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ABSTRACT

Massive multiple-input-multiple-output (MIMO) has the potential to

offer a high system capacity in the fifth generation of wireless communica-

tion systems, exploiting the large number of degrees of freedom gained by

utilising many transmit antennas at the base station. For a signal to be trans-

mitted from an antenna element at the base station, the element needs to be

connected to a radio-frequency chain which comprises Digital to-Analogue

converters, a power amplifier and mixers etc. The total number of radio-

frequency chains equals the number of antenna elements used for active

transmission. Therefore, the radio-frequency switching matrix represents the

hardware components required in antenna selection for interconnection of the

radio-frequency chains with their selected antennas.

However, having a large number of antennas there are numerous chal-

lenges, in terms of hardware system complexity, large matrix sizes and signal

correlation due to less space between antennas. To confront these problems,

novel antenna-selection algorithms and dimensionality-reduction algorithms

are proposed and spatial-correlation based channel models are explored.

Antenna selection algorithms based on central Principal Component

Analysis (PCA) are developed, and antenna selection algorithms using non-

central Principal Component Analysis (NPCA) and Linear Dependence Avoid-

ance System (LDAS) are proposed. These algorithms reduce the correla-

tion between the signals received by users. The performance of the pro-

posed schemes with different antenna-selection algorithms and sum-capacity

is evaluated.
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Signal correlation between the antennas is modelled by using spatially

correlated channel models such as the Kronecker Model and the Weichsel-

berger Model. The correlation matrices at both ends of the link are approxi-

mated by using Power Azimuth Spectrum (PAS) models. These models give

the analytical signal modelling in correlative environments used to test the

proposed antenna-selection algorithms to study the system behaviour in dif-

ferent realistic environments.

Finally, the analysis of PCA is used that can reduce the size of huge ma-

trices significantly, which saves a large number of computations as compared

with the full-dimensional system. This thesis analyses the dimensionality re-

duction of large matrices using Floating Point Operation (FLOP) methods.

This method is also implemented in the above-mentioned spatially correlated

channel models to evaluate the throughput.

The results in this thesis are presented mainly in four parts: a) novel

antenna-selection algorithms, b) application of novel antenna selection al-

gorithms to spatially correlated channels, c) large matrix computations are

reduced using dimensionality reduction techniques, d) analysis of matrix di-

mension reduction for spatially correlated channel models. This dissertation

therefore presents the methodologies of lowering hardware complexity, re-

ducing large matrices’ dimensions and modelling signal correlation by using

spatially correlated channel models that affect the design in the fifth genera-

tion of MIMO broadcast wireless communication systems. method in selecting
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Begin at the beginning“ the King said, very gravely,”

and go on till you come to the end: then stop.

Lewis Carroll (1832-1898)

CHAPTER 1

INTRODUCTION

1.1 Introduction
In the last decade, a remarkable expansion of electronic devices such as smart phones,

tablets, laptops, data traffic (both mobile and fixed) and various data-consuming wire-

less devices has occurred with an exponential increase. It is expected that in future

the demand of wireless data traffic will be even more than at present [1–3]. By 2018,

it is anticipated that Global mobile data traffic will accelerate to 17 exabytes per

month, which is about a three-fold increase over 2016. The demand is for mobile

data traffic, and the number of connected devices will grow to 11.6 billion by 2021

as shown in Figures 1.1 and 1.2.

1
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Figure 1.1: Global mobile data traffic.
(Source: Cisco [3])

Figure 1.2: Global mobile device and connections growth.
(Source: Cisco [3])
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CHAPTER 1. INTRODUCTION

It is clear from the figure that for the future wireless communication generations,

new technologies are required to meet the high data traffic demands, and the impor-

tant metric to accomplish this task is the wireless sum-rate/sum-capacity or through-

put measured in bits/s and defined as:

T hroughput = Bandwidth (Hz)×Spectral e f f iciency (bits/s/Hz).

It is evident from the above equation that throughput will be enhanced by increas-

ing the bandwidth or spectral efficiency or both to meet the high data rate in future

wireless communication. In wireless communication systems, capacity enhancement

has been always a hot topic. The capacity demand could be realised in a land-mobile

radio telephone that uses a frequency of 2 MHz. This radiophone was installed for

Police cars in 1921 by the Detroit Police Department, and the civilian use of wire-

less technology had begun. However, a low frequency creates a channel mismatch

problem which was resolved by using high-frequency bands in 1933. The pioneering

work of Claude Elwood Shannon in 1948 gave a birth to a new era in information

and communication theory. He presented a research paper “A mathematical theory

of communication” that opened a potential for modern wireless communication re-

search.

1.2 MIMO Systems
Traditionally, there are two major components in wireless communication which can

provide high system throughput or high data rates to meet current capacity require-

ments. These include the bandwidth measured in hertz (Hz) and/or the total transmis-

sion power measured in Watts (W), but they are limited and expensive. However, by

PhD Thesis, School of Engineering, Macquarie University 3



CHAPTER 1. INTRODUCTION

using multiple antennas both at the base station (BS) and at the mobile station (MS),

it is possible to increase the system throughput many fold regardless of any additional

requirements in transmission power and expensive bandwidth. The technology with

multiple numbers of transmit and receive antennas at BS and MS in a communication

system is known as multiple-input multiple-output (MIMO) systems.

Communication between one transmitter and one receiver is referred as a point-to-

point single-input single-output (SISO) wireless communication system. However, a

MIMO system can yield a great capacity enhancement without increasing the chan-

nel bandwidth and power as compared to a conventional point-to-point SISO sys-

tem [4–6]. Throughput is the key feature in the analysis of wireless systems, and

the first MIMO schemes were analysed in point-to-point or single-user MIMO. In

this case, a multiple number of antennas at base station and mobile station are used.

A remarkable spectral efficiency for a wireless system in a rich scattering environ-

ment with multiple antennas is accurately reported in [4, 6, 7]. The performance of

MIMO systems can be enhanced using an antenna selection technique in which sig-

nals from the chosen subset are processed further by the accessible radio-frequency

chains. The key methodology in enhancing Long Term Evolution (LTE) and Fifth

Generation (5G) is SU-MIMO, that achieves Downlink (DL) and Uplink (UL) data

rates [8, 9]. In addition, LTE-advanced targets high DL and UL data rates, and the

approach in this case is multi-user MIMO [10].

1.3 Types of Massive MIMO Operation
There are two main modes of operation for massive MIMO called spatial multiplex-

ing based massive MIMO and beam-steering based massive MIMO. Spatial multi-

plexing massive MIMO operates in time division duplexing (TDD) mode, whereas

PhD Thesis, School of Engineering, Macquarie University 4



CHAPTER 1. INTRODUCTION

beam-steering massive MIMO operates in frequency division duplexing (FDD) mode.

In a TDD multi-user massive MIMO system, multiple users are served in the same

time-frequency slot by deploying a large number of antennas at the base station and

using linear precoding and combining techniques to manage inter-user interference.

The user nodes in a TDD massive MIMO are typically single-antenna terminals.

Channel estimation in this case is not done at user nodes but is done at the base

station through uplink pilots transmitted by user nodes. By exploiting the channel

reciprocity in TDD, the downlink channel can be determined. The pilot sequence

length is independent of the number of antennas at the base station. In the downlink,

users do not have access to the exact channel state information (CSI) and rely on

statistical CSI instead.

In FDD beam-steering massive MIMO, a single user is served in a given time-

frequency slot via beamforming using the large antenna array. This approach is more

suited for millimetre-wave systems. The downlink channel estimation at the user

nodes can be obtained by exploiting channel sparsity and feeding the estimates back

to the base station. The focus in this thesis is on spatial multiplexing based massive

MIMO.

1.4 MIMO Broadcast Channels
Multi-user multiple-input multiple-output (MU-MIMO) is a system where an array

of antennas at a base station (BS) communicates with multiple mobile stations (MS)

equipped with single or multiple antennas. The MIMO broadcast channel (BC) gen-

erally falls into a class of non-degraded Gaussian broadcast channels [11]. In a

non-degraded MIMO-BC, the capacity region is an unsolved problem, however, an

achievable capacity by region is defined in [12]. The authors in [13, 14] investigate

PhD Thesis, School of Engineering, Macquarie University 5



CHAPTER 1. INTRODUCTION

the Gaussian MIMO-BC capacity region using the dirty paper coding (DPC) algo-

rithm in [15], where the known interference of the users has been pre-subtracted at

the base station. It is demonstrated in [13, 14] that with two users and two antennas

at transmitter then the MIMO-BC throughput is equal to the maximum achievable

sum-rate of the DPC capacity region.

Following the theory in [5,6], the MIMO systems concept leads to a technique known

as a MU-MIMO broadcast (BC) system. This scheme has been of significant research

interest over the past decade [16], for example, the throughput of MIMO-BC, both in

capacity region and sum-rate is larger than for a point-to-point single antenna system.

However, the disadvantages associated with this system include hardware complex-

ity, receiver complexity and space limitation. A possible solution to alleviate these

issues in point-to-multipoint MIMO-BC systems is the use of a smaller number of

radio-frequency chains than of available antennas. A low-cost switching circuit can

be used to connect the selected subset of transmit antennas to the available radio-

frequency chains.

1.5 Massive MIMO and Its Benefits
The use of a high number of antennas at the base station gives more degrees of

freedom to communicate with users simultaneously with the same time-frequency

resources to achieve a high system capacity. However, due to the high signal dimen-

sions in large antenna arrays, the conventional signal-processing techniques become

complex. To achieve a high multiplexing gain with reduced signal-processing com-

plexity, and a cost-effective hardware implementation, the authors in [17] showed

that the deployment of a high number of base station antennas makes linear process-

ing simple and almost optimum. More precisely, as the number of BS antennas grows
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large the effect of fast signal attenuation, interference between the cells and uncorre-

lated noise disappears by using an appropriate scheme. As an illustration, in an uplink

scenario maximum-ratio combining (MRC) can be used, and maximum-ratio trans-

mission (MRT) can resolve problems in the downlink system [18]. A MU-MIMO

system serving ten or more users with the same time-frequency resources, with a

hundred or more antennas at the transmitter, is known as a Massive MIMO system.

The major benefits of Massive MIMO systems are:

(1) High spectral efficiency: The massive MIMO scheme inherits all the benefits of

conventional MU-MIMO technology, meaning that with Nt transmit antennas at

the BS and Nr receive antennas, a diversity of order Nt and a multiplexing gain

of min(Nr,Nt) can be achieved. A huge spectral efficiency can be obtained by

increasing both Nr and Nt .

(2) Simple signal processing: The first key feature in a massive MIMO system is

the propagation environment, when the channel vector between the users and

the BS is nearly orthogonal then the large number of base station antennas over

the number of users yields favourable propagation. In such propagation environ-

ments simple linear signal processing, i.e. linear precoding in the downlink and

linear decoding in the uplink, can be used to remove the effect of interference

and noise. Therefore, a system becomes nearly optimal by using a simple linear

processing approach.

The second important property in a massive MIMO systems is that, with the high

number of antennas at the base station, the spatial diversity phenomenon leads

toward channel hardening, meaning that the channels become, nearly determin-

istic, and thus the effect of small-scale fading is averaged out.

The third useful factor in massive MIMO systems is scheduling diversity, power
PhD Thesis, School of Engineering, Macquarie University 7
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control that mitigates the need for downlink pilots and simplifies the signal pro-

cessing significantly.

1.6 Motivation

Antenna Selection and Radio Frequency Chains

Massive multiple-input-multiple-output (MIMO) has the potential to offer high sys-

tem capacity in the fifth generation of wireless communication systems, exploiting

the large number of degrees of freedom gained by utilizing many transmit antennas at

the base station. However, the full-digital implementation of the massive MIMO sys-

tems, i.e., each antenna connected to a dedicated Radio Frequency (RF) transceiver, is

very cost-prohibitive and power-hungry. To improve both cost and power efficiency,

analog signal processing can be additionally introduced to reduce the signal dimen-

sion in the RF-analog-domain, thus allowing a reduced number of RF transceivers.

This paradigm of hybrid analog-digital signal processing is being widely studied in

recent years for massive MIMO systems, such as hybrid analog-digital beamforming,

antenna selection, etc, see [19] and references therein. In the RF-analog processing,

specific types of RF-analog components are required. In contrast to the phase shifters

that are usually used in the hybrid analog-digital beamforming, simpler RF switches

are used in the antenna selection system, which have less cost and power consump-

tion than the phase shifters [19].

Recent studies [20, 21] show several approaches to alleviate the radio-frequency

complexity in massive MIMO system. Besides the benefits in [20, 21], the deploy-

ment of a large number of transmit antennas at the base station incurs the problem

of hardware complexity, large power consumption, and thus the cost of the com-

munication system. The hardware complexity is due to the use of multiple radio-
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frequency chains, which include low-noise amplifiers, down-converters, digital-to-

analogue converters, analogue-to-digital converters and so on [22,23]. The hardware

complexity can be minimised by using reduced connectivity of the radio-frequency

chains associated with the antenna elements. The authors in [24, 25] show that the

optimal selection of a subset of the available transmit antennas reduces the hardware

complexity in MIMO systems.

Antenna selection improves system performance by exploiting spatial selectivity,

that is, with more antennas than radio-frequency chains in the system, the best an-

tennas could be chosen and switched to a limited number of radio-frequency chains.

Indeed, this thesis will demonstrate that close to optimal sum throughput can be

achieved using appropriate antenna selection techniques. However, this comes with

a price of increased implementation overhead and the complexity of the transceiver

design for massive MIMO systems [26, 27]. To alleviate the radio-frequency com-

plexity in massive MIMO, it is argued in [26] that cost-efficient antenna selection

strategies can be employed.

Furthermore, a system becomes nearly optimal by using a simple linear process-

ing approach, that is linear precoding in the downlink scenario. One way to achieve a

large sum-capacity of MIMO broadcast channels is to employ a precoder at the trans-

mitter side to reduce the multi-user interference (MUI). Precoders exploit the channel

state information at the transmitter (CSIT) to adapt the transmission strategies or vari-

ables such as the ’direction’ and ’magnitude’ (or power) of the transmission for each

user’s data symbols. Perfect CSIT will be an ideal case and is often considered in the

performance analysis of MIMO communication systems as a benchmark for practical

scenarios.
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Signal Modelling and Antenna Selection in Correlated Channel Models

In massive MIMO systems, a base station is equipped with a large number of trans-

mit antennas serving several simultaneous single antenna users. Thus, by using the

multiple antennas, the base station transmits independent data streams to serve mul-

tiple users simultaneously. However, it is difficult to place an increasing number of

antennas in a limited space, and the antenna space limitation causes a high spatial

correlation between the antennas, further resulting in systems performance degra-

dation [28]. Therefore it is important to study the impact of correlation in massive

MIMO systems.

Researchers in [29] show a linear increase in the throughput of narrow-band

MIMO systems under the assumption of an idealised channel model. Such mod-

els [29] represent a rich scattering environment that assumes independent and iden-

tically distributed (i.i.d.) channel coefficients of a Rayleigh-fading channel model.

Such idealised channel models oversimplify the throughput problems. Thus, in a real

propagation environment, it is shown in various analytical and experimental find-

ings that, in the presence of spatial correlation (SC) in MIMO channels, the system

throughput is expected to be less than that of i.i.d. channel models [30, 31].

To simulate correlated MIMO channels it is important to quantify the effect of

correlation on system capacity. Thus, spatial structures are used to determine the Di-

rection of Departure (DOD) and Direction of Arrival (DOA) of receive and transmit

correlation matrices. These correlation matrices are approximated at the receiver and

transmitter by using Power Azimuth Spectrum (PAS) models [32] . Once the MIMO

channel matrix is modelled in different realistic environments, the proposed antenna-

selection algorithms are implemented and the system throughput is analysed.
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Dimensionality Reduction in Massive MIMO

In massive MIMO, as the number of antennas increases, so does the matrix size. The

problem here is the computation of large precoding matrices in massive MIMO which

becomes a bottleneck in the transmission of data. A possible solution is the use of a

data analysis tool, namely “Principal Component Analysis” (PCA) [33], that reduces

a large matrix’s size without sacrificing its effectiveness. In fact, PCA transforms

high-dimensional data into lower-dimensional data, which reduces a high system

computational complexity in terms of Floating Point Operations. In addition, spatial-

correlation models are explored to analyse the computational complexity involved in

large-dimensional matrices.

1.7 Aims and Approaches
The aims of this thesis are simple yet very practical. The dissertation explores ques-

tions which deal with the cost-performance tradeoff in implementation: What is the

benefit of doing antenna selection with the precoding in massive MIMO at the base

station? How can we do an effective and efficient antenna selection in a correlated

environment? Do reduced dimensions of large matrices in both uncorrelated and cor-

related environments result in the reduction of computation complexity in massive

MIMO? This dissertation will provide answers to the above questions, and it turns

out the solution is closely related to enhance the throughput and spectral efficiency

of the system.

Optimal antenna selection through a brute-force search algorithm involves high

computations, and the computational load increases rapidly with the number of an-

tennas. So the examination of sub-optimal algorithms for selecting the best antennas

is thus of great theoretical as well as practical interest. A sub-optimal scheme limits
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the number of radio-frequency chains, that is, the connection of the best subset of

transmit antennas to the available radio-frequency chains.

PCA is a general method that reduces the dimensionality of a data set consisting

of a large number of interrelated variables, while retaining as much as possible the

variation present in the data set. This is achieved by transforming to a new set of

variables, the principal components (PCs), which are uncorrelated, and which are

ordered so that the first few retain most of the variation present in all of the original

variables. In particular algorithms based on central and non-central principal compo-

nent analysis are developed in the thesis to select the best transmit antennas to max-

imise the sum-capacity. The proposed antenna-selection schemes are compared with

the conventional antenna-selection techniques to evaluate the system performance.

Simulation results show that the proposed antenna-selection algorithms reduced the

correlation between signals received at users.

To model the signal correlation between the antennas, spatially correlated chan-

nel models, such as the Kronecker Model and the Weichselberger Model can be used

to study system behaviour in different realistic environments. The Direction of De-

parture (DOD) and Direction of Arrival (DOA) of the received and transmitted sig-

nals can be modelled by using Power Azimuth Spectrum models. The outcome of

this scheme is in terms of throughput analysis and hardware complexity reduction.

The performance of the proposed antenna-selection algorithms in approximated real

channel matrices is optimal compared with the exhaustive-search antenna-selection

algorithms.

Dimensionality reduction of matrices using the aforementioned algorithms is ex-

amined by using Floating Point Operation (FLOP) methods. This technique use PCA

analysis to calculate the number of operations involved in computations. In a nut-
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shell, the large matrix size is reduced and a sum-capacity is analysed in both full-

dimensional and optimal-dimensional system. Simulations show that a significant

reduction in computational complexity can be achieved using the PCA technique in

both un-correlated and correlated MIMO systems.

Consequently, this dissertation proposes a comprehensive study of the method-

ologies for lowering hardware complexity, reducing large matrices dimensions and

spatially correlated channel models that affect fifth generation of MIMO broadcast

systems. Current antenna-selection algorithms are investigated and, using PCA, two

semi-heuristic antenna-selection algorithms are proposed. The eigenvalues are de-

composed into two components in a PCA analysis which shows how antenna se-

lection depends on the channel matrix structure. Numerical results suggest that the

proposed scheme outperforms the sub-optimal antenna selection and approaches the

performance of exhaustive search scheme but with a much lower complexity. The

outcome of the dissertation supports the improvement of high-speed wireless com-

munications and influences the development of the fifth generation of MIMO broad-

cast wireless communication systems.

