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Abstract

This project studies two different quantum phases of matter and how to design systems
that adiabatically connect one phase with another. One phase corresponds to a cluster
state which is a resource state for measurement-based quantum computation, and the
other is a surface code which is a robust way to store quantum memory. Both phases
are ground states of strongly correlated two-dimensional lattices of quantum systems,
either two-lovel systems (qubits, fermions) or infinite-dimensional, continuous-variable
(CV) systems (quantum modes, bosons), and both phases are gapped. However, the
surface code 105 a special kind of non-local order, termed topological order, while the
cluster phase 'oes not. A key advantage of the cluster phase is that it can be relatively
easily preparc | in experiment using a constant depth cirenit acting on an initially un-
entangled starc, The surface code, in contrast, requires a number of preparation steps
that scales with the system size; a consequence of the long range topological order in
this phase.

Remarkably, it has been shown that the surface code can be prepared from the
cluster phase simply by performing a pattern of commuting single site measurements
on the lattice. However, for any outcome of measurements, it is necessary to perform
a set of corrections to the state such that the total preparation time is still extensive.
The focus of this thesis is how to smoothly perform the entire preparation procedure
for the surface code by deforming a Hamiltonian which encodes the state in the ground
state. This avoids measurement altogether and moreover has the advantage that for
CV systems the Hamiltonian involves only two-body near-neighbour interactions rather
than the four-body interactions that are required in a spin encoding.

In this thesis, we study a smooth. adiabatic transition from the cluster state to the
surface code. We do this in a series of steps: We first consider the adiabatic evolution
of a single qubit and a single qumode. We also calculate the iterative, discrete time
step approximation of the continuous adiabatic evolution of states in the qubit case,
and begin the work toward the adiabatic evolution of CV operators by first considering
a single qumode transition Hamiltonian. Then we study the spectrum of an adiabatic
transition from a bosonic CV cluster state Hamiltonian to a CV planar surface code
Hamiltonian. In particular, we track the energy gap between the ground and first
excited state during the transition.
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24 TOPOLOGICAL PHASES AND THE QUBIT TORIC CODE
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Ficure 2.1: The 3 x 3 square lattice on the torus with qubits on the edges, repeated
boundary conditions indicated by fading and coordinate labels.

vertices. To illustrate with an example. a square lattice on the torus with 3 x 3 distinct
vertices is shown in Fig. 2.1. Throughout this section, we will rely on this exemplary
lattice, but it is important to note that all the arguments hold at least for rectangular
lattices on the torus with m x n vertices and square plaquettes.

Each vertex is uniquely associated with two edges if we consider a pair of ori-
entations with respect to each vertex - one vertical orientation and one horizontal
orientation. For example, if we choose down and right as the pair of edge orientations.
then each vertex on the lattice has exactly one edge to its right and one edge below
it. Furthermore, each edge is uniquely associated with just one vertex in this respect,
Then knowing the pair of orientations that we're considering, the verticality or hori-
zontality of an edge. and the vertex to which the edge is associated, are sufficient to
uniquely identify any edge on the square lattice on the torns. For example, we can
decide to associate each site or lattice vertex with the vertical edge below and the
horizontal edge to the right.

Because of the repeating boundary conditions of the square lattice on a torus, we
can consider each edge to be uniquely associated with one vertex. Fach edge is con-
nected to two vertices, but if we apply the same rule consistently, we can make unique
associations. For example, we can decide that each vertical edge is associated with the
vertex above the edge, and that each harizontal edge is associated with the vertex left
of the edge. Then each edge is associated with one and only one vertex.

Given this way of thinking about the relationship between edges and vertices on
the lattice, we easily see that if each vertex has two edges uniquely associated with it,
















































40 TOPOLOGICAL PHASES AND THE QUBIT TORIC CODE

errors to be a product of a small (relative to N) number of Pauli operators on specific
edge qubits, and these occur within a small (relative to N x N) region of the lattice,
then we can always choose logical string operators that are unaffected by the errors.

