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Abstract

Pricing problems of financial derivatives are among the most important ones in Quanti-
tative Finance. Since 1973 when a Nobel prize winning model was introduced by Black,
Merton and Scholes the Brownian Motion (BM) process gained huge attention of profes-
sionals. It is now known, however, that stock market log-returns do not follow the very
popular BM process. Derivative pricing models which are based on more general Lévy
processes tend to perform better.

Carr & Madan (1999) and Lewis (2001) (CML) developed a method for vanilla options
valuation based on a characteristic function of asset log-returns assuming that they follow
a Lévy process. Assuming that at least part of the problem is in adequate modeling of
the distribution of log-returns of the underlying price process, we use instead a nonpara-
metric approach in the CML formula and replaced the unknown characteristic function
with its empirical version, the Empirical Characteristic Functions (ECF). We consider
four modifications of this model based on the ECF. The first modification requires only
historical log-returns of the underlying price process. The other three modifications of
the model need, in addition, a calibration based on historical option prices. We compare
their performance based on the historical data of the DAX index and on ODAX options
written on the index between the 1st of June 2006 and the 17th of May 2007. The result-
ing pricing errors show that one of our models performs, at least in the cases considered
in the project, better than the Carr & Madan (1999) model based on calibration of a
parametric Lévy model, called a VG model.

Our study seems to confirm a necessity of using implied parameters, apart from an ad-
equate modeling of the probability distribution of the asset log-returns. It indicates that
to precisely reproduce behaviour of the real option prices yet other factors like stochastic
volatility need to be included in the option pricing model. Fortunately the discrepan-

cies between our model and real option prices are reduced by introducing the implied



parameters which seem to be easily modeled and forecasted using a mixture of regression
and time series models. Such approach is computationaly less expensive than the explicit

modeling of the stochastic volatility like in the Heston (1993) model and its modifications.
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Chapter 1
Introduction

In this project we are concerned with accurate and numerically efficient methods for pric-
ing of Kuropean options. The modern mathematical theory of option pricing started
from the Nobel Prize winning model of Black & Scholes (1973) (BS model) and Merton
(1973). The BS model assumes that the logarithmic returns of the underlying stock follow
a Brownian Motion with a constant variance o > 0. It has been, however, observed that
the real option prices did not exactly trade according to the BS model. The differences
have been conveniently reported by calibrating the BS model to the real option prices
and reporting the resulting parameter ¢* as implied volatility. The implied volatility has
had over years a persisting U-shape as a function of strikes and this phenomena has been
labeled as a 'volatility smile’. The smile has changed over years and became quite flat on
its right hand side, yet the label volatility smile’ is still being used referring to deviations
between the model and real option prices. Even more, by including also time to option
expiration, the volatility curve evolved into a volatility surface. Accurate modelling of
the volatility surface became one of the central problems in the theory of option pricing.
The BS model evolved in various directions, including modelling the stochastic be-
haviour of volatility (e.g. Heston (1993)) and more sophisticated modelling of assets log-
returns via Lévy processes. Among the most popular generalizations of the log-normal
assumption of returns are the Normal Inverse Gaussian (NIG) (Barndorff-Nielsen, Kent
& Sgrensen 1982), Variance Gamma (VG) (Madan & Seneta 1990), (Carr, Madan &
Chang 1998) and Hyperbolic (Barndorff-Nielsen & Halgreen 1977), (Eberlein & Keller
1995) distributions. These classes of distributions are included in the class of Generalized
Hyperbolic (GH) distributions, introduced by Barndorff-Nielsen & Halgreen (1977).
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Prause (1999), Eberlein & Prause (2002) modelled the log-returns with a Generalized
Hyperbolic (GH) distribution, which resulted in a slight improvement of the shape of the
implied volatility surface. However, this improvement is not yet quite satisfactory.

Some other models are based on other specific (non-GH) distributions such as the
Jump-Diffusion model (Merton 1976), Double Exponential Jump-Diffusion model (Kou
2002), Stochastic Volatility (SV) model (Heston 1993), or more sophisticated Lévy SV
models used by Barndorff-Nielsen, Nicolato & Shephard (2002) and Carr, Geman, Madan
& Yor (2003).

Carr & Madan (1999) and Lewis (2001), which will be referred to as CML, derived
a general option pricing model based on a characteristic function of logarithmic returns
driven by a fairly general Lévy process. The CML model has been used by Carr & Madan
(1999) in the case of a parametric sub-family of Lévy processes, called VG processes,
introduced by Madan & Seneta (1990). It has also been used assuming full knowledge
of the characteristic function by Lewis (2001). We suggest in our project to use in the
CML the empirical characteristic function, capturing in this way possibly other than the
VG infinitely divisible distributions corresponding to the real asset log-returns. We show
that the CML method of option pricing based on the empirical characteristic function is
strongly convergent to the CML option value based on the characteristic function. Hence
it can be considered as a strongly consistent estimator of the CML option price. In this
way our method is nonparametric and does not require perfect knowledge of the charac-
teristic function of the log-returns.

In fact we introduce and consider four nonparametric models. In Model 1 we just
replace the characteristic function in the CML formula with empirical characteristic func-
tion based on historical data. This model does not reproduce very precisely real option
prices. Let us note that another alternative approach consisting in estimation of param-
eters of distributions of log-returns and, next, using the estimated parameters in option
pricing, is not providing satisfactory results (cf. Carr & Madan (1999), Ait-Sahalia, Wang
& Yared (2001)). These and our results for Model 1 suggest that other market factors
should in fact also be included into option pricing models. One of such a factor is stochas-
tic volatility.

To achieve a better option pricing we introduced some implied parameters p; and w},
which will be given proper interpretation in Chapter 5. Our Model 2 is based on the
ECF and has p} as an implied parameter. Model 3 is based on the ECF and uses w; as
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an implied parameter. Model 4, apart from being based on the ECF, uses two implied
parameters: p; and w;. Not surprisingly, Model 4, with the two implied parameters per-
forms best, even better than the 3-parameter model of Carr & Madan (1999).

We tested our model on historical data of DAX index and ODAX options written on
the index and we obtained several series of the implied parameters p;, and w; . Like in the
case of the classical implied volatility o* referring to the BS model it is plausible that the
dynamic of our implied parameters p; and w; can be described by a simple model. In
our project we explore modeling of p; and w; by a mixture of regression and time series
model. This allows a simple forecast of the implied parameters for the next day. We
present results of our preliminary exploration of the performance of option pricing with
the use of the forecasted parameters and we obtained the best results for Model 4.

In our case it is evident that the fitted parameters are showing some dynamics. There-
fore, testing performance of the option pricing on out-of-sample data does not seem ap-
propriate. Instead, it is desirable to suggest some time-series models for the implied
parameters. By forecasting the parameters we are going even beyond the scope of the
available so far papers, by trying to achieve good pricing environment for a near future,
e.g. for the next day (cf. Remark [I1]in Section [5.5).

In Chapter 2 we briefly introduce Lévy processes and include a few examples of Lévy
processes. In particular we describe in more detail the VG distribution, its properties,
and the corresponding VG process.

In Chapter 3 we present a brief introduction to the European option pricing. We show
two methods of pricing European options: by conditional integration and by Fourier
Transformation technique. We present the Mean Martingale Correcting Term (MMCT)
w as a convenient parameter describing the risk-neutral probability measure. For the sake
of completeness we include in Chapters 2 and 3 some classical results and provided their
proofs in Appendix A.

In Chapter 4 we present our new nonparametric method to price options with the use
of the ECF. This section includes a detailed description of our four option pricing models.
The first model requires only historical log-returns of the underlying price process. The
other three modifications of the model need, in addition, real option prices for calibration
of implied parameters.

In Chapter 5 we present performance of our model based on historical data of DAX
index and ODAX options written on the index between the 1st of June 2006 and the 17th
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of May 2007. The resulting pricing errors show that our Model 4 performs better, than
that of the CML.

In Chapter 6 we present concluding remarks about our project and we discuss direc-
tions for expansion of the present research.

For the clarity of exposition we collected proofs and technical references in Appen-
dices A and B, respectively. In Appendix C we included the MATLAB® code used in

our project.



Chapter 2
Lévy processes used in option pricing

It has been known since long that the Brownian Motion (BM) is not a perfect model
for market stock log-returns. Many authors have extended the model to more general
processes. We are choosing to work in this project with Lévy processes which are known
to have many nice features. Our working example is a 3-parameteil] Variance Gamma
(VG) process introduced by Madan & Seneta (1990) and Carr et al. (1998). This process
is a particular case of a class of a 5-parameter Generalized Hyperbolic (GH) processes
introduced by Barndorff-Nielsen & Halgreen (1977). Prause (1999) remarks that the
GH distributions tend to overfit and are computationally demanding. Since the VG
distributions are closed under convolution, it is also convienient to use it for modelling
Value at Risk (VaR). Therefore we choose to focus on the VG process, which is one of
the most popular tractable semi heavy-tailed Lévy process.

In this chapter we present a definition and some examples of Lévy processes. Next we
introduce the VG process and discuss its distributional properties.

Let (Q, F, P) be a probability space.

2.1 Introduction to Lévy processes

Definition 1 A real valued stochastic process (Xi)i>o0, defined on (Q,]—",P), is called a

Lévy process if the following conditions are satisfied:

!The fourth parameter can be included as an additional drift.
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a. Xy is right continuous with left hand side limits,

b. Xo = 0 with probability 1,

c. X; has independent increments, i.e for any 0 < r < s < t increment X, — X, is
independent of X; — X,

d. X; has stationary increments, i.e. the distribution of X1, — Xy 1s the same as of
Xn — Xo,

e. Xy s stochasticaly continuous, i.e. for any e > 0,
}3H})P<|Xt+h - Xt| Z 6) = 0.
We shall refer to the parameter ¢ > 0 as to time.

Definition 2 A characteristic function of a Lévy process X, is given by
¢Xt (u) — Eeth,

where uw € A C C and A is a strip of the form {z € C|Im(z) € (a,b)}, where a,b € R are

specific for a given process.
Definition 3 A cumulant function of a Lévy process X; is given by

th<u) = 1Og ¢Xt (U)
where u € A C C and A s a strip.

Definition 4 A probability distribution of a random variable X is called infinitely divisi-
ble if for any positive integer n there exist independent and identically distributed random
variables X1, ..., X, such that r.v. X1+ ...+ X,, has the same distribution as X.

Since the increments of a Lévy process are independent and stationary, its probability
distribution is infinitely divisible, i.e. for any ¢ > 0 and for any n € N, we have the

following decomposition of X;

XtZ (Xt—XnT—lt)—l—...—l—(X%t—X%t)—l—(X%t—XO),

where a size of an increment in the decomposition is % This decomposition gives the

following relation
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ox,(u) = o, (Xlt_th) (u) = H(b(X.

j=1 2
J at

= (ex, @) Ly

where the second and third equalities come from independence and stationarity properties

of increments of X;. Also for any ¢ > 0 we have

b, (1) = <¢X1(u)>t. (2.1.2)

We refer to Appendix [A] for a derivation of this relation.

In Chapter 4 we develop a method for pricing of European options, which relies on
@-1.1) and (2.1.2).

Lemma 1 (Sato (1999)) If ¢x,(u) ia characteristic function of a Lévy process Xy, then

there exists a unique and continuous cumulant function ¢ (u) such that
dx, (u) = V™, (2.1.3)

A complete characterization of cumulant functions for Lévy processes is given by the

following Lévy-Khintchine representation.

Theorem 1 (Lévy-Khintchine formula). A probability distribution of a random variable
X is infinitely divisible if and only if there exist 0 > 0,m € R and a measure L satisfying
conditions
L({0}) =0
and -
/ (1 A |2]?)L(dz) < oo,
such that the characteristic function of X has the following representation

2,2

EeX = e¥x) — exp <imu — 02u +/ (e —1— iux1|x<1(x))L(dx)) . (2.14)

o0

Definition 5 We call L(dx) in formula (2.1.4]) a Lévy measure, 0 a Gaussian coefficient,
m a drift of the Lévy process, and (o, L,m) a generating triplet. If the Lévy measure
is absolutely continuous with respect to the Lebesque measure, such that L(dx) = l(x)dz,

then l(x) is called a Lévy density function.
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By (2.1.3) we have the following representation for characteristic functions of Lévy

processes.

Corollary 1 A characteristic function of a Lévy process X, takes form

2,,2 oo
Ee™Xt = ) = exp (t [ému - Uzu * / (e =1 - Z”v“'fllrlg(m))TJ(d?‘fﬂ)'

[e.9]

Below we present several examples of characteristic functions of simple Lévy processes

and their Lévy-Khintchine representations.
Example 1 A characteristic function of a linear drift X; = ut has representation

éx, (1) = exp(tipu).

Both the Gaussian coefficient 0 and the Lévy measure L here equal to zero.

Example 2 A characteristic function of a Brownian Motion X; = cW; has representa-

tion 5 o
u‘o

2
In this case the Lévy measure L and the drift m are equal to zero.

ox,(u) = exp(— t). (2.1.5)

Example 3 A characteristic function of a Poisson process with a probability function of

increments over time interval of length t > 0 given by

efAh()\h)k

P(Xt_;,_h - Xt - k?) == ]{j'

, forA>0and k=0,1,... (2.1.6)

has the representation

e}

dx,(u) = exp (Mt(e™ — 1)) = exp (At / Oo(e"“f - 1)51(95)611;) ,

where 8y is the Dirac measure centered at 1. In this case the Lévy measure L(x) = 01(z).

The Gaussian coefficient o2 equals zero.

Example 4 A characteristic function of a Laplace distribution with a probability function

given by
I _l=—a

f(x)zge S
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where 8 € R and s > 0 are location and scale parameters, respectively, has representation
(cf. Kotz, Kozubowski €& Podgorski (2001))

é(u) = exp <iu9 + /_ N

(" —1— iuxlmgl(x))e*%

x|1dx>.
Example 5 A Gamma process v with a probability density function f.,(y) of increments
over interval of length t > 0, is given by

f% (y) = g%
where

N

(v),

)

forv >0,

(2.1.7)
ﬁaya—le—ﬁy

9a8(y) = ) (2.1.8)
15 a density function of Gamma distribution with a shape parameter o and scale parameter
B. The moment generating function (mgf) of X, is given by

mgf(u) = (1 +uw)

v

where u € R. The cumulant function ¥x,(u) is given by

vy, (u) = —é log(1 + uv)

t <§+u)
= ——log T
v v
and by Frullani equality (cf. Spiegel (1968) or (B.1.1)) in Appendiz[B.1) we have
0 oL _~(+uw)e
t er=e * —dx
U, (u) = —— =% -

o0 _Z
—uxr € v
- - =1 (7 —1)
vlimy,_,oe¥ — lim,_ e¥ 0

ve
Let us note that 1y, (u) allows a unique analytic extension onto complex plane. In the

following we will consider x,(u) as a function of a complex argument w € A. In particular
for a transformation u — —iu we get

. OO ux 6_%
Wx, (—iw) :t/_oo(e )
This implies that the Lévy measure is of the form
Ly, (2) = & (2.1.9)
v
and that the drift m equals to zero. There is no Gaussian component here and the gen-
erating triplet satisfies conditions of finite variation which will be discussed in Theorem
2111
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Remark 1 Another way to derive the Lévy measure of the Gamma process relies on

formula

limt ™! fx, (2) = I(z),

t—0
which can be found in Barndorff-Nielsen (2000)(formula 3.22). Indeed, we have

t_1 _z _z
€Trv e v e v
t = — t— 0.
th<,T) V%+1F(t i 1) T , as

14

In the next section we will discuss a VG process, which is a particular case of the
general Lévy process. The VG process has finite variation, where the finite variation is

defined in the following way.

Definition 6 Stochastic process X; has finite variation if with probability 1 its trajectories

are functions of finite variation, i.e.

P <supz X, — X, || < oo> —1, (2.1.10)
=1

where the supremum is taken over all partitions (t;),_, ., of any closed interval [a,b].

We have the following characterization for Lévy processes with finite variation.

Theorem 2 (Cont & Tankov (2004), Proposition 3.9). A Lévy process is of finite vari-

ation if and only if its generating triplet (o, L, m) satisfies the following conditions
o?=0

and
/ |z|L(dx) < oo. (2.1.11)
<1

2.2 Review of Lévy processes used for option pricing

2.2.1 Variance gamma process

A VG process has been first introduced in its symmetric form by Madan & Seneta (1990)
with application to model behavior stock returns. Carr et al. (1998) extended the VG

process onto non-symmetric distributions. The VG process can be constructed in one of

10
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the following three ways:

a. by subordinating a BM to a Gamma process in time parameter,

b. by specifying the density function of the process increments to have VG distribution,
or

c. by specifying the Lévy measure.

In the following subsections we will discuss each of these methods in detail.

Construction of the VG process by subordination

We can obtain the VG process as a Brownian motion with a randomly changed time, as
shown in Madan & Seneta (1990) and Carr et al. (1998)

Xt = Q’Yt + O-W’Yt’ (221)

where W, is a standard Brownian Motion independent of a Gamma process y; with pdf
and parameter v > 0. Subordination of the time parameter of the BM allows the
following interpretation. We assume that time between transactions of assets are random.
The lengths of such random increments can be modelled by a positive random process
called operational timd?] or chronometerf, and in the VG case it is a Gamma process.
The resulting process has three parameters ¢, 0 and v which correspond to the drift
and volatility of the BM, and to the variance rate of the Gamma process, respectively.
The VG process has no continuous component and hence it is called a pure-jump process.

These properties can be summarized in the following proposition.
Proposition 1 The VG process X; with three parameters 0 € R, o,v > 0 has a generating

triplet (0, Lx,0), where
0+ /2% + 62 0 — /2% + 62

1 _
Lx(dx) = > 1{z<0y €Xp = x| + 1m0y exp g z || |z tde,

and hence its Lévy-Khintchine representation for characteristic function reduces to

¢x,(u) = exp (t[iu,u + /

—00

[e.9]

(€ = L(an)] ),

ZFeller (1966) (p. 347)
3Barndorff-Nielsen, Maejima & Sato (2006) (p. 437)
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Lévy processes used in option pricing

where = — [, *Lx (dz).

Moreover, X, is a process with finite variation.

We refer to Appendix [A] for a sketch of the proof.

This approach to construction of VG processes implies an easy way to simulate its
paths. First we simulate a subordinator, which is a random time Gamma process. Then
based on the simulated subordinator we simulate a BM process. The simulation becomes
even simpler if we use following decomposition. Any function of finite variation can be
decomposed onto difference of two increasing functions. Carr et al. (1998)] showed that

we can represent the VG process as
Xt = 7151 - P)/t27

i.e. as a difference of two independent increasing Gamma processes v} and 72 with the

density functions for increments given by
and

(cf. [2.1.8]), respectively. The characteristic functions of these processes are given by

2
,u,kt

. Vg Cve
¢'yf(U) = (1 — ZUE) fOI' k’ = 1, 2,

and the characteristic function of the process X; is given by

ox,(u) = <1 —iu (ﬁ = 2) +u2£2) V ,
M1 M2 H1 2

4Tt is noted in Madan & Seneta (1990) (p. 518) that the symmetric VG process can be approximated
as a difference of two independent compound Poisson processes.