1.8 Thesis Overview
Following the methodology depicted in Figure 1.3, we have presented most of our

theoretical and practical findings in various international conferences, at different

stages of my research tenure. The papers listed under the title of “Related Publica-

tions” show such presentations. This dissertation thus presents the systematised and

combined version of all those papers. However, some important additions have made

it more vigorous and comprehensive.
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This dissertation is organised into six Chapters listed as follows:

• In Chapter 2 the background and related work is discussed in the field of mas-

sive MU-MIMO, including, antenna selection algorithms, MIMO channel models,

precoding in MIMO and complexity analysis of the wireless system. Previous

antenna-selection algorithms used to reduce radio-frequency (RF) chains are stud-

ied. Spatial-correlation based channel models to study the system performance in

different realistic environments are explored. Precoding techniques such as ZF,

MMSE and DPC, followed by our proposed methodologies that will be exploited

in later chapters, provide a technical context for this thesis.

• In Chapter 3, the focus is on reducing the number of RF chains resulting in re-

duced hardware system complexity. Under the assumption of the Rayleigh fading

channel model and using the analysis of Principal Component Analysis (PCA),

antenna-selection algorithms, such as Non-Central Principal Component Analy-

sis (NCPCA) and Linear Dependence Avoidance System (LDAS), are proposed.

These techniques remove the antennas that contribute least to the sum capacity.

• In Chapter 4, analytical channel models are explored to study the system be-

haviour in different realistic environments. Specifically, spatial-correlation models

such as the Kronecker model and the Weichselberger model, are exploited. The

signal correlation of these correlated channel models is approximated using the

Power Azimuth Spectrum (PAS) method. Once the channel matrix is constructed

under practical channel models, the proposed antenna-selection algorithms are

then applied to select the best antennas.

• In Chapter 5, a complexity analysis of a wireless system in terms of Floating

Point Operations (FLOP) is examined. In massive MIMO as the number of an-
PhD Thesis, School of Engineering, Macquarie University 14
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tennas increases so does the matrix size. By using the analysis of PCA, the matrix

dimension in massive MU-MIMO is reduced significantly. This lower-dimensional

matrix reduces the computational complexity without sacrificing its effectiveness.

In addition, spatial-correlation models are explored to analyse the computational

complexity involved in linear precoding techniques.

• Finally, in Chapter 6, conclusions and discussions on future research work based

on the results presented in the dissertation are presented.
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The difficulty of literature is not to write but to write what you mean;

not to affect your reader, but to affect him precisely as you wish.

Robert Louis Stevenson (1850 - 1894)

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter first gives a detailed overview of antenna selection techniques in Section

2.1. The two different categories of MIMO channel models are discussed in Section

2.2, and in Section 2.3 a detailed analysis of channel modelling is explained. Section

2.4 presents different types of precoding with more emphasis on the linear precoding

techniques that are used in this thesis. The computational complexity in terms of

floating point operations is explored in Section 2.5, and Section 2.6, presents the

proposed technique of Principal Component Analysis that is used in this dissertation.

Finally Section 2.7 concludes this chapter.
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2.1 Antenna Selection in Massive MIMO
Massive MIMO is an emerging technology which is considered to be a potential can-

didate for fifth-generation (5G) wireless communications [34, 35]. The anticipated

capacity requirements for 5G can be met by using the concept of massive MIMO,

i.e. deploying a high number (say tens to hundreds) of base-station transmit anten-

nas [17, 36]. Thus by employing massive MIMO a more than 10-fold throughput

improvement has been suggested in massive MIMO as compared to Long Term Evo-

lution (LTE) [21, 37]. However, the deployment of large numbers of antennas in

massive MIMO at a base station (BS) brings hardware complexity and thus high cost

challenges [38].

A massive MIMO system with Nt transmit and Nr receive antennas requires Nt(Nr)

complete RF chains at the transmitter and receiver respectively to achieve the antici-

pated throughput for 5G wireless communication. To overcome the aforementioned

challenges, antenna selection in massive MIMO is proposed in the literature in which

the best L out of N antenna signals are chosen and processed for transmission. Thus

the reduced number of radio-frequency chains leads to a significant saving in system

complexity. However, radio-frequency savings comes at the price of a small loss in

system performance compared with the full complex system.

2.1.1 Conventional Antenna Selection in Massive MIMO Broadcast Chan-

nels

In massive MIMO, a large number of transmit antennas and RF chains are used,

which results in increased spectral and transmit-energy efficiency. However, this

presents challenges of large hardware energy consumption and high system com-

plexity. As, in massive MIMO, all antennas do not contribute equally [39], this leads
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us towards antenna selection algorithms in which the base station has to select an

appropriate subset of transmit antennas with low complexity and high performance.

Since the advantages of diversity and multiplexing gain in MIMO systems include

improved system throughput, the conventional antenna selection under the constraint

of transmission power in a massive MIMO system focuses mainly on the optimisa-

tion of the signal-to-noise ratio (SNR) or capacity maximisation in massive MIMO.

To grasp the advantages of a massive MIMO system, transmit antenna selection tech-

niques with less-complex and low-cost methodologies are presented in the literature.

The previous work on transmit-antenna selection for MIMO broadcast wireless chan-

nels is presented in [25, 40–46].

In [40], the authors present two antenna-selection schemes. In the first scheme, the

base station selects the antenna with the maximum channel Frobenius norm. In the

second scheme, assuming a statistical knowledge of the channels at the base station,

antenna selection is based on maximising the determinant of the covariance of the

channel vector. The signal transmission is done using orthogonal space-time block

codes (OSTBC). The antenna selection that maximises the channel norm provides

better results.

A tutorial paper on antenna selection in MIMO broadcast channels is presented

in [25]. It is also shown in the companion paper [42] that antenna selection pro-

vides a considerable capacity gain in the system. In this scheme, the antenna with

the highest signal-to-noise ratio (SNR) is selected in a single antenna system. For a

multiple-antenna system, the authors used hybrid maximal ratio transmission, where

a subset of the transmit antennas that provides a combined maximum channel gain is

selected. The base station requires to know the antenna indices along with the chan-

nel gains. The authors also present a space-time code-based joint transmit/receive
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antenna selection scheme that successively selects a pair of receive and transmit an-

tennas that maximises the channel Frobenius norm.

In [43], the authors present a capacity-maximising antenna-selection scheme. In

this scheme antenna-selection is based on the covariance matrix of the channel ma-

trix. This antenna selection scheme works iteratively, selecting one antenna at a time.

Antenna selection for correlated MIMO fading channels is discussed in [44]. This

work is extended in [45] and an antenna selection scheme based on the outage prob-

ability of a multi-user spatial multiplexing system is presented for correlated MIMO

channels.

However, recently transmit-antenna selection techniques shown in [47–52], are

based on the optimisation of the SNR or capacity maximisation under a transmitted

power constraint.

In [47], the authors propose two fast antenna-selection algorithms for a wireless

large-scale MIMO system. The algorithms start with a full set of selected antennas

and then remove one antenna per step from this set until there is one user that does

not meet the minimum sum-rate. The first algorithm aims to maximise the sum-

capacity of a downlink MIMO with low computational complexity as compared with

the optimal exhaustive-search scheme. In the second scheme, by maintaining a pre-

defined full set of selected antennas, the second proposed algorithm then removes

one antenna per step until reaching the minimum criterion, which leads to the lowest

reduction of the sum rate and a significant reduction in the hardware cost of the

system.

In [48], the authors use a convex optimisation technique to achieve the best com-

promise between the achievable capacity and system complexity. The interior-point

algorithm is used to solve the constrained convex optimisation problem with relax-
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ation. The interior-point algorithm finds the optimum number of transmit antennas

and, in each step, the antenna which gives the lowest contribution to the capacity is

removed. This leads to the reduction of the signalling overhead and the cost of the

RF front end.

In [49], an anti-interference method for massive MIMO based on antenna selec-

tion is presented. The transmitter and receiver select a set of antennas under the

assumption of real-time channel-state information. Once the antennas are selected

according to the optimisation criterion, the interference from different spatial flows

is aligned in one direction or in one subspace, leaving the spatial degrees of freedom

for the most useful signals, and hence the system capacity is maximised, especially

with high-SNR regimes.

In [50], three sub-optimal antenna-subset-selection schemes are proposed. These

selection techniques are based on SNR maximisation or minimisation, of the trace

of a matrix at the scheduled users. The signals are precoded using zero forcing at

the base stations. The antenna that gives least to the matrix trace is carried out in the

selection process. However, the highest channel-vector norm in the selection may not

result in minimising the matrix trace. The authors extend the conventional single-cell

multiuser MIMO into a multiple-point transmission known as network MIMO in the

literature.

In [51], a joint transmit/receive antenna-selection algorithm is proposed in which

a channel matrix is partitioned in such a way that the computational complexity of

the exhaustive search algorithm is reduced significantly. The key idea in the proposed

technique is calculating the capacity increase in each step instead of the whole sub-

system capacity when selecting a new candidate pair of antennas in each iteration.
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2.2 MIMO Channel Models
In wireless communication systems the design of channel models plays an impor-

tant role to analyse the MIMO system. A detailed analysis of propagation models is

shown in Figure 2.1 and correlation-based channel models under non-physical chan-

nel modelling are discussed in this section.

To evaluate the system performance, antenna arrays in MIMO systems are used

to enhance system capacity, signal detection, and interference cancellation. A high

information-theoretic capacity is shown in [5, 7], but a realistic evaluation of the

capabilities of different MIMO schemes and system architectures requires realistic

channel models [53]. In the development of wireless standards a lot of effort has

been directed towards the measurement of MIMO channel models [54–57]. How-

ever, with the large number of antennas the channel measurements in massive MIMO

are expected to yield accurate and realistic models in outdoor and indoor settings.

Therefore, to better study the behaviour of realistic models in outdoor and indoor set-

tings, it is important to understand the spatial properties of the channel matrix used in

MIMO arrays [58]. Theoretically, in such channel models, the performance analysis

is carried out using computer simulations and/or mathematical analysis. However, in

practice a good channel model accurately captures a real channel behaviour, helping

in the design, analysis and development of MIMO systems. Although it is not easy

to classify the previous channel modelling approaches, especially in the earlier work

of [59–61], Molisch in [53] categorises channel modelling approaches in MIMO sys-

tems into Physical channel modelling and Non-physical channel modelling.
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2.2.1 Physical channel modelling

In physical channel modelling the properties of the physical environment, such as

the location of the scatterers/reflectors or the direction of multipath components

between the transmitter and receiver antenna arrays is modelled. This approach is

used in many standard models such as COST 259 DCM [62], COST273 [63], IEEE

802.11n [64], HIPERLAN/2 [65], Stanford University Interim (SUI) [66] and IEEE

802.16 [67] and 3GPP [68]. The physical channel-modelling approaches for the

location of scatterers/reflectors are known as spatial channel models or scattering

models. The spatial models are important in evaluating the performance of a wireless

communication system as the scatterers locations provide the angular and temporal

information of the multipath signal in antenna arrays with respect to the MS and BS.

A significant contribution in [69–75] is made in modelling spatial channels. The

important parameters in modelling a spatial channel involve the scatter density and

the shape of the scattering region to model the scattering phenomenon for macrocell,

microcell and picocell cellular environments [69, 74, 76].

2.2.2 Non-physical channel modelling

In non-physical channel modelling the correlation of the fading of the signal at the

antenna element is modelled [77]. In fact, space is an additional dimension that needs

to be modelled on its own when dealing with MIMO channels, and physical channel

modelling does not allow the explicit design of a space-time coding technique. In

contrast with physical channels, non-physical/analytical channel modelling is used

to describe the end-to-end transfer function between transmitting and receiving an-

tenna arrays. The analytical channel models are useful in analysing the impact of

correlation on system performance, and mathematically an MIMO channel matrix is
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modelled as a function of a random-Gaussian-fading matrix. The traditional analyti-

cal MIMO channel models are expected to continue to model recent massive MIMO

channel models.

2.3 Channel Modelling
A summary of current correlation-based analytical massive MIMO channel mod-

elling in today’s wireless standards is now presented. First a brief analysis of a sys-

tem model is discussed which then leads to different correlation analytical channel

models.

Channel Models

The structure of the received signal is affected by various parameters associated with

a wireless channel. The frequency component of the signal is shifted relatively be-

tween the transmitter and the receiver due to the Doppler effect. However, with a

large number of antenna arrays in massive MIMO, the users in a broadcast wire-

less channel are assumed to be in fixed positions. In a broadcast wireless system,

a multi-path propagation model for the received signal is the tap-delay model [78].

The impulse response of the channel can be defined as

h(t) =
p

∑
i=1

aiδ (t− τi) Eq. (2.1)

The transfer function of the channel h(t) can be obtained by taking the Fourier

transform, which is generally not constant over frequency and so it is referred to as

a frequency selective channels in the literature. Now suppose that the bandwidth

of the message signal is small, then in the frequency domain the channel is simply

multiplied by a constant factor, commonly known as small-scale fading. Consider a
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MIMO system consisting of multiple transmit and receive antenna elements, where

each pair of transmit-receive antennas is associated with a channel gain. The re-

ceived signal in a MIMO channel under the assumption of background noise can be

modelled as

y = Hx+n, Eq. (2.2)

where y denotes a received vector, the channel matrix H describes the channel gain

between each pair of transmitter-receiver antenna elements, the transmitted signal

vector is referred to as x and n is the noise vector at the receiver side, modelled as

additive white Gaussian noise (AWGN). In a non-line-of-sight rich scattering envi-

ronment, suppose that each element of H is independently and identically distributed

(i.i.d.) with mean 0 and unit variance, denoted by CN(0,1). The maximum number

of streams of NR,NT can be sent to achieve the anticipated system capacity under the

assumption of the full rank of a channel matrix H. But, practically, poor channel

gains of one or more antenna elements results in correlation [79].

2.3.1 Analytical Channel Models

The spatially independent identically distributed i.i.d. is the most common frequency

non-selective flat-fading channel model which is used to observe system perfor-

mance [80]. In this narrowband channel model, the antenna transmit-receive channel

gain is modelled as a complex Gaussian random variable. This model assumes that

the antenna elements between transmitter and receiver links are well separated, and

that the channel gain between the links in the presence of a rich scattering environ-

ment can be approximated by a Gaussian random variable [81]. Let the line-of-sight
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(LOS) component of the signal be the one that travels along the direct path between

transmitter and receiver. This LOS signal component has non-zero real and imagi-

nary mean values hLOS,re and hLOS,im respectively. The baseband channel model in

small scale fading with the LOS component can be written as

hsmall = (hre +hLOS,re)+ j(him +hLOS,im), Eq. (2.3)

where hre and him are the real and imaginary components of the channel model in

small scale fading. The magnitude is therefore |hsmall|=
√

(hre +hLOS,re)2 +(him +hLOS,im)2,

and the Rician K-factor K measures the dominance of the significant path. It is de-

fined as the ratio of the power of the constant part of the signal to the average power

of the random part of the signal, or

K =
|hLOS,re|2 + |hLOS,im|2

σ2 ,

where σ2 is the variance for the Rician distribution and the probability density func-

tion in this case is given by

Pr{|hsmall|}=
(
|hsmall|
σ2/2

)
e−
|hsmall |

2

σ2 e−KI◦

(
|hsmall|

√
2K

σ/2

)
, Eq. (2.4)

I◦(.) is the modified zeroth order Bessel function of the first kind. For a scattering

channel matrix H, with dimensions Nr×Nt , a stochastic part Hs and a deterministic

part Hd with rice factor K, is defined as [82]

H =

√
1

1+K
Hs +

√
K

K +1
Hd. Eq. (2.5)
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To obtain a Rayleigh distribution, that is in a pure multipath environment without

an LOS component and with zero mean gain put K = 0, and K = ∞ corresponds to

unfaded AWGN channel.

2.3.2 Spatial-Correlation Based Models

In spatial correlation based analytical channel modelling, the MIMO channel matrix

is statistically characterised in terms of the correlation between the entries of the

channel matrix. The MIMO capacity and system performance are affected by the

spatial correlation between the transmit and receive antenna elements, as shown in

Figure 2.2, where capacity is plotted both for i.i.d. and correlated MIMO scenario.

Therefore to model a MIMO channel in such a pure multipath environment without

any LOS component, consider K = 0 in (2.5) giving H = Hs. Suppose that h =

vec(H) and that RH , E[hhH ] is a correlation matrix of dimensions NtNr ×NtNr.

The complex zero mean multivariate Gaussian distribution of h can be written as

f (h) =
1

πNtNr det{RH}
e(−hR−1

H h). Eq. (2.6)

The elements in RH contain the correlation of the channel matrix that describes the

spatial statistics. The distribution in (2.6) gives the realisation of vector h, and hence

the realisation of the channel matrix H can be written as

h = R1/2
H g, Eq. (2.7)

g is an NtNr× 1 zero mean, unity-variance i.i.d. Gaussian random vector and R1/2
H

is any matrix that satisfies R1/2
H RH1/2

H = RH . For large Nt , Nr (massive MIMO),

the number of real-valued parameters required to fully specify RH , is N2
t N2

r . So,
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Figure 2.2: Correlated MIMO Channel Capacity vs i.i.d. MIMO Channel

this requirement can be reduced by imposing a certain structure on the correlation

matrix. There are different methods to construct a structure of a channel matrix given

in Equation (2.2) that leads to the construction of different correlation based channel

models, which are now presented.

2.3.2.1 The Independent Identically Distributed Rayleigh Fading Model

The i.i.d. Rayleigh fading model is a very commonly used MIMO analytical channel

model. In this model all the elements of the channel matrix H are independent, and

identically distributed uniformly in all directions in a rich scattering environment that

corresponds to a spatially white MIMO channel. The elements in the channel matrix

H are uncorrelated and have an equal variance of ρ2, i.e.

RH = ρ
2INtNr Eq. (2.8)
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This model is used in MIMO performance evaluation, information-theoretic analysis

and simulating MIMO algorithms [78] due to the simplicity that attracts researchers

to use it for analysis in massive MIMO studies.

2.3.2.2 The Kronecker Model

The existence of channel correlation is due to an inter-element structure and antenna

array structure which degrades the throughput performance of the wireless system.

To mitigate channel correlation, a simple uniform linear array structure using the

Kronecker model is proposed that incorporates spatial correlation between antenna

elements. This model assumes that the distance between the transmitter and receiver

is sufficient such that the correlation on the transmitter side has no effect on the re-

ceiver side and vice versa. It is also assumed that the transmitter and receiver spatial-

correlation matrices are separable. Let RT x = E[HHH] and RRx = E[HHH ] denote

the transmit correlation matrix and the receive correlation matrix, respectively. The

Kronecker channel model in product form under these assumptions can be written as

RH = RT x⊗RRx Eq. (2.9)

The vector h in the Kronecker model becomes

h = (RT x⊗RRx)
1/2g, Eq. (2.10)

and

H = R(1/2)
T x GR(1/2)T

Rx Eq. (2.11)
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where, as before, g is an NtNr×1 vector with i.i.d. Gaussian entries with zero mean

and unit-variance, and G is an i.i.d. unity variance matrix obtained by performing

an inverse vec(.) operation on g. The number of parameters that characterise this

model is N2
t (parameters in RT x ) plus N2

r (parameters in RRx ), unlike the N2
T N2

R

parameters in the full correlation matrix. The Kronecker model has also been shown

to underestimate the throughput in adaptive modulation in MIMO compared to the

throughput obtained using measured channel matrices [83]. Despite the limitation

of ignoring the coupling between the Direction of departure (DOD) and Direction

of arrival (DOA) at the transmit and receive ends, the Kronecker model has been

popularly used in information-theoretic capacity analysis and simulation studies in

[84–88]. The model in (2.11) is called the Kronecker channel model and is popular

for its simplicity.

