 3 A characteristic function of a Poisson process with a probability function of

increments over time interval of length t > 0 given by

P(Xt+h −Xt = k) =
e−λh(λh)k

k!
, for λ > 0 and k = 0, 1, . . . (2.1.6)

has the representation

φXt(u) = exp
(
λt(eiu − 1)

)
= exp

(
λt

∫ ∞

−∞
(eiux − 1)δ1(x)dx

)
,

where δ1 is the Dirac measure centered at 1. In this case the Lévy measure L(x) = δ1(x).

The Gaussian coefficient σ2 equals zero.

Example 4 A characteristic function of a Laplace distribution with a probability function

given by

f(x) =
1

2s
e−

|x−θ|
s ,

8



Lévy processes used in option pricing

where θ ∈ R and s > 0 are location and scale parameters, respectively, has representation

(cf. Kotz, Kozubowski & Podgórski (2001))

φ(u) = exp

(
iuθ +

∫ ∞

−∞

(
eiux − 1− iux1|x|≤1(x)

)
e−

|x|
s |x|−1dx

)
.

Example 5 A Gamma process γt with a probability density function fγt(y) of increments

over interval of length t > 0, is given by

fγt(y) = g t
ν
, 1
ν
(y), for ν > 0, (2.1.7)

where

gα,β(y) =
βαyα−1e−βy

Γ(α)
(2.1.8)

is a density function of Gamma distribution with a shape parameter α and scale parameter

β. The moment generating function (mgf) of Xt is given by

mgf(u) = (1 + uν)−
t
ν

where u ∈ R. The cumulant function ψXt(u) is given by

ψXt(u) = − t
ν

log(1 + uν) = − t
ν

log

( 1
ν

+ u
1
ν

)
and by Frullani equality (cf. Spiegel (1968) or (B.1.1) in Appendix B.1) we have

ψXt(u) = − t

ν

∫∞
0

e−
x
ν −e−( 1

ν +u)x

x
dx

limy→0 ey − limy→∞ ey
= t

∫ ∞

0

(e−ux − 1)
e−

x
ν

νx
dx.

Let us note that ψXt(u) allows a unique analytic extension onto complex plane. In the

following we will consider ψXt(u) as a function of a complex argument u ∈ A. In particular

for a transformation u 7→ −iu we get

ψXt(−iu) = t

∫ ∞

−∞
(eiux − 1)

e−
x
ν

νx
dx.

This implies that the Lévy measure is of the form

LXt(x) =
e−

x
ν

νx
(2.1.9)

and that the drift m equals to zero. There is no Gaussian component here and the gen-

erating triplet satisfies conditions of finite variation which will be discussed in Theorem

2.1.11.

9



Lévy processes used in option pricing

Remark 1 Another way to derive the Lévy measure of the Gamma process relies on

formula

lim
t→0

t−1fXt(x) = l(x),

which can be found in Barndorff-Nielsen (2000)(formula 3.22). Indeed, we have

t−1fXt(x) =
x

t
ν
−1e−

x
ν

ν
t
ν
+1Γ( t

ν
+ 1)

→ e−
x
ν

νx
, as t→ 0.

In the next section we will discuss a VG process, which is a particular case of the

general Lévy process. The VG process has finite variation, where the finite variation is

defined in the following way.

Definition 6 Stochastic process Xt has finite variation if with probability 1 its trajectories

are functions of finite variation, i.e.

P

(
sup

n∑
i=1

|Xti −Xti−1
| <∞

)
= 1, (2.1.10)

where the supremum is taken over all partitions (ti)i=1,...,n of any closed interval [a, b].

We have the following characterization for Lévy processes with finite variation.

Theorem 2 (Cont & Tankov (2004), Proposition 3.9). A Lévy process is of finite vari-

ation if and only if its generating triplet (σ2,L,m) satisfies the following conditions

σ2 = 0

and ∫
|x|≤1

|x|L(dx) <∞. (2.1.11)

2.2 Review of Lévy processes used for option pricing

2.2.1 Variance gamma process

A VG process has been first introduced in its symmetric form by Madan & Seneta (1990)

with application to model behavior stock returns. Carr et al. (1998) extended the VG

process onto non-symmetric distributions. The VG process can be constructed in one of

10



Lévy processes used in option pricing

the following three ways:

a. by subordinating a BM to a Gamma process in time parameter,

b. by specifying the density function of the process increments to have VG distribution,

or

c. by specifying the Lévy measure.

In the following subsections we will discuss each of these methods in detail.

Construction of the VG process by subordination

We can obtain the VG process as a Brownian motion with a randomly changed time, as

shown in Madan & Seneta (1990) and Carr et al. (1998)

Xt = θγt + σWγt , (2.2.1)

where Wt is a standard Brownian Motion independent of a Gamma process γt with pdf

(2.1.7) and parameter ν > 0. Subordination of the time parameter of the BM allows the

following interpretation. We assume that time between transactions of assets are random.

The lengths of such random increments can be modelled by a positive random process

called operational time2 or chronometer 3, and in the VG case it is a Gamma process.

The resulting process has three parameters θ, σ and ν which correspond to the drift

and volatility of the BM, and to the variance rate of the Gamma process, respectively.

The VG process has no continuous component and hence it is called a pure-jump process.

These properties can be summarized in the following proposition.

Proposition 1 The VG process Xt with three parameters θ ∈ R, σ, ν > 0 has a generating

triplet (0, LX , 0), where

LX(dx) =
1

ν

1{x<0} exp

θ +
√

2σ
2

ν
+ θ2

σ2
x

+ 1{x>0} exp

θ −
√

2σ
2

ν
+ θ2

σ2
x

 |x|−1dx,

and hence its Lévy-Khintchine representation for characteristic function reduces to

φXt(u) = exp

(
t[iuµ+

∫ ∞

−∞
(eiux − 1)LX(dx)]

)
,

2Feller (1966) (p. 347)
3Barndorff-Nielsen, Maejima & Sato (2006) (p. 437)

11



Lévy processes used in option pricing

where µ = −
∫
|x|≤1

xLX(dx).

Moreover, Xt is a process with finite variation.

We refer to Appendix A for a sketch of the proof.

This approach to construction of VG processes implies an easy way to simulate its

paths. First we simulate a subordinator, which is a random time Gamma process. Then

based on the simulated subordinator we simulate a BM process. The simulation becomes

even simpler if we use following decomposition. Any function of finite variation can be

decomposed onto difference of two increasing functions. Carr et al. (1998)4 showed that

we can represent the VG process as

Xt = γ1
t − γ2

t ,

i.e. as a difference of two independent increasing Gamma processes γ1
t and γ2

t with the

density functions for increments given by

gµ2
1t

ν1
,
µ1
ν1

(y)

and

gµ2
2t

ν2
,
µ2
ν2

(y),

(cf. 2.1.8), respectively. The characteristic functions of these processes are given by

φγk
t (u) =

(
1− iu

νk
µk

)−µ2
kt

νk

for k = 1, 2,

and the characteristic function of the process Xt is given by

φXt(u) =

(
1− iu

(
ν1

µ1

− ν2

µ2

)
+ u2 ν1

µ1

ν2

µ2

)− t
ν

,

4It is noted in Madan & Seneta (1990) (p. 518) that the symmetric VG process can be approximated
as a difference of two independent compound Poisson processes.
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where

µ1 =
1

2

√
θ2 +

2σ2

ν
+
θ

2
,

µ2 =
1

2

√
θ2 +

2σ2

ν
− θ

2
,

ν1 = µ2
1ν,

and

ν2 = µ2
2ν.

Hence, one can simulate the VG process by taking a difference of paths of two simulated

Gamma processes with proper parameters.

Construction of the VG process by specifying the density function of incre-

ments

The marginal probability distributions of the VG process are variance-mean mixtures of

Normal distributions5. They are special cases of the Normal Variance-Mean distributions

(Barndorff-Nielsen et al. 1982) and General Normal Variance-Mean distributions (Seneta

& Tjetjep 2006). Kotz et al. (2001) classified VG distribution as a special case of class

of Asymmetric Generalized Laplace distributions, indicating a relation to classic Laplace

distributions. Assuming that the conditional probability distribution of a random vari-

able X given Y is N(a(b+ Y ), c2Y + d2) and that Y is a positive random variable, where

a, b, c, d are real numbers, we obtain a marginal probability distribution, referred to as the

GNVM probability distribution. In the case of probability distribution associated with

the VG process we have a = θ, c = σ > 0, d = 0, and the mixing distribution Y is a

Gamma distribution with parameter ν > 0, from Example 5.

Proposition 2 If Xt is a VG process then the pdf of increments Xt+h −Xt over time of

5Teichroew (1957) considered such symmetric density function expressed in terms of Modified Bessel
function of the second kind.
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length h > 0 is given by

fXt+h−Xt(x) =
2e

θx
σ2

ν
h
ν

√
2πσΓ(h

ν
)

(
x2

2σ
2

ν
+ θ2

) h
2ν
− 1

4

Kh
ν
− 1

2


√
x2(2σ

2

ν
+ θ2)

σ2

 , (2.2.2)

where Ka(·) is modified Bessel function of the second kind6,

The density function fXt+h−Xt(x) is decreasing for large x like a power-modified exponential

function, i.e.

fXt+h−Xt(x) = const(θ, σ, ν, h)|x|
h
ν
−1e(β∓α)x + o(1), as x→ ±∞, (2.2.3)

where α =
√

θ2ν+2σ2

νσ4 , β = θ
σ2 and const(θ, σ, ν, h) =

“
2σ2

ν
+θ2

”− h
2ν

ν
h
ν Γ(h

ν
)

.

We refer to Appendix A for a proof.

Remark 2 Let us note that the VG process can be obtained as a limiting process of

truncated α-Stable processes (cf. Cont & Tankov (2004)). The Lévy density of the α-

Stable process is given by

lS(x) =
A

|x|1+α
1(−∞,0)(x) +

B

x1+α
1(0,∞)(x), (2.2.4)

where A,B > 0 and α ∈ (0, 2], while Lévy density of truncated α-Stable process is given

by

lXt(x) =
A

|x|1+α
1(−∞,0)(x)e

C1x +
B

x1+α
1(0,∞)(x)e

C2x,

where C1 > 0 and C2 < 0. If we pass with α → ∞ we get a Lévy density of the VG

process Xt given by

lXt(x) =
A

|x|
1(−∞,0)(x)e

C1x +
B

x
1(0,∞)(x)e

C2x,

where A = B = 1
ν
, C1 =

θ+

q
2σ2

ν
+θ2

σ2 and C2 =
θ−

q
2σ2

ν
+θ2

σ2 (cf. Proposition 1). Conse-

quently, the tails of the Lévy density of VG process have a power-modified exponential

decay at infinity.

6Seneta (2004) remarked about some ambiguity of terminology, and he refers after Erdélyi et al. (1953)
to the same function as a modified Bessel function of the third kind.
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Remark 3 The VG process is known as a so called pure-jump process. It can be also

interpreted as a Stochastic Volatility (SV) process. In this case the random volatility

equals σ
√
γt. A probability distribution of a subordinated BM with a drift is given by

Xt = θγt + σWγt ,

which is equivalent to the distribution of

Xt = θγt + σ
√
γtWt.

In the following Proposition we present an explicit form of the characteristic function

of the VG process Xt.

Proposition 3 A characteristic function of the VG process is given by

φXt(u) =

(
1− iuθν +

1

2
σ2νu2

)− t
ν

, (2.2.5)

and is single-valued and analytical in the strip AX = {z ∈ C|Imz ∈ (a, b)}, where

a = θ
σ2 −

√
θ2ν+2σ2

νσ4 and b = θ
σ2 +

√
θ2ν+2σ2

νσ4 .

We refer to Appendix A for a proof.

Corollary 2 The moment generating function of the VG process is given by

mgfXt
(u) = φXt(−iu) =

(
1− uθν − 1

2
σ2νu2

)− t
ν

,

and is defined for Re(u) ∈ (a, b).

Since all moments of the VG process exist (cf. Madan & Seneta (1990), Carr et al.

(1998)) the mean, variance, skewness and kurtosis are finite. We have

Proposition 4 The mean, variance, skewness and kurtosis of a length t increment of the

VG process are given by:

EXt = θt,

V Xt = (θ2ν + σ2)t,

Skewness(Xt) =
2θ3ν2 + 3σ2θν

(θ2ν + σ2)
3
2

t−
1
2 ,

Kurtosis(Xt) =
(3θ4ν2 + 6θ2νσ2)(t+ 2ν) + 3σ4(t+ ν)

(θ2ν + σ2)2t
.
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In the case of the VG process we can find a and b of the strip AX from the explicit form

of the characteristic function. Alternatively we can derive them from the Lévy measure

of Xt. This comes with the help of the following theorem on exponential moments for

Lévy processes.

Theorem 3 (Sato (1999), Theorem 25.17). Let Xt be a Lévy process with the generating

triplet (σ2,L,m). Let

C = {c ∈ R|
∫
|x|>1

ecxL(dx) <∞}.

Then the set C is convex and contains the origin.

Moreover, c ∈ C if and only if EecXt < ∞ for some t > 0 or, equivalently, for every

t > 0.

2.2.2 Other Lévy processes used for option pricing

Normal Inverse Gaussian (NIG) processes

Distribution of the NIG process increments is a GNVM distribution where mixing distri-

bution is Inverse Gaussian (IG). This distribution was used for pricing options by Prause

(1999).

If Xt is a NIG process then pdf of increments over time length h > 0 is given by

fXt+h−Xt(x) =
α

π
exp(hδ

√
α2 − β2 + β(x− hµ))

hδK1(α
√

(hδ)2 + (x− hµ)2)√
(hδ)2 + (x− hµ)2

(2.2.6)

where α, δ > 0, |β| ≤ α and K1(·) is modified Bessel function of the second kind.

Rates of decrease of the pdf of increments of Xt in tails are power-modified exponential,

i.e.

fXt+h−Xt(x) = const(α, β, δ, µ, h)
(
(hδ)2 + (x− hµ)2

)− 3
4 eβ(x−hµ)−α

√
(hδ)2+(x−hµ)2

+o(1), as x→ ±∞,

where const(α, β, δ, µ, h) =
√
αhδ exp((hδ)2

√
α2−β2)√

2π
.

The characteristic function of the NIG process increments is given by

φXt(u) =
exp(iutµ+ tδ

√
α2 − β2)

exp(tδ
√
α2 − (β + iu)2)
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and is regular (single-valued and analytical) in the strip AX = {z ∈ C|Imz ∈ (β − α, β +

α)}.
In contrast to VG process, NIG process in a process of infinite variation.

Generalized Hyperbolic processes

Distribution of increments of GH process are generalization of VG and NIG distributions.

The distribution has been used for pticing options by Prause (1999). This class also

contains Hyperbolic distribution used for option pricing by Eberlein & Keller (1995). GH

distribution is a GNVM distribution where mixing distribution is Generalized Inverse

Gaussian (GIG) distribution. The density of the Generalized Hyperbolic distribution is

given by

f(x) =
(α2 − β2)

λ
2

√
2παλ−

1
2 δλKλ(δ

√
α2 − β2)

(δ2 + (x− µ)2)(λ− 1
2
)/2eβ(x−µ)Kλ− 1

2
(α
√
δ2 + (x− µ)2),

where µ ∈ R and

δ ≥ 0, |β| < α if λ > 0,

δ > 0, |β| < α if λ = 0,

δ > 0, |β| ≤ α if λ < 0,

and K denotes a modified Bessel function of the second kind. The characteristic function

of the GH process increments of size t is given by

φXt(u) = eiuµt
(δ
√
α2 − β2)λtKλ(δ

√
α2 − (β + iu)2)t

Kλ(δ
√
α2 − β2)t(δ

√
α2 − (β + iu)2)λt

,

and is analytical in the strip AX = {z ∈ C|Imz ∈ (β−α, β+α)}. GH process has infinite

variation, unless it is degenerated to a process of finite variation, for example VG process.

Finite Moment LogStable processes (FMLS)

Carr & Wu (2000) modified α-stable process for purpose of option pricing. They intro-

duced Finite Moment LogStable processes. The FMLS process does not have the density

function in a closed form. If Xt is a FMLS process then the characteristic function of

increments over time length h > 0 is given by

φXt+h−Xt(u) = exp

(
iuλh− (iuσ)αh sec

(πα
2

))
,

17
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where λ ∈ R, σ ≥ 0, α ∈ (1, 2), and is analytical in the strip AX = {z ∈ C|Imz < 0}.
The FMLS processes have infinite variation.

18



Chapter 3

Option pricing for Lévy processes

In this chapter we present a framework for pricing of European options.

3.1 Risk-neutral market model for option pricing

We consider a riskless bond (Bt)t∈[0,T ] and a risky asset with a price process (St)t∈[0,T ].

We denote a probability space by
(
Ω,F ,P

)
and by (Ft)t∈[0,T ] an increasing family of sub

σ-fields of F , representing the history of the asset St. We shall refer to (Bt, St) as a

market model.

To price derivatives in such market models we need a definition of absence of ar-

bitrage. The absence of arbitrage means that one cannot make riskless profits, or, in

other words, that it is a fair market. The lack of arbitrage guarantees existence of the

so called risk-neutral or martingale measure. This is illustrated by Theorem 4 below,

called a Fundamental Theorem of Asset Pricing (cf. Harrison & Pliska (1981), Delbaen

& Schachermayer (1998), or Cont & Tankov (2004) (Proposition 9.2)).

Definition 7 A stochastic process Mt is a martingale if

E(Mt|Fs) = Ms, 0 ≤ s ≤ t.

Theorem 4 The market model defined by a probability space
(
Ω,F ,P

)
, a riskless bond

(Bt)t∈[0,T ] and asset prices (St)t∈[0,T ] is arbitrage-free if and only if there exists an equiva-

lent probability measure Q (Q ≈ P) such that the discounted asset price process
(
St

Bt

)
t∈[0,T ]

is a martingale with respect to the measure Q.
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In an arbitrage free market, prices of all financial instruments can be computed as dis-

counted expectations of their terminal payoffs with respect to some risk-neutral measure

Q, for example for the price process we have (cf. Cont & Tankov (2004))

St
Bt

= EQ
(ST
BT

|Ft

)
for t ≤ T. (3.1.1)

Since we do not assume that the price process St has log-normal distribution the market

model can be incomplete. Let us recall that in incomplete markets there exist more than

one risk-neutral measure.

3.1.1 Exponential Lévy market model

We shall assume that the bond price process is of the form Bt = ert where the riskless

rate r > 0 is constant. We shall assume that Xt follows a Lévy process and call

St = S0e
rt+Xt (3.1.2)

a geometric or exponential Lévy process. We shall refer to (Bt, St) as an exponential Lévy

market model.

We assume that our underlying asset pays no dividends, or that the dividends are already

included into its price1.

The following theorem shows that the exponential Lévy model is arbitrage free.

Theorem 5 (Cont & Tankov (2004), Proposition 9.9). If the trajectories of a Lévy

process Xt are neither increasing nor decreasing with probability 1, then the model given

by St = ert+Xt is arbitrage free; i.e. there exists a probability measure Q equivalent to P

such that (e−rtSt)t∈[0,T ] is a martingale with respect to Q.

The processes which are of our interest satisfy the assumptions of Theorem 5. For

example the VG processes, described in Chapter 2, are neither increasing nor decreasing

with probability 1. This comes, for example, from the decomposition of the VG process

into a difference of two increasing Gamma processes (Carr et al. 1998).

1For example Lewis (2001) considers St = S0e
rt−qt+Xt , where q denotes the rate of the dividend. We

assume q = 0, because we work with options, for which dividends are included in the price.

20



Option pricing for Lévy processes

Remark 4 In similar settings Eberlein & Jacod (1997), showed for some processes that

by choosing different equivalent risk-neutral measures one obtains prices of European op-

tions between (S0 − e−rtK)+ and S0, which lie in the interval of all possible European

option pricess.

3.1.2 Esscher transform and the Mean Martingale Correcting

Term

There are several methods existing in the literature for choosing the risk-neutral measure

for pricing options in incomplete markets. Different choices of the risk-neutral measure

may result in different financial instrument prices. The most popular are the Esscher Mar-

tingale Measure (ESSMM) (Eberlein & Keller (1995), Prause (1999), Boyarchenko & Lev-

endorskĭı (2002)), and the Mean Martingale Correcting Term (MMCT) method (Madan

& Seneta (1990), Madan & Milne (1991), Carr et al. (1998), Lewis (2001), Schoutens

(2003)).