12



Lévy processes used in option pricing

where

1 202 0
N L R
H1 9 + + 27
1 202 0
— e
M2 9 + v 27

= ,U,%l/,

and
Uy = ,u%y

Hence, one can simulate the VG process by taking a difference of paths of two simulated

Gamma processes with proper parameters.

Construction of the VG process by specifying the density function of incre-

ments

The marginal probability distributions of the VG process are variance-mean mixtures of
Normal distributiong’] They are special cases of the Normal Variance-Mean distributions
(Barndorff-Nielsen et al. 1982) and General Normal Variance-Mean distributions (Seneta
& Tjetjep 2006). Kotz et al. (2001) classified VG distribution as a special case of class
of Asymmetric Generalized Laplace distributions, indicating a relation to classic Laplace
distributions. Assuming that the conditional probability distribution of a random vari-
able X given Y is N(a(b+Y),c*Y + d?) and that Y is a positive random variable, where
a, b, c, d are real numbers, we obtain a marginal probability distribution, referred to as the
GNVM probability distribution. In the case of probability distribution associated with
the VG process we have a = 6, c = ¢ > 0, d = 0, and the mixing distribution Y is a

Gamma distribution with parameter v > 0, from Example [5]

Proposition 2 If X, is a VG process then the pdf of increments Xy, — Xy over time of

STeichroew (1957) considered such symmetric density function expressed in terms of Modified Bessel
function of the second kind.

13



Lévy processes used in option pricing

length h > 0 1s given by

2e st 2 \F 2222 + 62)
_x. ()= K , 2.2.2
th+h Xt( ) V%\/%UF(%) 2§ s Al o2 ( )

where K,(+) is modified Bessel function of the second kz'ncﬂ

The density function fx,,,—x,(x) is decreasing for large x like a power-modified exponential

function, 1.e.

Ixin—x.(x) = const(0,0,v, h)|x|%’le(ﬁjm)w +o(1), asx— +oo, (2.2.3)
(222 407) %
where o = \/%, B =24 and const(0,0,v,h) = "ﬁf(h)

We refer to Appendix [A] for a proof.

Remark 2 Let us note that the VG process can be obtained as a limiling process of
truncated «-Stable processes (cf. Cont & Tankov (2004)). The Lévy density of the a-

Stable process is given by

A

B
= Wl(—oo,ﬂ)(x) + ﬁl(o,oo)(z)7 (2.2.4)

ls(x)

where A, B > 0 and « € (0,2], while Lévy density of truncated c-Stable process is given
by

A

lXt (l‘) = Wl(—mao) (x)601$ + x1+a1(0,oo) (Qf)

ngz’

where C7 > 0 and Cy < 0. If we pass with « — oo we get a Lévy density of the VG

process X; given by

A B
Ix,(x) = ml(,oo,o) (x)eclx + ;1(0,00)(:5)60”,

94/ﬁ92 9,4/ﬁ92 o
where A = B = %, C, = PNEHY nd Cy = vz (cf. Proposition . Conse-

o2 o2

quently, the tails of the Lévy density of VG process have a power-modified exponential
decay at infinity.

6 Seneta (2004) remarked about some ambiguity of terminology, and he refers after Erdélyi et al. (1953)
to the same function as a modified Bessel function of the third kind.
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Remark 3 The VG process is known as a so called pure-jump process. It can be also
interpreted as a Stochastic Volatility (SV) process. In this case the random wvolatility
equals o\/7;. A probability distribution of a subordinated BM with a drift is given by

Xt = 9’}/,5 + UW%,
which 1s equivalent to the distribution of

Xt = ‘9"}/15 + O'\/%Wt.

In the following Proposition we present an explicit form of the characteristic function
of the VG process X;.

Proposition 3 A characteristic function of the VG process is given by

1 v
Ox,(u) = (1 — by + 5021/u2) : (2.2.5)

and is single-valued and analytical in the strip Ax = {z € ClImz € (a,b)}, where

_ 6 02v+202 _ 0 02v+202
a= 25—/ andb= 5+ .

We refer to Appendix [A] for a proof.

Corollary 2 The moment generating function of the VG process is given by

1 —
mgfy,(u) = ox,(—iu) = (1 — ufv — 502yu2) ,
and is defined for Re(u) € (a,b).

Since all moments of the VG process exist (cf. Madan & Seneta (1990), Carr et al.

(1998)) the mean, variance, skewness and kurtosis are finite. We have

Proposition 4 The mean, variance, skewness and kurtosis of a length t increment of the

VG process are given by:

EXt == Ht,
VX, = (0°v+ o),

293 2 20
Skewness(X;) = v +30 31/15_ 7
(0%v + 02)2
Kurtosis(X;) = (30"0* + 660%va?)(t + 2v) + 30 (t + v)

[
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Lévy processes used in option pricing

In the case of the VG process we can find a and b of the strip Ax from the explicit form
of the characteristic function. Alternatively we can derive them from the Lévy measure
of X;. This comes with the help of the following theorem on exponential moments for

Lévy processes.

Theorem 3 (Sato (1999), Theorem 25.17). Let X, be a Lévy process with the generating
triplet (o, L,m). Let
C={ceR] e“L(dzr) < oo}.

|z|>1
Then the set C' is conver and contains the origin.
Moreover, ¢ € C if and only if Ee*®t < oo for some t > 0 or, equivalently, for every
t>0.

2.2.2 Other Lévy processes used for option pricing
Normal Inverse Gaussian (NIG) processes

Distribution of the NIG process increments is a GNVM distribution where mixing distri-
bution is Inverse Gaussian (IG). This distribution was used for pricing options by Prause
(1999).

If X, is a NIG process then pdf of increments over time length h > 0 is given by

ho K1 (an/(h6)? + (x — hp)?)
VO + (& — hu)?
where o, > 0, |5] < a and K;(-) is modified Bessel function of the second kind.

Rates of decrease of the pdf of increments of X; in tails are power-modified exponential,

Fxen—xi(2) = = exp(hdy/a? = 3 + Bz — hy) (2.2.6)

ie.
th+h—Xt (I) - COI’ISt(Oé, 67 57 Ky h) ((h5)2 + (I - h:UJ)Q)_% eﬁ(x_h'u)_a (h3)>+(z—hp)?

+o(1), asz — +oo,

_ Vahdexp((h)*/a?—p?)

where const(a, 3,9, i1, h) NG

The characteristic function of the NIG process increments is given by

exp(iutp + to/a? — (?)

exp(tdr/a? — (5 + iw))

¢Xt (U) =

16



Lévy processes used in option pricing

and is regular (single-valued and analytical) in the strip Ax = {z € C|Imz € (8 —«, 5+

a)}.

In contrast to VG process, NIG process in a process of infinite variation.

Generalized Hyperbolic processes

Distribution of increments of GH process are generalization of VG and NIG distributions.
The distribution has been used for pticing options by Prause (1999). This class also
contains Hyperbolic distribution used for option pricing by Eberlein & Keller (1995). GH
distribution is a GNVM distribution where mixing distribution is Generalized Inverse
Gaussian (GIG) distribution. The density of the Generalized Hyperbolic distribution is
given by

2
e e L L L NI )

where 1 € R and

0>0, |fl<a ifA>0,
d>0, |fl<a if A=0,
d>0, |f]<a if A<0,
and K denotes a modified Bessel function of the second kind. The characteristic function

of the GH process increments of size t is given by

wut (6y/a% — BOMK,(6+y/a2 — (B + iu) )
K\(6y/a? — 32){(5/a? — (B + iu)?)M’

and is analytical in the strip Ax = {z € C|Ilmz € (8 —«, f+«)}. GH process has infinite

ngt (u) =

variation, unless it is degenerated to a process of finite variation, for example VG process.

Finite Moment LogStable processes (FMLS)

Carr & Wu (2000) modified a-stable process for purpose of option pricing. They intro-
duced Finite Moment LogStable processes. The FMLS process does not have the density
function in a closed form. If X; is a FMLS process then the characteristic function of
increments over time length h > 0 is given by

Gx,yp—x.(U) = exp (z’u)\h — (iuo)*h sec(%)) :

17



Lévy processes used in option pricing

where A € R, 0 > 0, a € (1,2), and is analytical in the strip Ay = {z € C|Imz < 0}.

The FMLS processes have infinite variation.

18



Chapter 3
Option pricing for Lévy processes

In this chapter we present a framework for pricing of European options.

3.1 Risk-neutral market model for option pricing

We consider a riskless bond (B;)co,r) and a risky asset with a price process (St)icpo,11-
We denote a probability space by (Q, F, P) and by (F¢):cjo,r) an increasing family of sub
o-fields of F, representing the history of the asset S;. We shall refer to (B;,S;) as a

market model.

To price derivatives in such market models we need a definition of absence of ar-
bitrage. The absence of arbitrage means that one cannot make riskless profits, or, in
other words, that it is a fair market. The lack of arbitrage guarantees existence of the
so called risk-neutral or martingale measure. This is illustrated by Theorem {4| below,
called a Fundamental Theorem of Asset Pricing (cf. Harrison & Pliska (1981), Delbaen
& Schachermayer (1998), or Cont & Tankov (2004) (Proposition 9.2)).

Definition 7 A stochastic process M; is a martingale if
E(M|Fs) = M,, 0<s<t.

Theorem 4 The market model defined by a probability space (Q,]:,P), a riskless bond

(Bi)ieo,r) and asset prices (S)icjo.r) s arbitrage-free if and only if there exists an equiva-
lent probability measure Q (Q =~ P ) such that the discounted asset price process <%’;> o
tefo,T

15 a martingale with respect to the measure Q.
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Option pricing for Lévy processes

In an arbitrage free market, prices of all financial instruments can be computed as dis-
counted expectations of their terminal payoffs with respect to some risk-neutral measure
Q, for example for the price process we have (cf. Cont & Tankov (2004))

%i — E@ (g—im) for t < T. (3.1.1)
Since we do not assume that the price process S; has log-normal distribution the market
model can be incomplete. Let us recall that in incomplete markets there exist more than

one risk-neutral measure.

3.1.1 Exponential Lévy market model

We shall assume that the bond price process is of the form B, = " where the riskless

rate r > 0 is constant. We shall assume that X; follows a Lévy process and call
Sy = Spel X (3.1.2)

a geometric or exponential Lévy process. We shall refer to (B, S;) as an exponential Lévy
market model.

We assume that our underlying asset pays no dividends, or that the dividends are already
included into its pricdT}

The following theorem shows that the exponential Lévy model is arbitrage free.

Theorem 5 (Cont & Tankov (2004), Proposition 9.9). If the trajectories of a Lévy
process X; are neither increasing nor decreasing with probability 1, then the model given
by S, = "Xt is arbitrage free; i.e. there exists a probability measure Q equivalent to P

such that (e7"Sy)e0m) is a martingale with respect to Q.

The processes which are of our interest satisfy the assumptions of Theorem [5| For
example the VG processes, described in Chapter 2, are neither increasing nor decreasing
with probability 1. This comes, for example, from the decomposition of the VG process

into a difference of two increasing Gamma processes (Carr et al. 1998).

IFor example Lewis (2001) considers S; = Spe"t~4+X¢ where ¢ denotes the rate of the dividend. We
assume ¢ = 0, because we work with options, for which dividends are included in the price.
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Remark 4 In similar settings FEberlein € Jacod (1997), showed for some processes that
by choosing different equivalent risk-neutral measures one obtains prices of European op-
tions between (So — e " K)" and Sy, which lie in the interval of all possible European

option pricess.

3.1.2 Esscher transform and the Mean Martingale Correcting

Term

There are several methods existing in the literature for choosing the risk-neutral measure
for pricing options in incomplete markets. Different choices of the risk-neutral measure
may result in different financial instrument prices. The most popular are the Esscher Mar-
tingale Measure (ESSMM) (Eberlein & Keller (1995), Prause (1999), Boyarchenko & Lev-
endorskil (2002)), and the Mean Martingale Correcting Term (MMCT) method (Madan
& Seneta (1990), Madan & Milne (1991), Carr et al. (1998), Lewis (2001), Schoutens
(2003)).

We chose the MMCT as the method for obtaining a risk-neutral measure. Let us
note that Miyahara (2005) showed that the MMCT is a special case of the ESSMM. To
illustrate how the measure is introduced into the model, we first describe the ESSMM

method. For this purpose we start with the Radon-Nikodym Theorem.

Theorem 6 Radon-Nikodym Theorem. A probability measure P is absolutely continuous
with respect to a probability measure Q, if and only if there exists a nonnegative random
variable &, such that for any A € F,

P(A) = / £(w)Q(dw).

The random variable £ is called a Radon-Nikodym derivative and it is denoted by & = %.

The Esscher transform

Let X, be a Lévy process such that for some w € R we have Ee*Xt < oo and let
eth

We note that Z; > 0, EZ; = 1 and that Z; is a martingale with respect to the probability

measure P. The Essher transformed measure Q on F is defined by

Q(A) = E(14Zy), (3.1.4)
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for A € F. The measure Q is equivalent to P and Z,; is the Radon-Nikodym derivative
ap
@.
with respect to the measure Q (cf. Theorems {4| and . The martingale condition implies

To price financial instruments we need w, such that (e*”St)tE[O,T] is a martingale

EQ(e™"S,|Fy) = Sy, (3.1.5)
which by is equivalent to the condition
EQ(eM|Fy) = EQ () =1
and can be expressed in terms of a characteristic function of X; as
¢F,(—i) = 1. (3.1.6)

The characteristic function of X; with respect to the measure Q is given by

iUXt E
dQ

The following proposition gives the generating triplet for the Esscher transformed

Be%) g, (u i)
BevXe ¢y (—iw)

0%, (u) = EXe™Nt) = Be

)= (3.1.7)

process.

Proposition 5 (c¢f. Miyahara (2004)) If X; has a generating triplet (o, L, m), then the

Esscher transformed process has a generating triplet given by ((0Q)%, LR, m®Q), where
(0)? = %,
m® =m + wo? + /(e“’x — 1)iuxl <1 (x)L(dx),

R
LQ(dz) = e“"L(dx).

We refer to Appendix [A] for a proof.

The Mean Martingale Correcting Term

Miyahara (2005) noticed that the MMCT coincides with the ESSMM in the case when
X is a Wiener process. The generating triplet for the Wiener process W, is (1,0,0). The
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Esscher transformed triplet is given by (1,0,w). The characteristic function of W; with

respect to the transformed measure Q is given by

rr, (1) = dw, (u)e™. (3.1.8)
We calculate w from the martingale condition (3.1.6), i.e.

 log(ow(—i) 1

t 2’

which coincides with the classical Black-Scholes theory. If we apply transformation (|3.1.8])

to any Lévy process X;, then we get
qﬁ% (u) = ¢x,(u)e"" = Be™*tet (3.1.9)

and we obtain the MMCT change of measure. The martingale measure has been obtained

by shifting the process X; to X; + wt. Hence we can get exponential Lévy price process
S, = Spert Tt (3.1.10)

and the martingale condition

log(¢x,(—1))
-
In the following we shall refer to as to the MMCT.

(3.1.11)

3.2 Pricing of European options

In this section we discuss pricing of European options. As we noted in Section under
the martingale measure Q the value of a financial instrument is given by the discounted
expectation of its terminal payoff. For an European call option C(ty, T, K) issued at time
to with strike price K and maturity time 7T, the terminal payoff is (S — K)*, and the
price is given by

Clty, T, K) = e " T EQ((S; — K)*|E,). (3.2.1)

Hence, the pricing of the option can be done in two steps, by determining the distribution
of St and integrating (S — K)* with respect to this distribution. An alternative consists

in using the Fourier Transform if the characteristic function of X7 is known, as was first
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indirectly noted by Merton ( 1973)E|. We shall discuss this method in the next section. For
simplicity of notation we shall assume ¢y = 0.
In the Black-Scholes model, the risk-neutral model of an asset price was described by

the exponential of a Brownian motion with drift

S, = Spelr—T oW,
We replace the Brownian motion with drift by a Lévy process Xj.

Proposition 6 If X; is a Lévy process and

Sy = SperttXetut, (3.2.2)
where | .
w = _w’ (3.2.3)

then a discounted pricing process e~ Sy is a martingale under measure Q given by (3.1.4)).

We refer to Appendix [A] for a proof.

The simplest method to compute the European option price, where the log-return pro-
cess is modelled by a subordinated BM is to integrate the Black-Scholes price conditioned
on the random time increments. For example for the VG process we integrate the
conditioned BS price formula with respect to the probability distribution of the Gamma
process 7, as it has been proposed by Madan & Seneta (1990). For the VG case with

parameters 0, o, v we have the following proposition.

Proposition 7 Assumed that S; is given by (3.2.2)), where X; is a VG process with pa-
rameters (0,0,v). Let C(0,T, K) be the current price of an European call option with a

spot price Sy, a time to maturity T', a strike price K and a risk neutral rate r. Then

COTK) = [ (S O Ey(dily) - TR F(daly) fr (),
0

2Merton (1973) p.167 and footnote 49.
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where Fy(d|y) = E(1iz<q|Yr = y) is the conditional Normal cdf with variance y, Z is a

standard Normal variable, f.,.(y) is a density function of the distribution of the Gamma

increments Y over time of length T (cf. (2.1.7)),
B log 52 + (r + w)T + Oy
oy ’
d1 = d2 + U\/g,

da

and
1 1
= —log(1 — Ov — ~o*v).
w Vog( v 20)

We refer to Appendix [A] for a proof.

3.3 Option pricing based on characteristic functions

Carr et al. (1998) derived a formula for the European Call option in a classical form for
the VG process. Bakshi & Madan (2000) generalized the formula and showed that the
value of the European Call option with strike price K and maturity 7" at time 0 is given
by

C(0,T,K) =115y — Ke "Iy,

where {1 g o K )
I, — _+_/ ReSXp(—iulog K)o(u —i)
2 7 iup(—1)
and 1 1 [ ulog K
1=l [ peoatcinslOo)
2 7 w

and where ¢(u) is the characteristic function of the log of the stock price process log(St).

Carr & Madan (1999) pointed out some numerical drawbacks, related to the singu-
larities at zero in the above formula. They derived a new pricing method based on the
characteristic functio of the log of the stock price process log(St) which was next gener-

alized by Lewis (2001). Let us note that based on a similar Laplace transform method and

3Heston (1993) was the first one who derived formula for price of an European option based on
characteristic function. However, he assumed a different stochastic process to model log-returns. His
model does not imply i.i.d. logarithmic increments.
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Fourier transform method Raible (2000) and Borovkov & Novikov (2002), respectively,

derived other formulas for the European option prices. Here we present the Lewis method.