2.3.2.3 The Weichselberger model

A simple correlation-based stochastic channel model is the Kronecker model, that

can be implemented with a few driving parameters, i.e. the signal correlation at each

end of a link. An extension of the Kronecker model is the Weichselberger model.

This model does not assume the separability of the correlation matrices [55, 89].

A special structure of channel is used to determine the (DOD) and (DOA) at the

transmitter and receiver ends respectively. These special correlation matrices are

obtained by using eigenvalue decomposition of the transmitter and receiver matrices

as follows:

RT x = UT xΛT xUH
T x Eq. (2.12)

RRx = URxΛRxUH
Rx, Eq. (2.13)

PhD Thesis, School of Engineering, Macquarie University 31



CHAPTER 2. BACKGROUND AND RELATED WORK

where ΛT x and ΛRx are the eigenvalue matrices with corresponding orthonormal

eigenvectors UT x and URx at transmitter and receiver respectively. The matrices R1/2
T x

and R(1/2)T

Rx are not unique and can be chosen as:

R(1/2)T

T x =
√
ΛT xUH

T x Eq. (2.14)

R1/2
Rx = URx

√
ΛRx, Eq. (2.15)

where

√
ΛT x = diag(λT x,1,λT x,2, . . . ,λT x,n) Eq. (2.16)√
ΛRx = diag(λRx,1,λRx,2, . . . ,λRx,n). Eq. (2.17)

By substitution of these into (2.11) we get

HWeich = URx
√
ΛRxG

√
ΛT xUH

T x Eq. (2.18)

The coupling between DOD-DOA in a Weichselberger channel is taken into account

through a coupling matrix Ω, defined as

Ωw =


λRx,1

λRx,2
...

λRx,Nnx


(

λT x,1,λT x,2, . . . ,λT x,n

)
Eq. (2.19)
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Note that the Equation (2.19) can be written in terms of the Weichselberger model as

H = URxΩw�GUT
T x, Eq. (2.20)

where � represents an element-wise multiplication of the matrices. The elements of

Ω are real-valued and non-negative, and they determine the average power coupling

between the transmit and receive eigenmodes. It can be observed that the Weichsel-

berger model in (2.20) becomes the Kronecker model when the coupling matrix is a

rank-1 matrix given by [55,89]. To design signal processing algorithms to achieve the

anticipated capacity, diversity and beamforming the structure of Ω can be exploited.

For instance, the performance metrics such as the diversity order and the capacity of

the MIMO channel in the Weichselberger model only depend on the coupling matrix

Ω, and are independent of the transmit and receive eigenmodes.

2.4 Precoding in MIMO
In the literature, the term precoding or pre-equalisation can be implemented on the

transmitter side to represent any transmit pre-processing apart from channel coding.

The precoding techniques (see Section 2.4.2) are used in MIMO wireless systems

to improve the system performance as shown in Figure 2.3. By using Monte-Carlo

method, mean sum-capacity is plotted against SNR with 4× 4 transmit and receive

antennas. However, the channel knowledge is important in achieving the best capac-

ity performance. The channel knowledge known at the transmitter is referred to as

the channel state information at the transmitter (CSIT). It can be obtained by using a

feedback network. It is not easy to get up-to-date feedback all the time, especially in

rapidly varying channels [80]. In addition, a large bandwidth is required in sending

channel information via feedback in large MIMO systems, therefore partial channel-
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Figure 2.3: Sum-Capacity of Non-Linear (DPC) and Linear (ZF & MMSe)

state information is used instead [90]. In multiuser MIMO, the capacity gain from

CSIT is different at low and high signal-to-noise ratios (SNR) [91]. At low SNR,

the ergodic capacity increases significantly with the help of CSIT. In fact, the power

is transmitted to only strong channel modes as the transmitter uses channel knowl-

edge, whereas the transmitter distributes equal power in every direction if CSIT is not

available. At high SNR, the anticipated capacity is dependent on the antenna con-

figuration. For example, CSIT helps to achieve an incremental capacity with more

transmit than receive antennas [92]. In general, the throughput of the channel can

be maximised using precoding designs that are studied for various scenarios. Per-

fect CSIT is explored in [93], mean CSIT is explained in [94], transmit covariance

CSIT is studied in [95]. So, based on the transmit-side pre-processing, the precoding

techniques fall into non-linear precoding and linear precoding.
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2.4.1 Non-Linear Precoding

The optimal scheme based on writing on dirty paper given by Coast is known as

Dirty Paper Coding (DPC), categorised as a non-linear precoding technique [15]. The

authors in [13,14] show that a MIMO broadcast channel achieves a maximum system

capacity by using a DPC precoding technique. However, the associated complexity

makes it impractical in real systems [96]. To overcome the shortcomings of DPC,

a sub-optimal non-linear precoding with reduced achievable rates is proposed. This

technique is known as Tomlinson-Harashima precoding (THP), that successively pre-

subtracts the known interference at the transmitter [97].

2.4.2 Linear Precoding

This scheme involves a linear transformation of the data in a precoding matrix. The

benefit of linear precoding is its low complexity and its simple implementation in

practical systems [98,99], however, we make a sacrifice in the achievable throughput

as shown in Figure 2.3. The interference is pre-cancelled in linear precoding due to

the knowledge of CSI at the transmitter. Popular linear precoding techniques are the

zero forcing (ZF) and minimum mean square error (MMSE) precoding techniques.

In ZF precoding, a constraint is set that forces all the interference from other users to

zero with the help of channel state information available at the transmitter. Consider

a transformation x = Wu, where, an information symbol vector u is encoded into

a transmit vector x and a precoding matrix W. This precoding matrix is designed

to achieve zero inter-symbol interference (ISI) from other users. Using (2.2) the

received vector is y = Hx+n, and by putting in the transformation of x we get

y = HWu+n Eq. (2.21)

PhD Thesis, School of Engineering, Macquarie University 35



CHAPTER 2. BACKGROUND AND RELATED WORK

A precoding matrix W in a case of conjugate beamforming also known as maximum-

ratio transmission (MRT) can be defined as W = H∗. However, To get interference-

free communication, a precoding matrix

W = βZFHH(HHH)−1 Eq. (2.22)

is chosen [100], where βZF is a normalisation factor introduced in order to meet the

transmitted power constraint after precoding and is defined as [101]

β =

√
Nt

tr(HHH)−1
Eq. (2.23)

The total power constraint in this suboptimal precoding technique is

E{||x||2}= tr{WWH}= ||W||2F ≤ P, Eq. (2.24)

where, P is the total transmitted power. In addition, the performance of the ZF pre-

coder is poor when βZF in (2.23) become smaller in an ill-conditioned matrix. In

fact, in such a matrix, the complete nulling of other users creates a power penalty,

i.e. enhanced noise. To alleviate this issue, a well-known MMSE constraint and its

solution is given by

W = βMMSEHH(HHH +αIk)
−1, Eq. (2.25)

where α > 0 determines the amount of interference; α = 0 gives (2.22). So no

matter how poorly conditioned channel matrix H is, by choosing α large enough,

the inverse in (2.25) can behave as well as desired. The normalized factor βMMSE is
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2

Figure 2.4: MIMO Channel Split into Virtual Scalar and Independent Channels

defined as [102]

βMMSE =

√
Nt

tr(HHH +αIk)−1
, Eq. (2.26)

2.4.3 MIMO Channel Decomposition

The MIMO channel capacity can be computed by splitting the channel into parallel

and independent scalar sub-channels in the presence of channel knowledge at trans-

mitter and receiver [103]. So, the throughput of an MIMO channel with available

CSIT can be computed. The capacity in this case is equivalent to the sum-rate of

independent parallel scalar sub-channels, with equal power allocation to each sub-

channel as shown in Figure 2.4 [32, 103].

A linear transformation, such as singular-value decomposition (SVD), is used to de-

compose a channel matrix into sub-channels. Consider a channel matrix HNr×Nt ,

with rank r and a SVD decomposition H = UΛVH , shown in Figure 2.5. The figure

shows a pre-processed transmitted signal with a U matrix, and a receive signal is
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Figure 2.5: SVD of MIMO Channel

processed at the receiver side with the VH matrix. The dimensions of these unitary

matrices are UNr×Nr and VNt×Nt respectively, and ΛNr×Nt is a diagonal matrix, whose

diagonal elements are the singular values of matrix H and can be written as

Λ =


λ1 0 . . . 0

0 λ2 . . . 0
... ... . . . ...

0 0 . . . λr

 . Eq. (2.27)

The MIMO channel capacity after decomposition of the channel matrix can be writ-

ten as

C = log2{det(INr +
1
N 0

UΛVHRxxVΛ
HVH)}. Eq. (2.28)

Using the identity in [104], det(I+AB) = det(I+BA) in (2.28), the capacity equa-

tion can be re-written as

C = log2{det(INr +
1

N0
RxxΛ)}, Eq. (2.29)

where N0 is the average noise power.
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Figure 2.6: Optimal Power Allocation Using Water-filling Principle

Since the total transmitter power PT is PT = tr{Rxx} =
Nt
∑

i=1
E|xi|2 and if ηi =

Pt
Nt

E|xi|2 is the ith transmit antenna power where (i = 1, · · · ,Nt), then the MIMO

channel is converted into a virtual SISO channel as shown in Figure 2.4, and mathe-

matically the capacity can be expressed as

C(η) =
r

∑
i=1

log2

(
1+

Pt

NtN0
ηiλi

)
. Eq. (2.30)

2.4.4 Power Allocation in MIMO System

To enhance the system throughput an optimum power can be assigned in the pres-

ence of CSIT to each transmit antenna [12, 78]. The most popular technique is the

water-filling scheme that allocates power among different sub-channels by exploiting

channel state information at the transmitter. A schematic diagram of the water-filling
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algorithm is shown in Figure 2.6. The figure clarifies the power allocation according

to the channel strength i.e. the power is not distributed to the channels with small

eigenvalues, but between the rest of the channels. In terms of the water-filling algo-

rithm, the throughput of the system can mathematically expressed as [12]

C = max
η

r

∑
i=1

log2

{
1 +

SNR
Nt

ηiλi

}
, Eq. (2.31)

where SNR = Pt
Nt

and the constraint over η is
r
∑

i=1
ηi = PT , then the water-filling power

optimisation problem can be defined as

η
o
i =

{
µ− Nt

SNRλi

}+

,

where i = 1, · · · , r,
r
∑

i=1
ηi

o = PT , µ is a constant and (x)+ is defined as max(x,0).

Using the water-filling technique, the power-optimisation MIMO capacity equation

with average transmit power ηo(i) can be written as

C =
r

∑
i=1

log2

{
1 +

SNR
Nt

η
o
i λi

}
, Eq. (2.32)

Let us consider a case when channel knowledge is not available at the transmitter,

then power is distributed among all the transmitter antennas regardless of channel

strength. This method is known as equal power allocation, and the capacity formula

in this case is

C = log2

{
det
(

INr +
SNR
Nt

HHH
)}

. Eq. (2.33)
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In this thesis, we pursue the antenna-selection issue with both the equal power allo-

cation and the water filling techniques in Chapter 3 and 4.

2.5 Computational Complexity
There are multiple signalling schemes in MIMO wireless communication systems

to enhance link quality, range, stability and system throughput. In massive MIMO

a base station is equipped with a very large number of antennas and, when doing

linear precoding at the base station, there is a need to compute the pseudo-inverse of

large matrices. So, matrix inversion in massive MIMO multiplies the computational

complexity of a system manyfold [105]. The computational complexity here is in

terms of floating-point operations (Flops), and a possible solution is to reduce the

matrix dimension which results in reduced computational complexity.

There have been numerous complexity-reduction techniques proposed in recent

years [106–109]. In [106], a quasi-Newton algorithm is applied to reduce the com-

plexity in downlink massive MIMO systems. The authors claim that the proposed

algorithm exhibits faster convergence than conventional methods. In [107], a pre-

coding technique based on a truncated polynomial expansion is used to mitigate the

complexity of massive MIMO systems. In [108], the Neumann series expansion

is chosen for inversion of matrices over the traditional exact computation in linear

ZF precoding. The results in [108] show that, with the help of the Neumann se-

ries expansion, a significant reduction in computational complexity can be achieved.

In [109], a low-complexity method to compute the sum rate using linear MMSE is

discussed, where instead of using the conventional technique of matrix inversion in

linear MMSE precoding, a matrix polynomial method is proposed in which only a
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few terms are sufficient to closely approach the sum rate when compared with a clas-

sical MMSE precoder.

This dissertation gives analysis of computational complexity reduction in Chapter 5.

2.6 Principal Component Analysis
Principal component analysis is a statistical technique developed by Karl Pearson in

the early nineteenth century. This method is a very useful data analysis tool in today’s

research [110] . For instance, a high-dimensional data matrix can be transformed

into a lower-dimensional matrix which results in numerous advantages. Firstly, the

reduced dimension keep most of the useful information and reduces noise and other

undesirable artefacts. Secondly, the time and memory used in data processing are

smaller. Thirdly, it provides a way to understand and visualise the structure of com-

plex data sets. The first objective of PCA used in this thesis is feature selection,

discussed in Chapter 3 and Chapter 4. The second purpose of using PCA is reducing

high-dimensional data into lower-dimensional data, and is presented in Chapter 5.

However, other distinguishing characteristics of PCA are discussed in [110].

Let us assume a vector x containing p random variables. The point of interest

is the variance and the structure of the correlation or covariance in p random vari-

ables. In large-system analysis, it is not easy to look at the p variances and all of the
1
2 p(p−1) correlations or covariances. However, an alternative choice is to look for a

(� p) derived variables. These derived variables retain almost all of the information

of the variance and correlation or covariance structure. The derived variables can be

obtained by looking at a linear function α′x of the elements of x having maximum
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variance. Mathematically, it can be expressed as

α′1x = α11x1 + α12x2 + . . . + α1pxp =
p

∑
j=1

α1 jx j, Eq. (2.34)

where α′1 is a vector of p constants α11,α12, . . . ,αp and ′ denotes transpose. Simi-

larly, the linear combination α′2x can be written with a second maximum variance,

however, the second linear function should be uncorrelated with α′1x. Therefore, the

kth linear function α′kx has a maximum variance subject to being uncorrelated with

α′1x,α′2x, . . . ,α′k−1x. Theoretically, the computations of the principal components

reduces to the solution of an eigenvalue-eigenvector problem for a positive semi-

definite symmetric matrix [33] and only the first k principal components account for

most of the variability of the original data.

The detailed analysis of principal component analysis is given in Chapter 3.

2.7 Summary of the Chapter
In this chapter, we have addressed the issue of hardware complexity in 5G wireless

communication. We have studied intensively previous approaches used in antenna

selection for wireless communication. We will confront the problem of antenna-

selection with our proposed algorithm in the following chapter. We have developed

the necessary channel models that can be applied to the antenna selection research

problem with our proposed methodology. We will also address the computational-

complexity issue that appears in inverting large matrices in massive MIMO when

doing linear precoding with our proposed scheme.

PhD Thesis, School of Engineering, Macquarie University 43



CHAPTER 2. BACKGROUND AND RELATED WORK

PhD Thesis, School of Engineering, Macquarie University 44



I cannot teach anybody anything. I can only make them think.

Socrates (469 - 399 BC)

CHAPTER 3

ANTENNA SELECTION IN MASSIVE

MIMO COMMUNICATION

In this chapter, Section 3.1 gives a brief description of an antenna selection problem.

The related work is discussed in Section 3.2. We describe the system model used

in this chapter in Section 3.3. The theory of PCA is explored in Section 3.4. In

Section 3.5, the proposed antenna-selection techniques are presented followed by the

simulation results, and a discussion of the results is given in Section 3.6. In the end,

Section 3.7 concludes the chapter and presents final remarks.
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3.1 Introduction
This chapter examines the antenna selection algorithms for massive multi-user MIMO

(MU-MIMO) broadcast wireless channels. We consider that the base station is equipped

with a large number of transmit antennas transmitting signals to multiple users with

each user equipped with a single receive antenna. Thus, by using the multiple an-

tennas the base station transmits independent data streams to serve multiple users

simultaneously. However, in multi-user communication, signals for different users in

the same frequency band create interference to other users, which results in reduced

system capacity. Therefore, in downlink MU-MIMO broadcast channels the trans-

mitted signal is pre-coded before transmission to mitigate the interference from other

users. In this case, the number of transmit antennas (Nt) needs to be at least equal to

the number of receive antennas over all users for broadcast communication to occur.

For receivers, with a single antenna, the total number of receive antennas equals the

number of selected users (K). If Nt > K then there are unused degrees of freedom

that can be used to improve the sum capacity of the system.

In order to achieve high capacity, one method is to use antenna selection tech-

niques that select a subset of antennas for active transmission. For a signal to be

transmitted from an antenna element at the BS, the element needs to be connected to a

radio-frequency (RF) chain which comprises Analogue-to-digital/Digital-to-Analogue

converters, a power amplifier and mixers etc. The total number of RF chains in this

thesis is assumed to be Ns, equal to the number of antenna elements used for ac-

tive transmission. In [111], it has been shown that the main power consumption and

hardware cost of a cellular network comes from the radio-access network. Therefore,

using a reduced number of expensive RF chains at the BS can significantly reduce
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both the power consumption, the system complexity and the hardware cost for the

operators.

In this chapter we presents techniques for selecting antennas to reduce the number

of RF chains required, sacrificing only a small amount of sum capacity. It is not easy

to obtain the optimal subset of antennas to maximise the downlink sum-rate. In fact,

it is a combinational problem which involves matching Ns RF chains to Nt antenna

elements. In addition, it is assumed that the computational load cannot be negligible,

and Nt can potentially be large. Other researchers have addressed this problem as

either a convex optimisation problem or using sub-optimal approaches [112, 113].

This chapter proposes two semi-heuristic antenna-selection techniques based on

the use of principal components analysis. In general, PCA is used in statistics to

determine the dominant factors in a set of data. In our approach the transmit anten-

nas are considered as a vector of random variables and the signals received at a user

are considered as a random observation of that vector. Our first technique, called

Linear Dependence Avoidance Selection (LDAS), uses PCA analysis to minimise

the correlation between the remaining antennas after an antenna has been removed.

Our second technique, called PCA-based antenna selection, improves the selection

of antennas by choosing the subset of antennas that LDAS selects from, taking into

consideration the smallest positive eigenvalue and associated eigenvector obtained in

the PCA analysis.

The PCA technique also allows us to determine how the channel matrix structure

impacts the antenna-selection process. In particular, the effect of the mean trans-

mit power from an antenna element can be separated from the effect of correlations

between antennas. We apply our technique to the ZF precoding scheme, under the as-

sumption of equal transmit power and unequal power allocation for each data stream
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using a water-filling algorithm. Simulation results are used to compare the proposed

algorithms with exhaustive-search and mean-power antenna selection.
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Figure 3.1: The MU-MISO System Model

3.2 Related Work
In this section, we review some current antenna-selection algorithms for MIMO

broadcast wireless channels.

