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ABSTRACT 

The spread of invasive species in sensitive ecosystems is a major environmental 

problem, resulting in significant hazards to local and regional environmental and 

socioeconomic facets.   Traditional field-survey based management, particularly in 

adverse terrain, is difficult – inhibited by climactic conditions, worker safety, and time.   

There is a strong demand for remote-sensing to mitigate these issues, improving 

efficiency and effectiveness, and increasing coverage ability.    

The aims of this thesis are to investigate the potential use of remote-sensing in weed 

management and specifically evaluate the use of it to two locate weed species in 

Kosciuszko National Park (KNP). The evaluation was performed through the collection 

and processing of floral spectra to formulate a spectral library, which was then analysed 

for statistical uniqueness, utilising machine-learning classification algorithms.   

Results of the Random Forest (RF) discriminability analysis presented an overall 

separability accuracy of 70%. This was then resampled to simulate the discriminability 

for commercial drone and multi-spectral satellite sensors, giving accuracies of 59% and 

63%, respectively.  

This preliminary analysis is promising, and builds the foundation for future 

multispectral research for weed management in KNP, and provides a foundational 

methodology for spectral pre-assessment in general.
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1 INTRODUCTION 

Aided by the proliferation of high-quality data access and computing power, remote 

sensing is proving to be a valuable tool that is being increasingly utilised in multiple 

disciplines. Its ability to obtain vast quantities of information about the environment, 

at details and parameters previously unavailable, have seen its growing presence in 

innovative transdisciplinary studies (Easton, 1991; Xie, Sha, & Yu, 2008). One 

common example of this is the use of remote sensing imagery for ecological vegetation 

mapping – a rapidly advancing field through the expansion of imagery sources, 

classification algorithms, computing power, and other technological advancements 

(W. Turner et al., 2003; Xie et al., 2008). With various imagery sources now available 

– with differing spectral, spatial, radiometric, temporal, and financial characteristics – 

the suitability for remote sensing across varying aspects of ecology has increased (W. 

Turner et al., 2003; Xie et al., 2008).  

The major challenges lie in the classification of this imagery, which are significantly 

more variable in their effectiveness, where the accuracy of distinguishing and mapping 

vegetation classes can vary significantly (Shang & Chisholm, 2014). One method may 

be exceptionally successful for one community and area, but comparingly ineffective 

in another (Shang & Chisholm, 2014). Searching for improved classification methods 

and ascertaining the best ones for particular cases, is one of the major research 

frontiers of vegetation remote sensing (Kerr & Ostrovsky, 2003; Lass et al., 2005). 

These cases, and demands, for vegetation remote sensing are ever-increasing across a 

broad range of areas. 

Invasions by non-indigenous floral and faunal species are considered one of the most 

formidable of threats and risk factors to ecosystems, and socioeconomic conditions – 

particularly in Australia (Sinden et al., 2004). The direct annual impact of invasive 

species in Australia is estimated to be as high as $6.4 Billion per annum – $3.3 Billion 

alone for the grain industry, adjusted for inflation (Llewellyn et al., 2016; Sinden et al., 

2004). This excludes other flow-on impacts on the environment including: native 

species extinctions; reduction of biodiversity; damage to ecosystem services; reduced 

aesthetics; impacts on fire regimes; and potential feedback influences (DiTomaso et 

al., 2013; Huang & Asner, 2009; Sinden et al., 2004). Remote sensing is a tool that is 

being used for the detection, classification, and monitoring of invasive species to assist 

in addressing these issues (Lass et al., 2005).  

1 



Evaluating the Use of Remote-Sensing to Locate Weeds in Kosciuszko National Park 

2  Chad Ajamian - December 2017 

With the variable effectiveness of remote sensing in weed management scenarios, it 

useful to perform primary studies to ascertain potential benefits and results of 

implementing such systems in particular and specific weed management scenarios 

(Carson, Lass, & Callihan, 1995; O’Neill, Ustin, Hager, & Root, 2000). Assessing the 

suitability of classification algorithms before a full-scale deployment and analysis can 

assist in facilitating business cases for expenditures, as well as providing preliminary 

expectations of usefulness (Nidamanuri & Zbell, 2011). One method for this is to 

perform a statistical analysis on the separability of the spectral profiles of plants, 

essentially determining their contrast in general, and then re-performing this 

classification as to the specific capture parameters of imagery capture devices chosen 

(Nidamanuri & Zbell, 2011).  

This thesis aims to assess the potential effectiveness of remote sensing utilisation for 

invasive species management through literature review, and a focused case study of 

two noxious weeds in Kosciuszko National Park, NSW, Australia. This thesis is 

presented in several chapters, which starts with a literature review, which then opens 

to the main results presented as a journal article prepared for latter submission, and 

concludes with a synthesis of the research.  
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2 LITERATURE REVIEW 

2.1 Noxious Weeds 

Infestations of invasive species in the Australian landscape has the potential to cause 

significant environmental, social, and economic effects. The presence of two 

concerning weeds, ox-eye daisy (Leucanthemum vulgare Lam.) and orange hawkweed 

(Heiracium aurantiacum L), in the already stressed alpine regions of Australia, 

particularly in Kosciuszko National Park (KNP), is a great concern to regional 

biodiversity and health of the environment (NSW DPI, 2012; NSW OEH, 2015b).  

Detecting, and determining, the distribution and extent of specific floral species is key 

to environmental scientists and managers, providing significant knowledge regarding 

the growth, health, productivity, disturbances, and issues across an ecosystem 

(Franklin, 2010; Sanchirico & Mumby, 2009). The increase of human-induced climate 

change, as well as the intensification of species movements through globalisation and 

other anthropogenic activities, has made critical the need for knowledge for invasive 

species management, to assist with conservation efforts and sustainable practices 

(Beaumont et al., 2009; Clements & Ditommaso, 2011; Hulme, 2009; Westphal, 

Browne, MacKinnon, & Noble, 2008). 

2.1.1 Ox-Eye Daisy 

2.1.1.1 Description 

Ox-eye daisy, Leucanthemum vulgare Lam. (Asteraceae), is a native European diploid 

rhizomatous perennial herb, an introduced species in Australia, generally for 

ornamental purposes (Chaujar, 2010; McConnachie et al., 2015). It is shallow-rooted, 

and spreads by rhizomes, but primarily by seed (NSW OEH, 2015b). The plants are 

capable of growing to 1m tall, but generally range from 30cm to 90cm, with a 

combination of prostrating basal stems capable of rooting, as well as simple stems 

(McConnachie et al., 2015). Seeding is highly prolific, with a single mature plant being 

able to produce 26,000 high longevity seeds annually, with as much as 80% still viable 

after six years, and some able to germinate after 39 years (McConnachie et al., 2015; 

Toole & Brown, 1946). 
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2.1.1.2 Distribution 

The daisy is a worldwide problem, considered a weed in over forty countries (NSW 

OEH, 2015b). The weed is an established issue in southern Canada and the United 

States of America, as well as New Zealand, and is spreading in Australia (NSW OEH, 

2015b). The species thrives in neglected and poor conditions such as roadside verges, 

and has a tendency to aggressively invade areas of high conservation importance 

(Chaujar, 2010; McConnachie et al., 2015). Ox-eye daisy is found in Victoria and New 

South Wales (NSW), with the most alarming infestation in KNP. The densest 

concentrations are near Tantangara Road, Providence Portal, and the Snowy 

Mountains Highway, as well as along trails such as Nungar Creek Trail and Bullocks 

Hill Trail (Atlas of Living Australia, 2016a). Other hotspots in Australia include: 

Llangothlin, 50km north of Armidale; Mount Lofty, Adelaide; minor scattered records 

in Hobart, and the western edge of Kanangra-Boyd National Park (Atlas of Living 

Australia, 2016a). 

2.1.1.3 Issues 

Ox-eye daisy is rapidly proliferating as an invasive species of concern throughout NSW, 

as it poses a significant threat to the local environment (NSW OEH, 2015b). 

Additionally, there is the strong potential for negative effects in the grazing industry, 

as witnessed in Canada, and the United States of America (USA) (Benson, 2012). The 

daisy is recognised as a significant pasture weed as it is: non-palatable for cattle; 

significantly reduces livestock carrying capacity; and makes the taste of dairy produced 

unpalatable for human consumption (Benson, 2012). The daisy is also a host for many 

viral diseases affecting crops (Benson, 2012). Infestations, especially dense ones, are 

recognised to exclude other plant species including natives, reducing native species 

diversity, as well as exacerbating soil erosion and depleting soil organic matter 

(McConnachie et al., 2015). In NSW, there is a “very high risk” to alpine, sub-alpine, 

open bushland and grassland areas (McConnachie et al., 2015, p. 104).  

2.1.2 Orange Hawkweed 

2.1.2.1 Description 

Orange hawkweed, Heiracium aurantiacum L, also known as Pilosella aurantiaca (L.) 

F.W.Schultz & Sch.Bip. is part of the Hieracium species, commonly known as 

hawkweeds (Atlas of Living Australia, 2016b). The species is native to mountainous 

regions in Europe, is a major weed in USA, Canada, Japan, and New Zealand. It is in 
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the establishment stage in Australia, having been listed on the State Prohibited Weeds 

list (NSW DPI, 2012). It is a perennial flowering plant, producing 5-30 flower head 

clusters each, and seeds without the need of pollination (Morgan, 2000). One square 

meter of an infection region produces up to 40,000 seeds during the summer season, 

spreading via adhesion to human and animal activity, as well as hydrological and 

aeolian movement (NSW DPI, 2012). Initially starting as a rosette, orange hawkweed 

spreads though stolons and rhizomes, which become daughter rosettes (NSW DPI, 

2012). Its serious threat to the environment, combined with a small spatial 

distribution, provides the potential for an early-in-the-chain eradication. As such, the 

plant is listed on the ‘Alert List for Environmental Weeds’. 

2.1.2.2 Distribution 

Infestations of orange hawkweed are currently limited to small pockets in Victoria, 

Tasmania and NSW (Atlas of Living Australia, 2016b). Hawkweed is present in two 

separate regions in Tasmania, as it was sold there from the 1950’s as an ornamental 

garden plant (NSW DPI, 2012). Whilst being sold in NSW up to 2005, its first recorded 

naturalisation was in 2003 at Toolong Range in KNP (Atlas of Living Australia, 2016b). 

In 2011 surveys, the weed is contained to 135 discrete patches to a total of 7.43ha, in a 

sphere of 8,165 ha of parkland, limited to the park boundary (NSW DPI, 2012). In 

NSW, the weed is currently constrained to the KNP region. The hotspot is partly within 

the Jagungal Wilderness Area, and near Round Mountain (Atlas of Living Australia, 

2016b). Minor limited infestations are also present in the Victorian Highlands, 

believed to spread by travellers. The Cabramurra infestations are roughly 50km from 

the Tantangara Road infestations of ox-eye daisy (Atlas of Living Australia, 2016b). 

The areas of invasive species infestations are presented in a figure in appendix one. 

The weed tends to habituate along ridges and other areas where winds may be ‘blocked’ 

(Jones, 2017). This section of KNP would be an ideal study area for sampling, which 

can be specified as the region encompassing the northern extent – between Tantangara 

Dam and Jagumba. Therefore, it is selected as the study site area for this project. 

2.1.2.3 Issues 

Categorised as a ‘sleeper weed’, orange hawkweed is flagged for having the potential to 

undergo an exponential growth and spread, with modelling suggesting the potential 

for NSW, Victoria, and Tasmania to be at risk of a 27 million hectare infestation (NSW 

DPI, 2012). Orange hawkweed can have significant environmental impacts through 

loss of botanical biodiversity (Morgan, 2000). Additionally, the plant increases the 
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acidity of the soil below it, modifying the lithographic environment and impacting the 

growth of other species (NSW DPI, 2012). Orange hawkweed has displaced inter-

tussock vegetation in New Zealand and there is potential for a similar issue to occur in 

Australia, destroying rare and threatened native vegetation (Morgan, 2000). The weed 

is unpalatable to livestock and aggressively competes with pasture, with potential 

modelled impacts to Australia being $48 million p.a. (NSW DPI, 2012). Additionally, 

there is the potential for damage to native vegetation reducing the natural iconic 

aesthetics of the region, impacting the local $280 million tourism industry (NSW DPI, 

2012). 

2.1.3 Current Weed Management Approaches in Kosciuszko N.P. 

A variety of approaches are used for controlling the weeds, sorted into different weed 

management categories, which are organised based on the level of weed invasion, and 

their history (NSW DPI, 2012). For ox-eye daisy, the category is containment – where 

eradication is assumed to now be impossible, and the focus is instead on reducing the 

severity, and spread, of the already established infestations (NSW DPI, 2008). This can 

include, for example, ensuring the weed does not reach more pristine parts of the 

ecosystem, whilst confining its existence to road verges. However, orange hawkweed is 

different and has a considerably higher management effort, as it is classed in the 

eradication category, where the focus is to obliterate the weed entirely (Hamilton, 

Cherry, & Turner, 2015). No weed eradication programs have been entirely successful 

in mainland NSW to date (Hamilton et al., 2015). Globally, no orange hawkweed 

eradication programs have reached completion successfully (Jones, 2017). 

The relatively contained distribution, low populations, and lesser chance of reinvasion, 

provides the opportunity for eradication of orange hawkweed to occur, in contrast to 

ox-eye daisy which is already considerably spread (Caldwell & Wright, 2014). The 

eradication program can be summarised as consisting of: strategic detection programs; 

coupled with rapid and repeated control initiatives; as well as monitoring, and 

evaluation, to provide an integrated and adaptive environmental management 

response (Caldwell & Wright, 2011, 2014; Cherry, Constantine, Primrose, Hauser, & 

Tasker, 2016; Hamilton et al., 2015). The main challenge is detecting the remaining 

hawkweed plants in the extensive, topographically-challenging, difficult, alpine 

terrain. A combination of conventional and innovative approaches are being utilised. 

Extensive ground surveillance surveys are undertaken by a combination of field staff, 

contractors, and volunteer programs to detect weed infestations (Cherry et al., 2016; 
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Hamilton et al., 2015). Volunteer programs are large, involving over three hundred 

people (Cherry et al., 2016; Jones, 2017). Whilst useful, human surveys are estimated 

to have up to an 80% success rate, requiring further search methods (C. Hauser et al., 

2012).  