Let us recall that the characteristic function of X¢ for v € C and ¢ < Imu < b is
defined as ¢y, (u) = E(e™XT). Since

¢XT (0) =1
by (3.2.2) and by the martingale condition (3.1.5)) we get

So = EX(e "' Sr|Fo) = Sodxy (—i)
and we have

¢XT(_i) = 1.

Hence the characteristic function exists at both points u = 0 and uv = —i.

By Theorem [J] in Appendix [B.2] since ¢x, (u) is analytical in the neighborhood of
u = 0, it is also analytical in a horizontal strip, which is either a whole complex plane or
it has two horizontal boundary lines, and is of the form A = {z € C|Im(z) € (a,b)}. Since
the characteristic function exists at point —i the strip has to include this point. Hence,
a<-—1landb>0.

For example for the VG process the horizontal boundary lines are given by (cf. Propo-

sition ,

and

0 102y + 202
b= —+ 4/ ——m8—.
o2 vot

Moreover, Theorem @ in Appendix shows that the characteristic function ¢x.,.(u)
is analytic in the strip A, i.e. between these two horizontal boundary lines.

The following theorem gives a price of an European option with a payoff function

H(z). The resulting formula (3.3.1)) is based on the characteristic function ¢x..(u) of Xr.
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Theorem 7 Lewis (2001) (Theorem 3.2)

Let C(0,T,K) be an arbitrage free price of a European option with a payoff function
H(log S7) > 0, where St is the value of the stock at expiry T'. Assume that:

a. a Fourier transform f](z) of H(x) exists in the strip Ay,

b. S, = Spe"™ Y, where Y, is a Lévy process and et is a martingale,

c. Yr has a characteristic function ¢y,.(z) analytic and one-valued in a strip Ay, = {z €
C:Im(z) € (a,b)}, where a < —1 and b > 0.

Under assumptions a-c, if v +iv € Ac = AgNA3y,, for some v € R then the option price
s given by
—rT

C(0,T,K) = e% / et logSotrD) b ( (1 + i) H (x + iv)da. (3.3.1)

—00

We refer to Appendix [A] for a sketch of the proof of Theorem [7]

The following corollary gives a price of a European Call option.

Corollary 3 Under the assumptions of Theorem[7, and assuming that:
a. H(z) = (¢ — K)* is a payoff function of a Call option,

b. we can integrate along a real line in a complex plane {x — %|x > 0},
c. Yo = X+ wt, where w is determined by the martingale condition,

the option price is given by

™

SK rT wT o0 . . d
CO.T.K) =5~ V2R F ¥ [T pe [e-m<logio+rT+wT>¢XT<—u—3) -
0

We refer to Appendix [A] for a sketch of the proof of Corollary [3]
We shall refer to formula (3.3.2) as to the CML formula. Let us note that to calculate
price of an European Put option P(0,7, K') we use the put-call parity relation

P00, T,K)=C(0,T,K) — Sy + Ke™"".
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Chapter 4

Option pricing based on empirical

characteristic functions

In this chapter we depart from the typical parametric approach in modelling the distri-
bution of the underlying price process. We use instead a nonparametric approach in the
CML formula by using the Empirical Characteristic Function (ECF) to price European
options. We consider several modifications of this model based on the ECF. In particular,
we introduce models with implied parameters p! (or A} ) and w} and compare results with
those obtained by applying the CML method in the case of a parametric VG distribution
of log-returns.

Nonparametric approaches have already been used in option pricing. Approximation
of risk-neutral density has been done through a tree-based method, cf. Cox & Rubin-
stein (1979), Rubinstein (1994), Jackwerth (1999). Spline method has been proposed by
Shimko (1993) as an extension of Breeden & Litzenberger (1978) approximation. This
approach later has been generalized in Ait-Sahalia & Lo (1998) where the nonparametric
kernel regression has been used. Another approach is based on Edgeworth expansion by
Jarrow & Rudd (1982), and approximation of risk-neutral density by Hermite polynomi-
als, cf. Madan & Milne (1994) and Schlogl (2007).

The chapter is organized in the following way. In Section we recall the definition
of the Empirical Characteristic Function and its properties. Next, we extend a result of
Csorg6 & Totik (1983) on a uniform consistency of the ECF on the real line onto a strip
in the complex plane. We introduce our nonparametric model and show convergence with

probability 1 of our ECF pricing formula to the original one. In Section we spec-
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ify the five models considered in the project, in the cases with and without the implied

parameters.

4.1 Approximate option pricing using empirical char-
acteristic functions

Let us assume that Xy, ..., X, represent independent identically distributed random vari-
ables with a cumulative distribution function (CDF) F(z) and a characteristic function
¢(u), where u € A C C and where A is a strip of the form A = {z € C|Im(z) € (a,b)} for
some a,b € R.

Moreover, we assume that the characteristic function exists at imaginary points —y — %

and —i, where y > 0, i.e. ¢(—y —35) = Ee~wX+3 < o0 and ¢(—i) = EeX < o0.

The ECF ggn(u) is given by

where u € A.
By the Strong Law of Large Numbers, the ECF is a consistent estimator of the char-

acteristic function at each point v € A C C. We note this in the following lemma.

Lemma 2 Foranyx € R andv € A, where A is a strip of analyticity of the characteristic

function we have
P(lim bl + i) :¢(a;+w)) =1, (4.1.1)

n—oo

We refer to Appendix [A] for a proof.
This extends to a uniform consistency on closed intervals [—U, U] on the real line:

P(lim sup |, (u) — ofu)] = 0) =1,

" u|<U

cf. Feuerverger & Mureika (1977), or even to a uniform consistency on an increasing
intervals of the form [—U,, U,], where U, = exp(n/G,), where G,, — o0, cf. Csorg6 &
Totik (1983),

P( lim sup |on(u) — ¢(u)| = O) = 1.
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The following proposition extends the result of Csorgé & Totik (1983) for uniform
consistency on increasing sequence of intervals on the real line. We show that the strong

consistency is valid in the strip of analyticity of the characteristic function.

Proposition 8 A characteristic function ¢(u) is analytical in a strip

A={z€eClIm(z) € (a,b)}.

If
1
tim 8% _ (4.1.2)
n—oo n
then
P<lim sup |¢A5n(:v+w) — ¢z +iv)| :O> =1, (4.1.3)

o0 |2|<Un

where v € (a,b).

We refer to Appendix [A] for a proof.
Before we introduce our pricing formula we have some preliminary remarks. We as-

sume that time increment between our observations is A = i.e. we have daily log-

1
3657
returnﬂ. Size of time increment between the time when option is issued, and the time
when option expiries is T'= p x A, where p is the number of days to expiration. Assum-
ing that log-returns are i.i.d. random variables we get, by the property of characteristic

function that
Pxr(u) = (dx, ()" (4.1.4)

Hence we can get the characteristic function of log-returns on long interval 7" by knowing
the characteristic function of log-returns on a shorter interval A. This is particularly useful

in working with historical data. We can estimate an ECF for log-returns by applying
(4.1.4) to an ECF of log-returns on short time intervals.

Orn(u) = (qﬁn(u))p, (4.1.5)

IThe most popular conventions are 365 or 252 working days in a year. We chose the first convention.
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where p = % and én(u) is an ECF of log-returns on interval of length A. Hence ¢2Tn(u) is
an estimator of ¢x..(u). We consider pricing of an European option, with time to maturity

T and strike price K, by replacing formula (3.3.2) with its empirical version

~

Cn(0,T, K; Wy, p) =

v SOK —zL @nT = —iu(l S0 4T T) 1 i du
S() — - e 2 2 /0 Re |e 08 ¥ w ¢T7n(—u — 5) w2t %, (416)

where w,, is the empirical version of the MMCT w, given by

B log (én(_z))
A

~

Wy =

(4.1.7)

and where gﬁTn(u) is given by 1)
In Lemma 3] in the following remarks and in Proposition [9] we provide a formal justi-

fication of our method.

Lemma 3 The integral in formula 18 finite.

We refer to Appendix [A]for a proof.

Remark 5 In formula we have to take into consideration a convergence of a

sequence qgn(—z) to the value of the true characteristic function at point —i. The condition
d(—i) < o0 (4.1.8)

holds for most probability distributions considered in the financial literature concerned with
option pricing. In particular, it is met for probability distributions listed in Section[2.2.3,
For example for the VG distribution of log-returns the strip of analyticity of the char-

acteristic function is given by

0 [Pvr202 0 [P0+ 200
AX— {zEC|]m(Z)E (F_ T’;_’_ ol )}7

(cf. Proposition @) The strip does not depend on size of the time increment between
log returns.  Carr et al. (1998) obtained the following estimates of parameters of the
VG distribution of log-returns of SEIP500 index, 6 = 0.0591,0 = 0.1172,v = 0.002, for
which the strip is Ax = {z € C|Im(z) € (—27.3242,35.9294)}. Condition does
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not hold for all values of the four parameters a—Stable distributions. Carr & Wu (2000)
considered a subclass of that class of distributions by keeping some parameters fized, hence
achieving that condition (4.1.8]) was met. They call their class Finite Moment LogStableﬂ
distributions.

As we already noted in Section the existence and analyticity of a characteristic
function at points 0 and —i implies the existence and analyticity of the characteristic

function in a horizontal strip
Ax ={z € C|Im(z) € (a,b)},

where a < —1 and b > 0. To verify if that assumption is met for probability distribu-
tions considered in the present research, we estimated the strip for the VG process based
on options data. Using the Mazimum Likelihood Estimation method we obtained triplets
(0,0,v) of parameters for each day from our data set, i.e. {(0y, oy, Vk)}kzl,.--,243E|' Then
we calculated the horizontal boundaries for the strip, i.e. {(ax,bk)}p_y o435 Figure
illustrates how the strip changes over time. From the plot we observed that points 0 and
—i are always included in the strip of the VG process. Although we are not tied to the VG
process, the above example justifies our confidence that the assumption on finitness of the

exponential moments are fulfilled for probability distributions of the DAX log-returns.

Remark 6 Pricing options using formula allows the following interpretation re-
lated to the classical method of pricing options. Assume that the probability distribution
of log-returns of the price process Sy belongs to a certain parametric family. We can
first estimate parameters of the risk-neutral distribution using some method based on the
EC’[ﬁ. Then, we can use the estimated parameters in formula to obtain prices of
options. This procedure consists of two steps. Our procedure consists of only one step, we
do not estimate parameters of the distribution, but instead we use estimator of the char-
acteristic function. Both approaches have a common drawback. Because we do not use

historical option data, but only historical data of the underlying price process, it is difficult

2Cf. Section .

3We consider 243 days in our options database, between the 1st of June 2006 and the 17th of May
2007.

4For example, we can estimate parameters of the distribution by solving a set of equations which
involved ECF, cf. Feuerverger € McDunnough (1981)
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Figure 4.1: Estimated strip for VG process, using MLE, for ODAX options between the
1st of June 2006 and the 17th of May 2007, (ay - blue line, by - red line).

to obtain option prices close to the real ones. This also shows discrepancy between the
risk-neutral measure implied by real option prices and the one implied by the underlying

price process.

Remark 7 Instead of using the ECF in formula (3.3.2)) we could alternatively choose to

integrate the payoff against the empirical cumulative distribution function
et / (Sy — K)YdE! (x),
R
1

where Fl (x) = 37" 11x;<ay(2). However, this approach has two serious drawbacks.
First, such an integral is harder to evaluate numerically. For example, if we were to
approzimate the cdf FT(z) of the distribution of the terminal payoff, we would need to
take a p-fold convolution of the empirical cdfs F~(x), where p is the number of days to
option expiration. In the case of the ECF we just take it to the power p, using properties
of characteristic functions. Secondly, it is also not clear how to incorporate change of

measure through MMCT in such a case.
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Remark 8 The assumption on independent identically distributed log-returns is crucial
for our approach. For not i.i.d. log-returns, QASTn(u) in the formula 1s not longer
an estimator of ¢x,.(u) in the formula (3.3.2)). There exist option pricing models based on
semimartingales for which increments of the stochastic process are not i.i.d. The simplest
examples of such models are the SV model (Heston 1993), where the price process is
modelled as a C’Hﬂ process, or its extension like a jump-diffusion SV (Bates 1996). More
advanced processes of this type for option pricing were used by Barndorff-Nielsen et al.
(2002) and Carr et al. (2003). They include pure jump processes. These models do not
imply independent logarithmic increments.

We also mention exponential additive processes used for option pricing in Carr, Geman,
Madan € Yor (2007). These processes satisfy the same assumption as Lévy processes,
except the one on stationary increments. Hence, in such models the logarithmic increments
can be not identically distributed. Our assumption ezludes all of these processes and our

method 1s not applicable in such models.

Remark 9 Approximations obtained from our approach can be compared to the classical
Black-Scholes model, where deviations from the model are described by a so called implied
volatility. In the present case the implied parameters w?, pf and (w},pk) play similar
role as the implied volatility in the Black-Scholes model. Clearly, this shows that some
assumptions of our model, like i.i.d., may be violated and that more sophisticated, like
Heston (1993), models are needed to precisely describe the market behaviour. However,
i such cases only very time consuming Monte-Carlo simulation technics are available to
date to calibrate the models. Hence, our approach seems to be a reasonable compromise
between numerical sophistication and perfect accuracy of modeling of market behaviour.
In particular, in Chapter 5 we observe that the parameters, obtained through daily cali-
bration to real option prices, are changing with time. In Section 5 of Chapter 5 we model
the implied parameters from our model using a simple regression-time-series approach, a

process which is much faster than Monte-Carlo simulations.

The following proposition shows convergence of our formula (4.1.6) to the original

formula (3.3.2)).

5 Coz-Ingersoll-Ross.
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Proposition 9 We have
P(hm G0, T, K1, p) = C(0, T, K)) — 1. (4.1.9)

We refer to Appendix [A] for a proof.

Formula includes parameters w and p, which in the case of perfect modelling
are completely specified, i.e. w is given by and p is the number of days to option
expiry. In our case it is natural to estimate w by w, given by (£.1.7). However, though
model relying on modelling real log-returns by Lévy processes captures the main
features of the behaviour of real options, yet it is not perfect. We suggest to consider
w and/or p as parameters and fit them to the historical option prices. The obtained
parameters w, and p;, respectively, are called implied because the real option prices
are used in fitting their optimal values. Let us note that the implied parameters are
functions of both historical log-returns and of historical option prices, while the empirical
w, depends only on historical log-returns of the underlying price process.

Accepting replacement of the characteristic function in (3.3.2) with its empirical ver-
sion we consider the following cases. In the first model we estimate w = w,, by Nonlinear
Least Squares method using real option prices, and denote it by w}. We call w} an implied
MMCT (or implied w). In another model we allow p to be a parameter which can be
fitted to the historical option prices. We denote the fitted parameter p;, and we call it
implied p. We refer to the number of days to option expiration as the true p. Since time

to expiration 7' is related to p by
T

P= =,
A
it is natural to keep T fixed and to have implied the time length of increments A’. Hence,

we have the following relation
T

«_ 2 4.1.10
P A ( )

used in the project. Let us note that one can also consider a model, where T is implied
and A fixed, however this is beyond the scope of the present project. In the next section
we discuss the resulting models in details.

4.2 Five models for option pricing

As we discussed in Section one can allow w and p to become implied parameters of

the model. We use the Nonlinear Least Squares method to obtain the best fitting values
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w; and p) of w and p, respectively. We consider the following four models using the
ECF formula (4.1.6), and the fifth model where like Carr & Madan (1999), we use the
CML formula (3.3.2). By C(0,T, K) we denote the real option price at time zero with

expiration at time 7', and strike price K.

4.2.1 Model 1: one estimated parameter w,

Our first model can be labelled as Empirical ECF pricing.
We price options by formula (4.1.6]), where we use the empirical version of MMCT, i.e.

b log(@u(=)
n A Y

and the true value p of the number of days to option expiry.

4.2.2 Model 2: estimated parameter w, and implied A}

The second of our model is the ECF pricing model (4.1.6) with empirical w, given by
(4.1.7) and implied p;, where

T

~ _ 2
P = 5 = argmingy > {Ca(0, T Kb, p) = CO,T KD |
n l

and where [ indexes the set of the considered strikes.

Model 2 loses the interpretation of p as a number of days to option expiry. Change
of p affects the ECF in ngﬁTn(u) but is not directly related to the maturity, because we
do not change T in the formula [£.1.6] Discrepancy between p and p} can be interpreted
as a change of speed of time due to other factors than the historical log-returns and not

included explicitely in the model.

4.2.3 Model 3: implied w;

The third model considered in the project is the ECF pricing model with implied

ES

w? (i.e. implied MMCT w) and and the true expiry p (in days), where

n

. _ 2
Wy, = argming, Z {C’n(O,T, Kj;w,p)—C(0,T, Kl)} ,
I

36



Option pricing based on empirical characteristic functions

and where [ indexes the set of the considered strikes.

In Model 3 we lose interpretation of finding empirically the MMCT w. We do not
need to assume that log-returns follow specific subclass of Lévy processes to satisfy the
assumption ¢(—i) < oco. However we still need the assumption that characteristic function
%, where y > 0. Discrepancy between w; and w, can be also
interpreted as adjusting approximate model to the real process of option pricing.

exists at points —y —

4.2.4 Model 4: implied w; and implied A’

The fourth model is the ECF pricing model with both implied w? (i.e. implied MMCT
w) and p} (i.e. implied p), where

T ) R _ 2
(w;;vp;:, = A* ) = argmln{w,p} Z {Cn(()? T7 Kl7 wap) - C(O, T7 Kl)} )
n l

and where [ indexes the set of the considered strikes.

In Model 4 we have two parameters to bring model closer to real process of option
pricing. Similarly, as for Model 3 we still need the assumption that characteristic function
exists at points —y — %, where y > 0.

Models 3 and 4 give us a class of curves which fit option prices, parameterized by w; and

by w; and p;, respectively.

4.2.5 Model 5: a Variance Gamma model with estimated pa-

rameters

The CML pricing with implied parameters of the VG distribution. For a comparison with
a parametric model we also calibrate the CML pricing model, like Carr & Madan (1999),

in the case of three parameters of the VG distribution.

(6, 0%, v") = argming,, ,, Y {C(0,T, K;) — C(0,T, KV,
l

where [ indexes over strikes.

To obtain prices of options we used adaptive quadrature, and numerical nonlinear

Least Square minimization functions from MATLAB® Optimization Toolbox.
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Remark 10 [t is common to use weighting factors, which depend on liquidity, or trans-
formations such as logarithm or implied volatilities of prices using the non-linear Least
Squares minimization in the calibration of option prices. We used non weighted non linear
Least Squares minimization. QOur approach may result in larger percentage errors espe-
cially for far out-of-the-money options, but those options are of less interest for investors

because of their smaller liquidity. In fitting the implied parameters we used only the most

liquid options.
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Chapter 5

Performance of the five models on

historical data

In the present chapter we report results of fitting and calibrating of the five models
introduced in Chapter 4. Let us recall that we use terms fitting or estimating when
parameters of the model are chosen in the best way, according to the chosen criterion,
to comply with the historical DAX log-retuns. Whenever the historical option prices are
used we use the term calibration. If both historical DAX log-returns and historical option
prices are used to determine the model parameters we refer to estimation (fitting) and
calibration.

