Introduction

Photons are both great and lousy as qubits for quantum computing for exactly the same
reason: they don’t interact strongly with each other. On the positive side this means
that it is relatively easy to preserve the quantum state, or information, carried by a
photon for long periods of time. This is a serious problem for solid state qubits where
decoherence of the quantum state is the predominant obstacle to scalable quantum
computing. Photons are also the way in which quantum information is communicated
between distant locations. On the negative side it is extremely hard to perform two-
qubit operations, required for quantum computing, with photons. This is where the
strength of solid state qubits lie: solid state systems can often interact readily with
each other. It is clear then that there are two approaches to solve this dichotomy:
convert the travelling qubit from being photon-based to a solid state system to allow
two-qubit operations, and then convert the qubit back to a photon for transmission; or
devise some way in which to increase the interaction strength between photons so that
two-qubit operations are possible directly between photons. The first part of this thesis
relates to the first option and we study methods to transfer quantum information from
the optical to the solid state regime as well as related coherent population transfer
techniques. The remainder of this thesis focuses on the second option and we study
methods to create strong photon-photon interaction via nonlinear optics.

In the first chapter we cover the stimulated Raman adiabatic passage (STIRAP)
technique in a A-type three level system. STIRAP can be used to transfer quantum
information from light to atoms. Furthermore STIRAP is closely related to electromag-
netically induced transparency (EIT) which is also briefly covered in this chapter; and
STIRAP also serves as a good introduction to the Stark-shift-chirped rapid adiabatic
(SCRAP) technique that lies at the heart of chapter 3. Both STIRAP and SCRAP are
population transfer techniques, while the EIT phenomenon is well known for “slow”
light and optical pulse storage. We also present some background on the nitrogen-
vacancy (NV) centre defect found in diamond. The NV centre can be configured as a
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A system, as well as a four-level tripod system and is extensively used in later parts of
the thesis where we address option two, the generation of photon-photon interaction.

In chapter 3 we explain the SCRAP technique as applied to A-type three level
systems. We then engineer the pulses used in SCRAP using optimal control techniques
in order to obtain pulses that result in high fidelity population transfer over a wide range
of optical field detunings. This could prove useful since solid state systems are known
to suffer from large inhomogeneous broadenings, while having many other advantages
over atomic vapour systems. By using the optimally robust version of SCRAP that we
find, one should be able to achieve a greater fidelity population transfer in the presence
of large inhomogeneities.

In chapter 4 we give an overview of the known methods to perform quantum logic
between photons. We introduce the quantum phase gate (QPG) and more particularly
the controlled sign flip (C-sign) gate. We review the seminal Knill, Laflamme and
Milburn (KLM) [1] scheme for implementing a probabilistic CZ gate with linear optics.
We also review the improvement made to this scheme by replacing measurements with
quantum nondemolition measurements, thus rendering the scheme almost determinis-
tic. We see in this chapter that there are advantages and disadvantages to each of the
different schemes. The most important part of this chapter is the section on the QPG
by using a large Kerr nonlinearity. We will try to minimise the disadvantage of this
scheme by showing that sufficiently large conditional phase shifts can be obtained in
a physically realisable system. The explanation of how a large cross-Kerr interaction
can be used to implement a QPG is the primary motivation for the next chapter.

In chapter 5 we present our proposal to realise a QPG in a high-Q cavity-QED
setting making use of a single NV centre in a nanodiamond. The NV centre is used
in the tripod-level configuration. We review a previous proposal of how a QPG can
be realised in a four-level tripod system. We then give a very brief introduction to
microresonator cavities which have high-Q whispering gallery modes. We also review
the literature on coupling NV centres to microresonators. Following extensive numerics,
our models suggest that it is possible to obtain high fidelity conditional phase gates
with phase shifts in excess of 7w radians in this system — enough to realise a CZ gate.
Process tomography of the simulated QPG gate compares very well with an ideal QPG
that results in the same conditional phase shifts.

Lastly, in chapter 6 we show that it is also possible to use this system to create a
superposition of two macroscopically distinguishable states, that is a Schrodinger cat
state, by using two weak coherent fields as inputs and making a measurement on the
second field. Schrodinger cat states have application in the testing of quantum theory
(e.g. through violations of Bell inequalities [2-4]) through to applications in quantum
information processing. We make use of a recently introduced measure of macroscopic
quantum superposition to evaluate our Schrodinger cat states and find that states with
a measure close to the maximum achievable for the given input states can be found.



EIT, STIRAP and NV centre as a A-type
three level system

Photons are ideal carriers of quantum information since they are fast and robust.
To perform quantum logic with photons though is difficult as it is difficult for two
photons to interact, making gates between two qubits hard to perform reliably. Atoms
(or molecules which will hence forthwith be included when referring to atoms) can,
under some circumstances, store quantum states reliably for long periods of time and
allow for easily manipulated interactions between individual states. To facilitate the
transport, storage and subsequent manipulation of quantum states it would be highly
advantageous to have a means to coherently transfer a quantum state carried by light
to atoms and vice versa.

Atomic vapours have been extensively investigated for use as quantum information
storage media by “slowing down”, or even “stopping”, a light pulse carrying quantum
information. This is achieved by mapping the quantum state of the light to a long-
lived spin state in the ensemble of atoms by means of electromagnetically induced
transparency (EIT) [5-9]. This process can then be reversed, and the pulse coherently
resynthesised from the atomic ensemble. EIT is closely related to an adiabatic passage
technique known as Stimulated Raman Adiabatic Passage (STIRAP), that makes use
of two classical light fields of similar strength, whereas in EIT one of the two fields (the
probe or signal field) is much weaker than the other (the coupling or control field). For
EIT to be used to implement quantum memory the probe field is a weak quantum field,
and carries the quantum information. The reason atomic vapours are good candidates
is the same reason why atomic vapours are good sources of laser light: all the atoms in
the ensemble are identical to each other, with identical energy transitions and resonance
frequencies. This homogeneity of the atoms means that the light pulses used in EIT
experiments can be tuned to specific transitions in the atoms and that these light fields
will then interact strongly with all the atoms in the ensemble. Doppler-shifts due to
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different velocities of the atoms can largely be compensated for. Diffusion of the atoms
on the other hand presents a larger problem in that the resynthesised optical pulse after
storage will not be identical to the original pulse if the positions of the atoms changes
significantly during the storage time. This is seen as noise in the retrieved pulse and
limits the duration for which an optical pulse can be stored within the atomic ensemble.

