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Abstract

Proportional hazards mixture cure models are an important tool in survival analysis

because they account for the presence of a sub-population who will never experience

the event of interest. Much previous research in this area has been limited in scope

to right censored data and has not o↵ered a smooth estimate of the baseline hazard

function. This thesis considers a maximum penalised likelihood (MPL) estimation of a

proportional hazards mixture cure model for partly-interval censored survival data. The

MPL method simultaneously estimates all model parameters, including a smooth M-

spline approximation to the baseline hazard function. The non-negativity constraint on

the baseline hazard function is guaranteed through the use of a multiplicative-iterative

algorithm. Asymptotic properties are presented to allow for large sample inference on

all parameters, including regression parameters and survival quantities. The results of

two simulation studies are presented to demonstrate the method’s performance, including

a comparison to an existing method. A newly developed package for implementing the

model in R is outlined and an example of its use is demonstrated with data from a

melanoma study.
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1 Introduction

Survival analysis is the area of statistics primarily concerned with the modelling of time-to-

event data. This is a type of data where the main variable of interest is a measure of the time

until some event of interest occurs. This length of time is often referred to as a survival time or

a failure time, and the event may be referred to as a failure or a death. The most well-known

method for modelling survival times as a function of a set of covariates is Cox’s proportional

hazards regression model (Cox 1972). This model is expressed in terms of a hazard function,

which gives the risk of the event of interest occurring at a given time, conditional on the event

of interest having not already occurred. Under the Cox model, the hazard function is a product

of a non-parametric baseline hazard function, common to all individuals, and an exponential

function involving all covariates and regression coe�cients which modulates the risk of failure at

a given time. This model is popular because, with the use of Cox’s partial likelihood estimation

method, it is possible to leave the unknown baseline hazard function arbitrary and simply

estimate the value of the regression parameters, which greatly simplifies the estimation process

(Cox 1975). Frequently, however, we may encounter situations where Cox’s partial likelihood

is insu�cient for fitting a proportional hazards regression model, because an estimate of the

baseline hazard function is required as part of parameter estimation.

One feature of time-to-event data that may preclude the use of Cox’s partial likelihood

is the presence of censored survival times in the dataset. Censoring occurs in survival data

when the event time is not directly observed. The most common type of censoring is right

censoring, where the event of interest has not occurred by the final time at which an individual

has been observed. This occurs frequently in clinical studies, where subjects may be lost to the

study or the study may end before all of the subjects have experienced the event of interest.

If a set of survival data consists of event times and right censoring times, it is still possible

to use Cox’s partial likelihood to fit a proportional hazards model. However, this is not the

case if there are individuals in the dataset who have been subject to left or interval censoring.

Left censoring occurs in survival data when an individual has already experienced the event of

interest prior to the first observation time or enrolment in the study. Interval censoring arises

where the event of interest is known to have occurred between two observation times, but the

event time was not observed exactly. We can refer to a dataset which contains any combination

of event times and right, left, or interval censored survival times as partly-interval censored

data. Estimating the regression parameters of a proportional hazards model for partly-interval

censored data necessitates some estimation of the baseline hazard function. This therefore

requires a more complex approach than Cox’s partial likelihood. Many existing methods, such

as Finkelstein (1986) and Huang (1996), have addressed this by treating the smooth baseline

hazard as discrete or as a step function to simplify parameter estimation. Although this may

be a straightforward approach, treating the baseline hazard function in this way limits the

quality and interpretability of the baseline hazard function estimate produced.
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Another complexity presented by some survival datasets is the possible presence of indi-

viduals who are not susceptible to ever experiencing the event of interest. This again prevents

the straightforward estimation of a proportional hazards regression model using Cox’s partial

likelihood. The proportional hazards model assumes that all members of the population under

consideration would eventually experience the event of interest if there was no restriction on

follow-up time. However, there are a number of scenarios where it would be reasonable to as-

sume that some members of the population may be cured of the underlying cause of the event,

or otherwise have zero probability of ever experiencing it. This is an increasingly important

factor to account for in survival analysis considering advancements in medical treatments and

technologies over recent decades. Failing to account for this so-called cured fraction leads to

overestimation of survival times. A natural extension to the proportional hazards model is the

mixture cure model, which treats the population under consideration as a mixture of two sub-

populations, where one is susceptible to the event and the other is not (Farewell 1982). Fitting

this model becomes a two step process. The incidence, or probability of being susceptible to

the event, is estimated using a method such as logistic regression. Then the latency, or time

to the event, amongst the susceptible individuals is modelled using a method like proportional

hazards regression. The form of the likelihood function for a mixture cure model using pro-

portional hazards regression for the latency requires some estimation of the baseline hazard

function in order to fit the model, even where the data is only subject to right censoring. This

complexity is, perhaps, the reason that much of the previous work concerned with fitting a

proportional hazards mixture cure model, such as Sy & Taylor (2000) and Peng & Dear (2000),

has been limited in scope to right censored data. It is also notable that there has been virtually

no consideration given to obtaining a smooth estimate of the baseline hazard function as part

of fitting this model, even in more recent work that has incorporated partly-interval censored

data (see Zhou et al. (2016), for example).

The use of a penalised likelihood approach could well provide a cohesive process for fitting a

proportional hazards mixture cure model to partly-interval censored survival data and obtaining

a smooth estimate of the baseline hazard function. A penalised likelihood makes use of the a

priori knowledge that the baseline hazard function is smooth by introducing a roughness penalty

term to the likelihood. It is therefore able to simultaneously produce regression parameter

estimates for the latency and incidence models and a smooth estimate of the baseline hazard

function. There is an existing body of research that has investigated the use of a penalised

likelihood approach for estimating both the regression parameters and a smooth baseline hazard

function for a proportional hazards model (Gray 1994, Joly et al. 1998, Cai & Betensky 2003,

Ma et al. 2014). Key limitations of this aforementioned research have included, variously,

restriction in scope to only right censored data, and an unsatisfactory treatment of the non-

negative constraint on the baseline hazard function, leading to potential numerical issues.

However, these limitations are cohesively addressed in the approach laid out in Ma et al. (2019).

This research extends the multiplicative-iterative (MI) algorithm for constrained optimisation
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developed in Chan & Ma (2012) to fit a proportional hazards regression model to partly-

interval censored data. Despite the potential strengths of the penalised likelihood method in

the context of proportional hazards regression model estimation, at present there has been a

very limited amount of work done extending this approach to a mixture cure model. The only

exception to this is Corbiere et al. (2009). Although this work showed promising results, it

was limited in scope to right censored data, and also treated the non-negativity constraint on

the baseline hazard function in a similarly ad-hoc manner to previous work in the field, again

risking numerical issues in the estimates.

Given the aforementioned limitations of existing research, this thesis aims to construct and

evaluate a maximum penalised likelihood (MPL) estimation of a proportional hazards mixture

cure model that improves on Corbiere et al. (2009) by drawing from the methods presented in

Ma et al. (2019). In doing so, this thesis will address the current lack of options for obtaining

a smooth estimate of the baseline hazard function from a proportional hazards mixture cure

model fitted to partly-interval censored data. By proposing a method for obtaining both

regression parameter estimates and a smooth estimate of the baseline hazard function via a

maximised penalised likelihood, this thesis will broaden the interpretability and utility of the

proportional hazards mixture cure model for clinical and applied settings. Furthermore, this

thesis will illustrate the utility of the algorithm presented by Ma et al. (2014) and Ma et al.

(2019) for constrained optimisation in the context of a proportional hazards mixture cure model.

In doing so, it will address the limitations of previous work which has treated the non-negativity

constraint on the baseline hazard function in an ad-hoc manner, and thus avoid the potential

for numerically unstable estimates. Additionally, in the course of evaluating the proposed

estimation procedure, this project will develop an new option for fitting a proportional hazards

mixture cure model in R. This is a significant contribution to the field, as existing options for

practitioners who wish to fit this model in R are extremely limited.

This thesis is structured as follows. Chapter 2 presents a review of the existing literature.

It will cover existing research concerned with fitting a proportional hazards regression model

to partly-interval censored data, including obtaining a smooth estimate of the baseline hazard

function, via a maximum penalised likelihood approach. Furthermore, it will outline previous

approaches to fitting a proportional hazards mixture cure model, and discuss the ways in which

the MPL method proposed here may be able to address the limitations of these approaches. It

will also o↵er a brief overview of the currently limited options for fitting a proportional hazards

mixture cure model in R. In Chapter 3, the model and estimation method under consideration in

this thesis will be formally presented. This chapter will lay out the proportional hazards mixture

cure model, discuss the parameterisation of the baseline hazard function and its approximation

via basis functions, present the penalised likelihood function and detail the algorithm used to

solve the constrained optimisation problem it presents. Additionally, this chapter will present

asymptotic results that facilitate large sample inference using this model. Chapter 4 will present

two simulation studies carried out to evaluate the performance of the proposed model. The
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first of these is a comparative simulation study, contrasting the performance of the proposed

method with an existing method for fitting the proportional hazards mixture cure model, using

right censored data. The second is a simulation study using partly-interval censored survival

data. Chapter 5 will provide an overview of the R package developed to fit the proposed model,

and discuss an example of how the package could be used to analyse a real dataset. Finally,

Chapter 6 will o↵er concluding remarks and comment on potential avenues for future research.
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2 Literature Review

2.1 Penalised likelihood estimation of a proportional hazards model

Analysis of time-to-event data typically aims to model the time it will take for some event

of interest to occur. This length of time is often referred to as a survival time. By far the

most commonly used model in the analysis of survival times is the proportional hazards or Cox

regression model (Cox 1972). A proportional hazards regression specifies the hazard function

at time t as

h(t|xi) = h0(t) exp{xT
i �}

where h0(t) is the non-parametric baseline hazard function, xi is a vector of covariates for the

i-th individual and � is a vector of regression coe�cients. The popularity of the proportional

hazards regression model stems largely from the fact that, by using Cox’s partial likelihood,

it is possible to estimate the regression coe�cient vector � without estimating the baseline

hazard function (Cox 1975). This means that the e↵ect of covariates on the hazard function

can be estimated while the baseline hazard function remains unknown. However, Cox’s partial

likelihood is not suitable for fitting a proportional hazards regression model when survival times

have been subject to left or interval censoring. This is because the baseline hazard function can

no longer be avoided in the likelihood formulation. As such, alternative estimation methods

are necessary.

One approach to estimating the baseline hazard function of a proportional hazards model

for partly-interval censored data has been the use of a penalised likelihood (Ma et al. 2019).

In this method, if ⌘ is the parameter vector of interest, then the aim is to estimate ⌘ by

maximising the penalised log-likelihood function

�(⌘) = l(⌘)� �J(⌘)

where l(⌘) is the log-likelihood function, J(⌘) is a penalty function imposing smoothness, and

� is a non-negative smoothing parameter. The application an maximum penalised likelihood

(MPL) approach in the context of the proportional hazards model is primarily motivated by

the a priori knowledge that the non-parametric baseline hazard function is smooth and non-

negative. Although a number of options for the roughness penalty function J(⌘) exist, in

practice the penalty function most commonly selected is
R
h

00
0(v)

2
dv, the L2-norm of the second

derivative of the baseline hazard function. The selection of L2-norm is motivated by its appeal

as an intuitive measure of the roughness of a function (Green & Silverman 1994).

An MPL estimation o↵ers a number of benefits compared to alternative likelihood-based

approaches to fitting a proportional hazards model to partly-interval censored survival data.

Primarily, MPL estimation makes it possible to obtain a smooth estimate of the baseline hazard

function. Alternative methods have generally not dealt with the baseline hazard function

in such a satisfactory way. For instance, Finkelstein (1986) developed a method for testing
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the regression coe�cients of a proportional hazards model for partly-interval censored data,

but considered the baseline hazard function as discrete. Huang (1996) likewise developed

a likelihood based estimation of a proportional hazards model for interval censored data, but

treated the cumulative baseline hazard function as a non-decreasing step function. Additionally,

MPL estimation does not rely on bootstrapping for inference of the regression parameters,

setting it apart from the method proposed by Pan (1999). Overall, a penalised likelihood

method is an appealing approach to fitting a proportional hazards model to partly-interval

censored data, particularly where one may be interested in estimating or carrying out inference

on the baseline hazard function.

2.1.1 Approximation of the baseline hazard function

To obtain a smooth estimate of the baseline hazard function, it is necessary to address the

fact that the function is dimensionally infinite (Ma et al. 2019). In MPL estimation, this is

typically addressed by approximating the baseline hazard function using a set of basis functions

and associated coe�cients. As Ma et al. (2019) point out, basis functions can be selected

from a wide range of choices, including indicator functions, Gaussian density functions and

spline functions. In practice, cubic splines have proven a popular choice. For instance, Joly

et al. (1998) made use of cubic M-splines (Ramsay 1988) in order to approximate the baseline

hazard function, while Gray (1994) used cubic B-splines in his formulation of hypothesis tests

for covariate e↵ects and for the presence of proportional hazards. Conversely, Cai & Betensky

(2003) used linear splines in their estimation of the baseline hazard function. However, linear

splines o↵er less flexibility than cubic splines in this approximation process.

In addition to their greater flexibility, cubic splines, and cubic M-splines in particular,

have other properties that make them well suited in the context of baseline hazard function

approximation. Firstly, their formulation as a linear combination of piecewise polynomials

means that guaranteeing a non-negative baseline hazard function approximation is simple.

Each piecewise polynomial can only take positive or zero values (Ramsay 1988). This means

that non-negativity can be ensured simply by restricting an associated set of linear coe�cients

to be non-negative. Secondly, each M-spline can be assigned an associated I-spline, its integral,

and these I-splines will be monotonically increasing when associated with the same set of

non-negative linear coe�cients as the M-spline. This means that approximations of both the

baseline hazard function and the cumulative baseline hazard function can be defined using the

same vector of linear coe�cients (Joly et al. 1998). The use of cubic M-splines for approximation

therefore o↵ers a flexible set of parameter estimates.

2.1.2 The non-negativity constraint and the multiplicative-iterative algorithm

A key property of the baseline hazard function is its strict non-negativity. As mentioned, if the

baseline hazard function is to be approximated using a set of non-negative basis functions, it
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is necessary to constrain the associated set of linear coe�cients to be non-negative as well. In

much of the aforementioned work, this element of baseline hazard function estimation has been

either disregarded (Gray 1994) or not dealt with adequately. For instance, Joly et al. (1998)

ensured a positive estimate for the baseline hazard function by squaring this set of coe�cients.

