
1
Introduction

Photons are both great and lousy as qubits for quantum computing for exactly the same
reason: they don’t interact strongly with each other. On the positive side this means
that it is relatively easy to preserve the quantum state, or information, carried by a
photon for long periods of time. This is a serious problem for solid state qubits where
decoherence of the quantum state is the predominant obstacle to scalable quantum
computing. Photons are also the way in which quantum information is communicated
between distant locations. On the negative side it is extremely hard to perform two-
qubit operations, required for quantum computing, with photons. This is where the
strength of solid state qubits lie: solid state systems can often interact readily with
each other. It is clear then that there are two approaches to solve this dichotomy:
convert the travelling qubit from being photon-based to a solid state system to allow
two-qubit operations, and then convert the qubit back to a photon for transmission; or
devise some way in which to increase the interaction strength between photons so that
two-qubit operations are possible directly between photons. The first part of this thesis
relates to the first option and we study methods to transfer quantum information from
the optical to the solid state regime as well as related coherent population transfer
techniques. The remainder of this thesis focuses on the second option and we study
methods to create strong photon-photon interaction via nonlinear optics.

In the first chapter we cover the stimulated Raman adiabatic passage (STIRAP)
technique in a Λ-type three level system. STIRAP can be used to transfer quantum
information from light to atoms. Furthermore STIRAP is closely related to electromag-
netically induced transparency (EIT) which is also briefly covered in this chapter; and
STIRAP also serves as a good introduction to the Stark-shift-chirped rapid adiabatic
(SCRAP) technique that lies at the heart of chapter 3. Both STIRAP and SCRAP are
population transfer techniques, while the EIT phenomenon is well known for “slow”
light and optical pulse storage. We also present some background on the nitrogen-
vacancy (NV) centre defect found in diamond. The NV centre can be configured as a
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Λ system, as well as a four-level tripod system and is extensively used in later parts of
the thesis where we address option two, the generation of photon-photon interaction.

In chapter 3 we explain the SCRAP technique as applied to Λ-type three level
systems. We then engineer the pulses used in SCRAP using optimal control techniques
in order to obtain pulses that result in high fidelity population transfer over a wide range
of optical field detunings. This could prove useful since solid state systems are known
to suffer from large inhomogeneous broadenings, while having many other advantages
over atomic vapour systems. By using the optimally robust version of SCRAP that we
find, one should be able to achieve a greater fidelity population transfer in the presence
of large inhomogeneities.

In chapter 4 we give an overview of the known methods to perform quantum logic
between photons. We introduce the quantum phase gate (QPG) and more particularly
the controlled sign flip (C-sign) gate. We review the seminal Knill, Laflamme and
Milburn (KLM) [1] scheme for implementing a probabilistic CZ gate with linear optics.
We also review the improvement made to this scheme by replacing measurements with
quantum nondemolition measurements, thus rendering the scheme almost determinis-
tic. We see in this chapter that there are advantages and disadvantages to each of the
different schemes. The most important part of this chapter is the section on the QPG
by using a large Kerr nonlinearity. We will try to minimise the disadvantage of this
scheme by showing that sufficiently large conditional phase shifts can be obtained in
a physically realisable system. The explanation of how a large cross-Kerr interaction
can be used to implement a QPG is the primary motivation for the next chapter.

In chapter 5 we present our proposal to realise a QPG in a high-Q cavity-QED
setting making use of a single NV centre in a nanodiamond. The NV centre is used
in the tripod-level configuration. We review a previous proposal of how a QPG can
be realised in a four-level tripod system. We then give a very brief introduction to
microresonator cavities which have high-Q whispering gallery modes. We also review
the literature on coupling NV centres to microresonators. Following extensive numerics,
our models suggest that it is possible to obtain high fidelity conditional phase gates
with phase shifts in excess of π radians in this system – enough to realise a CZ gate.
Process tomography of the simulated QPG gate compares very well with an ideal QPG
that results in the same conditional phase shifts.

Lastly, in chapter 6 we show that it is also possible to use this system to create a
superposition of two macroscopically distinguishable states, that is a Schrödinger cat
state, by using two weak coherent fields as inputs and making a measurement on the
second field. Schrödinger cat states have application in the testing of quantum theory
(e.g. through violations of Bell inequalities [2–4]) through to applications in quantum
information processing. We make use of a recently introduced measure of macroscopic
quantum superposition to evaluate our Schrödinger cat states and find that states with
a measure close to the maximum achievable for the given input states can be found.



2
EIT, STIRAP and NV centre as a Λ-type

three level system

Photons are ideal carriers of quantum information since they are fast and robust.
To perform quantum logic with photons though is difficult as it is difficult for two
photons to interact, making gates between two qubits hard to perform reliably. Atoms
(or molecules which will hence forthwith be included when referring to atoms) can,
under some circumstances, store quantum states reliably for long periods of time and
allow for easily manipulated interactions between individual states. To facilitate the
transport, storage and subsequent manipulation of quantum states it would be highly
advantageous to have a means to coherently transfer a quantum state carried by light
to atoms and vice versa.

Atomic vapours have been extensively investigated for use as quantum information
storage media by “slowing down”, or even “stopping”, a light pulse carrying quantum
information. This is achieved by mapping the quantum state of the light to a long-
lived spin state in the ensemble of atoms by means of electromagnetically induced
transparency (EIT) [5–9]. This process can then be reversed, and the pulse coherently
resynthesised from the atomic ensemble. EIT is closely related to an adiabatic passage
technique known as Stimulated Raman Adiabatic Passage (STIRAP), that makes use
of two classical light fields of similar strength, whereas in EIT one of the two fields (the
probe or signal field) is much weaker than the other (the coupling or control field). For
EIT to be used to implement quantum memory the probe field is a weak quantum field,
and carries the quantum information. The reason atomic vapours are good candidates
is the same reason why atomic vapours are good sources of laser light: all the atoms in
the ensemble are identical to each other, with identical energy transitions and resonance
frequencies. This homogeneity of the atoms means that the light pulses used in EIT
experiments can be tuned to specific transitions in the atoms and that these light fields
will then interact strongly with all the atoms in the ensemble. Doppler-shifts due to
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different velocities of the atoms can largely be compensated for. Diffusion of the atoms
on the other hand presents a larger problem in that the resynthesised optical pulse after
storage will not be identical to the original pulse if the positions of the atoms changes
significantly during the storage time. This is seen as noise in the retrieved pulse and
limits the duration for which an optical pulse can be stored within the atomic ensemble.

Solid-state implementations of stored light by means of EIT may have a number of
potential advantages over atomic vapour implementations. Notably they have the po-
tential to greatly reduce (possibly eliminate) limitations on the storage lifetime, which
is mainly due to unavoidable atomic diffusion and Doppler velocities in atomic vapour
systems. A higher atomic density has the potential to yield a stronger interaction
between the light and atomic ensemble because of an increase in the number of in-
teracting centres. Being more compact and simpler to use/manufacture may indicate
great scalability [10] on the part of solid-state implementations. EIT and slow light
have been demonstrated in rare-earth doped semiconductors e.g. Pr doped Y2SiO5

[11, 12], whereas only EIT has thus far been shown in nitrogen-vacancy colour centres
in diamond [13, 14]. Solid-state media are, however, not without their own problems:
the biggest of which is inhomogeneous broadening of the energy levels, which leads
to a reduction in the number of atoms/centres that will be resonant with the inci-
dent optical fields. Each atom/centre experiences a different electronic environment
due to a number of factors e.g. the local strains in the crystal lattice, which results
in differing energy spectra for different centres in the ensemble. The light used in
the EIT experiment will then be slightly off-resonance with many of the centres, and
substantially off resonant with some of the centres. To overcome this problem spec-
tral hole-burning techniques [15], can be used to select a subset of the atoms/centres
within a narrow spectral range: essentially the broadening is decreased by pumping
most of the atoms/centres into a highly excited state and only leaving a subensemble
possessing a much narrower linewidth which can then be used for quantum memory.
Clearly this creates another problem in that typically only a small fraction of the initial
atoms/centres remain in this subensemble to interact with the light. This reduction
decreases the coupling strength between the light and the atoms and subsequently
results in lower fidelity operations.

In chapter 3 we propose an alternative method to at least partially surmount the
reduction caused by inhomogeneous broadening. This entails employing an additional
(pulsed) field to induce Stark shifts in the energy levels and thus bring the required
transitions on resonance at specific times. This technique when employed with classical
light fields is known as Stark-shift-chirped rapid-adiabatic-passage (SCRAP), and is
closely related to STIRAP and other coherent population transfer (CPT) techniques.
SCRAP has been shown to be far more accommodating with regard to variances in
detunings between resonant frequencies of atomic systems and the frequency of illu-
minating light when performing coherent population transfer [16]. We show that the
SCRAP pulses can be optimised such that population transfer occurs for a wide range
of detunings.

Here in this chapter we explain the STIRAP technique as an introduction to the
EIT phenomenon and as a basis for understanding the SCRAP technique used in
chapter 3. EIT, explained in section 2.2, is also behind the large cross-Kerr nonlinear
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Figure 2.1: The Λ-type three-level energy scheme. States |1〉 and |2〉 are coupled by the
pump pulse P which has a detuning ∆P from being exactly on resonance. Similarly states
|2〉 and |3〉 are coupled by the Stokes pulse S which has a detuning ∆S . State |2〉 is short
lived with spontaneous emission occurring out of the system into the continuum of states. )

interaction achievable in the tripod system that we use in chapter 5 for the NV centre
based quantum phase gate. A brief introduction to the NV centre is given in section
2.3.

2.1 Stimulated Raman Adiabatic Passage (STIRAP)

In this section and the following section the links between Stimulated Raman Adiabatic
Passage (STIRAP), Electromagnetically Induced Transparency (EIT) and quantum
memory will be discussed. This will be achieved by briefly explaining the mechanisms
behind these different concepts.

First the STIRAP technique will be explained: The STIRAP method is closely
related to EIT, and also to SCRAP applied to a three-state system. Both the STIRAP
and SCRAP techniques aim to transfer population from one state to another via a two
photon process. STIRAP uses two coherent pulsed laser fields that couple two long
lived ground states to a single excited state, in order to achieve complete population
transfer between the two long lived ground states. One state is initially populated,
while the other is the target state.

In explaining the mechanisms involved in STIRAP we will only consider Λ-type
three-level systems (Figure 2.1), though STIRAP can also be implemented in other
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level configurations of three-level systems (i.e. V- and cascade- (ladder-) type systems).
State |1〉 is the initially populated ground state (or some other long-lived state), with
an optical transition to the intermediate exited state |2〉. This exited state has a short
lifetime and can decay via spontaneous emission to state |1〉 or |3〉 if the system is
“closed”; or to a state outside the three-state system, if the system is “open”. State
|3〉 is the target state, with an optical transition to |2〉. For most applications, and
certainly for those discussed in later sections, state |3〉 is a long-lived state, for example
a ground state sublevel. States |1〉 and |2〉 are coupled by the “pump” laser pulse whilst
states |3〉 and |2〉 are coupled by the “Stokes” laser pulse. The frequencies of these two
lasers are typically not exactly on resonance with their respective transitions. Thus the
pump field has a detuning of ∆P from single-photon resonance for transition |1〉 → |2〉;
and the Stokes field has a detuning, ∆S, from single-photon resonance for transition
|3〉 → |2〉. These two transitions are the only dipole-allowed transitions in the system.
The detuning from two-photon resonance (that is, the compound detuning of the two
photon transition from the lower ground state to the upper ground state) is given
by (∆P −∆S). The presence of single-photon detunings does not prevent population
transfer, but for STIRAP to work it is essential that the two-photon resonance condition
∆P = ∆S holds.

Naively one would expect the pump pulse to precede the Stokes pulse so that the
population can be driven |1〉 → |2〉 → |3〉. This would however allow for population
loss from the excited state through spontaneous emission. In STIRAP the pulse se-
quence has a “counterintuitive” ordering: the Stokes pulse precedes the pump pulse.
Even though both states |2〉 and |3〉 initially have no population in them the Stokes
pulse, which couples them, performs an essential function: it places the system in an
eigenstate that is “dark” or “trapped”. It is so called since subsequent application of
the pump pulse will drive the population from state |1〉 to state |3〉 without allowing
any population to move through state |2〉 thus avoiding any radiative decay. With this
ordering of the pulses, the populating of state |2〉 is completely avoided, thus allowing
complete population transfer from |1〉 to |3〉, as long as the pulses also meet certain
coherence and adiabaticity conditions.

2.1.1 The Hamiltonian, eigenstates and population transfer

The simplest implementation of STIRAP, where the three states |1〉, |2〉 and |3〉 (see
Figure 2.1) with respective energies E1, E2 and E3 are coupled by two coherent fields
(pump and Stokes fields) with respective frequencies, ωP and ωS, is described by the
Hamiltonian

H(t) = H0 + VP (t) + VS(t). (2.1)

The un-perturbed Hamiltonian is given by

H0 = ~ω0|2〉〈2|+ ~ (ω0 − ω1) |3〉〈3|, (2.2)

with the transition frequency between states |1〉 and |2〉, ω0 = (E2−E1)/~, and between
states |3〉 and |2〉, ω1 = (E2 − E3)/~. The detuning of the pump field from resonance
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is then ∆P = ω0−ωP , whereas for the Stokes field the detuning is ∆S = ω1−ωS. The
interaction Hamiltonians (VP (t) and VS(t)) that describe the interaction between the
system and the pump and Stokes fields respectively are given by

VP (t) = d · EP , (2.3)

VS(t) = d · ES. (2.4)

d is the dipole moment operator for the atomic system, which for a transition between
the excited state |e〉 and ground state |g〉 is

d = deg|e〉〈g|+ d∗eg|g〉〈e|, (2.5)

where deg = 〈e|d|g〉. The classical electric field due to the pump laser is given by

EP = E0P e
−iωP t + E∗0P e

iωP t, (2.6)

and similarly for the Stokes field. The interaction Hamiltonian for the pump can then
be written as

VP (t) = (d21|2〉〈1|+ d∗21|1〉〈2|) ·
(
E0P e

−iωP t + E∗0P e
iωP t
)
, (2.7)

= ~
(

ΩP e
−iωP t + Ω̃P e

iωP t
)
|2〉〈1|+ ~

(
Ω̃∗P e

−iωP t + Ω∗P e
iωP t
)
|1〉〈2|, (2.8)

and the Stokes interaction Hamiltonian can be derived in a similar fashion. The Rabi
frequency, ΩP = ~−1d21 · E0P , is proportional to the strength of the pump field. The
counter-rotating Rabi frequency is Ω̃P = ~−1d21 · E∗0P . The Hamiltonian of the sys-
tem can be transformed into the interaction (Dirac) picture by the unitary operator,
U = eiH0t/~. The interaction picture Hamiltonian is related to the Schrödinger picture
Hamiltonian as follows:

H̄ (t) = i~U̇U † + UHU † (2.9)

= i~
(
i

~
UH0

)
U † + U (H0 + VP + VS)U † (2.10)

= UVPU
† + UVSU

†. (2.11)

The Hamiltonian in the interaction (Dirac) picture becomes

H̄ (t) = ~
(

ΩP e
i∆P t + Ω̃P e

i(ωP +ω0)t
)
|2〉〈1|+ ~

(
Ω̃∗P e

−i(ωP +ω0)t + Ω∗P e
−i∆P t

)
|1〉〈2|

+ ~
(

ΩSe
i∆St + Ω̃Se

i(ωS+ω1)t
)
|2〉〈3|+ ~

(
Ω̃∗Se

−i(ωS+ω1)t + Ω∗Se
−i∆St

)
|3〉〈2|.

(2.12)

Equation (2.12) reveals that the counterpropagating parts (Ω̃P , Ω̃∗P , Ω̃S and Ω̃∗S)
are oscillating at a much higher frequency (ω0 + ωP � ∆P and ω1 + ωS � ∆S)
than the other parts. These rapidly oscillating parts will average out to zero over any
appreciable amount of time. Any realistic optical pulse will have a time dependent
Rabi frequency Ω(t) that will have a small time derivative compared to the frequency
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of the optical transition, and as such we can replace the up to here assumed constant
Rabi frequencies with time dependent frequencies without loss of generality. In the
rotating wave approximation the rapidly oscillating parts are neglected, resulting in
the Schrödinger picture interaction Hamiltonian:

V (t) = ~
(
ΩP e

−iωP t
)
|2〉〈1|+ ~

(
Ω∗P e

iωP t
)
|1〉〈2|

+ ~
(
ΩSe

−iωSt
)
|2〉〈3|+ ~

(
Ω∗Se

iωSt
)
|3〉〈2|, (2.13)

which with the un-perturbed Hamiltonian, (2.2), and after a transformation to the
co-rotating frame gives the final Hamiltonian:

H(t) =
~
2

 0 ΩP (t) 0
Ω∗P (t) 2∆P ΩS(t)

0 Ω∗S(t) 2 (∆P −∆S)

 . (2.14)

The phases of the pulses can be chosen such that the Hamiltonian is real:

H(t) =
~
2

 0 ΩP (t) 0
ΩP (t) 2∆P ΩS(t)

0 ΩS(t) 2 (∆P −∆S)

 . (2.15)

The strength of the coupling of the states by the fields is determined by the Rabi
frequencies ΩP (t) and ΩS(t). The detunings are defined by

~∆P = (E2 − E1)− ~ωP ,
~∆S = (E2 − E3)− ~ωS, (2.16)

for the pump and Stokes fields respectively. For STIRAP it is mandatory that the two
laser pulses are in two-photon resonance, ie. ∆P − ∆S = 0. Taking the two-photon
resonance condition into consideration, the three instantaneous eigenstates of H(t) are

|a0(t)〉 = cos Θ(t)|1〉 − sin Θ(t)|3〉,
|a+(t)〉 = sin Θ(t) sin Φ(t)|1〉+ cos Φ(t)|2〉+ cos Θ(t) sin Φ(t)|3〉,
|a−(t)〉 = sin Θ(t) cos Φ(t)|1〉 − sin Φ(t)|2〉+ cos Θ(t) cos Φ(t)|3〉. (2.17)

Where the time dependent mixing angle Θ(t) is defined by

tan Θ(t) =
ΩP (t)

ΩS(t)
, (2.18)

and Φ(t) is given by

tan 2Φ(t) =

√
Ω2
P (t) + Ω2

S(t)

∆P

. (2.19)

We will however only be interested in eigenstate |a0(t)〉. The instantaneous eigenstates
are also known as the adiabatic states of H(t): if the system is initially in |a0(t)〉 and
evolves adiabatically (i.e. slow enough such that the system adapts its configuration)
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Figure 2.2: Graph (a) shows the Rabi frequencies of the pump and Stokes pulses; (b) the
evolution of the mixing angle, Equation (2.18); (c) the eigenvalues of the adiabatic states;
(d) the change in population from state |1〉 to |3〉. All pulses were taken as being exactly on
resonance (∆P = 0 and ∆S = 0). (Figure taken from Bergmann et al. [18])

the system will remain in state |a0(t)〉. For adiabatic evolution the pulses need to be
smooth, in addition, according to Vitanov et al. [17] a good rule of thumb is a very
large pulse area:

A =

∫ +∞

−∞
Ω(t)dt� 1. (2.20)

The instantaneous eigenenergies for the eigenstates (2.17) are

ω0(t) = 0,

ω+(t) = ∆P +
√

∆2
P + Ω2

P (t) + Ω2
S(t),

ω−(t) = ∆P −
√

∆2
P + Ω2

P (t) + Ω2
S(t). (2.21)

STIRAP is based on the zero-eigenenergy state |a0(t)〉 (see Equation (2.17)) which
has no component of the excited state |2〉 so there will be no population loss due to
radiative decay. State |a0(t)〉 is also known as a trapped or dark-state. Making use
of the counterintuitive pulse ordering, i.e. Stokes pulse before pump pulse, initially
ΩP (t)/ΩS(t) → 0 which then changes, when the pump Rabi frequency is smoothly
increased as the Stokes Rabi frequency is smoothly decreased, to ΩP (t)/ΩS(t) → ∞.
Thus |a0(t)〉 starts in state |1〉 (the initial state of the system) and then changes to state
|3〉, achieving complete population transfer into the target state (see Figure 2.2). As
long as the evolution is adiabatic the system will follow the dark-state: |a0(t)〉. Only
during diabatic evolution will the system evolve along a state that is a superposition of
the zero-eigenenergy eigenstate |a0(t)〉 and the other eigenstates |a±(t)〉. This results
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Figure 2.3: The Λ-type three-level energy scheme. States |1〉 and |2〉 of each atom in
the ensemble of N atoms are coupled by the probe field which has a detuning ∆ from being
exactly on resonance. The atom-field coupling constant that describes the strength of the
interaction between the probe and the atoms is g. Similarly states |2〉 and |3〉 are coupled by
the control field with a Rabi frequency of Ω.

in population in the short lived state |2〉. Thus we see that with the conditions of
two-photon resonance, counterintuitive pulse ordering, and adiabatic evolution, the
requirements for STIRAP are met and population transfer from state |1〉 to |3〉 can
be achieved with 100% fidelity where zero population is intermediately transferred to
state |2〉 and thus suffers no radiative loss.