Solid-state implementations of stored light by means of EIT may have a number of
potential advantages over atomic vapour implementations. Notably they have the po-
tential to greatly reduce (possibly eliminate) limitations on the storage lifetime, which
is mainly due to unavoidable atomic diffusion and Doppler velocities in atomic vapour
systems. A higher atomic density has the potential to yield a stronger interaction
between the light and atomic ensemble because of an increase in the number of in-
teracting centres. Being more compact and simpler to use/manufacture may indicate
great scalability [10] on the part of solid-state implementations. EIT and slow light
have been demonstrated in rare-earth doped semiconductors e.g. Pr doped Y3S5iOs
[11, 12], whereas only EIT has thus far been shown in nitrogen-vacancy colour centres
in diamond [13, 14]. Solid-state media are, however, not without their own problems:
the biggest of which is inhomogeneous broadening of the energy levels, which leads
to a reduction in the number of atoms/centres that will be resonant with the inci-
dent optical fields. Each atom/centre experiences a different electronic environment
due to a number of factors e.g. the local strains in the crystal lattice, which results
in differing energy spectra for different centres in the ensemble. The light used in
the EIT experiment will then be slightly off-resonance with many of the centres, and
substantially off resonant with some of the centres. To overcome this problem spec-
tral hole-burning techniques [15], can be used to select a subset of the atoms/centres
within a narrow spectral range: essentially the broadening is decreased by pumping
most of the atoms/centres into a highly excited state and only leaving a subensemble
possessing a much narrower linewidth which can then be used for quantum memory.
Clearly this creates another problem in that typically only a small fraction of the initial
atoms/centres remain in this subensemble to interact with the light. This reduction
decreases the coupling strength between the light and the atoms and subsequently
results in lower fidelity operations.

In chapter 3 we propose an alternative method to at least partially surmount the
reduction caused by inhomogeneous broadening. This entails employing an additional
(pulsed) field to induce Stark shifts in the energy levels and thus bring the required
transitions on resonance at specific times. This technique when employed with classical
light fields is known as Stark-shift-chirped rapid-adiabatic-passage (SCRAP), and is
closely related to STIRAP and other coherent population transfer (CPT) techniques.
SCRAP has been shown to be far more accommodating with regard to variances in
detunings between resonant frequencies of atomic systems and the frequency of illu-
minating light when performing coherent population transfer [16]. We show that the
SCRAP pulses can be optimised such that population transfer occurs for a wide range
of detunings.

Here in this chapter we explain the STIRAP technique as an introduction to the
EIT phenomenon and as a basis for understanding the SCRAP technique used in
chapter 3. EIT, explained in section 2.2, is also behind the large cross-Kerr nonlinear
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FIGURE 2.1: The A-type three-level energy scheme. States |1) and |2) are coupled by the
pump pulse P which has a detuning Ap from being exactly on resonance. Similarly states
|2) and |3) are coupled by the Stokes pulse S which has a detuning Ag. State |2) is short
lived with spontaneous emission occurring out of the system into the continuum of states. )

interaction achievable in the tripod system that we use in chapter 5 for the NV centre
based quantum phase gate. A brief introduction to the NV centre is given in section
2.3.

2.1 Stimulated Raman Adiabatic Passage (STIRAP)

In this section and the following section the links between Stimulated Raman Adiabatic
Passage (STIRAP), Electromagnetically Induced Transparency (EIT) and quantum
memory will be discussed. This will be achieved by briefly explaining the mechanisms
behind these different concepts.

First the STIRAP technique will be explained: The STIRAP method is closely
related to EIT, and also to SCRAP applied to a three-state system. Both the STIRAP
and SCRAP techniques aim to transfer population from one state to another via a two
photon process. STIRAP uses two coherent pulsed laser fields that couple two long
lived ground states to a single excited state, in order to achieve complete population
transfer between the two long lived ground states. One state is initially populated,
while the other is the target state.

In explaining the mechanisms involved in STIRAP we will only consider A-type
three-level systems (Figure 2.1), though STIRAP can also be implemented in other
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level configurations of three-level systems (i.e. V- and cascade- (ladder-) type systems).
State |1) is the initially populated ground state (or some other long-lived state), with
an optical transition to the intermediate exited state |2). This exited state has a short
lifetime and can decay via spontaneous emission to state |1) or |3) if the system is
“closed”; or to a state outside the three-state system, if the system is “open”. State
|3) is the target state, with an optical transition to |2). For most applications, and
certainly for those discussed in later sections, state |3) is a long-lived state, for example
a ground state sublevel. States |1) and |2) are coupled by the “pump” laser pulse whilst
states |3) and |2) are coupled by the “Stokes” laser pulse. The frequencies of these two
lasers are typically not exactly on resonance with their respective transitions. Thus the
pump field has a detuning of Ap from single-photon resonance for transition [1) — |2);
and the Stokes field has a detuning, Ag, from single-photon resonance for transition
|3) — |2). These two transitions are the only dipole-allowed transitions in the system.
The detuning from two-photon resonance (that is, the compound detuning of the two
photon transition from the lower ground state to the upper ground state) is given
by (Ap — Ag). The presence of single-photon detunings does not prevent population
transfer, but for STIRAP to work it is essential that the two-photon resonance condition
A P = A S holds.

Naively one would expect the pump pulse to precede the Stokes pulse so that the
population can be driven |1) — |2) — [3). This would however allow for population
loss from the excited state through spontaneous emission. In STIRAP the pulse se-
quence has a “counterintuitive” ordering: the Stokes pulse precedes the pump pulse.
Even though both states |2) and |3) initially have no population in them the Stokes
pulse, which couples them, performs an essential function: it places the system in an
eigenstate that is “dark” or “trapped”. It is so called since subsequent application of
the pump pulse will drive the population from state |1) to state |3) without allowing
any population to move through state |2) thus avoiding any radiative decay. With this
ordering of the pulses, the populating of state |2) is completely avoided, thus allowing
complete population transfer from |1) to |3), as long as the pulses also meet certain
coherence and adiabaticity conditions.

2.1.1 The Hamiltonian, eigenstates and population transfer

The simplest implementation of STIRAP, where the three states |1), |2) and |3) (see
Figure 2.1) with respective energies Ey, Ey and Ej5 are coupled by two coherent fields
(pump and Stokes fields) with respective frequencies, wp and wg, is described by the
Hamiltonian

H(t) = Hy + Vp(t) + Vs(2). (2.1)
The un-perturbed Hamiltonian is given by
Ho = hwol2) (2] + h (wo — w1) [3)(3], (2.2)

with the transition frequency between states |1) and |2), wy = (F2— E1)/h, and between
states |3) and |2), wy = (Fy — E3)/h. The detuning of the pump field from resonance
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is then Ap = wy — wp, whereas for the Stokes field the detuning is Ag = w; —wg. The
interaction Hamiltonians (Vp(t) and Vs(t)) that describe the interaction between the
system and the pump and Stokes fields respectively are given by
Vp(t) =d - Ep, (2.3)
Vs(t) =d - Eg.

d is the dipole moment operator for the atomic system, which for a transition between
the excited state |e) and ground state |g) is

d = degle)(g] + dgglg){el, (2.5)
where d., = (e|d|g). The classical electric field due to the pump laser is given by
Ep = Egpe P! + Ejpe™r!, (2.6)

and similarly for the Stokes field. The interaction Hamiltonian for the pump can then
be written as

Vp(t) = (daa[2) (1] +d5;[1)(2]) - (Eope™ "' 4 Egpe™r') (2.7)
—h (Qpe—wt + Qpeiwpt) 2)(1] + (Q}}e_wt + Q};ew) e, (28)

and the Stokes interaction Hamiltonian can be derived in a similar fashion. The Rabi
frequency, Qp = h~tdy; - Egp, is proportional to the strength of the pump field. The
counter-rotating Rabi frequency is Qp = A~ 'dy - E;p. The Hamiltonian of the sys-
tem can be transformed into the interaction (Dirac) picture by the unitary operator,
U = ¢fot/h The interaction picture Hamiltonian is related to the Schrodinger picture
Hamiltonian as follows:

