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Summary

In this thesis, we aim to study Besov spaces associated with operators and our work has 2 new

parts: one part is to extend certain results of [BDY] to different type of heat kernels not included

in [BDY] and another part is to obtain molecular and atomic decompositions for Besov spaces

for a larger range of indices.

Recently, in [BDY] the authors investigated the theory of Besov spaces associated to

operators whose heat kernel satisfies an upper bound of Poisson type on the space of polynomial

upper bound on volume growth. They also carried out that by different choices of operators

L, they can recover most of the classical Besov spaces. Moreover, in some particular choices

of L, they obtain new Besov spaces. In the first new part of this thesis, we aim to extend

certain results in [BDY] to a more general setting when the underlying space can have different

dimensions at 0 and infinity.

In the second new part of this thesis, the main aim is to lay out the theory of Besov spaces

associated to operators L whose heat kernel satisfies the Gaussian upper bounds on spaces of

homogeneous type. Adapting some ideas in [BDY], we construct the Besov spaces Ḃα,Lp,q (X)

associated to the operators. The main contribution is to investigate the atomic and molecular

decompositions of functions in the new Besov spaces Ḃα,Lp,q (X). We also carry out the study

that depending on the choice of L, our new Besov spaces may coincide with or may be properly

larger than the classical Besov spaces in the space of homogeneous type. Finally, the behaviour

of fractional integrals and spectral multipliers on the new Besov spaces is also investigated.
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5.5.2 The inclusion Ḃαp,q(X) ⊂ Ḃα,Lp,q (X) . . . . . . . . . . . . . . . . . . . . . . 162

5.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.6.1 Fractional integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.6.2 Spectral multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography



xii



Chapter 1

Introduction

The main theme of this thesis is to study Besov spaces associated with operators.

This thesis is organised as follows.

In Chapter 1 we give some background of modern harmonic analysis, some preliminaries,

and our main results.

In Chapter 2 we give some background of classical Besov spaces and Triebel–Lizorkin

spaces.

In Chapters 3 and 4 we develop a theory of Besov spaces associated with an operator L

under the assumption that L generates an analytic semigroup e−tL with Gaussian kernel bounds

on L2(X ), where X is a quasi-metric space of polynomial upper bound on volume growth.

In Chapter 5 we derive atomic and molecular decompositions of Besov spaces associated

to operators on spaces of homogeneous type.

1.1 Background

1.1.1 Modern harmonic analysis

The standard Calderón–Zygmund theory of singular integrals was one of the main achieve-

ments in modern harmonic analysis in the 60s and 70s (see [CZ, SW, Hö, CM]). Furthermore,

the theory of Hardy spaces developed in the 70s (see [SW1, FS, Co1, La, TW1, St2]) has been

very successful with many applications; in particular with proving boundedness of singular in-
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tegrals and with regularity of solutions to partial differential equations. The development of the

theory of Hardy spaces in Rn was initiated by Stein and Weiss [SW1], and was originally tied

to the theory of harmonic functions. Real variable methods were introduced into this subject

in the seminal paper of Fefferman and Stein [FS], the evolution of whose ideas led eventually to

characterizations of Hardy spaces via the atomic or molecular decomposition. This enabled the

extension of Hardy spaces to a far more general setting, that of a “space of homogeneous type”

in the sense of Coifman and Weiss [CW].

The Calderón–Zygmund theory and Hardy space theory have formed the framework

for the study of singular integrals that are bounded on L2 whose kernels satisfy the standard

Hörmander condition. To study Lp-boundedness (1 < p < ∞), one first studies the weak type

(1, 1) estimate of the singular integrals and then the Lp-boundedness follows from interpolation

and duality. Alternatively, one can study the H1 → L1 estimate of the singular integrals in

place of the weak type (1, 1) estimate.

In practical applications, there is a need to study singular integrals with non-smooth

kernels which do not fall in the scope of Calderón-Zygmund operators. One of the breakthroughs

in this direction was the work [DMc] of X.T. Duong and A. McIntosh in the late 1990s. They

considered the singular integral operators with non-smooth kernels on irregular domains, and

obtained the weak type (1, 1) estimate, hence Lp estimate (1 < p ≤ 2), for operators which are

bounded on L2 and whose kernels satisfy an “average” estimate which is strictly weaker than

the usual Hörmander condition ([Hö]).

Now let (X, d, µ) be a space of homogeneous type in the sense of Coifman and Weiss.

Note that spaces of homogeneous type were first introduced by R. Coifman and G. Weiss ([CW])

in the 1970s in order to extend the theory of Calderón–Zygmund singular integrals to a more

general setting. In this setting, there are no translations or dilations, no analogue of the Fourier

transform or convolution operation and no group structure. Let T be a bounded linear operator
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on L2(X) with an associated kernel k(x, y) in the sense that

Tf(x) =

ˆ
X

k(x, y)f(y) dµ(y), (1.1)

where k(x, y) is a measurable function, and the above formula holds for each continuous function

f with compact support, and for almost all x not in the support of f .

The well-known Hörmander condition on the kernel k(x, y) states that an L2 bounded

operator T satisfies weak type (1, 1) estimates if there exist constants C and δ > 1 so that

ˆ
d(x,y)≥δd(y1,y)

|k(x, y)− k(x, y1)| dµ(x) ≤ C (1.2)

for all y, y1 ∈ X.

In [DMc], the authors assume that there exists a class of integral operators {At}t>0, which

plays the role of approximations to the identity as follows: Assume that At can be represented

by kernels at(x, y) in the sense that

Atu(x) =

ˆ
X

at(x, y)u(y) dµ(y), (1.3)

and the kernels at(x, y) satisfy

|at(x, y)| ≤ ht(x, y) =
1

µ(B(x, t1/s))
h(d(x, y)s/t), (1.4)

where s is a positive constant and h is a positive, bounded, decreasing function satisfying

lim
r→∞

rn+ηh(rs) = 0 (1.5)

for some η > 0.

The main result of [DMc] is the following:

Theorem 1.1 (Duong–McIntosh). Let T be a bounded operator from L2(X) to L2(X) with

an associated kernel k(x, y). Assume that there exists a class of approximations to the identity

{At}t>0 so that TAt have kernels kt(x, y) in the sense of (1.1) and there exist constants C, c > 0

so that ˆ
d(x,y)≥ct1/s

|k(x, y)− kt(x, y)| dµ(x) ≤ C (1.6)
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for all y ∈ X. Then the operator T is of weak type (1, 1). Hence, T can be extended from

L2(X) ∩ Lp(X) to a bounded operator on Lp(X) for all 1 < p ≤ 2.

It is not difficult to check that condition (1.6) is strictly weaker than the Hörmander

condition (1.2) by choosing an appropriate {At}t>0.

1.1.2 Hardy space theory

Let us now consider the following inequalities for f ∈ C∞0 (Rn).

‖∇f‖Lp(Rn) ≤ Cp‖∆1/2f‖Lp(Rn) (1.7)

‖∇2f‖Lp(Rn) ≤ Cp‖∆f‖Lp(Rn) (1.8)

The second is commonly known as the Calderón–Zygmund inequality. Here the constant Cp

may depend on p and the dimension n, but not on f . Both are valid for all 1 < p <∞.

Inequalities such as these, often referred to as ‘Lp-estimates’, along with their analogues

(when the space Lp(Rn) is replaced by other function spaces) have been thoroughly studied in

the harmonic analysis literature, motivated in part by their connections with partial differential

equations.

When one considers p below 1, inequalities (1.7) and (1.8) are valid for p ≤ 1 once we

replace the Lp(Rn) spaces and their norms by the Hardy spaces Hp(Rn) and their respective

norms.

For 0 < p <∞ the tempered distribution f is said to belong to the Hardy space Hp(Rn)

if the so-called “square function”

Sf(x) =
(ˆ ∞

0

ˆ
|x−y|<t

∣∣t2∆et
2∆f(y)

∣∣2dy dt

tn+1

)1/2

, x ∈ Rn (1.9)

satisfies Sf ∈ Lp(Rn). The study of these spaces began in [SW1] in the early 1960s. Real variable

methods were introduced in [FS], and since then, the theory of Hardy spaces has undergone a

rich development. We refer the reader to the monograph [St2] for an exposition on this subject.

For p below 1 these spaces are the natural continuation of the Lp(Rn) spaces because
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firstly it can be shown that Lp coincides with Hp for p > 1, and secondly, on replacing Lp by Hp

then (1.7) and (1.8) holds for all 0 < p <∞.

Part of the interest in the Hp spaces stems from their role in partial differential equa-

tions and in harmonic analysis. However it is known that there are many situations in which

these classical spaces are not directly applicable. For instance the classical Riesz transforms

∇(−∆)−1/2 are bounded from Hp(Rn) to Lp(Rn) (and even Hp(Rn) to Hp(Rn)). In fact,

∇(−∆)−1/2f ∈ Lp is one criterion for membership of f in Hp. See [St2] and [Gr]. Unfortu-

nately given an arbitrary differential operator L, its associated Riesz transform ∇L−1/2 may

not necessarily be bounded from H1 to L1. This may happen, for example, when L is an ellip-

tic operator in divergence form with complex coefficients (see the discussion in [HMa] and also

[Au, BK, HM] for results on the intervals of boundedness of ∇L−1/2 on Lp(Rn)).

The notion of a Hardy space adapted to an operator was introduced to address some of

these deficiencies. Given an operator L and in analogy with (1.9) we say that f ∈ Hp
L(Rn)

provided the associated square function

SLf(x) =
(ˆ ∞

0

ˆ
|x−y|<t

∣∣t2Le−t2Lf(y)
∣∣2dy dt

tn+1

)1/2

, x ∈ Rn

satisfies SLf ∈ Lp(Rn). Depending on L, these spaces may or may not coincide with the

classical Hardy spaces. Nevertheless under suitable conditions on L, the spaces Hp
L(Rn) may

still interpolate with Lp(Rn). This is useful in applications. For instance the proof of some

theorems given in [DOY] takes advantage of this fact. These spaces were initially introduced

(for operators whose heat kernels satisfy suitable pointwise bounds) in [ADMc, DY, DY1], and

were further developed (for more general classes operators) in [AMcR, HLMMY, HMa]. We

refer the reader to these articles for the details and relevant references as well as some historical

notes on the evolution of these ideas. For some recent applications of these Hp
L spaces to partial

differential equations we refer the reader to [DHMMY].

In recent years, P. Auscher, X.T. Duong and A. McIntosh ([ADMc]) first introduced the

Hardy space H1
L(Rn) associated with an operator L, and obtained a molecular decomposition,
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assuming that L has a bounded holomorphic functional calculus on L2(Rn) and the kernel of the

heat semigroup e−tL generated by L enjoys a pointwise Poisson upper bound. Later, with the

same assumptions on L, X.T. Duong and L.X. Yan introduced the space BMOL(Rn) associated

with L in [DY1] and established the duality of H1
L(Rn) and BMOL∗(Rn) in [DY], where L∗

denotes the adjoint operator of L in L2(Rn).

In their approach, modeled on the work of X.T. Duong and A. McIntosh [DMc] (see

also X.T. Duong and D.W. Robinson [DR]) on weak-type (1, 1) bounds for generalized singular

integrals, the heat semigroup or resolvent replaces the usual averaging operator over cubes or

balls (in this connection, see also the work of J.M. Martell [Ma] on adapted sharp functions),

and in place of a standard vanishing moment condition, “cancellation” becomes a matter of

membership in the range of L. Subsequent work on this subject has been based on these two

cornerstones.

More specifically, let L be a linear operator of type ω on L2(Rn) with ω < π/2; hence L

generates a holomorphic semigroup e−zL, 0 ≤ | arg(z)| < π/2− ω. Assume that

(i) The operator L has a bounded holomorphic functional calculus on L2(Rn). That is, there

exists cν,2 > 0 such that b(L) ∈ L(L2, L2), and for b ∈ H∞(S0
ν):

‖b(L)g‖2 ≤ cν,2‖b‖∞‖g‖2

for any g ∈ L2(Rn), where ν > 0 is related to holomorphic functional calculus. For the

precise definition of ν, we refer to [Mc].

(ii) The holomorphic semigroup e−zL, 0 ≤ | arg(z)| < π/2 − ω is represented by the kernel

pz(x, y) which satisfies the upper bound

|pz(x, y)| ≤ Cθh|z|(x, y) (1.10)

for x, y ∈ Rn, | arg(z)| < π/2− θ for θ > ω, and ht(x, y) is the same as that in (1.4). (For

the notation of operator of type ω and the H∞-calculus, we refer to [Mc].)
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For a detailed study of operators which have holomorphic functional calculi, we refer the reader

to [Mc].

Under the assumptions (i) and (ii), the Hardy space associated with L is defined as

H1
L(Rn) = {f ∈ L1(Rn) : SL(f) ∈ L1(Rn)},

where

SL(f)(x) =
( ˆ

Γ(x)

|Qtsf(y)|2 dy dt
tn+1

)1/2

.

Here s is the constant in (1.4) and Γ(x) = {(y, t) ∈ Rn+1
+ : |x − y| < t} is the standard cone of

aperture 1 with vertex x ∈ Rn and Qt = tLe−tL = −t ddte
−tL.

For any β > 0, a function f ∈ L2
loc(Rn) is said to be a function of β-type if f satisfies

(ˆ
Rn

|f(x)|2

1 + |x|n+β
dx
)1/2

≤ c <∞. (1.11)

Denote by Mβ the collection of all functions of β-type. For f ∈ Mβ , the norm of f in Mβ is

defined by

‖f‖Mβ
=
( ˆ

Rn

|f(x)|2

1 + |x|n+β
dx
)1/2

.

It is shown in [DY] thatMβ is a Banach space with respect to the norm ‖f‖Mβ
. For any given

operator L, we let

Θ(L) = sup{η : (1.5) holds for (1.10)}.

Then we define M =MΘ(L) if Θ(L) < ∞; M =
⋃

0<β<∞Mβ if Θ(L) = ∞. The BMO space

associated to L is defined as

BMOL(Rn) = {f ∈M : sup
B

1

|B|

ˆ
B

|f(x)− e−r
s
BLf(x)| dx <∞},

where the sup is taken over all balls in Rn, rB is the radius of the ball B and s is the constant

in (1.4).

The main result of [DY] is the following:

Theorem 1.2 (Duong–Yan). Assume that L satisfies (i) and (ii). Then,

(H1
L(Rn))′ = BMOL∗(Rn).
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In subsequent work, L.X. Yan [Ya] generalized those to the Hardy space Hp
L(Rn) for all

0 < p ≤ 1.

Recently, P. Auscher, A. McIntosh and E. Russ [AMcR], and Hofmann and Mayboroda

[HMa], treated Hardy spaces Hp
L, p ≥ 1, (and in the latter paper, BMO spaces) adapted,

respectively, to the Hodge Laplacian on a Riemann manifold with doubling measure, and to

a second order divergence form elliptic operator on Rn with complex coefficients, in which

settings pointwise heat kernel bounds may fail. By making use of a notion of “L-cancellation” of

molecules, they studied properties of the Hardy space H1
L including a molecular decomposition,

a square function characterization, its dual space and many others. Furthermore, in [HLMMY],

S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L.X. Yan developed the theory of H1 and BMO

spaces associated with an operator L on spaces of homogeneous type X. The assumptions of L

are the following:

(a) L is a non-negative self-adjoint operator on L2(X);

(b) The analytic semigroup {e−tL}t>0 satisfies the Davies–Gaffney condition. That is, there

exist constants C, c > 0 such that for any open subsets U1, U2 ⊂ X,

|〈e−tLf1, f2〉| ≤ C exp
(
− dist(U1, U2)2

ct

)
‖f1‖L2(X)‖f2‖L2(X), ∀t > 0, (1.12)

for every fi ∈ L2(X) with supp fi ⊂ Ui, i = 1, 2, where

dist(U1, U2) = inf
x∈U1,y∈U2

d(x, y).

For this Hardy space H1
L, they obtained an atomic decomposition, that is, any function

f ∈ H1
L can be represented as sum of atoms which are compactly supported.

1.2 Preliminaries

1.2.1 Notation

We collect here some standard notation we shall employ throughout this thesis.
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All functions appearing in this thesis shall be measurable, have domain Rn, and be

complex-valued unless stated otherwise. We will reserve the letter n to denote the dimension of

the Euclidean space Rn. We use the usual definitions N = {0, 1, 2, . . .} for the natural numbers

and Z for the integers.

For a multi index κ = (κ1, κ2, . . . κn), κj ∈ N, we define |κ| = κ1 + κ2 + . . . κn and

Dκ = ∂κ1
x1
∂κ2
x2
. . . ∂κnxn

where ∂xj is the partial derivative with respect to xj . We also use the obvious notation

xκ = xκ1
1 xκ2

2 . . . xκnn

for x = (x1, . . . , xn) ∈ Rn.

We use D to denote the family of all dyadic cubes in Rn and Dj to be the family of dyadic

cubes of the jth resolution. The cubes of Dj have sidelength equal to 2−j . Let us explain briefly

how to obtain D. Consider firstly the set of cubes of form [k1, k1+1)×[k2, k2+1)×· · ·×[kn, kn+1)

where ki ∈ Z for i = 1, 2, . . . , n, which all have sidelength 1. We call this set D0. Next we bisect

each cube of D0 to obtain a new collection of cubes. We call this new collection D1, each cube

of this collection having sidelength 1/2. We could also double each cube of D0 and obtain a

collection of cubes of sidelength 2. We call this collection D−1. We see that

D =
⋃
j∈Z
Dj

For α ∈ R we use the notation [α] to denote the integer part of α, i.e.

[α] = max{k ∈ Z : k ≤ α}

We will also make use of the usual definitions,

η̃(y) = η(−y),

and

τyη(x) = η(x− y).
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Our underlying measure space, unless otherwise noted, will be Rn with the Lebesgue

measure. Given a measurable set E ⊂ Rn we write |E| to mean the Lebesgue measure of E.

The notation
´
E
f(x) dx denotes the Lebesgue integral of f over E. At times we often drop the

dx to simplify notation. We also use the notation

ˆ
E

f =
1

|E|

ˆ
E

f

to mean the average of f over the measurable set E.

Given a measure space (X,µ) and 1 ≤ p <∞, we denote by Lp(X,µ) the Banach space

of complex valued functions on X that are p-integrable. That is, we say that f ∈ Lp(X,µ) if

the Lp(X,µ)-norm of f ,

‖f‖Lp(X) =
(ˆ

X

|f |p dµ
)1/p

is finite. When X = Rn and dµ = dx and we will often write Lp in place of Lp(Rn). If

dµ = w dx for some locally-integrable function w, then we write Lp(w) instead. When we use

the expressions almost everywhere or almost every x (abbreviated “a.e.” or “a.e.x”) we mean

that the properties to which they refer hold except on a set of measure zero. The scalar product

in L2(X) is denoted by 〈·, ·〉.

Given normed spaces
(
X, ‖·‖X

)
and

(
Y, ‖·‖Y

)
, the expression

T : X → Y

will mean that T is a bounded mapping or operator (or admits a bounded extension) from X

into Y . In this case we write ‖T‖X→Y to mean the operator norm of T , defined as

‖T‖X→Y = inf{C > 0 : ‖Tx‖Y ≤ C ‖x‖X}.

When we refer to a ball centred at x ∈ Rn with radius r > 0, we mean the open set

B(x, r) = {y ∈ Rn : |x− y| < r} .

When we mention ‘a ball B’ we mean that a ball with a designated centre xB and radius rB

has been chosen and fixed. By a cube Q = Q(xQ, lQ) in Rn we mean a cube centred at xQ
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with sidelength lQ, and with sides parallel to the coordinate axes. If λ > 0 then we write

λB = B(xB , λrB) (respectively λQ = Q(xQ, λlQ)) to mean the ball with the same centre as B

but with radius dilated by a factor of λ (respectively a cube with the same centre as Q but with

sidelength dilated by a factor of λ).

We define the distance between two subsets E,F ⊂ Rn as

dist(E,F ) = inf{|x− y| : x ∈ E, y ∈ F}.

The notation 1E will be used to denote the indicator or characteristic function of the set E:

1E(x) = 1 if x ∈ E and 0 if x /∈ E.

Given a function γ : Rn → (0,∞), we define balls associated to γ by B(x, γ(x)). We shall

use the notation Bγ(x) = B(x, γ(x)). When we mention a ball Bγ we mean that a ball with a

designated centre xB and radius γ(xB) has been fixed. That is, Bγ = B(xB , γ(xB)).

We will often discretise the space Rn into concentric annuli centred at a fixed ball B as

follows:

Uj(B) =


B j = 0

2jB\2j−1B j ≥ 1

We can replace B by the balls Bγ or a cube Q, with the obvious modifications.

Given a number p ∈ [1,∞] we shall use the notation p′ to denote the conjugate exponent

of p. That is, p and p′ satisfy the relationship 1/p + 1/p′ = 1. We also write p∗ to denote the

Sobolev exponent of p. This is defined as

p∗ =


np

n− p
p < n

∞ p ≥ n

We will also make use of the lp spaces. We say the sequence (ak)k∈Z of complex numbers

belongs to lp if

‖(ak)k∈Z‖lp =
(∑
k∈Z
|ak|p

)1/p

<∞.

We note that the lp spaces are monotone in the sense that lp ⊆ lq whenever p ≤ q. This is a
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consequence of the easily proven fact that

‖(ak)k∈Z‖lq ≤ ‖(ak)k∈Z‖lp

for any p ≤ q.

For an open subset X of Rn and k ∈ N we denote by Ck(X) the space of all continuous

functions on X which have continuous partial derivatives up to order k. As remarked above when

X = Rn we will use the short hand Ck = Ck(Rn). We denote by P the set of all polynomials.

A function f is in the Schwartz class, S(Rn) if it is infinitely differentiable and if all of its

derivatives decrease rapidly at infinity; that is, if for all multiindices α and β there exist positive

constants Cα,β such that

sup
x∈Rn

∣∣xα∂βf(x)
∣∣ = Cα,β <∞.

The dual of S, that is, the space of bounded linear functionals on S, S ′, is called the space of

tempered distributions. A linear map T from S to C is in S ′ if

lim
k→∞

T (φk) = 0 whenever lim
k→∞

φk = 0 in S.

The Fourier transform will initially be defined for any ψ ∈ L1 by

ψ̂(ξ) =

ˆ
Rn
ψ(x)e−2πix·ξ dx.

We then extend the Fourier Transform to L2 and S ′ in the usual manner. Throughout this

thesis the notation ψ̂ will always denote the Fourier transform of ψ.

For measurable functions ψ and η, we define the convolution ψ ∗ η by

ψ ∗ η(x) =

ˆ
Rn
ψ(x− y)η(y) dy,

whenever the last integral is defined. We note that for p ≥ 1 we have Young’s Inequality

‖ψ ∗ η‖p ≤ ‖ψ‖1‖η‖p.

The convolution can also be extended extended to S ′. For f ∈ S ′ and φ ∈ S we define

φ ∗ f(x) = f(τxφ̃).



13

It is well known that the function φ ∗ f ∈ C∞, and moreover, that φ ∗ f is not increasing too

quickly in the sense that there exists k ∈ N such that, for every x ∈ Rn,

|φ ∗ f(x)| ≤ C(1 + |x|)k.

Let 0 < t <∞. We define the dilation ψt by

ψt(x) = t−nψ(x/t).

For a discrete parameter j ∈ Z we make the slight abuse of notation and write

ψj(x) = ψ2−j (x) = 2jnψ(2jx).

We have the following result. Let ψ ∈ L1 with ψ̂(0) = 1. If g ∈ Lp ∩C0 for 1 ≤ p ≤ ∞ we have,

for every x ∈ Rn,

lim
t→0

ψt ∗ g(x) = g(x). (1.13)

A similar result holds when (1 + | · |)λψ(·) ∈ L1 and (1 + | · |)−λg(·) ∈ L∞ ∩ C0, since then the

convolution ψ ∗ g is well-defined. We remark that (1.13) also applies when ψ ∈ S and g ∈ S ′,

since then again the convolution ψ ∗ g is well-defined. However the convergence is now in S ′.

Let k ∈ Z. We say ψ ∈ L1 has k vanishing moments if for every |κ| ≤ k we have

ˆ
Rn
xκψ(x) dx = 0. (1.14)

If k < 0 we make the convention that no moment condition is required. It is easy to see that if

ψ ∈ S then Dκψ has |κ|−1 vanishing moments, thus taking derivatives gives vanishing moments.

The following theorem shows that in fact the converse is also true.

Theorem 1.3 ([BT2]). Suppose µ ∈ S has k vanishing moments. Then for every |κ| = k + 1

there exists µκ ∈ S such that

µ =
∑
|κ|=k+1

Dκµκ.

We remark that if ψ̂ vanishes in a neighbourhood of the origin then ψ has infinite vanishing

moments. This in turn implies ˆ
Rn
ρ(x)ψ(x) dx = 0
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for any polynomial ρ.

Let ψ ∈ L1. We say ψ satisfies the Tauberian condition if for every |ξ| = 1 there exists a

c > 0 and 0 < 2σ ≤ % <∞ such that for each σ < t < %

|ψ̂(tξ)|2 ≥ c > 0. (1.15)

The Tauberian condition implies that the family of functions (ψ̂(2−jξ))j∈Z do not simultaneously

vanish for every |ξ| > 0. This observation allows one to construct a function η such that for

every |ξ| > 0 we have the equality

∑
j∈Z

ψ̂(2−jξ)η̂(2−jξ) = 1.

Formally, by multiplying both sides by µ̂ and taking the inverse transform, this equality would

then give the representation, the Calderón reproducing formula

µ(x) =
∑
j∈Z

ψj ∗ ηj ∗ µ(x). (1.16)

The Poisson kernel on Rn is given by

P (x) =
Γ(n+1

2 )

π
n+1

2

1

(1 + |x|2)
n+1

2

where Γ(z) is the gamma function given by Γ(z) =
´∞

0
tz−1e−t dt for complex number z with

Re z > 0.

On Rn the Riesz transforms associated to L are ∂jL
−1/2 for j ∈ {1, ..., n}. We set

∇L−1/2 = (∂1L
−1/2, . . . , ∂nL

−1/2) and hence

∣∣∇L−1/2f
∣∣ =

( n∑
j=1

∣∣∂jL−1/2f
∣∣2)1/2

.

The second-order Riesz transforms associated to L are ∂j∂kL
−1 for j, k ∈ {1, ..., n}. We

take ∇2L−1 to mean the n× n matrix (∂j∂kL
−1)j,k, and also

∣∣∇2L−1f
∣∣ =

( n∑
j,k=1

∣∣∂j∂kL1−f
∣∣2)1/2

.

The following are well known representation formulae.

L−α/2 =
1

Γ(α/2)

ˆ ∞
0

e−tL
dt

t1−α/2
, α > 0,
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∇L−1/2 =
1√
π

ˆ ∞
0

∇e−tL dt√
t
,

∇2L−1 =

ˆ ∞
0

∇2e−tL dt.

One can arrive at these via functional calculus or spectral theory (see [Ha3]).

Throughout the thesis, we always use C and c to denote positive constants that are

independent of the main parameters involved but whose values may differ from line to line. We

shall write A . B if there is a universal constant C so that A ≤ CB and A ≈ B if A . B and

B . A.

1.2.2 Schrödinger operators

In this section we give the definition of the Schrödinger operator via forms and introduce

the semigroup associated to this operator. For more on forms, operators and semigroups we

refer the reader to [Da1, Ou, Ha3].

Let n ≥ 1 and V be a non-negative locally-integrable function on Rn. We define the

form QV by

QV (u, v) =

ˆ
Rn
∇u · ∇v +

ˆ
Rn
V uv

with domain

D(QV ) =
{
u ∈W 1,2(Rn) :

ˆ
Rn
V |u|2 <∞

}
.

It is well known that this symmetric form is closed. It was also shown by Simon [Si2] that this

form coincides with the minimal closure of the form given by the same expression but defined

on C∞0 (Rn). In other words, C∞0 (Rn) is a core of the form QV .

Let us denote by L the self-adjoint operator associated with QV . Its domain is

D(L) =
{
u ∈ D(QV ) : ∃ v ∈ L2(Rn) with QV (u, ϕ) =

ˆ
vϕ, ∀ϕ ∈ D(QV )

}
.

We write formally L = −∆ + V .

We now introduce the heat kernel associated to L. Consider the following parabolic
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equation

( ∂
∂t

+ L
)
u(x, t) = 0, (x, t) ∈ Rn × (0,∞).

We are interested in the fundamental solution Γ(x, y, t) of this equation. That is, Γ satisfies, for

each y ∈ Rn

( ∂
∂t

+ L
)

Γ(x, y, t) = 0, ∀x ∈ Rn, x 6= y, t > 0,

lim
t→0

Γ(x, y, t) = δ(x− y).

This fundamental solution is called the heat kernel of L. We use the notation pt(x, y) in place

of Γ(x, y, t). The heat kernel generates a semigroup family of integral operators associated to L,

which we shall denote by
{
e−tL

}
t>0

and refer to as the heat semigroup associated to L. That

is, pt(x, y) is the integral kernel associated to e−tL in the sense that

e−tLf(x) =

ˆ
Rn
pt(x, y) f(y) dy, for any f ∈ L2.

We denote by ht(x, y) the heat kernel of −∆ in Rn. When n ≥ 3 for each x, y ∈ Rn and t > 0

it is well known that

ht(x, y) =
1

(4πt)n/2
e−|x−y|

2/4t. (1.17)

This is the integral kernel of the semigroup generated by −∆. That is,

et∆f(x) =

ˆ
Rn
ht(x, y)f(x) dy.

We also record the following fact.

( ∂
∂t

+ L
)−1

f(x, t) =

ˆ t

0

e−(t−s)Lf(x, s) ds =

ˆ
Rn

ˆ t

0

pt−s(x, y)f(y, s) ds dy. (1.18)

That is, the integral kernel of
( ∂
∂t

+ L
)−1

is pt−s(x, y)1(0,t)(s).

A useful formulation of the semigroup property is:

p2t(x, y) =

ˆ
Rn
pt(x, u) pt(u, y) du = e−tLpt(·, y)(x). (1.19)
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for any x, y ∈ Rn and t > 0. Indeed,

ˆ
p2t(x, y)f(y) dy = e−2tLf(x) = e−tLe−tLf(x)

=

ˆ
pt(x, u)e−tLf(u) du

=

ˆ
pt(x, u)

(ˆ
pt(u, y)f(y) dy

)
du

=

ˆ (ˆ
pt(x, u) pt(u, y) du

)
f(y) dy

=

ˆ
e−tLpt(x, y)f(y) dy.

The following perturbation formula holds as a consequence of perturbation for semigroups of

operators (see for example [Pa]).

et∆ − e−tL =

ˆ t

0

e(t−s)∆V e−sLds =

ˆ t

0

es∆V e−(t−s)Lds. (1.20)

This gives

ht(x, y)− pt(x, y) =

ˆ t

0

ˆ
Rn
ht−s(x, z)V (z)ps(z, y) dz ds

=

ˆ t

0

ˆ
Rn
hs(x, z)V (z)pt−s(z, y) dz ds.

We remark that we can interchange the role of −∆ and L in (1.20).

In Section 4.2 we study decomposition of Besov spaces associated with Schrödinger op-

erators.

1.2.3 The reverse Hölder class

In this section we define a class of potentials, and give a list of their known properties.

These properties originated in [Sh].

Definition 1.4 (Reverse Hölder class). Let 1 < q <∞. We say that a non-negative and locally

integrable function V belongs to the reverse Hölder class of order q if there exists C > 0 such

that (ˆ
B

V q
)1/q

≤ C
ˆ
B

V
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for all balls B. In this case we write V ∈ Bq. We say that V ∈ B∞ if there exists C > 0 such

that for all balls B

V (x) ≤ C
ˆ
B

V a.e. x ∈ B.

For all 1 < s < q, it is easily seen that Bs ⊃ Bq. Furthermore, V (x)dx is a doubling measure.

That is, there is a constant C0 > 1 such that

ˆ
2B

V (x) dx ≤ C0

ˆ
B

V (x) dx.

It follows that for each λ ≥ 1 there exists n0 > 0 and C > 0 such that

ˆ
λB

V (x) dx ≤ Cλn0

ˆ
B

V (x) dx. (1.21)

In fact we can take n0 = log2 C0.

Definition 1.5 (Critical radius). For V ≥ 0 we define the critical radius associated to V at x

by the following expression.

γ(x) = γ(x, V ) = sup
{
r > 0 : r2

ˆ
B(x,r)

V ≤ 1
}
. (1.22)

Lemma 1.6 ([Sh] Lemmas 1.2 and 1.8). If n ≥ 1 and V ∈ Bq for some q > 1 then there exists

C > 0 such that the following holds:

(a) for each λ > 1 and all balls B,

r2
B

ˆ
B

V ≤ Cλn/q−2(λrB)2

ˆ
λB

V ,

(b) for all balls B satisfying rB ≥ γ(xB),

r2
B

ˆ
B

V ≤ C
( rB
γ(xB)

)σ
where σ = n0 − n+ 2.

Lemma 1.7 ([Sh] estimates 1.6 and 1.7). Let V ∈ Bq. Then the following holds.

(a) If q > n/2 then there exists C = C(n, q, V ) such that for any ball B,

ˆ
B

V (x)

|xB − x|n−2 dx ≤
C

rn−2
B

ˆ
B

V (x) dx.
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(b) If q ≥ n then there exists C > 0 such that for any ball B,

ˆ
B

V (x)

|xB − x|n−1 dx ≤
C

rn−1
B

ˆ
B

V (x) dx.

The next property states that the function γ is slowly varying.

Lemma 1.8 ([Sh] Lemma 1.4). Let V ∈ Bq with q ≥ n/2. Then there exists C0 > 0 and κ0 ≥ 1

with

C−1
0 γ(x)

(
1 +
|x− y|
γ(x)

)−κ0

≤ γ(y) ≤ C0 γ(x)
(

1 +
|x− y|
γ(x)

) κ0
κ0+1

. (1.23)

In particular if x, y ∈ B(xB , λγ(xB)) for some λ > 0, then

γ(x) ≤ Cλγ(y) (1.24)

where Cλ = C2
0 (1 + λ)

2κ0+1
κ0+1 .

A consequence of (1.24) is that Rn admits a covering with ‘critical balls’ that has bounded

overlap.

Lemma 1.9 ([DZ1]). Let V ∈ Bq with q ≥ n/2. Let γ : Rn → (0,∞) be as defined in (1.22).

Then there exists a countable collection of critical balls
{
Bγ
j

}
j

=
{
B
(
xBj , γ(xBj )

)}
j

satisfying

the following properties.

(i)
⋃
jB

γ
j = Rn.

(ii) For every σ ≥ 1 there exists constants C and N such that
∑
j 1σBγ

j
≤ CσN .

Remark 1.10. We note the following dilation. Set σ = C2κ/(κ+1) where C and κ are from (1.23).

Then there exists C and Ñ such that
∑
j 1σBγ

j
≤ CσÑ and it follows from (1.23) that for each

j, ⋃
x∈Bγ

j

Bγ(x) ⊆ B̃γ
j

where B̃γ
j = σBγ

j .
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1.3 Main results

In Chapter 2 we give some background of classical Besov spaces and Triebel–Lizorkin spaces. We

look at the main stages of development of classical Besov spaces and Triebel–Lizorkin spaces. We

then give definitions and some properties (Theorem 2.1) of classical Besov spaces and Triebel–

Lizorkin spaces. We also give further properties of classical Besov spaces, including decomposi-

tion (Theorem 2.10), potential theory and singular integrals on Besov spaces.

The main theme of this thesis is to study Besov spaces associated with operators. Our

study of Besov spaces associated with operators is divided over three chapters, Chapters 3, 4 and

5. We study Besov spaces associated with an operator L under the assumption that L generates

an analytic semigroup e−tL with Gaussian kernel bounds on L2(X ), where X is a quasi-metric

space of polynomial upper bound on volume growth. We extend certain results in [BDY] to a

more general setting when the underlying space can have different dimensions at 0 and infinity.

In Section 3.2, we give definitions of quasi-metric spaces of polynomial upper bounds on

volume growth, then some assumptions on the operator L, and define Besov norms associated

with L (Definition 3.4). We also give an upper bound estimate of the Besov norm of the heat

kernels (Proposition 3.6).

In Section 3.3, we introduce the space of test functions associated with L (Definition 3.7).

We then define the Besov norms for linear functionals (on space of test functions) and Besov

spaces associated with L (Definition 3.9). In order to study properties of these Besov spaces, we

prove several versions of Calderón reproducing formulas for linear functionals (Theorems 3.3,

3.13 and 3.14). Furthermore, we show that the classical Besov spaces Bαp,q(Ω) and zB
α
p,q(Ω) are

special cases in this theory (Proposition 3.15).

In Section 4.1, we study an embedding theorem (Theorem 4.1) for the Besov spaces and

give discrete characterizations of the Besov norms associated to operators (Proposition 4.3).

We also study the equivalence of the Besov norms with respect to different functions of L

(Proposition 4.4). We extend the Besov norm equivalence to more general class of functions
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Ψt(L) with suitable decay at 0 and infinity, and to non-integer k ≥ 1 (Propositions 4.5 and 4.6).

Then we study the behaviour of fractional integrals on the Besov spaces (Theorem 4.9).

In Section 4.2, we study decomposition of Besov spaces associated with Schrödinger

operators with non-negative potentials satisfying reverse Hölder estimates on Rn (Theorem

4.13). We also show that, in some special cases, the classical Besov spaces are proper subspaces

of these spaces (Theorem 4.14). We also extend the decomposition of Besov spaces associated

with Schrödinger operators to more general values α, p, q (Theorem 4.19).

The main aim of chapter 5 is to lay out the theory of Besov spaces associated to opera-

tors L whose heat kernel satisfies the Gaussian upper bounds on spaces of homogeneous type.

Adapting some ideas in [BDY], we construct the Besov spaces Ḃα,Lp,q (X) associated to the oper-

ators. Note that since the assumption of polynomial upper bound on volume growth in [BDY]

do not include the spaces of homogeneous type, some refinements and improvements would be

required. The main contribution of chapter 5 is to investigate the atomic and molecular decom-

positions of functions in new Besov spaces Ḃα,Lp,q (X). (Note that there are no results on atomic

and molecular decompositions for the general Besov spaces Ḃα,Lp,q (X) in [BDY]). Precisely, we

are able to prove the following results:

(i) Under the Gaussian upper bound assumption only, we prove that each function in our

Besov spaces Ḃα,Lp,q (X), with −1 < α < 1 and 1 ≤ p, q ≤ ∞, admits a linear molecular

decomposition. We would like to emphasize that there are no smoothness conditions on the

molecules. Conversely, each linear molecular decomposition belongs to the Besov spaces

Ḃα,Lp,q (X), with −1 < α < 0 and 1 ≤ p, q ≤ ∞. See Theorem 5.20 and Theorem 5.22.

(ii) Under the Gaussian upper bound, Hölder continuity and conservation assumptions, we

prove the theory of molecular decomposition on Besov spaces Ḃα,Lp,q (X), with −1 < α < δ

and 1 ≤ p, q ≤ ∞ where δ is a positive constant depending on the smoothness order of the

heat kernel of the operator L. See Theorem 5.27.

(iii) We study the theory of molecular decomposition on Besov spaces Ḃα,Lp,q (X), with −1 <
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α < δ0 and 1 ≤ p, q ≤ ∞ for some δ0, associated with operators of Schrödinger type. It

is worth noting that the conservation property is not assumed here. See Theorem 5.30.

Note that our findings have applications in various settings such as Schrödinger operators,

degenerate Schrödinger operators on Rn and Schrödinger operators on Heisenberg groups

and connected and simply connected nilpotent Lie groups.

(iv) In the particular case p = q, the atomic decomposition of Besov spaces Ḃα,Lp,q (X) is also

obtained in Theorem 5.36.

We also carry out the relationship between our Besov spaces Ḃα,Lp,q (X) and the Besov

spaces Ḃαp,q(X) of Han and Sawyer in [HS]. See Section 5.5. We prove the following results:

(i) Under the Gaussian upper bound, Hölder continuity and conservation assumptions, we

show the coincidence between our Besov spaces Ḃα,Lp,q (X) and the Besov spaces Ḃαp,q(X)

for all indices α being close to zero.

(ii) When the operator L is an operator of Schrödinger type, we show the inclusion Ḃαp,q(X) ⊂

Ḃα,Lp,q (X) for some suitable values of p, q and α.

Note that for the investigation on the atomic decomposition, the approach in [HS] was

based on a construction of a family of approximation to the identity and a Calderón reproducing

formula. Roughly speaking, these kernels associated to this family satisfy the Gaussian upper

bound, Hölder continuity and conservation properties. In most parts of our work, we do not need

the conservation assumption. Even if L satisfies the Gaussian upper bound, Hölder continuity

and conservation properties, our obtained results are still new as we do not assume either the

polynomial growth nor the reverse doubling property on the volume of the balls on the underlying

spaces. Moreover, when the order of the family of approximation to the identity is less than 1,

the results on Besov spaces Ḃα,Lp,q (X) in chapter 5 are new for values α being close to −1.