As pointed out by Ma et al. (2019), this has the potential to produce instability in the estimates

and to create local maxima. Another approach was Cai & Betensky (2003)’s modelling of the

log-baseline hazard, which leads to di�culties in obtaining a closed form for the cumulative

baseline hazard and may also produce computational instability (Ma et al. 2014).

Some recent work has addressed this issue in a more rigorous fashion through the use of the

multiplicative-iterative (MI) algorithm (Ma 2010, Chan & Ma 2012). This algorithm, which

places a non-negative constraint on the estimation of the basis function coe�cients as part of

the estimation process, was developed in the context of image restoration using a penalised

likelihood. Constrained optimisation arises in the field of statistical image restoration as pixel

values of digital images can only be non-negative (Ma 2010, Chan & Ma 2012). The MI

algorithm is developed from a decomposition of the gradient of the objective function into its

positive and negative terms, allowing for the formulation of a step size that can guarantee a

non-negative update (Ma 2010). The MI algorithm has a number of desirable properties for

constrained optimisation in any context. Firstly, the algorithm updating scheme requires only

the first derivative of the objective function, lessening the computational burden compared to

some alternatives. Secondly, the ability to express the algorithm as a gradient based algorithm

with an ascending direction allows for the easy incorporation of a line search step size (Ma

2010). This adds to the e�ciency of parameter estimation as an increase in the objective

function with each iteration is ensured.

This algorithm has been previously applied in the process of MPL estimation of a propor-

tional hazards model in Ma et al. (2014) and Ma et al. (2019). Specifically, this work employed

an alternating updating scheme, where the proportional hazard regression parameters were

updated using the Newton-Raphson algorithm and the spline coe�cients used in the baseline

hazard approximation were updated using the MI algorithm. As a result, the non-negativity

of the smooth baseline hazard function was guaranteed far more rigorously than in previous

work.

2.1.3 Selection of the smoothing parameter �

An additional element of maximum penalised likelihood estimation is the need to determine an

appropriate value for the smoothing parameter �. The value of � controls the balance in the

estimation process between the conflicting objectives of achieving a good fit to the data and

obtaining a smooth estimate of the baseline hazard function. As Ma et al. (2019) observe, it

is desirable for any MPL estimation process to include an automatic selection method for the

smoothing parameter, as manual selection of � is generally only appropriate for experienced
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user. Inappropriate specification of � may cause the method to be overly sensitive to the

number of knots selected in the spline approximation to the baseline hazard function.

As pointed out by Wood (2011) and Krivobokova (2013), existing methods for selecting

the optimal value of � generally fall into one of two classes. The first of these classes is the

set of methods concerned with selecting a value for � that minimises some measure of model

prediction error. These include methods that make use of a cross-validation or generalised cross-

validation approach (Craven & Wahba 1979). This type of method is generally popular and has

been made use of by some previous work in the area of MPL estimation of a proportional hazards

model, such as Joly et al. (1998). Here, the smoothing parameter was selected by maximising

an approximate cross-validation score, using a one-step Newton-Raphson expansion to reduce

the computational burden of maximising the cross-validation directly. The second broad class

of methods for selecting a value of the smoothing parameter tend to make use of a likelihood

function for optimisation. The link between spline-smoothing and Bayesian estimation has been

long established in the literature (Wahba 1978, Kimeldorf & Wahba 1970). As Krivobokova

(2013) points out, this link can be exploited to allow for estimation of the smoothing parameter

using a likelihood function. Within such a framework, the penalty term is thought of as a

normal prior distribution and the smoothing parameter can be related to the variance of this

distribution, meaning that likelihood methods can be used (Kauermann et al. 2009).

There has been fairly extensive work done considering the relative merits of these two groups

of methods for selecting the smoothing parameter. Overall, existing result tend to suggest that

likelihood-based methods are prone to under-smoothing in some cases, while generalised cross-

validation methods tend to show greater variability in the smoothing parameter estimates

obtained (Wahba 1985, Stein 1990, Kauermann 2005). However, results from Reiss & Ogden

(2009) indicate that in finite samples generalised cross-validation is more likely to develop

multiple minima and only weakly penalise overfitting compared to likelihood-based methods. A

marginal likelihood based approach to selecting the smoothing parameter in an MPL estimation

of a proportional hazards regression model has been used by Cai & Betensky (2003) and Ma

et al. (2019). For deriving this method, it is common to employ a Laplace approximation so that

an approximate marginal likelihood can be obtained (Wood 2011, Kauermann et al. 2009). As

Ma et al. (2019) remark, such a method leads to quick convergence in the smoothing parameter

estimate when an appropriate number of knots is selected for the spline approximation to the

baseline hazard function.

2.2 Cure models in survival analysis

A feature of some time-to-event data that has been given consideration in survival analysis

literature is the presence of long-term survivors. These are individuals who have not experienced

the event of interest even after a lengthy follow-up time. Typical survival analysis methods,

such as proportional hazards regression, assume that all members of the population under
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consideration are susceptible to experiencing the event of interest, and that an event time would

be observed for every individual given su�cient follow-up time. However, there are a number

of scenarios where there is a reasonable possibility that some proportion of the population will

never experience the event of interest. In these situations, disregarding the possibility that

some individuals are not susceptible to the event leads to biased estimates of survival times.

Methods that allow for the analysis of survival times while accounting for the presence of this

so-called ‘cured fraction’ are therefore of interest, giving rise to cure models.

Cure models in survival analysis broadly fall into one of two categories. The most popular

approach are mixture cure models, first proposed by Farewell (1982). These models consider

the population of interest to be a mixture of two underlying sub-populations, one which is sus-

ceptible to the event of interest, and another which is not susceptible and will never experience

the event. Fitting a model to these survival times becomes a two-step process of modelling

the incidence, or the probability of an individual being in the non-cured fraction, and then the

latency, or the time until the event of interest amongst the non-cured fraction. An alternative

to mixture cure models is the promotion time model; see Tsodikov et al. (2003). Under such

a model, the survival function is formulated such that it produces an estimate of the cured

proportion if t is set to infinity, and produces a survival function for susceptible individuals

otherwise (Zeng et al. 2006). Additionally, there has been a limited amount of work done

on the development of a more general class of cure models, which includes the mixture cure

model and the promotion time model as two special cases (Yin & Ibrahim 2005). However,

mixture cure models remain the most popular approach to modelling survival data with a cure

fraction, due to their intuitive and straightforward formulation and the flexibility o↵ered by

the two-component model structure (Banerjee & Carlin 2004)

2.2.1 Parametric and non-parametric models for the incidence

One of the key benefits of the mixture cure model is the flexibility it allows in the choice of

models for both the incidence and the latency. Despite this theoretical flexibility, in practice

the model chosen for the incidence part is most commonly a logistic regression model, following

on from the early work of Farewell (1982). This popularity is likely because logistic regression

is a straightforward and well-known method for modelling a binary outcome, such as whether

or not an individual is a member of a cured sub-population. The use of logistic regression also

allows the prediction of the cure probability to depend on a set of covariates, which is not a

feature of all proposed methods for modelling the latency.

However, some non-parametric alternatives to logistic regression for modelling the incidence

have been proposed in the literature. Some early work proposed estimators related to the

Kaplan-Meier estimate of the survival function. For instance, Maller & Zhou (1992) suggested

that the cure probability be set at one minus the minimum observed value of the Kaplan-Meier

empirical distribution function. The work of Xu & Peng (2014) expanded on this to incorporate

9



kernel weighting into the cure probability estimation and allow for the e↵ect of covariates to

be considered. An alternative non-parametric model for the cure probability was proposed by

Wang et al. (2012), who made use of a penalised expectation-maximisation algorithm within

a smoothing spline analysis of variance framework to produce a fully non-parametric mixture

cure model. This thesis will limit its consideration of incidence models to logistic regression.

2.2.2 Parametric and non-parametric models for the latency

The introduction of a cured fraction results in significant complexities in the fitting of a model

for the latency. The key di�culty of fitting a latency model arises from the fact that, with

the presence of a cured fraction, the baseline survival function can no longer be treated as a

nuisance parameter in the process of estimating the regression parameters. As such, a variety

of parametric and non-parametric models for the latency have been proposed in the literature.

An initial approach was to propose fully parametric models for the latency. In his intro-

duction of the mixture cure model to the literature, Farewell (1982) made use of a Weibull

distribution to model the time to the event of interest. Further research has variously proposed

the use of the exponential, log-normal, Gompertz, and Burr XII distributions for modelling

the latency (Ghittany et al. 1994, Gamel & Voggel 1997, Gordon 1990, Cantor & Shuster

1992, Shao & Zhou 2004). However, the use of fully parametric models for the latency may

introduce undesirable limitations in the form of strong assumptions about the shape of the

unknown baseline survival function. As a compromise between these limiting assumptions and

the convenience of a parametric model, Peng et al. (1998) proposed the use of the more flexible

generalised F distribution family for modelling the baseline survival function. However, the

use of this family of distributions commonly gives rise to computational di�culties. These

include di�culties evaluating the density and survival functions when shape and scale param-

eters become extreme and the unavailability of likelihood derivatives with respect to the shape

parameters Peng et al. (1998).

Subsequent research has proposed models for the latency that aim to avoid parametric as-

sumptions by making use of semi-parametric models for the baseline survival function, such

as the proportional hazards model. As mentioned, the mixture cure model formulation pro-

hibits the use of Cox’s partial likelihood estimation due to the inability to treat the baseline

hazard function as a nuisance parameter. As such, there have been a variety of proposed

approaches to the task of regression parameter estimation for a proportional hazards mixture

cure model. Kuk & Chen (1992) took a marginal likelihood approach in order to eliminate the

unknown baseline survival function in the process of proportional hazards regression parameter

estimation. In practice, Monte Carlo methods were used to approximate the maximum of the

marginal likelihood and obtain regression parameter estimates. Fixed values of these regression

parameter estimates were then used to maximise the full likelihood, allowing for the estimation

of the baseline survival function. This method showed improved performance compared to a
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Weibull model, but the use of Monte Carlo methods significantly increased the complexity and

computational burden of parameter estimation. Additionally, as noted by Peng & Dear (2000),

the total elimination of the baseline survival function from regression parameter estimation

via the use of a marginal likelihood function leads to information loss in the Monte Carlo ap-

proximation. This approach was extended by Sy & Taylor (2000), who developed maximum

likelihood estimation techniques for jointly estimating the logistic regression parameters for the

incidence and proportional hazards regression parameters for the latency. This research dealt

with the estimation of the nuisance baseline survival function by applying profile-likelihood

and non-parametric likelihood techniques. Alternatively, Peng & Dear (2000) approached the

estimation of the baseline survival function in this type of model using a discrete distribution

with probability mass only at uncensored observations.

One key issue with the aforementioned research is a limitation in scope to only right censored

data. At present, there is only a small amount of work concerning fitting a proportional hazards

mixture cure model to partly-interval censored survival data. One example is Zhou et al. (2016),

who made use of a multiple imputation approach to first obtain regression parameter estimates

for the incidence and latency of a proportional hazards mixture cure model, and then used

the Breslow estimator for the baseline survival function. The use of the more general class of

transformation models for survival analysis in the context of a mixture cure model for interval

censored data has also received some attention. Transformation models are a broad class of

survival models which includes the proportional hazards model as a special case. Shen et al.

(2019) used the proportional hazards model in their simulation study illustrating the use of a

logistic transformation mixture cure model. Their method used an expectation-maximisation

algorithm with re-parameterisation of the cure probability, and regarded the baseline hazard

function as a step-function with non-negative jumps at particular times. A similar approach was

taken by Chen et al. (2019), who likewise investigated the use of a transformation mixture cure

model for partly-interval censored data using a non-decreasing, right-continuous step function

for the baseline hazard function.

Despite the consideration of more complex censoring in more recent work on the propor-

tional hazards mixture cure model, a common theme across much of the existing research is

the unavailability of a smooth estimate of the baseline survival function. One of the few excep-

tions to this is the work done by Corbiere et al. (2009). In this research, the non-parametric

estimator of the baseline survival function used was a smooth function maximising a penalised

likelihood, which could be approximated via M-splines. This method thus provides a smooth

estimate of the baseline hazard function. However, the work presented in Corbiere et al. (2009)

still faces some key limitations. Firstly, it is restricted in scope to right-censored data. Ad-

ditionally, the non-negativity constraint on the baseline hazard function is addressed in the

ad-hoc manner of squaring the spline coe�cient vector. As a result, this method su↵ers from

identical drawbacks to the work discussed above in Section 2.1.2. Evidently, existing research

that simultaneously o↵ers a smooth estimate of the baseline hazard function, satisfactorily
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addresses the non-negativity constraint, and can incorporate partly-interval censoring into the

estimation of a proportional hazards mixture cure model is extremely limited.

2.2.3 The identifiability of the model & the zero-tail constraint

An issue commonly noted in the existing literature is the identifiability of mixture cure mod-

els, including those that adopt the proportional hazards model for the latency part. Many

researchers have noted that the set of parameters that maximise the expected log-likelihood for

such a model may not be unique (Amico & Van Keilegom 2018). Issues with the identifiability

of this model arise where there exist right censoring times that are greater than the largest

observed event time (Peng 2003). These are common in scenarios where a mixture cure model

might be used, as the existence of these late right censoring times may be indicative of an

underlying cured sub-population (Taylor 1995). However, these late right censoring times can

result in estimates of the baseline survival function, such as those used in Sy & Taylor (2000)

and Peng & Dear (2000), that do not approach 0 as t ! 1. Consequently the baseline survival

function for the non-cured population will be improper. If logistic regression is used for the

incidence, there will be non-identifiability between the intercept parameter and the tail of this

improper distribution (Taylor 1995, Peng 2003).

To address this issue of non-identifiability, many existing methods impose a zero-tail con-

straint on the baseline survival function. This constraint, which forces the survival function to

zero at any t greater than the final event time, was first suggested by Taylor (1995) and has

been included in much subsequent work including Sy & Taylor (2000) and Peng & Dear (2000).

In essence, the constraint makes the strong assumption that all right censored observations af-

ter the final event time belong to the cured fraction. Research in the area of both parametric

and non-parametric estimation of the cured proportion (Patilea & Van Keilegom 2017, Xu &

Peng 2014) has noted that this assumption is crucial to ensure identifiability. Taylor (1995)

argues that this assumption is reasonable, given that, as Farewell (1986) notes, it is generally

only appropriate to fit a mixture cure model when follow-up time is su�cient to conclude that

all subjects who are susceptible to the event of interest will have experienced it.