2.2 EIT and the Dark-State Polariton

Electromagnetically induced transparency (EIT) is a method whereby an optically
thick (opaque) medium is rendered transparent to a weak probe laser field through
the application of a second (classical) coupling field known as the control field (on
account of controlling the opacity of the medium) [19]. EIT leads to a reduction in the
group velocity of an optical field, resulting in a way to store and retrieve optical pulses.
With the storage and high fidelity retrieval of optical pulses we have a technique for
implementing quantum memory. Once again in explaining the mechanisms behind this
we will only consider Λ-type three-level systems (Figure 2.3). Level |1〉 is the ground
state (or some other long-lived state) with an optical transition to the exited state |2〉.
State |3〉 is a long-lived state with an optical transition to |2〉. The classical pulsed
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laser field that couples states |2〉 and |3〉, called the Stokes field in STIRAP, is now
called the control field, whereas the pump laser field (coupling states |1〉 and |2〉) is
now a weak probe laser field. Herein lies the difference between STIRAP and EIT:
STIRAP refers to two fields with approximately equal strength; EIT typically refers to
the situation where there is one field that is significantly stronger than the other. The
discussion of the Λ-type three level system in STIRAP also holds true for EIT. The
Hamiltonian is still the same and all the eigenstate and eigenenergy equations are still
relevant for EIT.

2.2.1 Transparency and Slowing/Stopping a Light Pulse

As a quick explanation of the transparency phenomenon, consider the situation where
the control field is on, coupling states |2〉 and |3〉 (see Figure 2.3), and the ground state
|1〉 of the system is populated. As the probe laser is scanned over a frequency range it
will experience increasingly strong absorption as the frequency approaches that of the
transition frequency of the |1〉 → |2〉 excitation until the detuning of the probe and the
control fields are equal (two-photon resonance). At this point the system will evolve
along the dark-state |a0(t)〉, and no |1〉 → |2〉 excitations will be allowed. The medium
will then be completely transparent to the probe field. As the system approaches two-
photon resonance, there is a rapid change in the optical response of the medium. If the
control field has a constant intensity, i.e. a constant Rabi frequency Ω, the response
of the atomic ensemble to the probe pulsed laser can be given in terms of the linear
electric susceptibility spectrum of the ensemble [9]

χ (∆) = g2N
γ13 + i∆

(γ12 + i∆) (γ13 + i∆) + |Ω|2
. (2.22)

Here γij is the relaxation rate of the |i〉 → |j〉 coherence, N is the number of atoms
in the ensemble, g the atom-field coupling strength (with g2N the square of the col-
lective coupling strength between the atoms and the field), and ∆ is the single photon
detuning of the fields (two-photon resonance is assumed: ∆P − ∆S = 0, see Figure
2.3). The imaginary part of the susceptibility describes the absorption properties of
the medium. The intensity of the probe field laser leaving the medium is determined
by the transmission coefficient (T (∆)),

Itransmitted = T (∆) Iinitial, (2.23)

where
T (∆) = exp (−Im [χ (∆)] kL) , (2.24)

where L is the length of the medium and k = 2π/λ is the resonant wave number. The
real part of the susceptibility describes the dispersion properties of the medium and
determines the refractive index of the medium:

n = 1 +
1

2
Re [χ (∆)] . (2.25)
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Figure 2.4: The real part of Equation (2.22), Re [χ (∆)], describes the dispersion as a
function of the frequency detuning ∆, whereas the imaginary part, Im [χ (∆)], describes the
absorption.

As first noted by Harris et al. 1992 [20], the rapid variation in the refractive index
(see Figure 2.4) causes a reduction in the group velocity vg of the probe pulse [8, 9, 19],

vg =
c

n+ ωP (dn/dωP )

=
c

1 +
g2N(|Ω|2−γ213)
(|Ω|2+γ12γ13)2

, (2.26)

which in the ideal case where state |3〉 is a perfect meta-stable state, i.e. the dephasing
rate γ13 = 0, becomes:

vg =
c

1 + g2N/|Ω|2
, (2.27)

where g2N/|Ω|2 is referred to as the group index ng. For the case when the ratio of the
collective coupling and the control Rabi frequency (i.e. ng) is large the group velocity
can be significantly less than the speed of light in vacuum. As Ω→ 0 the group velocity
vg tends to zero, thus bringing the pulse to standstill. When γ13 6= 0 in Equation (2.26)
there will be a lower limit on vg. It is clear that the smaller the Rabi frequency of the
control field the slower the group velocity will be. If the control field Rabi frequency
is changed slowly enough it is possible to decrease the group velocity of a pulse as it
moves through the medium without causing loss of information carried by the pulse.
During the process energy is transferred from the electromagnetic field of the probe
pulse into the atoms and control field. The result is that the state of the probe pulse is
encoded into the spin states of the atoms while the photons of the probe pulse become
part of the control field. Even though vg � c, i.e. when only a small proportion of the
pulse energy remains electromagnetic, the idea of a group velocity is still useful. To
retrieve the information stored in the atomic states the process is reversed and energy
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is transferred back into the probe electromagnetic field. This is perhaps best explained
by introducing the quasiparticle, dark-state polariton.

2.2.2 Dark-State Polaritons and Quantum Memory

The dark-state polariton concept was first introduced by Mazets and Matisov (1996)
[21], and was applied to pulse propagation by Fleischhauer and Lukin (2000) [22]. To
introduce the dark-state polariton consider the pulse interaction from the viewpoint of
the atoms in the ensemble. Before the probe pulse arrives in the medium the control
field causes the dark state |a0〉 to be identical to the ground state |1〉 in which the
atoms have been initialised. The arrival of the probe pulse rotates the dark state
into a superposition of states |1〉 and |3〉 (see equations (2.17) and (2.18)). As the
probe pulse strength increases it loses energy that is transferred into the atoms and
control field. The result is that the state of the probe pulse is encoded into the spin
states of the atoms. If we assume that the probe pulse propagates in the z direction,
the spin coherence will then also be a function of position. A new quantum field
that incorporates the electromagnetic field of the probe pulse (E (z, t)) and the spin
coherence of the atomic states (σ13 (z, t)), the dark-state polariton field (Ψ (z, t)), is
defined [8, 22] according to

Ψ (z, t) = cos θ (t) E (z, t)− sin θ (t)
√
Nσ13 (z, t) . (2.28)

Another polariton, the bright-state polariton field (Φ (z, t)), is also defined to be

Φ (z, t) = sin θ (t) E (z, t) + cos θ (t)
√
Nσ13 (z, t) (2.29)

where the mixing angle θ (t) is given by

tan2 θ (t) =
g2N

Ω2 (t)
. (2.30)

The normalised slowly varying probe electric field strength is E (z, t), whilst σ13 (z, t) is
the coherence between the two lower levels |1〉 and |3〉. The bright-state polariton is of
no consequence here, as it leads to population in the excited state and thus degradation
in the quantum memory due to population decay. It is often taken that states |1〉 and
|3〉 are different spin sub-levels of the ground state, and hence σ13 (z, t) would be the
spin coherence between the states, describing a spin-wave. The dark-state polariton
field obeys the equation of motion[

∂

∂t
+ c cos2 θ (t)

∂

∂z

]
Ψ (z, t) = 0, (2.31)

which describes a shape-preserving propagation where the polariton field moves with a
group velocity vgr = c cos2 θ (t). It is clear then that as the mixing angle increases from
zero the dark-state polariton will change from being purely electromagnetic to being a
superposition of the electromagnetic and spin-wave components. A rotation of θ from
0 → π/2 results in a complete encoding of the probe pulse onto the atomic states.
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Figure 2.5: The change of the mixing angle θ (t) together with the change in the control
field Rabi frequency Ω (t) is shown in (a). The coherent amplitude of the polariton (2.28)
is plotted in (b), whilst (c) shows the electric field E (z, t) component and (d) the atomic
component σ13 (z, t) of the polariton. (Figure taken from Fleischhauer and Lukin [22])

The mixing angle can be controlled by adiabatically changing the control field Ω (t).
When the control field is decreased to zero whilst the probe pulse is in the medium
the pulse will be stopped by completely converting the probe pulse into a spin-wave
in the medium. By subsequently increasing the control field back to its maximum the
spin-wave can be changed back into an electromagnetic field and the probe pulse will
be reconstructed (see Figure 2.5). This is the proposed way in which EIT and slow
light will work as a quantum memory. The spin coherence of the atoms can have a
very slow decay rate and as such the pulse could potentially be stored for a fairly long
period of time.

Slow light due to EIT has been demonstrated in atomic vapours from as early as
1999 [6, 23], and has also been demonstrated in solid media in rare-earth ion-doped
crystals [12], where pulses were stored for up to a second. It is an active field of research
with a wide range of envisioned uses, from quantum memory [8] to telecommunications
[24].
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2.3 Solid-State: NV centre as candidate

Solid-state media are the obvious choice when trying to construct large numbers of
quantum computing devices that would be easy to maintain and to use. When con-
sidering using EIT to store quantum information carried by light in the atomic states
of an ensemble of atoms, solid-state implementations have some clear advantages over
atomic-vapour implementations: in solids there is a far higher density of interacting
atoms; the stored information does not degrade due to diffusion of the atoms during
the storage time. In gas media the spin wave becomes scrambled once the atoms have
moved significantly compared to the wave vector mismatch between the probe and the
control beams, for this reason the two beams are usually copropagating in EIT exper-
iments in gas media, thus minimising the mismatch. In solid-state implementations of
EIT the beams do not have to be copropagating. In rare-earth-metal-doped crystals
the concentration of dopant atoms can easily exceed the density of atoms in a gas by
eight orders of magnitude [25]. Nitrogen-vacancy (NV) centres in diamond have also
been considered as candidates for EIT media since their electron spins have large longi-
tudinal and transverse relaxation times. They have long longitudinal relaxation times
(T1), since there is very low coupling between the electronic charge of the NV and the
lattice vibration of the diamond crystal. They have very long transverse relaxation
times (T2) (or spin coherence) due to weak coupling to nearby 13C nuclear spins in
diamond [26]. Experiments demonstrating EIT in NV centres were first performed by
Wei and Manson [13] and later by Hemmer et al. [14]. Santori et al. showed that CPT,
an effect that is closely related to EIT can be performed in NV centres at zero magnetic
field [27] and also in single NV centres [28] in for example nanodiamonds. Storage of
light pulses for more than a second has been achieved in rare-earth ion-doped crystal
[12], but is yet to be shown for the NV centre.

2.3.1 Description of the NV centre in diamond

We describe here the basic properties of the NV centre which we suggest as a possible
system in which to implement the SCRAP protocol explained in chapter 3. We also
consider the NV centre for the implementation of a cavity QED based quantum phase
gate in chapter 5.

The nitrogen-vacancy centre in diamond is a stable naturally occurring defect
formed when a substitutional nitrogen atom is accompanied by a vacancy at a nearest
neighbour lattice site (Figure 2.6). The nitrogen-vacancy centre exists in two charge
states: the neutral NV0, and the negatively charged NV−, we will only consider the lat-
ter in this work and for brevity’s sake and conformity refer to as the NV centre. Due to
the NV centre being primarily surrounded by 12C, which has zero magnetic spin, very
long spin coherence times are observed. Ground state spin coherence times of around
50 µs have been observed at room temperature in chemical vapour deposition (CVD)
grown diamond by Kennedy et al. [30]. It was also noted that decreased concentration
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Figure 2.6: The nitrogen-vacancy centre structure. One substitutional nitrogen (N) atom
is accompanied by a vacancy (V) at the nearest neighbour lattice site. (Figure courtesy of
Carlo Bradac, Macquarie University.)

of Nitrogen in the samples resulted in longer coherence times. Moreover, recently ex-
tremely long coherence times up to 1.8 ms at 300 K were observed in isotopically rich
and ultra pure CVD diamond [31], by decreasing the concentration of the 13C isotope
which also have a spin interaction with NV centres.

The NV centre has a C3v symmetry and has a strong optical transition with a
zero-phonon line at 637 nm (1.945 eV) due to a transition between the spin triplet
states 3A and 3E. Considering the emission spectrum in Figure 2.7 one notes that
the zero-phonon line becomes quite prominent at low temperatures and the sideband
emission decreases. Since the NV’s optical transition possesses a high fluorescence
quantum yield (about 70%) and an excited state lifetime of 13 ns [32], the fluorescence
of a single NV centre can be observed, an essential requirement for many quantum
information applications.

It is only recently that some of the finer details concerning the energy levels has been
elucidated, in particular the properties of excited states and two singlet levels believed
to be between the ground and excited states have come under intense investigation. A
schematic of the currently held model for the NV’s energy level structure is presented
in Figure 2.8. The ground state spin triplet, 3A, is split by 2.88 GHz into a doublet T0X ,
T0Y (ms = ±1) and a third spin sublevel T0Z (ms = 0) in the absence of a magnetic
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Figure 2.7: The NV centre emission spectra showing the ZPL at 637 nm and the phonon
sideband extending from about 650-800 nm. Figure taken from Jelezko et al. [29]

field [34].

Recent experiments have established an infrared transition between the 1E and 1A
singlet levels [33, 35], and it is believed that the 1E level is closest to the excited 3E
states. The 1A metastable singlet state has a temperature dependent lifetime between
219 ns at 295 K and 462 ns at 4.4 K. This level configuration is in disagreement with
recent theoretical work [36, 37], which places the 1A level above the 1E level. These
finer details, however, do not affect any of the work presented here in any way.

The excited state spin triplet is split into sublevels with ms = 0 (T1Z) and sublevels
with ms = ±1 (T1X,1Y ). The lifetimes of these sublevels have recently been determined
and found to be 12 ns for T1Z and 7.8 ns for T1X,1Y in bulk diamond [38] and 23 ns for
T1Z and 12.7 ns for T1X,1Y in a nanodiamond crystal [39].

There is spin selective intersystem crossing from the excited state into the 1E singlet
with a significantly higher probability for the T1X,1Y sublevels to decay nonradiatively
(indicated by dashed lines in Figure 2.8) to 1E than the T1Z sublevel. From 1E to 1A
there is an infrared optical transition (indicated in Figure 2.8 by a solid double arrow)
as well as non-radiative decay and then finally from 1A there is non-radiative decay
into T0Z . At least this is the interpretation of Acosta et al. [33] for their observations,
and as mentioned above numerical theory studies suggests that the 1E and 1A levels
are interchanged. Irrespective of this discrepancy after a few optical excitation and
emission cycles the ground state becomes strongly spin-polarised, with the majority
of population in the T0Z (ms = 0) state and almost nothing in the T0X,Y (ms = ±1)
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Figure 2.8: Energy level diagram of a NV centre. The allowed optical transitions between
the ground (3A) and excited (3E) state sublevels are shown. The rate of the spin-selective
intersystem crossing transitions (to and from the meta-stable (1A) state) are indicated by
the thickness of the arrows. (Figure taken from Acosta et al. [33])

state [26]. The exact mechanism is not important, but that this leads to a convenient
way in which to initialise NV centres into the T0Z state is extremely convenient. By
subsequently applying an appropriate microwave pulse and magnetic field it is possible
to prepare the NV centre in any superposition of the ground states.

Another essential result of the spin selective decay path is that it is possible to
optically probe the spin state of the system since only the T0Z → T1Z transition is
visible through fluorescence: If the NV centre is in the T0z state a 637 nm laser will
excite the system to T1Z and fluorescent decay will be observed; on the other hand if
the NV centre is in one of the T0X,Y states (or a super position of them) excitation
will lead to the nonradiative decay from the excited T1X,1Y sublevels, suppressing the
fluorescence output. This effect was observed by Jelezko et al. [40] in single NV centres
and allows for convenient read-out of the electron spin quantum states. Furthermore
the fidelity of spin read-out is very high, reported by Wrachtrup et al. [26] as 95%.

NV centres have shown great promise as efficient single photon sources [41, 42], this
together with the long decoherence times of the ground states and the spin readout
possible in the NV have placed the NV centre as a prime candidate for several quantum
information applications. Notably the NV centre has been used to implement free space
quantum key distribution [43]. Furthermore the NV is being investigated as a spin
based qubit [29, 44]. NV centres in diamond nanocrystals are also being investigated
as fluorescence bio-labels [45].

NV centres have been observed in nanodiamonds down to single digit nanometers
in size [46, 47]. The linewidth of the zero-phonon line of a single NV centre in a high
purity bulk diamond can reach the life-time limited linewidth of 13 MHz [48] but this
is broader in NV’s observed in nanodiamonds ∼16 MHz [49].
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2.3.2 Inhomogeneous broadening in solid media

Inhomogeneous broadening of the spectral lines of a solid medium occurs because of
the spread in resonance frequencies due to local perturbations in the crystal. Spatially
varying local potentials are caused by strains which form due to various defects in
the crystalline structure. In Johnsson and Mølmer [25] a thorough discussion on the
limitations that inhomogeneous broadening places on EIT in solids is presented, just the
main conclusions of which are given here. W13 and W12 are the inhomogeneous widths
of the |1〉 → |3〉 and |1〉 → |2〉 transitions respectively. In solids the inhomogeneous
broadening of the excited state (W12) is several orders of magnitude greater than that
of the ground state (W13).

For the system to evolve along the dark state polariton (2.28) it is required that

Ω2 (t) & 3W12W13, (2.32)

i.e. the control field strength must always dominate the inhomogeneous broadening.
According to Equation (2.26) and the aforementioned requirement the minimum ve-
locity of the dark state polariton occurs when Ω2 (t) ≈ W12W13 and is given by

vg =
cW12W13

W12W13 + g2N
. (2.33)

A near zero velocity can thus only be attained if g2N � W12W13. In order to decrease
the time required to stop the probe pulse it is advantageous to have the control field
at a strength such that the probe pulse is in the slow group velocity regime as soon
as it enters the medium, i.e. W12W13 � Ω2 (0) � g2N . Good approximations of the
optical and spin inhomogeneous broadenings observed in rare-earth doped materials
gives a typical value of W12W13 ∼ 1015 Hz2. For NV centres values of W12 = 375 GHz
and W13 = 2.5 MHz have previously been used [10], resulting in W12W13 ∼ 1018 Hz2.
The inhomogeneous broadening in NV centres thus dictates that Ω2 (0) ∼ 1020 Hz2,
and that g2N ∼ 1022 Hz2. These values for Ω2 (0) and g2N are within reason since the
it is possible to have large density of NV centres in the diamond lattice. Johnsson and
Mølmer [25] suggest that W12 can be reduced by using spectral hole-burning techniques,
before the probe pulse is applied, to select a subset of the centres within a specific
spectral range. This is done by pumping all the centres in a broad frequency range to
passive spectator levels, thus leaving only those with their transitions in the desired
frequency range prepared in state |1〉. This solution has the drawback that the number
of interacting centres N will be reduced and as such the collective coupling strength
g2N will also be reduced. The storage time of the pulse is limited by W13 because the
phases of different centres evolve at different speeds due to inhomogeneity. Thus after
a time 1/W13 the stored information will no longer be coherent. Something that is not
considered in [25] is that due to the inhomogeneous broadening of the ground state
W13, some centres will not be in two-photon resonance, thus affecting the effectiveness
of the EIT process. Those centres are essentially prevented from following the dark-
state during evolution.