The organisation of chapter 5 is as follows. In Section 5.1, we recall some basic properties

on the regularity of the time derivative of the heat kernels and the covering lemma of Christ in
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[Ch1]. The theory of Besov spaces Ḃα,Lp,q (X) and their basic properties is addressed in Section

5.2. The molecular and atomic decompositions on Besov spaces Ḃα,Lp,q (X) are investigated in

Section 5.3 and Section 5.4, respectively. In Section 5.5, we compare our Besov spaces Ḃα,Lp,q (X)

and Besov spaces Ḃαp,q(X). As applications, in Section 5.6 we study the behaviour of fractional

integrals and spectral multipliers on new Besov spaces Ḃα,Lp,q (X).
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Chapter 2

Classical Besov spaces and Triebel–Lizorkin spaces

In this chapter we give some background of classical Besov spaces and Triebel–Lizorkin spaces.

In Section 2.1 we look at the main stages of development of classical Besov spaces and

Triebel–Lizorkin spaces.

In Section 2.2 we give definitions and some properties of classical Besov spaces and

Triebel–Lizorkin spaces.

In Section 2.3 we give further properties of classical Besov spaces, including decomposi-

tion, potential theory and singular integrals on Besov spaces.

2.1 Main stages of development

We now turn to the background of the theory of Besov spaces and Triebel–Lizorkin spaces.

The theory of Besov spaces has a long history and plays a central part in harmonic analysis and

partial differential equations. The theory of Besov spaces has been an active area of research

in the last few decades because of its important role in the study of approximation of functions

and regularity of solutions to partial differential equations.

Classical theory of Besov spaces, for example, can be found in [Be, Ta, Pe1, Pe, He, Tr1,

St1, FJ1, BPT]. Some of more recent results on Besov spaces are [SW, Tr2, GHL, DHY]. The

studies on Besov spaces on the Euclidean spaces Rn, for example, can be found in [Tr1, Tr2, Be,

BPT2, BPT, BPT1, FJ1]. The theory of Besov spaces on a domain Ω of Rn was investigated

in [Ry1, Ry2, TW]. The recent theory on Besov spaces on the spaces of homogeneous type, for
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example, is developed in [HS, HMY, MY]. A historical account of the subject is beyond the

scope of this thesis, and we refer the reader to [Pe, Tr1, Tr2] for that. We shall, however, briefly

discuss the main stages of its development which are relevant to this thesis.

The Besov spacesBαp,q(Rn) = Bαp,q (also called Lipschitz spaces or Besov–Lipschitz spaces)

were introduced by O.V. Besov [Be, Be1] for α > 0, via the modulus of continuity method. The

works of O.V. Besov, S.M. Nikol’skii, V.P. Il’in, P.J. Lizorkin and their collaborators were

partially motivated by the theory of approximation of functions, see e.g. [BIN, Ni, Tr1].

A short time after the appearance of Besov’s works, M.H. Taibleson [Ta] characterized

Besov spaces by using the Hardy–Littlewood method via the Poisson kernel and the Gaussian

kernel. As a consequence, he also extended the definition of Bαp,q to α ≤ 0. Further works in

this direction were done by T.M. Flett [Fl1, Fl2], R. Johnson [Jo], among others.

The third development came from the works by J. Peetre [Pe1, Pe2, Pe] where the Fourier

analytic method and the real variable techniques (developed by C.L. Fefferman and E.M. Stein

[FS]) were used to obtain some new characterizations. Many contributions in this direction were

also made by H. Triebel and others (see [Tr1, FJ1, FJ2]). J. Peetre also succeeded in extending

the theory to the case where either 0 < p < 1 or 0 < q < 1. After some preliminary results by

Peetre and Triebel, the Hardy–Littlewood type characterization of Besov and Triebel–Lizorkin

spaces was completed by H.-Q. Bui, M. Paluszýnski and M.H. Taibleson [BPT, BPT1], by using

a crucial reproducing formula of A.P. Calderón [JT]. Recent works connected with the Peetre’s

approach include [BZ, DP] where the authors defined certain classes of Besov spaces associated

with the Schrödinger operators.

The classical Besov spaces Bαp,q(Ω) on a domain Ω of Rn are usually defined by either the

restriction method or certain intrinsic characterization. These characterizations of the Besov

spaces have been investigated extensively, see [Tr, Tr1, Mu, Ry1, Ry2, TW]. Another existing

classical Besov space on Ω is the space B̃αp,q(Ω) = zB
α
p,q(Ω) which is defined by“zero extension”

outside Ω (see [Tr]). When Ω is bounded and smooth, H. Sikić and M.H. Taibleson [ST] obtained

a Hardy–Littlewood type characterization of zB
α
p,q(Ω) and Bαp,q(Ω) using the kernels of “killed
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Brownian motion” and “reflecting Brownian motion”.

The existence of two different kinds of Besov spaces on a domain is similar to the situation

for the Hardy spaces in the paper [CKS] by D.-C. Chang, S.G. Krantz and E.M. Stein. In all these

works on a general domain Ω, some regularity on the boundary of Ω is assumed. Moreover, the

classical theory of the homogeneous Besov spaces Ḃαp,q(Ω) was not fully developed, due mainly

to the difficulty with the invariance under diffeomorphisms.

2.2 Classical Besov and Triebel–Lizorkin spaces

The Besov and Triebel–Lizorkin spaces have a long history and their properties have been well

studied. As with many function spaces, the Besov and Triebel–Lizorkin spaces come in two vari-

eties, the homogeneous versions, denoted by Ḃαp,q and Ḟαp,q respectively, and the inhomogeneous

versions, denoted by Bαp,q and Fαp,q These types of spaces arise naturally when one considers the

problem of measuring the smoothness of a distribution. There are various ways of measuring the

smoothness of a distribution, one way is to ask for a generalisation of the classical homogeneous

Sobolev spaces Ẇ p,k where, for k ∈ N with k > 0, we define

Ẇ p,k = {f ∈ S ′ : Dκf ∈ Lp ∀ |κ| = k}.

The homogeneous Triebel–Lizorkin space, Ḟαp,q, satisfies this requirement in the sense that

Ḟ kp,2 = Ẇ p,k whenever k ∈ N with k > 0, and 1 < p < ∞. We also remark that the restriction

of f ∈ Ẇ p,k on Rn to Rn−1 belongs to a certain Besov space; see [AF]. These results hint at the

important applications of Triebel–Lizorkin and Besov spaces to the study of partial differential

equations (PDEs), as the Sobolev spaces are widely used in the theory of PDEs.

The scale of spaces, Ḟαp,q, also includes other important function spaces such as the Hardy

space, Hp, where we define, using the characterisation of Fefferman and Stein (see [St2], pg 91),

Hp =
{
f ∈ S ′ : ‖f‖Hp =

∥∥ sup
t>0
|φt ∗ f |

∥∥
p
<∞

}
with φ ∈ S such that φ̂(0) > 0. In this case it can be proven that we have the equivalence

Ḟ 0
p,2 = Hp; see [Bu1]. Throughout this thesis we restrict our attention to the homogeneous
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Besov and Triebel–Lizorkin spaces. We refer the interested reader to [Tr1] and [Pe] for more on

the history and origins of the Besov and Triebel–Lizorkin spaces.

2.2.1 Definitions

The definition of Besov and Triebel–Lizorkin spaces will require a kernel ϕ ∈ S satisfying,

for any ξ ∈ Rn\{0}, ∑
j∈Z

ϕ̂(2−jξ)ϕ̂(2jξ) = 1 (2.1)

and moreover

supp ϕ̂ ⊆ {1/2 ≤ |ξ| ≤ 2}. (2.2)

Note that ϕ̂j(ξ) = ϕ̂(2−jξ) where ϕj(x) = 2jnϕ(2jx), thus

supp ϕ̂j(ξ) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}

and so (ϕ̂j)j∈Z decomposes Rn into dyadic annuli. Let φ̂0 =
∑
j≤0 ϕ̂(2−jξ).

We can now define the Besov space, Bαp,q, as follows. For 0 < p, q ≤ ∞, α ∈ R, and any

distribution f ∈ S ′, we define

‖f‖Bαp,q = ‖φ0 ∗ f‖p +

(∑
j≥1

(2jα‖ϕj ∗ f‖p)q
)1/q

and

Bαp,q = {f ∈ S ′ : ‖f‖Bαp,q <∞}.

Similarly, for α ∈ R, 0 < q ≤ ∞, and 0 < p <∞, we let

‖f‖Fαp,q = ‖φ0 ∗ f‖p +

∥∥∥∥(∑
j≥1

(2jα|ϕj ∗ f |)q
)1/q∥∥∥∥

p

and define the Triebel–Lizorkin space, Fαp,q, by

Fαp,q = {f ∈ S ′ : ‖f‖Fαp,q <∞}.

We define the homogeneous Besov space, Ḃαp,q, as follows. For 0 < p, q ≤ ∞, α ∈ R, and

any distribution f ∈ S ′, we define

‖f‖Ḃαp,q =

(∑
j≥1

(2jα‖ϕj ∗ f‖p)q
)1/q
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and

Ḃαp,q = {f ∈ S ′ : ‖f‖Ḃαp,q <∞}.

Similarly, for α ∈ R, 0 < p, q ≤ ∞, we let

‖f‖Ḟαp,q =

∥∥∥∥(∑
j≥1

(2jα|ϕj ∗ f |)q
)1/q∥∥∥∥

p

and define the homogeneous Triebel–Lizorkin space, Ḟαp,q, by

Ḟαp,q = {f ∈ S ′ : ‖f‖Ḟαp,q <∞}.

The following Poisson integral definition is due to Taibleson [Ta]: Fix k ∈ N and for

0 < α < k, 1 ≤ p, q ≤ ∞ we define

Ḃαp,q = {f ∈ Lp :

(ˆ ∞
0

(t−α‖tk ∂
k

∂tk
e−t
√

∆‖Lp)q
dt

t

)1/q

<∞}.

Note that the assumption (2.2) on ϕ implies that ϕ has infinite vanishing moments. Thus,

for any polynomial ρ, we have ϕ ∗ ρ = 0 and as a result

‖ρ‖Ḃαp,q = 0,

hence ‖ · ‖Ḃαp,q is not a norm. However, if we consider elements of Ḃαp,q modulo polynomials,

then ‖ · ‖Ḃαp,q does form a norm (quasi-norm if 0 < min{p, q} < 1). Moreover, if we regard Ḃαp,q

as a subset of S ′/P, then Ḃαp,q is a Banach space (quasi-Banach space if 0 < min{p, q} < 1); see

[Bu1]. A similar comment applies for the Triebel–Lizorkin space Ḟαp,q. For the remainder of this

thesis we will slightly abuse notation by refering to the quasi-norms, ‖ · ‖Ḃαp,q and ‖ · ‖Ḟαp,q , as

norms.

We also remark that different choices of ϕ satisfying (2.1) and (2.2) lead to the same

spaces Ḃαp,q and Ḟαp,q with equivalent norms. We refer the reader to the work of J. Peetre, [Pe2],

for a proof of this fact.

2.2.2 Properties of Besov and Triebel–Lizorkin spaces

We note the following elementary properties of the (homogeneous) Besov and Triebel–

Lizorkin spaces.
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Theorem 2.1. Let 0 < p <∞, 0 < q ≤ ∞ and α ∈ R.

(i) The spaces Bαp,q and Fαp,q are (semi) Banach spaces and are independent of the generating

function ϕ. Moreover S forms a dense subspace if p, q <∞.

(ii) The homogeneous spaces Ḃαp,q and Ḟαp,q are (semi) Banach spaces when considered modulo

polynomials. Moreover the collection of all ϕ ∈ S with infinite vanishing moments (see

(1.14)) forms a dense subspace if p, q <∞.

(iii) For any f ∈ S ′ we have

‖f‖Bα
p,max{p,q}

≤ ‖f‖Fαp,q ≤ ‖f‖Bαp,min{p,q}
,

‖f‖Ḃα
p,max{p,q}

≤ ‖f‖Ḟαp,q ≤ ‖f‖Ḃαp,min{p,q}
,

and, if 0 < q1 < q2 ≤ ∞,

‖f‖Bαp,q2 ≤ ‖f‖Bαp,q1 , ‖f‖Fαp,q2 ≤ ‖f‖Fαp,q1 ,

‖f‖Ḃαp,q2 ≤ ‖f‖Ḃαp,q1 , ‖f‖Ḟαp,q2 ≤ ‖f‖Ḟαp,q1 .

Moreover,

‖f‖
Ḃ
α−n/p
∞,q

≤ C‖f‖Ḃαp,q .

(iv) If α > n/p then f ∈ Ḃαp,q implies that f is a slowly increasing, continuous function.

(v) For 0 < p1 < p2 ≤ ∞ we have the Sobolev type embedding

‖f‖Bαp2,q
≤ C‖f‖

B
α+ n

p1
− n
p2

p1,q

(vi) Convergence in Bαp,q, F
α
p,q, (Ḃαp,q or Ḟαp,q) implies convergence in S ′ (S ′/P).

Proof. The proof of properties (i), (ii) and (vi) can be found in [Tr1], (iii) is a straightforward

application of the Minkowski inequality and the lp estimate

‖(aj)‖lp ≤ ‖(aj)‖lr

which holds for r ≤ p. See [Bu1].

Property (v) follows from an application of the following lemma.
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Lemma 2.2. Assume 1 ≤ p ≤ r ≤ ∞. Then

‖ϕj ∗ f‖Lr ≤ C2j(
n
p−

n
r )‖ϕj ∗ f‖Lp .

Proof. Let φ ∈ S satisfy φ̂(ξ) = 1 for 2−1 ≤ |ξ| ≤ 2. Then ϕ̂ = ϕ̂φ̂ and so

ϕj ∗ f = φj ∗ ϕj ∗ f.

Recalling Young’s inequality for convolutions

‖g ∗ h‖Lr ≤ ‖g‖Lq‖h‖Lp

where 1 + 1
r = 1

q + 1
p we have

‖ϕj ∗ f‖Lr

= ‖φj ∗ ϕj ∗ f‖Lr

≤ ‖φj‖Lq‖ϕj ∗ f‖Lp .

Thus as

‖φj‖Lq

= 2j(n−
n
q )‖φ‖Lq

≤ C2j(
n
p−

n
r )

the result follows.

To prove (iv), suppose f ∈ Ḃαp,q and α > n/p. We begin by defining, for |ξ| > 0,

φ̂(ξ) =

0∑
j=−∞

ϕ̂(2−jξ)ϕ̂(2−jξ)

where, by our convention, ϕ ∈ S satisfies (2.1) and (2.2). If we take φ̂(0) = 1 then φ satisfies

φ̂(ξ) =


1, |ξ| ≤ 1

0, |ξ| ≥ 2.
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and hence φ ∈ S. Moreover, for m,M ∈ Z with M > m,

M∑
j=m+1

ϕ̂(2−jξ)ϕ̂(2−jξ)

=

M∑
j=−∞

ϕ̂(2−jξ)ϕ̂(2−jξ)−
m∑

j=−∞
ϕ̂(2−jξ)ϕ̂(2−jξ)

= φ̂(2−Mξ)φ̂(2−mξ)

and hence
M∑

j=m+1

ϕj ∗ ϕj(x) = φM (x)− φm(x). (2.3)

Take µ ∈ S such that

µ̂(ξ) =


1, |ξ| ≤ 2

0, |ξ| ≥ 3

and let g = f −µ∗f . Since µ̂ = 1 on the support of φ̂ we have, for any ξ ∈ Rn, φ̂(ξ)µ̂(ξ) = φ̂(ξ).

Therefore

φ ∗ g = φ ∗ f − φ ∗ η ∗ f = φ ∗ f − φ ∗ f = 0. (2.4)

Similarly, as supp ϕ̂ = {1/2 ≤ |ξ| ≤ 2}, we have ϕj ∗ µ = 0 whenever j ≥ 3. Thus

ϕj ∗ g = ϕj ∗ f (2.5)

for any j ≥ 3. Combining (2.4) and (2.5) with (2.3) we obtain, for any 3 ≤ m < M ,

φM ∗ g − φm ∗ g =

M∑
j=m+1

ϕj ∗ ϕj ∗ f.

Therefore, using the assumption f ∈ Ḃαp,q together with property (iii), we see that

‖φM ∗ g − φm ∗ g‖∞

≤ C
M∑

j=m+1

‖ϕj ∗ f‖∞

≤ C
M∑

j=m+1

2−j(α−n/p)

and hence the family of functions (φM ∗ g)M∈N forms a Cauchy sequence in L∞. Thus, as

L∞ forms a Banach space, there exists an h ∈ L∞ such that φM ∗ g converges to h uniformly.
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Moreover, the uniform convergence implies that h is also continuous. Finally, since φM ∗ g

converges to g in S ′, we must have g = h ∈ L∞ and therefore, as µ ∗ f is a slowly increasing,

smooth function,

f = g + µ ∗ f

is a slowly increasing, continuous function.

Remark. The important exponents are α and p. The exponent q is used more to fine tune the

function spaces (one should think of q as measuring the difference between say weak-L1 and

L1). The α exponent measures the smoothness of f . To see this pretend for the moment we

know how to differentiate α times for any α ∈ R. Then since we expect ∂αϕj ∼ 2αj(∂αϕ)j and

∂αϕ ∼ ϕ we have

2αjϕj ∗ f ∼ 2jα(∂αϕ)j ∗ f ∼ ∂α(ϕj ∗ f) ∼ ϕj ∗ ∂αf.

Thus f ∈ Ḃαp,q is roughly the same as ∂αf ∈ Ḃ0
p,q and so a large α implies that we have control

over a number of derivatives of f . In other words a large α implies that f should be relatively

smooth.

Property (v) in the above proposition is known as a Sobolev type embedding because it

allows one to trade regularity for integrability. Thus we can make p larger at the expense of

making α smaller.

Another property of the Besov and Triebel–Lizorkin spaces is the following characterisa-

tion obtained in [BPT] and [BPT1]. Before we state the theorem we briefly define the Peetre

maximal function, µ∗kf , by

µ∗kf(x) = sup
y∈Rn

|µk ∗ f(y)|
(1 + |x− y|)λ

where λ > 0 is some fixed constant.

Theorem 2.3. Fix 0 < p, q ≤ ∞ and α ∈ R. Suppose µ ∈ S has [α] vanishing moments (see

(1.14)) and η ∈ S satisfies the Tauberian condition (see (1.15)). Then if λ > n/p and f ∈ S ′,
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there exists a polynomial ρ depending only on f such that

(ˆ ∞
0

(
t−α‖µt ∗ (f − ρ)‖Hp

)q dt
t

)1/q

≤ C1‖f‖Ḃαp,q

≤ C2

(ˆ ∞
0

(
t−α‖ηt ∗ f‖p

)q dt
t

)1/q

. (2.6)

Similarly, if p < ∞ and λ > max{n/p, n/q}, then for any f ∈ S ′ there exists a polynomial ρ

depending only on f such that

∥∥∥∥(ˆ ∞
0

(
t−αµ∗t (f − ρ)

)q dt
t

)1/q∥∥∥∥
p

≤ C1‖f‖Ḟαp,q

≤ C2

∥∥∥∥(ˆ ∞
0

(
t−α|ηt ∗ f |

)q dt
t

)1/q∥∥∥∥
p

. (2.7)

Moreover, the discrete version of both inequalities also holds.

Proof. For a proof, we refer the reader to [BPT] and [BPT1].

We make the following remarks. Firstly, the polynomial term in (2.6) and (2.7) cannot be

removed. To see this note that the infinite vanishing moments of ϕ implies that the convolution

ϕj ∗ f annihilates all polynomials, i.e. ϕ ∗ ρ = 0 for any polynomial ρ. On the other hand,

as we only require µ to have [α] vanishing moments, the convolution µ ∗ ρ will not vanish for

polynomials with degree higher than [α]. Thus taking f = ρ with ρ some polynomial of degree

higher than [α] gives ‖f‖Ḃαp,q = 0 but

(ˆ ∞
0

(
t−α‖µt ∗ f‖Hp

)q dt
t

)1/q

> 0.

Thus the polynomial term in (2.6) cannot be removed. A similar comment applies to the

Triebel–Lizorkin version, (2.7).

Secondly, since ‖µt ∗ f‖p ≤ ‖µt ∗ f‖Hp for all 0 < p, t < ∞ and any µ ∈ S, the above

theorem implies that

(ˆ ∞
0

(
t−α‖µt ∗ (f − ρ)‖p

)q dt
t

)1/q

≤ C‖f‖Ḃαp,q ,
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assuming f ∈ S ′ and µ has [α] vanishing moments. In particular, when p = q =∞, we have

sup
t>0

t−α‖µt ∗ (f − ρ)‖∞ ≤ C‖f‖Ḃα∞,∞ .

Moreover, as remarked in [BPT1], we may replace ‖µt ∗ (f − ρ)‖Hp with ‖µ∗t (f − ρ)‖p in (2.6).

The major reason why these spaces are useful is that the spaces Bαp,q and Fαp,q, as well

as their homogeneous versions, include a large number of the classical function spaces which

appear in analysis.

Theorem 2.4. The following function spaces are equivalent.

Ḟ 0
p,2 ≈ F 0

p,2 ≈ Lp 1 < p <∞

Ḟ 0
p,2 ≈ Hp 0 < p ≤ 1

F 0
p,2 ≈ H

p
loc 0 < p ≤ 1

F sp,2 ≈W s,p ≈ Lps 1 < p <∞

Ḟ sp,2 ≈ Ẇ s,p ≈ L̇ps 1 < p <∞

Ḟ 0
∞,2 ≈ BMO

F 0
∞,2 ≈ bmo

Bα∞,∞ ≈ Λα α > 0

Ḃα∞,∞ ≈ Λ̇α α > 0

Proof. See the first chapter in [Gr2]. The equivalence between Hp
loc and F 0

p,2 is proven in

[Bu1].

Remark. We should mention that although the Besov spaces Bαp,q do not appear so often on the

above list, they are still important. One reason for this is they occur when one tries to restrict

say functions in W s,p to a hyperplane or more generally to some lower dimensional submanifold,

see [AF]. They are also much easier to work with than the Triebel–Lizorkin variants as one takes

the Lp norm first, thus they often appear in nonlinear PDEs as a replacement for the Sobolev

spaces W s,p when some endpoint embedding fails.
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We will briefly sketch one application of the theory of Besov and Triebel–Lizorkin spaces.

This concerns the embedding L∞ ⊂ W s,p which holds for every s > n
p . This embedding is a

simple application of the characterisation of W s,p proved earlier as

‖f‖L∞

≤
∑
j≥0

‖ϕj ∗ f‖L∞

≤ C
∑
j≥0

2j
n
p ‖ϕj ∗ f‖Lp

= ‖f‖
B
n
p
p,1

.

The embedding F sp,2 ⊂ B
n
p

p,1 which holds for every s > n
p then completes the proof. Note that

we have to spend slightly more derivatives than we would like. Scaling would suggest that we

should have the embedding L∞ ⊂ W
n
p ,p, however what we get instead is that L∞ is contained

in the slightly larger space B
n
p

p,1. This is useful as it allows us to take advantage of the endpoint

embedding, often in nonlinear PDEs we cant afford to waste derivatives so using the Besov space

is a useful way to make the most of any regularity our functions have.

We note that the embedding L∞ ⊂ W s,p is known to fail at the endpoint s = n
p . We

illustrate this in the (easier) case p = 2. We need to show there exists f such that

ˆ
Rn

(1 + |ξ|)n|f̂(ξ)|2 dξ <∞

but f /∈ L∞. We define f via its Fourier transform as

f̂ =


1

|ξ|n log |ξ| , |ξ| > 2

1, |ξ| ≤ 2.

It is easy to check f̂ ∈ L2 and so the inverse Fourier transform is well-defined. Similarly we can

check that f ∈W n
2 ,2. On the other hand

f(0) = 2n +

ˆ
|ξ|≥2

1

|ξ|n log |ξ|
dξ =∞

thus an approximation argument can show f /∈ L∞ as required. This example illustrates a useful
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method for finding counter examples, namely using the fact that for p > 1 we have

ˆ
|x|>2

1

|x|n(log |x|)p
dx <∞

while for p = 1 the integral diverges. This is easily proved by noting that

ˆ
1

r(log r)p
dr =


log log r, p = 1

(log r)1−p, p > 1.

2.3 Further properties of classical Besov spaces

2.3.1 Atomic decomposition

We now give an atomic characterization of the Besov spaces. We first define the notion

of smooth atoms.

Definition 2.5. A function aQ ∈ C∞c (Rn) is a smooth N -atom for a cube Q if and only if

(i) supp aQ ⊂ 3Q

(ii)
´
xγaQ(x) dx = 0 for all |γ| ≤ N

(iii) |∂γaQ(x)| ≤ Cγ |Q|−
γ
n−

1
2 for all multi-indices γ ∈ Zn+.

Next we define some sequence spaces.

Definition 2.6. For α ∈ R, 0 < p, q ≤ ∞, we define

ḃαp,q =
{
{sQ}Q∈D : ‖{sQ}‖ḃαp,q <∞

}
where {sQ} is a sequence of complex numbers indexed by the family of all dyadic cubes in Rn,

and

‖{sQ}‖ḃαp,q =

(∑
j∈Z

( ∑
Q∈Dj

(|Q|−
α
n−

1
2 + 1

p |sQ|)p
)q/p)1/q

.
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The space ḃαp,q plays the same role for Ḃαp,q as lp(Z) does for Lp([0, 1]).

Now we give some discrete Calderón reproducing formula that we will use to decompose

our Besov spaces.

Lemma 2.7 ([FJ1], Lemma 2.1). Let f ∈ S ′/P and ϕ,ψ be functions such that

(i) ϕ,ψ ∈ S,

(ii) supp ϕ̂ ⊆ {ξ : |ξ| < π} and supp ψ̂ ⊆ {ξ : |ξ| < π},

(iii)
∑
j∈Z ϕ̂(2jξ)ψ̂(2jξ) = 1 for ξ 6= 0.

Then

f(x) =
∑
j∈Z

2−jn
∑
k∈Z

ϕj ∗ f(2−jk)ψj(x− 2−jk).

Here both the convergence of the right hand side and the equality is in S ′/P.

Lemma 2.8 ([FJW], Lemma 5.12). Let f ∈ S ′/P and ϕ,ψ be functions such that

(i) supp θ ⊂ {x : |x| ≤ 1},

(ii)
´
xγθ(x) dx = 0 if |γ| ≤ N ,

(iii) supp ϕ̂ ⊂ {ξ : 1
2 ≤ |ξ| ≤ 2},

(iv) |ϕ̂(ξ)| ≥ c > 0 if 3
5 ≤ |ξ| ≤

5
3 ,

(v)
∑
j∈Z θ̂(2

−jξ)ϕ̂(2−jξ) = 1 for all ξ 6= 0.

We then have

f =
∑
j∈Z

ϕj ∗ θj ∗ f

in S ′/P.

Next we give one more lemma that will be used to prove (2.9). Many proofs of this lemma

exist in the literature and has a connection with Hardy spaces.
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Lemma 2.9 ([FJ1], Lemma 2.4). Let 0 < p ≤ ∞, j ∈ Z and g ∈ S ′ with supp ĝ ⊂ {ξ : |ξ| ≤

2j+1}. Then ( ∑
Q∈Dj

sup
x∈Q
|g(x)|p

)1/p

≤ Cn,p2jn/p‖g‖p2.

Now we present the atomic decomposition. It was first proved in [FJ1].

Theorem 2.10. Let α ∈ R, 0 < p, q < ∞, and N ∈ Z+. For each f ∈ Ḃαp,q there exists a

sequence {sQ}Q∈D ∈ ḃαp,q and smooth N -atoms {aQ}Q∈D such that

f =
∑
Q∈D

sQaQ (2.8)

where the convergence is in S ′/P. Furthermore we also have

‖{sQ}‖ḃαp,q ≤ C‖f‖Ḃαp,q . (2.9)

Proof. The idea is to decompose our Besov objects in the time and space variables. The first

step is to write our Besov distribution as a discrete sum over the integers. This is roughly a

decomposition in the time variable. Then for each integer in this sum, we further decompose

over the underlying domain over dyadic cubes. Then we may select the atoms from the resulting

expression. We now proceed with the details.

Firstly we use Lemma 2.8 to write

f =
∑
j∈Z

ϕj ∗ θj ∗ f

which is valid in Ḃαp,q because Ḃαp,q is a subspace of S ′/P.

Next for each j we further decompose ϕj ∗ θj ∗ f over the dyadic cubes of resolution j.

ϕj ∗ θj ∗ f(x) =
∑
Q∈Dj

ˆ
Q

θj(x− y)(ϕj ∗ f)(y) dy.

In other words, we split up the θj convolution over dyadic cubes.

Now we define our coeffcients

sQ = |Q|1/2 sup
y∈Q
|(ϕj ∗ f)(y)| (2.10)
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and our atoms

aQ(x) =
1

sQ

ˆ
Q

θj(x− y)(ϕj ∗ f)(y) dy. (2.11)

We must first check that these are indeed smooth N -atoms.

(i) supp aQ ⊂ 2Q.

Since supp θ ⊂ {x : |x| ≤ 1} then supp θj ⊂ {x : |x| ≤ 2−j}. Hence in the definition for

aQ we see that θj(x − y) is non-zero precisely when |x − y| ≤ 2−j . Since y ∈ Q this is

equivalent to x being at most a distance of 2−j away from the cube Q. Finally noting that

l(Q) = 2−j tells us x ∈ 3Q.

(ii)
´
xγaQ(x) dx = 0 for |γ| ≤ N .

Note that ˆ
xγaQ(x) dx =

ˆ
xγ

sQ

ˆ
Q

θj(x− y)(ϕj ∗ f)(y) dy dx = 0

follows by Fubini’s theorem and the properties of θ.

(iii) |∂γaQ(x)| ≤ |Q|−
|γ|
n −

1
2 .

We have firstly that aQ is smooth because θ ∈ S ⊂ C∞. Next

|∂γaQ(x)|

≤ 1

sQ

ˆ
Q

|∂γxθj(x− y)||ϕj ∗ f(y)| dy

≤ 1

sQ

(ˆ
Q

|∂γxθj(x− y)|2 dy
)1/2(ˆ

Q

|ϕj ∗ f(y)|2 dy
)1/2

≤ 1

sQ

(ˆ
Q

|∂γxθj(x− y)|2 dy
)1/2

‖ϕj ∗ f‖∞|Q|1/2

=

(ˆ
Q

|∂γxθj(x− y)|2 dy
)1/2

=

(ˆ
Q

22j(n+|γ|)|∂γxθ(x− y)|2 dy
)1/2

= 2j(n+|γ|)‖∂γθ‖2

≤ 2j(n+|γ|)‖∂γθ‖∞|Q|1/2

= l(Q)−n−|γ|‖∂γθ‖∞|Q|1/2
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≤ Cγ |Q|−|γ|−
1
2

In the fourth equality we have used that |Q| = l(Q)n = 2−jn and in the second we have

used that ∂γθ(2jx) = 2j|γ|∂γθ(x). In the final inequality we use that ‖∂γθ‖∞ ≤ Cγ with

the constant chosen to be independent of θ.

Therefore the definitions (2.11) and (2.10) give a decomposition of f into smooth N -atoms in

S ′/P, as in the expression (2.8).

Now we prove the inequality (2.9). We do this by applying Lemma 2.9 to ϕj ∗ f in the

ḃαp,q norm of {sQ}Q. We have( ∑
Q∈Dj

(|Q|−
α
n−

1
2 + 1

p |sQ|)p
)1/p

=

( ∑
Q∈Dj

(|Q|−
α
n+ 1

p sup
y∈Q
|ϕj ∗ f(y)|)p

)1/p

= 2jα−j
n
p

( ∑
Q∈Dj

sup
y∈Q
|ϕj ∗ f(y)|p

)1/p

≤ 2jα−j
n
pCn,p2

j np ‖ϕj ∗ f‖p

= Cn,p2
jα‖ϕj ∗ f‖p

Hence (2.9) follows after taking lq(Z) norms.

2.3.2 Potential theory

Next we look at some potential theory.

We define the Riesz potentials for 0 < α < n by

Iαf(x) = (−∆)−α/2f(x) =
1

γ1(α)

ˆ
Rn

f(y)

|x− y|n−α
dy,

with

γ1(α) = πn/22α
Γ(α2 )

Γ
(
n
2 −

α
2

)
They act as smoothing operators. We have the following fact:

Theorem 2.11 ([FJW]). For 0 < α < n, 1 ≤ p < q <∞, 1
q = 1

p −
α
n , we have

‖Iαf‖q ≤ C‖f‖p.
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The Riesz potentials are nice locally (|x| → 0) but not globally (|x| → ∞). As an

alternative we consider replacing the non-negative operator −∆ by the strictly positive operator

I−∆. The resulting operators are called Bessel potentials. The following are some representation

formulae.

Jαf(x) = (I −∆)−α/2f(x) := Gα ∗ f(x), α > 0

where Gα is defined by

Gα(x) =
1

γ2(α)

ˆ ∞
0

e−π|x|
2/te−

t
4π t

−n+α
2

dt

t
, α > 0

with γ2(α) = (4π)−α/2Γ(α/2)−1.

If we take J0 = I then the family of operators {Jα}α≥0 form a semigroup.

Next note that Jα is well defined on Lp. In fact we have

‖Jαf‖p ≤ ‖f‖p, 1 ≤ p ≤ ∞.

Hence for each α it makes sense to define the following potential space or generalized Sobolev

space

Lpα(Rn)

= (I −∆)−α/2Lp(Rn)

=
{

(I −∆)−α/2g : g ∈ Lp
}

=
{

((1 + | · |2)α/2)∨f̂ ∈ Lp : f ∈ Lp
}

=
{
f ∈ Lp :

∥∥(I −∆)α/2f
∥∥
p
<∞

}
with norm

‖f‖Lpα =
∥∥(I −∆)α/2f

∥∥
p
.

They are defined to be the images of Lp under the Bessel potentials. More generally they can be

defined as spaces of tempered distributions. Homogeneous versions can also be defined. They

are called generalized Sobolev spaces because when k is an integer and 1 < p <∞,

Lpk = W p
k .
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The following indicates the relationship of these spaces to Besov spaces.

Theorem 2.12 ([FJW]). For α > 0, and 2 ≤ p <∞,

Ḃαp,2 ⊂ Lpα ⊂ Ḃαp,p

For α > 0, and 1 ≤ p ≤ 2,

Ḃαp,p ⊂ Lpα ⊂ Ḃαp,2

From this we see that Lpα = Ḃα2,2.

2.3.3 Singular integrals on Besov spaces

We next look at the action of singular integrals on Besov spaces.

Let K(x) be a function defined away from the origin on Rn that satisfies the size estimate

sup
0<R<∞

1

R

ˆ
|x|≤R

|K(x)||x| dx ≤ A1, (2.12)

Hörmander’s condition

sup
y∈Rn\{0}

ˆ
|x|≥2|y|

|K(x− y)−K(x)| dx ≤ A2, (2.13)

and the cancellation condition

sup
0<R1<R2<∞

∣∣∣∣ˆ
R1<|x|<R2

K(x) dx

∣∣∣∣ ≤ A3, (2.14)

and A1, A2, A3 < ∞. Condition (2.14) implies that there exists a sequence εj ↓ 0 as j → ∞

such that the limit exists:

lim
j→∞

ˆ
εj≤|x|≤1

K(x) dx = L0.

This gives that for a smooth and compactly supported function f on Rn, the limit

lim
j→∞

ˆ
|x−y|>εj

K(x− y)f(y) dy = T (f)(x) (2.15)

exists and defines a linear operator T . This operator T is given by convolution with a tempered

distribution W that coincides with the function K on Rn\{0}.
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We know by singular integral theory that such a T , which is initially defined on C∞0 (Rn),

admits an extension that is Lp bounded for all 1 < p <∞ and also of weak type (1, 1). All these

norms are bounded above by dimensional multiples of the quantity A1 + A2 + A3. Therefore,

such a T is well defined on L1(Rn). We have the following result concerning Besov spaces.

Theorem 2.13 ([Gr]). Let K satisfy (2.12), (2.13), and (2.14), and let T be defined as in

(2.15). Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and α ∈ R. Then there is a constant Cn,p,q,α such that for

all f in S(Rn) we have

‖T (f)‖Ḃαp,q ≤ Cn,p,q,α(A1 +A2 +A3)‖f‖Ḃαp,q . (2.16)

Therefore, T admits a bounded extension on all homogeneous Besov spaces Ḃαp,q with p ≥ 1.



Chapter 3

Besov spaces associated with operators I

Some of the content in this chapter are contained in [Wo1]. In this chapter we develop a

theory of Besov spaces associated with an operator L under the assumption that L generates

an analytic semigroup e−tL with Gaussian kernel bounds on L2(X ), where X is a quasi-metric

space of polynomial upper bound on volume growth. We extend certain results in [BDY] to a

more general setting when the underlying space can have different dimensions at 0 and infinity.

In Section 3.1, we give some preliminaries.

In Section 3.2, we give definitions of quasi-metric spaces of polynomial upper bounds on

volume growth, then some assumptions on the operator L, and define Besov norms associated

with L. We also give an upper bound estimate of the Besov norm of the heat kernels.

In Section 3.3, we introduce the space of test functions associated with L. We then

define the Besov norms for linear functionals (on space of test functions) and Besov spaces

associated with L. In order to study properties of these Besov spaces, we prove several versions

of Calderón reproducing formulas for linear functionals. Furthermore, we show that the classical

Besov spaces Bαp,q(Ω) and zB
α
p,q(Ω) are special cases in this theory.

3.1 Preliminaries

The theory of Besov spaces has been an active area of research in the last few decades because

of its important role in the study of approximation of functions and regularity of solutions to

partial differential equations.
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Classical theory of Besov spaces, for example, can be found in [Pe], [St1], [FJ1].

Let us give an equivalent definition of the classical Besov spaces on the Euclidean spaces.

Suppose that ϕ is a function satisfying:

ϕ ∈ C∞0 (Rn),

ˆ
Rn
ϕ(x) dx = 0,

and the standard Tauberian condition, that is

∀ξ 6= 0, ∃t = tξ > 0 such that ϕ̂(tξ) 6= 0.

We shall use ϕt, t > 0, to denote the dilation of ϕ:

ϕt(x) = t−nϕ(x/t), x ∈ Rn.

Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. The classical (homogeneous) Besov space Ḃαp,q(Rn) on the

Euclidean space Rn can be defined as follows:

Ḃαp,q =

{
f ∈ S ′ :

[ ˆ ∞
0

(t−α‖ϕt ∗ (f)‖p)q
dt

t

]1/q

= ‖f‖Ḃαp,q <∞
}
.

where S ′ is the space of tempered distributions.

It is well known that in this definition, if the function ϕt with compact support is replaced

by the time derivative of the heat kernel,

t
d

dt
ht(x) = t

d

dt

(
c

tn/2
e−|x|

2/4t

)

(and t−α is replaced by t−α/2), or the time derivative of the Poisson kernel

t
d

dt
pt(x) = t

d

dt

(
c

tn
× 1

(1 + |x|2/t2)(n+1)/2

)

(and the convolution is suitably defined), then one obtains equivalent Besov spaces with equiv-

alent norms. See, for example, [BPT2, BPT, JT].

From this observation, we can say that the classical Besov spaces are associated with

the Laplace operator −∆ (or its square root
√
−∆). When one studies operators with non-

smooth coefficients, function spaces associated with the standard Laplacian might not be the
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most suitable ones. The classical approach also has complications when one considers function

spaces on domains which are more general than the Euclidean spaces Rn and is not applicable

when the domain has no regularity on its boundary.

We study the theory of Besov spaces associated with a certain operator L under the

weak assumption that L generates an analytic semigroup e−tL with Gaussian kernel bounds on

L2(X ), where X is a quasi-metric space of polynomial upper bounds on volume growth. We will

develop the theme in the works [DY1, DY, AMcR, AR] and define the Besov norm Ḃα,Lp,q via

quadratic norms of L. We now give a brief overview of the important features of the theory of

the Besov spaces Ḃα,Lp,q .

(i) By choosing different operators L, we can recover most of the classical Besov spaces. More

specifically, we can prove the following:

• When the space X = Rn and if the chosen operator L and its adjoint L∗ possess

Hölder continuity on their heat kernels as well as conservative property e−tL1 =

e−tL
∗
1 = 1 (for example, L is the Laplace operator −∆ or its square root

√
−∆ or

an elliptic divergence form operator with bounded, real coefficients on the Euclidean

space Rn), then the Besov space Ḃα,Lp,q is equivalent to the classical Besov spaces Ḃαp,q

(see Theorem 5.1 in [BDY]).

• When the space X = Ω where Ω is a domain of Rn with smooth boundary and L is

chosen as the Laplace operator −∆N with Neumann boundary conditions on Ω, then

we obtain that Lp(Ω) ∩ Ḃα,−∆N
p,q is equivalent to the classical Besov space Bαp,q(Ω)

(Proposition 3.15).

• When the space X = Ω, where Ω is a smooth domain of Rn, and L is chosen as the

Laplace operator −∆D with Dirichlet boundary conditions on Ω, then we obtain that

Lp(Ω) ∩ Ḃα,−∆D
p,q is equivalent to the Besov space zB

α
p,q(Ω) (Proposition 3.15).