However, as pointed out by Peng (2003), this assumption may not be properly justified

and may be inappropriate, especially when considering the practicalities of clinical research

placing limits on follow-up time, or in the case of heavily censored samples (Corbiere et al.

2009). To address this, Peng (2003) proposed alternative methods for completing the tail

of the baseline survival function. More specifically, this work proposed the use of a proper

continuous distribution, such as an exponential or a Weibull distribution, to ensure that the

estimate of the baseline survival function decreases to zero smoothly. Through the use of

comparative simulation studies, Peng (2003) found that these alternatives could produce less

biased estimates than the zero-tail constraint, improving estimation of covariate e↵ects on the

cured proportion and survival probabilities. However, these methods have not been widely
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adopted; recent work such as Zhou et al. (2016) and Shen et al. (2019) has continued to make

use of Taylor (1995)’s zero-tail constraint.

Evidently, in much of the previous literature on the estimation of a proportional hazards

mixture cure model, the question of how to complete the tail of the unknown baseline survival

function is a pertinent issue. However, results from the small amount of existing research

on MPL estimation of this model indicate that, when this method is used, non-identifiability

may not be as much of a concern. Specifically, Corbiere et al. (2009) modelled the baseline

hazard function without any constraint on the right tail. They remark that poor choice of

the smoothing parameter (see Section 2.1.3) may give an improper survival estimate that

suggests an absence of a cured fraction in cases where there are very late uncensored event

times. However, they also note that the presence of these very late event times may be an

indication that a mixture cure model is not appropriate, either because follow-up was not

su�cient or because there may in fact not be a cured fraction present in the population of

interest. Overall, the results of Corbiere et al. (2009) suggest that a potential additional

benefit to MPL estimation of a proportional hazards mixture cure model might be the ability

to disregard concern about the identifiability of the model in practice.

2.3 Mixture cure model implementation in R

At present, options for fitting a proportional hazards mixture cure model in R are extremely

limited. One available package is the smcure package (Cai et al. 2012b), which uses the

expectation-maximisation algorithm outlined in Peng & Dear (2000) to estimate regression

parameters for the latency and incidence of a mixture cure model. Both the proportional haz-

ards regression model and the accelerated failure time model are available for the latency, and

available link functions for the incidence are the logit link, probit link, and complementary log

link. As such, the smcure package is an option for those wishing to fit a proportional hazards

mixture cure model using logistic regression to model the incidence. However, the use of this

package is limited to data where only right censoring is present. Furthermore, the standard er-

rors for the regression parameters are obtained via bootstrapping, increasing the computational

burden significantly. Finally, no smooth estimate of the baseline survival or hazard functions

are available. Instead, a Breslow estimate of the baseline survival function is used to facilitate

estimation of the regression parameters (Cai et al. 2012a).

At present, seemingly the only R implementation of a method to fit mixture cure models to

partly-interval censored data is the flexsurvcure package (Amdahl 2020), which is a wrap-

around to the flexsurv package (Jackson 2016). The flexsurv package allows users to fit

a parametric regression model to survival data, by using one of several inbuilt parametric

distributions or by specifying their own. Depending on the choice of parametric distribution,

both proportional hazards regression and the accelerated failure time model are available.

If one wishes to fit a proportional hazards model with only right censoring, the available
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distributions are the exponential distribution and the Gompertz distribution; if one wishes to

fit this model to partly-interval censored data, the Gompertz distribution must be selected. The

package can then provide regression parameter estimates and inference on these parameters.

flexsurvcure provides an extension to the methods available in flexsurv to fit a proportional

hazards mixture cure model using logistic regression for the incidence. Available choices for

the parametric baseline survival function are limited similarly in flexsurvcure as they are in

flexsurv. The package provides regression parameters for the latency model and inference

on these parameters, and an estimate of the size of the cured proportion, making use of the

same set of covariates for both the latency and incidence models. Additionally, the package

provides estimates of the parameters for the selected distribution, such as the shape and scale

parameters for the Gompertz distribution. Overall, there is an obvious lack of options for easily

fitting a proportional hazards mixture cure model within R that can account for partly-interval

censored data, can provide a smooth estimate of the baseline hazard function, and is not limited

by parametric assumptions.
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3 Model Specification and Estimation Procedure

3.1 The proportional hazards mixture cure model for partly-interval

censored data

The aim of the research presented here is to fit a proportional hazards mixture cure model to

partly-interval censored survival data with a cured fraction. In order to incorporate event times

that may be observed, right censored, left censored, or interval censored, event and censoring

times are denoted as follows. For an individual i where i = 1, ..., n, Yi is a random variable

denoting the time until the event of interest, and Ci = (CL
i , C

R
i )

T is a random vector denoting

the respective end points of a random censoring interval. For this vector Ci, we must have

C
R
i > C

L
i and C

L
i � 0, and it is possible to have C

R
i = +1. We assume that Ci and Yi are

independent and that they cannot be observed simultaneously. Given these conditions, our

recorded survival time for each individual will consist of a random vector Ti = (TL
i , T

R
i )T . If

individual i is not subject to any type of censoring, we will record Yi such that TL
i = T

R
i = Yi.

Otherwise, we will record Ci, giving us TL
i = C

L
i and T

R
i = C

R
i , and can say that Yi 2 [CL

i , C
R
i ].

We assume that the Ti are independent across the values of i, and denote the observed values

of TL
i and T

R
i respectively as tLi and t

R
i .

In addition to t
L
i and t

R
i , we also record two covariate vectors for each individual i, denoted

as xi and zi. xi is the covariate vector used to model the latency of the mixture cure model,

and zi is the covariate vector used to model the incidence. The vector xi is of length q while the

vector zi is of length p, and the two covariate vectors may be identical, may have no overlap,

or one may be a subset of the other. Note that xi forms the i-th row of the design matrix X

and that zi forms the i-th row of the design matrix Z. Additionally, note that we may not

necessarily record a variable denoting the censoring status of a given individual i. Nonetheless,

we can easily compute a set of indicator variables that represent this information. This is

because information about censoring is inherent in the recorded values of (tLi , t
R
i ). Let �i be an

indicator value for event times and �Ri , �
L
i and �Ii be indicator values for right, left, and interval

censoring respectively, such that �i = 1� �
R
i � �

L
i � �

I
i . In a case where t

L
i = t

R
i , the observed

survival time is an event time and thus �i = 1 . If tRi = +1, then the survival time has been

right censored, giving rise to �Ri = 1. If tLi = 0, the survival time has been left censored, giving

rise to �Li = 1. In any of these cases, we may denote the single observed time point as ti in order

to simplify notation. In any other case, the values of tLi and t
R
i indicate an interval censored

survival time, giving rise to �Ii = 1. We can say overall that the set of available information for

each subject i is (tLi , t
R
i ,xi, zi, �i, �

R
i , �

L
i , �

I
i ).

Further to this observed information, let Ui be an unobserved random variable such that

Ui = 1 if subject i is not in the cured fraction, and Ui = 0 if subject i is in the cured fraction.

Note that although the value of ui is unobserved, the values of tLi and t
R
i do o↵er information

about the value of ui for some i. Namely, if for a given subject i we have any case other
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than t
R
i = +1 then we can conclude that ui = 1. More clearly, we can say definitively

that if the survival time of an individual has not been right censored, then they are not in

the cured fraction. This follows from the fact that in the case of an observed, left censored,

or interval censored survival time, the given individual is confirmed to have experienced the

event of interest at some time either before or during the follow-up time. Conversely, if an

individual has a right censored survival time, we have no information about the value of ui.

We cannot determine whether the event of interest did not occur by the final follow-up time

because individual i is not susceptible to the event of interest, or if the event simply occurred

after the end of observation.

From this, we can specify the survival function for the whole population, consisting of both

the cured and non-cured fractions, as

Spop(t|xi, zi) = ⇡(zi)S(t|ui = 1,xi) + (1� ⇡(zi))

where S(t|ui = 1,xi) is the survival function for the i-th subject, conditional on a set of

covariates and the fact that subject i is not part of the cured fraction, and ⇡(zi) represents

the probability that individual i is not part of the cured fraction given a set of covariates. We

may refer to the function S(t|ui = 1,xi) as the conditional survival function, and, for ease of

notation but without disregarding the conditionality on ui, denote it as S(t|xi). Further, we

can define the probability density function for the whole population as

fpop(t|xi, zi) = ⇡(zi)f(t|ui = 1,xi)

where f(t|ui = 1,xi) is the conditional probability density function for the i-th subject in the

non-cured fraction, and can similarly be re-expressed as f(t|xi) for ease of notation but without

loss of conditionality. Finally, we can express the hazard function for the whole population as

hpop(t|xi, zi) =
fpop(t|xi, zi)

Spop(t|xi, zi)

=
⇡(zi)f(t|xi)

⇡(zi)S(t|xi) + (1� ⇡(zi))

=
⇡(zi)S(t|xi)h(t|xi)

⇡(zi)S(t|xi) + (1� ⇡(zi))

where h(t|xi) is the conditional hazard function for the non-cured fraction.

Here, we wish to fit a proportional hazards model to the latency part of the mixture cure

model. Under a proportional hazards model, the conditional survival function can be expressed

as

S(t|xi) = S0(t)
exp{xT

i �}

where S0(t) is the baseline survival function and � is a q-vector of proportional hazards regres-

sion parameters. More commonly, the proportional hazards model is expressed in terms of the

hazard function. For the conditional hazard function, this expression is

h(t|ui = 1,xi) = h(t|xi) = h0(t) exp{xT
i �}
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where h0(t) is the baseline hazard function.

We also wish to model the incidence, or the probability that an individual is not in the

cured fraction, using logistic regression. Specifically, we want to fit the the model

⇡(zi) =
exp{zTi �}

1 + exp{zTi �}

where � is a p-vector of regression parameters and zi is as defined previously. As such, fitting

this mixture cure model will require the estimation of the two regression parameter vectors �

and �.

3.2 Baseline hazard function approximation

In addition to estimating the proportional hazards regression parameter vector � and the

logistic regression parameter vector �, this approach also estimates the baseline hazard h0(t).

However, estimation of h0(t) without restriction using a finite number of survival times is ill-

conditioned. Therefore, h0(t) must be approximated. The baseline hazard function can be

approximated using some finite number m non-negative basis functions, such that

h0(t) =
mX

u=1

✓u u(t)

where ✓u is an element of an m-vector ✓ and each  u(t) is a non-negative basis function.

3.2.1 Approximation via M-splines

In this model, the baseline hazard function will be approximated using cubic M-splines (see

Section 2.1.1). M-splines can be characterised by their order, denoted by o. Each M-spline,

 
o
u(t), is a piecewise polynomial of degree o� 1. These spline functions are completely defined

by the sequence of knots selected. Here, we can define ↵ as a vector of knots with length n.

Further to this, we can define the vector ↵⇤ = [min(↵)1T
o�1,↵

T
,max(↵)1T

o�1]
T , where 1o�1 is

a vector of ones of length o� 1. Then, when t(1)  t  t(n), we can define an M-spline of order

o as

 
o
u(t) =

o

o� 1

�(↵⇤
u  t < ↵

⇤
u+o)

↵
⇤
a+o � ↵⇤

u

⇥
(t� ↵

⇤
u) 

o�1
u (t) + (↵⇤

u+o � t) o�1
u+1(t)

⇤

when o > 1, and when o = 1, as

 
1
u(t) =

�(↵⇤
u  t < ↵

⇤
u+1)

↵
⇤
a+1 � ↵⇤

u

where ↵u is the u
th element of the knots vector ↵ with ↵u < ↵u+1, and �(·) is an indicator

function. Each  o
u(t) will be non-zero over the interval (↵u,↵u+o) and is zero outside of these

o intervals.

The use of M-splines as the basis functions for the baseline hazard function approximation

has a number of implications for the estimation of the coe�cient vector ✓. Firstly, and conve-

niently, their use means that the non-negative constraint on h0(t) can be satisfied simply by
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ensuring that each element of ✓ is non-negative. This is because each M-spline  1
u(t) is guar-

anteed to be non-negative. Secondly, the number of knots selected to define the M-spline basis

functions, n, will determine the dimension of the ✓ vector, m. Although there is no explicit

constraint on the size selected for n, it generally varies with the sample size n. As a result,

if we were to consider a case where n ! 1, we could also have m ! 1. This would give rise

to significant issues in the estimation of the vector ✓. In practice, it is su�cient to constrain

m to be a finite number that is nonetheless allowed to vary with n. Further discussion of this

issue is presented in Section 3.5.

3.3 The penalised likelihood function

The proposed method is to estimate the three parameter vectors, �, � and ✓ simultaneously

by maximising a penalised likelihood function. For convenience, we can say that ⌘ = (�,�,✓).

As noted above, any individual with a survival time that is directly observed, left censored,

or interval censored is known to be in the non-cured fraction. This means that we can denote

the contribution of these individuals to the overall penalised likelihood function directly in

terms of the conditional density function, conditional survival function, or conditional baseline

hazard function. Thus, under the assumption of independent censoring, we can express the

contribution to the likelihood function of an individual i with �i = 1 as

⇡(zi)f(t|xi) = ⇡(zi)h(t|xi)S(t|xi),

the contribution of an individual i with �Li = 1 as

⇡(zi)(1� S(t|xi)),

and the contribution of an individual with �Ii = 1 as

⇡(zi)(S(t
L|xi)� S(tR|xi)).

However, for an individual who is subject to right-censoring, it is unknown whether they are

part of the cured fraction or not. As such, their contribution to the likelihood function can be

expressed in terms of the population survival function. Their contribution can be denoted as

Spop(t|xi, zi) = 1� ⇡(zi) + ⇡(zi)S(t|xi).