H(t)=ihUU" + UHUT (2.9)
= ih <%UH0> U'+U (Ho+ Vp + Vs) UT (2.10)
= UVpU' + UV5UT. (2.11)

The Hamiltonian in the interaction (Dirac) picture becomes
H(t)=h (QpeiAPt - Qpei(“P+w°)t> 12)(1| + R (Q}e_i(“”“’(’)t + Q};e_mpt> 11)(2]

+ T (Qgemst + Qse“wﬁwl)t) 12)(3| + (Qge—“wwl)t + Q*Se_mst> 13)(2].
(2.12)

Equation (2.12) reveals that the counterpropagating parts (Qp, %, Qg and Q%)
are oscillating at a much higher frequency (wy + wp > Ap and w; + wg > Ag)
than the other parts. These rapidly oscillating parts will average out to zero over any
appreciable amount of time. Any realistic optical pulse will have a time dependent
Rabi frequency €2(¢) that will have a small time derivative compared to the frequency
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of the optical transition, and as such we can replace the up to here assumed constant
Rabi frequencies with time dependent frequencies without loss of generality. In the
rotating wave approximation the rapidly oscillating parts are neglected, resulting in
the Schrodinger picture interaction Hamiltonian:

V(t) = h(Qpe ™) |2)(1] + B (Qpe™r") |1)(2]
+ h (Qse™™5Y) 12) (3] + h (Q5e™s7) [3)(2], (2.13)

which with the un-perturbed Hamiltonian, (2.2), and after a transformation to the
co-rotating frame gives the final Hamiltonian:

0 Qpt) 0

On(t) 280 Q)| (2.14)
0 Q) 2(Ap—Ag)

.

The phases of the pulses can be chosen such that the Hamiltonian is real:

[0 Qe 0
H{t)= 3 |20() 280 Qs(t) | (2.15)
0 Qs(t) 2(Ap— Ag)

The strength of the coupling of the states by the fields is determined by the Rabi
frequencies Qp(t) and Qg(t). The detunings are defined by

hAp = (Ey — By) — fwp,
hAg = (B, — Bs) — hwg, (2.16)

for the pump and Stokes fields respectively. For STIRAP it is mandatory that the two
laser pulses are in two-photon resonance, ie. Ap — Ag = 0. Taking the two-photon
resonance condition into consideration, the three instantaneous eigenstates of H (t) are

|a®(t)) = cos O(t)|1) — sin O(t)|3),
la™(t)) = sin ©(¢) sin ®(¢)[1) + cos ®(¢)|2) + cos O(t) sin ®()|3),
“(t)) = sinO(t) cos (t)|1) — sin P(¢)[2) + cos O(t) cos P()3). (2.17)

la

Where the time dependent mixing angle O(t) is defined by

tan O(t) = gzg; (2.18)
and ®(t) is given by
tan 20(f) = VS0 + () (2.19)

Ap

We will however only be interested in eigenstate |a’(¢)). The instantaneous eigenstates
are also known as the adiabatic states of H(t): if the system is initially in |a®(t)) and
evolves adiabatically (i.e. slow enough such that the system adapts its configuration)
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FIGURE 2.2: Graph (a) shows the Rabi frequencies of the pump and Stokes pulses; (b) the
evolution of the mixing angle, Equation (2.18); (c) the eigenvalues of the adiabatic states;
(d) the change in population from state |1) to |3). All pulses were taken as being exactly on
resonance (Ap =0 and Ag = 0). (Figure taken from Bergmann et al. [18])

the system will remain in state |a®(¢)). For adiabatic evolution the pulses need to be
smooth, in addition, according to Vitanov et al. [17] a good rule of thumb is a very
large pulse area:

A= /m Q(t)dt > 1. (2.20)

e}

The instantaneous eigenenergies for the eigenstates (2.17) are

Wo(t) =0,
WH(t) = Ap+ /AL + Q3 (1) + Q4(0),
W () = Ap — /AR + D (1) + Q4. (2.21)

STIRAP is based on the zero-eigenenergy state |a’(t)) (see Equation (2.17)) which
has no component of the excited state |2) so there will be no population loss due to
radiative decay. State |a°(t)) is also known as a trapped or dark-state. Making use
of the counterintuitive pulse ordering, i.e. Stokes pulse before pump pulse, initially
Qp(t)/Qs(t) — 0 which then changes, when the pump Rabi frequency is smoothly
increased as the Stokes Rabi frequency is smoothly decreased, to Qp(t)/Qs(t) — oc.
Thus |a®(t)) starts in state |1) (the initial state of the system) and then changes to state
|3), achieving complete population transfer into the target state (see Figure 2.2). As
long as the evolution is adiabatic the system will follow the dark-state: |a®(¢)). Only
during diabatic evolution will the system evolve along a state that is a superposition of
the zero-eigenenergy eigenstate |a®()) and the other eigenstates |a=(¢)). This results
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FIGURE 2.3: The A-type three-level energy scheme. States |1) and |2) of each atom in
the ensemble of N atoms are coupled by the probe field which has a detuning A from being
exactly on resonance. The atom-field coupling constant that describes the strength of the
interaction between the probe and the atoms is g. Similarly states |2) and |3) are coupled by
the control field with a Rabi frequency of €.

in population in the short lived state |2). Thus we see that with the conditions of
two-photon resonance, counterintuitive pulse ordering, and adiabatic evolution, the
requirements for STIRAP are met and population transfer from state |1) to |3) can
be achieved with 100% fidelity where zero population is intermediately transferred to
state |2) and thus suffers no radiative loss.

2.2 EIT and the Dark-State Polariton

Electromagnetically induced transparency (EIT) is a method whereby an optically
thick (opaque) medium is rendered transparent to a weak probe laser field through
the application of a second (classical) coupling field known as the control field (on
account of controlling the opacity of the medium) [19]. EIT leads to a reduction in the
group velocity of an optical field, resulting in a way to store and retrieve optical pulses.
With the storage and high fidelity retrieval of optical pulses we have a technique for
implementing quantum memory. Once again in explaining the mechanisms behind this
we will only consider A-type three-level systems (Figure 2.3). Level |1) is the ground
state (or some other long-lived state) with an optical transition to the exited state |2).
State |3) is a long-lived state with an optical transition to |2). The classical pulsed
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laser field that couples states |2) and |3), called the Stokes field in STIRAP, is now
called the control field, whereas the pump laser field (coupling states |1) and |2)) is
now a weak probe laser field. Herein lies the difference between STIRAP and EIT:
STIRAP refers to two fields with approximately equal strength; EIT typically refers to
the situation where there is one field that is significantly stronger than the other. The
discussion of the A-type three level system in STIRAP also holds true for EIT. The
Hamiltonian is still the same and all the eigenstate and eigenenergy equations are still
relevant for EIT.