We chose the MMCT as the method for obtaining a risk-neutral measure. Let us

note that Miyahara (2005) showed that the MMCT is a special case of the ESSMM. To

illustrate how the measure is introduced into the model, we first describe the ESSMM

method. For this purpose we start with the Radon-Nikodym Theorem.

Theorem 6 Radon-Nikodym Theorem. A probability measure P is absolutely continuous

with respect to a probability measure Q, if and only if there exists a nonnegative random

variable ξ, such that for any A ∈ F ,

P(A) =

∫
A

ξ(ω)Q(dω).

The random variable ξ is called a Radon-Nikodym derivative and it is denoted by ξ = dP
dQ

.

The Esscher transform

Let Xt be a Lévy process such that for some w ∈ R we have EewXt <∞ and let

Zt =
ewXt

EewXt
. (3.1.3)

We note that Zt ≥ 0, EZt = 1 and that Zt is a martingale with respect to the probability

measure P. The Essher transformed measure Q on F is defined by

Q(A) = E(1AZt), (3.1.4)
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for A ∈ F . The measure Q is equivalent to P and Zt is the Radon-Nikodym derivative
dP
dQ

. To price financial instruments we need w, such that (e−rtSt)t∈[0,T ] is a martingale

with respect to the measure Q (cf. Theorems 4 and 5). The martingale condition implies

EQ(e−rtSt|F0) = S0, (3.1.5)

which by (3.1.2) is equivalent to the condition

EQ(eXt|F0) = EQ(eXt) = 1

and can be expressed in terms of a characteristic function of Xt as

φQ
Xt

(−i) = 1. (3.1.6)

The characteristic function of Xt with respect to the measure Q is given by

φQ
Xt

(u) = EQ(eiuXt) = E(eiuXt
dP

dQ
) =

E(e(iu+w)Xt)

EewXt
=
φXt(u− iw)

φXt(−iw)
. (3.1.7)

The following proposition gives the generating triplet for the Esscher transformed

process.

Proposition 5 (cf. Miyahara (2004)) If Xt has a generating triplet (σ2,L,m), then the

Esscher transformed process has a generating triplet given by ((σQ)2,LQ,mQ), where

(σQ)2 = σ2,

mQ = m+ wσ2 +

∫
R

(ewx − 1)iux1|x|≤1(x)L(dx),

LQ(dx) = ewxL(dx).

We refer to Appendix A for a proof.

The Mean Martingale Correcting Term

Miyahara (2005) noticed that the MMCT coincides with the ESSMM in the case when

Xt is a Wiener process. The generating triplet for the Wiener process Wt is (1, 0, 0). The
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Esscher transformed triplet is given by (1, 0, w). The characteristic function of Wt with

respect to the transformed measure Q is given by

φQ
Wt

(u) = φWt(u)e
wt. (3.1.8)

We calculate w from the martingale condition (3.1.6), i.e.

w = −
log
(
φWt(−i))

)
t

= −1

2
,

which coincides with the classical Black-Scholes theory. If we apply transformation (3.1.8)

to any Lévy process Xt, then we get

φQ
Xt

(u) = φXt(u)e
wt = EeiuXtewt (3.1.9)

and we obtain the MMCT change of measure. The martingale measure has been obtained

by shifting the process Xt to Xt + wt. Hence we can get exponential Lévy price process

St = S0e
rt+Xt+wt (3.1.10)

and the martingale condition

w = −
log
(
φXt(−i)

)
t

. (3.1.11)

In the following we shall refer to (3.1.11) as to the MMCT.

3.2 Pricing of European options

In this section we discuss pricing of European options. As we noted in Section 3.1, under

the martingale measure Q the value of a financial instrument is given by the discounted

expectation of its terminal payoff. For an European call option C(t0, T,K) issued at time

t0 with strike price K and maturity time T , the terminal payoff is (ST − K)+, and the

price is given by

C(t0, T,K) = e−r(T−t0)EQ((ST −K)+|Ft0). (3.2.1)

Hence, the pricing of the option can be done in two steps, by determining the distribution

of ST and integrating (ST −K)+ with respect to this distribution. An alternative consists

in using the Fourier Transform if the characteristic function of XT is known, as was first
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indirectly noted by Merton (1973)2. We shall discuss this method in the next section. For

simplicity of notation we shall assume t0 = 0.

In the Black-Scholes model, the risk-neutral model of an asset price was described by

the exponential of a Brownian motion with drift

St = S0e
(r−σ2

2
)t+σWt .

We replace the Brownian motion with drift by a Lévy process Xt.

Proposition 6 If Xt is a Lévy process and

St = S0e
rt+Xt+wt, (3.2.2)

where

w = − log(φXt(−i))
t

, (3.2.3)

then a discounted pricing process e−rtSt is a martingale under measure Q given by (3.1.4).

We refer to Appendix A for a proof.

The simplest method to compute the European option price, where the log-return pro-

cess is modelled by a subordinated BM is to integrate the Black-Scholes price conditioned

on the random time increments. For example for the VG process (2.2.1) we integrate the

conditioned BS price formula with respect to the probability distribution of the Gamma

process γT , as it has been proposed by Madan & Seneta (1990). For the VG case with

parameters θ, σ, ν we have the following proposition.

Proposition 7 Assumed that St is given by (3.2.2), where Xt is a VG process with pa-

rameters (θ, σ, ν). Let C(0, T,K) be the current price of an European call option with a

spot price S0, a time to maturity T , a strike price K and a risk neutral rate r. Then

C(0, T,K) =

∫ ∞

0

(
S0e

wT+(θ+ 1
2
σ2)yFN(d1|y)− e−rTKFN(d2|y)

)
fγT

(y)dy,

2Merton (1973) p.167 and footnote 49.
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where FN(d|y) = E(1{Z<d}|YT = y) is the conditional Normal cdf with variance y, Z is a

standard Normal variable, fγT
(y) is a density function of the distribution of the Gamma

increments YT over time of length T (cf. (2.1.7)),

d2 =
log S0

K
+ (r + w)T + θy

σ
√
y

,

d1 = d2 + σ
√
y,

and

w =
1

ν
log(1− θν − 1

2
σ2ν).

We refer to Appendix A for a proof.

3.3 Option pricing based on characteristic functions

Carr et al. (1998) derived a formula for the European Call option in a classical form for

the VG process. Bakshi & Madan (2000) generalized the formula and showed that the

value of the European Call option with strike price K and maturity T at time 0 is given

by

C(0, T,K) = Π1S0 −Ke−rTΠ2,

where

Π1 =
1

2
+

1

π

∫ ∞

0

Re
exp(−iu logK)φ(u− i)

iuφ(−i)
du

and

Π2 =
1

2
+

1

π

∫ ∞

0

Re
exp(−iu logK)φ(u)

iu
du

and where φ(u) is the characteristic function of the log of the stock price process log
(
St
)
.

Carr & Madan (1999) pointed out some numerical drawbacks, related to the singu-

larities at zero in the above formula. They derived a new pricing method based on the

characteristic function3 of the log of the stock price process log
(
St
)

which was next gener-

alized by Lewis (2001). Let us note that based on a similar Laplace transform method and

3Heston (1993) was the first one who derived formula for price of an European option based on
characteristic function. However, he assumed a different stochastic process to model log-returns. His
model does not imply i.i.d. logarithmic increments.
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Fourier transform method Raible (2000) and Borovkov & Novikov (2002), respectively,

derived other formulas for the European option prices. Here we present the Lewis method.

Let us recall that the characteristic function of XT for u ∈ C and a < Imu < b is

defined as φXT
(u) = E(eiuXT ). Since

φXT
(0) = 1

by (3.2.2) and by the martingale condition (3.1.5) we get

S0 = EQ(e−rTST |F0) = S0φXT
(−i)

and we have

φXT
(−i) = 1.

Hence the characteristic function exists at both points u = 0 and u = −i.
By Theorem 9 in Appendix B.2, since φXT

(u) is analytical in the neighborhood of

u = 0, it is also analytical in a horizontal strip, which is either a whole complex plane or

it has two horizontal boundary lines, and is of the form A = {z ∈ C|Im(z) ∈ (a, b)}. Since

the characteristic function exists at point −i the strip has to include this point. Hence,

a ≤ −1 and b ≥ 0.

For example for the VG process the horizontal boundary lines are given by (cf. Propo-

sition 3),

a =
θ

σ2
−
√
θ2ν + 2σ2

νσ4

and

b =
θ

σ2
+

√
θ2ν + 2σ2

νσ4
.

Moreover, Theorem 9 in Appendix B.2 shows that the characteristic function φXT
(u)

is analytic in the strip A, i.e. between these two horizontal boundary lines.

The following theorem gives a price of an European option with a payoff function

H(x). The resulting formula (3.3.1) is based on the characteristic function φXT
(u) of XT .
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Theorem 7 Lewis (2001) (Theorem 3.2)

Let C(0, T,K) be an arbitrage free price of a European option with a payoff function

H(logST ) ≥ 0, where ST is the value of the stock at expiry T . Assume that:

a. a Fourier transform Ĥ(z) of H(x) exists in the strip Aw,

b. St = S0e
rt+Yt, where Yt is a Lévy process and eYt is a martingale,

c. YT has a characteristic function φYT
(z) analytic and one-valued in a strip AYT

= {z ∈
C : Im(z) ∈ (a, b)}, where a < −1 and b > 0.

Under assumptions a-c, if x+ iν ∈ AC = AH ∩A∗YT
, for some ν ∈ R then the option price

is given by

C(0, T,K) =
e−rT

2π

∫ ∞

−∞
e−i(x+iν)(logS0+rT )φYT

(−(x+ iν))Ĥ(x+ iν)dx. (3.3.1)

We refer to Appendix A for a sketch of the proof of Theorem 7.

The following corollary gives a price of a European Call option.

Corollary 3 Under the assumptions of Theorem 7, and assuming that:

a. H(x) = (ex −K)+ is a payoff function of a Call option,

b. we can integrate along a real line in a complex plane {x− i
2
|x > 0},

c. Yt = Xt + wt, where w is determined by the martingale condition,

the option price is given by

C(0, T,K) = S0 −
√
S0K

π
e−

rT
2

+wT
2

∫ ∞

0

Re

[
e−iu(log

S0
K

+rT+wT )φXT
(−u− i

2
)

]
du

u2 + 1
4

,

(3.3.2)

We refer to Appendix A for a sketch of the proof of Corollary 3.

We shall refer to formula (3.3.2) as to the CML formula. Let us note that to calculate

price of an European Put option P (0, T,K) we use the put-call parity relation

P (0, T,K) = C(0, T,K)− S0 +Ke−rT .

27



Chapter 4

Option pricing based on empirical

characteristic functions

In this chapter we depart from the typical parametric approach in modelling the distri-

bution of the underlying price process. We use instead a nonparametric approach in the

CML formula by using the Empirical Characteristic Function (ECF) to price European

options. We consider several modifications of this model based on the ECF. In particular,

we introduce models with implied parameters p∗n (or ∆∗
n) and w∗n and compare results with

those obtained by applying the CML method in the case of a parametric VG distribution

of log-returns.

Nonparametric approaches have already been used in option pricing. Approximation

of risk-neutral density has been done through a tree-based method, cf. Cox & Rubin-

stein (1979), Rubinstein (1994), Jackwerth (1999). Spline method has been proposed by

Shimko (1993) as an extension of Breeden & Litzenberger (1978) approximation. This

approach later has been generalized in Ait-Sahalia & Lo (1998) where the nonparametric

kernel regression has been used. Another approach is based on Edgeworth expansion by

Jarrow & Rudd (1982), and approximation of risk-neutral density by Hermite polynomi-

als, cf. Madan & Milne (1994) and Schlogl (2007).

The chapter is organized in the following way. In Section 4.1 we recall the definition

of the Empirical Characteristic Function and its properties. Next, we extend a result of

Csörgő & Totik (1983) on a uniform consistency of the ECF on the real line onto a strip

in the complex plane. We introduce our nonparametric model and show convergence with

probability 1 of our ECF pricing formula to the original one. In Section 4.2 we spec-
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ify the five models considered in the project, in the cases with and without the implied

parameters.

4.1 Approximate option pricing using empirical char-

acteristic functions

Let us assume that X1, . . . , Xn represent independent identically distributed random vari-

ables with a cumulative distribution function (CDF) F (x) and a characteristic function

φ(u), where u ∈ A ⊂ C and where A is a strip of the form A = {z ∈ C|Im(z) ∈ (a, b)} for

some a, b ∈ R.

Moreover, we assume that the characteristic function exists at imaginary points −y − i
2

and −i, where y > 0, i.e. φ(−y − i
2
) = Ee−iyX+X

2 <∞ and φ(−i) = EeX <∞.

The ECF φ̂n(u) is given by

φ̂n(u) =
1

n

n∑
j=1

eiuXj ,

where u ∈ A.

By the Strong Law of Large Numbers, the ECF is a consistent estimator of the char-

acteristic function at each point u ∈ A ⊂ C. We note this in the following lemma.

Lemma 2 For any x ∈ R and ν ∈ A, where A is a strip of analyticity of the characteristic

function we have

P
(

lim
n→∞

φ̂n(x+ iν) = φ(x+ iν)
)

= 1, (4.1.1)

We refer to Appendix A for a proof.

This extends to a uniform consistency on closed intervals [−U,U ] on the real line:

P
(

lim
n→∞

sup
|u|≤U

|φ̂n(u)− φ(u)| = 0
)

= 1,

cf. Feuerverger & Mureika (1977), or even to a uniform consistency on an increasing

intervals of the form [−Un, Un], where Un = exp(n/Gn), where Gn → ∞, cf. Csörgő &

Totik (1983),

P
(

lim
n→∞

sup
|u|≤Un

|φ̂n(u)− φ(u)| = 0
)

= 1.
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The following proposition extends the result of Csörgő & Totik (1983) for uniform

consistency on increasing sequence of intervals on the real line. We show that the strong

consistency is valid in the strip of analyticity of the characteristic function.

Proposition 8 A characteristic function φ(u) is analytical in a strip

A = {z ∈ C|Im(z) ∈ (a, b)}.

If

lim
n→∞

logUn
n

= 0, (4.1.2)

then

P
(

lim
n→∞

sup
|x|≤Un

∣∣φ̂n(x+ iν)− φ(x+ iν)
∣∣ = 0

)
= 1, (4.1.3)

where ν ∈ (a, b).

We refer to Appendix A for a proof.

Before we introduce our pricing formula we have some preliminary remarks. We as-

sume that time increment between our observations is ∆ = 1
365

, i.e. we have daily log-

returns1. Size of time increment between the time when option is issued, and the time

when option expiries is T = p×∆, where p is the number of days to expiration. Assum-

ing that log-returns are i.i.d. random variables we get, by the property of characteristic

function that

φXT
(u) = (φX∆

(u))p . (4.1.4)

Hence we can get the characteristic function of log-returns on long interval T by knowing

the characteristic function of log-returns on a shorter interval ∆. This is particularly useful

in working with historical data. We can estimate an ECF for log-returns by applying

(4.1.4) to an ECF of log-returns on short time intervals.

φ̂T,n(u) =
(
φ̂n(u)

)p
, (4.1.5)

1The most popular conventions are 365 or 252 working days in a year. We chose the first convention.
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where p = T
∆

and φ̂n(u) is an ECF of log-returns on interval of length ∆. Hence φ̂T,n(u) is

an estimator of φXT
(u). We consider pricing of an European option, with time to maturity

T and strike price K, by replacing formula (3.3.2) with its empirical version

Ĉn(0, T,K; ŵn, p) =

S0 −
√
S0K

π
e−

rT
2

+ ŵnT
2

∫ ∞

0

Re

[
e−iu(log

S0
K

+rT+ŵnT )φ̂T,n(−u−
i

2
)

]
du

u2 + 1
4

, (4.1.6)

where ŵn is the empirical version of the MMCT w, given by

ŵn = −
log
(
φ̂n(−i)

)
∆

, (4.1.7)

and where φ̂T,n(u) is given by (4.1.5).

In Lemma 3, in the following remarks and in Proposition 9 we provide a formal justi-

fication of our method.

Lemma 3 The integral in formula (4.1.6) is finite.

We refer to Appendix A for a proof.

Remark 5 In formula (4.1.6) we have to take into consideration a convergence of a

sequence φ̂n(−i) to the value of the true characteristic function at point −i. The condition

φ(−i) <∞ (4.1.8)

holds for most probability distributions considered in the financial literature concerned with

option pricing. In particular, it is met for probability distributions listed in Section 2.2.2.

For example for the VG distribution of log-returns the strip of analyticity of the char-

acteristic function is given by

AX =

{
z ∈ C|Im(z) ∈

(
θ

σ2
−
√
θ2ν + 2σ2

νσ4
,
θ

σ2
+

√
θ2ν + 2σ2

νσ4

)}
,

(cf. Proposition 3). The strip does not depend on size of the time increment between

log returns. Carr et al. (1998) obtained the following estimates of parameters of the

VG distribution of log-returns of S&P500 index, θ = 0.0591, σ = 0.1172, ν = 0.002, for

which the strip is AX = {z ∈ C|Im(z) ∈ (−27.3242, 35.9294)}. Condition (4.1.8) does
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not hold for all values of the four parameters α−Stable distributions. Carr & Wu (2000)

considered a subclass of that class of distributions by keeping some parameters fixed, hence

achieving that condition (4.1.8) was met. They call their class Finite Moment LogStable2

distributions.

As we already noted in Section 3.3, the existence and analyticity of a characteristic

function at points 0 and −i implies the existence and analyticity of the characteristic

function in a horizontal strip

AX = {z ∈ C|Im(z) ∈ (a, b)},

where a < −1 and b > 0. To verify if that assumption is met for probability distribu-

tions considered in the present research, we estimated the strip for the VG process based

on options data. Using the Maximum Likelihood Estimation method we obtained triplets

(θ, σ, ν) of parameters for each day from our data set, i.e. {(θk, σk, νk)}k=1,...,243
3. Then

we calculated the horizontal boundaries for the strip, i.e. {(ak, bk)}k=1,...,243. Figure 4.1

illustrates how the strip changes over time. From the plot we observed that points 0 and

−i are always included in the strip of the VG process. Although we are not tied to the VG

process, the above example justifies our confidence that the assumption on finitness of the

exponential moments are fulfilled for probability distributions of the DAX log-returns.

Remark 6 Pricing options using formula (4.1.6) allows the following interpretation re-

lated to the classical method of pricing options. Assume that the probability distribution

of log-returns of the price process St belongs to a certain parametric family. We can

first estimate parameters of the risk-neutral distribution using some method based on the

ECF4.Then, we can use the estimated parameters in formula (3.3.2) to obtain prices of

options. This procedure consists of two steps. Our procedure consists of only one step, we

do not estimate parameters of the distribution, but instead we use estimator of the char-

acteristic function. Both approaches have a common drawback. Because we do not use

historical option data, but only historical data of the underlying price process, it is difficult

2Cf. Section 2.2.2.
3We consider 243 days in our options database, between the 1st of June 2006 and the 17th of May

2007.
4For example, we can estimate parameters of the distribution by solving a set of equations which

involved ECF, cf. Feuerverger & McDunnough (1981)
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Figure 4.1: Estimated strip for VG process, using MLE, for ODAX options between the
1st of June 2006 and the 17th of May 2007, (ak - blue line, bk - red line).

to obtain option prices close to the real ones. This also shows discrepancy between the

risk-neutral measure implied by real option prices and the one implied by the underlying

price process.

Remark 7 Instead of using the ECF in formula (3.3.2) we could alternatively choose to

integrate the payoff against the empirical cumulative distribution function

e−rT
∫
R

(ST −K)+dF T
n (x),

where F T
n (x) = 1

n

∑n
j=1 1{Xj≤x}(x). However, this approach has two serious drawbacks.

First, such an integral is harder to evaluate numerically. For example, if we were to

approximate the cdf F T
n (x) of the distribution of the terminal payoff, we would need to

take a p-fold convolution of the empirical cdfs F∆
n (x), where p is the number of days to

option expiration. In the case of the ECF we just take it to the power p, using properties

of characteristic functions. Secondly, it is also not clear how to incorporate change of

measure through MMCT in such a case.

33



Option pricing based on empirical characteristic functions

Remark 8 The assumption on independent identically distributed log-returns is crucial

for our approach. For not i.i.d. log-returns, φ̂T,n(u) in the formula (4.1.6) is not longer

an estimator of φXT
(u) in the formula (3.3.2). There exist option pricing models based on

semimartingales for which increments of the stochastic process are not i.i.d. The simplest

examples of such models are the SV model (Heston 1993), where the price process is

modelled as a CIR5 process, or its extension like a jump-diffusion SV (Bates 1996). More

advanced processes of this type for option pricing were used by Barndorff-Nielsen et al.