In Section we describe our data sets. In Section we present our verification

of the numerical accuracy of evaluation of integrals in in the project. In Section
[5.3] we present results of estimation and calibration of our models. In Section we
report on pricing less liquid options using the parameters obtained from the liquid ones.
In Section we model the time behaviour of the obtained parameters by simple times
series methods. We forecast the parameters of the models and price the options using the
forecasted parameters. In this way we explore if the fitted parameters can be useful, eg.
for market makers.
We use the following format for presenting numbers. For numbers between —0.0001
and 0.0001 we use floating point format, with four digits after the decimal point, e.g.
7.5477e-08. For other numbers we use scaled fixed point format, with four digits after the
decimal point, e.g. 485.3104.
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5.1 The underlying DAX index and ODAX options
data

We test performance of our models on historical data consisting of Deutsche Boerse AG
DAX index (XETRA: GDAXI, ISINE]: DE0008469008) and European Call Options ODAX
(ISIN: DE0008469495) written on the index, and traded on Eurex. The options data
include daily close price, strike price, and the time to maturity. The strike prices are set
at 50 points space intervals. The options have been recorded on Eurex exchange between
the 1st of June 2006 and the 17th of May 2007 (243 days). The number of maturities
change over time and range from 1 to 6 of the closest ones to expiration. We used
the data obtained from the Securities Industry Research Centre of Asia-Pacific (SIRCA
Ltd., http://www.sirca.org.au). Interest rates for this period have been taken from the
European Central Bank web site (http://www.ecb.int/). From the options data set we
chose only the most traded options, i.e. the 3 or 4 strikes nearest to the spot price. There

were 2985 such options in our data set.

5.2 Precision of the numerical integration

Prior to reporting on performance of our models we present our check of the precision of
the numerical integration in (4.1.6)) which we use in our project. The error of numerical
integration has two components. The first error results from integrating the integrand in
the formula over a finite interval [0, U] while in the formula the the integration
region is [0,00). The second error comes from a choice of a numerical method for inte-
gration on interval [0, U]. We consider these two errors separately. They do not exceed
4.0e-03 and 3.0e-08, respectively.

Hnternational Securities Identification Number.
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5.2.1 Integration cut-off error

By evaluation of the last integral in ((A.0.3)) from the cutoff point U to the infinity we can

estimate the integration error er(U).

d ~ « .
5 _1: T =4M <lim arctan(u) — arctan(?T)) = 2Mm — 4M arctan(2U),
u v U—00

er(U) < QM/
U

where M is between 0.9998 and 1.0009 for the whole considered period.

In our numerical procedure we set U = 512. This gives er(512) < 0.004 for any value of
M for the whole year. This error is much larger than the error coming from the integration
between zero and U. For example from Table we can read that for Gauss-Lobatto
quadrature the error does not exceed 3.0e-07. We found that for all considered options

the magnitude of errors was of similar order.

5.2.2 Error of the numerical integration method

From Figure we can spot some ”outliers” among the implied p’. We chosed the one
the most away from the regression line. Then we checked the numerical precision of the
integration method used to get this value. We chosed one option with the smallest strike,
for which the price is available. For integration we used three different methods available in
MATLAB®: the trapezoidal rule (with spacing 0.1), the adaptive Simpson quadrature,
and the adaptive Gauss-Lobatto quadrature (for calibration we used the third one). We
report the results in Table . We integrate the integrand in formula from 0 to
the cutoff point which is one of the 32 multiples of 16, i.e. ranging from 16,32,...,512.
The date when the option price is chosen is the 30th of June 2006, the spot price is
So = 5683.31, the strike price is K = 5600, the interest rate is » = 0.0375, the maturity
is 262 days, the empirical w, = —0.1251 and the implied p} = 920.12. The first column
contains the right hand side cutoffs. The columns 2nd, 4th and 6th show prices computed
with the use of the three methods for numerical integration, respectively. The columns
3rd, 5th and 7th show differences between consecutive prices.

We observe that differences between the maximum price and the minimum price do not

exceed 2.0e-06 for all methods of integration, what gives a satisfactory accuracy for our

2trapz.m, quad.m and quadl.m, respectively.
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method. Variations of errors for different levels of cutoffs are caused by the oscillatory
behaviour of the ECF, and they do not exceed 1.0e-05.

For the estimation procedure for one year of options data we used the right hand side
cutoff U = 512.

5.3 Estimation and calibration of the models

5.3.1 Measures of accuracy of option pricing for Models 1-5

In Tables we report the following model pricing errors.
The Mean Absolute Error (MAE):

N
1 _ ~
N Z ’C(O,T, Kl) - Cn<07T7 Kl7w7p) ’

=1

the relative MAE:
N
Z\ (0,7, K2) = Cul0, T, K w,p)| /IC(0, T, Ko,

the Root Mean Square Error (RMSE):

N . 2
=1

2| =

the relative RMSE:

%ZNJ [(C(O,T, i) — (0, T, Kl;w,p)> /C(0,T, Kz)r,

where NN is the number of option prices depending on the considered case. For interpre-
tation of other symbols we refer to Sections [4.1] and [4.2]

5.3.2 Examples of calibration based on one-day data

First, for illustration, we present in Figure [5.1] results of option pricing using models 1-4,
for the 1st of June 2006. We used 120 prior days to calculate the ECF, i.e. we take
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Cutoff | Trapez. Diff. Simpson Diff. Lob.-Gauss Diff.

16 485.3104 | -2.1702E-07 | 485.3104 | 7.5477E-08 485.3104 -2.1702E-07
32 485.3104 | -1.8117E-09 | 485.3104 | -2.3979E-07 485.3104 -1.8117E-09
48 485.3104 | 1.3642E-11 | 485.3104 | -1.4278E-07 485.3104 1.3642E-11
64 485.3104 | 1.2551E-10 | 485.3104 | 1.9693E-07 485.3104 1.2551E-10
80 485.3104 | -8.9130E-11 | 485.3104 | -6.8918E-08 485.3104 -8.9130E-11
96 485.3104 | 4.6384E-11 | 485.3104 | 1.5937E-06 485.3104 4.6384E-11
112 485.3104 | -1.3097E-10 | 485.3104 | -1.6275E-06 485.3104 -1.3097E-10
128 485.3104 | 1.0914E-10 | 485.3104 | 1.0227E-07 485.3104 1.0914E-10
144 485.3104 | 1.8190E-11 | 485.3104 | 4.3383E-10 485.3104 1.8190E-11
160 485.3104 | 2.2944E-07 | 485.3104 | 3.7653E-09 485.3104 2.2944FE-07
176 485.3104 | -2.5509E-07 | 485.3104 | -7.2694E-08 485.3104 -2.5509E-07
192 485.3104 | 2.2766E-08 | 485.3104 | 4.9352E-08 485.3104 2.2766E-08
208 485.3104 | 2.6603E-09 | 485.3104 | 1.5444E-06 485.3104 2.6603E-09
224 485.3104 | 2.0373E-10 | 485.3104 | -1.4318E-06 485.3104 2.0373E-10
240 485.3104 | -1.8736E-10 | 485.3104 | -1.9573E-07 485.3104 -1.8736E-10
256 485.3104 | 2.0009E-11 | 485.3104 | 8.6593E-08 485.3104 2.0009E-11
272 485.3104 | 5.2751E-11 | 485.3104 | 1.5679E-08 485.3104 5.2751E-11
288 485.3104 | 1.6007E-10 | 485.3104 | 3.5028E-07 485.3104 1.6007E-10
304 485.3104 | -2.8740E-10 | 485.3104 | -3.4985E-07 485.3104 -2.8740E-10
320 485.3104 | 3.5780E-09 | 485.3104 | -2.2185E-08 485.3104 3.5780E-09
336 485.3104 | -2.0100E-09 | 485.3104 | 2.5951E-08 485.3104 -2.0100E-09
352 485.3104 | -5.8481E-10 | 485.3104 | -1.8847E-08 485.3104 -5.8481E-10
368 485.3104 | -5.5115E-10 | 485.3104 | -5.3848E-08 485.3104 -5.5115E-10
384 485.3104 | -8.8221E-11 | 485.3104 | 6.9225E-07 485.3104 -8.8221E-11
400 485.3104 | -3.7744E-10 | 485.3104 | -6.4289E-07 485.3104 -3.7744E-10
416 485.3104 | 1.5916E-10 | 485.3104 | -5.8090E-08 485.3104 1.5916E-10
432 485.3104 | 4.5475E-11 | 485.3104 | 1.6025E-06 485.3104 4.5475E-11
448 485.3104 | 9.6406E-11 | 485.3104 | -3.1568E-07 485.3104 9.6406E-11
464 485.3104 | 1.1823E-11 | 485.3104 | -1.1161E-06 485.3104 1.1823E-11
480 485.3104 | -2.4374E-10 | 485.3104 | -1.8792E-07 485.3104 -2.4374E-10
496 485.3104 | 2.1646E-10 | 485.3104 | -7.8171E-09 485.3104 2.1646E-10
512 485.3104 485.3104 485.3104

Table 5.1: Numerical integration errors and prices of option for the 30th of June 2006,
where p; = 920.12.
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lego(U) and w9y given by . The spot price was Sy = 5707.59, the interest rate was
r = 0.035. We used four maturities with 4 strikes for each maturity. Strikes are presented
on the horizontal axes and prices of options are on the vertical axis. The black line is
the option payoff. Rectangles denote the real ODAX option prices and circles denote the
model prices. We considered the following maturities: 18, 53,109 and 200 days to options

expirations.
M O D E L 1 CDAX Call prices on 2006-06-01 M o D E I— 2 ODAX Call prices on 2006-06-01
450 T T 450 T T
O CODAX prices J; O ODAXprices
4004 © ECFprices H 400% © ECFprices H
g Payoff -} Payoff
350| g 1 350+ g 4
u [i}
300l y 3008 1
@ E @ U
2 2501 B 1 2 2501 a
a a
2 ol 5 ol g
‘& 200 2 200
> 2] <] 2]
150 8 150 a 1
o] ] ]
1001 a R 100 <] b
a8 =]
50 \ ? ” \ T
0 L 0 L
5650 5700 5750 5800 5650 5700 5750 5800
Strike Strike
M O D E L 3 ODAX Call prices on 2006-06-01 M O D E L 4 QODAX Call prices on 2006-06-01
450 T T 450 T T
J; O ODAX prices J, O ODAX prices
400 ©  ECFprices H 400 F ©  ECFprices H
L] Payoff a Payoff
350 2 1 350} o
[0} n
3008 1 3008
2 e 3 .
£ 2501 a £ 2501 o
5 B @ 5 m 0
| 200F |8 200F
S -] & a
150 . 9 150 B
[ -] ] n
100 A B 100 =]
o o
50 \ T K \ T
0 L 0 L
5650 5700 5750 5800 5650 5700 5750 5800
Strike Strike

Figure 5.1: Prices of options obtained by Models 1-4, for the 1st June 2006.

In Table we present the results of ODAX Call option pricing, the implied pa-
rameters and errors. We consider four models based on the ECF. Days to expiry p are

presented in the 2nd column, the 3rd column contains values p} of the implied days to ex-
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piry, whenever it is applicable. The 4th column is filled by the same value of the empirical
MMCT 1, and the 5th column contains values of the implied MMCTs wy,. The last two
columns report the relative errors for each maturity: the 6th column contains the relative
MAE between the historical option prices and the ones obtained from our modelling while
the 7th column contains the relative RMSE of the historical and modelled option prices.
We observe decreasing errors as we calibrate more parameters.

We observe that for Model 2 the implied p; are smaller than the true ones. This is not
the case for Model 4, where the implied p}, are larger than the true ones. For Model 3 the

implied w; are closer to the empirical w,, than for Model 4.

5.3.3 Calibration based on one-year data

We consider all five models and one year of the ODAX Call options data. We price Call
options for Model 1 for one year, calibrate and price the Call options using models 2-5.
The calibration was done for each set of 3 to 4 strikes with the same maturity, between
the 1st of June 2006 and the 17th of May 2007.

Table contains measurements of all errors. In rows we present the MAE, the relative
MAE, the RMSE and the relative RMSE, respectively. The number of considered Call
options equals 2985. We observe the largest errors for Model 1 which is based only on a
nonparametric estimation of the characteristic function of log-returns of DAX index and
is not using any historical Call options for calibration. For Models 2 and 3, where we
calibrate one parameter in each model, the errors of pricing are, not surpricingly, smaller
than for Model 1. The difference is clearly seen in the case of the relative MAE, where
the error was reduced from almost 40 percent to about 10 percent. In Model 4 the errors
of Call option pricing are even smaller, the value is around 0.55 percent for the relative
MAE. This precision is quite satisfactory. It is interesting to note that Model 5 of Carr
& Madan (1999) with three parameters of the VG distribution calibrated to option prices
does not perform better than Model 4 with two parameters. The relative MAE for Model
5 is satisfactory, but higher than the one resulting from pricing by our Model 4.

Let us recall that Lévy processes are often interpreted as subordinated Brownian Motions.
It means that the time flow in the Brownian Motion can be interpreted as random with
a varying speed. Behaviour of our implied parameter p} given by (4.1.10) shows that

there may be a component of the time flow which is not yet included in the subordinating
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process.
Referring to Figure 5.3 we can interpret the implied parameter w; as an indicator of
changes occuring to the real market environment. In particular the linear relation between
implied w; and empirical MMCT may be of some interest and even subject of some further
study.

Figure [5.2| shows results of calibration for Model 2. Each point with coordinates (p, pf)
refers to one maturity: p denotes the true number of days to option expiration while p;
denotes the value obtained from calibration. There are 774 calibrated p}. The straight
line represents regression p; = o + a1p, with coefficients ap = 3.1510 and a; = 0.8866.
It shows a linear relationship between those p that are true and those that are implied,

however the figure shows heteroscedasticity of the data and outliers.
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Figure 5.2: Number of days to expiration p vs. implied p},, based on Model 2 for one year
of pricing options.
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Figure shows results of calibration of parameter w; in Model 3. It contains a plot
of w} versus w,. Each point represents one maturity, altogether the 774 calibrated wy.
The straight line represents regression w} = ag + a1y, with coefficients ay = 0.1590 and
ay = 1.1417. Like in Figure |5.2| we observe heteroscedasticity in the data and outliers, as

well as skewness.
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Figure 5.3: Empirical w,, vs. implied w}, based on Model 3 for one year of pricing options.

We are not presenting similar plots for Model 4, for which both parameters are cali-
brated jointly. The relation between the empirical MMCT, the number of days to expi-
ration and the implied parameters, is not so straightforward.

Figure presents how the empirical w59 (the black bold line), the maximum (red

line) and the minimum (blue line) of the implied w; from Model 3 change over the
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year. The maximum and minimum are taken over different implied parameters related
to different maturites for each day, respectively. The empirical MMCT has been used in
Models 1 and 2.

12 T T T T

0.8

06

| |
a0 100 150 200 250
Days

Figure 5.4: Empirical wq20(u) based on 120 historical log-returns between the 1st of June
2006 and the 17th of May 2007 for each day (black line) and the implied minimum (blue
line) and maximum (red line) w; for Model 3.

Similarly, Figure shows the empirical 1099 (black bold line), and the maximum
(red line) and the minimum (blue line) of the implied w from Model 4. The maximum
and minimum are taken over different implied parameters related to different maturites

for each day, respectively.
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Figure 5.5: Empirical w99(u) calculated from 120 historical log-returns between the 1st
of June 2006 and 17th of May 2007 for each day (black line) and the minimum (blue line)

and maximum (red line) of the implied parameter w for Model 4.

Figure shows close prices of DAX between 120 working days prior to the 1st June
2006 (marked by a vertical red line) and the 17th of May 2007.
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Figure 5.6: Close prices of DAX between 120 working days prior to the 1st June 2006,
and 17th May 2007 (blue line). Red line indicates the 1st June 2006.

5.4 Pricing of less liquid options using implied w and
p; obtained from liquid cases

In this subsection we present the results of pricing options for a range of strike prices
between Sy — 200 and Sy + 200. We used the implied parameters w; and p; obtained
in Model 4. In table [5.4] we report the errors of option pricing. The relative error mea-
surements increased to almost 1.9 percent for the relative MAE and to 6 percent for the
relative RMSE.
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Carr et al. (1998) have shown superiority of their CML model over the classical Black-
Scholes approach. Our results have shown that the Model 4 outperforms slightly Model 5
based on the CML formula, cf. Table 5.3. Hence, Model 4 also outperforms the classical
Black-Scholes models.
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*

| p | py | w. | w; |rel. MAE |rel. RMSE |
Model 1 | 18 - —0.2528 | - 0.0651 0.0871
(n,p) | 53 - —0.2528 | - 0.0271 0.0307
109 - —0.2528 | - 0.0370 0.0391
200 - —0.2528 | - 0.0328 0.0344
Model 2 | 18 | 154649 | —0.2528 | - 0.0598 0.0821
(n,p}) | 53 | 49.3644 | 02528 | - 0.0275 0.0310
109 | 97.1398 | —0.2528 | - 0.0210 0.0238
200 | 187.394 | —0.2528 | - 0.0151 0.0169
Model 3 [ 18 - —0.2528 | —0.2206 | 0.0228 0.0263
(w;,p) | 53 - —0.2528 | —0.2626 | 0.0256 0.0292
109 - —0.2528 | —0.2653 | 0.0182 0.0206
200 - —0.2528 | —0.2618 | 0.0139 0.0156
Model 4 | 18 | 23.2664 | —0.2528 [ —0.2014 | 0.0062 0.0065
(w,p;) | 53 | 96.9268 | —0.2528 | —0.3170 | 0.0018 0.0018
109 | 215.4613 | —0.2528 | —0.3808 | 0.0007 | 0.0007
200 | 433.6934 | —0.2528 | —0.4367 | 0.0005 0.0005

Table 5.2: Empirical and implied parameters and error measurements for Models 1-4, for
pricing options on the 1st of June 2006.

’ \ Model 1 \ Model 2 \ Model 3 \ Model 4 \ Model 5 ‘

MAE 36.7306 2.8594 2.2871 0.3306 2.3868
Relative MAE | 0.3908 0.0883 0.1172 0.0055 0.0156
RMSE 44.9672 4.0897 8.7297 0.4680 3.3061
Relative RMSE | 1.2103 0.9575 0.9893 0.0269 0.0307

Table 5.3: Measurement of errors for Models 1-5 for one year of pricing options.