We note that, in addition to recovering the classical Besov spaces, this theory might also

give new characterizations of the classical Besov norms through the quadratic norms of L.
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(ii) The underlying space X is assumed to be a quasi-metric space of polynomial upper bounds

on volume growth (see definition in Section 3.2), hence X might not satisfy the doubling

volume property. This allows us to treat the case X = Ω where Ω is any subset of Euclidean

spaces. Indeed, while the standard theory of Besov spaces always requires smoothness

on the boundary of the domain, this theory goes beyond the classical spaces and gives

definitions to natural Besov spaces when L possesses Gaussian heat kernel bounds without

any regularity assumption on the boundary of the domain. Hence we can take L as the

Laplace operator with Dirichlet boundary conditions on a general open domain Ω in Rn

and obtain the Besov space Ḃα,−∆D
p,q (Ω).

(iii) In the general setting of L and X , we can prove embedding properties and discrete char-

acterizations for the family of Besov spaces Ḃα,Lp,q , similarly to the classical Besov spaces

(Theorem 4.1 and Proposition 4.3).

(iv) The Besov spaces Ḃα,Lp,q are natural settings for estimates of certain singular integrals

associated with L such as the fractional powers Lγ for real value γ. See Theorem 4.9. For

other choices of the operator L such as the Schrödinger operator on Rn or a divergence form

operator on Rn or a domain Ω of Rn, we obtain new Besov spaces. While we study Besov

spaces associated with a general operator L, additional information from specific operators

L such as the Schrödinger operator or a divergence form operator would certainly give

further important properties for the new Besov spaces in those cases.

(v) Due to the lacking of smoothness on the heat kernels of L (we assume heat kernel upper

bound for L but there is no assumption on regularity of the space variables of heat kernels)

as well as the possible rough boundary and non-doubling volume growth of the underlying

space X , there are substantial technical difficulties to be overcome. Quite a few of the esti-

mates rely on several key Calderón reproducing formulas in Sections 3.2 and 3.3 (Theorems

3.3, 3.13 and 3.14). These formulas are proved not only for functions in Lebesgue spaces

but also for continuous linear functionals on certain spaces of test functions, which are
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defined via the operator L together with an appropriate decay condition at infinity. In this

theory, these test functions play an important role, similarly to the role of the Schwartz

class in the classical theory. These new reproducing formulas are of independent interest

and they should be useful for research in harmonic analysis related to the operator L.

For an investigation of a class of Besov spaces on spaces with non-doubling measures and polyno-

mial growth, we refer the reader to [DHY]. The approach in [DHY] was based on a construction

of a family of approximation to the identity with compactly supported kernels and a Calderón

reproducing formula. Note that these kernels are constructed so that they satisfy the conser-

vation property and Hölder continuity estimates. In contrast, we make no assumption on the

supports of the kernels, noting that the classical Poisson and Gaussian kernels do not have

compact supports. In most part of this work, we require neither a regularity condition nor the

conservation property on the kernels. The flexibility of choosing L in this approach also gives

rise to different Besov spaces on the same domain X .

The study of the classical Besov spaces on a smooth domain Ω was, to some extent,

motivated by the application to partial differential equations (see, for example, [Tr]). When Ω is

a Lipschitz domain, the authors in [MM1] had investigated properties of both the spaces Bαp,q(Ω)

and zB
α
p,q(Ω) to obtain sharp estimates for the Green potentials. Some further results in this

direction can be found in [MM2, MMS]. The Besov spaces we study could serve as useful tools

in the investigation of properties of solutions to partial differential equations on non-smooth

domains or with rough coefficients.

We note that there are a number of recent papers which defined and characterized Hardy

spaces associated with operators under various assumptions on heat kernel bounds by using the

area integral estimates and atomic decompositions on doubling domains. These function spaces

retained a number of important properties of the classical spaces and played a positive role in

the study of the boundedness of singular integral operators with non-smooth kernels. See, for

example, [AMcR, AR, DY, HLMMY, HMa] and the references therein. A study of Hardy spaces
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associated with operators under the same assumptions as this work (on non-doubling domains)

would be interesting.

Recent work of Bui, Duong and Yan in [BDY] defined Besov spaces associated with a

certain operator L under the weak assumption that L generates an analytic semigroup e−tL

with Poisson kernel bounds on L2(X ) where X is a (possibly non-doubling) quasi-metric space

of polynomial upper bound on volume growth. When L is the Laplace operator −∆ or its

square root
√
−∆ acting on the Euclidean space Rn, this class of Besov spaces associated with

the operator L are equivalent to the classical Besov spaces. Depending on the choice of L, the

Besov spaces are natural settings for generic estimates for certain singular integral operators

such as the fractional powers Lα.

We aim to extend certain results in [BDY] to a more general setting when the underlying

space can have different dimensions at 0 and infinity, that is, for some n > 0, N ≥ 0, and C > 0,

µ(B(x, r)) ≤


Crn, 0 < r ≤ 1

CrN , 1 < r <∞

for all balls B. Here n is the local dimension and N is the global dimension or the dimension at

infinity.

An example of this case is in Lie groups of polynomial growth (see, for example, [Al] and

[Ro]). Consider when L is the Laplace operator ∆N with Neumann boundary conditions on a

bounded Lipschitz domain Ω of Rn. See, for example, [Da1]. The heat kernel pt(x, y) in this

case satisfies

0 ≤ pt(x, y) ≤ C

V (x,
√
t)
e−α|x−y|

2/t

= C max

{
1

tn/2
, 1

}
e−α|x−y|

2/t

=


C

tn/2
e−α|x−y|

2/t, 0 < t ≤ 1

Ce−α|x−y|
2/t, 1 < t <∞

for some positive constants C and α, where V (x,
√
t) denotes the volume of the ball with centre
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x and radius
√
t in Rn. In this case N can be chosen to be 0, so that V (x,

√
t) is bounded by a

constant.

While many results in [BDY] carry over, there are some difficulties with the change

in dimension. Instead of using Poisson kernel bounds (polynomial type), which posed some

technical difficulties, we use Gaussian kernel bounds (exponential type), which is a stronger

assumption.

3.2 Besov norms associated with operators

3.2.1 Spaces of polynomial upper bounds on volume growth

We shall first give some standard definitions. A quasi-metric d on a set X is a function

from X × X to [0,∞) satisfying the following:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X ;

(iii) There exists a constant C ∈ [1,∞) such that for all x, y and z ∈ X ,

d(x, y) ≤ C(d(x, z) + d(z, y)).

Any quasi-metric defines a topology, for which the balls B(x, r) = {y ∈ X : d(y, x) < r}

form a basis. However, the balls themselves need not be open when C > 1 (see [CW]).

We let µ be a non-negative Borel measure on X which satisfies the following conditions:

(iv) For some n > 0, N ≥ 0, and C > 0,

µ(B(x, r)) ≤


Crn, 0 < r ≤ 1

CrN , 1 < r <∞
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for all balls B and x ∈ X . Here n is the local dimension and N is the global dimension

or the dimension at infinity. Note that n and N need not be integers (although in many

examples n and N are positive integers).

We note that properties (i)–(iv) would not imply that µ is doubling. An example of a

possibly non-doubling space (X , d, µ) of polynomial growth is given when X is a subset of Rn

equipped with the Euclidean distance and the Lebesgue measure. Without regularity assumption

on the boundary of X , µ can be non-doubling.

Other examples of (X , d, µ) include smooth n-dimensional submanifolds of Rm, n ≤ m,

µ the volume (area) measure on X , and d the Euclidean distance. Another class of examples

is the class of “regular” subsets of Rm of Hausdorff dimension n, where n ≤ m may not be an

integer, and µ = Hn, the n-dimensional Hausdorff measure (see [EG]).

We will assume that (X , d, µ) satisfies properties (i)–(iv).

The following estimate will be frequently used in the thesis.

Lemma 3.1. Let 1 ≤ p ≤ ∞. For every α > 0, there exists C > 0 such that

ˆ
X

[
e−αd(x,y)2/t

]p
dµ(x) ≤


Ctn/2, 0 < t ≤ 1

CtN/2, 1 < t <∞

for y ∈ X .

Proof. Fix y ∈ X . For p =∞, we clearly have

sup
x
e−αd(x,y)2/t ≤ C, 0 < t ≤ 1

sup
x
e−αd(x,y)2/t ≤ C, 1 < t <∞

Next suppose 1 ≤ p <∞. For 0 < t ≤ 1 we have

ˆ
X

[
e−αd(x,y)2/t

]p
dµ(x)

≤
ˆ
B(y,

√
t)

[
e−αd(x,y)2/t

]p
dµ(x)
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+

∞∑
k=1

ˆ
2k−1

√
t≤d(x,y)<2k

√
t

[
e−αd(x,y)2/t

]p
dµ(x)

≤ C

{
tn/2 +

∞∑
k=1

[
e−α(22k)t

]p
(2k
√
t)N

}

≤ C

{
tn/2 +

∞∑
k=1

[
e−α(22k)t

]p
2kN tn/2

}
for n < N

≤ Ctn/2.

For 1 < t <∞ we have

ˆ
X

[
e−αd(x,y)2/t

]p
dµ(x)

≤
ˆ
B(y,

√
t)

[
e−αd(x,y)2/t

]p
dµ(x)

+

∞∑
k=1

ˆ
2k−1

√
t≤d(x,y)<2k

√
t

[
e−αd(x,y)2/t

]p
dµ(x)

≤ C

{
tN/2 +

∞∑
k=1

[
e−α(22k)t

]p
(2k
√
t)N

}
≤ CtN/2.

Hence the inequalities follow.

3.2.2 Assumptions on operators

Assume L is densely-defined on L2(X ) and satisfies

(S) L generates a holomorphic semigroup e−zL for z = t+ is with t > 0 and | arg z| < ρ for

some ρ > 0,

(K) the heat kernel of L satisfies bounds of Gaussian type, i.e. the kernel pt(x, y) of e−tL

satisfies

|pt(x, y)| ≤


C

tn/2
e−αd(x,y)2/t, 0 < t ≤ 1

C

tN/2
e−αd(x,y)2/t, 1 < t <∞

for some C > 0 and for all x, y ∈ X .
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(H) the kernels pt(x, y) of e−tL satisfy the Hölder continuity estimates

|pt(x, y)− pt(x, y′)| ≤


Cd(y, y′)

tn/2+1
e−αd(x,y)2/t, 0 < t ≤ 1

Cd(y, y′)

tN/2+1
e−αd(x,y)2/t, 1 < t <∞

whenever d(y, y′) ≤ d(x, y)/2.

(C) L satisfies the conservation property e−tL1 = 1. This is equivalent to

ˆ
X
pt(x, y) dµ(y) = 1.

The following are some well-known examples of operators which satisfy some or all the

assumptions above.

(i) The Laplace operator −∆ and its square root
√
−∆ on Rn satisfy the assumptions (S),

(K), (H) and (C). So do elliptic divergence form operators with bounded, real coefficients

on Rn. However, if the coefficients of the elliptic divergence form operators are bounded

and complex, (K) is known to fail in dimension n ≥ 5.

(ii) The Schrdinger operator −∆ + V on Rn where the potential 0 ≤ V ∈ L1
loc satisfies (S)

and (K) but need not satisfy (H) and (C). However, if V belongs to some reverse Hölder

class, then −∆ + V satisfies (H).

(iii) The Laplace operator ∆D with Dirichlet boundary conditions on an open set Ω of Rn

satisfies (S) and (K), but not (C). If Ω is a bounded Lipschitz domain, then ∆D also

satisfies (H) but (H) does not hold for general open sets.

(iv) The Laplace operator ∆N with Neumann boundary conditions on a bounded domain Ω of

Rn with extension property satisfies (S) and (C) for all t > 0, satisfies (K) and (H) for

0 < t ≤ 1. See [Da1]. More specifically, the heat kernel pt(x, y) in this case satisfies

0 ≤ pt(x, y) ≤ C

V (x,
√
t)
e−α|x−y|

2/t

= C max

{
1

tn/2
, 1

}
e−α|x−y|

2/t
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for some positive constants C and α, where V (x,
√
t) denotes the volume of the ball with

centre x and radius
√
t in Rn.

We also note that a Lipschitz domain satisfies the extension property.

(v) The Laplace Beltrami operator on a non-compact complete Riemann manifold satisfies (S)

and (C), but in general not (K) and (H). If the manifold has non-negative Ricci curvature

and the measure of the ball radius r is equivalent to rn, then the Laplace Beltrami operator

also satisfies (K) and (H). If one considers the example of the manifold of two copies of

Rn smoothly glued together by a cylinder of length 1, then the Laplace Beltrami operator

satisfies (S), (K) and (C) but not (H).

We note that condition (K) implies that the semigroup e−tL, initially defined on L2(X ),

can be extended to Lp(X ), 1 ≤ p ≤ ∞. Furthermore, e−tLf makes sense for certain

functions f which satisfy appropriate growth condition but might not belong to Lp(X ).

Combining (S) and (K) would imply that the time derivatives of the semigroups also

possess Gaussian bounds as in the next proposition which states some useful properties

related to our assumptions.

The following are some useful properties related to our assumptions.

Proposition 3.2. For k = 1, 2, . . . , let pk,t(x, y) denote the kernel of the operator tkLke−tL.

(a) Suppose L satisfies (S) and (K). Then pk,t(x, y) satisfies the size estimate (DK), i.e. for

every k ∈ N, there is a constant ck satisfying

|pk,t(x, y)| ≤


ck
tn/2

e−αkd(x,y)2/t, 0 < t ≤ 1

ck
tN/2

e−αkd(x,y)2/t, 1 < t <∞

for all x, y ∈ X .

(b) Suppose L satisfies (S), (K) and (H). Then pk,t(x, y) satisfies the Hölder estimate (DH),
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i.e. there is a constant ck satisfying

|pk,t(x, y)− pk,t(x, y′)| ≤


ckd(y, y′)

tn/2+1
e−αkd(x,y)2/t, 0 < t ≤ 1

ckd(y, y′)

tN/2+1
e−αkd(x,y)2/t, 1 < t <∞

whenever d(y, y′) ≤ d(x, y)/2.

(c) Suppose L satisfies (C). Then we have

ˆ
X
pk,t(x, y) dµ(y) = 0

for every x ∈ X .

Proof. For a proof of part (a), we refer the reader to Theorem 3 in [Da2] and Theorem 6.17 in

[Ou].

To show part (b), we first observe that

tkLke−tL = (−2)k
(
dk

dtk
e−

t
2L

)
e−

t
2L.

Next, by using assumption (H) and (DK), we obtain, for 0 < t ≤ 1,

|pk,t(x, y)− pk,t(x, y′)|

= 2k
∣∣∣∣ ˆ
X
pk, t2 (x, z)

(
p t

2
(z, y)− p t

2
(z, y′)

)
dµ(z)

∣∣∣∣
≤ ck

ˆ
X

1

tn/2
e−αkd(x,z)2/t d(y, y′)

tn/2+1
e−αkd(z,y)2/t dµ(z)

≤ ckd(y, y′)

tn/2+1
e−αkd(x,y)2/t.

Similarly, for 1 < t <∞, we have

|pk,t(x, y)− pk,t(x, y′)|

= 2k
∣∣∣∣ ˆ
X
pk, t2 (x, z)

(
p t

2
(z, y)− p t

2
(z, y′)

)
dµ(z)

∣∣∣∣
≤ ck

ˆ
X

1

tN/2
e−αkd(x,z)2/t d(y, y′)

tN/2+1
e−αkd(z,y)2/t dµ(z)

≤ ckd(y, y′)

tN/2+1
e−αkd(x,y)2/t.

Hence we have shown (b).
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To show part (c), we just use assumption (C) and also

tkLke−tL = (−1)k
(
d

dt

)k
e−tL.

Thus the proof of the proposition is finished.

Theorem 3.3 (Calderón reproducing formula I). Suppose L is a densely-defined operator in

L2(X ) and satisfies (S) and (K). Assume that f ∈ Lp(X ), 1 < p <∞. Then we have

f(x) =
1

(k − 1)!

ˆ ∞
0

tkLke−tLf(x)
dt

t
, k = 1, 2, . . . , (3.1)

where the integral converges strongly in Lp(X ).

Proof. Let f ∈ Lp(X ), 1 < p < ∞. Assume ε > 0 is given. There exists a C0(X )-function g

with compact support with ‖f − g‖p ≤ ε. Suppose that supp g ⊂ B(x0, r) for r > 0 and some

x0 ∈ X . Applying Minkowski’s inequality, Proposition 3.2 and Lemma 3.1, it follows that for

every m = 0, 1, 2, . . . ,

‖tmLme−tLg‖p

≤
(ˆ
X

∣∣∣ˆ
B(x0,r)

pm,t(x, y)g(y) dµ(y)
∣∣∣p dµ(x)

)1/p

≤ ‖g‖1
(

sup
y∈X

ˆ
X
|pm,t(x, y)|p dµ(x)

)1/p

≤ Ct−N/2p
′
‖g‖1 for t large enough, (3.2)

which tends to 0 as t→∞. Thus it follows that

lim
t→∞

‖tmLme−tLf‖p

≤ lim
t→∞

‖tmLme−tL(f − g)‖p + lim
t→∞

‖tmLme−tLg‖p

≤ Cε.

By letting ε→ 0, we obtain

lim
t→∞

‖tmLme−tLf‖p = 0.

Using integration by parts, we have

1

(k − 1)!

ˆ ∞
0

tkLke−tLf
dt

t
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= (−1)k
1

(k − 1)!

ˆ ∞
0

tk−1 ∂
k

∂tk
e−tLf dt

= lim
t→0

(
e−tLf +

k−1∑
m=1

cmt
mLme−tLf

)
in Lp(X )

for some constants {cm}k−1
m=1. To complete the proof of Theorem 3.3, it is enough to prove that

(i) lim
t→0

e−tLf = f in Lp(X );

(ii) lim
t→0

tmLme−tLf = 0 in Lp(X ), m = 1, 2, . . .

Let us show (i). As above, for any given ε > 0, we can find a C0(X )-function g with compact

support with ‖f − g‖p ≤ ε, such that supp g ⊂ B(x0, r) for r > 0 and some x0 ∈ X . We then

have

‖e−tLg − g‖p ≤ ‖e−tLg‖Lp(B(x0,2r)c) + ‖e−tLg − g‖Lp(B(x0,2r)).

By using condition (K), we obtain

‖e−tLg‖Lp(B(x0,2r)c) ≤ Ct‖g‖1,

which implies that

lim
t→0
‖e−tLg‖Lp(B(x0,2r)c) = 0.

Because lim
t→0

e−tLg = g in L2(X ), and

‖e−tLg − g‖Lp(B(x0,2r)) ≤


µ(B(x0, 2r))

1− p2 ‖e−tLg − g‖2, 1 < p ≤ 2

C
(

sup
x
|g(x)|

p−2
p

)
‖e−tLg − g‖2/p2 , 2 < p <∞,

it follows that

lim
t→0
‖e−tLg − g‖Lp(B(x0,2r)) = 0.

These estimates together prove that lim
t→0
‖e−tLg − g‖p = 0. Thus using condition (K), we have

lim sup
t→0

‖e−tLf − f‖p

≤ lim sup
t→0

‖e−tL(f − g)‖p + ‖f − g‖p + lim
t→0
‖e−tLg − g‖p

≤ Cε.
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By letting ε→ 0, it follows that e−tLf → f in Lp as t→ 0. Thus (i) is proved.

All that remains is to show (ii). Notice that L is a densely-defined operator in L2(X ).

For any f ∈ D(L), g = Lf ∈ L2(X ), which implies that for every m = 1, 2, . . .,

lim
t→0
‖tmLme−tLf‖2

≤ lim
t→0

t‖tm−1Lm−1e−tL(Lf)‖2

≤ lim
t→0

t‖g‖2

= 0.

Applying a density argument, we have that lim
t→0

tmLme−tLf = 0 in L2(X ). Let f ∈ Lp(X ). By

the same arguments we used in (i), it follows that tmLme−tLf → 0 in Lp as t→ 0. Thus (ii) is

proved. We have now finished proving Theorem 3.3.

3.2.3 Besov norms associated with operators

Assume L satisfies (S) and (K). Let kt(x, y) = p1,t(x, y) be the kernel of Ψt(L) = tLe−tL.

By Proposition 3.2, kt(x, y) satisfies

|kt(x, y)| ≤


c

tn/2
e−αd(x,y)2/t, 0 < t ≤ 1

c

tN/2
e−αd(x,y)2/t, 1 < t <∞.

Let f be a complex valued measurable function on X satisfying the following growth condition

(G): ˆ
X
|f(x)|e−αd(x,y0)2

dµ(x) <∞

for some y0 ∈ X . Then we have that

Ψt(L)f(x) =

ˆ
X
kt(x, y)f(y) dµ(y)

is defined for all x ∈ X .

Definition 3.4. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. For any

f satisfying (G), we define its Ḃα,Lp,q -norm by
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‖f‖Ḃα,Lp,q
=

{ˆ ∞
0

(t−α‖Ψt(L)f‖p)q
dt

t

}1/q

for q <∞ and

‖f‖Ḃα,Lp,q
= sup

t>0
t−α‖Ψt(L)f‖p

for q =∞, whenever these are finite.

Although we consider the Besov spaces in the range −1 < α < 1, the above definition

of the norm for functions satisfying the growth condition (G) remains valid when α ≤ −1

(in analogy with the classical situation). But we will not define the Besov spaces in the range

α ≤ −1, as we expect these spaces to contain not only functions but also certain “distributions”.

Another complication in this case is finding an appropriate space of test functions.

When α ≥ 1, the Besov norm of a function satisfying (G) can be defined by replacing the

kernel kt = p1,t by pk,t, where k > α. However, as the classical case shows us, the homogeneous

Besov spaces can contain functions of order O(|x|α) at infinity. These functions may not satisfy

the growth condition (G), and therefore the weak decay of pk,t (see Proposition 3.2) would make

it unsuitable to be used for investigating these spaces. By duality, the case α ≤ −1 also presents

a challenge.

The difficulty discussed above is a main reason why we restrict our study to the case

−1 < α < 1. On the other hand, when the kernel has more smoothness in the spatial variable

or possess stronger decay, such as the case for some specific operators L, it would be feasible to

carry out the investigation for a larger range of α. We do not carry out a study in this direction

here.

We postpone the formal definition of the Besov spaces until Section 3.3, after investigating

properties of the Ḃα,Lp,q –norm. We first prove a simple property of the Ḃα,Lp,q -norm.

Proposition 3.5. Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Suppose that f satisfies (G) and

‖f‖Ḃα,Lp,q
= 0. Then for every t > 0, we have Ψt(L)f = 0 almost everywhere.

Proof. Clearly the result is true for q =∞ (by the definition of the norm). Suppose that q <∞.
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Then ‖f‖Ḃα,Lp,q
= 0 implies ‖Ψt(L)f‖p = 0 for almost everywhere t ∈ (0,∞). Notice that for all

s, t > 0,

‖Ψt+s(L)f‖p

=
∥∥∥ t+ s

t
e−sLΨt(L)f

∥∥∥
p

≤ C t+ s

t
‖Ψt(L)f‖p, (3.3)

where C = sup
s>0
‖e−sL‖p→p <∞. Then we have ‖Ψt(L)f‖p = 0 for all t ∈ (0,∞). Thus we have

finished the proof of the proposition.

Remark. From (3.3) above, it follows that for every measurable function f and t > 0,

‖Ψs(L)f‖p ≤ 2C‖Ψt(L)f‖p t ≤ s ≤ 2t. (3.4)

There exists functions with finite Besov norm but not necessarily smooth. In the following

proposition we give an upper bound estimate of the Besov norm of the heat kernels. For any

k ∈ N, we denote Ψk,t(L) = tkLke−tL to be the operator whose kernel is pk,t; so Ψ1,t(L) = Ψt(L).

Proposition 3.6. Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Suppose that f satisfies (S) and (K).

Then for k ∈ N and z ∈ X ,

‖pk,s(·, z)‖Ḃα,Lp,q
≤


Cns

−α−n/2p′ , 0 < s ≤ 1

CNs
−α−N/2p′ , 1 < s <∞

where Cn > 0 depends on α, n, k, p and q, and CN > 0 depends on α,N, k, p and q.

Proof. Fix k ∈ N. Using (DK) in Proposition 3.2, the kernel of the operator Ψt(L)Ψk,s(L) is

Kt,s(x, z) =

ˆ
X
kt(x, y)pk,s(y, z) dµ(y).

Let K̃t be a kernel satisfying

∣∣K̃t(x, z)
∣∣ ≤


ck
tn/2

e−αkd(x,z)2/t, 0 < t ≤ 1

ck
tN/2

e−αkd(x,z)2/t, 1 < t <∞
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for all x, z ∈ X . Then Kt,s satisfies the size estimate

|Kt,s(x, z)| ≤ C min

{
s

t
,
t

s

}
|K̃t+s(x, z)|.

Put φ(y) = pk,s(y, z), y ∈ X . We then have that

|Ψt(L)φ(x)|

= |Kt,s(x, z)|

≤


C min

{
s

t
,
t

s

}
e−αkd(x,z)2/(t+s)

(t+ s)n/2
, 0 < t+ s ≤ 1

C min

{
s

t
,
t

s

}
e−αkd(x,z)2/(t+s)

(t+ s)N/2
, 1 < t+ s <∞

Hence, using Lemma 3.1,

‖Ψt(L)φ‖p ≤


C min

{
s

t
,
t

s

}
(t+ s)−n/2p

′
, 0 < t+ s ≤ 1

C min

{
s

t
,
t

s

}
(t+ s)−N/2p

′
, 1 < t+ s <∞

Therefore, for 0 < s ≤ 1,

‖φ‖Ḃα,Lp,q

=

{ˆ ∞
0

(t−α‖Ψt(L)(φ)‖p)q
dt

t

}1/q

≤ C
{ˆ s

0

(
t1−α

s(t+ s)n/2p′

)q
dt

t
+

ˆ ∞
s

(
t−1−αs

(t+ s)n/2p′

)q
dt

t

}1/q

≤ Cs−α−n/2p
′
{ ˆ 1

0

(
t1−α

(1 + t)n/2p′

)q
dt

t
+

ˆ ∞
1

(
t−1−α

(1 + t)n/2p′

)q
dt

t

}1/q

≤ Cs−α−n/2p
′
,

where the constant C in the final inequality depends on α, n, k, p and q.

For 1 < s <∞,

‖φ‖Ḃα,Lp,q

=

{ˆ ∞
0

(t−α‖Ψt(L)(φ)‖p)q
dt

t

}1/q

≤ C
{ˆ s

0

(
t1−α

s(t+ s)N/2p′

)q
dt

t
+

ˆ ∞
s

(
t−1−αs

(t+ s)N/2p′

)q
dt

t

}1/q

≤ Cs−α−N/2p
′
{ ˆ 1

0

(
t1−α

(1 + t)N/2p′

)q
dt

t
+

ˆ ∞
1

(
t−1−α

(1 + t)N/2p′

)q
dt

t

}1/q
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≤ Cs−α−N/2p
′
,

where the constant C in the final inequality depends on α,N, k, p and q.

3.3 Besov spaces associated with operators

3.3.1 Definitions of Besov spaces

Firstly, we use a similar approach as in [BDY] to define a “space of test functions”.

Definition 3.7. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. A

function f is in the space of test functions Mα,L
p,q if f = Lg for some g, and the following are

satisfied:

(i) ‖f‖Ḃα,Lp,q
<∞;

(ii) There is a C > 0 such that

|f(x)|+ |g(x)| ≤ Ce−αd(x,x0)2

(3.5)

for some x0 ∈ X , and for every x ∈ X .

For q =∞, we assume, in addition, that

‖t−αΨt(L)f‖p → 0 as t→ 0 or t→∞,

and when p =∞, we assume that

e−sLf → f in Ḃα,L∞,q as s→ 0.

Remark. There are two main features of the space of test functions Mα,L
p,q . The first is an “L-

cancellation” property, which is expressed by the condition f = Lg. The second is the finiteness

of the norm ‖f‖Ḃα,Lp,q
. This space of test functions plays the role of S0 in the classical theory

of the Besov spaces Ḃαp,q(Rn), −1 < α < 1, where S0 is the subspace of those ϕ ∈ S such that
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´
Rn ϕ(x) dx = 0. Observe that ‖ϕ‖Ḃαp,q < ∞ for all ϕ ∈ S0 and −1 < α < 1. On the one hand,

the dependence of the space of test functions on p, q and α seems undesirable, but, on the other

hand, it hints at a duality result. This situation is similar to the theory of the Hardy spaces

Hp(X ) on a space of homogeneous type X (see pp. 591–592 in [CW1]), where the test functions

satisfy a Hölder condition whose exponent depends on p.

Using Proposition 3.5 ‖f‖Ḃα,Lp,q
= 0 if and only if, for every t > 0,

Ψt(L)(f) = tLe−tLf = 0

almost everywhere. Thus the space Mα,L
p,q is a normed linear space equipped with the norm

‖f‖Mα,L
p,q

= ‖f‖Ḃα,Lp,q

when we identify with the zero element all those f ’s satisfying Le−tLf = 0 (almost everywhere)

for every t > 0.

Proposition 3.8. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞.

Then for every t > 0, k ∈ N, and y ∈ X , pk,t(·, y) ∈ Mα,L
p,q , where pk,t(·, y) is the kernel of

Ψk,t(L) = tkLke−tL.

Proof. Put φ = pk,t(·, y). From Proposition 3.6, the ‖ · ‖Ḃα,Lp,q
-norm of φ is finite. Using the

semigroup property,

pk,t(·, y) = 2ke−t/2Lpk,t/2(·, y),

so that pk,t(·, y) ∈ D(L) (see [Ou], page 37). By a standard argument it follows that

φ = pk,t(·, y) = tL(pk−1,t(·, y)).

Thus we have the result for 1 ≤ p, q <∞.

Next suppose p = ∞. We need to show that e−sLφ → φ in Ḃα,L∞,q as s → 0. When

s, u > 0,

e−sLΨu(L)φ−Ψu(L)φ
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= 2e−uL/2(e−sLΨu/2(L)φ−Ψu/2(L)φ)

= 2e−uL/2gt,u,s,

where gt,u,s = e−sLΨu/2(L)φ−Ψu/2(L)φ ∈ L2. Thus for every x ∈ X , using Schwarz’s inequality,

|e−sLΨu(L)φ(x)−Ψu(L)φ(x)| ≤ 2‖pu/2(x, ·)‖2‖gt,u,s‖2.

Because gt,u,s = e−sLΨu/2(L)φ−Ψu/2(L)φ→ 0 in L2 as s→ 0, using (S), we have that

‖Ψu(L)(e−sLφ− φ)‖∞ = ‖e−sLΨu(L)φ−Ψu(L)φ‖∞ → 0, as s→ 0

for every u > 0. Furthermore,

‖e−sLΨu(L)φ−Ψu(L)φ‖∞ ≤ C‖Ψu(L)φ‖∞.

Applying the Dominated Convergence theorem, it follows that

‖e−sLφ− φ‖Ḃα,L∞,q =

(ˆ ∞
0

(u−α‖Ψu(L)(e−sLφ− φ)‖∞)q
du

u

)1/q

→ 0

for q <∞. For q =∞, by (3.4), it follows that

‖e−sLφ− φ‖Ḃα,L∞,∞ ≤ C‖e
−sLφ− φ‖Ḃα,L∞,1 → 0

as s→ 0.

Finally, assume q =∞. Because ‖φ‖Ḃα,Lp,1
<∞, from (3.4) it follows that

‖u−αΨu(L)φ‖p → 0 as u→ 0 or u→∞.

Thus we have finished the proof of the proposition.

Proposition 3.8 implies that for any t > 0 and x ∈ X ,

kt(x, ·) = k∗t (·, x) = p∗1,t(·, x) ∈Mα,L∗

p,q ,

−1 < α < 1 and 1 ≤ p, q ≤ ∞. Thus for any f ∈
(
M−α,L

∗

p′,q′

)′
, and for each t > 0 and x ∈ X ,

Ψt(L)f(x) = (f, kt(x, ·)) =

ˆ
X
f(x)kt(x, ·) dµ(x)

is well-defined, where (·, ·) denotes the pairing between a linear functional and a test function.
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Definition 3.9. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. We define

the Besov space Ḃα,Lp,q associated to an operator L by

Ḃα,Lp,q =

{
f ∈

(
M−α,L

∗

p′,q′

)′
: ‖f‖Ḃα,Lp,q

<∞
}
,

where

‖f‖Ḃα,Lp,q
=

{ˆ ∞
0

(t−α‖Ψt(L)(f)‖p)q
dt

t

}1/q

.

Similarly to the space of test functionsMα,L
p,q , the space Ḃα,Lp,q is a normed linear space if

the zero element is identified with all f satisfying Le−tLf = 0 for all t > 0 almost everywhere.

Definition 3.10. Suppose L satisfies (S) and (K). Let −1 < α < 1, 1 ≤ p, q ≤ ∞ and s > 0.

Let f ∈
(
M−α,L

∗

p′,q′

)′
. Define a linear functional e−sLf on M−α,L

∗

p′,q′ by

(e−sLf, φ) = (f, e−sL
∗
φ), ∀φ ∈M−α,L

∗

p′,q′ . (3.6)

In the following proposition we will show that e−sLf ∈
(
M−α,L

∗

p′,q′

)′
.

Proposition 3.11. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Let

f ∈ Ḃα,Lp,q . Then there exists a constant C > 0 such that for all s > 0, e−sLf ∈ Ḃα,Lp,q and

‖e−sLf‖Ḃα,Lp,q
≤ C‖f‖Ḃα,Lp,q

.

Proof. Firstly we show that e−sLf ∈
(
M−α,L

∗

p′,q′

)′
for all f ∈

(
M−α,L

∗

p′,q′

)′
and s > 0. To show this

claim, we note that for any test function φ ∈M−α,L
∗

p′,q′ and s, t > 0,

Ψt(L
∗)e−sL

∗
φ = e−sL

∗
Ψt(L

∗)φ.

Thus, using the continuity of the semigroup {e−sL}s>0, we obtain

‖Ψt(L
∗)e−sL

∗
φ‖p ≤ C‖Ψt(L

∗)φ‖p.

We then have

‖e−sL
∗
φ‖

Ḃ−α,L
∗

p′,q′
≤ C‖φ‖

Ḃ−α,L
∗

p′,q′
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and thus the claim is proved.

To show the proposition, for all s, t > 0, we let KΨt(L)e−sL(x, y) be the kernel of the

operator Ψt(L)e−sL, and Ke−sLΨt(L)(x, y) be the kernel of the operator e−sLΨt(L). Note that

KΨt(L)e−sL(x, y) = Ke−sLΨt(L)(x, y)

for all x, y ∈ X . Using a similar argument to the proofs of Proposition 3.6 and Proposition 3.8,

it follows that KΨt(L)e−sL(x, ·) ∈ M−α,L
∗

p′,q′ for all s, t > 0 and x ∈ X . Thus for any f ∈ Ḃα,Lp,q

and x ∈ X ,

Ψt(L)e−sLf(x)

= (f,KΨt(L)e−sL(x, ·))

= (f,Ke−sLΨt(L)(x, ·))

= e−sLΨt(L)f(x). (3.7)

Hence we have

‖e−sLf‖Ḃα,Lp,q

=

{ˆ ∞
0

(t−α‖Ψt(L)e−sLf‖p)q
dt

t

}1/q

=

{ˆ ∞
0

(t−α‖e−sLΨt(L)f‖p)q
dt

t

}1/q

≤ C
{ ˆ ∞

0

(t−α‖Ψt(L)f‖p)q
dt

t

}1/q

= C‖f‖Ḃα,Lp,q
.

Thus the proof of the proposition is complete.

The next subsection will require the following approximation to the identity result for the Besov

spaces.

Proposition 3.12. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞.
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(i) Assume 1 ≤ p, q <∞ and f ∈ Ḃα,Lp,q . Then

lim
s→0

e−sLf = f in Ḃα,Lp,q .

(ii) Assume φ ∈Mα,L
p,q . Then

lim
s→0

e−sLφ = φ in Mα,L
p,q .

Proof. The proofs of (i) and (ii) when 1 ≤ p <∞ use arguments similar to the proof of Propo-

sition 3.8, by applying (3.7), the continuity of the semigroup {e−sL}s>0, and the Dominated

Convergence Theorem.

The result (ii) for p = ∞ follows from the definition of test functions. Thus it remains

to show (ii) for p < ∞ and q = ∞. Let s > 0 and φ ∈ Mα,L
p,∞. Using the finiteness of

C = sup
s>0
‖e−sL‖Lp→Lp and the definition of test functions, it follows that

‖t−αΨt(L)e−sLφ‖p

= ‖t−αe−sLΨt(L)‖p

≤ C‖t−αΨt(L)‖p → 0

as t→∞ or t→ 0. Fix 0 < r < R <∞. We then have

sup
r≤t≤R

t−α‖Ψt(L)(e−sLφ− φ)‖p

≤ C
(

sup
t>0
‖Ψt(L)‖Lp→Lp

)
‖e−sLφ− φ‖p → 0

as s → 0, using the continuity property of {e−sL}s>0. We therefore have (ii) for q = ∞. Thus

we have finished the proof of the Proposition.

3.3.2 The Calderón reproducing formulas

Two forms of the Calderón reproducing formula will be developed to investigate proper-

ties of the Besov spaces. These formulas together with the other Calderón reproducing formulas

in the thesis are important in our study, and they are of independent interest.
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Theorem 3.13 (Calderón reproducing formula II). Suppose L satisfies (S) and (K), and L∗

its adjoint operator. Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Let p′ and q′ be the conjugate exponents

of p and q respectively. Then for Ψt(L) = tLe−tL, we have

(f, φ) = 4

ˆ ∞
0

ˆ
X

Ψt(L)f(x)Ψt(L
∗)φ(x) dµ(x)

dt

t
(3.8)

for every f ∈ Ḃα,Lp,q and φ ∈M−α,L
∗

p′,q′ .

Proof. Let f ∈ Ḃα,Lp,q and φ ∈M−α,L
∗

p′,q′ . The double integral in (3.8) converges absolutely since

ˆ ∞
0

ˆ
X
|Ψt(L)f(x)Ψt(L

∗)φ(x)| dµ(x)
dt

t

≤
ˆ ∞

0

t−α‖Ψt(L)f‖p tα‖Ψt(L
∗)φ‖p′

dt

t

≤ ‖f‖Ḃα,Lp,q
‖φ‖

Ḃ−α,L
∗

p′,q′

<∞. (3.9)

We then have

ˆ ∞
0

ˆ
X

Ψt(L)f(x)Ψt(L
∗)φ(x) dµ(x)

dt

t

= lim
M→∞

ˆ M

1/M

(
f, (Ψt(L

∗))2φ
) dt
t

= lim
M→∞

(
f,

ˆ M

1/M

(Ψt(L
∗))2φ

dt

t

)
.

We note that in the above we have used

ˆ M

1/M

(Ψt(L
∗))2φ

dt

t
∈M−α,L

∗

p′,q′ .

This fact follows from (3.11) and Proposition 3.6. To finish the proof we need to show that

lim
M→∞

ˆ M

1/M

(Ψt(L
∗))2φ

dt

t
=

1

4
φ in M−α,L

∗

p′,q′ (3.10)

By using the fact that (Ψt(L
∗))2 = (tL∗)2e−2tL∗ and by using integration by parts, it follows

that

ˆ M

1/M

(Ψt(L
∗))2φ

dt

t
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=
1

4

ˆ M

1/M

t
d2

dt2
(e−2ML∗)φdt

=
1

4
(−2ML∗e−2ML∗φ+

2

M
L∗e−

2
M L∗φ− e−2ML∗φ+ e−

2
M L∗φ).

(3.11)

Using Proposition 3.12 (ii),

lim
M→∞

e−
2
M L∗φ = φ in M−α,L

∗

p′,q′ (3.12)

Thus to show (3.10), it is enough to verify the convergence in the Ḃ−α,L
∗

p′,q′ -norm of the following

three expressions:

(i) lim
M→∞

2ML∗e−2ML∗φ = 0.

(ii) lim
M→∞

2
ML∗e−

2
M L∗φ = 0.

(iii) lim
M→∞

e−2ML∗φ = 0.

By using φ = L∗g, we obtain

‖2ML∗e−2ML∗φ‖
Ḃ−α,L

∗
p′,q′

=

{ˆ ∞
0

tα‖Ψt(L
∗)(2ML∗e−2ML∗φ)‖p′)q

′ dt

t

}1/q′

≤
{ˆ 1

0

(tα‖Mt(L∗)2e−(t+2M)L∗φ)‖p′)q
′ dt

t

}1/q′

+

{ ˆ ∞
1

(tα‖Mt(L∗)3e−(t+2M)L∗g)‖p′)q
′ dt

t

}1/q′

= I + II.

Note that

Mt(L∗)2e−(t+2M)L∗ =
Mt

(t+ 2M)2
× ((t+ 2M)L∗)2e−(t+2M)L∗ .

By the Lp
′
-boundedness of ((t+ 2M)L∗)2e−(t+2M)L∗ we have

I ≤ C‖φ‖p′
{ˆ 1

0

(
tα × Mt

(t+ 2M)2

)q′ dt
t

}1/q′

≤ C

M
‖φ‖p′

{ ˆ 1

0

t(α+1)q′ dt

t

}1/q′

≤ C

M
‖φ‖p′
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tends to zero as M →∞.