(2002) and Carr et al. (2003). They include pure jump processes. These models do not

imply independent logarithmic increments.

We also mention exponential additive processes used for option pricing in Carr, Geman,

Madan & Yor (2007). These processes satisfy the same assumption as Lévy processes,

except the one on stationary increments. Hence, in such models the logarithmic increments

can be not identically distributed. Our assumption exludes all of these processes and our

method is not applicable in such models.

Remark 9 Approximations obtained from our approach can be compared to the classical

Black-Scholes model, where deviations from the model are described by a so called implied

volatility. In the present case the implied parameters w∗n, p
∗
n and (w∗n, p

∗
n) play similar

role as the implied volatility in the Black-Scholes model. Clearly, this shows that some

assumptions of our model, like i.i.d., may be violated and that more sophisticated, like

Heston (1993), models are needed to precisely describe the market behaviour. However,

in such cases only very time consuming Monte-Carlo simulation technics are available to

date to calibrate the models. Hence, our approach seems to be a reasonable compromise

between numerical sophistication and perfect accuracy of modeling of market behaviour.

In particular, in Chapter 5 we observe that the parameters, obtained through daily cali-

bration to real option prices, are changing with time. In Section 5 of Chapter 5 we model

the implied parameters from our model using a simple regression-time-series approach, a

process which is much faster than Monte-Carlo simulations.

The following proposition shows convergence of our formula (4.1.6) to the original

formula (3.3.2).

5Cox-Ingersoll-Ross.
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Proposition 9 We have

P
(

lim
n→∞

Ĉn(0, T,K; ŵn, p) = C(0, T,K)
)

= 1. (4.1.9)

We refer to Appendix A for a proof.

Formula (4.1.6) includes parameters w and p, which in the case of perfect modelling

are completely specified, i.e. w is given by (3.2.3) and p is the number of days to option

expiry. In our case it is natural to estimate w by ŵn given by (4.1.7). However, though

model (4.1.6) relying on modelling real log-returns by Lévy processes captures the main

features of the behaviour of real options, yet it is not perfect. We suggest to consider

w and/or p as parameters and fit them to the historical option prices. The obtained

parameters w∗n and p∗n, respectively, are called implied because the real option prices

are used in fitting their optimal values. Let us note that the implied parameters are

functions of both historical log-returns and of historical option prices, while the empirical

ŵn depends only on historical log-returns of the underlying price process.

Accepting replacement of the characteristic function in (3.3.2) with its empirical ver-

sion we consider the following cases. In the first model we estimate w = ŵn by Nonlinear

Least Squares method using real option prices, and denote it by w∗n. We call w∗n an implied

MMCT (or implied w). In another model we allow p to be a parameter which can be

fitted to the historical option prices. We denote the fitted parameter p∗n, and we call it

implied p. We refer to the number of days to option expiration as the true p. Since time

to expiration T is related to p by

p =
T

∆
,

it is natural to keep T fixed and to have implied the time length of increments ∆∗
n. Hence,

we have the following relation

p∗n =
T

∆∗
n

, (4.1.10)

used in the project. Let us note that one can also consider a model, where T is implied

and ∆∗
n fixed, however this is beyond the scope of the present project. In the next section

we discuss the resulting models in details.

4.2 Five models for option pricing

As we discussed in Section 4.1 one can allow w and p to become implied parameters of

the model. We use the Nonlinear Least Squares method to obtain the best fitting values
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w∗n and p∗n of w and p, respectively. We consider the following four models using the

ECF formula (4.1.6), and the fifth model where like Carr & Madan (1999), we use the

CML formula (3.3.2). By C̄(0, T,K) we denote the real option price at time zero with

expiration at time T , and strike price K.

4.2.1 Model 1: one estimated parameter ŵn

Our first model can be labelled as Empirical ECF pricing.

We price options by formula (4.1.6), where we use the empirical version of MMCT, i.e.

ŵn = − log (φn(−i))
∆

,

and the true value p of the number of days to option expiry.

4.2.2 Model 2: estimated parameter ŵn and implied ∆∗
n

The second of our model is the ECF pricing model (4.1.6) with empirical ŵn given by

(4.1.7) and implied p∗n, where

p∗n =
T

∆∗
n

= argmin{p}
∑
l

{
Ĉn(0, T,Kl; ŵn, p)− C̄(0, T,Kl)

}2

,

and where l indexes the set of the considered strikes.

Model 2 loses the interpretation of p as a number of days to option expiry. Change

of p affects the ECF in φ̂T,n(u) but is not directly related to the maturity, because we

do not change T in the formula 4.1.6. Discrepancy between p and p∗n can be interpreted

as a change of speed of time due to other factors than the historical log-returns and not

included explicitely in the model.

4.2.3 Model 3: implied w∗n

The third model considered in the project is the ECF pricing model 4.1.6 with implied

w∗n (i.e. implied MMCT w) and and the true expiry p (in days), where

w∗n = argmin{w}
∑
l

{
Ĉn(0, T,Kl;w, p)− C̄(0, T,Kl)

}2

,
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and where l indexes the set of the considered strikes.

In Model 3 we lose interpretation of finding empirically the MMCT w. We do not

need to assume that log-returns follow specific subclass of Lévy processes to satisfy the

assumption φ(−i) <∞. However we still need the assumption that characteristic function

exists at points −y − i
2
, where y > 0. Discrepancy between w∗n and ŵn can be also

interpreted as adjusting approximate model 4.1.6 to the real process of option pricing.

4.2.4 Model 4: implied w∗n and implied ∆∗
n

The fourth model is the ECF pricing model with both implied w∗n (i.e. implied MMCT

w) and p∗n (i.e. implied p), where

(w∗n, p
∗
n =

T

∆∗
n

) = argmin{w,p}
∑
l

{
Ĉn(0, T,Kl;w, p)− C̄(0, T,Kl)

}2

,

and where l indexes the set of the considered strikes.

In Model 4 we have two parameters to bring model 4.1.6 closer to real process of option

pricing. Similarly, as for Model 3 we still need the assumption that characteristic function

exists at points −y − i
2
, where y > 0.

Models 3 and 4 give us a class of curves which fit option prices, parameterized by w∗n and

by w∗n and p∗n, respectively.

4.2.5 Model 5: a Variance Gamma model with estimated pa-

rameters

The CML pricing with implied parameters of the VG distribution. For a comparison with

a parametric model we also calibrate the CML pricing model, like Carr & Madan (1999),

in the case of three parameters of the VG distribution.

(θ∗, σ∗, ν∗) = argmin{θ,σ,ν}
∑
l

{
C(0, T,Kl)− C̄(0, T,Kl)

}2
,

where l indexes over strikes.

To obtain prices of options we used adaptive quadrature, and numerical nonlinear

Least Square minimization functions from MATLAB R© Optimization Toolbox.
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Remark 10 It is common to use weighting factors, which depend on liquidity, or trans-

formations such as logarithm or implied volatilities of prices using the non-linear Least

Squares minimization in the calibration of option prices. We used non weighted non linear

Least Squares minimization. Our approach may result in larger percentage errors espe-

cially for far out-of-the-money options, but those options are of less interest for investors

because of their smaller liquidity. In fitting the implied parameters we used only the most

liquid options.
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Chapter 5

Performance of the five models on

historical data

In the present chapter we report results of fitting and calibrating of the five models

introduced in Chapter 4. Let us recall that we use terms fitting or estimating when

parameters of the model are chosen in the best way, according to the chosen criterion,

to comply with the historical DAX log-retuns. Whenever the historical option prices are

used we use the term calibration. If both historical DAX log-returns and historical option

prices are used to determine the model parameters we refer to estimation (fitting) and

calibration.

In Section 5.1 we describe our data sets. In Section 5.2 we present our verification

of the numerical accuracy of evaluation of integrals in (4.1.6) in the project. In Section

5.3 we present results of estimation and calibration of our models. In Section 5.4 we

report on pricing less liquid options using the parameters obtained from the liquid ones.

In Section 5.5 we model the time behaviour of the obtained parameters by simple times

series methods. We forecast the parameters of the models and price the options using the

forecasted parameters. In this way we explore if the fitted parameters can be useful, eg.

for market makers.

We use the following format for presenting numbers. For numbers between −0.0001

and 0.0001 we use floating point format, with four digits after the decimal point, e.g.

7.5477e-08. For other numbers we use scaled fixed point format, with four digits after the

decimal point, e.g. 485.3104.
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5.1 The underlying DAX index and ODAX options

data

We test performance of our models on historical data consisting of Deutsche Boerse AG

DAX index (XETRA: GDAXI, ISIN1: DE0008469008) and European Call Options ODAX

(ISIN: DE0008469495) written on the index, and traded on Eurex. The options data

include daily close price, strike price, and the time to maturity. The strike prices are set

at 50 points space intervals. The options have been recorded on Eurex exchange between

the 1st of June 2006 and the 17th of May 2007 (243 days). The number of maturities

change over time and range from 1 to 6 of the closest ones to expiration. We used

the data obtained from the Securities Industry Research Centre of Asia-Pacific (SIRCA

Ltd., http://www.sirca.org.au). Interest rates for this period have been taken from the

European Central Bank web site (http://www.ecb.int/). From the options data set we

chose only the most traded options, i.e. the 3 or 4 strikes nearest to the spot price. There

were 2985 such options in our data set.

5.2 Precision of the numerical integration

Prior to reporting on performance of our models we present our check of the precision of

the numerical integration in (4.1.6) which we use in our project. The error of numerical

integration has two components. The first error results from integrating the integrand in

the formula (4.1.6) over a finite interval [0, U ] while in the formula the the integration

region is [0,∞). The second error comes from a choice of a numerical method for inte-

gration on interval [0, U ]. We consider these two errors separately. They do not exceed

4.0e-03 and 3.0e-08, respectively.

1International Securities Identification Number.
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5.2.1 Integration cut-off error

By evaluation of the last integral in (A.0.3) from the cutoff point U to the infinity we can

estimate the integration error er(U).

er(U) ≤ 2M̂

∫ ∞

U

du

u2 + 1
4

= 4M̂
(

lim
u→∞

arctan(u)− arctan(2T )
)

= 2M̂π − 4M̂ arctan(2U),

where M̂ is between 0.9998 and 1.0009 for the whole considered period.

In our numerical procedure we set U = 512. This gives er(512) < 0.004 for any value of

M̂ for the whole year. This error is much larger than the error coming from the integration

between zero and U . For example from Table 5.1 we can read that for Gauss-Lobatto

quadrature the error does not exceed 3.0e-07. We found that for all considered options

the magnitude of errors was of similar order.

5.2.2 Error of the numerical integration method

From Figure 5.2 we can spot some ”outliers” among the implied p∗n. We chosed the one

the most away from the regression line. Then we checked the numerical precision of the

integration method used to get this value. We chosed one option with the smallest strike,

for which the price is available. For integration we used three different methods available in

MATLAB R©2: the trapezoidal rule (with spacing 0.1), the adaptive Simpson quadrature,

and the adaptive Gauss-Lobatto quadrature (for calibration we used the third one). We

report the results in Table 5.1. We integrate the integrand in formula (4.1.6) from 0 to

the cutoff point which is one of the 32 multiples of 16, i.e. ranging from 16, 32, . . . , 512.

The date when the option price is chosen is the 30th of June 2006, the spot price is

S0 = 5683.31, the strike price is K = 5600, the interest rate is r = 0.0375, the maturity

is 262 days, the empirical ŵn = −0.1251 and the implied p∗n = 920.12. The first column

contains the right hand side cutoffs. The columns 2nd, 4th and 6th show prices computed

with the use of the three methods for numerical integration, respectively. The columns

3rd, 5th and 7th show differences between consecutive prices.

We observe that differences between the maximum price and the minimum price do not

exceed 2.0e-06 for all methods of integration, what gives a satisfactory accuracy for our

2trapz.m, quad.m and quadl.m, respectively.

41



Performance of the five models on historical data

method. Variations of errors for different levels of cutoffs are caused by the oscillatory

behaviour of the ECF, and they do not exceed 1.0e-05.

For the estimation procedure for one year of options data we used the right hand side

cutoff U = 512.

5.3 Estimation and calibration of the models

5.3.1 Measures of accuracy of option pricing for Models 1-5

In Tables 5.2-5.4 we report the following model pricing errors.

The Mean Absolute Error (MAE):

1

N

N∑
l=1

∣∣∣C̄(0, T,Kl)− Ĉn(0, T,Kl;w, p)
∣∣∣ ,

the relative MAE:

1

N

N∑
l=1

∣∣∣C̄(0, T,Kl)− Ĉn(0, T,Kl;w, p)
∣∣∣ /|C̄(0, T,Kl)|,

the Root Mean Square Error (RMSE):√√√√ 1

N

N∑
l=1

(
C̄(0, T,Kl)− Ĉn(0, T,Kl;w, p)

)2

,

the relative RMSE:√√√√ 1

N

N∑
l=1

[(
C̄(0, T,Kl)− Ĉn(0, T,Kl;w, p)

)
/C̄(0, T,Kl)

]2
,

where N is the number of option prices depending on the considered case. For interpre-

tation of other symbols we refer to Sections 4.1 and 4.2.

5.3.2 Examples of calibration based on one-day data

First, for illustration, we present in Figure 5.1 results of option pricing using models 1-4,

for the 1st of June 2006. We used 120 prior days to calculate the ECF, i.e. we take
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Cutoff Trapez. Diff. Simpson Diff. Lob.-Gauss Diff.
16 485.3104 -2.1702E-07 485.3104 7.5477E-08 485.3104 -2.1702E-07
32 485.3104 -1.8117E-09 485.3104 -2.3979E-07 485.3104 -1.8117E-09
48 485.3104 1.3642E-11 485.3104 -1.4278E-07 485.3104 1.3642E-11
64 485.3104 1.2551E-10 485.3104 1.9693E-07 485.3104 1.2551E-10
80 485.3104 -8.9130E-11 485.3104 -6.8918E-08 485.3104 -8.9130E-11
96 485.3104 4.6384E-11 485.3104 1.5937E-06 485.3104 4.6384E-11
112 485.3104 -1.3097E-10 485.3104 -1.6275E-06 485.3104 -1.3097E-10
128 485.3104 1.0914E-10 485.3104 1.0227E-07 485.3104 1.0914E-10
144 485.3104 1.8190E-11 485.3104 4.3383E-10 485.3104 1.8190E-11
160 485.3104 2.2944E-07 485.3104 3.7653E-09 485.3104 2.2944E-07
176 485.3104 -2.5509E-07 485.3104 -7.2694E-08 485.3104 -2.5509E-07
192 485.3104 2.2766E-08 485.3104 4.9352E-08 485.3104 2.2766E-08
208 485.3104 2.6603E-09 485.3104 1.5444E-06 485.3104 2.6603E-09
224 485.3104 2.0373E-10 485.3104 -1.4318E-06 485.3104 2.0373E-10
240 485.3104 -1.8736E-10 485.3104 -1.9573E-07 485.3104 -1.8736E-10
256 485.3104 2.0009E-11 485.3104 8.6593E-08 485.3104 2.0009E-11
272 485.3104 5.2751E-11 485.3104 1.5679E-08 485.3104 5.2751E-11
288 485.3104 1.6007E-10 485.3104 3.5028E-07 485.3104 1.6007E-10
304 485.3104 -2.8740E-10 485.3104 -3.4985E-07 485.3104 -2.8740E-10
320 485.3104 3.5780E-09 485.3104 -2.2185E-08 485.3104 3.5780E-09
336 485.3104 -2.0100E-09 485.3104 2.5951E-08 485.3104 -2.0100E-09
352 485.3104 -5.8481E-10 485.3104 -1.8847E-08 485.3104 -5.8481E-10
368 485.3104 -5.5115E-10 485.3104 -5.3848E-08 485.3104 -5.5115E-10
384 485.3104 -8.8221E-11 485.3104 6.9225E-07 485.3104 -8.8221E-11
400 485.3104 -3.7744E-10 485.3104 -6.4289E-07 485.3104 -3.7744E-10
416 485.3104 1.5916E-10 485.3104 -5.8090E-08 485.3104 1.5916E-10
432 485.3104 4.5475E-11 485.3104 1.6025E-06 485.3104 4.5475E-11
448 485.3104 9.6406E-11 485.3104 -3.1568E-07 485.3104 9.6406E-11
464 485.3104 1.1823E-11 485.3104 -1.1161E-06 485.3104 1.1823E-11
480 485.3104 -2.4374E-10 485.3104 -1.8792E-07 485.3104 -2.4374E-10
496 485.3104 2.1646E-10 485.3104 -7.8171E-09 485.3104 2.1646E-10
512 485.3104 485.3104 485.3104

Table 5.1: Numerical integration errors and prices of option for the 30th of June 2006,
where p∗n = 920.12.
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φ̂120(u) and ŵ120 given by (4.1.7). The spot price was S0 = 5707.59, the interest rate was

r = 0.035. We used four maturities with 4 strikes for each maturity. Strikes are presented

on the horizontal axes and prices of options are on the vertical axis. The black line is

the option payoff. Rectangles denote the real ODAX option prices and circles denote the

model prices. We considered the following maturities: 18, 53, 109 and 200 days to options

expirations.

Figure 5.1: Prices of options obtained by Models 1-4, for the 1st June 2006.

In Table 5.2 we present the results of ODAX Call option pricing, the implied pa-

rameters and errors. We consider four models based on the ECF. Days to expiry p are

presented in the 2nd column, the 3rd column contains values p∗n of the implied days to ex-
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piry, whenever it is applicable. The 4th column is filled by the same value of the empirical

MMCT ŵn, and the 5th column contains values of the implied MMCTs w∗n. The last two

columns report the relative errors for each maturity: the 6th column contains the relative

MAE between the historical option prices and the ones obtained from our modelling while

the 7th column contains the relative RMSE of the historical and modelled option prices.

We observe decreasing errors as we calibrate more parameters.

We observe that for Model 2 the implied p∗n are smaller than the true ones. This is not

the case for Model 4, where the implied p∗n are larger than the true ones. For Model 3 the

implied w∗n are closer to the empirical ŵn than for Model 4.

5.3.3 Calibration based on one-year data

We consider all five models and one year of the ODAX Call options data. We price Call

options for Model 1 for one year, calibrate and price the Call options using models 2-5.

The calibration was done for each set of 3 to 4 strikes with the same maturity, between

the 1st of June 2006 and the 17th of May 2007.

Table 5.3 contains measurements of all errors. In rows we present the MAE, the relative

MAE, the RMSE and the relative RMSE, respectively. The number of considered Call

options equals 2985. We observe the largest errors for Model 1 which is based only on a

nonparametric estimation of the characteristic function of log-returns of DAX index and

is not using any historical Call options for calibration. For Models 2 and 3, where we

calibrate one parameter in each model, the errors of pricing are, not surpricingly, smaller

than for Model 1. The difference is clearly seen in the case of the relative MAE, where

the error was reduced from almost 40 percent to about 10 percent. In Model 4 the errors

of Call option pricing are even smaller, the value is around 0.55 percent for the relative

MAE. This precision is quite satisfactory. It is interesting to note that Model 5 of Carr

& Madan (1999) with three parameters of the VG distribution calibrated to option prices

does not perform better than Model 4 with two parameters. The relative MAE for Model

5 is satisfactory, but higher than the one resulting from pricing by our Model 4.

Let us recall that Lévy processes are often interpreted as subordinated Brownian Motions.

It means that the time flow in the Brownian Motion can be interpreted as random with

a varying speed. Behaviour of our implied parameter p∗n given by (4.1.10) shows that

there may be a component of the time flow which is not yet included in the subordinating
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process.

Referring to Figure 5.3 we can interpret the implied parameter w∗n as an indicator of

changes occuring to the real market environment. In particular the linear relation between

implied w∗n and empirical MMCT may be of some interest and even subject of some further

study.

Figure 5.2 shows results of calibration for Model 2. Each point with coordinates (p, p∗n)

refers to one maturity: p denotes the true number of days to option expiration while p∗n

denotes the value obtained from calibration. There are 774 calibrated p∗n. The straight

line represents regression p∗n = α0 + α1p, with coefficients α0 = 3.1510 and α1 = 0.8866.

It shows a linear relationship between those p that are true and those that are implied,

however the figure shows heteroscedasticity of the data and outliers.