As such, these methods are accompanied by innovative programs including helicopter-

insertion surveys, sniffer dog training and deployment programs, and wind spread 

modelling (Cherry et al., 2016). Cousens and Williams (2011), as well as Cousens et. al. 

(2012) predicted future hawkweed locations in KNP by modelling wind dispersal and 

habitat suitability, where habitat was calculated by a combination of ground-cover 

disturbance, vegetation community types, and soil moisture conditions. Potential 

spread changes under climate change scenarios was also determined in Beuamont et. 

al. (2009). The feasibility of using dogs to identify hawkweed was determined to be 

effective by Hanigan and Smith (2014), which encouraged its use as a management 

technique. The dogs are able to cover five times more than human operators, but may 

do this along an esoteric route, which is mitigated through in-field GPS trackers which 

can alert a trainer where a gap in a search grid may have occurred for re-evaluation 

(Jones, 2017). Weed eradication detector dogs are now being used successfully to  

‘verify’ and detect hawkweed plants (Cherry et al., 2016). “Robotic aircraft and 

intelligent surveillance systems” – or drones – were used to map and detect orange 

hawkweed in KNP (Hung & Sukkarieh, 2015, p. 100). This system used image 

processing algorithms to search for the orange colour provided by the flower of orange 

hawkweed (Hung & Sukkarieh, 2015). Flowers were successfully detected, albeit with 

considerable rates of false-positive returns (Hung & Sukkarieh, 2015). This system is 

able to provide a coverage of 25 hectares a day (Jones, 2017). In the 2016-17 season, 

this colour based approach was used, by coupling the service with helicopter insertion 

surveys. The demand for an additional method that can cover a large area, accurately, 

and outside of the flowering season, is significant (Jones, 2017). 

In order to most effectively contain and control weed infestations, alternative methods 

need to be utilized in addition to the conventional field survey and manual image 

analysis approach. Classification of optical remote sensing images can provide a 

suitable approach to mapping the spatial extent and distribution of weed outbreaks 

(Carson et al., 1995). This process can save thousands of worker hours, increasing 

efficiencies and allowing resources to be greater utilised (Carson et al., 1995). Crucially, 

this process will provide a greater spatial coverage than is possible by field surveying, 
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as well as providing a much higher rate of successful detection than what has been 

achieved using RGB image analysis of the orange hawkweed flowers.  

2.2 Remote Sensing 

2.2.1 Remote Sensing and Species Detection 

A wide variety of remote sensing applications have been used for general ecological 

management and species detection, as they are more efficient than traditional field-

survey methods (Franklin, 2010; Mumby, Green, Edwards, & Clark, 1999). Early use 

of remote-sensing systems typically produced analysis that averaged information over 

tens or hundreds of square meters, a limitation of previous spectral resolution 

availability, which is far too generalised and coarse for most scientific purposes 

(Franklin, 2010; W. Turner et al., 2003; Underwood, Ustin, & Ramirez, 2006).  

However, advances in the spatial and spectral resolutions of modern sensors, as well 

as in processing abilities, has allowed for direct remote sensing to be of a further benefit 

to the biodiversity field (W. Turner et al., 2003).  

Determining the species, quantities, characteristics, and distribution of vegetation is a 

significant aspect of remote sensing research (Adam, Mutanga, & Rugege, 2010; Kerr 

& Ostrovsky, 2003; W. Turner et al., 2003). There are two major themes that occur 

here. The first is an indirect biodiversity-remote sensing approach, where 

environmental parameters and factors are used to determine potential distributions by 

proxy (Joshi et al., 2006; Kerr & Ostrovsky, 2003; Lobitz et al., 2000; W. Turner et al., 

2003). Species are often restricted to specific habitats, where certain factors need to be 

optimal for them to survive, or thrive (Cañadas, Sagarminaga, De Stephanis, Urquiola, 

& Hammond, 2005). These habitat requirement factors include temperature, distance 

to streams, rainfall, soil moisture, topography, and terrain (Joshi et al., 2006; Kerr & 

Ostrovsky, 2003). These elements are then often combined with other spatial 

information such as general land cover, and other ecological variables including 

chlorophyll, phenology, and vertical canopy structure (Joshi et al., 2006; Kerr & 

Ostrovsky, 2003). These can all be identified remotely and then used to develop models 

to precisely estimate potential distribution and patterns of species (Cañadas et al., 

2005; Joshi et al., 2006; Kerr & Ostrovsky, 2003; Lobitz et al., 2000; Osborne, Alonso, 

& Bryant, 2001; W. Turner et al., 2003).  

The secondary application theme, and the one utilised by this thesis, is the direct 

biodiversity-remote sensing approach, whereby individual organisms, species groups, 
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or ecological communities are remotely sensed through airborne or satellite sensors 

(Adam et al., 2010; Kerr & Ostrovsky, 2003; Nidamanuri & Zbell, 2011; Shang & 

Chisholm, 2014; W. Turner et al., 2003). Satellite systems with high spectral and 

spatial resolutions allow for the direct remote sensing of larger flora, and ecological 

communities through spaceborne imagery (Franklin, 2010; Kerr & Ostrovsky, 2003; 

W. Turner et al., 2003). Likewise, cameras mounted to aerial systems such as drones 

and fixed-wing aircraft allow for even higher resolutions at the compromise of coverage 

and cost, with the ability to detect smaller plants (Anderson & Gaston, 2013; Colomina 

& Molina, 2014; Tang & Shao, 2015; Watts, Ambrosia, & Hinkley, 2012). These 

systems, combined with multispectral sensors which contain many more discrete 

spectral bands of the electromagnetic spectrum, allow for the recognition of plant 

species or communities based on their representative spectral signatures (Anderson & 

Gaston, 2013; Colomina & Molina, 2014; Tang & Shao, 2015; W. Turner et al., 2003; 

Watts et al., 2012).   

Individual spectral signatures are based upon the chemical composition of the target 

species, species physiology, plant architecture and geometry, morphology, and 

external factors – including climate, solar angle, and soil characteristics (Barrett & 

Curtis, 1992). Primarily, reflectance profiles are influenced by the plant materials that 

have optical influences – lignin, cellulose, sugar, starch, and proteins – mostly 

composed of nitrogen, carbon, oxygen, and hydrogen (Barrett & Curtis, 1992). Along 

the electromagnetic profile spectrum, different factors influence the reflectance of 

wavelengths. The photosynthetically influenced region, 400 to 700 nm, is 

characterised by leaf pigments (Tucker & Garratt, 1977). Healthy green vegetation has 

a higher reflectance in the green wavelengths (490 – 520 nm), and less in the blue and 

red regions (Tucker & Garratt, 1977). There is generally a large increase in reflectance 

between 680 to 780 nm, due to red absorption (Slaton, Hunt, & Smith, 2001). Near-

infrared (NIR) (750 – 1300 nm) is controlled by cell structure, such as the structure of 

leaves, and air spaces within it – influencing scattering and absorption (Slaton et al., 

2001). Mid-infrared (1300 – 2500 nm) is influenced mainly by water content, 

especially at 1400 – 1900 nm, and reflectance peaks generally occur at 1600 and 2200 

nm (Pfitzner, Bartolo, Carr, Esparon, & Bollhofer, 2011). These are summarised in 

figure 1. 
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Figure 1. The Spectral Profile in Detail (Barrett & Curtis, 1992; Slaton et al., 2001; Tucker & Garratt, 

1977) 

2.2.2 Remote Sensing and Weed Management  

Geographic Information Science (GIS) and remote sensing have been used through a 

variety of methods to detect weeds globally, and locally. Multi-attribute distribution 

modelling is commonly used to target where species are most likely to occur (C. E. 

Hauser & McCarthy, 2009). For orange hawkweed, Williams et al. (2008) constructed 

a dispersal habitat suitability model considering disturbance level, moisture, 

vegetation community, wind dispersal probability, and current infestation locations. 

This was used to target surveillance locations, to reduce management costs, with a 

predicted saving of 120,000 management hours (Williams, Hahs, & Morgan, 2008). 

Whilst it is useful to determine the potential spread regions of infesting weeds, another 

beneficial technique is determining the specific locations of weeds currently growing, 

so a highly targeted management program can be implemented.  

In order to combat infestations of ox-eye daisy and yellow hawkweed (Hieracium 

caespitosum) in Idaho, USA, high resolution multispectral satellite imagery was used 

to locate regions containing flowering plants (Carson et al., 1995).  Supervised and 

unsupervised classifications were first performed, with multispectral LANDSAT 5 

imagery with a 30m by 30m resolution, and French SPOT 1-3 satellite imagery of a 

20m by 20m resolution (Carson et al., 1995). However, the spectral and spatial 
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resolutions of these were too coarse for the detection of weed species due to wavelength 

averaging in each band (Carson et al., 1995). Instead, an ‘airborne data acquisition and 

registration’ (ADAR) system was used to improve spatial resolution to 1 m2 and specify 

wavelengths further (Carson et al., 1995). The supervised classification method of this 

imagery had a 68% success rate of classifying the weeds at 95-100% densities, a 2-6% 

success rate in classifying 20-95% densities, and a 97% success rate in classifying areas 

clear of weeds (Carson et al., 1995). The unsupervised classification method had a 55% 

success rate for high densities, 4-17% for the other range, and a 98% rate for weed free 

areas (Carson et al., 1995). Overall both were fairly accurate, but had low accuracies for 

lower densities, potentially due to confusion with other classes and spectral mixing.  

Classification of imagery, based on field spectrometry, has also been hypothesised as 

an effective method for law enforcement agencies in detecting illegal Cannabis 

plantations in nature reserves (Azaria, Goldschleger, & Ben-Dor, 2012). Classification 

of hyperspectral remote sensing imagery is a potential method of detecting plantations 

of weed species, but is dependent on how unique the individual plants spectral profile 

is, compared to its surrounding ecology (Azaria et al., 2012). To tackle weed invasions 

of Leafy Spurge (Euphorbia esula L.) at Theodore Roosevelt National Park, a 

combination of field spectroscopy and the Airborne Visible / Infrared Imaging 

Spectrometer (AVIRIS), was used for detecting and mapping the species (O’Neill et al., 

2000). Here, supervised classification of AVIRIS imagery, combined with field 

measurements, were used to obtain spectral profiles of both invasive and native species 

(O’Neill et al., 2000). Then, after image processing, supervised classification 

techniques were used to determine estimated locations, which was compared to the 

previously recorded locations for ground truthing (O’Neill et al., 2000). Depending on 

the mixing of species in a location, accuracy results here ranged between 73% and 99% 

(O’Neill et al., 2000).  

2.2.3 Spectroradiometry and Remote Sensing – Factors to Consider 

Successful weed management practices require an intricate understanding of the 

foundational biological and ecological principles of the weeds themselves, and the 

environment they are contained within (Tooke & Battey, 2010). Flowering phenology, 

attuned to environmental cues such as temperature and photoperiods, are important 

to note when searching for the presence of a particular plant species (Tooke & Battey, 

2010). Spectroradiometric measurements of yellow hawkweed has determined that 

their spectral signature is significantly more distinct during the flowering stage, 
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allowing it to be detected and classified easier and more accurately (Lass & Callihan, 

1997). When not flowering, the weed had a similar spectral pattern from other plants 

that grew in the area, making it difficult to delineate (Carson et al., 1995). The highest 

error rates occurred when the yellow hawkweed was in the post-bloom stage. The 

observable distribution of the hawkweed was highly dependent on the stage of the 

plants phenology, with the full bloom stage being most accurate - whilst ox-eye daisy 

was strictly limited to this stage (Lass & Callihan, 1997). The most appropriate 

phenological stage appropriate to detection of the species via remote sensing, i.e. when 

it is most spectrally ‘unique’, must be considered to ensure the most effective and 

efficient classification, delineation, and mapping of areas affected by weed infestations 

(Lass & Callihan, 1997).  This notion was echoed in Hestir et al. (2008), where the 

different spectral characteristics at different life stages were emphasised in their 

detection ability of three different weeds – perennial pepperweed (Lepidium 

latifolium), water hyacinth (Eichhornia crassipes), and Brazilian waterweed (Egeria 

densa) – suggesting that the timing of the acquisition of data should coincide with the 

peak occurrence of growth and/or the most unique spectral profile phase. 

Multispectral remote sensing is a powerful set of tools that can be utilised to determine 

the spatial characteristics of invasive species. The methods of using these tools need to 

account for potential variability in spectral profiles across phenological stages (Hestir 

et al., 2008). 

2.3 Spectral Profiling 

2.3.1 Spectral Reflectance  

Hand-held (in-situ) spectroradiometers collect reflected wavelengths from sources in 

a series of spectral wavelengths through the electromagnetic radiation spectrum, 

Figure 2. In situ spectral reflectance measurement. (Im and Jensen, 2008) 
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specifically within the visible, and/or near-infrared and infrared regions (Im & Jensen, 

2008; Jensen, 2006). This works similarly to the ex-situ, spectral remote sensing 

methods (Jensen, 2006). Hand-held spectroradiometers are designed to collect the 

radiant flux from samples in the laboratory or field. These in-situ measurements are 

generally done up to a 1m range from the sample (Im & Jensen, 2008). An in-situ 

spectroradiometer system generally consists of four parts: an input optics, such as a 

lens, which gathers radiation from a measured field of view angle; a monochromator, 

which disseminates this radiation into its component wavelengths; a detector, which 

then determines the quantity of radiation per individual wavelength; and then a 

logging and control system to define, process, store, and gather the information 

(Bentham Instruments Ltd, 2014).  Spectral information can be collated to constitute 

a profile for a particular species, often referred to as a spectral signature or fingerprint 

(Jensen, 2006). These are also known as reflectance profiles, and are the resultant of 

the reflectance across different wavelengths, calculated by dividing the target 

reflectance by a reference ‘spectralon’ plate, as in figure 2 (Im & Jensen, 2008).  

The spectral signatures acquired from these in-situ measurements can be used to 

document and record the individual spectral reflectance characteristics of different 

materials, such as unique types of vegetation (Goetz, 2002; Jensen, 2006). 