Various antenna-selection algorithms have been presented and analysed in recent

years [26, 114]. In [114], the authors propose transmit antenna-selection to improve

spectral efficiency in large-scale MIMO. To address channel hardening, in [115] the

authors obtain a good approximation of large-scale MIMO distribution from which

an antenna-selection algorithm is derived. In [116], a power-allocation algorithm is

proposed for large-scale MIMO. The relationships between the selected number of
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antennas, spectral efficiency, and better capacity trade-off are analysed in [26]. Sev-

eral antenna-selection techniques have been proposed in [117–119], for multiuser

MIMO networks. In [117], an antenna group-scheduling algorithm is proposed com-

bining antenna selection and user scheduling to reduce feedback overhead. In [118],

a joint antenna-selection and user-scheduling algorithm is proposed to maximise the

achievable sum-rate with lower complexity. In [119], the authors rank antenna ele-

ments according to their channel gains for all users to derive a selection technique.

3.3 System Model
A MU-MIMO broadcast channel is considered with a single BS that supports K users,

each equipped with one antenna (Figure 3.1). The BS has Nt transmit antennas that

are used to transmit data to the K users such that Nt ≥ K. Each selected antenna in

the BS is supported by a separate RF chain. Assuming narrow-band communication,

the K×1 vector of signals received by the users, denoted by y, is given by

y = Hx+n, Eq. (3.1)

where H = [hi j]K×Nt is the complex channel matrix, hi j is the channel gain between

the jth transmit antenna and the ith user’s receive antenna; the transmitted signal

x is an Nt × 1 vector and n is a K × 1 vector denoting noise. The K × 1 vector

u = (u1, . . . ,uk)
T is the user data to be transmitted and it is assumed to be precoded

by the matrix G ∈ CNt×K , so that x = Gu. Column k of G, denoted by gk, is the

Nt×1 beam-forming vector for user k. The signal-to-interference-plus-noise (SINR)

PhD Thesis, School of Engineering, Macquarie University 49



CHAPTER 3. ANTENNA SELECTION IN MASSIVE MIMO COMMUNICATION

ratio of the signal received at user k is given by

Γk =
|hkgk|2v2

k

σ2
k +∑ j 6=k |hkg j|2v2

j
, k = 1, . . . ,K, Eq. (3.2)

where vk = E(|uk|2) is the power allocated to the kth user and σ2
k is the noise power

at user k and hk is the kth row of H. The total transmit power is given by trE(xxH) =

∑k ||gk||2vk. The precoding problem is to maximise the weighted sum-rate of the

system and obtain the beam-forming vectors gk and user powers vk(k = 1, . . . ,K)

under the constraint that the total transmitted power is P. This can be expressed as

the following optimisation problem (e.g. see [120]):

maximise
gk,vk

∑
K
k=1 qk log2

(
1+ |hkgk|2v2

k
σ2+∑ j 6=k |hkg j|2v j

)
Eq. (3.3)

subject to vk ≥ 0, k = 1, . . . ,K

∑k ||gk||2vk ≤ P,

where qk is the kth quality-of-service weight. In the case of zero forcing, the transmit

precoding matrix is given by G = HH(HHH)−1. With this precoding matrix hkg j =

0, j 6= k and all interfering signals at a receiver are nulled. It can be shown in this

case that the optimisation problem (3.3) can be rewritten as (e.g. see [120])

maximise
vk

∑
K
k=1 qk log2

(
1+ vk

σ2

)
Eq. (3.4)

subject to vk ≥ 0, k = 1, . . . ,K

∑k[(HHH)]−1
(k,k) vk ≤ P.
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Using Singular Value Decomposition (SVD) this problem can be expressed in terms

of the eigenvalues of HHH . To begin, suppose that the SVD of H is given by

H = UΞV, Eq. (3.5)

where Ξ= [yi j] is a K×Nt matrix with singular values ρi on the diagonal (i.e. yii = ρi

(i = 1, · · · ,K)) and yi j are zero elsewhere, U = [ui j] is a K×K unitary matrix and V

is an Nt×Nt unitary matrix. Therefore,

HHH = (UΞV)(UΞV)H = UΞΞHUH = UΛUH . Eq. (3.6)

so that Λ = ΞΞH is a diagonal matrix of the eigenvalues of HHH with diagonal

elements λi = |ρi|2 and the columns of U are the eigenvectors of HHH (it can also

be shown that the columns of V are the eigenvectors of HHH). The eigenvalues are

assumed to be sorted in decreasing order: λ1 ≥ ·· · ≥ λK . Considering the constraints

in Equation (3.4), the following is obtained:

(HHH)−1 = (UΛUH)−1 = U(ΛH)−1UH

= (λ1)
−1u1uH

1 + . . .+(λK)
−1uKuH

K , Eq. (3.7)

where uk is the kth column of U. For the diagonal elements

[(HHH)−1]ii =
K

∑
j=1
|ui j|2λ

−1
j . Eq. (3.8)
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3.4 Principal Components Analysis (PCA)
Principal component analysis is a statistical technique first described by Pearson and

Hotelling [33]. It uses a unitary transformation to linearly transform a set of possibly

correlated random variables to uncorrelated new variables called Principal Compo-

nents (PCs).

3.4.1 Population-Based Central PCA

In population-based PCA, assume that x= [x1, . . . ,xp]
T is a p-dimensional zero mean

random vector with covariance matrix Σ given by Σ= E[xxT ] [33]. The aim of PCA

is to transform x into a set of uncorrelated variables, say z = [z1, . . . ,zp]
T called the

population-based Principal Components, that are linear combinations of the original

variables x1, . . . ,xp. The linear combination for the kth PC is given by

zk = aH
k x =

p

∑
j=1

ak jx j, k = 1, . . . p, Eq. (3.9)

where ak = [a1k, . . . ,apk]
T is a vector of constants. The vectors ak are chosen to

have unit norm. The first PC is obtained by choosing a1 to maximise the variance of

z1 = aH
1 x:

maximise
a1

Var(aH
1 x) = aH

1 Σa1

subject to aH
1 a1 = 1
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Subsequent PCs are obtained by maximising the variance of zk = aH
k x subject to them

being uncorrelated with z1, · · · ,zk−1:

maximise
ak

Var(aH
k x) = aH

k Σak

subject to aH
k ak = 1

and Cov(z j,zk) = 0, j = 1, . . . ,k−1, .

The above maximisation problems can be solved using Lagrange-multiplier tech-

niques to show that the ak are eigenvectors of Σ, and if the kth largest eigenvalue

of Σ is λk then λk = Var(akx) = Var(zk). The variables zk have decreasing vari-

ance with k (see [33]). Dominant PCs can be interpreted as determining which linear

combinations of the original random variables explain most of the variability. It can

be shown that aH
i a j = aH

i Σa j = 0 for i 6= j. Defining the matrix A such that its kth

column is given by ak then the transformation between x and z is given by z = AHx.

Using the properties of ak, A is a unitary matrix. If Λ is the diagonal matrix of the

eigenvalues of Σ then it can be shown that AHΣA =Λ. It can also be shown that Σ

has the spectral representation [33]

Σ=
p

∑
k=1

λkakaH
k . Eq. (3.10)

In the case that x does not have a zero mean, suppose that E[x] = µ = [µ1, . . . ,µp]
T

and Σ = E[xxT ]−µµT . After subtracting the mean to centre the random variables

and determining A then z = AH(x−µ) is obtained.
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3.4.2 Population-Based Non-Central PCA

Non-central population PCA is similar to central PCA except that the mean µ is

not subtracted from x before conducting the PCA analysis. Given random variables

x1, . . . ,xp the kth non-central principal component is given as

zk = aT
k x =

n

∑
j=1

ak jx j, k = 1, . . . p, Eq. (3.11)

where ak = (ak1, · · · ,akp). (For ease of exposition the same notation will be used as

in the central PCA case, relying on the context to determine which form of PCA is

being used.) The maximisation problem becomes

maximise
ak

E((aH
k x)2)

subject to aH
k ak = 1,

and Cov(z j,zk) = 0, j = 1, . . . ,k−1, .

Suppose that Σ= E(xxH) and that the eigenvalues of Σ, {λk}, are sorted in decreas-

ing order, then ak can be determined to be the eigenvector of Σ belonging to thekth

eigenvalue. This gives λk = E((aT
k x)2) = E(z2

k). Letting A be the matrix whose kth

column is ak the transformation z = AHx is obtained.

3.4.3 Sample-Based PCA

In sample-based PCA it is assumed that associated with the vector random variables

x = [x1, . . . ,xp], there is a set of N data samples where x̂n = [x̂n1, . . . , x̂np]
T is the nth

data sample of x. All the observations can be expressed in a single matrix X where

row n is the nth data sample x̂n. Denote by X̄ the matrix where each row is equal to

PhD Thesis, School of Engineering, Macquarie University 54



CHAPTER 3. ANTENNA SELECTION IN MASSIVE MIMO COMMUNICATION

the row vector of column means of X. The matrix X0 = X− X̄ is the matrix of data

sample values where the column mean has been subtracted from each column. The

sample covariance matrix, Σ̂, is given by ∑̂∑∑ = 1
n−1XH

0 X0. In order to perform central

PCA analysis, Σ̂ is used as an estimate for Σ. However, to conduct non-central PCA

analysis the sample matrix Σ̂= 1
n−1XHX is used as an estimate for Σ.

3.5 Antenna Selection
Initially, assume there are Nt transmit antennas and the aim is to remove one antenna

in such a way that it results in the least reduction in sum capacity. The antenna selec-

tion problem can be formalized as follows. Let H− j be the channel matrix with the

jth column (antenna) removed and let C− j be the weighted sum capacity for such a

channel. The problem is to determine j∗ = argmax
j

C− j .

An exhaustive search would involve computing C− j for all possible values of j but

this would be of high computational complexity so alternatives of lower complexity

are presented. A simple method of selecting antennas is mean selection. Express H

as H = H0 +H where H = [hi j] is the matrix where the rows are all equal to the row

vector of column means of H and H0 = H−H. In mean antenna selection the aim

is to remove the antenna which has the weakest average signals, giving the selection

rule: j∗ = argmin
j

h1, j.

An antenna selection technique called linear dependent avoidance selection (LDAS)

is now presented. It is based on the following interpretation of H. In H, each column

(antenna) of a matrix can be considered as representing a random variable and the

signals received by user k (row k of H) (k = 1, · · · ,K) as a data observation of those

random variables. Next, note that the non-zero eigenvalues of HHH are the same as

those of HHH (this follows from the general result that if C is an m×n matrix and D
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is an n×m matrix then the non-zero eigenvalue of CD and DC are identical [121]).

The matrix HHH is of size Nt×Nt , allowing antennas to be identified by columns in

that matrix. It is assumed that H has a maximum rank of K. Using the eigenvalue

decomposition HHH = UΛUH then U is the same as V in (3.5) and it is assumed that

the eigenvalues on the diagonal in Λ are ordered to satisfy λ1 ≥ λ2 ≥ . . .λK > 0 and

λK+1 = · · · = λNt = 0. The non-zero eigenvalues are the same as in (3.6). Letting

Σ̂ = HHH/(K − 1), the sample covariance matrix of the random variables repre-

senting the antennas, it can be seen that matrix of eigenvectors U is the same as

the A matrix in the non-central PCA technique so that ak = uk (k = 1, · · · ,Nt). For

K +1≤ k ≤ Nt , E((uH
k x)2) = λk = 0. This implies

Nt

∑
i=1

ukixi = 0 . Eq. (3.12)

To be more precise consider a particular antenna, say j, and suppose for the moment

that uk j = 0. This implies that

Nt

∑
i=1,i 6= j

ukixi = 0 Eq. (3.13)

and so the signals from the antennas 1, · · · , j−1, j+1, · · · ,Nt would be linearly de-

pendent. This would reduce the channel capacity significantly. The LDAS method of

antenna selection is designed to avoid the signals from the remaining antennas being

close to linearly dependent. Since the columns K + 1, · · · ,Nt of U all have a zero

eigenvalue the aim is to maximise the norms of the row vectors belonging to those
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columns, giving the selection rule:

j∗ = argmax ‖ (u j,K+1, · · · ,u j,Nt) ‖2 . Eq. (3.14)

The PCA-based antenna selection is built on LDAS by using non-central PCA analy-

sis to reduce the number of antennas that LDAS makes a selection from. Examining

(3.4), it is observed that to maximise the weighted sum-capacity, vk should be as large

as possible. In order to do this [(HHH)]−1
kk should be as small as possible. Examin-

ing (3.8), the dominant term in the equation is that one associated with the smallest

eigenvalue and the following approximation can be made:

[(HHH)]−1
ii ≈ |uiK|2|λK|−1 . Eq. (3.15)

To make this as small as possible, and making the approximation of ignoring the

factor |uiK|2, it is necessary to make λK as large as possible. That is, the smallest

eigenvalue is being maximised. The eigenvector of HHH corresponding to the small-

est non-zero eigenvalue is uK . The subset ΩPCA(NPCA) of the NPCA antennas selected

consists of those antennas that make the smallest contributions to the eigenvalue uK

i.e. the NPCA smallest element values in magnitude in uK:

ΩPCA(NPCA) = argmin
NPCAsmallest

|uK j| . Eq. (3.16)

LDAS is then applied to the antennas in ΩPCA(NPCA) to determine which antenna

should be removed. To remove more than one antenna using either LDAS, PCA-

based selection or mean selection an iterative approach is used, removing one antenna

in each iteration.
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3.5.1 Analysis using Non-Central PCA

This section examines in more detail the impact of the mean per-antenna channel

gains and the correlation structure between antennas on the eigenvalues in PCA-

based selection. Assuming that H has the maximum rank of K then H0 has a rank

of K − 1 and H has a rank of 1. The relationship HH
0 H = HHH0 = 0, gives the

decomposition

HHH = (Ho +H)H(Ho +H) = HH
0 H0 +HHH.

Suppose that the following SVD decompositions exist: HHH = UΛUH , HH
0 H =

U0Λ0UH
0 and HHH=UΛUH Inserting these into the above gives UΛUH =U0Λ0UH

0 +

UΛUH . Since U is unitary then

Λ = UHUoΛoUH
o U+UHUΛUHU . Eq. (3.17)

The first term on the right gives the contribution due to antenna correlation and the

second gives the contribution due to the channel means.
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Figure 3.2: Mean sum-capacity versus P (Ns = 10) (Hz) using i.i.d. Rayleigh fading channel
model

3.6 Simulation Results and Discussion
In this section the simulation results using the equal power allocation method are

provided to demonstrate the performance of the proposed algorithms. The random

channel matrix H was generated in such a way so as to obtain some control over

the column means and fading structure of the channels. The procedure is as follows.

First, the matrix H̃ is generated so that each element is a Circularly Symmetric Com-

plex Gaussian (CSCG) random variable with mean zero and variance 1. The next

step is to subtract the column means from H̃ to produce the matrices H̃0 and H̃ so

that H̃ = H̃0 + H̃ where H̃0 has zero column means and H̃ is constructed from the

column means. As the ranks of H̃0 and H̃ are less than K a perturbation matrix H̃∆

of CSCG random variables is added.
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Figure 3.3: Mean sum-capacity versus P (Ns = 6) (Hz) using i.i.d. Rayleigh fading channel
model

The perturbation matrix has mean 0 and a variance σ2
∆

that can be adjusted. Using

these two channel matrices are created: Hz = H̃0 + H̃∆ and Hm = H̃+ H̃∆. For small

values of σ2
∆

the matrix Hz has columns whose means are close to zero. Such a ma-

trix can be used to model massive MIMO channels, where the law of large numbers

applies. The matrix Hm has rows that are almost equal. Such a matrix can be used

to model a distributed MIMO network where there is a cluster of users and a poor

scattering environment. In all the results presented the parameters Nt = 12 and K = 6

were used.

The first set of results plots the mean sum-capacity versus the available normalised

transmit power (P) when different numbers of antennas, Ns, are selected. An ensem-

ble of 5000 channel matrices was simulated by using the Hz method of generating

channel matrices, with σ∆ = 0.01, when the channel correlations dominate, and the
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mean sum-capacity was computed for different total power values with equal power

allocation. The weights in the sum capacity formula were set to qk = 1 so that sum-

capacity was in normalised units.

Figures 3.2 and 3.3 show plots of the mean sum-capacity versus total power for

Ns = 10,6, respectively, using LDAS, PCA-based selection with NPCA = 1 (PCA(1)),

PCA-based selection with NPCA = 3 (PCA(N)), and mean antenna selection as dis-

cussed in Section 3.5. The sum-capacity using mean antenna selection is shown

in the plots when no antennas were removed. For Ns = 10, the mean sum capac-

ity using exhaustive search is also shown. The plots show that LDAS, PCA(1)

and PCA(N) all perform better than mean selection. The differences between the

selection methods increase as Ns is reduced (results for Ns = 10 and Ns = 6 are

shown). PCA(N) and PCA(1) are comparable, with PCA(N) being slightly better.

Both are better than LDAS. The second set of results plots the mean sum-capacity

versus the available normalised transmit power (P) using conjugate beamforming.

Under the aforementioned simulation parameters conjugate beamforming is applied

in proposed antenna selection techniques. A sum-capacity with normalized power

P = 10,000 and P = 4000 using equal power algorithm is shown in Figure 3.4(a)

(conjugate beamforming) and 3.5(a) (ZF). It is noticed that the proposed techniques

of PCA(N), PCA(1) and LDAS performed better than mean selection. The optimal

antenna selection is also shown in Figure 3.4(a). In addition, all the curves follows

a straight line path for P = 10,000 and 4000 in Figure 3.4(a) and 3.5(a). However,

when the power reduces as shown in Figure 3.4(b) (conjugate beamforming) and

3.5(b) (ZF), it does not affect mean-sum capacity much. Therefore, it can be deduced

that conjugate beamforming gives less sum-capacity compared with ZF beamform-

ing under similar simulation parameters of power, number of antennas at transmitter
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Figure 3.4: (a) Mean sum-capacity versus P (Ns = 10) (Hz)
(b) Mean sum-capacity versus P (Ns = 10) (Hz) (Conjugate beamforming )

and receiver and number of selected antennas as shown in Figure 3.2 and 3.3.
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Figure 3.5: (a) Mean sum-capacity versus P (Ns = 6) (Hz)
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Figure 3.6: Mean sum-capacity versus P (Ns = 8) (Hm) using i.i.d. Rayleigh fading channel
model

Figure 3.6 shows a plot of the mean sum-capacity against power for Ns = 8 when

the channel matrices were simulated using Hm, when channel means dominate. In

this case LDAS is just slighter better than PCA(N) and both are better than PCA(1).

Figure 3.7 shows the impact of varying Ns (Hz) for NPCA = 3 and P = 10000. For

example, to achieve a sum-capacity of 15 using either PCA(1) or PCA(N) Ns = 7

RF chains are required. Using LDAS Ns = 8, and using mean selection Ns = 9, are

required to achieve the same sum-capacity.