Figure 5.2: Number of days to expiration p vs. implied p∗n, based on Model 2 for one year
of pricing options.
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Figure 5.3 shows results of calibration of parameter w∗n in Model 3. It contains a plot

of w∗n versus ŵn. Each point represents one maturity, altogether the 774 calibrated w∗n.

The straight line represents regression w∗n = α0 +α1ŵn, with coefficients α0 = 0.1590 and

α1 = 1.1417. Like in Figure 5.2 we observe heteroscedasticity in the data and outliers, as

well as skewness.

Figure 5.3: Empirical ŵn vs. implied w∗n, based on Model 3 for one year of pricing options.

We are not presenting similar plots for Model 4, for which both parameters are cali-

brated jointly. The relation between the empirical MMCT, the number of days to expi-

ration and the implied parameters, is not so straightforward.

Figure 5.4 presents how the empirical ŵ120 (the black bold line), the maximum (red

line) and the minimum (blue line) of the implied w∗n from Model 3 change over the
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year. The maximum and minimum are taken over different implied parameters related

to different maturites for each day, respectively. The empirical MMCT has been used in

Models 1 and 2.

Figure 5.4: Empirical ŵ120(u) based on 120 historical log-returns between the 1st of June
2006 and the 17th of May 2007 for each day (black line) and the implied minimum (blue
line) and maximum (red line) w∗n for Model 3.

Similarly, Figure 5.5 shows the empirical ŵ120 (black bold line), and the maximum

(red line) and the minimum (blue line) of the implied w∗n from Model 4. The maximum

and minimum are taken over different implied parameters related to different maturites

for each day, respectively.
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Figure 5.5: Empirical ŵ120(u) calculated from 120 historical log-returns between the 1st
of June 2006 and 17th of May 2007 for each day (black line) and the minimum (blue line)
and maximum (red line) of the implied parameter w∗n for Model 4.

Figure 5.6 shows close prices of DAX between 120 working days prior to the 1st June

2006 (marked by a vertical red line) and the 17th of May 2007.
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Figure 5.6: Close prices of DAX between 120 working days prior to the 1st June 2006,
and 17th May 2007 (blue line). Red line indicates the 1st June 2006.

5.4 Pricing of less liquid options using implied w∗n and

p∗n obtained from liquid cases

In this subsection we present the results of pricing options for a range of strike prices

between S0 − 200 and S0 + 200. We used the implied parameters w∗n and p∗n obtained

in Model 4. In table 5.4 we report the errors of option pricing. The relative error mea-

surements increased to almost 1.9 percent for the relative MAE and to 6 percent for the

relative RMSE.
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Carr et al. (1998) have shown superiority of their CML model over the classical Black-

Scholes approach. Our results have shown that the Model 4 outperforms slightly Model 5

based on the CML formula, cf. Table 5.3. Hence, Model 4 also outperforms the classical

Black-Scholes models.
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p p∗n ŵn w∗n rel. MAE rel. RMSE

Model 1 18 - −0.2528 - 0.0651 0.0871
(ŵn,p) 53 - −0.2528 - 0.0271 0.0307

109 - −0.2528 - 0.0370 0.0391
200 - −0.2528 - 0.0328 0.0344

Model 2 18 15.4649 −0.2528 - 0.0598 0.0821
(ŵn,p

∗
n) 53 49.3644 −0.2528 - 0.0275 0.0310

109 97.1398 −0.2528 - 0.0210 0.0238
200 187.394 −0.2528 - 0.0151 0.0169

Model 3 18 - −0.2528 −0.2206 0.0228 0.0263
(w∗n,p) 53 - −0.2528 −0.2626 0.0256 0.0292

109 - −0.2528 −0.2653 0.0182 0.0206
200 - −0.2528 −0.2618 0.0139 0.0156

Model 4 18 23.2664 −0.2528 −0.2014 0.0062 0.0065
(w∗n,p

∗
n) 53 96.9268 −0.2528 −0.3170 0.0018 0.0018

109 215.4613 −0.2528 −0.3808 0.0007 0.0007
200 433.6934 −0.2528 −0.4367 0.0005 0.0005

Table 5.2: Empirical and implied parameters and error measurements for Models 1-4, for
pricing options on the 1st of June 2006.

Model 1 Model 2 Model 3 Model 4 Model 5

MAE 36.7306 2.8594 5.2871 0.3306 2.3868
Relative MAE 0.3908 0.0883 0.1172 0.0055 0.0156

RMSE 44.9672 4.0897 8.7297 0.4680 3.3061
Relative RMSE 1.2103 0.9575 0.9893 0.0269 0.0307

Table 5.3: Measurement of errors for Models 1-5 for one year of pricing options.

Model 4 ITM and OTM with w∗n and p∗n from Model 4

MAE 0.3306 1.2263
Relative MAE 0.0055 0.0188

RMSE 0.4680 1.872
Relative RMSE 0.0269 0.0598

Table 5.4: Measurement of errors for pricing of 3-8 options per maturity with use of w∗n
and p∗n from Model 4, for one year of pricing options.
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5.5 Pricing options with the use of forecasted implied

parameters

The CML model allows using general Lévy processes to model behaviour of the asset

log-returns, however is still leaving not accounted for other driving market factors like

stochastic volatility. The implied parameters should capture these deviations between

the CML model and market behaviour, possibly in a similar way as the implied volatility

captures deviations between the BS model and the real market. Figures 5.7 and 5.8 show

the behaviour of implied parameters p∗n and w∗n over time as obtained from calibration of

Models 2 and 3, respectively.

Remark 11 Most of the papers on option pricing concentrate only on fitting models to

real option prices, cf. Carr et al. (1998), Schoutens & Tistaert (2004), without veryfying

the procedures on out-of-sample data. In our case it is evident that the fitted parameters are

showing some dynamics. Therefore, testing performance of the option pricing on out-of-

sample data does not seem appropriate. Instead, it is desirable to suggest some time-series

models for the implied parameters. By forecasting the parameters we are going even beyond

the scope of the available so far papers, by trying to achieve good pricing environment for

a near future, e.g. for the next day. In other words, our model performance is done in-

sample but instead we suggest a model for a dynamic of parameters. We believe that this

is justified by the fact that the economy changes with time and the behaviour of market is

dictated by permanently incoming news and events. Hence, prediction of the future seems

to be more suitable than expectation of stability, where out-of-the-sample testing should be

recommended.

In this section we explore the behaviour of the obtained implied parameters by fitting

mixture of regression and Autoregressive (AR) or Vector Autoregressive (VAR) time series

models. We fit these models to series of implied p∗n (Model 2), implied w∗n (Model 3) and

pairs of implied (w∗n, p
∗
n) (Model 4). There are two reasons for exploring this modelling.

Let us recall that we used only 3 or 4 of option prices to fit one (in Model 2 and 3) or two

(in Model 4) parameters. By fitting the implied parameters to a time series model we can

test if the obtained implied parameters have not been overfitted. Secondly, by fitting the

implied parameters to a regression-time-series model we can forecast values of the model
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parameters one step ahead and check if the next day implied parameters are producing

reasonable option pricing. This may have practical value, for example for market makers.

We present results of this exploration in the following subsections.

To fit the regression-time-series models we used a statistical package EViews R©. We

fit series of implied p∗n and w∗n to the following model (cf. Quantitative-Micro-Software

(2007), Chapter 26)

ym = x′mβ + um, (5.5.1)

um = α1um−1 + α2um−2 + εm, (5.5.2)

where β′ = [β1, β2] are regression parameters, α1, α2 are parameters of a hidden AR

model driving the regression noise and xt is a vector of explanatory variables. Let us

note that model (5.5.1)-(5.5.2) can be also presented equivalently without the hidden AR

componentin the following way

ym = x′mβ + α1(ym−1 − x′m−1β) + α2(ym−2 − x′m−2β) + εm,

however, representation (5.5.1)-(5.5.2) allows a clear interpretation. We take ym to be

either p∗n or w∗n, respectively. In the case of implied p∗n we include the number of days

to option expiration as an explanatory variable, and in the case of w∗n we include the

empirical MMCT as an explanatory variable.

Let us note that equation (4.1.10) shows that the implied parameter p∗n depends on

the time to option expiry

p∗n =
T

∆∗
n

.

Hence, in the case of an ideal model, where ∆∗
n is constant the p∗n is a linear function of the

time to the expiry T . This justifies our use of p as a regressor in the time-series modeling.

We have observed that values of obtained implied parameters w∗n are near values of the

empirical MMCT, cf. Figure 5.3. This suggest that in modeling series of implied w∗n we

should regress on the empirical MMCT.

5.5.1 Regression-time-series model for implied p∗n

We obtained 12 series of the implied p∗n as a result of calibration of Model 2 to one year

of options data. For a given day and for a given series, each element of the series relates
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to 3 or 4 options with the same maturity and different strike prices. Since only the most

liquid options are chosen, the set of strike prices varies over time. Each series of the

implied p∗n has different length. For example, the first series consists of 11 of the implied

p∗n, which were obtained between the 1st of June 2006 and the 15th of June 2006. At

the 1st of June 2006, the time to maturity of this group of 4 options is 18 days. For the

second series the time to maturity is 53 days. The latter series has been obtained for a

group of 4 options between the 1st of June 2006 and the 20th of July 2006 and consists

of 36 of the implied p∗n. Some of our series of the implied p∗n start after the 1st of June

2006. These have been obtained from calibration of Model 2 to the sets of options which

replaced previously expired options. This is illustrated in Figure 5.7.

Figure 5.7: The 12 series of the implied p∗n, obtained for Model 2 between the 1st of June
2006, and the 17th of May 2007.

For the modelling we chose the 5th series, which is the longest one, and covers the

55



Performance of the five models on historical data

period between 2nd of June and 19th of October 2006. Let us note that series 5 seems to

be the least regular in the first half, see Figure 5.7. We forecast the implied parameter

pfn for the 2nd, 3rd and 4th of October 2006, respectively. To estimate the parameters of

the regression-time-series model we used the historical data ranging from the 2nd of June

2006 until the day preceeding the forecast. We also removed 2 evident ”outliers” from the

series. For each of the fitted series we report in Table 5.5 the values of β (column 2) and

α1 (column 5) of the fitted coefficients of the regression part and of the time series part

of the model. In columns 3-4 and 6-7 we report obtained from the EViews R© package,

values of the corresponding t-statistic and the p-value, for the test of significance of the

coefficients β and α1, respectively. The first column in Table 5.5 contains the number of

the implied p∗n used for estimation. The columns 8th and 9th contain values of the R2

and the Durbin-Watson statistics for the fitted time series models, respectively. The 10th

column contains values of Schwarz information criterion (BIC). The 11th column shows

values of the implied p∗n observed on a day following the estimated period. We forecast

the implied parameter pfn for that day and report in the 12th column.

For the regression-time-series fitted models we report in Tables 5.6-5.8 values of the au-

tocorrelations (AC), partial autocorrelations (PAC), Q-statistic and the related p-values,

respectively. The first column shows the lags, the 2nd and 3rd columns show the cor-

responding values of AC and PAC, respectively. Column 4 shows values of Ljung-Box

Q-statistic which test the null hypothesis of no serial correlation up to the given lag

for residuals of the model. Column 5 shows the related P-values. Let us note that the

behaviour of the autocorrelations and partial autocorrelations remained similar for lags

7-16.

5.5.2 Regression-time-series model for implied w∗n

Similarly as for the Model 2, we obtained 12 series of the implied w∗n as a result of

calibration of Model 3 to one year of options data. For a given day and for a given series,

each element of the series relates to 3 or 4 options with the same maturity and different

strike prices. Since only the most liquid options are chosen, the set of strike prices varies

in time. Each series of the implied w∗n has different length. This is illustrated in Figure

5.7.

As in the case of the implied parameters from Model 2, for the modelling we chose
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Lags AC PAC Q-Stat P-value
1 0.0100 0.0100 0.0081
2 -0.0700 -0.0700 0.3756 0.5400
3 0.0540 0.0560 0.5960 0.7420
4 -0.0400 -0.0470 0.7195 0.8690
5 -0.1240 -0.1160 1.9204 0.7500
6 -0.0050 -0.0110 1.9225 0.8600

Table 5.6: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied p∗n in
Model 2, obtained between the 2nd of June 2006 and the 29th of September 2006.

Lags AC PAC Q-Stat P-value
1 0.0100 0.0100 0.0080
2 -0.0700 -0.0700 0.3808 0.5370
3 0.0540 0.0560 0.6039 0.7390
4 -0.0400 -0.0470 0.7290 0.8660
5 -0.1240 -0.1160 1.9446 0.7460
6 -0.0050 -0.0110 1.9467 0.8560

Table 5.7: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied p∗n in
Model 2, obtained between the 2nd of June 2006 and the 2nd of October 2006.

Lags AC PAC Q-Stat P-value
1 0.0100 0.0100 0.0079
2 -0.0700 -0.0700 0.3866 0.5340
3 0.0540 0.0550 0.6122 0.7360
4 -0.0400 -0.0470 0.7392 0.8640
5 -0.1240 -0.1160 1.9702 0.7410
6 -0.0050 -0.0110 1.9723 0.8530

Table 5.8: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied p∗n in
Model 2, obtained between the 2nd of June 2006 and the 3rd of October 2006.
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Figure 5.8: The 12 series of implied w∗n, obtained for Model 3 between the 1st of June
2006 and the 17th of May 2007.

the 5th series, which is the longest one, and covers period between the 2nd of June and

the 19th of October 2006. Let us note that series 5 seems to be the least regular in the

first half, see Figure 5.8. We forecast the implied parameter wfn for the 2nd, 3rd and 4th

of October 2006, respectively. To estimate the parameters of the regression-time-series

models we used the historical data ranging from 2nd of June 2006 until the day preceeding

the forecast. We removed 2 values of w∗n which correspond to the ”outliers” in the 5th

series of the implied p∗n from Model 2. For each of the fitted series we report in Table

5.9 values of β (column 2) and α1, α2 (columns 5 and 8) of the fitted coefficients of the

regression part and the time series part of the model. In columns 3-4, 6-7 and 9-10 we

report, obtained from the EViews R© package, values of the corresponding t-statistic and

the p-value, for the test of significance of the coefficients β and α1, α2, respectively. The
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first column in Table 5.9 contains number of the implied w∗n used for estimation. The

columns 11th and 12th contain values of the R2 and the Durbin-Watson statistics for the

fitted time series models, respectively. The 13th column contains values of the Schwarz

information criterion (BIC). The 14th column shows values of the implied w∗n observed on

the day following the estimated period. We forecast the implied parameter wfn for that

day and report them in the 15th column.

In Tables 5.10-5.12 we report values of the autocorrelation (AC), partial autocorrela-

tion (PAC), Q-statistic and related P-value, for the regression-time-series fitted models.

The first column shows the lags, the 2nd and 3rd columns show the corresponding values

of AC and PAC, respectively. The 4th column shows values of Ljung-Box Q-statistic

which test the null hypothesis of no serial correlation up to the given lag for residuals of

the model. The 5th column shows the corresponding p-values.
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Lags AC PAC Q-Stat P-value
1 -0.05 -0.05 0.1855
2 -0.076 -0.079 0.6173
3 -0.058 -0.067 0.8735 0.35
4 -0.057 -0.071 1.1189 0.572
5 -0.027 -0.046 1.1775 0.758
6 -0.015 -0.035 1.1944 0.879

Table 5.10: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied w∗n
in Model 2, obtained between the 2nd of June 2006 and the 29th of September 2006.

Lags AC PAC Q-Stat P-value
1 -0.0450 -0.0450 0.1468
2 -0.0820 -0.0840 0.6513
3 -0.0460 -0.0550 0.8151 0.3670
4 -0.0490 -0.0610 0.9992 0.6070
5 -0.0370 -0.0520 1.1043 0.7760
6 -0.0130 -0.0300 1.1170 0.8920

Table 5.11: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied w∗n
in Model 2, obtained between the 2nd of June 2006 and the 2nd of October 2006.
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Lags AC PAC Q-Stat P-value
1 -0.0450 -0.0450 0.1492
2 -0.0660 -0.0680 0.4803
3 -0.0470 -0.0540 0.6531 0.4190
4 -0.0590 -0.0690 0.9266 0.6290
5 -0.0450 -0.0590 1.0845 0.7810
6 -0.0040 -0.0220 1.0860 0.8960

Table 5.12: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied w∗n
in Model 2, obtained between the 2nd of June 2006 and the 3rd of October 2006.

5.5.3 Regression-time-series model for implied (p∗n, w
∗
n)

Similarly, as for Models 2 and 3, we obtained 12 series of pairs of the implied (p∗n, w
∗
n) as

a result of calibration of Model 4 to one year of options data. For a given day and for a

given series, each element of the series relates to 3 or 4 options with the same maturity

and different strike prices. Since only the most liquid options are chosen, the set of strike

prices varies in time. Each series of the implied (p∗n, w
∗
n) has different length.

We fit the following mixture of the regression and 2nd order Vector Autoregressive

(VAR) models (cf. Quantitative-Micro-Software (2007), Chapter 34) to the series of im-

plied pairs (p∗n, w
∗
n) from Model 4, i.e.

ym = βx′m + um,

um = c+ A1um−1 + A2um−2 + εm,

where

Aj =

(
αj1,1 αj1,2

αj2,1 αj2,2

)
, j = 1, 2,

β =

(
β1

β2

)
, x′m =

(
x1,m

x2,m

)
, um =

(
u1,m

u2,m

)
and c =

(
c1

c2

)
.

Matrices Aj, j = 1, 2, and β contain the VAR parameters, xm is a vector of explanatory

variables and c is a vector of constants. We take y1,m to be p∗n, and y2,m to be w∗n. We

included the empirical MMCT ŵn as an explanatory variable with coefficients (β1, β2).

As in the case of the implied parameters from Model 2 and 3, for the modelling we

chose the 5th series, which is the longest one, and covers the period between the 2nd of
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June and the 19th of October 2006. We forecast the implied parameter wfn for the 2nd,

3rd and 4th of October 2006, respectively. To estimate the parameters of the regression-

time-series model we used the historical data ranging from the 2nd of June 2006 until

the day preceeding the forecast. We removed 2 pairs of (p∗n, w
∗
n) which correspond to

”outliers” in the 5th series of the implied p∗n from Model 2.

For each of the fitted series we report in Table 5.13 values of β1, β2 (column 2),

c (column 3), and A1, A2 (columns 4-7, respectively) of the fitted coefficients of the

regression part and the time series part of the model. We report values of the R2, the

Durbin-Watson statistics and the Schwarz information criterion (BIC). The first column

in Table 5.13 shows number of the implied pairs (p∗n, w
∗
n) used for estimation. The 8th

column shows values of the R2 statistics for the fitted time series models. The 9th column

contains values of Schwarz information criterion (BIC). The 10th column shows values of

the implied (p∗n, w
∗
n) observed on the day following the estimated period. We forecasted

the implied parameters (pfn, w
f
n) for that day and reported in the 11th column.

In Tables 5.14-5.16 we report results of the Portmanteau Autocorrelation (Q-Statistic)

and the Autocorrelation Lagrange Multiplier (LM) tests for the residuals. The first column

shows the lags, the 2nd and the 3rd columns show values of the multivariate Ljung-Box

Q-statistic and the corresponding p-value, respectively, which test the null hypothesis of

no serial correlation up to the given lag for residuals of the model. The 4th and the 5th

columns shows values of the multivariate LM statistic and the corresponding p-values for

residual serial correlation up to the lag indicated in column 1, respectively.

In Table 5.17 we present error measurements for prices between the historical ODAX

prices, the model prices, and the model prices based on the forecasted implied parame-

ters from Models 2-4. By ODAX-MODEL we denote thr errors between the historical

option prices and the model prices. By ODAX-FORECAST we denote errors between the

historical option prices and the model prices with the use of the forecasted parameters.

MODEL-FORECAST denotes the errors between the model prices and the model prices

with the use of the forecasted parameters. The errors have been calculated for the next

three days, following the last day used in the regression-time-series estimation. The 2nd

row contains dates of pricing of 4 options. Rows 3-5 contain the Relative MAE and rows

6-8 contain the Relative RMSE. Row 9 shows a number of the the implied parameters

used to estimate the regression-time-series model.

