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Thesis Abstract 

For a skilled reader, visual word recognition can be completed within several hundred 

milliseconds. There is evidence that the left inferior frontal cortex is activated by visual words 

in the first 300 ms after stimulus onset; additionally, there is evidence for early top-down 

feedback from this frontal region to ventral occipito-temporal cortex during visual word 

recognition. Using magnetoencephalography (MEG), this thesis sought to examine early neural 

dynamics of visual word recognition by examining the early stage inter-regional connectivity 

and time course of visual word recognition.  

In Chapter 1, I review studies of the neural correlates and relevant neural models of 

visual word recognition; in particular, two models on the ventral occipito-temporal cortex in 

visual word recognition with contrasting views on the role of top-down feedback are examined. 

I then introduce dynamic causal modeling (DCM), a crucial neuroimaging method for 

examining directional influences of one brain area to another. Next I review the neuroimaging 

studies of visual word recognition focusing on its time course and also highlight the importance 

of examining early brain activity of visual word recognition. Finally, I propose the research 

questions to be addressed in this thesis: What is the nature of early top-down feedback from 

frontal to ventral occipito-temporal cortex during visual word recognition? How task goals 

modulate the early top-down feedback? How task goals modulate the time course of visual 

word recognition? These questions are examined in three empirical chapters.  

Using a semantic categorisation task, Chapter 2 examines the nature of top-down 

feedback from the left inferior frontal gyrus (LIFG) to the left ventral occipito-temporal cortex 

(LvOT) during the first 200 ms visual word recognition. The results revealed that the LIFG-to-

LvOT connection was stronger for real words than for pseudowords, and stronger for false 

fonts than for consonant strings in both 1-150 ms and 1-200 ms time-windows, indicating that 

both lexical-semantic and surface letter information influence early top-down feedback. 

Furthermore, the LIFG-to-LvOT connection was stronger for pseudowords than for consonant 

strings in the 1-200 ms time-window, indicating that compared with lexical-semantic and 

surface letter information, the influences of phonological information occur later.  

By comparing a non-linguistic visual discrimination task (is it a hash string?) with the 

semantic categorisation task (is it an animal word?) used in Chapter 2, Chapter 3 examines how 

task goals modulate the early LIFG-to-LvOT feedback during the first 200 ms visual word 
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recognition. The results revealed that the LIFG-to-LvOT connection was stronger for real 

words than for pseudowords in both 1-150 ms and 1-200 ms time-windows in the 

discrimination task, and this was similar to that in the semantic task, indicating that the 

influences of lexical-semantic information on this feedback are independent of task goals. 

However, in the discrimination task the LIFG-to-LvOT connection was stronger for consonant 

strings than for pseudowords in the 1-200 ms time-window and was stronger for consonant 

strings than for false fonts in the 1-150 ms time-window, and this was opposite to that in the 

semantic task, indicating that the influences of letter and phonological information on the early 

feedback are dependent on task goals.  

Using the data from the previous two chapters, Chapter 4 examines how task goals 

modulate the on-line time course of visual word recognition by examining the first 500 ms time 

course data during the linguistic semantic task and the non-linguistic discrimination task. A 

behavioural version of each MEG experiment with one task is also reported on. The MEG and 

behavioural results established that an emphasis on high-level linguistic information in a 

linguistic task sensitise early neural responses to linguistic properties, whereas an emphasis on 

low-level visual feature detection in a non-linguistic task sensitise early neural responses to 

physical appearance.  

This thesis has established that lexical-semantic, phonological, and letter properties all 

can trigger early top-down feedback during visual word recognition, but occur differently 

across time. Task goals with different emphases strongly bias early top-down feedback and 

also modulate the time course of visual word recognition.  
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Introduction 

 Language is arguably the most important tool in the history of human evolution. Spoken 

language was one of the primary forms of communication for exchanging ideas, but since the 

invention of writing systems, written language has been added to the toolbox of human 

communication. The first writing system dates back to only about 5400 years ago (Daniels, 

1996), thus literacy is not an innate skill, but has to be acquired through experience. As one of 

the most important elements in modern education, literacy is a prerequisite for acquiring and 

sharing knowledge, and achieving personal and career success (Elliott & Grigorenko, 2014). 

When a child starts to learn a writing system, visual symbols of the writing system are linked 

to corresponding speech sounds and meanings. With intense training and experience, the links 

between these bodies of knowledge become stronger and stronger so that when a visual word 

is displayed, one can rapidly retrieve its meaning and sound. Skilled visual word recognition 

involves different processing stages from low-level visual feature detection to orthographic 

form analysis and high-level phonological and lexical-semantic processing (e.g., Rastle, 2015). 

Put simply, visual word recognition is a journey from visual features to meaning (Balota, 1994).  

With the development of neuroimaging technology in the past 20 years, researchers 

have gained insights into the neural basis of visual word recognition. Functional magnetic 

resonance imaging (fMRI) studies have revealed that the journey from visual features to 

meaning involves distributed local brain regions including primary visual cortex, ventral 

occipito-temporal cortex, and spoken language regions such as the left inferior frontal gyrus 

(Taylor, Rastles & Davis, 2013). These explorations have also demonstrated that this journey 

involves neural interactions between these relevant regions, especially between the posterior 

ventral occipito-temporal cortex and spoken language regions (Price, 2012; Taylor et al., 2013; 

Martin, Schurz, Kronbichler, & Richlan, 2015). Indices of these neural interactions include 
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functional connectivity measuring neural couplings in time-series between brain regions and 

effective connectivity measuring directional influences of one region on another (Friston, 

2011). There is accumulating evidence that these local brain activities and inter-regional neural 

interactions are modulated by task goals (Pugh et al., 2000; McNorgan, Chabal, O’Young, 

Lukic, & Booth, 2015; Bitan et al., 2005, 2006; Heim et al., 2009). 

There is mounting evidence that the cognitive processes underpinning visual word 

recognition unfold rapidly (Sereno & Rayner, 2003; Carreiras, Armstong, Perea, & Frost, 

2014). For skilled readers, a visual word can be recognised within several hundred milliseconds, 

by which time lexical-semantic and phonological information has already been accessed 

(Keuleers, Diependaele, & Brysbaert, 2010; Keuleers, Lacey, Rastle, & Brysbaert, 2012; Hauk, 

Davis, Ford, Pulvermuller, & Marslen-Wilson, 2006; Carreiras et al., 2014; Hauk, 2016). 

Electrophysiological studies have shown that the left inferior frontal gyrus is robustly involved 

in the early stage visual word recognition in that this region has already been activated within 

200 ms after visual word onset (e.g., Pammer et al., 2004; Cornelissen et al., 2009).  A recent 

effective connectivity study further observed that this frontal region sends early feedback to 

the left ventral occipito-temporal cortex within 200 ms after word onset (Woodhead et al., 

2014). These findings have widened and updated knowledge about the early neural dynamics 

of visual word recognition.  

However, the nature of early top-down feedback from the left inferior frontal gyrus to 

the left ventral occipito-temporal cortex – whether it represents semantic, phonological or 

orthographic processing - remains largely unknown. Previous fMRI studies have also indicated 

that the inter-regional connectivity for visual word recognition is dependent on task goals 

(Bitan et al., 2005, 2006). This raises an outstanding question - how task goals modulate this 

early top-down feedback. The evidence for rapidly unfolding cognitive processes during visual 

word recognition also leads to the question of how task goals modulate the time course of visual 
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word recognition - the journey from visual features to meaning. The aim of this thesis was to 

address these outstanding questions regarding the early neural dynamics of visual word 

recognition in three separate empirical studies, by using magnetoencephalography.  

In this General Introduction, I will introduce relevant background on the neural basis 

of visual word recognition by reviewing extant neuroimaging studies, neural models, and 

important techniques. I first provide a literature review of the neural correlates of visual word 

recognition including local brain regions, inter-regional connectivity, and relevant neural 

models, which will be used in Chapters 2 and 3. I then provide a detailed description of dynamic 

causal modeling measuring inter-regional causal influences, which will be used as the key 

method in Chapters 2 and 3. I then systematically review the necessity of using 

electrophysiological signals with high temporal resolution in the examination of the early 

neural dynamics, and existing findings, which are highly relevant to all empirical studies in 

this thesis. Subsequently, I provide a review of task-dependent neural activity and automaticity 

of visual word recognition, which will be relevant to Chapters 3 and 4. Finally, I provide a brief 

overview of each chapter including the research focus and key method to be used.  

Local Brain Regions for Visual Word Recognition  

Neural studies have revealed that multiple local brain regions are involved in visual 

word recognition. To date, the neural bases of visual word recognition have been informed by 

neuropsychological data from patients with brain-damage and neuroimaging techniques 

including positron emission tomography (PET), magnetoencephalography (MEG), 

electroencephalogram (EEG), and functional magnetic resonance imaging (fMRI). 
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Neuropsychological Studies 

Early findings regarding the brain areas playing a role in language were contributed by 

studies of patients with brain injuries.  Paul Broca found that an area of the left frontal lobe 

was damaged in an aphasic patient who was without speech (Broca, 1861). Because he was 

unable to produce words but could still understand spoken words, Broca argued that the frontal 

area might have a function specifically for speech production. This area is now typically 

defined as the pars opercularis and pars triangularis of the inferior frontal gyrus (LIFG). Karl 

Wernicke later observed that damage to the left posterior superior temporal gyrus led to 

language comprehension deficits (Wernicke, 1874). This area is typically defined as the 

posterior part of the left superior temporal cortex (LpSTC). The damage to Broca’s area and 

Wernicke’s area thus result in speech production and language comprehension respectively. 

Given that visual word recognition is a process of linking visual symbols with phonology and 

meaning, these areas play a very crucial role in visual word recognition. 

What brain areas are specifically engaged during visual word recognition? Joseph 

Dejerine described a patient in which a lesion of the left occipito-temporal cortex (LvOT) 

caused selective loss of the ability to read letters and words, but the patient’s visual ability, 

writing ability and auditory language comprehension were spared (Dejerine, 1892). It was 

interpreted that this area is selectively responsible for recognising the orthographic form of 

words and is a crucial area linking the visual system with language areas (e.g., LIFG and 

LpSTC). Damage to this area results in disconnections from visual inputs to language areas for 

auditory form processing and articulation. Supporting the neuropsychological evidence, Mani 

et al. (2008) found that electrical stimulation to sites within the basal occipito-temporal cortex 

resulted in selective reading difficulty in three participants. Auditory comprehension and 

writing remained intact and there was no impairment in object naming, confirming the crucial 
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role of the LvOT in visual word recognition. The important role of the LvOT in reading and 

visual word recognition has been supported by investigations with modern neuroimaging 

techniques, as described below.  

Modern neuroimaging Studies 

Evidence from patient studies has suggested that the LIFG, LpSTC and LvOT are 

involved in different facets of language processing. Specifically, LIFG is mainly responsible 

for speech production or articulation, LpSTC for speech comprehension and LvOT for visual 

word processing. These interpretations have been verified by modern brain imaging techniques 

which can be used to measure brain activity noninvasively. The most widely-used 

neuroimaging techniques include PET, fMRI and MEG/EEG. Functional MRI measures brain 

activity by recording a Blood-Oxygen-Level-Dependent (BOLD) signal; that is, detecting 

blood flow changes in the brain (Ogawa, Lee, Kay, & Tank, 1990; Logothetis, Pauls, Augath, 

Trinath, & Oeltermann, 2001). It relies on the fact that cerebral blood flow and neuronal 

activation are coupled so that the BOLD signal provides a localisable marker of neuronal 

activity (Huettel, Song & McCarthy, 2009). Thus, the underlying neuronal activity within an 

area can be inferred based on its BOLD signal. With the excellent spatial resolution, fMRI 

helps to uncover the potential local brain areas which respond to visual words. Studies using 

reading-related tasks, such as lexical decision and reading aloud, have shown that widely-

distributed areas in the brain are recruited during visual word recognition or reading aloud (e.g., 

Turkeltaub, Eden, Jone, & Zeffiro, 2002; Bolger, Perfetti, & Schneider, 2005; Richlan, 

Kronbichler, & Wimmer, 2009, 2011; Houdé, Rossi, Lubin, & Joliot, 2010; Price, 2012; Taylor 

et al., 2013; Cattinelli, Borghese, Gallucci, & Paulesu, 2013; Zhu, Nie, Chang, Gao, & Niu, 

2014; McNorgan et al., 2015; Martin et al., 2015; Zhao, Fan, Liu, Wang, & Yang, 2017).  
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The activation likelihood estimation (ALE) meta-analysis, originally developed by 

Turkeltaub et al. (2002) and further modified by Laird et al. (2005) and Eickhoff et al. (2009, 

2012), is a quantitative method that considers a number of studies to determine local brain 

regions consistently seen in neuroimaging research. As a coordinate-based meta-analysis 

method, ALE considers reported local brain activations as spatial probability distributions 

centred at given coordinates. ALE maps are then generated by computing the convergence of 

these activation probabilities for each voxel. ALE results are then assessed by a permutation 

procedure to against a null-distribution of random spatial activation across studies. Several 

meta-analyses of fMRI and PET studies of visual word recognition have been conducted to 

identify key local brain regions (e.g., Turkeltaub et al., 2002; Bolger et al., 2005; Houde et al., 

2010; Cattinelli et al., 2013; Martin et al., 2015; McNorgan et al., 2015). Turkeltaub et al. (2002) 

conducted a meta-analysis of 11 PET studies with single word reading tasks and identified the 

bilateral motor, superior temporal cortex, supplementary motor area and LvOT as being key 

areas. Houde et al. (2010) specifically examined the brain areas for reading behaviour in 

children and found that the LvOT, LpSTC, and the bilateral IFG are implicated. Martin et al. 

(2015) further found brain activation common to both children and adults in the LvOT, LIFG, 

and posterior parietal regions, and revealed higher convergence in studies with children in the 

left superior temporal and bilateral supplementary motor regions, but higher convergence in 

studies with adults in the bilateral vOT and left dorsal precentral regions. These observed 

developmental changes and differences between children and adults probably reflect reading 

experience and its roles in brain plasticity.  

There is also evidence that these reading-related areas are aberrant, hyperactive or 

hypoactive in people with dyslexia. For example, Maisog, Einbinder, Flowers, Turkeltaub, & 

Eden (2008) found that typical readers show greater activation than dyslexics in the left 

extrastriate areas, inferior parietal cortex, superior temporal gyrus, thalamus, and left inferior 



Chapter 1: General Introduction 

 

 - 8 - 

frontal gyrus; and hyperactivity associated with dyslexia was found in the right thalamus and 

anterior insula. Among these findings, the most robust was in relation to the LvOT, where 

reduced activation was associated with dyslexia. Richlan et al. (2009) found that dyslexic 

people had underactivation in the left inferior parietal, superior temporal regions, as well as in 

the LIFG. Richlan et al. (2011) further found a common underactivation in LvOT in both 

children and adults with dyslexia. Both Richlan et al. (2009, 2011) and Maisog et al. (2008) 

thus converge in finding that the LvOT is aberrant in dyslexics.  

Although there is some debate surrounding differences in the neural underpinnings of 

different writing systems (e.g., Bolger et al., 2005; Zhu et al., 2014; Wang et al., 2015; Rueckl 

et al., 2015), all of these studies and other review studies (e.g., Price, 2012) tend to agree in 

concluding that visual word recognition consistently recruits three broad areas: the LIFG, 

LpSTC, and LvOT. Many studies have also shown that subcortical structures, such as the 

putamen, thalamus and caudate, are also involved in normal visual word recognition and are 

aberrant in individuals with reading impairments (Shaywitz et al., 2002; Booth, Bebko, Burman, 

& Bitan, 2007; Maisog et al., 2008; Richlan et al., 2009, 2011; Seghier & Price, 2009; 

Oberhuber et al., 2013; Hancock, Richlan & Hoeft, 2017).  

Therefore, local regions distributed in the brain involved in visual word recognition 

mainly include the left ventral occipito-temporal cortex (LvOT), the left posterior temporal 

cortex (LpSTC), the left inferior frontal gyrus (LIFG) and subcortical areas (Pugh et al., 2000; 

Price & Mechelli, 2005; Taylor et al., 2013). These regions have different functional roles in 

visual word recognition. The extant neuroimaging evidence has formed a general functional 

anatomical map in which activation in the LvOT reflects orthographic form analysis, activation 

in the LpSTC reflects auditory form processing including orthography-to-phonology 

conversion, and activation in the LIFG reflects phonological output manipulation and lexico-
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semantic processing (Taylor et al., 2013; Carreiras et al., 2014). See “neural models of visual 

word recognition” for details. 

Inter-Regional Connections for Visual Word Recognition 

The neuroimaging literature reviewed so far has indicated that visual word recognition 

involves different regions for distinct functions. Visual word recognition involves linking 

visual symbols to spoken language knowledge such as phonological and lexical-semantic 

information. Thus, these different local brain regions have to be connected so that visual word 

recognition can be completed. Indeed, past studies have revealed that these distributed local 

brain regions are not only activated by related word recognition tasks, but also are functionally 

or structurally connected to each other. 

Local brain regions involved in visual word recognition are connected via functional 

couplings. Functional connectivity is defined as the statistical association or dependency 

among two or more anatomically distinct time-series (Friston, 1994, 2011). Much work has 

contributed to the understanding of functional connectivity between reading-related areas. 

Some have examined the inter-regional functional connectivity in the brain when a reading task 

is performed (task-based, e.g., Hampson et al., 2006; van der Mark et al., 2011; Finn et al., 

2014; Boets et al., 2013; Schurz et al., 2014). Others have examined the inter-regional 

functional connectivity in the brain when no specific task is performed (task-free, e.g., Koyama 

et al., 2011; Vogel, Miezin, Petersen, & Schlaggar, 2011; Wang, Han, He, Liu, & Bi, 2012; 

Zhang et al., 2014; Li et al., 2017; Alcauter et al., 2017). Notably, Koyama et al (2011), Wang 

et al. (2012) and Li et al. (2017) found that the LvOT-LIFG and LvOT-LpSTC connectivity 

could predict reading competence in normal child and adult readers. Li et al. (2017) found that 

compared with children, the LvOT-LIFG and LvOT-LpSTC connectivity was stronger in 
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young adults, indicating stronger relationships between the orthographic form region LvOT 

and the spoken language network in adults. These developmental changes in brain connectivity 

may also explain the differences in language network activation between children and adults 

(Martin et al., 2015). van der Mark et al. (2011) and Finn et al. (2013) found that, compared 

with normal readers, the LvOT-LIFG and LvOT-LpSTC connectivity was disrupted or reduced 

in people with dyslexia. These studies collectively indicate that functional couplings between 

reading-related areas during a task or at rest can index variations in reading ability; and 

disrupted connections can be used as a neural marker of dyslexia or poor reading. Specifically, 

the LvOT as a region for visual word processing is functionally coupled with other spoken 

language areas.  

In contrast to functional connectivity, effective connectivity refers to the causal 

architecture of coupled or distributed dynamical systems (Friston, 2011). In other words, 

effective connectivity examines inter-regional directional connections. A widely-used method 

used to investigate effective connectivity is dynamic causal modeling (DCM; Friston, Harrison 

& Penny, 2003; see “Dynamic Causal Modeling” for a detailed description). DCM aims to 

model couplings among the hidden states generating observations and is specifically concerned 

with directed causal interactions (Friston et al., 2003; Friston, 2011). DCM has been widely 

used in fMRI studies of visual word processing (Bitan et al., 2005, 2006, 2007; Cao, Bitan, & 

Booth, 2008; Booth, Mehdiratta, Burman, & Bitan, 2008; Heim et al., 2009; Liu et al., 2010; 

Schurz et al., 2014; Xu, Wang, Chen, Fox, & Tan, 2015; Morken, Helland, Hugdahl, & Specht, 

2017; Perrone-Bertolotti, Kauffmann, Pichat, Vidal, & Baciu, 2017). These studies collectively 

provide strong evidence that the LvOT plays a crucial role in visual word recognition by 

inputting visual sensory information from occipital cortex and receiving linguistic information 

from language areas such as the LIFG. For example, Bitan et al. (2005, 2006) found significant 

intrinsic connections from LvOT to LIFG and from LIFG to LvOT in both children and adults; 
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Perrone-Bertolotti et al. (2017) found that the strength of the connection from the LvOT to the 

ventral LIFG specifically increased during a semantic task; and both Heim et al. (2009) and 

Schurz et al. (2004) observed causal influences between the LIFG and the LvOT. Functional 

and effective connectivity used in reading studies reveal how information in the brain flows 

during visual word recognition.  

The information flow in the reading network is supported by structural connectivity; 

that is, white matter pathways. Investigations of the language network have found that between 

the LIFG for speech production and the LpSTC for language comprehension is a white mater 

pathway called arcuate fasciculus (Dejerine, 1895; Catani, Jones & Ffytche, 2005). Further 

studies have even found that this dorsal white matter pathway exists in newborn infants (e.g., 

Perani et al., 2011). Also observed is a ventral white matter pathway connecting the LpSTC to 

the LIFG (e.g., Perani et al., 2011; Brauer, Anwander, Perani, & Friederici, 2013).  In relation 

to visual word recognition, white matter pathways have been identified connecting the arcuate 

fasciculus to the LvOT and LpSTC/LIFG, the inferior fronto-occipital fasciculus to the LvOT 

and the LIFG, the inferior longitudinal fasciculus to the occipital cortex to anterior temporal 

lobe, and the vertical occipital fasciculus to the parietal cortex, inferior parietal lobule and the 

LvOT (Ben-Shachar, Dougherty, & Wandell, 2007; Yeatman, Rauschecker, & Wandell, 2013; 

Vandermosten, Boets, Wouters, & Ghesquière, 2012). Increasing evidence from behaviour-

brain correlations is that the integrity of these white matter pathways is correlated with reading-

related skills in children and adults (Klingberg et al., 2000; Yeatman et al., 2011; Yeatman, 

Dougherty, Ben-Shachar, & Wandell, 2012; Gullick & Booth, 2015; Saygin et al., 2013; see 

reviews by Ben-Shachar et al., 2007, Vandermosten et al., 2012; Wandell, Rauschecker, & 

Yeatman, 2012).  

In summary, the LvOT, LpSTC, LIFG, and subcortical structures are local brain regions 

distributed in the brain that are not only consistently elicited by visual words, but also 
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functionally interact with each other and are structurally connected via white matter pathways. 

These single local regions and the connections between them play an important role in visual 

word recognition and its atypical forms such as dyslexia. Neural models have been developed 

to interpret these findings in relation to reading and visual word recognition under a unified 

framework.  

Neural Models of Visual Word Recognition 

Several neural models have been developed to explain what brain regions are involved 

in visual word recognition and how information flows between these regions (Dejerine, 1981; 

Geschwind, 1965; Pugh et al., 2000; Price, 2000; Price & Mechelli, 2005; Dehaene, Cohen, 

Sigman, & Vinckier, 2005; Dehaene & Cohen, 2011; Price & Devlin, 2011). Although classic 

models such as those of Dejerine (1981) and Geschwind (1965) made an important contribution 

to knowledge, the focus here is on recent neural models of visual word recognition that have 

been informed by the latest knowledge of key reading regions in the brain, functional-anatomic 

mappings, and the neural dynamics of reading.  

Recent Neural Models 

Pugh et al. (2000) have proposed a comprehensive neural model of reading. In this 

model, reading involves three different parts: a ventral posterior system in the ventral occipito-

temporal cortex, a dorsal posterior system in the temporo-parietal cortex including angular and 

supramarginal gyri, and an anterior system based in the inferior frontal cortex. The ventral 

posterior system is proposed to be associated with memory-based word identification and to 

be responsible for visual word form analysis. The dorsal posterior system is associated with 

rule-based functional integration of orthographic, phonological and lexical-semantic 
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information. The anterior system is associated with fine-grained articulatory recoding. In 

typically developing readers, the dorsal circuit is proposed to be an early-developing word 

identification system while the ventral circuit is a fast and late-developing system. With the 

increasing findings on the reading brain, reading models have been further refined (Price, 2000; 

Price & Mechelli, 2005). The basic anatomical frame of the new and the old models is similar. 

The novel parts of new models are that each system is divided into subregions with different 

functional roles, the systems are connected via white matter pathways, and information is 

allowed to flow between systems in both feedback and feedforward manners.  

These models developed by Pugh et al. (2005) and Price and Colleagues (2000, 2005) 

help to understand with more precision how visual word recognition takes place in the brain, 

especially within local brain regions associated with visual words. However, these modern 

models were mainly built on evidence of fMRI and PET neuroimaging techniques with good 

spatial resolution. However, the neural models above are limited in interpreting the rapid neural 

dynamics of visual word recognition because cognitive processes taking place after a visual 

word is presented unfold rapidly (Sereno & Rayner, 2003; Carreiras et al., 2014). The field 

calls for the application of neuroimaging with high temporal resolution to the establishment of 

reading models.   

Neural Models of Processing in the Left Ventral Occipito-Temporal Cortex 

 Recent years have witnessed striking progress in the understanding of the ventral 

posterior system, the left ventral occipito-temporal cortex (LvOT), in visual word processing. 

Here, I introduce two models of this region, the Local Combination Detector model (Dehaene 

et al., 2005) and the Interactive Account (Price & Devlin, 2011).  