Then we can say that the likelihood function for the whole sample is

L(⌘) =
nY

i=1

�
⇡(zi)h(ti|xi)S(ti|xi)

��i ⇥
�
1� ⇡(zi) + ⇡(zi)S(ti|xi)

��Ri

⇥
�
⇡(zi)(1� S(ti|xi))

��Li ⇥
�
⇡(zi)(S(t

L
i |xi)� S(tRi |xi))

��Ii

and the log-likelihood is

l(⌘) =
nX

i=1

�
�i(ln ⇡(zi) + lnh0(t) + x

T
i � + lnS(ti|x))
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+�Ri ln(1� ⇡(zi) + ⇡(zi)S(ti|xi)) + �
L
i (ln ⇡(zi) + ln(1� S(ti|xi)))

+�Ii (ln ⇡(zi) + ln(S(tLi |xi)� S(tRi |xi)))
�

This log-likelihood function is then penalised to obtain a smooth estimate for the baseline

hazard function. The penalised likelihood is given by

�(⌘) = l(⌘)� �J(⌘)

where J(⌘) is a roughness penalty function and � � 0 is a smoothing parameter, the estimation

of which is discussed in Section 3.4.1. The roughness penalty function used here is the L2-

norm of the second derivative of the baseline hazard function, namely
R
h

00
0(v)

2
dv. Given the

baseline hazard function is h0(t) =
Pm

u=1 ✓u u(t), we can conventiently express this roughness

penalty as J(⌘) = ✓TR✓, where R is an m ⇥ m matrix with the (u, v)-th element given by

ru,v =
R
 

00
u(t) 

00
v (t)dt. Maximising the penalised likelihood function to estimate the parameter

vector ⌘ = (�,�,✓) requires derivation of the score vector and Hessian matrix components,

which can be found in Appendix A. The maximisation of �(⌘) given the constraint that ✓ � 0

element-wise is outlined in the next section.

3.4 Estimation procedure

In order to fit our desired model, we wish to simultaneously produce MPL estimates of the

parameters �, � and ✓, denoted as ⌘̂ = (�̂, �̂, ✓̂). Because the baseline hazard function must

be non-negative, obtaining ⌘̂ is a constrained optimisation problem that can be defined as

⌘̂ = max
✓�0

�(⌘) = max
✓�0

{l(⌘)� J(✓)}

Given the constraint on the MPL estimate ✓, we have the Karush-Kuhn-Tucker conditions

@�(⌘)

@�t
= 0

@�(⌘)

@�j
= 0

@�(⌘)

@✓w
= 0 if ✓w > 0

@�(⌘)

@✓w
< 0 if ✓w = 0

This problem is solved iteratively using the Newton-MI algorithm (Ma et al. 2019). Let

�(k), �(k), and ✓(k) be, respectively, the estimates of �, �, and ✓ at iteration k. Also, for any

function a(x), define a(x)+ as the function’s positive components and a(x)� as the function’s

negative components, so that a(x)+ + a(x)� = a(x). Iteration k+1 is obtained in a three step

process as follows. Firstly, obtain �(k+1) using a modified Newton algorithm:

�(k+1) = �(k) + !
(k)
1


�@

2�(�(k)
,�(k)

,✓(k))

@�@�T

��1 
@�(�(k)

,�(k)
,✓(k))

@�

�
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where !1 2 (0, 1] is the line search step size used to ensure that �(�(k+1)
,�(k)

,✓(k)) � �(�(k)
,�(k)

,✓(k)).

The value of the line search step size can be determined by using, for instance, Armijo’s rule

(Armijo 1966). Secondly, obtain �(k+1) using the same modified Newton algorithm:

�(k+1) = �(k) + !
(k)
2


�@

2�(�(k+1)
,�(k)

,✓(k))

@�@�T

��1 
@�(�(k+1)

,�(k)
,✓(k))

@�

�

where !2 is defined similarly to !1. Finally, obtain ✓(k+1) via the multiplicative-iterative algo-

rithm:

✓(k+1) = ✓(k) + !
(k)
3 D

(k)@�(�
(k+1)

,�(k+1)
,✓(k))

@✓

where !3 is defined similarly to !1 and !2 and D
(k) is a diagonal m⇥m matrix with elements

✓
(k)
w /d

(k)
w for w = 1, ...,m, and

d
(k)
w =


@l(�,�,✓)

@✓w

��
+ �


@J(✓)

@✓w

�+
+ ⇠

Referring to Appendix A, we can see that in this case d
(k)
w will be equal to

d
(k)
w = �i w(ti)e

xT
i � + �

R
i

⇡(zi)S(ti|xi) w(ti)

1� ⇡(zi) + ⇡(zi)S(ti|xi)
e
xT
i �

+�Ii
S(tLi |xi) w(tLi )

S(tLi |xi)� S(tRi |xi)
e
xT
i � + �


@J(✓)

@✓w

�+
+ ⇠w

Note that ⇠w � 0 is a small constant included simply to avoid the numerical issue of a zero

denominator in the calculation of D(k) and does not have any impact on the final solution for

✓.

3.4.1 Estimation of the smoothing parameter �

A marginal likelihood method for the automatic selection of the smoothing parameter, previ-

ously outlined in Ma et al. (2019), can also be used for this model. In this method, the penalty

function J(⌘) = ✓TR✓ is related to a normal prior distribution for the vector ✓ parameterised

by �
2
✓ = 1/2�, so that we have the distribution N(0m⇥1, �

2
✓R

�1). We can then obtain the

log-posterior,

lp(�,�,✓) = �m

2
log �2

✓ + l(�,�,✓)� 1

2�2
✓

✓TR✓

The marginal likelihood for �2
✓ may be di�cult to obtain directly, and as such it is appropriate to

approximate it using Laplace’s method. Applying the Laplace approximation and substituting

in the MPL estimates of �, � and ✓, we can obtain the approximated log-marginal likelihood

for �2
✓,

lm(�
2
✓) ⇡ �m

2
log �2

✓ + l(�̂, �̂, ✓̂)� 1

2�2
✓

✓̂TR✓̂ � 1

2
log | Ĝ+Q(�2

✓) |

20



where Ĝ is the negative Hessian matrix from l(�,�,✓) evaluated at the MPL estimates �̂, �̂

and ✓̂, and

Q(�2
✓) =

"
0 0

0 1
�2
✓
R

#

The solution for �2
✓ that maximises the approximation of lm(�2

✓) is

�̂
2
✓ =

✓̂TR✓̂

m� ⌫

where ⌫ = tr{(Ĝ+Q(�̂2
✓))

�1
Q(�̂2

✓)}, and can be considered equivalent to the model degrees of

freedom. Given that the estimates of �, �, and ✓ depend on �2
✓, the maximising solution for

�
2
✓ allows for the development of an iterative procedure with two steps. Firstly, with �2

✓ fixed,

the corresponding MPL estimates for �, � and ✓ are obtained. Then, �2
✓ is updated using the

newest values for �̂2
✓, �̂, �̂ and ✓̂ on the right hand side of the maximising solution. These two

steps are repeated until ⌫ is stabilised. An example of the automatic selection of the smoothing

parameter can be seen in Section 5.2.

3.5 Asymptotic properties and inference

Development of the asymptotic properties of the proposed model allows for large sample in-

ference to be conducted without reliance on bootstrapping or other computationally intensive

methods. Following from Ma et al. (2019), it is possible to demonstrate asymptotic consistency

for the MPL estimates of both sets of regression parameters, � and �, and the baseline hazard

function h0(t).

Let a and b be the minimum and maximum of all the observed survival times respectively,

including interval censoring but excluding 0 and 1. Then, let Cr[a, b] be the set of functions

that have r continuous derivatives over [a, b]. The parameter space for � can be given by

B = {� : |�t|  C1 < 1, 8t}. The parameter space for � can be given by G = {� :

|�j|  C2 < 1, 8j}. The parameter space for h0(t) can be given by A = {h0(t) : h0 2
C

r[a, b], 0  h0(t)]  C3 < 1, 8t 2 [a, b]}. Therefore, the parameter space for ⌧ = (�,�, h0(t))

is � = {⌧ : � 2 B,� 2 G, h0 2 A}. Before defining the MPL estimator of ⌧ , it is necessary to

account for the fact that this method estimates an approximation of h0(t). For convenience,

the approximation can be denoted as h̃0(t) =
Pm

u=1 ✓u u(t). The parameter space for h̃0(t) can

be given by An = {h̃0(t) : 0  h̃0(t)  C4 < 1, 8t 2 [a, b]}. Then the parameter space for ⌧n

is �n = {⌧n : � 2 B,� 2 G, h̃0 2 An}. The MPL estimator of ⌧n is then ⌧̂n = (�̂, �̂, ĥ0(t)).

Theorem 1 demonstrates asymptotic consistency for ⌧̂n when the number of basis functions

m ! 1 but m/n ! 0 when n ! 1, and the scaled smoothing value µn = �/n ! 0 when

n ! 1.

Theorem 1. Assume that h0(t) is bounded and has some number r � 1 derivatives over the

interval [a, b]. Assume that m = n
v
, where 0 < v < 1, and µn ! 0 as n ! 1. Then, when

n ! 1,
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1. ||�̂ � �0|| ! 0 almost surely, and

2. ||�̂ � �0|| ! 0 almost surely, and

3. supt2[a,b] |ĥ0(t)� h00(t)| ! 0 almost surely.

Theorem 1 requires the following regularity conditions:

1. The matrices X and Z are bounded, and both E(XX
T ) and E(ZZT ) are non-singular.

2. The penalty function J(⌘) is bounded over � and �n.

3. For function h̃0(t), there is a constant C5 independent of n that is the upper bound of

all ✓u � 0. Additionally, the basis functions  u(t), where u = 1, ...,m, are bounded for

t 2 [a, b].

4. The knots and basis functions are selected such that for any h0(t) 2 A there is a h̃0(t) 2 An

which satisfies maxt |h̃0(t)� h0(t)| ! 0 when n ! 1.

Define the distance measure ⇢(⌧1, ⌧2) as

⇢(⌧1, ⌧2) = {k⌧1 � ⌧1k2}1/2 =
(
k�1 � �2k22 + k�1 � �2k22 + sup

t2[a,b]
|h01(t)� h02(t)|2

)1/2

Under the above regularity conditions, Theorem 1 can be demonstrated by showing that

⇢(⌧0, ⌧̂n) ! 0 almost surely, where ⌧0 = (�0,�0, h00(t)) is the true parameter value. The

required result can be obtained by applying Theorem 1 from Ma et al. (2019).

Additionally, it is desirable to jointly develop asymptotic normality results for all three

parameters, �, � and ✓. This allows for inference to be made not only on regression parameters

but also on other quantities, such as survival probabilities. In order to develop these results,

it is necessary to address the issue that, if we have n ! 1, it is possible for m ! 1 as well.

Following Ma et al. (2019) and Yu & Ruppert (2002), this is addressed here by restricting m to

be a finite number which is nonetheless allowed to vary with n. Furthermore, the development

of asymptotic normality results for the parameters must take into account the possibility of

encountering active constraints in the estimation of ✓ � 0, where ✓u may be equal to 0 for

some u. This is particularly likely to occur when the number of knots is larger than strictly

necessary, as the penalty function will push these unnecessary parameters to zero (Ma et al.

2019). It is important to take the potential presence of active constraints in the asymptotic

covariance matrix into consideration as not doing so may produce undesirable results, such as

negative variances.

Recall that we have defined the parameter vector ⌘ = (�,�,✓), which has a finite length

of some number p+ q +m, and that we can express the penalised likelihood function in terms

of ⌘ such that

�(⌘) = l(⌘)� �J(⌘)
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We denote the MPL estimate of ⌘, which is obtained by maximising �(⌘) with the constraint

✓ � 0, as ⌘̂. Let the true value of ⌘ be represented by ⌘0. Assume that we have a case where

the first r elements of ✓ are subject to active constraints in the MPL solution, and define

U = [0(m�r+p+q)⇥r, I(m�r+p+q)⇥(m�r+p+q)]
T

where 0 is a matrix of zeros, I is an identity matrix, and U
T
U = I(m�r+p+q)⇥(m�r+p+q) is

satisfied.

Theorem 2. Assume that µn = o(n1/2) and that we have r active constraints in the MPL

estimate of ✓. Define matrix U as above. Let

F(⌘) = �E⌘0


lim
n!1

n
�1 @

2
l(⌘)

@⌘@⌘T

�

Under these conditions, when n ! 1,
p
n(⌘̂�⌘0) converges in distribution to N (0, F̃(⌘0)�1),

where F̃(⌘0)�1 = U(UT
F(⌘)U)�1

U
T
.

Theorem 2 can be shown under the following regularity conditions:

1. The distributions of xi and zi are independent of ⌘.

2. The limit limn!1[n�1
l(⌘)] exists and has a unique maximum at ⌘0 2 ⌦, where ⌦ is

the parameter space for ⌘ and is a compact subspace of Rp+q+m. That is to say, if the

sample size is infinity, the true parameters can be obtained exactly from maximising the

likelihood.

3. l(⌘) has a finite upper bound and is twice continuously di↵erentiable in a neighbourhood

of ⌘0, and the matrices

lim
n!1

n
�1

nX

i=1

@li(⌘)

@⌘

@li(⌘)

@⌘T

and

lim
n!1


�n

�1 @
2(⌘)

@⌘@⌘T

�

exist.

4. The penalty function J(⌘) is twice continuously di↵erentiable on ⌦, and these derivatives

are bounded.

5. The matrix U
T
F(⌘)U is invertible in a neighbourhood of ⌘0.

If these conditions hold, it is a simple matter to demonstrate that ⌘̂ ! ⌘0. Let l̄(⌘) =

limn!1[n�1
l(⌘)] exist with a unique maximum at ⌘0 2 ⌦, where ⌦ is the parameter space for

⌘. Under the strong law of large numbers, we have n�1
l(⌘) ! l̄(⌘) almost surely and uniformly

for ⌘ 2 ⌦. Additionally, we have µn ! 0 as n ! 1. This is su�cient to show that ⌘̂ ! ⌘0.
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The asymptotic normality result can be proven by following Theorem 2 from Ma et al.

(2019). Given that, according to the KKT conditions outlined above in Section 3.4, we have a

constrained MPL estimate ⌘̂ that satisfies

U
T @�(⌘̂)

@⌘
= 0

it is possible to show that

p
n(⌘̂ � ⌘0) = �U

✓
U

T 1

n

@
2�(⌘̃)

@⌘@⌘T
U

◆�1

U
T

✓
1p
n

@l(⌘0)

@⌘
+ o(1)

◆

where ⌘̃ is a vector between ⌘̂ and ⌘0. Here, when n ! 1 and µn ! 0, n�1
@
2�(⌘̃)/@⌘@⌘T

converges almost surely to F (⌘0) under the law of large numbers. If we then apply the central

limit theorem to n
�1/2

@l(⌘0)/@⌘, the asymptotic normality result is demonstrated.