The errors in option pricing are the smallest for Model 4. Hence, the obtained results
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Lags Q-Stat P-value LM-Stat P-value
1 10.2372 32.2836 0
2 20.3541 10.6926 0.0302
3 22.9021 0.0001 2.6652 0.6153
4 25.9778 0.0011 2.8341 0.5860
5 28.8917 0.0041 2.9157 0.5720
6 33.1552 0.0070 4.4001 0.3546
7 34.7965 0.0212 1.8178 0.7692
8 37.1521 0.0423 2.4038 0.6619
9 39.3047 0.0761 2.1774 0.7032
10 42.9345 0.0938 4.2728 0.3703
11 45.6618 0.1298 2.7688 0.5972
12 52.1787 0.0940 7.0672 0.1324
13 55.7201 0.1107 4.1944 0.3803
14 57.5542 0.1625 1.8525 0.7629
15 62.1280 0.1588 5.5922 0.2317
16 65.3321 0.1842 3.6519 0.4552

Table 5.14: Values of Q-statistic, LM-statistic and corresponding p-values for residuals
from fitted regression-time-series model to the 5th series of the implied (p∗n, w

∗
n) in Model

4, obtained between the 2nd of June 2006 and the 29th of September 2006.
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Lags Q-Stat P-value LM-Stat P-value
1 11.1359 34.9831 0
2 21.5785 11.0854 0.0256
3 23.8842 0.0001 2.3922 0.6640
4 26.9155 0.0007 2.9121 0.5726
5 31.0960 0.0019 4.2606 0.3719
6 36.9686 0.0021 6.1176 0.1905
7 38.9240 0.0068 2.2664 0.6869
8 40.9088 0.0170 2.0633 0.7241
9 42.8641 0.0359 2.0889 0.7194
10 45.9702 0.0523 3.7482 0.4411
11 48.6845 0.0771 2.8051 0.5910
12 54.8023 0.0596 6.7306 0.1508
13 59.5763 0.0586 5.8057 0.2141
14 61.5690 0.0903 2.0645 0.7239
15 65.5183 0.0986 4.9670 0.2907
16 68.6158 0.1201 3.5447 0.4711

Table 5.15: Values of Q-statistic, LM-statistic and corresponding p-values for residuals
from fitted regression-time-series model to the 5th series of the implied (p∗n, w

∗
n) in Model

4, obtained between the 2nd of June 2006 and the 2nd of October 2006.
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Lags Q-Stat P-value LM-Stat P-value
1 18.1547 20.0245 0.0005
2 38.9111 24.2917 0.0001
3 42.6167 0 3.6755 0.4517
4 46.7368 0 4.2452 0.3738
5 51.0351 0 4.6293 0.3275
6 55.7837 0 5.2149 0.2659
7 56.2007 0 0.3883 0.9834
8 58.6200 0.0001 2.9294 0.5697
9 59.6707 0.0004 1.0245 0.9061
10 65.1094 0.0005 6.5523 0.1615
11 66.9862 0.0013 2.1225 0.7132
12 69.7115 0.0025 3.1951 0.5257
13 75.0488 0.0024 6.5871 0.1594
14 77.1866 0.0048 2.6404 0.6197
15 81.3218 0.0058 4.9179 0.2958
16 85.8270 0.0063 6.0232 0.1974

Table 5.16: Values of Q-statistic, LM-statistic and corresponding p-values for residuals
from fitted regression-time-series model to the 5th series of the implied (p∗n, w

∗
n) in Model

4, obtained between the 2nd of June 2006 and the 3rd of October 2006.
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Performance of the five models on historical data

may indicate that the Model 4 is the best one, however the number of the forecasted days

used in our preliminary study is too small to make this conclusion reliable. Definitely

further study in this direction is needed, yet the approach looks very promising.
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Chapter 6

Conclusions

We introduced four nonparametric models for pricing of European options. The first

model, Model 1, requires only historical log-returns of the underlying price process. The

other three models need, in addition, real option prices to calibrate implied parameters.

In some of the cases (for some days) the first model gives prices with relatively small error

(around 5 percent), but in most other cases the calibration of parameters w and p results

in a more accurate option pricing. Models 2 and 3 with the implied parameters p∗n and

w∗n, respectively, perform in general much better than Model 1, but still the relative errors

remain on level between 8 to 12 percent. The Model 4, with two implied parameters p∗n

and w∗n, shows the smallest errors which are not larger than 3 percent. Our Model 4

outperforms Model 5, which is based on the original Carr & Madan (1999) parametric

approach.

So far our Model 4 with two implied parameters p∗n and w∗n results in the best option

pricing. This shows that the ECF captures more information about the distribution of

the underlying price process than the parametric model assuming a VG distribution of

the asset log-returns.

The CML model and our derived Models 2-4 do not model explicitly the stochastic volatil-

ity and, possibly, other factors not included into the CML model. Therefore, it is of

interest to try to understand the behaviour of the implied parameters p∗n and w∗n, respec-

tively. We report on our preliminary exploration of this behaviour and on modelling it

by regression-time-series models using package EViews R©. We have fitted the series of

the obtained implied parameters to a mixture of regression and Autoregressive (Vector

Autoregressive in the case of Model 4) time series models and next we priced options
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Conclusions

based on the forecasted parameters. Clearly, the procedure does not reproduce the same

errors as the original calibration. Our preliminary results using Model 4 look encouraging.

Definitely further research and exploration in this direction is needed. With the results

of pricing using forecasted implied parameters for 3 days only, it is impossible to come

with firm conclusions. However, this exploratory research suggest that there is a good

prospect for modelling of the implied p∗n and w∗n hence offering a quick and computationaly

inexpensive method useful e.g. for market makers.
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Appendix A

Proofs

For the clarity of exposition we collected all proofs in the present Appendix.

Proof of equation (2.1.2)

For any positive integer n,m ∈ N we have φX1(u) =
(
φX 1

n

(u)
)n

and φXm(u) =
(
φX1(u)

)m
,

where we use increments of size 1
n

and 1 respectively. Hence, φXm
n
(u) =

(
φX 1

n

(u)
)m

=(
φX1(u)

)m
n
. For any irrational number t > 0 we can find a sequence of rational numbers

tk, such that t = limk→∞ tk, then

φXt(u) = lim
k→∞

φXtk
(u) = lim

k→∞

(
φX1(u)

)tk
=
(
φX1(u)

)t
.

The first equality holds under assumption of stochastic continuity on the process Xt.

Proof of Proposition 1.

We derive the drift and Lévy measure of the VG process using a subordination approach.

The generating triplet of the subordinated Brownian motion with drift can be obtained

from Theorem 8 in Appendix B.2 (Sato (1999), Theorem 30.1). Since drift of the Gamma

process is zero, by (B.2.1) we have σ2
Z = 0. Since∫ 1

−1

xe−
x2

2t dx = t(e−
1
2t − e−

1
2t ) = 0,
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Proofs

the drift of the VG process given by (B.2.3) equals

m = 0 · θ +

∫ ∞

0

e−
t
ν

νt

(∫ 1

−1

x
1√
2πt

e−
x2

2t dx

)
dt = 0.

Let lγt(y) be the Lévy density of the subordinating Gamma process (2.1.9), and let fBM(x)

be the probability density function of increments of the subordinated BM with drift, i.e.

θt+σWt. The Lévy triplet of the BM with drift θ is given by (σ2, 0, θ). The Lévy density

lX(x) of the VG process is given by (B.2.2), i.e.

lX(x) =

∫ ∞

0

fBM(x)lγt(y)dy =

∫ ∞

0

1√
2πσ

√
y
e
− (x−θy)2

2σ2y
y−1e−

y
ν

ν
dy.

Then by (B.1.2), for a = −1
2
, b = x2

2σ2 and c = θ2

2σ2 + 1
ν
, we get

lX(x) =
2e

θx
σ2

ν
√

2πσ

(
x2

2σ
2

ν
+ θ2

)− 1
4

K− 1
2


√
x2(2σ

2

ν
+ θ2)

σ2

 .

By (B.1.3) we have

lX(x) =
exp θx

σ2

ν|x|
exp

−
√

2
ν

+ θ2

σ2

σ
|x|

 . (A.0.1)

Since σ2
Z = 0, conditions 2.1.11 of Theorem 2 are satisfied we get∫ 1

−1

lX(x)dx =

∫ 1

−1

exp θx
σ2

ν
exp

−
√

2
ν

+ θ2

σ2

σ
|x|

 dx <∞,

hence we can conclude that the VG process has finite variation. We can write the cumulant

function as

ψXt(u) =

∫ ∞

−∞
(eiux − 1− iux1|x|≤1(x))lX(dx) = iuµ+

∫ ∞

−∞
(eiux − 1)lX(dx).

Finally, we note that we can write the Lévy density of the VG process in the following

way

lX(x) =
1

ν

[
1{x<0}(x) exp

θ +
√

2σ
2

ν
+ θ2

σ2
x


+1{x>0}(x) exp

θ −
√

2σ
2

ν
+ θ2

σ2
x

]|x|−1.
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Proof of Proposition 2.

If the conditional distribution of X given Y = y is N(θy, σ2y) and r.v. Y has a Gamma

pdf g 1
ν
, 1
ν
(y) (cf. (2.1.8)), then the marginal probability distribution function of X is given

by

fX(x) =

∫ ∞

0

fX|Y (x, y)fY (y)dy =

∫ ∞

0

1√
2πσ

√
y
e
− (x−θy)2

2σ2y
y

1
ν
−1e−

y
ν

ν
1
ν Γ( 1

ν
)
dy.

Following Carr et al. (1998) we use relation (B.1.2) in the Appendix with a = 1
ν
− 1

2
,

b = x2

2σ2 and c = θ2

2σ2 + 1
ν
, to rewrite the density in terms of a modified Bessel function of

the second kind Ka(·), i.e.

fX(x) =
2e

θx
σ2

ν
1
ν

√
2πσΓ( 1

ν
)

(
x2

2σ
2

ν
+ θ2

) 1
2ν
− 1

4

K 1
ν
− 1

2


√
x2(2σ

2

ν
+ θ2)

σ2

 .

Similarly, for increments Xt+h −Xt, for any h > 0 and t > 0, the pdf is

fXt+h−Xt(x) =

∫ ∞

0

1√
2πσ

√
y
e
− (x−θy)2

2σ2y
y

h
ν
−1e−

y
ν

ν
h
ν Γ(h

ν
)
dy

=
2e

θx
σ2

ν
h
ν

√
2πσΓ(h

ν
)

(
x2

2σ
2

ν
+ θ2

) h
2ν
− 1

4

Kh
ν
− 1

2


√
x2(2σ

2

ν
+ θ2)

σ2

 .

Using relation (B.1.4) we obtain tail behaviour of the density function

fXt+h−Xt(x) =

(
2σ

2

ν
+ θ2

)− h
2ν

ν
h
ν Γ(h

ν
)

|x|
h
ν
−1e

θ∓
√

2 σ2
ν +θ2

σ2 x + o(1), as x→ ±∞,

where α =
√

θ2ν+2σ2

νσ4 and β = θ
σ2 . From the above equation we see that the rates of

decrease of the pdf are power-modified exponential.

The above result is stated in more general settings, for Normal Variance-Mean mixture

distributions in Barndorff-Nielsen et al. (1982).

Proof of Proposition 3.

The characteristic function of the VG process can be calculated using properties of con-

ditional expectations. For t > 0 we denote

Xt = θYt + σ
√
YtZ,
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where Yt is a random variable Gamma associated with a random time change independent

of Z, and Z ≈ N(0, 1). We have

E
(
eiuXt

)
= E

(
eiu(θYt+σ

√
YtZ)
)

= E
(
E
(
eiu(θYt+σ

√
YtZ)|Yt

))
= E

(
e(iuθ−

σ2u2

2
)Yt

)
= φYt

(
θu+ i

σ2u2

2

)
=

(
1− iuθν +

1

2
σ2νu2

)− t
ν

.

The characteristic function exists in a complex strip AX = {z ∈ C|Im(z) ∈ (a, b)},
such that |φXt(u)| <∞ for u ∈ AX . We have∣∣φXt(u)

∣∣ =
∣∣EeiuXt

∣∣ ≤ E
∣∣eiuXt

∣∣ = Ee−Im(u)Xt = φXt(iIm(u))

=

(
1 + Im(u)θν − 1

2
σ2ν(Im(u))2

)− t
ν

.

The last expression if finite if

1 + Im(u)θν − 1

2
σ2ν(Im(u))2 > 0,

which is satisfied for

θ

σ2
−
√
θ2ν + 2σ2

νσ4
< Im(u) <

θ

σ2
+

√
θ2ν + 2σ2

νσ4
.

Both characteristic functions of Normal and Gamma distributions are analytical in a

neighborhood of the origin, hence by Theorem 9 in Appendix B.2 the characteristic func-

tion of the VG process is analytical in the complex strip AX .

Proof of Proposition 5.

By (3.1.7) we have

φQ
XT

(u) =
φXt(u− iθ)

φXt(−iθ)
and by the Lévy-Khintchine representation this equals to

exp
(
t
[
im(u− iθ)− σ2(u−iθ)2

2
+
∫∞
−∞(ei(u−iθ)x − 1− i(u− iθ)x1|x|≤1)L(dx)

])
exp

(
t
[
mθ + σ2θ2

2
+
∫∞
−∞(eθx − 1− θx1|x|≤1)L(dx)

])
= exp

(
t
[
imu− σ2u2

2
+ iθσ2u+

∫ ∞

−∞
eθx(eiux − 1)L(dx)−

∫ ∞

−∞
iux1|x|≤1)L(dx)

])
.
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Hence, we have

φQ
XT

(u) = exp
(
t
[
i(m+ θσ2 +

∫ ∞

−∞
(eθx − 1)iux1|x|≤1L(dx))u

−σ
2u2

2

+

∫ ∞

−∞
(eiux − 1− iux1|x|≤1)e

θxL(dx)
])
.

and the required triplet shows from the above representation.

Proof of Proposition 6

Process e−rtSt is a martingale if condition

S0 = EQ(e−rtSt|F0)

is satisfied. Since

EQ(e−rtSt|F0) = S0e
wtEQ(eXt) = S0e

wtφXt(−i),

and by (3.1.5) we have

e−wt = φXt(−i).

Proof of Lemma 4

We have

e
1
2
c2EH(Z + c) = e

1
2
c2
∫ ∞

−∞
H(z + c)f(z)dz

= e
1
2
c2
∫ ∞

−∞
H(y)f(y − c)dy =

∫ ∞

−∞
ecyH(y)f(y)dy = E(ecZH(Z)),

where f(z) is a pdf of Z. We used have substitution y = z+ c, and the following relation

f(y − c) = e−
1
2
c2+cyf(y).

Proof of Proposition 7.

The price of the European call option can be derived in the following way.

C(0, T,K) = e−rTE(SγT
−K)+ = e−rTE

[
E[(SγT

−K)+|γT ]
]

= e−rTE
[
E[(S0e

rT+θγT +σWγT
+wT −K)1{SγT

−K>0}|γT ]
]
.
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Conditioning on γT , WγT
is N(0, γT ) and we have

= e−rTE
[
E[(S0e

rT+θγT +σ
√
γTZ+wT −K)1{S0e

rT+θγT +σ
√

γT Z+wT>K}|γT ]
]

= e−rTE
[
E[S0e

rT+θγT +σ
√
γTZ+wT1{

Z>
log K

S0
−(r+w)T−θγT

σ
√

γT

}|γT]
−E
[
K1{

Z>
log K

S0
−(r+w)T−θγT

σ
√

γT

}|γT ]
]

= e−rTE
[
E[S0e

rT+θγT +σ
√
γTZ+wT1{Z>−d2}|γT ]− E[K1{Z>−d2}|γT ]

]
,

where

d2 =
log S0

K
+ (r + w)T + θγT

σ
√
γT

.

Applying B.2.4 in Lemma 4 to the first conditional expectation, we have

= e−rTE
[
S0e

rT+θγT + 1
2
σ2γT +wTE[1{Z+σ

√
γT>−d2}|γT ]− E[Kχ{Z > −d2}|γT ]

]
= e−rTE

[
S0e

(r+w)T+θγT + 1
2
σ2γTE[1{Z}>−d1}|γT ]− E[K1{Z>−d2}|γT ]

]
= e−rTE

[
S0e

(r+w)T+(θ+ 1
2
σ2)γTFN(d1|γT )−KFN(d2|γT )

]
=

∫ ∞

0

(
S0e

wT+(θ+ 1
2
σ2)yFN(d1|y)− e−rTKFN(d2|y))

)
fγ(y)dy,

where

d1 = d2 + σ
√
γT ,

Z is a standard Normal variable, FN(d|y) = E(1Z<d|YT = y) is the conditional cdf, which

is a cdf of the Normal distribution with variance y and where w = 1
ν

log(1− θν − 1
2
σ2ν).

Proof of Theorem 7.

Since the Fourier transform Ĥ(z) exists in some strip AH (cf. Definition 2), by the

inversion formula for z ∈ AH we have for every ν such that u+ iν ∈ AH for every y ∈ R

H(x) =
1

2π

∫ ∞

−∞
e−i(y+iν)xĤ(y + iν)dy.

By (3.2.1) and since F0 is a trivial σ-field

C(0, T,K) = e−rTE
[
(elog(ST ) −K)+

]
= e−rTE [H(log(ST ))]
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and by the inverse Fourier transform of Ĥ(z), we have

=
e−rT

2π
E

[∫ +∞

−∞
e−i(y+iν) logST Ĥ(y + iν)dy

]
=
e−rT

2π

∫ +∞

−∞
e−i(y+iν)(logS0+rT )E

[
e−i(y+iν)(XT +wT )

]
Ĥ(y + iν)dy.

By the Fourier transform of the probability distribution of YT = XT + wT we get that

this equals

=
e−rT

2π

∫ ∞

−∞
e−i(y+iν)(logS0+rT )φYT

(−(y + iν))Ĥ(y + iν)dy,

where y + iν ∈ AH ∩ A∗Y .

Proof of Corollary 3.

The payoff function of the European Call option is given by H(x) = (ex − K)+. The

Fourier transform of H(x) exists for z ∈ AH = {z|Im(z) > 1} and is given by

Ĥ(z) =

∫ ∞

−∞
eizx(ex −K)+dx

= lim
x→∞

(
e(iz+1)x

iz + 1
−K

eizx

iz

)
−
(
e(iz+1) logK

iz + 1
−K

eiz logK

iz

)
= − Kiz+1

z2 − iz
.

We assume that the price process is given by

St = S0e
rt+Xt+wt,

where w is determined by the martingale condition, so that the discounted process e−rtSt

is a martingale. By Theorem 7 the European Call option price is given by

C(0, T,K) =

−Ke
−rT

2π

∫ +∞

−∞
e−i(x+iν)(log

S0
K

+rT+wT )φXT
(−(x+ iν))

dx

(x+ iν)2 − i(x+ iν)
,

where x+ iν ∈ AH ∩A∗X = {z : Im(z) ∈ (1, α− β)}. The integration is along the real line

in the complex plane, i.e. R + iν. We write the integrand as

−Ke
−rT

2π
e−iz(log

S0
K

+rT+wT )φXT
(−z) 1

z2 − iz
,
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where z ∈ AH ∩A∗X . The integrand has simple poles at 0 and i. The residue at i is given

by

lim
z→i

[
(z − i)(−Ke

−rT

2π
e−iz(log

S0
K

+rT+wT )φXT
(−z)

z2 − iz
)

]
= − S0

2πi
,

and by the Residue Theorem (cf. Karunakaran (2005)) for ν1 ∈ (0, 1) we have

C(0, T,K) =

−Ke
−rT

2π

∫ +∞

−∞
e−i(x+iν1)(log

S0
K

+rT+wT )φXT
(−(x+ iν1))

dx

(x+ iν1)2 − i(x+ iν1)
− 2πi(− S0

2πi
)

= S0 −
Ke−rT

2π

∫ +∞

−∞
e−i(x+iν1)(log

S0
K

+rT+wT )φXT
(−(x+ iν1))

dx

(x+ iν1)2 − i(x+ iν1)
.

Hence, for ν1 = 1
2

the option price reduces to

C(0, T,K) = S0 −
√
S0K

π
e−

rT
2

+wT
2

∫ ∞

0

Re

[
e−iu(log

S0
K

+rT+wT )φXT
(−u− i

2
)

]
du

u2 + 1
4

.

Proof of Lemma 2.

We have

E|ei(u+iν)Xj | = Ee−νXj |eiuXj | = φ(iν) <∞

since the imaginary point iν belongs to the strip of analyticity of the characteristic func-

tion. Then, by Strong Law of Large Numbers we have

P
(

lim
n→∞

φ̂n(x+ iν) = φ(x+ iν)
)

= 1,

for any x ∈ R.