’ ‘ Model 4 ‘ ITM and OTM with w; and p} from Model 4 ‘

MAE 0.3306 1.2263

Relative MAE 0.0055 0.0188
RMSE 0.4680 1.872
Relative RMSE | 0.0269 0.0598

Table 5.4: Measurement of errors for pricing of 3-8 options per maturity with use of w}
and p;, from Model 4, for one year of pricing options.
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5.5 Pricing options with the use of forecasted implied

parameters

The CML model allows using general Lévy processes to model behaviour of the asset
log-returns, however is still leaving not accounted for other driving market factors like
stochastic volatility. The implied parameters should capture these deviations between
the CML model and market behaviour, possibly in a similar way as the implied volatility
captures deviations between the BS model and the real market. Figures and show
the behaviour of implied parameters p; and w;, over time as obtained from calibration of

Models 2 and 3, respectively.

Remark 11 Most of the papers on option pricing concentrate only on fitting models to
real option prices, cf. Carr et al. (1998), Schoutens & Tistaert (2004), without veryfying
the procedures on out-of-sample data. In our case it is evident that the fitted parameters are
showing some dynamics. Therefore, testing performance of the option pricing on out-of-
sample data does not seem appropriate. Instead, it is desirable to suggest some time-series
models for the implied parameters. By forecasting the parameters we are going even beyond
the scope of the available so far papers, by trying to achieve good pricing environment for
a near future, e.g. for the next day. In other words, our model performance is done in-
sample but instead we suggest a model for a dynamic of parameters. We believe that this
1s justified by the fact that the economy changes with time and the behaviour of market is
dictated by permanently incoming news and events. Hence, prediction of the future seems
to be more suitable than expectation of stability, where out-of-the-sample testing should be

recommended.

In this section we explore the behaviour of the obtained implied parameters by fitting
mixture of regression and Autoregressive (AR) or Vector Autoregressive (VAR) time series
models. We fit these models to series of implied p (Model 2), implied w; (Model 3) and
pairs of implied (w*, p:) (Model 4). There are two reasons for exploring this modelling.
Let us recall that we used only 3 or 4 of option prices to fit one (in Model 2 and 3) or two
(in Model 4) parameters. By fitting the implied parameters to a time series model we can
test if the obtained implied parameters have not been overfitted. Secondly, by fitting the

implied parameters to a regression-time-series model we can forecast values of the model
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parameters one step ahead and check if the next day implied parameters are producing
reasonable option pricing. This may have practical value, for example for market makers.

We present results of this exploration in the following subsections.

To fit the regression-time-series models we used a statistical package EViews®. We
fit series of implied p! and w; to the following model (cf. Quantitative-Micro-Software
(2007), Chapter 26)

Ym = Ty 3 + U, (5.5.1)
U = Q1 Upp—1 + Q2Up—2 + €, (5.5.2)
where ' = [f;, 2] are regression parameters, a;,ay are parameters of a hidden AR

model driving the regression noise and z; is a vector of explanatory variables. Let us
note that model ([5.5.1)-(5.5.2) can be also presented equivalently without the hidden AR

componentin the following way

Ym = :U;nﬁ + a1 (ymfl - xlm—lﬁ) + 042(3/m72 - xlm—2ﬁ> + €m,

however, representation (5.5.1)-(5.5.2) allows a clear interpretation. We take y,, to be

either p; or w

*
n?

respectively. In the case of implied p; we include the number of days
to option expiration as an explanatory variable, and in the case of w} we include the
empirical MMCT as an explanatory variable.

Let us note that equation shows that the implied parameter p; depends on

the time to option expiry
T

Hence, in the case of an ideal model, where A? is constant the p; is a linear function of the

time to the expiry T'. This justifies our use of p as a regressor in the time-series modeling.
We have observed that values of obtained implied parameters w; are near values of the
empirical MMCT, cf. Figure 5.3. This suggest that in modeling series of implied w; we
should regress on the empirical MMCT.

5.5.1 Regression-time-series model for implied p

We obtained 12 series of the implied p; as a result of calibration of Model 2 to one year

of options data. For a given day and for a given series, each element of the series relates
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to 3 or 4 options with the same maturity and different strike prices. Since only the most
liquid options are chosen, the set of strike prices varies over time. Each series of the
implied p! has different length. For example, the first series consists of 11 of the implied
p;, which were obtained between the 1st of June 2006 and the 15th of June 2006. At
the 1st of June 2006, the time to maturity of this group of 4 options is 18 days. For the
second series the time to maturity is 53 days. The latter series has been obtained for a
group of 4 options between the 1st of June 2006 and the 20th of July 2006 and consists
of 36 of the implied p;. Some of our series of the implied p; start after the 1st of June
2006. These have been obtained from calibration of Model 2 to the sets of options which
replaced previously expired options. This is illustrated in Figure 5.7

&00 T T T T
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Implied p 2
Implied p 3
500 - Impl?ed od ]
Implied p 5
Implied p 6
Implied p 7
Implied p 8
400 Impliedp 9 [
Implied p 10
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sl
2300 - —
E
200 .
100 o .
0 J\'\ i ] 1
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Dy

Figure 5.7: The 12 series of the implied p},, obtained for Model 2 between the 1st of June
2006, and the 17th of May 2007.

For the modelling we chose the 5th series, which is the longest one, and covers the
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period between 2nd of June and 19th of October 2006. Let us note that series 5 seems to
be the least regular in the first half, see Figure 5.7 We forecast the implied parameter
pl for the 2nd, 3rd and 4th of October 2006, respectively. To estimate the parameters of
the regression-time-series model we used the historical data ranging from the 2nd of June
2006 until the day preceeding the forecast. We also removed 2 evident ”outliers” from the
series. For each of the fitted series we report in Table the values of  (column 2) and
a; (column 5) of the fitted coefficients of the regression part and of the time series part
of the model. In columns 3-4 and 6-7 we report obtained from the EViews® package,
values of the corresponding t-statistic and the p-value, for the test of significance of the
coefficients § and «y, respectively. The first column in Table |5.5 contains the number of
the implied p; used for estimation. The columns 8th and 9th contain values of the R?
and the Durbin-Watson statistics for the fitted time series models, respectively. The 10th
column contains values of Schwarz information criterion (BIC). The 11th column shows
values of the implied p; observed on a day following the estimated period. We forecast
the implied parameter p/ for that day and report in the 12th column.

For the regression-time-series fitted models we report in Tables[5.6][5.8| values of the au-
tocorrelations (AC), partial autocorrelations (PAC), Q-statistic and the related p-values,
respectively. The first column shows the lags, the 2nd and 3rd columns show the cor-
responding values of AC and PAC, respectively. Column 4 shows values of Ljung-Box
Q-statistic which test the null hypothesis of no serial correlation up to the given lag
for residuals of the model. Column 5 shows the related P-values. Let us note that the
behaviour of the autocorrelations and partial autocorrelations remained similar for lags

7-16.

5.5.2 Regression-time-series model for implied w}

Similarly as for the Model 2, we obtained 12 series of the implied w; as a result of
calibration of Model 3 to one year of options data. For a given day and for a given series,
each element of the series relates to 3 or 4 options with the same maturity and different
strike prices. Since only the most liquid options are chosen, the set of strike prices varies
in time. Each series of the implied w; has different length. This is illustrated in Figure
.7

As in the case of the implied parameters from Model 2, for the modelling we chose
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Lags | AC

PAC

Q-Stat

P-value

1 0.0100

0.0100

0.0081

-0.0700

-0.0700

0.3756

0.5400

0.0540

0.0560

0.5960

0.7420

-0.0400

-0.0470

0.7195

0.8690

-0.1240

-0.1160

1.9204

0.7500

O T = | W N

-0.0050

-0.0110

1.9225

0.8600

Table 5.6: Values of autocorrelations,

partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied p} in
Model 2, obtained between the 2nd of June 2006 and the 29th of September 2006.

Lags | AC

PAC

Q-Stat

P-value

1 0.0100

0.0100

0.0080

-0.0700

-0.0700

0.3808

0.5370

0.0540

0.0560

0.6039

0.7390

-0.0400

-0.0470

0.7290

0.8660

-0.1240

-0.1160

1.9446

0.7460

O T U= | W DO

-0.0050

-0.0110

1.9467

0.8560

Table 5.7: Values of autocorrelations,

partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied p} in
Model 2, obtained between the 2nd of June 2006 and the 2nd of October 2006.

Lags | AC

PAC

Q-Stat

P-value

1 0.0100

0.0100

0.0079

-0.0700

-0.0700

0.3866

0.5340

0.0540

0.0550

0.6122

0.7360

-0.0400

-0.0470

0.7392

0.8640

-0.1240

-0.1160

1.9702

0.7410

OO = W N

-0.0050

-0.0110

1.9723

0.8530

Table 5.8: Values of autocorrelations,

partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied p; in
Model 2, obtained between the 2nd of June 2006 and the 3rd of October 2006.
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Figure 5.8: The 12 series of implied w;, obtained for Model 3 between the 1st of June
2006 and the 17th of May 2007.

the 5th series, which is the longest one, and covers period between the 2nd of June and
the 19th of October 2006. Let us note that series 5 seems to be the least regular in the
first half, see Figure . We forecast the implied parameter w; for the 2nd, 3rd and 4th
of October 2006, respectively. To estimate the parameters of the regression-time-series
models we used the historical data ranging from 2nd of June 2006 until the day preceeding
the forecast. We removed 2 values of w; which correspond to the ”outliers” in the 5th
series of the implied p; from Model 2. For each of the fitted series we report in Table
values of [ (column 2) and ay, ay (columns 5 and 8) of the fitted coefficients of the
regression part and the time series part of the model. In columns 3-4, 6-7 and 9-10 we
report, obtained from the EViews® package, values of the corresponding t-statistic and

the p-value, for the test of significance of the coefficients § and «y, as, respectively. The
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first column in Table contains number of the implied w; used for estimation. The
columns 11th and 12th contain values of the R? and the Durbin-Watson statistics for the
fitted time series models, respectively. The 13th column contains values of the Schwarz
information criterion (BIC). The 14th column shows values of the implied w observed on
the day following the estimated period. We forecast the implied parameter w; for that
day and report them in the 15th column.

In Tables we report values of the autocorrelation (AC), partial autocorrela-
tion (PAC), Q-statistic and related P-value, for the regression-time-series fitted models.
The first column shows the lags, the 2nd and 3rd columns show the corresponding values
of AC and PAC, respectively. The 4th column shows values of Ljung-Box Q-statistic
which test the null hypothesis of no serial correlation up to the given lag for residuals of

the model. The 5th column shows the corresponding p-values.
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Lags | AC | PAC | Q-Stat | P-value

1 -0.05 | -0.05 | 0.1855
-0.076 | -0.079 | 0.6173
-0.058 | -0.067 | 0.8735 | 0.35
-0.057 | -0.071 | 1.1189 | 0.572
-0.027 | -0.046 | 1.1775 | 0.758
-0.015 | -0.035 | 1.1944 | 0.879

O O = | W N

Table 5.10: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied w}
in Model 2, obtained between the 2nd of June 2006 and the 29th of September 2006.

Lags| AC PAC | Q-Stat | P-value

1 ]-0.0450 | -0.0450 | 0.1468
-0.0820 | -0.0840 | 0.6513
-0.0460 | -0.0550 | 0.8151 | 0.3670
-0.0490 | -0.0610 | 0.9992 | 0.6070
-0.0370 | -0.0520 | 1.1043 | 0.7760
-0.0130 | -0.0300 | 1.1170 | 0.8920

O T = | W N

Table 5.11: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied w;
in Model 2, obtained between the 2nd of June 2006 and the 2nd of October 2006.
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Lags| AC PAC | Q-Stat | P-value

1 1-0.0450 | -0.0450 | 0.1492
-0.0660 | -0.0680 | 0.4803
-0.0470 | -0.0540 | 0.6531 | 0.4190
-0.0590 | -0.0690 | 0.9266 | 0.6290
-0.0450 | -0.0590 | 1.0845 | 0.7810
-0.0040 | -0.0220 | 1.0860 | 0.8960

O T = | W DO

Table 5.12: Values of autocorrelations, partial autocorrelations, Q-statistic and p-values
for residuals from fitted regression-time-series model to the 5th series of the implied w;
in Model 2, obtained between the 2nd of June 2006 and the 3rd of October 2006.

5.5.3 Regression-time-series model for implied (p}, w})

Similarly, as for Models 2 and 3, we obtained 12 series of pairs of the implied (p}, w?) as
a result of calibration of Model 4 to one year of options data. For a given day and for a
given series, each element of the series relates to 3 or 4 options with the same maturity
and different strike prices. Since only the most liquid options are chosen, the set of strike
prices varies in time. Each series of the implied (p}, w?) has different length.

We fit the following mixture of the regression and 2nd order Vector Autoregressive
(VAR) models (cf. Quantitative-Micro-Software (2007), Chapter 34) to the series of im-
plied pairs (pf,w?) from Model 4, i.e.

Ym = ﬁwin + U,

U = C+ AtUp—1 + Aslly—o + €,

where
J J
o o ,
Aj=| " ) i=1,2
j J
Qpy1 (59

ﬁ = /61 7:6;71 = Fim y Um = Uim and ¢ = ‘1 .
Bo T2m U2,m Co

Matrices A;,j = 1,2, and 3 contain the VAR parameters, x,, is a vector of explanatory

variables and c is a vector of constants. We take y; ., to be p;, and y,,, to be w). We

included the empirical MMCT 0, as an explanatory variable with coefficients (3, 32).
As in the case of the implied parameters from Model 2 and 3, for the modelling we

chose the 5th series, which is the longest one, and covers the period between the 2nd of
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June and the 19th of October 2006. We forecast the implied parameter w; for the 2nd,
3rd and 4th of October 2006, respectively. To estimate the parameters of the regression-

time-series model we used the historical data ranging from the 2nd of June 2006 until

*

*) which correspond to

the day preceeding the forecast. We removed 2 pairs of (p},w
"outliers” in the 5th series of the implied p}, from Model 2.

For each of the fitted series we report in Table values of (31, (3 (column 2),
¢ (column 3), and A;, Ay (columns 4-7, respectively) of the fitted coefficients of the
regression part and the time series part of the model. We report values of the R?, the
Durbin-Watson statistics and the Schwarz information criterion (BIC). The first column
in Table shows number of the implied pairs (p,w?) used for estimation. The 8th

column shows values of the R? statistics for the fitted time series models. The 9th column

contains values of Schwarz information criterion (BIC). The 10th column shows values of

*
n

the implied (pf,w?) observed on the day following the estimated period. We forecasted
the implied parameters (p/, w/) for that day and reported in the 11th column.

In Tables we report results of the Portmanteau Autocorrelation (Q-Statistic)
and the Autocorrelation Lagrange Multiplier (LM) tests for the residuals. The first column
shows the lags, the 2nd and the 3rd columns show values of the multivariate Ljung-Box
Q-statistic and the corresponding p-value, respectively, which test the null hypothesis of
no serial correlation up to the given lag for residuals of the model. The 4th and the 5th
columns shows values of the multivariate LM statistic and the corresponding p-values for
residual serial correlation up to the lag indicated in column 1, respectively.

In Table we present error measurements for prices between the historical ODAX
prices, the model prices, and the model prices based on the forecasted implied parame-
ters from Models 2-4. By ODAX-MODEL we denote thr errors between the historical
option prices and the model prices. By ODAX-FORECAST we denote errors between the
historical option prices and the model prices with the use of the forecasted parameters.
MODEL-FORECAST denotes the errors between the model prices and the model prices
with the use of the forecasted parameters. The errors have been calculated for the next
three days, following the last day used in the regression-time-series estimation. The 2nd
row contains dates of pricing of 4 options. Rows 3-5 contain the Relative MAE and rows
6-8 contain the Relative RMSE. Row 9 shows a number of the the implied parameters
used to estimate the regression-time-series model.

The errors in option pricing are the smallest for Model 4. Hence, the obtained results
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Lags | Q-Stat | P-value | LM-Stat | P-value

1 110.2372 32.2836 0

2 120.3541 10.6926 | 0.0302
31229021 | 0.0001 | 2.6652 | 0.6153
4 1259778 | 0.0011 | 2.8341 | 0.5860
5 | 28.8917 | 0.0041 | 2.9157 | 0.5720
6 |33.1552 | 0.0070 | 4.4001 | 0.3546
7 |34.7965 | 0.0212 | 1.8178 | 0.7692
8 [37.1521 | 0.0423 | 2.4038 | 0.6619
9 139.3047 | 0.0761 | 2.1774 | 0.7032

10 | 42.9345| 0.0938 | 4.2728 | 0.3703
11 |45.6618 | 0.1298 | 2.7688 | 0.5972
12 | 52.1787 | 0.0940 | 7.0672 | 0.1324
13 |55.7201 | 0.1107 | 4.1944 | 0.3803
14 | 57.5542 | 0.1625 | 1.8525 | 0.7629
15 [62.1280 | 0.1588 | 5.5922 | 0.2317
16 |65.3321 | 0.1842 | 3.6519 | 0.4552

Table 5.14: Values of Q-statistic, LM-statistic and corresponding p-values for residuals
from fitted regression-time-series model to the 5th series of the implied (p,w;) in Model
4, obtained between the 2nd of June 2006 and the 29th of September 2006.
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Lags | Q-Stat | P-value | LM-Stat | P-value

1 |1 11.1359 34.9831 0

2 121.5785 11.0854 | 0.0256
3 123.8842 | 0.0001 | 2.3922 | 0.6640
4 126.9155 | 0.0007 | 2.9121 | 0.5726
5 |31.0960 | 0.0019 | 4.2606 | 0.3719
6 |36.9686 | 0.0021 | 6.1176 | 0.1905
7 1389240 | 0.0068 | 2.2664 | 0.6869
8 140.9088 | 0.0170 | 2.0633 | 0.7241
9 1428641 | 0.0359 | 2.0889 | 0.7194

10 [45.9702 | 0.0523 | 3.7482 | 0.4411
11 | 48.6845 | 0.0771 | 2.8051 | 0.5910
12 | 54.8023 | 0.0596 | 6.7306 | 0.1508
13 [59.5763 | 0.0586 | 5.8057 | 0.2141
14 161.5690 | 0.0903 | 2.0645 | 0.7239
15 |65.5183 | 0.0986 | 4.9670 | 0.2907
16 | 68.6158 | 0.1201 | 3.5447 | 0.4711

Table 5.15: Values of Q-statistic, LM-statistic and corresponding p-values for residuals
from fitted regression-time-series model to the 5th series of the implied (p,w;) in Model
4, obtained between the 2nd of June 2006 and the 2nd of October 2006.
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Lags | Q-Stat | P-value | LM-Stat | P-value

1 | 18.1547 20.0245 | 0.0005
2 1389111 24.2917 | 0.0001
3 |42.6167 0 3.6755 | 0.4517
4 146.7368 0 4.2452 | 0.3738
5 ]51.0351 0 4.6293 | 0.3275
6 | 55.7837 0 5.2149 | 0.2659
7 156.2007 0 0.3883 | 0.9834
8 158.6200 | 0.0001 | 2.9294 | 0.5697
9 159.6707 | 0.0004 | 1.0245 | 0.9061

10 165.1094 | 0.0005 | 6.5523 | 0.1615
11 ]66.9862 | 0.0013 | 2.1225 | 0.7132
12 169.7115 | 0.0025 | 3.1951 | 0.5257
13 | 75.0488 | 0.0024 | 6.5871 | 0.1594
14 | 77.1866 | 0.0048 | 2.6404 | 0.6197
15 |81.3218 | 0.0058 | 4.9179 | 0.2958
16 | 85.8270 | 0.0063 | 6.0232 | 0.1974

Table 5.16: Values of Q-statistic, LM-statistic and corresponding p-values for residuals
from fitted regression-time-series model to the 5th series of the implied (p,w;) in Model
4, obtained between the 2nd of June 2006 and the 3rd of October 2006.
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may indicate that the Model 4 is the best one, however the number of the forecasted days
used in our preliminary study is too small to make this conclusion reliable. Definitely

further study in this direction is needed, yet the approach looks very promising.
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Chapter 6
Conclusions

We introduced four nonparametric models for pricing of European options. The first
model, Model 1, requires only historical log-returns of the underlying price process. The
other three models need, in addition, real option prices to calibrate implied parameters.
In some of the cases (for some days) the first model gives prices with relatively small error
(around 5 percent), but in most other cases the calibration of parameters w and p results
in a more accurate option pricing. Models 2 and 3 with the implied parameters p} and
w;, respectively, perform in general much better than Model 1, but still the relative errors
remain on level between 8 to 12 percent. The Model 4, with two implied parameters p},
and w;, shows the smallest errors which are not larger than 3 percent. Our Model 4
outperforms Model 5, which is based on the original Carr & Madan (1999) parametric
approach.