Furthermore, they can be used to calibrate future hyperspectral or multispectral 

remote sensing information to mitigate against the influence of absorption and 

atmospheric scattering (Goetz, 2002). Most notably for this project is the use of 

matched-filtering, where collected spectral profiles can be cross-referenced against 

samples of unknown constituents, to identify them from a wider coverage region 

(Goetz, 2002). 

2.3.2 Developing a Spectral Profile 

Determining spectral signatures through ground-based reflectance spectra is a critical 

aspect of this research. The measurements obtained must be accurate, and be 

representative of their target. However, these measurements are highly influenced by 

the methodology of their capture, environmental conditions, equipment responses, 

and calibration quality.  Whilst collection of this data is highly tenuous, and susceptible 

to experiment design, there are no international or national standards for the in-situ 

collection of spectral signatures (Pfitzner et al., 2011). Supervising Scientist Report 195 

by the Australian Government Department of Environment and Energy aimed to 
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collate literature regarding this issue, in order to collect data for a national spectral 

database (Pfitzner et al., 2011). 

Critical issues need to be considered in undertaking in-situ spectral measurements, 

including atmospheric properties, measurement timing, height, orientation of 

measurement, field of view of the lens, calibration, and spectral averaging (Milton, 

Schaepman, Anderson, Kneubühler, & Fox, 2009; Rollin, Milton, & Emery, 2000). 

There are several influences that must be at least considered when creating a spectral 

profile of a vegetation species. These include: general experimental design, calibration, 

reference testing frequency, time of day, environmental aspects, spatial viewing 

characteristics and illumination specificities (Barrett & Curtis, 1992; Im & Jensen, 

2008; Milton et al., 2009; Pfitzner et al., 2011; Rollin et al., 2000). These factors are 

further analysed in table 1. 

Table 1. Field Spectroradiometry Consideration Factors (Barrett & Curtis, 1992; Im & Jensen, 2008; 

Milton et al., 2009; Pfitzner et al., 2011; Rollin et al., 2000) 

Field Spectroradiometry Factors to Consider 

Experimental Design Timing, method, geometry, scale, number of samples (variability across 
temporal and spatial scales) 

Calibration Calibration panel, spectrometer 
Instrument Settings Number of samples, white reference, dark current considerations 
Illumination Date, time, solar zenith and azimuth angles, location 
Viewing Geometry Field of view, capture height (from target and ground), capture angle 
Enviro. Conditions Air pressure, visibility, humidity, temperature, cloud cover, wind vector 

Vegetation Texture, phenology, form, cover, conditions, homogeneity, health, 
species, layering. 

Photographs Site setup, target, sky. 

Whilst this list is extremely large, field analyst undertakings and experimental design 

can be used to mitigate a multiplicity of these factors, particularly those due to viewing 

geometry, timing, and calibration (Pfitzner et al., 2011). Consistent in-situ 

methodologies increases accuracy and the effectiveness of analysis by allowing for 

better identification of outliers (Pfitzner et al., 2011).  

2.3.3 Analysing and Comparing Spectral Profiles 

A wide variety of applications utilise the spectral profiles measured from imaged pixels 

or objects to retrieve useful information. The analysis of these profiles, however, varies 

substantially, as a wide variety of mathematical and statistical approaches are 

available. Supervised classification algorithms are machine learning techniques that 

allow for a detailed analysis and comparison of spectral profiles. Random Forest (RF) 

is one of the most popular, and accurate, techniques for classifying large datasets 

(Belgiu & Drăguţ, 2016; Breiman, 2001; Pal, 2005). RFs work by generating a large 
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collection of decision trees, of which each is constructed from a subset of the original 

data, sampled by random, with replacement (Breiman, 2001). These are then 

processed as an ensemble, to identify a consensus across of classification based on the 

most common output (Breiman, 2001).  

A study performed RF classification on manually delineated sun-lit regions of tree 

crowns to classify ten different species with an 82% accuracy (Immitzer, Atzberger, & 

Koukal, 2012). The algorithm was also used to see if Cyperus papyrus L. was spectrally 

unique in comparison to its co-existent species, yielding ten optimal wavelengths 

where the separation was most significant, with an overall accuracy of 90% (Adam & 

Mutanga, 2009). Another study utilised this method to discriminate specific grass 

species which indicate the degradation of rangeland ecosystems, which could then be 

used to assess the areas overall health (Mansour, Mutanga, Everson, & Adam, 2012).  

Ground-level hyperspectral scans, in conjunction with a RF analysis, was used to 

determine the separability of native and invasive species in Virginia, USA to identify if 

remote sensing could be a potential approach in resolving weed management issues (I. 

Aneece & Epstein, 2017). Aneece and Epstein (2017) found this to be successful, with 

accuracies for individual species ranging from 23% to 88%. Supervised classification 

methods through machine learning, such as the RF method, allow for accurate and 

comprehensive insights into spectral profiles and datasets.  
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3 JOURNAL PAPER 

Evaluating the Use of Remote-Sensing to Locate Weeds in Kosciuszko National 

Park 

3.1 Abstract 

This study establishes a proof-of-concept insight into the use of multispectral remote sensing 

techniques to detect, and determine, the spatial distribution of selected noxious weeds, using 

orange hawkweed and ox-eye daisy in Kosciuszko National Park (KNP) as a case study. This 

involved collecting spectral profiles of the weeds in-situ and ex-situ with a field 

spectroradiometer, in addition to surrounding native vegetation. These profiles were then 

processed and analysed to determine their uniqueness and to estimate the potential effectiveness 

of multispectral and hyperspectral remote sensing in separating these signatures. Spectral 

analysis was performed by a series of methods through the statistical suite ‘R’, primarily 

through machine learning algorithm, Random Forest (RF). The overall accuracy of separating 

all measured species types from each other was 70% accuracy overall, with a 59% accuracy 

when averaged to the bands of a multispectral drone camera, and 63% for the same process 

applied to a multispectral satellite WorldView-3. Our results demonstrate that there is a 

significant potential for multispectral remote sensing to be utilised as a detection method for 

orange hawkweed and ox-eye daisy in KNP.   

3.2 Introduction 

The natural qualities of the Australian Alps are a quintessential part of Indigenous and European 

Australian heritage and culture, with their landscape and features presented in numerous art 

forms (NSW DE&C, 2006). The Alps are protected by a chain of national parks, the largest and 

most famous of which being KNP, situated in the south-eastern corner of mainland Australia, 

along the Snowy Mountains (NSW DE&C, 2006). The region contains a unique ecosystem, 

including one of the only seasonally snow-covered regions on the continent. Therefore, it is 

home to a large array of rare and unique floral and faunal species, accentuating a criticality to 

preserve the biodiversity of the park (NSW DE&C, 2006). The presence of noxious weeds in 

the KNP and surrounding regions, is a key threat to the local biodiversity, and health of the 

environment – with a significant potential to cause negative environmental, social, and 

economic impacts (Benson, 2012; Caldwell & Wright, 2014; Dehaan, Louis, Wilson, Hall, & 
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Rumbachs, 2007; McConnachie et al., 2015; NSW DPI, 2012; NSW OEH, 2015a, 2015b). The 

noxious weeds that are a focus of this study are species of the daisy family (Asteraceae) and are 

being targeted by multiple government agencies (NSW DPI, 2012; NSW OEH, 2015b). These 

plants are orange hawkweed (Hieracium aurantiacum) and ox-eye daisy (Leucanthemum 

vulgare Lam. (Asteraceae)). Whilst hawkweeds are yet to reach past the early stages of 

establishment, they pose a major threat to ecosystems – particularly grasslands, alpine, and 

temperate areas – as well as an unbearable cost to the grazing industry (Benson, 2012; Caldwell 

& Wright, 2014; Morgan, 2000).  

Orange hawkweed was first discovered in the KNP region in late-2003 (NSW DPI, 2012). 

Listed as a State Prohibited Matter in NSW (previously known as a class one noxious weed), it 

is internationally regarded for displacing native vegetation, and harming agricultural 

productivity – particularly in New Zealand, Canada, and USA (Caldwell & Wright, 2014; 

Wilson, McCaffrey, Paul C. Quimby, & Birdsall, 1997). Its current containment in NSW to 

within the national park (barring one outlier recently discovered early-2017 in a neighbouring 

farm), as well as its high risk factor, makes it an ideal candidate for a targeted eradication 

program (P. J. Turner, Hamilton, Caldwell, & Johnson, 2013). Ox-eye daisy is a more prevalent 

introduced species, which is difficult to control with eradication and control programs (Benson, 

2012; McConnachie et al., 2015). Much more common and widespread than the hawkweeds, 

control programs are now aimed towards containment rather than eradication (NSW OEH, 

2015b). It also reduces the productivity of grazing lands, and is a host for several crop-affecting 

viral diseases, such as the yellow dwarf virus (DiTomaso et al., 2013).  

There is an urgent need for prevention of these weeds spreading, particularly orange hawkweed, 

as it disperses easily and prolifically, and is hazardous to the environment. This prevention 

process traditionally involves monitoring existing infestations and scouting for additional 

infestations using field survey approaches (NSW DPI, 2012). However the demand and urgency 

to control the plants domination has led to a more diverse range of control techniques, including: 

sniffer dogs; volunteer programs; visible-colour drones; helicopter insertion surveys; and 

spread-modelling systems (Caldwell & Wright, 2014; Cherry et al., 2016; Hanigan & Smith, 

2014; Hung & Sukkarieh, 2015; Williams et al., 2008). The difficulty in weed management is 

further increased by the exceptionally difficult topography - creating lengthy travel times by 

forcing the use charted helicopters, off-road vehicles, and off-track hiking – reducing the 

amount of time that can be used for searches, increasing costs, and lowering search coverage 

potential (Hamilton et al., 2015; Hanigan & Smith, 2014). Time is a strong constraint in this 

project - as the flowering period, which makes the plants significantly easier to spot by officers 
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and volunteers, is quite short (1-2 months) (Lass & Callihan, 1997). Time constraints are further 

inhibited by climatic conditions, as snowfall reduces the visibility of surface vegetation, as well 

as creating occupational hazards and discomfort to employees and sniffer dogs. A remote 

sensing method has previously been trialled, which involves flying drones with a RGB camera 

over known sites, and seeking the orange colour value of orange hawkweed in the image (Hung 

& Sukkarieh, 2015). This method relies on the phonological stage of the plant to be appropriate 

(Hung & Sukkarieh, 2015). Additionally, the geographic coverage of these drone flights are 

fairly limited (Hung & Sukkarieh, 2015).  

Therefore, in order to mitigate some of the issues addressed with current methods, there is a 

demand for an alternative process to be developed. This process should: determine the location 

of noxious weeds throughout different stages their phenological cycle; be able to be operated 

remotely; cover a reasonable amount of area efficiently; and more importantly – provide 

effective output results. A proposed process that fits these criteria is multispectral remote 

sensing. This preliminary study aims to establish the spectral profiles of the noxious weeds and 

prevalent native vegetation, and statistically define their separability at ground level. This will 

ascertain if these methods can accurately, and effectively, assist in the determination of the 

spatial distribution of noxious weeds in the Australian Alpine environment using airborne or 

spaceborne sensors.   
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3.3 Methods 

3.3.1 Methodology Overview 

A series of methods were used for this project. This included general training and testing, 

sampling of the spectral profiles of the weeds in the field as well as in the greenhouse, data 

entry, multiple pre-processing steps, and multiple RF classifications of spectral profiles. A 

summary of the methodology process used is presented in figure 3.  

Figure 3. Methodology Flowchart 
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3.3.2 Study Area 

KNP is located in the Snowy Mountains of New South Wales (NSW), in south-eastern Australia 

(latitude: 35°30’S to 37°02’S; longitude: 148°10’E to 148°52’E). Covering much of the 

Australian Alps Bioregion, it is the largest national park in NSW at 673,542 ha. (NSW DE&C, 

2006). The region is highly biodiverse, and unique, which makes it an important region for 

environmental protection (NSW DE&C, 2006). However, the proliferation of noxious weeds, 

particularly ox-eye daisy and hawkweed varieties, are a considerable risk to this alpine 

environment. Orange hawkweed is almost exclusively recorded in the Southern Ranges, with 

the majority of recordings located between the Tooma River and Cabramurra (Caldwell & 

Wright, 2011, 2012, 2014). 

Seven sites were chosen, in liaison with officers of the NSW National Parks and Wildlife 

Service (NPWS), as depicted in figure 4. Six of these were used to measure orange hawkweed, 

which due to an NPWS eradication project, currently has a very sparse, and patchy distribution. 

One site was used to measure ox-eye daisy, which is much more widespread and abundant 

throughout the region.  

Several sites - Ogilvie’s Quarry, Ogilvie’s Creek Picnic Area, and Ogilvie’s Airstrip (sites 1-3) 

represent the potential ‘ground-zero’ source of orange hawkweed infestations, whilst also being 

the most accessible sites in this region of the park, and containing a wide variety of native 

species (Caldwell & Wright, 2011, 2012, 2014). Doubtful Gap (site 4), is one of the more 

eastern locations of orange hawkweed and represents recently recorded infestations (Caldwell 

& Wright, 2014). At opposite sides of a valley, Farm Ridge and Round Mountain Trail (sites 5 

and 6), are some of the heavier infestation sites in the Jagungal Wilderness (Caldwell & Wright, 

2011, 2012, 2014). Tantangara Road (site 7) was selected as the final site because it contained 

a significant and widespread infestation of ox-eye daisy for several kilometres, as well as a 

substantial variety of representative native species. 

As infestations of orange hawkweed were less prevalent than expected due to highly effective 

control, it was decided that some ex-situ sampling would be useful for enhancing the accuracy 

of the spectral profile. As such, several plants were grown on-site at the university greenhouse 

and routinely sampled. 
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Figure 4. Study Sites in Kosciuszko National Park 
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3.3.3 Selecting Species for Scanning 

In addition to a detailed site selection method, the floral species that were scanned were 

carefully chosen through a systematic nomination process. This process involved identifying 

species that were: most prevalent at the field survey sites; known to have some correlation of 

cohabitation with the weed species; were of a similar colour flower to the weed species (to 

reduce potential for false positives in later applications); and had enough quantities available to 

collect a robust spectral database. These parameters ensure that the spectral signatures collected 

are indicative of the typical environment that orange hawkweed and ox-eye daisy could be 

found in, contain a wide variety of plant families, and have sufficient interspecies diversity to 

provide a fair and reasonable statistical analysis and better represent aerial imagery application 

outcomes.  