2.2.1 Transparency and Slowing/Stopping a Light Pulse

As a quick explanation of the transparency phenomenon, consider the situation where
the control field is on, coupling states |2) and |3) (see Figure 2.3), and the ground state
|1) of the system is populated. As the probe laser is scanned over a frequency range it
will experience increasingly strong absorption as the frequency approaches that of the
transition frequency of the [1) — |2) excitation until the detuning of the probe and the
control fields are equal (two-photon resonance). At this point the system will evolve
along the dark-state |a"()), and no |1) — |2) excitations will be allowed. The medium
will then be completely transparent to the probe field. As the system approaches two-
photon resonance, there is a rapid change in the optical response of the medium. If the
control field has a constant intensity, i.e. a constant Rabi frequency €2, the response
of the atomic ensemble to the probe pulsed laser can be given in terms of the linear
electric susceptibility spectrum of the ensemble [9]

Y13 + iA

A) = ¢®’N : : .
X(8) =g (m2 + 1A) (3 + 1A) + Q)2

(2.22)

Here ~;; is the relaxation rate of the |i) — [j) coherence, N is the number of atoms
in the ensemble, g the atom-field coupling strength (with g? N the square of the col-
lective coupling strength between the atoms and the field), and A is the single photon
detuning of the fields (two-photon resonance is assumed: Ap — Ag = 0, see Figure
2.3). The imaginary part of the susceptibility describes the absorption properties of
the medium. The intensity of the probe field laser leaving the medium is determined
by the transmission coefficient (7" (A)),

]transmitted =T (A) [initiala (223)

where

T (A) =exp (—Im[x (A)] kL), (2.24)

where L is the length of the medium and k = 27 /) is the resonant wave number. The
real part of the susceptibility describes the dispersion properties of the medium and
determines the refractive index of the medium:

n=1+ %Re X (A)]. (2.25)
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FIGURE 2.4: The real part of Equation (2.22), Re[x (A)], describes the dispersion as a
function of the frequency detuning A, whereas the imaginary part, Im [x (A)], describes the
absorption.

As first noted by Harris et al. 1992 [20], the rapid variation in the refractive index
(see Figure 2.4) causes a reduction in the group velocity v, of the probe pulse [8, 9, 19],

Cc

R wp (dn/dwp)
c
= 2.26
14 g?N(10)2—2,) (2:26)
(19Q)2+712713)*

which in the ideal case where state |3) is a perfect meta-stable state, i.e. the dephasing

rate v13 = 0, becomes:
c

e — 2.2
Ug 1+g2N/|Q|2’ ( 7)

where g?N/|Q2|? is referred to as the group index n,. For the case when the ratio of the
collective coupling and the control Rabi frequency (i.e. n,) is large the group velocity
can be significantly less than the speed of light in vacuum. As €2 — 0 the group velocity
v, tends to zero, thus bringing the pulse to standstill. When ;3 # 0 in Equation (2.26)
there will be a lower limit on v,. It is clear that the smaller the Rabi frequency of the
control field the slower the group velocity will be. If the control field Rabi frequency
is changed slowly enough it is possible to decrease the group velocity of a pulse as it
moves through the medium without causing loss of information carried by the pulse.
During the process energy is transferred from the electromagnetic field of the probe
pulse into the atoms and control field. The result is that the state of the probe pulse is
encoded into the spin states of the atoms while the photons of the probe pulse become
part of the control field. Even though v, < ¢, i.e. when only a small proportion of the
pulse energy remains electromagnetic, the idea of a group velocity is still useful. To
retrieve the information stored in the atomic states the process is reversed and energy
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is transferred back into the probe electromagnetic field. This is perhaps best explained
by introducing the quasiparticle, dark-state polariton.

2.2.2 Dark-State Polaritons and Quantum Memory

The dark-state polariton concept was first introduced by Mazets and Matisov (1996)
[21], and was applied to pulse propagation by Fleischhauer and Lukin (2000) [22]. To
introduce the dark-state polariton consider the pulse interaction from the viewpoint of
the atoms in the ensemble. Before the probe pulse arrives in the medium the control
field causes the dark state |a’) to be identical to the ground state |1) in which the
atoms have been initialised. The arrival of the probe pulse rotates the dark state
into a superposition of states |1) and |3) (see equations (2.17) and (2.18)). As the
probe pulse strength increases it loses energy that is transferred into the atoms and
control field. The result is that the state of the probe pulse is encoded into the spin
states of the atoms. If we assume that the probe pulse propagates in the z direction,
the spin coherence will then also be a function of position. A new quantum field
that incorporates the electromagnetic field of the probe pulse (€ (z,t)) and the spin
coherence of the atomic states (o013 (2,t)), the dark-state polariton field (¥ (z,t)), is
defined [8, 22] according to

U (z,t) = cosf (t) € (z,t) —sin b (t) VNoys (2, 1) . (2.28)
Another polariton, the bright-state polariton field (® (z,t)), is also defined to be

D (2,t) = sinb (t) € (2,t) + cos b (1) VNays (2, t) (2.29)
where the mixing angle  (¢) is given by

2 9’N

tan” 6 (t) = C0 (2.30)
The normalised slowly varying probe electric field strength is &€ (z,t), whilst 013 (2, 1) is
the coherence between the two lower levels |1) and |3). The bright-state polariton is of
no consequence here, as it leads to population in the excited state and thus degradation
in the quantum memory due to population decay. It is often taken that states |1) and
|3) are different spin sub-levels of the ground state, and hence o3 (z,t) would be the
spin coherence between the states, describing a spin-wave. The dark-state polariton
field obeys the equation of motion

% + ccos? 0 (t) % U(z,t) =0, (2.31)
which describes a shape-preserving propagation where the polariton field moves with a
group velocity vy, = ccos? 6 (¢). It is clear then that as the mixing angle increases from
zero the dark-state polariton will change from being purely electromagnetic to being a
superposition of the electromagnetic and spin-wave components. A rotation of 6 from
0 — 7/2 results in a complete encoding of the probe pulse onto the atomic states.
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FIGURE 2.5: The change of the mixing angle € (t) together with the change in the control
field Rabi frequency €2 (¢) is shown in (a). The coherent amplitude of the polariton (2.28)
is plotted in (b), whilst (c¢) shows the electric field € (z,t) component and (d) the atomic
component 013 (z,t) of the polariton. (Figure taken from Fleischhauer and Lukin [22])

The mixing angle can be controlled by adiabatically changing the control field € ().
When the control field is decreased to zero whilst the probe pulse is in the medium
the pulse will be stopped by completely converting the probe pulse into a spin-wave
in the medium. By subsequently increasing the control field back to its maximum the
spin-wave can be changed back into an electromagnetic field and the probe pulse will
be reconstructed (see Figure 2.5). This is the proposed way in which EIT and slow
light will work as a quantum memory. The spin coherence of the atoms can have a
very slow decay rate and as such the pulse could potentially be stored for a fairly long
period of time.