The four-fold degenerate ground state of the toric code should then be spanned by
a basis of four ground state vectors, [0), 1), |2), and |3). We know that the ground
state must be stabilised by all the A, and all the ép operators. If we start with the
latter set of stabiliser generators, we know that if all the qubits start in a |0) state, any
and all products of only % operators will have eigenvalue +1. We therefore know that

By [0)%Y° = (+1) |07 vp (2.40)

However. we nlsn_want the ground state to be stabilised by all 45 which we achieve
by projecting [0)®2V” to a state with +1 eigenvalue with respect to each Ag:

0=]] (l T:A“) HEE (2.41)

Vs =

Since all the stabiliser generators commute, this ensures that |f}) is a ground state
stabilised by every stabiliser generator. Each logical string operator acts as a specific
Pauli operator (c.f. Eq. 2.39) on one of the two non-local qubits while the toric code
remains in the ground state manifold. Thus the logical string operators can he used
to specify three additional orthonormal basis states to span the Hilbert space of the
topologically protected two-qubit quantum memory:

Ii} == );’1,;1 I(]}, Ié} — J?h!2|ﬁ}. and |:§} = .XA"”-_.‘L.T{’VI 'f}) (2_12)

Then the logical information encoded in the non-local qubit can be distinguished
by the expectation value of the logical string operators Z m and Zys as follows:

<? 1) =+1 (Z:.I«’Qjﬁ. = +1

(Zii); = —1 (Zva)i =+ =
(Zin)s = +1 <2:7vz); -1 Sl
(ZHl>§ =-1 (4\.12):3:—1

This is due to the simple fact that the logical string operators either have no over-
lapping support on the lattice and hence trivially commute, or interact on a single
qubit. In the latier case, logical string operators acting with different Pauli operators
on the shared qubit will anti-commute:

{6° ,6°} =0, so ¢"¢° = —G"6", whichpgives &° =—&"6%6". (2.44)

2.2.3 Anyons

Now that we understand the ground state of the toric code. we brietly consider the
excitations, which are called anyons. The toric code is excited when an odd number of
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FIGURE 2.15: The planar surface code on square lattices with all a) smooth boundaries
and b) rough boundaries.

For example, as we have seen, the check operators on the torus are not all inde-
pendent - any single star operator can be expressed as the product of all the other
star operators. Likewise. any plaquette operator on the torus can be expressed as the
product of the rest. On the planar square lattice with all smooth boundaries, Fig. ! 19
a), plaquette operators can not generally be expressed in this way, but star operators
can, since the product of all star operators here act with the same Pauli operator on
each qubit twice. Conversely. on the planar square lattice with all rough houndaries,
Fig. 2.15 b), the star operators can not generally be expressed in this way, but plaque-
tte operators can, since the product of all plaquette operators here act with the same
Pauli operator on each qubit twice. These surface codes must therefore have a two-fold
degenerate ground state.

2.2.4 Continuous-variable surface code

Finally, the surface code may be extended from the discrete-variable regime of edge
qubits to a continuous-variable (CV) regime with qumodes on the edges. It is a con-
vention to take the Fourier transform of the lattice. in order that the CV star operator
be a product of Zi(1) = exp"® aperators, and the plaquette operator he a product of
X;(5) = exp™P operators. Then the CV surface code can be expressed in terms of
the nullifiers, the generators of the exponential operators that stabilise the CV surface
code ground state. The Hamiltonian must be Hermitian, and so nullifiers are more
convenient. than stabilisers to describe C'V systems. Note that. as stabilisers have +1
eigenvalues with respect to the stabilised state, so nullifiers have eigenvalue 0. The
Fourier transform convention gives the following convenient correspondences:

If the qubit surface code vertex stabiliser generator is

A= ) 5, (2.47)

7€ Nn(n)






44 TOPOLOGICAL PHASES AND THE QUBIT TORIC CODE

v

(8

lofo]

FiGurg 2.16: The orientations of the edges and faces on the surface code lattice.

b = NG T 45(0) — B — qw(p), and (2.54)
bl = —AN(v) — 45(0) + GE@) + AW (w)- (2.55)
However, we note that since
bjiis 1SC) = 0, then we also have
~bs e 1SC) = 0, which is also a nullifier. (2.56)
We can then simply take all the j}‘lr as
br = Gney + s) — GEw) — Wi (2.57)

for all plaguettes f.
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FIGURE 3.3: When the pattern of measurements illustrated in Fig. 3.2 is enacted on the
5 = b planar lattice in a qubit cluster state, Lthe projectively measured gqubits are no longer
part of the support of the stabiliser generators of the resulting 3 x 3 planar lattice surface
code state. This figure shows the remaining support of the surface code stabilisers. The new

state consists of qubits on edges.

is in general {K; = 67 &® o} fori=1,2, ..., N, which for the 5 x 5 cluster state
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3.3 PROJECTION OF CLUSTER STATES ONTO SURFACE CODES 69

the factor i/ g7z (1+3 7y to get

. 1 + 55t
85?2

(é.w{l-‘) + ij(ir) s QE(t!J + {;Wh!)J

g2

"l" 52 — (N " '+' “' § ] -+ ] '
8(1 + 534)(%(*'{4’\?( 1)) T GE(N(N(v))) T AW (N(N(v)))