So far our Model 4 with two implied parameters p; and w; results in the best option
pricing. This shows that the ECF captures more information about the distribution of
the underlying price process than the parametric model assuming a VG distribution of
the asset log-returns.

The CML model and our derived Models 2-4 do not model explicitly the stochastic volatil-
ity and, possibly, other factors not included into the CML model. Therefore, it is of
interest to try to understand the behaviour of the implied parameters p} and w;, respec-
tively. We report on our preliminary exploration of this behaviour and on modelling it
by regression-time-series models using package EViews®. We have fitted the series of
the obtained implied parameters to a mixture of regression and Autoregressive (Vector

Autoregressive in the case of Model 4) time series models and next we priced options
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Conclusions

based on the forecasted parameters. Clearly, the procedure does not reproduce the same
errors as the original calibration. Our preliminary results using Model 4 look encouraging.
Definitely further research and exploration in this direction is needed. With the results
of pricing using forecasted implied parameters for 3 days only, it is impossible to come
with firm conclusions. However, this exploratory research suggest that there is a good
prospect for modelling of the implied p; and w; hence offering a quick and computationaly

inexpensive method useful e.g. for market makers.
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Appendix A

Proofs

For the clarity of exposition we collected all proofs in the present Appendix.

Proof of equation (2.1.2)

For any positive integer n, m € N we have ¢x, (u) = <¢X% (u))n and ¢x, (u) = <¢X1 (u))m,
X1

where we use increments of size & and 1 respectively. Hence, @x,, (u) = (QS (u)) =

m

<¢ X, (u)) " For any irrational number ¢ > 0 we can find a sequence of rational numbers
ti, such that ¢t = lim, .., t;, then

t

Sx.(u) = lim o, (1) = lim (9, ()" = (6, (1))

The first equality holds under assumption of stochastic continuity on the process X;.

Proof of Proposition

We derive the drift and Lévy measure of the VG process using a subordination approach.
The generating triplet of the subordinated Brownian motion with drift can be obtained

from Theorem [§]in Appendix [B.2| (Sato (1999), Theorem 30.1). Since drift of the Gamma
process is zero, by (B.2.1]) we have 0% = 0. Since

! «? 1 1
/ xe 2dr =t(e 2% —e 2) =0,

1
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Proofs

the drift of the VG process given by (B.2.3)) equals

00 [ ([ e ) d—o
m=0-0+ T e zdx | dt =0.
/0 vt (/—1 V27t )

Let I,,(y) be the Lévy density of the subordinating Gamma process (2.1.9), and let fga(z)
be the probability density function of increments of the subordinated BM with drift, i.e.
0t + oW,;. The Lévy triplet of the BM with drift 6 is given by (02,0, ). The Lévy density

Ix(z) of the VG process is given by (B.2.2)), i.e.

_ (z—0y)? y_le_%

Ix(x) = /000 fem (), (y)dy = /OOO @;a\/@e 20%y » dy.

Then by ,fora:—%,b:%andc:%+%,weget

26% x? i x2(2§ +62)
l xr) = K 1
x() v 2o 2”72 + 62 2 o2
By (B.1.3) we have
Ox 2 + ﬁ
CXP 2 v o2
) = —2 - . A.0.1
x() = S0 ey | (A01)

Since 0% = 0, conditions [2.1.11] of Theorem [2| are satisfied we get

2
1 fewts [ |iAE
/lx(x)dx:/ ﬁexp ———z| | dz < 0,
_ v o

1 1

hence we can conclude that the VG process has finite variation. We can write the cumulant

function as

o0

e} —00

Finally, we note that we can write the Lévy density of the VG process in the following

6+ /22 + 6

1
Ix(z) = > |:1{a:<0} (x) exp 5 T

way
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Proof of Proposition

If the conditional distribution of X given Y = y is N(fy,0?y) and r.v. Y has a Gamma
pdf g1 1 (y) (cf. (2.1.8)), then the marginal probability distribution function of X is given
by

1 y
a—0n)? v le v
1 _%y e d
1 WY

fr@) = [ raven iy = [ =
X | Jxy Y y Voroy )
Following Carr et al. (1998) we use relation (B.1.2) in the Appendix with a = 1 — 1,

v

b= % and ¢ = % + %, to rewrite the density in terms of a modified Bessel function of

the second kind K,(+), i.e.
202 2 \* 22(2% + 02)
a V%\/Q’/TOF(%) 2% + 02 2

Similarly, for increments X;,, — X;, for any A > 0 and ¢ > 0, the pdf is

fx(z)

f ( ) o0 1 _ (z—0y)? y%_le_% d
_ €Tr) = e 2029 z
Heen=Xe 0 V2ro\/y SRy

265 2 \* 22(22 + 62)
= Kn 1
V%\/ 27TO'F(%) 2"72 + 62 v 2 o2

Using relation (B.1.4) we obtain tail behaviour of the density function

h
0_2 T2
FXopn—x, (@) = (25 +2) B

|ﬂ_1 0;\/2#%2
v (&
veT(L)

2 "+4o0(1), as r — o0,

o2

where o = 4/ % and 3 = %. From the above equation we see that the rates of
decrease of the pdf are power-modified exponential.

The above result is stated in more general settings, for Normal Variance-Mean mixture
distributions in Barndorff-Nielsen et al. (1982).

Proof of Proposition

The characteristic function of the VG process can be calculated using properties of con-

ditional expectations. For ¢ > 0 we denote

X, = 0Y, + 0\/Y,Z,
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Proofs

where Y; is a random variable Gamma associated with a random time change independent
of Z, and Z ~ N(0,1). We have

E (emxt) —F <6iu(0Yt+a\/7tZ)) —F (E (em(eero\/?tZ)D/t))

o 22 1 v
=F (e(we_ 2 )Yt) = oy, (9u+i0 “ ) = (1 — v + 502yu2) :

2

The characteristic function exists in a complex strip Ay = {z € C|Im(z) € (a,b)},
such that |¢x,(u)| < oo for u € Ax. We have

O (u)| = [Be™ ™| < Ble™¥ | = B = g (ilm(u))

NG

= (1 + Im(u) v — %GQV(IIH(U))Z)

The last expression if finite if
1
1+ Im(u)fv — Eazy(lm(u))2 > 0,

which is satisfied for

0 021/+2a2<1 (u) < 9+ 0%2v + 202
— ) — m(u — 4+ —
o2 vot o2 vot

Both characteristic functions of Normal and Gamma distributions are analytical in a
neighborhood of the origin, hence by Theorem [ in Appendix [B.2]the characteristic func-

tion of the VG process is analytical in the complex strip Ax.

Proof of Proposition

By (3.1.7)) we have
Q ¢Xt (u B 26)
u) = ——-—=
R ET)
and by the Lévy-Khintchine representation this equals to
exp (t [im(u — i) — ‘72(“—;9)2 + [ (e — 1 — i (u — i9)x1|x‘§1)L(da¢)]>

exp <t [mo + "2262 + 7 (e —1— Qxlmgl)L(dx)D

2,,2 0

= exp (t[zmu — 02u —I—i002u+/

o0

(e — 1)L(dx) — /_

iux1|z|§1)L(da:)} ) .

[e.e] (e}
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Hence, we have

(bXT( u) = exp( [ (m + 0o / Diuzljy<iLdz))u
+ /Oo(e““” -1- iuxlmgl)e%L(dI')D.

and the required triplet shows from the above representation.

Proof of Proposition [6]
Process e "5, is a martingale if condition
Sy = EQ(e™S,|Fy)
is satisfied. Since
EQ(e™S,|Fo) = Spe  EQ(eX) = Spetpx, (—1),
and by we have
= ¢x,(—1).
Proof of Lemma [4]
We have

e2“EH(Z +¢) = e3¢ / H(z +c)f(2)dz

= [ H@ - dy = [ By = B H(2)
where f(z) is a pdf of Z. We used have substitution y = z 4 ¢, and the following relation

fly—c) = e 3 U f(y).

Proof of Proposition
The price of the European call option can be derived in the following way.

C(Ov T7 K) = e_TTE(SWT - K)+ - e_TTE [E[(S’YT - K)+|7TH
o 6—1“TE [E[(SoerT—&-G'yT—i-aW,yT +wT

— K)1s, —xsoylyr]] -
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Conditioning on vy, W, is N(0,vyr) and we have

— TR [E[(SoerT—&-@’YT—i-a\/’TTZ—i-wT _ K)l{soerT+9’yT+U\/WZ+wT>K} |'YT]}

_ e—rTEu [E[SOGTT—&-GWT-FJ\/%Z—I—le

o\/T

K
{Z> log S—Of(r+w)T79’yT } |,}/T:|

_E[K]‘ OL—TUJ — 7Ti|
{Z>1g50 ;;TT)T ewT}’ ]

_ e_TTE |:E[SOQTT+97T+JWZ+wT1{Z>*d2}|7T:| — E[Kl{Z>fd2}|’YTH )
where
_ log %2 + (r +w)T + by

CRVAVA

Applying in Lemma 4] to the first conditional expectation, we have

da

—Tr T lO' w
— T Sy T T B ey byr] = BUO{Z > —da}|
=e¢"E [Soe(ww)Tww%azwE[l{Z}>—d1}”YT] - E[Kl{Z>—d2}|’VT]}

= TE [Soe<r+w>T+<9+%02>WFN<d1lw - K sz(d?WT)]

= [ (st O E ) - K Fa(daly)) £ ()i,
0

where
dl = d2 + O/,
Z is a standard Normal variable, Fy(d|y) = E(1z<4|Yr = y) is the conditional cdf, which

is a cdf of the Normal distribution with variance y and where w = %log(l — v — %021/).

Proof of Theorem [Tl

Since the Fourier transform H(z) exists in some strip Ay (cf. Definition , by the

inversion formula for z € Ay we have for every v such that u 4+ iv € Ay for every y € R

1 > I .
H(z) / e W F (y + iv)dy.

" or

—00

By (3.2.1) and since Fy is a trivial o-field

C(0,T,K) = e "E [(e°57) — K)*] = e E [H(log(S7))]
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and by the inverse Fourier transform of H(z), we have

e~ T too A
=—5—F { / e~ WrIoe ST [ (y 4 v dy
s —

—rT +o00
_ 627T / o—ily+iv)(log So+rT) 7 [6—i(y+iu)(XT+wT):| Hy + iv)dy.

—00

By the Fourier transform of the probability distribution of Y7 = X¢ + wT we get that
this equals

e—rT o)

=G | s D ((y )y + i)y,

where y +iv € Ay N Ay

Proof of Corollary
The payoff function of the European Call option is given by H(z) = (e* — K)*. The
Fourier transform of H(z) exists for z € Ay = {z|Im(z) > 1} and is given by

H(z) = /_OO e (e — K)Tdx

[e.e]

(iz4+1)z i2x (iz+1) log K izlog K Kzt
= lim ([ - K ) - (& SR ) =
z—oo \ 1z + 1 iz 12+ 1 12z 22—z

We assume that the price process is given by
St — SoertJrXtert

where w is determined by the martingale condition, so that the discounted process e~"*S;

is a martingale. By Theorem [7| the European Call option price is given by
C0,T,K) =

Ke—rT +o0 ) 4 5 dr
_ —i(x+iv)(log 22 +rT+wT) . .
27 /_oo ¢ O (x—i_w))(x—i—il/)Q—i(x—i—z’u)’

where x +iv € AgN A% = {z:Im(z) € (1,a — §)}. The integration is along the real line

in the complex plane, i.e. R + iv. We write the integrand as

Ke ™ 1.8
. 6—zz(log D +rT+wT) ¢XT (-Z)

21

1

22 — iz

Y
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where z € Ay N A%. The integrand has simple poles at 0 and . The residue at ¢ is given

by
Ke_rTe—iz(log %-ﬁ-rT-ﬁ-wT) (bXT (_Z> ) _ _ﬁ
22 — iz 27’

fim [('Z S

and by the Residue Theorem (cf. Karunakaran (2005)) for vy € (0, 1) we have

c0,7T,K)=
KT T i ios T (i) o ~ omi(—0)
21 J_ o g (x 4 i11)? — iz + i) 27i
Ke T [ptoe So dx
-9, — —i(z+iv1)(log 2 +rT+wT) . . )
O Ton /_Oo ‘ Oxr (=@ ) S i )
Hence, for 14 = % the option price reduces to
V SOK rT | wT /OO ;. So 7/ du
C0,T,K)=.5y— ety Re [etullos 7¢+rT+wT) —u — = )
(0, ) 0 - ¢ ; €€ ¢XT(U2)U2+%
Proof of Lemma [2.
We have
Elei(quiV)Xj‘ — Eequj|eiqu’ _ ¢<zy) < 00

since the imaginary point i~ belongs to the strip of analyticity of the characteristic func-

tion. Then, by Strong Law of Large Numbers we have

lim ¢, (2 +iv) = ¢z + w)) =1,

n—oo

P

for any x € R.

Proof of Lemma [3l

Since

. I AN L I WA
bralcu— | = | E3 e p 2|3 el

n i n i

1 n p 1 n p .

- i
< (ﬁ |e*“‘XJ‘ eéXj> < (ﬁ €$Xj> :¢Tn(—§) =M, (A.0.2)
j=1 j=1
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the left hand side expression is for all values of u bounded by the same random
variable M > 0. Finally, let us note that since Re(z12) = Re(z1)Re(z;) — Im(z1)Im(z;)
for 21, 20 € C and |cos(u(b + w,T))| and |sin(u(b + w,T))| are bounded by 1, we have

> —iu(log 29 4+ T4, T) 2 4 1
A ’Re |:€ (log 2 +rT+ T)¢T7n(—u — 5):| m
o N 1 ~ ) 1
= / ‘cos(u(b—i—u?nT))Re drp(—u — 1) +sin(u(b+w,T))Im | ¢r,(—u — 1) —du
0 ’ 2 ’ 2 U2 + 1

< /OOO (\Re [éT,n(—u - %)} [+ [ [émn(—u - %)] 1) > 1+ rdu

o, i1 - [ du
<9 ‘ n———’ d<2M/ < too0, (A.0.3
- /0 Pra—u 2)u2+iu_ TR (403

where b = log % + 1T

Proof of Proposition

We adapt a proof of Csérgé & Totik (1983) to our case. For any € > 0 we choose K > 0

such that
/ e "dF (z) < <
> K 8
Let
Blt +iv) = / ) G ().
|z| <K
o 1l e ...
Bn<t + 2'1/) = / el(ter)xan(x) = = Z el(ter)le{\Xj\gK}?
|z|<K n j=1
and
D, (t+iv) = B,(t +iv) — B(t +iv).
We have
sup {qgn(t +iv) — ¢t +iv)| (A.0.4)
[t|<Un

< sup |B(t+iv) — ¢(t+iv)|+ sup | Bu(t+iv) — du(t+iv)| + sup |B,(t+iv) — B(t+iv)|.
[t <Un [H1<Un [t <Un
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For the first term we have

col m

sup |B(t +iv) — ¢(t + iv)| = sup ‘/|>K 6i(t+i”)xdF(x)| < /|>K e dF(z) <

t|<Un t|<Un

For the second term we have

sup ‘Bn(t—|—@'y) — an(t“f‘iyﬂ = sup |/|>K ei(t-l—iv)zan(x)‘ < /|>K e_uivan(:E)'

1t]<Un [t1<Un

Since by Lemma [2| the last expression converges to f‘ e V*dF(x) with probability 1,

z|>K
we have that for sufficiently large n

sup |B,(t + iv) — Ot + w)| <<
[tI<Un 8
Hence, for sufficiently large n we have
bt + iv) — ¢(t+iv)| < sup |Dy(t +iv)| +— (A.0.5)

t|<Un [t|<Un

We cover the interval [-U,,, U,] by N,, = [%} + 1 disjoint intervals Ay, ... Ay, ,

each of length not exceeding s Let ty,...ty, denote the centers of these intervals.