Slow light due to EIT has been demonstrated in atomic vapours from as early as
1999 [6, 23], and has also been demonstrated in solid media in rare-earth ion-doped
crystals [12], where pulses were stored for up to a second. It is an active field of research
with a wide range of envisioned uses, from quantum memory [8] to telecommunications

[24].
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2.3 Solid-State: NV centre as candidate

Solid-state media are the obvious choice when trying to construct large numbers of
quantum computing devices that would be easy to maintain and to use. When con-
sidering using EIT to store quantum information carried by light in the atomic states
of an ensemble of atoms, solid-state implementations have some clear advantages over
atomic-vapour implementations: in solids there is a far higher density of interacting
atoms; the stored information does not degrade due to diffusion of the atoms during
the storage time. In gas media the spin wave becomes scrambled once the atoms have
moved significantly compared to the wave vector mismatch between the probe and the
control beams, for this reason the two beams are usually copropagating in EIT exper-
iments in gas media, thus minimising the mismatch. In solid-state implementations of
EIT the beams do not have to be copropagating. In rare-earth-metal-doped crystals
the concentration of dopant atoms can easily exceed the density of atoms in a gas by
eight orders of magnitude [25]. Nitrogen-vacancy (NV) centres in diamond have also
been considered as candidates for EIT media since their electron spins have large longi-
tudinal and transverse relaxation times. They have long longitudinal relaxation times
(T1), since there is very low coupling between the electronic charge of the NV and the
lattice vibration of the diamond crystal. They have very long transverse relaxation
times (Ty) (or spin coherence) due to weak coupling to nearby 3C nuclear spins in
diamond [26]. Experiments demonstrating EIT in NV centres were first performed by
Wei and Manson [13] and later by Hemmer et al. [14]. Santori et al. showed that CPT,
an effect that is closely related to EIT can be performed in NV centres at zero magnetic
field [27] and also in single NV centres [28] in for example nanodiamonds. Storage of
light pulses for more than a second has been achieved in rare-earth ion-doped crystal
[12], but is yet to be shown for the NV centre.

2.3.1 Description of the NV centre in diamond

We describe here the basic properties of the NV centre which we suggest as a possible
system in which to implement the SCRAP protocol explained in chapter 3. We also
consider the NV centre for the implementation of a cavity QED based quantum phase
gate in chapter 5.

The nitrogen-vacancy centre in diamond is a stable naturally occurring defect
formed when a substitutional nitrogen atom is accompanied by a vacancy at a nearest
neighbour lattice site (Figure 2.6). The nitrogen-vacancy centre exists in two charge
states: the neutral NV, and the negatively charged NV~ we will only consider the lat-
ter in this work and for brevity’s sake and conformity refer to as the NV centre. Due to
the NV centre being primarily surrounded by 2C, which has zero magnetic spin, very
long spin coherence times are observed. Ground state spin coherence times of around
50 ps have been observed at room temperature in chemical vapour deposition (CVD)
grown diamond by Kennedy et al. [30]. It was also noted that decreased concentration
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FIGURE 2.6: The nitrogen-vacancy centre structure. One substitutional nitrogen (N) atom
is accompanied by a vacancy (V) at the nearest neighbour lattice site. (Figure courtesy of
Carlo Bradac, Macquarie University.)

of Nitrogen in the samples resulted in longer coherence times. Moreover, recently ex-
tremely long coherence times up to 1.8 ms at 300 K were observed in isotopically rich
and ultra pure CVD diamond [31], by decreasing the concentration of the ¥C isotope
which also have a spin interaction with NV centres.

The NV centre has a C5, symmetry and has a strong optical transition with a
zero-phonon line at 637 nm (1.945 eV) due to a transition between the spin triplet
states A and 3E. Considering the emission spectrum in Figure 2.7 one notes that
the zero-phonon line becomes quite prominent at low temperatures and the sideband
emission decreases. Since the NV’s optical transition possesses a high fluorescence
quantum yield (about 70%) and an excited state lifetime of 13 ns [32], the fluorescence
of a single NV centre can be observed, an essential requirement for many quantum
information applications.

It is only recently that some of the finer details concerning the energy levels has been
elucidated, in particular the properties of excited states and two singlet levels believed
to be between the ground and excited states have come under intense investigation. A
schematic of the currently held model for the NV’s energy level structure is presented
in Figure 2.8. The ground state spin triplet, 3A, is split by 2.88 GHz into a doublet Tyy,
Toy (ms = 1) and a third spin sublevel 7oz (ms = 0) in the absence of a magnetic
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FI1GURE 2.7: The NV centre emission spectra showing the ZPL at 637 nm and the phonon
sideband extending from about 650-800 nm. Figure taken from Jelezko et al. [29]

field [34].

Recent experiments have established an infrared transition between the 'E and 'A
singlet levels [33, 35], and it is believed that the 'E level is closest to the excited *E
states. The A metastable singlet state has a temperature dependent lifetime between
219 ns at 295 K and 462 ns at 4.4 K. This level configuration is in disagreement with
recent theoretical work [36, 37|, which places the 'A level above the 'E level. These
finer details, however, do not affect any of the work presented here in any way.

The excited state spin triplet is split into sublevels with mg; = 0 (7}7) and sublevels
with mg = £1 (T1x1y). The lifetimes of these sublevels have recently been determined
and found to be 12 ns for 77 and 7.8 ns for T} x 1y in bulk diamond [38] and 23 ns for
Tiz and 12.7 ns for T x 1y in a nanodiamond crystal [39].

There is spin selective intersystem crossing from the excited state into the 'E singlet
with a significantly higher probability for the 77 x 1y sublevels to decay nonradiatively
(indicated by dashed lines in Figure 2.8) to 'E than the T}z sublevel. From 'E to 'A
there is an infrared optical transition (indicated in Figure 2.8 by a solid double arrow)
as well as non-radiative decay and then finally from 'A there is non-radiative decay
into Toz. At least this is the interpretation of Acosta et al. [33] for their observations,
and as mentioned above numerical theory studies suggests that the 'E and 'A levels
are interchanged. Irrespective of this discrepancy after a few optical excitation and
emission cycles the ground state becomes strongly spin-polarised, with the majority
of population in the Tyz (ms = 0) state and almost nothing in the Toxy (ms = £1)
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FIGURE 2.8: Energy level diagram of a NV centre. The allowed optical transitions between
the ground (3A) and excited (3E) state sublevels are shown. The rate of the spin-selective
intersystem crossing transitions (to and from the meta-stable (1A) state) are indicated by
the thickness of the arrows. (Figure taken from Acosta et al. [33])

state [26]. The exact mechanism is not important, but that this leads to a convenient
way in which to initialise NV centres into the Tj; state is extremely convenient. By
subsequently applying an appropriate microwave pulse and magnetic field it is possible
to prepare the NV centre in any superposition of the ground states.

Another essential result of the spin selective decay path is that it is possible to
optically probe the spin state of the system since only the Ty; — Tz transition is
visible through fluorescence: If the NV centre is in the Tj, state a 637 nm laser will
excite the system to T}z and fluorescent decay will be observed; on the other hand if
the NV centre is in one of the Ty y states (or a super position of them) excitation
will lead to the nonradiative decay from the excited T’ x 1y sublevels, suppressing the
fluorescence output. This effect was observed by Jelezko et al. [40] in single NV centres
and allows for convenient read-out of the electron spin quantum states. Furthermore
the fidelity of spin read-out is very high, reported by Wrachtrup et al. [26] as 95%.

NV centres have shown great promise as efficient single photon sources [41, 42], this
together with the long decoherence times of the ground states and the spin readout
possible in the NV have placed the NV centre as a prime candidate for several quantum
information applications. Notably the NV centre has been used to implement free space
quantum key distribution [43]. Furthermore the NV is being investigated as a spin
based qubit [29, 44]. NV centres in diamond nanocrystals are also being investigated
as fluorescence bio-labels [45].