The local knowledge of the Khancoban NPWS, in conjunction with field observations and 

literature, were used to assist with selecting the most suitable native species for scanning. Nine 

species were finally selected for spectral comparison with the weeds, and photographs of them 

are shown in figure 5. The species selected were: alpine daisy bush (Olearia phlogopappa); 

leafy bossiaea (Bossiaea foliosa); alpine grevillea (Grevillea australis); sticky cassinia 

(Cassinia uncata); snow grass (Poa sieberiana); alpine shaggy-pea (Podolobium alpestre); 

kangaroo grass (Themeda triandra); alpine everlasting (Xerochrysum subundulatum) – in 

particular due to the colour of its flower being similar to that of orange hawkweed; and black 

sally (Eucalyptus stellulata). These species provide a concise, yet comprehensive, selection of 

species suitable for spectral comparison and analysis. 
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Figure 5. Species Selected for Spectral Analysis 
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3.3.4 Spectral Sampling 

To collect spectral profiles in-situ and ex-situ, a Spectral Evolution RS-3500 spectroradiometer 

was utilised for the field measurements. The device has a spectral range of 350-2500nm, output 

in 1nm increments at an accuracy of ± 4-7% (Spectral Evolution, 2016). This covers a vast 

portion of the electromagnetic spectrum that is influenced by vegetation cover (Japan 

Aerospace Exploration Agency, 2008). 

The measurement process involved first sampling a control plate, to calibrate the data against 

the general lighting conditions of the region, then taking multiple measurements of each weed 

and native species located at each site. A photograph taken on site of this process is presented 

in figure 6. This was done to capture the range of variability in reflectance associated with 

different parts of the plant (i.e. leaves, stems, flowers) as well as between individuals of the 

same species. The target measurements were divided by the reference measurements to adjust 

for the general environmental conditions present at the time. 

 

Figure 6. Field Spectral Sampling Process  

The critical issues that need to be, and were, considered in undertaking in-situ spectral 

measurements are presented in table 2 (Barrett & Curtis, 1992; Im & Jensen, 2008; Milton et 

al., 2009; Pfitzner et al., 2011; Rollin et al., 2000). In this study, all controllable factors were 

mitigated where possible. This included: standardising field of view; performing reference 
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sample scans every ten minutes, and after changes in light; ensuring proper warm-up time; only 

performing measurements at as close to noon as possible for solar angles; and ensuring a 

suitable number of samples were collected. Each sample is the average of ten measurements, 

and each target was sampled three times. A minimum of fifteen targets were measured for each 

plant, providing a minimum of 450 total samples per species. 

Table 2. Field Spectroradiometry Factors Considered in Experimental Design (Barrett & Curtis, 1992; Im & 

Jensen, 2008; Milton et al., 2009; Pfitzner et al., 2011; Rollin et al., 2000) 

Field Spectroradiometry Factors Considered in Experimental Design 

Experimental Design Timing, method, geometry, scale, number of samples (variability across 
temporal and spatial scales) 

Calibration Calibration panel, spectrometer 

Instrument Settings Number of samples, white reference, dark current considerations 

Illumination Date, time, solar altitude and azimuth, location 
Viewing Geometry Field of view, capture height (from target and ground), capture angle 

Environmental 
Conditions 

Air pressure, visibility, humidity, temperature, cloud cover, wind vector 

Vegetation Texture, phenology, form, cover, conditions, homogeneity, health, species, 
layering. 

Photographs Site setup, target, azimuth, sky. 

The data were recorded in field metadata sheets, which were adapted from Pfitzner et. al. 

(2011). After a significant number of samples are collected, they can be then collated, and 

processed, to develop a profile for a particular species, often referred to as a spectral signature 

or fingerprint (Jensen, 2006). These signatures require caution in their creation, as vast 

variabilities can occur in nature (Im & Jensen, 2008). Preliminary visual inspection of samples 

during and after field surveys can provide rapid, indicative, and qualitative estimates of profiles 

– allowing exceptional errors to be rectified during surveys, avoiding post-survey failures. 

These were regularly performed after each site visit, and during sample collection. On returning, 

metadata sheets were manually entered into a spreadsheet, along with links to photographs, and 

scan file paths. This then facilitated the organisation of scan samples, photographs, data, and 

metadata into individual folders by species level. 

3.3.5 Spectral Processing 

Once the database for each species was developed, the process of converting spectral samples 

to profiles was undertaken. Initially, the metadata and field notes were manually cross-

referenced to samples, to identify those which were erroneous and unsuitable. This included 

accidental triggers, variable weather conditions, and other environmental influences. Following 

this manual process, sorted spectral samples were again converted to .csv for use in R, with one 

spreadsheet per species. These spreadsheets were then concatenated and transposed into a single 

sheet, with labels abbreviate to avoid errors that were occurring from large field names.  
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Following, this a variety of pre-processing steps were implemented to refine the data prior to 

analysis. Multiple analyses in the statistical package ‘R’ were performed to execute the pre-

processing, as well as determining the quantitative and qualitative evaluations of the uniqueness 

of the spectral profiles.  These packages included: caret, e1701, fda, fda.usc, gdata, hsdar, 

propsectr, tidyverse, and VSURF (Febrero-Bande & Oviedo de la Fuente, 2012; Genuer, Poggi, 

& Tuleau-Malot, 2016; Gregory R. et al., 2017; Khun et al., 2017; Lehnert, Meyer, & Bendix, 

2016; Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2017; R Core Team, 2017; Ramsay, 

Wickham, Graves, & Hooker, 2017; RStudio, Inc., 2016; Stevens & Ramirez-Lopez, 2013; 

Wickham, 2017).   

The first step in the pre-processing involved trimming the ends of the profiles, keeping the data 

between the wavelengths 400 nm to 1300 nm. This ensured that the ‘noisy’ ends of the 

electromagnetic spectrum – due to water vapour absorption – were avoided in the analysis, 

which would potentially tarnish the results (Pfitzner et al., 2011). Additionally, the 400-1300 

nm range was the most important for us to study, as they are the ones that would be most likely 

to be used in the future by imagery capture and analysis. The next process involved automatic 

removal of outlier spectral profiles. Erroneous samples, such as those with reflectance values 

greater than 100% were removed from the study, as these impossibly high values were an 

artefact of changing weather conditions on site. Whilst calibration occurred very frequently, the 

strong breeze and scattered cloud cover during the field sampling caused light conditions to 

change rapidly.  

Further outlier detection was performed using the Functional Data Analysis (FDA) technique 

‘depth.mode’ in the packages fda and fda.usc (Febrero-Bande & Oviedo de la Fuente, 2012; 

Ramsay et al., 2017). This is an exploratory analysis function which determines outliers by 

considering the profile curve that is the most densely surrounded by others as the  ‘deepest’ one 

– which is then used by a likelihood ratio test to trim the data based on further parameters that 

are set (Febrero-Bande & Oviedo de la Fuente, 2012) (see appendix two for specific code and 

values utilised). Next, spectral binning and resampling was performed to average individual 

wavelengths to groups of 10 nm. This quantization reduces the effects of minor errors, as well 

as assisting in mitigating the ‘curse of dimensionality’ (Hughes, 1968). For machine-learning, 

the predictive ability is reduced as the number of dimensions, or in this instance wavelength 

classes, increases - a concept known as the Hughes phenomenon  (Hughes, 1968). By mildly 

simplifying the number of factors, we assist the machine learning analysis. This procedure 

ensured that the profiles are as clean and representative as possible for determining overall 

profiles, as well as input for the RF process.  
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3.3.6 Spectral Profiling 

Once the spectral processing was complete, the spectral profiles for each species was 

determined. The output spectral profiles for individual plants that had undergone the pre-

processing steps mentioned prior were separated. The mean for each wavelength across the 

species was then calculated and reassembled, providing an average spectral profile for each 

class. This then delivered the spectral profiles for each of the noxious weed and native species.  

3.3.7 Spectral Classification 

The RF classification is a machine learning algorithm that was utilised to perform statistical 

analysis on the separability of the spectral profiles. This was performed mostly within the caret 

function in R (Khun et al., 2017). Firstly, the dataset of profiles was randomly split at a ratio of 

80:20 into training and testing datasets. This allowed for 80% of the spectral profiles to be used 

to develop training algorithms, which would then be ‘tested’ against the 20% control datasets 

to verify the classification. One thousand decision ‘trees’ were selected for the RF method, 

which provides a good balance between accuracy, processing time, and memory usage. The 

accuracy of more trees than this is rather asymptotic, where larger values than this exceptionally 

increases computational cost with little tangible benefit (Oshiro et al., 2012). Similarly, the 

number of repeats – one hundred – was selected to balance results and computation time. The 

Kappa statistical value was used to specify the most optimal model. This can be described as a 

value between 0 and 1 which represents the amount of ‘agreement’ that is correct in comparison 

to the amount of ‘agreement’ that could occur by chance (Viera & Garrett, 2005). Essentially, 

the higher the value, the less likely the data is to be assigned by chance, and the better the 

classification (Viera & Garrett, 2005). A variety of results were chosen to be outputted by the 

algorithm, including: confusion matrix and statistics; overall statistics; statistics by class (by 

plant); and variable importance (key wavelengths for separability). This process provided the 

overall statistical analysis of the spectral profiles.  

3.3.8 Multispectral Drone Emulation 

Whilst the spectral classification method provides significant insights into the separability of 

species spectral profiles across the hyperspectral wavelength range, it is important to determine 

if the key discriminate wavelengths are in a range that is available in the current multispectral 

cameras. To do this, a downsampling approach was performed on the data. For this paper, the 

Parrot Sequoia was hypothesised as a potential sensor for detecting the invasive weed species 

(Parrot Drones S.A.S., 2017b). This was due to the affordability, small size and weight, 

compatibility with both fixed-wing and multi-rotor drones, as well as the capacity for self-
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calibration (Parrot Drones S.A.S., 2017b). In order to ascertain usability of this sensor to 

discriminate the weed species, a new classification was performed. For this step, processed 

scans were trimmed into the wavelengths that were available for capture on the Parrot Sequoia. 

These wavelengths were: 550nm ± 10 (green); 660nm ± 10 (red); 735nm ± 5 (red-edge); and 

790nm ± 10 (near-infrared). The individual wavelengths within these bands were then binned, 

to assume the mean across the entire range, simulating the data captured within each pixel band. 

This is visualised in figure seven, where the average reflectance across the band is represented 

as a point feature. These mean bands were then run the RF classification, with the same 

parameters set as before. This provides an indicative insight into the potential ability of the 

Parrot Sequoia in detecting the invasive species.  

3.3.9 Multispectral Satellite Emulation 

To further evaluate weed discriminability, the ability for detection by satellite based on spectral 

resolution was assessed. The WorldView-3 multispectral high-resolution satellite operated by 

DigitalGlobe was selected for this estimation. The satellite has a 31cm panchromatic spatial 

resolution and a 1.23m multispectral resolution – making it the highest available at its launch 

date in November, 2016 (DigitalGlobe, Inc., 2014). Similar to the multispectral drone process, 

the processed scans were trimmed and binned to simulate the data captured by each band, and 

presented in figure 7. These wavelengths were: 400-452 nm, 448-510 nm, 518-586 nm, 590-

630 nm, 632-692 nm, 706-746 nm, 772-890 nm, 866-954 nm, and 1195-1225 nm. 
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Figure 7. Downsampled Spectral Profiles for Analysis. Point features represent the mean reflectance across the 

spectral band. 

  



Evaluating the Use of Remote-Sensing to Locate Weeds in Kosciuszko National Park 

30  Chad Ajamian - December 2017 

3.4 Results 

3.4.1 Pre-Processing 

A before and after comparison, displaying the spectral profiles separated by species, is 

presented in figure 8. Abbreviations for plant names have been used in R to reduce the codes 

susceptibility to errors, and are presented in table 3. 

The pre-processing stages produced data that was trimmed, cleaned, and with the number of 

outliers minimised. Noisy and erroneous profiles were removed. This increased the 

effectiveness, accuracy, and efficiency of the later analyses. 

Table 3. Abbreviations and Plant Names used in Results and Discussion. *Indicates targeted invasive species.  

Abbreviation  Proper Common Name (Scientific Name) 

ADB Alpine daisy bush (Olearia phlogopappa) 

AGR Alpine grevillea (Grevillea australis) 

ASP Alpine shaggy-pea (Podolobium alpestre) 

BOS Leafy bossiaea (Bossiaea foliosa) 

BSE Black sally (Eucalyptus stellulata) 

CAS Sticky cassinia (Cassinia uncata) 

KAG Kangaroo grass (Themeda triandra) 

*OH_ Orange hawkweed (Hieracium aurantiacum) 

[OHff = In Field, Flower; OHfp = In Field, Plant; OHgf = Greenhouse, Flower; OHfp = 

Greenhouse, Plant] 

*OX_ Ox-eye daisy (Leucanthemum vulgare) 

[OXf = Flower; OXf = Plant] 

PD_ Alpine everlasting (Xerochrysum subundulatum) 

[PDf = Flower; PDp = Plant] 

SGR Snow grass (Poa sieberiana) 
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Figure 8. Spectral Profiles Before and After Pre-Processing 
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3.4.2 Average Spectral Profiles 

The average spectral profiles by species - subset by flower and plant, and field or greenhouse 

sources (if applicable) are presented in figure 9. It is visually evident that there are some distinct 

differences across the mean profiles. Orange hawkweed, alpine everlasting, and ox-eye daisy 

have a significantly higher reflectance overall. Ox-eye daisy uniquely peaks in the 420 nm – 

500 nm range, whilst the same occurs for orange hawkweed flower samples between 575 nm 

and 675 nm. Notably, the greenhouse samples for orange hawkweed plants have the highest 

reflectance, and are significantly higher than field samples.  