For any [t| < U, we can choose the closest ¢ such that ¢t € Aj. Hence we have
| Dy (t +iv)| < |Du(ty + iv)| + sup| Dy (t + iv) — Dy(ty, + iv)],
teAL
which implies that

< V). .U.
|ts|1<1[[]>n|D W(t+ )|  ax | Dy (ty, + v ’+1$§>§n§&p|D (t+iv) — Du(te +iv)|. (A.0.6)

For any s,t € R we have
|Dy(s +iv) — Dy(t +iv)| < |Bu(s +iv) — By(t +iv)| + |B(s + iv) — B(t + iv)|

_ ‘/ (ei(s+iu)x . ez(ter):c)an(x)‘ + ’ (ei(eriV)x . 6 i(t+iv) x)dF( )‘
lz|<K || <K

By Taylor Theorem we have

cos(sx) = cos(tr) — xsin(&x)(s —t)
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and
sin(sx) = sin(tx) + z cos(&ex)(s — 1),

for some &, &, € (s,t). Hence

eilstz _ piltri)e — _o=veygin(&a) (s — t) 4+ de "2 cos(&x) (s — t).
We have
‘/ (ei(s+iu)x . ez(t—i-w)z)an(x)‘ + | (ei(s—i-il/)z . ez(t—‘rw)w)dF(x)‘
lz|<K 2| <K
<| 2|x||s — tle " dF,(x)| + | 2|x||s — tle " dF (z)| < 4Ke"|s — t|
| <K o] <K
and
€
V) — )| < KL — ]} < - 0.
 fnax, tseuAlz‘Dn(t +iv) — Dy(te + iv)| < Jax EEUAE{ZLK(B It —ti|} < 1 (A.0.7)

Now we find a bound for the first term in (A.0.6). Let

Pn :P< max ‘Dn(tk+iy)| > E)

1<k<Np 2

We will show that series >~ | p, < co. We have

B, = P( max | D, (t, + iv)| > %) < P(G{\Dn(twim(w)l > §}>

1<k<N, et

Np,
. € . €
< ;P(}Dn(tk+zu)] > 5) < Nn§g£P<\Dn(t+zy)\ > 5).

We define random variables

R;(t +iv) = cos(tX;)e " 1 x, <k} — / cos(tx)e "*dF (z)
|z|<K

and

Li(t + iv) = sin(tX;)e 1y x, 1<k} — / sin(tx)e "*dF (z),
lz|<K

forj=1,...,n.
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We have the following bound

P(]Dn(tﬂ'u)\ > %) :PO%;Rj(t—i-z’u) +z’%§1j(t+w)| > g)

1, — 1w
< P(ﬁ\jlej(tﬂ'u)\ + ﬂjzllj(tﬂ'u)] > %)

] — € 1 — €
<P(S|Y Rit+i) > 3) P<— Lt +i >—)
< n}Z it )| > )+ n|Z ()| > -

Hence, with N,, = MU, for some constant M > 0, we get

P < MU, supP(‘Dn(t+iu)‘ > E)
teR 2

teER

< MUnsup{P<%‘i Ryt +iv)| > <) +P<%\i It +iv)| > $) }-

Random variables R;(t+iv) and I;(t+iv) are independent and identically distributed,
and ER;(t +iv) = E1;(t +iv) = 0. We have

|R;(t +iv)| < |eos(tX;)e™ ™ |1yx; 1<k +/

z|<

B |cos(tz)e™*|dF (x)

<ef e”K/ dF (z) = 2e"%

and, similarly,
|I;(t + iv)| < 2.
By the Hoeffding’s inequality (cf. Theorem [11]in Appendix we have
P(l|zn:Rj(t+iy)‘ > E) < P<lzn:Rj(t+iy) > E) —l—P(lzn:Rj(t—i—z'y) < _f)
n = 4 n = 4 n = 4

__en
< Qe 128K |

Similarly,

P<%}ij(t+w)| > i) < Qe AT
j=1
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For 0 < ¢ < 1282% and for sufficiently large n we have

627L

U, < e < eimek

Hence,
2

6271/
D < AMU, e 182K < 4M ™0

and since 6 — = < 0 we get

128 128e2VK

(o)
an < o0.
n=1

)
1282V K ,

By the Borel-Canteli Lemma convergence of the sequence y | p,, implies that with

probability 1

max ‘D tk—l—zy)‘ <
1<k< Ny,

[\')Im

(A.0.8)

for n sufficiently large. Hence, by (A.0.5)), (A.0.6), (A.0.7) and (A.0.8]) with probability 1

for sufficiently large n we get that

sup |q§n(t +iv) — ¢(t+iv)| <e.
|t|<Un
This completes the proof of Proposition [§]
Proof of Proposition [9]
We have
\é 0,7, K; i, p) — C(0,T,K)| =

S K rT wnT ~
‘—” 7: e~ 2 T Re ¢ iullog T +ibnT) On(—
0

S K rT | wT
_V7T0 e_2+2/0 Re[ logK+7’T+wT (¢XA(_

Let
A= YK e
m
m

B =

90

du

N | .
S~—
N——
3

du

u? 41

21
u® + g
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and

« o0 ) . ~ P\ P d
Bn — / Re |:€—zu(log S—I?—H"T—&-wnT) (¢n(_u . %)> :| u .
0

2 1
u®+ 3

We have

Co(0,T, K4y, p) — C(0,T, K)| = |A, B, — AB]|
= |A.B, — A,B+ A,B — AB| < |A,||B, — B| + |B||A, — A|

By Lemma [2] we have that

1o (6=D) g (oxa(-)

Y N A
hence
A, — A= YOR sy g

s
with probability 1. Expression B is a part of formula (3.3.2) and is finite. Moreover, by

Lemma [3| A,, is finite with probability 1. We will show that B,- B converges to 0 with
probability 1.

Let us denote

D = e*l’u(log S—Ig+rT+wT)

and

D _ efiu(log %JrrTJru?nT)
n
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We have
| w5 oo )]
= | [ Relb (- 5)) = B (onu- )
+D <¢XA(—U - %))p - D (¢XA(_U B %))p} u2dji i
< | ) Re[pn(<<£n<—u -3 - (%( u- §>)p)1 uzdii
+ e [(Dn - D) (quA(—u . %))] o i

[l (- 5
[y (o 1))
[ re [0 - 0) (oxatmu- 5) | s = 1 v

where we choose U, satisfying assumptions of Proposition . Since D,, — D is bounded

and converges to 0, we get by Lebesgue dominated convergence theorem that

1-3%0

as n — oo.
Moreover, we have

& A~ i \* du &
I < Do fn(—u— =
s [ Re[Du(oni-u- ) || )

Both integrals are finite and converge to 0 as U,, — oo with n — oc.

du
u2—l-%'

Re {Dn (m(—u - 5))]

Since
~ S(] ~ . SO ~
|D,| = | cos(u(log e + 7T +w,T)) + isin(u(log e + 7T +w,T)| <2,

Un
ni<2 [
0

?

(Inlcu= )~ (oxst-u-5))

2 1°
u—|—4
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For any u € [0,U,] by the Taylor’s Theorem (cf. Theorem (10| in Appendix [B.2) and

for sufficiently large n
(nt-u-3) = (omacu-3)) -
1 P (A ; i )
2mi 5 J ; d m\— Ww— 35— AU — =
271 J& (¢ = du(—1— 2))(C — dxa(—u — 1)) ¢ (dn(-u—35) = oxs(~u—73)

where we expand the complex power function z? for z = &n(—u — %) around point a =

¢x,(—u — %), and where C is a circle around point a with a radius r > | (—u — -

dxa(—u—3)l.
By Proposition [8| for any € € (0,7) and for any u € [0, U,] there exists integer N > 0,
such that for any n > N we have
l )

én(_u - 5) — CbXA(—U — 5) < €.

Hence, for ¢ € C' we have
¢ = dul(—u =) 2 [¢ = dxs(—u = )| = |du(—u—5) —éxa(—u—3)| 27—

and this implies that for sufficiently large n the integral over C' is well defined.
We have

1 P <A ; Z)
- - : —d (n(—u— L) — xa(—u— L
2“/C(C—¢n(—u—%) T RETE On(—u—3) = dxs(-u=3) )|
<i M 27T'r’e<u for€<i
T 2w (r—e)r = >

Hence, we have

Un
|]1|§2/ 2Me du <4M7r‘
0

rout4g T

This concludes proof of the Proposition.
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Appendix B

Supplements

B.1 Supplementary formulas

Frullani equality

Assume f’(z) is continuous and the integral converges, then

[T gy i 0 — b 1@ (2),

z—0 T—00 a

for a,b > 0.

The modified Bessel function of the second kind K,(+)

We have
o b 5
/ y“_le_g_cydy =2 (E) K, (2\/ bc) , (Re(b) > 0, Re(c) > 0),
0

cf. Gradshteyn & Ryzhik (1965) - formula 3.471.9,

and

cf. Prause (1999) - formula B.17.
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Appendix

Asymptotic behaviour of the modified Bessel function of the second kind K,(+)

K,(z) = \/gm_ée_x +0(1), as * — o0, (B.1.4)
Barndorff-Nielsen et al. (1982) - section 6.

B.2 Supplementary theorems

Theorem 8 (Part of Theorem 30.1 in (Sato 1999)) Let (X;)i>0 be a Lévy process with
generating triplet (o2, Lx,m) and let (Y;);>0 be a subordinator with a generating triplet
(0, p,b). Then the process (Zi)i>o defined for each w € Q by Z(t,w) := X(Y(t,w),w) is a

Léuvy process with a characteristic triplet (0%, Lz, mz), where

oy = bo?, (B.2.1)
L(dz) — bl (dz) + /0 " e (@)pl(ds), (B.2.2)
my = bm+ /000 p(ds) /| » xfx,(v)dx. (B.2.3)

Theorem 9 Lukacs (1960) (Theorem 7.1.1)

If a characteristic function ¢(2) is analytical and one-valued in a neighborhood of the ori-
gin, then it is also analytical and one-valued in a horizontal strip and can be represented
i this strip by a Fourier integral. This strip is either the whole plane, or it has one or
two horizontal boundary lines. The purely imaginary points on the boundary of the strip

(if this strip is not the whole plane) are singular points of ¢(z).

Lemma 4 Uni-variate Gaussian Shift Theorem (GST) (cf. Workshop on Exotic Option
Pricing (2006) by P.Buchen & O.Konstandatos). Let Z ~ N(0,1), c € R and H be any

measurable function with a finite expectation. Then

E(e?H(Z)) = e2”EH(Z + c). (B.2.4)



Appendix

Theorem 10 (c¢f. Karunakaran (2005) (Theorem 4.4.12))
Let f(z) be analytic in a region A and a € A. Then f(z) can be expanded in the following

form

= f(a "(a)(z —a —f(nil)(a)z—anfl = J(Q)d z—a)"
16 = @)+ PG =a) o+ e =+ o [ e e,

where C' is any circle with centre at point a and radius r, such that disc |z —a| < r is

contained in A. This expansion is valid for z € A and forn=1,2,....

Theorem 11 Devroye & Lugosi (2001) (Chapter 2, Theorem 2.1, p. 6)
Let Xi,...,X, be independent bounded random wvariables such that X; € [a;,b;], i =
1,...,n with probability 1. Then for any t > 0, we have

—9¢2
i=1\"1 3

and

—o¢2
P(S,— ES, < —t) < exp(zn (b't— a~)2)’
i=1\0i = Qi

where S, = > | X;.
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Appendix C
Matlab programs

This Appendix contains MATLAB® programs used to price and calibrate Models 1 - 5,

used in the project.

1. ecfvanilla.m

function y = ecfvanilla (S,K,r,q,t,tinc ,data,w,p,aa,cutoff ,u)
% ECF pricing , formula (4.1.6)

% S — spot price

% K — option strike

% r — interest rate

% q — divident yield

% t — option maturity

% tinc — assumed time increments of log—rets, tinc x length(data) should be
equal t

% data — data for DAX log—returns used in estimation of ecf

% w — used in calibration of implied MMCT

% aa  — alpha

% u — flag: 1 for call and 0 for put
rint=quadl(’ecfintegrand’,0,cutoff ,[],[] ,K, S, r, t, data, w, p, aa);

R=Sx(aa<=0) — exp(—rx*t)*Kx(aa<=—1) — (Sx(aa==0) — exp(—rxt)*K«(aa==-1)) /2;
y1=R + exp(—rxt) .x rint/pi;
y=yl+(1—u) .* (K.*exp(—r.xt)—S.xexp(—q.*xt)); %call or put

2. ecfintegrand.m

function y = ecfintegrand (v,K,S,r,t,data,w,p,aa)
% integrand in formula (4.1.6)

% v — wvariable
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0

X N X X NN X X

yl=exp(—ix*(v—i*aa)x*log(K));

ﬂﬁNCl)
\

data —

g

— spot price
option strike
— interest rate

— option maturity

=

aa —

— implied w

implied p

data for calculating ecf

integration parameter

vv=v—ix(aa+1);

y2=exp (i*xvv*(log(S)+(r+w)*t)).xecfcn (vv,data). p;

y3=1./(—=vv.*x(v—ixaa));

y=real (yl.xy3).xreal(y2) — imag(yl.xy3).ximag(y2);

3. ecfcalib.m

function [wecf, pecf, wdata, modelprices, resnorm, difplus, difminus,

A

XN NN R NNXNXKXN X

X XN

X N X XN XK

meandif , mediandif, rmserel] =

ecfcalib (SO, data, ndata, r,

strike ,

price , expdays, tinc, optiontype, wflag, pflag)
Calibrates the Models 2—/ to ODAX option prices

S0
data
ndata
r
strike
price

expdays

3
iS]

tinc
optiontype
price
wflag
pflag
maturity
output:
wecf
implied p

wdata

modelprices

resnorm
difplus

price of the underlying

underlying asset log returns

number of elements back of data to calculate ecf

riskfree rate

strike price

prices

of options

number of days to option expiration

power of ECF

time increments between log returns

1 for call,

0 for put,

if 1 then calibrate w,

if 1 then calibrate p,

implied w

implied p

empirical MMCT

prices

vector of length same as strike and

if 0 then wuse wdata

if 0 then wuse number of days to

obtained with the use of the optimal parameters

the value of the squared 2—norm of the residual
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% difminus — mintmum of relative errors
% meandif

mean of relative errors

% mediandif median of relative errors
% rmserel — relative resnorm

%

aa=—.5; %uses Lewis formula

cutoff=>512;

tolfun = 10°(—6); tolx 10°(—3);
opts = optimset (’Display’, iter’, TolFun’, tolfun , TolX’, tolx);

datal=data(length(data)—ndata+1:length(data));
wdata = —log(ecfen(—i,datal))/tinc;

maturity = expdaysx*tinc;
S01 = ones(length(strike) ,1).%S0;
rl = ones(length(strike) ,1).xr;

if (wflag==0)&(pflag==0) %use wdata and set p to number of days to
expiration
modelprices = zeros(length(strike) ,1);
for j=1:length(strike)
modelprices(j) = ecfvanilla(S01(j),strike(j),r1(j),0,maturity,tinc,
datal ,wdata,expdays ,aa,cutoff joptiontype(j));
end
resnorm = norm(modelprices—price) "2;
wecf=0;
pecf=0;
elseif (wflag==1)&(pflag==0) %calibrate w and set p to number of days to
erpiration
mats=ones (length(strike) ,1)*xmaturity;
w0 = wdata;

[weef, resnorm] = lsqnonlin (@ecffuncpowfixed, w0, [], [], opts, expdays,

aa, cutoff, mats, tinc, strike, price, rl, 0, SO1, datal, optiontype)

Zpricing with calibrated w
zeros (length (strike) ,1);
for j=1:length(strike)
modelprices(j) = ecfvanilla(S01(j),strike(j),r1(j),0,maturity,tinc,
datal ,wecf,expdays,aa,cutoff ,optiontype(j));

modelprices

end
pecf=0;
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elseif (wflag==0)&(pflag==1) %use wdata and calibrate p

mats=ones (length(strike) ,1)*xmaturity;

pL = 0;

[pecf, resnorm] = lsqnonlin(@ecffuncpowcalib, expdays, pL, [], opts,
wdata, aa, cutoff, mats, tinc, strike, price, rl, 0, S01, datal,
optiontype)

Zpricing with calibrated w

modelprices = zeros(length(strike) ,1);

for j=1:length(strike)

modelprices(j) = ecfvanilla(S01(j),strike(j),r1(j),0,maturity,tinc,
datal ,wdata, pecf ,aa,cutoff ,optiontype(j));

end

wecf=0;

else %calibrate w and p

mats=ones (length(strike) ,1)*maturity;

w0 = wdata;

wp0=[w0, expdays];

wpL = [-10 0];

[wpecf, resnorm] = lsqnonlin (@ecffunc, wp0, wpL, [], opts, aa, cutoff,
mats, tinc, strike, price, rl, 0, S01, datal, optiontype)

%pricing with calibrated w

modelprices = zeros(length(strike) ,1);

for j=1l:length(strike)

modelprices(j) = ecfvanilla (S01(j),strike(j),r1(j),0,maturity,tinc,
datal ,wpecf (1) ,wpecf(2) ,aa,cutoff ,optiontype(j));

end

wecf=wpecf(1);

pecf=wpecf(2);

end
difplus = max((modelprices—price)./price);
difminus = min((modelprices—price)./ price);

meandif = mean((modelprices—price)./price);
mediandif = median((modelprices—price)./price);

rmserel = sqrt (norm((modelprices—price)./price)”"2/length(price));
%end of the main function
function dd = ecffunc(par, aa, cutoff, maturity, tinc, strike, price,

interest , dividend, underlprice, data, u)

% calculates wvector of differences between real and model prices
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% maturity , strike, optionprice — equal sized vectors for comparision
% underprice — price of the underlying asset

% u — 1 for call, 0 for put

%

w=par (1) ; p=par(2);
lI=length (maturity) ;
dd=zeros(1,1);
for j=1:1
dd(j) = ecfvanilla(underlprice(j), strike(j), interest(j), dividend,
maturity (j),tinc, data, w, p, aa, cutoff, u(j)) — price(j);
end

function dd = ecffuncpowcalib(p, w, aa, cutoff, maturity, tinc, strike,
price, interest , dividend, underlprice, data, u)

% calculates wvector of differences between real and model prices

% maturity , strike, optionprice — equal sized vectors for comparision
% underprice — price of the underlying asset

% u — 1 for call, 0 for put

%

l=length (maturity) ;
dd=zeros(1,1);
for j=1:1
dd(j) = ecfvanilla(underlprice(j), strike(j), interest(j), dividend,
maturity (j),tinc, data, w, p, aa, cutoff, u(j)) — price(j);

end

function dd = ecffuncpowfixed (w, p, aa, cutoff, maturity, tinc, strike,
price, interest , dividend, underlprice, data, u)

% calculates wvector of differences between real and model prices

% maturity , strike , optionprice — equal sized wvectors for comparision
% underprice — price of the underlying asset

% u — 1 for call, 0 for put

%

lI=length (maturity) ;

(
(
for j=1:1

dd=zeros(1,1);

dd(j) = ecfvanilla(underlprice(j), strike(j), interest(j), dividend,

maturity (j),tinc, data, w, p, aa, cutoff, u(j)) — price(j);
end
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4. rvg.m

function y = rvg(S,K,r,q,sig ,nu,th,t,aa, u)
% CML option price for Variance Gamma (VG) distribution

%

% S — spot price

% K — option strike

% r — idnterest rate

% q — divident yield

% sig, nu, th — VG parameters

% t — option maturity

% aa — integration parameter

% u — flag: 1 for call and 0 for put
%

% Refererences:

% Lewis, Alan L., ’A simple option formula for general jump—diffusion and
% other expomential Levy processes. Manuscript, Envision Financial Systems
% and OptionCity.net, 2001