In order to implement the result of Theorem 2, it is necessary to define a method for iden-

tifying active constraints when they arise in the MPL estimation of ✓. The method used here

follows that proposed by Ma et al. (2019). Active constraints can be identified by inspecting

both the value of ✓̂u and the corresponding gradient for each u. After the Newtown-MI al-

gorithm has reached convergence, some ✓̂u may be exactly zero with negative gradients, and

thus are clearly subject to an active constraint. Furthermore, there may be some ✓̂u that are

very close to, but not exactly, zero. For these ✓̂u, a corresponding negative gradient value is

indicative that they are also subject to an active constraint. In practice, active constraints are

defined where, for a given u, ✓̂u < 10�2 and the corresponding gradient is < �10�2. After the

indices associated with active constraints are identified, obtaining the matrix F̃(⌘0)�1 is a very

straightforward computation, as Ma et al. (2019) point out. The matrix U
T
F(⌘)U is obtained

by removing the rows and columns of F(⌘) associated with the active constraints. The result is

then inverted, and then padded with zeros in the deleted rows and columns to obtain F̃(⌘0)�1.

To make use of these asymptotic results for inference on finite samples, it is necessary to

approximate the distribution for ⌘̂ when n is large. Doing so also incorporates non-zero values

for the smoothing parameter � into the inference on the parameter estimates. The necessary

results are presented below in Corollary 1.

Corollary 1. Assume that the smoothing parameter �⌧ n. Define

A(⌘̂)�1 = U

✓
U

T

✓
@
2
l(⌘̂)

@⌘@⌘T
+ �

@
2
J(⌘̂)

@⌘@⌘T

◆
U

◆�1

U
T

Then, when n is large, the distribution for the MPL estimate ⌘̂� ⌘0 can be approximated by a

multivariate normal distribution having mean zero and covariance matrix

ˆvar(⌘̂) = A(⌘̂)�1 @
2
l(⌘̂)

@⌘@⌘T
A(⌘̂)�1

These results allow for inferences to be made not only on both sets of regression parameters

but also on quantities associated with the baseline hazard function.
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4 Simulation Studies

Two simulation studies were carried out to evaluate the performance of the proposed model.

The key focus of these simulation studies was the investigation of

• the performance of the estimates of � and �,

• the performance of the estimate for h0(t) and related survival quantities, and

• the performance of the asymptotic variance estimator for �, � and h0(t).

The first simulation study considered right censored survival data with a cured fraction. This

was a comparative study between the proposed MPL method and an existing method for fitting

a proportional hazards mixture cure model to right censored data. Results and discussion

regarding this study are presented in Section 4.1. The second simulation study considered

partly-interval censored cure survival data. This was not a comparative study as there are

presently limited alternatives for fitting a proportional hazards mixture cure model to partly-

interval censored data in R. Results and discussion regarding this study can be found in Section

4.2.

4.1 Comparative simulation study using right censored data

The aim of the first simulation study was to compare the performance of the proposed method

for fitting a proportional hazards mixture cure model with an existing alternative. Due to

the limitations of available alternatives, this simulation study considered only right censored

survival data with a cured fraction. This allowed for a comparison to be made between the

proposed method and the smcure package, discussed previously in Section 2.3. The performance

of the EM algorithm used in the smcure package was compared with the proposed method on

the basis of both the regression parameter estimates (Section 4.1.1) and the estimates of the

cumulative baseline hazard function (Section 4.1.2).

T ensure that the model was evaluated thoroughly, the simulation included a range of

di↵erent sample sizes, cured fraction sizes, and event probabilities in the non-cured fraction.

Table 1 summarises the di↵erent specifications considered in this first simulation. For each

scenario, 500 samples were generated. The simulation involved two di↵erent cured fraction

sizes and used a single binomial covariate, z1, in the logistic regression for the cure probability.

Following Corbiere et al. (2009), the size of the cured fraction in a given scenario was specified

by setting the value of the intercept in the logistic regression, �0, as this parameter controls

the cure rate amongst individuals with z1 = 0. Note that a value of �0 = 1 corresponds to a

non-cured proportion of approximately 0.75 in this group and a value of �0 = 0 corresponds to

a non-cured proportion of approximately 0.5.

Prior to generating observed survival times, an indicator value ui was obtained for each
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Table 1: Specifications for Simulation Study 1

Simulation Parameters

� vector [0.5]

X vector X = [x1]

Y distribution Weibull

Baseline hazard h0(y) = 3y
2

Cured Fraction Scenarios

� vector
[1, 1]

T
giving ⇡(z) ' 0.75 i.e. 75% of observations non-cured

[0, 1]
T
giving ⇡(z) ' 0.5 i.e. 50% of observations non-cured

Z vector Z = [1, z1]

Simulation Scenarios

Sample size n = 100, 500, 2000

Censoring

distribution

Exp(�c = 1.25) giving 50% censoring rate in non-cured fraction

Exp(�c = 4.2) giving 20% censoring rate in non-cured fraction

Note that the size of the cured fraction and the censoring rate in the non-cured fraction contribute to

the rate of right censoring in the sample as a whole.

individual i so that

ui =

8
<

:
0 if UC

i > ⇡(zi)

1 if UC
i  ⇡(zi)

where U
C
i denotes a standard uniform random variable and ⇡(zi) is

⇡(zi) =
exp(zTi �)

1 + exp(zTi �)

A value of ui = 0 indicates that an individual is in the cured fraction, and ui = 1 indicates that

an individual is susceptible to the event of interest. Observed times for the cured fraction, all

of which constituted right censoring times, were drawn from an exponential distribution.

For individuals in the non-cured fraction, where ui = 1, event times were drawn from a

Weibull distribution. Observed survival times Ti for individuals in the non-cured fraction,

including both event and right censoring times, were obtained by

Ti = Y
�(Yi<Ci)
i C

�(Ci�Yi)
i

where Yi is an event time drawn from a Weibull distribution, Ci is a censoring time drawn

from an exponential distribution, and �(·) denotes an indicator function. A single binomial

covariate, x1, was used in the proportional hazards regression; this covariate was independent

from that used in the logistic regression.

In this simulation study, two di↵erent values for the censoring rate in the non-cured frac-

tion were considered, as shown in Table 1. The censoring rate in the non-cured fraction was
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controlled by adjusting the parameter �c of the exponential function from which Ci was drawn.

The two values of �c considered in this simulation study were �c = 1.25 and �c = 4.2. These

corresponded to censoring rates in the non-cured fraction of approximately 50% and 20% re-

spectively. However, these specifications did not correspond to the rate of censoring in the

sample as a whole. As discussed, only right censoring times are observed for individuals in the

cured fraction. This means that two parameters e↵ect the extent of censoring in the sample as

a whole:

• the event probability amongst the non-cured individuals ⇡E, and

• the size of the cured fraction 1� ⇡(z), controlled by the value of �0.

This must be taken into consideration when evaluating the results of this simulation study.

In the results that follow, the value reported for ⇡R is the proportion of right censoring in

the sample as a whole, accounting for both the cured fraction and censoring in the non-cured

fraction.

For each generated sample, cubic M-splines with some number n knots were used to ap-

proximate the baseline hazard function. Define a and b similarly to their definition in Section

3.5, so that they are respectively the minimum and maximum of all observed survival times,

including interval censoring but excluding 0 and 1. The first and last knot, also referred to as

the external knots, were placed at a and b respectively. The remaining knots, or the internal

knots, were then placed at equal quantiles across the interval between t0.075 and t0.9, which cor-

respond respectively to the 7.5th percentile and the 90th percentile between a and b. For each

simulation scenario, it was necessary to determine an appropriate number of knots to use in the

construction of the cubic M-splines. As Corbiere et al. (2009) remark, there is little practical

benefit to increasing the number of knots beyond what is necessary to produce satisfactory

parameter estimates. Previous work that has carried out simulation studies with comparable

methods to the one presented here, such as Ma et al. (2019), has discussed the need for the

number of knots simply to be allowed to vary with the sample size n, using, for instance, a

rough guideline of the cubic root of the sample size rather than any strict optimisation process.

In this simulation study, the number of knots was likewise selected manually, rather than

through any optimisation process. The procedure set out in work such as Ma et al. (2019)

o↵ered some guidance in the initial knot selection process. However, the process of determining

the number of knots needed for this particular simulation study was complicated by the presence

of the cured fraction, which was not a feature of the work done in Ma et al. (2019). Namely,

changes in the size of the cured fraction resulted in varying convergence times when the sample

size, number of knots, and all other simulation parameters were kept constant. In order to

achieve reasonable convergence times for all simulation scenarios, it was therefore necessary to

reduce the number of knots selected as the size of the cured fraction increased. The minimum

number of knots used for any simulation scenario was n = 3, corresponding to the two external

knots and one internal quantile knot located at the 50th percentile of [t0.075, t0.9]. The number of
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knots selected for each simulation scenario can be found in Appendix B1. For the purposes of

this simulation study, the value of the smoothing parameter � was set manually to zero. That

is to say, the method for automatic selection of the smoothing parameter laid out in Section

3.4.1 was not evaluated as part of this simulation study.

4.1.1 Regression parameter estimation results

The biases in both the MPL and EM estimates of �0, �1 and �1 are presented in Table 2. It

is clear that both methods produce estimates of �0 that have significant bias. Interestingly, in

scenarios with the lowest proportion of right censoring, the MPL method produces estimates

with systematic positive bias, while the EM method produces estimates with systematic nega-

tive bias. This is equivalent to the MPL method systematically underestimating the size of the

cured fraction when right censoring is low, and the EM method systematically overestimating

it. When the proportion of right censoring increases, both methods produce estimates with

significant negative bias, meaning they are both systematically overestimating the size of the

cured fraction. However, the magnitude of the systematic negative bias in �̂0 produced by the

MPL method is consistently smaller than that produced by the EM method.

In the case of the MPL method, it is possible that the bias in �̂0 arises from issues with

identifiability, as this is a recurrent issue in mixture cure model estimation (see Section 2.2.3).

Corbiere et al. (2009) remark that issues with identifiability may not be as prevalent when

using an MPL method to fit a mixture cure model, but that they may arise where the value of

the smoothing parameter � is inappropriate. It is therefore possible that there would have been

reduced biased in the MPL estimates of �0 if the iterative process for selecting the smoothing

parameter laid out in Section 3.4.1 had been used. However, identifiability is assured for the

smcure method, as a zero-tail constraint is imposed as part of the estimation process (Cai

et al. 2012a). The bias in the EM estimates is therefore certainly not a result of issues with

identifiability. Given this, it is possible that the bias in both the MPL and EM estimates of

�0 has resulted from of a lack of separation between the cured and non-cured populations in

the data. The relatively large concentration of right censored observations in the sample as a

whole across all simulation scenarios may have created di�culties distinguishing between cured

and non-cured individuals. Evidently, estimation of the logistic regression intercept parameter

is di�cult and needs further investigation. For this reason, the rest of this section will consider

only results pertaining to the estimates of �1 and �1, including in the discussion of standard

error estimation.

Results for the bias in the estimates of �1 and �1 produced by both methods (Table 2) show

that the performance of the two methods is generally comparable for these parameters, with

both methods producing reasonably unbiased estimates. Table 3 presents the results of the

standard error estimation for both methods. Comparison of the standard error estimation is

especially useful as it is provides insight into the relative merits and weaknesses of estimating
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Table 2: Bias in estimates of �0, �1 and �1

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
R

0.59 0.41 0.59 0.41 0.59 0.41

�̂0
MPL 0.2531 0.3648 0.2970 0.3267 0.2961 0.3078

EM -0.2997 -0.1801 -0.2192 -0.2037 -0.2209 -0.2269

�̂1
MPL 0.0947 0.1027 0.0412 0.0633 0.0282 0.0723

EM 0.0942 0.1062 0.0416 0.0652 0.0276 0.0729

�̂1
MPL 0.0483 0.0252 0.0051 0.0104 0.0125 0.0078

EM 0.0145 0.0035 0.0037 0.0066 0.0118 0.0071

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

�̂0
MPL -0.2806 -0.3503 -0.2838 -0.3033 -0.3011 -0.3267

EM -0.8087 -0.7592 -0.7683 -0.8035 -0.7786 -0.7992

�̂1
MPL 0.0192 -0.1575 -0.0070 -0.0368 -0.0394 -0.0543

EM 0.0301 -0.1309 -0.0378 -0.0150 -0.0391 -0.0537

�̂1
MPL 0.0103 0.0720 0.0397 -0.0004 -0.0081 -0.0072

EM -0.0235 0.0570 0.0053 -0.0180 -0.0093 -0.0072

Note that the values of ⇡
R

presented here are the proportions of right censored observations in the

whole sample i.e. including the right censored observations from individuals in the cured fraction.

Scenarios with ⇡
R
of 0.59 or 0.41 correspond to scenarios with the censoring distribution parameter

�c = 4.2. Scenarios with ⇡
R
of 0.75 or 0.64 correspond to scenarios with �c = 1.25.

the standard error asymptotically compared to obtaining it via bootstrapping. For �1, both

methods tend to have fair agreement between the estimated and Monte Carlo standard errors

in the two larger samples sizes of n = 500 and n = 2000, although the performance is impacted

by increases in the right censored proportion. In the smallest sample size of n = 100, there is

significant disagreement between the estimated and Monte Carlo standard errors for �̂1 for both

methods. However, the di↵erences between the two are generally greater for the bootstrapped

(EM) standard errors compared to the MPL asymptotic estimates. Additionally, bootstrapping

has produced a number of extremely large standard error estimates while the MPL asymptotic

estimation method has not. 95% coverage probabilities (see Appendix B2) for both methods are

reasonable in the two larger sample sizes. Table 3 also displays the estimated and Monte Carlo

standard errors for �1. Evidently, when right censoring is lower, both methods perform well with

good agreement between the estimated and Monte Carlo standard errors for this parameter.