Proof of Lemma 3.

Since∣∣∣∣φ̂T,n(−u− i

2
)

∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
j=1

ei(−u−
i
2
)Xj

∣∣∣∣∣
p

=

∣∣∣∣∣ 1n
n∑
j=1

e−iuXje
1
2
Xj

∣∣∣∣∣
p

≤

(
1

n

n∑
j=1

∣∣e−iuXj
∣∣ ∣∣∣e 1

2
Xj

∣∣∣)p

≤

(
1

n

n∑
j=1

e
1
2
Xj

)p

= φ̂T,n(−
i

2
) = M̂, (A.0.2)
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the left hand side expression is for all values of u bounded by the same random

variable M̂ > 0. Finally, let us note that since Re(z1z2) = Re(z1)Re(z2) − Im(z1)Im(z2)

for z1, z2 ∈ C and |cos(u(b+ ŵnT ))| and |sin(u(b+ ŵnT ))| are bounded by 1, we have∫ ∞

0

∣∣∣Re

[
e−iu(log

S0
K

+rT+ŵnT )φ̂T,n(−u−
i

2
)

]
1

u2 + 1
4

∣∣∣du
=

∫ ∞

0

∣∣∣cos(u(b+ŵnT ))Re

[
φ̂T,n(−u−

i

2
)

]
+sin(u(b+ŵnT ))Im

[
φ̂T,n(−u−

i

2
)

]∣∣∣ 1

u2 + 1
4

du

≤
∫ ∞

0

(∣∣∣Re

[
φ̂T,n(−u−

i

2
)

]∣∣∣+ ∣∣∣Im [φ̂T,n(−u− i

2
)

]∣∣) 1

u2 + 1
4

du

≤ 2

∫ ∞

0

∣∣∣φ̂T,n(−u− i

2
)
∣∣∣ 1

u2 + 1
4

du ≤ 2M̂

∫ ∞

0

du

u2 + 1
4

< +∞, (A.0.3)

where b = log S0

K
+ rT .

Proof of Proposition 8.

We adapt a proof of Csörgő & Totik (1983) to our case. For any ε > 0 we choose K > 0

such that ∫
|x|>K

e−νxdF (x) <
ε

8
.

Let

B(t+ iν) =

∫
|x|≤K

ei(t+iν)xdF (x),

Bn(t+ iν) =

∫
|x|≤K

ei(t+iν)xdFn(x) =
1

n

n∑
j=1

ei(t+iν)Xj1{|Xj |≤K},

and

Dn(t+ iν) = Bn(t+ iν)−B(t+ iν).

We have

sup
|t|≤Un

∣∣φ̂n(t+ iν)− φ(t+ iν)
∣∣ (A.0.4)

≤ sup
|t|≤Un

∣∣B(t+ iν)−φ(t+ iν)
∣∣+ sup

|t|≤Un

∣∣Bn(t+ iν)− φ̂n(t+ iν)
∣∣+ sup

|t|≤Un

∣∣Bn(t+ iν)−B(t+ iν)
∣∣.

86



Proofs

For the first term we have

sup
|t|≤Un

∣∣B(t+ iν)− φ(t+ iν)
∣∣ = sup

|t|≤Un

∣∣∫
|x|>K

ei(t+iν)xdF (x)
∣∣ ≤ ∫

|x|>K
e−νxdF (x) ≤ ε

8
.

For the second term we have

sup
|t|≤Un

∣∣Bn(t+ iν)− φ̂n(t+ iν)
∣∣ = sup

|t|≤Un

∣∣∫
|x|>K

ei(t+iν)xdFn(x)
∣∣ ≤ ∫

|x|>K
e−νxdFn(x).

Since by Lemma 2 the last expression converges to
∫
|x|>K e

−νxdF (x) with probability 1,

we have that for sufficiently large n

sup
|t|≤Un

∣∣Bn(t+ iν)− φ̂n(t+ iν)
∣∣ < ε

8
.

Hence, for sufficiently large n we have

sup
|t|≤Un

∣∣φ̂n(t+ iν)− φ(t+ iν)
∣∣ ≤ sup

|t|≤Un

∣∣Dn(t+ iν)
∣∣+ ε

4
. (A.0.5)

We cover the interval [−Un, Un] by Nn =
[

16KeνKUn

ε

]
+ 1 disjoint intervals Λ1, . . .ΛNn ,

each of length not exceeding ε
8KeνK . Let t1, . . . tNn denote the centers of these intervals.

For any |t| ≤ Un we can choose the closest tk such that t ∈ Λk. Hence we have∣∣Dn(t+ iν)
∣∣ ≤ ∣∣Dn(tk + iν)

∣∣+ sup
t∈Λk

∣∣Dn(t+ iν)−Dn(tk + iν)
∣∣,

which implies that

sup
|t|≤Un

∣∣Dn(t+ iν)
∣∣ ≤ max

1≤k≤Nn

∣∣Dn(tk + iν)
∣∣+ max

1≤k≤Nn

sup
t∈Λk

∣∣Dn(t+ iν)−Dn(tk + iν)
∣∣. (A.0.6)

For any s, t ∈ R we have∣∣Dn(s+ iν)−Dn(t+ iν)
∣∣ ≤ ∣∣Bn(s+ iν)−Bn(t+ iν)

∣∣+ ∣∣B(s+ iν)−B(t+ iν)
∣∣

=
∣∣∫
|x|≤K

(
ei(s+iν)x − ei(t+iν)x

)
dFn(x)

∣∣+ ∣∣∫
|x|≤K

(
ei(s+iν)x − ei(t+iν)x

)
dF (x)

∣∣.
By Taylor Theorem we have

cos(sx) = cos(tx)− x sin(ξ1x)(s− t)
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and

sin(sx) = sin(tx) + x cos(ξ2x)(s− t),

for some ξ1, ξ2 ∈ (s, t). Hence

ei(s+iν)x − ei(t+iν)x = −e−νxx sin(ξ1x)(s− t) + ie−νxx cos(ξ2x)(s− t).

We have∣∣∫
|x|≤K

(
ei(s+iν)x − ei(t+iν)x

)
dFn(x)

∣∣+ ∣∣∫
|x|≤K

(
ei(s+iν)x − ei(t+iν)x

)
dF (x)

∣∣
≤
∣∣∫
|x|≤K

2|x||s− t|e−νxdFn(x)
∣∣+ ∣∣∫

|x|≤K
2|x||s− t|e−νxdF (x)

∣∣ ≤ 4KeνK |s− t|

and

max
1≤k≤Nn

sup
t∈Λk

∣∣Dn(t+ iν)−Dn(tk + iν)
∣∣ ≤ max

1≤k≤Nn

sup
t∈Λk

{
4KeνK |t− tk|

}
≤ ε

4
. (A.0.7)

Now we find a bound for the first term in (A.0.6). Let

pn = P
(

max
1≤k≤Nn

∣∣Dn(tk + iν)
∣∣ > ε

2

)
.

We will show that series
∑∞

n=1 pn <∞. We have

pn = P
(

max
1≤k≤Nn

∣∣Dn(tk + iν)
∣∣ > ε

2

)
≤ P

(Nn⋃
k=1

{∣∣Dn(tk + iν)(ω)
∣∣ > ε

2

})
≤

Nn∑
k=1

P
(∣∣Dn(tk + iν)

∣∣ > ε

2

)
≤ Nn sup

t∈R
P
(∣∣Dn(t+ iν)

∣∣ > ε

2

)
.

We define random variables

Rj(t+ iν) = cos(tXj)e
−νXj1{|Xj |≤K} −

∫
|x|≤K

cos(tx)e−νxdF (x)

and

Ij(t+ iν) = sin(tXj)e
−νXj1{|Xj |≤K} −

∫
|x|≤K

sin(tx)e−νxdF (x),

for j = 1, . . . , n.

88



Proofs

We have the following bound

P
(∣∣Dn(t+ iν)

∣∣ > ε

2

)
= P

(∣∣ 1
n

n∑
j=1

Rj(t+ iν) + i
1

n

n∑
j=1

Ij(t+ iν)
∣∣ > ε

2

)
≤ P

( 1

n

∣∣ n∑
j=1

Rj(t+ iν)
∣∣+ 1

n

∣∣ n∑
j=1

Ij(t+ iν)
∣∣ > ε

2

)
≤ P

( 1

n

∣∣ n∑
j=1

Rj(t+ iν)
∣∣ > ε

4

)
+ P

( 1

n

∣∣ n∑
j=1

Ij(t+ iν)
∣∣ > ε

4

)
Hence, with Nn = MUn for some constant M > 0, we get

pn ≤MUn sup
t∈R

P
(∣∣Dn(t+ iν)

∣∣ > ε

2

)
≤MUn sup

t∈R

{
P
( 1

n

∣∣ n∑
j=1

Rj(t+ iν)
∣∣ > ε

4

)
+ P

( 1

n

∣∣ n∑
j=1

Ij(t+ iν)
∣∣ > ε

4

)}
.

Random variables Rj(t+iν) and Ij(t+iν) are independent and identically distributed,

and ERj(t+ iν) = EIj(t+ iν) = 0. We have

∣∣Rj(t+ iν)
∣∣ ≤ ∣∣cos(tXj)e

−νXj
∣∣1{|Xj |≤K} +

∫
|x|≤K

∣∣cos(tx)e−νx
∣∣dF (x)

≤ eνK + eνK
∫ ∞

−∞
dF (x) = 2eνK

and, similarly,

∣∣Ij(t+ iν)
∣∣ ≤ 2eνK .

By the Hoeffding’s inequality (cf. Theorem 11 in Appendix B.2) we have

P
( 1

n

∣∣ n∑
j=1

Rj(t+ iν)
∣∣ > ε

4

)
≤ P

( 1

n

n∑
j=1

Rj(t+ iν) >
ε

4

)
+ P

( 1

n

n∑
j=1

Rj(t+ iν) ≤ − ε
4

)
≤ 2e−

ε2n

128e2νK .

Similarly,

P
( 1

n

∣∣ n∑
j=1

Ij(t+ iν)
∣∣ > ε

4

)
≤ 2e−

ε2n

128e2νK .
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For 0 < δ < ε2

128e2νK and for sufficiently large n we have

Un ≤ eδn < e
ε2n

128e2νK .

Hence,

pn ≤ 4MUne
− ε2n

128e2νK ≤ 4Men(δ− ε2

128e2νK ),

and since δ − ε2

128e2νK < 0 we get
∞∑
n=1

pn <∞.

By the Borel-Canteli Lemma convergence of the sequence
∑∞

n=1 pn implies that with

probability 1

max
1≤k≤Nn

∣∣Dn(tk + iν)
∣∣ ≤ ε

2
, (A.0.8)

for n sufficiently large. Hence, by (A.0.5), (A.0.6), (A.0.7) and (A.0.8) with probability 1

for sufficiently large n we get that

sup
|t|≤Un

∣∣φ̂n(t+ iν)− φ(t+ iν)
∣∣ ≤ ε.

This completes the proof of Proposition 8.

Proof of Proposition 9.

We have ∣∣Ĉn(0, T,K; ŵn, p)− C(0, T,K)
∣∣ =∣∣∣∣√S0K

π
e−

rT
2

+ ŵnT
2

∫ ∞

0

Re

[
e−iu(log

S0
K

+rT+ŵnT )

(
φ̂n(−u−

i

2
)

)p]
du

u2 + 1
4

−
√
S0K

π
e−

rT
2

+ωT
2

∫ ∞

0

Re

[
e−iu(log

S0
K

+rT+ωT )

(
φX∆

(−u− i

2
)

)p]
du

u2 + 1
4

∣∣∣∣
Let

A =

√
S0K

π
e−

rT
2

+wT
2 ,

Ân =

√
S0K

π
e−

rT
2

+ ŵnT
2 ,

B =

∫ ∞

0

Re

[
e−iu(log

S0
K

+rT+wT )

(
φX∆

(−u− i

2
)

)p]
du

u2 + 1
4
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and

B̂n =

∫ ∞

0

Re

[
e−iu(log

S0
K

+rT+ŵnT )

(
φ̂n(−u−

i

2
)

)p]
du

u2 + 1
4

.

We have ∣∣Ĉn(0, T,K; ŵn, p)− C(0, T,K)
∣∣ = |ÂnB̂n − AB|

= |ÂnB̂n − ÂnB + ÂnB − AB| ≤ |Ân||B̂n −B|+ |B||Ân − A|

By Lemma 2, we have that

ŵn = −
log
(
φ̂n(−i)

)
∆

→ − log (φX∆
(−i))

∆
,

hence

Ân − A =

√
S0K

π
e−

rT
2

(
e

ŵnT
2 − e

wT
2

)
→ 0

with probability 1. Expression B is a part of formula (3.3.2) and is finite. Moreover, by

Lemma 3 Ân is finite with probability 1. We will show that B̂n − B converges to 0 with

probability 1.

Let us denote

D = e−iu(log
S0
K

+rT+ωT )

and

D̂n = e−iu(log
S0
K

+rT+ŵnT ).
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We have

|B̂n −B| =
∣∣∣∣∫ ∞

0

Re

[
D̂n

(
φ̂n(−u−

i

2
)

)p
−D

(
φX∆

(−u− i

2
)

)p]
du

u2 + 1
4

∣∣∣∣
=

∣∣∣∣∫ ∞

0

Re
[
D̂n

(
φ̂n(−u−

i

2
)

)p
− D̂n

(
φX∆

(−u− i

2
)

)p
+D̂n

(
φX∆

(−u− i

2
)

)p
−D

(
φX∆

(−u− i

2
)

)p] du

u2 + 1
4

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣Re
[
D̂n

((
φ̂n(−u−

i

2
)
)p − (φX∆

(−u− i

2
)

)p)]∣∣∣∣ du

u2 + 1
4

+

∫ ∞

0

∣∣∣∣Re

[(
D̂n −D

)(
φX∆

(−u− i

2
)

)p]∣∣∣∣ du

u2 + 1
4

=

∫ Un

0

∣∣∣∣Re

[
D̂n

((
φ̂n(−u−

i

2
)
)p − (φX∆

(−u− i

2
)

)p)]∣∣∣∣ du

u2 + 1
4

+

∫ ∞

Un

∣∣∣∣Re

[
D̂n

((
φ̂n(−u−

i

2
)
)p − (φX∆

(−u− i

2
)

)p)]∣∣∣∣ du

u2 + 1
4∫ ∞

0

∣∣∣∣Re

[(
D̂n −D

)(
φX∆

(−u− i

2
)

)p]∣∣∣∣ du

u2 + 1
4

= I1 + I2 + I3,

where we choose Un satisfying assumptions of Proposition 8. Since D̂n − D is bounded

and converges to 0, we get by Lebesgue dominated convergence theorem that

I3 → 0

as n→∞.

Moreover, we have

|I2| ≤
∫ ∞

Un

∣∣∣∣Re

[
D̂n

(
φ̂n(−u−

i

2
)

)p]∣∣∣∣ du

u2 + 1
4

+

∫ ∞

Un

∣∣∣∣Re

[
D̂n

(
φX∆

(−u− i

2
)

)p]∣∣∣∣ du

u2 + 1
4

.

Both integrals are finite and converge to 0 as Un →∞ with n→∞.

Since

|D̂n| = | cos(u(log
S0

K
+ rT + ŵnT )) + i sin(u(log

S0

K
+ rT + ŵnT )| ≤ 2,

|I1| ≤ 2

∫ Un

0

∣∣∣∣(φ̂n(−u− i

2
)
)p − (φX∆

(−u− i

2
)

)p∣∣∣∣ du

u2 + 1
4

.
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Proofs

For any u ∈ [0, Un] by the Taylor’s Theorem (cf. Theorem 10 in Appendix B.2) and

for sufficiently large n

(
φ̂n(−u−

i

2
)

)p
−
(
φX∆

(−u− i

2
)

)p
=

1

2πi

∫
C

ζp

(ζ − φ̂n(−u− i
2
))(ζ − φX∆

(−u− i
2
))
dζ

(
φ̂n(−u−

i

2
)− φX∆

(−u− i

2
)

)
where we expand the complex power function zp for z = φ̂n(−u − i

2
) around point a =

φX∆
(−u − i

2
), and where C is a circle around point a with a radius r ≥ |φ̂n(−u − i

2
) −

φX∆
(−u− i

2
)|.

By Proposition 8 for any ε ∈ (0, r) and for any u ∈ [0, Un] there exists integer N > 0,

such that for any n > N we have∣∣∣∣φ̂n(−u− i

2
)− φX∆

(−u− i

2
)

∣∣∣∣ < ε.

Hence, for ζ ∈ C we have

|ζ − φ̂n(−u−
i

2
)| ≥ |ζ − φX∆

(−u− i

2
)| − |φ̂n(−u−

i

2
)− φX∆

(−u− i

2
)| ≥ r − ε

and this implies that for sufficiently large n the integral over C is well defined.

We have∣∣ 1

2πi

∫
C

ζp

(ζ − φ̂n(−u− i
2
))(ζ − φX∆

(−u− i
2
))
dζ

(
φ̂n(−u−

i

2
)− φX∆

(−u− i

2
)

)∣∣
≤ 1

2π

M

(r − ε)r
2πrε ≤ 2Mε

r
, for ε <

r

2
.

Hence, we have

|I1| ≤ 2

∫ Un

0

2Mε

r

du

u2 + 1
4

≤ 4Mπ

r
.

This concludes proof of the Proposition.
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Appendix B

Supplements

B.1 Supplementary formulas

Frullani equality

Assume f ′(x) is continuous and the integral converges, then∫ ∞

0

f(ax)− f(bx)

x
dx = [lim

x→0
f(x)− lim

x→∞
f(x)] log

( b
a

)
, (B.1.1)

for a, b > 0.

The modified Bessel function of the second kind Ka(·)

We have∫ ∞

0

ya−1e−
b
y
−cydy = 2

(
b

c

)a
2

Ka

(
2
√
bc
)
, (Re(b) > 0, Re(c) > 0), (B.1.2)

cf. Gradshteyn & Ryzhik (1965) - formula 3.471.9,

and

K− 1
2
(z) =

√
π

2
z−

1
2 e−z (B.1.3)

cf. Prause (1999) - formula B.17.
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Asymptotic behaviour of the modified Bessel function of the second kind Ka(·)

Ka(x) =

√
π

2
x−

1
2 e−x + o(1), as x→∞, (B.1.4)

Barndorff-Nielsen et al. (1982) - section 6.

B.2 Supplementary theorems

Theorem 8 (Part of Theorem 30.1 in (Sato 1999)) Let (Xt)t≥0 be a Lévy process with

generating triplet (σ2,LX ,m) and let (Yt)t≥0 be a subordinator with a generating triplet

(0, ρ, b). Then the process (Zt)t≥0 defined for each ω ∈ Ω by Z(t, ω) := X(Y (t, ω), ω) is a

Lévy process with a characteristic triplet (σ2
Z ,LZ ,mZ), where

σ2
Z = bσ2, (B.2.1)

LZ(dx) = bLX(dx) +

∫ ∞

0

fXs(x)ρ(ds), (B.2.2)

mZ = bm+

∫ ∞

0

ρ(ds)

∫
|x|≤1

xfXs(x)dx. (B.2.3)

Theorem 9 Lukacs (1960) (Theorem 7.1.1)

If a characteristic function φ(z) is analytical and one-valued in a neighborhood of the ori-

gin, then it is also analytical and one-valued in a horizontal strip and can be represented

in this strip by a Fourier integral. This strip is either the whole plane, or it has one or

two horizontal boundary lines. The purely imaginary points on the boundary of the strip

(if this strip is not the whole plane) are singular points of φ(z).

Lemma 4 Uni-variate Gaussian Shift Theorem (GST) (cf. Workshop on Exotic Option

Pricing (2006) by P.Buchen & O.Konstandatos). Let Z ∼ N(0, 1), c ∈ R and H be any

measurable function with a finite expectation. Then

E(ecZH(Z)) = e
1
2
c2EH(Z + c). (B.2.4)
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Theorem 10 (cf. Karunakaran (2005) (Theorem 4.4.12))

Let f(z) be analytic in a region A and a ∈ A. Then f(z) can be expanded in the following

form

f(z) = f(a) + f ′(a)(z − a) + . . .+
f (n−1)(a)

(n− 1)!
(z − a)n−1 +

1

2πi

∫
C

f(ζ)dζ

(ζ − a)n(ζ − z)
(z − a)n,

where C is any circle with centre at point a and radius r, such that disc |z − a| ≤ r is

contained in A. This expansion is valid for z ∈ A and for n = 1, 2, . . ..