Figure 9. Average Spectral Profiles of Selected Vegetation 
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3.4.3 Spectral Analysis - Overall 

3.4.3.1 Confusion Matrix 

The confusion matrix of the RF classification is presented below in table 4. Higher values here 

represent a lower ability to clearly discriminate the classes. Most of the confusion seems to be 

between the subsets of ox-eye daisy, otherwise confusion is rather low across the classes, 

representing a stronger separability accuracy.  

3.4.3.2 Overall Statistics 

The confusion matrix assists in determining the overall accuracy of the classification. Displayed 

in table 5 the overall accuracy across all species is very positive, with the Kappa value of 0.67 

representing a “substantial” strength of agreement (Landis & Koch, 1977, p. 165).  

                     Table 5. Overall Random Forest Statistics - Overall 

Overall Random Forest Statistics 
Accuracy 0.6968 
95% Confidence Interval 
(of the accuracy) 

0.6316, 0.7567 

No Information Rate (NIR) 0.1855 
P-Value [Accuracy > NIR] < 2.2e-16 
Kappa 0.6651 

3.4.3.3 Statistics by Class 

The statistics by class provides a detailed breakdown of the classification accuracy and 

detection ability. The sensitivity, specificity, prediction value, prevalence, detection rate, 

detection prevalence, and balanced accuracy are shown in table 6. These provide the 

discrimination ability statistics at a detailed, species specific level. Overall balanced accuracies 

for classes ranged from 69.4% to 99.8%. Accuracy for orange hawkweed was high, ranging 

Table 4. Confusion Matrix - Overall 
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from 83.3% and 86.3% for field samples, and 93.5% to 99.8% for greenhouse samples. Ox-eye 

daisy was rather variable, with the plant having an accuracy of 69.4%, and 84.1% for the flower. 

Table 6. Random Forest Statistics by Class - Overall 
 

ADB AGR ASP BOS BSE CAS KAG OHff OHfp OHgf 

Sensitivity 0.667 0.429 0.813 1.000 0.778 0.500 0.444 0.667 0.737 1.000 
Specificity 0.995 0.981 0.980 0.971 0.981 0.971 0.972 1.000 0.990 0.995 

Pos. Pred. Value 0.667 0.429 0.765 0.647 0.636 0.500 0.400 1.000 0.875 0.923 
Neg. Pred. Value 0.995 0.981 0.985 1.000 0.990 0.971 0.976 0.995 0.976 1.000 
Prevalence 0.014 0.032 0.072 0.050 0.041 0.054 0.041 0.014 0.086 0.054 
Detection Rate 0.009 0.014 0.059 0.050 0.032 0.027 0.018 0.009 0.063 0.054 

Detection Prevalence 0.014 0.032 0.077 0.077 0.050 0.054 0.045 0.009 0.072 0.059 
Balanced Accuracy 0.831 0.705 0.896 0.986 0.879 0.736 0.708 0.833 0.863 0.998 

  
OHgp OXf OXp PDf PDp SGR 

Sensitivity 0.875 0.732 0.481 0.833 0.375 0.733 
Specificity 0.995 0.950 0.907 0.995 0.995 0.984 

Pos. Pred. Value 0.875 0.769 0.419 0.833 0.750 0.880 
Neg. Pred. Value 0.995 0.940 0.926 0.995 0.977 0.959 
Prevalence 0.036 0.186 0.122 0.027 0.036 0.136 
Detection Rate 0.032 0.136 0.059 0.023 0.014 0.100 
Detection Prevalence 0.036 0.177 0.140 0.027 0.018 0.113 
Balanced Accuracy 0.935 0.841 0.694 0.914 0.685 0.859 

3.4.3.4 Wavelength Importance 

The variable importance output of the RF classification provides an indicative insight into 

wavelengths where the discriminability of the weed species is maximised. The higher the value, 

the more important this band is for detecting this species. Negative values indicate that this 

band is actually harmful, and causes more confusion than benefit for the specific class. The 20 

most important wavelength regions are depicted by order of importance in table 7. The most 

useful wavelength regions for spectral discrimination are: 400-420nm, 440-480nm, 510-

550nm, 570-580nm, 640-690nm, 710-750nm & 1295-1305nm.  

Table 7. Wavelength Importance – Overall 
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3.4.4 Spectral Analysis - Multispectral Drone Emulation 

3.4.4.1 Confusion Matrix 

The confusion matrix of the RF classification is presented below in table 8. Confusion between 

native species is significantly higher when simplified to the multispectral bands of the Parrot 

Sequoia camera, yet noxious species seem not to differ to the original classification. This may 

be due to a stronger similarity between native species when downsampled to the multispectral 

drone bands. 

3.4.4.2 Overall Statistics 

The overall accuracy, even whilst reduced to multispectral drone bands is high, with the Kappa 

value of 0.54 representing a “moderate” strength of agreement (Landis & Koch, 1977, p. 165). 

Detailed statistics are presented in table 9.  

            Table 9. Random Forest Statistics – Multispectral Drone Emulation 

Random Forest Statistics – Multispectral Drone Emulation 
Accuracy 0.5928 
95% Confidence Interval 
(of the accuracy) 

0.5248, 0.6582 

No Information Rate (NIR) 0.1855 
P-Value [Accuracy > NIR] < 2.2e-16 
Kappa 0.5452 

3.4.4.3 Statistics by Class 

Overall balanced accuracies for classes ranged from 48.1% to 100%. Accuracy for Orange 

Hawkweed was high, ranging from 67% and 83% for field samples, and 99.5% to 100% for 

greenhouse samples. Ox-Eye Daisy was rather variable however, with the plant having an 

Table 8. Confusion Matrix – Multispectral Drone Emulation 
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accuracy of 61.5%, and the flower being 87.6%. The statistics by class for the multispectral 

drone emulation are presented in table 10. 

Table 10. Random Forest Statistics by Class – Multispectral Drone Emulation 

 ADB AGR ASP BOS BSE CAS KAG OHff OHfp OHgf 
Sensitivity 0.000 0.000 0.563 0.727 0.111 0.333 0.333 0.667 0.368 1.000 
Specificity 0.995 0.963 0.976 0.961 0.991 0.967 0.991 1.000 0.970 1.000 
Pos. Pred. Value 0.000 0.000 0.643 0.500 0.333 0.364 0.600 1.000 0.538 1.000 
Neg. Pred. Value 0.986 0.967 0.967 0.985 0.963 0.962 0.972 0.995 0.942 1.000 
Prevalence 0.014 0.032 0.072 0.050 0.041 0.054 0.041 0.014 0.086 0.054 
Detection Rate 0.000 0.000 0.041 0.036 0.005 0.018 0.014 0.009 0.032 0.054 

Detection Prevalence 0.005 0.036 0.063 0.072 0.014 0.050 0.023 0.009 0.059 0.054 
Balanced Accuracy 0.498 0.481 0.769 0.845 0.551 0.650 0.662 0.833 0.669 1.000 

  
OHgp OXf OXp PDf PDp SGR 

Sensitivity 1.000 0.829 0.296 0.833 0.375 0.900 
Specificity 0.991 0.922 0.933 1.000 0.981 0.906 
Pos. Pred. Value 0.800 0.708 0.381 1.000 0.429 0.600 
Neg. Pred. Value 1.000 0.960 0.905 0.995 0.977 0.983 
Prevalence 0.036 0.186 0.122 0.027 0.036 0.136 
Detection Rate 0.036 0.154 0.036 0.023 0.014 0.122 
Detection Prevalence 0.045 0.217 0.095 0.023 0.032 0.204 
Balanced Accuracy 0.995 0.876 0.615 0.917 0.678 0.903 

3.4.4.4 Band Importance 

Whilst the Parrot Sequoia only covers four distinct ranges, it is useful to determine the order of 

importance for these bands. The most important wavelengths are presented by order of 

importance in table 11. The near-infrared band, 780 – 810nm, seems to be the least crucial of 

the four, with green, red, and red-edge classes being more substantially more important for 

species classification.  

Table 11. Band Importance - Multispectral Drone Emulation 

 Wavelength (nm) ADB AGR ASP BOS BSE CAS KAG OHff OHfp OHgf OHgp OXf OXp PDf PDp SGR 

 #1. 540-560 (Green) 18.79 26.09 60.60 46.16 12.14 32.99 29.37 19.52 28.83 39.19 27.42 93.06 26.51 33.11 26.25 61.21 

 #2. 650-670 (Red) 16.41 17.17 33.96 45.07 25.61 38.69 25.00 34.91 65.56 71.43 49.39 39.54 10.88 45.92 26.35 68.17 

 #3. 730-740 (Red-
Edge) 

16.95 9.38 6.18 31.10 20.32 24.15 22.88 17.03 32.68 42.01 35.99 2.36 15.50 16.56 27.60 59.30 

 #4. 780-810 (NIR) 14.31 18.72 -4.0 46.19 21.83 28.35 27.30 16.00 39.15 28.85 53.73 -1.7 12.26 18.97 38.05 51.40 
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3.4.5 Spectral Analysis - Satellite Emulation 

3.4.5.1 Confusion Matrix 

In table 12, the RF classification confusion matrix of the data simplified to the WorldView-3 

spectral resolution is presented. There is notable confusion between ox-eye daisy (plant) and 

orange hawkweed (in field, plant), as well as between the ox-eye daisy classes, and within the 

native species. 

3.4.5.2 Overall Statistics 

The overall statistics of emulating the spectral resolution of the multispectral satellite is 

moderately positive, with overall accuracy at 65.61%. The Kappa value is sufficient at 0.62. 

Overall statistics are presented in table 13. 

             Table 13. Random Forest Statistics - Satellite Emulation 

Random Forest Statistics – Satellite Emulation 
Accuracy 0.6561 
95% Confidence Interval 
(of the accuracy) 

0.5894, 0.7185 

No Information Rate (NIR) 0.1855 
P-Value [Accuracy > NIR] < 2.2e-16 
Kappa 0.6187 

3.4.5.3 Statistics by Class 

The statistics by class for the satellite emulation is presented in table 14. Overall balanced 

accuracies ranged from 57.0% to 99.5%. Orange Hawkweed’s balanced accuracy ranged from 

67% to 100%, whilst Ox-Eye Daisy ranged from 57% to 80%. 

 

 

Table 12. Confusion Matrix - Satellite Emulation 
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Table 14. Random Forest Statistics by Class – Satellite Emulation 

 ADB AGR ASP BOS BSE CAS KAG OHff OHfp OHgf 
Sensitivity 0.333 0.429 0.625 0.818 0.556 0.667 0.889 0.333 0.632 0.917 
Specificity 0.995 0.991 0.985 0.976 1.000 0.947 0.995 1.000 0.955 0.981 
Pos. Pred. Value 0.500 0.600 0.769 0.643 1.000 0.421 0.889 1.000 0.571 0.733 
Neg. Pred. Value 0.991 0.981 0.971 0.990 0.981 0.980 0.995 0.991 0.965 0.995 
Prevalence 0.014 0.032 0.072 0.050 0.041 0.054 0.041 0.014 0.086 0.054 
Detection Rate 0.005 0.014 0.045 0.041 0.023 0.036 0.036 0.005 0.054 0.050 

Detection Prevalence 0.009 0.023 0.059 0.063 0.023 0.086 0.041 0.005 0.095 0.068 
Balanced Accuracy 0.664 0.710 0.805 0.897 0.778 0.807 0.942 0.667 0.794 0.949 

  
OHgp OXf OXp PDf PDp SGR 

Sensitivity 1.000 0.732 0.222 0.500 0.625 0.833 
Specificity 0.991 0.939 0.918 0.995 0.995 0.953 
Pos. Pred. Value 0.800 0.732 0.273 0.750 0.833 0.735 
Neg. Pred. Value 1.000 0.939 0.894 0.986 0.986 0.973 
Prevalence 0.036 0.186 0.122 0.271 0.036 0.136 
Detection Rate 0.036 0.136 0.027 0.014 0.022 0.113 
Detection Prevalence 0.045 0.186 0.100 0.018 0.027 0.154 
Balanced Accuracy 0.995 0.835 0.570 0.748 0.810 0.893 

3.4.5.4 Band Importance 

For the satellite bands, the order of importance, and importance per species, was determined, 

as shown in table 15.  

Wavelength (nm) ADB AGR ASP BOS BSE CAS KAG OHff OHfp OHgf OHgp OXf OXp PDf PDp SGR 

#1. 448-510 (Blue) 12.13 31.36 72.05 42.41 32.51 30.31 27.54 13.29 40.63 41.37 30.98 103.7 33.84 25.61 27.64 51.40 

#2. 632-692 (Red) 17.49 30.76 15.46 65.29 40.49 39.99 15.09 35.35 61.78 71.22 54.01 5.53 51.12 47.97 37.21 80.11 

#3. 706-746 (Red-
Edge) 

13.52 6.13 7.19 29.92 21.65 21.07 17.48 19.75 27.07 45.19 18.21 -2.6 15.52 24.95 19.56 56.81 

#4. 1195-1225 
(SWIR1) 

7.85 48.87 22.36 38.58 50.05 12.37 28.81 7.23 42.35 11.20 10.43 1.38 22.70 2.93 19.98 40.48 

#5. 772-890 (NIR1) 12.22 15.28 9.87 38.45 26.91 25.95 11.66 6.38 29.20 24.60 41.50 17.83 10.37 13.69 28.39 49.11 

#6. 400-452 (Coastal) 15.45 29.92 45.94 9.51 17.07 27.97 14.87 8.82 36.64 22.49 16.56 27.02 14.78 17.12 21.07 26.82 

#7. 518-586 (Green) 13.39 21.54 43.19 38.81 11.79 35.73 12.32 9.11 8.67 28.42 12.16 21.07 5.77 34.63 16.40 33.67 

#8. 590-630 (Yellow) 12.62 3.65 10.94 36.51 20.68 24.80 11.23 16.65 21.77 25.08 15.60 8.97 18.17 29.03 16.27 25.09 

#9. 866-954 (NIR-2) 10.06 14.30 -4.9 65.34 20.73 24.20 12.72 3.89 26.60 18.08 22.97 18.86 3.37 6.84 24.93 23.38 

Table 15. Band Importance - Satellite Emulation 

3.4.6 Summary of Results 

The scanning, and analysis, of the spectral profiles for the nine native and two invasive species, 

across the seven sites in KNP, provides a representative quantitative assessment of the potential 

use of remote sensing to locate weeds in the region. The average spectral profiles provides an 

indicative insight into the potential discriminability of the species. Analysis found that the most 

important wavelength ranges for separability are 400-420nm, 440-480nm, 510-550nm, 570-

580nm, 640nm-690nm, 710nm-750nm & 1300nm. The relationship between important 

wavelength ranges, sensor ranges of the chosen cameras, and average spectral profiles are 

presented graphically in figure 10.  Finally, the RF classification provided a range of 

separability statistics, with 70% accuracy overall, 59% accuracy when averaged to the bands of 
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the multispectral drone, and 66% for the same process performed for the multispectral satellite. 