In the following chapter a method (SCRAP) to overcome the problem of two-photon
off-resonance in adiabatic population transfer is discussed. The aim is to investigate
the possibility of transferring this method to EIT and hence slow light.
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3
Optimised Stark-shift-chirped rapid

adiabatic passage

Recently a variation of STIRAP (an adiabatic passage technique which as seen in sec-
tions 2.1 and 2.2 is closely related to EIT), namely Stark-shift-chirped rapid adiabatic
passage (SCRAP), has been shown to perform coherent population transfer with a high
fidelity for a range of different detunings in a Λ-type three-level system [16]. That is,
SCRAP is far more robust when there is large inhomogeneous broadenings present in
the ensemble. In SCRAP, a separate (pulsed) field is added to the traditional STI-
RAP fields to induce AC Stark shifts in the energy levels and thus bring the required,
initially off-resonant, transitions on resonance at specific times. We propose that a
quantum version of SCRAP could surmount some of the limitations that inhomoge-
neous broadening places on “slow” light in solid state systems. In this chapter we test
this hypothesis and find that indeed we can engineer the pulses of the SCRAP protocol
resulting in a protocol robust against large unknown static shifts in the system’s energy
levels. We first introduce the standard SCRAP protocol in a three-level system.

We then make use of optimum control techniques somewhat similar to Khaneja et
al. (2005) [50], in order to optimise the standard SCRAP pulses so as to minimise the
decrease in fidelity brought on by inhomogeneous broadenings of the transitions. To
quantify this we simulate the SCRAP process population transfer between two long
lived ground states which experience large detunings due to inhomogeneous broadening.
The optimisation methods employed are described in section 3.3.

Our main result is that we can improve the average fidelity of population transfer
over a wide range of detunings which effect both the ground to excited state detuning
and the ground to target state detuning (two-photon detuning). The optimal con-
trol pulses are thus tailored to provide effective state transfer (and thus EIT), in the
presence of large inhomogeneous broadening. The modelled results obtained for the
optimised pulses are given in section 3.4.

21
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|1〉

|2〉

|3〉

∆P ∆S

Γ

Spontaneous
emission

P S

Figure 3.1: The Λ-type three-level energy scheme. States |1〉 and |2〉 are coupled by the
pump pulse P which has a detuning ∆P from being exactly on resonance. Similarly states
|2〉 and |3〉 are coupled by the Stokes pulse S which has a detuning ∆S . State |2〉 is short
lived with spontaneous emission occurring out of the system

3.1 SCRAP

The Stark-chirped rapid adiabatic passage (SCRAP) technique was first proposed by
Yatsenko et al. [51], and implemented experimentally by Rickes et al. [52] in two-level
systems as an efficient method for complete population transfer between two states. It
was later shown by Rangelov et al. (2005) [16], that the SCRAP technique can also be
used to achieve complete population transfer through adiabatic passage in a three-level
system, thus providing an alternative to STIRAP.

The Λ-type three-level system (Figure 3.1), is comprised of two long lived ground
states and a single excited state (|2〉). For the purpose of complete population transfer
we will assume that one of the ground states will be initially populated (|1〉), and the
other will be the target state (|3〉). In general, the excited state has a short lifetime
and STIRAP is effective at complete population transfer since it avoids populating the
excited state by having the system evolve along a dark-state (see section 2.1). In both
SCRAP and STIRAP states |1〉 and |2〉 are coupled by the “pump” laser pulse whilst
states |3〉 and |2〉 are coupled by the “Stokes” laser pulse. The frequencies of these
two classical laser fields are typically not exactly on resonance with their respective
transitions, and have detunings ∆P and ∆S for the pump and Stokes lasers respectively.
Herein lies the advantage that SCRAP has over STIRAP: STIRAP requires exact two-
photon resonance (∆P − ∆S = 0) in order to be effective, whereas SCRAP has a
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much larger tolerance for two-photon detuning. Another advantage of SCRAP over
STIRAP is that Stark shifts induced by a strong pump or Stokes field (as in multi
photon transitions) has a much smaller effect on the final population in the target
state for SCRAP. The pump or Stokes fields can induce Stark shifts in one of the
ground states, and thus destroy the two-photon detuning that STIRAP relies on [16].
The defining difference between STIRAP and SCRAP is that in SCRAP a third strong
far-off-resonance laser pulse, the Stark pulse, is also applied. The Stark pulse induces a
Stark shift in the energy of the excited state (essentially leaving the energy of the lower
levels unchanged), thus bringing the initially off-resonant transitions into resonance.
The Stark shift causes the diabatic energy of state |2〉 to cross those of states |1〉 and |3〉,
allowing population transfer from |1〉 to |2〉 and then to |3〉, completing the population
transfer. It is thus clear that the diabatic energies of state |1〉 and |2〉 must cross before
the diabatic energies of states |2〉 and |3〉 cross. It is also clear that decay out of the
excited state will play some role in SCRAP and as such should be taken into account
in the model, as opposed to STIRAP where decay could be neglected without affecting
the outcome of the model.

In the rotating wave approximation, the Hamiltonian of the Λ-type three-level sys-
tem depicted in Figure 3.1 is

H(t) =
~
2

 0 ΩP (t) 0
ΩP (t) 2 (∆P + S2 (t))− iΓ ΩS(t)

0 ΩS(t) 2 (∆P −∆S)

 , (3.1)

where ΩP (t) and ΩS(t) are respectively the pump and Stokes laser field Rabi frequencies
and S2 (t) is the Stark shift in the energy of the excited energy level |2〉 due to a third
far-off-resonance laser pulse (Stark pulse). For the examples used here it is assumed
that the Stark shift is negative, S2 (t) < 0. The detunings of the pump and Stokes
fields are ∆P and ∆S respectively. The imaginary term iΓ describes the losses from
|2〉 due to spontaneous radiative decay out of the three-level system. Dephasing of
state |3〉, is not included in this model since it is assumed that the pulse durations are
much shorter than the decoherence times. This assumption is validated by noting that
the decoherence time for NV centres, for example, can be of the order of hundreds of
microseconds at room temperature [31]. The Stark shifts of the energy levels for states
|1〉 and |3〉 are not included here because Stark shifts in ground and meta-stable states
tend to be much smaller than those of excited states.

The adiabatic eigenstates of Hamiltonian (3.1) are (for k = 1, 2, 3)

βk (t) =
1

Nk (t)

[ek (t)−∆P −∆S] ΩP (t)
2ek (t) [ek (t)−∆P −∆S]

ek (t) ΩS (t)

 , (3.2)

where ek (t) are the eigenvalues (which are too cumbersome to present here) associated
with each eigenstate. See [53] for full algebraic general solutions to the adiabatic
transfer processes in three-level systems.

In Rangelov et al. (2005) [16], Gaussian pulse shapes were used for all the pulses,
with identical peak values Ω0 for the Rabi frequencies of the pump and Stokes pulses,

Ωp (t) = Ω0e
−(t−τp)2/T 2

P , (3.3)
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Ωs (t) = Ω0e
−(t−τs)2/T 2

S , (3.4)

−S2 (t) = S (t) = S0e
−t2/T 2

St . (3.5)

The peak of the Stark pulse (maximum Stark shift of S0) is taken to be at t = 0, and
as such the pump and Stokes pulses peak at times τp and τs respectively. The pulse
durations are determined by TP , TS and TSt, where it was taken that the pump and
Stokes pulses have equal duration TP = TS and the Stark pulse has twice their duration
TSt = 2TP . The unit of time was defined as TP and the unit of frequency as 1/TP .
These Gaussian pulses served as exemplars for the initial pulses used in our optimising
routine, see section 3.3.

The diabatic energies of the states are

E|1〉 = 0, (3.6)

E|2〉 = 2 (∆P + S2 (t)) , (3.7)

E|3〉 = 2 (∆P −∆S) , (3.8)

which with the condition that the Stark shift is negative (S2 (t) < 0), dictates that the
diabatic energy of state |2〉, E|2〉, will only cross those of states |1〉 and |3〉 when

S0 > ∆P > 0, (3.9)

and
S0 > ∆S > 0. (3.10)

With the condition that the Stark shift is negative two distinct situations can arise:
the two-photon detuning can be negative

∆P > 0 > (∆P −∆S) > ∆P − S0, (3.11)

or positive
∆P > (∆P −∆S) > 0 > ∆P − S0. (3.12)

In the examples used here to explain the SCRAP technique, and for the pulse opti-
misation, only the first case (3.11), where the two-photon detuning is negative will be
presented (ie. ∆P < ∆S). In the case that the two-photon detuning is positive (3.12),
the order of the pulses in standard SCRAP must be run in reverse to what will be
shown here [16].

Under the conditions of Equations (3.9), (3.10), and that of Equation (3.11), in
order to perform three-state SCRAP, as is shown in [16], both the pump and the
Stokes pulses should precede the Stark pulse (Figure 3.2). As can be seen in Figure
3.2 the Stark pulse first causes a crossing of the diabatic energies (3.6)-(3.8) of states
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Figure 3.2: The top frame shows the ordering of the pulses: pump and Stokes before
the Stark pulse. In the lower frame the time evolution of the diabatic (dotted) and adiabatic
(solid) energies of the Hamiltonian (in units of ~) are shown. The arrows from the left shows
evolution when the pump and Stokes precedes the Stark pulse, whilst arrows from the right
shows evolution when the Stark pulse occurs first. (Figure taken from Rangelov et al. [16])

|1〉 and |2〉 at time t−12, and then thereafter a crossing of the diabatic energies of states
|2〉 and |3〉 at time t−23. With the pump and Stokes pulses being timed to coincide with
the correct crossings, the adiabatic energies follow a path such that the population
starting in state |1〉 ends in state |3〉, with only a small transient population in state
|2〉 during the transfer. If the pump and Stokes pulses were to occur after the Stark
pulse, states |2〉 and |3〉 would be connected first and then states |2〉 and |1〉, which
would not allow population to transfer from state |1〉 to |3〉. Figure 3.3 shows how the
transient population can be minimised by slightly changing the timing of the pump
and Stokes pulses relative to the Stark pulse. Analytic results and detailed reasoning is
given in [16]. The pump pulse causes a repulsion between the adiabatic energies e1 (t)
and e2 (t), which decreases the energy gap between e2 (t) and e3 (t). This causes an
increased probability of non-adiabatic transitions of the population from state β2 (t)
(which is the adiabatic transfer state) to state β3 (t). These non-adiabatic transitions
will cause an increase in the population in the fast decaying state |2〉 (shown in the
bottom frame of Figure 3.3). It is clear then that the best option is to have the Stokes
pulse precede the pump pulse. The order of the pulses are thus similar to that for
STIRAP, but for different reasons.
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Figure 3.3: The top frames show the orderings of the pulses. In the middle frames the
time evolution of the diabatic (dotted) and adiabatic (solid) energies of the Hamiltonian are
shown (in units of ~). The heavy line is the actual path the population follows (adiabatic
eigenstate β2(t)). The bottom frames show the evolution of the population in the diabatic
states. The right most setup with the Stokes pulse preceding the pump pulse minimises the
population in the short-lived excited state |2〉. (Figure taken from Rangelov et al. [16])

Figure 3.4 shows contour plots of the population in the target state |3〉 as a function
of the single-photon (∆P ) and two-photon (∆P − ∆S) detunings. For Figure 3.4 the
pulses have the ordering such that the pump pulse is preceded by the Stokes pulse as
the Stark pulse rises. This minimises the population in state |2〉 for the chosen pulse
parameters. Even with population loss from state |2〉 there is a large area with a high
fidelity of population transfer. When the two-photon detuning is zero (∆P −∆S = 0)
there is a band of very high fidelity transfer for a very large range of single-photon
detunings ∆P . This feature is identified with the STIRAP process (see inset in Figure
3.4). Even with high probability of loss from state |2〉 this band will be unaffected as
long as the transfer is adiabatic.

Our goal is to achieve efficient state transfer for as wide a variety of detunings as
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Figure 3.4: The fidelity for a range of detunings, using the original Gaussian pulses for
SCRAP (shown as the solid lines in Figure 3.7), with S0 = 200/TP , Ω0 = 50/TP , TS = TP ,
TSt = 2TP , τp = −TP , τs = −2TP . The decay out of state |2〉 was Γ = 1/Tp. The pulses
are ordered as to minimise the population in state |2〉. The inset shows the fidelity when the
Stark pulse is switched off, that is the standard STIRAP technique is being performed. It is
clear that STIRAP requires two-photon resonance (∆P −∆S = 0).

possible, for which SCRAP is the ideal technique. The population transfer for the ideal
situation with no decay, and using pulse parameters out of [16] is shown in Figure 3.5.
For a more detailed explanation of three state SCRAP please refer to section III in
Rangelov et al. (2005) [16].

3.2 SCRAP vs STIRAP

When comparing the usefulness of STIRAP and SCRAP the first obvious difference
that has already been mentioned is the absolute reliance of STIRAP on two-photon
resonance (∆P −∆S = 0) between the pump and Stokes fields, where as SCRAP has
no such reliance, see Figure 3.4. Furthermore Stark shifts induced by the pump or/and
Stokes lasers can prevent two-photon resonance from being possible. We have assumed
that these Stark shifts are negligible, which is true only of single-photon transitions.
When the pump and Stokes transitions are multiphoton transitions the induced Stark
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Figure 3.5: The evolution of the population in the 3-state-system (state |1〉 solid line, |2〉
dashed line and |3〉 dash-dotted line) where the pulses used were the original Gaussian with
the following parameters: ∆P = 30/TP , ∆S = 45/TP , S0 = 200/TP , Ω0 = 50/TP , TS = TP ,
TSt = 2TP , τp = −TP , τs = −2TP . There was no decay out of state |2〉, (Γ = 0).

shifts can, in general, no longer be neglected. For example when the transition between
the ground state |1〉 and the excited state |2〉 is a multiphoton transition the pump
field induces a Stark shifts S21(t) and S31(t). The effects of such a pump field induced
Stark shift on the final population of the target state |3〉 is presented in Rangelov et
al. [16]. If we include pump-induced Stark shifts the Hamiltonian 3.1 becomes:

H(t) =
~
2

 0 ΩP (t) 0
ΩP (t) 2

(
∆P + S2 (t) + SP21 (t)

)
− iΓ ΩS(t)

0 ΩS(t) 2
(
∆P −∆S + SP31 (t)

)
 , (3.13)

The Stark shift SP21 is less significant and is taken as zero. The pump-induced Stark shift
is directly proportional to the laser intensity and hence also to the pump Rabi frequency
Ωp (t), thus SP31(t) = σΩP (t). In Figure 3.6 a plots of the target state (|3〉) population
as a function of the peak pump Rabi frequency Ω0 is given for several values of σ for
both STIRAP and SCRAP. With σ = 0 there is no induced Stark shift and STIRAP is
clearly superior, requiring a smaller peak Rabi frequency in order to obtain complete
population transfer. With σ 6= 0 STIRAP does not deliver complete population transfer
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Figure 3.6: Final target-state population P3 vs the peak Rabi frequency Ω0 for STIRAP
(S0 = 0, ∆P = ∆S = 0) and SCRAP (S0 = 200/TP , ∆P = 50/TP , ∆S = −25/TP ). Three
cases of different pump-induced Stark shift SP31(t) = σΩP (t) of state |3〉 with respect to
state |1〉 are shown with σ = 0, 1, and2. For all cases the other interaction parameters are
τP = −TP , τS = −2TP , TSt = 2TP , TS = TP , Γ = 0.

for any peak Rabi frequency, whereas SCRAP still has the desired result with P3 = 1 for
large enough Ω0. SCRAP clearly has a huge advantage over STIRAP when multiphoton
transitions are involved during adiabatic population transfer.

Furthermore Chang et al. [54] investigated SCRAP as a method to achieve fine state
selectivity within multilevel structures and adiabatic passage of quantum superposition
states. The system under consideration was a six level λ system where each of the levels
in the standard λ level configuration is replaced by a doublet. In such a system each
of the two ground state doublets can function as a qubit, creating a two-qubit space.
It is found that by using SCRAP, population can be driven from any of the states into
any other state, achieving this with STIRAP would require fine frequency control of
the pulses. SCRAP allows the adiabatic passage of arbitrary superposition states from
the one doublet to the other.
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3.3 Optimisation through optimal control

The above mentioned SCRAP process has the advantage that it can tolerate large
two-photon detunings, but unlike STIRAP it suffers from decay out of state |2〉. In
this section we will use an optimisation technique, based on the Gradient Ascend Pulse
Engineering (GRAPE) algorithm by Khaneja et al. (2005) [50], to optimise the transfer
fidelity for a set of detunings. The state of the three level system is characterised by
the density operator ρ (t) with the Liouville-von Neumann equation of motion

ρ̇ (t) = −i

[(
H0 +

m∑
k=1

uk (t)Hk

)
, ρ (t)

]
. (3.14)

H0 is the free evolution Hamiltonian (containing all the terms not dependant on the
control fields, e.g. the decay −iΓ) and the Hk are the Hamiltonians corresponding to
the m control fields (in the case of SCRAP these are the Stokes, pump and Stark fields).
u (t) = (u1 (t) , u2 (t) , . . . , um (t)) is a vector of control amplitudes, one for each control
Hamiltonian. We discretise the transfer time T into N steps of length ∆t = T/N ,
and assume that the amplitude for each control field is constant during each time step.
Instead of optimising these amplitudes directly for each time interval, as described in
[50], we define each control field amplitude in terms of q Gaussians,

uk (j) =

q∑
n=1

hn,k exp
[
− (j∆t− τn,k)2 /σ2

n,k

]
, k ∈ {1, . . . ,m} (3.15)

that sum to create the pulse for the specific control field, and optimise the parameters
of these Gaussians. The aim is to find values for the parameters (hn,k, τn,k, σn,k) that
will, given the initial density operator ρ (0) = ρ0, maximise the overlap of the density
operator after a time T , ρ (T ), with a target density operator C. The overlap is
measured by the standard inner product, thus the performance index Φ0 is given by

Φ0 = 〈C|ρ (t)〉. (3.16)

During each time step j the evolution of the system is given by the propagator

Uj = exp

[
−i∆t

(
H0 +

m∑
k=1

uk (j)Hk

)]
. (3.17)

The performance index can then be written as

Φ0 = 〈U †j+1 . . . U
†
NCUN . . . Uj+1︸ ︷︷ ︸
λj

|Uj . . . U1ρ0U
†
1 . . . U

†
j︸ ︷︷ ︸

ρj

〉. (3.18)

From Equation (12) in [50] we have that the gradient of the performance index with
respect to the control field amplitude is

δΦ0

δuk (j)
= −〈λj|i∆t [Hk, ρj]〉, (3.19)
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but we are interested in the gradient with regard to hn,k, τn,k and σn,k:

δΦ0

δhn,k
=

N∑
j=1

[
δΦ0

δuk (j)
× δuk (j)

δhn,k

]

=
N∑
j=1

−〈λj|i∆t [Hk, ρj]〉×

exp
[
− (j∆t− τn,k)2 /σ2

n,k

]
, (3.20)

and similarly

δΦ0

δτn,k
=

N∑
j=1

−〈λj|i∆t [Hk, ρj]〉 ×
2 (j∆t− τn,k)

σ2
n,k

×

hn,k exp
[
− (j∆t− τn,k)2 /σ2

n,k

]
, (3.21)

and

δΦ0

δσn,k
=

N∑
j=1

−〈λj|i∆t [Hk, ρj]〉 ×
2 (j∆t− τn,k)2

σ3
n,k

×

hn,k exp
[
− (j∆t− τn,k)2 /σ2

n,k

]
. (3.22)

The performance Φ0 increases if we choose

hn,k → hn,k + ε
δΦ0

δhn,k
, (3.23)

with ε a small step size, and similarly for τn,k and σn,k.
We made use of a Matlab routine “minFuncBC”, written by Mark Schmidt (http:

//www.cs.ubc.ca/~schmidtm/Software/minFunc.html), to perform the final optimi-
sation step (3.23). The “minFuncBC” routine makes use of a quasi-Newton method,
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, and accepted as input Φ0 and

the vector of derivatives with respect to the optimising parameters,
[
δΦ0

δhn,k
, δΦ0

δτn,k
, δΦ0

δσn,k

]
.