NV centres have been observed in nanodiamonds down to single digit nanometers
in size [46, 47]. The linewidth of the zero-phonon line of a single NV centre in a high
purity bulk diamond can reach the life-time limited linewidth of 13 MHz [48] but this
is broader in NV’s observed in nanodiamonds ~16 MHz [49].
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2.3.2 Inhomogeneous broadening in solid media

Inhomogeneous broadening of the spectral lines of a solid medium occurs because of
the spread in resonance frequencies due to local perturbations in the crystal. Spatially
varying local potentials are caused by strains which form due to various defects in
the crystalline structure. In Johnsson and Mglmer [25] a thorough discussion on the
limitations that inhomogeneous broadening places on EIT in solids is presented, just the
main conclusions of which are given here. W33 and Wi, are the inhomogeneous widths
of the |1) — |3) and |1) — |2) transitions respectively. In solids the inhomogeneous
broadening of the excited state (Wiy) is several orders of magnitude greater than that
of the ground state (W33).
For the system to evolve along the dark state polariton (2.28) it is required that

02 (t) Z 3W1Whs, (2.32)

i.e. the control field strength must always dominate the inhomogeneous broadening.
According to Equation (2.26) and the aforementioned requirement the minimum ve-
locity of the dark state polariton occurs when Q2 (¢) ~ W, W3 and is given by

_ cWiaWis
7 WiaWiz + ¢2N°

A near zero velocity can thus only be attained if g? N > W,Wi3. In order to decrease
the time required to stop the probe pulse it is advantageous to have the control field
at a strength such that the probe pulse is in the slow group velocity regime as soon
as it enters the medium, i.e. WisWi3 < 0% (0) < ¢2N. Good approximations of the
optical and spin inhomogeneous broadenings observed in rare-earth doped materials
gives a typical value of Wi,Wis ~ 10'® Hz?. For NV centres values of Wi, = 375 GHz
and W13 = 2.5 MHz have previously been used [10], resulting in W,Wi3 ~ 108 Hz2.
The inhomogeneous broadening in NV centres thus dictates that Q2 (0) ~ 10%° Hz?,
and that g? N ~ 10?2 Hz?. These values for 92 (0) and ¢g?>N are within reason since the
it is possible to have large density of NV centres in the diamond lattice. Johnsson and
Mglmer [25] suggest that W15 can be reduced by using spectral hole-burning techniques,
before the probe pulse is applied, to select a subset of the centres within a specific
spectral range. This is done by pumping all the centres in a broad frequency range to
passive spectator levels, thus leaving only those with their transitions in the desired
frequency range prepared in state |1). This solution has the drawback that the number
of interacting centres N will be reduced and as such the collective coupling strength
g*N will also be reduced. The storage time of the pulse is limited by W3 because the
phases of different centres evolve at different speeds due to inhomogeneity. Thus after
a time 1/W33 the stored information will no longer be coherent. Something that is not
considered in [25] is that due to the inhomogeneous broadening of the ground state
W13, some centres will not be in two-photon resonance, thus affecting the effectiveness
of the EIT process. Those centres are essentially prevented from following the dark-
state during evolution.

In the following chapter a method (SCRAP) to overcome the problem of two-photon
off-resonance in adiabatic population transfer is discussed. The aim is to investigate
the possibility of transferring this method to EIT and hence slow light.

(2.33)

(%
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Optimised Stark-shitt-chirped rapid
adiabatic passage

Recently a variation of STIRAP (an adiabatic passage technique which as seen in sec-
tions 2.1 and 2.2 is closely related to EIT), namely Stark-shift-chirped rapid adiabatic
passage (SCRAP), has been shown to perform coherent population transfer with a high
fidelity for a range of different detunings in a A-type three-level system [16]. That is,
SCRAP is far more robust when there is large inhomogeneous broadenings present in
the ensemble. In SCRAP, a separate (pulsed) field is added to the traditional STI-
RAP fields to induce AC Stark shifts in the energy levels and thus bring the required,
initially off-resonant, transitions on resonance at specific times. We propose that a
quantum version of SCRAP could surmount some of the limitations that inhomoge-
neous broadening places on “slow” light in solid state systems. In this chapter we test
this hypothesis and find that indeed we can engineer the pulses of the SCRAP protocol
resulting in a protocol robust against large unknown static shifts in the system’s energy
levels. We first introduce the standard SCRAP protocol in a three-level system.

We then make use of optimum control techniques somewhat similar to Khaneja et
al. (2005) [50], in order to optimise the standard SCRAP pulses so as to minimise the
decrease in fidelity brought on by inhomogeneous broadenings of the transitions. To
quantify this we simulate the SCRAP process population transfer between two long
lived ground states which experience large detunings due to inhomogeneous broadening.
The optimisation methods employed are described in section 3.3.

Our main result is that we can improve the average fidelity of population transfer
over a wide range of detunings which effect both the ground to excited state detuning
and the ground to target state detuning (two-photon detuning). The optimal con-
trol pulses are thus tailored to provide effective state transfer (and thus EIT), in the
presence of large inhomogeneous broadening. The modelled results obtained for the
optimised pulses are given in section 3.4.

21
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FIGURE 3.1: The A-type three-level energy scheme. States |1) and |2) are coupled by the
pump pulse P which has a detuning Ap from being exactly on resonance. Similarly states
|2) and |3) are coupled by the Stokes pulse S which has a detuning Ag. State |2) is short
lived with spontaneous emission occurring out of the system

3.1 SCRAP

The Stark-chirped rapid adiabatic passage (SCRAP) technique was first proposed by
Yatsenko et al. [51], and implemented experimentally by Rickes et al. [52] in two-level
systems as an efficient method for complete population transfer between two states. It
was later shown by Rangelov et al. (2005) [16], that the SCRAP technique can also be
used to achieve complete population transfer through adiabatic passage in a three-level
system, thus providing an alternative to STIRAP.

The A-type three-level system (Figure 3.1), is comprised of two long lived ground
states and a single excited state (|2)). For the purpose of complete population transfer
we will assume that one of the ground states will be initially populated (|1)), and the
other will be the target state (]3)). In general, the excited state has a short lifetime
and STIRAP is effective at complete population transfer since it avoids populating the
excited state by having the system evolve along a dark-state (see section 2.1). In both
SCRAP and STIRAP states |1) and |2) are coupled by the “pump” laser pulse whilst
states |3) and |2) are coupled by the “Stokes” laser pulse. The frequencies of these
two classical laser fields are typically not exactly on resonance with their respective
transitions, and have detunings Ap and Ag for the pump and Stokes lasers respectively.
Herein lies the advantage that SCRAP has over STIRAP: STIRAP requires ezact two-
photon resonance (Ap — Ag = 0) in order to be effective, whereas SCRAP has a
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much larger tolerance for two-photon detuning. Another advantage of SCRAP over
STIRAP is that Stark shifts induced by a strong pump or Stokes field (as in multi
photon transitions) has a much smaller effect on the final population in the target
state for SCRAP. The pump or Stokes fields can induce Stark shifts in one of the
ground states, and thus destroy the two-photon detuning that STIRAP relies on [16].
The defining difference between STIRAP and SCRAP is that in SCRAP a third strong
far-off-resonance laser pulse, the Stark pulse, is also applied. The Stark pulse induces a
Stark shift in the energy of the excited state (essentially leaving the energy of the lower
levels unchanged), thus bringing the initially off-resonant transitions into resonance.
The Stark shift causes the diabatic energy of state |2) to cross those of states |1) and |3),
allowing population transfer from |1) to |2) and then to |3), completing the population
transfer. It is thus clear that the diabatic energies of state |1) and |2) must cross before
the diabatic energies of states |2) and |3) cross. It is also clear that decay out of the
excited state will play some role in SCRAP and as such should be taken into account
in the model, as opposed to STIRAP where decay could be neglected without affecting
the outcome of the model.