To estimate term II, we select α0 satisfying |α| < α0 < 1. Because the operator

((t+ 2M)L∗)3e−(t+2M)L∗

is bounded on Lp
′
(X ), it follows that

II ≤ C‖g‖p′
{ ˆ ∞

1

(
tα × Mt

(t+ 2M)3

)q′ dt
t

}1/q′

≤ C

M1−α0
‖g‖p′

{ ˆ ∞
1

t(α−α0)q′ dt

t

}1/q′

≤ C

M1−α0
‖g‖p′

tends to zero as M →∞. Thus the proof of (i) is complete.

An argument similar to the above will give (iii). Let us now show (ii). For each t > 0,

‖Ψt(L
∗)(sL∗e−sL

∗
φ)‖p′ =

ts

(t+ s)2
‖(t+ s)2e−(t+s)L∗φ‖p′ → 0

as s→ 0. Furthermore, by the Lp
′
-boundedness of sL∗e−sL

∗
we have

‖Ψt(L
∗)(sL∗e−sL

∗
φ)‖p′ ≤ C‖Ψt(L

∗)φ)‖p′ .

Because ˆ ∞
0

(tα‖Ψt(L
∗)φ)‖p′)q

′ dt

t
<∞,

by the Dominated Convergence Theorem it follows that

lim
s→0
‖sL∗e−sL

∗
φ‖

Ḃ−α,L
∗

p′,q′

= lim
s→0

ˆ ∞
0

(tα‖Ψt(L
∗)(sL∗e−sL

∗
φ)‖p′)q

′ dt

t

= 0.

Hence the proof of (ii) is complete. Thus we have finished proving (3.10). Thus the proof of the

theorem is complete.

The following Calderón reproducing formula will be needed to show that the class of functions
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of finite Besov norm is contained in Ḃα,Lp,q . Even though its proof follows similar steps to the

proof of Theorem 3.13, Theorem 3.14 is not a corollary of Theorem 3.13.

Theorem 3.14 (Calderón reproducing formula III). Suppose L satisfies (S) and (K), and L∗

its adjoint operator. Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Let p′ and q′ be the conjugate exponents

of p and q respectively. Also suppose

ˆ
X
|f(x)|e−αd(x,x0)2

dµ(x) <∞

for some x0 ∈ X , and ‖f‖Ḃα,Lp,q
<∞. Then for Ψt(L) = tLe−tL, we have

(f, φ) =

ˆ
X
f(x)φ(x) dµ(x) = 4

ˆ ∞
0

ˆ
X

Ψt(L)f(x)Ψt(L
∗)φ(x) dµ(x)

dt

t
(3.13)

for every φ ∈M−α,L
∗

p′,q′ .

Proof. Let φ ∈ M−α,L
∗

p′,q′ . Then we have that φ ∈ Lr(X ) for any r > 1. Suppose f is a function

that satisfies ˆ
X
|f(x)|e−αd(x,x0)2

dµ(x) <∞ (3.14)

for some x0 ∈ X , and ‖f‖Ḃα,Lp,q
< ∞. As in the proof of Theorem 3.13, the double integral in

(3.13) converges absolutely. Moreover, we have

ˆ ∞
0

ˆ
X

Ψt(L)f(x)Ψt(L
∗)φ(x) dµ(x)

dt

t

= lim
M→∞

ˆ
X

ˆ M

1/M

f(x)(Ψt(L
∗))2φ(x)

dt

t
dµ(x).

Because the semigroup e−tL
∗

is continuous and differentiable with lim
t→0

e−tL
∗

= I in Lr, using

Theorem 3.3 it follows that

lim
M→∞

ˆ M

1/M

(Ψt(L
∗))2φ

dt

t
=

1

4
φ in Lr.

By the Lr convergence, there exists a sub-sequence {Mj} of integers {M} satisfying

lim
j→∞

ˆ Mj

1/Mj

(Ψt(L
∗))2φ

dt

t
=

1

4
φ (3.15)
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almost everywhere. Using (3.11), it follows that

ˆ M

1/M

(Ψt(L
∗))2φ

dt

t

=
1

4
(−2ML∗e−2ML∗φ+

2

M
L∗e−

2
M L∗φ− e−2ML∗φ+ e−

2
M L∗φ).

(3.16)

Because −2ML∗e−2ML∗ = Ψ2M (L∗) satisfies the kernel bound (K), from the equality φ = L∗g,

and condition (3.5), it follows that for every x ∈ X ,

∣∣− 2ML∗e−2ML∗φ(x)
∣∣

=
∣∣∣− 1

2M
(2ML∗)2e−2ML∗g(x)

∣∣∣
≤ C

M

ˆ
X

e−αd(x,y)2/2M

(2M)min(n,N)/2
e−αd(x0,y)2

dµ(y)

≤ C M−1

(2M)min(n,N)/2
e−αd(x,x0)2/2M

≤ Ce−αd(x,x0)2

for M > 1. In a similar way, the other three terms in (3.16) satisfy the same estimates. Thus

we obtain that for every x, ∣∣∣∣∣
ˆ Mj

1/Mj

(Ψt(L
∗))2φ(x)

dt

t

∣∣∣∣∣ ≤ Ce−αd(x,x0)2

(3.17)

By (3.17), it follows that for all Mj and all x∣∣∣∣∣f(x)

ˆ Mj

1/Mj

(Ψt(L
∗))2φ(x)

dt

t

∣∣∣∣∣ ≤ C|f(x)|e−αd(x,x0)2

which is integrable, from the growth assumption on f . Hence using (3.15) and the Dominated

Convergence Theorem,

lim
j→∞

ˆ
X
f(x)

ˆ Mj

1/Mj

(Ψt(L
∗))2φ(x)

dt

t
dµ(x) =

1

4

ˆ
X
f(x)φ(x) dµ(x).

Thus the proof of the theorem is complete.

We end this subsection by a brief discussion of two Besov spaces on domains existing in

current literature (see, for example, [Tr, Tr1, ST, Mu]).
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Let Ω be a smooth, bounded domain in Rn. Let 0 < α < 1 and 1 ≤ p, q ≤ ∞. In this

case, the inhomogeneous Besov space Bαp,q(Ω) is defined as follows:

Bαp,q(Ω) = {f ∈ Lp(Ω) : ∃g ∈ Bαp,q(Rn), f = g|Ω},

where g|Ω is the restriction of g to Ω. See [Tr, Tr1] for properties of this space as well as the

definition for all α ∈ R.

In [ST], H. Sikić and M.H. Taibleson considered the Besov–Lipschitz space zB
α
p,q(Ω),

which is defined as the space of all f ∈ Lp(Ω) such that its zero extension to Rn, f̃ ∈ Bαp,q(Rn),

where

f̃ =


f(x), x ∈ Ω,

0, x /∈ Ω.

As noted in [ST], zB
α
p,q(Ω) is the same as the space B̃αp,q(Ω) in [Tr]; we refer the reader to

Remark 4, p. 320 in [Tr] for a discussion on the origin of this space. By (2.8) in [ST], we obtain

zB
α
p,q(Ω) ⊆ Bαp,q(Ω).

Furthermore, the relationship between these two spaces and the space B̊αp,q(Ω), the closure of

C∞c (Ω) in Bαp,q(Ω), has been elaborated in Chapter 4 of [Tr].

By p. 144 in [ST], the kernel Q(t;x, y) in that paper is the heat kernel associated with

the Laplacian on Ω with Dirichlet boundary condition, and by Section 5.6 in [ST], the ker-

nel R(t;x, y) is the heat kernel associated with the Laplacian on Ω with Neumann boundary

condition. Thus it follows from Theorem 4.1 and (5.20) in [ST] that we have the following result.

Proposition 3.15. Suppose that Ω is a smooth and bounded domain in Rn. Assume that

0 < α < 1 and 1 ≤ p, q ≤ ∞. Let −∆N and −∆D denote the Laplace operators on Ω with

Neumann boundary condition and Dirichlet boundary condition, respectively. Then we have

Ḃα,−∆N
p,q (Ω) ∩ Lp(Ω) = Bαp,q(Ω),

Ḃα,−∆D
p,q (Ω) ∩ Lp(Ω) = zB

α
p,q(Ω).
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We note that in all the existing works in the (inhomogeneous) Besov spaces, such as the

classical Besov spaces Bαp,q(Ω) and zB
α
p,q(Ω), some regularity (smoothness) of the boundary of

Ω is assumed. In contrast, we made no assumptions on the boundary of Ω, but impose instead

a heat kernel bound on the kernel pt(x, y). As the example (iii) in Section 3.2.2 shows, this heat

kernel bound condition can be satisfied when the domain Ω has no regularity condition on its

boundary. Therefore the Besov spaces Ḃα,Lp,q (Ω) ∩ Lp(Ω) go beyond the classical case and give

new spaces when Ω possesses no regularity condition on its boundary.

Because of the usefulness of Besov spaces in the study of solutions of the Dirichlet and

Neumann problems on Lipschitz domains (see, for example, [Ke, MM1, MMS]), it would be of

considerable interest to extend the results in Proposition 3.15 to the case where the boundary

of Ω has minimal regularity.
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Chapter 4

Besov spaces associated with operators II

Some of the content in this chapter are contained in [Wo1] and [Wo2]. In this chapter we study

some properties and decomposition of Besov spaces associated with operators.

In Section 4.1 we study an embedding theorem for the Besov spaces and give discrete

characterizations of the Besov norms associated to operators. We also study the equivalence of

the Besov norms with respect to different functions of L. We extend the Besov norm equivalence

to more general class of functions Ψt(L) with suitable decay at 0 and infinity, and to non-integer

k ≥ 1. Then we study the behaviour of fractional integrals on the Besov spaces.

In Section 4.2 we study decomposition of Besov spaces associated with Schrödinger op-

erators with non-negative potentials satisfying reverse Hölder estimates on Rn. We also show

that, in some special cases, the classical Besov spaces are proper subspaces of these spaces. We

also extend the decomposition of Besov spaces associated with Schrödinger operators to more

general values α, p, q.

4.1 Properties of Besov spaces associated with operators

4.1.1 Embedding theorem

Theorem 4.1. Suppose that L satisfies (S) and (K). Let −1 < α < 1, 1 ≤ p ≤ ∞ and

1 ≤ q1 ≤ q2 ≤ ∞. Then the following statements are true:
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(i) Ḃα,Lp,q ⊆ (M−α,L
∗

p′,q′ )′ (continuous embedding).

(ii) Ḃα,Lp,q1 ⊆ Ḃ
α,L
p,q2 .

(iii) Ḃα,Lp,q is complete.

(iv) If 1 ≤ p1 ≤ p2 ≤ ∞, −1 < α2 ≤ α1 < 1 and α1 − min(n,N)
2p1

= α2 − min(n,N)
2p2

, then

Ḃα1,L
p1,q ⊆ Ḃ

α2,L
p2,q ,

for every 1 ≤ q ≤ ∞.

Proof. Firstly, (i) follows from Theorem 3.13.

Let us now show (ii). Let f ∈ Ḃα,Lp,q1 . Using the same arguments as in the proof of

Proposition 3.5, it follows that (3.3) and (3.4) are true for f . Then for all t > 0, we have

‖Ψs(L)f‖p ≥ c‖Ψt(L)f‖p, t/2 ≤ s ≤ t, (4.1)

so then we obtain

‖f‖Ḃα,Lp,q1

≥
{ˆ t

t/2

(s−α‖Ψs(L)f‖p)q1
ds

s

}1/q1

≥ c1t−α‖Ψt(L)f‖p.

Then we have

‖f‖Ḃα,Lp,∞

= sup
t>0

t−α‖Ψt(L)φ‖p

≤ 1

c1
‖f‖Ḃα,Lp,q1

.

Hence (ii) is true for the case q2 = ∞. The embedding for the case q2 < ∞ easily follows from

the case q2 =∞.

Let us now show (iii). Suppose that {fn} is a Cauchy sequence in Ḃα,Lp,q . From (i),

we have that {fn} is a Cauchy sequence in the Banach space
(
M−α,L

∗

p′,q′

)′
. Hence there exists
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f ∈
(
M−α,L

∗

p′,q′

)′
satisfying

fn → f in (M−α,L
∗

p′,q′

)′
.

It follows that for every t > 0 and x ∈ X ,

(fn, kt(x, ·)) = Ψt(L)fn(x)→ (f, kt(x, ·)) = Ψt(L)f(x).

Using (ii) and the completeness of Lp(X ) we obtain Ψt(L)fn → Ψt(L)f in Lp(X ).

Let us now prove that fn converges to f in Ḃα,Lp,q . Let ε > 0. Because {fn} is a Cauchy

sequence, there exists N ∈ N such that for all m,n ≥ N ,{ˆ ∞
0

(t−α‖Ψt(L)(fm − fn)‖p)q
dt

t

}1/q

< ε.

Fix n ≥ N , and let m→∞ in the above. It follows that{ˆ ∞
0

(t−α‖Ψt(L)(fn − f)‖p)q
dt

t

}1/q

< ε.

Thus we have fn → f in Ḃα,Lp,q . Thus the proof of (iii) is finished.

Let us now prove (iv). Suppose f ∈ Ḃα1,L
p,q . Because

Ψ2t(L)f = 2e−tLΨt(L)f, t > 0,

from the kernel bound condition (K), it follows that for all x ∈ X ,

Ψ2t(L)f(x) ≤ C
ˆ
X

e−αd(x,y)2/t

tmin(n,N)/2
|Ψt(L)f(y)| dµ(y).

Let r ≥ 0, where 1
p2

= 1
p1

+ 1
r − 1. By applying a similar argument as in the proof of Young’s

inequality (see e.g., Theorem 1.2.12 in [Gr]) and Lemma 3.1, it follows that

‖Ψ2t(L)‖p2

≤ C‖Ψt(L)f‖p1

(
sup
y

∥∥∥∥e−αd(·,y)2/t

tmin(n,N)/2

∥∥∥∥
r

)
≤ C‖Ψt(L)f‖p1t

min(n,N)( 1
p2
− 1
p1

)/2.

Then we have

‖f‖
Ḃ
α2,L
p2,q
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≤ C
{ˆ ∞

0

(t−α2‖Ψ2t(L)f‖p2
)q
dt

t

}1/q

≤ C
{ˆ ∞

0

(
t−α2+min(n,N)( 1

p2
− 1
p1

)/2‖Ψt(L)f‖p1

)q dt
t

}1/q

= C‖f‖
Ḃ
α1,L
p1,q

.

Thus we have finished proving the Theorem.

In the following we show that Ḃα,Lp,q contains functions satisfying some growth condition.

Proposition 4.2. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Suppose

that f satisfies the growth condition (G) and ‖f‖Ḃα,Lp,q
<∞. Then f ∈ Ḃα,Lp,q .

Proof. It is enough to show that f ∈
(
M−α,L

∗

p′,q′

)′
. For all φ ∈ M−α,L

∗

p′,q′ , we obtain by Theorem

3.14 that

(f, φ) =

ˆ
X
f(x)φ(x) dµ(x) =

ˆ ∞
0

ˆ
X

Ψt(L)f(x)Ψt(L
∗)φ(x) dµ(x)

dt

t
.

From Hölder’s inequality, we have

∣∣∣ˆ ∞
0

ˆ
X

Ψt(L)f(x)Ψt(L
∗)φ(x) dµ(x)

dt

t

∣∣∣
≤
ˆ ∞

0

t−α‖Ψt(L)f‖p tα‖Ψt(L
∗)φ‖p′

dt

t

≤ ‖f‖Ḃα,Lp,q
‖φ‖

Ḃ−α,L
∗

p′,q′

<∞,

hence f ∈
(
M−α,L

∗

p′,q′

)′
. Thus the proof of the proposition is complete.

4.1.2 Norm equivalence

In the following proposition, we present discrete characterizations of Besov norms asso-

ciated with operators.

Proposition 4.3. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p ≤ ∞. The

following three statements are equivalent for f ∈
(
M−α,L

∗

p′,q′

)′
.
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(a) f ∈ Ḃα,Lp,q

(b) f satisfies
{ ∞∑
j=−∞

(2jα‖Ψ2−j (L)f‖p)q
}1/q

<∞

(c) f satisfies
{ ∞∑
j=−∞

(2jα‖∆j(L)f‖p)q
}1/q

<∞

where ∆j(L)f = e−2−jLf − e−2−j−1Lf .

Furthermore, each infinite sum in (b) and (c) are equivalent to ‖f‖Ḃα,Lp,q
.

Proof. Let us begin by showing that (a) is equivalent to (b). For each j ∈ Z, applying (4.1) we

obtain

‖Ψt(L)f‖p ≤ C‖Ψ2−j−1(L)f‖p, 2−j−1 ≤ t ≤ 2−j .

Then we have

‖f‖Ḃα,Lp,q

=

{ˆ ∞
0

(t−α‖Ψt(L)f‖p)q
dt

t

}1/q

=

{ ∞∑
j=−∞

ˆ 2−j

2−j−1

(t−α‖Ψt(L)f‖p)q
dt

t

}1/q

≤ C1

( ∞∑
j=−∞

(
2(j+1)α‖Ψ2−j−1(L)f‖p

)q)1/q

= C1

( ∞∑
j=−∞

(2jα‖Ψ2−j (L)f‖p)q
)1/q

.

Using (4.1), it follows that

‖Ψt(L)f‖p ≥ c‖Ψ2−j (L)f‖p, 2−j−1 ≤ t ≤ 2−j .

Using a similar argument, we obtain( ∞∑
j=−∞

(2jα‖Ψ2−j (L)f‖p)q
)1/q

≤ c2‖f‖Ḃα,Lp,q
.

Thus we have shown that (a) is equivalent to (b).

Next we show that (a) implies (c). Observe that for every j,

∆j(L)f = (e−2−jL − e−2−j−1L)f = −
ˆ 2−j

2−j−1

Ψt(L)f
dt

t
.
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By applying Hölder’s and Minkowski’s inequalities we obtain

2jα‖∆j(L)f‖p

≤ 2jα
ˆ 2−j

2−j−1

‖Ψt(L)f‖p
dt

t

≤ C2jα
(ˆ 2−j

2−j−1

‖Ψt(L)f‖qp
dt

t

)1/q

≤ C
(ˆ 2−j

2−j−1

(t−α‖Ψt(L)f‖p)q
dt

t

)1/q

.

Then we have

( ∞∑
j=−∞

(2jα‖∆j(L)f‖p)q
)1/q

≤ C
(ˆ ∞

0

(t−α‖Ψt(L)f‖p)q
dt

t

)1/q

= C‖f‖Ḃα,Lp,q
.

Lastly, we will show that (c) implies (a). For every j ∈ Z, using the mean value theorem, there

exists some ηj ∈ [2−j−1, 2−j ] satisfying

∆j(L)f = (e−2−jL − e−2−j−1L)f = −2−j−1Le−ηjLf.

Applying the Lp-continuity of the semigroup {e−sL}s>0 gives

‖Ψ2−j (L)f‖p

= 2‖e−(2−j−ηj)L(2−j−1Le−ηjLf)‖p

≤ C‖2−j−1Le−ηjLf‖p

= C‖∆j(L)f‖p,

then by using the equivalence of (a) and (b) it follows that

‖f‖Ḃα,Lp,q
≤ C

( ∞∑
j=−∞

(2jα‖∆j(L)f‖p)q
)1/q

.

Hence we have shown that (a) is equivalent to (c). Thus we have finished the proof of the

proposition.
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The following proposition gives the result that the Besov norms defined by tkLke−tL are

equivalent to each other for positive k ≥ 1.

Proposition 4.4. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. For

any f ∈
(
M−α,L

∗

p′,q′

)′
, and k = 1, 2, . . ., we define a family of Besov norms by

‖f‖Ḃα,L,kp,q
=

{ ˆ ∞
0

(t−α‖tkLke−tLf‖p)q
dt

t

}1/q

for q <∞ and

‖f‖Ḃα,L,kp,q
= sup

t>0
t−α‖tkLke−tLf‖p

for q =∞, where tkLke−tLf(x) = (f, pk,t(x, ·)). Then these norms for different values of k are

equivalent to each other.

Proof. We will prove that the Besov norms are equivalent for the choices of tkLke−tL and

tk+1Lk+1e−tL for all k ∈ N. Firstly, it can be seen that

‖tk+1Lk+1e−tLf‖p

= ‖tLe−tL/2tkLke−tL/2f‖p

≤ ‖tLe−tL/2‖p→p‖tkLke−tL/2f‖p

≤ C‖tkLke−tL/2f‖p,

where the final inequality is true because the operator norm ‖tLe−tL/2‖p→p is uniformly bounded

as a consequence of its kernel bound. Therefore we have

‖f‖Ḃα,L,k+1
p,q

≤ C‖f‖Ḃα,L,kp,q

for any positive value k ≥ 1.

In order to prove the reverse inequality, suppose that 1 ≤ q < ∞. Let us recall Hardy’s

inequality: For 0 < r <∞ and non-negative measurable function g,

(ˆ ∞
0

tr−1

[ˆ ∞
t

g(s) ds

]q
dt

)1/q

≤ q

r

(ˆ ∞
0

tr−1[tg(t)]q dt

)1/q

.

(See for example, Lemma 3.14, Chapter V in [SW].)
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Next we see that, for every φ ∈M−α,L
∗

p′,q′ ,

d

ds
(Lke−sLf, φ) = (−Lk+1e−sLf, φ),

ˆ u

t

(−Lk+1e−sLf, φ) ds = (Lke−uLf, φ)− (Lke−tLf, φ)

= (f, (L∗)ke−uL
∗
φ)− (Lke−tLf, φ).

Using an argument similar to the proof of Theorem 3.13, we observe that (L∗)ke−uL
∗
φ → 0 in

M−α,L
∗

p′,q′ norm as u→∞. Then we have

(tkLke−tLf, φ) = tk
ˆ ∞
t

(Lk+1e−sLf, φ) ds. (4.2)

Applying this and Hardy’s inequality with g(s) = ‖Lk+1e−sLf‖p we obtain{ ˆ ∞
0

(t−α‖tkLke−tLf‖p)q
dt

t

}1/q

≤
{ ˆ ∞

0

t−αqtkq
(ˆ ∞

t

‖Lk+1e−sLf‖p ds
)q

dt

t

}1/q

≤ q

r

{ ˆ ∞
0

t−αqtkqtq‖Lk+1e−tLf‖qp
dt

t

}1/q

=
q

r

{ ˆ ∞
0

(
t−α‖tk+1Lk+1e−tLf‖p

)q dt
t

}1/q

,

where r = q(k − α) > 0; that is,

‖f‖Ḃα,L,kp,q
≤ q

r
‖f‖Ḃα,L,k+1

p,q
.

Lastly, consider the case q =∞. Using (4.2) and Minkowski’s inequality it follows that

t−α‖tkLke−tLf‖p

≤ tk−α
ˆ ∞
t

s−α‖sk+1Lk+1e−sLf‖psα−k−1 ds

≤
(

sup
s>0

s−α‖sk+1Lk+1e−sLf‖p
)
tk−α

ˆ ∞
t

sα−k−1 ds

=

(
sup
s>0

s−α‖sk+1Lk+1e−sLf‖p
)
tk−α

[
sα−k

α− k

]∞
t

=

(
sup
s>0

s−α‖sk+1Lk+1e−sLf‖p
)
tk−α

(
0 +

tk−α

k − α

)
=

1

k − α
‖f‖Ḃα,L,k+1

p,∞
.

Thus we obtain the reverse inequality for q =∞. Hence the proof of the proposition is complete.
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In the next proposition we show the equivalence of Besov norms of more general class of

functions Ψt(L) with suitable decay at 0 and infinity.

Proposition 4.5. Suppose L satisfies (S) and (K). Let 0 < α < 1 and 1 ≤ p, q ≤ ∞. For any

f ∈
(
M−α,L

∗

p′,q′

)′
, we define a family of Besov norms by

‖f‖
Ḃ
α,Ψt(L)
p,q

=

{ˆ ∞
0

(t−α‖Ψt(L)f‖p)q
dt

t

}1/q

for q <∞ and

‖f‖
Ḃ
α,Ψt(L)
p,q

= sup
t>0

t−α‖Ψt(L)f‖p

for q = ∞. Assume that Ψt(L) and Ψ̃t(L) are two classes of functions of L which satisfy the

following conditions:

(i) Ψ(ξ) and Ψ̃(ξ) are holomorphic functions on the positive x-axis such that Ψ(ξ) and Ψ̃(ξ)

tend to 0 as ξ tends to 0 and as ξ tends to infinity.

(ii) The operators Ψt(L) and Ψ̃t(L) have kernel bounds (K).

(iii) There exists ˜̃Ψt(L) with kernel bounds (K) such that

Ψ̃t(L) = Ψt(L) ˜̃Ψt(L).

(iv) The functions Ψ(ξ) and Ψ̃(ξ) satisfy for some constant C

Ψ̃t(L) = Ct
d

dt
(Ψt(L)).

Then the Besov norms with respect to Ψt(L) and Ψ̃t(L) are equivalent to each other.

Proof. First, it follows from condition (iii) that there exists a constant C such that

‖Ψ̃t(L)f‖p

= ‖ ˜̃Ψt(L)Ψt(L)f‖p

≤ ‖ ˜̃Ψt(L)‖p→p‖Ψt(L)f‖p

≤ C‖Ψt(L)f‖p,
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This then gives

‖f‖
Ḃ
α,Ψ̃t(L)
p,q

≤ C‖f‖
Ḃ
α,Ψt(L)
p,q

.

To obtain the reverse inequality, first assume 1 ≤ q < ∞. Recall Hardy’s inequality: For

0 < r <∞ and non-negative measurable function g,

(ˆ ∞
0

t−r−1

[ ˆ t

0

g(s) ds

]q
dt

)1/q

≤ q

r

( ˆ ∞
0

t−r−1[tg(t)]q dt

)1/q

.

(See for example, Lemma 3.14, Chapter V in [SW].)

Next, it follows from condition (iv) that, for every φ ∈M−α,L
∗

p′,q′ ,

d

ds
(Ψs(L)f, φ) = (

1

s
Ψ̃s(L)f, φ),

ˆ t

u

(Ψ̃s(L)f, φ)
ds

s
= (Ψt(L)f, φ)− (Ψu(L)f, φ)

= (Ψt(L)f, φ)− (f,Ψu(L∗)φ).

By condition (i) and an argument similar to the proof of Theorem 3.13, we observe that

Ψu(L∗)φ→ 0 in M−α,L
∗

p′,q′ norm as u→ 0. It follows that

(Ψt(L)f, φ) =

ˆ t

0

(Ψ̃s(L)f, φ)
ds

s
. (4.3)

This and Hardy’s inequality with g(s) =
1

s
‖Ψ̃s(L)f‖p gives

{ˆ ∞
0

(t−α‖Ψt(L)f‖p)q
dt

t

}1/q

≤
{ ˆ ∞

0

t−αq
(ˆ t

0

‖Ψ̃s(L)f‖p
ds

s

)q
dt

t

}1/q

≤ q

r

{ˆ ∞
0

t−αq
( t
t
‖Ψ̃t(L)f‖p

)q dt
t

}1/q

=
q

r

{ˆ ∞
0

(
t−α‖Ψ̃t(L)f‖p

)q dt
t

}1/q

,

where r = αq > 0; that is,

‖f‖
Ḃ
α,Ψt(L)
p,q

≤ q

r
‖f‖

Ḃ
α,Ψ̃t(L)
p,q

.

Finally, assume q =∞. Then by (4.3) and Minkowski’s inequality, it follows that

t−α‖Ψt(L)f‖p
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≤ t−α
ˆ t

0

s−α‖Ψ̃s(L)f‖psα
ds

s

≤
(

sup
s>0

s−α‖Ψ̃s(L)f‖p
)
t−α
ˆ t

0

sα−1 ds

=

(
sup
s>0

s−α‖Ψ̃s(L)f‖p
)
t−α
[
sα

α

]t
0

=

(
sup
s>0

s−α‖Ψ̃s(L)f‖p
)
t−α
(
tα

α
− 0

)
=

1

α
‖f‖

Ḃ
α,Ψ̃t(L)
p,∞

.

Hence the reverse inequality for q =∞ follows. Thus the proof of the proposition is complete.

Next we look more at the equivalence of Besov norms of more general class of functions.

Let 0 < α < 1 and f ∈ domain of Lα. Assume L has a bounded holomorphic functional calculus

on L2. We have

‖f‖Ḃα,Lp,q

=

{ ˆ ∞
0

(
t−α‖Ψt(L)f‖p

)q dt
t

}1/q

=

{ ˆ ∞
0

(
t−α‖tLe−tLf‖p

)q dt
t

}1/q

=

{ ˆ ∞
0

(
t−α
(ˆ
X

∣∣tLe−tLf ∣∣p dx)1/p
)q

dt

t

}1/q

=

{ˆ ∞
0

(ˆ
X

∣∣t−αtLe−tLf ∣∣p dx)q/p dt
t

}1/q

,

If we replace tLe−tL by tkLke−tL for k ≥ 1 > α, put Ψ̃t(z) = (tz)−αΨt(z) and g = Lαf , with

g ∈ Lp, then it follows that

‖f‖Ḃα,Lp,q

=

{ ˆ ∞
0

(ˆ
X

∣∣t−αtkLke−tLf ∣∣p dx)q/p dt
t

}1/q

=

{ ˆ ∞
0

(ˆ
X

∣∣tk−αLk−αLαe−tLf ∣∣p dx)q/p dt
t

}1/q

=

{ ˆ ∞
0

(ˆ
X

∣∣tk−αLk−αe−tLLαf ∣∣p dx)q/p dt
t

}1/q

=

{ ˆ ∞
0

(ˆ
X

∣∣Ψ̃t(L)g
∣∣p dx)q/p dt

t

}1/q

=

{ ˆ ∞
0

‖Ψ̃t(L)g‖qp
dt

t

}1/q

.
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Let Ψ̃t(L) = t−αL−αΨt(L) and β̃t(L) = t−αL−αβt(L). Then [McY] gives us that the Besov

norms with respect to Ψ̃t(L) and β̃t(L) are equivalent to each other for the case p = q = 2.

That is,

‖f‖
Ḃ
α,Ψt(L)
2,2

=

{ ˆ ∞
0

‖Ψ̃t(L)g‖22
dt

t

}1/2

is equivalent to

‖f‖
Ḃ
α,βt(L)
2,2

=

{ˆ ∞
0

‖β̃t(L)g‖22
dt

t

}1/2

.

Furthermore, in [CDMcY] we have that, for 1 < p <∞,

∥∥∥∥{ ˆ ∞
0

|Ψ̃t(L)g|2 dt
t

}1/2∥∥∥∥
p

is equivalent to ∥∥∥∥{ˆ ∞
0

|β̃t(L)g|2 dt
t

}1/2∥∥∥∥
p

.

When p = 2, it follows that

∥∥∥∥{ ˆ ∞
0

|Ψ̃t(L)g|2 dt
t

}1/2∥∥∥∥
p

=

{ ˆ
X

(ˆ ∞
0

∣∣Ψ̃t(L)g
∣∣2 dt

t

)p/2
dx

}1/p

=

{ ˆ
X

(ˆ ∞
0

∣∣Ψ̃t(L)g
∣∣2 dt

t

)2/2

dx

}1/2

=

{ ˆ
X

(ˆ ∞
0

∣∣Ψ̃t(L)g
∣∣2 dt

t

)
dx

}1/2

=

{ ˆ ∞
0

(ˆ
X

∣∣Ψ̃t(L)g
∣∣2 dx) dt

t

}1/2

=

{ ˆ ∞
0

(ˆ
X

∣∣Ψ̃t(L)g
∣∣2 dx)2/2

dt

t

}1/2

=

{ ˆ ∞
0

‖Ψ̃t(L)g‖22
dt

t

}1/2

= ‖f‖
Ḃ
α,Ψt(L)
2,2

.

Therefore [CDMcY] also gives us that the Besov norms with respect to Ψ̃t(L) and β̃t(L) are

equivalent to each other for the case p = q = 2. That is,

‖f‖
Ḃ
α,Ψt(L)
2,2

=

{ ˆ ∞
0

‖Ψ̃t(L)g‖22
dt

t

}1/2
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is equivalent to

‖f‖
Ḃ
α,βt(L)
2,2

=

{ˆ ∞
0

‖β̃t(L)g‖22
dt

t

}1/2

.

The following proposition extends the Besov norm equivalence result of Proposition 4.4

to non-integer k ≥ 1.

Proposition 4.6. Suppose L satisfies (S) and (K). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. For

any f ∈
(
M−α,L

∗

p′,q′

)′
, and k = 1, 2, . . ., we define a family of Besov norms by

‖f‖Ḃα,L,kp,q
=

{ ˆ ∞
0

(t−α‖tkLke−tLf‖p)q
dt

t

}1/q

for q <∞ and

‖f‖Ḃα,L,kp,q
= sup

t>0
t−α‖tkLke−tLf‖p

for q = ∞, where tkLke−tLf(x) = (f, pk,t(x, ·)). Then these norms for different values of

non-integer w, for k < w < k + 1, are equivalent to each other.

Proof. Let w = k + α, where 0 < α < 1. Firstly, it can be seen that

‖twLwe−tLf‖p

= ‖tαLαe−tL/2tkLke−tL/2f‖p

≤ ‖tαLαe−tL/2‖p→p‖tkLke−tL/2f‖p

≤ C‖tkLke−tL/2f‖p,

where the final inequality is true because the operator norm

‖tαLαe−tL/2‖p→p

is uniformly bounded, which follows from interpolation between α = 0 and α = 1. Therefore we

have

‖f‖Ḃα,L,wp,q
≤ C‖f‖Ḃα,L,kp,q

for any non-integer value w, where k < w < k + 1.
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To prove the reverse inequality, observe that

‖tk+1Lk+1e−tLf‖p

= ‖t1−αL1−αe−tL/2tk+αLk+αe−tL/2f‖p

≤ ‖t1−αL1−αe−tL/2‖p→p‖tk+αLk+αe−tL/2f‖p

≤ C‖tk+αLk+αe−tL/2f‖p,

= C‖twLwe−tL/2f‖p,

where the final inequality is true because the operator norm

‖t1−αL1−αe−tL/2‖p→p

is uniformly bounded, which follows from interpolation between α = 0 and α = 1. Therefore we

have

‖f‖Ḃα,L,k+1
p,q

≤ C‖f‖Ḃα,L,wp,q

for any non-integer value w, where k < w < k + 1. Hence the proof of the proposition is

complete.

Next we see if we have norm equivalence when we replace the semigroup tkLke−tL by the

resolvent tkLk(tL+ 1)−m, for k < m.

Let λ > 0. The Laplace transform gives

(λI + L)−m =
1

m!

ˆ ∞
0

sm−1e−λse−sL ds.

We have

(tL+ 1)−m

=
[
t
(
L+

1

t

)]−m
= t−m

(
L+

1

t

)−m
=
t−m

m!

ˆ ∞
0

sm−1e−s/te−sL ds.
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Then for k < m, it follows that

tkLk(tL+ 1)−m

=
tk−m

m!

ˆ ∞
0

sm−1e−s/tLke−sL ds

=
t−m

m!

ˆ ∞
0

sm−1e−s/ttkLke−sL ds

=
t−m

m!

ˆ ∞
0

sme−s/t
( t
s

)k
skLke−sL

ds

s
.

Therefore we have

‖tkLk(tL+ 1)−m‖p

≤ t−m

m!

ˆ ∞
0

sme−s/t
( t
s

)k
‖skLke−sL‖p

ds

s

≤ Ct−m
ˆ ∞

0

sme−s/t
( t
s

)k ds
s
.

By change of variables s/t→ w it then follows that

‖tkLk(tL+ 1)−m‖p

≤ C
ˆ ∞

0

wm−ke−w
ds

w

≤ C
ˆ ∞

0

wm−k−1e−w ds

≤ C.

By using the above and also observing that

‖tkLke−tL‖p

≤ ‖tkLk(tL+ 1)−m‖p‖(tL+ 1)me−tL‖p

≤ C‖tkLk(tL+ 1)−m‖p

≤ C,

this gives a simpler proof for Proposition 4.4 than by using Hardy’s inequality.

To conclude this section we present a result that gives norm equivalence for the Besov

spaces with positive α.
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Proposition 4.7. Suppose L satisfies (S) and (K). Let 0 < α < 1 and 1 ≤ p, q ≤ ∞. A

functional f belongs to Ḃα,Lp,q if and only if f satisfies{ˆ ∞
0

(t−α‖(I − e−tL)f‖p)q
dt

t

}1/q

<∞. (4.4)

Furthermore, the above expression is equivalent to ‖f‖Ḃα,Lp,q
.

Proof. Let f ∈ Ḃα,Lp,q . We shall show that f satisfies (4.4). Observe that by (S) and (K) we

have

(I − e−tL)f =

ˆ t

0

Le−sLf ds in (M−α,L
∗

p′,q′ )′.

Observe that the right hand side of the above equality is a function. By Hardy’s inequality, it

follows that { ˆ ∞
0

(t−α‖(I − e−tL)f‖p)q
dt

t

}1/q

=

{ ˆ ∞
0

(
t−α‖

ˆ t

0

Le−sLf ds‖p
)q

dt

t

}1/q

≤
{ ˆ ∞

0

t−αq−1

(ˆ t

0

‖Le−sLf‖p ds
)q

dt

}1/q

≤ 1

α

{ ˆ ∞
0

s−αq−1‖sLe−sLf‖qp ds
}1/q

=
1

α
‖f‖Ḃα,Lp,q

,

which gives (4.4).

Assume that f satisfies (4.4). We shall prove that f ∈ Ḃα,Lp,q . Following [HMa], for every

t > 0 we shall write

I = t−1

ˆ 2t

t

ds · I

= t−1

ˆ 2t

t

(I − e−sL) ds+ t−1

ˆ 2t

t

e−sL ds. (4.5)

But we have d
dse
−sL = −Le−sL so it follows that

L

ˆ 2t

t

e−sL ds = e−tL − e−2tL = e−tL(I − e−tL). (4.6)

By substituting (4.6) into (4.5), it follows that

tLe−tLf = Le−tL
ˆ 2t

t

(I − e−sL) ds+ e−2tL(I − e−tL). (4.7)
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Using condition (K) we have that tLe−tL and e−tL are bounded on Lp for all 1 ≤ p ≤ ∞. This,

together with (4.7) gives

{ˆ ∞
0

(t−α‖tLe−tLf‖p)q
dt

t

}1/q

≤
{ ˆ ∞

0

(
t−α
∥∥Le−tL ˆ 2t

t

(I − e−sL) ds
∥∥
p

)q
dt

t

}1/q

+

{ˆ ∞
0

(
t−α
∥∥e−2tL(I − e−tL)

∥∥
p

)q dt
t

}1/q

≤ C
{ ˆ ∞

0

(
t−α
ˆ 2t

t

∥∥(I − e−sL)
∥∥
p

ds

s

)q
dt

t

}1/q

+ C

{ˆ ∞
0

(
t−α
∥∥(I − e−tL)

∥∥
p

)q dt
t

}1/q

≤ C ′
{ ˆ ∞

0

(
t−α
∥∥(I − e−tL)

∥∥
p

)q dt
t

}1/q

.

Therefore we have f ∈ Ḃα,Lp,q . Thus we have finished proving the proposition.

4.1.3 Applications: fractional integrals

Let 0 < α < 1, 0 < γ < 1 and α+ γ < 1. For any f ∈ Ḃα,Lp,q , we define fractional integrals

L−γf associated with an operator L by

(L−γf, φ) =
1

Γ(γ)

ˆ ∞
0

tγ−1(e−tLf, φ) dt (4.8)

for every φ ∈M−(α+γ),L∗

p′,q′ , where Γ(γ) is an appropriate constant.

Lemma 4.8. Suppose L satisfies (S) and (K). Let 0 < α < 1, 0 < γ < 1 and α + γ < 1. If

f ∈ Ḃα,Lp,q , then L−γf is well-defined.

Proof. Let φ ∈ M−(α+γ),L∗

p′,q′ and f ∈ Ḃα,Lp,q . To show that the above integral converges, we first

consider 0 < t ≤ 1. For every 0 < γ < 1,

‖φ‖
Ḃ−α,L

∗
p′,q′

=

{ˆ ∞
0

(
sα‖sL∗e−sL

∗
φ‖p′

)q′ ds
s

}1/q′

≤ ‖φ‖p′
{ˆ 1

0

sαq
′ ds

s

}1/q′

+

{ ˆ ∞
1

(
sα+γ‖sL∗e−sL

∗
φ‖p′

)q′ ds
s

}1/q′

≤ C‖φ‖p′ + ‖φ‖
Ḃ
−(α+γ),L∗
p′,q′

.
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We also have φ = L∗g for some g satisfying condition (3.5). Thus we have φ ∈ M−α,L
∗

p′,q′ .

Applying Theorem 3.13, we obtain

|(e−tLf, φ)|

≤ ‖e−tLf‖Ḃα,Lp,q
‖φ‖

Ḃ−α,L
∗

p′,q′

≤ C‖f‖Ḃα,Lp,q
‖φ‖

Ḃ−α,L
∗

p′,q′

≤ C‖f‖Ḃα,Lp,q
(‖φ‖p′ + ‖φ‖

Ḃ
−(α+γ),L∗
p′,q′

). (4.9)

We shall now consider the case t ≥ 1. Using the proof of Theorem 4.1, it follows that f ∈ Ḃα,Lp,∞,

so we have ‖tLe−tLf‖p ≤ Ctα‖f‖Ḃα,Lp,q
. Furthermore, φ = L∗g for some g ∈ Lp′(X ), hence we

obtain

|(e−tLf, φ)|

≤ 1

t
|(tLe−tLf, g)|

≤ 1

t
‖tLe−tLf‖p‖g‖p′

≤ Ctα−1‖f‖Ḃα,Lp,q
‖g‖p′ . (4.10)

Then it can be easily shown that the integral on the right hand side of (4.8) converges absolutely.