3.4 Results

In order to optimise the pulses for as large a detuning space as possible a number of
points in the detuning space was used. An initial single point in the detuning space
was chosen by searching for the detuning point with optimised pulses that performed
the best over the whole chosen detuning space. This entailed calculating the fidelity,
using Equation (3.16), for a grid of points in the 2D detuning space (∆P − ∆S,∆P ),
and then taking the average. Once this starting point (d = 1) was found a second point
(d = 2) would be chosen by searching for the second point that, together with the first,
would result in the best optimised pulses. Additional points are added to this set until

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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n 1 2 3 4 5

τn,k τk τk − 0.15Tk τk + 0.15Tk τk − 0.4Tk τk + 0.4Tk
σn,k

√
0.2Tk

√
0.2Tk

√
0.2Tk

√
0.25Tk

√
0.25Tk

n 6 7 8 9

τn,k τk − 0.55Tk τk + 0.55Tk τk − Tk τk + Tk
σn,k

√
0.2Tk

√
0.2Tk

√
0.32Tk

√
0.32Tk

Table 3.1: The parameters for each of the 9 Gaussians that constitute each of the pulses.
The amplitudes of the Gaussians for a given pulse were all equal: hn,P = hn,S = 0.23Ω0 and
hn,St = 0.23S0.

the enlarging of this set did not result in better pulses (this resulted in d detuning
points used for optimisation). The total performance function used for evaluating the
efficiency (average fidelity) of the pulses during the optimisation was taken to be the
average of the performance functions (3.16) evaluated at each of the d detuning points,

Φ =
1

d

d∑
x=1

Φ0 (∆x
P ,∆

x
S) . (3.24)

The gradients required for the optimisation were taken to be the average of the gradients
over the set of d detuning points,

δΦ

δhn,k
=

1

d

d∑
x=1

δΦ0 (∆x
P ,∆

x
S)

δhn,k
, (3.25)

and similarly for τn,k and σn,k.
For the initial pulses used in our optimal control routine we used 9 Gaussians

of equal amplitude to approximate each of the original pulse shapes (3.3), (3.4) and
(3.5). That is, in Equation (3.15), q = 9 and k ∈ {P, S, St} (the probe, Stokes and
Stark fields). The parameters of these initial Gaussians are given in Table 3.1. The
original pulses (solid lines in Figure 3.7) had the following parameters: S0 = 200/TP ,
Ω0 = 50/TP , TS = TP , TSt = 2TP , τP = −TP , τS = −2TP , τSt = 0.

It is always possible to increase the success of STIRAP and SCRAP by increasing
the maximum Rabi frequency Ω0. However in SCRAP diabatic evolution is required
after the Stark pulse peak, thus placing an upper limit on the maximum Rabi frequency
(see Equation(26) in [16]). Furthermore in every experiment there will be physical
limits to the maximum Rabi frequency achievable. Once this limit is reached we can
then go further to control the specific pulse shapes for both STIRAP and SCRAP to
maximise the transfer. To thus provide a fair basis for comparison between STIRAP,
SCRAP and the optimised SCRAP we fix identical maximum Rabi frequencies and
adjust the pulse shapes. The maximum of the optimised pulses were constrained to
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Figure 3.7: The original Gaussian pulses (solid lines) with S0 = 200/TP , Ω0 = 50/TP ,
TS = TP , TSt = 2TP , τp = −TP , τs = −2TP . The dashed lines are the pulses optimised for
the detunings indicated in Figure 3.8 by the white dots.

that of the original pulses (S0 = 200/TP , Ω0 = 50/TP ). Furthermore the optimisation
was constrained to prevent the optimised pulses from becoming too narrow by setting
the lower bound on the width of the pulses to 50% of the original pulse width. The
optimised pulses obtained numerically are shown as the dashed lines in Figure 3.7. It
is interesting to note that the biggest change was in the duration of the Stark pulse.
This has the effect that the transfer is more rapid, with the result that there is less
decay out of the excited state. The pump and Stokes pulses on the other hand have
slightly larger areas.

The optimised pulses were then used to evaluate the fidelity of the population
transfer from state |1〉 to state |3〉 for a range of detunings, keeping in mind that the
chosen pulse ordering restricts the choice of detunings (3.11). As can be seen from
Figures 3.4 and 3.8 the total “area” of detunings where population transfer is at all
possible (the parts that are not black) is greatly increased when using the optimised
pulses. The efficiency of the pulses can be gauged in a number of ways:

1. Measuring the normalised “area” in detuning space (the area of the whole figure
is unity) where the pulses result in a population transfer fidelity greater than 0.8.



34 Optimised Stark-shift-chirped rapid adiabatic passage

200

0
0-200

F
id

el
it

y

∆
P

(i
n

u
n

it
s

of
1/
T
P

)

∆P −∆S (in units of 1/TP )

Figure 3.8: The fidelity for a range of detunings, using SCRAP pulses optimised for the
detunings indicated (white circles) (d = 3). The pulses used to generate this figure are the
optimised pulses shown as the dashed lines in Figure 3.7. The decay out of state |2〉 was
Γ = 1/Tp. The inset is a reproduction of Figure 3.4, where the standard SCRAP pulses
were used and is included here for easy comparison between the population transfer results
of optimised and un-optimised SCRAP.

For the original SCRAP pulses Aori>0.8 = 0.131, whilst for the optimised pulses
Aopt>0.8 = 0.178 was obtained, an increase of 35.5%.

2. Measuring the average fidelity over the whole detuning space, i.e. the sum of
the fidelities for each point in the grid that makes up Figure 3.4 and Figure 3.8,
divided by the number of grid points. For the original SCRAP pulses F ori

av =
0.219, whilst for the optimised pulses F opt

av = 0.321, an increase of 46.6%.

3. In Figure 3.9 a plot of the percentage increase for a grid of points in the detuning
space is presented. The log10 of the percentage increase is used since some points
had an initial fidelity of virtually zero and ended with a huge percentage increase
of ≈ 1023%. The area depicted by the red line is the fidelities with a significant
value obtained with the optimised SCRAP pulses.

When performing state transfer with SCRAP in an inhomogeneously broadened
ensemble it would be important to take into account the profile of the inhomogeneous
broadening in order to tailor the optimisation to the problem. This would be done
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Figure 3.9: The log10 of the percentage increase in fidelity between standard SCRAP
(Figure 3.4) and optimised SCRAP (Figure 3.8) for each point in the detuning space. The
fidelities for optimised SCRAP that are appreciably different from 0 are traced by the red
line.

by picking detuning points (∆x
P ,∆

x
S) to optimise for from within the zone where the

highest fidelity is required.

3.5 Conclusions

It is clear that Stark-shift Chirped Rapid Adiabatic Passage (SCRAP) is a useful
process to employ when trying to overcome inhomogeneous broadening of energy levels
in a system undergoing state transfer. SCRAP, unlike STIRAP, does not require exact
two-photon resonance and it is because of this property that SCRAP is relatively
insensitive to inhomogeneous broadening and AC-Stark shifts induced by the pump or
Stokes lasers.

STIRAP is an adiabatic passage technique that is closely related to EIT, one of
the principal ways of slowing and stopping light pulses within a medium. It should
in principle be possible to implement a version of EIT with an additional Stark-shift
inducing pulse that operate in a way similar to SCRAP, with the same advantages of
SCRAP for inhomogeneously broadened media. Translating and implementing SCRAP
in the quantum domain would require that the pump pulse be replaced by a quantum
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probe field carrying quantum information that is to be stored in the spin coherence
of the atomic system. In solid state systems inhomogeneous broadening is far more
severe than in atomic molecular systems. As mentioned in section 2.3.2 pulse storage
time is limited by the different dephasing rates for each centre implied by the ground
state inhomogeneous width.

In summary we have shown that by using an optimum control technique reminiscent
of that used by Khaneja et al. [50] standard SCRAP pulses can be optimised so that a
larger inhomogeneous broadening can be compensated for, thus increasing the overall
fidelity of state transfer in an inhomogeneously broadened medium.



4
Quantum phase gate schemes

Photons are obvious candidates for the implementation of quantum information pro-
cessing systems. They are robust against decoherence and single-qubit operations are
easy to implement. Lloyd [55] showed that nearly any two-qubit gate, together with
single qubit gates, complete the universal set of gates required for quantum comput-
ing [56]. In optical quantum computing the two-qubit gates considered are usually the
controlled-phase gate (CZ and also referred to as C-sign or CPHASE) or the controlled-
NOT (CNOT) gate. These two-qubit gates are much more of a challenge to implement
than the single qubit gates due to the extremely weak interaction between photons.
There are two approaches to implement an optical quantum phase gate (QPG): the
first (described in section 4.1) was introduced by Knill, Laflamme and Milburn (the
KLM scheme) [1], and is a probabilistic measurement based scheme. That is, suc-
cessful execution of the gate is heralded by a measurement that has a probabilistic
outcome. The second scheme (described in section 4.2) employs extremely large cross-
Kerr nonlinearities to achieve strong photon-photon interactions and hence can realise
a conditional phase shift of the fields required for the thus implementation of a phase
gate. Such large cross-Kerr optical nonlinearities are typically very difficult to achieve
in physically realistic systems. In section 4.3 we describe a third scheme which is very
similar to the KLM scheme except that the probabilistic measurements in the KLM
scheme are replaced by quantum nondemolition measurements which are performed
with the aid of weak cross-Kerr interaction. This scheme is nearly deterministic and
relies on extremely good single photon detectors.

37
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|ψb〉
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|Ψout〉
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Figure 4.1: Circuit diagram for the KLM scheme CZ gate. The gate is comprised of two
50:50 beam splitters η1 and η2 (that is they have transmission coefficients equal to 1/

√
2)

and two nonlinear sign flip gates (NS). The output state |Ψf 〉 is not necessarily a separable
state (i.e. it is an entangled state).

4.1 KLM gate using linear optics

The Knill, Laflamme, Milburn (KLM) [1] scheme is based on linear optics only, and
makes use of the inherent nonlinearity of measurement and single photon generation in
order to realise the necessary two-qubit operations. In order to efficiently integrate a
KLM gate into a quantum circuit fast feedforward is required. The specific two-qubit
gate implemented by the KLM scheme is the conditional sign flip gate (C-sign) which
is also known as a CZ gate. The CZ gate is defined by the transformation

|a〉 |b〉 → (−1)ab |a〉 |b〉 , (4.1)

where a, b = {0, 1} are the Fock states of individual photonic modes, and the CZ
gate is a maximally-entangling gate. That is, it is possible to prepare two qubits in
a maximally entangled state using a CZ gate. The KLM CZ gate is performed by a
circuit comprised of two 50:50 beam splitters (BS) and two nonlinear sign flip (NS)
gates as depicted in Figure 4.1. The working of these two elements of the KLM CZ
gate is described in the next section. The two input qubits are described by the states
|ψa〉 and |ψb〉. Considering the transformation (4.1) performed by the CZ gate it is
clear that if and only if both qubits are in state |1〉 will the sign of the output state
be different from the input state. The encoding in the figure is such that if there is a
photon present in mode a1 (i.e. |1〉a1 ⊗ |0〉a2) then the logical state of the first qubit is
|ψa〉 = |0〉a and if there is a photon in mode a2 (i.e. |0〉a1 ⊗ |1〉a2) then the logical state
is |ψa〉 = |1〉a. This is also known as a dual-rail encoding. Similarly a single photon in
either the b1 or b2 modes equate to logical states |0〉b or |1〉b of the second qubit. Of
course in general |ψa〉 and |ψb〉 are superpositions of states.

The detailed explanation of the functioning of the KLM CZ gate is presented in
section 4.1.2. A CZ gate is easily transformed into a CNOT gate by placing Hadamard
gates (which are single-qubit gates) on the target qubit before and after the CZ gate.
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a

b d

c

T

Figure 4.2: Diagram of a beam splitter with input modes a and b and output modes c
and d. The beam splitter is characterised by its transmission coefficient T .

Single-qubit gates are easy to execute on optical qubits (performed with beam splitters
and phase shifter (wave plates) optical elements) and as such if one can perform a
CZ gate a CNOT gate is available. To see how the CZ gate works we will look at its
constituent elements one at a time.

4.1.1 KLM gate components

First we consider the beam splitter optical element, depicted in Figure 4.2. The reflec-
tion and transmission coefficients (R and T respectively) of a symmetric beam splitter
satisfy the following conditions:

|R|2 + |T |2 = 1 and RT ∗ + TR∗ = 0. (4.2)

The input modes a and b are then related to the output modes c and d by

â = Rĉ+ iT d̂ (4.3)

b̂ = iT ĉ+Rd̂. (4.4)

The 50:50 beam splitter divides the field from an input mode evenly between the two
output modes thus resulting in reflection and transmission coefficients T = R = 1/

√
2.

Considering only a single input mode a carrying a single photon the 50:50 beam splitter
has the following effect:

|1〉a = â† |0〉a
→ 1/

√
2
(
ĉ† + d̂†

)
|0, 0〉cd

= 1/
√

2 (|1, 0〉cd + |0, 1〉cd) , (4.5)

where â†, b̂†, ĉ†, d̂† are the creation operators for the respective modes. The single input
photon is now in a superposition of being in the two output modes. The KLM scheme
however has two modes as inputs for each of the beam splitters with the possibility of
a photon in each of the input modes. With a single photon in each of the input modes
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Figure 4.3: Circuit diagram for the KLM scheme NS gate, consisting of three beam
splitters and two ancilla modes. The gate is successfully implemented when a photon is
detected at detector A, and no photon at detector B.

a and b a 50:50 beam splitter results in a superposition of two-photon states in the
output modes c and d:

|1, 1〉ab = â†b̂† |0, 0〉ab (4.6)

→ 1/2
(
ĉ† + d̂†

)(
ĉ† − d̂†

)
|0, 0〉cd

= 1/2
(
ĉ†2 − d̂†2

)
|0, 0〉cd

= 1/
√

2 (|2, 0〉cd − |0, 2〉cd) . (4.7)

This bunching of the photons into either one of the two output modes is called the
Hong-Ou-Mandel effect [57] and is due to destructive interference between the two
probability amplitudes of the |1, 1〉cd output states.

The remaining element of the CZ gate is the nonlinear sign flip (NS) gate, depicted
in Figure 4.3, that flips the sign of states with two photons. This gate consists of
three beam splitters with transmission amplitudes η1 = η3 = 1/(4 − 2

√
2) and η2 =

3−2
√

2 [1, 58]. The NS gate involves two ancillary modes and projective measurement,
resulting in a success probability for the gate of 1/4. With the inclusion of feed forward
this success probability can be increased, with one round of feed forward resulting in
a success probability of 0.272 [59]. The first ancillary mode starts in the vacuum state
|0〉 whilst the other carries a single photon |1〉 initially. Successful operation of the
gate is heralded by the detection of a single photon at detector A and no photon at
detector B. The action of the NS gate is to flip the sign of the two photon Fock state
and leave the vacuum and single photon Fock states unchanged. As such the action of
the NS gate on a general input state in a superposition of zero, single and two-photon
Fock states is:

|φin〉 = α |0〉+ β |1〉+ γ |2〉
→ α |0〉+ β |1〉 − γ |2〉 . (4.8)
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Of note is that the amplitudes of the states are left unchanged by the NS gate. The
effect of the NS gate on higher Fock states is irrelevant to the discussion of the CZ gate
since the output mode from the beam splitter preceding the NS gate will never carry
more than two photons if the input states are perfect single photon states. Sanaka et al.
[60] experimentally realised a NS gate with a phase shift of (1.05±0.06)π, in very good
agreement with the perfect NS gate shift of π. The experimentally realised success
probability for the gate execution was 10−5, mostly due to the use of imperfect single
photon sources. They however used 50:50 beam splitters instead of the transmission
amplitudes suggested by the KLM scheme. The use of non-optimal beam splitter
transmission amplitudes had the effect of decreasing the theoretical maximum success
probability of the NS gate to 1/8.

4.1.2 KLM gate functioning

In order to understand the operation of the KLM CZ gate let us now consider a general
logical input state for the gate where both input qubits are in superposition states. We
explore how the constituent elements of the KLM CZ gate act on the input state

|ψ〉 = |ψa〉 ⊗ |ψb〉
= (α |0〉a + β |1〉a) (γ |0〉b + δ |1〉b) , (4.9)

where α2+β2 = 1 and γ2+δ2 = 1. As we have said above the logical states correspond to
single photons in the input mode basis (dual rail encoding) as follows: |0〉a = |0, 1〉a1a2 ,
|1〉a = |1, 0〉a1a2 , |0〉b = |0, 1〉b1b2 and |1〉b = |1, 0〉b1b2 . The input state |ψ〉 can then be
written as

|ψa〉 ⊗ |ψb〉 =
(
α |0, 1〉a1,a2 + β |1, 0〉a1,a2

)(
γ |0, 1〉b1,b2 + δ |1, 0〉b1,b2

)
=αγ |0, 1, 0, 1〉+ βγ |1, 0, 0, 1〉+ αδ |0, 1, 1, 0〉+ βδ |1, 0, 1, 0〉 , (4.10)

where we have dropped the subscripts. Modes a1 and b1 now pass through the beam
splitter transforming the input state according to Equation (4.6) into

αγ |0, 1, 0, 1〉+
βγ√

2
(|1, 0, 0, 1〉+ |0, 0, 1, 1〉)

+
αδ√

2
(|1, 1, 0, 0〉 − |0, 1, 1, 0〉) +

βδ√
2

(|2, 0, 0, 0〉 − |0, 0, 2, 0〉) . (4.11)

Clearly according to Equation (4.8) the NS gate (when successfully implemented) will
merely flip the sign of the last term. The effect of the second beam splitter is to recreate
the original states through destructive interference:

αγ |0, 1, 0, 1〉+
βγ√
2
√

2
(|1, 0, 0, 1〉+ |0, 0, 1, 1〉) +

βγ√
2
√

2
(|1, 0, 0, 1〉 − |0, 0, 1, 1〉)

+
αδ√
2
√

2
(|1, 1, 0, 0〉+ |0, 1, 1, 0〉)− αδ√

2
√

2
(|1, 1, 0, 0〉 − |0, 1, 1, 0〉)

− βδ√
2

(
1/
√

2 |1, 0, 1, 0〉+ 1/
√

2 |1, 0, 1, 0〉
)

=αγ |0, 1, 0, 1〉+ βγ |1, 0, 0, 1〉+ αδ |0, 1, 1, 0〉 − βδ |1, 0, 1, 0〉 . (4.12)
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Figure 4.4: Circuit diagram for the improved KLM scheme CZ gate [61]. This scheme
uses two ancilla photons and two detected photons with beam splitters with beam splitter
angles θ = 54.74◦ and φ = 17.63◦. Modes a2 and b2 are the two modes that carry the single
photon components of the two input qubits |ψa〉 and |ψb〉. Modes a1 and b1 are not shown,
they do not interact with any component just as in Figure 4.1.

Which is exactly the input state (4.10) but with the sign of the logical |1〉a |1〉b state
(which in the dual rail encoding is |1, 0, 1, 0〉) flipped. Thus these transformations
perform exactly the operation that define the CZ gate [Equation (4.1)].

In a subsequent paper by Knill [61] the scheme was improved by using two ancilla
photons, and two detected photons, see Figure 4.4. This scheme made use of beam
splitters with beam splitter angles θ = 54.74◦ and φ = 17.63◦ which correspond to
transmission coefficients cos θ and cosφ and reflection coefficients sin θ and sinφ. Only
the modes that correspond to the logical |1〉 state, modes a2 and b2, are shown in the
figure. The modes for logical |0〉, modes a1 and b1, are omitted since they do not
interact with any component of the gate. Modes a2 and b2 are also referred to as the
control and target modes respectively. Before entering the beam splitters the control
and target modes first pass through phase shifters that induce a π phase shift. The
improved KLM linear optical scheme results in an improved probability of 2/27 to
successfully implement a CZ gate. The success of the gate is heralded by detection of
a single photon in each of the detectors.