Dehaene and colleagues (2005) built the Local Combination Detector (LCD) model by 

taking advantage of the large amount of knowledge about the organisation of the ventral 
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occipito-temporal stream for object recognition in humans and macaques (Riesenhuber & 

Poggio, 1999; Rolls, 2000; Malach et al., 2002), especially the crucial properties relevant to 

reading, such as hierarchical organisation. Receptive field size, visual complexity, location-

invariance and coded units increase from lateral geniculate nucleus to V1, V2, V4, V8, and 

then to left occipito-temporal sulcus. Low-level sensitivity takes place in the low part of ventral 

stream while high-level sensitivity takes place in the high part. When a visual word comes in, 

different areas along the visual ventral stream are tuned to different letter, letter combination 

and word features in a hierarchical manner. Simple features, such as local contrasts in lateral 

geniculate nucleus and orientation in V1, are encoded before the later stage V2 encodes letter 

fragments and V4 encodes letter shapes. After that, abstract letters are encoded in V8. All of 

these processes occur bilaterally. Then, local bigrams are encoded in the posterior part of the 

left occipito-temporal sulcus and small words and substrings such as morphemes are encoded 

in the anterior part. All processes at different stages proceed in a feedforward manner, i.e., from 

posterior to anterior parts of visual cortex.  

According to this model, it is predicted that the anterior part of the left ventral stream 

will be more sensitive to words than word-like stimuli and nonwords, and this has been 

supported by the results of an fMRI study (Vinckier et al., 2007). Because of the preferential 

response of this area to visual words and its location reproducibility, Dehaene and colleagues 

label it the visual word form area (VWFA; McCandliss, Cohen & Dehaene, 2003; Dehaene & 

Cohen, 2011). The LCD model has many advantages. It explicitly states what types of 

information related to visual words are encoded in what parts of the brain. It also states that the 

late stages of visual word processing such as local bigram and substring encoding are processed 

in the left hemisphere - probably due to the left-lateralisation of language network - and thus 

provides an account of how the VWFA can send information to spoken language networks for 

phonological and semantic processing. However, this model also has some limitations. It does 



Chapter 1: General Introduction 

 

 - 15 - 

not include feedback connections within the visual cortex or between the visual cortex and 

spoken language areas. The LCD model posits that the VWFA is an area specific for written 

words that computes strictly visual and abstract pre-lexical orthographic representations in a 

primarily feed-forward manner. In contrast to the LCD model, the Interactive Account of LvOT 

has a very different approach.  

Price and Devlin (2011) proposed the Interactive Account to interpret activity in the 

LvOT during reading. The premise of this theory is that perception involves recurrent or 

reciprocal communications between sensory cortices and high-order areas via a hierarchical 

forward and backward connections (Friston, 2010). The function of a region is thus proposed 

to depend on its integration of bottom-up sensory inputs via forward connections as well as 

top-down predictions via backward connections. These predictions depend on prior experience 

that can be used to resolve uncertainty and ambiguity of sensory inputs.  

According to the Interactive Account, during reading, visual words are processed as 

sensory inputs via bottom-up connections and receive predictions about phonological and 

semantic properties via top-down connections, which takes place in the vOT. Therefore, the 

vOT is an interface linking low-level visual sensory inputs and high-level phonological and 

semantic regions. The vOT itself is not proposed to be specific to written words per se. When 

there is no prior knowledge of the associations between orthography and phonology, the 

response of vOT to a word will be low because there is no top-down prediction sent by 

phonological regions. If the knowledge is learnt, phonological regions send predictions to the 

vOT when a visual word or word-like stimulus is presented. The intimate association between 

visual inputs and linguistic representations occurs automatically and is modulated by attention 

and task demands. Therefore, the interpretation of the vOT responses to words depends on the 

stimulus, experience, and task context. An important feature is that the responses of neurons 

across the vOT to basic shape information about visual words are sufficient to partly activate 
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neurons encoding phonology and semantics in high-order regions, which can in turn provide 

recurrent inputs to the vOT until the top-down predictions and bottom-up inputs are maximally 

consistent. Thus, top-down predictions are refined during the integration of top-down and 

bottom-up information. The main difference between the LCD model and the Interactive 

Account about the role of LvOT in reading and visual word recognition is that the former 

proposes the LvOT to be a region specific for word form representations while the latter argue 

for the LvOT as an interface between bottom-up visual inputs and top-down predictions from 

high-order phonological and semantic regions. These two models of the LvOT provide 

different perspectives on how reading works in the brain.  

The Interactive Account of reading calls for the use of effective connectivity in 

examining inter-regional forward and backward connections in the reading brain, specifically 

measures of how the LvOT interacts with spoken language regions. A popular means of doing 

this is via dynamic causal modeling (DCM). Because cognitive processes in visual word 

recognition are fast-acting (Sereno & Rayner, 2003; Carreiras et al., 2014), the application of 

DCM to M/EEG data with high-temporal resolution can specifically contribute to the 

examination of early interactions between reading-related regions.  

Dynamic Causal Modeling 

DCM has become one of the commonly-used methods to examine forward and 

backward connections in neural networks (Friston, Harrison & Penny, 2003; Friston, 2011; 

Daunizeau, David & Stephan, 2011). DCM was originally introduced for fMRI time-series data 

(Friston et al., 2003) and then later for electromagnetic data (David et al., 2006; Kiebel et al., 

2009; Chen, Kiebel, & Friston, 2008; Penny, Litvak, Fuentemilla, Duzel, & Friston, 2009).   
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Central Idea of DCM 

DCM adopts the concept of effective connectivity which refers to the influences of one 

neuronal system on another. The central idea of DCM is that neuronal activity flows through 

brain networks in a deterministic, nonlinear, and dynamical system that incorporates inputs, 

hidden states, and outputs. Inputs including experimental manipulations (e.g., stimulus 

presentation) and/or experimental factors (e.g., stimulus attributes or task demands) evoke 

responses in the brain. Hidden state variables include neuronal activities and other 

neurophysiological variables that form the outputs. Outputs are observable measured responses. 

A neuronal model with inputs and outputs is augmented with a forward or observational model 

describing the mapping from hidden neuronal activity to observed responses. Neuronal and 

observational models together form a full generative model.  The term “generative” means that 

“a DCM can be regarded as a prescription of how the observed data were generated” (Kiebel, 

Klöppel, Weiskopf, & Friston, 2007, p. 1487).  

With observed neuronal activity or prior knowledge of neuronal activity elicited by 

tasks/stimuli, one can establish a neuronal model with interactions among cortical regions. The 

neuronal model’s parameters, namely effective connectivity within or between regions, are 

then estimated from observed responses and the way in which these parameters are influenced 

by experimental manipulations or factors. Using marginal likelihood or evidence over 

conditional density of the model parameters, one can estimate the probability of the observed 

responses for a particular model. The outputs of DCM are the evidence for different models 

with different cortical regions and/or connections, especially those describing couplings among 

brain regions. Using a Bayesian model selection procedure, one can determine which model is 

the best model or which models with common features form the best model family. This 

enables one to test hypotheses about how remote brain regions communicate, especially how 
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these communications are influenced by experimental manipulations. DCM is a model-based 

method to estimate effective connectivity because it relies on prior knowledge of neuronal 

activity, especially key nodes and connections included in a model. Thus, one can select a 

model that best explains the measured responses from a finite selection of models, but cannot 

determine that the selected model is a definitive representation of neuronal activity (Kiebel et 

al., 2007). See Friston et al. (2003) and Daunizeau et al. (2011) for a detailed description.  

DCM for Evoked Responses 

Spatiotemporal models are designed to examine the architecture of underlying neuronal 

dynamics and to make inferences about key neuronal parameters in M/EEG data (Kiebel et al., 

2009). DCM has been used to analyse evoked responses, induced responses and steady-state 

responses. The aim of the current thesis was to examine the early neural dynamics estimated 

by average evoked MEG responses. Therefore, the technical focus here was on the application 

of DCM for evoked responses in MEG data. Note that DCM is not limited to the neural mass 

model described below, and DCM is very flexible so that one can design specific models based 

on specific research aims or hypotheses (Kiebel et al., 2009; Litvak et al., 2011).   

MEG signals. The MEG technique is completely non-invasive. It measures the 

magnetic fields generated by synchronized neuronal currents in the brain. As the magnetic 

fields are very weak, MEG measurements are made in a magnetically shielded room to reduce 

magnetic noise from other sources. Unlike BOLD signals recording changes in blood flow in 

the brain, MEG records neuronal activity directly, the measurements are thus thought to be 

directly related to brain functions. This technique has excellent temporal resolution 

(milliseconds) and good spatial resolution (millimetres). In the cognitive neuroscience field, 

the MEG technique is being increasingly used to examine brain functions including language 

and attention.  
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Neural mass model. M/EEG data can be treated as the response of a dynamic input-

output system to experimental manipulations or factors. Sensory inputs (stimuli) are processed 

by a brain network consisting of local neuronal sources and interactions between them. In the 

DCM for evoked responses, a neural mass model (Jansen & Rit, 1995) is used to describe the 

neuronal dynamics of each single source. In the model, each source comprises three neuronal 

subpopulations, pyramidal cells in the infragranular layer, spiny stellate cells in the granular 

layer, and inhibitory interneurons in the supragranular layer (see Figure 1 in Kiebel et al., 2009). 

The average post-membrane potentials and mean firing rates of these three neuronal 

subpopulations are used to describe each single source. Mean firing rates from other sources 

arrive via directed forward (or bottom-up), backward (or top-down), and lateral connections. 

Forward connections originate in the infragranular layer and terminate in the granular layer; 

backward connections connect infragranular to granular layers; lateral connections originate in 

infragranular layer and end in all layers (see Figure 1 in Kiebel et al., 2009). All these extrinsic 

cortico-cortical connections are excitatory and are mediated through the axons of pyramidal 

cells. Three different neuronal subpopulations within a single source are connected by intrinsic 

connections. These extrinsic cortico-cortical and intrinsic connections are used to estimate 

bottom-up and top-down brain connectivity (see Jansen & Rit (1995) for the details of the 

neural mass model). 

Neuronal sources. The depolarisation of pyramidal cell populations is assumed to be 

the origin of M/EEG responses. These sensor-level responses are expressed through a lead-

field where each source corresponds to an equivalent current dipole (Kiebel, David & Friston, 

2006). A lead-field is an electric current field describing the relationship between sources and 

sensors; a dipole describes the strength and direction of the current flow of the summed activity 

within a specific source. This is used to model observed activity in the sensors (see Figure 1 in 

Kiebel et al., 2009). The location of each source can be obtained from source reconstruction 
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techniques or the literature. In DCM, an experiment is considered as a perturbation of neuronal 

dynamics that is distributed through the brain network to generate source-specific responses. 

Experimental factors including stimulus property and task context change the parameters (i.e., 

effective connectivity) of the system. How can a forward or observational model best explain 

hidden neuronal activity? In the DCM for evoked responses, an inversion model considers data 

in both space and time. The parameters of a neuronal model include connectivity strength and 

time delays among sources. The spatial parameters include the location and orientation of each 

single source. With prior knowledge, one can also define more than one model with different 

sources and connections between sources, and then choose the best model or model family 

using Bayesian Model Selection (BMS) (see below).  

Bayesian model inversion. For a given datum y and a specific DCM m, the inversion 

of m corresponds to approximating the posterior probability on the parameters θ given by Bayes’ 

rule.  

 

where θ includes the parameters for forward, backward, and lateral connections and 

their modulation, which are to be estimated. The estimation procedure is fully described in 

Friston (2002). As Garrido et al. (2007) summarise, “This approximation uses variational 

Bayes that is formally identical to Expectation–Maximisation (EM), as described in Friston 

(2002). The EM can be formulated in analogy to statistical mechanics as a gradient descent on 

the free energy, F, of a system. The aim is to minimise the free energy with respect to a 

variational density q(θ). When the free energy is minimised q(θ) = p(θ|y,m), the free energy F 

= - ln p(y|m) is the negative marginal log-likelihood or negative log-evidence. After 

convergence and minimisation of the free energy, the variational density is used as an 
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approximation to the desired conditional density and the log-evidence is used for model 

comparison.” (Garrido, Kilner, Kiebel, Stephan, & Friston, 2007, p. 573).  

Bayesian model selection (BMS). BMS can be used to identify a model that best 

explains the observed responses. Different models are compared by their evidence (Penny et 

al., 2004). The evidence can be decomposed into two components: an accuracy term 

quantifying the data fit and a complexity term penalising models with a large number of 

parameters. Thus, a good model combines these two conflicting requirements to make it 

explain the data and keep it as simple as possible. The best model for a given dataset is the one 

with highest log-evidence ln p(y|m). For example, two models, m1 and m2, the difference in 

their log-evidences ln p(y|m1) − ln p(y|m2) or their Bayes factor (Penny, Stephan, Mechelli, & 

Friston, 2004) can be compared. If the difference is greater than 3, it can be concluded that the 

first model has the strongest evidence and thus is the best model. The BMS procedure is also 

applicable to select the best model family in which models with a specific feature are included 

(Penny et al., 2010).  

Bayesian model averaging (BMA). The best model obtained by BMS can estimate 

effective connectivity between or within sources modulated by experimental manipulation (e.g., 

stimulus attributes or task demands). BMA is used to estimate the modulatory effects of an 

experimental manipulation, but not for a single model. BMA is used to average all family 

models with a specific model design, or to average models in a winning family after BMS is 

applied to family-level model selection (Penny et al., 2010). BMA will be used in the present 

thesis. A non-parametric proportion test is usually applied after BMA to test whether the 

statistical significance of an effective connection (e.g., Richardson, Seghier, Leff, Thomas, & 

Price, 2011; Xu, Wang, Chen, Fox, & Tan, 2015).  

DCM for evoked responses is a powerful tool to elaborate millisecond-level temporal 

information propagation in brain networks, especially bottom-up and top-down directional 
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connections. It combines both spatial and temporal information, helping to enhance 

understanding of neural dynamics that underlie cognitive processes. Since the development of 

DCM for evoked responses (David et al., 2006), it has been widely used to examine effective 

connectivity in the M/EEG data (e.g., Garrido, Kilner, Kiebel, & Friston, 2007; Kiebel et al., 

2009; Boly et al., 2011). Its widespread application in the cognitive neuroscience provides an 

innovative way to understand the neural mechanisms of human behaviours.  

To conclude, DCM can serve as an ideal tool to examine backward (top-down) and 

forward (bottom-up) information flow in the brain when a task is performed. A large number 

of neuroimaging studies have demonstrated the value of DCM in unveiling inter-regional 

effective connectivity. DCM for evoked responses will be used in Chapter 2 to examine top-

down feedback from LIFG to LvOT at the early stages of visual word recognition. In the 

following section, I will introduce the time course of visual word recognition and explain the 

importance of examining early stage brain activity. 

Time Course of Visual Word Recognition 

 Neuropsychological and fMRI data can help to unveil which brain regions respond to 

visual words and the functional roles of the connections between these regions in visual word 

recognition. However, the cognitive processes involved in visual word recognition unfold 

rapidly; important cognitive stages of word recognition can be completed in half a second 

(Sereno & Rayner, 2003; Carreiras et al., 2014; Hauk, 2016). Therefore, an investigation of 

early cognitive processing stages is largely beyond fMRI’s scope because it has very poor 

temporal resolution. In contrast, non-invasive EEG and MEG techniques have excellent 

temporal resolution and thus can serve to measure early brain activity. EEG records electrical 



Chapter 1: General Introduction 

 

 - 23 - 

activity of the brain by placing electrodes along the scalp, while MEG uses sensitive 

magnetometers to record magnetic fields produced by electrical currents occurring in the brain.  

Due to this advantage, EEG and MEG can be used to elucidate the time course of visual 

word recognition (Sereno & Rayner, 2003; Carreiras et al., 2014; Hauk, 2016). Over the past 

two decades, researchers have found several event-related EEG or MEG components that are 

associated with visual word recognition. Basic visual processing of visual words occurs at 

around 100 after stimulus onset, which is followed by orthographic form analysis occurring at 

around 150 or 170 ms (e.g., Bentin, Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999; 

Maurer, Brandeis, & McCandliss, 2005). Some investigations have shown that lexical-

semantic access can take place within 200 ms after stimulus onset (e.g., Hauk et al., 2006; 

Hauk, Coutout, Holden, & Chen, 2012). For example, the differences in the neural responses 

between real words and pseudowords occur within 200 ms after stimulus onset (Hauk et al., 

2006, 2012). A detailed description of these electrophysiological components of visual word 

recognition can be found in the reviews by Carreiras et al. (2014) and Grainger and Holcomb 

(2009).  

With appropriate inverse algorithms, MEG sensor signals can also be localised to 

specific brain regions where these signals originate from. Studies with reading-related tasks 

have reported a consistent and coherent pattern of posterior-to-anterior activation in the brain. 

That is, the activation evoked by visual words starts from primary occipital cortex at ∼100–

130 ms, then moves to the ventral visual pathway in the left vOT at ∼150–170 ms and to left-

lateralised activity in the temporal and inferior frontal cortex from around 200 ms onwards 

(e.g., Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999; Pammer et al., 2004; 

Cornelissen et al., 2009; Vartiainen, Parviainen, & Salmelin, 2009; Wheat, Cornelissen, Frost, 

& Hansen, 2010; Klein et al., 2014). Recent years have also witnessed the interesting finding 

that there is a very early response to written words in the LIFG within 200 ms after stimulus 
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onset (e.g., Pammer et al., 2004; Cornelissen et al., 2009; Wheat et al., 2010; Klein et al., 2014). 

For example, using a lexical decision task, Pammer et al. (2004) found early activity in the 

LIFG for words in the 100-300 ms time-window.  

How do distributed brain regions interact at the early stages of visual word recognition? 

This question still remains to be answered. A visual word cannot be recognised purely by the 

primary occipital cortex, but has to involve neural interactions between the occipital cortex and 

spoken language network. Thus, visual word recognition has to be completed on the basis of 

inter-regional interactions. A large number of fMRI studies have observed inter-regional 

interactions during reading and visual word recognition, especially between the LvOT and the 

fronto-temporal regions (Bitan et al., 2005, 2006; Heim et al., 2009). However, M/EEG studies 

are needed to explore in detail these interactions because visual word recognition is rapid.  

One of these inter-regional interactions is the feedback from frontal spoken language 

regions to the LvOT. This feedback is likely to be crucial for the rapid retrieval of a word’s 

sound and meaning because frontal spoken language regions are mainly responsible for 

processing phonological and lexical-semantic information. Although early activity of the LIFG 

during visual word recognition has been established (Pammer et al., 2004; Cornelissen et al., 

2009), how the frontal language regions interact with the LvOT at the early stages of reading 

and visual word recognition is largely unclear. Using DCM for evoked responses, a recent 

MEG study found that the connection from LIFG to LvOT was stronger for visual words than 

for meaningless symbols within 200 ms after word onset (Woodhead et al., 2014). This finding 

indicates that the LIFG sends an early top-down feedback to the LvOT for processing word-

specific properties. However, it is still unknown what the nature of this early top-down 

feedback is; to be specific, what unique responsibility this top-down feedback is taking at the 

early stages of visual word recognition. This question was not answered in Woodhead et al. 
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(2014). Therefore, it will be worth exploring the nature of the early top-down feedback from 

frontal language regions to the LvOT during visual word recognition.  

 In summary, studies with EEG and MEG techniques can add to the understanding of 

early neural responses during visual word recognition. Rapid neural activities elicited by visual 

words can be used to examine ongoing cognitive processing stages, which cannot be captured 

by BOLD signals due to poor temporal resolution. An outstanding question is how the frontal 

language regions interact with the LvOT at the early stages of visual word recognition, which 

will be examined in Chapter 2. In the following section, I will provide a review of task-

dependent neural activity of visual word recognition, based on which I propose another 

outstanding question: how do task goals modulate the early top-down from LIFG to LvOT 

during visual word recognition? 

Task-Dependent Neural Activity of Visual Word Recognition 

Cognitive processes and neural correlates of visual word recognition are examined 

when a specific task, such as lexical decision or word naming, is performed. However, both 

cognitive and neural aspects of visual word recognition are highly modulated by task goals 

because different tasks recruit different cognitive and neural resources to serve specific goals.  

Behavioural studies have revealed that the influence of linguistic variables, such as 

word frequency and imageability, on visual word recognition varies from task to task (e.g., 

Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004). For instance, word frequency effects 

contribute more to performance on a lexical decision task than a speeded naming task (Balota 

et al., 2004; Yap & Balota, 2009). Some fMRI studies have found that the neural basis of visual 

word processing is also modulated by task goals. This has been demonstrated in relation to the 

activation in local brain regions (e.g., Twomey, Duncan, Price, & Devlin, 2011; Yang, Wang, 



Chapter 1: General Introduction 

 

 - 26 - 

Shu, & Zevin, 2012; Mano et al., 2013; McNorgan et al., 2015). For instance, in a meta-analysis 

of reading, McNorgan et al. (2015) found that pseudowords elicited more activation than words 

in the LvOT and LIFG, but words elicited more activation than pseudowords in the angular 

gyrus across lexical decision and naming tasks. More interestingly, the activation in the LvOT 

and the LIFG was higher in the naming task while the activation in the angular gyrus was 

higher in the lexical decision task. Some fMRI studies have further found that inter-regional 

connectivity during visual word processing is also modulated by task goals (e.g., Pugh et al., 

2002; Bitan et al., 2005, 2006; Heim et al., 2009). For example, using a spelling task and a 

rhyming task, Bitan et al. (2005, 2006) found that the spelling task recruited stronger 

directional connections to the intra-parietal sulcus involving orthographical form analysis and 

the rhyming task recruited stronger directional connections to left temporal cortex involving 

phonological form analysis. Collectively, the existing findings provide strong evidence that 

regional activation and inter-regional connectivity on visual word recognition are not purely 

stimulus-driven, but highly task-guided instead: a task with greater emphasis on a specific 

linguistic property elicits more activation in some specific regions and connections than in 

others. 

Do different task goals affect the early neural dynamics of visual word recognition? 

The answer appears to be yes. A large number of electrophysiological studies have examined 

whether task goals affect the time course of word recognition (e.g., Bentin et al., 1999; Strijkers, 

Yum, Grainger, & Holcomb, 2011; Strijkers, Bertrand, & Grainger, 2015; Chen, Davis, 

Pulvermuller, & Hauk, 2015; Mahé, Zesiger, & Laganaro, 2015; Wang & Maurer, 2017). 

Lexical decision, reading aloud, silent reading, and semantic categorisation are the most 

widely-used tasks. These studies have found differential influences of these different tasks on 

the time course of word recognition within the first 200 ms after stimulus onset. For example, 

Mahé et al. (2015) found that the electrophysiological responses evoked by words diverged 
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between reading aloud and lexical decision tasks from about 140 ms. Strijkers et al. (2011) 

found that word-evoked responses between a reading aloud task and a semantic categorisation 

task diverged at around 170 ms. Strijkers et al. (2015) found that word frequency effects 

reflecting lexical-semantic access occurred at 120 ms onward during a semantic categorisation 

task, but occurred at 220 ms during a colour categorisation task.  

These findings demonstrate that tasks with different cognitive goals modulate the time-

course of visual word recognition even at early stages (e.g., the first 200 ms after stimulus 

onset). This leads to a reasonable expectation that the top-down feedback from LIFG to LvOT 

within 200 ms after stimulus onset is likely to be also task-dependent, although this question 

remains to be answered. Building on Chapter 2, Chapter 3 will address this issue by using a 

task different from that in Chapter 2 and comparing findings between the two tasks. The 

existing electrophysiological studies examining task modulation of the time course of visual 

word recognition are limited in that the focus of these studies was mainly on single time-

window or single linguistic property (e.g., Bentin et al., 1999; Strijkers et al., 2015; Wang & 

Maurer, 2017). Using these studies as a starting point, Chapter 4 will examine task modulation 

of the time course of visual word recognition for different linguistic properties in multiple time-

windows.  

Outline of This Thesis 

The detailed introduction provided of the neural basis of visual word recognition 

reveals that the journey from visual features to meaning for visual word recognition is 

supported by local regions distributed in the brain and the neural interactions between them. 

For skilled readers, cognitive processes of visual word recognition are fast-acting; thus, it is 

important to examine early neural dynamics. Electrophysiological studies have demonstrated 
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that within 200 ms after stimulus onset, linguistic properties of visual words can be rapidly 

accessed and this early processing is highly modulated by task goals. More interestingly, within 

200 ms after stimulus onset, the LIFG is reliably activated and this frontal region sends top-

down feedback to the LvOT. However, it is largely unknown what the nature of this early top-

down feedback from LIFG to LvOT is (outstanding question 1), and how task goals modulate 

this early feedback (outstanding question 2). In addition, in terms of the automaticity of visual 

word recognition, an outstanding question is how task goals influence the time course of visual 

word recognition, specifically in a non-linguistic task with no requirement for any linguistic 

processing (outstanding question 3). Using MEG with excellent temporal resolution, the 

current thesis sought to investigate examine these outstanding questions about the early neural 

dynamics of visual word recognition in three different studies. The first study explored in detail 

the nature of early top-down feedback from LIFG to LvOT. The second study examined the 

task dependence of this early top-down feedback. The investigations of neural connectivity 

between local regions offered us an opportunity to look at how event-related fields evoked by 

visual words unfold over time. With the focus on event-related fields, the third study aimed to 

examine task modulation of the time course of visual word recognition. We addressed these 

research questions in three individual chapters of the thesis, presented in journal article format. 