Thus the proof of the lemma is complete.

Observe that if we let L be the Laplacian −∆ on Rn, then L−γ will be the classical

fractional integral. See, for instance, [SW].

Suppose that α, γ, p, q and f are as given in Lemma 4.8. From this lemma we have that

for each k ∈ N, (tL)ke−tLf is well-defined. Then we define the norm

‖L−γf‖Ḃα+γ,L
p,q

=

{ˆ ∞
0

(t−(α+γ)‖tLe−tL(L−γf)‖p)q
dt

t

}1/q

when the last integral is finite.

Theorem 4.9. Suppose L satisfies (S) and (K). Let 0 < α < 1, 0 < γ < 1, α + γ < 1 and

1 ≤ p, q ≤ ∞. Then there exists a positive constant C such that for all f ∈ Ḃα,Lp,q ,

C−1‖f‖Ḃα,Lp,q
≤ ‖L−γf‖Ḃα+γ,L

p,q
≤ C‖f‖Ḃα,Lp,q

. (4.11)
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Proof. Let us first show the right hand inequality of (4.11). Let Ψt(L) = (tL)2e−tL. Using

Proposition 4.4 we obtain

‖L−γf‖Ḃα+γ,L
p,q

≤
{ˆ ∞

0

(t−(α+γ)‖Ψt(L)(L−γf)‖p)q
dt

t

}1/q

=

{ ˆ ∞
0

(t−α‖(tL)−γ(t2L2e−tLf)‖p)q
dt

t

}1/q

. (4.12)

We shall now estimate the term ‖(tL)−γ(t2L2e−tLf)‖p. Applying (4.8) we have that

(tL)−γ(t2L2e−tLf) = Cγ

ˆ ∞
0

(s
t

)γ( t

t+ s

)(
(t+ s)Le−(s+ t

2 )
)
tLe−

t
2Lf

ds

s
.

Then it follows that

‖(tL)−γ(t2L2e−tLf)‖p

≤ C
ˆ ∞

0

(s
t

)γ( t

t+ s

)∥∥∥((t+ s)Le−
t+s
2

)∥∥∥
p,p

ds

s
‖tLe− t2Lf‖p

≤ C
ˆ ∞

0

(s
t

)γ( t

t+ s

) ds
s
‖tLe− t2Lf‖p

≤ C‖tLe− t2Lf‖p. (4.13)

By putting (4.13) back into (4.12), we obtain ‖L−γf‖Ḃα+γ,L
p,q

≤ C‖f‖Ḃα,Lp,q
.

Let us now show the left hand inequality of (4.11). We shall write

‖f‖Ḃα,Lp,q

=

{ˆ ∞
0

(t−α‖tLe−tLf‖p)q
dt

t

}1/q

=

{ˆ ∞
0

(t−(α+γ)‖(tL)γ−1(t2L2e−tLL−γf)‖p)q
dt

t

}1/q

.

Because 0 < 1−γ < 1, by a similar argument to (4.13) it can be proved that for every 1 ≤ p ≤ ∞,

‖(tL)γ−1(t2L2e−tLL−γf)‖p ≤ C‖tLe−
t
2L(L−γf)‖p,

and hence we have ‖f‖Ḃα,Lp,q
≤ C‖L−γf‖Ḃα+γ,L

p,q
. Thus the proof of the left hand inequality of

(4.11) is complete. Therefore we have finished the proof of the theorem.



96

4.2 Molecular decomposition of Besov spaces associated with Schrödinger

operators

Suppose that V is a fixed non-negative function on Rn, n ≥ 3, satisfying a reverse Hölder

inequality RHS(Rn) for some s > n
2 ; that is, there is a C = C(s, V ) > 0 with the property that

( 1

|B|

ˆ
B

V (x)s dx
)1/s

≤ C

|B|

ˆ
B

V (x) dx (4.14)

for all balls B ⊂ Rn. Let us consider the time independent Schrödinger operator with the

potential V on L2(Rn):

L = −∆ + V (x). (4.15)

We note that the operator L is non-negative self-adjoint on L2(Rn) and it generates a semigroup

e−tLf(x) =

ˆ
Rn
pt(x, y)f(y) dy, f ∈ L2(Rn), t > 0,

where the kernel pt(x, y) is dominated by the heat kernel of the Laplacian on Rn, thus pt(x, y)

has a Gaussian upper bound.

Let us recall some estimates for the heat kernel of e−tL. In the same way as in [Sh], we

shall define a function ρ(x;V ) = ρ(x) by

ρ(x) = sup
{
r > 0 :

1

rn−2

ˆ
B(x,r)

V (y) dy ≤ 1
}
. (4.16)

In this section we make the assumption that V 6≡ 0, hence 0 < ρ(x) <∞. Using a result in [Sh],

there exist k0 ≥ 1 and c > 0 such that for every x, y ∈ Rn,

c−1ρ(x)
(

1 +
|x− y|
ρ(x)

)−k0

≤ ρ(y) ≤ cρ(x)
(

1 +
|x− y|
ρ(x)

) k0
k0+1

. (4.17)

In particular, we have ρ(x) ∼ ρ(y) when r ≤ ρ(x) and y ∈ B(x, r). Furthermore, when r = ρ(x),

we have

1

rn−2

ˆ
B(x,r)

V (y) dy ≤ 1.

In the case where V = P (x) is a non-negative polynomial of degree k, it can be shown that

ρ(x)−1 ∼
∑
|α|≤k

|∂αxP (x)|1/(|α|+2).

See pp. 516–517 in [Sh].
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Lemma 4.10. Suppose that V ∈ RHS(Rn), s > n
2 . Then for every N there exists a constant

CN such that the kernel pt(x, y) of the semigroup e−tL satisfies

0 ≤ pt(x, y) ≤ CN t−
n
2 exp

(
− |x− y|

2

5t

)(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
. (4.18)

Proof. For a proof, we refer the reader to p. 332, Proposition 2 in [DGMTZ]. See also [DZ] and

[Ku].

We will require estimates for the kernel of the operator t2Le−t
2L,

qt(x, y) = t2
∂ps(x, y)

∂s

∣∣∣
s=t2

, (4.19)

as follows.

Proposition 4.11. There are constants c, δ > 0 such that for every N there exists a constant

CN > 0 so that

(i) |qt(x, y)| ≤ CN t−n exp
(
− |x− y|

2

ct2

)(
1 +

t

ρ(x)
+

t

ρ(y)

)−N
;

(ii) |qt(x+ h, y)− qt(x, y)|

≤ CN
( |h|
t

)δ
t−n exp

(
− |x− y|

2

ct2

)(
1 +

t

ρ(x)
+

t

ρ(y)

)−N
for all |h| ≤ t;

(iii)
∣∣∣ˆ

Rn
qt(x, y) dy

∣∣∣ ≤ CN( t

ρ(x)

)δ(
1 +

t

ρ(x)

)−N
.

Proof. For a proof, we refer the reader to p. 332, Proposition 4 in [DGMTZ].

4.2.1 Molecular decomposition of Ḃ0,L
1,1 (Rn)

Let us define the notion of molecules.

In the following, the definition of a molecule associated with a cube

Q = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, 2, . . . , n}

involves the “lower left corner of Q”, xQ = a = (a1, a2, . . . , an), and `(Q), the side length of Q.
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Definition 4.12. Let ε ∈ (0, 1]. A function mQ is called an (ε, L,Q)-molecule if mQ = LgQ for

some gQ, and the following conditions hold:

|mQ(x)|+ `(Q)−2|gQ(x)| ≤ |Q|−1

{
1 +
|x− xQ|
`(Q)

}−n−ε
for x ∈ Rn; (4.20)

ˆ
|y|≤`(Q)

‖mQ(x+ y)−mQ(x)‖L1(dx)
dy

|y|n
≤ 1. (4.21)

The following result is a molecular characterization of Ḃ0,L
1,1 (Rn).

Theorem 4.13. Suppose that L = −∆+V , where V 6≡ 0 is a non-negative potential in RHs(Rn)

for some s > n
2 . Assume that f ∈ L1(Rn). The following are equivalent properties of f :

(i) f ∈ Ḃ0,L
1,1 (Rn).

(ii) For any 0 < ε ≤ 1, there exist a sequence of coefficients {sQ}, 0 ≤ sQ < ∞, where Q

ranges over the dyadic cubes, and a sequence {mQ} of (ε, L,Q)-molecules such that

f =
∑
Q

sQmQ in Ḃ0,L
1,1 (Rn), (4.22)

and ∑
Q

|sQ| ≤ C‖f‖Ḃ0,L
1,1 (Rn).

Proof. Assume that f ∈ Ḃ0,L
1,1 (Rn) ∩ L2(Rn). By using Theorem 3.3 (Calderón reproducing

formula I) for f we have

f(x) = 8

ˆ ∞
0

(
t2L
)2
e−2t2Lf(x)

dt

t

which converges in L2(Rn) and almost everywhere.

Next we “discretize” the right-hand side as follows: For a dyadic cube Q ⊂ Rn, let

T (Q) = Q× [
`(Q)

2
, `(Q)].

Then the set {T (Q)}, Q dyadic, is a collection of half cubes covering

Rn+1
+ = {(x, t) : x ∈ Rn, t > 0}
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whose interiors are pairwise disjoint. Recall that pt(x, y) denotes the kernel of e−tL and qt(x, y)

denotes the kernel of t2Le−t
2L in (4.19). Therefore,

f(x) = 8

¨
Rn+1

+

qt(x, y)t2Le−t
2Lf(y) dy

dt

t

= 8
∑
Q

¨
T (Q)

qt(x, y)t2Le−t
2Lf(y) dy

dt

t
.

Put

sQ =

¨
T (Q)

∣∣t2Le−t2Lf(y)
∣∣ dy dt

t
,

and, when sQ 6= 0,

mQ(x)

=
8

sQ

¨
T (Q)

qt(x, y)t2Le−t
2Lf(y) dy

dt

t

= LgQ(x),

where

gQ(x) =:
8

sQ

¨
T (Q)

t2pt2(x, y)t2Le−t
2Lf(y) dy

dt

t
.

It is clear that ∑
Q

sQ ≤ C‖f‖Ḃ0,L
1,1 (Rn),

thus (4.22) is true in L1 (and pointwisely). Furthermore, using (i) of Proposition 4.11 we obtain

|mQ(x)|

≤ C sup
(y,t)∈T (Q)

t−n exp
(
− |x− y|

2

ct2

){ 1

sQ

¨
T (Q)

∣∣t2Le−t2Lf(y)
∣∣ dy dt

t

}
≤ C|Q|−1

{
1 +
|x− xQ|
`(Q)

}−n−1

.

By a similar argument using (4.18) it follows that (4.20) is true for gQ. Next we check that

(4.21) holds. Applying property (ii) of Proposition 4.11 we obtain

‖qt(x+ z, y)− qt(x, y)‖L1(dx) ≤ C
( |z|
t

)δ
.

Then we have

ˆ
|z|≤`(Q)

‖mQ(x+ z)−mQ(x)‖L1(dx)|z|−n dz
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≤ C

sQ

¨
T (Q)

∣∣t2Le−t2Lf(y)
∣∣ ˆ
|z|≤`(Q)

‖qt(x+ z)− qt(x)‖L1(dx)|z|−n dz dy
dt

t

≤ C

sQ

¨
T (Q)

∣∣t2Le−t2Lf(y)
∣∣{ ˆ

|z|≤`(Q)

( |z|
t

)δ
|z|−n dz

}
dy

dt

t

≤ C (4.23)

since t ∈ [ `(Q)
2 , `(Q)]. Hence mQ/C is an (ε, L,Q)-molecule. We will show below that

‖mQ‖Ḃ0,L
1,1 (Rn) ≤ A,

where A is an absolute constant that does not depend on Q. Then it follows that the convergence

in (4.22) holds in Ḃ0,L
1,1 (Rn).

Let f ∈ Ḃ0,L
1,1 (Rn). Note that e−tLf → f in Ḃ0,L

1,1 (Rn) as t→ 0. Moreover, we also have

e−tLf ∈ Ḃ0,L
1,1 (Rn) ∩ L2(Rn),

for every t > 0. By applying a standard argument it follows that f has an (ε, L,Q)-molecule

decomposition as in (4.22).

For the converse, let f be a function as in (4.22), where the mQ’s are (ε, L,Q)-molecules.

We need to show that f ∈ Ḃ0,L
1,1 (Rn). It is enough to prove that for every (ε, L,Q)-molecule mQ,

there is a constant A > 0, that does not depend on mQ, such that ‖mQ‖Ḃ0,L
1,1 (Rn) ≤ A. To show

this, let us write

‖mQ‖Ḃ0,L
1,1 (Rn) =

( ˆ `(Q)

0

+

ˆ ∞
`(Q)

)ˆ
Rn

∣∣∣t2Le−t2L(mQ)(x)
∣∣∣ dx dt

t
=: I + II.

By applying the condition mQ = LgQ for some function gQ that satisfies (4.20), it follows that

II ≤
ˆ ∞
`(Q)

ˆ
Rn

∣∣∣(t2L)2e−t
2L(gQ)(x)

∣∣∣ dx dt
t3

≤ C
∥∥gQ∥∥1

ˆ ∞
`(Q)

dt

t3

= C
∥∥gQ∥∥1

[
− t−2

2

]∞
`(Q)

= C
∥∥gQ∥∥1

(
0 +

`(Q)−2

2

)
≤ C.
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To estimate term I, let us rewrite

ˆ `(Q)

0

ˆ
Rn

∣∣∣t2Le−t2L(mQ)(x)
∣∣∣ dx dt

t

=

ˆ `(Q)

0

ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y)(mQ)(y) dy

∣∣∣ dx dt
t

≤
ˆ `(Q)

0

ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y)

(
mQ(y)−mQ(x)

)
dy
∣∣∣ dx dt

t

+

ˆ `(Q)

0

ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y) dy

∣∣∣∣∣mQ(x)
∣∣ dx dt

t

= I1 + I2.

Using (iii) of Proposition 4.11 we obtain

I2 ≤ CN
ˆ `(Q)

0

ˆ
Rn

(
t/ρ(x)

)δ(
1 + t/ρ(x)

)N ∣∣mQ(x)
∣∣ dx dt

t

≤ CN
ˆ
Rn

{ ˆ ∞
0

(
t/ρ(x)

)δ(
1 + t/ρ(x)

)N dt

t

}∣∣mQ(x)
∣∣ dx

≤ CN,δ.

To estimate term I1, we apply (i) of Proposition 4.11 to obtain

I1 ≤ C
ˆ `(Q)

0

ˆ
Rn

ˆ
Rn
t−n exp

(
− |x− y|

2

ct2

)∣∣mQ(y)−mQ(x)
∣∣ dy dx dt

t
.

Thus we have

I ≤ C + C

ˆ `(Q)

0

ˆ
Rn

ˆ
Rn
t−n exp

(
− |x− y|

2

ct2

)∣∣mQ(y)−mQ(x)
∣∣ dy dx dt

t
. (4.24)

For estimating the right hand side, consider two cases in the y-integral: |y − x| ≤ `(Q) and

|y − x| ≥ `(Q). In the first case, we apply condition (4.21) to obtain

ˆ `(Q)

0

ˆ
Rn

ˆ
|y−x|≤`(Q)

t−n exp
(
− |x− y|

2

ct2

)∣∣mQ(y)−mQ(x)
∣∣ dy dx dt

t

≤
ˆ
|w|≤`(Q)

∥∥mQ(x+ w)−mQ(x)
∥∥
L1(dx)

{ˆ `(Q)

0

t−n exp
(
− |w|

2

ct2

) dt
t

}
dw

≤ C
ˆ
|w|≤`(Q)

∥∥mQ(x+ w)−mQ(x)
∥∥
L1(dx)

dw

|w|n

≤ C.

In the case |y − x| ≥ `(Q), using (4.20) and an elementary integration we have

ˆ `(Q)

0

ˆ
Rn

ˆ
|y−x|≥`(Q)

t−n exp
(
− |x− y|

2

ct2

)(∣∣mQ(y)
∣∣+
∣∣mQ(x)

∣∣) dy dx dt
t
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≤ C
ˆ `(Q)

0

( t

`(Q)

)2 dt

t

=
C

`(Q)2

ˆ `(Q)

0

t dt

=
C

`(Q)2

[
t2

2

]`(Q)

0

=
C

`(Q)2

(
`(Q)2

2
− 0

)
=
C

2

≤ C,

and hence I ≤ C. Thus we have shown that ‖mQ‖Ḃ0,L
1,1 (Rn) ≤ C. Therefore we have finished

proving the theorem.

4.2.2 The inclusion Ḃ0
1,1(Rn) $ Ḃ0,L

1,1 (Rn)

In this section we aim to prove the following result.

Theorem 4.14. Suppose that L = −∆+V , where V 6≡ 0 is a non-negative potential in RHs(Rn)

for some s > n
2 . Then the following inclusion is true

Ḃ0
1,1(Rn) $ Ḃ0,L

1,1 (Rn). (4.25)

That is, the classical space Ḃ0
1,1(Rn) is a proper subspace of Ḃ0,L

1,1 (Rn).

To prove Theorem 4.14, we will require the following atomic decomposition of Ḃ0
1,1(Rn).

In the following, F is the set of C1-functions supported by the unit ball of Rn which satisfy the

following conditions:

(i) ‖a‖∞ ≤ 1;

(ii)
∥∥∥ ∂a
∂xj

∥∥∥
∞
≤ 1 for all 1 ≤ j ≤ n;

(iii)

ˆ
Rn
a(x) dx = 0.

Then we let A ⊆ L1(Rn) be the set of functions b(x) = t−na(x−x0

t ) where a ∈ F ,

x0 ∈ Rn and t > 0. The functions b ∈ A are known as very special atom. We have the following

decomposition of the classical Besov space Ḃ0
1,1(Rn) (see [Me]).



103

Lemma 4.15. Suppose that f ∈ L1(Rn). The following properties of f are equivalent.

(i) f ∈ Ḃ0
1,1(Rn).

(ii) There exist a sequence {λj}j∈N of scalars and a sequence of very special atoms {aj}j∈N

satisfying

f(x) =

∞∑
j=0

λjaj(x), and

∞∑
j=0

|λj | <∞.

Remark. By Lemma 4.15 we have that
´
Rn f(x) dx = 0 for every f ∈ Ḃ0

1,1(Rn). We note that

this fact also follows from the well-known inclusion Ḃ0
1,1 ⊆ H1 (see [Pe2]).

Definition 4.16. The function b is called a very special L-atom associated with a ball B(x0, r)

when b(x) = r−na(x−x0

r ) where a ∈ C1(Rn), x0 ∈ Rn and r > 0 such that

‖a‖∞ ≤ 1, ‖∇a‖∞ ≤ 1, and supp a ⊂ B(0, 1), (4.26)

and also, ˆ
Rn
b(x) dx = 0, when 0 < r < ρ(x0). (4.27)

From Definition 4.16, it is clear that every very special atom is a very special L-atom.

The following is a main result of this section.

Theorem 4.17. Assume that f ∈ L1(Rn). Suppose that f(x) =
∑∞
j=0 λjaj(x), where aj(x),

j ∈ N, is a sequence of very special L-atoms and
∑∞
j=0 |λj | < ∞. Then the series

∑∞
j=0 λjaj

converges in Ḃ0,L
1,1 (Rn), and there exists a constant C > 0 satisfying∥∥∥∥∥

∞∑
j=0

λjaj

∥∥∥∥∥
Ḃ0,L

1,1 (Rn)

≤ C
∞∑
j=0

|λj |.

As a consequence, the following inclusion is true

Ḃ0
1,1(Rn) ⊆ Ḃ0,L

1,1 (Rn).

Proof. In order to show Theorem 4.17, it is enough to prove that for each very special L-atom

b(x) = r−na(x−x0

r ) associated with a ball B(x0, r) for some r > 0, x0 ∈ Rn, there is a positive

constant C > 0, that does not depend on b, such that

‖b‖Ḃ0,L
1,1 (Rn)
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=

ˆ ∞
0

ˆ
Rn

∣∣∣t2Le−t2L(b)(x)
∣∣∣ dx dt

t

≤ C. (4.28)

We shall now show (4.28). Firstly, we have that

‖b‖Ḃ0,L
1,1 (Rn)

=

ˆ ∞
0

ˆ
Rn

∣∣∣t2Le−t2L(b)(x)
∣∣∣ dx dt

t

=

ˆ r

0

ˆ
Rn

∣∣∣t2Le−t2L(b)(x)
∣∣∣ dx dt

t

+

ˆ ∞
r

ˆ
Rn

∣∣∣t2Le−t2L(b)(x)
∣∣∣ dx dt

t

= I + II.

To estimate term I, let us rewrite

ˆ r

0

ˆ
Rn

∣∣∣t2Le−t2L(b)(x)
∣∣∣ dx dt

t

=

ˆ r

0

ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y)b(y) dy

∣∣∣ dx dt
t

≤
ˆ r

0

ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y)

(
b(y)− b(x)

)
dy
∣∣∣ dx dt

t

+

ˆ r

0

ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y) dy

∣∣∣∣∣b(x)
∣∣ dx dt

t

= I1 + I2.

Using property (4.26) of very special L-atoms and (iii) of Proposition 4.11 we obtain

I2 ≤ CN
ˆ r

0

ˆ
Rn

(
t/ρ(x)

)δ(
1 + t/ρ(x)

)N ∣∣b(x)
∣∣ dx dt

t

≤ CN
ˆ
Rn

{ˆ ∞
0

(
t/ρ(x)

)δ(
1 + t/ρ(x)

)N dt

t

}∣∣b(x)
∣∣ dx

≤ CN,δ.

To estimate term I1, we apply (i) of Proposition 4.11 and the fact that b(x) = r−na(x−x0

r ) to

get

I1 ≤ C
ˆ r

0

ˆ
Rn

ˆ
Rn
t−n exp

(
− |x− y|

2

ct2

)
r−n

∣∣∣a(y − x0

r

)
− a
(x− x0

r

)∣∣∣ dy dx dt
t

.

By making the change of variables x− y → z and x−x0

r → w, it follows that

I1 ≤ C
ˆ r

0

ˆ
Rn

ˆ
Rn
t−n exp

(
− |z|

2

ct2

)
r−n

∣∣∣a(x− x0 − z
r

)
− a
(x− x0

r

)∣∣∣ dz dx dt
t
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≤ C
ˆ r

0

ˆ
Rn
t−n exp

(
− |z|

2

ct2

){ ˆ
Rn

∣∣∣a(w − z

r

)
− a(w)

∣∣∣ dw} dz dt

t
.

By using property (4.26) of very special L-atoms, we then have

ˆ
Rn

∣∣∣a(w − z

r

)
− a(w)

∣∣∣ dw
≤ |z|

r

n∑
j=1

∥∥∥∥ ∂a∂wj
∥∥∥∥
L1(Rn)

≤ C |z|
r
.

It then follows that

I1 ≤ C
ˆ r

0

ˆ
Rn
t−n exp

(
− |z|

2

2ct2

)( |z|
t

)(
t

r

)
dz dt

t

≤ C
ˆ r

0

r−1 dt

=
C

r

ˆ r

0

dt

=
C

r

[
t
]r
0

=
C

r

(
r − 0

)
= C.

Combining this with the estimate for I2, we obtain I ≤ C.

Let us now estimate term II. For any given very special L-atom b(y) = r−na(y−x0

r ),

consider two cases:

Case 1 (0 < r < ρ(x0)). For this case, we have the fact that
´
Rn b(x) dx = 0. By using (ii) of

Proposition 4.11 and the symmetry of qt we obtain

ˆ ∞
r

ˆ
Rn

∣∣∣t2Le−t2L(b)(x)
∣∣∣ dx dt

t

≤
ˆ ∞
r

ˆ
Rn

∣∣∣∣ ˆ
Rn

(
qt(x, y)− qt(x, x0)

)
r−na

(y − x0

r

)
dy

∣∣∣∣ dx dtt
≤
ˆ ∞
r

ˆ
Rn

ˆ
Rn

(
|y − x0|

t

)δ
t−n exp

(
− |x− y|

2

ct2

)
r−n

∣∣∣∣a(y − x0

r

)∣∣∣∣ dy dx dtt
≤ C

ˆ ∞
r

(
r

t

)δ
dt

t

= Crδ
ˆ ∞
r

1

tδ+1
dt

= Crδ
[
− t−δ

δ

]∞
r
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= Crδ
(

0 +
1

δrδ

)
=
C

δ

= C

because supp a ⊂ B(0, 1), and then |y − x0| ≤ r ≤ t.

Case 2 (r ≥ ρ(x0)). For this case, using (i) of Proposition 4.11 it follows that

ˆ ∞
r

ˆ
Rn

∣∣∣t2Le−t2L(b)(x)
∣∣∣ dx dt

t

≤ C
ˆ ∞
r

ˆ
Rn

ˆ
Rn

(
1 +

t

ρ(x)
+

t

ρ(y)

)−1

t−n exp
(
− |x− y|

2

ct2

)∣∣b(y)
∣∣ dy dx dt

t

≤ C
ˆ ∞
r

ˆ
{|y−x0|≤r}

(
ρ(y)

t

)
r−n

∣∣∣∣a(y − x0

r

)∣∣∣∣ dy dtt . (4.29)

By using (4.17), we obtain

ρ(y) ≤ Cρ(x0)

(
1 +
|y − x0|
ρ(x0)

) k0
k0+1

≤ Cρ(x0)

(
1 +

r

ρ(x0)

)
≤ Cr

for all |y − x0| ≤ r. Then it follows that

RHS of (4.29)

≤ Cr
ˆ ∞
r

ˆ
Rn
t−1r−n

∣∣∣∣a(y − x0

r

)∣∣∣∣ dy dtt
≤ Cr

ˆ ∞
r

t−1 dt

t

= Cr

ˆ ∞
r

1

t2
dt

= Cr

[
− 1

t

]∞
r

= Cr

(
0 +

1

r

)
= C.

Thus we have proved that II ≤ C, and hence we have estimate (4.28). Therefore we have

finished proving the theorem.

Let us now turn to the proof of Theorem 4.14.
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Proof of Theorem 4.14. Firstly, the inclusion “Ḃ0
1,1(Rn) ⊆ Ḃ0,L

1,1 (Rn)” follows readily from The-

orem 4.17.

Next, we shall show that “Ḃ0
1,1(Rn) $ Ḃ0,L

1,1 (Rn)”. Let x0 ∈ Rn and r ≥ ρ(x0). Take a

function b(x) = r−na(x−x0

r ), where a ∈ C1(Rn) and supp a ⊂ B(0, 1) such that

(i) ‖a‖∞ ≤ 1;

(ii) ‖ ∂a∂xj ‖∞ ≤ 1 for all 1 ≤ j ≤ n;

(iii)
´
Rn b(x) dx 6= 0.

On the one hand, from Theorem 4.17 we have that b ∈ Ḃ0,L
1,1 (Rn) and ‖b‖Ḃ0,L

1,1 (Rn) ≤ C. On

the other hand, because
´
Rn b(x) dx 6= 0, it follows that b /∈ Ḃ0

1,1(Rn) by using the remark after

Lemma 4.15. Therefore, the proof of “Ḃ0
1,1(Rn) ⊆ Ḃ0,L

1,1 (Rn)” is finished.

4.2.3 Molecular decomposition of Ḃα,Lp,q (Rn)

In this subsection we extend the decomposition of Besov spaces associated with Schrödinger

operators (Theorem 4.13) to more general values α, p, q.

Let us define the notion of molecules.

In the following, the definition of a molecule associated with a cube

Q = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, 2, . . . , n}

involves the “lower left corner of Q”, xQ = a = (a1, a2, . . . , an), and `(Q), the side length of Q.

Definition 4.18. Let ε ∈ (0, 1], α ∈ (−1, 1) and p ≥ 1. A function mQ is called an (ε, α, p)-

molecule for L associated to the cube Q if mQ = LgQ for some gQ, and the following conditions

hold:

|mQ(x)|+ `(Q)−2|gQ(x)| ≤ `(Q)α−n/p
{

1 +
|x− xQ|
`(Q)

}−n−ε
for x ∈ Rn; (4.30)

ˆ
|y|≤`(Q)

‖mQ(x+ y)−mQ(x)‖Lp(dx)
dy

|y|n+α
≤ 1. (4.31)
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The following result is a molecular characterization of Ḃα,Lp,q (Rn). In the following, given

j ∈ Z, we use Dj to denote the set of all dyadic cubes of sidelength 2−j .

Theorem 4.19. Suppose that L = −∆+V , where V 6≡ 0 is a non-negative potential in RHs(Rn)

for some s > n
2 . Assume that f ∈ L1(Rn) and let σ be the constant δ from Proposition 4.11.

Let −1 < α < min{1, σ} and 1 ≤ p ≤ q <∞. Then in the following we have (a) ⇒ (b) and (b)

⇒ (c):

(a) f ∈ Ḃα,Lp,q (Rn) ∩ L2(Rn).

(b) For any 0 < ε ≤ 1, there exist a sequence of coefficients {sQ}, 0 ≤ sQ <∞, where Q ranges

over the dyadic cubes, and a sequence {mQ} of (ε, α, p)-molecules for L, such that

f =
∑
Q

sQmQ in Ḃα,Lp,q (Rn), (4.32)

and

(∑
j∈Z

(∑
Q∈Dj

|sQ|p
)q/p)1/q

≈ ‖f‖Ḃα,Lp,q (Rn). (4.33)

(c) f ∈ Ḃα,Lp,q (Rn).

Proof of Theorem 4.19. We shall show that (b) ⇒ (c).

Let mQ be an (ε, α, p)-molecule for L associated to a cube Q. We will prove that

‖mQ‖Ḃα,Lp,q
≤ C.

We first split

‖mQ‖Ḃα,Lp,q
=
{(ˆ `(Q)

0

+

ˆ ∞
`(Q)

)∥∥t2Le−t2LmQ

∥∥q
Lp

dt

t1+αq

}1/q

≤ I + II

where

I =
{ˆ `(Q)

0

∥∥t2Le−t2LmQ

∥∥q
Lp

dt

t1+αq

}1/q

,
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II =
{ˆ ∞

`(Q)

∥∥t2Le−t2LmQ

∥∥q
Lp

dt

t1+αq

}1/q

.

Let us estimate the second term. Firstly the bounds for gQ in (4.30) allow us to obtain

‖gQ‖L1 ≤ C`(Q)α+2+n(1−1/p).

Next using that mQ = LgQ for some gQ, the kernel bounds in Proposition 4.11 (i), and

Minkowski’s inequality, we have

II =
{ˆ ∞

`(Q)

(ˆ
Rn

∣∣(t2L)2e−t
2LgQ(x)

∣∣pdx)q/p dt

t1+q(α+2)

}1/q

≤ C
{ˆ ∞

`(Q)

(ˆ
Rn

(ˆ
Rn
e−p|x−y|

2/ct2dx
)1/p

|gQ(y)| dy
)q dt

t1+q(α+2+n)

}1/q

≤ C‖gQ‖L1

{ˆ ∞
`(Q)

dt

t1+q(α+2+n(1−1/p))

}1/q

≤ C.

To estimate the first term we write

I =
{ˆ `(Q)

0

(ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y)mQ(y) dy

∣∣∣pdx)q/p dt

t1+αq

}1/q

=
{ˆ `(Q)

0

(ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y) [mQ(y) +mQ(x)−mQ(x)] dy

∣∣∣pdx)q/p dt

t1+αq

}1/q

≤ I1 + I2

where

I1 =
{ˆ `(Q)

0

(ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y)mQ(x) dy

∣∣∣pdx)q/p dt

t1+αq

}1/q

,

I2 =
{ˆ `(Q)

0

(ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y) [mQ(y)−mQ(x)] dy

∣∣∣pdx)q/p dt

t1+αq

}1/q

.

Let us estimate I1. By using (iii) of Proposition 4.11, Minkowski’s inequality and the

assumption that p ≤ q we obtain

I1 ≤
{ˆ `(Q)

0

(ˆ
Rn

∣∣∣ˆ
Rn
qt(x, y) dy

∣∣∣p|mQ(x)|p dx
)q/p dt

t1+αq

}1/q

≤ CN
{ˆ `(Q)

0

(ˆ
Rn

∣∣∣ (t/ρ(x))σ

(1 + t/ρ(x))N

∣∣∣p|mQ(x)|p dx
)q/p dt

t1+αq

}1/q

= CN

({ˆ `(Q)

0

(ˆ
Rn

∣∣∣ (t/ρ(x))σ

(1 + t/ρ(x))N

∣∣∣p|mQ(x)|p dx
)q/p dt

t1+αq

}p/q)1/p
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≤ CN

(ˆ
Rn

{ˆ `(Q)

0

∣∣∣ (t/ρ(x))σ

(1 + t/ρ(x))N

∣∣∣q dt

t1+αq

}p/q
|mQ(x)| dx

)1/p

≤ CN,σ.

We estimate the second term by splitting the region of integration in the y variable into

two regions: |x− y| ≥ `(Q) and |x− y| < `(Q). That is,

I2 ≤
{ˆ `(Q)

0

(ˆ
Rn

(ˆ
Rn
e−|x−y|

2/ct2 |mQ(y)−mQ(x)| dy
)p
dx
)q/p dt

t1+q(n+α)

}1/q

≤ I2.1 + I2.2

where

I2.1 =
{ˆ `(Q)

0

(ˆ
Rn

(ˆ
|x−y|≥`(Q)

e−|x−y|
2/ct2 |mQ(y)−mQ(x)| dy

)p
dx
)q/p dt

t1+q(n+α)

}1/q

,

I2.2 =
{ˆ `(Q)

0

(ˆ
Rn

(ˆ
|x−y|<`(Q)

e−|x−y|
2/ct2 |mQ(y)−mQ(x)| dy

)p
dx
)q/p dt

t1+q(n+α)

}1/q

For the first case we integrate

I2.1 ≤ I2.1.1 + I2.1.2

where

I2.1.1 =
{ˆ `(Q)

0

(ˆ
Rn

(ˆ
|x−y|≥`(Q)

e−|x−y|
2/ct2 |mQ(y)| dy

)p
dx
)q/p dt

t1+q(n+α)

}1/q

,

I2.1.2 =
{ˆ `(Q)

0

(ˆ
Rn

(ˆ
|x−y|≥`(Q)

e−|x−y|
2/ct2 |mQ(x)| dy

)p
dx
)q/p dt

t1+q(n+α)

}1/q

Then for any δ >
n

2
(1− 1/p) + α, Minkowski’s inequality gives

I2.1.1 ≤
{ˆ `(Q)

0

(ˆ
Rn

(ˆ
|x−y|≥`(Q)

e−p|x−y|
2/ct2dx

)1/p

|mQ(y)| dy
)q dt

t1+q(n+α)

}1/q

≤ C`(Q)−2δ/p ‖mQ‖L1

{ˆ `(Q)

0

dt

t1+q(α+n(1−1/p)−2δ/p)

}1/q

≤ C.

In the last step we used the estimate

‖mQ‖L1 ≤ C`(Q)n+α−n/p
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which holds via the bounds in (4.30).

Next, for any δ > 0, x ∈ Rn and cube Q we have

ˆ
|x−y|≥`(Q)

e−|x−y|
2/ct2dy ≤ Ctn+2δ`(Q)−2δ.

Applying this with some δ > α/2 gives

I2.1.2 =
{ˆ `(Q)

0

(ˆ
Rn
|mQ(x)|p

(ˆ
|x−y|≥`(Q)

e−|x−y|
2/ct2dy

)p
dx
)q/p dt

t1+q(n+α)

}1/q

≤ C`(Q)2δ ‖mQ‖Lp
{ˆ `(Q)

0

dt

t1+q(α−2δ)

}1/q

≤ C.

In the last step we used the estimate

‖mQ‖Lp ≤ C`(Q)α

which holds via again the bounds in (4.30).

Next, with a change of variable y = x + w, and applying Minkowski’s inequality twice,

we obtain

I2.2 =
{ˆ `(Q)

0

(ˆ
Rn

(ˆ
|w|≤`(Q)

e−|w|
2/ct2 |mQ(x+ w)−mQ(x)| dw

)p
dx
)q/p dt

t1+q(n+α)

}1/q

≤
{ˆ `(Q)

0

(ˆ
|w|≤`(Q)

e−|w|
2/ct2‖mQ(·+ w)−mQ(·)‖Lp dw

)q dt

t1+q(n+α)

}1/q

≤
ˆ
|w|≤`(Q)

‖mQ(·+ w)−mQ(·)‖Lp
{ˆ `(Q)

0

e−q|w|
2/ct2 dt

t1+q(n+α)

}1/q

dw

≤ C
ˆ
|w|≤`(Q)

‖mQ(·+ w)−mQ(·)‖Lp
dw

|w|n+α

≤ C

In the last step we applied (4.31).

We show (a) ⇒ (b).

Let f ∈ Ḃα,Lp,q (Rn)∩L2(Rn). Applying the Calderón reproducing formula I to f we obtain

f =
1

8

ˆ ∞
0

(t2L)2e−2t2Lf
dt

t
=

1

8

ˆ ∞
0

ˆ
Rn
qt(x, y)

(
t2Le−t

2Lf
)
(y)

dy dt

t
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We then “discretize” the right hand side by splitting Rn into dyadic cubes. Let Q be a

dyadic cube. We define

T (Q) =
{

(x, t) ∈ Rn+1
+ : x ∈ Q, `(Q)/2 < t ≤ `(Q)

}
to be the “half-cube” in Rn+1

+ over Q.

We then have

f(x) =
∑
j∈Z

∑
Q∈Dj

1

8

¨
T (Q)

qt(x, y)
(
t2Le−t

2Lf
)
(y)

dy dt

t

=
∑
j∈Z

∑
Q∈Dj

sQ mQ(x)

where

sQ =
1

`(Q)α+n(1−1/p)

¨
T (Q)

∣∣t2Le−t2Lf(y)
∣∣dy dt

t

mQ(x) =
1

8sQ

¨
T (Q)

qt(x, y)
(
t2Le−t

2Lf
)
(y)

dy dt

t
.

We now show that mQ satisfies (4.30) and (4.31).

We first check (4.31). By using estimate (ii) from Proposition 4.11, we have

ˆ
|z|≤`(Q)

‖mQ(·+ z)−mQ(·)‖Lp
dz

|z|n+α

≤ 1

8sQ

¨
T (Q)

∣∣t2Le−t2Lf(y)
∣∣(ˆ
|z|≤`(Q)

‖qt(·+ z, y)− qy(·, y)‖Lp
dz

|z|n+α

)dy dt
t

≤ C 1

sQ

¨
T (Q)

∣∣t2Le−t2Lf(y)
∣∣ dy dt

t1+σ+n(1−1/p)

ˆ
|z|≤`(Q)

dz

|z|n+α−σ

≤ C 1

`(Q)α+n(1−1/p) sQ

¨
T (Q)

∣∣t2Le−t2Lf(y)
∣∣dy dt

t

≤ C

In the next to last step we used the condition that σ > α in the second integral. We also used

that (y, t) ∈ T (Q) implies t ≈ `(Q).

We now check (4.30). For each x ∈ Rn, and any ε > 0

|mQ(x)| ≤ C 1

sQ

¨
T (Q)

|qt(x, y)|
∣∣t2Le−t2Lf(y)

∣∣dy dt
t
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≤ C`(Q)α+n(1−1/p) sup
(y,t)∈T (Q)

|qt(x, y)|

≤ C`(Q)α−n/p sup
(y,t)∈T (Q)

e−|x−y|
2/ct2

≤ C`(Q)α−n/p
(

1 +
|x− xQ|
`(Q)

)−n−ε
.

By a similar argument using (4.18) it follows that (4.30) is true for gQ.
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Chapter 5

Besov spaces associated with operators III: Atomic and molecular

decompositions of Besov spaces associated to operators on spaces of

homogeneous type

The content of this chapter is essentially a joint work with T.A. Bui, X.T. Duong and F.K. Ly

[BDLW], in which my contribution is fair and reasonable.

The main aim of this chapter is to lay out the theory of Besov spaces associated to

operators L whose heat kernel satisfies the Gaussian upper bounds on spaces of homogeneous

type. The organisation of the chapter is as follows. In Section 5.1, we recall some basic properties

on the regularity of the time derivative of the heat kernels and the covering lemma of Christ in

[Ch1]. The theory of Besov spaces Ḃα,Lp,q (X) and their basic properties is addressed in Section

5.2. The molecular and atomic decompositions on Besov spaces Ḃα,Lp,q (X) are investigated in

Section 5.3 and Section 5.4, respectively. In Section 5.5, we compare our Besov spaces Ḃα,Lp,q (X)

and Besov spaces Ḃαp,q(X). As applications, in Section 5.6 we study the behaviour of fractional

integrals and spectral multipliers on new Besov spaces Ḃα,Lp,q (X).