Figure 3.8 shows the impact of varying the size (NPCA) of the subset used in PCA-

based selection for the case of using Hz and σ∆ = 0.01. We set Ns = 10 and varied

NPCA from 1 to 10 (10 corresponds to LDAS).
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Figure 3.7: Mean sum-capacity versus Ns, P = 10,000, (Hz) using i.i.d. Rayleigh fading chan-
nel model
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Figure 3.8: Sum-capacity versus NPCA (Ns = 10) (Hz) using i.i.d. Rayleigh fading channel
model
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Figure 3.9: Mean sum-capacity versus NPCA (Ns = 8) (Hm) using i.i.d. Rayleigh fading channel
model
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Figure 3.10: Mean sum-capacity versus P (Ns = 10) (Hz) using i.i.d. Rayleigh fading channel
model
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An ensemble of 5000 channel matrices was generated and the same ensemble

was used for each value of NPCA. Choosing NPCA = 1 gave the best performance. For

Ns = 6 (not shown) choosing NPCA = 3 was optimal. The results of using Hm with

Ns = 8 are shown in Figure 3.9. Choosing NPCA = 1 gives the worst result. However,

using NPCA = 6 is optimal for PCA selection (and better than LDAS).

The third set of results use the water-filling power-allocation method to evaluate

the performance of the proposed algorithms. An ensemble of 5000 matrices was

generated by using the Hz method of generating channel matrices and the mean sum-

capacity is shown in Figure 3.10 using LDAS, PCA-based selection with NPCA = 1

(PCA(1)), PCA-based selection with NPCA = 3 (PCA(N)), and mean antenna selec-

tion. This figure also shows that the performance for different antenna selections is

similar when water-filling power allocation method is used. The sum-capacity in this

case is comparatively high as compared with other types of power allocation (see

Figure 3.2). The figure also shows that LDAS, PCA(1) and PCA(N) all performed

better than mean selection.

Figures 3.11 shows the channel estimation with imperfect channel state informa-

tion. In this figure, the parameters Nt = 12 and K = 10 were used. An ensemble

of 5000 channel matrices was simulated and a sum-capacity is plotted using ZF pre-

coder with out σ∆. In addition, a sum-capacity is also plotted using ZF precoder with

the addition of σ∆ = 0.1 and σ∆ = 0.01 under the normalized power P = 10000. The

estimated error is shown in Figure 3.12. It can be noticed that the error increases as

we increase the power and vice versa.
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3.7 Summary of the Chapter
The selection of antennas at a MU-MIMO broadcast BS is an effective technique for

the efficient use of RF units. In this chapter, we presented two methods of antenna

selection based on non-central PCA (LDAS and PCA-based antenna selection) to

reduce the number of RF chains required for use with zero forcing precoded MU-

MIMO systems, and they performed much better than mean antenna selection. We

showed how the mean sum-capacity varied with different channel conditions and

which antenna selection schemes were preferred for those conditions.
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All models are wrong, but some are useful.

George Edward Pelham Box (1919 - 2013)

CHAPTER 4

SPATIAL STRUCTURE OF MULTIPLE

ANTENNA RADIO CHANNELS

This chapter briefly explains spatially correlated channels in Section 4.1, and pre-

vious related work is Section 4.2. A stochastic MIMO channel model is presented

in Section 4.3 The design of transmit and receive correlation matrices using Weich-

selberger and Kronecker channel models has been described in details. Simulation

results are discussed in Section 4.4 and this chapter concludes in Section 4.5.
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4.1 Introduction
In the previous chapter we examined different antenna-selection algorithms and their

performance in terms of the system total throughput. It was shown that the maximum

system performance could be achieved by selecting a suitable subset of transmitting

antennas at the base station.

In this chapter, we investigate more closely the effect of signal correlation between

the antennas by using spatially correlated channel models. In particular, correlated

channel models such as the Kronecker channel model and the Weichselberger chan-

nel model are used to observe the system behaviour in different realistic environments

with the selection of the best transmit antennas at the base station.

In massive MIMO, channel modelling can give us a significant gain in terms of

spectral efficiency by exploiting the multi-path richness of the channel. The spectral

efficiency is an important parameter to analyse the throughput for a 5G system. Ini-

tial studies indicate a linear increase in the capacity of narrow-band MIMO systems

with the number of antennas [31], [20]. However, the large capacity gain depends on

the orthogonality of the sub-channels that constitute a MIMO system. To ensure the

orthogonality, in massive MIMO the number of transmit antennas at the BS is signif-

icantly larger than the number of users served. Once the channel of each user to/from

the BS is nearly orthogonal to that of any other user then applying linear precoding

at the transmitter can possibly give the best link capacity [122].

However, the most recent studies are based on an idealised channel model, repre-

senting a rich scattering environment, that assumes the independent and identically

distributed (i.i.d.) channel coefficients of a Rayleigh-fading channel model. Such

idealized channel models oversimplify the throughput problems. Thus, in a real
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propagation environment, it is shown in several experimental and analytical studies

that, in the presence of spatial correlation (SC) in MIMO channels [30], the system

throughput is expected to be less than that of i.i.d. channel models [31]. To simulate

the correlated MIMO channels it is important to quantify the effect of correlation on

system capacity.

The most popular channel model used to analyse throughput is the Kronecker

channel model, that captures correlation at both receiver and transmitter sides in a

real propagation environment [30]. The second correlated spatial model discussed in

this chapter is the Weichselberger channel model.

In this chapter we propose two semi-heuristic antenna-selection techniques to in-

vestigate the ergodic capacity of downlink massive MU-MIMO systems under a spa-

tially correlated channel model. The best link capacity is examined in spatially cor-

related channel models using antenna-selection algorithms that reduce the required

number of radio-frequency chains.

4.2 Related Work
Most of the existing work devoted to analysing the spectral efficiency of MIMO

system with respect to channel modelling is reported in [123–127]. In [123], a gen-

eralised analysis for the spectral efficiency in massive MIMO was performed ana-

lytically. The Kronecker channel model was reformulated by exploiting the Weich-

selbeger method to analyse the closed-form performance evaluation. In [124] the

asymptotic behaviour of the spectral efficiency of massive MIMO systems is anal-

ysed by using the Kronecker channel model. Kamaga et al. [124] develop a com-

prehensive analytical channel model accounting for channel correlation, channel po-

larisation, antenna cross-polarisation discrimination and environmental cross-polar
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Scattering Medium

User1(t)

User2(t)

UserN

y1(t)

y2(t)

yM

Base station (BS) Mobile station (MS)

M -antennas N-antennas

Figure 4.1: Two-antenna array in a scattering environment

coupling, path loss, shadowing effects, and multi-path fading, in a mathematically

tractable way. In [125], lower and upper bounds on the SNR are derived to inves-

tigate the impact of SC by using the Kronecker model with known transmitter and

receiver correlation matrices.

In [126, 127], to address the challenges related to antenna correlation, the system

performance was studied by means of bounds on spectral efficiency.

The ZF precoding scheme is applied under the assumption of equal transmit

power and unequal power allocation for each data stream using a water-filling al-

gorithm. The simulation results compare the proposed algorithms with exhaustive-

search and mean-power antenna-selection. These results verify that our novel pro-

posed antenna selection algorithm requires less complexity, achieves higher channel
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capacity and approaches the optimum method in its efficiency.

4.3 Stochastic MIMO Channel Model
A multi-user (MU) MIMO broadcast channel with a single BS that supports K users

is considered. Each user is equipped with one antenna as shown in Figure 4.1. The

BS uses Nt transmit antennas to transmit data to the K users such that Nt ≥ K. In

the BS each selected antenna is supported by a separate RF chain. The K×1 signal

vector received by a users under the assumption of narrow-band communication is

denoted by y and is given by

y = Hx+n, Eq. (4.1)

where H = [hi j]K×Nt is the complex channel matrix, hi j is the channel gain between

the jth transmit antenna and the ith receive antenna of the user. The transmitted signal

x is an Nt × 1 vector and n is a K× 1 vector denoting noise. This system model is

discussed in detail in Chapter 3, Section 3.3.

The channel vectors in rich scattering environments are correlated due to the spa-

tial correlation (SC) present among different users. This affects the system through-

put and the effect of fading correlation can be modelled by using the Kronecker

channel model and the Weichselberger channel model.

4.3.1 Kronecker Model

Kronecker channel modelling is widely used in wireless communication due to its

main advantage, its simplicity [128]. Consider a correlated channel modelled by

using the Kronecker model. In this model the channel matrix in (4.1) using the Kro-
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necker model can be expressed as

H =R
1
2
MSH̃R

1
2 H
BS , Eq. (4.2)

where the elements of the channel matrix H̃ are Zero Mean Circularly Symmetric

Complex Gaussian (ZMCSCG) random variables with independent identically dis-

tributed (i.i.d.) elements, i.e. H̃ ∈ CNr×Nt ∼ N(0,1). Further RMS and RBS are the

receive and transmit correlation matrices. The full covariance matrix in the Kro-

necker model is assumed as

R = RMS⊗RT
BS.

The eigenvalue decomposition of the transmit and receive covariance matrices are

RMS = UMSΛMSUH
MS and RBS = UBSΛBSUH

BS respectively and then

R = (UBS⊗UMS)(ΛBS⊗ΛMS)(UBS⊗UMS)
H .

The basic assumption in (4.2) is that the correlation between the transmitter and

receiver can be separated, which holds when the antenna spacing in the transmit-

ter and receiver is sufficiently smaller than the distance between the transmitter and

receiver.

4.3.2 Weichselberger Channel Model

The mathematical equation for a Weichselberger channel as discussed in section

2.3.2.3 can be written as

H = URxΩw�GUT
T x, Eq. (4.3)
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where URx and UT x are the received and transmit bases of eigenvectors. These eigen-

vectors are obtained from the singular-value decomposition of the received and trans-

mit correlation matrices RRx and RT x respectively. Here, G represents an i.i.d. ran-

dom matrix whose entries are zero mean with a complex-normal distribution, and Ω

is a power coupling matrix. The power coupling matrix specifies the average energy

coupled between an eigenvector at the receiver and transmitter. (�) is the element-

wise multiplication operator. The spatial correlation matrices RRx and RT x can be

written as

RT x = UT xΛT xUH
T x

RRx = URxΛRxUH
Rx,

The coupling matrix in a Weichselberger channel can be written as

Ωw =

(
λRx,1,λRx,2 . . .λRx,Nnx

)T(
λT x,1,λT x,2, . . . ,λT x,Nnx

)
Eq. (4.4)
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n2
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Figure 4.2: Downlink MIMO system

Referring to Figure 4.2, the correlation coefficient for a downlink MIMO system

for two different MS antennas n1 and n2 can be expressed as

ρ
MS
n1n2

= 〈αmn1,αmn2〉, m = 1,2, . . . ,M. Eq. (4.5)

Similarly the coefficient for two different BS antennas (uplink) m1 and m2 can be

written as

ρ
BS
m1m2

= 〈αm1n,αm2n〉, n = 1,2, . . . ,N. Eq. (4.6)

Using (4.5) and (4.6), spatial correlation (SC) matrices for receiver and transmitter
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can be defined as

RMS =



ρMS
11 ρMS

12 . . . ρMS
1N

ρMS
21 ρMS

22 . . . ρMS
2N

... ... . . . ...

ρMS
N1 ρMS

N2 . . . ρMS
NN


and

RBS =



ρBS
11 ρBS

12 . . . ρBS
1M

ρBS
21 ρBS

22 . . . ρBS
2M

... ... . . . ...

ρBS
M1 ρBS

M2 . . . ρBS
MM


.

The correlation coefficients ρMS
n1n2

and ρBS
m1m2

can be generated for given Power Az-

imuth Spectrum (PAS) models [87]. In this chapter we use the nth power of a cosine

function PAS model and a Uniform PAS model to analyse the system throughput.

4.3.3 nth power cosine PAS Model

The nth power of a cosine PAS p(φ) is defined as

p(φ) =
Q
n

cosn(φ),
−π

2
+φ◦ ≤ φ ≤ π

2
+φ◦

where n is an even integer related to the beamwidth, and Q is a factor used to nor-

malise p(φ), so that it integrates into a numerical value of one [61]. For simplification

n = 2 is used in simulations [87].
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Rxx(D,φ◦) =
∫

π/2

−π/2
cos(Dsinφ).

Q
n

cosn(φ −φ◦)dφ

Rxy(D,φ◦) =
∫

π/2

−π/2
sin(Dsinφ).

Q
n

cosn(φ −φ◦)dφ ,

where Rxx(D,φ◦) and Rxy(D,φ◦) represent correlations between the real parts of two

received signals, and between the real and imaginary parts, respectively [129].

4.3.4 Uniform PAS Model

This model is suited for modelling a rich scattering environment, such as an indoor

environment. It represents a situation with a uniform power distribution over the

specified range of angle and the constants Q are derived such that p(φ) fulfils the

requirements of a probability distribution function [129]:

∫
π

−π

p(φ) d(φ) =
n

∑
k=1

∫
φ◦,k+∆φk

φ◦,k−∆φk

Qk dφ = 1,

which leads to 2∑
n
k=1 Qk∆φk = 1 [129] and ∆φ =

√
3σA [32]. Here σA represents

azimuth spread and is defined by the central moment of PAS, that is

σA =

√(∫
(φ −φ◦)2 PA(φ) dφ

)
,

where φ◦ is the mean DOA i.e., φ◦ =
∫
(φPA(φ) dφ) and PA(φ) =

∫
(P(φ ,τ)dτ) [32].
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Figure 4.3: Mean sum-capacity versus P (Ns = 10) using Kronecker channel model

The SC function can be written as

Rxx(D,φ◦) = J◦(D)+
4Q∑

∞
m=1 J2m(D)cos(2mφ◦)sin(2m.∆φ◦)

2m
,

Rxy(D) =
4Q∑

∞
m=1 J2m+1(D,φ◦)sin((2m+1)φ◦)sin((2m+1).∆φ◦)

2m+1

where Jm(·) is the first-kind mth-order Bessel function.

The theory of central and non-central PCA is used as discussed in Chapter 3 ,

Section 3.4. The formalization of antenna-selection problem is discussed in detail in

Chapter 3, Section 3.5. However, the components of channel matrix used in Chapter

4 is stochastically modelled by using Weichselberger and Kronecker channel model

as discussed in the relative sections.
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Figure 4.4: Mean sum-capacity versus P (Ns = 6) using Kronecker channel model

4.4 Simulation Results and Discussion
This section first presents the simulation results using equal power allocation in a

Kronecker-based channel model. The simulated results in this chapter are extended

by using the Weichselberger channel model that uses both the equal power allocation

and the water-filling power allocation algorithms.

The channel matrix H was generated by using (4.2). In Figures 4.3 and 4.4 , Nt =

12 and K = 6 were used. An ensemble of 5000 channel matrices was simulated

and the mean sum capacity versus the available normalised transmit power (P) with

different numbers of Ns selected antennas is plotted. An equal power allocation is

used to compute the mean sum capacity for different total power values by setting

the weights qk = 1 in the sum capacity formula to normalise the units. The mean sum
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Figure 4.5: Mean sum capacity versus Ns using Kronecker channel model

capacity versus total power for Ns = 10,6 is shown in Figures 4.3 and 4.4 respectively.

These figures show the throughput performance when no antennas were removed

and antenna-selection methods using LDAS, PCA-based selection with NPCA = 1

(PCA(1)), PCA-based selection with NPCA = 3 (PCA(N)). The mean sum capacity

using exhaustive search is also shown for Ns = 10. The plots show that the LDAS,

PCA(1) and PCA(N) selection techniques performed better than mean selection, and

the difference between the selection methods increases as Ns is reduced (results for

Ns = 10 and Ns = 6 are shown). PCA(N) and PCA(1) are comparable with PCA(N),

being slightly better, however both are better than LDAS.

PhD Thesis, School of Engineering, Macquarie University 83



CHAPTER 4. SPATIAL STRUCTURE OF MULTIPLE ANTENNA RADIO CHANNELS

0 2 4 6

d/

0

0.2

0.4

0.6

0.8

1

|R
x
x
|

AS = 0

AS = 45

AS = 60

AS = 90

Figure 4.6: Spatial correlation coefficient using Kronecker channel model

The impact of varying Ns is shown in Figure 4.5. In the simulations, for NPCA = 3

and P = 10000, the achievable mean sum capacity is approximately 8 using LDAS

or PCA(N), i.e. Ns = 8 RF chains are required. However, PCA(1) uses Ns = 9 and

the mean-selection method uses Ns = 10 RF chains to achieve the same sum capacity.

The PAS distribution and the spatial correlation (SC) coefficient for the Uniform PAS

model are shown in Figure 4.6. For the same antenna spacing the SC coefficients

decrease as AS increases. The SC coefficients become nearly zero at a certain level,

for example, it can be seen that they become nearly zero at the integer multiples of

0.5λ , 0.7λ , 0.8λ and 1.7λ , when AS is 0◦, 45◦, 60◦ and 90◦ respectively.
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Figure 4.7: Mean sum-capacity versus P (Ns = 10) using Weichselberger channel model

In the second part of the simulations, the channel matrix H was generated by

using (4.3). In Figures 4.7and 4.8, Nt = 12 and K = 6 were used. The mean sum

capacity versus the available normalised transmit power (P) with different numbers

Ns of selected antennas is plotted using the Monte Carlo method. An equal-power

allocation and a water-filling algorithm is used to compute the mean sum capacity for

different total power values. These figures show the throughput performance when no

antennas were removed and the antenna-selection methods used LDAS, PCA-based

selection with NPCA = 1 (PCA(1)), PCA-based selection with NPCA = 3 (PCA(N)).

The LDAS, PCA(1) and PCA(N) selection techniques perform better than mean se-

lection, and the difference between the selection methods increases as Ns is reduced

(results for Ns = 10 and Ns = 6 are shown). PCA(N) and PCA(1) are comparable

with PCA(N), being slightly better, however both are better than LDAS.

PhD Thesis, School of Engineering, Macquarie University 85



CHAPTER 4. SPATIAL STRUCTURE OF MULTIPLE ANTENNA RADIO CHANNELS

0 2000 4000 6000 8000 10000
Normalised power

0

2

4

6

8

10

12
Water Filling Power Allocation
All antennas 
Exhaustive search 
Mean selection 
Proposed LDAS 
Proposed PCA(1) 
Proposed PCA(N)

M
ea

n 
su

m
 -c

ap
ac

ity
 (

bp
s/

H
z)

Figure 4.8: Mean sum-capacity versus P (Ns = 10) using Weichselberger channel model

Figures 4.9 and 4.10 show the difference made by the utilisation of expensive radio-

frequency chains in the equal-power and water-filling allocation power algorithms.

For instance, using equal-power allocation the proposed methods of LDAS or PCA(N),

Ns = 8 RF chains are required to obtain the throughput of approximately 8, however,

the other techniques required Ns = 9 and Ns = 10 to achieve the same sum-capacity.