+ Gs(s(s(o))) T TEiss ) + dwsisw))

T ANEEW)) T 9S(EEE) T GEEEw)

+ ANW(W ) T AW o)) + Gw(w W) J})

b ]

S=

+ | v ] T ! v 3.82
I 8(1 + 554 (PN( )+ Bsv) + PE) + Pwiw))- (3.82)

[n the more general case where the valence of the vertex is not determined. we get
the finitely squeezed surface code vertex nullifier

. : 2
8; . i 5 4 2
— .f — ( E (q.l-+5—2pf) ‘i‘? E qj — E i )1
\/ 2V (v)(1+ (;;) ) \scVatw s v\ JENR(Nn{v)) i€ Nnv)

(3.83)

where s, = \/V(v)s2 + s~%

The commutation relations of the general surface code nullifiers depending on the
Euclidean distance d(v, v') between the two vertices. taking unit length edges on the
graph can therefore be summarised as follows [17]:

it if div,v") =0,
(55482485 (V ()4 V (1)) /2808, ,
Vo 5 P14 (673, 2T Fdlu,e} =1,
PRSP 252/ sus 0 = i
[“”?“v-‘] =0 [V(2) V() I—H.ss‘n} W45/, )] 1/2 if d(v, v) = \@’
e if d(v,v') =2
[V(V ) 1+ (5/5) ) (1+(s/5,) D] /2 yU') = 4
L0 if d(v,v') > 2,
i if f=f,
-1 1 if l
L(] otherwise,
[br,bpr] = [, r] = [0, by] = [, B}] = 0. (3.84)

Here [f. f'] € € means that f and f’ both have support on the same edge mode in
the surface code lattice. Having defined the finitely squeezed surface code nullifiers, we
have the surface code Hamiltonian

Hso(s) :sz «u)(1+ g /8) v*z 9|0f| (3.85)
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4.4 THE ADIABATIC EVOLUTION OF A SINGLE QUMODE 83
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FIGURE 4.4: The energy gap r(t) of the transition Hamiltonian over time for a single.
qumode changing from p-squeezing to g-squeezing, with s = 10.0. The squeezing transition
adds energy to the system, and does not represent a phase transition,

o PE) v 4 :
H= 7(5(”2 + s(t)*p?). (4.34)

We want to solve — in the manner outlined in Sec. 1.2 - the quadrature operators

evolved by adiabatic approximation by on a fast timescale # compared to which the
Hamiltonian is constant:

d;-

—50(6) = M#%(6) + L, (4.35)

we begin with considering the commutators that generate M(t):

{ﬂf}, q] —_-ﬂ;—)s(t)ﬁ [7* . q] = r(t)s(t)*p, and

{jf}, ﬁ} :ﬁT{Tﬁ)s(r‘.)‘z @, p] = —r(Hs(t) 2%, (4.36)

so noting that L is a null vector for this system we have that the evolution matrix M ()
is

M(t) = ( Cos(r(t)8) S(t)ES'm(r(t)!?)) ;

—s(t)2Sin(r(t)0)  Cos(r(t)d) (4.37)
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FIGURE 5.1: a) The pattern of measurements on the 3 x 3 cluster state lattice and b) the
resulting effective 2 x 2 planar surface code.

operator on 5. While the measured qubits are not interacting with the other qubits,
the measured qubits still need to be accounted for in the Hamiltonian. In the adia-
batic evolution. the presence of these terms in the surface code part of the transition
Hamiltonian represents the gradual application of the projective measurements. For
simplicity, we use deterministic projective measurement terms |—)(—| and |[1)(1] to
enforce that the ground state Ey = 0 of the system includes the measured qubits in
the +1 eigenvalue eigenstates of |+)(+| and |0)(0|:

Hye = 2 3 24 (5.3)

#e{1,3,7.9}

As shown in Ch. 4, the projected cluster state is equivalent to the surface code with
support on the unmeasured sites: [SC) = Py P P = Py PF|CS) is the ground state
of Hge, the surface code Hamiltonian.

Then the transition Hamiltonian with t = =% is

Hicans() = (1 — £) Hes + tHsc. (5.4)

5.1 Adiabatic transition energy gap

Taking the parameters 7' = 100 and L = 1000, we investigate the adiabatic evolution
with the transition Hamiltonian just defined. First of all. we can calculate the energy
gap AE = E) — Ey of the transition Hamiltonian for every value of t = %% along the
discrete steps of the approximation of the continuous adiabatic evolution. The gap
over the transition is illustrated in Fig. 5.2.
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