As right censoring increases, both methods have a tendency to overestimate the standard error

of �̂1 in the larger samples. This is reflected in the overly large 95% coverage probabilities for
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Table 3: Mean estimated SE and (Monte Carlo) SE for estimates of �1 and �1

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
R

0.59 0.41 0.59 0.41 0.59 0.41

�̂1

MPL
0.5229 0.6828 0.2302 0.2826 0.1146 0.1395

(0.5392) (0.6948) (0.2451) (0.2900) (0.1360) (0.1246)

EM
0.6597 2.3844 0.2316 0.2899 0.1155 0.1408

(0.5349) (0.6942) (0.2452) (0.2904) (0.1362) (0.1248)

�̂1

MPL
0.3586 0.2939 0.1503 0.1263 0.0764 0.0630

(0.3944) (0.2982) (0.1534) (0.1392) (0.0800) (0.0657)

EM
0.3991 0.3013 0.1572 0.1284 0.0776 0.0629

(0.3950) (0.2972) (0.1521) (0.1392) (0.0797) (0.0659)

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

�̂1

MPL
0.5829 0.6382 0.2514 0.2840 0.1249 0.1404

(0.6232) (0.5831) (0.2818) (0.2336) (0.1266) (0.1463)

EM
0.7059 1.0503 0.2551 0.2939 0.1242 0.1403

(0.6150) (0.6174) (0.2476) (0.3079) (0.1267) (0.1466)

�̂1

MPL
0.4654 0.3765 0.2010 0.1635 0.0983 0.0811

(0.5689) (0.4073) (0.2019) (0.1699) (0.0979) (0.0745)

EM
0.7626 0.4492 0.2038 0.1667 0.1005 0.0811

(0.5043) (0.4078) (0.1810) (0.1625) (0.0981) (0.0744)

The mean estimated standard error reported for the MPL method is the asymptotic estimate, and

the mean estimated standard error reported for the EM method is a bootstrapped estimate.

these scenarios (see Appendix B2). In the smallest sample size, the bootstrapped estimates

of the standard error are similarly overestimated, but the asymptotic MPL estimates of the

standard error tend to be underestimated. Accordingly, the 95% coverage probabilities for the

MPL method are slightly low. Overall, the performance of the MPL method for estimating

�1 and �1 is competitive with the performance of the existing method, and the asymptotic

standard error estimator performs as well as bootstrapping for these parameters.

4.1.2 Cumulative baseline hazard function estimation results

This simulation study also compared the estimation of the cumulative baseline hazard function,

H0(t), in both methods considered here. The cumulative baseline hazard function was chosen

as a point of comparison because the smcure package does not o↵er any direct estimate of

the baseline hazard function. However, the estimated baseline survival function, S0(t), is

available. Obtaining the cumulative baseline hazard function estimate from the smcure package
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is therefore a simple matter of taking H0(t) = � ln(S0(t)). Obtaining the MPL estimate of the

approximated cumulative baseline hazard function is similarly straightforward. Recall that the

baseline hazard function is approximated by h0(t) =  (t)✓, where  (t) is a set of cubic M-spline

basis functions and ✓ is a parameter vector of length m. As noted in Section 2.1.1, a convenient

feature of using M-spline basis functions for approximating the baseline hazard function is that

computation of the cumulative baseline hazard function is simple. Each M-spline  u(t) can be

associated with an I-spline, its integral, denoted as  u(t). Each  u(t) will be monotonically

increasing when associated with the coe�cient vector ✓. An appropriate approximation to the

cumulative baseline hazard function can therefore be found by H0(t) =  (t)✓. In order to

evaluate the estimates of H0(t), the bias of the estimate was considered at three time values,

t1, t2 and t3, which respectively correspond to the first, second, and third quartile of T .

The smcure package does not provide either asymptotic or bootstrapped estimates of the

standard error of the baseline survival or hazard functions. As such, for the purposes of

comparison, only the Monte Carlo standard errors of the two methods will be computed and

discussed here. However, it should be noted the asymptotic standard error of the MPL estimate

for the cumulative baseline hazard function can be easily obtained using the delta method. The

use of the delta method for estimating the standard error of the baseline hazard function is

explored in the second simulation study (see Section 4.2.2). The ability to make large sample

inferences on survival quantities can be considered a key strength of the proposed MPL method

when compared to existing alternatives.

Table 4 summarises the bias in the two estimates of the cumulative baseline hazard function

at t1, t2 and t3. It is clear that the MPL estimate outperforms the Breslow (EM) estimate across

all simulation scenarios. In both methods, there is an obvious trend of bias increasing with time

t. However, the magnitude of this increase is consistently far smaller for the MPL estimate.

Notably, the bias in the MPL estimate does not appear to be strongly impacted by small sample

sizes at earlier values of t, while the bias in the Breslow (EM) estimate increases in smaller

samples. Table 4 also shows the Monte Carlo standard errors for each simulation scenario for

both of the methods considered. These results allow for a comparison of the variability in the

two di↵erent estimates of the cumulative baseline hazard function. It is evident that in the

larger sample sizes, n = 500 and n = 2000, the two methods are largely comparable, especially

at earlier values of t. In smaller samples with n = 100, it appears that the MPL estimate tends

to be less variable than the Breslow (EM) estimate. Overall, it is clear that the MPL method

of estimating the cumulative baseline hazard function is superior to the Breslow (EM) method.
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Table 4: Bias and Monte Carlo standard error for estimates of H0(t)

Bias in estimate for H0(t)

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
R

0.59 0.41 0.59 0.41 0.59 0.41

t1
MPL 0.0153 0.0356 0.0258 0.0126 0.0203 0.0158

EM 0.1026 0.1113 0.0853 0.0745 0.0476 0.0768

t2
MPL 0.0327 0.0688 0.0465 0.0159 0.0432 0.0325

EM 0.1885 0.2422 0.1894 0.1709 0.1176 0.1819

t3
MPL 0.0406 0.0744 0.0840 0.0305 0.0710 0.0553

EM 0.3229 0.4389 0.3909 0.3544 0.2328 0.3641

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

t1
MPL -0.0176 -0.0273 -0.0213 -0.0189 -0.0234 -0.0195

EM 0.0485 0.0500 0.0427 0.0501 0.0436 0.0455

t2
MPL -0.0458 -0.0430 -0.0387 -0.0392 -0.0483 -0.0393

EM 0.0905 0.1141 0.1156 0.1251 0.1083 0.1180

t3
MPL -0.1762 -0.1276 -0.0923 -0.0698 -0.0965 -0.0685

EM 0.2054 0.2682 0.2306 0.2586 0.2359 0.2548

Monte Carlo standard error for estimate of H0(t)

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
R

0.59 0.41 0.59 0.41 0.59 0.41

t1
MPL 0.1137 0.0794 0.0442 0.0311 0.0172 0.0142

EM 0.1057 0.1012 0.0427 0.0352 0.0477 0.0170

t2
MPL 0.1867 0.1466 0.0785 0.0539 0.0327 0.0287

EM 0.1765 0.2061 0.0790 0.0628 0.1140 0.0337

t3
MPL 0.3212 0.2787 0.1433 0.1098 0.0615 0.0454

EM 0.3534 0.3753 0.1388 0.1330 0.2267 0.0532

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

t1
MPL 0.1132 0.0874 0.0511 0.0394 0.0229 0.0157

EM 0.1266 0.0843 0.0479 0.0480 0.0249 0.0200

t2
MPL 0.2255 0.1713 0.1006 0.0842 0.0390 0.0327

EM 0.2752 0.2015 0.0946 0.0887 0.0517 0.0420

t3
MPL 0.4918 0.3524 0.1856 0.1644 0.0844 0.0704

EM 0.4828 0.3799 0.1694 0.1656 0.1058 0.0857
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4.2 Simulation study using partly-interval censored data

The aim of the second simulation study was to assess the performance of the proposed method

of fitting a proportional hazards mixture cure model to partly-interval censored survival data.

This was not a comparative study because there is, at present, a very limited number of

comparable methods available. The performance of the regression parameter estimates � and

�, and the asymptotic variance estimator for these parameters, was investigated (Section 4.2.1).

Additionally, the estimate of the baseline hazard function and its asymptotic standard error

estimator were evaluated (Section 4.2.2).

Table 5 outlines the conditions considered as part of this simulation study. Where possible,

the range of conditions considered are similar to those used in the first simulation study. As

in the previous simulation study, this study considers scenarios with two cured fraction sizes

and uses a single binomial covariate, z1, in the logistic regression for the cure probability. As

above, the size of the cured fraction is controlled by the true value of �0, the intercept in the

logistic regression model. Recall that a value of �0 = 1 corresponds to a non-cured proportion

of approximately 0.75 in the group with covariate z1 = 0 and a value of �0 = 0 corresponds to a

proportion of approximately 0.5. Prior to obtaining any event or censoring times, values of UC
i ,

⇡(zi), and ui were generated for each individual i using the same method outlined previously.

Again, observed times for the cured fraction, all of which constituted right censoring times,

were drawn from an exponential distribution.

For individuals in the non-cured fraction, where ui = 1, event times were drawn from a

Weibull distribution. The observed survival times for these individuals were made up of event

times, right censoring times, left censoring times, and interval censoring times. The observed

survival times (TL
i , T

R
i ) for individuals in the non-cured fraction, including both event and

censoring times, were obtained by

T
L
i = Y

�(UE
i <⇡E)

i (↵LU
L
i )

�(⇡EUE
i ,↵LUL

i Yi↵RUR
i )(↵RU

R
i )

�(⇡EUE
i ,↵RUR

i <Yi)0�(⇡
EUE

i ,Yi<↵LUL
i )

T
R
i = Y

�(UE
i <⇡E)

i (↵LU
L
i )

�(⇡EUE
i ,Yi<↵LUL

i )(↵RU
R
i )

�(⇡EUE
i ,↵LUL

i Yi↵RUR
i )1�(⇡EUE

i ,↵RUR
i <Yi)

where Yi denotes the event time drawn from a Weibull distribution, ⇡E denotes the event

probability in the non-cured fraction, UL
i , U

R
i and U

E
i denote independent standard uniform

variables, and ↵L and ↵R are scalars that define interval censoring values. Note that �(·)
denotes an indicator function, and that here 00 = 10 = 1. A single binomial covariate, x1,

independent of the covariate used in the logistic regression, was generated for the proportional

hazards regression.

In this simulation study, two di↵erent values for the event probability in the non-cured

fraction were considered, as shown in Table 5. There were unbalanced proportions of left, right

and interval censoring. Out of the censored observations in each non-cured fraction, 66.7%

were right censored, 9.5% were left censored, and 23.8% were interval censored. However, these

specifications did not correspond to the rate of censoring in the sample as a whole, because
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Table 5: Specifications for Simulation Study 2

Simulation Parameters

� vector [0.5]

X vector X = [x1]

Y distribution Weibull

Baseline hazard h0(y) = 3y
2

↵L and ↵R (0.9, 1.3)

Cured Fraction Scenarios

� vector
[1, 1]

T
giving ⇡(z) ' 0.75

[0, 1]
T
giving ⇡(z) ' 0.5

Z vector Z = [1, z1]

Simulation Scenarios

Sample size n = 100, 500, 2000

Percentage of events (in non-cured fraction) 25%, 50%

Note that the size of the cured fraction and the censoring rate in the non-cured fraction contribute to

the rate of censoring in the sample as a whole.

right censored times were recorded for all individuals in the cured fraction. As discussed above,

this means that both the event probability and the size of the cured fraction e↵ect the extent

of censoring in the sample. In some cases, the combination of these two parameters produced

samples with extremely high levels of right censoring. In the results that follow, the values

presented for ⇡E and ⇡
R are the proportion of event times and right censoring times in the

sample as a whole.

As above, cubic M-splines with some number n knots were used to approximate the baseline

hazard function. The number of knots was selected using the same process laid out in the

previous simulation study. The minimum number of knots used for any simulation scenario

was again n = 3. The number of knots selected for each simulation scenario can be found in

Appendix C1. As above, the value of the smoothing parameter � was set manually to zero.

4.2.1 Regression parameter estimation results

The biases in the estimates of the parameters �0, �1 and �1 for all simulation scenarios are

presented in Table 6. These results indicate that the proposed model performs well when there

is a reasonably large proportion of events in the sample. Specifically, when ⇡E is 0.25 or 0.36,

the bias in the estimates of all three parameters is fairly low, particularly when the sample size

is larger. The bias in the estimates of �1 and �1 generally remains low when the proportion of

events decrease. In particular, the estimate of �1 is fairly robust to increases in right censoring

and increases in the size of the cured fraction, especially when the sample size is large.
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Table 6: Bias in estimates of �0, �1 and �1

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
E

0.25 0.36 0.25 0.36 0.25 0.36

⇡
R

0.67 0.52 0.67 0.52 0.67 0.52

�̂0 0.0575 0.0442 0.0409 0.0382 0.0256 0.0318

�̂1 0.0897 0.0586 0.0366 -0.0095 0.0059 0.0220

�̂1 0.0515 0.0591 0.0148 0.0265 0.0152 0.0235

⇡
E

0.13 0.18 0.13 0.18 0.13 0.18

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

�̂0 -0.4149 -0.3316 -0.3488 -0.4148 -0.3655 -0.4200

�̂1 0.0082 -0.0275 -0.0278 -0.0647 -0.0720 -0.1028

�̂1 0.0546 0.0284 0.0419 0.0371 -0.0186 0.0144

Note that the values of ⇡
E

and ⇡
R

presented here are the proportions of events and right censored

observations in the whole sample i.e. including right censored observations from individuals in the

cured fraction. Scenarios with a ⇡
E

of 0.25 or 0.36 and a ⇡
R
of 0.67 or 0.52 correspond to an event

probability in the non-cured fraction of 50%. Scenarios with a ⇡
E
of 0.13 or 0.18 and a ⇡

R
of 0.75 or

0.64 correspond to an event probability in the non-cured fraction of 25%.