Theorem 11 Devroye & Lugosi (2001) (Chapter 2, Theorem 2.1, p. 6)

Let X1, . . . , Xn be independent bounded random variables such that Xi ∈ [ai, bi], i =

1, . . . , n with probability 1. Then for any t > 0, we have

P(Sn − ESn ≥ t) ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
and

P(Sn − ESn ≤ −t) ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
,

where Sn =
∑n

i=1Xi.
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Appendix C

Matlab programs

This Appendix contains MATLAB R© programs used to price and calibrate Models 1 - 5,

used in the project.

1. ecfvanilla.m

function y = e c f v a n i l l a (S ,K, r , q , t , t inc , data ,w, p , aa , cu to f f , u )
% ECF pr ic ing , formula ( 4 . 1 . 6 )
% S − spo t p r i c e
% K − opt ion s t r i k e
% r − i n t e r e s t ra t e
% q − d i v i d en t y i e l d
% t − opt ion matur i ty
% t i n c − assumed time increments o f log−re t s , t i n c ∗ l e n g t h ( data ) shou ld be

equa l t
% data − data f o r DAX log−re turns used in e s t ima t ion o f e c f
% w − used in c a l i b r a t i o n o f imp l i ed MMCT
% aa − a lpha
% u − f l a g : 1 f o r c a l l and 0 f o r put
r i n t=quadl ( ’ e c f i n t e g r and ’ ,0 , cu to f f , [ ] , [ ] , K, S , r , t , data , w, p , aa ) ;
R=S∗( aa<=0) − exp(−r ∗ t ) ∗K∗( aa<=−1) − (S∗( aa==0) − exp(−r ∗ t ) ∗K∗( aa==−1)) /2 ;
y1=R + exp(−r ∗ t ) .∗ r i n t /pi ;
y=y1+(1−u) . ∗ (K.∗exp(−r .∗ t )−S .∗exp(−q .∗ t ) ) ; %c a l l or put

2. ecfintegrand.m

function y = ec f i n t e g r and (v ,K, S , r , t , data ,w, p , aa )
% integrand in formula ( 4 . 1 . 6 )
% v − v a r i a b l e
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% S − spo t p r i c e
% K − opt ion s t r i k e
% r − i n t e r e s t ra t e
% t − opt ion matur i ty
% data − data f o r c a l c u l a t i n g e c f
% w − imp l i ed w
% p − imp l i ed p
% aa − i n t e g r a t i o n parameter
y1=exp(− i ∗(v−i ∗aa ) ∗ log (K) ) ;
vv=v−i ∗( aa+1) ;
y2=exp( i ∗vv ∗( log (S)+(r+w) ∗ t ) ) .∗ e c f cn (vv , data ) . ˆ p ;
y3=1./(−vv . ∗ ( v−i ∗aa ) ) ;
y=real ( y1 .∗ y3 ) .∗ real ( y2 ) − imag( y1 .∗ y3 ) .∗ imag( y2 ) ;

3. ecfcalib.m

function [ wecf , pecf , wdata , modelpr ices , resnorm , d i f p l u s , di fminus ,
meandif , mediandif , rmsere l ] = e c f c a l i b (S0 , data , ndata , r , s t r i k e ,
pr i c e , expdays , t inc , opt iontype , wflag , p f l a g )

% Ca l i b r a t e s the Models 2−4 to ODAX opt ion p r i c e s
% S0 − p r i c e o f the under l y ing
% data − under l y ing a s s e t l o g re turns
% ndata − number o f e lements back o f data to c a l c u l a t e e c f
% r − r i s k f r e e ra t e
% s t r i k e − s t r i k e p r i c e
% pr i c e − p r i c e s o f op t i ons
% expdays − number o f days to opt ion e xp i r a t i on
% pp − power o f ECF
% t in c − t ime increments between l o g re turns
% op t i on type − 1 f o r c a l l , 0 f o r put , v e c t o r o f l e n g t h same as s t r i k e and

pr i c e
% wf l ag − i f 1 then c a l i b r a t e w, i f 0 then use wdata
% p f l a g − i f 1 then c a l i b r a t e p , i f 0 then use number o f days to

matur i ty
% output :
% wecf − imp l i ed w
% imp l i ed p − imp l i ed p
% wdata − emp i r i ca l MMCT
% mode lpr ices − p r i c e s ob ta ined wi th the use o f the opt imal parameters
% resnorm − the va lue o f the squared 2−norm of the r e s i d u a l
% d i f p l u s − maximum of r e l a t i v e e r ro r s
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% difminus − minimum of r e l a t i v e e r ro r s
% meandif − mean of r e l a t i v e e r ro r s
% mediandi f − median o f r e l a t i v e e r ro r s
% rmsere l − r e l a t i v e resnorm
%
aa=−.5; %uses Lewis formula
c u t o f f =512;
t o l f un = 10ˆ(−6) ; t o l x = 10ˆ(−3) ;
opts = opt imset ( ’ Display ’ , ’ i t e r ’ , ’ TolFun ’ , to l fun , ’TolX ’ , t o l x ) ;

data1=data ( length ( data )−ndata+1: length ( data ) ) ;
wdata = −log ( e c f cn (− i , data1 ) ) / t i n c ;

maturity = expdays∗ t i n c ;
S01 = ones ( length ( s t r i k e ) ,1 ) .∗ S0 ;
r1 = ones ( length ( s t r i k e ) ,1 ) .∗ r ;

i f ( wf lag==0)&(p f l a g==0) %use wdata and s e t p to number o f days to
e x p i r a t i on

mode lpr i ce s = zeros ( length ( s t r i k e ) ,1 ) ;
for j =1: length ( s t r i k e )

mode lpr i ce s ( j ) = e c f v a n i l l a ( S01 ( j ) , s t r i k e ( j ) , r1 ( j ) , 0 , maturity , t inc ,
data1 , wdata , expdays , aa , cu to f f , opt iontype ( j ) ) ;

end
resnorm = norm( modelpr ices−p r i c e ) ˆ2 ;
wecf=0;
pec f =0;

e l s e i f ( wf lag==1)&(p f l a g==0) %ca l i b r a t e w and s e t p to number o f days to
e x p i r a t i on

mats=ones ( length ( s t r i k e ) ,1 ) ∗maturity ;
w0 = wdata ;
[ wecf , resnorm ] = l s qnon l i n ( @ecffuncpowfixed , w0 , [ ] , [ ] , opts , expdays ,

aa , cu to f f , mats , t inc , s t r i k e , pr i c e , r1 , 0 , S01 , data1 , opt iontype )
%pr i c i n g wi th c a l i b r a t e d w
mode lpr i ce s = zeros ( length ( s t r i k e ) ,1 ) ;
for j =1: length ( s t r i k e )

mode lpr i ce s ( j ) = e c f v a n i l l a ( S01 ( j ) , s t r i k e ( j ) , r1 ( j ) , 0 , maturity , t inc ,
data1 , wecf , expdays , aa , cu to f f , opt iontype ( j ) ) ;

end
pec f =0;
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e l s e i f ( wf lag==0)&(p f l a g==1) %use wdata and c a l i b r a t e p
mats=ones ( length ( s t r i k e ) ,1 ) ∗maturity ;
pL = 0 ;
[ pecf , resnorm ] = l s qnon l i n ( @ecf funcpowcal ib , expdays , pL , [ ] , opts ,

wdata , aa , cu to f f , mats , t inc , s t r i k e , pr i c e , r1 , 0 , S01 , data1 ,
opt iontype )

%pr i c i n g wi th c a l i b r a t e d w
mode lpr i ce s = zeros ( length ( s t r i k e ) ,1 ) ;
for j =1: length ( s t r i k e )

mode lpr i ce s ( j ) = e c f v a n i l l a ( S01 ( j ) , s t r i k e ( j ) , r1 ( j ) , 0 , maturity , t inc ,
data1 , wdata , pecf , aa , cu to f f , opt iontype ( j ) ) ;

end
wecf=0;

else %ca l i b r a t e w and p
mats=ones ( length ( s t r i k e ) ,1 ) ∗maturity ;
w0 = wdata ;
wp0=[w0 , expdays ] ;
wpL = [−10 0 ] ;
[ wpecf , resnorm ] = l s qnon l i n ( @ecffunc , wp0 , wpL, [ ] , opts , aa , cu to f f ,

mats , t inc , s t r i k e , pr i c e , r1 , 0 , S01 , data1 , opt iontype )
%pr i c i n g wi th c a l i b r a t e d w
mode lpr i ce s = zeros ( length ( s t r i k e ) ,1 ) ;
for j =1: length ( s t r i k e )

mode lpr i ce s ( j ) = e c f v a n i l l a ( S01 ( j ) , s t r i k e ( j ) , r1 ( j ) , 0 , maturity , t inc ,
data1 , wpecf (1 ) , wpecf (2 ) , aa , cu to f f , opt iontype ( j ) ) ;

end
wecf=wpecf (1 ) ;
pec f=wpecf (2 ) ;

end
d i f p l u s = max( ( modelpr ices−p r i c e ) . / p r i c e ) ;
d i fminus = min( ( modelpr ices−p r i c e ) . / p r i c e ) ;
meandif = mean( ( modelpr ices−p r i c e ) . / p r i c e ) ;
mediandi f = median ( ( modelpr ices−p r i c e ) . / p r i c e ) ;
rmsere l = sqrt (norm( ( modelpr ices−p r i c e ) . / p r i c e ) ˆ2/ length ( p r i c e ) ) ;

%end o f the main func t i on

function dd = ec f f un c ( par , aa , cu to f f , maturity , t inc , s t r i k e , pr i c e ,
i n t e r e s t , dividend , under lp r i c e , data , u )

% ca l c u l a t e s v ec t o r o f d i f f e r e n c e s between r e a l and model p r i c e s
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% maturity , s t r i k e , op t i onp r i c e − equa l s i z e d v e c t o r s f o r comparision
% underpr ice − p r i c e o f the under l y ing a s s e t
% u − 1 f o r c a l l , 0 f o r put
%
w=par (1 ) ; p=par (2 ) ;
l=length ( maturity ) ;
dd=zeros ( l , 1 ) ;
for j =1: l

dd ( j ) = e c f v a n i l l a ( unde r l p r i c e ( j ) , s t r i k e ( j ) , i n t e r e s t ( j ) , dividend ,
maturity ( j ) , t inc , data , w, p , aa , cu to f f , u ( j ) ) − p r i c e ( j ) ;

end

function dd = ec f funcpowca l ib (p , w, aa , cu to f f , maturity , t inc , s t r i k e ,
pr i c e , i n t e r e s t , dividend , under lp r i c e , data , u)

% ca l c u l a t e s v e c t o r o f d i f f e r e n c e s between r e a l and model p r i c e s
% maturity , s t r i k e , op t i onp r i c e − equa l s i z e d v e c t o r s f o r comparision
% underpr ice − p r i c e o f the under l y ing a s s e t
% u − 1 f o r c a l l , 0 f o r put
%
l=length ( maturity ) ;
dd=zeros ( l , 1 ) ;
for j =1: l

dd ( j ) = e c f v a n i l l a ( unde r l p r i c e ( j ) , s t r i k e ( j ) , i n t e r e s t ( j ) , dividend ,
maturity ( j ) , t inc , data , w, p , aa , cu to f f , u ( j ) ) − p r i c e ( j ) ;

end

function dd = ec f funcpowf ixed (w, p , aa , cu to f f , maturity , t inc , s t r i k e ,
pr i c e , i n t e r e s t , dividend , under lp r i c e , data , u)

% ca l c u l a t e s v e c t o r o f d i f f e r e n c e s between r e a l and model p r i c e s
% maturity , s t r i k e , op t i onp r i c e − equa l s i z e d v e c t o r s f o r comparision
% underpr ice − p r i c e o f the under l y ing a s s e t
% u − 1 f o r c a l l , 0 f o r put
%
l=length ( maturity ) ;
dd=zeros ( l , 1 ) ;
for j =1: l

dd ( j ) = e c f v a n i l l a ( unde r l p r i c e ( j ) , s t r i k e ( j ) , i n t e r e s t ( j ) , dividend ,
maturity ( j ) , t inc , data , w, p , aa , cu to f f , u ( j ) ) − p r i c e ( j ) ;

end
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4. rvg.m

function y = rvg (S ,K, r , q , s i g , nu , th , t , aa , u)
% CML opt ion p r i c e f o r Variance Gamma (VG) d i s t r i b u t i o n
%
% S − spo t p r i c e
% K − opt ion s t r i k e
% r − i n t e r e s t ra t e
% q − d i v i d en t y i e l d
% s ig , nu , th − VG parameters
% t − opt ion matur i ty
% aa − i n t e g r a t i o n parameter
% u − f l a g : 1 f o r c a l l and 0 f o r put
%
% Refererences :
% Lewis , Alan L . , ’A s imple op t ion formula f o r genera l jump−d i f f u s i o n and
% other e xponen t i a l L e v y proce s s e s . Manuscript , Envis ion Financ ia l Systems
% and OptionCity . net , 2001
% Roger Lord and Chr i s t i an Kahl , ’ Optimal Fourier Inver s ion in Semi
% −a n a l y t i c a l Option Pric ing ’ , Tinbergen I n s t i t u t e Discuss ion Papers , 2006
%
w = 1/nu∗ log (1 − th∗nu − . 5∗nu∗ s i g ˆ2) ;
r i n t=quadl ( ’ r in t eg rand ’ , 0 , 5 1 2 , [ ] , [ ] ,K, S , r , q , t , s i g , nu , th , w, aa ) ;
R=S∗( aa<=0) − exp(−r ∗ t ) ∗K∗( aa<=−1) − (S∗( aa==0) − exp(−r ∗ t ) ∗K∗( aa==−1)) /2 ;
y1=R + exp(−r ∗ t ) .∗ r i n t /pi ;
y=y1+(1−u) . ∗ (K.∗exp(−r .∗ t )−S .∗exp(−q .∗ t ) ) ; %c a l l or put

function y = r integ rand (v ,K, S , r , q , t , s i g , nu , th ,w, aa )
y1=exp(− i ∗(v−i ∗aa ) ∗ log (K) ) ;
y2=exp( i ∗(v−i ∗( aa+1) ) ∗( log (S)+(r+w) ∗ t ) ) .∗ rvgch f (v−i ∗( aa+1) , th , s i g , nu , t ) ;
y3=1./(−(v−i ∗( aa+1) ) . ∗ ( v−i ∗aa ) ) ;
y=real ( y1 .∗ y2 .∗ y3 ) ;

5. cmlcalib.m

function [ paramopt , modelpr ices , resnorm , d i f p l u s , di fminus , meandif ,
mediandif , rmsere l ] = cmlca l ib (S0 , data , ndata , r , s t r i k e , pr i c e ,
expdays , t inc , params , opt iontype )

% Ca l i b r a t e s the CML model to ODAX opt ion p r i c e s
% used in Model 5
% S0 − p r i c e o f the under ly ing ,
% data − t ime s e r i e s o f the under ly ing ,
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% ndata − number o f e lements to c a l c u l a t e ec f ,
% r − r i s k f r e e rate ,
% s t r i k e − s t r i k e pr ice ,
% pr i c e − p r i c e o f opt ion ,
% expday − number o f days to opt ion exp i ra t i on ,
% t i n c − t ime increments o f l o g re turns ,
% op t i on type − 1 f o r c a l l , 0 f o r put ,
% params − s t a r t i n g parameters f o r c a l i b r a t i o n
% output :
% paramopt − opt imal parameters
% mode lpr ices − p r i c e s ob ta ined wi th the use o f the opt imal parameters
% resnorm − the va lue o f the squared 2−norm of the r e s i d u a l
% d i f p l u s − maximum of r e l a t i v e e r ro r s
% di fminus − minimum of r e l a t i v e e r ro r s
% meandif − mean of r e l a t i v e e r ro r s
% mediandi f − median o f r e l a t i v e e r ro r s
% rmsere l − r e l a t i v e resnorm
%
aa=−.5; %use the CML formula
c u t o f f =512;
t o l f un = 10ˆ(−6) ; t o l x = 10ˆ(−3) ;
opts = opt imset ( ’ Display ’ , ’ i t e r ’ , ’ TolFun ’ , to l fun , ’TolX ’ , t o l x ) ;

data1=data ( length ( data )−ndata+1: length ( data ) ) ;
theta=params (1 ) ; sigma=params (2 ) ; nu=params (3 ) ;

maturity = expdays∗ t i n c ;
S01 = ones ( length ( s t r i k e ) ,1 ) .∗ S0 ;
r1 = ones ( length ( s t r i k e ) ,1 ) .∗ r ;

mats=ones ( length ( s t r i k e ) ,1 ) ∗maturity ;
par0 = [ params (1 ) params (2 ) params (3) ] ;
parL = [−Inf 0 0 ] ;
opts = opt imset ( ’ Display ’ , ’ i t e r ’ , ’ TolFun ’ ,10ˆ(−9) , ’TolX ’ , 10ˆ(−9) ) ;
[ paramopt resnorm ] = l s qnon l i n ( @VG model price , par0 , parL , [ ] , opts , mats ,

s t r i k e , pr i c e , r1 , 0 , S0 , opt iontype ) ;
sigma = paramopt (2 ) ;
nu = paramopt (3 ) ;
theta = paramopt (1 ) ;
%pr i c i n g wi th c a l i b r a t e d params
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mode lpr i ce s = zeros ( length ( s t r i k e ) ,1 ) ;
for j =1: length ( s t r i k e )

mode lpr i ce s ( j ) = rvg ( S01 ( j ) , s t r i k e ( j ) , r1 ( j ) , 0 , sigma , nu , theta , maturity , aa ,
opt iontype ( j ) ) ;

end
resnorm = norm( modelpr ices−p r i c e ) ˆ2 ;

d i f p l u s = max( ( modelpr ices−p r i c e ) . / p r i c e ) ;
d i fminus = min( ( modelpr ices−p r i c e ) . / p r i c e ) ;
meandif = mean( ( modelpr ices−p r i c e ) . / p r i c e ) ;
mediandi f = median ( ( modelpr ices−p r i c e ) . / p r i c e ) ;
rmsere l = sqrt (norm( ( modelpr ices−p r i c e ) . / p r i c e ) ˆ2/ length ( p r i c e ) ) ;

%end o f the main func t i on

function v = VG model price ( params , maturity , s t r i k e , pr i c e , i n t e r e s t ,
dividend , under lp r i c e , u )

% ca l c u l a t e s v ec t o r o f d i f f e r e n c e s between r e a l and model p r i c e s
%
% params − Variance Gamma parameters
% maturity , s t r i k e , op t i onp r i c e − equa l s i z e d v e c t o r s
% underpr ice − p r i c e o f the under l y ing a s s e t
% u − 1 f o r c a l l , 0 f o r put
%
th=params (1) ; sg=params (2 ) ; nu=params (3 ) ;
l=length ( maturity ) ;
v=zeros ( l , 1 ) ;
unde r l p r i c e 1 = ones ( length ( s t r i k e ) ,1 ) .∗ unde r l p r i c e ;
for k=1: l

v ( k )=rvg ( unde r l p r i c e 1 (k ) , s t r i k e ( k ) , i n t e r e s t ( k ) , dividend , sg , nu , th ,
maturity (k ) , −.5 , u (k ) ) − p r i c e ( k ) ;

end

6. Model1234.m

% Scr i p t f o r Models 1−4
%
% se t Model :
% 1 − p f l a g = 0 and wf l a g = 0
% 2 − p f l a g = 1 and wf l a g = 0
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% 3 − p f l a g = 0 and wf l a g = 1
% 4 − p f l a g = 1 and wf l a g = 1
%
p f l a g =0;
wf lag =0;

%open connect ion to MySQL database us ing MySQL Database Connector
%h t t p :// source f o r g e . net / p r o j e c t s /mym, h t t p ://www.mmf. utoronto . ca/ r e s r ch r e s /

mysql /
mysql ( ’ open ’ , ’ l o c a l h o s t ’ , ’ ka ro l ’ , ’ ’ ) ;mym( ’ open ’ , ’ l o c a l h o s t ’ , ’ ka ro l ’ ,

’ ’ ) ;
mysql ( ’ use opt ions ’ ) ;mym( ’ use opt ions ’ ) ;

q = 0 ; %div idend zero
daycount = 365 ; t i n c=1/daycount ;

colormap (hsv ( daycount ) ) ; %se t c o l o r s f o r p l o t t i n g
Mcolor=hsv ;
d a x c l o s e s e r i e s = mysql ( ’SELECT dad j c l o s e FROM dax WHERE dax . daxdate >=