Main difficulties with the KLM scheme are in its reliance on the availability of
efficient single photon sources and good single photon detectors. Integral to the func-
tioning of the KLM scheme is the nonlinear sign flip operation (NS) which has a success
probability of 1/4. The original version of the KLM scheme as outlined in the original
paper [1] used two NS gates and as such the probability of successfully executing the
two-qubit gate was only 1/16. These already severe limitations exclude the further
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constraints imposed by imperfect detectors and single photon sources. Knill [62] later
showed that the highest possible success probability for a NS gate is 1/2.

Several improvements and alternatives to the original KLM scheme CZ gate have
been proposed and demonstrated with probabilities of success up to 1/4. These imple-
mentations with high success probabilities are destructive in nature: the quantum state
is destroyed by the quantum gate. For certain applications this is not detrimental, for
example the Bell measurement in teleportation still results in the teleportation of the
photon even if the two-photon gate was a destructive gate. The destructive CNOT
gate demonstrated by Pittman et al. [63] makes use of an ancilla qubit and has a
theoretic probability of success of 1/4. Ralph et al. [64] proposed a destructive gate,
experimentally demonstrated by O’Brien et al. [65], that requires no ancilla qubits and
has a probability of success of 1/9. Success is heralded by the detection of a single
photon in each of the control and target outputs.

A non-destructive CNOT gate that consists of a destructive CNOT gate together
with a probabilistic parity check gate was proposed by Pittman et al. [66]. The
gate is implemented successfully with a theoretic probability of up to 1/4. Zhao et
al. [67] experimentally demonstrated this gate; the first experimental realisation of a
non-destructive CNOT gate in linear optics. The experiment made use of a pair of
entangled ancilla photons, and also demonstrated that the CNOT gate can be used to
entangle states.

With the advance of technology the quality and reliability of single photon sources
and detectors will improve, thus improving the fidelity of linear optics two-qubit gates.
The remaining drawback of these linear optical quantum computing schemes are their
probabilistic nature and the massive overhead that this implies together with the over-
head of error correction. Linear optics quantum computing would be well suited how-
ever for preparing cluster-states for one-way computing.

4.2 QPG using a large Kerr nonlinearity

Optical nonlinearities provide one way of getting around the very weak interaction be-
tween photons that make them such ideal information carriers yet problematic candi-
dates for implementing two-qubit gate operations. One way to enhance the interaction
between two photons is through a χ(3) nonlinear medium that induces a cross-Kerr
effect between the two interacting fields. This is often called cross-phase modulation
(XPM). Making use of a cross-Kerr nonlinearity to obtain the required photon-photon
interaction for the operation of a logical quantum gate was first suggested by Milburn
[68] in a paper describing how to perform an optical Fredkin gate, a reversible gate
that performs a controlled swap.

The ideal cross-Kerr effect has the interaction Hamiltonian

HK = ~χâ†âb̂†b̂, (4.13)

where â and b̂ are the annihilation operators of the two modes. Using the same dual
rail encoding as for the KLM scheme CZ gate in section 4.1 (logical |0〉 → |1, 0〉a1,a2 and
|1〉 → |0, 1〉a1,a2), a CZ gate can be executed by having modes a2 and b2 pass through
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Figure 4.5: Circuit diagram of the nonlinear QPG employing a nonlinear Kerr medium
to induce a conditional phase shift. With a phase shift of π this gate would be a CZ gate.
The polarising beam splitters (PBS) split the input states into their horizontal and vertical
components. The output state is entangled.

the Kerr medium. The Hamiltonian (4.13) applied to modes a2 and b2 results in the
unitary evolution

ÛK = exp
[
iχâ†2â2b̂

†
2b̂2t
]
, (4.14)

that has the general action on Fock (number) states:

ÛK |na, nb〉 = exp [iχnanbt] |na, nb〉 . (4.15)

When this unitary evolution is applied to the same input state (4.10) that we used for
the KLM scheme in order to see how an arbitrary state is transformed we obtain:

|ψ〉 →ÛK |ψ〉

=eiχâ
†
2â2b̂

†
2b̂2t [αγ |0, 1, 0, 1〉+ βγ |1, 0, 0, 1〉+ αδ |0, 1, 1, 0〉+ βδ |1, 0, 1, 0〉]

=αγ |0, 1, 0, 1〉+ βγ |1, 0, 0, 1〉+ αδ |0, 1, 1, 0〉+ eiχtβδ |1, 0, 1, 0〉 . (4.16)

Clearly the effect of the nonlinear medium is to induce a phase shift (φ = χt) on the
two modes if and only if both of them are occupied. This phase shift is also referred to
as a conditional phase shift (CPS) since it is conditional on the presence of both fields.
When the cross-Kerr nonlinearity in this quantum phase gate (QPG) is large enough,
or the interaction time is long enough, such that the conditional phase shift is φ = π
we obtain eiφ → −1 which results exactly in a CZ or sign flip gate. An example of how
this gate could be implemented in practice (depicted in Figure 4.5) is with polarisation
qubits where the qubit is for example the horizontal and vertical polarisation states,
i.e. the state of qubit |ψa〉 is in general given by |ψa〉 = α |H〉+β |V 〉. Polarising beam
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splitters acting on the two qubits a and b split them into their horizontal and vertical
components resulting in a dual rail encoding of the qubit states. The modes, a2 and
b2, that correspond to logical |1〉 for qubits |ψa〉 and |ψb〉 then pass through the Kerr
medium. The use of polarising beam splitters then again combine the horizontally and
vertically polarised fields of the qubits into a single mode each.

We now define the conditional phase shift in a more general sense. Here logical |0〉
and |1〉 are defined as “no photon present” and “single photon present” respectively.
We then have the following truth table for the phase shifts [69]:

|0〉P |0〉T → e−i(φ
P
0 +φT0 ) |0〉P |0〉T ≡ e−iφ00 |0〉P |0〉T

|0〉P |1〉T → e−i(φ
P
0 +φT0 +φTlin) |0〉P |1〉T ≡ e−iφ01 |0〉P |1〉T

|1〉P |0〉T → e−i(φ
P
0 +φPlin+φT0 ) |1〉P |0〉T ≡ e−iφ10 |1〉P |0〉T

|1〉P |1〉T → e−i(φ
P
0 +φPlin+φPnlin+φT0 +φTlin+φTnlin) |1〉P |1〉T ≡ e−iφ11 |1〉P |1〉T . (4.17)

When there is no field or the field does not interact with the non-linear medium, (e.g.
it is off resonant with the relevant transitions) there is only the vacuum phase shift
φ0. When one field interacts with the system, but the other field does not (again not
present or off resonant), there is the linear phase shift φlin and the vacuum shift. Only
when both fields are present is the non-linear phase shift φnlin observed, but the linear
and vacuum phase shift are still present. The conditional phase shift is defined by the
non-linear phase shifts, φnlin [69, 70]:

φcps = φ11 − φ10 − φ01 + φ00

= φPnlin + φTnlin. (4.18)

In order to implement a nonlinear CZ gate a CPS of (φcps = π) is required. Such
a large CPS requires an extremely large nonlinearity compared to that of typical non-
linear materials, for example recently Matsuda et al. [71] reported a phase shift of
1 × 10−7 − 1 × 10−8 radians for weak coherent pulses with an average of one photon
per pulse in optical fibres of length 4.7 m. It is this requirement that motivated the
invention of the KLM scheme. A naive solution to realise an appreciable cross phase
modulation of the two fields is to increase the interaction region of the Kerr medium.
This solution is unfortunately defeated by the increase in losses in the system and noise
induced in the phase shift [72] and the extreme length of medium (could be kilometres)
that would be required. The remaining solution is then to find or engineer sufficiently
large optical nonlinearities. It has been found that optical nonlinearities can be greatly
enhanced in systems exhibiting electromagnetically induced transparency (EIT) [73] in
an ensemble of atoms when the two-photon resonance condition is slightly disturbed,
for example by the introduction of extra energy level(s) [74, 75] or if the EIT fields are
simply not exactly tuned on two-photon resonance [76, 77]. Proposals for systems with
EIT enhanced nonlinearies make use of a variety of energy level schemes: three-level
Λ [6, 78, 79], V [80] and Ξ [81]; four-level tripod [82–84], N [74, 85] and inverted Y
[86]; five-level tripod [87] and M [88–90]. The tripod and M schemes have a great ad-
vantage in that the group velocity of the two fields undergoing XPM can be matched.
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Experiment Details n2 (cm2/W) CPS

Turchette et al. (1995) [69] Single Cs, V-type, CQED NA (16± 3)◦

Wang et al. (2001) [78] 87Rb vapour, Λ-type 7× 10−6 NA
Kang et al. (2003) [91] 87Rb cloud, N-type NA 7.5◦

Chang et al. (2004) [92] hot 87Rb vapour, Λ-type 9.6× 10−6 198◦

Li et al. (2008) [93] 87Rb cloud, 4lvl tripod ∼ 2× 10−5 ∼ 5◦

Han et al. (2008) [94] cold 87Rb cloud, 4lvl tripod 7.2× 10−5 ∼ 0.6◦

Table 4.1: We present the nonlinear indices of refraction (n2) and conditional phase shifts
(CPS) from publications on experiments in nonlinear optics with a variety of level schemes.
Most of the experiments made use of 87Rb atoms in either a hot vapour or cold cloud form.
Not every experiment reported both n2 and the CPS (NA in the table).

The two fields then have a longer time during which they interact via the nonlinearity,
thus greatly enhancing the phase shifts achievable in these systems for the same field
strengths. The four-level tripod scheme is discussed in more detail in chapter 5 where
we explore a novel system where a quantum phase gate can be implemented.

In Table 4.1 we present the results obtained for the nonlinear indices of refraction
(n2) and CPS from experiments in nonlinear optics where a variety of level schemes
were investigated. It is important to realise that direct comparison of these results
should be done cautiously. The nonlinear index of refraction and the strength of the
cross-Kerr interaction χ, and hence the CPS, depends on the Rabi frequency of the
probe and/or trigger fields, that is, the strength of the fields play a crucial role in the
results. For the purposes of quantum computing with photonic qubits (obviously so
for single photon fields) weak fields are preferred. For example the 1.1π radian phase
shift obtained by Chang et al. [92] in a Λ-type level scheme made use of fields with
Rabi frequencies Ωp = 2π × 31MHz for the probe field and Ωc = 2π × 75MHz for the
coupling field whereas the 7.5◦ phase shift obtained by Kang et al. [91] in the N-type
scheme had Rabi frequencies Ωp = 0.1MHz for the probe field, Ω = 3MHz for the signal
field and Ωc = 2MHz for the coupling field.

A scheme developed by Wang et al. in Rb atoms [95], using a five atomic level
scheme, makes use of double EIT (i.e. there are two Λ subsystems similar to the tripod
schemes) and results in cross-Kerr modulation with group velocity matching of the two
fields, leading to enhanced interaction. Single photon implementations of this scheme,
however, typically have rather low maximum phase shifts (∼ 5◦) and has a low QPG
fidelity (∼ 0.65) [72].

The conditional phase shift (CPS) of one field due to the other would allow, besides
a deterministic QPG, the establishment of entanglement between the two input states
[1]. As briefly outlined in the next section even a modest CPS can be used with a
quantum nondemolition measurement to perform a nearly deterministic QPG.
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Figure 4.6: The nearly deterministic CNOT gate described by Nemoto and Munro [96]
that utilises quantum nondemolition measurements and weak cross-Kerr interactions. QND
measurements are used to implement the “Entangler” gates shown in the figure and to resolve
the state of the second qubit of the target’s entangler. Figure taken from Nemoto and Munro
[96].

4.3 QPG using weak Kerr nonlinearity

By making use of nondestructive quantum nondemolition (QND) detection it is possi-
ble to condition the evolution of the system without destroying the information carried
in the photons [97–99]. Nemoto and Munro [96] suggested making use of QND mea-
surements in the implementation of a probabilistic optical CNOT gate, which would
drastically improve the probability of success, making the gate nearly deterministic.
The QND measurement is performed by making use of a weak cross-Kerr nonlinearity
to induce a CPS that is much smaller than π. Specifically Nemoto and Munro adapted
the CNOT gate described in Pittman et al. [63] by replacing the photon number re-
solving detectors in the scheme with single photon QND detectors. The scheme for
the Nemoto and Munro CNOT gate is presented in Figure 4.6. This scheme makes
use of two QND two-qubit entangling gates, one entangles the control qubit with the
ancilla and the other entangles the target qubit with the second output qubit of the
first entangling gate. The second qubit is then split into dual rail encoding and sub-
jected to a QND photon number resolving measurement. A further requirement for
this scheme is the ability to feedforward the results of measurements and to implement
single photon operations dependent on the outcomes of the measurements. The target
qubit’s entangler gate makes use of PBSs in the diagonal basis where as the control
qubit’s PBSs are in the horizontal-vertical basis.

In order to perform a measurement on a signal system in such a way that the
measured state is not demolished by the measuring procedure a measured system is in-
troduced. It is the measured system that is eventually interacted with by the detectors
and thus demolished. To gain information about the state of the signal system one first
creates an interaction between the two systems, resulting in a final combined system
that is a superposition of the signal and measured systems. By creating an entangled
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Figure 4.7: The QND two-qubit entangling gate described by Nemoto and Munro [96].
The PBSs again decode the polarisation qubits into the dual rail encoding. There are two
Kerr media present, one induces a positive phase shift θ and the other exactly the opposite,
−θ, phase shift. The results of the homodyne detection |X〉〈X| on the coherent state |α〉 is
feedforwarded and used to implement the σX gate and a phase shift φ(X). The output is an
entangled state.

state it is then possible to exploit the entanglement (see Einstein, Podolsky, Rosen
[100] paradox) to learn the state of the signal system by making a measurement to
determine the state of the measured system. The interaction between the two systems
to create the entangled state can be achieved with a cross-Kerr interaction [with the
Hamiltonian (4.13)] for photonic systems. In particular by making use of a coherent
probe field |α〉p (the measured system) interacting via a weak cross-Kerr nonlinearity
with a signal field with the general state |Ψ〉s = c0 |0〉s + c1 |1〉s the state of the system
after the interaction is

|Ψ〉 =eiχâ
†
sâsâ

†
pâpt [c0 |0〉s + c1 |1〉s] |α〉p

=c0 |0〉s |α〉p + c1 |1〉s
∣∣αeiθ〉

p
, (4.19)

where the phase shift of the coherent field is given by θ = χt where t is the interaction
time. Measurement of the phase of the coherent probe field will then project the signal
field into one of the Fock states |0〉s or |1〉s. The only requirement is that αθ � 1 which
even if θ is much smaller than one can be achieved with a strong enough coherent field.

By interacting the coherent measured field with two different signal modes via two
cross-Kerr nonlinearities which induce opposite phase shifts Nemoto and Munro [96]
introduced a way to produce entangled states. As depicted in Figure 4.7 two polarisa-
tion qubits (|Ψa〉 = c0 |H〉a+c1 |V 〉a and |Ψb〉 = d0 |H〉b+d1 |V 〉b) have their horizontal
|H〉 and vertical |V 〉 components split into different spatial modes by polarising beam
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splitters. The mode with the vertical component for each qubit then interacts sepa-
rately with the coherent field. As a result when looking at the state of the combined
system only the components with unmatched polarisations accrue a phase shift:

|Ψ〉T = [c0d0 |HH〉+ c1d1 |V V 〉] |α〉p + c0d1 |HV 〉
∣∣αeiθ〉

p
+ c1d0 |V H〉

∣∣αe−iθ〉
p
.

(4.20)

The last two states can be distinguished due to their opposite phase shifts, but by
introducing a phase offset for the local oscillator from the probe phase the states

∣∣αe±iθ〉
become indistinguishable. It is then possible to distinguish the |HH〉 and |V V 〉 states
from the |HV 〉 and |V H〉 states. With the application of local rotations dependent
on the feedforwarded results of the |X〉〈X| homodyne detection the final state of the
system can be transformed to

|ΨX〉T = c0d1 |HV 〉+ c1d0 |V H〉 (4.21)

thus resulting in a near deterministic outcome, see [96] for complete details. It is this
near deterministic entanglement creating gate that causes the dramatic improvement
of the CNOT gate over the original KLM CNOT gate.

4.4 Zeno CZ gate

We very briefly discuss the Zeno gate. This two qubit CZ gate that relies on the Zeno
effect was first proposed by Franson et al. [101]. This gate makes use of two single
photon qubits which are initially in the polarisation basis. Similarly to Figure 4.5,
using polarising beam splitters, we convert the system to the dual rail encoding and
the modes corresponding to logical |1〉 enter the CZ gate, Figure 4.8(a). The Zeno CZ
gate is implemented by a series of n weak beam splitters between the two modes a2 and
b2. After each beam splitter there is a two-photon absorber in each mode Figure 4.8(b).
As n tends to infinity and with infinitely short absorbers the continuous coupling limit
is approached. The effect of the two-photon absorber is the suppression of the Hong-
Ou-Mandel effect via the quantum Zeno effect. The probability of single-photon and
two-photon transmission for a single absorber is given by γ1 and γ2 respectively. The
relative strength between the two probabilities is given by κ: γ2 = γκ1 . The Zeno CZ
gate performs the following operation [102] on the input states:

|00〉 → |00〉 , |01〉 → γ
n/2
1 |01〉 , |10〉 → γ

n/2
1 |10〉 , |11〉 → γn1 τ |11〉+ f (|02〉 , |20〉) ,

(4.22)

where τ is given by:

τ =
2−(3/2)−n

d

((
g +

d√
2

)n (√
2d− h

)
+

(
g − d√

2

)n (√
2d+ h

))
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√
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Figure 4.8: (a) Circuit diagram of the Zeno CZ gate with the qubits being converted to
the dual rail encoding by PBSs and half wave plates (HWP). (b) shows the n beam splitters
followed by two-photon absorbers (2PA) that comprise the Zeno CZ gate.

Terms relating to loss has been discarded and as such the output states are not nor-
malised.

It was shown by Leung et al. [102] that a Zeno CNOT gate can be implemented
within the Gottesman-Chuang teleportation CNOT scheme [103] with a success prob-
ability of 0.8 with a two-photon to one-photon absorption ratio κ = 104. These results
assume perfect mode-matching which is an unheralded error.



5
NV center Four-level Tripod Quantum

Phase Gate

As explained in section 4.2 the conditional phase shift (CPS) can be increased by
increasing the interaction time between the light and the Kerr medium, i.e. allowing
the fields to pass through a longer section of Kerr medium. The photon-photon coupling
can also be enhanced by exploiting the large optical nonlinearities achievable in cavity
quantum electrodynamics (QED) where photons trapped in a high quality (high-Q)
resonator interact strongly through their mutual coupling to intracavity media [69,
104]. Rather than considering a gas cell of 87Rb atoms to achieve strong coupling we
now consider a perhaps more convenient condensed matter system which would be
far easier to scale up and could even operate at room temperature. In this chapter
we demonstrate the feasibility of a quantum phase gate (QPG) between two weak
fields in a cavity-QED system coupled to a single atomic system in a four-level tripod
configuration. We demonstrate the possibility to achieve an appreciable CPS. The
particular tripod system we consider in this chapter is the diamond based nitrogen-
vacancy (NV) center. In order to implement this scheme three crucial elements are
required:

1. An atomic system with a four-level tripod transition arrangement.

2. A high-Q cavity (i.e. small cavity field decay rates).

3. The ability to strongly couple the atomic system to the cavity fields.

The four-level tripod configuration scheme can exhibit a large cross-Kerr nonlin-
earity, in particular Rebić et al. (2004) [83] first proposed the system for implementing
a conditional phase gate, using 87Rb as an example. Section 5.1 gives the background
to the workings of the tripod QPG.

51



52 NV center Four-level Tripod Quantum Phase Gate

Microresonators have recently gained much attention as high-Q cavities, for example
spherical, disk and microtoroidal resonators have high-Q whispering gallery modes
(WGM) that can be coupled to evanescently. Recent advances in toroidal and spherical
microresonators have seen cavity QED systems with ultra-high quality factors [105, 106]
with for example a stable Q ≈ 109 obtained in silica microspheres. These ultra-high
quality factors allow for strong coupling between light and atomic systems, thus making
a single atom approach feasible. The strong coupling regime is reached when the
atom field coupling rate exceeds both the atom decay rate and the cavity decay rate.
Furthermore some of these microresonators are chip based which would result in good
scalability of the systems. Section 5.2 gives a very brief overview of microresonators.