With the water-filling power allocation the trend is the same but the mean sum-rate

is more than with equal power allocation.
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Figure 4.9: Number of RF chains using Weichselberger channel model
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Figure 4.10: Number of RF chains using Weichselberger channel model
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Figure 4.11: Mean sum-capacity difference (bps/Hz) Versys Power P = 10000 (Weichselberger
channel model Vs Kronecker channel model)
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Figure 4.12: Mean sum-capacity difference (bps/Hz) Vs Power P= 4000 (Weichselberger chan-
nel model Vs Kronecker channel model)
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In Figure 4.11 and 4.12, the comparison of sum-capacity using Weichselberger

channel model and Kronecker channel model with normalized power P = 10000 and

P = 4000 is plotted. An ensemble of 5000 matrices were used and a difference of

sum-capacity is shown in mean selection, LDAS, PCA(1) and PCA(N). An exhaus-

tive search algorithm is shown in Figure 4.11. It can be predicted that Weichselberger

model perform better than Kronecker channel model in this case.
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4.5 Summary of the Chapter
Antenna selection in MU-MIMO broadcast at BSs is an effective technique to use

RF units efficiently. In this chapter, we present two methods of antenna selection

to reduce the required number of RF chains. The proposed techniques are based on

non-central PCA (LDAS and PCA-based antenna selection) which uses Kronecker

and Weichselberger channel modelling. It is also shown how the mean sum capacity

varies with different channel conditions and which antenna-selection schemes are

preferable for those conditions.
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Technical skill is mastery of complexity, while creativity is

mastery of simplicity.

Erik Christopher Zeeman (1925 - 2016)

CHAPTER 5

DIMENSIONALITY REDUCTION OF

LARGE MATRICES

In this chapter Section 5.1 briefly explains the importance of reducing matrix size and

Section 5.2 gives a brief introduction to linear precoding techniques.The analysis of

channel complexity reduction using PCA is explored in Section 5.3. The computa-

tional complexity in terms of FLOPs is presented in Section 5.4. Simulation results

are discussed in Section 5.5 and Section 5.6 concludes this chapter.
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5.1 Introduction
In Chapters 3 and 4 we extensively discussed the selection of the best transmitting

antennas at the base station to maximise the sum-capacity. The selection process re-

duces the hardware system complexity in uncorrelated and spatially correlated chan-

nel models.

In this chapter, we present the technique that reduces the dimensions of large ma-

trices using the Floating Point Operations (FLOPS) method, and the sum-capacity is

evaluated with the down-sized matrix. The conventional methods of ZF and MMSE

precoding schemes are used to examine the throughput with a huge matrix size. How-

ever, with a negligible loss of sum rate, the proposed principal component analysis

technique can reduce the extensive-computations of large matrices compared with

the computations used in conventional techniques.

In massive MIMO, when the number of transmit antennas at the base station is

significantly larger than the number of users served, the channel of each user to/from

the BS is nearly orthogonal to that of any other user, and by using linear precoding

at the transmitter we can possibly approach the best link capacity [122]. The authors

in [130] derive an approximation of the achievable sum rates with different linear

precoding techniques in massive MIMO; when the number of antennas grows with-

out bound that is a system with an unlimited number of BS antennas. Therefore,

linear precoding of the transmitted signal of an antenna array in massive MIMO is

often said to direct a signal from the antenna array towards one or more receivers.

The problem here is the computation of large precoding matrices in massive

MIMO, which becomes a bottleneck in the transmission of data. A possible solution

is in the reduction of the complexity of a channel, which enables the system to have
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a reduced computational demand [131]. There are numerous complexity-reduction

techniques as discussed in Chapter 2.

In this chapter, we study a complexity-reduction scheme in a massive MISO sys-

tem using an algorithm of PCA. The main motivation of using PCA in this work is

its simplicity and its potential to achieve a balance between reduced complexity and

loss of information. The reduction in the complexity of a channel can be interpreted

in terms of lossless and lossy complexity reduction. In lossless complexity reduction,

redundant bits and information found to be less relevant are discarded once they have

gone through the reduction process. Part of the information is lost permanently in

the lossy complexity reduction method, but, it has the potential to achieve a better

reduction ratio (RR) to benefit a wide range of applications, with a trade-off between

reducing complexity and losing information [131].

The critical parameter that needs to be set in PCA analysis for reducing channel

complexity with a negligible loss of sum rate is the number of singular values, i.e.

Principal Components (PCs). Typically these PCs have an exponentially decaying

trend, meaning that the ordered PCs decrease rapidly and only a few PCs are re-

quired to closely approach the sum rate with much reduced complexity.

The key feature of this novel technique is to find a new subspace using channel

statistics and project it into a subspace which is uncorrelated. Furthermore, the re-

duced channel then uses the ZF precoding scheme, under the assumption of equal

transmit power for individual data streams, to observe system performance.

Consider a downlink MU-MIMO wireless communication system employing a

single BS that supports K users each equipped with one antenna (Figure 5.1). The

BS has Nt transmit antennas that are used to transmit data to the K users such that
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Nt ≥ K. The downlink received signal yk at user k is determined by

yk = hkx+nk, k = 1, . . . ,K, Eq. (5.1)

where hk ∈ C1×Nt represents the MISO channel, x ∈ CNt×1 is the transmitted signal

and {nk} are i.i.d. complex Gaussian noise terms with unit variance. The power

constraint for the input signal is E[xHx] ≤ P, which implies that the total transmit

power is not dependent on the number of transmit antennas. We assume that the

transmit antennas and users are spaced sufficiently far apart such that the entries of

hk, for k = 1, . . . ,K can be modelled as a set of i.i.d. zero mean circularly symmetric

complex Gaussian random variables. These entries have unit variance, that is hk, k =

1, . . . ,K is distributed as CN(0,I), where I is the identity matrix.

5.2 Linear Precoding
Let us consider the overall channel matrix H ∈ CK×NtN(0,1). Assuming a subset

of k users I= { j1, . . . , jk} ⊂ {1, . . . ,K} stacking on top of each other then the chan-

nel matrix HI can be written as HI = [h1, . . . ,hK], where hi ∈ C1×Nt(i = 1, . . . ,K)

are the rows of matrix HI and represent the ith user channel. In order to keep the

interference from other users to a minimum and to serve multiple users simultane-

ously, the transmitted signal is precoded by the BS under the assumption of complete

knowledge of channel state information at the transmitter side (CSIT). Let a vector

u = (u1, . . . ,uk)
T of size K× 1 be the user data to be transmitted, and it is assumed

to be precoded by the matrix G ∈CNt×K at the BS defined as G = [g1, . . . ,gK], where

gi ∈ CNT×1 (i = 1, . . . ,K) are the column vectors of the precoding matrix G, so that
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Figure 5.1: The MU-MISO System Model

x = Gu. The received signal yk at user k is given by

yk = hkgkuk +
K

∑
j=1, j 6=k

hkg ju j +nk. Eq. (5.2)
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5.2.1 Zero Forcing Precoding

In this technique precoding vectors are designed to mitigate co-channel interference

(CCI) arising from other users [132]. Consider a scenario of a downlink MU-MIMO

system when the BS is equipped with multiple antennas and each user terminal is

equipped with a single antenna for a simple receiver. In this case the results in [18]

show that if multiple users are served simultaneously then, by using the spatial-

division multiple-access (SDMA) technique at the BS, the sum capacity will be en-

hanced. However the SDMA technique causes a problem of multiuser interference

which can be mitigated by using the precoding scheme. Consider a case when the

number of transmit antennas is greater than the number of users, i.e. Nt ≥ K. Let

the Moore-Penrose inverse of HZF = HH
I (HIHH

I )
−1. Denote hz f k, k = 1, . . . ,K as

the kth column of the Moore-Penrose inverse of HZF . Each column of the precod-

ing matrix is obtained by gz f i = hz f i/||hz f i|| and the complete precoding matrix is

given as GZF = [gz f 1, . . . ,gz f K], where gz f i ∈ CNt×1(i = 1, . . . ,K) are the normalized

values of the corresponding hz f i column vector. The ergodic sum capacity under the

assumption of equal power allocation is written as

RZF = Eh

{ K

∑
k=1

log2

(
1+

SNR
Nt
‖hkgz f k‖2

)}
. Eq. (5.3)

5.2.2 Minimum Mean Square Error Precoding

In a point-to-point MISO system, ZF precoding enables interference-free communi-

cation for all individual users. However, the channel gains ||hk|| are small for those

channels which are in bad condition. To compensate for this bad channel condition

a large power is needed. Hence the MMSE precoder introduces a regularisation fac-
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tor β I in channel inversion, where β is a design parameter. This design parameter

needs to be optimised to achieve a maximum sum-capacity. The optimal choice of

β is Nt
SNR , which depends on the design problem [18]. Similarly to a well-known

MMSE receiver, the MMSE procedure is applied at the transmitter side [133] by

assuming the channel state information to be known at the BS. The MMSE precod-

ing matrix GMMSE can be defined as GMMSE = [gmmse1, . . . ,gmmseK]. The precoding

vectors of the GMMSE matrix can be calculated as, gmmsei = hmmsei/‖hmmsei‖, where

wmmsei ∈ CNt×1 (i = 1, . . . , K) represents the MMSE precoding vector of the ith

user. The precoding vectors of the GMMSE matrix can be calculated as HMMSE =

HH
I ((HIHH

I ) + β I)−1 = [hmmse1, . . . ,hmmseK]. The ergodic sum-rate for MMSE is

written as

RMMSE = Eh


K

∑
k=1

log2

1+
‖hkgmmsek‖2

K
∑

j=1, j 6=k
‖hkgmmse j‖2 + Nt

SNR


 . Eq. (5.4)

5.3 Channel Complexity Reduction via PCA
Initially, assume that I = {N1,N2, . . . ,Nt} are the indices of each column vector in

HIK×Ns
. The objective is to reduce the complexity of a channel in such a way that it

results in the least reduction in sum capacity. Suppose that we have n observations

on p variables, then we have a total of (n× p) measurements. The matrix whose

elements in the Nth
r row and Nth

t column are transmitted through the communications

PhD Thesis, School of Engineering, Macquarie University 97



CHAPTER 5. DIMENSIONALITY REDUCTION OF LARGE MATRICES

Number of singular values

Si
ng

ul
ar

 v
al

ue
s

Figure 5.2: Typical decay of the ordered PCs

system to serve as inputs for a given application can be written as

ĤI =

U
se

rs
(S

am
pl

es
) 

Random Variables︷ ︸︸ ︷

ĥI11 ĥI12 . . . ĥINt

ĥI21 ĥI21 . . . ĥI2Nt

... ... . . . ...

ĥINr1 ĥINr2 . . . . . . ĥINrNt


=



ŵ1

ŵ2

...

ŵk


.

In order to centralise the data we take the sample mean of each column vector

in I, resulting in a row vector. This sample mean row vector is subtracted from

each row in the matrix. The zero mean sample covariance matrix is obtained by

using S = 1
n−1ŵŵT ,. Using Eigen Value Decomposition (EVD), this problem can be
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expressed in term of eigenvalues. To begin, suppose that the EVD of HI is given by

HI = UIΛIVI, Eq. (5.5)

where ΛI = [yi j] is a K ×Nt matrix with singular values λi on the diagonal (i.e.

yii = λi i = 1, . . . ,K) and yi j are zero elsewhere, UI= ui j is a K×K unitary matrix and

VI is an Nt×Nt unitary matrix. The eigenvalues are assumed to be sorted in decreas-

ing order : λ1 ≥ . . . ≥ λk. The subset of ΛI is selected which consists of those PCs

that make the largest contributions to the eigenvalues, that is Is = {N1,N2, . . . ,Ns}

are the selected indices in ĤIsK×Ns, where Ns << Nt .

In PCA analysis the significance of the PCs decreases rapidly as shown in Fig-

ure 5.2. Small PCs mainly represent noise and data dependencies, therefore only

a few PCs are needed for a good approximation, meaning that only a few singu-

lar values are considered, reducing the channel complexity. The reduction in the

complexity achieved by using PCA can be measured in the reduction ratio (RR). It

is defined as the ratio of the size of the full-dimensional channel to the size of the

lower-dimensional channel. The channel complexity reduction algorithm performed

at the transmitting end can be summarised by Algorithm 1.
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Algorithm 1: Complexity reduction using PCA
Input : HK×Nt , Nt , K, Ns;
Output: ĤIsK×Ns, where Ns << Nt ;
Initialisation: Let I= {N1,N2, . . . ,Nt}, be the indices of each column vectors in the

matrix HK×Nt ;
1 if (Nt > K) then
2 for each of the column indices of I do

a) Compute the mean of each column vector in the matrix I,
ˆ̃hk =

1
n ∑

n
j=1 ĥ jk,

yields ˆ̃h = [
ˆ̃h1, . . . ,

ˆ̃hNt ]
T ;

b) Find a new origin by ĥ jk← (ĥ jk−
ˆ̃hk);

c) Write row vector as ĥ = [ĥ1, . . . , ĥNt ]
T ;

d) Compute eigenvalue matrix by S = 1
n−1 ĥĥT ;

e) Compute Eigenvalue Decomposition of S = UΛV−1,

yields eigenvalues and corresponding eigenvectors of S

f) Sort eigenvalues of S such that Λ = {λk > λk−1 >,. . . ,λ1}

g) Sort eigenvectors in order of eigenvalues of S in descending order.

h) Select the largest contribution to the eigenvalues, that is Is = {N1,N2, . . . ,Ns}.

3 end
4 Result Is = {N1,N2, . . . ,Ns} are the selected indices of ĤIK×Ns

, where Ns << Nt . Now
calculate the sum rate with ZF by using ĤIs .

5 end

5.4 Computational Complexity
To design an efficient, low-complexity algorithm in signal-processing tasks, a de-

tailed analysis of the number of required floating-point operations (FLOPs) is often

inevitable. In a real arithmetic case, multiplication followed by an addition needs 2

FLOPs. However, with complex-valued quantities, 8 FLOPs are needed when a mul-

tiplication is followed by an addition. Therefore, the complexity in complex matrix
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multiplication is 4 times that of its real counterpart. The computational complexity

of conventional ZF, MMSE and the proposed PCA algorithms are analysed in terms

of FLOPs. The required numbers of FLOPs of these techniques are simulated un-

der different system dimensions, and numerical values are shown later in Table 5.1.

The required number of FLOPs for ZF and MMSE is equal to 16n3 + 3n2− 2n and

16n3 +3n2 respectively [134, 135], where n represents the system dimension, which

is defined as the number of rows and columns in a matrix. The computational com-

plexity of PCA – the complexity reduction technique– is determined by the number

of datapoints/PCs D, and the system dimension n is given by (D+ n2)n [136]. In

addition, in case of ZF and MMSE, full dimensions of n is used and in a proposed

technique of PCA half number of dimensions are utilized to produce the results.
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Figure 5.3: Sum rate simulations using PCA
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5.5 Simulation Results and Discussion
For the simulation results, we use a Rayleigh-fading channel whose characteristics

may be found in [137]. The simulations are implemented in MATLAB by using

Monte-Carlo method, where 5000 realisation of channel matrix are taken to demon-

strate the throughput performance of the proposed algorithm with multiple settings

of the system dimensions. Four different scenarios are discussed, as shown in Figure

5.3. A system with a large number of datasets/variables is considered and the channel

complexity is reduced using PCA. A reduction ratio of 0.5 in each case is achieved

by using RR = Ns
Nt

. For instance, consider a case when K = 16, Nt = 64 and Ns = 32.

The conventional precoding techniques (ZF and MMSE) use all the available data

sets in channel I = {N1,N2, . . . ,Nt} to compute the sum rate. But, in our proposed

technique, out of all the available data sets we only use Is = {N1,N2, . . . ,Ns} inputs,

meaning that instead of using the 64 available variables only 32 are used to calcu-

late the throughput of the system in this particular case. Therefore, with a negligible

loss of sum capacity (Figure 5.3) the channel complexity is reduced significantly as

shown in Figure 5.4. This figure shows that the proposed PCA algorithm involves a

lower channel complexity than the conventional ZF and MMSE algorithms. It can be

noticed that, with the increase of the system dimensions (n), the channel complex-

ity reduced significantly. Similarly, in the other three cases of system dimensions

illustrated in Figure 5.3, half of the available random variables are used to calculate

the sum rate for multiple users, and the analysis of the required number of FLOPs is

shown in Figure 5.4. In a nutshell, by using half of the available variables in a data

set, PCA has approximately the same throughput but with much less computational

complexity than the conventional techniques.
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Figure 5.4: Computational complexity in FLOPs for massive MU-MISO system

The numerical values of computational complexity in terms of FLOPs for dif-

ferent system settings are shown in Table 5.1. It is clear that ZF and MMSE show

high complexity in different system dimensions, and the computational complexity

of PCA is much less by (86%) than with the conventional techniques. The numer-

ical values of the system capacity at an SNR of 10 dB show a negligible loss in

throughput as compared to the traditional techniques. The computational time of

the channel using conventional techniques and PCA are also analysed and shown in

Table 5.2. Conventional techniques utilise all the available variables in a data set

(I = {1,2, . . . ,Nt}) to compute the sum rate, with a computational time depicted in

Table 5.2. However, PCA uses Is = {1,2, . . . ,Ns} as the data set of a channel, to
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Figure 5.5: Decreasing-variance trend of PCA-based channel matrix ĤIs

calculate the throughput of the system with a computational time which is close to

that of the conventional techniques.

The decreasing variance, that is the typical decay of the ordered PCs of a reduced

PCA-based channel matrix, is shown in Figure 5.5. It indicates the use of the num-

ber of non-zero PCs which are required to reduce the channel complexity efficiently.

In Figure 5.6 the exponential decay of the largest eigenvalues is plotted. It follows

a conventional decay of PCs as shown in Figure 5.2. The exponential decay can be

interpreted as determining which linear combination of the original random variables

explains most of the variability in the data set.
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Figure 5.6: Exponential decay of the largest PCs

The plots in Figures 5.7 and 5.8 were simulated using the Kronecker-based chan-

nel model as shown in (4.2). Once the channel matrices were simulated, the lin-

ear precoding techniques such as ZF and MMSE were implemented to examine

the system throughput. These techniques uses the full matrix dimensions, i.e. I =

{1,2, . . . ,Nt} are utilised to compute the sum-rate. However, by using the analysis of

PCA, out of all the available data sets we only use Is = {1,2, . . . ,Ns}. Therefore, it

reduces the computational complexity of the system in a correlated environment.
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5.6 Summary of the Chapter
In this chapter, a novel PCA-based channel complexity reduction scheme for down-

link massive MISO systems is presented. The results show that a channel using PCA

has approximately the same throughput as one using the ZF and MMSE algorithms,

but the proposed method has much reduced complexity both in time and by (86%)

in FLOPS. A reduction ratio of 0.5 is achieved in each case with a negligible loss in

sum capacity.
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Figure 5.7: (a) Sum-capacity simulations using PCA with 16×32 matrix dimension
(b) Sum-capacity simulations using PCA with 32×64 matrix dimension
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Figure 5.8: (a) Sum-capacity simulations using PCA with 64×128 matrix dimension
(b) Sum-capacity simulations using PCA with 128×256 matrix dimension
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Do not judge me by my successes, judge me by how many times I fell

down and got back up again.

Nelson Mandela (1918-2013)

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
This chapter gives a brief summary of the thesis in Section 6.1 and then discusses

future research work based on the results of this dissertation in Section 6.2.
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This thesis explored the problem of antenna selection, signal modelling in the

presence of correlation and dimensionality reduction of large matrices in massive

MIMO broadcast wireless channels. The results in this work were presented mainly

in four parts: a) novel antenna-selection algorithms, b) application of novel antenna

selection algorithms to spatially correlated channels, c) large matrix computations

were reduced using a dimensionality-reduction technique, d) analysis of matrix di-

mension reduction for spatially correlated channel models.