Building on Woodhead et al. (2014) who found an early top-down feedback from LIFG 

to LvOT for visual words, Chapter 2 presents the first empirical study that aimed to examine 

the nature of this early top-down feedback during visual word recognition. Four types of stimuli 

- real words, pseudowords, consonant strings and false fonts - were used to construct three 

comparisons, real words vs. pseudowords (lexicality effects), pseudowords vs. consonant 

strings (phonological effects), and consonant strings vs. false fonts (letter effects). In this MEG 

study, fifteen young adults performed a semantic categorisation task, and the DCM for evoked 

responses was used in these three different comparisons to model inter-regional causal 
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connections. It was expected that lexicality and phonological effects would take place in the 

first 200 ms because the LIFG is a region mainly used for high-level linguistic processing.  

Chapter 3 presents a second empirical study that aimed to examine how task goals 

modulate the early top-down feedback from LIFG to LvOT. In contrast to the semantic 

categorisation task, a visual discrimination task was employed, in which participants were 

asked to detect hash strings. Similar to the previous study, the DCM for evoked responses was 

used in these three different comparisons to model inter-regional causal connections. It was 

expected that this early top-down feedback would be altered in the context of the visual 

discrimination task. 

Chapter 4 presents a study that combined the two MEG experiments in Chapters 2 and 

3 but adopted a different method from DCM to examine task-modulation of the time course of 

visual word recognition. The focus was on the three comparisons defined above. In addition, a 

behavioural version of each MEG experiment was also carried out to allow comparison 

between neural and behavioural data. Considering the nature of each task, it was expected that 

the neural and behavioural differences between conditions would be amplified in the semantic 

categorisation task, but would be weakened, delayed or disappear in the visual discrimination 

task.  

Chapter 5 presents a general discussion. It provides a summary of the main findings 

and discusses the findings from each empirical study by linking them to previous findings and 

integrating them within a framework of early neural dynamics of visual word recognition. 

Potential implications from this thesis to related topics and several limitations are considered.  
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Abstract 

Visual word recognition involves linking written symbols to their spoken forms and 

lexical-semantic representations. In the brain, this process is built on the inter-regional 

connections between the left ventral occipito-temporal cortex (LvOT) for orthographic form 

analysis and the left inferior frontal gyrus (LIFG) for lexical-semantic and phonological 

analysis. Building on a previous magnetoencephalography (MEG) study showing that the 

LIFG-to-LvOT connection was stronger for words than for meaningless false fonts within 200 

ms of visual word recognition (Woodhead et al., 2014), the current study aimed to examine the 

nature of this early top-down feedback by applying dynamic causal modeling. A group of 15 

adult participants performed a semantic categorisation task. Four comparisons - real words vs. 

false fonts, real words vs. pseudowords, pseudowords vs. consonant strings, and consonant 

strings vs. false fonts - were used in the 1-100, 1-150 and 1-200 ms time-windows to examine 

the time course of the influences of lexical-semantic, phonological and letter information on 

the early top-down feedback. The results of Bayesian Model Averaging showed that (1) the 

LIFG-to-LvOT connection was stronger for real words than for false fonts in the 1-150 ms 

time-window, replicating the previous observation in Woodhead et al. (2014); (2) it was 

stronger for real words than for pseudowords in both the 1-150 ms and 1-200 ms time-windows, 

indicating an early lexicality effect; (3) it was stronger for pseudowords than for consonant 

strings in the 1-200 ms time-window, indicating a phonological effect which occurred later 

than the lexicality effect; and (4) it was also stronger for false fonts than for consonant strings 

while the right homologue (the RIFG-to-RvOT connection) was stronger for consonant strings 

than for false fonts in both the 1-150 ms and 1-200 ms time-windows, indicating letter effects. 

These results suggest that compared with phonological information, lexical-semantic and letter 

information in words may exert earlier influences on the top-down feedback from LIFG to 

LvOT.  

 

 

 

 

 



Chapter 2: The Nature of Early Top-Down Feedback 

 

 - 32 - 

Introduction 

The writing system - the visual form of oral language to be used in recording facts and 

transferring thoughts or ideas - was invented only about 5400 years ago (Robinson, 2009). It 

is unlikely that this is sufficient time for the brain to evolve a specific area for written language 

processing. Therefore, it is generally assumed that reading ability is not innate, and involves 

recruiting existing structures of the human brain that have evolved for other purposes (Dehaene 

& Cohen, 2007). There is mounting neuroimaging evidence that reading involves several 

distributed areas in the brain including the left inferior frontal gyrus (Broca’s area), the left 

posterior superior temporal cortex (Wernicke’s area) and the visual cortex. It has been also 

consistently demonstrated that there is a region along the ventral pathway of visual processing 

that is always activated more by words than by meaningless symbols presented visually 

(McCandliss, Cohen, & Dehaene, 2003; Dehaene & Cohen, 2011). This area is located in the 

left ventral occipito-temporal cortex (vOT) and widely thought of as a crucial area for 

processing visual word forms (McCandliss et al., 2003; Dehaene & Cohen, 2011). Furthermore, 

there is also evidence that the left vOT receives “top-down” influences from the inferior frontal 

language area (Woodhead et al., 2014). The aim of the present study was to examine in detail 

the nature of these top-down influences from the frontal language area to the left vOT. 

As a process of recovering language from visual symbols, reading involves making 

connections between visual forms of written words and their spoken forms and meanings. In 

the brain, these connections are established via pathways between the vOT and areas of the 

spoken language network including the articulatory area the inferior frontal gyrus (IFG). 

Indeed, increasing magnetic resonance imaging (MRI) studies documents white matter 

pathways between vOT and spoken language areas (Ben-Shachar, Dougherty, & Wandell, 

2007; Yeatman, Rauschecker, & Wandell, 2013). Evidence of functional connectivity between 
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these areas has also come from reports of spontaneous neural synchronisations between the 

vOT and language areas (Koyama et al., 2011; Li et al., 2017). Concerning the nature of the 

functional role of the left vOT in visual word recognition, there are two main accounts - the 

Local Combination Detector model (LCD) proposed by Dehaene, Cohen, Sigman, and Vinkier 

(2005) and the Interactive Account proposed by Price and Devlin (2011), which mainly differ 

on whether higher-level language areas provide top-down modulation of the activity in the left 

vOT. The LCD model argues that the left vOT is a pre-lexical hub, specific for written words, 

that computes and stores strictly visual and abstract pre-lexical orthographic representations in 

a primarily feed-forward manner; this area was thus labelled as the visual word form area 

(VWFA) (Cohen et al., 2000; Dehaene et al., 2005; Dehaene & Cohen, 2011). In contrast, the 

Interactive Account holds that the vOT is not specific to written words, but also responds to 

other kinds of stimuli such as pictures. More importantly, the activation in the left vOT is 

proposed to be modulated by higher-level regions which are engaged in linguistic processing 

of written words; the left vOT continuously and automatically interacts with other regions 

during reading, acting as an interface linking bottom-up visual form information critical for 

orthographic processing with top-down high-level linguistic properties of written words (Price 

& Devlin, 2003, 2011).  

Findings from a large number of fMRI studies support the Interactive Account. 

Specifically, activity in the left vOT cortex has been shown to be sensitive to manipulations of 

task context (e.g., lexical decision task, reading aloud and passive viewing that emphasise 

different cognitive processes of reading) or high-level stimulus properties (e.g., letter strings 

with and without meaning) that are best explained by top-down feedback (Starrfelt & Gerlach 

2007; Cai, Lavidor, Brysbaert, Paulignan, & Nazir, 2008; Van der Haegen, Cai, & Brysbaert, 

2012; Kherif, Josse, & Price. 2011; Twomey et al. 2011; Mano et al., 2013). For example, the 

lateralisation of vOT activity during word reading highly depends on the lateralisation of 
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inferior frontal gyrus activity during word generation (Cai et al., 2008; Van der Haegen et al., 

2010), indicating that this area for visual word form processing is influenced strongly by the 

high-order spoken language area. Mano et al. (2013) showed that subregions within the left 

posterior occipito-temporal sulcus are more activated by real words and pseudowords than by 

consonant strings when participants are asked to name visual stimuli. Twomey et al. (2011) 

argued that both stimulus- and task-driven modulations of activation in the left vOT can only 

be explained by top-down processing of non-visual aspects of tasks and stimuli, which are 

consistent with the hypothesis that the left vOT acts as an interface linking visual forms with 

linguistic processing in both bottom-up and top-down manners.  

A limitation of the studies described above is that they relied on the blood-oxygen-

level dependent (BOLD) signals recorded by fMRI techniques, which are limited by their 

relatively poor temporal resolution (Hall, Robson, Morris, & Brookes, 2014). The BOLD 

signal that these studies used to infer underlying neuronal activity in local areas is slow to 

emerge. The time course of brain activity is ultra-rapid and the cognitive processing stages 

(e.g., lexical access) reflected in the neural information flow are very fast (Hauk, 2016), which 

is beyond the scope of fMRI techniques. Magneto- and electro- encephalography techniques 

(M/EEG) with high temporal resolution have been increasingly used to investigate the time 

course of neural activation during cognitive tasks. M/EEG studies have found that one of the 

earliest markers of visual word recognition is a left-lateralised response termed the M/N170 

that occurs around 170 ms after visual word onset and mainly reflects orthographic form 

processing (Maurer, Brandeis, & McCandliss, 2005; Hsu, Lee& Marantz, 2011; Dunabeitia, 

Dimitropoulou, Grainger, Hernandez, & Carreiras, 2012; Carreiras, Armstrong, Perea, & Frost, 

2014), and that the influence of high-level linguistic information (e.g., lexical and semantic 

representations) occurs before 200 ms (e.g., Assadollahi & Pulvermuller, 2003; Sereno & 

Rayner, 2003; Carreiras, Vergara, & Barber, 2005; Dambacher, Kliegl, Hofmann, & Jacobs, 
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2006; Hauk, Davis, Ford, Pulvermuller, & Marslen-Wilson, 2006; Hauk, Coutout, Holden, & 

Chen, 2012). Due to their relatively high temporal resolution, electrophysiological measures 

are an ideal tool to study the time course of visual word recognition and the early modulations 

of lower-level visual feature detection, orthographic form analysis, and higher-level lexical and 

semantic information on word recognition. 

M/EEG studies with reading-related tasks have reported a consistent and coherent 

pattern of posterior-to-anterior activation in the brain. That is, from primary occipital cortex 

(OCC: ∼100–130 ms), then to the ventral visual stream with a peak in the left vOT (∼150–170 

ms) and left-lateralised activity in the temporal and inferior frontal cortex from around 200 ms 

onwards (Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999; Marinkovic et al., 

2003; Pammer et al., 2004; Pylkkänen & McElree, 2007; Cornelissen et al., 2009; Vartiainen, 

Parviainen, & Salmelin, 2009; Wheat, Cornelissen, Frost, & Hansen, 2010; Chen, Davis, 

Pulvermuller, & Hauk, 2013; Klein et al., 2014). The most interesting finding is the very early 

response to written words in the left inferior frontal gyrus (LIFG) within 300 ms post-stimulus 

(e.g., Pammer et al., 2004; Cornelissen et al., 2009; Wheat et al., 2010; Klein et al., 2014). For 

example, Cornelissen et al. (2009) found a left-lateralised inferior frontal gyrus response to 

words at 100-250 ms that was stronger than the response to consonant strings during a passive 

viewing task in which participants looked at stimuli one by one but had no explicit task. The 

result is in line with previous studies using different tasks (e.g., Pammer et al., 2004 in which 

participants were asked to decide whether a visual word presented was familiar).  

In a recent MEG study, Woodhead et al (2014) used dynamic causal modeling (DCM), 

an analysis method that can identify the influences of one brain area on another, to specifically 

test the hypothesis that the activation in the LIFG might provide early feedback to the LvOT 

during visual word processing. In Woodhead et al (2014) study, real words and strings of false 

fonts (meaningless symbols) were used as critical stimuli, and personal names were used as 
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catch trials; participants were asked to read words and to view false fonts silently, and to 

respond by pressing a button when a person name was presented.  The results showed that 

during the first 200 ms after stimulus onset, the connection from the left IFG to the left vOT 

was stronger for real words than for false fonts. This finding is broadly consistent with the 

assumption of the Interactive Account model of visual word recognition that the LvOT is an 

interface linking bottom-up visual inputs from occipital cortex and top-down linguistic 

influences from language areas (Price & Devin, 2011; Carreiras et al., 2014). Woodhead et al. 

argued that the top-down feedback they observed may reflect that the LIFG provides fast 

phonological cues to constrain visual feature processing from LIFG to LvOT, and this 

argument is consistent with the findings from two other MEG studies (Wheat et al., 2010; Klein 

et al., 2014). Specifically, Wheat et al. (2010) using a pseudohomophone masked priming 

paradigm found that the induced activation in the LIFG was significantly stronger when targets 

and primes had the same pronunciations than when they were different, supporting a functional 

role of the site in pre-lexical access to phonological information. Klein et al. (2014) found that 

the early activation in the LIFG was higher when the task involves articulation, suggesting that 

the early activity in that region may reflect fast access to phonological and articulatory codes.  

However, direct evidence that the top-down feedback from LIFG to LvOT reflects 

rapid phonological activation is still lacking. The two studies described above reported 

evidence for a phonological locus of the activation in the LIFG but do not provide any evidence 

that it has a modulating effect on the LvOT. And the findings of the only study that did report 

evidence for a top-down feedback from LIFG to LvOT – Woodhead et al. (2014) – do not 

establish that the early influences from LIFG to LvOT are phonological in nature. There are at 

least three alternative accounts of the early top-down feedback reported by Woodhead et al 

(2014) based on their comparison of real words versus false fonts: these could be lexical-

semantic, phonological or even low-level letter effects. Real words have a meaning, are 
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pronounceable, and are made up of a sequence of familiar letters, whereas false fonts are strings 

of symbols without meaning for which a pronunciation cannot be generated. The existing 

studies has also implicated the LIFG in multiple aspects of reading and visual word recognition 

including lexical-semantic processing, phonological retrieval and manipulation, and vocal 

response (e.g., Wheat et al., 2010; Price, 2012; Taylor, Rastle, & Davis, 2013; Klein et al., 

2014), thus each of these linguistic aspects represents a potential source of the top-down 

modulation.  

The aim of our study was to examine in detail the nature of the early feedback from 

LIFG to LvOT during visual word recognition by applying the DCM technique in MEG data. 

To achieve this, we modified the design of Woodhead et al.’s (2014) study to include stimuli 

that would allow us to distinguish between a high-level lexicality effect, a phonological effect, 

and a low-level letter effect. Specifically, four types of stimuli were chosen: (1) real words 

(meaningful and pronounceable, consisting of letters), (2) pseudowords (meaningless, 

pronounceable and orthographically-legal, consisting of letters), (3) consonant strings 

(meaningless and unpronounceable, consisting of letters), and (4) false fonts (meaningless and 

unpronounceable, consisting of non-letters). The comparison between real words and 

pseudowords allows us to examine whether lexical and/or semantic linguistic information 

influences early top-down feedback. This is because skilled readers have lexical entries for real 

words and have memory traces of these words and corresponding meanings, but have no such 

corresponding lexical knowledge about pseudowords. Therefore, by comparing early top-down 

feedback effects for words with that for pseudowords which are orthographically legal and 

pronounceable, any specific influences of lexical factors can be identified. The comparison 

between pseudowords and consonant strings allows us to examine whether the phonological 

aspects of a letter string affect the top-down feedback. The phonology of pseudowords can be 

constructed through the application of grapheme-to-phoneme conversion, but this is not 
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possible for the unpronounceable consonant strings, thus any differences between these two 

conditions can be attributed to non-lexical phonology. Finally, the comparison between 

consonant strings and false fonts allows us to identify any influences that are attributable to 

letter recognition processes, as these two conditions differ in that consonant strings are formed 

by letters while false fonts are formed by non-letter visual unfamiliar symbols. These three 

different comparisons were used to partition different effects with distinct linguistic properties 

(see a similar design in Coch, 2015; Coch & Meade 2016), with the aim of specifying the nature 

of the early top-down feedback of the LIFG to the LvOT. Following an approach in previous 

studies (Garrido, Kilner, Kiebel, & Friston, 2007; Woodhead et al., 2014; Poch et al., 2015), 

the current study used three time-windows - 1-100, 1-150, and 1-200 ms - in the DCM analysis 

to explore the time frame of this early top-down feedback.  

Increasing electrophysiological studies have found that real words can be clearly 

discriminated from pseudowords at around 170 ms (e.g., Sereno, Rayner & Posner, 1998; 

Maurer et al., 2005; Hauk et al., 2006, 2012; Mahé, Zesiger, & Laganaro, 2015; Araújo, Faísca, 

Bramão, Reis, & Petersson, 2015; Coch & Meade, 2016), indicating early lexicality effects. 

Lexical variables, such as word frequency, also were found to affect the first 200 ms brain 

activity (e.g., Assadollahi & Pulvermuller, 2001, 2003; Sereno et al., 1998; Hauk & 

Pulvermuller, 2004; Mahé et al., 2012; Strijkers, Bertrand, & Grainger, 2015). Assadollahi & 

Pulvermuller (2001, 2003) found that a word frequency effect was observed at around 150 ms. 

But there is also evidence that lexicality effects take place at around 400 ms (M/N400 effect, 

e.g., Bentin, Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999). Interestingly, some 

studies have found that pseudowords and consonant strings can be differentiated from each 

other in the first 200 ms (e.g., Martin et al., 2006; Coch & Mitra, 2010; Araújo et al., 2015) 

and the rapid differentiation of consonant strings from false fonts in the first 200 ms (Bentin et 

al., 1999; Mahé et al., 2012; Araújo et al., 2015; Coch & Meade, 2016), indicating early 
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phonological and letter effects. However, the electrophysiological evidence above cannot 

provide direct inferences about early effective connectivity between the frontal cortex and 

ventral occipito-temporal cortex. Therefore, no specific expectations were made in this study. 

Instead, it was generally expected that both lexicality and phonological effects would be 

observed in the top-down feedback in the first 200 ms after stimulus onset; but letter effects 

would not be observed in this top-down feedback because the LIFG is mainly responsible for 

high-level lexico-semantic and phonological processing (e.g., Taylor et al., 2013; Carreiras et 

al., 2014).  

Methods 

Participants 

Fifteen native English speakers (7 females, 9 males; age range: 19-28 years; mean age: 

22.38 years) were recruited from Macquarie university campus to participate in the study. All 

participants reported that they had normal hearing, normal or corrected-to-normal vision and 

had no history of neurological disorders. The Edinburgh Handedness Inventory (Oldfield, 1971) 

was used to assess their handedness: fourteen were right-handed and one left-handed. The Sight 

Word Efficiency (SWE) and Phonemic Decoding Efficiency (PDE) subscales of the Test of 

Word Reading Efficiency (TOWRE; Torgesen, Wagner & Rashotte, 1999) were used to 

confirm that all participants had reading competence within the normal range (mean of overall 

standard score: 104±13.38). All participants had normal performance IQ (mean of overall 

standard score: 118±8.42; range: 103-132) as measured by the Matrices subscale of the 

Kaufman Brief Intelligence Test, (Second Edition; KBIT-2; Kaufman & Kaufman, 2004). The 

study was approved by the Human Research Ethics Committee (Medical Sciences) at 
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Macquarie University. Prior to the beginning of the experiment, a signed consent form was 

obtained from each participant.  

Overall Procedure 

Participants received the 80-minute MEG experiment first and then the 30-minute 

behavioural testing including the reading ability test (TOWRE) and the intelligence test (KBIT) 

either on the same day or the following day.  

MEG Experiment Materials 

Visual stimuli belonged to four categories: real word (RW), pseudoword (PW), 

consonant strings (CS) and false fonts (FF) (see examples in Figure 1). Within each category 

there were 120 exemplars divided equally into four stimulus lengths of three, four, five and six 

characters. All stimuli were presented in Calibri in lower case and size 50. RWs were chosen 

from MCWord (an Orthographic Word form Database; for details, see 

http://www.neuro.mcw.edu/mcword/). The MCWord is a database based on the CELEX 

efw.cd file that contains approximately 16,600,000 examples. PWs were first generated based 

on real words through the WUGGY software (Keuleers & Brysbaert, 2010. For details, see 

http://crr.ugent.be/programs-data/wuggy) and then were carefully chosen to match RWs in 

bigram frequency, trigram frequency, and Coltheart’s N based on the MCWord database. Two-

sample t-tests revealed no significant differences between RW and PW for each variable (p > 

0.10); see Table 1 for details. CSs were also initially generated by the WUGGY software, with 

bigram/trigram frequency and Coltheart’s N set at zero to keep CSs as pure letter strings 

without any higher-level orthographic information. As in the previous study on which this 

study builds (Woodhead et al., 2014), FFs were direct translations of the real words using the 

“Carian” font (Jane Warren, personal communication). “Carian” fonts are characters adapted 

http://www.neuro.mcw.edu/mcword/
http://crr.ugent.be/programs-data/wuggy
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from the alphabet of an obsolete Anatolian language (Melchert, 2004). To reduce possible 

influences of similarity to English letters, some characters whose shape was visually similar to 

English letters were replaced by others. Therefore, the FFs had no meanings and could not be 

pronounced.  

Table 1.  

Psycholinguistic properties including word frequency, Coltheart’s N, Bigram and trigram 

frequencies for real word and pseudowords. 

 Real words  Pseudowords 

 mean SD range  mean SD range 

Word frequency  
(per million) 

77.25 70.18 8.80-268.07  N/A N/A N/A 

Coltheart’s N 
(number of neighbors) 

6.55 6.19 0-23.00  6.38 5.85 0-21 

Bigram frequency 
(per million) 

882.87 624.21 99.23-3015.16  854.91 603.07 73.92-2971.28 

Trigram frequency 
(per million) 

199.10 193.34 11.01-1153.94  162.98 180.82 0-952.64 

 

 

Figure 1. Left, examples of critical stimuli, real words, pseudowords, consonant strings, and 

false fonts; right, examples of target stimuli (animal words).  

MEG Experiment Procedure 

The entire MEG experiment procedure included preparation, a practice run, the actual 

experiment, and rests between blocks. The actual experiment consisted of six blocks. Each 
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block lasted about 6 minutes. Each block contained 96 trials - 20 RWs, 20 PWs, 20 CSs, 20 FF 

- and 16 animal words (AW, e.g. cat, dog and donkey) which functioned as “catch trials”. Thus, 

the experiment included 480 trails (120 trials for each condition) and 96 animal word trials. 

The order of stimuli was pseudo-randomised and presented on the screen in the magnetically 

shielded room to the participants using E-Prime 2.0 (https://www.pstnet.com/eprime.cfm). The 

distance between the screen and participants’ eyes was 60 cm. On each trial, a black screen 

was initially presented with a white cross for visual fixation; then a stimulus was presented for 

500 ms, followed by a white cross which was displayed for between 2800 ms and 3400 ms (see 

Figure 2). Participants were asked to attend to each trial carefully and respond with a button 

press when an animal name was presented on the screen. Catch trials were removed from the 

data analysis. Before the experiment, a practice run was conducted to familiarise participants 

with the task.  

 

Figure 2. Experimental procedure for the study. Six blocks were included, with each having 

90 trials including 80 critical trials and 16 animal trials. 

MEG Data Acquisition and Pre-processing 

MEG data were recorded using the KIT-Macquarie MEG160 (Model PQ1160R-N2, 

KIT, Kanazawa, Japan) located at Macquarie University, with participants lying in a 

https://www.pstnet.com/eprime.cfm
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magnetically shielded room. Data were recorded using 160 coaxial first-order gradiometers 

with a 50-mm baseline (Kado et al. 1999; Uehara et al. 2003). Prior to MEG data acquisition, 

the locations of three head landmarks (nasion and bilateral preauricular points), five marker 

coil positions, and the subject’s head shape were recorded by 3D digitisation (Polhemus 

Fastrack, Colchester, VT). Participants’ head position and corresponding sensor positions were 

measured by energising the five marker coils briefly. The head motion was less than 6 mm for 

each participant in each block during the entire recording. The online sample rate was 1000 Hz.  

MEG data analysis was conducted using SPM12 software (Litvak et al., 2011) 

implemented in Matlab 2014b (The MathWorks, Inc.). The original data sampled at 1000 Hz 

were high-pass filtered at 1 Hz and then low-pass filtered at 30 Hz. The filtered data were 

epoched from 150 ms before stimulus presentation to 600 ms after stimulus presentation. The 

pre-stimulus time window (-100 - 0 ms) was used for baseline correction. To reject artefacts, 

the Fieldtrip visual artefact rejection toolbox, which expresses every time point as a deviation 

from the mean over all time and channels, was used to remove extreme trials in four conditions 

for each participant based on the variance within each channel 

(http://www.fieldtriptoolbox.org/reference/ft_rejectvisual). No more than 6% of trials in any 

condition were excluded by the artefact rejection procedure. Subsequently, robust averaging 

was applied to the epoched data across trials within each condition (RW, PW, CS and FF) 

(Litvak et al., 2011; Wager, Keller, Lacey, & Jonides, 2005).  

A head model for constructing source activity in the DCM analysis for each participant 

was built based on several settings below. First, a normal-resolution cortical mesh generated 

from the MNI template (ICBM512) was created. Then, three MEG fiducial labels (nasion, left 

pre-auricular point (LPA) and right pre-auricular point (RPA)) and headshape points were used 

to coregister the MEG data. Finally, a single shell was adopted to define the forward model in 

the following DCM analysis.  

http://www.fieldtriptoolbox.org/reference/ft_rejectvisual
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Dynamic Causal Modeling (DCM) 

DCM is a widely-used and powerful tool for examining the causal relationships 

between brain areas (effective connectivity; the influence a region exerts on another region). 