Which brings us to the third requirement, the ability to couple the tripod system
to the high-Q modes in a resonator. Nitrogen-vacancy (NV) centres can be configured
in a tripod level scheme, and single NV centres can be found in diamond nanocrystals
∼ 10 nm in size. Experiments coupling nanodiamonds containing NV centres and solid
state cavity QED systems have recently been performed with silica microspheres [107]
and microdisks [108]. Section 5.3 expands on NV nanodiamonds and their coupling
via the evanescent fields to the cavity modes in microresonator systems.

Section 5.4 brings these elements together and describe the workings of a system
comprised of a single nitrogen-vacancy center coupled to two cavity modes. We demon-
strate the remarkable possibility of obtaining a conditional phase shift in excess of π by
exploiting the cross-Kerr nonlinearity in a four-level tripod system in a high-Q cavity.
Such a large CPS would allow the execution of a two-qubit CZ gate and by extension
a CNOT gate, which together with single qubit gates completes the universal set of
gates required for optical quantum computing. Our simulations in Matlab, making use
of the Quantum Optics Toolbox [109], include dephasing and decay in the NV center
with values taken from recent experimental literature.

5.1 QPG in the four-level atomic system in tripod

configuration

In this section we look in closer detail at the four-level tripod configuration and the
conditional phase shift induced by the large cross-Kerr nonlinearity inherent in the
system. This section also serves as background for the section on the QPG proposed
for the NV centre in a cavity in section 5.4. The four-level tripod configuration has been
used previously to achieve stimulated Raman adiabatic passage (STIRAP) between two
states by Unanyan et al. [110], but it was first investigated as a system for implementing
a quantum phase gate by Rebić et al. [83]. The latter work envisioned the Kerr media
to be a cold atomic gas. The enhanced cross-phase modulation in the tripod system
has recently been experimentally demonstrated in 87Rb atomic vapour by Li et al. [93].
One of the essential features of this scheme is the ability to greatly reduce the group
velocities of the two interacting fields by creating double EIT in two Λ subsystems: one
for the probe and one for the trigger field. The two Λ subsystems facilitating the EIT
share a classical driving field coupling one of the three ground states to the excited
state. Furthermore, by choosing the parameters of the system carefully one can match
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|1〉

|2〉

|3〉

|0〉

γ11

γ22

γ33

δ1
δ2 δ3

ΩP

σ+

Ω ΩT

σ−

Figure 5.1: The four-level tripod system. The probe (ΩP ) and trigger (ΩT ) fields undergo
cross-phase modulation and have different polarisations σ±. Ω is a classical driving field. The
fields have respective detunings δ1, δ3 and δ2. The excited state has a total decay rate of
γ11 + γ22 + γ33.

the group velocities of the probe and trigger fields, greatly increasing the interaction
between the two fields. In order to obtain the required nonlinearities it is also essential
that the fields are slightly detuned from the exact two-photon resonance conditions of
EIT, that is δ1 6= δ2 and δ2 6= δ3, but still remain within the respective transparency
windows.

In the four-level tripod scheme (Figure 5.1) for a QPG as proposed by Rebić et al.
[83], the two interacting qubits are encoded in the polarisation of the probe and trigger
fields. The probe field has a Rabi frequency ΩP and drives the transition between the
first ground state |1〉 and the excited state |0〉. Similarly the trigger field has a Rabi
frequency ΩT and drives the |3〉 → |0〉 transition. The second ground state |2〉 is driven
by the classical control field with Rabi frequency Ω. The probe, control and trigger
field detunings are δ1, δ2, δ3 respectively with δ1 6= δ2 and δ2 6= δ3. The rates of excited
state spontaneous emission into the ground states are denoted by γ11, γ22 and γ33. The
Hamiltonian for the system in the interaction picture and after the traditional rotating
wave approximation is:

H =~δ1σ̂00 + ~ (δ1 − δ2) σ̂22 + ~ (δ1 − δ3) σ̂33

+ ~ΩP

(
â†σ̂10 + âσ̂01

)
+ ~Ω (σ̂20 + σ̂02)

+ ~ΩT

(
b̂†σ̂30 + b̂σ̂03

)
, (5.1)

where the Rabi frequencies have been assumed to be real and σ̂ij = |i〉〈j| are the atomic
operators.

The Bloch equations for the density matrix elements (ρij = Tr{σ̂ijρ} = 〈i| ρ |j〉) for
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the populations are

iρ̇00 =− i (γ11 + γ22 + γ33) ρ00 + Ω∗Pρ10 − ΩPρ01

+ Ω∗ρ20 − Ωρ02 + Ω∗Tρ30 − ΩTρ03, (5.2)

iρ̇11 = i (γ11ρ00 + γ12ρ22 + γ13ρ33) + ΩPρ01 − Ω∗Pρ10, (5.3)

iρ̇22 = i (γ22ρ00 − γ12ρ22 + γ23ρ33) + Ωρ02 − Ω∗ρ20, (5.4)

iρ̇33 = iγ33ρ00 − i (γ13 + γ23) ρ33 + ΩTρ03 − Ω∗Tρ30, (5.5)

and for the coherences are

iρ̇10 =−∆10ρ10 + ΩP (ρ00 − ρ11)− Ωρ12 − ΩTρ13, (5.6)

iρ̇20 =−∆20ρ20 + Ω (ρ00 − ρ22)− ΩPρ21 − ΩTρ23, (5.7)

iρ̇30 =−∆30ρ30 + ΩTρ00− ΩP (ρ33 + ρ31)− Ωρ32, (5.8)

iρ̇12 =−∆12ρ12 + ΩPρ02 − Ω∗ρ10, (5.9)

iρ̇13 =−∆13ρ13 + Ωpρ03 − Ω∗Tρ10, (5.10)

iρ̇23 =−∆23ρ23 + Ωρ03 − Ω∗Tρ20, (5.11)

where collisional dephasing is described by γjk (j 6= k) in particular γj0 denotes the
decay of atomic coherences. Furthermore the complex effective detunings are defined
in terms of these dephasing rates as

∆j0 =δj + iγj0 (5.12)

∆jk =δj − δk + iγjk (j, k = 1, 2, 3). (5.13)

In order to maintain the symmetry between the interaction of the probe field and the
trigger field with the system it is required that the steady-state populations between
state |1〉 and |3〉 are symmetric. That is, ρ11 ≈ 1/2 and ρ33 ≈ 1/2, which is achieved
when ΩP ≈ ΩT and |Ω|2 � |ΩP,T |2. With these assumptions the Bloch equations for
the populations can be decoupled from those for the coherences and the steady-state
solution for the coherences can be obtained, see Equations (6a) and (6b) in reference
[83]. The coherences can then be used to find the probe and trigger field susceptibilities

χP = − lim
t→∞

N|µP |2

~ε0
ρ10(t)

ΩP

, (5.14)

χT = − lim
t→∞

N|µT |2

~ε0
ρ30(t)

ΩT

, (5.15)

where µP,T are the electric dipole matrix elements and N is the atomic density. Re-
taining only the two lowest order terms for the susceptibilities we are left with a linear
component and a third order nonlinear component:

χP = χ
(1)
P + χ

(3)
P |ET |

2, (5.16)

χT = χ
(1)
T + χ

(3)
T |EP |

2. (5.17)
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The linear susceptibilities are

χ
(1)
P =

N|µP |2

~ε0
1

2

∆12

∆10∆12 − |Ω|2
, (5.18)

χ
(1)
T =

N|µT |2

~ε0
1

2

∆∗23

∆30∆∗23 − |Ω|2
, (5.19)

the factor 1/2 is due to the steady-state populations of the ground states. It is the χ(3)

cross-Kerr nonlinear terms that are of greatest interest here, inducing the cross-phase
modulation that is required to observe a conditional phase shift. The χ(3) susceptibility
for the probe field is given by

χ
(3)
P = N |µP |

2 |µT |
2

~3ε0
× 1

2

∆12/∆13

∆10∆12 − |Ω|2

×
(

∆12

∆10∆12 − |Ω|2
+

∆23

∆∗30∆23 − |Ω|2

)
(5.20)

while the cross-Kerr susceptibility for the trigger field is

χ
(3)
T = N |µT |

2 |µP |
2

~3ε0
× 1

2

∆∗23/∆
∗
13

∆30∆∗23 − |Ω|2

×
(

∆∗12

∆∗10∆∗12 − |Ω|2
+

∆∗23

∆30∆∗23 − |Ω|2

)
(5.21)

The system can be envisioned as two Λ systems: the first comprised of states
|1〉 → |0〉 → |2〉 and the probe field; the second comprised of states |3〉 → |0〉 → |2〉
and the trigger field, the systems share the control field. These two Λ systems result
in EIT for the probe and the trigger field, and as such a reduction in group velocity
for both of the two fields. Perfect EIT occurs when the two fields in the Λ system
is in perfect two-photon resonance (see section 2.2). This implies that perfect EIT
for both the probe and trigger fields will occur when the detunings are all equal, i.e.
δ1 = δ2 = δ3. This condition would however result in the real part of the cross-
Kerr susceptibilities [equations (5.20) and (5.21)] becoming zero and hence the system
would no longer be nonlinear and there would be no cross-phase modulation. It is thus
necessary to disturb the exact EIT condition by having slightly different detunings for
the fields but still keep the fields within the EIT transparency windows. The group
velocity of the fields are determined by vg = c/(1 +ng), where the group index is given
by

(ng)P,T =
1

2
Re[χ] +

ωP,T
2

(
δRe[χ]

δω

)
ωP,T

, (5.22)

and c is the speed of light in a vacuum. ωP,T is the laser frequency of the probe or
trigger fields. To very close approximation the group index is only determined by the
linear part of the susceptibility [Equation (5.18)], and as such neglecting the nonlinear
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contributions and assuming equal detunings we can deduce an approximation for the
group velocity of the probe field

(vg)P ≈
4~cε0

ωPN|µP |2
(
|Ω|2 + |ΩT |2

)
, (5.23)

and the trigger field

(vg)T ≈
4~cε0

ωTN|µT |2
(
|Ω|2 + |ΩP |2

)
(5.24)

when they are both tuned exactly in the middle of their respective transparency win-
dows (ie. exact two-photon resonance).

Rebić et al. (2004) specifically discuss the possible implementation of this scheme
in 87Rb atoms. The ground states of the tripod system, states |1〉, |2〉 and |3〉 would
correspond respectively to the ground state Zeeman sublevels

∣∣5S1/2, F = 1,m = −1
〉
,∣∣5S1/2, F = 1,m = 0

〉
and

∣∣5S1/2, F = 1,m = 1
〉
, while the excited state |0〉 corresponds

to
∣∣5P3/2, F = 0

〉
of the 87Rb system. This system will appear transparent to a probe

field (|1〉 → |0〉) with σ− polarisation and to a trigger field (|3〉 → |0〉) with σ+

polarisation. There will thus only be a cross-phase modulation between the two fields
when the probe field has σ+ polarisation and the trigger field has σ− polarisation. A
qubit can then be encoded in the polarisation of the fields: for the probe field σ−

corresponds to logical |0〉 and σ+ corresponds to logical |1〉; for the trigger field σ+

corresponds to logical |0〉 and σ− corresponds to logical |1〉. This provides everything
necessary for a QPG which would have the following truth table:∣∣σ−〉

P

∣∣σ−〉
T
→ e−i(φ

P
0 +φTlin)

∣∣σ−〉
P

∣∣σ−〉
T
,∣∣σ−〉

P

∣∣σ+
〉
T
→ e−i(φ

P
0 +φT0 )

∣∣σ−〉
P

∣∣σ+
〉
T
,∣∣σ+

〉
P

∣∣σ+
〉
T
→ e−i(φ

P
lin+φT0 )

∣∣σ+
〉
P

∣∣σ+
〉
T
,∣∣σ+

〉
P

∣∣σ−〉
T
→ e−i(φ

P
XPM+φTXPM )

∣∣σ+
〉
P

∣∣σ−〉
T
, (5.25)

Where φ0 is the vacuum phase shift acquired by the fields when there is no interaction
with the atomic system and the linear phase shift is given by φlin. The phase shift
that the fields acquire during cross-phase modulation is the sum of the phase shift due
to linear interactions and the phase shift due to the nonlinear cross-Kerr interactions:
φXPM = φlin + φnlin. The conditional phase shift consists of only the nonlinear con-
tributions to the phase shift of the logical |1〉 states, and is calculated from the above
phase shifts by

φ = φPXPM + φTXPM − φPlin − φTlin, (5.26)

in a similar fashion as done in Equation (4.18). Simulations of the system reveal that
a π conditional phase shift could be obtained in an atomic sample with an interaction
length of 1.6 mm and a density N = 3× 1013 cm−3 [83].

The enhanced cross-Kerr nonlinearity based on double EIT in a four-level tripod
level configuration was recently experimentally demonstrated in 87Rb [93, 94]. The
experiment did not make use of the atomic levels suggested above, but did reach a
CPS ∼ 5◦.
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5.2 Microresonators

In this section we present a very brief overview of microresonators (microcavities)
which are solid state optical cavities. Included in the category of microresonators we
find microdisks, which are either supported by a central column, or rests flat on a
substrate, microtoroids that are also supported by a central column, and micro spheres
that are manufactured from the tips of optical fibres and remain attached to it. See
theses by Spillane [111] (microtoroids), Kippenberg [112] (micro-toroids, -spheres, -
disks) and Mazzei [113] (microspheres) for far more detail on microresonators and
their manufacturing processes. In particular we are interested in microresonators with
extremely low optical losses and very small mode volumes.

Microresonators work on the principle of total internal reflection of the relevant
modes. This results in whispering gallery modes (WGMs) in the resonator that can
couple evanescently to atoms near the surface of the microresonator. Various factors
contribute to the radiative losses from the WGMs, for example material absorption and
scattering from impurities and imperfections. The losses from the cavity are described
by the quality factor which is defined by

Q ≡ ω
Estored
Pdiss

= ωτ, (5.27)

where ω is the resonance frequency ω = 2πc/λ with the resonance wavelength λ, Estored
is the energy stored in the resonant system, and Pdiss is the dissipation power. The
photon lifetime in the cavity is given by τ .

The losses from the WGM are determined by several factors that describe the
radiative losses from the microresonator, the intrinsic loss over which one has little
control past the manufacturing stage is:

Q−1
int = Q−1

rad +Q−1
scat +Q−1

cont +Q−1
mat, (5.28)

where Q−1
rad is the radiative losses due to the curvature; Q−1

scat is the scattering losses
from inhomogeneities in the surface; Q−1

cont is the losses due to contaminants both on
the surface and within the microresonator material and Q−1

mat is the material losses due
to absorption. The intrinsic loss together with the loss due to coupling of the WGM to
external devices (Q−1

coup), for example an input/output fibre, gives the total Q factor:

Q−1
total = Q−1

int +Q−1
coup. (5.29)

Clearly in order to execute high fidelity quantum operations one will need microres-
onator cavities with extremely low intrinsic losses and as such high Q values for each
of the intrinsic loss mechanisms.

Not surprisingly the quality factor of a mode in an optical cavity relates directly to
the decay rate of that mode. The cavity mode decay rate is given by

κ ≡ πc

λQ
≡ ω

2Q
. (5.30)



58 NV center Four-level Tripod Quantum Phase Gate

Another important parameter of microresonators is the mode volume. It is the
volume occupied by the mode, and includes both the part of the field confined within
the cavity and the evanescent part of the field just outside the cavity wall. There are
several different definitions of mode volume depending on the specific aspect of the
microresonator that is being investigated. The mode volumes for transverse electrical
(TE) and transverse magnetic (TM) polarised modes are different. The mode volume
also depends on the geometry of the microresonator and as such, for example a micro-
toroid and microsphere cavity will yield different mode volumes for the same resonance
frequency. Here we are interested in the enhanced coupling to atomic systems that a
large electric field per photon implies [104]. As such we are interested in small mode
volumes. On the other hand the better the field is confined in the resonator the weaker
the evanescent field outside the resonator that the atomic system will couple to. It
is thus critical to have the atomic system we wish to couple to the WGM as close as
possible to the surface of the resonator at a location where the evanescent field is at
its maximum.

High quality factor (high-Q) microresonators have been demonstrated in a variety
of guises in solid state systems. Examples of high-Q microresonators are: microspheres
made of silica (SiO2) with up to Q ∼ 109 [106, 113]; microdisks made from SiNx and
GaAs Q ∼ 106 [114, 115]; microtoroids monolithically grown from SiO2 on silicon
chips Q ∼ 108 [105, 116]. The ultra high-Q factors demonstrated in microspheres and
microtoroids are especially interesting.

5.3 NV centres coupled to microresonators

What remains now is the ability to strongly couple a system in tripod level configuration
to a high-Q microcavity. As we saw in section 2.3 the nitrogen vacancy centre in
diamond possesses a spin triplet ground state 3A that is split by 2.88 GHz into a
doublet (ms = ±1) and singlet spin sublevel (ms = 0). With the application of a
magnetic field the doublet will be split into two singlets, thus providing the three
ground states required for a four-level tripod system.

NV centres have been coupled to a wide variety of microresonators and we describe
a few of the most noteworthy and relevant experiments to date. NV centres in bulk
diamond have recently been coupled to a GaP microdisk resonator by Barclay et al.
[117]. GaP microdisks were manufactured and deposited on bulk diamond samples con-
taining NV centres. This experiment coupled many NV centres to the microresonator
which had a total Q factor Q > 2.5 × 104. Due to inhomogeneities between different
NV centres (due to different strain environments and dipole orientation) it would be
ideal to have only a single NV centre couple to the cavity. Single NV centres have pre-
viously been observed in nanodiamonds sized from a few tens of nanometre [118] down
to ∼ 5 nm [119]. Let us consider the deposition of a nanodiamond onto the surface of
a microresonator. For very small nanocrystals, the single NV centre contained within
the nanocrystal will be in close proximity to the microresonator surface, and thus be
exposed to a stronger evanescent field than if it were situated further from the surface.

This strategy was followed by Barclay et al. [108] when they coupled nanocrystals
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with a median diameter of 200 nm to a high-Q SiO2 microdisk cavity (Q ≈ 105). The
nanocrystal was positioned on the surface with 100 nm accuracy, but better accuracy
manipulation of nanodiamonds have been demonstrated down to a few nanometres
[120]. The nanodiamonds in [120], however, did not contain single NV centres but
on average contained 5 NV centres. From the modelling done by Barclay et al. [108]
of the coupling between a particular WGM (with maximum evanescent field at the
nanocrystal location) and the NV centre (with optimal dipole orientation of the NV)
it was estimated that the coupling rate at the surface of the microresonator would be
gtotal/2π ≈ 640 MHz and the coupling rate to the zero phonon line would be gzpl/2π ≈
130 MHz. These are the maximum coupling rates achievable. The coupling rate realised
in the experiment to the zero phonon line, however, was only gzpl/2π ≈ 28 MHz. Factors
contributing to the decreased coupling rate are: imperfect dipole orientation within the
nanocrystal; imperfect mode-matching; local field effects in the diamond; and distance
of the NV centres from the optimum position.

Park et al. [107] deposited many nanodiamonds with an average size of 75 nm on
the surface of silica microspheres and demonstrated coupling between NV centres and
WGMs of the microsphere. The WGMs had Q factors in the range Q ≈ 108 and the
experiment yielded a coupling rate for the zero phonon line of gzpl/2π ≈ 55 MHz for
the cavity QED system. Another approach taken by Larsson et al. [121] is to couple
NV centres in diamond nanopillars to the high-Q WGMs in silica microspheres. The
nanopillars, etched from bulk diamond, contained many NV centres and had a diameter
of 200 nm. The Q factor for the composite cavity-pillar system was Q ≈ 2× 106. The
first to couple single NV centres to high-Q WGMs in microspheres was Schietinger
et al. [122, 123]. They made use of polystyrene microspheres that were preselected
to match the NV frequency. A nanodiamond with only a single NV centre contained
within it was identified and selected from a collection with an average nanodiamond
diameter of 25 nm, and then attached to the microsphere. Subsequently coupling of
the NV to a WGM with Q ≈ 5500 was observed.