”2006−06−01” AND dax . daxdate <= ”2007−05−31” ORDER BY daxdate ’ ) ;
[ odate , daxprice , expdays , s t r i k e , c l o s e p r i c e , pu t c a l l ] = mysql ( ’SELECT

odate , daxprice , days , s t r i k e , c l o s e p r i c e , pu t c a l l FROM odax WHERE odate
>= ”2006−06−01” AND odate <= ”2007−05−31” AND q u a l i f i e r s <> ”Miss ing ”

AND daxpr ice <> ”NULL” ORDER BY odate , r i c ’ ) ;
odaxdates = unique ( odate ) ;
numberofdays = length ( odaxdates ) ;
t ab l e = [ ] ; tab le LS = [ ] ; t ab l eda t e = [ ] ;
t a b l e p r i c e = [ ] ; t ab l e mode lp r i c e = [ ] ; t a b l e r e g r e s s = [ ] ;

for j =1: numberofdays
odaxdatest r = da t e s t r ( odaxdates ( j ) ,29) ; %ad ju s t odax date format
mym( ’ t runcate dummydate ’ ) ; mym( ’INSERT INTO dummydate ( co l 1 ) VALUES(”{S}”)

’ , odaxdatest r ) ; %updat ing dummydate f o r the next l i n e . .
ODAX = mym( ’SELECT daxprice , days , s t r i k e , c l o s e p r i c e , putca l l ,

i n t e r e s t r a t e FROM odax , dummydate WHERE odax . odate = dummydate . c o l 1
AND q u a l i f i e r s <> ”Miss ing ” AND odax . volume>=1 ORDER BY days , s t r i k e ’ )
; %s e l e c t curren t=j day

daxpr ice = ODAX. daxpr ice ; expdays = ODAX. days ; o s t r i k e = ODAX. s t r i k e ;
c l o s e p r i c e = ODAX. c l o s e p r i c e ; pu t c a l l = ODAX. pu t c a l l ; i n t e r e s t r a t e s =
ODAX. i n t e r e s t r a t e /100 ;
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S0 = daxpr i ce (1 ) ;
%use only four s t r i k e s around S0
s r l =100; s r r =100;
s t r i k e s i d x=and (ODAX. s t r i k e <=S0+srr ,ODAX. s t r i k e >S0−s r l ) ;
o s t r i k e=o s t r i k e ( s t r i k e s i d x ) ; daxpr ice=daxpr i ce ( s t r i k e s i d x ) ; expdays=

expdays ( s t r i k e s i d x ) ; c l o s e p r i c e=c l o s e p r i c e ( s t r i k e s i d x ) ; pu t c a l l=
pu t c a l l ( s t r i k e s i d x ) ; i n t e r e s t r a t e s=i n t e r e s t r a t e s ( s t r i k e s i d x ) ;

%reading DAX c l o s e p r i c e s f o r c a l c u l a t i n g ECF
daxc lo se = mysql ( ’SELECT dad j c l o s e FROM dax , dummydate WHERE dax . daxdate

<= dummydate . c o l 1 ORDER BY daxdate ’ ) ;
dax l og r e t s=d i f f ( log ( daxc lo se ) ) ;

[ exps , m, n ] = unique ( expdays ) ; %sor t wi th r e s p e c t to ma tu r i t i e s
numberofmatur i t i es = length ( exps ) ;
m1 = [ 0 ;m] ;
minpr ice=−10; %for p l o t t i n g

for k=1: numberofmatur i t i es
S0 = daxpr i ce (1 ) ;
data=dax l og r e t s ;
maturity=expdays (m1(k ) +1:m1(k+1) ) /daycount ; %s e l e c t same ma tu r i t i e s
expday=exps (k ) ;
ndata=120;
s t r i k e=o s t r i k e (m1(k ) +1:m1(k+1) ) ;
p r i c e=c l o s e p r i c e (m1(k )+1:m1(k+1) ) ;
r a t e=i n t e r e s t r a t e s (m1(k ) +1:m1(k+1) ) ;
opt iontype=ones ( length ( pu t c a l l (m1(k )+1:m1(k+1) ) ) , 1 ) ;

%i f number o f op t i ons i s l e s s than 3 , s k i p i t
i f length ( s t r i k e )>=3

[ wecf , pecf , wdata , modelpr ices , resnorm , d i f p l u s , di fminus , meandif ,
mediandif , rmsere l ] = e c f c a l i b (S0 , data ’ , ndata , rate , s t r i k e , pr i c e
, expday , t inc , opt iontype , wflag , p f l a g ) ;

%sav ing c a l i b r a t e d parameters
rmse = sqrt ( resnorm / length ( p r i c e ) ) ;
t ab l e i nput = [ odaxdates ( j ) , expday , ndata , r a t e (1 ) , wdata , resnorm ,

rmse , wecf , pecf , d i f p l u s , di fminus , meandif , mediandif , rmsere l ] ;
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t ab l e = [ t ab l e ; t ab l e i nput ] ; t ab l eda t e input = [ odaxdates t r ] ;
t ab l eda t e = [ tab l eda t e ; t ab l eda t e input ] ;

%sav ing ODAX pr i c e s and model p r i c e s
t ab l e i nput = [ pr i ce , modelpr ices , S0 . / s t r i k e , maturity , r a t e ] ;
t a b l e r e g r e s s = [ t a b l e r e g r e s s ; t ab l e i nput ] ;

f f=f igure ( j ) ; l c o l o r=expday ;
plot ( s t r i k e , pr i c e , ’ s ’ , ’ Color ’ , Mcolor ( l c o l o r , : ) , ’ LineWidth ’ , 1 ) ; hold

on ; %%
plot ( s t r i k e , modelpr ices , ’ o ’ , ’ Color ’ , Mcolor ( l c o l o r , : ) , ’ LineWidth ’ , 2 ) ;

hold on ;
K1 = [min( s t r i k e ) : 1 :max( s t r i k e ) ] ; Y1 = max( S0−K1, 0 ) ; plot (K1 , Y1 , ’ k ’ , ’

LineWidth ’ , 2 ) ; hold on ;

xlabel ( ’ S t r i k e ’ ) ; ylabel ( ’ Option p r i c e ’ ) ;
legend ( ’ODAX p r i c e s ’ , ’ECF p r i c e s ’ , ’ Payof f ’ ) ;
t i t l e ( sprintf ( ’ODAX Cal l p r i c e s on %s ’ , odaxdates t r ) ) ;

minpr ice1=min ( [ p r i c e ; mode lpr i ce s ] ) ; %for p l o t t i n g
minpr ice=min ( [ minpr ice ; p r i c e ; mode lpr i ce s ] ) ;

else end %i f l e n g t h ( s t r i k e )<3 next matur i ty

end
h1=gca ; x1=get ( h1 , ’XLim ’ ) ; y1=get ( h1 , ’YLim ’ ) ;
text (round ( ( x1 (2 )−x1 (1 ) )/3+x1 (1 ) ) , y1 (2 )−round ( . 1 ∗ ( y1 (2 )−y1 (1 ) ) ) , sprintf ( ’

S0 = %g ’ , S0 ) , ’ FontSize ’ ,12) ;

for k1=1: numberofmatur i t i e s
text ( s t r i k e (1 )+round ( . 1 ∗ ( x1 (2 )−x1 (1 ) ) ) ,10+k1∗round ( . 0 3∗ ( y1 (2 )−y1 (1 ) ) ) ,

num2str( exps ( k1 ) ) , ’ Color ’ , Mcolor ( exps ( k1 ) , : ) , ’ FontSize ’ , 8 , ’
Hor izontalAl ignment ’ , ’ r i g h t ’ , ’ FontWeight ’ , ’ bold ’ ) ;

end
text ( s t r i k e (1 )+round ( . 0 1∗ ( x1 (2 )−x1 (1 ) ) ) ,10 , ’ ( days to exp i ry ) ’ , ’ FontSize ’

, 8 , ’ Hor izontalAl ignment ’ , ’ l e f t ’ , ’ FontWeight ’ , ’ bold ’ ) ;

saveas ( f f , sprintf ( ’ODAX%s ECF%g ’ , odaxdatestr , ndata ) , ’ f i g ’ ) ;
saveas ( f f , sprintf ( ’ODAX%s ECF%g ’ , odaxdatestr , ndata ) , ’ pdf ’ ) ;
close ( f f ) ;
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end
%Error measurements
p r i c e e r r = t a b l e r e g r e s s ( : , 1 )−t a b l e r e g r e s s ( : , 2 ) ;
p r i c e e r r r e l = ( t a b l e r e g r e s s ( : , 1 )−t a b l e r e g r e s s ( : , 2 ) ) . / t a b l e r e g r e s s ( : , 1 )

;
p r i c e e r r a b s = abs ( p r i c e e r r ) ;
p r i c e e r r r e l a b s = abs ( p r i c e e r r r e l ) ;
t a b l e e r r o r s = [mean( p r i c e e r r ) ; mean( p r i c e e r r r e l ) ; mean( p r i c e e r r a b s ) ;

mean( p r i c e e r r r e l a b s ) ; sqrt (sum( p r i c e e r r . ˆ 2 ) / length ( p r i c e e r r ) ) ; sqrt
(sum( p r i c e e r r r e l . ˆ 2 ) / length ( p r i c e e r r r e l ) ) ] ;

7. Model5.m

% Scr i p t f o r Model 5
%
%open connect ion to MySQL database us ing MySQL Database Connector
%h t t p :// source f o r g e . net / p r o j e c t s /mym, h t t p ://www.mmf. utoronto . ca/ r e s r ch r e s /

mysql /
mysql ( ’ open ’ , ’ l o c a l h o s t ’ , ’ ka ro l ’ , ’ ’ ) ; mym( ’ open ’ , ’ l o c a l h o s t ’ , ’ ka ro l ’

, ’ ’ )
mysql ( ’ use opt ions ’ ) ; mym( ’ use opt ions ’ ) ;

q = 0 ;
daycount = 365 ;
t i n c=1/daycount ;

colormap (hsv ( daycount ) ) ; %se t c o l o r s f o r p l o t t i n g
Mcolor=hsv ;
d a x c l o s e s e r i e s = mysql ( ’SELECT dad j c l o s e FROM dax WHERE dax . daxdate >=

”2006−06−01” AND dax . daxdate <= ”2007−05−31” ORDER BY daxdate ’ ) ;
%choose time i n t e r v a l and c a l c u l a t e number o f days to ana lyse
[ odate , daxprice , expdays , s t r i k e , c l o s e p r i c e , pu t c a l l ] = mysql ( ’SELECT

odate , daxprice , days , s t r i k e , c l o s e p r i c e , pu t c a l l FROM odax WHERE odate
>= ”2006−06−01” AND odate <= ”2007−05−31” AND q u a l i f i e r s <> ”Miss ing ”

AND daxpr ice <> ”NULL” ORDER BY odate , r i c ’ ) ;
odaxdates = unique ( odate ) ;
numberofdays = length ( odaxdates ) ;
%crea t e t a b l e f o r r e s u l t s
t ab l e = [ ] ;
tab le LS = [ ] ;
t ab l eda t e = [ ] ; %t a b l e f o r da te s
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t a b l e p r i c e = [ ] ;
t ab l e mode lp r i c e = [ ] ;
t a b l e r e g r e s s = [ ] ;
for j =1: numberofdays

odaxdatest r = da t e s t r ( odaxdates ( j ) ,29) ; %ad ju s t odax date format
mym( ’ t runcate dummydate ’ ) ; mym( ’INSERT INTO dummydate ( co l 1 ) VALUES(”{S}”)

’ , odaxdatest r ) ; %updat ing dummydate
ODAX = mym( ’SELECT daxprice , days , s t r i k e , c l o s e p r i c e , putca l l ,

i n t e r e s t r a t e FROM odax , dummydate WHERE odax . odate = dummydate . c o l 1
AND q u a l i f i e r s <> ”Miss ing ” AND odax . volume>=1 ORDER BY days , s t r i k e ’ )
; %s e l e c t curren t=j day

daxpr ice = ODAX. daxpr ice ; expdays = ODAX. days ; o s t r i k e = ODAX. s t r i k e ;
c l o s e p r i c e = ODAX. c l o s e p r i c e ; pu t c a l l = ODAX. pu t c a l l ; i n t e r e s t r a t e s =
ODAX. i n t e r e s t r a t e /100 ;

S0 = daxpr i ce (1 ) ;
%use only four s t r i k e s around S0
s r l =100; s r r =100;
s t r i k e s i d x=and (ODAX. s t r i k e <=S0+srr ,ODAX. s t r i k e >S0−s r l ) ;
o s t r i k e=o s t r i k e ( s t r i k e s i d x ) ;
daxpr ice=daxpr ice ( s t r i k e s i d x ) ;
expdays=expdays ( s t r i k e s i d x ) ;
c l o s e p r i c e=c l o s e p r i c e ( s t r i k e s i d x ) ;
pu t c a l l=pu t c a l l ( s t r i k e s i d x ) ;
i n t e r e s t r a t e s=i n t e r e s t r a t e s ( s t r i k e s i d x ) ;
%read DAX c l o s e p r i c e s f o r c a l c u l a t i n g ECF, up to the date ana lysed in

dummydate ( co l 1 )
daxc lo se = mysql ( ’SELECT dad j c l o s e FROM dax , dummydate WHERE dax . daxdate

<= dummydate . c o l 1 ORDER BY daxdate ’ ) ;
dax l og r e t s=d i f f ( log ( daxc lo se ) ) ;
[ exps , m, n ] = unique ( expdays ) ; %sor t wi th r e s p e c t to ma tu r i t i e s
numberofmatur i t i es = length ( exps ) ;
m1 = [ 0 ;m] ;
minpr ice=−10; %for p l o t t i n g
ndata=250;
% ca l c u l a t e s t a r t i n g parameters by Method o f Moments , use 250 h i s t o r i c a l
% l o g re turns
DATA=dax l og r e t s ( length ( dax l og r e t s )−ndata+1: length ( dax l og r e t s ) ) ; DATAmc=

DATA − mean(DATA) ;
theta mm = mean(DATA)/ t i n c ; sigma mm = std (DATAmc) /sqrt ( t i n c ) ; nu mm = (

ku r t o s i s (DATAmc) /3 − 1) ∗ t i n c ;
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numberofmatur i t i e s done =0;
for k=1: numberofmatur i t i es

S0 = daxpr i ce (1 ) ;
data=dax l og r e t s ;
maturity=expdays (m1(k ) +1:m1(k+1) ) /daycount ; %s e l e c t same ma tu r i t i e s
expday=exps (k ) ; %expdays (m( k ) ) ;
s t r i k e=o s t r i k e (m1(k ) +1:m1(k+1) ) ;
p r i c e=c l o s e p r i c e (m1(k )+1:m1(k+1) ) ;
r a t e=i n t e r e s t r a t e s (m1(k ) +1:m1(k+1) ) ;
opt iontype=ones ( length ( pu t c a l l (m1(k )+1:m1(k+1) ) ) , 1 ) ;

% i f number o f a v a i l a b l e op t i ons i s l e s s than 3 , s k i p i t
i f length ( s t r i k e )>=3

[ par LS , modelpr ices LS , resnorm LS , d i fp lus LS , difminus LS ,
meandif LS , mediandif LS , rmsere l LS ] = cmlca l ib (S0 , data ’ , ndata ,
rate , s t r i k e , pr i c e , expday , t inc , [ theta mm sigma mm nu mm] ,
opt iontype ) ;

%sav ing c a l i b r a t e d parameters
rmse LS = sqrt ( resnorm LS / length ( p r i c e ) ) ;
tab l e input LS = [ odaxdates ( j ) , expday , ndata , par LS , ra t e (1 ) ,

resnorm LS , rmse LS , d i fp lus LS , difminus LS , meandif LS ,
mediandif LS , rmsere l LS ] ;

tab le LS = [ tab le LS ; tab l e input LS ] ;
t ab l eda t e input = [ odaxdates t r ] ;
t ab l eda t e = [ tab l eda t e ; t ab l eda t e input ] ;

%sav ing ODAX pr i c e s and model p r i c e s
t ab l e i nput = [ pr i ce , modelpr ices LS , S0 . / s t r i k e , maturity , r a t e ] ;
t a b l e r e g r e s s = [ t a b l e r e g r e s s ; t ab l e i nput ] ;

f f=f igure ( j ) ; l c o l o r=expday ;
plot ( s t r i k e , pr i c e , ’ s ’ , ’ Color ’ , Mcolor ( l c o l o r , : ) , ’ LineWidth ’ , 1 ) ; hold

on ;
plot ( s t r i k e , modelpr ices LS , ’ go ’ , ’ LineWidth ’ , 2 ) ; hold on ;
K1 = [min( s t r i k e ) : 1 :max( s t r i k e ) ] ; Y1 = max( S0−K1, 0 ) ; plot (K1 , Y1 , ’ k ’ , ’

LineWidth ’ , 2 ) ; hold on ;

xlabel ( ’ S t r i k e ’ ) ; ylabel ( ’ Option p r i c e ’ ) ;
legend ( ’ODAX p r i c e s ’ , ’CML MLE p r i c e s ’ , ’CML LS p r i c e s ’ , ’ Payof f ’ ) ;
t i t l e ( sprintf ( ’ODAX Cal l p r i c e s on %s ’ , odaxdates t r ) ) ;
minpr ice1=min ( [ p r i c e ; modelpr ices LS ] ) ; %for p l o t t i n g
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minpr ice=min ( [ minpr ice ; p r i c e ; modelpr ices LS ] ) ;

numberofmatur i t i e s done=numberofmatur i t i e s done +1;
else end %i f l e n g t h ( s t r i k e ) < 3 then next matur i ty

end
axis ( [min( s t r i k e )−1 max( s t r i k e )+1 minprice−1 max( [ p r i c e ; modelpr ices LS ] )

+1]) ;
h1=gca ; x1=get ( h1 , ’XLim ’ ) ; y1=get ( h1 , ’YLim ’ ) ;
text (round ( ( x1 (2 )−x1 (1 ) )/3+x1 (1 ) ) , y1 (2 )−round ( . 1 ∗ ( y1 (2 )−y1 (1 ) ) ) , sprintf ( ’

S0 = %g ’ , S0 ) , ’ FontSize ’ ,12) ;
for k1=1: numberofmatur i t i e s done

text ( s t r i k e (1 )+round ( . 1 ∗ ( x1 (2 )−x1 (1 ) ) ) ,10+k1∗round ( . 0 3∗ ( y1 (2 )−y1 (1 ) ) ) ,
num2str( exps ( k1 ) ) , ’ Color ’ , Mcolor ( exps ( k1 ) , : ) , ’ FontSize ’ , 8 , ’
Hor izontalAl ignment ’ , ’ r i g h t ’ , ’ FontWeight ’ , ’ bold ’ ) ;

end
text ( s t r i k e (1 )+round ( . 0 1∗ ( x1 (2 )−x1 (1 ) ) ) ,10 , ’ ( days to exp i ry ) ’ , ’ FontSize ’

, 8 , ’ Hor izontalAl ignment ’ , ’ l e f t ’ , ’ FontWeight ’ , ’ bold ’ ) ;
saveas ( f f , sprintf ( ’ODAX%s CML%g ’ , odaxdatestr , ndata ) , ’ f i g ’ ) ;
saveas ( f f , sprintf ( ’ODAX%s CML%g ’ , odaxdatestr , ndata ) , ’ pdf ’ ) ;
close ( f f ) ;

end
%Error measurements
p r i c e e r r = t a b l e r e g r e s s ( : , 1 )−t a b l e r e g r e s s ( : , 2 ) ;
p r i c e e r r r e l = ( t a b l e r e g r e s s ( : , 1 )−t a b l e r e g r e s s ( : , 2 ) ) . / t a b l e r e g r e s s ( : , 1 )

;
p r i c e e r r a b s = abs ( p r i c e e r r ) ;
p r i c e e r r r e l a b s = abs ( p r i c e e r r r e l ) ;
t a b l e e r r o r s = [mean( p r i c e e r r ) ; mean( p r i c e e r r r e l ) ; mean( p r i c e e r r a b s ) ;

mean( p r i c e e r r r e l a b s ) ; sqrt (sum( p r i c e e r r . ˆ 2 ) / length ( p r i c e e r r ) ) ; sqrt
(sum( p r i c e e r r r e l . ˆ 2 ) / length ( p r i c e e r r r e l ) ) ] ;
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