5.1 Preliminaries

Recently, in [BDY] the authors investigated the theory of Besov spaces associated to operators

whose heat kernel satisfies an upper bound of Poisson type on the space of polynomial upper

bound on volume growth. They also carried out that by different choices of operators L, they

can recover most of the classical Besov spaces. Moreover, in some particular choices of L, they
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obtain new Besov spaces.

The main aim of this chapter is to lay out the theory of Besov spaces associated to

operators L whose heat kernel satisfies the Gaussian upper bounds on spaces of homogeneous

type. Adapting some ideas in [BDY], we construct the Besov spaces Ḃα,Lp,q (X) associated to

the operators. Note that since the assumption of polynomial upper bound on volume growth

in [BDY] do not include the spaces of homogeneous type, some refinements and improvements

would be required. The main contribution of this chapter is to investigate the atomic and

molecular decompositions of functions in the new Besov spaces Ḃα,Lp,q (X). (Note that there are

no results on atomic and molecular decompositions for the general Besov spaces Ḃα,Lp,q (X) in

[BDY]). Precisely, we are able to prove the following results:

(i) Under the Gaussian upper bound assumption only, we prove that each function in our

Besov spaces Ḃα,Lp,q (X), with −1 < α < 1 and 1 ≤ p, q ≤ ∞, admits a linear molecular

decomposition. We would like to emphasize that there are no smoothness conditions on the

molecules. Conversely, each linear molecular decomposition belongs to the Besov spaces

Ḃα,Lp,q (X), with −1 < α < 0 and 1 ≤ p, q ≤ ∞. See Theorem 5.20 and Theorem 5.22.

(ii) Under the Gaussian upper bound, Hölder continuity and conservation assumptions, we

prove the theory of molecular decomposition on Besov spaces Ḃα,Lp,q (X), with −1 < α < δ

and 1 ≤ p, q ≤ ∞ where δ is a positive constant depending on the smoothness order of the

heat kernel of the operator L. See Theorem 5.27.

(iii) We study the theory of molecular decomposition on Besov spaces Ḃα,Lp,q (X), with −1 <

α < δ0 and 1 ≤ p, q ≤ ∞ for some δ0, asscociated with operators of Schrödinger type. It

is worth noting that the conservation property is not assumed here. See Theorem 5.30.

Note that our findings have applications in various settings such as Schrödinger operators,

degenerate Schrödinger operators on Rn and Schrödinger operators on Heisenberg groups

and connected and simply connected nilpotent Lie groups.

(iv) In the particular case p = q, the atomic decomposition of Besov spaces Ḃα,Lp,q (X) is also



117

obtained in Theorem 5.36.

We also carry out the relationship between our Besov spaces Ḃα,Lp,q (X) and the Besov

spaces Ḃαp,q(X) of Han and Sawyer in [HS]. See Section 5.5. We prove the following results:

(i) Under the Gaussian upper bound, Hölder continuity and conservation assumptions, we

show the coincidence between our Besov spaces Ḃα,Lp,q (X) and the Besov spaces Ḃαp,q(X)

for all indices α being close to zero.

(ii) When the operator L is an operator of Schrödinger type, we show the inclusion Ḃαp,q(X) ⊂

Ḃα,Lp,q (X) for some suitable values of p, q and α.

Note that for the investigation on the atomic decomposition, the approach in [HS] was

based on a construction of a family of approximation to the identity and a Calderón reproducing

formula. Roughly speaking, these kernels associated to this family satisfy the Gaussian upper

bound, Hölder continuity and conservation properties. In most parts of our work, we do not need

the conservation assumption. Even if L satisfies the Gaussian upper bound, Hölder continuity

and conservation properties, our obtained results are still new as we do not assume either the

polynomial growth nor the reverse doubling property on the volume of the balls on the underlying

spaces. Moreover, when the order of the family of approximation to the identity is less than 1,

the results on Besov spaces Ḃα,Lp,q (X) in this chapter are new for values α being close to −1.

Let (X, d) be a metric space, with the distance d. Assume that X is equipped with a

nonnegative, Borel, doubling measure µ. Throughout this paper, we assume that µ(X) =∞.

Denote by B(x, r) the open ball of radius r > 0 and centre x ∈ X. The doubling property of µ

provides us with the fact that there exists a constant C > 0 so that

µ(B(x, 2r)) ≤ Cµ(B(x, r)) (5.1)

for all x ∈ X and r > 0.

Notice that the doubling property (5.1) implies that

µ(B(x, λr)) ≤ Cλnµ(B(x, r)), (5.2)
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for some positive constant n uniformly for all λ ≥ 1, x ∈ X and r > 0. There also exists a

constant 0 ≤ N ≤ n such that

µ(B(x, r)) ≤ C
(

1 +
d(x, y)

r

)N
µ(B(y, r)), (5.3)

uniformly for all x, y ∈ X and r > 0.

In the rest of the chapter, unless specified, we always assume that L is a linear operator

of type θ with θ < π/2, has dense range in L2(X) and has a bounded H∞-calculus on L2(X).

The main assumption is the following:

(G) Gaussian upper bound: There exist constants C, c > 0 such that

|pt(x, y)| ≤ C

µ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
, (5.4)

for all x, y ∈ X and t > 0, where pt(x, y) is the associated kernel of e−tL.

In certain situations, we shall assume one or both of the following additional conditions:

(C) Conservation property:

ˆ
X

pt(x, y)dµ(y) =

ˆ
X

pt(y, x)dµ(y) = 1 for all x ∈ X and t > 0.

(H) Hölder continuity: There exists δ ∈ (0, 1] so that

|pt(x, y)− pt(x′, y)|+ |pt(y, x)− pt(y, x′)| ≤
(d(x, x′)√

t

)δ C

µ(B(x,
√
t))

exp
(
− cd(x, y)2

t

)
for all t > 0 and d(x, x′) <

√
t/2.

For k ∈ N, denote by pt,k(x, y) the heat kernel of (tL)ke−tL. We have the following result.

Lemma 5.1. Assume that L satisfies (G) and (H). Then for each k ∈ N, there exist C, c > 0

so that

(i) |pt,k(x, y)| ≤ C

µ(B(x,
√
t))

exp
(
− cd(x, y)2

t

)
, ∀t > 0, x, y ∈ X;

(ii) ‖pt,k(·, y)‖p + ‖pt,k(y, ·)‖p ≤
C

µ(B(y,
√
t))1/p′

, ∀t > 0, x, y ∈ X and 1 ≤ p ≤ ∞;
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(iii) |pt,k(x, y)− pt,k(x′, y)|+ |pt(y, x)− pt(y, x′)| ≤
(d(x, x′)

t

)δ C

µ(B(x,
√
t))

exp
(
− cd(x, y)2

t

)
for all t > 0 and d(x, x′) <

√
t/4.

Proof. For the proof of (i) we refer to [CD2]. The assertion (ii) follows immediately from (i).

To prove (iii), we write (tL)ke−tL = 2ke−
t
2L( t2L)ke−

t
2L. Hence

|pt,k(x, y)− pt,k(x′, y)|

≤ 2k
ˆ
X

∣∣∣(pt/2(x, z)− pt/2(x′, z))pt/2,k(z, y)
∣∣∣dµ(z)

.
ˆ
X

∣∣∣(d(x, x′)√
t

)δ 1

µ(B(x,
√
t))

exp
(
− cd(x, z)2

t

) 1

µ(B(y,
√
t))

exp
(
− cd(y, z)2

t

)∣∣∣dµ(z).

(5.5)

Note that

exp
(
− cd(x, z)2

t

)
exp

(
− cd(y, z)2

t

)
. exp

(
− c1

d(x, z)2 + d(z, y)2

t

)
exp

(
− c2

d(y, z)2

t

)
. exp

(
− c′1

d(x, y)2

t

)
exp

(
− c2

d(y, z)2

t

)
.

This together with (5.5) gives

|pt,k(x, y)− pt,k(x′, y)|

.
(d(x, x′)√

t

)δ 1

µ(B(x,
√
t))

exp
(
− cd(x, y)2

t

)ˆ
X

∣∣∣ 1

µ(B(y,
√
t))

exp
(
− cd(y, z)2

t

)∣∣∣dµ(z)

.
(d(x, x′)√

t

)δ 1

µ(B(x,
√
t))

exp
(
− cd(x, y)2

t

)
.

This completes our proof.

We will recall an important result on covering lemma in [Ch1].

Lemma 5.2. There exists a collection of open sets {Qkτ ⊂ X : k ∈ Z, τ ∈ Ik}, where Ik

denotes certain (possibly finite) index set depending on k, and constants ρ ∈ (0, 1), a0 ∈ (0, 1)

and C1 ∈ (0,∞) such that

(i) µ(X\ ∪τ Qkτ ) = 0 for all k ∈ Z;

(ii) if i ≥ k, then either Qiτ ⊂ Qkβ or Qiτ ∩Qkβ = ∅;

(iii) for (k, α) and each i < k, there exists a unique τ ′ such Qkτ ⊂ Qiτ ′ ;

(iv) the diameter diam (Qkτ ) ≤ C1ρ
k;
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(v) each Qkτ contains certain ball B(xQkτ , a0ρ
k).

Remark 5.3. (i) Without loss of generality, we may assume that ρ = 1/2 and a0 = 1. See for

example [HS]. We then fix a collection of open sets in Lemma 5.2 and denote this collection by

D. We also call these open sets the dyadic cubes in X and xQkτ the centre of the cube Qkτ . We

also denote Dk := {Q ∈ D : diamQ ∼ 2k} for each k ∈ Z.

(ii) If xQ is the centre of the cube Q ∈ Dk then there exists C > 0 so that for any λ > 1,

]{S : S ∈ Dk, S ∩ λQ 6= ∅} ≤ λn

where λQ = B(xQ, λ2k).

(iii) From the doubling property, it is easy to see that for each k, the set of indices Ik is at most

countable.

Throughout the chapter, we set Ψt(L) = t2Le−t
2L. The following simple lemma will be

useful in the sequel.

Lemma 5.4. Assume that L satisfies (G). Let p ∈ [1,∞]. There exist C1, C2 > 0 so that

C1

∥∥∥Ψ2k(L)f
∥∥∥
p
≤
∥∥∥Ψt(L)f

∥∥∥
p
≤ C2

∥∥∥Ψ2k−1(L)f
∥∥∥
p

for all f ∈ Lp(X), k ∈ Z and 2k−1 ≤ t ≤ 2k.

5.2 Besov spaces associated to operators

5.2.1 Definition of Besov spaces Ḃα,Lp,q (X) and basic properties

Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. For an appropriate

function f , we define the Besov norm ‖ · ‖Ḃα,Lp,q (X) by

‖f‖Ḃα,Lp,q (X) =
(ˆ ∞

0

(t−α‖Ψt(L)f‖p)q
dt

t

)1/q

, q <∞,
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and

‖f‖Ḃα,Lp,q (X) = sup
t>0

t−α‖Ψt(L)f‖p, q =∞.

In the definition above, it should be understood that “an appropriate function f” may

be any function so that Ψt(L)f is well-defined. An example of such functions is the class of

functions satisfying the growth condition. A function f ∈ L1
loc(X) is said to satisfy the growth

condition if ˆ
X

|f(x)|
(1 + d(x0, x))N+βµ(B(x0, 1 + d(x0, x)))

dµ(x) <∞ (5.6)

for some β > 0 and some x0 ∈ X. We then denote byM the class of all functions satisfying the

growth condition (5.6). Note that if (5.6) holds for some x0 ∈ X then it holds for any choice

of x0 ∈ X. For f ∈ M, it can be verified that |Ψt(L)f(x)| < ∞ for all t > 0, x ∈ X. See for

example [DY1].

We will show that the Besov norm of the heat kernels pt,k(·, y) is finite for t > 0, y ∈ X and

k ∈ N+. This statement plays a crucial role in the construction of the Besov spaces associated

to the operator L.

Lemma 5.5. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Then for all

y ∈ X, s > 0 and k ∈ N+, we have

‖ps,k(·, y)‖Ḃα,Lp,q (X) . s−α/2V (y,
√
s)−1/p′ .

Proof. Note that ps,k(·, y) ∈M. Moreover, we have

Ψt(L)[ps,k(·, y)](x) =
t2sk+1

(t2 + s)k
pt2+s,k(x, y).

Hence,

‖ps,k(·, y)‖q
Ḃα,Lp,q (X)

=

ˆ ∞
0

(
t−α

t2sk

(t2 + s)k+1
‖pt2+s,k(·, y)‖p

)q dt
t

=

ˆ √s
0

. . .+

ˆ ∞
√
s

. . . := A1 +A2.

Note that

‖pt2+s,k(·, y)‖p .
1

V (y,
√
t2 + s)1/p′

.



122

So, we have

A1 .
ˆ √s

0

(
t−α

t2sk

(t2 + s)k+1

1

V (y,
√
t2 + s)1/p′

)q dt
t

.
ˆ √s

0

(
t−α

t2

s

1

V (y,
√
s)1/p′

)q dt
t

. s−αq/2V (y,
√
s)−q/p

′
.

Likewise,

A2 .
ˆ ∞
√
s

(
t−α

t2sk

(t2 + s)k+1

1

V (y,
√
t2 + s)1/p′

)q dt
t

.
ˆ ∞
√
s

(
t−α

sk

t2k
1

V (y,
√
s)1/p′

)q dt
t

. s−αq/2V (y,
√
s)−q/p

′
.

To be able to define the Besov spaces Ḃα,Lp,q (X), we adapt some ideas in [BDY] to define

the space of test functions.

Definition 5.6. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. A function f

is said to be in the space of test functions Mα,L
p,q if there holds:

(i) f = Lg;

(ii) There exist ε > 0 and C > 0 so that

|f(x)|+ |g(x)| ≤ C

(1 + d(x0, x))N+εµ(B(x0, 1 + d(x0, x)))

for some x0 ∈ X.

(iii) ‖f‖Ḃα,Lp,q (X) <∞;

When q =∞, we assume additionally that

t−α‖Ψt(L)f‖p → 0, as t→ 0 or t→∞, (5.7)

and when p =∞, that lim
s→0
‖e−sLf − f‖Ḃα,L∞,q = 0.

For f ∈Mα,L
p,q , we define ‖f‖Mα,L

p,q
= ‖f‖Ḃα,Lp,q (X).

We also define (Mα,L
p,q )′ as the dual space of the space of the test functionsMα,L

p,q equipped

with the weak∗ topology. In particular, a sequence (fn) in (Mα,L
p,q )′ converges to f ∈ (Mα,L

p,q )′ if
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and only if

lim
n→∞

〈fn, ϕ〉 = 〈f, ϕ〉, for all ϕ ∈Mα,L
p,q ,

where 〈·, ·〉 is the pairing between a linear functional in (Mα,L
p,q )′ and the test function inMα,L

p,q .

From the definition of the spaces of test functions, some basic properties can be with-

drawn.

Proposition 5.7. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p ≤ ∞ and 1 ≤ q1 ≤

q2 ≤ ∞. Then we have

(i) Mα,L
p,q1 ⊂M

α,L
p,q2 with continuous embedding;

(ii) Assume that X has volume growth at least polynomial, that is, µ(B(x, r)) & rν for some

ν > 0. If 1 ≤ p1 ≤ p2 ≤ ∞,−1 < α2 ≤ α1 < 1 and α1 − ν/p1 = α2 − ν/p2 then

Mα1,L
p1,q ⊂M

α2,L
p2,q with continuous embedding.

Proof. (i) We first prove for −1 < α < 1, 1 ≤ p ≤ ∞, 1 ≤ q1 < ∞ and q2 = ∞. Let

f ∈ Mα,L
p,q1 . Since ‖f‖Ḃα,Lp,q (X) < ∞, limt→0 t

−α‖Ψt(L)f‖p = limt→∞ t−α‖Ψt(L)f‖p = 0 and

‖f‖Ḃα,Lp,∞(X) = supt>0 t
−α‖Ψt(L)f‖p <∞. This implies f ∈Mα,L

p,∞. It remains to show that

‖f‖Ḃα,Lp,∞(X) . ‖f‖Ḃα,Lp,q1
(X). (5.8)

If ‖f‖Ḃα,Lp,∞(X) > 0 there exists t0 so that t−α0 ‖Ψt0(L)f‖p > 1
2‖f‖Ḃα,Lp,∞(X). Let k ∈ Z so that

2k < t0 ≤ 2k+1. By Lemma 5.4, we have

‖f‖q
Ḃα,Lp,q1

(X)
≥
ˆ 2k

2k−1

(
t−α‖Ψt(L)f‖p

)q dt
t

&
(

2−kα‖Ψ2k(L)f‖p
)q

&
(
t−α0 ‖Ψt0(L)f‖p

)q
& ‖f‖Ḃα,Lp,∞(X).

When 1 ≤ q2 <∞, for f ∈Mα,L
p,q1 , by (5.8) we have

‖f‖q2
Ḃα,Lp,q2

(X)
=

ˆ ∞
0

(
t−α‖Ψt(L)f‖p

)q2 dt
t

. ‖f‖q2−q1
Ḃα,Lp,∞(X)

ˆ ∞
0

(
t−α‖Ψt(L)f‖p

)q1 dt
t

. ‖f‖q2−q1
Ḃα,Lp,q1

(X)
‖f‖q1

Ḃα,Lp,q1
(X)

:= ‖f‖q2
Ḃα,Lp,q1

(X)
.
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This completes the proof of (i).

(ii) We first claim that for f ∈ Lp1(X), we have

‖e−t
2Lf‖p2

. t−ν(1/p1−1/p2)‖f‖p1
. (5.9)

Indeed, by Minkowski’s inequality we have

‖e−t
2Lf‖p2

=
∥∥∥ˆ

X

pt2(x, y)f(y)dµ(y)
∥∥∥
p2

.
ˆ
X

‖pt2(x, ·)‖p2
|f(y)|dµ(y).

Using (ii) of Lemma 5.1 gives

‖pt2(x, ·)‖p2
. µ(B(x, t))−(1−1/p2) . t−ν(1−1/p2).

Hence,

‖e−t
2Lf‖p2

. t−ν(1−1/p2)‖f‖1. (5.10)

Moreover, ‖e−t2Lf‖p2
. ‖f‖p2

. This together with (5.10) and interpolation implies (5.9).

We now return to the proof of (ii). Let f ∈Mα1,L
p1,q . We first observe that

2t2Le−2t2Lf = 2e−t
2L[Ψt(L)f ].

Hence, by (5.9) we have

‖2t2Le−2t2Lf‖p2
. t−ν(1−1/p2)‖Ψt(L)f‖p1

which implies

‖f‖q
Ḃ
α2,L
p2,q

≈
ˆ ∞

0

(t−α2‖2t2Le−2t2Lf‖p2
)q
dt

t

.
ˆ ∞

0

(t−α2−ν(1/p1−1/p2)‖Ψt(L)f‖p1
)q
dt

t

.
ˆ ∞

0

(t−α2−ν(1/p1−1/p2)‖Ψt(L)f‖p1
)q
dt

t

. ‖f‖q
Ḃ
α1,L
p1,q

.

This completes the proof of (ii).

Proposition 5.8. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Then for

each k ∈ N+, ps,k(·, y) ∈Mα,L
p,q and ps,k(y, ·) ∈Mα,L∗

p,q for all y ∈ X, s > 0.
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Proof. We need to prove ps,k(·, y) ∈Mα,L
p,q . The assertion ps,k(y, ·) ∈Mα,L∗

p,q follows immediately

by duality.

Note that ps,k(x, y) = L(tps,k−1(·, y))(x). Since the heat kernels ps,k(x, y) and ps,k−1(x, y)

satisfy Gaussian upper bounds, ps,k(·, y) and ps,k−1(·, y) satisfy (ii) in Definition 5.6. Moreover,

by Lemma 5.5, ‖ps,k(·, y)‖Ḃα,Lp,q (X) <∞. Hence, ps,k(·, y) ∈Mα,L
p,q for 1 ≤ p, q <∞.

If q =∞, using the fact that

Ψt(L)ps,k(·, y) =
t2sk

(t2 + s)k+1
pt2+s,k+1(·, y),

we arrive at

‖Ψt(L)ps,k(·, y)‖p =
t2sk

(t2 + s)k+1
‖pt2+s,k+1(·, y)‖p .

t2sk

(t2 + s)k+1
V (y,

√
t2 + s)−1/p′

which implies that ‖Ψt(L)ps,k(·, y)‖p → 0 as t → 0 or t → ∞. Hence, ps,k(·, y) ∈ Mα,L
p,q for

1 ≤ p <∞ and q =∞.

If p =∞, we need to verify that lim
τ→0
‖(I − e−τL)ps,k(·, y)‖Ḃα,L∞,q(X) = 0. Indeed, we have

Ψt(L)(I − e−τL)ps,k(·, y)(x) =

ˆ τ

0

Ψt(L)Le−uLps,k(·, y)du

=

ˆ τ

0

t2sk

(u+ s+ t2)k+1
pu+s+t2,k+2(x, y)du.

(5.11)

Therefore,

|Ψt(L)(I−e−τL)ps,k(·, y)(x)| ≤ C
ˆ τ

0

t2sk

(s+ t2)k+1

1

V (y,
√
s+ t2)

du = Cτ
t2sk

(s+ t2)k+1

1

V (y,
√
s+ t2)

as long as τ < s. This implies

lim
τ→0
‖Ψt(L)(I − e−τL)ps,k(·, y)‖∞ = 0.

Moreover, ‖Ψt(L)(I − e−τL)ps,k(·, y)‖∞ . ‖Ψt(L)ps,k(·, y)‖∞. Hence, the dominated conver-

gence theorem yields that

lim
τ→0
‖(I − e−τL)ps,k(·, y)‖Ḃα,L∞,q(X) = 0, for 1 ≤ q <∞.

When q =∞, we will show that

lim
τ→0

sup
t>0

t−α‖Ψt(L)(I − e−τL)ps,k(·, y)‖∞ = 0.
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Indeed, we have

lim
τ→0

sup
t>0

t−α‖Ψt(L)(I − e−τL)ps,k(·, y)‖∞ ≤ lim
τ→0

sup
0<t<

√
s

. . .+ lim
τ→0

sup
t≥
√
s

. . . .

Using (5.5), we have

t−α|Ψt(L)(I − e−τL)ps,k(·, y)(x)| ≤ C
ˆ τ

0

t2−αsk

(u+ s+ t2)k+1

1

V (y,
√
u+ s+ t2)

du

. Cτs1−α 1

V (y,
√
s)

provided t <
√
s and τ < s. This implies

lim
τ→0

sup
0<t<

√
s

t−α‖Ψt(L)(I − e−τL)ps,k(·, y)‖∞ = 0.

Similarly,

lim
τ→0

sup
t≥
√
s

t−α‖Ψt(L)(I − e−τL)ps,k(·, y)‖∞ = 0.

This completes our proof.

As a direct consequence of Lemma 5.8, for t > 0, k ∈ N+ and f ∈ (M−α,L
∗

p′,q′ )′ we can

define

(tL)ke−tLf(x) = 〈f, pt,k(x, ·)〉,

where 〈·, ·〉 is the pairing between a linear functional in (M−α,L
∗

p′,q′ )′ and the test function in

M−α,L
∗

p′,q′ . This leads us to define the Besov spaces Ḃα,Lp,q (X) as follows:

Definition 5.9. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. The Besov

spaces Ḃα,Lp,q (X) associated to the operator L are defined by

Ḃα,Lp,q (X) = {f ∈ (M−α,L
∗

p′,q′ )′ : ‖f‖Ḃα,Lp,q (X) <∞}.

We have the following simple result on Besov spaces Ḃα,Lp,q (X).

Lemma 5.10. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. If f ∈

∪1<r<∞L
r(X) and ‖f‖Ḃα,Lp,q (X) <∞ then f ∈ Ḃα,Lp,q (X).
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Proof. Assume that f ∈ Lr(X) for some 1 < r <∞. By spectral theory, it can be verified that

f(x) = C

ˆ ∞
0

(t2L)2e−2t2Lf(x)
dt

t

in Lr(X).

Therefore, for any ϕ ∈M−α,L
∗

p′,q′ , by Hölder’s inequality we have

〈f, ϕ〉 =

ˆ
X

f(x)ϕ(x)dx = C

ˆ
X

ˆ ∞
0

(t2L)2e−2t2Lf(x)ϕ(x)
dt

t
dx

= C

ˆ
X

ˆ ∞
0

Ψt(L)f(x)Ψt(L
∗)ϕ(x)

dt

t
dx

. ‖f‖Ḃα,Lp,q (X)‖ϕ‖Ḃ−α,L∗
p′,q′

which implies that f ∈ (M−α,L
∗

p′,q′ )′.

It is worth to note that the result of Lemma 5.10 can be extended to the class of functions

in M.

Lemma 5.11. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. If f ∈ M and

‖f‖Ḃα,Lp,q (X) <∞ then f ∈ Ḃα,Lp,q (X).

Proof. The proof of this lemma is similar to that of [BDY, Proposition 4.2].

We now give the discrete characterization of the Besov spaces Ḃα,Lp,q (X).

Proposition 5.12. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. If

f ∈ (M−α,L
∗

p′,q′ )′ then the following statements are equivalent:

(i) f ∈ Ḃα,Lp,q (X);

(ii)
(∑
j∈Z

(2−jα‖Ψ2j (L)f‖p)q
)1/q

<∞.

Moreover, the sum in (ii) and ‖f‖Ḃα,Lp,q (X) are equivalent.

Proof. The proof of this proposition is similar to that of [BDY, Proposition 4.3].

Note that for t > 0 and k ∈ N, it can be verified that (tL)ke−tLϕ ∈ Mα,L
p,q whenever

ϕ ∈Mα,L
p,q . Moreover,

‖(tL)ke−tLϕ‖Ḃα,Lp,q (X) . ‖ϕ‖Ḃα,Lp,q (X).
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This leads us to define (tL)ke−tL as a linear functional on (Mα,L
p,q )′.

Definition 5.13. Assume that L satisfies (G). Let −1 < α < 1, 1 ≤ p, q ≤ ∞, s > 0 and k ∈ N.

For each f ∈ (M−α,L
∗

p′,q′ )′, we define (sL)ke−sLf as a linear functional in (M−α,L
∗

p′,q′ )′ by setting

〈(sL)ke−sLf, ϕ〉 = 〈f, (sL∗)ke−sL
∗
ϕ〉

for all ϕ ∈M−α,L
∗

p′,q′ .

We will show that our new Besov spaces still retain some basic properties as for the

classical Besov spaces.

Proposition 5.14. Assume that L satisfies (G). Let −1 < α < 1, 1 ≤ p ≤ ∞ and 1 ≤ q1 ≤

q2 ≤ ∞. Then we have

(i) Ḃα,Lp,q1(X) ⊂ Ḃα,Lp,q2(X) with continuous embedding;

(ii) Assume that X has volume growth at least polynomial, that is, µ(B(x, r)) & rν for some

ν > 0. If 1 ≤ p1 ≤ p2 ≤ ∞,−1 < α2 ≤ α1 < 1 and α1 − ν/p1 = α2 − ν/p2 then

Ḃα1,L
p1,q (X) ⊂ Ḃα2,L

p2,q (X) with continuous embedding.

Proof. (i) Let f ∈ Ḃα,Lp,q1(X). We then have f ∈ (M−α,L
∗

p′,q′1
)′. Due to Proposition 5.7, (M−α,L

∗

p′,q′1
)′ ⊂

(M−α,L
∗

p′,q′2
)′ and hence f ∈ (M−α,L

∗

p′,q′2
)′. Therefore, it suffices to show that

‖f‖Ḃα,Lp,q2
(X) . ‖f‖Ḃα,Lp,q1

(X).

To do this we write

Ψt(L)f = 4e−
3t2

4 LΨt/2(L)f.

At this stage, we can use the same argument done in Proposition 5.7 of which we replace Lemma

5.4 by the following inequality

‖e−sLg‖p . ‖e−tLg‖p . ‖e−4sLg‖p, s ≤ t ≤ 4s (5.12)

for all p ∈ [1,∞] and g ∈ Lp(X). This completes the proof of (i).
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(ii) Thanks to Proposition 5.7, (M−α2,L
∗

p′1,q
′ )′ ⊂ (M−α2,L

∗

p′2,q
′ )′. Hence, it suffices to show that

if f ∈ Ḃα1,L
p1,q (X) then we have

‖f‖
Ḃ
α1,L
p2,q

(X)
. ‖f‖

Ḃ
α1,L
p1,q

(X)

To do this, we write Ψt(L)f = 4e−
3t2

4 LΨt/2(L)f and then using the similar argument done in

Proposition 5.7 together with (5.12) we get the desired estimate.

5.2.2 Besov spaces Ḃα,Lp,q (X) and Lipschitz spaces

In this section, we investigate the relationship between the Besov spaces Ḃα,Lp,q (X) and

the spaces of Lipschitz type.

Let 1 ≤ p, q ≤ ∞ and α > 0. A function f ∈ Lploc(X) is said to be in the Lipschitz-type

space Lsp,q(X) if and only if

‖f‖Lsp,q(X) :=

[ ∞∑
k=−∞

2−ksq
(ˆ

X

1

µ(B(x, 2k))

ˆ
B(x,2k)

|f(x)− f(y)|pdµ(y)dµ(x)
)p/q]1/q

<∞.

When X is an appropriate subset of Rn, the spaces of Lipschitz type Lsp,q(X) was intro-

duced in [Jo1, JW]. When X is a space of homogeneous type satisfying the reverse doubling

property, the Lipschitz spaces was introduced in [MY].

Proposition 5.15. Assume that L satisfies (G), (C) and (H). Let 1 ≤ p, q ≤ ∞ and 0 < α <∞.

Then Lαp,q(X) ∩ Lr(X) ⊂ Ḃα,Lp,q (X) for any 1 < r <∞.

Proof. By Lemma 5.10, it suffices to show that ‖f‖Ḃα,Lp,q (X) < ∞. Indeed, for each k ∈ Z, we

have

‖22kLe−22kLf‖p =
∥∥∥ˆ

X

p22k,1(x, y)(f(y)− f(x))dµ(x)
∥∥∥
p

.
(ˆ

X

∣∣∣ ˆ
X

1

µ(B(x, 2k))
exp

(
− cd(x, y)2

22k

)
|f(x)− f(y)|dµ(y)

∣∣∣pdµ(x)
)1/p

.
∑
j≥0

2−j(α+ε)
( ˆ

X

∣∣∣ 1

µ(B(x, 2k+j))

ˆ
B(x,2k+j)

|f(x)− f(y)|dµ(y)
∣∣∣pdµ(x)

)1/p

.
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Hence, by Young’s inequality we arrive at

(∑
k∈Z

(2−kα‖22kLe−22kLf‖p)q
)1/q

.

∑
k∈Z

[∑
j≥0

2−jε2−(k+j)α
(ˆ

X

∣∣∣ 1

µ(B(x, 2k+j))

ˆ
B(x,2k+j)

|f(x)− f(y)|dµ(y)
∣∣∣pdµ(x)

)]q/p
1/q

.
(∑
j≥0

2−jε
)(∑

k∈Z
2−(k+j)αq

(ˆ
X

∣∣∣ 1

µ(B(x, 2k+j))

ˆ
B(x,2k+j)

|f(x)− f(y)|dµ(y)
∣∣∣pdµ(x)

)q/p)1/q

. ‖f‖Lαp,q(X).

This completes our proof.

Let β ∈ (0, 1). The Lipschitz space Lβ(X) is defined as the set of all continuous functions

f satisfying

‖f‖Lβ(X) = sup
x 6=y

|f(x)− f(y)|
d(x, y)β

.

Note that if f ∈ Lβ(X) with compact support then f ∈ Lp(X) for all p ∈ [1,∞].

We recall that the measure µ is said to satisfy the reverse doubling property if there exist

positive constants κ and C such that

λκµ(B(x, r)) ≤ Cµ(B(x, λr)) (5.13)

for all x ∈ X, r > 0 and λ > 1.

Proposition 5.16. Assume that L satisfies (G), (C) and (H), and (X,µ) satisfies (5.13). Let

f ∈ Lβ(X) with compact support for some β ∈ (0, 1). Then f ∈ Ḃα,Lp,q (X) for all 1 ≤ p, q ≤ ∞

and −κ(1− 1/p) < α < β.

Proof. By Lemma 5.10, it suffices to show that ‖f‖Ḃα,Lp,q (X) <∞. Indeed, assume that suppϕ ⊂

B := B(x0, r) for some x0 ∈ X and r > 0. Since f ∈ Lβ(X) with compact support, f ∈ L2(X).

We will show that ‖f‖Ḃα,Lp,q (X) <∞ provided 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and −κ(1− 1/p) < α < β.

Indeed, we have

‖f‖q
Ḃα,Lp,q (X)

=

ˆ r

0

(t−α‖t2Le−t
2Lf‖p)q

dt

t
+

ˆ ∞
r

(t−α‖t2Le−t
2Lf‖p)q

dt

t
:= A+B.
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By Minkowski’s inequality and (5.13), for t ≥ r we have

‖t2Le−t
2Lf‖p .

ˆ
B(x0,r)

‖pt2,1(·, y)‖p|f(y)|dµ(y)

.
‖f‖1

µ(B(y, t))1−1/p
.

‖f‖1
µ(B(y, r))1−1/p

(r
t

)κ(1−1/p)

.

Since y ∈ B(x0, r), µ(B(y, r)) ≈ µ(B). Hence,

‖t2Le−t
2Lf‖p . t−κ(1−1/p)

which implies that B <∞ whenever −κ(1− 1/p) < α.

To estimate A, we write

‖t2Le−t
2Lf‖pp =

ˆ
X

∣∣∣ˆ
B(x0,r)

pt2,1(x, y)f(y)dµ(y)
∣∣∣pdµ(x)

=

ˆ
B(x0,4r)

∣∣∣ ˆ
B(x0,r)

pt2,1(x, y)f(y)dµ(y)
∣∣∣pdµ(x)

+

ˆ
X\B(x0,4r)

∣∣∣ˆ
B(x0,r)

pt2,1(x, y)f(y)dµ(y)
∣∣∣pdµ(x)

:= I1 + I2.

Since L satisfies (C), we have

I1 =

ˆ
B(x0,4r)

∣∣∣ ˆ
X

pt2,1(x, y)(f(y)− f(x))dµ(y)
∣∣∣pdµ(x)

.
ˆ
B(x0,4r)

∣∣∣ ˆ
X

1

µ(B(x, t))
exp

(
− cd(x, y)2

t2

)
|f(y)− f(x)|dµ(y)

∣∣∣pdµ(x)

.
ˆ
B(x0,4r)

∣∣∣ ˆ
X

1

µ(B(x, t))
exp

(
− cd(x, y)2

t2

)
d(x, y)β‖f‖Lβ(X)dµ(y)

∣∣∣pdµ(x)

.
ˆ
B(x0,4r)

∣∣∣ˆ
X

1

µ(B(x, t))
exp

(
− c′ d(x, y)2

t2

)
tβ‖f‖Lβ(X)dµ(y)

∣∣∣pdµ(x)

. tpβ .

We next consider the term I2. We write

I2 .
ˆ
X\B(x0,4r)

∣∣∣ ˆ
B(x0,4r)

1

µ(B(x, t))
exp

(
− cd(x, y)2

t2

)
|f(y)|dµ(y)

∣∣∣pdµ(x)

.
∞∑
j=2

ˆ
2jr≤d(x,x0)≤2j+1r

∣∣∣ˆ
B(x0,4r)

1

µ(B(x, d(x, y)))
exp

(
− cd(x, y)2

t2

)
|f(y)|dµ(y)

∣∣∣pdµ(x)

.
∞∑
j=2

‖f‖p1
µ(x0, 2jr)p−1

( t

2jr

)pβ
. tpβ .
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From the estimates of I1 and I2, we have ‖t2Le−t2Lf‖p . tβ which implies that A < ∞. This

completes our proof.

5.3 Molecular decompositions of Besov spaces Ḃα,L
p,q (X)

5.3.1 Molecular decompositions

We establish the following Calderón reproducing formula in Besov spaces Ḃα,Lp,q (X) which

plays an essential role in the sequel.

Theorem 5.17. Assume that L satisfies (G). Let 1 ≤ p, q ≤ ∞, −1 < α < 1 and M ≥ 1. Then

for f ∈ Ḃα,Lp,q (X), we have

f(x) =
1

(M − 1)!

ˆ ∞
0

(tL)Me−tLf(x)
dt

t
(5.14)

in (M−α,L
∗

p′,q′ )′.

Proof. We will prove this theorem by using induction on M .

We temporarily assume that (5.14) is true for M = 1. We will provide the proof later.

Assume that (5.14) holds for M = k. We need to prove (5.14) for M = k + 1. In this

situation, by using integration by parts we obtain that

ˆ K

ε

(tL)k+1e−tLf(x)
dt

t
= −(KL)ke−KLf(x) + (εL)ke−εLf(x) + k

ˆ K

ε

(tL)ke−tLf(x)
dt

t
.

(5.15)

We need the following auxiliary lemma whose proof will be given later.

Lemma 5.18. Assume that L satisfies (G). Let 1 ≤ p, q ≤ ∞, −1 < α < 1 and k ∈ N+. For

f ∈ Ḃα,Lp,q (X), we have

(i) limε→0(εL)ke−εLf(x) = 0 in (M−α,L
∗

p′,q′ )′;

(ii) limK→∞(KL)ke−KLf(x) = 0 in (M−α,L
∗

p′,q′ )′.
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Letting ε→ 0 and K →∞ in (5.15), thanks to Lemma 5.18, we get that

lim
ε→0

lim
K→∞

ˆ K

ε

(tL)k+1e−tLf(x)
dt

t
= k lim

ε→0
lim
K→∞

ˆ K

ε

(tL)ke−tLf(x)
dt

t

= k!f(x)

in (M−α,L
∗

p′,q′ )′.

Proof of Lemma 5.18: (i)

Since

〈(εL)ke−εLf, ϕ〉 = 〈f, (εL∗)ke−εL
∗
ϕ〉, for all ϕ ∈M−α,L

∗

p′,q′ ,

we need to show that limε→0 ‖(εL∗)ke−εL
∗
ϕ‖

Ḃ−α,L
∗

p′,q′ (X)
= 0. Observe that

Ψt(L
∗)(εL∗)ke−εL

∗
ϕ =

εkt2

(ε+ t2)k+1
((ε+ t2)L∗)ke−(ε+t2)L∗ϕ.

Hence

‖Ψt(L
∗)(εL∗)ke−εL

∗
ϕ‖p′ ≤ C

εkt2

(ε+ t2)k+1
‖ϕ‖p′

which implies

lim
ε→0
‖Ψt(L

∗)(εL∗)ke−εLϕ‖p′ = 0.

On the other hand,

‖Ψt(L
∗)(εL∗)ke−εL

∗
ϕ‖p′ = ‖(εL∗)ke−εL

∗
ϕ‖p′ ≤ C‖Ψt(L

∗)ϕ‖p′ .

At this stage, by using the dominated convergence theorem we arrive at

lim
ε→0
‖(εL∗)ke−εL

∗
ϕ‖

Ḃ−ε,L
∗

p′,q′ (X)
= 0.

(ii) We will claim that

lim
K→∞

‖Ψt(L
∗)(KL∗)ke−KL

∗
ϕ‖p′ = 0, ϕ ∈M−α,L

∗

p′,q′ . (5.16)

Once (5.16) is proved, limK→∞ ‖(KL∗)ke−KL
∗
ϕ‖

Ḃ−α,L
∗

p′,q′ (X)
= 0 follows immediately by using

the fact that

‖Ψt(L
∗)(KL∗)ke−KL

∗
ϕ‖p′ = ‖(KL∗)ke−KL

∗
ϕ‖p′ ≤ C‖Ψt(L

∗)ϕ‖p′
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and the same argument done in (i).

To prove (5.16), we write

‖Ψt(L
∗)(KL∗)ke−KL

∗
ϕ‖p′ =

t2Kk

(t2 +K)k+1
‖((t2 +K)L∗)k+1e−(t2+K)L∗φ‖p′ ≤

C

K
‖φ‖p′

which implies (5.16). This completes our proof.

2

Complete the proof of Theorem 5.17: To complete the proof of Theorem 5.17, we now

show that (5.14) is true for M = 1. Indeed, in this situation we have

ˆ K

ε

tLe−tLf(x)
dt

t
= −e−KLf(x) + e−εLf(x).

By the same argument done in Lemma 5.18, we can show that

lim
K→∞

e−KLf = 0 in (M−α,L
∗

p′,q′ )′.

It remains to prove that

lim
ε→0

e−εLf = f in (M−α,L
∗

p′,q′ )′.

The proof of this assertion is close to that of [BDY, Proposition 3.3]. Since

〈f − e−εLf, ϕ〉 = 〈f, (I − e−εL
∗
)ϕ〉, ϕ ∈M−α,L

∗

p′,q′ ,

it suffices to show that limε→0 ‖(I − e−εL
∗
)ϕ‖

Ḃ−α,L
∗

p′,q′ (X)
= 0.

If p′ = ∞, the assertion limε→0 ‖(I − e−εL
∗
)ϕ‖

Ḃ−α,L
∗

p′,q′ (X)
= 0 follows from the definition

of the test function.