We make use of observations from some of these experiments to provide numerical
values for some of the parameters used in section 5.4 for the modelling of the QPG.

5.4 Nonlinear interaction with a strongly coupled

single tripod system and cavity modes

The results presented here make no assumption on the specific type of cavity used. A
cavity with a sufficiently high quality factor such that there is strong coupling between
the cavity fields and the NV center is however assumed and this restricts the type of
suitable cavity. Being able to implement this scheme in a condensed matter system
would be greatly beneficial for the scalability and integration of the CPHASE gate
with other optical elements, as such the semiconductor grown micro-resonators with
their high quality factors are ideal systems to implement this scheme in. In particular
whispering gallery modes in spherical and toroidal micro-resonators have been shown
to have ultra-high Q factors up to 109 [105, 106]. Ultra-high Q factors allow for
strong coupling between light and atomic systems, thus making a single atom approach
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nanodiamond

optical fibre taper

Figure 5.2: Nanodiamond on the surface of a microtoroidal resonator with an optical
fibre taper for input and output coupling.

feasible.

In particular we consider a nitrogen vacancy center in diamond as our four-level
tripod system, and use characteristic values for the NV center from the literature. A
schematic of how this system might appear in practice is depicted in Figure 5.2. The
nitrogen vacancy center is explained in section 2.3, but for completeness the required
essentials are given here too. A substitutional nitrogen atom accompanied by a vacancy
forms the NV center in diamond. The NV center has a strong optical transition between
the spin triplet states 3A and 3E with a zero-phonon line at 637 nm. The four-level
tripod system is depicted in Figure 5.3, the three ground states are: |1〉 the ms = +1
spin sublevel, |2〉 the ms = 0 spin sublevel, and |3〉 the ms = −1 spin sublevel, the
excited state is denoted as |0〉. States |1〉 and |0〉 are connected by a weak probe
field (a) with a coupling strength gP , whilst the weak trigger field (b) with a coupling
strength gT connects states |3〉 and |0〉. The |2〉 → |0〉 transition is driven by a classical
field with a Rabi frequency Ω. The transitions have detunings δ1, δ2 and δ3. In our
calculations we have included decay (γii) from the excited state to ground state |i〉,
we also included ground state dephasing (γph) which is assumed to be equal for all
the ground states. The decay rates sum to the total decay rate of the excited state,
γ = γ11 + γ22 + γ33. The values for the various parameters used in the simulation were
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|1〉

|2〉

|3〉

|0〉

ms = 0

ms = +1

ms = −1

δ1δ2 δ3

gP
Ω gT

2.88 GHZ

excited states

Figure 5.3: The NV tripod system. The probe and trigger fields have coupling strengths
gP and gT respectively. Ω is a classical driving field. The fields have respective detunings δ1,
δ3 and δ2. This figure is similar to Figure 5.1 except that the probe and trigger couplings are
much weaker and are thus given as coupling strengths instead of as Rabi frequencies.

taken from literature and is presented in table 5.1.
The Hamiltonian in the interaction picture and after the rotating wave approx-

imation of the four-level system is similar to Equation (5.1) except that the Rabi
frequencies ΩP and ΩT are replaced with the coupling strengths gP and gT for the
probe and trigger fields respectively and the electro-magnetic fields are quantised. The
Hamiltonian is given by:

Hsys =~δ1σ̂00 + ~ (δ1 − δ2) σ̂22 + ~ (δ1 − δ3) σ̂33

+ ~gP
(
â†σ̂10 + âσ̂01

)
+ ~Ω (σ̂20 + σ̂02)

+ ~gT
(
b̂†σ̂30 + b̂σ̂03

)
. (5.31)

Where σ̂ij = |i〉〈j| (i, j = 0, 1, 2, 3) are the atomic coherences, and â and b̂ are the
probe and trigger field annihilation operators respectively.

We introduce the time evolution of the system through the master equation in the
Lindblad form:

ρ̇ =− i

~
[Hsys, ρ] + (Lcav + Lspon + Lph) ρ, (5.32)
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Parameter Value Source

γ (excited state decay rate) 13.4(2π)× 106 Hz Santori et al. [28]
γ22 (decay to state) |2〉 0.8× 13.4(2π)× 106 Hz Santori et al. [28]
γ11 (decay to state) |1〉 0.1× 13.4(2π)× 106 Hz Santori et al. [28]
γ33 (decay to state) |3〉 0.1× 13.4(2π)× 106 Hz Santori et al. [28]

γph (ground state dephasing) 1.2(2π)× 106 Hz Santori et al. [28]
gP and gT (field coupling strength) 640(2π)× 106 Hz Barclay et al. [108]

Table 5.1: The values for parameters used in the simulation are presented in this table.
Where applicable numeric values were taken from the literature.

where the decoherence terms are

Lcavρ = κP
(
2âρâ† − â†âρ− ρâ†â

)
+ κT

(
2b̂ρb̂† − b̂†b̂ρ− ρb̂†b̂

)
Lsponρ =

γ11

2
(2σ̂10ρσ̂01 − σ̂00ρ− ρσ̂00) +

γ22

2
(2σ̂20ρσ̂02 − σ̂00ρ− ρσ̂00)

+
γ33

2
(2σ̂30ρσ̂03 − σ̂00ρ− ρσ̂00)

Lphρ =
γph
2

(2σ̂11ρσ̂11 − ρσ̂11 − σ̂11ρ) +
γph
2

(2σ̂22ρσ̂22 − ρσ̂22 − σ̂22ρ)

+
γph
2

(2σ̂33ρσ̂33 − ρσ̂33 − σ̂33ρ) . (5.33)

For simplicity we take the cavity decay rates for the probe and trigger fields as being
equal, κP = κT = κ. The cavity decay rate κ is determined by: the intrinsic cavity
decay rate κC a function of the Q-factor of the cavity and the frequency of the light
[see Equation (5.30)]; and the decay rate due to out coupling to for example an in-
put/output fibre κF . The magnitude of the cavity out-coupling decay rate, κF can be
made arbitrarily close to zero by increasing the distance the input/output fibre is from
the cavity. With the NV centre ZPL at 637 nm and assuming an ultra high-Q cavity
with Q = 109 we calculate the intrinsic cavity decay rate

κC =
πc

λQ

= 1.4796 MHz. (5.34)

The probe and trigger fields are taken as weak fields and as such we are considering
single photon fields. In order to calculate the conditional phase shift from the density
operator of the system we need to use a superposition of zero and one photon per field:

|ψ(0)〉P,T = c00 |0P0T 〉+ c01 |0P1T 〉+ c10 |1P0T 〉+ c11 |1P1T 〉 . (5.35)

In addition, similar to previous work with the tripod system [83, 124], the initial
population of the atomic system is taken to be even between state |1〉 and |3〉 and as
such the initial state of the system is given by:

ρ(0) =

(
1

2
|1〉 〈1|+ 1

2
|3〉 〈3|

)
⊗
(
|ψ(0)〉P,T 〈ψ(0)|

)
. (5.36)
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We obtain the time evolution of the density operator by solving the master equa-
tion (5.32) using specific values for the free parameters (Ω, δ1, δ2, δ3) and taking the
coefficients cij in the initial state (5.35) all equal. The detunings are chosen such that
slightly disturbed double EIT conditions in the two Λ subsystems are created. By
tracing over the NV centre degrees of freedom we obtain the reduced density operator
ρP,T (t) = TrNV [ρ(t)] for the probe and trigger fields. The CPS φ is then calculated
from the relevant off-diagonal elements of the reduced density operator according to

φ = φ11 + φ00 − φ01 − φ10, (5.37)

where the φij are the phase shifts accrued by each of the states in two-qubit superpo-
sition as they interact with the NV centre.

Besides a large CPS we also need to be sure that the gate implemented has a high
fidelity. We calculate the fidelity in the same way as was done in References [89, 90]
by constructing an ideally evolved state for the fields:

|ψid(t)〉 = c00e
iφ00 |0P0T 〉+ c01e

iφ01 |0P1T 〉+ c10e
iφ10 |1P0T 〉+ c11e

iφ11 |1P1T 〉 , (5.38)

where the amplitudes (cij) of the states have remained unchanged from the initial state,
and then taking the overlap of the ideal state with the calculated state:

F(t) = 〈ψid(t)| ρP,T (t) |ψid(t)〉 . (5.39)

Obviously when field decay processes are included in the calculation of the reduced
density operator the fidelity after time t = 0 will always be less than 1.

5.4.1 Results

Results were obtained by running a minimisation algorithm optimising both the CPS
and the fidelity during the numerical temporal evolution of the master equation. The
values of the three detunings (δ1, δ2, δ3) and the classical field Rabi frequency Ω were
varied. For each instance of these four parameters the system was evolved to a fixed
time (gP,T t = 60). The values for the fidelity F and the quantity φopt = | sin(φ/2)| over
this time were then maximised, by varying the four parameters, to be as close to unity
as possible. We give the details of two sets of parameters that resulted in high fidelity
with a large CPS. Despite the large differences in the values for the parameters both
sets reach a similar CPS with similar fidelity at close to the same time.

In Figures 5.4 and 5.5 we show the time evolution of the fidelity (F) as calculated
from Equation (5.39). We see that in both cases fidelity reaches a peak of F ≈ 0.9
which is indicated with the red stars. The evolution of the CPS is presented in Figures
5.6 and 5.7 where a red star indicates the CPS (φ ≈ 1.5π) that corresponds to the
peak in fidelity. The physical mechanism behind the large-CPS/high-fidelity result
lies most likely with an EIT-based nonlinearity. We believe that double EIT is not the
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Figure 5.4: The time evolution of the fidelity between the ideal state ψid and the obtained
state ρa,b(t) [see Equation (5.39)] for Ω ≈ 5.1 gP,T and (δ1, δ2, δ3) ≈ (−4.5,−14.9,−4.1) gP,T .
The peak in fidelity is marked with a red star: F ≈ 0.9.

mechanism responsible for the large CPS here since the specific values for the detunings
prohibit it. In the cases we have found the detuning of the classical field Ω are very
different from the detunings of the probe and trigger fields. Hence EIT between the
classical field and the probe field is unlikely, and similarly for EIT between the classical
and trigger fields. The detunings of the probe and trigger fields, however, are close
enough to allow EIT to be established between the probe and the trigger fields. Thus
we are led to believe that the XPM interaction occurs between the two quantised fields
forming an effective Λ system. The role of the classical field is then to keep the ground
state |2〉 unpopulated and thus preserve the fidelity of the two-qubit gate operation.
In the absence of the classical field the decay channel (with rate γ22) would be the
dominant decay channel from the excited state. In the transient regime this would
result in a non-negligible population of state |2〉 which would in turn prevent achieving
the satisfactory value for the fidelity.

A strange feature in the evolution of the CPS is the rapid and rather large jumps
in phase of nearly π that occur regularly. We show the detail of these rapid jumps in
Figures 5.6(b, c) and 5.7(b, c) where red stars denote numerically calculated points,
demonstrating that these jumps are continuous in nature. They are thus not numerical
artefacts even though the physical mechanism behind these jumps is not clear. Similar
behaviour was however found recently in the dynamics of quantum dots [125, 126].
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Figure 5.5: The time evolution of the fidelity between the ideal state ψid and the obtained
state ρa,b(t) [see Equation (5.39)] for Ω = 3.2 gP,T and (δ1, δ2, δ3) ≈ (−7.3,−17.6,−7) gP,T .
The peak in fidelity is marked with a red star: F ≈ 0.9.

This matter is explored further in Appendix A.

We performed process tomography on the out put state of the simulation follow-
ing the procedure presented in Benenti et al. [127] where the quantum operation is
represented in the Fano basis by an affine map. The matrix elements of the process
matrix, χF , that characterises the quantum process are real and the number of matrix
elements is equal to the number of free parameters required to determine a generic
quantum operation. We briefly retrace the steps set out in [127] for quantum process
tomography.

An n-qubit state ρ can be written in the Fano form:

ρ =
1

N

∑
α1,...,αn=x,y,z,I

cα1...αnσα1 ⊗ · · · ⊗ σαn , (5.40)

where N = 2n, σx, σy, and σz are the Pauli matrices, σI ≡ 1, and

cα1...αn = Tr(σα1 ⊗ · · · ⊗ σαnρ). (5.41)

The Bloch vector is given by b = {bα}α=1,...,N2−1 where bα ≡ cα1...αn with α ≡∑n
k=1 ik4

n−k, with the definition ik = 1, 2, 3, 4 in correspondence to αk = x, y, z, I.
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Figure 5.6: (a) The time evolution of the intracavity CPS φ (in units of π) for Ω = 5.1 gP,T
and (δ1, δ2, δ3) ≈ (−4.5,−14.9,−4.1) gP,T . The red star denotes the CPS which corresponds
to the peak in fidelity (see Figure 5.4). In (b) and (c) we show detail of the jumps in the
phase from (a), here the red stars are numerically calculated points.
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Figure 5.7: The time evolution of the intracavity CPS φ (in units of π) for Ω = 3.2 gP,T
and (δ1, δ2, δ3) ≈ (−7.3,−17.6,−7) gP,T . The red star denotes the CPS which corresponds to
the peak in fidelity (see Figure 5.5). In (b) and (c) we show detail of the jumps in the phase
from (a), here the red stars are numerically calculated points.
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In the case of a two qubit system the Bloch vector is given by

bT =(b1, b2, ..., b15) = (cxx, cxy, cxz, cxI , cyx, cyy, (5.42)

cyz, cyI , czx, czy, czz, czI , cIx, cIy, cIz). (5.43)

The quantum operation ρ→ ρ′ = E(ρ) is represented in the Fano basis {σα1⊗ ...⊗σαn}
by an affine map:

[
b′

1

]
=M

[
b
1

]
=

 M
∣∣∣ a

0T
∣∣∣ 1

[ b
1

]
, (5.44)

where M is a (N2− 1)× (N2− 1) matrix, a a column vector of dimension N2− 1 and
0 the null vector of the same dimension. The quantum operation E is characterised by
the process matrix

χF =
[

M
∣∣∣ a

]
, (5.45)

that describes the evolution of the expectation values of the system’s polarisation
measurements. The process matrix is calculated from experimental data by preparing
N2 linearly independent initial states {ρi} and allowing them to evolve according to
the quantum operation E and then measuring the resulting states {ρ′i = E(ρi)}. By
using the Fano representation of the states ρi as the columns we can form the N2×N2

matrix R. The corresponding matrix formed from the output states ρ′i is then R′. The
transformation of the ρi states into the ρ′i states are then written as

R′ =MR, (5.46)

and as such

M = R′R−1. (5.47)

As the linearly independent initial states {ρi} for our two-qubit system we choose the
16 tensor-product states of the single-qubit states:

|0〉 , |1〉 , 1√
2

(|0〉+ |1〉) , 1√
2

(|0〉+ i |1〉) . (5.48)
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The matrix R is then calculated as:

R =



0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



, (5.49)

while R′ is calculated by using each of the 16 initial states as the initial state of the
fields in our simulation and then obtaining the Fano representation of the final state of
the system at the time when we have previously obtained a peak in fidelity, see Figures
5.4 and 5.5.

The Choi matrix [128] for the process can be obtained from the process matrix χF :
The Choi fidelity is given by the trace fidelity of the Choi matrices for the simulated
process and the ideal process:

FC = Tr [χsim χideal] . (5.50)

5.4.2 Conclusion

We have demonstrated in this chapter that a single NV centre nanodiamond coupled
to an ultra-high Q cavity could induce, with a high fidelity, a CPS in excess of π in
two cavity fields coupled to two transitions of the four-level tripod scheme realised in
the NV centre. Such a large CPS would allow the implementation of a CZ gate and
as such would allow a CNOT gate if single photon Hadamard gates are applied to the
target qubit before and after the CZ gate interaction. It has also been shown that all
the technologies required have been demonstrated close to or upto the level required
to realise this system experimentally:

1. Single NV centres in nanodiamonds are available

2. Nanodiamonds can be accurately positioned on microresonators

3. Ultra-high Q cavities for NV centre optical transition wavelengths are under
investigation
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Figure 5.8: The Choi matrix for the simulated process (solid bars) obtained by process
tomography, and the Choi matrix for the ideal process (transparent bars) with a CPS equal
to that of the simulation. The trace fidelity between the two matrices is 0.98, indicating that
the implemented process is very close to the ideal process.

4. Large coupling between NV centres and cavity fields have been demonstrated
and would be larger for better cavities

We also found an interesting regular feature where the CPS jumps by nearly π radians.



6
Breeding Schrödinger cats with diamonds

In this chapter we explain how the system introduced in section 5.4 can be used in the
preparation of optical macroscopically distinguishable states, also known as Schrödinger
cat states (from the gedankenexperiment of Schrödinger [129]). An optical cat state
consists of two quasi-classical states with opposite phases in a quantum superposition,
the cat state then possesses opposite phases simultaneously. Several uses exist for cat
states, from tests of quantum theory (e.g. through violations of Bell inequalities [2–4])
through to applications in quantum information processing [130–133].

Due to strong interactions with the environment quantum superpositions in macro-
scopic systems decohere rapidly. Yurke and Stoler [134] first showed that an optical
coherent state propagating through a medium with an intensity dependent refractive

index (i.e. a self-Kerr medium, H = ~χ
(
a†a
)2

) can evolve into a quantum superposi-
tion state. The coherent state evolves into a Schrödinger cat state at time t = π/2χ
and in order to minimise the effects of decoherence a strong self-Kerr interaction is
required, i.e.. χ ∼ π, making standard Kerr media with their weak nonlinearities ill
suited for the job. Brune et al. [135] introduced a way of generating cats through the
conditional measurement of a subsystem which is correlated with another subsystem
that can then be left in a Schrödinger cat state. In [135] they considered the case when
an atom is dropped through a cavity where it entangles with an optical coherent field.
In that case atom and the field constitute the two subsystems. Vitali et al. [136] intro-
duced the notion that the two subsystems could be optical coherent fields undergoing
a cross-Kerr interaction. A measurement by homodyne detection on one coherent field
will then herald the creation of a cat state in the other field. After reviewing this
last work, which uses an ideal cross-Kerr evolution of two coherent states followed by
measurement we will investigate the possibility of using the system of section 5.4 in
this method of cat-state generation.