In the rotating wave approximation, the Hamiltonian of the A-type three-level sys-
tem depicted in Figure 3.1 is

s [0 Qp(t) 0
B =2 0e(t) 280+ % @)~ Qs) | (3.1)
0 Qs(t) 2(Ap — Ag)

where Qp(t) and Qg(t) are respectively the pump and Stokes laser field Rabi frequencies
and Sy (t) is the Stark shift in the energy of the excited energy level |2) due to a third
far-off-resonance laser pulse (Stark pulse). For the examples used here it is assumed
that the Stark shift is negative, Sy (¢) < 0. The detunings of the pump and Stokes
fields are Ap and Ag respectively. The imaginary term :I" describes the losses from
|2) due to spontaneous radiative decay out of the three-level system. Dephasing of
state |3), is not included in this model since it is assumed that the pulse durations are
much shorter than the decoherence times. This assumption is validated by noting that
the decoherence time for NV centres, for example, can be of the order of hundreds of
microseconds at room temperature [31]. The Stark shifts of the energy levels for states
|1) and |3) are not included here because Stark shifts in ground and meta-stable states
tend to be much smaller than those of excited states.
The adiabatic eigenstates of Hamiltonian (3.1) are (for k = 1,2, 3)

e (t) — Ap — As] Qp (2)
B (t) = N (D) 2ey, (1) [(;3:((;))9—5@1)3 - Agl| (3.2)

where ey, (t) are the eigenvalues (which are too cumbersome to present here) associated
with each eigenstate. See [53] for full algebraic general solutions to the adiabatic
transfer processes in three-level systems.

In Rangelov et al. (2005) [16], Gaussian pulse shapes were used for all the pulses,
with identical peak values €2y for the Rabi frequencies of the pump and Stokes pulses,

Q, (t) = Qoe /TR (3.3)
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Q, (t) = Qe 7m)/T3, (3.4)

—Sy (t) = S (t) = Spe /T3, (3.5)

The peak of the Stark pulse (maximum Stark shift of Sp) is taken to be at ¢ = 0, and
as such the pump and Stokes pulses peak at times 7, and 7, respectively. The pulse
durations are determined by Tp, Ts and Ts;, where it was taken that the pump and
Stokes pulses have equal duration Tp = Tg and the Stark pulse has twice their duration
Ts; = 2Tp. The unit of time was defined as Tp and the unit of frequency as 1/Tp.
These Gaussian pulses served as exemplars for the initial pulses used in our optimising
routine, see section 3.3.
The diabatic energies of the states are

Epy =0, (3.6)
Epy =2(Ap + S, (1)), (3.7)
Epsy =2(Ap — Ag), (3.8)

which with the condition that the Stark shift is negative (Ss (t) < 0), dictates that the
diabatic energy of state |2), E}s, will only cross those of states |1) and [3) when

Sy > Ap > 0, (39)

and
So > Ag > 0. (3.10)

With the condition that the Stark shift is negative two distinct situations can arise:
the two-photon detuning can be negative

AP>0> (AP—As) >AP—S(), (311)

or positive

Ap > (Ap—Ag) > 0> Ap — Sp. (3.12)

In the examples used here to explain the SCRAP technique, and for the pulse opti-
misation, only the first case (3.11), where the two-photon detuning is negative will be
presented (ie. Ap < Ag). In the case that the two-photon detuning is positive (3.12),
the order of the pulses in standard SCRAP must be run in reverse to what will be
shown here [16].

Under the conditions of Equations (3.9), (3.10), and that of Equation (3.11), in
order to perform three-state SCRAP, as is shown in [16], both the pump and the
Stokes pulses should precede the Stark pulse (Figure 3.2). As can be seen in Figure
3.2 the Stark pulse first causes a crossing of the diabatic energies (3.6)-(3.8) of states
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FiGURE 3.2: The top frame shows the ordering of the pulses: pump and Stokes before
the Stark pulse. In the lower frame the time evolution of the diabatic (dotted) and adiabatic
(solid) energies of the Hamiltonian (in units of /) are shown. The arrows from the left shows
evolution when the pump and Stokes precedes the Stark pulse, whilst arrows from the right
shows evolution when the Stark pulse occurs first. (Figure taken from Rangelov et al. [16])

|1) and |2) at time ¢;,, and then thereafter a crossing of the diabatic energies of states
|2) and |3) at time t5;. With the pump and Stokes pulses being timed to coincide with
the correct crossings, the adiabatic energies follow a path such that the population
starting in state |1) ends in state |3), with only a small transient population in state
|2) during the transfer. If the pump and Stokes pulses were to occur after the Stark
pulse, states |2) and |3) would be connected first and then states |2) and |1), which
would not allow population to transfer from state |1) to |3). Figure 3.3 shows how the
transient population can be minimised by slightly changing the timing of the pump
and Stokes pulses relative to the Stark pulse. Analytic results and detailed reasoning is
given in [16]. The pump pulse causes a repulsion between the adiabatic energies e; (¢)
and ej (t), which decreases the energy gap between es () and es (t). This causes an
increased probability of non-adiabatic transitions of the population from state [ ()
(which is the adiabatic transfer state) to state 3 (¢). These non-adiabatic transitions
will cause an increase in the population in the fast decaying state |2) (shown in the
bottom frame of Figure 3.3). It is clear then that the best option is to have the Stokes
pulse precede the pump pulse. The order of the pulses are thus similar to that for
STIRAP, but for different reasons.
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F1GUurE 3.3: The top frames show the orderings of the pulses. In the middle frames the
time evolution of the diabatic (dotted) and adiabatic (solid) energies of the Hamiltonian are
shown (in units of 7). The heavy line is the actual path the population follows (adiabatic
eigenstate f2(t)). The bottom frames show the evolution of the population in the diabatic
states. The right most setup with the Stokes pulse preceding the pump pulse minimises the
population in the short-lived excited state |2). (Figure taken from Rangelov et al. [16])

Figure 3.4 shows contour plots of the population in the target state |3) as a function
of the single-photon (Ap) and two-photon (Ap — Ag) detunings. For Figure 3.4 the
pulses have the ordering such that the pump pulse is preceded by the Stokes pulse as
the Stark pulse rises. This minimises the population in state |2) for the chosen pulse
parameters. Even with population loss from state |2) there is a large area with a high
fidelity of population transfer. When the two-photon detuning is zero (Ap — Ag = 0)
there is a band of very high fidelity transfer for a very large range of single-photon
detunings Ap. This feature is identified with the STIRAP process (see inset in Figure
3.4). Even with high probability of loss from state |2) this band will be unaffected as
long as the transfer is adiabatic.