Similarly, Kappa values were 0.67, 0.55, and 0.62, respectively.  

 

Figure 10. Average Spectral Profiles, Important Variables, and Sensors 
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3.5 Discussion 

3.5.1 Remote Sensing 

Determining the average spectral profiles, discrimination ability, and key wavelengths provided 

significant insights into the potential use of remote-sensing to locate the two species of noxious 

weeds in KNP . There are many notable differences and similarities between the native and 

invasive species, as well as across the individual species themselves. Alpine grevillea 

(Grevillea australis) and leafy bossiaea (Bossiaea foliosa) shared a fairly similar reflectance 

pattern across the spectral profile. Snow grass (Poa sieberiana) had a fairly different spectrum, 

with reflectance varying from the usual pattern between 700 and 1300 nm. Sticky cassinia 

(Cassinia uncata) shared a very similar curve to alpine shaggy pea (Podolobium alpestre) up 

to 1100 nm, diverging afterwards. A similar occurrence was observed between black sally 

(Eucalyptus stellulata) and alpine daisy bush (Olearia phlogopappa). Most notably in these 

results, is the strong visual separation of the two weeds, orange hawkweed and ox-eye daisy, 

from the rest of the native species. The alpine everlasting (Xerochrysum subundulatum) resides 

between both weeds spectral profiles. Ox-eye daisy seems the most different, especially 

between 400 and 650 nm, where it has a substantially higher reflectance in comparison to all 

other species – potentially an effect of its white flowers. Notably, the two weeds have a very 

similar shaped curve following 700 nm, seemingly running parallel to each other for the rest of 

the spectrum. Orange hawkweed values ranged significantly between plant, greenhouse, 

flowering, and non-flowering classes. However, all classes of the invasive species had positive 

balanced classification accuracies. Invasive classes with lower classification accuracies (orange 

hawkweed (field, flower) and ox-eye daisy (plant)) seemed to be attributed to inter-species class 

confusion according to the confusion matrix. Plant-only samples and flower-only samples 

seemed to have been similar, increasing confusion, and reducing separability and classification 

accuracy.  

Biochemical and biophysical properties of plants, and their leaves, are responsible for differing 

spectral signatures (Heim, Jürgens, Große-Stoltenberg, & Oldeland, 2015). These properties 

are also often inherently different based on the species habitat, and source region (I. P. Aneece, 

Epstein, & Lerdau, 2017). Whilst it is important to note that there are differences in the spectral 

profiles, it is critical to understand the electromagnetic regions where these disparities greater 

occur. The main discriminatory wavelengths were found to be in the visible blue, green, and 

red light regions, as well as the non-visible regions in the red-edge, and in one small area of the 

near-infrared region. The red-edge contains a significant amount of properties, enhancing the 
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differences normally visible. Using specialised photographic equipment, a visual representation 

of this in orange hawkweed is presented in figure 11. 

 

Figure 11. Orange Hawkeed, photographed in (A) the full visible light spectrum, (B) at 720nm red-

edge infrared using specialised photographic equipment at the same angle, and (C) at an acute angle, 

accentuating hairs. An Australian $20 note is used as a colour reference across images (A) and (B).  

 

Figure 12. Potential multifaceted remote sensing approach for KNP. (Diagram created from 

individual sprites in Carbomap, 2014)Figure 31. Orange Hawkeed, photographed in (A) the full 

visible light spectrum, (B) at 720nm red-edge infrared using specialised photographic equipment at 

the same angle, and (C) at an acute angle, accentuating hairs. An Australian $20 note is used as a 

colour reference across images (A) and (B).  

 

Figure 14. Potential multifaceted remote sensing approach for KNP. (Diagram created from 

individual sprites in Carbomap, 2014)Figure 51. Orange Hawkeed, photographed in (A) the full 

visible light spectrum, (B) at 720nm red-edge infrared using specialised photographic equipment at 

the same angle, and (C) at an acute angle, accentuating hairs. An Australian $20 note is used as a 

colour reference across images (A) and (B).  

 

Figure 16. Potential multifaceted remote sensing approach for KNP. (Diagram created from 

individual sprites in Carbomap, 2014)Figure 71. Orange Hawkeed, photographed in (A) the full 

visible light spectrum, (B) at 720nm red-edge infrared using specialised photographic equipment at 

the same angle, and (C) at an acute angle, accentuating hairs. An Australian $20 note is used as a 

colour reference across images (A) and (B).  
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This modified camera is designed to capture images at the 720 nm wavelength, which is in the 

‘red-edge’ range of the electromagnetic spectrum. Figure 11, image A, shows the plant in 

standard RGB form. Image B, is captured at 720nm at the same angle, and the reflectance and 

texture is visually different. This is enhanced in image C, captured at 720nm from a more acute 

angle, where it is apparent the ‘hairs’ on the leaves is significantly more apparent, as well as 

the overall texture. The greater visibility of the hairs here may be partially responsible for the 

spectral differentiability in this region. 

Interestingly, there were no bands selected for discriminability in the large range between 

750nm and 1295nm. Whilst there is a strong difference in the mean profiles in this range, a re-

examination of the raw data accentuates a significant intraspecies variability of samples for this 

region. Values in this range is generally considered to be influenced by cell structure, and could 

also be  impacted by variable weather conditions (Slaton et al., 2001). This difference can 

potentially be explained by biological and lighting factors.  

For orange hawkweed, both field and greenhouse samples were analysed, to increase sample 

size. However, greenhouse growing conditions generally differ from those in the field, 

increasing growth rates and manipulating cell structures, which creates more delicate and thin 

leaves, causing differences in reflectance spectra (Fletcher, Johnson, & McFarlane, 1990; 

Keyhaninejad, Richins, & O’Connell, 2012; Vigneau, Rabatel, Roumet, & Ecarnot, 2010). 

Findings from Vigneau et al. (2010, pg. 9) using hyperspectral imagery for wheat crop 

monitoring determined that spectral profiles obtained “greenhouse plant leaves can not be 

applied directly to field leaves”. Additionally, due to the controlled nature of the orange 

hawkweed, the greenhouse plants were not legally permitted to be scanned outside of the 

facility. The increased diffusion and scattering of the greenhouse may have affected results, 

even with appropriate calibration. Additionally, diffuse light from greenhouse scattering is 

more efficiently used by plants, due to a deeper penetration of light into the canopy – affecting 

plant structure, and in turn their profiles (Li & Yang, 2015). When training the sniffer dogs, it 

was noted by NPWS that scent of the weed in the greenhouse was notably different to those in 

field (Jones, 2017). It has been hypothesised that this is due to the harsh weather conditions in 

KNP requiring the plant to grow in a more hardy matter, whilst greenhouse plants are able to 

thrive in more ideal conditions (Jones, 2017). It is important to ascertain the difference between 

greenhouse and in-situ samples of orange hawkweed, due to its rapid removal in the field, 

reducing the availability of plants for sampling on site. Whilst it is useful to supplement the 

scarce quantities of field samples of orange hawkweed using the greenhouse species, these may 

be too different to those collected in the field to be of high usability. 
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In order to determine the potential practicability of these discrimination results, the statistical 

analysis was repeated with the wavelengths trimmed and averaged, to represent and emulate a 

hypothetical response from a multispectral, drone-mountable, camera. The bands of the Parrot 

Sequoia, nominated as an indicative example, was selected for this purpose. Overall, the error 

in the confusion matrix was higher than the non-reduced data, as expected. However, the vast 

majority of confusion, as per the matrix, is between native species, and within the different sub-

divisions of noxious weed species. Whilst overall accuracy is moderate at 59%, this is between 

all species and classes, and a binary classification of alien versus native species may be higher. 

This is further accentuated with some native classes, with alpine daisy bush and alpine grevillea 

having balanced accuracies of less than 50%, whilst the average balanced accuracy of the 

invasive species was 83.1% - not accounting for intraspecies class confusion. The RGB sensor 

on the Parrot Sequoia is coupled with four spectral cameras: ‘Green’ (540-560nm); ‘Red’ (650-

670nm); ‘Red-Edge’ (730-740nm): and ‘Near Infrared’ (780-810nm) (Parrot Drones S.A.S., 

2017b). Interestingly, the visible light portions were considered the most important for overall 

classification, with the ‘Green’ band being best for detecting ox-eye daisy, and the ‘Red’ band 

being the best for orange hawkweed. This is in contrast to weed detection performed with this 

camera in a Californian vineyard, where formulas utilising the red-edge band was considered 

the most useful (MicaSense, 2016). Generally, the classification results with data binned and 

trimmed to emulate a multispectral drone-mountable camera, i.e. the Parrot Sequoia, are 

promising, and provides solid justification for further investigation.   

Similarly, the above process was repeated for the hyperspectral satellite, WorldView-3. This 

presented improved results on a spectral basis than the Parrot Sequoia. Less misclassification 

across classes, and better individual accuracies, resulted in a better overall accuracy of 66%. 

With nine main spectral bands that include the range of our spectral data, there is a significantly 

higher coverage of the key discrimination regions by the WorldView-3 sensor. Based on the 

band importance order, the addition of a blue band increased the accuracy here, as well as the 

change in wavelengths covered by these red and red-edge bands in comparison to the Parrot 

Sequoia. The improved accuracy of WorldView-4 to the Parrot Sequoia can be attributed to it 

being able to sense data in more of the key spectral bands determined. Paradoxically, however, 

whilst the spectral resolution may be more suitable for the discrimination of profiles, the spatial 

resolution is significantly worse than the Parrot Sequoia. With improving technology, higher 

resolution imagery will hopefully be available in the future.  

Determining the multispectral discriminability of orange hawkweed and ox-eye daisy from their 

cohabitant native species – and the assuring results provided – demonstrates the ability of the 
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process, and its practicability. Remote sensing weed management approaches utilising the 

spectral signatures of target species have experienced a diverse range of accuracies globally. 

With studies ranging from as low as 2-6% accuracy, to 73-99%, it is crucial to perform this 

statistical analysis for each potential application (Carson et al., 1995; O’Neill et al., 2000). This 

variation in results, caused by an axiomatic nexus of confounding factors, accentuates the 

demands for introductory studies, and highlights the positive results found in this trial (Azaria 

et al., 2012). Confusion with other plant species in the processing of imagery seems to be largest 

hurdle for utilising multispectral methods for weed detection – an issue which is worsened 

considerably with lower spectral discriminability, and vice versa (Carson et al., 1995). As such, 

the overall RF classification accuracy of 70% in this study provides confidence for pursuing 

further investigation of using remote sensing as an environmental management method for 

locating weeds in KNP, particularly the next stage which is to perform field validation in the 

summer season. 

Statistical analysis of multispectral discriminability allows for a preliminary assessment of 

imagery classification ability. As such, this process provides evidence for (or against) the use 

of remote sensing image capture and analysis – prior to undertaking a large-scale operation 

(Immitzer et al., 2012). Whilst these external and passive methods are more affordable in the 

long-run to perform than wide-scale field surveys, it is necessary to prove their potential worth 

– to obtain appropriate budgets, evoke interest in future research, and so forth. This method of 

analysing the spectral profiles themselves first, allows for estimates of potential accuracies to 

be gathered – prior to procurement of multispectral capture equipment, hiring of drone 

operators, purchase of imagery and training of staff, etc (Immitzer et al., 2012).  

It is crucial for emerging technologies to undergo preliminary assessments prior to pitching 

their use as a management option. Orange hawkweed is noted as a problematic invasive species 

on the National Environmental Alert List, and as a National Agricultural Sleeper Weed (Cherry 

et al., 2016). Its containment to KNP, relative limited spread, and strongest demand for 

eradication made it the key target of this study. Nevertheless, the magnitude and variety of other 

national weed management target species, will benefit from multispectral remote sensing 

methods. Unfortunately, implementing nation-wide extremely high-resolution aerial remote 

sensing efforts for weed management is unfeasible. However, this statistical spectral 

discrimination method can be utilised for preliminary studies on other weeds in the alert list, to 

determine the best potential uses for these technologies, and allocate a potential budget for this 

method in the most effective and efficient manner.  
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This approach will benefit more in smaller regions, as it will be easier to obtain and compute 

high resolution imagery – as well as them having a less diverse range of native species that have 

similar spectral profiles. For example, it would be useful to reapply the methods of this study 

to other high priority weed management regions, such as Lord Howe Island. Sites which have 

an open-sky view, in order to allow the weeds to be seen by sensors, are ideal. Known for 

having one of the most intensive invasive species eradication programs in Australia, Lord Howe 

Island may benefit from using these methods to quickly determine the potential of spectral 

applications for the 68 targeted weeds there (Lord Howe Island Board, 2016). The high priority 

species for investigation – ground asparagus (Asparagus aethiopicus), bitu bush 

(Chrysanthemoides monilifera subsp. rotundata), and cherry guava (Psidium cattleyanum) – 

would benefit the most from a preliminary spectroradiometric assessment (H. Cherry, personal 

communication, 10th July 2017). This acts as an example of one of the many ways this process 

could be applied to other sites and weeds, and as an illustration of how an assessment of spectral 

separability prior to full scale imagery capture operations is required to provide an indication 

of potential benefits.   