71



72 Breeding Schrödinger cats with diamonds

6.1 The ideal cross-Kerr cat breeder

On account of the relatively weak interaction of light with the environment super-
positions of macroscopically distinguishable coherent optical states |α〉 form an ideal
physical system in which to realise cat states. The Schrödinger cat state is then defined
by |ψ〉 = N

(
|α〉+ eiθ |−α〉

)
where N is a normalisation constant and the coherent am-

plitude is α. The “size” of the cat is given by the average number of photons |α|2 in
the coherent field, while the overlap between the “live” and “dead” cat is given by
〈α| −α〉 = e−2|α|2 which is required to be small by most quantum information process-
ing applications: the overlap will be less than 1% when |α|2 & 2.3. The coherent state
|α〉 can be written in the Fock (number) state basis as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (6.1)

Taking the simplest most ideal situation with no damping and no driving the Hamil-
tonian describing the cross-Kerr interaction between two modes a and b is given by

Hint = ~χ
(
â†âb̂†b̂

)
, (6.2)

The strength of the cross-Kerr interaction is given by χ. With the initial state of the
fields being

|ψ(0)〉 = |α0〉 |β0〉 , (6.3)

where |α0〉 and |β0〉 are coherent states of the a and b modes respectively. We write
the evolved state at time t as

|ψ(t)〉 = e(−i/~)Hintt |ψ(0)〉

= e−|α|
2/2e−|β|

2/2

∞∑
na,nb=0

αna
0 βnb

0√
na!nb!

e−iχt(nanb) |na〉 |nb〉 . (6.4)

At time t = π/χ we have eiχnanbt = (−1)nanb such that the sum in Equation (6.4) can
be divided into two parts, one with na even and the other with na odd:

|ψ(π/χ)〉 = e−|α|
2/2e−|β|

2/2

(
∞∑

na=even

αna
0√
na!
|na〉

∞∑
nb=0

βnb
0√
nb!
|nb〉

+
∞∑

na=odd

αna
0√
na!
|na〉

∞∑
nb=0

(−β0)nb

√
nb!

|nb〉

)

=
1

2
{|α0〉+ |−α0〉} |β0〉+

1

2
{|α0〉 − |−α0〉} |−β0〉 . (6.5)

Two kinds of cat states can be obtained, the even cat state |α0〉 + |−α0〉, or the odd
cat state |α0〉 − |−α0〉. We can identify situations where the a mode is in a cat state
by making a measurement of the b mode at time t = π/χ that discriminates between
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states |β0〉 and |−β0〉. As suggested by Vitali et al. [136] this can be done with a
homodyne measurement of the quadrature of mode b

Xb =
1

2

(
b̂e−iφ

0
b + b̂†e−iφ

0
b

)
, (6.6)

where φ0
b = arg(β0). As mentioned with large enough β0 the overlap between the two

states are small and the measurement will easily discriminate between them, yielding
|β0〉 half of the time and |−β0〉 the other half. When the measurement result is |β0〉
the state of the system becomes:

|ψ(π/χ)〉Xb
= N ({|α0〉+ |α0〉} |β0〉+ 〈β0| − β0〉 {|α0〉 − |α0〉} |β0〉) , (6.7)

which, with large β0, results in the a mode subensemble being in the even cat state.
The normalisation constant N is given by

N = 1/
√
〈β0| − β0〉〈α0| − α0〉+ 〈−β0|β0〉〈−α0|α0〉+ 〈β0| − β0〉〈β0| − β0〉, (6.8)

which with large β0 will be equal to one.
A very useful way to visualise macroscopic superposition states is with the quasi-

distribution function, the Wigner function, defined as

W (α, α∗) =
1

π2

∫
d2γ e−iγα

∗−iγ∗α Tr
[
eiγâ

†+iγ∗âρ
]
. (6.9)

In Figure 6.1 we show the Wigner function calculated for an ideal Schrödinger cat
state, i.e. a state that is a perfect superposition of a positive and a negative coherent
state |ψ〉IDcat = N {|α0〉+ |−α0〉}, where α0 = β0 =

√
3. Of note is the two peaks, one

corresponds with the “living” cat (|α0〉) the other with the “dead” cat (|−α0〉); and the
rapid oscillations with negative troughs between the two peaks due to the interference
between the two states. When the Wigner function of a quantum state has negative
values the state can not be described by a classical phase-space density and as such it is
clear that the state is indeed nonclassical and not simply a mixture of coherent states.
The separation distance between the two Gaussian peaks corresponding to the coherent
states increases as the average photon number in the coherent states increases. Further
more the frequency of the interference oscillations increase with separation [137].

6.2 Cats in the tripod configured single NV centre

and high-Q cavity system

Considering the results in chapter 5 where our simulations yielded a large CPS between
two single photon fields it seemed likely that two coherent fields as the input probe
and trigger fields could evolve into a state closely resembling that in Equation (6.5).
A projective measurement of the b mode after sufficient time (t = π/χ) would then
leave mode a in a cat state. As such we use the same setup as in section 5.4 for the
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Figure 6.1: The Wigner distribution of an ideal cat state |ψ〉IDcat = N {|α0〉+ |−α0〉}
where α0 = β0 =

√
3. The inset shows the view from the top.

simulations here, with the one change being the use of coherent states in place of single
photon states as inputs. We assume a tripod-level (Figure 5.3) configured NV centre
with parameters taken from literature (see Table 5.1). The Hamiltonian of the system
is given by

Hsys =~δ1σ̂00 + ~ (δ1 − δ2) σ̂22 + ~ (δ1 − δ3) σ̂33

+ ~gP
(
â†σ̂10 + âσ̂01

)
+ ~Ω (σ̂20 + σ̂02)

+ ~gT
(
b̂†σ̂30 + b̂σ̂03

)
. (6.10)

Where σ̂ij = |i〉〈j| (i, j = 0, 1, 2, 3) are the atomic coherences, and â and b̂ are the
probe (mode a) and trigger (mode b) field annihilation operators respectively. The
time evolution of the system is governed by the master equation in the Lindblad form:

ρ̇ =− i

~
[Hsys, ρ] + (Lcav + Lspon + Lph) ρ, (6.11)
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where the decoherence terms are

Lcavρ = κP
(
2âρâ† − â†âρ− ρâ†â

)
+ κT

(
2b̂ρb̂† − b̂†b̂ρ− ρb̂†b̂

)
Lsponρ =

γ11

2
(2σ̂10ρσ̂01 − σ̂00ρ− ρσ̂00) +

γ22

2
(2σ̂20ρσ̂02 − σ̂00ρ− ρσ̂00)

+
γ33

2
(2σ̂30ρσ̂03 − σ̂00ρ− ρσ̂00)

Lphρ =
γph
2

(2σ̂11ρσ̂11 − ρσ̂11 − σ̂11ρ) +
γph
2

(2σ̂22ρσ̂22 − ρσ̂22 − σ̂22ρ)

+
γph
2

(2σ̂33ρσ̂33 − ρσ̂33 − σ̂33ρ) . (6.12)

For simplicity we take the cavity decay rates for the probe and trigger fields as being
equal, κP = κT = κ. The state of the coherent input fields is

|ϕ(0)〉a,b = |α0〉 |β0〉 , (6.13)

and the initial population of the atomic system is taken to be even between state |1〉
and |3〉 and as such the initial state of the system is given by:

ρ(0) =

(
1

2
|1〉 〈1|+ 1

2
|3〉 〈3|

)
⊗
(
|ϕ(0)〉a,b 〈ϕ(0)|

)
. (6.14)

From our previous study in chapter 5 we know that this Hamiltonian acts like
the ideal cross-Kerr Hamiltonian (6.2) but with additional linear terms proportional
to â†â and b̂†b̂. With the real value of χ unknown we make use of a recent measure
for quantifying macroscopic quantum superpositions [138] to determine how close to
a Schrödinger cat state mode a is at each time step in the evolution. We maximise
this measure with respect to the detunings δ1, δ2, δ3 and classical field Rabi frequency
Ω and the time. An effective measure for a macroscopic superposition must quantify
the degree of superposition against an incoherent mixture, as well as the effective size
of the state, e.g.. the average number of photons. A recent measure proposed by
Lee et al. [138] makes use of the phase-space representation of the state, the Wigner
function. The Wigner function of a macroscopic superposition of two states has two
well defined peaks with interference fringes between them. The frequency of the fringes
is proportional to the “size” of the superposition, i.e. how distinguishable the two states
are from each other. While the magnitude of the fringes relate to the “coherence” of the
superposition, or how different the superposition is from a completely mixed version.
The measure I (ρ) can be easily calculated

I (ρ) = −Tr [ρL (ρ)] , (6.15)

where L (ρ) is the superoperator in the Lindblad form

dρ

dτ
= L (ρ) =

(
âρâ† − 1

2
â†âρ− 1

2
ρâ†â

)
, (6.16)

where τ = (decayrate)× (time) is the dimensionless time.
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I (ρ) gives a maximum value 〈n̂〉 (the number of particles for ρ) only for pure states,
and has a minimum value I (ρ) = 0 for completely mixed states. Thus no matter
how many particles are in the state if there is no potential for quantum interference
I (ρ) = 0. For an ideal cat state

|ψ〉IDcat =
1√
2
|α0〉+

1√
2
|−α0〉 , (6.17)

the macroscopic quantum superposition measure is related to α0 as

I (ρIDcat) = 〈n̂〉 = α2
0 tanhα2

0. (6.18)

It is against this value that we must compare our generated cats. For the ideal
Schrödinger cat with α0 =

√
3 (depicted in Figure 6.1), I = 2.9852. Another im-

portant measure is the purity of the state given by

P = Tr(ρ2), (6.19)

which should ideally be equal to one.
We present here some examples of states obtained in our simulation that have very

high measures of macroscopic quantum superposition. The Wigner distribution in
Figure 6.2 displays the necessary features for a macroscopic superposition state: two
peaks with interference fringes with negative parts between them. The parameters we
used for the generation of this state were (δ1, δ2, δ3) ≈ (−4.78,−14.93,−3.86) gP,T for
the detunings and Ω ≈ 5.10 gP,T for the Rabi frequency. The input coherent states had
amplitudes α0 = β0 =

√
3 and the sytem evolved for a t ≈ 8.5ns. The state depicted

in Figure 6.2 has a measure I = 2.84 out of a maximum of IID = 2.9852, and a purity
P = 0.78.

For Figure 6.3 the parameters we used were (δ1, δ2, δ3) ≈ (−7.66, 0.00,−6.93) gP,T
for the detunings and Ω = 0 gP,T for the Rabi frequency. The same input coherent
state amplitudes α0 = β0 =

√
3 were used and the sytem evolved for a t ≈ 11.4ns.

Since the classical field that would connect the |2〉 → |0〉 transition is not present the
tripod system reduces down to a λ system. The macroscopic quantum superposition
measure for this state was I = 2.93, extremely close to the maximum of IID = 2.9852,
and the purity was P = 0.81.

It should be noted that due to constraints on computing power we could not use
a larger coherent field for the b mode. With |β0|2 = 3 we have 〈β0| − β0〉 ≈ 0.0024
which results in the final state of the system after the projective measurement being a
mixture of the even and odd cats.

In conclusion we have shown that there is the potential that a single NV centre
coupled to WGMs of a high-Q cavity could be used for the generation of Schrödinger
cat states from coherent state input modes. Cat states have many uses, and the
deterministic on demand generation of cat states would hold great benefit for quantum
information applications.
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Figure 6.2: A cat state created by the cross-Kerr interaction in the tripod system. The
detunings were (δ1, δ2, δ3) ≈ (−4.78,−14.93,−3.86) gP,T for the detunings and Ω ≈ 5.10 gP,T .
The system was evolved for t ≈ 8.5 ns. The inset shows the view from the top.
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Figure 6.3: The cat state created by the cross-Kerr interaction in a tripod system. The
detunings were (δ1, δ2, δ3) ≈ (−7.66, 0.00,−6.93) gP,T for the detunings and Ω = 0 gP,T for
the Rabi frequency. The system was evolved for t ≈ 11.4 ns. The inset shows the view from
the top.



7
Conclusion

In this thesis we investigated methods related to achieving interaction between photonic
qubits. The first general approach by which to achieve this is to transfer photonic qubits
to solid state systems, where the qubit interactions can then take place. We review
several techniques related to the transfer of optical qubits to solid state systems, and
optimise one of them for situations with large inhomogeneities in the solid state system.
The other approach is to enhance the strength of the photon-photon interaction. We
review some ways in which to achieve this photon-photon interaction in linear optics,
and propose a system with a single NV centre in a cavity-QED setting enhancing the
nonlinear interaction between photons.

We demonstrated in chapter 3 that the SCRAP pulses can be optimised further to
increase the fidelity of population transfer amongst the two ground states of a Λ-type
three level system for a wide range of different field detunings. This concept of coherent
population transfer is closely related to EIT and the storage of the quantum state of
light in the spin coherences of the system. Unlike STIRAP, SCRAP does not require
two-photon resonance (i.e. detunings that are all equal) in order to achieve population
transfer. This means that SCRAP is far more insensitive to inhomogeneous broadening
of the energy levels in the system.

We have shown that the range of detunings where population transfer is at all
possible is around 35.5% larger using the optimised SCRAP pulses compared to the
original pulses. Furthermore it was shown that the fidelity of population transfer for
those detunings where it was possible is greatly increased when using the optimised
pulses. The optimised pulses increased the average fidelity of population transfer for
the detuning space under investigation by 46.6%. It is clear that SCRAP is a useful
process to employ when trying to overcome inhomogeneous broadening of energy levels
in a system undergoing state transfer. Solid state systems typically suffer the greatest
inhomogeneous broadenings due to the different electronic environments each atomic
centre finds itself in because of crystal defects and other strain related phenomena.

79



80 Conclusion

In chapter 5 we conclude that a single NV centre strongly coupled to high-Q WGMs
of a microresonator could induce a sufficiently large CPS with a high fidelity for the
implementation of a QPG. In particular, the CPS calculated would allow for a CZ
gate, a two-qubit gate essential for optical quantum computing. A great advantage of
only using a single atomic centre is the fact that there is no inhomogeneous broadening
of the energy level transitions. The establishment of EIT between the probe and
trigger fields lies at the heart of the large CPS achievable. We calculate that a CPS
of φ ≈ 1.5π radians is achieved with a fidelity F ≈ 0.9. We also conclude that the
elements comprising this scheme exist and are at or close to the quality required to
realise a large CPS. We also found an interesting regular feature where the CPS jumps
by nearly π radians. This feature, or something similar, has previously been observed
in quantum dot experiments, and the further study of the physical mechanism behind
this phenomenon has merit.

This proposal for the implementation of a QPG has several advantages over current
well established methods. The current linear optics based methods (KLM schemes) are
either probabilistic or if nearly deterministic still require a large over head of additional
qubits for the computation. These methods also require an optical lab with many large
optical elements. The scheme we propose should be able to accommodate many QPGs
on a single chip. Admittedly this will not be easy to manufacture and assemble with
current fabrication techniques. One could also envision simulations of networks of the
proposed NV-cavity scheme.

In chapter 6 we give numerical evidence that Schrödinger cat states can be created
using the single NV tripod scheme introduced in chapter 5, by using weak coherent
fields for the probe and trigger fields. We make use of a recent measure for macroscopic
quantum superposition and find that states with values I = 2.93, close to the maximum
Imax = 2.9852, can be found. Cat states have several uses within quantum information
processing and can be used for tests of Bell’s inequalities. Due to the scalable solid
state system proposed here for the generation of cats it could be possible to have access
to a large number of cats for computing purposes.

Future work

Several possibilities for future investigation have been opened by our research. Firstly
the question arises whether an analogy of SCRAP could be implemented with weak/quantum
fields. Essentially such a protocol would be standard EIT with an added Stark shift
pulse. Research into this would have to consider the field propagation equations as is
done for EIT and evaluate the transparency window and slow down effect on the quan-
tum field. The possibility of the application of this technique in a quantum memory
context is uncertain since most current quantum memory systems do not suffer from
large inhomogeneous broadening between the ground states.

Further investigation of an NV centre and high-Q WGM microresonator based QPG
could take the form of an experiment coupling a single NV centre in a nano-diamond
to a high-Q cavity and investigating the phase shifts achievable with such a system.
All the required techniques and components for such an experiment already exist. The
challenge would be in getting all these cutting edge experimental components to come
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together in one experiment.
Certainly further investigation into the generation of Schrödinger cat states with

the aid of high-Q cavities is warranted. A further prospect is simulating established
methods for computation with Schrödinger cats using cats derived from our simula-
tions instead of ideal cats, thus closer simulating the real world performance of these
computations.
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A
Appendix

In Chapter 5 we saw that the results for the CPS showed sudden changes of almost
π at a regular interval, as depicted in Figures 5.6 and 5.7. In and of itself neither
the magnitude of the phase jumps nor the timescale on which they happen is that
interesting: similarly sized sudden phase jumps are seen in previous results, see Figure
A.1, taken from Rebić et al. [90]. The most obvious difference between the jumps
in previous results and that of ours is that in our results the jumps occur at regular
intervals, and only in one direction.

In an attemt to find the reason for these regular phase jumps we first note that, as
stated in chapter 5, the detuning δ2 is substantially greater than δ1 and δ3 and as such
there is no possiblility for double EIT. The classical field thus only serves to prevent
population from accumulating in state |2〉 and we should be able to see similar results
in a simplified Λ-system. Sticking with the convention we used in Chapter 5 of |0〉 as
the exited state the Hamiltonian of the Λ system is similar to that of the tripod 5.31
just with all terms relating to |2〉 removed:

Hsys = ~δ1σ̂00 + ~ (δ1 − δ3) σ̂33 + ~gP
(
â†σ̂10 + âσ̂01

)
+ ~gT

(
b̂†σ̂30 + b̂σ̂03

)
. (A.1)

We make use of the exact same methodology for calculating the CPS as in Chapter 5.
For simplicity we ignore all decay and dephasing (thus ignoring the cavity). With this
unitary evolution of the system we find that we can obtain similar results displaying
rapid phase jumps in a Λ-system, see Figure A.2.

In a further attempt to simplify the system we adiabatically eliminate the excited
state |0〉 from the Λ-system A.1 to obtain an effective two-level system. We follow the
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Figure A.1: Figure taken from Rebić et al. [90] showing large sudden phase jumps in
the graph on the left, accompanied with the fidelity of the QPG operation on the right.
γ = 2π × 6MHZ.

methods used by E. Brion et al. [139]. We write the Hamiltonian A.1 as

H = H0 + V, (A.2)

where

H0 = ~δ1σ̂00 + ~ (δ1 − δ3) σ̂33,

V = ~gP â†σ̂10 + ~gT b̂†σ̂30,

+ ~gP âσ̂01 + ~gT b̂σ̂03. (A.3)

We also define the projectors

P+ = |0〉 〈0| ,
P− = |1〉 〈1|+ |3〉 〈3| , (A.4)

onto the excited and ground states respectively. The effective two level Hamiltonian is
given by

Heff = P−H0P
− + P−RP−, (A.5)

where R is defined by

R = V + V
P+

−P+H0P+ − P+V P+
V, (A.6)

The effective two-level Hamiltonian is then calculated as

Heff = ~ (δ1 − δ3) σ̂33 −
~g2

T

δ1

b̂†b̂σ̂33 −
~g2

P

δ1

â†âσ̂11 −
~gTgP
δ1

(
â†b̂σ̂13 + âb̂†σ̂31

)
. (A.7)
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Figure A.2: CPS calculated in a Λ system with detunings: (δ1, δ3) ≈ (−7.48, −7.14) gP,T
and all other parameters the same as used for the tripod system, except all decay rates are
set to zero. The encircled regions labeled A and B show the sudden large phase jumps.

The CPS obtained by making use of this effective two-level Hamiltonian is given in
Figure A.3, which corresponds well with the previous Λ-system results. A difference of
note is the sudden jumps in phase denoted by A and B in Figures A.2 and A.3. In the
effective two-level system each of these large phase jumps consist of two smaller jumps
in phase much closer in scale to the regular oscillating jumps seen elsewhere in Figure
A.3.

We are no closer to explaining these phase jumps, but we see that this feature is
not out of the ordinary and has to a degree been seen in similar simulations evaluating
CPS.
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Figure A.3: CPS calculated in an effective two-level system derived from a Λ system
by adiabatically eliminating the excited state. Only the unitary evolution of the effective
hamiltonian was considered, that is all decay rates were ignored. The detunings used were:
(δ1, δ3) ≈ (−7.48, −7.14) gP,T . The encircled regions labeled A and B show the rappid large
phase jumps.
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bacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup. Fluores-
cence and spin properties of defects in single digit nanodiamonds. ACS Nano
3(7), 1959 (2009). http://pubs.acs.org/doi/pdf/10.1021/nn9003617, URL
http://dx.doi.org/10.1021/nn9003617. 18

[47] C. Bradac, T. Gaebel, N. Naidoo, M. J. Sellars, J. Twamley, L. J. Brown, A. S.
Barnard, T. Plakhotnik, A. V. Zvyagin, and J. R. Rabeau. Observation and con-
trol of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nan-
otechnology 5, 345 (2010). URL http://dx.doi.org/10.1038/nnano.2010.56.
18

[48] P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson,
L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup. Stark
shift control of single optical centers in diamond. Phys. Rev. Lett. 97(8), 083002
(2006). URL http://dx.doi.org/10.1103/PhysRevLett.97.083002. 18

[49] Y. Shen, T. M. Sweeney, and H. Wang. Zero-phonon linewidth of single nitrogen
vacancy centers in diamond nanocrystals. Phys. Rev. B 77(3), 033201 (2008).
URL http://dx.doi.org/10.1103/PhysRevB.77.033201. 18

[50] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser.
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