However, the same cannot be said for the estimate of �0. Clearly, when the proportion

of events decreases, the bias in the estimate of �0 increases significantly in magnitude. This

increased bias is consistently negative, which can be interpreted as a systematic overestimation

of the cured fraction. It is important to note the role that the size of the cured fraction plays

in causing the increased bias in the estimate of �0. Evidently, the proportion of right censoring

in the sample is not the only driving factor behind this increased bias. In fact, Table 6 shows

that the bias in �0 can increase even as the overall proportion of right censoring in the sample

⇡
R decreases, if there is a change in the size of the cured fraction. This is obvious when

comparing the scenarios with ⇡(z) = 0.5 and ⇡R = 0.67 with the scenarios with ⇡(z) = 0.75

and ⇡R = 0.64 across all three sample sizes. Here, it is not the amount of right censoring in

the sample itself that is producing larger bias in the estimate of �0. Instead, it is the fact that

a decreased proportion of these right censored observations belong to the cured fraction, as the

size of the non-cured fraction ⇡(z) increases. This produces a larger number of non-cured right

censoring times which could potentially be misidentified as part of the cured fraction. In turn,

this leads to an overestimation of the size of the cured fraction. This may indicate that there

is poor separation between the cured and uncured sub-populations. There is some evidence

that this phenomena also leads to increasing bias in the estimate of �1 when event probabilities
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Table 7: Mean asymptotic and (Monte Carlo) standard errors of of �0, �1 and �1

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
E

0.25 0.36 0.25 0.36 0.25 0.36

⇡
R

0.67 0.52 0.67 0.52 0.67 0.52

�̂0
0.2798 0.3320 0.1207 0.1429 0.0599 0.0708

(0.3212) (0.3292) (0.1204) (0.1361) (0.0588) (0.0672)

�̂1
0.5564 0.6676 0.2383 0.2819 0.1182 0.1400

(0.6273) (0.7377) (0.2412) (0.2653) (0.1204) (0.1509)

�̂1
0.4443 0.3614 0.1900 0.1562 0.0943 0.0773

(0.4669) (0.3587) (0.1618) (0.1579) (0.0881) (0.0717)

⇡
E

0.13 0.18 0.13 0.18 0.13 0.18

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

�̂0
0.2952 0.3504 0.1287 0.1439 0.0637 0.0712

(0.2689) (0.3694) (0.1326) (0.1528) (0.0575) (0.0684)

�̂1
0.6436 0.6208 0.2712 0.2651 0.1246 0.1385

(0.5864) (0.7309) (0.2501) (0.2849) (0.1204) (0.1376)

�̂1
0.6394 0.5092 0.2530 0.2058 0.1218 0.1012

(0.5303) (0.4504) (0.2204) (0.1849) (0.1095) (0.0876)

are low. Overall, the results in Table 6 indicate that the model performs well when there is a

reasonable number of observed event times in the sample, and particularly when the sample

size is large. The model may be sensitive to changes in the cured fraction and poorly separated

sub-populations, but the proportional hazards regression parameter estimate �1 consistently

performs well.

Table 7 presents the mean asymptotic and the Monte Carlo estimates of the standard error

for each regression parameter, allowing for the evaluation of the MPL asymptotic estimate. The

95% coverage probabilities for the regression parameters, found in Appendix C2, o↵er further

insight into the performance of the standard error estimation process. Table 7 indicates that,

for �0, there is generally good agreement between the estimated asymptotic and Monte Carlo

standard errors across the majority of the di↵erent scenarios considered, with the only exception

being in the cases of the smallest sample size n = 100. There does not appear to be any

particularly strong e↵ect on the performance of the asymptotic standard error estimation due

to changes in the size of the cured fraction. However, the 95% coverage probabilities for �0 are

extremely low for scenarios with decreased event probabilities of ⇡E = 0.13 or ⇡E = 0.18. This is

a result of the bias in the estimation of this parameter, discussed above, rather than a reflection

of the quality of the standard error estimate. There is similarly good agreement between the
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estimated asymptotic and Monte Carlo standard errors for the parameter �1. Again, the only

exception to this is scenarios with the smallest sample size. Decreasing the event probability

⇡
E does little to diminish performance, particularly in larger samples. Appendix C2 also shows

that 95% coverage probabilities for �1 are reasonable in most cases. The only exception are the

scenarios with lower event probabilities ⇡E and n = 2000. This is likely due to the increased

bias in the estimates of �1 in these scenarios, seen in Table 6.

In samples with higher event probabilities, there is again reasonable agreement between the

estimated asymptotic and Monte Carlo standard errors of �1. However, it is evident in Table

7 that the discrepancy between the two increases with decreasing event probabilities. Notably,

there is a persistent tendency for the asymptotic standard error estimate to be larger than its

equivalent Monte Carlo standard error when the event probability is low. This indicates that the

asymptotic standard error is being systematically overestimated under these conditions. This

is likely related to the systematic overestimation of the cured fraction, discussed above. The

overestimation of the cured fraction reduces the share of the sample on which the proportional

hazards model estimation is based and thus produces larger standard error estimates. Given

this, it is unsurprising that the 95% coverage probabilities for �1 in samples with high levels

of right censoring are generally too high. Nonetheless, the 95% coverage probabilities for �1 in

samples with higher event probabilities are generally appropriate. Overall, the results in Table

7 demonstrate that the asymptotic standard error estimator in this model generally performs

well. Where the performance of this estimator is poorer, it is usually a result of bias in the

parameter estimates of some elements of the model under certain conditions.

4.2.2 Baseline hazard function estimation results

This simulation study also evaluated the MPL estimates of the baseline hazard function h0(t)

for partly-interval censored data. In order to do so, the bias of the baseline hazard function

estimate was considered at three time values, t1, t2 and t3, which respectively correspond to

the first, second, and third quartile of T . The agreement between the estimated asymptotic

and Monte Carlo standard error at these three values of t was also considered. Note that

the asymptotic standard error of the baseline hazard function was estimated using the delta

method. Recall that h0(t) =  (t)✓, meaning that the baseline hazard function can be treated

as a function of ✓. As such, the variance of the baseline hazard function estimate can be

estimated by finding

V ar(h0(t)) =

✓
@h0(t)

@✓u

◆T

Cov(✓)
@h0(t)

@✓u
=  (t)TCov(✓) (t)

This estimated standard error of the baseline hazard function was also used to produce 95%

coverage probabilities at the three values of t mentioned above.

Table 8 summarises the bias in the estimates of the baseline hazard function at t1, t2, and

t3. Firstly, it is clear that in the vast majority of scenarios considered, the bias increases with
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the value of t. This is unsurprising given that the number of observations generally lessens

over time. In scenarios with a higher event probability, the bias is generally reasonable at t1

and t2. In scenarios with n = 500 or n = 2000, the extent of the increase in the bias at later

values of t is not as large in scenarios with ⇡E = 0.25 and the smaller non-cured fraction size

of ⇡(z) = 0.5 as it is in scenarios with a larger event probability of ⇡E = 0.36 and a larger

non-cured fraction of ⇡(z) = 0.75. This may indicate that the size of the cured fraction has

some influence on the performance of the baseline hazard function estimate, especially at later

values of t. When event probabilities are low, the bias in the estimate becomes large across

all values of t, although the aforementioned trend over time is still evident. Generally, the

estimate of the baseline hazard function performs well at earlier values of t in samples with a

reasonable proportion of event times.

The mean estimated asymptotic and Monte Carlo standard errors for the baseline hazard

function at t1, t2 and t3 are also shown in Table 8. Corresponding 95% coverage probabilities

can be found in Appendix C3. Generally there is good agreement between the asymptotic

and Monte Carlo standard errors across values of t for larger samples with higher event prob-

abilities. Accordingly, the 95% coverage probabilities for these scenarios are also appropriate.

Discrepancy between the asymptotic and Monte Carlo standard errors increases when the sam-

ple size is smaller due to the lower availability of observations. In scenarios with lower event

probabilities, there is generally still good agreement between the asymptotic and Monte Carlo

standard errors when the sample size is relatively large, especially at earlier values of t. Gener-

ally for scenarios with lower event probabilities, 95% coverage probabilities are inappropriate,

likely due to a combination of large bias and poor standard error estimation. Generally, the

standard error estimation process for the baseline hazard function performs well for relatively

large samples, at earlier values of t, and when levels of censoring are not extreme.
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Table 8: Bias, estimated standard errors and (Monte Carlo) standard errors for h0(t)

Bias in estimates for h0(t)

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
E

0.25 0.36 0.25 0.36 0.25 0.36

⇡
R

0.67 0.52 0.67 0.52 0.67 0.52

t1 0.0433 -0.0185 -0.0053 -0.0573 -0.0073 -0.0539

t2 -0.0408 -0.1868 -0.0117 -0.0484 -0.0275 -0.0349

t3 -0.3733 -0.3496 -0.0267 0.1014 -0.0226 0.0813

⇡
E

0.13 0.18 0.13 0.18 0.13 0.18

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

t1 -0.1853 -0.1616 -0.2557 -0.2840 -0.2447 -0.1788

t2 -0.7353 -0.5274 -0.4797 -0.4425 -0.4170 -0.2828

t3 -1.7197 -1.4448 -0.8085 -0.3711 -0.4165 -0.3405

Mean asymptotic and (Monte Carlo) standard error estimates

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
E

0.25 0.36 0.25 0.36 0.25 0.36

⇡
R

0.67 0.52 0.67 0.52 0.67 0.52

t1
0.2621 0.3559 0.1551 0.2075 0.0776 0.1038

(0.3435) (0.3688) (0.1590) (0.2039) (0.0815) (0.0962)

t2
0.4135 0.6839 0.3186 0.3352 0.1614 0.1612

(0.5714) (0.6655) (0.3059) (0.3297) (0.1596) (0.1689)

t3
1.1892 1.3733 0.5284 0.6327 0.2554 0.2978

(1.5261) (1.3310) (0.5250) (0.4942) (0.2528) (0.2978)

⇡
E

0.13 0.18 0.13 0.18 0.13 0.18

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

t1
0.4588 0.4407 0.2262 0.2628 0.0902 0.0841

(0.4124) (0.4266) (0.1933) (0.2203) (0.0734) (0.0689)

t2
1.0764 0.9923 0.3231 0.4928 0.1655 0.1433

(1.2248) (1.0460) (0.3243) (0.4001) (0.1454) (0.1428)

t3
2.9201 2.7437 0.8786 0.8745 0.2779 0.3250

(3.0374) (2.2711) (0.7874) (0.8436) (0.2248) (0.3566)
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5 R Package and Implementation

This chapter will present an overview of the set of R functions developed to fit the proposed

method. It will also o↵er an example of how this method could be used to analyse a real

dataset. Access to the relevant code is available online (see Appendix D). The structure of

the package presented here closely follows that of the package survivalMPL (Couturier et al.

2017), which implements the method laid out in Ma et al. (2019).

5.1 Package description

The estimation methods presented in this thesis are implemented in the phmc mpl package. The

model can be fitted in R using the code phmc_mpl(phformula, piformula, data, control, ...).

The required arguments are as follows:

• phformula: a formula object, with the response on the righthand side of a ⇠ operator and

the covariates for the proportional hazards regression for the latency on the lefthand side.

The response must be in the form of a survival object created using the Surv function

from the survival package.

• piformula: a specification of the covariates to be used in the logistic regression for the

incidence, on the lefthand side of a ⇠ operator. Specifying ⇠ 1 will produce an estimate

of the intercept only.

• data: a data frame containing the covariates used in the phformula and piformula

arguments.

• control: an object of class phmc_mpl.control, specifying control options such as number

of knots, maximum number of iterations, and the convergence limit.

The full range of options available for specification as part of the phmc_mpl.control function

is as follows:

• maxIter=c(150,75e+02,1e+04): a vector of three integers. The first is the maximum

number of iterations allowed for the smoothing parameter estimation. The second is the

maximum number of iterations allowed for the estimation of the regression parameters

and baseline hazard function. The third is the total number of iterations allowed.

• epsilon=c(1e-16,1e-10): a vector of two values indicating the minimum distance of, re-

spectively, the survival function from 1 and the baseline hazard function from 0, specified

in order to prevent problems with calculating logarithms in the algorithm.

• kappa=1/0.6: a value greater than 1, used in the algorithm to decrease the step size if

the penalised likelihood does not increase after a given iteration.
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• conv_limit=1e-4: a convergence tolerance value, defining the minimum absolute di↵er-

ence between the parameter estimates at consecutive iterations that must be reached for

convergence to be achieved.

• smooth=NULL: the value of the smoothing parameter �. When left as NULL, the smoothing

parameter is estimated as outlined in Section 3.4.1. When specified manually, it should

be greater than or equal to 0.

• min.theta=1e-10: a value indicating the minimum possible value for any the baseline

hazard parameter, ✓u. Any value of ✓u less than min.theta will be considered zero.

• n.knots=8: an integer specifying the number of internal quantile knots to be used. Note

that the total number of knots n will always be two greater than the number speci-

fied here, as n include the two external knots placed at the minimum and maximum

observations.

• order=3: an integer specifying the order of M-splines to be used.

• range.quant=c(0.075,0.9): a vector of two values, defining the range of the quantile

knots. Under the default values, n.knots quantile knots are set between the quantiles

0.075 and 0.9 of the observed event times.

• ties="epsilon": a character string specifying how to handle duplicated outcomes when

defining the knot sequence. The default option "epsilon" adds random noise smaller

than 1e-10 to each duplicated observed survival time. An alternative option is "unique"

which deletes duplicated fully survival times.

• seed=NULL: NULL or an integer vector compatible with .Random.seed to be used when

adding random noise to duplicate events when ties="epsilon"

Other functions available in the package are:

• plot.phmc_mpl: plots the smooth estimate of the baseline hazard function, cumulative

baseline hazard function, and/or baseline survival function with 95% confidence interval.

• predict.phmc_mpl: predicts the hazard function or the survival function, standard error,

and 95% confidence interval using the estimated model and a given set of covariate values.

5.2 Example of application to real-life data

To illustrate the use of the R implementation detailed above, this section will fit a proportional

hazards mixture cure model to a real dataset. The dataset used is the e1684 data found

in the smcure package, sourced from the study done by Kirkwood et al. (1996). This study

evaluated the use of interferon alfa-2b as an adjuvant therapy following surgery on melanoma.
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The dataset contains three covariates, treatment (0 = control, 1 = treatment), gender (0 =

male, 1 = female), and age (as a continous mean-centered variable). Note that this dataset

only contains observed and right censored survival times. After the removal of missing values,

the dataset has a sample size of 284. The creators of the smcure package also used this dataset

to illustrate the functionality of that package for fitting a proportional hazards mixture cure

model, detailed in Cai et al. (2012a).

The mixture cure proportional hazards model can be fitted as follows. Note that this code

uses the default number of internal quantile knots. Selection of the smoothing parameter will

be performed automatically using the method outlined in Section 3.4.1.

> e.surv=Surv(time=e1684$FAILTIME,event=e1684$FAILCENS)

> model1=phmc_mpl(e.surv~e1684$TRT+e1684$AGE+e1684$SEX,

+ pi.formula=~e1684$TRT+e1684$AGE+e1684$SEX,data=e1684,

+ phmc_mpl.control(n.knots=c(8),smooth=NULL))

This code produces the following output.