DCM was first introduced for fMRI data (Friston, Harrison, & Penny, 2003) and then for 

M/EEG data (David et al., 2006). The central idea of DCM is that neuronal activity flows 

through brain networks in an input-states-output dynamical system. Inputs such as stimulus 

attributes and task demands evoke neural responses, hidden states include neuronal activities 

that form the outputs, and outputs are observable responses. A neuronal model with inputs and 

outputs is augmented with an observation model describing the mapping from hidden neuronal 

activity to observed responses. DCM starts with a neuronal model with interactions among 

cortical regions. The neuronal model’s parameters, namely effective connectivity within or 

between regions, are then estimated from observed responses and how these parameters are 

influenced by experimental factors. Multiple models varying in nodes and connections can be 

designed to map measured data. Using a Bayesian model selection (BMS) procedure, one can 

get the best model or model family with a specific feature that most closely matches the 

measured data. Bayesian model averaging (BMA) can be used to average inter-regional 

effective connectivity across more than one model.  

Here we used DCM for evoked responses. The details and basic principles of this have 

been extensively described elsewhere (David et al., 2006; Kiebel, David, & Friston, 2006; 

Kiebel, Garrido, Moran, Chen, & Friston, 2009). In DCM for evoked responses, a neural mass 

model (Jansen & Rit, 1995) is used to describe the neuronal dynamics of each single source. 

In the model, each source comprises three neuronal subpopulations. Each source is described 

by the average post-membrane potentials and mean firing rates of the three neuronal 

subpopulations. Mean firing rates from other sources arrive at a source via directed forward (or 
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bottom-up), backward (or top-down), and lateral connections. All these extrinsic cortico-

cortical connections are excitatory and are mediated through the axons of pyramidal cells. 

Basic steps of DCM. A standard pipeline of DCM for evoked responses analysis 

includes the following parameters that need to be specified: the definition of the source 

locations; the definition of the connections between these sources; the source(s) of input(s); the 

connections to be modulated by variations in stimulus types and/or tasks. A DCM model can 

be established through changing these parameters iteratively until the predicted neural activity 

produced by the model best matches the observed data. This also means that one can use this 

approach to estimate a large body of models by changing the number of sources, the 

connections between sources and sensory inputs, to test a specific hypothesis. Bayesian 

statistics are performed to investigate which model provides the best explanation of the data 

(Bayesian model selection, BMS; Penny et al., 2004). If there is no model that is apparently 

the best one, then a weighted average model can be established via the approach of Bayesian 

Model Averaging (BMA; Penny et al., 2010). In our case, here we used a BMA approach to 

estimate connection strengths.    

Nodes of DCM. A meta-analysis based on eight MEG/EEG studies of visual word 

recognition (Pammer et al., 2004; Cornelissen et al., 2009; Wheat et al., 2010; Thesen et al., 

2012; Yvert, Perrone-Bertolotti, Baciu, & David, 2012; Klein et al., 2014; Quinn, 2014; 

Woodhead et al., 2014. See supplementary table 1 for details), which reported coordinates of 

regions activated in the first 300 ms after stimulus onset, was performed using Ginger ALE 

software (http://www.brainmap.org/ale/). Multiple comparison correction was performed 

using False Discovery Rate (FDR; Laird  et  al., 2005; Genovese, Lazar, & Nichols, 2002). 

Three left-hemisphere regions were then obtained: left middle occipital cortex (OCC), left 

ventral occipito-temporal cortex (vOT) and left inferior frontal gyrus (IFG) (see Figure 3). The 

vOT coordinates were very close to those reported by previous studies (e.g., Cohen, Jobert, Le 

http://www.brainmap.org/ale/)
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Bihan, & Dehaene, 2004; Dehaene & Cohen, 2011). The right-hemisphere homologues of these 

areas were also obtained based on these coordinates. Thus, a six-node network for the DCM 

analysis was constructed which included bilateral OCC (MNI, ±26 -94 6), bilateral vOT (MNI, 

±46 -56 -18) and bilateral IFG (MNI, ±58 8 22).  A study with similar experimental settings 

has shown that this six-node network provides the best fit to the MEG data (Woodhead et al., 

2014), thus its nodes were considered as the sources of the DCM spatial model in the following 

BMA analysis.  

 

Figure 3. Six nodes (sphere in red) in the left and right hemisphere generated by an ALE meta-

analysis based on eight MEG studies of reading.  

DCM models. In the current model family, the total number of possible connections in 

a model with 6 nodes is 30, and the total number of possible combinations of those connections 

(the total model space) is 230. To reduce computational load, some constraints had to be enacted 

to limit the size of the model space. Following the previous most comparable DCM study 

(Woodhead et al., 2014), the model space was constrained using four rules. First, horizontal 

lateral connections within a level of the cortical hierarchy (e.g., from left OCC to right OCC) 

were allowed while diagonal lateral connections (i.e., lateral connections between levels of the 

cortical hierarchy, e.g., from left OCC to right vOT) were not allowed. Second, forward or 

backward connections (e.g., from left OCC to left vOT) were mirrored in the opposite 

hemisphere (right OCC to right vOT). Third, the connections between bilateral OCC and 

bilateral vOT were consistently kept on across all models. Fourth, lateral connections (e.g., left 

OCC to right OCC) had corresponding reciprocal connections (e.g., right OCC to left OCC). 
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With these rules, the number of independent connections was reduced to 5 in the current model 

family, creating a total model space of 32 models for each comparison for each participant; 

each modeling a different combination of connections between sources mediating trial-specific 

effects.  

To better examine the changes in connection strength over time, the DCM analysis was 

conducted in three different time-windows, 1-100 ms, 1-150 ms and 1–200 ms (see Garrido et 

al. 2007, Woodhead et al., 2014 and Poch et al., 2015 for a similar approach). Three peaks at 

around 100 ms, 150 ms and 200 ms are also very clear in the early time-windows. These three 

time-windows were chosen based on previous studies in which main reading areas in the left 

hemisphere were clearly activated in the first 200 ms during visual word recognition (e.g., 

Pammer et al., 2004; Cornelissen et al., 2009; Wheat et al., 2010; Woodhead et al., 2014).  

Bayesian Model Averaging (BMA). All 32 models in the model family were estimated 

in three time-windows for each participant. The BMA analysis was performed to estimate the 

strength of inter-regional causal connections in the six-node network. The 32 models were 

averaged by group-level BMA with random effects (Penny et al., 2010) to investigate the 

average strength of the stimulus-modulated connections, that is, the gains for the three 

comparisons: RW vs. PW, PW vs. CS, and CS vs. FF. The comparison RW vs. FF was also 

evaluated to provide an overall estimation and to replicate the finding reported by Woodhead 

et al. (2014) that RW, compared with FF, evoked a stronger connection from LIFG to LvOT 

in the first 200 ms after stimulus onset. For each connection, an average gain value equal to 0 

indicates that no stimulus-type effect occurs in the connection; an average gain value greater 

than 0 indicates that the connection strength is stronger for the former stimulus type; and vice 

versa, an average gain value smaller than 0 indicates that the connection strength is stronger 

for the latter stimulus type.  
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A non-parametric proportion test was adopted to test whether the gain values from the 

BMA analysis were significant or not. For each connection, the distribution of the gain was 

reconstructed by generating 100,000 samples from a Gaussian distribution based on the 

posterior mean and standard deviation calculated in the BMA step. The rule was that if more 

than 90 percent of the samples were greater or smaller than zero, the connection was considered 

to be significantly stronger for the former condition or the latter condition, respectively; 

otherwise, the connection strength was considered to be equal between two conditions in the 

connection. For instance, in the comparison of RW vs. PW, if the gain of a connection is 0.30 

and is significantly greater than 0, then the connection strength is stronger for RW. A similar 

approach has been used before (Seghier, Josse, Leff, & Price, 2011; Richardson, Seghier, Leff, 

Thomas, & Price, 2011; Woodhead et al., 2014; Xu, Wang, Chen, Fox, & Tan, 2015). 

Results 

The results of task performance and event-related field at the sensor space are reported 

below, and then followed by the results of the DCM analysis for each comparison.  

Task Performance 

The average reaction time for catch trials with correct response, i.e. animal words, was 

659 ms (SD = 89 ms, range 554-882 ms). The average proportion accuracy for catch trials was 

0.94 (SD = 0.39, range 0.85-0.99). 

Event-related Fields (ERFs) 

Root mean square (RMS) value was used to depict the time course of event-related 

fields globally across the sensor space. The RMS value is the square root of the arithmetic 

mean of the squares of the values in all MEG sensors at a given time-point and reflects how 
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strong an ERF is. The average RMS values across four conditions were calculated in the first 

500 ms after stimulus presentation. As can be seen in Figure 4, event-related peaks at around 

100 ms, 150 ms and 200 ms were clearly shown as a function of time-course. The observation 

is in line with previous studies of visual word recognition (e.g., Hauk et al., 2006; Chen et al., 

2013). 

 

Figure 4. The average root mean square (RMS) plot across all conditions and all subjects as a 

function of time course during the first 500 ms after stimulus onset. Four event-related field 

peaks can be seen at 100 ms, 150 ms and 200 ms, i.e., M100, M150 and M200 components. 

Bayesian Model Averaging (BMA) 

All 32 models were included in the current DCM-BMA analysis. The results of the 

BMA analysis assessing the stimulus-type effects on the causal relationships between reading 

nodes in each time-window are presented in Figures 5, 6, 7, and 8. Table 2 provides the details 

of posterior means of each connection in each time-window. Because the main aim was to 

examine the inter-regional causal connections in the reading network, the connections among 

bilateral IFG, vOT and OCC were the focus. Self-connections (e.g., LvOT-to-LvOT) and 

horizontal lateral connections (e.g., LvOT-to-RvOT) are not provided here (but see 
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supplementary table 2 for the details). As stated in the Introduction section, RW vs. PW, PW 

vs. CS and CS vs. FF were estimated to investigate the roles of different linguistic properties 

in the early feedback from left inferior frontal gyrus to left ventral occipito-temporal cortex; 

RW vs. FF was used to replicate the finding reported in Woodhead et al. (2014). The DCM 

results for each comparison are reported below.  

Table 2.  

Posterior means for feedforward and feedback connections in different comparisons. Values 

in bold were significantly stronger for the former (> 0) or weaker for the latter (< 0) than the 

threshold (90 %) (Corresponding p values were smaller than 0.05). 

 

 RW vs. FF (overall)  RW vs. PW (lexicality effect) 

Feedforward 1-100 ms 1-150 ms 1-200 ms  1-100 ms 1-150 ms 1-200 ms 

LvOT to LIFG -0.071 0.103 -0.050  -0.011 0.011 0.048 

LOCC to LvOT -0.190 -0.275 0.169  -0.123 -0.120 -0.025 

LOCC to LIFG -0.017 -0.126 -0.009  0.119 0.103 -0.102 

RvOT to RIFG  -0.028 0.057 -0.002  -0.011 -0.088 0.054 

ROCC to RvOT 0.093 -0.053 -0.022  -0.209 -0.031 -0.154 

ROCC to RIFG -0.245 -0.029 -0.029  -0.115 -0.138 -0.054 

        

Feedback 1-100 ms 1-150 ms 1-200 ms  1-100 ms 1-100 ms 1-100 ms 

LIFG to LvOT -0.039 0.059 0.021  0.018 0.073 0.102 

LvOT to LOCC -0.026 -0.154 -0.132  -0.010 0.029 -0.195 

LIFG to LOCC -0.020 -0.018 -0.006  0.006 0.022 0.004 

RIFG to RvOT 0.006 0.035 -0.023  -0.019 0.008 -0.010 

RvOT to ROCC -0.042 -0.018 -0.038  0.034 0.048 0.064 

RIFG to ROCC -0.037 -0.009 0.047  0.004 0.066 -0.012 

 PW vs. CS (phonological effect)  CS vs. FF (letter effect) 

Feedforward 1-100 ms 1-150 ms 1-200 ms  1-100 ms 1-150 ms 1-200 ms 

LvOT to LIFG 0.036 -0.024 -0.009  0.029 0.038 0.133 

LOCC to LvOT -0.254 -0.115 0.066  0.124 -0.018 -0.058 

LOCC to LIFG 0.098 -0.008 0.051  -0.192 0.075 -0.045 

RvOT to RIFG  0.020 0.003 0.032  0.044 0.070 -0.016 

ROCC to RvOT -0.034 0.085 0.155  0.317 0.087 0.080 

ROCC to RIFG 0.073 0.195 -0.095  0.090 0.077 0.015 

        

Feedback 1-100 ms 1-150 ms 1-200 ms  1-100 ms 1-100 ms 1-100 ms 

LIFG to LvOT -0.016 -0.017 0.068  -0.027 -0.120 -0.106 

LvOT to LOCC -0.014 0.003 -0.006  -0.046 -0.042 0.027 

LIFG to LOCC 0.016 0.014 0.055  -0.003 0.036 -0.021 

RIFG to RvOT -0.007 0.058 0.037  -0.063 0.078 0.155 

RvOT to ROCC 0.028 0.038 -0.037  -0.065 -0.051 -0.011 

RIFG to ROCC 0.005 0.012 -0.030  0.001 -0.008 -0.028 
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RW vs. FF comparison (overall). As shown in Figure 5 and Table 2, the main results 

of the RW vs. FF comparison are as follows. (1) The left hemisphere (LH) feedback 

connections being significantly stronger for one condition than another condition did not occur 

in the first 100 ms but occurred in the first 150 ms time-window. However, the LvOT-to-LIFG 

and LOCC-to-LvOT feedforward connections were apparent in the 1-100 ms time-window and 

both of them were stronger for FF than for RW. (2) The LIFG-to-LvOT feedback and LvOT-

to-LIFG feedforward connections were stronger for RW than for FF in the 1-150 ms time-

window. (3) Significant connections mainly occurred in the LH; in the right hemisphere (RH) 

no significant feedback or feedforward connections were found in the 1-150 ms and 1-200 

time-windows.  

 

Figure 5. RW vs. FF comparison for inter-regional causal connections in three time-windows, 

1-100 ms, 1-150 ms, and 1-200 ms. Only significant causal connections are shown here. The 

arrows denote directions of causal influences. An orange line denotes a connection that is 

stronger for RW than for FF while a blue line denotes a connection that is stronger for FF than 

for RW. 
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RW vs. PW comparison (Lexicality effect). As shown in Figure 6 and Table 2, the 

main results of the RW vs. PW comparison are as follows. (1) The LIFG-to-LvOT feedback 

connection was stronger for RW than for PW in both the 1-150 ms and 1-200 ms time-windows. 

(2) The feedback or feedforward connections between LOCC and LvOT were stronger for PW 

than for RW in all time-windows. (3) The feedforward connections in the RH were all stronger 

for PW than for RW; in the meantime, no significant feedback connections were found in the 

RH. (4) No significant feedback connections were found in the 1-100 ms time-window. (5) The 

significant feedforward connections were mainly found to be the connections from OCC to 

IFG, and from OCC to vOT in both hemispheres in all windows. 

 

Figure 6. RW vs. PW comparison (lexicality effect) for inter-regional causal connections in 

three time-windows, 1-100 ms, 1-150 ms, and 1-200 ms. Only significant causal connections 

are shown here. The arrows denote directions of causal influences. An orange line denotes a 

connection that is stronger for RW than for PW while a blue line denotes a connection that is 

stronger for PW than for RW. 
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PW vs. CS comparison (Phonological effect). As shown in Figure 7 and Table 2, the 

main results of the PW vs. CS comparison are as follows. (1) The LIFG-to-LvOT feedback 

connection was stronger for PW than for CS in the 1-200 ms time-windows, which was 

accompanied by the LOCC-to-LvOT and LOCC-to-LIFG feedforward connections being 

stronger for PW than for CS. (2) The LOCC-to-LvOT feedforward connection was stronger 

for CS than for PW in both 1-100 ms and 1-150 ms time-windows. (3) All RH connections 

except the ROCC-to-RIFG connection were stronger for PW than for CS in all three time-

windows. (4) No significant feedback connection was found in the 1-100 ms time-window. (5) 

All significant feedforward connections were found to be the connections from OCC to IFG, 

and from OCC to vOT in both hemispheres. 

 

Figure 7. PW vs. CS comparison (phonological effect) for inter-regional causal connections in 

three time-windows, 1-100 ms, 1-150 ms, and 1-200 ms. Only significant causal connections 

are shown here. The arrows denote directions of causal influences. An orange line denotes a 

connection that is stronger for PW than for CS while a blue line denotes a connection that is 

stronger for CS than for PW. 
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CS vs. FF comparison (Letter effect). Details of the CS vs. FF comparison are 

provided in Figure 8 and Table 2. The main results are as follows. (1) The LIFG-to-LvOT 

feedback connection was stronger for FF than for CS in both 1-150 ms and 1-200 ms time-

windows, which was companied by the RIFG-to-RvOT connection being stronger for CS than 

for FF in both time windows. (2)  All significant feedforward connections in the RH were 

stronger for CS than for FF. (3) No significant feedback connection was found in the 1-100 ms 

time-window. (4) The significant feedforward connections were mainly found to be the 

connections from OCC to IFG, and from OCC to vOT in both hemispheres. 

 

Figure 8. CS vs. FF comparison (letter effect) for inter-regional causal connections in three 

time-windows, 1-100 ms, 1-150 ms, and 1-200 ms. Only significant causal connections are 

shown here. The arrows denote directions of causal influences. An orange line denotes a 

connection that is stronger for CS than for FF while a blue line denotes a connection that is 

stronger for FF than for CS. 
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Discussion 

With the application of the DCM technique to MEG data, Woodhead et al. (2014) 

previously investigated top-down feedback from LIFG to LvOT at the early stages of visual 

word recognition. Their results showed that the LIFG-to-LvOT feedback connection was 

stronger for real words than for false font stimuli within the first 200 ms after stimulus onset. 

Following this study, the current study sought to examine the nature of this early top-down 

feedback from LIFG to LvOT. Four types of visual stimulus, real words, pseudowords, 

consonant strings, and meaningless false fonts were included. Three comparisons - real word 

vs. pseudowords, pseudowords vs. consonant strings, and consonant strings vs. false fonts - 

were designed to decompose what linguistic properties of visual words trigger this early top-

down feedback.  

Overall, the findings were that the LIFG-to-LvOT feedback was stronger for real words 

than for false fonts in the 1-150 ms time-window, replicating the basic observation in 

Woodhead et al. (2014). The current study further found that this top-down feedback was 

stronger for real words than for pseudowords in both 1-150 and 1-200 ms time-windows and 

was stronger for pseudowords than for consonant strings in the 1-200 ms time-window, 

indicating that compared to phonological properties, lexical-semantic properties have an earlier 

influence on the top-down feedback from LIFG to LvOT; but the RIFG-to-RvOT feedback did 

not show any differences between conditions, indicating a left-lateralised network for the 

processing of high-level properties of words. In addition, the LIFG-to-LvOT feedback was 

stronger for false fonts than for consonant strings while the RIFG-to-RvOT feedback was 

stronger for consonant strings than for false fonts. The findings of the current study are broadly 

in line with the Interactive Account of LvOT in word recognition which proposes that the LvOT 

is an interface linking bottom-up visual inputs from occipital cortex and top-down linguistic 
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influences from language areas (Price & Devlin, 2011), and have implications for better 

understanding the neural correlates of reading, especially the early neural dynamics between 

reading-related areas.  

Early Feedback from Frontal to Ventral Occipito-Temporal Cortex 

The real words vs. false fonts comparison revealed that the LIFG-to-LvOT top-down 

feedback was stronger for real words than for false fonts in the 1-150 ms time-window. This 

finding is in line with the findings reported in Woodhead et al. (2014) which found that this 

top-down feedback was stronger for words than for false fonts in the 1-200 ms time-window. 

In their MEG study, a semantic categorisation task (whether a stimulus on the screen is a 

personal name, e.g., john) was adopted and six-node network was used in the DCM analysis, 

which is similar to the present study. However, that study used 1-100 ms, 1-200 ms, and 1-300 

ms time-windows, but didn’t use 1-150 ms time-window. The present finding of the LIFG-to-

LvOT feedback in the 1-150 ms time-window thus extends Woodhead et al (2014) to suggest 

that the top-down feedback for words occurs in an earlier time-window. Because the current 

study and Woodhead et al. (2014) both found this early top-down feedback for words, we argue 

that the early top-down feedback from the anterior higher-order frontal cortex to the posterior 

lower-order ventral occipito-temporal cortex is reliable and robust. Both studies suggest that 

word representations encoded in the LIFG send rapid feedback predictions to LvOT where 

visual sensory inputs converge such that visual words can be rapidly recognised. Similar to 

Woodhead et al. (2014), our experimental design also removed any influences of participants’ 

expectations in the early top-down feedback. That is, the mixture of four different trial types 

and the randomisation of stimulus presentation order in the present study meant that 

participants could not form any expectations about upcoming stimuli, removing to a large 

degree the possibility of subject prediction and expectation. Interestingly, we also observed 
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that the LvOT-to-LOCC feedback connections were stronger for real words than for false fonts. 

It is likely that as false fonts are unfamiliar, they recruited more low-level feature processing, 

and thus need more neural interactions between these two visual areas.  

To gain further insight into the nature of the LIFG-to-LvOT top-down feedback, we used 

three different comparisons, real words vs. pseudowords to index lexicality effects, 

pseudowords vs. consonant strings to index phonological effects, and consonant strings vs. 

false fonts to index letter effects. The DCM results showed that in the 1-200 ms time-window, 

the LIFG-to-LvOT feedback was stronger for real words than for pseudowords, indicating 

lexical-semantic influence; and it was stronger for pseudowords than for consonant strings, 

indicating phonological influence. Interestingly, this connection was also stronger for false 

fonts than for consonant strings, indicating the influences of letter combinations. These results 

collectively indicate that lexical-semantic, phonological and letter properties all rapidly drive 

this early top-down feedback at the very early stages. By decomposing the real words vs. false 

fonts comparison into different comparisons reflecting lexical-semantic, phonological and 

letter effects, the current study allows us to extend the previous proposal that this top-down 

feedback may reflect phonological constraints on visual processing (Woodhead et al., 2014).   

The lexical-semantic, phonological and letter effects in early top-down feedback are 

consistent with the existing literature. The finding that lexical-semantic properties engaged in 

processing real words can begin influencing visual word recognition before 200 ms after 

stimulus onset is consistent with data from previous EEG/MEG studies (e.g., Assadollahi & 

Pulvermuller, 2001, 2003; Sereno et al., 1998; Hauk et al., 2006, 2012; Mahé et al., 2012; 

Araújo et al., 2015). Hauk et al. (2006) conducted a linear regression analysis in EEG data and 

found an early difference between words and pseudowords at around 160 ms (Hauk et al., 

2006). In a lexical decision task, Braun, Hutzler, Ziegler, Dambacher, and Jacobs (2009) found 

the earliest differences between pseudohomophones (e.g., ROZE) and matched spelling 
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controls (e.g., ROFE) at around 150 ms after stimulus onset, indicating the involvement of 

phonological information at the early stages of visual word recognition. The neural differences 

between pseudowords and consonant strings have also been observed within 200 ms of 

stimulus onset (e.g., Coch & Mitra, 2015; Araújo et al., 2015). The influence of letter 

information on the top-down feedback was out of our expectation because the LIFG is usually 

thought to be an area mainly for high-level lexical-semantic and phonological processing (e.g., 

Taylor et al., 2013; Carreiras et al., 2014) and not for letter processing. However, some studies 

have shown that the LIFG involves letter processing (e.g., Flowers et al., 2004; Liu et al., 2010, 

2011; Vartiainen et al., 2011), and letters and non-letters can be discriminated at around 150 

ms after stimulus onset (e.g., Bentin et al., 1999; Appelbaum et al., 2009; Mahé et al., 2012; 

Araújo et al., 2015; Coch & Meade, 2016). The previous observations presented here suggest 

influences of lexical-semantic, phonological and low-level letter information can all appear in 

the first 200 ms, which is consistent with the current finding that lexical-semantic, phonological 

and low-level letter information potentially rapidly affect the early feedback from frontal cortex 

to ventral occipito-temporal cortex.  

It was further found in this study that the RIFG-to-RvOT feedback connection did not 

show differences between two conditions in the comparisons of real words vs. pseudowords, 

pseudowords vs. consonant strings, and real words vs. false fonts. The absence of the RIFG-

to-RvOT feedback connection suggests that even at the early stages of visual word recognition, 

the top-down feedback from frontal cortex to ventral occipito-temporal cortex is already 

strongly left-lateralised. This replicates exactly Woodhead et al.’s (2014) observation that the 

LIFG-to-LvOT feedback was stronger for words than for false fonts before 200 ms but the 

RIFG-to-RvOT feedback was absent. The left-lateralised IFG-to-vOT feedback connection 

pattern found here probably reflects the top-down influences of the left hemisphere spoken 

language network on the LvOT in reading. Cai et al. (2008) previously observed that the 
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activity in the posterior occipito-temporal cortex involved in visual word recognition is co-

lateralised to the same hemisphere as language production, indicating the top-down influences 

of frontal language area in the development of posterior occipito-temporal cortex. The finding 

here that the top-down feedback was highly left-lateralised is consistent with the observation 

in that study. Previous MEG studies have also observed a left-lateralised activation in the 

inferior frontal cortex in the first 200 ms during reading-related tasks (e.g., Pammer et al., 2004; 

Cornelissen et al., 2009; Wheat et al., 2010; Klein et al., 2014).  