Antenna selection is a promising low-complexity solution that solves the press-

ing problem of the increased hardware and signal-processing complexity of MIMO

systems. Optimal antenna selection in massive MIMO is required to minimise hard-

ware complexity, i.e. an efficient use of radio-frequency units. Current antenna-

selection algorithms, were investigated and, using PCA, two semi-heuristic antenna-

selection algorithms namely non-central PCA and LDAS, were proposed. Using an-

alytic methods PCA eigenvalues were decomposed into two components: the mean-

channel-gain component and the channel correlation component. Using simulation

we show that the proposed antenna-selection methods perform much better using

mean-channel-gain selection and show how antenna selection depends on the chan-

nel matrix structure. It was shown that these algorithms perform reasonably well as

compared to other antenna-selection algorithms, while having less hardware com-

plexity. The simulation results show how the mean sum-capacity varied with dif-

ferent channel conditions, and which antenna selection schemes were preferred for

those conditions. The performance of these algorithms was analysed with linear pre-

coding at the base station, and simulated results showed that the proposed algorithms

reduced the required number of radio-frequency units without reducing their effec-

tiveness.
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Signal modelling in a MIMO system architecture using different channel models

was employed. The most common analytical channel models used were the Kro-

necker and the Weichselberger models. The Kronecker channel model approximates

the correlation matrix at both ends of the link using Power Azimuth Spectrum (PAS)

models. The correlation matrices in this model were assumed to be separable at both

the transmitter and receiver. In contrast, a slightly more complex model, known as the

Weichselberger channel model, was also discussed. This model uses a spatial struc-

ture to determine the Direction of Departure (DOD) and Direction of Arrival (DOA)

of the receive and transmit correlation matrices. These correlation matrices were

approximated at receiver and transmitter by using PAS models, and these matrices

overcome the assumptions of the Kronecker model. However, this model requires

the additional knowledge of the power coupling matrix. Once the MIMO chan-

nel matrix was modelled in different realistic environments, the proposed antenna-

selection algorithms were implemented and the system throughput was analysed. It

was clear that the system capacity was significantly higher in ideal scenarios i.e. us-

ing a Rayleigh-fading channel model. However, the performance of the proposed

algorithms in approximated real channel matrices was optimal and less complex than

the exhaustive-search antenna-selection algorithms.

To reduce the matrix size, the analysis techniques of PCA were used. The through-

put of the system with full dimensions and of a system with optimal dimensions were

evaluated in an uncorrelated channel model. The FLOP technique was then imple-

mented to calculate the numerical value of the number of operations involved in

computations. It was shown by using the FLOP method that the number of com-

putations while sacrificing negligible sum capacity. Linear precoding was used at

the transmitter side and the performance of PCA was compared with conventional
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full-dimensional systems. The numerical results show that a PCA dimensionality-

reduction technique at 10 dB SNR has approximately the same throughput as one

using the ZF and MMSE algorithms. However, ZF and MMSE algorithms used a

matrix dimension as H16×64 and the proposed algorithm used a matrix dimension

as ĤIs16×32, to obtain the throughput at 10 dB. Therefore, the proposed method has

much reduced complexity in both time and by 86% in FLOPS. A reduction ratio of

0.5 was achieved in each case with a negligible loss. In addition, the signal corre-

lations were modelled using spatially correlated channel models, and the correlation

matrices were approximated using PAS models. The sum rates were evaluated in

different realistic environments in a full dimensional system and a system with the

optimal dimension. The FLOPs technique was then implemented to compute the

system dimensions in both scenarios. It was shown that there was much less com-

putational complexity of the system with optimal dimensions. However, this comes

with a negligible throughput loss in the sum rate. For instance, the numerical value

of the throughput of a system at an SNR of 10 dB was shown to approach the sum

capacity of a full-dimensional system.

6.2 Future Directions
The results presented in this thesis lead to many interesting open questions related to

MIMO broadcast wireless channels. Some suggested directions for future research

are as follows.

Firstly, a possible extension of the work presented in this dissertation is on time-

varying wireless channels. Most of the current antenna-selection algorithms assume

a quasi-stationary wireless channel. The interesting question to ask is how antenna-
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selection algorithms behave when the channel characteristics vary with time. In this

work, antenna-selection algorithms use perfect channel-state information available

at the transmitter for the selection process. However, in time-varying channels this

channel-state information becomes quickly outdated. Also there are delays involved

in sending this channel information back to the base station. Therefore, it is inter-

esting to investigate the deficiencies in sum-capacity due to imperfect and outdated

channel-state information at the base station.

Secondly, the analytical channel models for MIMO systems are developed. For

instance, the Rayleigh model (i.i.d.), spatially correlated channel models (the Kro-

necker model, the Weichselberger model) are explored and the system performance

is analysed. However, the temporal correlation of channel vectors is not examined.

The question to ask is how antenna-selection algorithms behave in the presence of

temporal-correlation. Thus, to evaluate the shortcomings in sum-capacity to analyse

the antenna-selection algorithm in time-varying channels with imperfect channel-

state information at the base station should be addressed.

PhD Thesis, School of Engineering, Macquarie University 115



116



REFERENCES
[1] Qualcom, “The 100 x data challenge,,” January 2017. [Online]. Available:

https://www.qualcomm.com/solutions/automotive/drive-data-platform

[2] Ericson, “5g radio access - research and vision,” June 2013. [Online].

Available: https://www.ericsson.com/assets/local/publications/white-papers/

wp-5g.pdf

[3] Cisco, “Cisco visual networking index: Global mobile data

traffic forcast update, 2016-2021,” June 2017. [Online]. Avail-

able: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/mobile-white-paper-c11-520862.pdf

[4] G. J. Foschini, “Layered space-time architecture for wireless communication

in a fading environment when using multi-element antennas,” Bell Labs Tech-

nical Journal, vol. 1, no. 2, pp. 41–59, 1996.

[5] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a

fading environment when using multiple antennas,” Wireless Personal Com-

munications, vol. 6, no. 3, pp. 311–335, 1998.

[6] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans-

actions on ecommunications, vol. 10, pp. 585–595, 1999.

[7] J. H. Winters, “On the capacity of radio communications systems with di-

versity in rayleigh fading environments,” IEEE Journal of Selected Areas in

Communications, vol. 5, no. 5, pp. 871–878, June 1987.

117

https://www.qualcomm.com/solutions/automotive/drive-data-platform
https://www.ericsson.com/assets/local/publications/white-papers/wp-5g.pdf
https://www.ericsson.com/assets/local/publications/white-papers/wp-5g.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf


REFERENCES

[8] J. Lee, Y. Kim, Y. Kwak, J. Zhang, A. Papasakellariou, T. Novlan, C. Sun,

and Y. Li, “LTE-advanced in 3gpp Rel -13/14: an evolution toward 5g,” IEEE

Communications Magazine, vol. 54, no. 3, pp. 36–42, Mar. 2016.

[9] L. Liu, R. Chen, S. Geirhofer, K. Sayana, Z. Shi, and Y. Zhou, “Downlink

MIMO in LTE-advanced: SU-MIMO vs. MU-MIMO,” IEEE Communications

Magazine, vol. 50, no. 2, pp. 140–147, February 2012.

[10] P. H. Kuo, “New physical layer features of 3gpp LTE release-13 [Industry

Perspectives],” IEEE Wireless Communications, vol. 22, no. 4, pp. 4–5, Aug.

2015.

[11] G.Caire and S. S. Shlomo, “On achievable rates in a multi-antenna broadcast

downlink,” 2000.

[12] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Com-

munications. Cambridge University Press, May 2003.

[13] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits

of MIMO channels,” IEEE Journal on Selected Areas in Communications,

vol. 21, no. 5, pp. 684–702, June 2003.

[14] G. Caire and S. Shamai, “On the achievable trhoughput of a multiantenna gaus-

sian broadcast channel,” IEEE Transactions on Information Theory, vol. 49,

no. 7, pp. 1691–1706, June 2003.

[15] M. Costa, “Writing on dirty paper (Corresp.),” IEEE Transactions on Informa-

tion Theory, vol. 29, no. 3, pp. 439–441, May 1983.

PhD Thesis, School of Engineering, Macquarie University 118



REFERENCES

[16] Q. Spencer, C. Peel, A. Swindlehurst, and M. Haardt, “An introduction to

multiuser mimo downlink,” IEEE Communications Magazine, vol. 42, pp. 60–

67, October 2004.

[17] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive mimo for

next generation wireless systems,” IEEE Communications Magazine, vol. 52,

no. 2, pp. 186–195, February 2013.

[18] F. Kaltenberger, M. Kountouris, L. Cardoso, R. Knopp, and D. Gesbert, “Ca-

pacity of linear multi-user MIMO precoding schemes with measured channel

data,” in 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless

Communications, July 2008, pp. 580–584.

[19] Y. Gao, H. Vinck, and T. Kaiser, “Massive mimo antenna selection: switch-

ing architectures, capacity bounds, and optimal antenna selection algorithms,”

IEEE Transactions On Signal Processing, vol. 66, no. 5, pp. 1346–1360,

March 2018.

[20] T. L. Marzeeta, “Noncooperative cellular wireless with unlimited number

of base station antennas,” IEEE Transactions on Wireless Communications,,

vol. 9, no. 11, pp. 3590–3600, November 2010.

[21] F. Rusek, D. Persson, L. B. K, E. G. Larsson, T. L. Marzeeta, O. Edfors, and

F. Tufvesson, “Scalling up mimo: Opportunities and challenges with very large

arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40–60, January

2013.

[22] V. Venkateswaran and A. J. van der Veen, “Analog Beamforming in MIMO

Communications With Phase Shift Networks and Online Channel Estimation,”

PhD Thesis, School of Engineering, Macquarie University 119



REFERENCES

IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4131–4143, Aug.

2010.

[23] X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based RF-

baseband codesign for MIMO antenna selection,” IEEE Transactions on Sig-

nal Processing, vol. 53, no. 11, pp. 4091–4103, Nov. 2005.

[24] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,” IEEE

Microwave Magazine, vol. 5, no. 1, pp. 46–56, March 2004.

[25] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,” IEEE

Communications Magazine, vol. 42, no. 10, pp. 68–73, October 2004.

[26] M. L. B, J. Choi, J. Bang, and B.-C. Kang, “An energy efficient antenna se-

lection for large scale green mimo systems,” in IEEE international symposium

Circuits and System (ISCAS). IEEE, May 2013, pp. 950–953.

[27] X. Gao, O. Edfors, J. liu, and F. Tufvesson, “Antenna selection in mea-

sured massive mimo channels using convex optimisation,” IEEE GLOBECOM

Workshop on Emerging Technologies for LTE Advanced and Beyond-4G, pp.

129–134, 2013.

[28] X. Cheng and Y. He, “Geometrical model for massive mimo systems,” IEEE

Vehicular Technology Conference, pp. 1–6, 2017.

[29] K. Liu, V. Raghavan, and A. M. Sayeed, “Capacity scaling and spectral effi-

ciency in wide-band correlated MIMO channels,” IEEE Transactions on Infor-

mation Theory, vol. 49, no. 10, pp. 2504–2526, October 2003.

[30] Q. U. A. Nadeem, A. Kammoun, M. Debbah, and M. S. Alouini, “A General-

ized Spatial Correlation Model for 3d MIMO Channels Based on the Fourier
PhD Thesis, School of Engineering, Macquarie University 120



REFERENCES

Coefficients of Power Spectrums,” IEEE Transactions on Signal Processing,

vol. 63, no. 14, pp. 3671–3686, July 2015.

[31] M. T. A. Rana, R. Vesilo, and I. B. Collings, “Antenna selection in massive

MIMO using non-central Principal Component Analysis,” in 2016 26th Inter-

national Telecommunication Networks and Applications Conference (ITNAC),

December 2016, pp. 283–288.

[32] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless Com-

munications with MATLAB, 1st ed. Singapore ; Hoboken, NJ: Wiley-IEEE

Press, November 2010.

[33] I. T. Jolliffe, Principal component analysis. Springer-Verlang, 1986.

[34] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. D. Silva, F. Tufves-

son, A. Benjebbour, and G. Wunder, “5g: A Tutorial Overview of Standards,

Trials, Challenges, Deployment, and Practice,” IEEE Journal on Selected Ar-

eas in Communications, vol. 35, no. 6, pp. 1201–1221, June 2017.

[35] F.-L. Luo and C. Zhang, Signal Processing For 5G: Algorithms And Imple-

mentations. IEEE Press, 2016.

[36] T. L. Marzetta, “Massive MIMO: An Introduction,” Bell Labs Technical Jour-

nal, vol. 20, pp. 11–22, 2015.

[37] S. Wu, C. X. Wang, Y. Yang, W. Wang, and X. Gao, “Performance comparison

of massive MIMO channel models,” in 2016 IEEE/CIC International Confer-

ence on Communications in China (ICCC), July 2016, pp. 1–6.

[38] T. E. Bogale, L. B. Le, A. Haghighat, and L. Vandendorpe, “On the Num-

ber of RF Chains and Phase Shifters, and Scheduling Design With Hybrid
PhD Thesis, School of Engineering, Macquarie University 121



REFERENCES

AnalogDigital Beamforming,” IEEE Transactions on Wireless Communica-

tions, vol. 15, no. 5, pp. 3311–3326, May 2016.

[39] X. Gao, O. Edfors, F. Tufvesson, and E. G. Larsson, “Massive MIMO in

Real Propagation Environments: Do All Antennas Contribute Equally?” IEEE

Transactions on Communications, vol. 63, no. 11, pp. 3917–3928, November

2015.

[40] D. A. Gore and A. J. Paulraj, “MIMO antenna subset selection with space-

time coding,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp.

2580–2588, October 2002.

[41] R. W. Heath, S. Sandhu, and A. J. Paulraj, “Antenna selection for spatial mul-

tiplexing systems with linear receivers,” IEEE Communications Letters, vol. 5,

no. 4, pp. 142–144, April 2001.

[42] S. Sanayei and A. Nosratinia, “Asymptotic capacity analysis of transmit an-

tenna selection,” in International Symposium on Information Theory, 2004.

ISIT 2004. Proceedings., June 2004, pp. 241–.

[43] M. A. Jensen and M. L. Morris, “Efficient capacity-based antenna selection for

MIMO systems,” IEEE Transactions on Vehicular Technology, vol. 54, no. 1,

pp. 110–116, January 2005.

[44] R. Narasimhan, “Spatial multiplexing with transmit antenna and constellation

selection for correlated MIMO fading channels,” IEEE Transactions on Signal

Processing, vol. 51, no. 11, pp. 2829–2838, November 2003.

PhD Thesis, School of Engineering, Macquarie University 122



REFERENCES

[45] ——, “Transmit antenna selection based on outage probability for correlated

MIMO multiple access channels,” IEEE Transactions on Wireless Communi-

cations, vol. 5, no. 10, pp. 2945–2955, October 2006.

[46] M. A. Khan, R. Vesilo, L. M. Davis, and I. B. Collings, “User and Transmit

Antenna Selection for MIMO Broadcast Wireless Channels with Linear Re-

ceivers,” in 2008 Australasian Telecommunication Networks and Applications

Conference, December 2008, pp. 276–281.

[47] Y. Ni, W. Zhang, and M. Chen, “Antenna subset selection in MU large-scale

MIMO systems,” in 2013 International Conference on Wireless Communica-

tions and Signal Processing, October 2013, pp. 1–5.

[48] S. Mahboob, R. Ruby, and V. C. M. Leung, “Transmit Antenna Selection

for Downlink Transmission in a Massively Distributed Antenna System Us-

ing Convex Optimization,” in 2012 Seventh International Conference on

Broadband, Wireless Computing, Communication and Applications, Novem-

ber 2012, pp. 228–233.

[49] Z. Shi, X. Zhu, Y. Zhao, and L. Huang, “Interference alignment based on an-

tenna selection for massive MIMO system,” in 2015 10th International Con-

ference on Computer Science Education (ICCSE), July 2015, pp. 606–610.

[50] M. Hanif, H. C. Yang, G. Boudreau, E. Sich, and H. Seyedmehdi, “Low Com-

plexity Antenna Subset Selection for Massive MIMO Systems with Multi-Cell

Cooperation,” in 2015 IEEE Globecom Workshops (GC Wkshps), December

2015, pp. 1–5.

PhD Thesis, School of Engineering, Macquarie University 123



REFERENCES

[51] J. Wang, A. I. Prez-Neira, and M. Gao, “A concise joint transmit/receive an-

tenna selection algorithm,” China Communications, vol. 10, no. 3, pp. 91–99,

March 2013.

[52] Y. Jiang, M. K. Varanasi, and J. Li, “Performance Analysis of ZF and MMSE

Equalizers for MIMO Systems: An In-Depth Study of the High SNR Regime,”

IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2008–2026,

April 2011.

[53] A. F. Molisch, “Effect of far scatterer clusters in mimo outdoor channel mod-

els,” 57th IEEE Vehicular Technology Conference, vol. 1, pp. 532–538, 2003.

[54] M. Ozcelik, N. Czink, and E. Bonek, “What makes a good MIMO channel

model?” in 2005 IEEE 61st Vehicular Technology Conference, vol. 1, May

2005, pp. 156–160.

[55] W. Weichselberger, “Spatial structure of multiple antenna radio channels: a

signal processing viewpoint,” Ph.D. dissertation, Technische Universitt Wien,

Austria, December 2003.

[56] H. Ozcelik, “Indoor mimo channel models,” Ph.D. dissertation, Institutfr

Nachrichtentechnik, Technische Universitt Wien, Vienna, Austria, December

2004.

[57] P. Almers, E. Bonek, A. Burr, N. Czink, M. Debbah, V. Degli-Esposti, H. Hof-

stetter, P. Kysti, D. Laurenson, G. Mat, A. F. Molisch, C. Oestges, and H. zce-

lik, “Survey of Channel and Radio Propagation Models for Wireless MIMO

Systems,” EURASIP Journal on Wireless Communications and Networking,

vol. 2007, no. 1, December 2007.

PhD Thesis, School of Engineering, Macquarie University 124



REFERENCES

[58] A. M. Rao and D. L. Jones, “Efficient detection with arrays in the presence

of angular spreading,” IEEE Transactions on Signal Processing, vol. 51, pp.

301–302, February 2003.

[59] R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell Systems

Technical Journal, vol. 47, pp. 957–1000, July-August 1968.

[60] W. C. Jakes, Microwave Mobile Communication. New York, USA: John

Wiley & Sons, 1974.

[61] W. C. Y. Lee, “Effect on correlation between two mobile radio base-station

antennas,” IEEE Transactions on Communications, vol. COM-21, no. 11, pp.

1214–1224, November 1973.

[62] L. M. Correia, Wireless flexible personalised communications : COST 259,

European co-operation in mobile radio research. Chichester ; New York :

Wiley, 2001.

[63] J. Ling, U. Tureli, D. Chizhik, and C. Papadias, “Rician Modeling and Pre-

diction for Wireless Packet Data Systems,” IEEE Transactions on Wireless

Communications, vol. 7, no. 11, pp. 4692–4699, November 2008.

[64] V. Erceg, L. Schumacher, P. Kyritsi, A. Molisch, D. S. Baum, A. Y. Gorokhov,

C. Oestges, Q. Li, K. Yu, N. Tal, B. Dijkstra, A. Jagannatham, C. Lanzl,

V. J. Rhodes, J. Medbo, D. Michelson, M. Webster, E. Jacobsen, D. Cheung,

C. Prettie, M. Ho, S. Howard, B. Bjerke, L. Jengx, H. Sampath, S. Catreux,

S. Valle, A. Poloni, A. Forenza, and T. R. R. W. Heath, “Tgn channel models,

technical report,” IEEE P802.11 Wireless LANs, Tech. Rep., May 2004.

