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Abstract

We investigate methods related to achieving interaction between photonic qubits. The
first general approach to achieve this is to transfer photonic qubits to solid state sys-
tems, where the qubit interactions can then take place. The other approach is to
enhance the strength of the photon-photon interaction.

We first robustly study methods related to the first approach: in particular we focus
on how to convert the photonic quantised excitation into an atomic excitation. The
Stark-shift-chirped rapid adiabatic passage (SCRAP) technique in a three level Λ-type
system is a coherent population transfer (CPT) technique similar to Stimulated Raman
Adiabatic Passage (STIRAP) ,which in itself is closely related to electro-magnetically
induced transparency (EIT). SCRAP has been shown to perform CPT with a high
fidelity for a range of different detunings making SCRAP far more robust when there
is large inhomogeneous broadenings present in the ensemble. We make use of optimum
control techniques in order to optimise the standard SCRAP pulses so as to minimise
the decrease in fidelity brought on by inhomogeneous broadenings of the transitions.
Our result is that we can improve the average fidelity of population transfer over a
wide range of detunings for both the ground to excited state detuning and the ground
to target state detuning (two-photon detuning).

Finally we consider the enhancement of photon-photon interactions and the imple-
mentation of an optical quantum controlled not (CNOT) gate via a cavity-QED setup.
We explore the Nitrogen-vacancy centre in diamond as a suitable four-level tripod sys-
tem in which to generate the cross-Kerr nonlinearity required to facilitate the strong
interaction between the two fields (control and target) held in a cavity. We show that
with an ultra-high quality factor cavity, and only a single NV centre strongly coupled
to the trapped light, a sufficiently large interaction can be generated between the two
fields to obtain a conditional phase shift (CPS) in excess of the required π for the
successful implementation of a CNOT gate. We also show that it is possible to use
this system to create an entangled state of two macroscopically distinguishable states,
that is a Schrödinger cat state, by using two weak coherent fields as input and making
a measurement on the second field.
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