Earlier LIFG-to-LvOT Feedback Driven by Lexical-Semantic Properties  

The different comparisons between conditions across different time-windows can reveal 

which effect commences earlier or later in driving the LIFG-to-LvOT feedback after the 

presentation of written words. It was clearly seen that the LIFG-to-LvOT connection was 

stronger for real words than for pseudowords in both the 1-150 ms and 1-200 ms time-windows, 

and this same connection was in turn stronger for pseudowords than for consonant strings in 

the later 1-200 ms time-window. This probably indicates that, although both lexical and 

phonological factors can trigger rapid LIFG-to-LvOT feedback, the lexical-semantic properties 

of a familiar word start influencing word recognition processes earlier than its phonological 

elements.  

Two potential factors could explain why the stronger LIFG-to-LvOT connection for real 

words than pseudowords occurred in the early 1-150 time-window but the stronger LIFG-to-

LvOT connection for pseudowords than consonant strings occurred in the late 1-200 time-

window. Firstly, cognitive models of single word reading (e.g., Coltheart, Rastle, Perry, 

Langdon, & Ziegler, 2001; Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & 

McClelland, 1989) propose that during single word comprehension, the semantic system can 

be accessed either via direct route from orthography or indirectly via phonological mediation. 
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When an orthographic entry has a corresponding meaning (i.e., when it is a real word), it could 

be more efficient for a skilled reader to access meaning via direct route from orthography to 

semantics (Taft & van Graan, 1998). Taft and van Graan (1998) found that in skilled readers, 

differences in reaction time between regular words and irregular words were observed in a 

naming task which is more phonologically based; however, these differences were washed out 

in a semantic categorisation task which is more semantic-based. This indicates that accessing 

semantics can be realised directly from orthographic strings when semantic information is 

explicitly required by task. Participants in our study were all adult readers with extensive 

reading experience, so the lexical-semantic information could be extracted directly from 

orthography and rapidly trigger a top-down feedback from frontal cortex to help word form 

analysis at early stages. That may result in the stronger LIFG-to-LvOT feedback for words than 

for pseudowords in the early 1-150 ms window. Because the task goal is to judge whether a 

word is an animal word after knowing its meaning, this top-down feedback continues to exist 

in the 1-200 ms window. In contrast, constructing phonological information via a 

phonologically-mediated route is necessary for pseudowords and there is also no corresponding 

semantic information, which could collectively slow down the influences on the feedback from 

frontal cortex to ventral occipito-temporal area, as can be seen in the pseudowords vs. 

consonant strings comparison where the LIFG-to-LvOT feedback was stronger for 

pseudowords than for consonant strings in the late 1-200 ms but not the early 1-150 ms 

windows.  

Secondly, it has been shown that lexical-semantic properties of visual words exert an 

influence on visual word recognition at around 150 ms after stimulus onset. Assadollahi and 

Pulvermuller (2001, 2003) found that word frequency effect is observed at around 150 ms post 

stimulus onset. Sereno et al. (1998) found that the difference between real words and 

pseudowords occurred at around 112 ms and word frequency effect at around 144 ms. The 
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difference between words and pseudowords was also observed at around 160 ms in the studies 

with lexico-semantic emphasis such as lexical decision or semantic categorisation tasks (e.g., 

Hauk et al., 2006, 2012; Mahé et al., 2012; Araújo et al., 2015; Coch & Meade, 2016). It is 

likely that the earliness of the neural responses to lexical properties makes it possible for the 

early LIFG-to-LvOT top-down feedback to occur. 

Simultaneity of Letter and Lexicality Effects 

Interestingly, the RIFG-to-RvOT feedback connection was stronger for consonant strings 

than false fonts in both the 1-150 and 1-200 ms time-windows, indicating that this feedback 

connection in the right hemisphere may play a role in the processing of low-level surface 

properties in letter combinations (Bentin et al., 1999; Appelbaum et al., 2009). At the same 

time, this right hemisphere feedback was accompanied by the LIFG-to-LvOT feedback 

connection that was stronger for false fonts than consonant strings in the same two time-

windows. The earliness of the significant IFG-to-vOT connections for consonant strings or 

false fonts may reflect an early differentiation between letters and non-letters. This 

interpretation is consistent with the observation that letters and non-letters can be discriminated 

around 150 ms after stimulus onset (e.g., Bentin et al., 1999; Appelbaum et al., 2009; Coch & 

Meade, 2016). In an EEG study, Bentin et al. (1999) observed an early N170 difference 

between false fonts and letter strings in the bilateral occipito-temporal sites, which was further 

confirmed in other EEG studies (Appelbaum et al., 2009; Coch & Meade, 2016). These 

findings indicate that human brain can rapidly detect the differences between letters and non-

letters. The current study further found that the brain uses inferior frontal cortex to modulate 

vOT during the process of letter detection. 

The letter effect on the top-down feedback occurred in the 1-150 ms and 1-200 ms time-

windows. Interestingly, in the same time-windows, the LIFG-to-LvOT connection was 
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stronger for real words than for pseudowords, and was also stronger for real words than for 

false fonts, indicating a lexicality effect. In other words, the early letter-specific effects and 

lexicality-specific effects in the top-down feedback from IFG to vOT appeared simultaneously; 

specifically, when rapid letter detection triggers a bilateral top-down feedback from IFG to 

vOT, high-level lexical properties also rapidly trigger a left-lateralised top-down feedback from 

IFG to vOT. The bilateral top-down feedback from IFG to vOT within 200 ms after stimulus 

onset is generally consistent with previous findings that the early neural difference between 

false fonts and consonant strings occurs bilaterally (e.g., Bentin et al., 1999; Coch & Meade, 

2016). The combination of the left-lateralised top-down feedback for real words in both the 1-

150 ms and 1-200 windows, and for pseudowords in the 1-200 ms window may reflect the 

influences of spoken language areas in the development of the posterior vOT in reading (e.g., 

Cai et al., 2008; Hannagan et al., 2015).  

It was also found that significant feedforward connections predominantly occurred in the 

connections from occipital cortex to vOT cortex and from vOT cortex to IFG, while significant 

feedback connections predominantly occurred in the connections from IFG to vOT cortex. This 

suggests that different connections between OCC, vOT and IFG play different roles in visual 

word recognition. It could be that the IFG-to-vOT connection is mainly for transferring 

influences from high-level linguistic properties stored in IFG to orthographic form analysis in 

vOT; in the meantime, the OCC-to-vOT and vOT-to-IFG connections are mainly for 

transferring sensory inputs from occipital cortex to ventral visual pathway and inferior frontal 

cortex. However, this possibility still lacks evidence. In addition, the significant LOCC-to-

LvOT and LvOT-to-LIFG feedforward connections occurred in the 1-100 ms time-window, 

which was earlier than the significant LIFG-to-LvOT feedback connection which occurred in 

the 1-150 and 1-200 ms time-windows. This may indicate that relevant information on visual 

word recognition is firstly processed in a pure low-high hierarchical manner, i.e., information 
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flows from low-level to high-level areas (LOCC-to-LvOT and -LIFG), followed by a combined 

high-low and low-high hierarchical manner, i.e., information flows from low-level to high-

level areas coupled by information flows from high-level to low-level areas (LIFG-to-LvOT).  

However, this pattern was not observed in the real word vs. false fonts comparison in 

Woodhead et al. (2004) which found that the significant LIFG-to-LvOT feedback connection 

was earlier than all significant feedforward connections. Note that both their study and the 

current study examined the differences in connectivity between two conditions, thus a non-

significant connection possibly means that the connection in both conditions exists but the 

strength is different. However, the finding still suggests that neural information flow specific 

for a linguistic process (e.g., lexical-semantic, phonological or letter processing) follows that 

top-down information follows bottom-up information.  

Limitations 

 The present study had several limitations. The first one is that the number of 

participants recruited in the current study was 15, which is a small sample. This may decrease 

the robustness of our results. In this sense, a larger sample would be preferable. The second 

one is that a template brain, but not individual anatomical brains, was used in the DCM analysis. 

While this acceptable approach is widely used in the field, the use of individual anatomical 

brains may improve the accuracy of source reconstruction and further improve the accuracy of 

the computation of inter-regional effective connectivity. The third one is the small proportion 

of catch trials (i.e., animal words) in all stimuli, which could affect the top-down feedback. The 

ratio of catch trials to critical trials was 1:5, and participants only needed to respond to animal 

words but not to critical trials. This approach with a small ratio of catch trials to critical trials 

has been widely used in the M/EEG studies (Woodhead et al., 2014; Coch, 2015; Coch & 

Meade, 2016; Strijkers et al., 2015). Evidence from studies on response inhibition using the 
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GO/NO-GO paradigm suggest that the ratio of GO trials to NO-GO trials strongly affects early 

neural responses to stimuli (e.g., Nieuwenhuis et al., 2003). In a general sense, the finding 

indicates that the frequency of response such as button press highly affects early neural activity. 

Thus, an open question is how different ratios affect the early top-down feedback in this study. 

A more specific question is whether different ratios change the influences of lexico-semantic 

processing in the early top-down feedback in a semantic task, and how if so. Future studies 

could examine this issue. In addition, the current study designed only 32 models to reduce the 

number of models due to the limited computation, which possibly led a bias in the estimation 

of information flow in the word-recognition network. A recent study applied cloud-

computation to the estimation of more than 4000 models to establish bias-free information flow 

maps in the brain (Ge et al., 2015). Future investigations could adopt this approach to avoid a 

bias in designing models of the word-recognition network. 

Conclusion 

With the application of DCM techniques to MEG data, the current study aimed to 

examine the nature of early top-down feedback from frontal to ventral occipito-temporal cortex 

during visual word recognition. The finding that the LIFG-to-LvOT connection was stronger 

for real words than for false fonts in the 1-150 ms time-window replicates the observation in 

Woodhead et al. (2014). More importantly, we established that lexical-semantic, phonological, 

and letter information all could influence the early LIFG-to-LvOT top-down feedback; lexical-

semantic and letter information both occur rapidly and simultaneously, and earlier than 

phonological information. The findings are in close alignment with the Interactive Account of 

LvOT (Price & Devlin, 2011), and are important in providing more details about the nature of 

early top-down feedback during visual word recognition observed in Woodhead et al. (2014).    
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Appendix A 

Supplementary table 1.  

List of eight MEG/EEG studies in the current ALE meta-analysis. 

 

Article Tools Tasks Sample Age (years) 
MNI coordinates  

(x y z) 

Pammer et al., 2004 MEG lexical decision 10 34 

-14 -88 -6 

30 -94 -6 

-32 -64 -6 

-60 8 22 

Cornelissen et al., 2009 MEG passive viewing  10 N/A 

-36 -84 -2 

-46 -56 -18 

-50 26 8 

Wheat et al., 2010 MEG 

word reading in a masked 

pseudohomophone 

priming task 

20 23.2 
-26 -96 8 

-56 4 18 

Yvert et al., 2012 EEG 
phoneme deletion and 

semantic categorisation 
15 24.5 

-42 -84 -5 

42 -84 -5 

-62 -40 2 

62 -40 2 

-62 -52 -12 

62 -52 -12 

-54 0 -20 

54 0 -20 

Thesen et al., 2012 MEG semantic categorisation 12 23 
-40 -78 -18 

-46 -52 -20 

Klein et al., 2014 MEG 

word naming and  

lexical decision in a 

masked onset priming task 

48 20.9 
-58 8 22 

-26 -94 5 

Quinn et al., 2014 MEG semantic categorisation 5 24.44 

-30 -96 2 

-44 -58 -14 

-44 -2 24 

Woodhead et al., 2014 MEG semantic categorisation 10 57 

-21 -90 8 

-43 -60 -16 

-44 23 -7 
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Appendix B 

Supplementary Table 2.  

Posterior means for feedforward, feedback, lateral, and self- connections in different 

comparisons. Values in bold were significantly stronger for the formers (> 0) or weaker for 

the latters (< 0) than the chance (90 %) (Corresponding p values were smaller than 0.05). 

 

 RW vs. FF 

Feedback 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LIFG to LvOT -0.039 0.061 0.059 0.046 0.021 0.047 

LvOT to LOCC -0.026 0.086 -0.154 0.069 -0.132 0.062 

LIFG to LOCC -0.020 0.072 -0.018 0.053 -0.006 0.046 

RIFG to RvOT 0.006 0.056 0.035 0.050 -0.023 0.044 

RvOT to ROCC -0.042 0.087 -0.018 0.071 -0.038 0.056 

RIFG to ROCC -0.037 0.073 -0.009 0.055 0.047 0.046 

 

Feedforward 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean  SD 

LvOT to LIFG -0.071 0.054 0.103 0.054 -0.050 0.039 

LOCC to LvOT -0.190 0.055 -0.275 0.053 0.169 0.048 

LOCC to LIFG -0.017 0.046 -0.126 0.041 -0.009 0.027 

RvOT to RIFG  -0.028 0.052 0.057 0.056 -0.002 0.043 

ROCC to RvOT 0.093 0.057 -0.053 0.056 -0.022 0.051 

ROCC to RIFG -0.245 0.050 -0.029 0.041 -0.029 0.026 

 

Lateral 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean  SD 

ROCC to LOCC 0.116 0.080 0.101 0.066 -0.005 0.0584 

RvOT to LvOT 0.032 0.085 0.044 0.072 -0.116 0.0694 

RIFG to LIFG -0.039 0.065 -0.035 0.051 0.0436 0.0518 

LOCC to ROCC -0.020 0.081 0.015 0.064 -0.077 0.0586 

LvOT to RvOT 0.068 0.083 0.144 0.069 0.0632 0.0665 

LIFG to RIFG -0.007 0.067 -0.072 0.055 0.0932 0.0516 

 

Self-connections 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean  SD 

LOCC to LOCC 0.123 0.018 0.030 0.015 -0.016 0.0101 

ROCC to ROCC 0.055 0.016 0.014 0.017 -0.041 0.0087 

LvOT to LvOT 0.018 0.040 0.061 0.026 -0.066 0.0212 

RvOT to RvOT 0.131 0.039 -0.022 0.029 -0.035 0.021 

LIFG to LIFG 0.110 0.038 0.026 0.025 0.0035 0.0179 

RIFG to RIFG 0.160 0.037 0.003 0.025 -0.047 0.0206 

 

  (continued) 
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Supplementary Table 2. (continued) 

 

 RW vs. PW (lexicality effect) 

Feedback 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LIFG to LvOT 0.018 0.042 0.073 0.057 0.102 0.043 

LvOT to LOCC -0.010 0.088 0.029 0.069 -0.195 0.067 

LIFG to LOCC 0.006 0.078 0.022 0.040 0.004 0.041 

RIFG to RvOT -0.019 0.036 0.008 0.056 -0.010 0.043 

RvOT to ROCC 0.034 0.087 0.048 0.072 0.064 0.059 

RIFG to ROCC 0.004 0.070 0.066 0.038 -0.012 0.048 

 

Feedforward 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LvOT to LIFG -0.011 0.071 0.011 0.068 0.048 0.056 

LOCC to LvOT -0.123 0.067 -0.120 0.049 -0.025 0.044 

LOCC to LIFG 0.119 0.051 0.103 0.035 -0.102 0.036 

RvOT to RIFG  -0.011 0.063 -0.088 0.062 0.054 0.059 

ROCC to RvOT -0.209 0.063 -0.031 0.050 -0.154 0.048 

ROCC to RIFG -0.115 0.049 -0.138 0.042 -0.054 0.037 

 

Lateral 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

ROCC to LOCC 0.085 0.079 -0.036 0.067 0.0122 0.0638 

RvOT to LvOT 0.082 0.082 0.047 0.077 -0.043 0.0704 

RIFG to LIFG 0.016 0.057 -0.074 0.053 -0.071 0.0534 

LOCC to ROCC 0.031 0.079 -0.114 0.075 -0.134 0.0624 

LvOT to RvOT -0.013 0.082 0.068 0.077 -0.03 0.0689 

LIFG to RIFG -0.010 0.059 -0.057 0.052 -0.057 0.053 

 

Self-connections 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LOCC to LOCC -0.135 0.023 0.005 0.012 0.0545 0.0084 

ROCC to ROCC 0.093 0.019 0.111 0.014 0.0837 0.0108 

LvOT to LvOT 0.051 0.044 -0.028 0.024 0.0001 0.0228 

RvOT to RvOT 0.176 0.045 -0.038 0.022 -4E-04 0.0231 

LIFG to LIFG -0.056 0.047 -0.032 0.020 0.0417 0.0194 

RIFG to RIFG 0.084 0.040 -0.004 0.021 0.0316 0.0239 

 

(continued) 
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Supplementary Table 2. (continued) 

 

 PW vs. CS (Phonological effect) 

Feedback 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LIFG to LvOT -0.016 0.050 -0.017 0.044 0.068 0.045 

LvOT to LOCC -0.014 0.083 0.003 0.073 -0.006 0.063 

LIFG to LOCC 0.016 0.068 0.014 0.059 0.055 0.053 

RIFG to RvOT -0.007 0.048 0.058 0.046 0.037 0.044 

RvOT to ROCC 0.028 0.081 0.038 0.073 -0.037 0.056 

RIFG to ROCC 0.005 0.068 0.012 0.058 -0.030 0.050 

 

Feedforward 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LvOT to LIFG 0.036 0.062 -0.024 0.046 -0.009 0.045 

LOCC to LvOT -0.254 0.064 -0.115 0.051 0.066 0.052 

LOCC to LIFG 0.098 0.047 -0.008 0.043 0.051 0.035 

RvOT to RIFG  0.020 0.064 0.003 0.047 0.032 0.049 

ROCC to RvOT -0.034 0.060 0.085 0.052 0.155 0.049 

ROCC to RIFG 0.073 0.047 0.195 0.040 -0.095 0.038 

 

Lateral 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

ROCC to LOCC 0.152 0.077 0.051 0.068 -0.18 0.067 

RvOT to LvOT -0.063 0.081 0.005 0.074 -0.02 0.07 

RIFG to LIFG 0.016 0.058 -0.025 0.064 0.03 0.05 

LOCC to ROCC 0.005 0.082 -0.047 0.069 -0.1 0.063 

LvOT to RvOT -0.048 0.083 0.040 0.075 0.109 0.072 

LIFG to RIFG -0.013 0.058 -0.031 0.062 0.092 0.05 

 

Self-connections 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LOCC to LOCC 0.027 0.021 -0.030 0.011 0.01 0.009 

ROCC to ROCC 0.027 0.020 -0.012 0.010 -0.02 0.01 

LvOT to LvOT 0.103 0.051 0.028 0.026 -0.01 0.022 

RvOT to RvOT -0.019 0.044 -0.076 0.024 -0.07 0.023 

LIFG to LIFG -0.104 0.049 -0.020 0.020 -0.07 0.019 

RIFG to RIFG -0.020 0.049 -0.044 0.021 0.019 0.022 

 

(continued) 
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Supplementary Table 2. (continued) 

 

 CS vs. FF (Low-level letter effect) 
Feedback 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LIFG to LvOT -0.027 0.069 -0.120 0.054 -0.106 0.053 

LvOT to LOCC -0.046 0.082 -0.042 0.073 0.027 0.061 

LIFG to LOCC -0.003 0.045 0.036 0.053 -0.021 0.039 

RIFG to RvOT -0.063 0.074 0.078 0.049 0.155 0.047 

RvOT to ROCC -0.065 0.081 -0.051 0.072 -0.011 0.063 

RIFG to ROCC 0.001 0.045 -0.008 0.052 -0.028 0.046 

 

Feedforward 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LvOT to LIFG 0.029 0.062 0.038 0.057 0.133 0.049 

LOCC to LvOT 0.124 0.059 -0.018 0.053 -0.058 0.053 

LOCC to LIFG -0.192 0.045 0.075 0.033 -0.045 0.039 

RvOT to RIFG  0.044 0.064 0.070 0.053 -0.016 0.048 

ROCC to RvOT 0.317 0.064 0.087 0.053 0.080 0.058 

ROCC to RIFG 0.090 0.043 0.077 0.036 0.015 0.038 

 

Lateral 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

ROCC to LOCC 0.082 0.080 0.095 0.070 0.208 0.057 

RvOT to LvOT -0.059 0.083 -0.002 0.077 -0.07 0.074 

RIFG to LIFG -0.041 0.049 -0.032 0.042 0.097 0.055 

LOCC to ROCC 0.032 0.077 0.056 0.065 0.171 0.055 

LvOT to RvOT 0.032 0.082 0.008 0.075 0.13 0.067 

LIFG to RIFG -0.012 0.049 -0.005 0.045 -0.08 0.06 

 

Self-connections 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LOCC to LOCC 0.048 0.022 -0.087 0.015 -0 0.01 

ROCC to ROCC -0.071 0.018 -0.028 0.010 -0.1 0.012 

LvOT to LvOT -0.003 0.045 0.140 0.025 -0.03 0.025 

RvOT to RvOT -0.095 0.049 -0.017 0.026 -0.1 0.027 

LIFG to LIFG -0.030 0.042 -0.013 0.021 0.016 0.019 

RIFG to RIFG -0.128 0.046 -0.033 0.023 0.007 0.021 
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Abstract 

The human brain is flexible in responding to the external environment. Neuroimaging 

experiments have revealed that the early neural responses to visual words are highly modulated 

by task goal. A previous study has found that the early top-down feedback from frontal cortex 

to ventral occipito-temporal cortex is stronger for words than for meaningless symbols within 

200 ms after stimulus onset (Woodhead et al., 2014). Building on this, our previous MEG study 

with a semantic categorisation task further found that during visual word recognition, lexical- 

semantic properties rapidly triggered the top-down feedback from the left inferior frontal gyrus 

(LIFG) to the left ventral occipito-temporal cortex (LvOT), and their influences were earlier 

than phonological properties (Li et al., in preparation; Chapter 2). However, whether this early 

top-down feedback is dependent on task goals is still unclear. The present study aimed to 

investigate this issue by using a visual discrimination task which relies on low-level visual 

feature processing but not necessarily high-level linguistic properties. Fifteen young adults 

participated in the study. All four types of stimulus, real words, pseudowords, consonant strings, 

and false fonts, were the same as the previous study. The results showed that (1) the LIFG-to-

LvOT connection was stronger for real words than for pseudowords in both 1-150 ms and 1-

200 ms time-windows in the discrimination task, which is similar to that in the semantic task, 

indicating that the influences of lexical factors are task-independent; (2) the connection was 

stronger for consonant strings than for pseudowords in the 1-200 ms time-window and was 

stronger for false fonts than for consonant strings in the 1-150 ms time-window in the visual 

discrimination task. In contrast, the connection was stronger for pseudowords than for 

consonant strings in the 1-200 ms time-window and was stronger for consonant strings than 

for false fonts in the 1-150 ms time-window in the semantic categorisation task, indicating that 

the influences of phonological and letter-level properties are task-dependent. These findings 

are helpful for understanding how inter-regional directional neural connections during visual 

word recognition adapt to different task goals.  
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Introduction 

Representing sound and meaning from writing symbols recruits and reshapes existing 

neural structures. There is mounting evidence that reading behaviour involves distributed brain 

regions with different functions, including the primary occipital cortex, the left ventral 

occipito-temporal cortex (LvOT) and the left inferior frontal gyrus (LIFG) (e.g., Turkeltaub, 

Eden, Jones, & Zeffiro, 2002; McCandliss, Cohen, & Dehaene, 2003; Bolger, Perfetti, & 

Schneider, 2005; Houde, Rosi, Lubin, & Joliot, 2010; Dehaene & Cohen, 2011; Price & Devlin, 

2011; Cattinelli, Borghese, Gallucci, & Paulesu, 2013; Taylor, Rastle, & Davis, 2013). It is 

widely thought that the primary occipital cortex is responsible for visual processing, LvOT for 

orthographic form analysis and LIFG for high-level phonological and lexical-semantic 

processing in visual word recognition (see a recent meta-analysis of fMRI studies of reading, 

Taylor et al., 2013). These regions not only are consistently activated in relevant tasks (e.g., 

passive viewing, lexical decision and reading aloud tasks), but also are functionally connected 

to each other when recognising visual words (e.g., Horwitz, Rumsey, & Donohue, 1998; Pugh 

et al., 2000; van der Mark et al., 2011; Finn et al., 2013; Boets  et al., 2013; Schurz et al., 2014) 

and at rest (e.g., Koyama et al., 2011; Vogel, Miezin, Peterson, & Schlaggar, 2012; Schurz et 

al., 2014; Li et al., 2017). A recent MEG study found that early top-down feedback from frontal 

cortex to ventral occipito-temporal cortex was stronger for words than for meaningless symbols 

within 200 ms after stimulus onset (Woodhead et al., 2014). With the inclusion of words, 

pseudowords, consonant strings, and false fonts, Li et al. (in preparation) further found that 

lexical-semantic properties and letter-level effects rapidly triggered the top-down feedback 

from LIFG to LvOT, and their influences were earlier than phonological properties (see 

Chapter 2). By applying dynamic causal modeling (DCM) to MEG data, the aim of the current 

study was to investigate whether task goal modulates this early top-down feedback from frontal 

cortex to ventral occipito-temporal cortex.  
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The extant literature has made great inroads into understanding the underlying 

cognitive mechanisms of visual word recognition (e.g., Coltheart, Rastle, Perry, Langdon, & 

Ziegler, 2001; Seidenberg & McClelland, 1989; Grainger & Ziegler, 2011; Norris, 2013). A 

range of cognitive processes including letter recognition, phonological decoding and lexical-

semantic access are engaged during visual word recognition, and possible relationships 

between them are usually examined via a specific reading-related task. To date, many tasks 

have been used, including lexical decision, reading aloud, and semantic categorisation. The 

lexical decision task is probably the most frequently used task, in which participants are asked 

to decide whether a visual string is a real word, and to press one button if it is a real word and 

another button if it is not. This task is thought to recruit the main cognitive processes required 

in word recognition, including visual feature detection, letter binding, 

orthographic/phonological form analysis, and lexical-semantic access. It has been used to 

establish and refine models of reading and visual word recognition (e.g., Coltheart et al., 2001; 

Grainger & Ziegler, 2011) and to uncover relevant deficits in individuals with reading 

impairment (Vellutino, Fletcher, Snowling, & Scanlon, 2004; Ziegler & Goswami, 2005).   