If 1 ≤ p′ <∞ and 1 ≤ q′ <∞, it is easy to see that

‖Ψt(L
∗)(I − e−εL

∗
)ϕ‖p′ =

∥∥∥ ˆ ε

0

Ψt(L
∗)Le−sLϕds

∥∥∥
p′

=
∥∥∥ ˆ ε

0

t2

(t2 + s)2
((s+ t2)L)2e−(t2+s)Lϕds

∥∥∥
p′

≤
ˆ ε

0

∥∥∥ t2

(t2 + s)2
((s+ t2)L)2e−(t2+s)Lϕ

∥∥∥
p′
ds

.
ˆ ε

0

‖ϕ‖p′ds . ε‖ϕ‖p′
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which implies limε→0 ‖Ψt(L
∗)(I − e−εL∗)ϕ‖p′ = 0. On the other hand,

‖Ψt(L
∗)(I − e−εL

∗
)ϕ‖p′ . ‖Ψt(L

∗)ϕ‖p′ .

This in combination with the dominated convergence theorem implies that

lim
ε→0
‖(I − e−εL

∗
)ϕ‖

Ḃ−α,L
∗

p′,q′ (X)
= 0.

If 1 ≤ p′ <∞ and q′ =∞, we have

‖(I − e−εL
∗
)ϕ‖

Ḃ−α,L
∗

p′,∞ (X)
= sup

t>0
t−α‖Ψt(L

∗)(I − e−εL
∗
)ϕ‖p′ .

Using (5.7), we have

t−α‖Ψt(L
∗)(I − e−εL

∗
)ϕ‖p′ . t−α‖Ψt(L

∗)ϕ‖p′ → 0

as t→ 0 or t→∞. Hence, we can pick two positive constants c1 > c2 > 0 independent of ε so

that

sup
t>0

t−α‖Ψt(L
∗)(I − e−εL

∗
)ϕ‖p′ . sup

c1<t<c2

t−α‖Ψt(L
∗)(I − e−εL

∗
)ϕ‖p′ . ‖(I − e−εL

∗
)ϕ‖p′

which implies

lim
ε→0
‖(I − e−εL

∗
)ϕ‖

Ḃ−α,L
∗

p′,∞ (X)
= 0.

This completes our proof.

2

We are now in the position to establish the molecular decomposition of the functions in

Ḃα,Lp,q (X). We first describe the notion of a (L,M,α, p, , ε) molecule.

Definition 5.19. Let 1 ≤ p ≤ ∞, −1 < α < 1, ε > 0 and M ∈ N+. A function m is said to be

a (L,M,α, p, ε) molecule if there exists a dyadic cube Q ∈ D so that

(i) m = LMb;

(ii) |Lkb(x)| ≤ `(Q)2(M−k)+α

µ(Q)1/p

(
1 +

d(x, xQ)

`(Q)

)−(N+n+ε)

, k = 0, 1, . . . ,M, for all x ∈ X.
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Theorem 5.20. Assume that L satisfies (G). Let 1 ≤ p, q ≤ ∞, −1 < α < 1, ε > 0 and M ∈ N.

Then for each f ∈ Ḃα,Lp,q (X), there exist a sequence of coefficients 0 ≤ sQ <∞, and a sequence

mQ of (L,M,α, p, ε) molecules, where Q ranges over the dyadic cubes, such that

f =
∑
Q∈D

sQmQ in (M−α,L
∗

p′,q′ )′,

and [∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

≈ ‖f‖Ḃα,Lp,q (X). (5.17)

Proof. Let f ∈ Ḃα,Lp,q (X). By Theorem 5.17 we have

f(x) = CM

ˆ ∞
0

(t2L)Me−t
2LΨt(L)f(x)

dt

t

which converges in (M−α,L
∗

p′,q′ )′.

We then have

f(x) = CM
∑
k∈Z

ˆ 2k

2k−1

(t2L)Me−t
2LΨt(L)f(x)

dt

t

= CM
∑
k∈Z

ˆ 2k

2k−1

2−2(k−1)t2(t2L)Me−(2t2−22(k−1))LΨ2k−1(L)f(x)
dt

t

= CM
∑
k∈Z

∑
Q∈Dk

ˆ 2k

2k−1

2−2(k−1)t2(t2L)Me−(2t2−22(k−1))L[Ψ2k−1(L)f.χQ](x)
dt

t
.

For each k ∈ Z and Q ∈ Dk, we set

sQ = 2−(k−1)α
(ˆ

Q

|Ψ2k−1(L)f(y)|pdµ(y)
)1/p

and

mQ =
1

sQ

ˆ 2k

2k−1

2−2(k−1)t2(t2L)Me−(2t2−22(k−1))L[Ψ2k−1(L)f.χQ](x)
dt

t
.

It is clear that f =
∑
Q∈D sQmQ in (M−α,L

∗

p′,q′ )′. We now check (5.17). Indeed, we have

∑
Q∈Dk

|sQ|p =
∑
Q∈Dk

2−(k−1)αp

ˆ
Q

|Ψ2k−1(L)f(y)|pdµ(y)

= 2−(k−1)αp

ˆ
X

|Ψ2k−1(L)f(y)|pdµ(y).

This implies that

∑
Q∈Dk

|sQ|p .
ˆ 2k−1

2k−2

t−αp
ˆ
X

|Ψ2k−1(L)f(y)|pdµ(y)
dt

t
.
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Hence [ ∑
Q∈Dk

|sQ|p
]q/p

.
ˆ 2k−1

2k−2

[
t−α
(ˆ

X

|Ψ2k−1(L)f(y)|pdµ(y)
)1/p]q dt

t
. (5.18)

Note that for 2k−2 ≤ t ≤ 2k−1, by Lemma 5.4 we have

‖Ψ2k−1(L)f‖p . ‖Ψt(L)f‖p.

This together with (5.18) implies that

[∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

.

[∑
k∈Z

ˆ 2k−1

2k−2

(
t−α‖Ψt(L)f(y)‖p

)q dt
t

]1/q

:= ‖f‖Ḃα,Lp,q (X).

Moreover, for 2k−1 ≤ t ≤ 2k, by Lemma 5.4 we have

‖Ψt(L)f‖p . ‖Ψ2k−1(L)f‖p.

Hence,

‖f‖Ḃα,Lp,q (X) =

[∑
k∈Z

ˆ 2k

2k−1

(
t−α‖Ψ2k−1(L)f(y)‖p

)q dt
t

]1/q

.

[∑
k∈Z

(
2−kα‖Ψ2k−1(L)f(y)‖p

)q]1/q

.

∑
k∈Z

(
2−kαp

∑
Q∈Dk

ˆ
Q

∣∣∣Ψ2k−1(L)f(y)
∣∣∣pdµ(y)

)q/p1/q

.
[∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

.

This proves (5.17).

We now claim that for each Q ∈ Dk, k ∈ Z, mQ is a multiple of a (L,M,α, p, ε) molecule

with a harmless multiple constant. Indeed, we have mQ = LMbQ with

bQ =
1

sQ

ˆ 2k

2k−1

2−2(k−1)t2(t2L)Me−(2t2−22(k−1))L[Ψ2k−1(L)f.χQ](x)
dt

t
.

For each m = 0, 1, . . . ,M , we have

LmbQ(x) =
1

sQ

ˆ 2k

2k−1

ˆ
Q

t2(M−m+1)

2−2(k−1)

( t2

2t2 − 22(k−1)

)m
p2t2−22(k−1),m(x, y)Ψ2k−1(L)f(y)dµ(y)

dt

t
.

Using the Gaussian upper bounds for p2t2−22(k−1),m(x, y), the doubling property and the fact
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that t2 ≈ 2−2(k−1) ≈ 2t2 − 22(k−1) whenever t ∈ [2k−1, 2k], we obtain that for all y ∈ Q,

t2(M−m+1)

2−2(k−1)

( t2

2t2 − 22(k−1)

)m
p2t2−22(k−1),m(x, y) . 22k(M−m) 1

µ(B(y, t))

(
1 +

d(x, y)

t

)−N−n−ε
. 22k(M−m) 1

µ(Q)

(
1 +

d(x, xQ)

`(Q)

)−N−n−ε
.

This together with Hölder’s inequality implies

|LmbQ(x)| . 22k(M−m)

sQ

1

µ(Q)

(
1 +

d(x, xQ)

`(Q)

)−N−n−ε ˆ 2k

2k−1

ˆ
Q

|Ψ2k−1(L)f(y)|dµ(y)
dt

t

.
22k(M−m)

sQ

1

µ(Q)1/p

(
1 +

d(x, xQ)

`(Q)

)−N−n−ε(ˆ
Q

|Ψ2k−1(L)f(y)dµ(y)|p
)1/p

.
22k(M−m)

sQ

1

µ(Q)1/p

(
1 +

d(x, xQ)

`(Q)

)−N−n−ε
2(k−1)αsQ

.
`(Q)2(M−m)+α

µ(Q)1/p

(
1 +

d(x, xQ)

`(Q)

)−N−n−ε
.

(5.19)

This completes our proof.

Note that in the definition of (L,M,α, p, ε) molecules, we do not require the cancellation

property. However, this property will hold if L satisfies the conservation property (C).

Lemma 5.21. Assume that L satisfies (G) and (C). If m is a (L,M,α, p, ε) molecule for 1 ≤

p ≤ ∞, −1 < α < 1, ε > 0 and M ≥ 1 then

ˆ
X

m(x)dµ(x) = 0.

Proof. The proof of this lemma is similar to that of [HLMMY, Lemma 9.1]. For the sake of

completeness, we provide the proof here.

Note that since m is a (L,M,α, p, ε) molecule, m ∈ L1(X) and hence e−tLm ∈ L1(X)

for all t > 0. Observe that (I + L)−1m =

ˆ ∞
0

e−te−tLm(x)dt. We then have

ˆ
X

(I + L)−1m(x)dµ(x) =

ˆ
X

ˆ ∞
0

e−te−tLm(x)dtdµ(x)

=

ˆ
X

ˆ ∞
0

ˆ
X

e−tpt(x, y)m(y)dµ(y)dtdµ(x)

=

ˆ
X

m(y)dµ(y).

(5.20)

By the definition of (L,M,α, p, ε) molecules, m = LMb with b satisfying (ii) in Definition 5.19.

Set m1 = LM−1b. We then have m = Lm1. Using (5.20), we obtain that
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ˆ
X

m(x)dµ(x) =

ˆ
X

(I + L)−1m(x)dµ(x) =

ˆ
X

(I + L)−1Lm1(x)dµ(x)

=

ˆ
X

m1(x)dµ(x)−
ˆ
X

(I + L)−1m1(x)dµ(x).

By the argument used in (5.20), we arrive at

ˆ
X

m1(x)dµ(x) =

ˆ
X

(I + L)−1m1(x)dµ(x)

which implies

ˆ
X

m(x)dµ(x) = 0.

In Theorem 5.20, we proved that each function in Besov spaces Ḃα,Lp,q (X), 1 ≤ p, q ≤ ∞

and −1 < α < 1, can be decomposed into a linear combination of molecules. Conversely, we will

claim that any molecular decomposition belongs to the Besov spaces Ḃα,Lp,q (X). In this section,

we consider the case 1 ≤ p, q ≤ ∞ and −1 < α < 0. The case 1 ≤ p, q ≤ ∞ and α ≥ 0 should

require some extra conditions and will be investigated in the next subsection.

Theorem 5.22. Assume that L satisfies (G). Let −1 < α < 0, 1 ≤ p, q ≤ ∞ and ε > 0 and let

M > N + n+ ε. Assume that

f =
∑
Q∈D

sQmQ in (M−α,L
∗

p′,q′ )′,

where {sQ}Q is a sequence of nonnegative numbers and {mQ} is a sequence of (L,M,α, p, ε)

molecules. Then we have

‖f‖Ḃα,Lp,q (X) .
[∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

(5.21)

To prove Theorem 5.22, we need the following auxiliary results.

Proposition 5.23. Assume that L satisfies (G). Let −1 < α < 0, 1 ≤ p, q ≤ ∞ and M ∈ N+.

For each (L,M,α, p, ε) molecule mQ associated to the dyadic cube Q ∈ Dη, we have

(i) |Ψ2k(L)mQ(x)| . 2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+ε)

, for all k ≤ η;

(ii) |Ψ2k(L)mQ(x)| . 22M(η−k)2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2k

)−(N+n+ε)

, for all η < k.
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Proof. (i) Using the Gaussian upper bounds for the heat kernels of Ψ2k(L), we have

|Ψ2k(L)mQ(x)| .
ˆ
X

1

µ(B(x, 2k))
exp

(
− cd(x, y)2

22k

)
|mQ(y)|dµ(y)

.
2ηα

µ(Q)1/p

ˆ
X

1

µ(B(x, 2k))
exp

(
− cd(x, y)2

22k

)(
1 +

d(y, xQ)

2η

)−(N+n+ε)

dµ(y)

.
2ηα

µ(Q)1/p

ˆ
d(x,y)≤d(x,xQ)/2

· · ·+ 2ηα

µ(Q)1/p

ˆ
d(x,y)>d(x,xQ)/2

· · ·

:= I1 + I2.

Note that d(y, xQ) ≈ d(x, xQ) whenever d(x, y) ≤ d(x, xQ)/2. Hence,

I1 .
2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+ε)

.

On the other hand, when d(x, y) > d(x, xQ)/2, we obtain that

exp
(
− cd(x, y)2

22k

)
. exp

(
− c′ d(x, y)2

22k

)(
1 +

d(x, xQ)

2k

)−(N+n+ε)

. exp
(
− c′ d(x, y)2

22k

)(
1 +

d(x, xQ)

2η

)−(N+n+ε)

.

This implies that

I2 .
2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+ε)
ˆ
X

1

µ(B(x, 2k))
exp

(
− c′ d(x, y)2

22k

)
dµ(y)

.
2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+ε)

.

This completes the proof of (i).

(ii) Using mQ = LMbQ to give

|Ψ2k(L)mQ(x)| = |22kLM+1e−22kLbQ(x)| .
ˆ
X

2−2Mk

µ(B(x, 2k))
exp

(
− cd(x, y)2

22k

)
|bQ(y)|dµ(y)

.
22M(η−k)2ηα

µ(Q)1/p

ˆ
X

1

µ(B(x, 2k))
exp

(
− cd(x, y)2

22k

)(
1 +

d(y, xQ)

2η

)−(N+n+1)

dµ(y)

.
22M(η−k)2ηα

µ(Q)1/p

ˆ
d(x,y)≤d(x,xQ)/2

· · ·+ 22M(η−k)2ηα

µ(Q)1/p

ˆ
d(x,y)>d(x,xQ)/2

· · · .

At this stage, we can apply the same argument used in (i) to obtain that

|Ψ2k(L)mQ(x)| . 22M(η−k)2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2k

)−(N+n+ε)

.

This completes the proof of (ii).

The following proposition is inspired from [FJ1]. However, since we are working on a

more general setting, some significant modifications are required.
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Proposition 5.24. (i) For η ≤ k, we have

∥∥∥ ∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥
p
. 2ηα2(2M−N−n−ε)(η−k)

( ∑
Q∈Dη

|sQ|p
)1/p

.

(ii) For k < η, we have

∥∥∥ ∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥
p
. 2ηα

( ∑
Q∈Dη

|sQ|p
)1/p

.

Proof. By Proposition 5.23, we have∥∥∥ ∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥p
p

=
∑
B∈Dη

ˆ
B

∣∣∣ ∑
Q∈Dη

sQΨ2k(L)mQ(x)
∣∣∣pdµ(x)

.
∑
B∈Dη

ˆ
B

∣∣∣ ∑
Q∈Dη

sQ
22M(η−k)2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2k

)−(N+n+ε)∣∣∣pdµ(x).

Observe that for x ∈ B we have

1 +
d(x, xQ)

2k
≈ 1 +

d(xB , xQ)

2k

which implies that

∥∥∥ ∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥p
p
.
∑
B∈Dη

ˆ
B

∣∣∣ ∑
Q∈Dη

sQ
22M(η−k)2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2k

)−(N+n+ε)∣∣∣pdµ(x).

Using the fact that

µ(B) . µ(Q)
(

1 +
d(xB , xQ)

2η

)N
. 2N(k−η)µ(Q)

(
1 +

d(xB , xQ)

2k

)N
,

we conclude that∥∥∥ ∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥p
p
.
∑
B∈Dη

∣∣∣ ∑
Q∈Dη

sQ2(2M−N)(η−k)2ηα
(

1 +
d(xB , xQ)

2k

)−(n+ε)∣∣∣p
.
∑
j∈Z

∑
B∈Dη

B∩Sj(Q) 6=∅

∣∣∣ ∑
Q∈Dη

sQ2(2M−N)(η−k)2ηα
(

1 +
d(xB , xQ)

2k

)−(n+ε)∣∣∣p,
where Sj(Q) = 2j+1Q\2jQ if j > 0 and Sj(Q) = Q if j = 0.

This together with Remark 5.3 (ii) gives

∥∥∥ ∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥p
p
.
∑
j∈Z

2jn
∣∣∣ ∑
Q∈Dη

sQ2(2M−N)(η−k)2ηα
(

1 +
2j+η

2k

)−(n+ε)∣∣∣p.
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By Remark 5.3 (iii), we can assume that the set Dη is countable. Hence we can write∥∥∥ ∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥p
p
.
∑
j∈Z

∣∣∣∑
i

si2
(2M−N)(η−k)2ηα(1 + 2η−k)−(n+ε)2−εj

∣∣∣p
.
∑
j∈Z

∣∣∣∑
i

si2
(2M−N−n−ε)(η−k)2ηα2−ε|j−i|

∣∣∣p.
This together with Young’s inequality for the discrete convolution gives∥∥∥ ∑

Q∈Dη

sQΨ2k(L)mQ

∥∥∥p
p
. 2p(2M−N−n−ε)(η−k)2ηαp

(∑
j∈Z
|sj |p

)(∑
j∈Z

2−ε|j|
)p

. 2p(2M−N−n−ε)(η−k)2ηαp
( ∑
Q∈Dη

|sQ|p
)
.

This gives (i).

The proof of (ii) is similar to that of (i) and hence we omit the details here.

We are now in the position to give the proof of Theorem 5.22.

Proof of Theorem 5.27: We will adapt the arguments in [FJ1] to our situation.

We have

‖f‖q
Ḃα,Lp,q (X)

=
∑
k∈Z

(
2−kα

∥∥∥∑
η∈Z

∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥
p

)q
.
∑
k∈Z

(
2−kα

∥∥∥∑
η≤k

∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥
p

)q
+
∑
k∈Z

(
2−kα

∥∥∥∑
η>k

∑
Q∈Dη

sQΨ2k(L)mQ

∥∥∥
p

)q
.

This in combination with Proposition 5.24 implies that

‖f‖q
Ḃα,Lp,q (X)

.
∑
k∈Z

(∑
η≤k

2(η−k)α
( ∑
Q∈Dη

|sQ|p
)1/p)q

+
∑
k∈Z

(∑
η≤k

2(η−k)(2M−N/p−n−ε+α)
( ∑
Q∈Dη

|sQ|p
)1/p)q

.

Due to α < 0 and 2M −N/p− n− ε+ α > 0, by using Young’s inequality we arrive at

‖f‖q
Ḃα,Lp,q (X)

.
∑
η∈Z

( ∑
Q∈Dη

|sQ|p
)q/p

.

This completes our proof.

2

By careful examination of the proof of Theorem 5.27 we have the following important

remark.
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Remark 5.25. Assume that L satisfies (G). Let 1 ≤ p, q ≤ ∞, −1 < α < 1 and M > N+n+ε.

Assume that

f =
∑
Q∈D

sQmQ in (M−α,L
∗

p′,q′ )′,

where {sQ} is a sequence of nonnegative numbers and {mQ} is a sequence of (L,M,α, p, ε)

molecules. In addition, if there holds

|Ψ2k(L)mQ(x)| . 2ηα2ε
′(k−η)

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+ε)

for all k < η and for some ε′ ∈ (0, 1], then we have

‖f‖Ḃα,Lp,q (X) .
[∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

for −1 < α < ε′.

5.3.2 Smooth molecular decompositions

We now describe the concept of ε-smooth (L,M,α, p, β) molecules.

Definition 5.26. Let 1 ≤ p ≤ ∞, −1 < α < 1, ε, β > 0 and M ∈ N+. A function m is said to

be an ε-smooth (L,M,α, p, β) molecule if there exists a dyadic cube Q ∈ D so that

(i) m = LMb;

(ii) |Lkb(x)| ≤ `(Q)2(M−k)+α

µ(Q)1/p

(
1 +
|x− xQ|
`(Q)

)−(N+n+β)

, k = 0, 1, . . . ,M ;

(iii) |Lkb(x) − Lkb(y)| ≤
(d(x, y)

`(Q)

)ε `(Q)2(M−k)+α

µ(Q)1/p

(
1 +

d(x, xQ)

`(Q)

)−(N+n+β)

, k = 0, 1, . . . ,M,

whenever d(x, y) < `(Q)/8.

Theorem 5.27. Assume that L satisfies (G), (C) and (H). Let 1 ≤ p, q ≤ ∞, −1 < α < 1 and

M ∈ N+.

(a) Then for each f ∈ Ḃα,Lp,q (X), there exist a sequence of coefficients 0 ≤ sQ < ∞, where Q

ranges over the dyadic cubes, and a sequence mQ of ε-smooth (L,M,α, p, β) molecules with

ε ∈ (0, δ] and β > 0, such that

f =
∑
Q∈D

sQmQ in (M−α,L
∗

p′,q′ )′,
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and [∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

≈ ‖f‖Ḃα,Lp,q (X). (5.22)

(b) Conversely, suppose

f =
∑
Q∈D

sQmQ in (M−α,L
∗

p′,q′ )′,

where {sQ}Q is a sequence of nonnegative numbers and {mQ} is a sequence of ε-smooth

(L,M,α, p, β) molecules with ε ∈ (0, δ], β > 0 and M > N + n+ β. Then we have

‖f‖Ḃα,Lp,q (X) .
[∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

(5.23)

for −1 < α < ε.

Proof. (a) In the proof of Theorem 5.20, we proved that

f =
∑
Q∈D

sQmQ in (M−α,L
∗

p′,q′ )′,

where

sQ = 2−(k−1)α
( ˆ

Q

|Ψ2k−1(L)f(y)|pdµ(y)
)1/p

and

mQ =
1

sQ

ˆ 2k

2k−1

2−2(k−1)t2(t2L)Me−(2t2−22(k−1))L[Ψ2k−1(L)f.χQ](x)
dt

t
.

Moreover, it was also proved that (5.22) holds and mQ satisfies (i)–(ii) in Definition 5.26. Hence,

to complete the proof we need only to verify the condition (iii) in Definition 5.26. Indeed, we

have mQ = LMbQ where

bQ =
1

sQ

ˆ 2k

2k−1

2−2(k−1)t2(t2L)Me−(2t2−22(k−1))L[Ψ2k−1(L)f.χQ](x)
dt

t
.

Hence, for each m = 0, 1, . . . ,M , we have

LmbQ(x) =
1

sQ

ˆ 2k

2k−1

ˆ
Q

t2(M−m+1)

2−2(k−1)

( t2

2t2 − 22(k−1)

)m
p2t2−22(k−1),m(x, y)Ψ2k−1(L)f(y)dµ(y)

dt

t
.

which implies

|LmbQ(x)− LmbQ(y)| ≤ 1

sQ

ˆ 2k

2k−1

ˆ
Q

t2(M−m+1)

2−2(k−1)

( t2

2t2 − 22(k−1)

)m
×
[
p2t2−22(k−1),m(x, z)− p2t2−22(k−1),m(y, z)

]
Ψ2k−1(L)f(y)dµ(z)

dt

t
.
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Thanks to Lemma 5.1, the doubling property and the fact that 2t2 − 22(k−1) ≈ t2 ≈ 22(k−1)

whenever t ∈ [2k−1, 2k], for d(x, y) < `(Q)/8 < t/2 we obtain that

|LmbQ(x)− LmbQ(y)| . 22k(M−m)

sQ.µ(Q)

ˆ 2k

2k−1

ˆ
Q

[d(x, y)

t

]δ(
1 +

d(x, xQ)

t

)−(N+n+β)

|Ψ2k−1(L)f(z)|dµ(z)
dt

t

.
22k(M−m)

sQ.µ(Q)

[d(x, y)

`(Q)

]δ(
1 +

d(x, xQ)

`(Q)

)−(N+n+β)
ˆ
Q

|Ψ2k−1(L)f(z)|dµ(z)

.
22k(M−m)

sQ.µ(Q)1/p

[d(x, y)

`(Q)

]δ(
1 +

d(x, xQ)

`(Q)

)−(N+n+β)( ˆ
Q

|Ψ2k−1(L)f(z)|pdµ(z)
)1/p

.
`(Q)2(M−k)+α

µ(Q)1/p

[d(x, y)

`(Q)

]δ(
1 +

d(x, xQ)

`(Q)

)−(N+n+β)

.

This completes the proof of (a).

(b) Assume that mQ is an ε-smooth (L,M,α, p, β) molecule associated to the dyadic

cube Q ∈ Dη with ε ∈ (0, δ] and β > 0. Since an ε-smooth (L,M,α, p, β) molecule is also an

(L,M,α, p, β) molecule, in the light of Remark 5.25 it suffices to claim that

|Ψ2k(L)mQ(x)| . 2(k−η)ε2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)

, k ≤ η. (5.24)

Indeed, due to (C) we have

|Ψ2k(L)mQ(x)| =
∣∣∣ˆ
X

p22k,1(x, y)(mQ(y)−mQ(x))dµ(y)
∣∣∣

.
∣∣∣ˆ
d(x,y)<2η/8

. . .
∣∣∣+
∣∣∣ˆ
d(x,y)≥2η/8

. . .
∣∣∣

= E1 + E2.

Since mQ satisfies (iii) in Definition 5.26, we have

E1 .
2ηα

µ(Q)1/p

ˆ
X

1

V (x, 2k)
exp

(
− cd(x, y)2

22k

)(
1 +

d(x, xQ)

2η

)−(N+n+β)(d(x, y)

2η

)ε
dµ(y)

.
2(k−η)ε2ηα

µ(Q)1/p

ˆ
X

1

V (x, 2k)
exp

(
− c′ d(x, y)2

22k

)(
1 +

d(x, xQ)

2η

)−(N+n+β)

dµ(y)

.
2(k−η)ε2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)

.

For the term E2, we have

E2 .
ˆ
d(x,y)≥2η/8

1

V (x, 2k)
exp

(
− cd(x, y)2

22k

)
|mQ(x)−mQ(y)|dµ(y)

.
ˆ
d(x,y)≥2η/8

( 2k

d(x, y)

)ε 1

V (x, 2k)
exp

(
− c′ d(x, y)2

22k

)
|mQ(x)−mQ(y)|dµ(y)

.
ˆ
d(x,y)≥2η/8

1

V (x, 2k)
exp

(
− c′ d(x, y)2

22k

)
|mQ(x)−mQ(y)|dµ(y).
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By (ii) in Definition 5.26 it is easy to see that

ˆ
d(x,y)≥2η/8

1

V (x, 2k)
exp

(
− c′ d(x, y)2

22k

)
|mQ(x)|dµ(y) .

2(k−η)ε2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)

.

On the other hand, by using the same argument done in Proposition 5.23 (i), we arrive at

ˆ
d(x,y)≥2η/8

1

V (x, 2k)
exp

(
− c′ d(x, y)2

22k

)
|mQ(y)|dµ(y) .

2(k−η)ε2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)

.

Taking these two estimates into account, we conclude that

E2 .
2(k−η)ε2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)

.

This completes our proof.

5.3.3 Critical molecular decompositions

In the previous section, in order to establish the reverse molecular theorem for Besov

spaces Ḃα,Lp,q (X) with α ≥ 0, the conservation property (C) was necessary. The aim of this

section is to remove the conservation property (C). To do this, we need a different kind of

molecules.

Let γ be a positive function on X. The function γ is called a critical function if there

exist positive constants C and k0 so that

γ(y) ≤ C[γ(x)]
1

1+k0 [γ(x) + d(x, y)]
k0
k0+1 (5.25)

for all x, y ∈ X.

Note that the concept of critical functions was introduced first to the setting of Schrödinger

operators on Rn in [Fe] (see also [Sh]) and then was extended to the spaces of homogeneous type

in [YZ]. We have some basic properties on the critical function in [YZ].

Lemma 5.28. Let γ be a critical function on X. Then

(i) For any C̃ > 0, there exists a positive constant C, depending on C̃, such that if y ∈

B(x, C̃γ(x)), then C−1γ(x) ≤ γ(y) ≤ Cγ(x).
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(ii) There exists a positive constant C such that for all x, y ∈ X,

γ(y) ≥ C[γ(x)]1+k0 [γ(x) + d(x, y)]−k0 .

One of the most important examples of critical functions is the class of critical functions

associated to the weights satisfying the reverse Hölder’s inequality. If w ∈ RHq with q >

max{1, n/2} then the function defined by

γ(x) = sup
{
r :

r2

µ(B(x, r))

ˆ
B(x,r)

w(y)dµ(y) ≤ 1
}

is a critical function. See for example [YZ].

Let γ be a critical function on X. In this section, we assume that L is a nonnegative

self-adjoint operator on L2(X) satisfying the following conditions:

(I) For all K > 0, there exist positive constants c and C so that

|pt(x, y)| ≤ C

V (x,
√
t)

exp
(
− cd(x, y)2

t

)(
1 +

√
t

γ(x)
+

√
t

γ(y)

)−K
for all x, y ∈ X and t > 0;

(II) There is a positive constant δ0 > 0 so that for all K > 0, there exist positive constants c

and C:

|pt,1(x, y)− pt,1(x, y)| ≤ C

V (x,
√
t)

[d(x, x)√
t

]δ0
exp

(
− cd(x, y)2

t

)(
1 +

√
t

γ(x)
+

√
t

γ(y)

)−K
whenever d(x, x) ≤

√
t/2 and t > 0; and

∣∣∣ˆ
X

pt(x, y)dµ(y)− 1
∣∣∣+
∣∣∣ˆ
X

pt,1(x, y)dµ(y)
∣∣∣ ≤ C( √

t√
t+ γ(x)

)δ0(
1 +

√
t

γ(x)

)−N
for all x ∈ X and t > 0.

Examples of operators satisfying (I)–(II) include:

(i) the Schrödinger operators on Rn, n ≥ 3 with nonnegative potentials V in the reverse Hölder

class RHn/2;
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(ii) the degenerate Schrödinger operators on Rn, n ≥ 3 with nonnegative potentials V satisfying

certain reverse Hölder inequalities;

(iii) the sub-Laplace Schrödinger operator on Heisenberg groups with nonnegative potentials

V satisfying certain reverse Hölder inequalities;

(iv) the sub-Laplace Schrödinger operator on connected and simply connected nilpotent Lie

groups with nonnegative potentials V satisfying certain reverse Hölder inequalities.

See for example [YZ] and the references therein.

Definition 5.29. Let γ be a critical function in X. Assume that L is a nonnegative self-adjoint

operator on L2(X) satisfying (I)–(II). Let 1 ≤ p ≤ ∞, −1 < α < 1, ε, β > 0 and M ∈ N+.

A function m is said to be a (γ, ε)-critical (L,M,α, p, β) molecule if there exists a dyadic cube

Q ∈ D so that

(i) m = LMb;

(ii) |Lkb(x)| ≤ `(Q)2(M−k)+α

µ(Q)1/p

(
1 +
|x− xQ|
`(Q)

)−(N+n+β)(
1 +

`(Q)

γ(x)

)−ε
, k = 0, 1, . . . ,M ;

(iii) |Lkb(x) − Lkb(y)| ≤
(d(x, y)

`(Q)

)ε `(Q)2(M−k)+α

µ(Q)1/p

(
1 +

d(x, xQ)

`(Q)

)−(N+n+β)

, k = 0, 1, . . . ,M,

whenever d(x, y) < `(Q)/8.

Theorem 5.30. Assume that L is a nonnegative self-adjoint operator on L2(X) satisfying (I)–

(II) and γ is a critical function in X. Let 1 ≤ p, q ≤ ∞, −1 < α < 1 and M ∈ N+.

(a) Then for each f ∈ Ḃα,Lp,q (X), there exist a sequence of coefficients 0 ≤ sQ < ∞, where Q

ranges over the dyadic cubes, and a sequence mQ of (γ, ε)-critical (L,M,α, p, β) molecules

with ε ∈ (0, δ0] and β > 0, such that

f =
∑
Q∈D

sQmQ in (M−α,Lp′,q′ )′,

and [∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

∼ ‖f‖Ḃα,Lp,q (X). (5.26)
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(b) Conversely, suppose

f =
∑
Q∈D

sQmQ in (M−α,Lp′,q′ )′,

where {sQ}Q is a sequence of nonnegative numbers and {mQ} is a sequence of (γ, ε)-critical

(L,M,α, p, β) molecules with ε ∈ (0, δ0] and M > N + n+ β. Then we have

‖f‖Ḃα,Lp,q (X) .
[∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

(5.27)

for −1 < α < ε.

To prove Theorem 5.30 we need the following auxiliary lemma.

Lemma 5.31. Assume that L is a nonnegative self-adjoint operator on L2(X) satisfying (I)–

(II). Then for each k ∈ N+ and K > 0, there exist positive constants c and C so that

(i) |pt,k(x, y)| ≤ C

V (x,
√
t)

exp
(
− cd(x, y)2

t

)(
1 +

√
t

γ(x)
+

√
t

γ(y)

)−K
for all x, y ∈ X and t > 0;

and

(ii) |pt,k(x, y) − pt,k(x, y)| ≤ C

V (x,
√
t)

[d(x, x)

d(x, y)

]δ0
exp

(
− c

d(x, y)2

t

)(
1 +

√
t

γ(x)
+

√
t

γ(y)

)−K
whenever d(x, x) ≤

√
t/4 and t > 0;

Proof. The proof of (i) is very standard and we omit the details here. The proof of (ii) is similar

to that of Lemma 5.1.

We are now in the position to give the proof for Theorem 5.30.

Proof of Theorem 5.30: (a) We can proceed with the arguments used in the proof of

Theorem 5.27 (a) of which we use Lemma 5.31 in place of Lemma 5.1.

(b) Due to Remark 5.25, it suffices to show that for any (γ, ε)-critical (L,M,α, p, β)

molecule mQ associated to the dyadic cube Q ∈ Dη there holds

|Ψ2k(L)mQ(x)| . 2(k−η)ε2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)

, k ≤ η.

Indeed, we have

|Ψ2k(L)mQ(x)| ≤
∣∣∣ˆ
X

p22k,1(x, y)(mQ(y)−mQ(x))dµ(y)
∣∣∣+
∣∣∣ˆ
X

p22k,1(x, y)mQ(x)dµ(y)
∣∣∣

= A1 +A2.
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Using the similar argument to that of (5.24) we can show that

A1 .
2(k−η)ε2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)

Since mQ satisfies (iii) in Definition 5.29, we have

A2 .
2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)(
1 +

2η

γ(x)

)−ε∣∣∣ˆ
X

p22k,1(x, y)dµ(y)
∣∣∣

.
2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)(
1 +

2η

γ(x)

)−ε( 2k

γ(x)

)ε
.

2(k−η)ε2ηα

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(N+n+β)

.

This completes our proof.

Remark 5.32. It is interesting to note that in Theorems 5.20, 5.22, 5.27 and 5.30 if f ∈

Lr(X) ∩ Ḃα,Lp,q (X) for some 1 < r < ∞ then the series f =
∑
Q∈D sQmQ converges in Lr(X).

We leave the details to the interested reader.

5.4 Atomic decompositions of Besov spaces Ḃα,L
p,p (X)

Let L be a nonnegative and self-adjoint operator on L2(X) satisfying (G). In what follows,

given a L2(X) bounded linear operator, we shall denote by KT (x, y) the kernel of the operator

T . Then there exists a constant c0 > 0 such that

suppKcos(t
√
L) ⊂ {(x, y) ∈ X ×X : d(x, y) ≤ c0t}. (5.28)

See for example [Si].

Lemma 5.33. Let L be a nonnegative and self-adjoint operator on L2(X) and let γ be a critical

function on X. Let ϕ ∈ C∞0 (R) be even and suppϕ ⊂ (−c−1
0 , c−1

0 ), with c0 as in (5.28). Let

Φ denote the Fourier transform of ϕ. For every k ∈ N and t > 0, denote by K(t2L)kΦ(t
√
L) the

kernel of (t2L)kΦ(t
√
L).

(i) If L satisfies (G) then we have

suppK(t2L)kΦ(t
√
L) ⊂ {(x, y) ∈ X ×X : d(x, y) ≤ t}, (5.29)
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and

|K(t2L)kΦ(t
√
L)(x, y)| ≤ C

µ(B(x, t))
(5.30)

for all x, y ∈ X and t > 0.

(ii) If L satisfies (G) and (H) then we have

∣∣∣K(t2L)kΦ(t
√
L)(x, y)−K(t2L)kΦ(t

√
L)(x

′, y)
∣∣∣ ≤ C

µ(B(x, t))

(d(x, x′)

t

)δ
for all t > 0 and d(x, x′) < t/2.

(iii) If L satisfies (I) and (II) then for each K > 0 there exist C, c > 0 so that

|K(t2L)kΦ(t
√
L)(x, y)| ≤ C

µ(B(x, t))

(
1 +

t

γ(x)
+

t

γ(y)

)−K
and

∣∣∣K(t2L)kΦ(t
√
L)(x, y)−K(t2L)kΦ(t

√
L)(x

′, y)
∣∣∣ ≤ C

µ(B(x, t))

(d(x, x′)

t

)δ0(
1+

t

γ(x)
+

t

γ(y)

)−K
for all t > 0 and d(x, x′) < t/2.

Proof. For the proof of (5.29) we refer the reader to Lemma 3.5 in [HLMMY]. The proof of

(5.30) is similar to that of (ii) but easier. Hence we provide the proof of (ii) only. Note that in

the particular case when X satisfies the condition µ(B(x, r)) ≈ rn, the proof of (5.30) was given

in [Si].

Observe that for m ∈ N we have

(I + t2L)−m = cm

ˆ ∞
0

e−λt
2Le−λλm−1dλ

which implies

K(I+t2L)−m(x, y) = cm

ˆ ∞
0

pλt2(x, y)e−λλm−1dλ. (5.31)
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Hence for d(x, x′) ≤ t/2 we have

|K(I+t2L)−m(x, y)−K(I+t2L)−m(x′, y)| = cm

ˆ ∞
0

|pλt2(x, y)− pλt2(x′, y)|e−λλm−1dλ

= cm

ˆ 2d(x,x′)2/t2

0

. . .+ cm

ˆ ∞
2d(x,x′)2/t2

. . .

= I1(x, x′, y) + I2(x, x′, y).

Using (H) we have

I2(x, x′, y) .
ˆ ∞

2d(x,x′)2/t2

(d(x, x′)

t
√
λ

)δ 1

V (x, t
√
λ)

exp
(
− cd(x, y)2

λt2

)
e−λλm−1dλ

which implies

‖I2(x, x′, ·)‖2 .
ˆ ∞

2d(x,x′)2/t2

(d(x, x′)

t
√
λ

)δ 1

µ(B(x, t
√
λ))1/2

e−λλm−1dλ

.
(d(x, x′)

t

)δ 1

µ(B(x, t))1/2

ˆ ∞
2d(x,x′)2/t2

λ−δ/2(1 + 1/
√
λ)n/2e−λλm−1dλ

.
(d(x, x′)

t

)δ 1

µ(B(x, t))1/2

provided m > n/4 + 1.

To estimate I1(x, x′, y), we break

I1(x, x′, y) . cm

ˆ 2d(x,x′)2/t2

0

|pλt2(x, y)|e−λλm−1dλ+ cm

ˆ 2d(x,x′)2/t2

0

|pλt2(x′, y)|e−λλm−1dλ

. I11(x, x′, y) + I12(x, x′, y).

By Minkowski’s inequality, we have

‖I11(x, x′, ·)‖2 .
ˆ 2d(x,x′)2/t2

0

1

µ(B(x, t
√
λ))1/2

e−λλm−1dλ

.
ˆ 2d(x,x′)2/t2

0

1

µ(B(x, t))1/2
(1 + 1/

√
λ)n/2e−λλm−1dλ

.
ˆ 2d(x,x′)2/t2

0

(d(x, x′)

t

)δ 1

µ(B(x, t))1/2
(1 + 1/

√
λ)n/2e−λλm−1−δ/2dλ

.
(d(x, x′)

t

)δ 1

µ(B(x, t))1/2

provided m > n/4 + 1.

Likewise,

‖I12(x, x′, ·)‖2 .
(d(x, x′)

t

)δ 1

µ(B(x′, t))1/2
.
(d(x, x′)

t

)δ 1

µ(B(x, t))1/2
,
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where in the last inequality we use the fact that µ(B(x, t)) ≈ µ(B(x′, t)) since d(x, x′) < t/2.