3.5.2 Invasive Species Management  

This spectral profiling and classification of invasive and native species has proven to be useful 

as an assessment tool for determining prospective use of remote sensing imagery capture and 

classification. The ability to ascertain potential classification accuracies prior to full-scale 

deployment increases the productivity and effectiveness of future efforts. Specifically, for 

orange hawkweed and ox-eye daisy, the results of this analysis has provided substantial benefits 

to current and future eradication efforts. Obtaining the spectral profiles of the invasive species, 

and their native cohabitants, through field and greenhouse sampling and post-processing 

already allows for significant future work in this space. Any future operations – from small-

scale drone applications, to large-scale aircraft-mounted or satellite capture systems for larger 

patches, will utilise the spectra determined in this study.  

There are a variety of ways of practically implementing the results found. As is common in RS 

deliberations, a paradox emerges of balancing spectral, spatial and temporal resolutions with 

spatial coverage, expenditure, and potential accuracies (Atkinson & Aplin, 2004; Rocchini, 

2007).  Consequently, a careful determination of the implementation technique for KNP needs 

to be addressed. Two main paradigms emerge: firstly, a multispectral camera mounted to a 

drone or other low-flying unmanned aerial vehicle; and secondly, purchase and analysis of 

WorldView-3 high-resolution multispectral satellite imagery of the region.  
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The first option provides a significantly higher spatial resolution, increasing potential accuracy, 

at the cost of a high coverage region. The Parrot Pro AG Drone Package, containing a Parrot 

Sequoia camera mounted onto a Parrot Disco-Pro, provides 80 hectares of coverage per flight, 

at a resolution of < 15cm/px from a 120 m flight altitude, with included basic software (Parrot 

Drones S.A.S., 2017a). This system, available for $6,875 AUD, is a suitable device for 

implementing this spectral analysis, as determined in the second part of the statistical analysis. 

The higher resolution of the drone will be more suitable for orange hawkweed, where plants 

exist in very small patches, which may be missed by a coarser spatial resolution. Conversely, 

the spatial coverage provided by this system is small relative to the extent of KNP. For example, 

at 80 hectares per flight, it would take over two flights to cover the extent of Tooma Reservoir. 

However, this would be more time effective than manual ground surveys, and would be useful 

for targeting key sites.   

Secondly, using satellite imagery that is high resolution and multispectral is another method for 

remotely searching the landscape for these targeted spectral profiles. WorldView-3 is a 

commercial remote sensing satellite launched in 2014, with a maximum spatial resolution of 31 

cm/px (panchromatic), and a maximum multispectral spatial resolution of 124 cm/px. Imagery 

is available to purchase from this system at $24/km2 (AUD), with academic discounts also 

available (Land Info Worldwide Mapping, LLC, 2016).  This can be a much more affordable 

method of collecting imagery and searching for the weeds across the park. However, the 

resolution of the satellite would be a strong limitation, as it would not be able to pick up small, 

dispersed, infestations. Instead, it would be more useful for detecting large patches such as the 

3600m2 patch of orange hawkweed found near Fifteen Mile Ridge in the 2010/2011 season, or 

the large swaths of ox-eye daisy that were seen during the field surveys. However, utilising 

satellite imagery would allow for an exceptional coverage of the parks extent, at a significantly 

more affordable level than drone, or physical surveys. Both options have important uses, 

benefits, and limitations. Overall, use of the Parrot Sequoia provides a more spatially detailed 

analysis, at the expense of coverage and a mild decrease in accuracy – whilst use of the 

WorldView-3 system covers a significantly greater region, yet would only be able to detect 

large patches of the invasive species, due to resolution constraints. As such, it is evident that 

both systems are rather dichotomous in their abilities to locate weeds, and choosing either 

system would result in a strong compromise of coverage or precision. Consequently, it is useful 

to contemplate the notion of a multifaceted and heterogeneous approach, combining both 

systems in conjunction with field assessments to mitigate these issues, represented in figure 12.  
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Figure 18. Potential multifaceted remote sensing approach for KNP. (Diagram created from individual 

sprites in Carbomap, 2014) 
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Hot-spot regions – which could be assessed through GIS analysis of known plant locations, or 

simply expert knowledge – could be inspected using the drone surveys to perform a detailed 

assessment across smaller regions. This would then operate in conjunction with satellite remote 

sensing to search other, previously unassessed regions of the park, for large patches of weeds 

that would have previously been unknown. If one of these regions are then flagged via satellite, 

a further drone analysis could be performed there to find smaller patches that may have occurred 

in these new-found sectors of weed growth. In all cases, these newly found weed locations 

would then be field-verified by the expert NPWS team members and treated accordingly. A 

false positive from remote sensing is easily verifiable in the field, taking a maximum of a day 

to check, but a manual search could take entire seasons to even be able to search that area 

(Jones, 2017).This multidimensional tactic reduces the disadvantages of both methods, and 

would provide a significantly more useful approach.  

Specifically, for invasive species in KNP, a multi-dimensional remote sensing approach will be 

an effective, efficient, and useful environmental management practice. Tying into a ‘search and 

destroy’ eradication program, utilising both drone and satellite spectral analysis will help in 

determining the potential locations of weed species, with the two methods having a diverse 

implementation across small and large scales. Remote sensing will provide a significantly larger 

detection coverage in contrast to traditional methods, in a significantly shorter timeframe, and 

more affordable manner to complement existing management strategies.  

3.5.3 Limitations 

Whilst the results of this study are positive, it is important to discuss the limitations of our 

method. Firstly, this study looked specifically into the discriminability and separability through 

a statistical machine-learning analysis of the plant species based on their spectral profiles alone. 

Finding that this is indeed possible and effective, it is then necessary to assess this based on 

trials analysing imagery of known infestations and control samples, and verifying them on the 

ground. Unfortunately, this was out of the scope for the timeframe and funding of the Master 

of Research. However, this research and its results acts as a facilitator to secure budget and 

interest for further research, and procurement of imagery. Additionally, another constraint of 

this study was acquiring enough samples of orange hawkweed. Due to the extreme demand for 

controlling the invasive species, most samples that were found had already been treated, were 

in isolated forms and not in patches, and were blended with the local native vegetation. As such, 

a lower diversity of individual plants was collected than was desired. Whilst this was addressed 

by acquiring several individuals and growing them in a secure greenhouse facility, the profiles 
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collected were significantly different, requiring them to be analysed separately. In addition, the 

wavelength variability was the main assessment criteria of this study, which does not account 

for later imagery analysis constraints, including signal-to-noise ratios of sensors, and spectral 

un-mixing. These limitations considered in the context of an initial pilot study are easily 

addressable in the next stage of research, which will build into a robust management system in 

the park. 

3.5.4 Future Directions 

Providing foundational evidence for the spectral discriminability of invasive and native species 

in KNP, this study has opened up a number of future research questions. Firstly, the next stage 

of this research should be to cross-validate the statistical analysis with imagery captured from 

both drone and satellite sources of both control and known infestation areas, in conjunction 

with ground surveys. Additionally, it would be useful to collect more spectral samples of orange 

hawkweed, ox-eye daisy, and the native species. Furthermore, other invasive species in the 

KNP, such as other hawkweeds, should also be scanned and studied to see if this method could 

be expanded further. In terms of expansion, it would also be useful for researchers to trial this 

in other national parks or areas that are tackling localised weed management issues, such as 

Lord Howe Island.  

3.6 Conclusion 

The aim of this study was to evaluate the use of remote sensing to determine and discriminate 

the spectral profiles of invasive and native plant species. Specific to orange hawkweed and ox-

eye daisy in KNP, this study determined that there is a significant separability between these 

invasive species and their native co-habitants. Through analysing and assessing both 

multispectral satellite and drone imagery potential, a comprehensive implementation plan was 

established that would utilise remote sensing to assist in the eradication process. The 

consequences of untampered weed proliferation in KNP are significant, risking its significant 

cultural and heritage values and biodiversity, as well as causing significant environmental and 

socioeconomic impacts. Through utilising remote sensing in a multi-faceted approach 

combining drone and satellite capture and analysis with ground surveys, weed management in 

the park will see significant benefits. Overall spectral separability accuracy of 70%, with 59% 

for the Parrot Sequoia drone camera, and 63% for the WorldView-3 satellite, emphasises the 

potential ability of this process. If established, orange hawkweed provides a significant threat, 

resulting in unbearable costs to the ecosystem and grazing industry. By conducting a focused 

analysis of the spectral detection abilities in KNP this paper provided insights into the 
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application potential of this discipline, determining its specific use in relation to orange 

hawkweed and ox-eye daisy to the Australian alpine natives. Ultimately, in conclusion, this 

paper finds that the use of remote-sensing to locate and eradicate weeds in KNP through 

determining and discriminating spectra is effective, and should be used as part of a 

multidisciplinary environmental management approach.  
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4 SYNTHESIS 

Through the coupled examination of literature, and a case-study analysis of potential 

spectral weed management approaches in KNP, this dissertation has provided an 

assessment of the potential effectiveness of remote sensing utilisation for invasive 

species control in NSW, and in general. The construction of a spectral library of orange 

hawkweed, ox-eye daisy, and their key common co-habitual species, followed by a 

statistical spectral discriminability assessment, has clearly determined favourable 

capacity and capability for weed control in the region. With a 70% separability overall 

– and 59% for drone and 63% for satellite – the benefits of a dual approach in targeting 

these weeds was highlighted, and recommended for implementation as part of a 

multidisciplinary management approach. 

This spectral machine-learning analysis approach augments and supplements 

previous RF vegetation discriminability methods and assessments, such as those by 

Immitzer et al., 2012; Mansour et al., 2012; Pal, 2005; Pouteau, Meyer, Taputuarai, & 

Stoll, 2012; and Shang & Chisholm, 2014. Current applications are mostly foreign to 

Australia, or focus on general vegetation classification and quantification, or are weed 

focused but performed in monocultures – such as agricultural crops. As such, a clear 

research frontier has emerged for testing these methods for weed management, 

particularly in an Australian context, and in a natural, diverse, native environment. 

This investigation demonstrates that remote sensing for the detection of noxious weed 

locations is effective in the Australian landscape, through the positive results in the 

KNP case study. Additionally, comparing and contrasting the spectra of the weed 

species to nine native species substantiates the use of this technology, adding and 

expanding to remote-sensing based weed management studies such as (Tamouridou 

et al., 2017) which focused on agricultural, monoculture based environments. 

Analysing orange hawkweed and ox-eye daisy spectrally in KNP expands on previous 

remote-sensing efforts in the region, including Hung and Sukkarieh’s (2015) work 

using RGB drones for surveillance and detection of orange hawkweed, as well as 

hyperspectral discrimination of Blackberry (Rubus fruticosus sp. agg.) by Dehaan et 

al. (2007). Furthermore, this expands further the work of Mcintyre (2015), where the 

utility of three remote sensing sources was used to determine the most important 

factors in the capture and analysis process of high resolution multispectral data for 

mapping and detecting the pasture weed Paterson’s curse (Echium plantafineum). 
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This analysis ameliorates prior remote sensing research through facilitating an 

examination for noxious weeds in a diverse, Australian, environment.  

For invasive species management in particular, it has been determined through 

spectral profiling and classification that this method can, and will be, useful for both 

determining potential results from remote sensing analysis approaches for weed 

management in KNP, and as a preliminary assessment tool in general. The methods 

presented here can be used to perform pilot studies for other small-scale invasive 

species cases in an affordable manner. Additionally, they provide quantitative 

measures of effectiveness of full-scale operations, prior to, and providing evidence for, 

significant investment. It was found that satellite and drone sensors varied 

considerably in their respective benefits and shortcomings, and as such a multifaceted 

approach in combination with already established and developing methods was 

suggested as a management method.  

Acting as a proof-of-concept study, the statistical method is limited in that it did not 

yet perform analysis on ground imagery sources. This constraint however, enables 

future research into cross-validation of this analysis with captured imagery from both 

sources of control and known infestation areas, as well as searching new, unknown, 

areas for weed species. Furthermore, the number of noxious weeds and invasive 

species of which spectral profiles were developed and analysed could be further 

expanded.  

Ultimately, this review of literature and case study analysis has found that the remote 

sensing is an effective technique to be utilised for invasive species management in 

Kosciuszko National Park.  
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APPENDIX 2. R CODE USED FOR METHODS AND 

RESULTS 
#################################################################################################### 

#################################################################################################### 

#######     This script, was developed by Chad Ajamian with significant          ################### 

#######     assistance from Rene Heim. It is used for performing spectral        ################### 

#######     discrimination analysis for Orange Hawkweed and Ox-Eye Daisy against ################### 

#######     native cohabitating species.                                         ################### 

#######     All following steps will be commented.                               ################### 

#################################################################################################### 

#################################################################################################### 

#                                                                                                  # 

#                                                                                                  # 

#                               _(_)_                           wWWW   _                           # 

#                   @@@@       (_)@(_)   vVVVv     _     @@@@  (___) _(_)_                         # 

#                  @@()@@ wWWWw  (_)\    (___)   _(_)_  @@()@@   Y  (_)@(_)                        # 

#                   @@@@  (___)     `|/    Y    (_)@(_)  @@@@   \|/   (_)\                         # 

#                    /      Y       \|    \|/    /(_)    \|      |/      |                         # 

#                 \ |     \ |/       | / \ | /  \|/       |/    \|      \|/                        # 

#                 \\|//   \\|///  \\\|//\\\|/// \|///  \\\|//  \\|//  \\\|//                       # 

#                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^                     # 

#                                                                                                  # 

#################################################################################################### 

# 1. Preparation Steps                                                                             # 

#################################################################################################### 

 

#################################################################################################### 

## 1.1. Install the required packages.                                                             # 

#################################################################################################### 

 

install.packages(c("hsdar", "fda", "fda.usc", "propectr", "gdata", "caret", 

"reshape2", "gridExtra", "cowplot", "VSURF", "colourpicker", 

"png", "grid", "qpcR", "tidyverse", "dplyr")) 

install.packages('e1071', dependencies=TRUE) 

 

#################################################################################################### 

##  1.2. Loading Packages                                                                           # 

#################################################################################################### 

 

library(hsdar) 

library(fda) # For Outlier detection 

library(fda.usc) # For Outlier detection 

library(prospectr) # For spectral binning 

library(gdata) #To drop levels of a df 

library(caret) 

library(reshape2) 

library(cowplot) 

library(VSURF) 

library(colourpicker) 

library(tidyverse) 

library(e1071) 

 

######################################################################################################  2. 