However, different tasks emphasise different cognitive processes involved in visual 

word recognition. Indeed, behavioural studies have shown that the influence of linguistic 

variables, such as word frequency, consistency between spelling and sound, and imageability, 

on visual word recognition are highly dependent on task goal (e.g., Monsell, Doyle, & Haggard, 

1989; Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Balota & Yap, 2006; Yap & 

Balota, 2009). For example, the word frequency effect - reflecting lexical-semantic access - 

contributes more to the performance of a lexical decision task than to a speeded naming task 

(Balota & Chumbley, 1984; Balota et al., 2004; Balota & Yap, 2006; Yap & Balota, 2009) and 

the word frequency effect observed in a lexical decision task has been found to be absent in 

same-different tasks (Norris & Kinoshita, 2008). These results suggest that the influence of 
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linguistic properties on visual word processing are not purely stimulus-driven but are strongly 

guided by task goals, with different emphases of cognitive resources in different tasks 

influencing behavioural outputs (e.g., Kinoshita & Norris, 2012).  

Similarly, fMRI studies have also revealed that neural correlates of visual word 

processing, such as regional activation, are also modulated by task goals (e.g., Valdois et al., 

2006; Carreiras, Mechelli, & Price, 2006;  Carreiras, Mechelli, Estevez, & Price, 2007; Hon, 

Thompson, Sigala, & Duncan, 2009; Baker et al., 2007; Starrfelt & Gerlach, 2007; Wright et 

al., 2008; Twomey, Duncan, Price & Devlin, 2011; Yang, Wang, Shu, & Zevin, 2012; Mano 

et al., 2013; Yang & Zevin, 2014; Graves, Boukrina, Mattheiss, Alexander, & Baillet, 2016). 

For example, lexical decision tasks and semantic categorisation tasks appear to rely more on 

semantic systems in the brain (e.g., middle temporal gyrus and anterior temporal lobe) while 

naming and reading aloud tasks rely more on phonological systems (e.g., superior temporal 

gyrus and inferior frontal gyrus) (McNorgan, Chabal, O’Young, Lukic, & Booth, 2015). 

Effective connectivity can serve as a tool to examine the top-down causal influences of a brain 

area to another area. Studies using effective connectivity have also shown that the inter-

regional directional influences during visual word processing are task-dependent (e.g., Pugh et 

al., 2000; Bitan et al., 2005, 2006; Heim et al., 2009). For example, Bitan et al. (2005, 2006) 

used a spelling task and a rhyming task in which participants determined whether the final 

word had either the same spelling or the same rhyme as either of the first two words, and found 

that the spelling task recruited stronger directional connections to the intra-parietal sulcus 

involved in orthographical form analysis and movement, and the rhyming task recruited 

stronger directional connections to left temporal cortex involved in phonological form analysis. 

To summarise, the extant literature has demonstrated that regional activation and inter-regional 

functional connection in visual word recognition are not purely stimulus-driven but highly task-

guided instead. 
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The cognitive processes recruited for visual word recognition evolve over time rapidly 

(Sereno & Rayner, 2003; Carreiras, Armstrong, Perea, & Frost, 2014; Hauk, 2016). EEG and 

MEG signals with excellent temporal resolution are ideal tools for revealing the time course of 

visual word recognition. Some studies have shown that event-related potential differences 

between real words and pseudowords can be observed at between 150 ms and 200 ms after 

stimulus onset in a lexical decision task, indicating a very early lexicality effect (e.g., Hauk, 

Davis, Ford, Pulvermuller, & Marslen-Wilson, 2006; Hauk, Coutout, & Holden, & Chen, 2012; 

Araújo, Faisca, Barmao, Reis, & Petersson, 2015; Coch & Meade, 2016). These studies 

demonstrate the necessity of the application of electrophysiological measures in the 

examination of early neural dynamics (Carreiras et al., 2014). Electrophysiological evidence 

has also indicated that the influence of linguistic properties of visual words (e.g., word 

frequency, word length and imageability) on the time course of word recognition can be 

modulated by tasks with different cognitive goals within 300 ms from stimulus onset (e.g., 

Bentin, Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999; Fujimaki et al., 2009; 

Strijkers, Yum, Grainger, & Holcomb, 2011; Grainger, Bertrand, & Grainger, 2015; Chen, 

Davis, Pulvermuller, & Hauk, 2015; Yum, Law, Su, Lau, & Mo, 2014; Mahé, Zesiger, & 

Laganaro 2015; Wang & Maurer, 2017). Strijkers et al. (2015) observed that when participants 

were required to decide whether a visual word was an animal word (semantic categorisation 

task), event-related potential differences between high-frequency and low-frequency words 

emerged from 120 ms onward; but when participants were required to decide whether the 

colour of a visual word was blue (colour categorisation task), the emergence of the differences 

was delayed by about 100 ms; that is, the differences started at 220 ms. The authors concluded 

that the speed and quality of lexical processing depends on the top-down intention: the specific 

goal of a task guides the time-course of lexical processing.  
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With excellent temporal resolution and good spatial resolution, MEG can also be used 

to reveal the evolution of inter-regional causal connections over time in the brain. Using a 

personal name detection semantic categorisation task, Woodhead et al. (2014) recently applied 

DCM to MEG data to investigate the causal influences from the frontal cortex to the left vOT 

within 300 ms after stimulus onset during visual word recognition. The results showed that, 

compared with meaningless symbols, visual words evoked a stronger feedback connection 

from the frontal cortex to the vOT in the first 200 ms. The finding strongly indicates that word 

recognition involves modulation from high-level frontal cortex on the low-level vOT even at 

the early stages. To further elaborate the nature of this early feedback, we recently conducted 

an MEG study in which we used different types of stimuli with different linguistic properties 

(Li et al., in preparation; Chapter 2). Specifically, we included real words, orthographically-

legal pseudowords, consonant strings, and meaningless false fonts to see what types of 

linguistic properties trigger this early top-down feedback. Similar to the personal name 

detection task in Woodhead et al. (2014), the task we used was a semantic categorisation task 

in which participants decided whether a visual stimulus was an animal word. Consistent with 

Woodhead et al. (2014)’s main observation, we found a stronger feedback connection from the 

frontal cortex to vOT in the first 200 ms for real words than for false fonts. In addition, we 

found that the LIFG-to-LvOT feedback connection was stronger for real words than for 

pseudowords in both 1-150 and 1-200 ms time-windows, and that the feedback connection was 

stronger for pseudowords than for consonant strings in the 1-200 ms time-window. On the basis 

of these findings, it was concluded that both lexical-semantic and phonological information 

derived from visually presented words can drive early feedback from frontal cortex to vOT, 

and that lexical-semantic information begins to have an influence earlier than phonological 

information.  
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However, inter-regional effective connectivity in the brain appears to be modulated by 

specific task goals, as summarised in the fMRI studies above (e.g., Bitan et al., 2005, 2006; 

Heim et al., 2009). Therefore, it is likely that the pattern of inter-regional connectivity at the 

early stages of visual word recognition, as found in our previous study, could also be task-

modulated. The existing findings that the task-modulation of brain activity at the early stages 

of word recognition (e.g., Bentin et al., 1999; Fujimaki et al., 2009; Strijkers et al., 2011, 2015; 

Chen et al., 2015; Yum et al., 2014; Mahé et al., 2015; Wang & Maurer, 2017) also suggest the 

possibility that task goals modulate the influences of linguistic properties on the inter-regional 

directional connections from frontal to vOT cortex at the early stages of visual word 

recognition. The present study sought to shed light on the issue of whether the early top-down 

feedback observed at the early stages of visual word recognition are dependent on task demands. 

In the current study, a visual discrimination task in which participants were required to decide 

whether a visual stimulus was a string of hashes (e.g., ###, ####) was compared to the semantic 

categorisation task used in our previous study. Comparisons of neural processing when one 

task draws on high-level linguistic properties while another restricts these properties and 

emphasises visual feature detection have also been used in previous fMRI studies (Yang et al., 

2012; Mano et al., 2013; Yang & Zevin, 2014). However, these studies could not provide 

temporal information due to the poor temporal resolution of BOLD signals. Unlike these 

studies, the focus of the current study was on the early neural interactions between LIFG and 

LvOT.  

To allow a direct comparison with the previous study (Li, et al., in preparation; Chapter 

2), we kept the same the critical stimuli and the general experimental procedure including the 

apparatus, and matched age and reading ability of participants. However, we replaced the 

animal words used in the previous study with strings of hashes, and changed the task to that of 

visual discrimination. Specifically, in the visual discrimination task, participants responded by 
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pressing a button if the stimulus was a string of hashes; otherwise, participants did nothing. 

Thus, any difference between the two experiments would reflect the modulation by task. As in 

Li et al. (in preparation; Chapter 2), we specifically focused on the real words vs. pseudowords 

comparison, the pseudowords vs. consonant strings comparison, and the consonant strings vs. 

false fonts comparison. By doing so, we could clarify what type of effects – lexicality, 

phonological, and letter effects - specifically trigger early top-down feedback. Because no 

linguistic information is included in hashes, and the task could be performed by using only 

visual features, the need for high-level linguistic information would be expected to be 

minimised or even removed. By contrast, during the semantic categorisation task in which 

participants decided whether a stimulus was an animal word, high-level lexical-semantic 

processes must be drawn upon to make a decision. The comparison between these two tasks 

could answer how the influences of linguistic properties in early top-down feedback, as 

revealed in a linguistic task, are reflected in a non-linguistic task. In this study, we hypothesised 

that if one of the three pre-defined effects on the early top-down feedback from LIFG to LvOT 

is task-dependent, the feedback for that effect would be weakened or diminished in the visual 

discrimination task because it explicitly places emphases on visual features but not any 

linguistic properties of the stimuli and thus the connection between the LIFG and LvOT is not 

necessarily used to execute the task (see Mano et al., 2013). However, if an effect on the early 

top-down feedback from LIFG to LvOT is task-independent, we expected that the feedback for 

that effect would show some similarities in the two tasks.  
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Methods1 

Participants 

Fifteen native English speakers (10 females, 5 males; age range: 19-31 years; mean age: 

25 years) were recruited from Macquarie University campus to participate in this study. All 

participants reported that they had normal hearing, normal or corrected-to-normal vision and 

had no history of neurological disorders. The Edinburgh Handedness Inventory (Oldfield, 1971) 

was used to assess their handedness: fourteen were right-handed and one left-handed. The Sight 

Word Efficiency (SWE) and Phonemic Decoding Efficiency (PDE) subscales of the Test of 

Word Reading Efficiency (TOWRE; Torgesen, Wagner & Rashotte, 1999) were used to 

confirm that all participants had reading competence within the normal range (mean of overall 

standard score: 100±13.10). All participants had normal performance IQ (mean of overall 

standard score: 113±8.55) as measured by the Matrices subscale of the Kaufman Brief 

Intelligence Test, (Second Edition; KBIT-2; Kaufman & Kaufman, 2004). The current study 

was approved by the Human Research Ethics Committee (Medical Sciences) at Macquarie 

University. Prior to the beginning of the experiment, a signed consent form was obtained from 

every participant.  

Overall Procedure 

Participants completed the 80-minute MEG experiment first and then the 30-minute 

behavioural testing which included the reading ability test (TOWRE) and the intelligence test, 

(KBIT) either on the same day or the following day.  

                                                      
1 In this study, the four critical conditions, experimental procedure, apparatus, and DCM data analysis were the 

same as the previous study (Li et al., in preparation; Chapter 2). 
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Materials 

All critical stimuli were completely adopted from our previous MEG study (Li et al, in 

preparation; Chapter 2). The stimuli belonged to four categories: real words (RW), 

pseudowords (PW), consonant strings (CS) and false fonts (FF). Within each category there 

were 120 exemplars divided equally into four stimulus lengths of three, four, five and six 

characters. All stimuli were presented in Calibri in lower case and size 50. RWs were carefully 

chosen from MCWord (an Orthographic Wordform Database). PWs were firstly generated 

based on real words through the WUGGY software (Keuleers & Bysbaert, 2010. For details, 

see website http://crr.ugent.be/programs-data/wuggy) and then were matched to RWs in 

bigram frequency, trigram frequency and Coltheart’s N based on MCWord database. See Table 

1 in our previous MEG study for details (Chapter 2). CSs were also initially generated by the 

WUGGY software, then their bigram/trigram frequency and Coltheart’s N were kept zero to 

make CSs as pure letter strings without any higher-level linguistic information. As in a previous 

study (Woodhead et al., 2014), FFs were direct translations of the real words using the “Carian” 

font (Jane Warren, personal communication). “Carian” fonts are characters adapted from the 

alphabet of an obsolete Anatolian language (Melchert, 2004). Some physical properties of the 

Carian script are similar to the modern Roman alphabetic characters, consisting of simple 

combinations of curved and/or linear elements. To reduce possible influences of similarity to 

English letters, some characters whose shape was visually similar to English letters, were 

replaced by others. Therefore, the FFs had no meanings and could not be pronounced.  

MEG Experiment Procedure 

The entire MEG experiment procedure included preparation, a practice run, the actual 

experiment and rests between blocks. The actual experiment consisted of six blocks. Each 

http://crr.ugent.be/programs-data/wuggy


Chapter 3: Task Modulation of Early Top-Down Feedback 

 

 - 81 - 

block lasted about 6 minutes. Each block contained 80 critical trials (20 trials for each condition) 

and 16 catch trials - strings of hash symbols (e.g., ###, #### and ####). Thus, the experiment 

included 480 trials (120 trials for each condition) and 96 strings of hash symbols. The order of 

stimuli was pseudo-randomised and presented on the screen in the magnetically shielded room 

to the participant using E-Prime 2.0 (https://www.pstnet.com/eprime.cfm). The distance 

between the screen and participants’ eyes was 60 cm. On each trial, a black screen was initially 

presented with a white cross for visual fixation; then a stimulus was presented for 500 ms, 

followed by a white cross which was displayed for between 2800 ms and 3400 ms (see Figure 

1). Participants were asked to attend to each trial carefully and respond with a button press 

when a string of hash symbols was presented on the screen. Catch trials were removed from 

the data analysis. Before the experiment, a practice run was conducted to familiarise 

participants with the task.  

 

Figure 1. Experimental procedure for the study. Six blocks were included, with each having 

96 trials including 80 critical trials and 16 hash strings. 

 

https://www.pstnet.com/eprime.cfm
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MEG Data Acquisition and Pre-processing 

MEG data were recorded using the KIT-Macquarie MEG160 (Model PQ1160R-N2, 

KIT, Kanazawa, Japan) located at Macquarie University, with participants lying in a 

magnetically shielded room. Data were recorded using 160 coaxial first-order gradiometers 

with a 50-mm baseline (Kado et al. 1999; Uehara et al. 2003). Prior to MEG data acquisition, 

the locations of three head landmarks (nasion and bilateral preauricular points), five marker 

coil positions, and the subject’s head shape were recorded by 3D digitisation (Polhemus 

Fastrack, Colchester, VT). Participants’ head position and corresponding sensor positions were 

measured by energising the five marker coils briefly. The head motion was less than 6 mm for 

each participant in each block during the entire recording. The online sample rate was 1000 Hz.  

MEG data analysis was conducted using SPM12 software (Litvak et al., 2011) 

implemented in Matlab 2014b (The MathWorks, Inc.). The analysis steps were as follows. The 

original data sampled at 1000 Hz were high-pass filtered at 1 Hz and then low-pass filtered at 

30 Hz. The filtered data were epoched from 150 ms before stimuli to 600 ms after stimuli. The 

pre-stimulus time window (-100 - 0 ms) was used for baseline correction. To reject artefacts, 

the Fieldtrip visual artefact rejection toolbox, which expresses every time point as a deviation 

from the mean over all time and channels, was used to remove extreme trials in four conditions 

for each participant based on the variance within each channel 

(http://www.fieldtriptoolbox.org/reference/ft_rejectvisual). No more than 5% of trials in any 

condition were excluded by the artefact rejection procedure. Finally, robust averaging was 

applied to the epoched data across trials within each condition (RW, PW, CS and FF) (Litvak 

et al., 2011; Wager, Keller, Lacey, & Jonides, 2005).  

A head model for constructing source activity in the DCM analysis for each participant 

was built based on several settings below. First, a normal-resolution cortical mesh generated 
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from the MNI template (ICBM512) was created. Then, three MEG fiducial labels (nasion, left 

pre-auricular point (LPA) and right pre-auricular point (RPA)) and headshape points were used 

to coregister the MEG data. Finally, a single shell was used to define the forward model in the 

following DCM analysis.  

Dynamic Causal Modeling (DCM) 

DCM is a widely-used and powerful tool for examining the causal relationships 

between brain areas (effective connectivity; the influence a region exerts on another region). 

DCM allows investigation of the effects generated by stimulus types and/or how task demands 

modulate the strength of the causal connections between brain areas. The details and basic 

principles of the DCM for ERP data have been extensively described elsewhere (David et al., 

2006; Kiebel, Carrido, Moran, Chen, & Friston, 2009).  

Basic steps of DCM. A standard pipeline of DCM analysis includes the following 

parameters that need to be specified: the definition of the source locations; the definition of the 

connections between these sources; the source(s) of input(s); the connections to be modulated 

by variations in stimulus types and/or tasks. A DCM model can be established through 

changing these parameters iteratively until the predicted neural activity produced by the model 

best matches the observed data. That also means that one can use this approach to estimate a 

great body of models by changing the number of sources, the connections between sources and 

sensory inputs, to test a specific hypothesis. Bayesian statistics are performed to investigate 

which model provides the best explanation of the data (Bayesian model selection, BMS; Penny, 

Stephan, Mechelli, & Friston, 2004). If there is no model that is apparently the best one, then 

a weighted average model can be established via the approach of Bayesian Model Averaging 

(BMA; Penny et al., 2010). As used in the previous chapter, here we used a BMA approach to 

estimate connection strength.  
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Nodes of DCM. Three left-hemisphere regions (left middle occipital cortex (OCC), left 

ventral occipito-temporal cortex (vOT) and left inferior frontal gyrus (IFG) were obtained from 

an ALE meta-analysis based on eight MEG/EEG studies of visual word recognition (see Li et 

al., in preparation; Chapter 2). The vOT coordinates were very close to those reported by 

previous studies (e.g., Cohen, Jobert, Le Bihan, & Dehaene, 2004; Dehaene & Cohen, 2011). 

The right-hemisphere homologues of these areas were also obtained based on these coordinates. 

Thus, a six-node network for the DCM analysis was constructed which included bilateral OCC 

(MNI, ±26 -94 6), bilateral vOT (MNI, ±46 -56 -18) and bilateral IFG (MNI, ±58 8 22). Studies 

with similar experimental settings have shown that this six-node network provides the best fit 

to the MEG data (Woodhead et al., 2014), thus its nodes were considered as the sources of the 

DCM spatial model in the following BMA analysis. 

DCM models. The total number of possible connections in a model with 6 nodes is 30, 

and the total number of possible combinations of those connections (the total model space) is 

230. To reduce computational load, some constraints had to be enacted to limit the size of the 

model space. Following the rules of generating DCM models in the previous experiment, the 

number of independent connections was reduced to 5 in the model, creating a total model space 

of 32 models for each comparison for each participant; each modelling a different combination 

of connections between sources mediating trial-specific effects.  

Following the previous experiment (see Chapter 2), to better examine the changes in 

connection strengths over time, the DCM analysis was conducted in three different time-

windows, 1-100 ms, 1-150 ms and 1–200 ms (see Garrido, Kilner, Kiebel, & Friston, 2007, 

Woodhead et al., 2014 and Poch et al., 2015 for a similar approach). Three peaks at around 100 

ms, 150 ms and 200 ms are also very clear in the early time-windows of the ERF. These three 

time-windows were chosen based on previous studies in which the main reading areas in the 

left hemisphere were clearly activated in the first 200 ms during visual word recognition (e.g., 
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Pammer et al., 2004; Cornelissen et al., 2009; Wheat, Cornelissen, Frost, & Hansen, 2010; 

Woodhead et al., 2014). 

Bayesian Model Averaging (BMA). All 32 models were estimated in three time-

windows for each participant. The 32 models were averaged by group-level BMA with random 

effects (Penny et al., 2010) to investigate the average strength of the stimulus-modulated 

connections, i.e., the gains for the four comparisons: RW vs. PW (lexicality effect), PW vs. CS 

(phonological effect), CS vs. FF (letter effect) and RW vs. FF. For each connection, an average 

gain value equal to 0 indicates that no stimulus-type effect occurs in the connection; an average 

gain value significantly greater than 0 indicates that the connection strength is stronger for the 

former stimulus type; and vice versa, an average gain value significantly smaller than 0 

indicates that the connection strength is stronger for the latter stimulus type.  

To test whether the gain values from the BMA analysis were significant or not, a non-

parametric proportion test was adopted. For each connection, the distribution of the gain was 

reconstructed by generating 100,000 samples from a Gaussian distribution based on the 

posterior mean and standard deviation calculated in the BMA step. The rule was that if more 

than 90 percent of the samples were greater or smaller than zero, the connection was considered 

to be significantly stronger for the former condition or the latter condition, respectively; 

otherwise, the connection strength was considered to be equal between two conditions in the 

connection. A similar approach has been used before (Seghier, Josse, Leff, & Price, 2011; 

Richardson, Seghier, Leff, Thomas, & Price, 2011; Woodhead et al., 2014; Xu, Wang, Chen, 

Fox, & Tan, 2016; also see our previous study).  

Direct comparisons between the tasks. To estimate task-modulation effects of the key 

early feedback connection, i.e. the LIFG-to-LvOT connection, the connection strength was 

compared between two tasks (semantic categorisation task and visual discrimination tasks) for 

each comparison (RW vs. FF, RW vs. PW, PW vs. CS and CS vs. FF). First, 100,000 samples 



Chapter 3: Task Modulation of Early Top-Down Feedback 

 

 - 86 - 

from a Gaussian distribution based on posterior mean and standard deviation were generated 

for each connection in each comparison. Then the differences between the two tasks for each 

comparison was assessed by the fraction of samples that are higher in the semantic 

categorisation task than the visual discrimination task or opposite direction. If an effect was 

reported at a posterior probability threshold of 0.90, then the effect was considered to be 

significant (see a similar approach in Seghier et al., 2010).  

Results 

The behavioural results for task performance, the results of event-related fields at the 

sensor space, and the results of the DCM analysis for each comparison are reported below.  

Task Performance 

The averaged reaction time for catch trials, i.e. hash strings, was 490 ms (SD = 69 ms, 

range 392-594 ms). The average accuracy for catch trials was 0.98 (SD = 0.043, range 0.83-1).  

Event-related Fields (ERFs) 

As used in the previous chapter, the root mean square (RMS) was used to depict the 

time course and strength of event-related fields at the sensor space. The averaged RMS values 

across four conditions were calculated in the first 500 ms after stimulus presentation. In Figure 

2, event-related peaks at around 100 ms, 150 ms and 200 ms appeared in order as a function of 

time-course. The observation is in line with previous studies of visual word recognition (e.g., 

Hauk et al., 2006; Chen et al., 2013). 
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Figure 2. The average root mean square (RMS) plot across all conditions and all subjects as a 

function of time course during the first 500 ms after stimulus onset. Three event-related field 

peaks can be seen at 100 ms, 150 ms and 200 ms, i.e., M100, M150 and M200 components. 

Dynamic Causal Modeling 

The results of BMA analysis assessing the stimulus-type effects on the causal 

relationships between reading nodes in each time window are displayed in Figures 3, 4, 5 and 

6 for each comparison. Table 1 provides the details of posterior means of each connection in 

each time-window. To examine the inter-regional connections in the reading network, our 

focus was on the connections among bilateral IFG, vOT and OCC. Self-connections and 

horizontal lateral connections are not provided here (see supplementary Table 1 for the details). 

We have defined RW vs. PW as a lexicality effect, PW vs. CS as a phonological effect and CS 

vs. FF as a low-level letter effect. The DCM results for each comparison were reported below. 
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Table 2.  

 Posterior means for feedforward and feedback connections in different comparisons. Values 

in bold were significantly stronger for the former (> 0) or weaker for the latter (< 0) than the 

threshold (90 %) (Corresponding p values were smaller than 0.05). 