% Roger Lord and Christian Kahl, ’Optimal Fourier Inversion in Semi

% —analytical Option Pricing ', Tinbergen Institute Discussion Papers, 2006
%

w = 1/nuxlog(l — th*nu — .5%nuxsig"2);

rint=quadl(’'rintegrand’ ,0,512,[],[] ,K, S, r, q, t, sig, nu, th, w, aa);
R=Sx(aa<=0) — exp(—rxt)*K«(aa<=—1) — (S*x(aa==0) — exp(—rx*t)+«K«(aa==-1)) /2;
y1=R + exp(—rxt) .x rint/pi;

y=yl4+(1—u) .* (K.*exp(—r.*t)—S.*xexp(—q.*t)); %call or put

function y = rintegrand (v,K,S,r,q,t,sig ,nu,th,w,aa)
yl=exp(—ix*(v—i*xaa)x*log(K));

y2=exp (i*(v—i*(aa+1))*(log(S)+(r+w)*t)).*rvgchf(v—i*(aa+1),th,sig ,nu,t);
y3=1./(—=(v—ix(aa+1)).x(v—ixaa));

y=real (yl.xy2.xy3);

5. cmlcalib.m

function [paramopt, modelprices, resnorm, difplus, difminus, meandif,
mediandif, rmserel] = cmlcalib (S0, data, ndata, r, strike, price,
expdays, tinc, params, optiontype)

% Calibrates the CML model to ODAX option prices

% used in Model 5

% S0 — price of the underlying,

% data — timeseries of the wunderlying,
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% ndata — number of elements to calculate ecf,

% r — riskfree rate,

% strike — strike price,

% price — price of option,

% expday — number of days to option expiration

% tinc — time increments of log returns,

% optiontype — 1 for call, 0 for put,

% params — starting parameters for calibration

% output :

% paramopt — optimal parameters

% modelprices — prices obtained with the use of the optimal parameters
% resmorm — the wvalue of the squared 2—mnorm of the residual
% difplus — mazximum of relative errors

% difminus — minimum of relative errors

% meandif — mean of relative errors

% mediandif — median of relative errors

% rmserel — relative resnorm

%

aa=—.5; %use the CML formula

cutoff=>512;

tolfun = 107 (—=6); tolx = 10"(-3);

opts = optimset (’Display’, ’iter ', TolFun’ tolfun , TolX’  tolx);

datal=data(length(data)—ndata+1:length(data)

)
theta=params(1); sigma=params(2); nu=params(3);
maturity = expdaysx*tinc;

S01 = ones(length(strike) ,1).xS0;

rl = ones(length(strike) ,1).%r;

mats=ones (length(strike) ,1)*maturity;

par0 = [params(1) params(2) params(3)];

parL = [—Inf 0 0];

opts = optimset (’Display’, iter’, TolFun’,10"(—=9), TolX’, 10°(-9));
[paramopt resnorm] = lsqnonlin (@VG_model_price, par0, parL, [], opts, mats,

strike , price, rl, 0, SO, optiontype);
sigma = paramopt(2);
nu = paramopt (3) ;
theta = paramopt (1) ;

%pricing with calibrated params
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modelprices = zeros(length(strike) ,1);
for j=1:length(strike)
modelprices(j) = rvg(S01(j),strike(j),r1(j),0,sigma ,nu,theta ,maturity ,aa,
optiontype(j));

end

resnorm = norm(modelprices—price) "2;
difplus = max((modelprices—price)./price);
difminus = min((modelprices—price)./ price);

meandif = mean((modelprices—price)./price);
mediandif = median((modelprices—price)./price);

rmserel = sqrt (norm((modelprices—price)./price)"2/length(price));

%end of the main function

function v = VG_model_price(params, maturity , strike , price, interest
dividend , underlprice, u)
% calculates wvector of differences between real and model prices

%

% params — Variance Gamma parameters

% maturity, strike, optionprice — equal sized vectors

% underprice — price of the underlying asset
% u — 1 for call, 0 for put

%

th=params(1); sg=params(2); nu=params(3);

l=length (maturity) ;

v=zeros (1,1);

underlpricel = ones(length(strike),1).xunderlprice;

for k=1:1

v(k)=rvg(underlpricel (k), strike(k), interest(k), dividend, sg, nu, th,

maturity (k), —.5, u(k)) — price(k);

end

6. Modell234.m

% Script for Models 1—/

%
% set Model:
% 1 — pflag = 0 and wflag = 0

% 2 — pflag = 1 and wflag = 0
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% 3 — pflag = 0 and wflag = 1
% 4 — pflag = 1 and wflag = 1
%

pflag=0;

wflag=0;

%open connection to MySQL database wusing MySQL Database Connector

%http ://sourceforge.net/projects/mym, http://www.mmf. utoronto.ca/resrchres/
mysql/

mysql( ’open’, ’localhost’, ’karol’, ’’);mym( ’open’, ’localhost’, ’karol’,
)

mysql(’use_options’) ;mym(’use_options’);

q = 0; %dividend zero
daycount = 365; tinc=1/daycount;

colormap (hsv(daycount)); %set colors for plotting

Mcolor=hsv;

daxcloseseries = mysql( ’SELECT_dadjclose FROM_dax WHERE_dax . daxdate >=._
72006—06—01” _.AND._dax . daxdate .<=_"2007-05—31" . _ORDER.BY._daxdate ’) ;

[odate, daxprice, expdays, strike, closeprice, putcall] = mysql(’SELECT.
odate ,.daxprice ,.days,.strike ,_.closeprice ,_.putcall FROM_odax WHFRE_.odate
>=."2006—06—01" _.AND_odate <=."2007—05—31" _,AND_qualifiers .<>.” Missing” .
AND.daxprice .<>_."NULL” _ORDER.BY_odate , _ric ") ;

odaxdates = unique (odate);

numberofdays = length(odaxdates);

table=[]; table_.LS=][]; tabledate=[];

table_price=[]; table_modelprice=[]; table_regress=[];

for j=l:numberofdays
odaxdatestr = datestr (odaxdates(j),29); %adjust odax date format
mym( ’truncate .dummydate’); mym( INSERT_INTO_dummydate(coll)_VALUES(”{S}”)
’, odaxdatestr); %updating dummydate for the next line ..

ODAX = mym( 'SELECT._daxprice ,_days,.strike ,.closeprice ,_.putcall ;.
interestrate FROM_odax , .dummydate WHERE_odax . odate _=_dummydate. coll .
AND.qualifiers.<>.” Missing” _.AND_odax . volume>=1_ORDER_BY_days , _strike ”)
i %select current=j day

daxprice = ODAX. daxprice; expdays = ODAX.days; ostrike = ODAX. strike;
closeprice = ODAX. closeprice; putcall = ODAX. putcall; interestrates =
ODAX. interestrate /100;
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S0 = daxprice(1);

%use only four strikes around SO

sr1=100;srr=100;

strikes_idx=and (ODAX. strike <=S0+srr ,ODAX. strike >S0—srl);

ostrike=ostrike (strikes_idx); daxprice=daxprice(strikes_idx); expdays=
expdays(strikes_idx); «closeprice=closeprice(strikes_idx); putcall=
putcall (strikes_idx); interestrates=interestrates (strikes_idx);

%reading DAX closeprices for calculating ECF

daxclose = mysql( ’SELECT.dadjclose FROM.dax , .dummydate WHERE_dax .daxdate.
<=.dummydate. coll .ORDER_.BY._daxdate ’) ;

daxlogrets=diff(log(daxclose));

[exps, m, n| = unique(expdays); %sort with respect to maturities
numberofmaturities = length (exps);
ml = [0;m];

minprice=—10; %for plotting

for k=l:numberofmaturities
SO0 = daxprice(1);
data=daxlogrets;
maturity=expdays (ml(k)+1:ml(k+1))/daycount; %select same maturities
expday=exps (k) ;
ndata=120;
strike=ostrike (ml(k)+1:ml(k+1));
price=closeprice (ml(k)+1:ml(k+1));
rate=interestrates (ml(k)+1:ml(k+1));
optiontype=ones (length(putcall (ml(k)+1:ml(k+1))),1);

%if mumber of options is less than 8, skip it
if length(strike)>=3

[wecf, pecf, wdata, modelprices, resnorm, difplus, difminus, meandif,
mediandif, rmserel] = ecfcalib (S0, data’, ndata, rate, strike, price
, expday, tinc, optiontype, wflag, pflag);

%saving calibrated parameters

rmse = sqrt(resnorm / length(price));

tableinput = [odaxdates(j), expday, ndata, rate(l), wdata, resnorm,

rmse , wecf, pecf, difplus, difminus, meandif, mediandif, rmserel];
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table = [table; tableinput]; tabledateinput = [odaxdatestr];
tabledate = [tabledate; tabledateinput];

%saving ODAX prices and model prices
tableinput = [price, modelprices, SO./strike, maturity, rate];

table_regress = [table_regress; tableinput];

ff=figure(j); lcolor=expday;

plot (strike , price, ’s’,’Color’,Mcolor(lcolor ,:),’LineWidth’,1); hold
on; %%

plot(strike , modelprices, ’o’,’Color’,Mcolor(lcolor ,:),’LineWidth’ ,2);
hold on;

Kl = [min(strike):1:max(strike)]; Y1 = max(S0-K1,0); plot(Kl, Y1,’k’,’
LineWidth’,2); hold on;

xlabel(’Strike ’); ylabel(’Option_price’);
legend ( 'ODAX_prices’,’ECF_prices’,’Payoff’);
title (sprintf( ’ODAX.Call_prices._.on %s’,odaxdatestr));

minpricel=min ([ price; modelprices]); %for plotting

minprice=min ([ minprice; price; modelprices]) ;
else end %if length(strike)<3 next maturity

end

hl=gca; xl=get(hl, ’XLim’); yl=get(hl,’ ’YLim’);

text (round ((x1(2)—x1(1))/3+x1(1)),y1(2)—round (.1%(y1(2)—y1(1))) ,sprintf(’
S0.=%g’,S0),’FontSize’ ,12);

for kl=1:numberofmaturities
text (strike (1)4round (.1 (x1(2)—x1(1))),10+kl*round(.03*(yl(2)—y1(1))),
num?2str (exps (k1) ), Color’ ,Mcolor(exps(kl) ,:),’FontSize’ ,8,’
HorizontalAlignment ', ’right’, 'FontWeight’,  bold’);
end
text (strike (1)4round (.01x(x1(2)—x1(1))),10,  (days_.to_expiry)’,’FontSize’
,8, HorizontalAlignment ', ’left ’, 'FontWeight’, bold’);

saveas (ff ,sprintf( ’ODAX%s ECF%g’,odaxdatestr , ndata),’ fig’);

saveas (ff ,sprintf( ’'ODAX%s ECF%g’,odaxdatestr , ndata),’ pdf’);
close (ff);
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end
%Error measurements
price_err = table_regress (:,1)—table_regress (:,2);

price_err_rel = (table_regress(:,l)—table_regress (:,2))./table_regress(:,1)

)

price_err_abs = abs(price_err);
price_err_rel_abs = abs(price_err_rel);
table_errors = [mean(price_err); mean(price_err_rel); mean(price_err_abs);

mean( price_err_rel_abs); sqrt(sum(price_err.”2)/length(price_err)); sqrt

(sum(price_err_rel.”2)/length(price_err_rel))];
7. Model5.m

% Script for Model 5

%

%open connection to MySQL database using MySQL Database Connector

%http://sourceforge.net/projects/mym, http://www.mmf. utoronto.ca/resrchres/
mysql/

mysql( ’open’, ’localhost’, ’'karol’, ’’); mym( ’open’, ’localhost’, ’karol’
;7))

mysql(’use_options’); mym(’use_options’);

q = 0;
daycount = 365;
tinc=1/daycount;

colormap (hsv(daycount)); %set colors for plotting

Mcolor=hsv;

daxcloseseries = mysql( ’SELECT._.dadjclose FROM_.dax WHERE_dax . daxdate >=.
72006—06—01” _AND._dax . daxdate <=.72007-05—31" . _LORDER.BY_daxdate ’) ;

%choose time interval and calculate number of days to analyse

[odate, daxprice, expdays, strike, closeprice, putcall] = mysql(’SELECT.
odate , _.daxprice ,._.days,._strike ,_.closeprice ,_.putcall FROM_odax WHFERE_.odate
>=."2006—06—01" _.AND_odate <=."2007—-05—31" _,AND_qualifiers .<>.” Missing” .
AND.daxprice .<>."NULL” .ORDER.BY_odate , .ric ") ;

odaxdates = unique (odate);

numberofdays = length(odaxdates);

%create table for results

table =[];

table_ LS =[];

tabledate =[]; %table for dates
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table_price =[];

table_modelprice =[];

table_regress =[];

for j=Il:numberofdays

odaxdatestr = datestr (odaxdates(j) ,29); %adjust odaxr date format
mym( ’truncate .dummydate’); mym( 'INSERT_INTO_dummydate(coll) _VALUES(”{S}”)
’, odaxdatestr); %updating dummydate

ODAX = mym( 'SELECT_daxprice , _days,.strike ,_.closeprice ,_.putcall ;.
interestrate FROM_odax , .dummydate WHERE_odax .odate _=_dummydate. coll .
AND.qualifiers.<>.” Missing” _AND_odax . volume>=1_ORDER_BY_days , _strike ”)
i %select current=j day

daxprice = ODAX. daxprice; expdays = ODAX.days; ostrike = ODAX. strike;
closeprice = ODAX. closeprice; putcall = ODAX. putcall; interestrates =
ODAX. interestrate /100;

S0 = daxprice(1);

%use only four strikes around SO

sr1=100;srr=100;

strikes_idx=and (ODAX. strike <=S0+srr ,ODAX. strike >S0—srl);

ostrike=ostrike (strikes_idx);

daxprice=daxprice (strikes_idx);

expdays=expdays(strikes_idx);

closeprice=closeprice (strikes_idx);

putcall=putcall (strikes_idx);

interestrates=interestrates (strikes_idx);

%read DAX closeprices for calculating ECF, up to the date analysed in
dummydate (coll)

daxclose = mysql(’SELECT_.dadjclose FROM_dax , .dummydate WHERE_dax . daxdate.
<=.dummydate. coll .ORDER_.BY._daxdate ’) ;

daxlogrets=diff(log(daxclose));

[exps, m, n] = unique(expdays); %sort with respect to maturities
numberofmaturities = length (exps);
ml = [0;m];

minprice=—10; %for plotting

ndata=250;

% calculate starting parameters by Method of Moments, use 250 historical

% log returns

DATA=daxlogrets (length(daxlogrets )—ndata+1:length(daxlogrets)); DATAmc=
DATA — mean(DATA) ;

theta.mm = mean(DATA) /tinc; sigmamm = std (DATAmc)/sqrt(tinc); numm = (
kurtosis (DATAmc) /3 — 1)x*tinc;
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numberofmaturities_done=0;
for k=1l:numberofmaturities
S0 = daxprice(1);
data=daxlogrets;
maturity=expdays (ml(k)+1:ml(k+1))/daycount; %select same maturities
expday=exps (k) ; %expdays (m(k));
strike=ostrike (ml(k)+1:ml(k+1));
price=closeprice (ml(k)+1:ml(k+1));
rate=interestrates (ml(k)+1:ml(k+1));
optiontype=ones (length(putcall (ml(k)+1:ml(k+1))),1);
% if number of available options is less than 3, skip it
if length(strike)>=3
[par_.LS, modelprices_ LS, resnorm_LS, difplus_ LS, difminus_LS,
meandif LS, mediandif .LS, rmserel_.LS] = cmlcalib (S0, data’, ndata,
rate , strike, price, expday, tinc, [theta.mm sigma.mm numm],
optiontype);
%saving calibrated parameters
rmse_.LS = sqrt(resnorm_LS / length(price));
tableinput_ LS = [odaxdates(j), expday, ndata, par LS, rate(l),
resnorm_LS, rmse_ LS, difplus_.LS, difminus_LS, meandif LS,
mediandif LS, rmserel_LS];

table_.LS = [table_LS; tableinput_LS];
tabledateinput = [odaxdatestr];
tabledate = [tabledate; tabledateinput];

%saving ODAX prices and model prices
tableinput = [price, modelprices_. LS, SO./strike , maturity, rate];

table_regress = [table_regress; tableinput];

ff=figure(j); lcolor=expday;

plot (strike , price, ’s’,’Color’,Mcolor(lcolor ,:),’LineWidth’,1); hold
on;

plot (strike , modelprices_ LS, ’go’, LineWidth’,2); hold on;

Kl = [min(strike):1:max(strike)]; Y1 = max(S0-K1,0); plot(K1l, Y1,’k’,”’
LineWidth’,2); hold on;

xlabel (’Strike’); ylabel(’Option_price’);

legend ( 'ODAX_prices’ ,’"CML.MLE_prices’,’CML_LS_prices ', "Payoff’);
title (sprintf( ’ODAX.Call_prices.on.%s’,odaxdatestr));
minpricel=min ([ price;modelprices LS]); %for plotting
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minprice=min ([ minprice; price; modelprices_.LS]) ;

numberofmaturities_done=numberofmaturities_done+1;
else end %if length(strike) < 8 then mnext maturity

end

axis ([min(strike)—1 max(strike )4+1 minprice—1 max([price; modelprices_LS])
+1])

hl=gca; xl=get(hl, ’XLim’); yl=get(hl,’ ’YLim’);

text (round ((x1(2)—x1(1))/3+x1(1)),y1(2)—round(.1%(yl1(2)—y1(1))),sprintf(’
S0.=%g’,S0),’ FontSize’ ,12);

for kl=1:numberofmaturities_done

text (strike (1)4+round (.1 (x1(2)—x1(1))),10+kl*round (.03x*(yl1(2)—y1(1))),
num?2str (exps (k1) ), ’ Color’ ,Mcolor(exps(kl) ,:),’FontSize’,8,’

HorizontalAlignment ’, ’right ’, ’FontWeight’, bold’);
end
text (strike (1)4round (.01%(x1(2)—x1(1))),10, (days_to_expiry)’, FontSize’
,8,  HorizontalAlignment ', ’left ’, 'FontWeight’,  bold’);

saveas (ff ,sprintf( ’ODAX%s_CML%g ’ ,odaxdatestr , ndata),’fig’);
saveas (ff ,sprintf( ’ODAX%s_CML%g’ ,odaxdatestr , ndata),’pdf’);
close (ff);
end
%Error measurements
price_err = table_regress (:,1)—table_regress(:,2);
price_err_rel = (table_regress(:,l)—table_regress (:,2))./table_regress(:,1)

i

price_err_abs = abs(price_err);
price_err_rel_abs = abs(price_err_rel);
table_errors = [mean(price_err); mean(price_err_rel); mean(price_err_abs);

mean( price_err_rel_abs); sqrt(sum(price_err."2)/length(price_err)); sqrt

(sum(price_err_rel."2)/length(price_err_rel))];
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