Load Spectral Data, Remove Unwanted Wavelengths , Remove Spectra >100%                      # 

#################################################################################################### 

 

setwd("C:/Users/43261299/Google Drive/Academia/2017/R/FINAL") 

data.original <- read.csv("data/SpectralProfilesMergedJuly.csv", check.names = FALSE) 

data.original$Type <- drop.levels(data.original$Type) 

as.vector(unique(data.original$Type)) 

data.rmv.noise <- data.original[,match('400', names(data.original)):match('1300', names(data.original))] 

#this removes the unwanted bands 

names(data.rmv.noise[,c(1,901)]) #Check bands after removal 

 

#Final df after noisy end are removed 

data.wo.noise <- cbind(data.original['Type'],data.rmv.noise)# Final df after noisy end are removed 

 

#create a list of subsets based on the factor value. 

subsets <- split(data.wo.noise, data.wo.noise$Type) 

 

##Remove Spectra with reflectance values above 100% 

subsets$OHff <- subsets$OHff[apply(subsets$OHff[, -1], MARGIN = 1, function(x) all(x < 100)), ] 

subsets$OHfp <- subsets$OHfp[apply(subsets$OHfp[, -1], MARGIN = 1, function(x) all(x < 100)), ] 

subsets$OHgf <- subsets$OHgf[apply(subsets$OHgf[, -1], MARGIN = 1, function(x) all(x < 100)), ] 

subsets$OHgp <- subsets$OHgp[apply(subsets$OHgp[, -1], MARGIN = 1, function(x) all(x < 100)), ] 

subsets$ASP <- subsets$ASP[apply(subsets$ASP[, -1], MARGIN = 1, function(x) all(x < 100)), ] 

subsets$CAS <- subsets$CAS[apply(subsets$CAS[, -1], MARGIN = 1, function(x) all(x < 100)), ] 

subsets$OXp <- subsets$OXp[apply(subsets$OXp[, -1], MARGIN = 1, function(x) all(x < 100)), ] 

subsets$OXf <- subsets$OXf[apply(subsets$OXf[, -1], MARGIN = 1, function(x) all(x < 100)), ] 

 

#################################################################################################### 

##  3. Manually Screen and Remove Obvious Outliers                                                 # 

#################################################################################################### 

 

##Essentially, manually print the pdf, look for outliers, and continually remove max 
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##until it is clean. 

 

## PDF Before 

pdf("output/all.before.manual.august.pdf", width = 32, height =18) 

par(mfrow=c(4,7)) 

for (i in 1:length(subsets)){ 

 

labnames <- list(main="Width", xlab="Wavelength [nm]", ylab="Reflectance [%]") 

set <- subsets[[i]] 

set.2 <- as.matrix(set[,2:902]) 

f.res <- fdata(set.2, argvals = as.integer(names(set[,2:902])), names = labnames) 

 

plot(f.res, main = names(subsets)[i]) 

 

} 

dev.off() 

 

####ASP 

which.max(subsets$ASP[,'1000'] ) 

subsets$ASP <- subsets$ASP[-72,] # use multiple times and check plot if spectra are gone 

subsets$ASP <- subsets$ASP[-70,] 

subsets$ASP <- subsets$ASP[-70,] 

subsets$ASP <- subsets$ASP[-70,] 

subsets$ASP <- subsets$ASP[-70,] 

subsets$ASP <- subsets$ASP[-70,] 

subsets$ASP <- subsets$ASP[-64,] 

 

####BOS 

which.max(subsets$BOS[,'1000'] ) 

subsets$BOS <- subsets$BOS[-11,] # use multiple times and check plot if spectra are gone 

subsets$BOS <- subsets$BOS[-71,] 

subsets$BOS <- subsets$BOS[-69,] 

subsets$BOS <- subsets$BOS[-11,] 

 

####OHff 

which.max(subsets$OHff[,'1000']) 

subsets$OHff <- subsets$OHff[-13,] 

 

####PDp 

which.max(subsets$PDp[,'1000']) 

subsets$PDp <- subsets$PDp[-24,] 

subsets$PDp <- subsets$PDp[-24,] 

subsets$PDp <- subsets$PDp[-22,] 

subsets$PDp <- subsets$PDp[-22,] 

subsets$PDp <- subsets$PDp[-2,] 

subsets$PDp <- subsets$PDp[-34,] 

subsets$PDp <- subsets$PDp[-35,] 

 

##PDF After 

pdf("output/all.after.manual.august.pdf", width = 32, height =18) 

par(mfrow=c(4,7)) 

for (i in 1:length(subsets)){ 

 

labnames <- list(main="Width", xlab="Wavelength [nm]", ylab="Reflectance [%]") 

set <- subsets[[i]] 

set.2 <- as.matrix(set[,2:902]) 

f.res <- fdata(set.2, argvals = as.integer(names(set[,2:902])), names = labnames) 

 

plot(f.res, main = names(subsets)[i]) 

 

} 

dev.off() 

 

#################################################################################################### 

##  4. Outlier Detection via Functional Data Analysis                                              # 

#################################################################################################### 

 

source('script/Remove_Functional_Outlier_June2017.R') 

 

cleaned_data <- lapply(subsets, rmv.funct.outlier) 

 

pdf("output/all.after.automatic.august.pdf", width = 32, height =18) 

par(mfrow=c(4,7)) 

for (i in 1:length(cleaned_data)){ 

 

labnames <- list(main="Width", xlab="Wavelength [nm]", ylab="Reflectance [%]") 

set <- cleaned_data[[i]] 

set.2 <- as.matrix(set[,2:902]) 

f.res <- fdata(set.2, argvals = as.integer(names(set[,2:902])), names = labnames) 

 

plot(f.res, main = names(cleaned_data)[i]) 

 

} 

dev.off() 

 

cleaned.df <- bind_rows(cleaned_data) 

write.csv(cleaned.df,"output/data_after_outlierdetection.august.csv") 

 

#################################################################################################### 

##  5. Spectral Binning and Resampling                                                             # 
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#################################################################################################### 

 

Type <- cleaned.df[,1] 

 

data.resamp <- cleaned.df[,2:902] #removing Type column 

data.bin <- binning(data.resamp, bin.size=10) 

 

data.after.bin <- cbind(Type, as.data.frame(data.bin)) 

 

write.csv(data.after.bin,"output/data_after_preprocessing.august.csv", row.names = FALSE) 

data.classif <- read.csv('output/data_after_preprocessing.august.csv', check.names = FALSE) 

 

#################################################################################################### 

##  6. Random Forest Classification  (note: this takes 24-72hrs to run)                            # 

#################################################################################################### 

 

source('script/RandomForest_May2017.R') 

 

Classification_Results <- list() 

 

Classification_Results[['Run1']] <- RFapply(data.classif,repeats=100,trees=1000,seq(1,70,5)) 

 

tmp <- lapply(Classification_Results, function(i){  capture.output( print(i) , 

file="output/20170815_Results_RandomForest_August.txt", append=TRUE)}) 

 

#################################################################################################### 

##  7. Figure: Comparison Before and After all Classification                                      # 

#################################################################################################### 

 

subsets_unfiltered <- split(data.original, data.original$Type) 

 

pdf("ComparisonBeforeandAfterAllPreProcessingAugust.pdf", width = 10, height = 15) 

par(mfrow=c(8,4)) 

 

for (i in 1:length(subsets_unfiltered)){ 

 

labnames <- list(main="Width", xlab="Wavelength [nm]", ylab="Reflectance [%]") 

set <- subsets_unfiltered[[i]] 

set.2 <- as.matrix(set[,2:1800]) 

f.res <- fdata(set.2, argvals = as.integer(names(set[,2:1800])), names = labnames) 

 

plot(f.res, main = names(subsets_unfiltered)[i]) 

 

} 

for (i in 1:length(cleaned_data)){ 

 

labnames <- list(main="Width", xlab="Wavelength [nm]", ylab="Reflectance [%]") 

set <- cleaned_data[[i]] 

set.2 <- as.matrix(set[,2:902]) 

f.res <- fdata(set.2, argvals = as.integer(names(set[,2:902])), names = labnames) 

 

plot(f.res, main = names(cleaned_data)[i]) 

} 

 

dev.off() 

 

 

#################################################################################################### 

##  8. Analysis based on Drone Camera Bands (Parrot Sequioa)                                       # 

#################################################################################################### 

 

##Outside R, remove values in data_after_outlierdetection.august.csv that cannot be used 

##For parrot sequoia, useable bands are 530-570, 640-680, 730-740, and 770-810 

##Excel also then used to calculate the means for each of these bands 

 

dataclipdrone <- read.csv('output/data_after_outlierdetection_august_clipped_mean_parrot.csv', check.names 

= FALSE)[-1] 

names(dataclipdrone) 

 

source('script/RandomForest_May2017.R') 

 

Clipped_Classification_Results <- list() 

 

Clipped_Classification_Results[['Run1']] <- RFapply(dataclipdrone,repeats=100,trees=1000,seq(1,70,5)) 

 

tmp <- lapply(Clipped_Classification_Results, function(i){  capture.output( print(i) , 

file="output/20170815_Results_Clipped_RandomForest_August.txt", append=TRUE)}) 

 

 

#################################################################################################### 

##  9. Analysis based on WorldView-3 Camera Bands                                                  # 

#################################################################################################### 

 

##Outside R, remove values in data_after_outlierdetection.august.csv that cannot be used 

##For WorldView-3, useable bands are 400-452, 448-510, 518-586, 590-630, 632-692, 706-746, 772-890, 866-

954, 1195-1225 

##Excel also then used to calculate the means for each of these bands 

 

dataclipworldview3 <- read.csv('output/data_after_outlierdetection_august_clipped_mean_worldview3.csv', 

check.names = FALSE)[-1] 
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names(dataclipworldview3) 

 

source('script/RandomForest_May2017.R') 

 

Clipped_Classification_Results <- list() 

 

Clipped_Classification_Results[['Run1']] <- RFapply(dataclipworldview3,repeats=100,trees=1000,seq(1,70,5)) 

 

tmp <- lapply(Clipped_Classification_Results, function(i){  capture.output( print(i) , 

file="output/20170815_Results_RandomForest_August_WorldView3.txt", append=TRUE)}) 

 

 

 
 

FUNCTION ONE: REMOVE FUCTIONAL OUTLIER 

 

rmv.funct.outlier <- function(data){ 

         

        require(fda) 

        require(fda.usc) 

         

        #data <- subsets[[1]]  

         

        i <- seq(2, ncol(data)) 

        data.wo.noise.mat <- as.matrix(data[,i]) #As matrix to be able to transform the object (1452-52=1400) 

         

        labnames <- list(main="Width", xlab="Wavelength [nm]", ylab="Reflectance [%]") #labnames to have plot 

information within fdata object 

        myfdata <- fdata(data.wo.noise.mat, argvals = as.integer(names(data[,i])), names = labnames) #Why as 

integer?? 

         

        outlier.mat <- outliers.depth.trim(myfdata, dfunc = depth.mode, nb = 10, smo = 0.2, trim = 0.1, ns = 

0.5) #Smoothing variables here are a guess 

         

        outlier.vector <- as.numeric(outlier.mat$outliers) 

         

        as.data.frame(data[-outlier.vector, ]) 

         

} 

 

 
 

FUNCTION TWO: RANDOM FOREST 

 

RFapply <- function(data, repeats, trees, mtry){ 

#data must have a first col named "Type" including the response and further cols containing the predictors 

  require(caret) 

 

  learning <- createDataPartition(data$Type, p = .8, 

                          list = FALSE, 

                          times = 1) 

 

  myRFTrain <- data[ learning ,  ] 

  myRFTest  <- data[-learning ,  ] 

 

  testing<-as.integer(row.names(myRFTest)) 

 

  # Random Forest - Caret - Fit Model # 

 

  rfControl <- trainControl(method = "repeatedcv", 

                            number = 10, repeats = repeats, 

                            classProbs = TRUE, 

                            allowParallel = TRUE, 

                            selectionFunction = "oneSE", 

                            returnResamp = "final") 

 

  rfGrid <- expand.grid(mtry = mtry) 

 

  rfFit <- train(Type ~ ., data = myRFTrain, 

                 method = "rf", 

                 importance = TRUE, ntree=trees, 

                 trControl = rfControl, tuneGrid = rfGrid, 

                 metric = "Kappa", maximize = TRUE) 

   

  rfPred <- predict.train(rfFit, myRFTest[,-1], type = "raw") 

 

  list(fit = rfFit, 

       pred = predict.train(rfFit, myRFTest[,-1], type = "raw"), 

       confusion = confusionMatrix(rfPred, myRFTest$Type), 

       varImp = varImp(rfFit, scale = FALSE)) 

} 
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APPENDIX 3. CONFERENCE PAPER  

Accepted for Submission – August, 2017. 

Ajamian, C., Chang M., Tomkins, K., 2017. "Preliminary Assessment of the Uses of Sensors and the 

Spectral Properties of Weed and Native Species in Kosciuszko National Park, NSW, Australia" 

in The Eleventh International Conference on Sensing Technology: Remote Sensing, 2017, Sydney.  
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APPENDIX 4. ABC NEWS ARTICLE 

Corrigan, L., 2017, ‘Man, beast and machine work together to eradicate a weed infestation in 

Kosciusko National Park’, ABC News, 1st March 2017, last accessed 19th September 2017, 

<http://www.abc.net.au/news/2017-03-01/man-beast-and-machine-fight-killer-kosciusko-

weed/8316144>  
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APPENDIX 5. ABC RADIO NATIONAL PROGRAM 

Jones, A. (2017, October 7). Sniffer spaniels get the doggone weeds on Off Track. Off Track. Australia: 

ABC Radio National. Retrieved from http://www.abc.net.au/radionational/programs/offtrack/weed-

sniffing-dogs/8884950 

Description: ABC Radio National Program on the importance of this project in conjunction with sniffer 

dogs and other management methods for orange hawkweed eradication in KNP. 
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