 

 

 

 

 

 RW vs. FF (overall)  RW vs. PW (lexicality effect) 

Feedforward 1-100 ms 1-150 ms 1-200 ms  1-100 ms 1-150 ms 1-200 ms 

LvOT to LIFG -0.014 0.002 -0.019  0.000 -0.036 0.069 

LOCC to LvOT -0.086 0.200 0.100  -0.129 -0.083 -0.118 

LOCC to LIFG -0.096 0.113 0.035  -0.185 -0.033 -0.038 

RvOT to RIFG  0.058 -0.027 -0.058  -0.017 -0.052 -0.003 

ROCC to RvOT 0.003 -0.076 -0.131  -0.066 -0.131 -0.069 

ROCC to RIFG 0.001 -0.155 -0.075  -0.083 0.018 -0.066 

        

Feedback 1-100 ms 1-150 ms 1-200 ms  1-100 ms 1-150 ms 1-200 ms 

LIFG to LvOT 0.042 0.001 0.006  0.019 0.079 0.062 

LvOT to LOCC 0.060 0.018 -0.047  0.018 0.046 -0.125 

LIFG to LOCC -0.013 0.001 -0.034  -0.020 0.032 -0.033 

RIFG to RvOT -0.041 0.048 0.137  0.054 -0.037 0.047 

RvOT to ROCC -0.014 0.032 -0.029  0.025 0.081 -0.054 

RIFG to ROCC 0.008 -0.046 0.026  -0.026 0.053 -0.008 

 PW vs. CS (phonological effect)  CS vs. FF (letter effect) 

Feedforward 1-100 ms 1-150 ms 1-200 ms  1-100 ms 1-150 ms 1-200 ms 

LvOT to LIFG -0.019 -0.037 0.024  -0.047 0.031 -0.003 

LOCC to LvOT 0.045 -0.116 0.028  -0.057 0.199 0.148 

LOCC to LIFG 0.188 -0.093 -0.053  -0.148 -0.086 0.059 

RvOT to RIFG  -0.022 0.100 -0.004  0.009 0.017 -0.035 

ROCC to RvOT -0.135 -0.026 -0.206  0.066 0.116 -0.050 

ROCC to RIFG 0.156 -0.064 -0.124  -0.155 -0.012 -0.067 

        

Feedback 1-100 ms 1-150 ms 1-200 ms  1-100 ms 1-150 ms 1-200 ms 

LIFG to LvOT -0.065 -0.028 -0.070  0.004 0.103 0.057 

LvOT to LOCC -0.071 -0.073 0.024  0.081 0.029 0.033 

LIFG to LOCC -0.035 -0.047 -0.047  0.013 0.046 -0.040 

RIFG to RvOT -0.056 -0.033 0.001  -0.018 0.004 -0.048 

RvOT to ROCC -0.023 -0.033 0.071  0.037 -0.120 0.042 

RIFG to ROCC 0.037 -0.063 0.014  -0.004 -0.032 -0.093 
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RW vs. FF comparison (Overall). The main results of the RW vs. FF comparison are 

as follows (also see Figure 3 and Table 1 for details). (1) Only one feedback connection, i.e. 

the RIFG-to-RvOT connection was stronger for RW than for FF in the 1-200 ms time-window. 

(2) The LOCC-to-LvOT connection was stronger for FF than for RW in the 1-100 ms time-

window, but was stronger for RW than for FF in both 1-150 ms and 1-200 ms time-windows. 

(3) The ROCC-to-RvOT and ROCC-to-RIFG feedforward connections were stronger for FF 

than for RW in the 1-150 ms and 1-200 ms time-windows.  

 

Figure 3. RW vs. FF comparison for inter-regional causal connections in three time-windows, 

1-100 ms, 1-150 ms, and 1-200 ms. Only significant causal connections are shown here. The 

arrows denote directions of causal influences. An orange line denotes a connection that is 

stronger for RW than for FF while a blue denotes a connection that is stronger for FF than for 

RW.  

RW vs. PW comparison (Lexicality effect). The main results of the RW vs. PW 

comparison are as follows (also see Figure 4 and Table 1 for details). (1) The LIFG-to-LvOT 
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feedback connection was stronger for RW than for PW in both 1-150 ms and 1-200 ms time-

windows. (2) All other connections including the ROCC-to-RvOT and ROCC-to-RIFG 

feedforward connections in all three time-windows, the LOCC-to-LvOT and LOCC-to-LIFG 

feedforward connections in all three time-windows, and the LvOT-to-LOCC feedback 

connection in the 1-200 ms time-window were stronger for PW than for RW. (3) No significant 

feedback connection was found in the 1-100 ms time-window in the left hemisphere (LH), and 

all significant connections in three time-windows in the right hemisphere (RH) were 

feedforward connections. 

 

Figure 4. RW vs. PW comparison (lexicality effect) for inter-regional causal connections in 

three time-windows, 1-100 ms, 1-150 ms, and 1-200 ms. Only significant causal connections 

are shown here. The arrows denote directions of causal influences. An orange line denotes a 

connection that is stronger for RW than for PW while a blue denotes a connection that is 

stronger for PW than for RW.  
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PW vs. CS comparison (Phonological effect). The main results of the PW vs. CS 

comparison are as follows (also see Figure 5 and Table 1 for details). (1) Both the LIFG-to-

LvOT feedback and the LOCC-to-LIFG feedforward connections were stronger for CS than 

for PW in the 1-200 ms time-window, which was followed by both the LOCC-to-LIFG and 

LOCC-to-LvOT feedforward connections stronger for CS than for PW in the 1-150 ms time-

window. (2) No significant feedback connections were found in either the 1-100 ms or 1-150 

ms time-windows for both hemispheres. 

 

Figure 5. PW vs. CS comparison (phonological effect) for inter-regional causal connections in 

three time-windows, 1-100 ms, 1-150 ms, and 1-200 ms. Only significant causal connections 

are shown here. The arrows denote directions of causal influences. An orange line denotes a 

connection that is stronger for PW than for CS while a blue line denotes a connection that is 

stronger for CS than for PW.  

CS vs. FF comparison (Letter effect). The main results of the CS vs. FF comparison 

are as follows (also see Figure 6 and Table 1 for details). (1) The LIFG-to-LvOT feedback 
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connection was stronger for CS than for FF in the 1-150 ms time-window, which was 

accompanied by the LOCC-to-LvOT feedforward connection being stronger for CS than for 

FF in the same window. (2) The bi-directional connections between RIFG and ROCC were 

stronger for FF than for CS. (3) Two feedforward connections, i.e. the OCC-to-IFG 

connections in both hemispheres were stronger for FF than for CS.  

 

Figure 6. CS vs. FF comparison (letter effect) for inter-regional causal connections in the three 

time-windows, 1-100 ms, 1-150 ms, and 1-200 ms. Only significant causal connections are 

shown here. The arrows denote directions of causal influences. An orange line denotes a 

connection that is stronger for CS than for FF while a blue line denotes a connection that is 

stronger for FF than for CS.  

Comparisons between two tasks. The results from the present experiment were 

compared with those of Chapter 2, where the semantic categorisation task was used. The 

average RTs of catch trials (animal words and hash strings) with correct response in the 

semantic categorisation task and the visual discrimination task were 659 ms (SD = 89 ms) and 
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490 ms (SD = 69 ms) respectively. The average accuracy of catch trials in the two tasks were 

0.94 (SD = 0.04) and 0.98 (SD = 0.043) respectively. Two-sample t-tests (two-tailed) revealed 

that the mean RT for animal words in the semantic task was significantly longer than that of 

hash strings in the discrimination task (t (28) = 5.80, p < .001), and the accuracy of animal 

words in the semantic task was significant lower than that of hash strings in the discrimination 

task (t (28) = -2.39, p = .02). The average RMS values reflecting event-related field strength in 

the semantic categorisation and visual discrimination tasks were compared with a two-sample 

t-test (two-tailed). The results showed that the event-related field strength from 50 ms to 77 ms 

after stimulus onset was stronger in the discrimination task than in the semantic task (see Figure 

7). 

 

Figure 7. (A) The average root mean square (RMS) plot across all conditions and all subjects 

as a function of time course during the first 500 ms after stimulus onset in the semantic 

categorisation task (the thick curve) and the visual discrimination task (the thin curve). (B) P-

values as a function of time evolution obtained with a two-sample t-test (two-tailed) on the 

RMS values between two tasks. The dotted line denotes the boundary of the 0.05 p-value.  

The Bayesian Model Averaging (BMA) results from the two tasks were put together to 

examine effects of task modulation on the early LIFG-to-LvOT feedback connection (see 

Figure 8). Statistical analyses for each comparison showed that (1) the differences between 
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tasks in RW vs. FF in each time-window were not significant (p > 0.05); (2) the differences 

between tasks in RW vs. PW in each time-window were not significant (p > 0.05); (3) the 

difference between tasks in PW vs. CS in the 1-200 time-window was significant (p < 0.01); 

(4) the differences between tasks in CS vs. FF in the 1-150 and 1-200 ms time-windows were 

significant (p < 0.01). These results showed that the lexicality effect defined by RW vs. PW, 

in the early LIFG-to-LvOT feedback connection was independent of task; however, the overall 

effect defined by RW vs. FF, the phonological effect defined by RW vs. CS, and the letter 

effect defined by CS vs. FF, in the early LIFG-to-LvOT feedback connection, are all dependent 

on task.  
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Figure 8. Effects of the four different comparisons for the LIFG-to-LvOT connection in three 

time-windows in the semantic categorisation and visual discrimination tasks, and the 

differences between the tasks. Left side in each comparison, strength of the LIFG-to-LvOT 

connection in three windows. An orange line denotes the connection that is stronger for the 

former condition than for the latter condition while a blue line denotes the connection that is 

stronger for the latter condition than for the former condition. Right side in each comparison, 

distributions of 100,000 samples of the LIFG-to-LvOT connection generated by posterior 

means and corresponding standard deviations for each window in each task. Dark grey colour 

denotes the semantic categorisation task and light grey colour denotes the visual discrimination 

task. Dashed lines denote zero value. Dark grey asterisks denote significant effects in the 

semantic categorisation task; light grey asterisks denote significant effects in the visual 

discrimination task; green asterisks denote significant differences between the two tasks. ** p 

< 0.01. 
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Discussion 

Following the previous study, this study sought to examine task modulation of the early 

LIFG-to-LvOT top-down feedback during visual word recognition. This was done by carrying 

out the same basic experiment as reported in Chapter 2 (Li et al., in preparation) but with a 

visual discrimination task rather than a semantic categorisation task, with effects of lexicality, 

phonological processing, and letter processing being the focus. It was expected that if an effect 

on the early top-down feedback is task-dependent, the feedback for that effect would be 

weakened or diminished in the discrimination task. We found that the results in relation to task 

modulation were dependent on which comparison was examined. The LIFG-to-LvOT feedback 

connection was stronger for real words than for pseudowords in both 1-150 ms and 1-200 ms 

time-windows, indicating a lexicality effect; and this connection was also stronger for 

consonant strings than for pseudowords in the 1-200 ms time-window and for false fonts in the 

1-150 ms time-window, indicating a phonological effect and a letter effect, respectively. 

Comparing the results across the two experiments based on the posterior means of the LIFG-

to-LvOT connection revealed that the basic pattern of the real words vs. pseudowords 

comparison was almost same in the two tasks, indicating that the lexicality effect is task-

independent. However, the patterns of the pseudowords vs. consonant strings and consonant 

strings vs. false fonts comparisons in the discrimination task were almost the opposite to those 

in the semantic task, indicating that the phonological and letter effects are task-dependent. In 

addition, the basic finding that the top-down feedback was stronger for real words than for false 

fonts in the semantic task - replicating Woodhead et al (2014) - was absent in the discrimination 

task. These results suggest that the influences of lexicality on the early LIFG-to-LvOT top-

down feedback are likely task-independent or automatic, whereas the influences of 

phonological and letter effects are highly task-dependent or flexible. These observations are 

discussed in detail below.  
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Task Dependence of Phonological and Letter Effects on the Top-down Feedback 

It was interesting to observe that the phonological and letter effects on the LIFG-to-

LvOT connection in the present discrimination task and the previous semantic task (Li et al., 

in preparation; Chapter 2) showed almost opposite patterns. Considering the fact that the 

critical stimuli and experimental settings were kept the same in the two experiments, the reason 

why the patterns of the LIFG-to-LvOT top-down feedback in the two tasks were almost 

opposite is likely attributable to the nature of the task the participants performed. Specifically, 

the differences in this feedback connection between tasks may originate from the distinct 

cognitive demands and aims of the two tasks. Studies examining the task modulation of 

cognitive and neural correlates of visual word processing have previously demonstrated that a 

specific task magnifies relevant cognitive and neural resources to serve its aims (e.g., Balota et 

al., 2004; Bitan et al., 2005, 2006; Yang et al., 2012; Mano et al., 2013; Strijkers et al., 2015; 

McNorgan et al., 2015). In the current case, the semantic task puts high emphasis on high-level 

lexical-semantic access, whereas the discrimination task is simply to decide whether a string is 

a hash string and thus it relies more on the detection of very low-level visual features. The 

finding that the early even-related field strength was stronger for the discrimination task than 

the semantic task (see Figure 7) demonstrates that the discrimination task indeed relies more 

on low-level visual feature detection.  

Due to the high emphasis on lexical-semantic access in the semantic task, participants 

had to construct phonological information from pseudowords they have never seen before and 

then used phonological information to confirm that these pseudowords similar to real words do 

not have meanings and thus were not animal words. However, it is relatively easier to reject 

consonant strings as being animal words. Thus, it is likely that the difficulty of rejecting 

pseudowords as being animal words led to a stronger LIFG-to-LvOT connection for 
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pseudowords than for consonant strings in the semantic task. Here, the cognitive emphasis was 

biased toward pseudowords rather than consonant strings. In contrast, cognitive resources were 

directed to the processing of low-level visual features when the discrimination task was 

performed. The LIFG is an area for phonological and lexical-semantic processing (Taylor et 

al., 2013; Carreiras et al., 2014) and is recruited to differentiate pseudowords from consonant 

strings, so this is consistent with the observation that the LIFG-to-LvOT connection was 

stronger for consonant strings than for pseudowords in the discrimination task. Here, the 

cognitive emphasis was biased to consonant strings rather than pseudowords.  

Past studies have also found that the LIFG is activated more by letters than by symbols 

or colours, indicating its involvement in letter recognition (e.g., Flowers et al., 2004; Liu et al., 

2010, 2011; Vartiainen, Liljestrom, Koskinen, Renvall, & Salmelin, 2011). Liu et al. (2011) 

further found top-down feedback from the LIFG to visual cortex in letter recognition. Here we 

also observed this effect in the top-down LIFG-to-LvOT feedback for letter strings in the 

discrimination task. Because consonant strings and false fonts are all meaningless visual strings 

and false fonts are visually similar to hash strings, participants had to confirm the differences 

in the basic visual features between hash strings and false fonts before they rejected consonant 

strings as being hash strings. This led to the observation that the LIFG-to-LvOT connection 

was stronger for consonant strings than for false fonts in the discrimination task. However, the 

feedback connection showed an opposite pattern in the semantic task: it was stronger for false 

fonts than for consonant strings in both the 1-150 ms and 1-200 ms windows. At the same time, 

the RIFG-to-RvOT connection was stronger for consonant strings than for false fonts. A 

possible explanation is that consonant strings recruited more right-hemisphere neural resources 

flowing from frontal to vOT to process surface properties of letter combinations when the 

semantic task was performed. Due to the demand for high-level linguistic processing in the 

semantic task, the bilateral IFG were likely jointly involved in top-down modulation to the 
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vOT of each respective hemisphere and these two top-down routes are complementary to each 

other. However, there was no need for the recruitment of right-hemisphere top-down feedback 

in the discrimination task because of the simplicity of the discrimination between consonant 

strings and false fonts.  

In addition to the task modulation of the phonological and letter effects, the overall 

effect of the real words vs. false fonts comparison on the LIFG-to-LvOT connection was also 

task-dependent. The stronger LIFG-to-LvOT connection for real words than for false fonts in 

the 1-150 ms time-window in the semantic task disappeared in all three time-windows in the 

discrimination task. Both Woodhead et al. (2014) and Li et al. (in preparation, Chapter 2) found 

that this early feedback connection was stronger for real words than for false fonts. Both studies 

used a semantic categorisation task; Woodhead et al. used a personal name detection task and 

Li et al. used an animal word detection task. Therefore, it is likely that the high lexical-semantic 

demands of these two tasks resulted in a similar observation on the LIFG-to-LvOT top-down 

feedback. However, the stronger feedback for words than for false fonts was washed out by the 

discrimination task which had non-linguistic cognitive demands. This result strongly indicates 

that the nature of the task - linguistic or non-linguistic - contributes to the early top-down 

influences from inferior frontal to ventral occipito-temporal cortex. Top-down feedback is not 

automatic and free from task goals, but instead is highly modulated by them.  

Note that the absence of this significant difference between the overall real words and 

false fonts comparison in the discrimination task reflects that the top-down feedback in the two 

conditions is comparable. Real words also have lexical information, but false fonts do not. This 

seemingly is in contradiction with the observation that lexical influence on the top-down 

feedback was present in the discrimination task because the feedback was stronger for real 

words than for pseudowords (see the section below). A detailed inspection of the nature of the 

discrimination task tends to support that they do not contradict each other. Due to the similarity 
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in surface properties between false fonts and hash strings and the reliance of the discrimination 

task on surface properties, the top-down feedback had to be heavily biased to false fonts so that 

a correct decision – reject false fonts as being non-hashes – could be made. It is likely that the 

top-down feedback was strong for both real words and false fonts, but the differences between 

them were removed by a strong bias toward false fonts in the discrimination task because of its 

reliance on surface properties. Therefore, this finding does not contradict the task-

independence of lexical influence on the feedback per se.  

Task-Independent Lexical Influences on Top-down Feedback 

Although the phonological and letter effects in the semantic categorisation and visual 

discrimination tasks showed opposing patterns, the lexicality effect on the early top-down 

feedback connection was very consistent across the two tasks (see Figure 8). Specifically, the 

early lexicality effect on the feedback connection also appeared in both the 1-150 ms and 1-

200 ms time-windows when the discrimination task was performed, and its magnitude was 

almost equal to that in the semantic task. Considering the earliness and consistency of the 

lexicality effect in both tasks, the role of lexicality in the early feedback from LIFG to LvOT 

is likely to be highly automatic and thus be task-independent. In the extant literature, an early 

lexicality effect at around or even before 150 ms from stimulus onset has been previously 

revealed by electrophysiological measures (Sereno, Rayner, & Posner, 1998; Carreiras et al., 

2014). Specifically, event-related responses to real words and pseudowords start to diverge in 

the classic N170 time-window (e.g., Sereno et al., 1998; Hauk et al., 2006, 2012; Mahé et al., 

2012; Araújo et al., 2015; Coch & Meade, 2016). For example, Hauk et al. (2006) found that 

differences in event-related responses appeared at 160 ms after word onset when a lexical 

decision task was performed. The current study extends findings of the earliness of lexicality 

effects on the time course of visual word recognition observed in previous work (Hauk et al., 
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2006). The M/EEG studies mentioned above generally used high-level linguistic tasks, such as 

lexical decision and semantic categorisation. In terms of linguistic demands, these tasks, to 

some extent, are similar to the semantic categorisation task used in Li et al. (in preparation, 

Chapter 2) because all of them emphasise lexical-semantic access. However, these tasks are 

very different from the visual discrimination task, but it was found that the lexicality effect also 

occurred in this task.  

Why was the lexicality effect on the LIFG-to-LvOT top-down feedback free from the 

influences of task goals? A crucial factor, reading proficiency, could contribute to the task 

independence of this lexicality effect. Both studies recruited young adult readers who were 

university students with more than 10 years reading experience and thus could be considered 

expert readers. The direct connections between orthography and semantics can be very strong 

and automatic in these readers such that when a word is displayed, the meaning can be rapidly 

extracted (e.g., Coltheart et al., 2001) and may exert early top-down feedback no matter what 

tasks are performed. Furthermore, real words are highly familiar to these readers and their 

memory traces have been well-established; but pseudowords are totally new and no memory 

traces in the brain have been established. Thus, the existing memory traces for real words can 

be rapidly activated for top-down feedback, whereas these are almost absent for pseudowords. 

Interestingly, with a lexical decision task and a symbol detection task in fMRI studies, Yang et 

al. (2012) and Yang and Zevin (2014) found that the activation in the LIFG evoked by real 

characters was comparable in the two tasks. Yang et al. (2012) further observed this pattern in 

the LvOT. These studies suggest that the activation in the LIFG is highly automatic at least in 

a task with no explicit linguistic demands, which is consistent with the present finding of task-

independent lexicality effects in top-down feedback.  
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Overall Connectivity Pattern  

 Similar to the findings in the semantic task, significant left-lateralised top-down 

feedback was also found in the real words vs. pseudowords and pseudowords vs. consonant 

strings comparisons in the discrimination task, indicating that the left lateralisation of the word 

recognition brain network is generally independent of task. Past fMRI studies have reported a 

similar observation in both linguistic tasks (e.g., Taylor et al., 2013) and non-linguistic tasks 

(e.g., Vinckier et al., 2007; Liu et al., 2008). Both Vinckier et al. (2007) and Liu et al. (2008) 

found that a left-lateralised word-recognition network in a non-linguistic task. Furthermore, 

our previous MEG study using the semantic task found that the predominance of the LIFG-to-

LvOT feedback connection in the 1-150 ms and 1-200 ms time-windows and the predominance 

of the OCC-to-vOT and vOT-to-IFG feedforward connections in the 1-100 ms time-window 

(Li et al., in preparation; Chapter 2), which is consistent with the pattern in the discrimination 

task. These consistent findings indicate that both tasks shared a similarity in that significant 

feedforward connections occurred earlier than the significant LIFG-to-LvOT feedback 

connections. This suggests that relevant information on visual words is firstly processed in a 

purely bottom-up hierarchical manner (information flows from low-level to high-level areas), 

and this is then followed by joint bottom-up and top-down processing; that is, information 

flows from low-level to high-level areas coupled by information flowing from high-level to 

low-level areas (also see Discussion in Chapter 2). These similarities between the two tasks 

indicate that tasks with different emphases but with the same stimulus inputs still preserve the 

general neural hierarchy of word recognition.  

 

 



Chapter 3: Task Modulation of Early Top-Down Feedback 

 

 - 103 - 

Limitations 

 The current DCM study comes with some limitations. One is that we compared the 

DCM results in two different tasks performed by two separate but well-matched samples. The 

reason why we adopted this approach is that fatigue could affect the neural responses to stimuli 

if participants were required to finish two tasks with each lasting about 80 minutes. However, 

this between-subject design still may contribute as a confounding factor because of small 

sample size in each task and potential large inter-subject variability. Previous fMRI studies of 

reading with two different tasks have adopted a within-subject design; that is, all participants 

finished two tasks (Yang et al., 2012; Mano et al., 2013; Chen et al., 2015; Yang & Zevin et 

al., 2014; Strijkers et al., 2015). Future studies could use a within-subject design to test the 

reliability and robustness of task modulation on early top-down feedback revealed in this study.  

Conclusion 

Following the previous study, this study applied DCM analyses to MEG data to 

examine the early feedback from frontal to ventral occipito-temporal cortex during visual word 

recognition in a visual discrimination task with no linguistic demands, and then compared the 

results with those in a semantic categorisation task. It was found that the LIFG-to-LvOT top-

down feedback was highly dependent on the effects that were examined. The earliness and 

consistency of the lexicality effect in the two tasks indicates the automatic influences of lexical-

semantic factors on the LIFG-to-LvOT top-down feedback during visual word recognition. The 

phonological and letter effects on the top-down feedback in the two tasks were different from 

each other, providing strong evidence for the task-dependence of these effects. The consistent 

division of labour for feedback and feedforward connections, and similar lateralisation of word 

recognition in the brain in the two tasks, further suggest that tasks with different cognitive aims 
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do not change the general neural hierarchy. The findings observed here have implications on 

the roles of task goals in modulating inter-regional information flow in the brain during visual 

word recognition. 
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Appendix A 

Supplementary Table 1. 

Posterior means for feedforward, feedback, lateral, and self- connections in different 

comparisons. Values in bold were significantly stronger for the formers (> 0) or weaker for 

the latters (< 0) than the chance (90 %) (Corresponding p values were smaller than 0.05). 