> summary(model1)

phmc_mpl(ph.formula = e.surv ~ e1684$TRT + e1684$SEX + e1684$AGE,

pi.formula = ~e1684$TRT + e1684$SEX + e1684$AGE, data = e1684,

control = phmc_mpl.control(n.knots = c(8), smooth = NULL))

-----

Mixture Cure Proportional Hazards Model Fitted Using MPL

Penalized log-likelihood : -164.5312

Estimated smoothing value : 4.743324

Convergence : Yes, 715 iterations

-----

Logistic regression parameters :

Estimate Std. Error z-value Pr(>|z|)

2.112622 1.428859 1.4785 0.1393

e1684$TRT -0.234118 0.850133 -0.2754 0.7830

e1684$SEX -0.397047 0.830328 -0.4782 0.6325

e1684$AGE 0.054493 0.057087 0.9546 0.3398

Proportional hazards regression parameters :

Estimate Std. Error z-value Pr(>|z|)

e1684$TRT -0.3889650 0.2372908 -1.6392 0.1012
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e1684$SEX 0.1049943 0.2483536 0.4228 0.6725

e1684$AGE -0.0073339 0.0088921 -0.8248 0.4095

-----

Available in the output are the logistic regression parameter estimates for the intercept and

the three covariates used to estimate the incidence, and the proportional hazards regression

parameter estimates for the three covariates used to model the latency. The asympotic variance

estimates for all parameters are also available, as well as a test of significance. The output also

reports that convergence was achieved after 715 iterations in total, and that the value of the

smoothing parameter � automatically selected was approximately 4.74.

Plots of the baseline hazard function, cumulative baseline hazard function, and baseline

survival functions as well as their 95% confidence intervals are also available, as shown in Figure

1. The plot of the baseline hazard function in particular may be of interest to practioners. For

instance, it may be of interest to see the increase in the risk of failure at the tail end of the

follow-up period that is evident on this plot. Using the predict.phmc_mpl function, it is

also possible to obtain fitted survival curves to compare the two treatment groups. Consider

the case of a male with the centred sample median age of 0.5791. The comparative fitted

survival curves for the two treatment groups are shown in Figure 2. Both plots indicate that

the non-treatment group has a higher risk of failure than the treatment group at all points in

time.
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Figure 1: Estimates of (left-right) the baseline hazard function, cumulative baseline hazard function,

and baseline survival function
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Figure 2: Comparative plot of estimates of the hazard function for each treatment group (top) and

comparative plot of fitted survival curves for each treatment group.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Comparative Hazard Function Estimates by Treatment

Time

E
st

im
at

ed
 H

az
ar

d 
F

un
ct

io
n

TRT=0
TRT=1

0 2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1
.0

Comparative Fitted Survival Probabilities by Treatment

Time

F
it
te

d
 S

u
rv

iv
a

l 
P

ro
b

a
b

ili
ty

TRT=0
TRT=1

45



6 Conclusion and Future Research

The aim of this thesis was to develop and evaluate a novel method for fitting a proportional

hazards mixture cure model to partly-interval censored survival data. With contemporary ad-

vancements in medical treatments and technologies, the ability to account for the presence of a

cured fraction makes the mixture cure model an important tool for the analysis of time-to-event

data. However, fitting these models can be a complex process, because their likelihood function

formulation requires some estimate of the non-parametric baseline survival or hazard function.

Previous work in this area has largely been limited in scope to right-censored survival data, and

has o↵ered scarce options for obtaining a smooth estimate of the baseline hazard function (Sy

& Taylor 2000, Peng & Dear 2000, Shen et al. 2019, Chen et al. 2019). Additionally, existing

options for fitting the model in R are extremely limited. These drawbacks have restricted the

practical and clinical utility of the mixture cure proportional hazards model for analysis of

survival data. To address these shortcomings, this thesis drew on an existing body of work

concerning the use of maximum penalised likelihood (MPL) estimation to fit proportional haz-

ards regression models. This approach allowed for the straightforward inclusion of left and

interval censored observations, and ensured a smooth estimate of the baseline hazard function

could be obtained. Furthermore, the adoption of a Newton-MI algorithm for constrained op-

timisation satisfied the non-negativity constraint on the baseline hazard function without the

risk of numerical instability or local maxima associated with other more ad-hoc methods used

in the past. This thesis also presented asymptotic properties for the MPL estimates of the

parameters, including the baseline hazard function estimate. Finally, a set of R functions was

developed in order to easily fit the proposed model.

The results of the two simulation studies carried out to evaluate the proposed model demon-

strate that MPL estimation of a proportional hazards mixture cure model produces satisfac-

tory parameter estimates. The first simulation study compared the performance of the MPL

method proposed in this thesis with the expectation-maximisation (EM) method of Peng &

Dear (2000), which was available for implementation in R via the smcure package (Cai et al.

2012b). The results showed that the MPL method produced regression parameter estimates

with comparable bias to the estimates produced by the existing EM method. The asymptotic

variance estimates for the regression parameters produced using the MPL method performed

as well as the bootstrapped variance estimated by smcure. The results of the study indicated

that the MPL estimates of the cumulative baseline hazard function were, again, comparable if

not better than the Breslow estimates provided by smcure in the majority of cases. Further-

more, the MPL method proposed here has the ability to provide inference on survival quantities

such as the baseline hazard function, unlike smcure. The second simulation study investigated

the performance of the model when fitted to partly-interval censored data. It found that the

regression parameter estimates showed little bias when censoring was not extreme, especially

the proportional hazards regression parameter. The estimates of the asymptotic variance were

46



likewise satisfactory, meaning that valid inference could be made on these parameters. Ad-

ditionally, when censoring was not extreme and the sample size was reasonable, this model

generally produced unbiased baseline hazard function estimates, and reasonable asymptotic

standard error estimates for the baseline hazard.

Overall, this thesis marks a significant contribution to the existing body of research in the

area of proportional hazards mixture cure models. It o↵ers a new method for fitting this model

to partly-interval censored survival data which also allows for a smooth estimate of the baseline

hazard function to be obtained. The results of the simulations studies show that both regression

parameter estimates and estimates of the baseline hazard function obtained via an MPL method

are satisfactory, and that the method is comparable, if not preferable, to existing approaches

such as Peng & Dear (2000). Additionally, the development of asymptotic properties for the

parameter estimates allows for inference on both the regression parameters and the baseline

hazard function or other survival quantities. This is a departure from many of the previously

available methods, which commonly relied on bootstrapping to provide standard error estimates

for regression parameters and largely disregarded inference on the baseline hazard function all

together. Importantly, this thesis also contributes a set of R functions that can be used to

fit the proposed model. As a result, the work done here could easily be made use of in a

practical or clinical setting. Based on the review of the literature provided, it seems that the

R implementation provided here would be the among the first to allow users to fit and make

inferences on a proportional hazards mixture cure model using partly-interval censored data.

More generally, this thesis highlights the utility of the MPL method in the context of survival

analysis, especially for approaching complex problems like interval-censored data and data

with cured fractions. It also demonstrates the use of the Newton-MI algorithm for constrained

optimisation in the context of survival analysis, building on the work done in Ma et al. (2014)

and Ma et al. (2019).

Despite the promising results presented in this thesis, there remains significant scope for

further evaluation of this model and further research in this area. The simulation studies carried

out here focused on evaluating the model in terms of the bias in the parameter estimates and

the performance of the asymptotic estimates of the variance. However, these elements of the

model could be more thoroughly evaluated in future simulation studies by considering a case

with more than one covariate in the proportional hazards regression. Further simulation studies

may also o↵er more insight into the systematic overestimation of the cured fraction that was

observed in some simulation scenarios. Furthermore, future simulation studies would o↵er more

comprehensive insight into the model performance were they to more carefully investigate the

impact of knot selection and smoothing parameter selection on parameter estimation. Further

investigation of the smoothing parameter selection specifically would be of value for two reasons.

Firstly, the method for automatically selecting a smoothing parameter outlined in this thesis

was not evaluated in terms of its impact on the performance of the estimators. Secondly, there

may be some relationship between the smoothing parameter and issues with identifiability in
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the model, as inappropriate choices of the smoothing parameter value may produce improper

estimates of the conditional survival function (Corbiere et al. 2009). Research with a greater

focus on evaluating the selection of the smoothing parameter for this model may therefore o↵er

insight into how model performance could be improved.

Needless to say, the scope of this thesis did not include a number of areas that are currently

of interest in the fields of cure model estimation, non-parametric baseline function estimation,

and survival analysis as a whole. Future work on the model proposed in this thesis would be

able to draw more broadly on this ongoing research. In doing so, it would enhance the utility

and flexibility of the model. Firstly, an obvious current limitation of the method presented

here is that it o↵ers only one model for the incidence and one model for the latency. A next

step might be to investigate MPL estimation of a mixture cure model that uses alternative

models, or o↵ers a range of models to choose from. Recent work by Li & Ma (2019) and Li &

Ma (2020) explored MPL estimation of additive hazards models and accelerated failure time

models. Expanding this into the context of a mixture cure model would widen the range of

scenarios where the model in this thesis could be applied. Moreover, expansion of the choice

of models available could bring this method more into line with the recent emphasis on semi-

parametric transformation mixture cure models for partly-interval censored data, explored

by Chen et al. (2019) and Shen et al. (2019). Future research might also be informed by

recent developments in MPL estimation of proportional hazards models. One focus of recent

research in this area has been on fitting the proportional hazards model in the presence of

possibly dependent censoring. Work such as Xu et al. (2017) and Xu et al. (2018) has recently

demonstrated the use of copulas in the MPL estimation of a proportional hazards regression

model where the assumption of independent censoring is not satisfied. Another focus has

been on the incorporation of time-varying covariates and competing risks (Thackham & Ma

2020a,b). Expansion the model presented in this thesis to incorporate dependent censoring,

time-varying covariates or competing risks constitute promising future directions for research.

A final potential avenue for future research may be to build on the presently small body of

work focused on variable selection (Scolas et al. 2016) and diagnostic checks (Scolas et al. 2018,

Muller & Van Keilegom 2019) for mixture cure models. Any of these possible future directions

would add to the utility and flexibility of the model and estimation procedure presented in this

thesis.
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A Elements of the score vector and Hessian matrix

The components of the score vector are as follows. Let zit be element t of vector zi and xij be

element j of vector xi, for t = 1, ..., p and j = 1, ..., q. Then, the first derivative of �(⌘) with

respect to �t is
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The first derivative of �(⌘) with respect to ✓w, where w = 1, ...,m, is
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when using the penalty function discussed above.

The components of the Hessian matrix are as follows. The second derivative of �(⌘) with

respect to �u and �t is
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The second derivative of �(⌘) with respect to �j and �k is
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B Simulation Study 1 Supplementary Tables

Table B1: Number of knots selected for each simulation scenario

Sample size n Censoring distribution parameter �c Approximate ⇡(z) Number of knots

100
4.2 0.5, 0.75 3, 5

1.25 0.5, 0.75 4, 4

500
4.2 0.5, 0.75 6, 8

1.25 0.5, 0.75 5, 8

2000
4.2 0.5, 0.75 7, 10

1.25 0.5, 0.75 5, 6

Table B2: 95% coverage probabilities of �1 and �1

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
R

0.59 0.41 0.59 0.41 0.59 0.41

�̂1
MPL 0.96 0.96 0.94 0.96 0.89 0.95

EM 0.97 1.00 0.92 0.96 0.89 0.95

�̂1
MPL 0.93 0.96 0.99 0.92 0.93 0.96

EM 0.95 0.97 0.97 0.92 0.92 0.95

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

�̂1
MPL 0.93 0.95 0.94 0.98 0.93 0.93

EM 0.94 0.97 0.96 0.94 0.93 0.94

�̂1
MPL 0.91 0.92 0.98 0.92 0.96 0.98

EM 0.98 0.96 0.97 0.98 0.96 0.98

Note that the values of ⇡
R

presented here are the proportions of right censored observations in the

whole sample i.e. including the right censored observations from individuals in the cured fraction.

Scenarios with ⇡
R
of 0.59 or 0.41 correspond to scenarios with the censoring distribution parameter

�c = 4.2. Scenarios with ⇡
R
of 0.75 or 0.64 correspond to scenarios with �c = 1.25.
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C Simulation Study 2 Supplementary Tables

Table C1: Number of knots selected for each simulation scenario

Sample size n Non-cured fraction event probability ⇡
E

Approximate ⇡(z) Number of knots

100
0.5 0.5, 0.75 4, 6

0.25 0.5, 0.75 4, 5

500
0.5 0.5, 0.75 5, 8

0.25 0.5, 0.75 4, 7

2000
0.5 0.5, 0.75 5, 8

0.25 0.5, 0.75 4, 6

Table C2: 95% coverage probabilities of �0, �1 and �1

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
E

0.25 0.36 0.25 0.36 0.25 0.36

⇡
R

0.67 0.52 0.67 0.52 0.67 0.52

�̂0 0.95 0.98 0.96 0.97 0.96 0.95

�̂1 0.93 0.97 0.93 0.94 0.98 0.94

�̂1 0.96 0.94 0.98 0.95 0.96 0.98

⇡
E

0.13 0.18 0.13 0.18 0.13 0.18

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

�̂0 0.71 0.77 0.23 0.20 0.00 0.00

�̂1 0.96 0.96 0.96 0.96 0.88 0.86

�̂1 1.00 0.99 0.96 0.98 0.97 0.98

Note that the values of ⇡
E

and ⇡
R

presented here are the proportions of events and right censored

observations in the whole sample i.e. including right censored observations from individuals in the

cured fraction. Scenarios with a ⇡
E

of 0.25 or 0.36 and a ⇡
R
of 0.67 or 0.52 correspond to an event

probability in the non-cured fraction of 50%. Scenarios with a ⇡
E
of 0.13 or 0.18 and a ⇡

R
of 0.75 or

0.64 correspond to an event probability in the non-cured fraction of 25%.
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Table C3: 95% coverage probabilities of the estimate of h0(t)

n 100 100 500 500 2000 2000

⇡(z) 0.5 0.75 0.5 0.75 0.5 0.75

⇡
E

0.25 0.36 0.25 0.36 0.25 0.36

⇡
R

0.67 0.52 0.67 0.52 0.67 0.52

t1 0.93 0.95 0.93 0.98 0.92 0.96

t2 0.98 0.95 0.96 0.98 0.97 0.94

t3 0.97 0.97 0.97 0.99 0.95 0.95

⇡
E

0.13 0.18 0.13 0.18 0.13 0.18

⇡
R

0.75 0.64 0.75 0.64 0.75 0.64

t1 0.97 1.00 0.84 0.92 0.17 0.42

t2 0.97 0.94 0.80 0.96 0.24 0.49

t3 0.97 0.96 0.98 0.99 0.74 0.84

D Access to R package

Access to the R package developed as part of this thesis, discussed in Chapter 5, is available at

the following link: https://github.com/annabelwebb/thesis_submission
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