Our goal is to achieve efficient state transfer for as wide a variety of detunings as
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FicURE 3.4: The fidelity for a range of detunings, using the original Gaussian pulses for
SCRAP (shown as the solid lines in Figure 3.7), with Sy = 200/Tp, Qo = 50/Tp, Ts = Tp,
Tsy = 2Tp, 7, = —Tp, 7s = —2Tp. The decay out of state |2) was I' = 1/7},. The pulses
are ordered as to minimise the population in state |2). The inset shows the fidelity when the
Stark pulse is switched off, that is the standard STIRAP technique is being performed. It is
clear that STIRAP requires two-photon resonance (Ap — Ag = 0).

possible, for which SCRAP is the ideal technique. The population transfer for the ideal
situation with no decay, and using pulse parameters out of [16] is shown in Figure 3.5.
For a more detailed explanation of three state SCRAP please refer to section III in
Rangelov et al. (2005) [16].

3.2 SCRAP vs STIRAP

When comparing the usefulness of STIRAP and SCRAP the first obvious difference
that has already been mentioned is the absolute reliance of STIRAP on two-photon
resonance (Ap — Ag = 0) between the pump and Stokes fields, where as SCRAP has
no such reliance, see Figure 3.4. Furthermore Stark shifts induced by the pump or/and
Stokes lasers can prevent two-photon resonance from being possible. We have assumed
that these Stark shifts are negligible, which is true only of single-photon transitions.
When the pump and Stokes transitions are multiphoton transitions the induced Stark
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FIGURE 3.5: The evolution of the population in the 3-state-system (state |1) solid line, |2)
dashed line and |3) dash-dotted line) where the pulses used were the original Gaussian with
the following parameters: Ap = 30/Tp, Ag = 45/Tp, Sy = 200/Tp, Qo = 50/Tp, Ts = Tp,
Tst =2Tp, 7y = —Tp, 7s = —2Tp. There was no decay out of state |2), (I' = 0).

shifts can, in general, no longer be neglected. For example when the transition between
the ground state |1) and the excited state |2) is a multiphoton transition the pump
field induces a Stark shifts So;(t) and S3;(t). The effects of such a pump field induced
Stark shift on the final population of the target state |3) is presented in Rangelov et
al. [16]. If we include pump-induced Stark shifts the Hamiltonian 3.1 becomes:

L[ 0 Qp(t) 0
H(t) = 3 Qp(t) 2(Ap+ S (t)+ 55 () —iT Qs(t) , (3.13)
0 Qs(1) 2(Ap—Ag+ 55 (1))

The Stark shift S is less significant and is taken as zero. The pump-induced Stark shift
is directly proportional to the laser intensity and hence also to the pump Rabi frequency
Q, (t), thus S5 (t) = 0Qp(t). In Figure 3.6 a plots of the target state (|3)) population
as a function of the peak pump Rabi frequency €y is given for several values of o for
both STIRAP and SCRAP. With o = 0 there is no induced Stark shift and STIRAP is
clearly superior, requiring a smaller peak Rabi frequency in order to obtain complete
population transfer. With o # 0 STIRAP does not deliver complete population transfer
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FIGURE 3.6: Final target-state population Ps vs the peak Rabi frequency ¢ for STIRAP
(S() = 0, AP = AS = 0) and SCRAP (So = 200/Tp, Ap = 50/Tp, AS = —25/Tp). Three
cases of different pump-induced Stark shift SIj(t) = oQp(t) of state |3) with respect to
state |1) are shown with o = 0,1,and2. For all cases the other interaction parameters are
TP — —Tp, TS = —2Tp, Tgt = QTP, TS = Tp, I'=0.

for any peak Rabi frequency, whereas SCRAP still has the desired result with P; = 1 for
large enough 5. SCRAP clearly has a huge advantage over STIRAP when multiphoton
transitions are involved during adiabatic population transfer.

Furthermore Chang et al. [54] investigated SCRAP as a method to achieve fine state
selectivity within multilevel structures and adiabatic passage of quantum superposition
states. The system under consideration was a six level A system where each of the levels
in the standard A level configuration is replaced by a doublet. In such a system each
of the two ground state doublets can function as a qubit, creating a two-qubit space.
It is found that by using SCRAP, population can be driven from any of the states into
any other state, achieving this with STIRAP would require fine frequency control of
the pulses. SCRAP allows the adiabatic passage of arbitrary superposition states from

the one doublet to the other.
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3.3 Optimisation through optimal control

The above mentioned SCRAP process has the advantage that it can tolerate large
two-photon detunings, but unlike STIRAP it suffers from decay out of state |2). In
this section we will use an optimisation technique, based on the Gradient Ascend Pulse
Engineering (GRAPE) algorithm by Khaneja et al. (2005) [50], to optimise the transfer
fidelity for a set of detunings. The state of the three level system is characterised by
the density operator p (¢) with the Liouville-von Neumann equation of motion

Hy is the free evolution Hamiltonian (containing all the terms not dependant on the
control fields, e.g. the decay —il') and the Hj are the Hamiltonians corresponding to
the m control fields (in the case of SCRAP these are the Stokes, pump and Stark fields).
w(t) = (uy (t),uz(t),...,un(t)) is a vector of control amplitudes, one for each control
Hamiltonian. We discretise the transfer time 7" into N steps of length At = T'/N,
and assume that the amplitude for each control field is constant during each time step.
Instead of optimising these amplitudes directly for each time interval, as described in
[50], we define each control field amplitude in terms of ¢ Gaussians,

q
U (.]) - Z hn,k exp [_ (]At - Tn,k)Q /OTQL,k] ) ke {L s 7m} (315)
n=1

that sum to create the pulse for the specific control field, and optimise the parameters
of these Gaussians. The aim is to find values for the parameters (hy, x, 7k, On k) that
will, given the initial density operator p (0) = po, maximise the overlap of the density
operator after a time T, p(7T), with a target density operator C. The overlap is
measured by the standard inner product, thus the performance index @, is given by

®y = (Clp (1)) (3.16)

During each time step j the evolution of the system is given by the propagator

—iAt (Ho + Zm: we () Hk>] . (3.17)

k=1

Uj = eXp

The performance index can then be written as

dy = <{f}+1 LLUkouy ... Uj|Uj - UpoUy . .. U}J). (3.18)

Aj Py

From Equation (12) in [50] we have that the gradient of the performance index with
respect to the control field amplitude is

0D
oy, (])

= —(\j[iAt [Hy, p3)), (3.19)
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but we are interested in the gradient with regard to h, i, 7, and o, x:

5, :XN: 6o du ()

J=1

- Z_<Ajymt [Hy, pj]) X

exp [— (jAL — Tok)’ Jozi] (3.20)

and similarly

DTN , 2 (GAL — To)
= —(N:|iAt [Hy, pi]) x ————""2 %
57’n,k: ; < ]| [ k pj]) Ui,k
P 1 €Xp [— (JAt — Tn,k)Z /aik} , (3.21)
and
Y . 2 (AL — 7 1)°
Sonr 2_; —(\j[iAt [Hy