PhD Thesis, School of Engineering, Macquarie University 125



REFERENCES

[65] J. Medbo and P. Schramm, Channel models for HIPERLAN/2, ETSI/BRAN

Document NO. 3ERI085B, 1998.

[66] C. Oestges, V. Erceg, and A. J. Paulraj, “A physical scattering model for

MIMO macrocellular broadband wireless channels,” IEEE Journal on Selected

Areas in Communications, vol. 21, no. 5, pp. 721–729, June 2003.

[67] V. Erceg, K. V. S. Hari, M. S. Smith, D. Baum, P. Soma, L. J. Greenstein,

D. G. Michelson, S. Ghassemzadeh, A. J. Rustako, R. S. Roman, K. P. Sheikh,

C. Tappenden, J. M. Costa, C. Bushue, A. Sarajedini, R. Schwartz, D. Bran-

lund, T. Kaitz, and D. Trinkwon, “Channel Models for Fixed Wireless Appli-

cation,” July 2001.

[68] 3GPP, “3gpp tr 25.996: Spatial channel model for multiple input multiple

output (mimo) simulations (release 6),” 3rd Generation Partnership Project

(3GPP), Technical Report, 2003.

[69] R. Janaswamy, “Angle and time of arrival statistics for the Gaussian scatter

density model,” IEEE Transactions on Wireless Communications, vol. 1, no. 3,

pp. 488–497, July 2002.

[70] R. B. Ertel and J. H. Reed, “Angle and time of arrival statistics for circular and

elliptical scattering models,” IEEE Journal on Selected Areas in Communica-

tions, vol. 17, no. 11, pp. 1829–1840, November 1999.

[71] J. C. Liberti and T. S. Rappaport, “A geometrically based model for line-of-

sight multipath radio channels,” in Proceedings of Vehicular Technology Con-

ference - VTC, vol. 2, April 1996, pp. 844–848.

PhD Thesis, School of Engineering, Macquarie University 126



REFERENCES

[72] J. Fuhl, A. F. Molisch, and E. Bonek, “Unified channel model for mobile ra-

dio systems with smart antennas,” Sonar and Navigation IEE Proceedings -

Radar, vol. 145, no. 1, pp. 32–41, February 1998.

[73] P. Petrus, J. H. Reed, and T. S. Rappaport, “Geometrical-based statistical

macrocell channel model for mobile environments,” IEEE Transactions on

Communications, vol. 50, no. 3, pp. 495–502, March 2002.

[74] M. P. Lotter and R. V. Rooyen, “Modeling spatial aspects of cellular

CDMA/SDMA systems,” IEEE Communications Letters, vol. 3, no. 5, pp.

128–131, May 1999.

[75] R. J. Piechocki, G. V. Tsoulos, and J. P. McGeehan, “Simple general formula

for PDF of angle of arrival in large cell operational environments,” Electronics

Letters, vol. 34, no. 18, pp. 1784–1785, September 1998.

[76] D. D. N. Bevan, V. T. Ermolayev, A. G. Flaksman, and I. M. Averin,

“Gaussian channel model for mobile multipath environment,” EURASIP

Journal on Advances in Signal Processing, vol. 2004, no. 9, 2004. [Online].

Available: http://link.springer.com/article/10.1155/S1110865704404028

[77] K. Yu and B. Ottersten, “Models for mimo propagation channels: A review,”

Wiley Journal of Wireless Communications and Mobile Computing, vol. 2,

no. 7, pp. 653–666, 2002.

[78] D. Tse and P. P. Viswanath, Fundamentals of Wireless Communication. Cam-

bridge University Press, May 2005.

[79] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “Spatial channel character-

istics in outdoor environments and their impact on BS antenna system perfor-
PhD Thesis, School of Engineering, Macquarie University 127

http://link.springer.com/article/10.1155/S1110865704404028


REFERENCES

mance,” in 48th IEEE Vehicular Technology Conference, 1998. VTC 98, vol. 2,

May 1998, pp. 719–723 vol.2.

[80] S. Venkatesan, S. H. Simon, and R. A. Valenzuela, “Capacity of a Gaussian

MIMO channel with non-zero mean,” in 2003 IEEE 58th Vehicular Technol-

ogy Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484), vol. 3, October

2003, pp. 1767–1771.

[81] F. Bashar and T. D. Abhayapala, “Performance analysis of spatially distributed

MIMO systems,” IET Communications, vol. 11, no. 4, pp. 566–575, 2017.

[82] E. Zchmann, M. Lerch, S. Caban, R. Langwieser, C. F. Mecklenbrauker, and

M. Rupp, “Directional evaluation of receive power, Rician K-factor and RMS

delay spread obtained from power measurements of 60 GHz indoor channels,”

in 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wire-

less Communications (APWC), September 2016, pp. 246–249.

[83] L. Wood and W. S. Hodgkiss, “Impact of Channel Models on Adaptive M-

QAM Modulation for MIMO Systems,” in 2008 IEEE Wireless Communica-

tions and Networking Conference, March 2008, pp. 1316–1321.

[84] G. D. Durgin and T. S. Rappaport, “Effects of multipath angular spread on the

spatial cross-correlation of received voltage envelopes,” in 1999 IEEE 49th

Vehicular Technology Conference (Cat. No.99CH36363), vol. 2, July 1999,

pp. 996–1000.

[85] D. Chizhik, F. Rashid-Farrokhi, J. Ling, and A. Lozano, “Effect of antenna

separation on the capacity of BLAST in correlated channels,” IEEE Commu-

nications Letters, vol. 4, no. 11, pp. 337–339, November 2000.

PhD Thesis, School of Engineering, Macquarie University 128



REFERENCES

[86] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and

its effect on the capacity of multielement antenna systems,” IEEE Transactions

on Communications, vol. 48, no. 3, pp. 502–513, March 2000.

[87] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederik-

sen, “A stochastic MIMO radio channel model with experimental validation,”

IEEE Journal on Selected Areas in Communications, vol. 20, no. 6, pp. 1211–

1226, August 2002.

[88] A. A. Abouda, H. El-Sallabi, L. Vuokko, and S. G. Haggman, “Performance

of Stochastic Kronecker MIMO Radio Channel Model in Urban Microcells,”

in 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile

Radio Communications, September 2006, pp. 1–5.

[89] W. Weichselberger, M. Herdin, H. Ozcelik, and E. Bonek, “A stochastic

MIMO channel model with joint correlation of both link ends,” IEEE Trans-

actions on Wireless Communications, vol. 5, no. 1, pp. 90–100, January 2006.

[90] A. M. Tulino, A. Lozano, and S. Verdu, “Capacity-achieving input covariance

for single-user multi-antenna channels,” IEEE Transactions on Wireless Com-

munications, vol. 5, no. 3, pp. 662–671, March 2006.

[91] E. Visotsky and U. Madhow, “Space-time transmit precoding with imperfect

feedback,” IEEE Transactions on Information Theory, vol. 47, no. 6, pp. 2632–

2639, September 2001.

[92] M. Vu and A. Paulraj, “MIMO Wireless Linear Precoding,” IEEE Signal Pro-

cessing Magazine, vol. 24, no. 5, pp. 86–105, September 2007.

PhD Thesis, School of Engineering, Macquarie University 129



REFERENCES

[93] T. A. Cover and J. A. Thomas, Elements of Information Theory. New York,

NY, USA: Wiley-Interscience, 1991.

[94] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, “Efficient use of side

information in multiple-antenna data transmission over fading channels,” IEEE

Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1423–1436,

October 1998.

[95] S. A. Jafar and A. Goldsmith, “Transmitter optimization and optimality of

beamforming for multiple antenna systems,” IEEE Transactions on Wireless

Communications, vol. 3, no. 4, pp. 1165–1175, July 2004.

[96] A. Garcia-Rodriguez and C. Masouros, “Power-Efficient Tomlinson-

Harashima Precoding for the Downlink of Multi-User MISO Systems,” IEEE

Transactions on Communications, vol. 62, no. 6, pp. 1884–1896, June 2014.

[97] C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. B. Huber, “Precoding in

multiantenna and multiuser communications,” IEEE Transactions on Wireless

Communications, vol. 3, no. 4, pp. 1305–1316, July 2004.

[98] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation

technique for near-capacity multiantenna multiuser communication-part I:

channel inversion and regularization,” IEEE Transactions on Communications,

vol. 53, no. 1, pp. 195–202, January 2005.

[99] C. Masouros, “Correlation Rotation Linear Precoding for MIMO Broadcast

Communications,” IEEE Transactions on Signal Processing, vol. 59, no. 1,

pp. 252–262, January 2011.

PhD Thesis, School of Engineering, Macquarie University 130



REFERENCES

[100] C. Masouros and E. Alsusa, “Dynamic linear precoding for the exploitation

of known interference in MIMO broadcast systems,” IEEE Transactions on

Wireless Communications, vol. 8, no. 3, pp. 1396–1404, March 2009.

[101] ——, “Soft Linear Precoding for the Downlink of DS/CDMA Communication

Systems,” IEEE Transactions on Vehicular Technology, vol. 59, no. 1, pp. 203–

215, January 2010.

[102] S. M. Razavi, T. Ratnarajah, and C. Masouros, “Transmit-Power Efficient Lin-

ear Precoding Utilizing Known Interference for the Multiantenna Downlink,”

IEEE Transactions on Vehicular Technology, vol. 63, no. 9, pp. 4383–4394,

November 2014.

[103] A. Goldsmith, Wireless Communications. Cambridge University Press, Au-

gust 2005.

[104] G. H. Golub and C. F. V. Loan, Matrix Computations. JHU Press, 2013.

[105] A. M. Ahmadian, W. Zirwas, and R. S. Ganesan, “Low complexity moore-

penrose inverse for large como areas with sparse massive mimo channel matri-

ces,” in 2016 IEEE 27th Annual International Symposium on Personal, Indoor,

and Mobile Radio Communications (PIMRC), 2016, pp. 1–7.

[106] H. V. Nguyen, V. D. Nguyen, and O. S. Shin, “Low-Complexity Precoding for

Sum Rate Maximization in Downlink Massive MIMO Systems,” IEEE Wire-

less Communications Letters, vol. 6, no. 2, pp. 186–189, April 2017.

[107] H. Sifaou, A. Kammoun, L. Sanguinetti, M. Debbah, and M. S. Alouini,

“Power efficient low complexity precoding for massive MIMO systems,” in

PhD Thesis, School of Engineering, Macquarie University 131



REFERENCES

2014 IEEE Global Conference on Signal and Information Processing (Glob-

alSIP), December 2014, pp. 647–651.

[108] H. Prabhu, J. Rodrigues, O. Edfors, and F. Rusek, “Approximative matrix in-

verse computations for very-large MIMO and applications to linear pre-coding

systems,” in 2013 IEEE Wireless Communications and Networking Confer-

ence (WCNC), April 2013, pp. 2710–2715.

[109] S. Zarei, W. Gerstacker, R. R. Mller, and R. Schober, “Low-complexity linear

precoding for downlink large-scale MIMO systems,” in 2013 IEEE 24th An-

nual International Symposium on Personal, Indoor, and Mobile Radio Com-

munications (PIMRC), September 2013, pp. 1119–1124.

[110] J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction, M. Jordan,

J. Kleinberg, and B. Scholkopf, Eds. Springer, 2007.

[111] Spatial modulation for generalized MIMO: Challenges opportunities and im-

plementations, vol. 102, no. 1, January 2014.

[112] V. S. Krishna and M. R. Bhatnagar, “A joint antenna and path selection tech-

nique in single-relay-based df cooperative mimo networks,” IEEE Transac-

tions on Vehicular Technology, vol. 65, no. 3, pp. 1340–1353, March 2016.

[113] X. Gao, O. Edfors, F. Tufvesson, and E. G. Larsson, “Massive mimo in real

propagation environments: do all antennas contribute equally?” IEEE Trans-

actions on Communications, vol. 63, no. 11, pp. 3917–3928, 2015.

[114] H. Li, L. Song, D. Zhu, and M. Lei, “Energy efficiency of large scale mimo

systems with transmit antenna selection,” in IEEE International Conference

on Communication, 2013 2013, pp. 4641–4645.
PhD Thesis, School of Engineering, Macquarie University 132



REFERENCES

[115] H. Li, L. Song, and M. Debbah, “Energy efficiency of large scale multiple

antenna system with transmit antenna selection,” IEEE Transactions on Com-

munication, vol. 62, no. 2, pp. 638–647, February 2014.

[116] Z. Zhou, S. Zhou, J. Gong, and Z. Niu, “Energy-efficient antenna selection

and power allocation for large-scale multiple antenna systems with hybrid en-

ergy supply,” in IEEE Global Communications Conference (GLOBECOM),

December 2014.

[117] B. Lee, L. Ngo, and B. Shim, “Antenna group selection based user schedul-

ing for massive mimo systems,” in IEEE Global Communication Conference,

December 2014.

[118] M. Benmimoune, E. Driouch, W. Ajib, and D. Massicotte, “Joint transmit an-

tenna selection and user scheduling for massive mimo systems,” in IEEE Wire-

less Communications and Networking Conference (WCNC), March 2015.

[119] T.-W. Ban and B. C. Jung, “A practical antenna selection technique in mul-

tiuser massive mimo networks,” IEICE Transactions on Communications, vol.

E96-B, no. 11, pp. 2901–2905, 2013.

[120] H. Huang, C. B. Papadias, and S. Venkatesan, MIMO Communication for Cel-

lular Networks. Springer, New York, 2012.

[121] K. M. Abadir and J. R. Magnus, Matrix Algebra. Cambridge University Press,

August 2005.

[122] F. Hu, Opportunities in 5G networks: A research and development perspective.

CRC press, 2016.

PhD Thesis, School of Engineering, Macquarie University 133



REFERENCES

[123] G. N. Kamga, M. Xia, and S. Assa, “Spectral-Efficiency Analysis of Regular-

and Large-Scale (Massive) MIMO With a Comprehensive Channel Model,”

IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 4984–4996,

June 2017.

[124] G. N. Kamga, M. Xia, and S. Aissa, “Channel modeling and capacity analysis

of large MIMO in real propagation environments,” in 2015 IEEE International

Conference on Communications (ICC), June 2015, pp. 1447–1452.

[125] R. H. Gohary and H. Yanikomeroglu, “The ergodic high SNR capacity of the

spatially-correlated non-coherent MIMO channel within an SNR-independent

gap,” in 2015 IEEE Information Theory Workshop - Fall (ITW), October 2015,

pp. 234–238.

[126] M. Matthaiou, N. D. Chatzidiamantis, and G. K. Karagiannidis, “A New Lower

Bound on the Ergodic Capacity of Distributed MIMO Systems,” IEEE Signal

Processing Letters, vol. 18, no. 4, pp. 227–230, April 2011.

[127] M. Matthaiou, N. D. Chatzidiamantis, G. K. Karagiannidis, and J. A. Nossek,

“On the Capacity of Generalized- k Fading MIMO Channels,” IEEE Transac-

tions on Signal Processing, vol. 58, no. 11, pp. 5939–5944, November 2010.

[128] N. Costa and S. Haykin, Multiple-Input Multiple-Output Channel Models:

Theory and Practice. John Wiley & Sons, June 2010.

[129] L. Schumacher, K. I. Pedersen, and P. E. Mogensen, “From antenna spacings

to theoretical capacities - guidelines for simulating MIMO systems,” in The

13th IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications, vol. 2, September 2002, pp. 587–592 vol.2.

PhD Thesis, School of Engineering, Macquarie University 134



REFERENCES

[130] J. Hoydis, S. T. Brink, and M. Debbah, “Comparison of linear precoding

schemes for downlink massive MIMO,” in 2012 IEEE International Confer-

ence on Communications (ICC), June 2012, pp. 2135–2139.

[131] J. C. S. de Souza, T. M. L. Assis, and B. C. Pal, “Data Compression in Smart

Distribution Systems via Singular Value Decomposition,” IEEE Transactions

on Smart Grid, vol. 8, no. 1, pp. 275–284, January 2017.

[132] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast

scheduling using zero forcing beamforming,” IEEE Journal on Selected Ar-

eas in Communications, vol. 24, no. 3, pp. 528–541, March 2006.

[133] M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in

MIMO communications systems,” IEEE Transactions on Signal Processing,

vol. 53, no. 8, pp. 2700–2712, August 2005.

[134] K. Zu, R. C. de Lamare, and M. Haardt, “Lattice reduction-aided regularized

block diagonalization for multiuser MIMO systems,” in 2012 IEEE Wireless

Communications and Networking Conference (WCNC), April 2012, pp. 131–

135.

[135] K. Zu, “Novel Efficient Precoding Techniques for Multiuser MIMO

Systems,” P.hD., University of York, May 2013. [Online]. Available:

http://etheses.whiterose.ac.uk/4458/

[136] L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik, Dimensionality

Reduction: A Comparative Review, 2008.

[137] S. Kumar, P. K. Gupta, G. Singh, and D. S. Chauhan, “Performance Analysis

of Rayleigh and Rician Fading Channel Models using Matlab Simulation,”
PhD Thesis, School of Engineering, Macquarie University 135

http://etheses.whiterose.ac.uk/4458/


International Journal of Intelligent Systems and Applications; Hong Kong,

vol. 5, no. 9, pp. 94–102, August 2013.

136


	Title Page
	Copyright
	Abstract
	Statement
	Acknowledgments
	Related Publications
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Introduction
	MIMO Systems
	Types of Massive MIMO Operation
	MIMO Broadcast Channels
	Massive MIMO and Its Benefits
	Motivation
	Aims and Approaches
	Thesis Overview

	Background and Related Work
	Antenna Selection in Massive MIMO
	Conventional Antenna Selection in Massive MIMO Broadcast Channels

	MIMO Channel Models
	Physical channel modelling
	Non-physical channel modelling

	Channel Modelling
	Analytical Channel Models
	Spatial-Correlation Based Models
	The Independent Identically Distributed Rayleigh Fading Model
	The Kronecker Model
	The Weichselberger model 


	Precoding in MIMO
	Non-Linear Precoding
	Linear Precoding
	MIMO Channel Decomposition
	Power Allocation in MIMO System

	Computational Complexity
	Principal Component Analysis 
	Summary of the Chapter

	Antenna Selection in Massive MIMO Communication
	Introduction
	Related Work
	System Model
	Principal Components Analysis (PCA) 
	Population-Based Central PCA
	Population-Based Non-Central PCA
	Sample-Based PCA

	Antenna Selection
	Analysis using Non-Central PCA

	Simulation Results and Discussion
	Summary of the Chapter

	Spatial Structure of Multiple Antenna Radio Channels
	Introduction
	Related Work
	Stochastic MIMO Channel Model
	Kronecker Model
	Weichselberger Channel Model
	nth power cosine PAS Model
	Uniform PAS Model

	Simulation Results and Discussion
	Summary of the Chapter

	Dimensionality Reduction of Large Matrices
	Introduction
	Linear Precoding
	Zero Forcing Precoding
	Minimum Mean Square Error Precoding 

	Channel Complexity Reduction via PCA
	Computational Complexity
	Simulation Results and Discussion
	Summary of the Chapter

	Conclusions and Future Work
	Conclusions
	Future Directions

	REFERENCES