To sum up, we have shown that

‖K(I+t2L)−m(x, ·)−K(I+t2L)−m(x′, ·)‖2 .
(d(x, x′)

t

)δ 1

µ(B(x, t))1/2
. (5.32)

We now write

(t2L)kΦ(t
√
L) = (I + t2L)−mΥt(L)(I + t2L)−m

where Υt(L) = (I + t2L)2m(t2L)kΦ(t
√
L). Hence, using Hölder’s inequality and (5.32) gives

∣∣∣K(t2L)kΦ(t
√
L)(x, y)−K(t2L)kΦ(t

√
L)(x

′, y)
∣∣∣

=
∣∣∣ˆ
X

(
K(I+t2L)−m(x, z)−K(I+t2L)−m(x′, z)

)
KΥt(L)(I+t2L)−m(z, y)dµ(z)

∣∣∣
.
∥∥∥K(I+t2L)−m(x, ·)−K(I+t2L)−m(x′, ·)‖2

∥∥∥KΥt(L)(I+t2L)−m(·, y)
∥∥∥

2

.
(d(x, x′)

t

)δ 1

µ(B(x, t))1/2

∥∥∥KΥt(L)(I+t2L)−m(·, y)
∥∥∥

2
.

On the other hand, we have

KΥt(L)(I+t2L)−m(z, y) = Υt(L)[K(I+t2L)−m(·, y)](z)

which implies∥∥∥KΥt(L)(I+t2L)−m(·, y)
∥∥∥

2
. ‖Υt(L)‖2→2

∥∥∥K(I+t2L)−m(·, y)
∥∥∥

2

. ‖Υt‖∞
∥∥∥K(I+t2L)−m(·, y)

∥∥∥
2
.
∥∥∥K(I+t2L)−m(·, y)

∥∥∥
2
.

Using formula (5.31) and the Gaussian upper bound of pt(x, y), it can be verified that

∥∥∥K(I+t2L)−m(·, y)
∥∥∥

2
.

1

µ(B(y, t))1/2
≈ 1

µ(B(x, t))1/2

as long as d(x, y) < t. Therefore,

∣∣∣K(t2L)kΦ(t
√
L)(x, y)−K(t2L)kΦ(t

√
L)(x

′, y)
∣∣∣ ≤ C

µ(B(x, t))

(d(x, x′)

t

)δ
for all t > 0 and d(x, x′) < t/2.

The proofs of (iii) and (iv) are similar to that of (ii) and hence we leave them to the

interested reader.
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Definition 5.34. Assume that L is a nonnegative and self-adjoint operator on L2(X) satisfying

(G). Let 1 ≤ p ≤ ∞, −1 < α < 1, ε and M ∈ N. A function a is said to be an (L,M,α, p) atom

if there exists a dyadic cube Q ∈ D so that

(i) a = LMb;

(ii) suppLkb ⊂ 3Q, k = 0, 1, . . . ,M ;

(iii) ‖Lkb‖∞ ≤ `(Q)2(M−k)+α

µ(Q)1/p , k = 0, 1, . . . ,M.

Moreover, a function a is said to be an ε-smooth (L,M,α, p) atom if a satisfies addition-

ally the following condition

|Lkb(x)− Lkb(y)| ≤
(d(x, y)

`(Q)

)ε `(Q)2(M−k)+α

µ(Q)1/p
, k = 0, 1, . . . ,M.

Definition 5.35. Let γ be a critical function on X. Assume that L is a nonnegative and self-

adjoint operator on L2(X) satisfying (I) and (II). Let 1 ≤ p ≤ ∞, −1 < α < 1, ε > 0 and

M ∈ N. A function a is said to be a (γ, ε)-critical (L,M,α, p) atom if there exists a dyadic cube

Q ∈ D so that

(i) a = LMb;

(ii) suppLkb ⊂ 3Q, k = 0, 1, . . . ,M ;

(iii) ‖Lkb‖∞ ≤ `(Q)2(M−k)+α

µ(Q)1/p

(
1 + `(Q)

γ(x)

)−ε
, k = 0, 1, . . . ,M.

(iv) |Lkb(x)− Lkb(y)| ≤
(d(x, y)

`(Q)

)ε `(Q)2(M−k)+α

µ(Q)1/p
, k = 0, 1, . . . ,M.

Obviously, each (L,M,α, p) atom (ε-smooth (L,M,α, p) atom, (γ, ε)-critical (L,M,α, p)

atom, respectively) is also a (L,M,α, p, β) molecule (ε-smooth (L,M,α, p, β) molecule, (γ, ε)-

critical (L,M,α, p, β) molecule, respectively).

It is interesting that similar to the classical case, the function in Besov spaces Ḃα,Lp,q (X)

admits an atomic decomposition.
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Theorem 5.36. Let γ be a critical function on X. Let L be a nonnegative and self-adjoint

operator on L2(X). Let −1 < α < 1, 1 ≤ p ≤ ∞, ε > 0 and M > N + n. Assume that

f ∈ L2(X).

(a) If L satisfies (G) then the following statements are equivalent:

(i) f ∈ Ḃα,Lp,p (X);

(ii) there exist a sequence of coefficients 0 ≤ sQ < ∞, where Q ranges over the dyadic

cubes, and a sequence aQ of (L,M,α, p)-atoms, such that

f =
∑
Q∈D

sQaQ in L2(X);

and [∑
k∈Z

∑
Q∈Dk

|sQ|p
]1/p

<∞. (5.33)

(b) If L satisfies (G), (C) and (H) then the following statements are equivalent:

(i) f ∈ Ḃα,Lp,p (X) with −1 < α < ε;

(ii) there exist a sequence of coefficients 0 ≤ sQ < ∞, where Q ranges over the dyadic

cubes, and a sequence aQ of ε-smooth (L,M,α, p)-atoms with ε ∈ (0, δ], such that

f =
∑
Q∈D

sQaQ in L2(X);

and [∑
k∈Z

∑
Q∈Dk

|sQ|p
]1/p

<∞. (5.34)

(c) If L satisfies (I)–(II) then the following statements are equivalent:

(i) f ∈ Ḃα,Lp,p (X) with −1 < α < ε;

(ii) there exist a sequence of coefficients 0 ≤ sQ < ∞, where Q ranges over the dyadic

cubes, and a sequence aQ of (γ, ε)-critical (L,M,α, p)-atoms with ε ∈ (0, δ0], such that

f =
∑
Q∈D

sQaQ in L2(X);
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and [∑
k∈Z

∑
Q∈Dk

|sQ|p
]1/p

<∞. (5.35)

Proof. (a) (ii)→ (i): The proof is similar to that of Theorem 5.22.

(i)→ (ii): Let f ∈ L2(X). By spectral theory, we have

f(x) = CM

ˆ ∞
0

(t2L)MΦ(t
√
L)Ψt(L)f(x)

dt

t

which converges in L2(X) almost everywhere, where Φ is as in Lemma 5.33.

For each Q ∈ Dk, we set Q̂ = Q× [2k−1, 2k]. We then have

f(x) = CM
∑
Q∈D

ˆ ∞
0

(t2L)MΦ(t
√
L)[Ψt(L)f.χQ̂](x)

dt

t

= CM
∑
k∈Z

∑
Q∈Dk

ˆ ∞
0

(t2L)MΦ(t
√
L)[Ψt(L)f.χQ̂](x)

dt

t
.

For each k ∈ Z and Q ∈ Dk, we set

sQ =
(ˆ 2k

2k−1

t−αp
ˆ
Q

|Ψt(L)f(y)|pdµ(y)
dt

t

)1/p

and

aQ =
1

sQ

ˆ ∞
0

(t2L)MΦ(t
√
L)[Ψt(L)f.χQ̂](x)

dt

t
.

It is clear that f =
∑
Q∈D sQaQ in L2(X). Moreover, we have

∑
k∈Z

∑
Q∈Dk

|sQ|p =
∑
k∈Z

∑
Q∈Dk

ˆ 2k

2k−1

t−αp
ˆ
Q

|Ψt(L)f(y)|pdµ(y)
dt

t

=

ˆ ∞
0

t−αp
ˆ
X

|Ψt(L)f(y)|pdµ(y)
dt

t

:= ‖f‖p
Ḃα,Lp,p (X)

.

We now claim that for each Q ∈ Dk, k ∈ Z, aQ is a multiple of an (L,M,α, p)-atom with

a harmless multiple constant. Indeed, we have aQ = LMbQ with

bQ =
1

sQ

ˆ ∞
0

t2MΦ(t
√
L)[Ψt(L)f.χQ̂](x)

dt

t
.

For each m = 0, 1, . . . ,M , we have

LmbQ(x) =
1

sQ

ˆ 2k

2k−1

ˆ
Q

t2(M−m)K(t2L)mΦ(t
√
L)(x, y)Ψt(L)f(y)dµ(y)

dt

t
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which together with Lemma 5.33 implies that suppLmbQ ⊂ 3Q. Moreover, from Lemma 5.33

and the doubling property, we obtain that

K(t2L)mΦ(t
√
L)(x, y) .

1

µ(B(y, t))
.

1

µ(Q)
.

This together with Hölder’s inequality implies

|LmbQ(x)| . 2k(M−m)

sQ

2kα

µ(Q)

ˆ 2k

2k−1

t−α
ˆ
Q

|Ψt(L)f(y)|dµ(y)
dt

t

.
2k(M−m)

sQ

2kα

µ(Q)1/p

(ˆ 2k

2k−1

t−αp
ˆ
Q

|Ψt(L)f(y)dµ(y)|p dt
t

)1/p

.
2k(M−m)2kαsQ
sQµ(Q)1/p

.
`(Q)2(M−m)+α

µ(Q)1/p
.

(5.36)

This completes the proof of (a).

The proofs of (b) and (c) are similar to that in (a) of which we use (iii) and (iv) in place

of (ii) in Lemma 5.33 and hence we omit the details here.

We are unable to address the atomic decomposition for Besov spaces Ḃα,Lp,q (X) with p 6= q.

This problem would be an interesting open problem and we leave it to the interested reader.

5.5 Relationship between the classical Besov spaces and Ḃα,L
p,q (X) spaces

5.5.1 Coincidence of Ḃαp,q(X) and Ḃα,Lp,q (X)

In this subsection we assume that

µ(B(x, r)) ≈ rn (5.37)

for all x ∈ X and r > 0. We now recall the definition of Besov spaces Ḃαp,q(X) on spaces of

homogeneous type in [HS, HMY].
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Definition 5.37. Let ε > 0. A sequence {Sk}k∈Z of bounded linear operators on L2(X) is said

to be an approximation of the identity of order ε if there exists a constant C > 0 such that for

all k ∈ Z and all x, x′, y, y′ ∈ X, the integral kernel Sk(x, y) of Sk satisfies

(i) |Sk(x, y)| ≤ C 2kε

(2k + d(x, y))n+ε
;

(ii) |Sk(x, y)− Sk(x′, y)|+ |Sk(y, x)− Sk(y, x′)| ≤ C
( d(x, x′)

2k + d(x, y)

)ε 2kε

(2k + d(x, y))n+ε

whenever d(x, x′) ≤ 1
2 (2k + d(x, y));

(iii) If max{d(x, x′), d(y, y′)} ≤ 1
2 (2k + d(x, y)) then

|[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C
( d(x, x′)

2k + d(x, y)

)ε( d(y, y′)

2k + d(x, y)

)ε 2kε

(2k + d(x, y))n+ε
;

(iv)

ˆ
X

Sk(x, y)dµ(x) =

ˆ
X

Sk(x, y)dµ(y) = 1.

Note that if {Sk}k satisfies (i), (ii) and (iv) then {S2
k} satisfies (i)–(iv). See for example

[HMY]. It was proved in [HMY] that under condition (5.37) we always construct an approxi-

mation of the identity of order θ > 0 and we fixed the constant θ.

Definition 5.38 ([HMY]). Fix ε > 0 and 0 < β ≤ θ. A function f defined on X is said to be

a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0 if the following holds:

(i) |f(x)| ≤ C rε

(r + d(x, x0))n+ε
;

(ii) |f(x)− f(y)| ≤ C
( d(x, y)

r + d(x, x0)

)β rε

(r + d(x, x0))n+ε
for d(x, y) ≤ (r + d(x, x0))/2.

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, ε) and we set

‖f‖G(x0,r,β,ε) = inf{C : (i) and (ii) hold}.

Now fix x0 ∈ X and let G(β, ε) = G(x0, 1, β, ε). It is easy to see that G(x1, r, β, ε) = G(β, ε)

with equivalent norms for all x1 ∈ X and r > 0. Moreover, G(β, ε) is a Banach space. We let

◦
G(β, ε) be a completion of the space G(θ, θ) when 0 < β, ε < θ and let (

◦
G(β, ε))′ be the dual

space of all continuous linear functionals on
◦
G(β, ε). See for example [HS, HMY].
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Definition 5.39. Let −θ < α < θ and 1 ≤ p, q ≤ ∞. Let {Sk}k∈Z be an approximation of the

identity of order θ > 0. The (homogeneous) Besov spaces Ḃαp,q(X) are defined as the set of all

functions f ∈ (
◦
G(β, ε))′ with 0 < β, ε < θ so that

‖f‖Ḃαp,q(X) =
(∑

k

(2−kα‖Dkf‖p)1/q
)1/q

,

where Dk = Sk − Sk−1.

It is important to note that the Besov spaces Ḃαp,q(X) are independent of the choice of

the approximation of the identity {Sk}k∈Z. See for example [HMY].

Definition 5.40. Let −θ < α < θ, 1 ≤ p ≤ ∞ and ε > 0. A function a is said to be an

(ε, p)-smooth atom if there exist a dyadic cube Q and the constant κ > 0 is independent of a and

Q so that

(i) supp a ⊂ 3κQ;

(ii)

ˆ
X

a(x)dµ(x) = 0;

(iii) |a(x)| ≤ `(Q)αµ(Q)−1/p;

(iv) |a(x)− a(y)| ≤ `(Q)αµ(Q)−1/p
(d(x, y)

`(Q)

)ε
.

Without loss of generality, we may assume that κ = 1.

Definition 5.41. Let −θ < α < θ, 1 ≤ p ≤ ∞ and ε, β > 0. A function m is said to be a

(β, ε, p)-smooth molecule if there exists a dyadic cube Q so that

(i)

ˆ
X

m(x)dµ(x) = 0;

(ii) |m(x)| ≤ `(Q)αµ(Q)−1/p
(

1 +
d(x,xQ)
`(Q)

)−(n+ε)

;

(iii) |m(x)−m(y)| ≤ `(Q)αµ(Q)−1/p
(d(x, y)

`(Q)

)β[(
1+

d(x, xQ)

`(Q)

)−(n+ε)

+
(

1+
d(y, xQ)

`(Q)

)−(n+ε)]
.
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Theorem 5.42. [HS, HMY] Let −θ < α < θ and 1 ≤ p, q ≤ ∞. For f ∈ Ḃαp,q(X)∩ (
◦
G(β1, β2))′,

0 < β1, β2 < θ there exist a sequence of nonnegative numbers {sQ} and a sequence of (ε, p)-

smooth atoms {aQ} with |α| < ε so that

f =
∑
Q∈D

sQaQ in Ḃαp,q(X) and (
◦
G(β1, β2))′

and [∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

. ‖f‖Ḃαp,q(X)

Conversely, if f =
∑
Q∈D sQmQ where {sQ} is a sequence of nonnegative numbers and

{mQ} is a sequence of (ε, β, p)-smooth molecules with |α| < ε, β < θ satisfying

[∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

<∞,

then f ∈ Ḃαp,q(X) and

‖f‖Ḃαp,q(X) .
[∑
k∈Z

[ ∑
Q∈Dk

|sQ|p
]q/p]1/q

.

Remark 5.43. By a careful examination of the proof of Theorem 5.42, it can be verified that if

f ∈ Lp(X) ∩ Ḃαp,q(X) for some 1 < p <∞ then the series

f =
∑
Q∈D

sQaQ

converges in Lp(X).1

We have the following results.

Theorem 5.44. Assume that L satisfies (G), (C) and (H). Let |α| < min{δ, θ} and 1 ≤ p, q ≤

∞. If f ∈ L1
loc(X) satisfying

ˆ
X

|f(x)|
(1 + d(x0, x))n+ε

dµ(x) <∞

for some ε < min{δ, θ} and some x0 ∈ X, then the following statements are equivalent:

(a) f ∈ Ḃαp,q(X);

1We thank D. Yang and W. Yuan for their discussions on this point.
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(b) f ∈ Ḃα,Lp,q (X).

Proof. (b) → (a): Since f satisfies the growth condition, f ∈ (
◦
G(ε, ε))′. It suffices to show

that ‖f‖Ḃαp,q(X) < ‖f‖Ḃα,Lp,q (X). Indeed, since L satisfies (G), (C) and (H), we can choose Dk =

e−22kL − e−22(k−1)L. Hence,

‖f‖q
Ḃαp,q(X)

=
∑
k∈Z

(2−kα‖(e−22kL − e−22(k−1)L)f‖p)q.

By Minkowski’s inequality and Lemma 5.4, we have

‖(e−22kL − e−22(k−1)L)f‖p .
∥∥∥ˆ 2k

2k−1

Ψt(L)f
dt

t

∥∥∥
p
.
ˆ 2k

2k−1

‖Ψt(L)f‖p
dt

t

. ‖Ψ2k−1(L)f‖p

which together with Proposition 5.12 implies that

‖f‖q
Ḃαp,q(X)

.
∑
k∈Z

(2k−1‖Ψ2k−1(L)f‖p)q . ‖f‖qḂα,Lp,q (X)
.

(a) → (b): Let f ∈ Ḃαp,q(X). We then have f ∈ Ḃαp,q(X) ∩ (
◦
G(ε, ε))′. By Theorem 5.42,

there exist a sequence of nonnegative numbers {sQ} and a sequence of (ε, p)-smooth atoms {aQ}

with |α| < ε so that

f =
∑
Q∈D

sQaQ in (
◦
G(ε, ε))′.

On the other hand, since L satisfies (G) and (H), pt,k(x, ·) ∈ G(ε, ε). Hence,

Ψt(L)f(x) =
∑
Q∈D

sQΨt(L)aQ(x), a.e. x ∈ X.

We need only to show that ‖f‖Ḃα,Lp,q (X) < ∞. Indeed, the similar argument used in Theorem

5.27 tells us that

|Ψk(L)aQ(x)| . 2(k−η)ε

µ(Q)1/p

(
1 +

d(x, xQ)

2η

)−(n+β)

for all x ∈ X and Q ∈ Dη with k ≤ η.

For dyadic cubes Q ∈ Dη with η ≤ k, by the cancellation property of aQ and (iii) of
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Lemma 5.1 we have

|Ψk(L)aQ(x)| =
∣∣∣ˆ

3Q

[p22k,1(x, y)− p2k,1(x, xQ)]aQ(y)dµ(y)
∣∣∣

.
ˆ

3Q

(d(x, xQ)

2k

)δ 1

2kn
exp

(
− cd(x, xQ)2

22k

)
|aQ(y)|dµ(y)

.
(`(Q)

2k

)δ µ(Q)

2kn

(
1 +

d(x, xQ)

2k

)−(n+β) `(Q)α

µ(Q)1/p

. 2(η−k)(n+δ) `(Q)α

µ(Q)1/p

(
1 +

d(x, xQ)

2k

)−(n+β)

.

At this stage, repeating the arguments used in the proofs of Proposition 5.24 and Theorem 5.27

gives f ∈ Ḃα,Lp,q (X).

This completes our proof.

It is worth to note that although in this situation our new Besov spaces Ḃα,Lp,q (X) and

the Besov spaces Ḃαp,q(X) coincide, the results on the atomic and molecular decompositions on

Ḃα,Lp,q (X) for −1 < α < −θ are new.

5.5.2 The inclusion Ḃαp,q(X) ⊂ Ḃα,Lp,q (X)

Proposition 5.45. Let γ be a critical function in X. Assume that L satisfies (I)–(II). Let

|α| < min{δ0, θ} and 1 ≤ p, q ≤ ∞. If a is an (ε, p)-smooth atom with α < ε < min{δ0, θ}

then a ∈ Ḃα,Lp,q (X). Moreover, if 1 ≤ p ≤ q ≤ ∞ and −min{δ0, θ} < α ≤ 0 then there exists a

constant C > 0 so that

‖a‖Ḃα,Lp,q (X) ≤ C

for all (ε, p)-smooth atoms with 0 < ε < min{δ0, θ}.

Proof. Assume that a is an (ε, p)-smooth atom associated to a dyadic cube Q. For t > 0 we

have

‖a‖q
Ḃα,Lp,q (X)

=

ˆ 8`(Q)

0

(t−α‖Ψt(L)a‖Lp(6Q))
q dt

t
+

ˆ 8`(Q)

0

(t−α‖Ψt(L)a‖Lp(X\6Q))
q dt

t

+

ˆ ∞
8`(Q)

(t−α‖Ψt(L)a‖p)q
dt

t
:= A1 +A2 +A3.
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Due to (II), the cancellation property of an (ε, p)-smooth atom a and Minkowski’s inequality,

we have

‖Ψt(L)a‖p =
(ˆ

X

∣∣∣ˆ
3Q

(pt2,1(x, y)− pt2,1(x, xQ))a(y)dµ(y)
∣∣∣pdµ(x)

)1/p

.
(ˆ

X

∣∣∣ˆ
3Q

(d(y, xQ)

t

)δ0 1

V (x, t)
exp

(
− cd(x, y)2

t2

)
|a(y)|dµ(y)

∣∣∣pdµ(x)
)1/p

.
(`(Q)

t

)δ0 `(Q)α

µ(Q)−1/p′
sup
y∈3Q

(ˆ
X

∣∣∣ 1

V (x, t)
exp

(
− cd(x, y)2

t2

)∣∣∣pdµ(x)
)1/p

.

It can be verified that

(ˆ
X

∣∣∣ 1

V (x, t)
exp

(
− cd(x, y)2

t2

)∣∣∣pdµ(x)
)1/p

.
1

V (y, t)1/p′
.

This implies that

‖Ψt(L)a‖p .
(`(Q)

t

)δ0 `(Q)α

µ(Q)−1/p′
sup
y∈3Q

1

V (y, t)1/p′
.
(`(Q)

t

)δ0
`(Q)α

which implies A3 ≤ C.

Using the Gaussian upper bound of the kernel of Ψt(L) we have

‖Ψt(L)a‖Lp(X\6Q) . exp
(
− cd(3Q,X\6Q)2

t2

)
‖a‖p

. `(Q)α
( t

`(Q)

)δ0
which implies A2 ≤ C.

To estimate the term A1, observe that

‖Ψt(L)a‖Lp(6Q) ≤
( ˆ

6Q

∣∣∣ ˆ
3Q

pt2,1(x, y)(a(y)− a(x))dµ(y)
∣∣∣pdµ(x)

)
+
(ˆ

6Q

∣∣∣ˆ
3Q

pt2,1(x, y)a(x)dµ(y)
∣∣∣pdµ(x)

)1/p

.

By the smoothness condition of the atom a, we have∣∣∣ˆ
3Q

pt2,1(x, y)(a(y)− a(x))dµ(y)
∣∣∣ . `(Q)α

µ(Q)1/p

ˆ
3Q

1

V (x, t)
exp

(
− cd(x, y)2

t2

)(d(x, y)

`(Q)

)ε
dµ(y)

.
`(Q)α

µ(Q)1/p

( t

`(Q)

)ε
.

(5.38)

Invoking condition (II) gives

∣∣∣ ˆ
3Q

pt2,1(x, y)a(x)dµ(y)
∣∣∣ . `(Q)α

µ(Q)1/p

( t

γ(x)

)δ0
.
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If `(Q) ≤ γ(xQ), then Lemma (5.28) implies that γ(xQ) ≈ γ(x), x ∈ 6Q. Hence, in this situation

we have

∣∣∣ˆ
3Q

pt2,1(x, y)a(x)dµ(y)
∣∣∣ . `(Q)α

µ(Q)1/p

( t

γ(xQ)

)δ0
.

`(Q)α

µ(Q)1/p

( t

`(Q)

)δ0
. (5.39)

Taking (5.38) and (5.39) into account leads to

‖Ψt(L)a‖Lp(6Q) . `(Q)α
( t

`(Q)

)ε
.

This implies that A1 ≤ C.

If `(Q) > γ(xQ), Lemma 5.28 deduces that γ(x) ≥ CQγ(xQ). Hence,

∣∣∣ˆ
3Q

pt2,1(x, y)a(x)dµ(y)
∣∣∣ ≤ cQ `(Q)α

µ(Q)1/p

( t

γ(xQ)

)δ0
≤ C ′Q

`(Q)α

µ(Q)1/p

( t

`(Q)

)δ0
. (5.40)

Taking (5.38) and (5.39) into account leads to

‖Ψt(L)a‖Lp(6Q) . `(Q)α
( t

`(Q)

)ε
.

This implies that A1 ≤ C̃Q.

In the particular case when 1 ≤ p ≤ q ≤ ∞, −min{δ0, θ} < α ≤ 0 and `(Q) > γ(xQ), by

condition (II) we get that

∣∣∣ˆ
3Q

pt2,1(x, y)a(x)dµ(y)
∣∣∣ . `(Q)α

µ(Q)1/p

( t

γ(x)

)δ0(
1 +

t

γ(x)

)−K
for some K > δ0. By using Minkowski’s inequality, (5.38) and the fact that

ˆ ∞
0

∣∣∣`(Q)α

tα

( t

γ(x)

)δ0(
1 +

t

γ(x)

)−K∣∣∣q/p dt
t
≤ C,

we arrive at A1 ≤ C. This completes our proof.

As a direct consequence of the proposition above, we have the following result.

Corollary 5.46. Assume that L satisfies (I)–(II). Let 1 ≤ p ≤ q ≤ ∞, −min{δ0, θ} < α ≤ 0

and f ∈ ∪1<r<∞L
r(X). If f ∈ Ḃα1,1(X) then f ∈ Ḃα,L1,1 (X). Moreover, we have

‖f‖Ḃα,L1,1 (X) . ‖f‖Ḃα1,1(X).
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Definition 5.47. Let −θ < α < θ, 1 ≤ p ≤ ∞ and ε > 0. A function a is said to be a special

(γ, ε, p)-smooth atom if there exists a dyadic cube Q so that

(i) supp a ⊂ 3Q;

(ii)

ˆ
X

a(x)dµ(x) = 0 if 0 < `(Q) < γ(xQ);

(iii) |a(x)| ≤ `(Q)αµ(Q)−1/p;

(iv) |a(x)− a(y)| ≤ `(Q)αµ(Q)−1/p
(d(x, y)

`(Q)

)ε
.

Proposition 5.48. Let γ be a critical function in X. Assume that L satisfies (I)–(II). Let

|α| < min{δ0, θ} and 1 ≤ p, q ≤ ∞. If a is a special (γ, ε, p)-smooth atom with α < ε < min{δ0, θ}

then a ∈ Ḃα,Lp,q (X). Moreover, if 1 ≤ p ≤ q ≤ ∞ and −min{δ0, θ} < α ≤ 0 then there exists

C > 0 independent of a so that ‖a‖Ḃα,Lp,q (X) ≤ C.

Proof. Assume that a is a special (γ, ε, p)-smooth atom associated to a dyadic cube Q. If

0 < `(Q) < γ(xQ) then Proposition 5.48 follows by Proposition 5.45.

If γ(xQ) ≤ `(Q), we write

‖a‖q
Ḃα,Lp,q (X)

=

ˆ 8`(Q)

0

(t−α‖Ψt(L)a‖Lp(6Q))
q dt

t
+

ˆ 8`(Q)

0

(t−α‖Ψt(L)a‖Lp(X\6Q))
q dt

t

+

ˆ ∞
8`(Q)

(t−α‖Ψt(L)a‖p)q
dt

t
:= B1 +B2 +B3.

The terms B1 and B2 can be done completely similarly to those in Proposition 5.45. It remains

to estimate B3. Observe that by Lemma 5.28 γ(z) . `(Q) for all z ∈ 3Q. This together with

(I) and Minkowski’s inequality yields that

‖Ψt(L)a‖p =
(ˆ

X

∣∣∣ˆ
3Q

pt2,1(x, y)a(y)dµ(y)
∣∣∣pdµ(x)

)1/p

.
(ˆ

X

∣∣∣ˆ
3Q

(γ(y)

t

)δ0 1

V (x, t)
exp

(
− cd(x, y)2

t2

)
|a(y)|dµ(y)

∣∣∣pdµ(x)
)1/p

.
(ˆ

X

∣∣∣ˆ
3Q

(`(Q)

t

)δ0 1

V (x, t)
exp

(
− cd(x, y)2

t2

)
|a(y)|dµ(y)

∣∣∣pdµ(x)
)1/p

.
(`(Q)

t

)δ0 `(Q)α

µ(Q)−1/p′
sup
y∈3Q

( ˆ
X

∣∣∣ 1

V (x, t)
exp

(
− cd(x, y)2

t2

)∣∣∣pdµ(x)
)1/p

.

On the other hand, we have(ˆ
X

∣∣∣ 1

V (x, t)
exp

(
− cd(x, y)2

t2

)∣∣∣pdµ(x)
)1/p

.
1

V (y, t)1/p′
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which implies that

‖Ψt(L)a‖p .
(`(Q)

t

)δ0 `(Q)α

µ(Q)−1/p′
sup
y∈3Q

1

V (y, t)1/p′
.
(`(Q)

t

)δ0
`(Q)α.

Hence, B3 ≤ C. This completes our proof.

As a consequence of Corollary 5.46, Proposition 5.48 and the fact that L2(X) is dense in

Ḃα1,1(X) for |α| < θ, we deduce the following result.

Corollary 5.49. Let γ be a critical function in X. Assume that L satisfies (I)–(II). Let |α| <

min{δ0, θ}. We then have that Ḃα1,1(X) is a proper subset of Ḃα,L1,1 (X).

5.6 Applications

5.6.1 Fractional integrals

In this section we study the behaviour of fractional integrals and fractional derivatives

related to L on the Besov spaces.

Let L satisfy (G). Let 0 < γ < 1, −1 < α < 1 and 1 ≤ p, q ≤ ∞. For f ∈ Ḃα,Lp,q (X) we

define Lγf and L−γf by setting

〈Lγf, ϕ〉 =
1

Γ(1− γ

ˆ ∞
0

t−γ−1〈tLe−tLf, ϕ〉dt, ϕ ∈M−(α−2γ),L∗

p′,q′ (5.41)

and

〈L−γf, ϕ〉 =
1

Γ(γ

ˆ ∞
0

tγ−1〈e−tLf, ϕ〉dt, ϕ ∈M−(α+2γ),L∗

p′,q′ . (5.42)

Lemma 5.50. Assume that L satisfies (G). Let 0 < α < 1 and 1 ≤ p, q ≤ ∞. Then there exists

C > 0 so that

(i) C−1‖f‖Ḃα,Lp,q (X) ≤ ‖L
−γ‖Ḃα+2γ,L

p,q
≤ C‖f‖Ḃα,Lp,q (X) provided α+ 2γ < 1;

(ii) C−1‖f‖Ḃα,Lp,q (X) ≤ ‖L
γ‖Ḃα−2γ,L

p,q
≤ C‖f‖Ḃα,Lp,q (X) provided α− 2γ > 0.
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To prove this lemma, we need the following result.

Lemma 5.51. Assume that L satisfies (G). Let −1 < α < 1 and 1 ≤ p, q ≤ ∞. Then we have

〈f, ϕ〉 . ‖f‖Ḃα,Lp,q (X)‖ϕ‖Ḃ−α,L∗
p′,q′ (X)

for all f ∈ Ḃα,Lp,q (X) and ϕ ∈M−α,L
∗

p′,q′ .

Proof. This lemma is a direct consequence of Theorem 5.17.

We now return to the proof of Lemma 5.50.

Proof of Lemma 5.50:

The proof of (i) is similar to that of [BDY, Theorem 4.7].

(ii) We adapt some ideas in [BDY] to our situation. We first show that 〈Lγf, ϕ〉 is well-

defined whenever ϕ ∈ M−(α−γ),L∗

p′,q′ . Indeed, let ϕ ∈ M−(α−γ),L∗

p′,q′ . We then write ϕ = L∗φ.

Hence,

‖ϕ‖q
′

Ḃ−α,L
∗

p′,q′ (X)
=

ˆ ∞
0

(
tα‖Ψt(L

∗)ϕ‖p′
)q′ dt

t

≤
ˆ 1

0

(
tα−γ‖Ψt(L

∗)ϕ‖p′
)q′ dt

t
+

ˆ ∞
1

(
tα−2‖Ψt(L

∗)t2L∗φ‖p′
)q′ dt

t

. ‖ϕ‖q
′

Ḃ
−(α−γ),L∗
p′,q′ (X)

+ ‖φ‖q
′

p′

which implies ϕ ∈M−α,L
∗

p′,q′ .

We now write∣∣∣〈Lγf, ϕ〉∣∣∣ . ˆ ∞
0

t−γ−1
∣∣∣〈tLe−tLf, ϕ〉∣∣∣dt

.
ˆ 1

0

t−γ−1
∣∣∣〈tLe−tLf, ϕ〉∣∣∣dt+

ˆ ∞
1

t−γ−1
∣∣∣〈tLe−tLf, ϕ〉∣∣∣dt.

Using Lemma 5.51 leads to
ˆ ∞

1

t−γ−1
∣∣∣〈tLe−tLf, ϕ〉∣∣∣dt . ˆ ∞

1

t−γ−1‖tLe−tLf‖Ḃα,Lp,q (X)‖ϕ‖Ḃ−α,L∗
p′,q′

.
ˆ ∞

1

t−γ−1‖f‖Ḃα,Lp,q (X)‖ϕ‖Ḃ−α,L∗
p′,q′

. ‖f‖Ḃα,Lp,q (X)‖ϕ‖Ḃ−α,L∗
p′,q′

.

On the other hand, we have
ˆ 1

0

t−γ−1
∣∣∣〈tLe−tLf, ϕ〉∣∣∣dt =

ˆ 1

0

t−2γ
∣∣∣〈Ψt(L)f, ϕ〉

∣∣∣dt
t

.
ˆ 1

0

t−2γ‖Ψt(L)f‖p‖ϕ‖p′
dt

t
.
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Using the fact that ‖Ψt(L)f‖p . tα‖f‖Ḃα,Lp,∞
. tα‖f‖Ḃα,Lp,q (X), we obtain that

ˆ 1

0

t−γ−1
∣∣∣〈tLe−tLf, ϕ〉∣∣∣dt . ‖f‖Ḃα,Lp,q (X)‖ϕ‖p′

ˆ 1

0

tα−2γ dt

t

. ‖f‖Ḃα,Lp,q (X)‖ϕ‖p′

as long as α− 2γ > 0.

Taking these two estimates into account, we conclude that 〈Lγf, ϕ〉 is well-defined when-

ever ϕ ∈M−(α−γ),L∗

p′,q′ .

We first prove that ‖Lγf‖Ḃα−2γ,L
p,q

. ‖f‖Ḃα,Lp,q
. Indeed, observe that

(t2L)γΨt(L)f =
t2γ

Γ(1− γ)

ˆ ∞
0

s−γLe−sLΨt(L)f ds

=
1

Γ(1− γ)

ˆ ∞
0

( t2
s

)γ 1

(s+ 3
4 t

2)

[
(s+

3

4
t2)Le−(s+ 3t2

4 )L
]
t2Le−

t2

4 Lf ds

which implies that

‖(t2L)γΨt(L)f‖p . ‖Ψt/2(L)f‖p

provided 0 < γ < 1.

Therefore, we have

‖Lγf‖Ḃα−2γ,L
p,q

=
(ˆ ∞

0

(t−(α−2γ)‖Ψt(L)(Lγf)‖p)q
dt

t

)1/q

=
(ˆ ∞

0

(t−α‖(t2L)γΨt(L)f‖p)q
dt

t

)1/q

.
(ˆ ∞

0

(t−α‖(t2L)γΨt/2(L)f‖p)q
dt

t

)1/q

. ‖f‖Ḃα,Lp,q (X).

It remains to show that ‖f‖Ḃα,Lp,q
. ‖Lγf‖Ḃα−2γ,L

p,q
. To do this, we write

‖f‖Ḃα,Lp,q (X) =
(ˆ ∞

0

(t−α‖Ψt(L)f‖p)q
dt

t

)1/q

=
(ˆ ∞

0

(t−α+2γ‖(t2L)−γΨt(L)(Lγf)‖p)q
dt

t

)1/q

.

Using the argument above we can prove that

‖(t2L)−γΨt(L)(Lγf)‖p . Ψt/2(L)(Lγf)‖p

which implies ‖f‖Ḃα,Lp,q
. ‖Lγf‖Ḃα−2γ,L

p,q
. This completes our proof.

2
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5.6.2 Spectral multipliers

Let L be a nonnegative self-adjoint operator on L2(X). By spectral theory, for any

bounded Borel function m : [0,∞)→ C, one can define the operator

m(L) =

ˆ ∞
0

m(λ)dE(λ),

which is bounded on L2(X), where E(λ) is the spectral resolution of L.

Let φ ∈ L∞(R), we consider the function

m(λ) = λ

ˆ ∞
0

φ(t)e−tλdt. (5.43)

For f ∈ Ḃα,Lp,q (X), we define m(L)f as follows:

〈m(L)f, ϕ〉 =

ˆ ∞
0

φ(t)〈tLe−tLf, ϕ〉dt
t

for all ϕ ∈M−α,L
∗

p′,q′ .

The main aim of this section is to prove the following result.

Theorem 5.52. Let L be a nonnegative self-adjoint operator on L2(X) satisfying (G). Let

1 < p <∞, 1 ≤ q ≤ ∞ and 0 < α < 1 and let m be a function defined as in (5.43). Then there

exists a constant C > 0 so that

‖m(L)f‖Ḃα,Lp,q (X) ≤ C‖f‖Ḃα,Lp,q (X)

for all f ∈ Ḃα,Lp,q (X).

Proof. We first prove that 〈m(L)f, ϕ〉 is well-defined for all f ∈ Ḃα,Lp,q (X) and ϕ ∈ M−α,L
∗

p′,q′ .

Indeed, we write

〈m(L)f, ϕ〉 =

ˆ ∞
0

φ(t)〈tLe−tLf, ϕ〉dt
t

=

ˆ 1

0

φ(t)〈tLe−tLf, ϕ〉dt
t

+

ˆ ∞
1

φ(t)〈tLe−tLf, ϕ〉dt
t

=

ˆ 1

0

φ(t2)〈Ψt(L)f, ϕ〉dt
t

+

ˆ ∞
1

φ(t2)〈Ψt(L)f, ϕ〉dt
t

:= I1 + I2.
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By Hölder’s inequality and the fact that ‖Ψt(L)‖p . tα‖f‖Ḃα,Lp,∞(X) . tα‖f‖Ḃα,Lp,q (X), we get that

I1 .
ˆ 1

0

‖Ψt(L)‖p‖ϕ‖p′
dt

t
. ‖f‖Ḃα,Lp,q (X)‖ϕ‖p′

ˆ 1

0

tα
dt

t

. ‖f‖Ḃα,Lp,q (X)‖ϕ‖p′ .

To estimate I2, we replace ϕ = L∗φ and then use Hölder’s inequality to write

I2 =

ˆ ∞
1

φ(t2)〈Ψt(L)f, L∗φ〉dt
t

=

ˆ ∞
1

φ(t2)t−2〈t2LΨt(L)f, φ〉dt
t

.
ˆ ∞

1

t−2‖t2LΨt(L)f‖p‖φ‖p′
dt

t
.

(5.44)

Note that t2LΨt(L)f = 4t2Le−
3
4 t

2LΨt/2(L)f . Hence

‖t2LΨt(L)f‖p . ‖Ψt/2(L)f‖p.

Inserting this into (5.44) we get that

I2 . ‖φ‖p′
ˆ ∞

1

t−2‖Ψt/2(L)f‖p
dt

t
= ‖φ‖p′

ˆ ∞
1

t−2+αt−α‖Ψt/2(L)f‖p
dt

t
.

This together with Hölder’s inequality and the fact that α < 1 shows us that

I2 . ‖φ‖p′
(ˆ ∞

1

(t−α‖Ψt/2(L)f‖p)q
dt

t

)1/q

. ‖φ‖p′‖f‖Ḃα,Lp,q (X).

The estimates of I1 and I2 implies that 〈m(L)f, ϕ〉 is well-defined for all f ∈ Ḃα,Lp,q (X) and

ϕ ∈M−α,L
∗

p′,q′ .

By the definition of the Besov norm, we have

‖m(L)f‖Ḃα,Lp,q (X) =
(ˆ ∞

1

(t−α‖Ψt/2(L)m(L)f‖p)q
dt

t

)1/q

=
( ˆ ∞

1

(t−α‖m(L)Ψt/2(L)f‖p)q
dt

t

)1/q

.

Since m(L) is bounded on Lp(X) (See for example [DOS]), we have

‖m(L)f‖Ḃα,Lp,q (X) .
(ˆ ∞

1

(t−α‖Ψt/2(L)f‖p)q
dt

t

)1/q

. ‖f‖Ḃα,Lp,q (X).

This completes our proof.
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[CJ] M. Christ, J.-L. Journé, Polynomial growth estimates for multilinear singular
integral operators, Acta Math. 159 (1987), 51–80.

[CKS] D.-C. Chang, S.G. Krantz, E.M. Stein, Hp theory on a smooth domain in RN
and elliptic boundary value problems, J. Funct. Anal. 114 (1993), 286–347.
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[Tr2] H. Triebel, Theory of Function Spaces III, Birkhäuser Verlag, Basel, 2006.

[Tr3] H. Triebel, Theory of Function Spaces, Birkhäuser Basel, 1983.
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