 

 RW vs. FF 

Feedback 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LIFG to LvOT 0.042 0.036 0.001 0.048 0.006 0.039 

LvOT to LOCC 0.060 0.084 0.018 0.071 -0.047 0.064 

LIFG to LOCC -0.013 0.064 0.001 0.047 -0.034 0.053 

RIFG to RvOT -0.041 0.034 0.048 0.048 0.137 0.039 

RvOT to ROCC -0.014 0.085 0.032 0.075 -0.029 0.064 

RIFG to ROCC 0.008 0.064 -0.046 0.047 0.026 0.053 

 

Feedforward 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean  SD 

LvOT to LIFG -0.014 0.052 0.002 0.052 -0.019 0.058 

LOCC to LvOT -0.086 0.062 0.200 0.049 0.100 0.046 

LOCC to LIFG -0.096 0.044 0.113 0.041 0.035 0.044 

RvOT to RIFG  0.058 0.050 -0.027 0.058 -0.058 0.054 

ROCC to RvOT 0.003 0.064 -0.076 0.052 -0.131 0.044 

ROCC to RIFG 0.001 0.041 -0.155 0.045 -0.075 0.041 

 

Lateral 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean  SD 

ROCC to LOCC 0.130 0.077 -0.006 0.071 0.023 0.066 

RvOT to LvOT -0.002 0.084 -0.068 0.079 -0.100 0.071 

RIFG to LIFG 0.018 0.055 -0.043 0.054 0.110 0.044 

LOCC to ROCC 0.026 0.077 -0.131 0.068 0.049 0.065 

LvOT to RvOT 0.000 0.083 -0.033 0.078 0.075 0.071 

LIFG to RIFG 0.011 0.055 0.036 0.055 0.027 0.050 

 

Self-connections 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean  SD 

LOCC to LOCC 0.172 0.017 0.061 0.010 -0.012 0.008 

ROCC to ROCC -0.100 0.017 -0.003 0.009 -0.050 0.008 

LvOT to LvOT -0.067 0.047 -0.089 0.024 -0.027 0.021 

RvOT to RvOT -0.020 0.045 0.004 0.023 0.076 0.020 

LIFG to LIFG -0.277 0.043 -0.034 0.020 0.033 0.022 

RIFG to RIFG 0.035 0.038 0.056 0.024 0.060 0.019 

(continued) 
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Supplementary Table 1. (continued) 

 

 RW vs. PW (lexicality effect) 

Feedback 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LIFG to LvOT 0.019 0.056 0.079 0.050 0.062 0.042 

LvOT to LOCC 0.018 0.084 0.046 0.075 -0.125 0.062 

LIFG to LOCC -0.020 0.060 0.032 0.053 -0.033 0.045 

RIFG to RvOT 0.054 0.054 -0.037 0.050 0.047 0.040 

RvOT to ROCC 0.025 0.084 0.081 0.074 -0.054 0.057 

RIFG to ROCC -0.026 0.059 0.053 0.052 -0.008 0.040 

 

Feedforward 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LvOT to LIFG 0.000 0.048 -0.036 0.052 0.069 0.057 

LOCC to LvOT -0.129 0.057 -0.083 0.053 -0.118 0.045 

LOCC to LIFG -0.185 0.050 -0.033 0.039 -0.038 0.038 

RvOT to RIFG  -0.017 0.049 -0.052 0.050 -0.003 0.049 

ROCC to RvOT -0.066 0.065 -0.131 0.052 -0.069 0.041 

ROCC to RIFG -0.083 0.056 0.018 0.041 -0.066 0.039 

 

Lateral 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

ROCC to LOCC -0.071 0.082 -0.139 0.068 -0.140 0.051 

RvOT to LvOT 0.025 0.084 0.032 0.077 0.049 0.063 

RIFG to LIFG -0.030 0.060 0.010 0.047 0.015 0.040 

LOCC to ROCC 0.057 0.078 -0.031 0.068 -0.042 0.057 

LvOT to RvOT 0.013 0.085 0.028 0.078 0.066 0.063 

LIFG to RIFG 0.002 0.061 0.010 0.047 0.074 0.038 

 

Self-connections 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LOCC to LOCC 0.069 0.017 0.046 0.008 0.054 0.009 

ROCC to ROCC -0.056 0.020 0.023 0.010 0.007 0.007 

LvOT to LvOT -0.050 0.039 -0.006 0.023 0.005 0.021 

RvOT to RvOT 0.046 0.038 0.041 0.022 0.030 0.020 

LIFG to LIFG 0.014 0.042 0.007 0.019 0.031 0.018 

RIFG to RIFG -0.038 0.041 -0.036 0.021 -0.026 0.018 

(continued) 
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Supplementary Table 1. (continued) 

 

 PW vs. CS (Phonological effect) 

Feedback 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LIFG to LvOT -0.065 0.064 -0.028 0.049 -0.070 0.050 

LvOT to LOCC -0.071 0.087 -0.073 0.077 0.024 0.060 

LIFG to LOCC -0.035 0.057 -0.047 0.073 -0.047 0.045 

RIFG to RvOT -0.056 0.062 -0.033 0.045 0.001 0.046 

RvOT to ROCC -0.023 0.084 -0.033 0.078 0.071 0.053 

RIFG to ROCC 0.037 0.056 -0.063 0.070 0.014 0.043 

 

Feedforward 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LvOT to LIFG -0.019 0.045 -0.037 0.057 0.024 0.046 

LOCC to LvOT 0.045 0.060 -0.116 0.048 0.028 0.044 

LOCC to LIFG 0.188 0.053 -0.093 0.040 -0.053 0.037 

RvOT to RIFG  -0.022 0.047 0.100 0.051 -0.004 0.047 

ROCC to RvOT -0.135 0.063 -0.026 0.048 -0.206 0.045 

ROCC to RIFG 0.156 0.055 -0.064 0.037 -0.124 0.035 

 

Lateral 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

ROCC to LOCC -0.142 0.080 0.121 0.066 0.173 0.055 

RvOT to LvOT -0.073 0.083 -0.008 0.076 -0.077 0.068 

RIFG to LIFG -0.043 0.055 -0.042 0.060 -0.032 0.043 

LOCC to ROCC 0.051 0.081 -0.024 0.070 -0.113 0.059 

LvOT to RvOT -0.051 0.084 -0.075 0.076 -0.023 0.069 

LIFG to RIFG -0.008 0.052 -0.014 0.055 0.029 0.047 

 

Self-connections 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LOCC to LOCC -0.132 0.022 -0.057 0.015 -0.052 0.010 

ROCC to ROCC 0.012 0.021 0.052 0.013 0.028 0.011 

LvOT to LvOT 0.022 0.043 0.024 0.026 -0.010 0.019 

RvOT to RvOT 0.188 0.042 -0.031 0.024 0.050 0.023 

LIFG to LIFG 0.042 0.046 0.064 0.024 0.044 0.016 

RIFG to RIFG -0.021 0.046 0.041 0.022 0.062 0.019 

 (continued) 
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Supplementary Table 1. (continued) 

 

 CS vs. FF (Low-level letter effect) 

Feedback 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LIFG to LvOT 0.004 0.063 0.103 0.049 0.057 0.048 

LvOT to LOCC 0.081 0.084 0.029 0.072 0.033 0.063 

LIFG to LOCC 0.013 0.047 0.046 0.048 -0.040 0.057 

RIFG to RvOT -0.018 0.065 0.004 0.051 -0.048 0.044 

RvOT to ROCC 0.037 0.085 -0.120 0.075 0.042 0.058 

RIFG to ROCC -0.004 0.047 -0.032 0.047 -0.093 0.056 

 

Feedforward 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LvOT to LIFG -0.047 0.061 0.031 0.040 -0.003 0.041 

LOCC to LvOT -0.057 0.063 0.199 0.049 0.148 0.042 

LOCC to LIFG -0.148 0.050 -0.086 0.039 0.059 0.043 

RvOT to RIFG  0.009 0.066 0.017 0.039 -0.035 0.042 

ROCC to RvOT 0.066 0.062 0.116 0.051 -0.050 0.044 

ROCC to RIFG -0.155 0.051 -0.012 0.037 -0.067 0.039 

 

Lateral 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

ROCC to LOCC 0.116 0.080 0.246 0.068 0.075 0.064 

RvOT to LvOT 0.016 0.082 0.027 0.076 -0.030 0.070 

RIFG to LIFG 0.026 0.055 -0.041 0.065 0.016 0.043 

LOCC to ROCC 0.054 0.079 0.073 0.067 0.065 0.065 

LvOT to RvOT -0.054 0.086 -0.059 0.077 0.068 0.071 

LIFG to RIFG -0.014 0.057 0.017 0.067 -0.026 0.046 

 

Self-connections 1-100 ms 1-150 ms 1-200 ms 

 Mean SD Mean SD Mean SD 

LOCC to LOCC 0.002 0.016 -0.007 0.012 -0.060 0.008 

ROCC to ROCC -0.173 0.017 -0.106 0.012 -0.149 0.011 

LvOT to LvOT 0.241 0.042 -0.129 0.024 0.020 0.022 

RvOT to RvOT -0.169 0.044 0.023 0.023 0.095 0.020 

LIFG to LIFG 0.093 0.036 0.054 0.020 0.056 0.022 

RIFG to RIFG -0.087 0.048 0.111 0.022 0.115 0.020 
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Abstract 

This MEG study aimed to examine task modulation of the time course of visual word 

recognition. To do so, we re-analysed the data from two previous experiments using different 

tasks, a linguistic semantic categorisation task and a non-linguistic visual discrimination task. 

Both experiments used four types of critical stimulus, real words (RW), pseudowords (PW), 

consonant strings (CS), and false fonts (FF), to get three effects – a lexicality effect (RW vs. 

PW), a phonological effect (PW vs. CS), and a letter effect (CS vs. FF). Evoked field 

amplitudes in five time-windows after stimulus onset were extracted to examine the time 

course of visual word recognition in the two tasks. The electrophysiological results of root 

mean square and topographical analysis collectively showed that the occurrence of these three 

effects exhibited different patterns in the two tasks within the first 500 ms after stimulus onset; 

specifically, an early lexicality effect emerged in the semantic task but did not show in the 

discrimination task. The phonological effect emerged earlier in the discrimination task than in 

the semantic task. Two complementary behavioural experiments procedurally identical to the 

MEG experiments were carried out in two separate samples in order to obtain measures of 

behavioural performance for the critical conditions. Behavioural data showed that the pattern 

of reaction times for the four types of stimulus was RW > PW > CS > FF in the semantic task. 

There were no significant differences among RW, PW, and CS in the discrimination task but 

reaction time for CS < FF. These findings indicate that an emphasis on high-level linguistic 

information sensitises the neural responses to linguistic factors, whereas an emphasis on low-

level visual feature detection sensitises neural responses to surface properties. These 

observations collectively indicate that the time course of visual word recognition is highly 

dependent on task goals in which linguistic intention play a crucial role.  
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Introduction 

Visual word recognition involves different cognitive processing stages from low-level 

feature detection to orthographic form analysis and then to high-level phonological and lexical-

semantic access. It is a skill unique to humans, and has to be acquired through extensive 

experience and training. Our previous effective connectivity study has showed that early top-

down feedback from the frontal cortex to ventral occipito-temporal cortex during visual word 

recognition is modulated by task goals (Chapter 3). Re-analysing the data from our previous 

experiments, we here aimed to examine how task goals modulate the time course of visual 

word recognition.  

Behavioural investigations have established that visual word recognition is modulated 

by tasks with different goals (e.g., Andrews, 1982; Monsell, Doyle, & Haggard, 1989; Balota 

et al., 2004; Balota & Yap, 2006; Yap & Balota, 2009). For example, the lexical variable of 

word frequency has been found to contribute more to performance on a lexical decision task 

than it does on a naming task (Balota et al., et al., 2004; Yap & Balota, 2009). Behavioural 

findings provide direct evidence that the influences of linguistic properties on visual word 

recognition vary according to task goals. These behavioural investigations also reveal that task 

modulation of visual word recognition could take place within several hundred milliseconds 

before explicit responses such as a button press or naming, echoing the finding that cognitive 

processes during visual word recognition unfold rapidly (Sereno & Rayner, 2003; Carreiras, 

Armstrong, Perea, & Frost, 2014; Hauk, 2016). This brings an outstanding question - how does 

the task modulation of visual word recognition unfold over time? The best way to answer this 

question is to track the time course of visual word recognition in different tasks.  

 Neuroimaging techniques with high temporal resolution have advantages when it 

comes to tracking the time course of cognitive processes. Indeed, studies with 
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magnetoencephalography (MEG) and electroencephalography (EEG) have revealed influences 

of linguistic properties on word recognition within the first 500 ms of visual word presentation 

Previous studies have shown that an effect of lexicality (differences between real words and 

pseudowords) takes place between 150 ms and 200 ms after stimulus onset (i.e., the N/M150 

or N/M170 window; see Hauk, Davis, Ford, Pulvermuller, & Marslen-Wilson, 2006; Hauk, 

Coutout, Holden, & Chen, 2012), and that single word comprehension has occurred in the 

N/M400 window (see Kutas & Federmeier, 2011; Lau, Phillips & Poeppel, 2008; Carreiras et 

al., 2014; Grainger & Holcomb, 2009). These basic findings indicate that crucial cognitive 

processing stages of visual word recognition have been almost completed within half second 

after stimulus onset. Thus, electrophysiological measures with high temporal resolution can 

serve as an ideal tool to examine task modulation of the time course of visual word recognition 

(Sereno & Rayner, 2003; Pylkkänen & Marantz, 2003; Pammer, 2009; Carreiras et al., 2014).  

Several EEG and MEG studies have specifically examined whether task goals have an 

impact on the time course of word recognition (e.g., Fujimaki et al., 2009; Strijkers, Yum, 

Grainger, & Holcomb, 2011; Hauk et al., 2012; Chen, Davis, Pulvermuller, & Hauk, 2013, 

2015; Yum, Law, Su, Lau, & Mo, 2014; Mahé, Zesiger, & Laganaro, 2015). Commonly-used 

tasks in these studies are lexical decision, reading aloud, silent reading, semantic categorisation 

and their variants. All of these tasks recruit high-level linguistic processing beyond 

orthographic form analysis, but have very different cognitive emphases. Lexical decision and 

semantic categorisation tasks specifically stress more lexical-semantic access, whereas reading 

aloud tasks place more emphasis on phonological retrieval and production (Balota et al., 2004; 

Yap & Balota, 2009). There is some evidence for the modulation of these linguistic tasks on 

the time course of visual word recognition. For example, Fujimaki et al. (2009) found that 

word-evoked neural differences between lexical and phonological decision tasks occurred 

mainly between 200-400 ms after stimulus onset in the left anterior temporal area. Mahé et al. 
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(2015) found that the event-related responses evoked by words diverged between reading aloud 

and lexical decision tasks from about 140 ms after stimulus onset, while early event-related 

responses were common to the two tasks on both waveform amplitudes and global topography. 

Strijkers et al. (2011) found that word-evoked event-related responses between a reading aloud 

task and a semantic categorisation task started to diverge at around 170 ms. These findings 

demonstrate that linguistic tasks with different goals modulate the time-course of visual word 

recognition within the first 300 ms.  

All of the tasks described above are linguistic by nature, in which high-level 

phonological and lexical-semantic information are required to be processed before a button 

press or oral response occurs. Although these linguistic tasks have different goals, in addition 

to the processing of phonological and lexical-semantic information they all require the 

processing of low-level visual features and orthographic forms. Thus, comparing different 

linguistic tasks may not be able to detect differences in the neural responses to low-level visual 

features orthographic forms of visual words. Here, a non-linguistic task could be used as a 

potential solution because it does not require any processing of linguistic properties but only 

low-level visual features. A representative example of a non-linguistic task is a symbol 

detection task in which participants are asked to detect whether a stimulus is a hash string 

(####), and no linguistic processing is necessary to perform the task (e.g., Vinckier et al., 2007). 

Although some fMRI studies have examined the modulation of task goals on brain activity of 

visual word recognition using these kinds of tasks (Yang, Wang, Shu, & Zevin, 2012; Mano et 

al., 2014; Yang & Zevin, 2014), they are unable to provide time course information due to the 

poor temporal resolution of BOLD signals. To date, only a limited number of M/EEG studies, 

with the required temporal resolution, have examined task modulation of the time course of 

visual word recognition in these two types of task - linguistic and non-linguistic (Bentin, 

Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999; Spironelli & Angrilli, 2007; Strijkers, 
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Bertrand, & Grainger, 2015; Wang & Maurer, 2017). However, the focus of these studies is 

somewhat limited in that each of them specifically examined task modulation of a single 

linguistic property and did not cover multiple time-windows, which are important for the 

inspection of task modulation.  

Building on these previous studies, the current MEG study sought to examine task 

modulation of the time course of the first 500 ms visual word recognition by using a linguistic 

task and a non-linguistic task. To this end, we re-analysed the data of the previous two 

experiments using a semantic categorisation task and a visual discrimination task with the same 

general experiment procedure, apparatus and critical stimuli. Four types of stimulus, real words 

(CS), pseudowords (PW), consonant strings (CS), and false fonts (FF), were used to establish 

three comparisons for distinct effects, RW vs. PW (a lexicality effect), PW vs. CS (a 

phonological effect), and CS vs. FF (a letter effect). During the linguistic semantic 

categorisation task in which participants decided whether a stimulus was an animal word, high-

level lexical-semantic and phonological processes must be drawn on to make a decision. 

However, in the non-linguistic visual discrimination task, participants were required to decide 

whether a visual stimulus was a hash string (e.g., ###): The participants responded by pressing 

a button if the stimulus was a hash string. Because no linguistic information is included in 

hashes, and the task could be completed with only visual features, the need for high-level 

linguistic processing would be expected to be minimised.  

To depict the time course of lexicality, phonological, and letter effects in each task, we 

applied a non-parametric cluster-based permutation test (Maris & Oostenveld, 2007) to the 

MEG topography for five different time-windows covering the first 500 ms of evoked neural 

activity. This non-parametric approach is a data-driven method and solves the multiple 

comparison problem in EEG and MEG studies due to multiple channels and samples (Maris & 

Oostenveld, 2007). The three pre-defined effects as the focus of the current study helps to 
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reveal how the brain responds to lexical-semantic, phonological and surface properties after 

presentation of visual words. Based on the implications of the existing evidence that visual 

word recognition is highly guided by task goals, it was expected that the time course of visual 

word recognition would show differences across the two tasks. The nature of the tasks differs 

mainly in linguistic intention. The processing of both low-level visual features/orthographic 

form and high-level linguistic properties of visual words is required in the linguistic semantic 

categorisation task, whereas only low-level visual features are necessarily processed in the 

visual discrimination task. Thus, it was specifically hypothesised that lexicality and 

phonological effects on the time course of visual word recognition would be amplified in the 

semantic categorisation task, but would be weakened/delayed or even disappear in the visual 

discrimination task; in the meantime, the letter effect would be similar across two tasks.  

We also conducted two complementary behavioural experiments in two different 

samples of adult participants. These used the same procedures as the MEG experiments and 

allowed us to record reaction time and accuracy for the four critical conditions (RW, PW, CS, 

and FF), measures which were not recorded in the two MEG experiments. Similar to the 

predictions above, we expected that differences between RW and PW, PW and CS, and CS and 

FF, especially between orthographically-legal strings RW/PW and CS/FF, would be amplified 

in the semantic categorisation task, but would be reduced or diminished in the visual 

discrimination task.  
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Methods2 

Participants 

Fifteen native English speakers (7 females, 9 males; age range: 19-28 y; mean age: 

22.38 y) were recruited from the university campus to participate in the study with the semantic 

categorisation task. Another fifteen native English speakers (10 females, 5 males; age range: 

19-31 y; mean age: 25 y) participated in the study with the visual discrimination task. These 

were the same participants as reported in Chapter 2 and 3, and details are provided again here 

for completeness, and to conform with the thesis by publication format. All participants 

reported that they had normal hearing, normal or corrected-to-normal vision and had no history 

of neurological disorders. The Edinburgh Handedness Inventory (Oldfield, 1971) was used to 

assess their handedness. In each experiment, fourteen participants were right-handed and one 

left-handed. All participants had normal reading competence measured by the Test of Word 

Reading Efficiency (TOWRE; Torgesen, Wagner & Rashotte, 1999). All participants had 

normal performance IQ as measured by the Matrices subscale of the Kaufman Brief 

Intelligence Test, (Second Edition; KBIT-2; Kaufman & Kaufman, 2004). See Table 1 for 

details. This study was approved by the Human Research Ethics Committee (Medical Sciences) 

at Macquarie University. A signed consent form was obtained from each participant before the 

experiments.  

 

 

 

 

                                                      
2 The MEG data in Chapters 2 and 3 were re-analysed for this study.   
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Table 1.  

Summary of behavioural tests.  

  

semantic 

categorisation task  

(n=15) 

 

visual  

discrimination task 

(n=15) 

 

t p 
  mean SD  mean SD  

Age 
(years) 

 22.60 2.80  23.47 3.52  -0.75 .46 

Non-verbal IQ  
(KBIT-matrix) 

118.20 8.25  113.13 8.55  1.65 .11 

Word reading  
(TOWRE - SWE) 

103.00 11.05  102.53 10.58  0.11 .91 

Pseudoword reading  
(TOWRE - PDE) 

103.47 13.08  107.40 12.49  -0.84 .41 

Reading ability  
(combined SWE/PDE) 

104.00 13.38  106.07 13.10  -0.43 .67 

 

Overall Procedure 

In each task, participants first underwent an 80-minute MEG recording and then 

performed the 30-minute behavioural testing which included the reading ability test, TOWRE, 

on the same day or the following day.  

MEG Experiment Materials 

The critical stimuli used in the two tasks, i.e. real word (RW), pseudoword (PW), 

consonant strings (CS) and false fonts (FF) were the same (see Figure 1). Within each category 

there were 120 exemplars divided equally into four stimulus lengths of three, four, five and six 

characters. All stimuli were presented in Calibri in lower case. RWs were chosen from 

MCWord (an Orthographic Wordform Database; for details, see 

http://www.neuro.mcw.edu/mcword/). The MCWord is a database based on the CELEX 

efw.cd file that contains approximately 16,600,000 examples. PWs were firstly generated 

based on real words through the WUGGY software (Keuleers & Bysbaert, 2010. For details, 

see http://crr.ugent.be/programs-data/wuggy) and then were carefully chosen to match RWs in 

http://www.neuro.mcw.edu/mcword/
http://crr.ugent.be/programs-data/wuggy
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bigram frequency, trigram frequency and Coltheart’s N based on MCWord database. Two-

sample t-tests revealed no significant differences between RW and PW for each variable (p < 

0.10) (see Table 1 in Chapter 2). CSs were also initially generated by the WUGGY software, 

with bigram/trigram frequency and Coltheart’s N set at zero to keep CSs as pure letter strings 

without any higher-level orthographic information. As in the previous study on which this 

study builds (Woodhead et al., 2014), FFs were direct translations of the real words using the 

“Carian” font (Jane Warren, personal communication). “Carian” fonts are characters adapted 

from the alphabet of an obsolete Anatolian language (Melchert, 2004). To reduce possible 

influences of similarity to English letters, some characters whose shape was visually similar to 

English letters were replaced by others. Therefore, the FFs had no meanings and could not be 

pronounced.  

Ninety-six animal words (e.g., cat, dog and donkey) were used as catch trials which 

participants were required to respond to by pressing a button in the semantic categorisation 

task. Ninety-six hash strings (e.g., ### and ####) were used as catch trials in the visual 

discrimination task (see Figure 1). 576 trials in total were included in each task.  

 

Figure 1. Left, examples of critical stimuli, real words, pseudowords, consonant strings, and 

false fonts in two experiments; right, examples of target stimuli in the semantic categorisation 

task (animal words) and visual discrimination task (hash strings).  
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MEG Experiment Procedure 

In each task, the whole procedure included preparation, a practice run, the actual 

experiment and rests between blocks. The experiment was divided into six blocks. The order 

of stimuli was pseudo-randomised and presented on a screen in front of the participant using 

E-Prime 2.0 (https://www.pstnet.com/eprime.cfm). The distance between the screen and 

participants’ eyes was 60 cm. 

For each trial, a black screen was presented with a white cross for visual fixation; then 

a stimulus was presented for 500 ms, followed by a white cross which was displayed for 

between 2800 ms and 3400 ms. In the semantic categorisation task, participants were asked to 

attend to each trial carefully and respond with a button press when an animal name was 

presented on the screen. In the visual discrimination task, participants were asked to attend to 

each trial carefully and respond with a button press when an animal word was presented on the 

screen. Catch trials were removed from the data analysis. Before the actual experiment, a 

practice run was conducted to familiarise participants with the task.  

MEG Data Acquisition and Pre-processing 

MEG data were recorded using the KIT-Macquarie MEG160 (Model PQ1160R-N2, 

KIT, Kanazawa, Japan) located at Macquarie University, with participants lying in a 

magnetically shielded room. Data were recorded using 160 coaxial first-order gradiometers 

with a 50-mm baseline (Kado et al. 1999; Uehara et al. 2003). Prior to MEG data acquisition, 

the locations of three head landmarks (nasion and bilateral preauricular points), five marker 

coil positions, and the subject’s head shape were recorded by 3D digitisation (Polhemus 

Fastrack, Colchester, VT). Participants’ head position and corresponding sensor positions were 

https://www.pstnet.com/eprime.cfm
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measured by energising the five marker coils briefly. The head motion was less than 6 mm for 

each participant in each block during the entire recording. The online sample rate was 1000 Hz.  

MEG data analysis was conducted using SPM12 software (Litvak et al., 2011) 

implemented in Matlab 2014b (The MathWorks, Inc.). The original data sampled at 1000 Hz 

were high-pass filtered at 1 Hz and then low-pass filtered at 30 Hz. The filtered data were 

epoched from 150 ms before stimulus presentation to 600 ms after stimulus presentation. The 

pre-stimulus time window (-100 - 0 ms) was used for baseline correction. To reject artefacts, 

the Fieldtrip visual artefact rejection toolbox, which expresses every time point as a deviation 

from the mean over all time and channels, was used to remove extreme trials in four conditions 

for each participant based on the variance within each channel 

(http://www.fieldtriptoolbox.org/reference/ft_rejectvisual). No more than 6% of trials in any 

condition were excluded by the artefact rejection procedure. Subsequently, robust averaging 

was applied to the epoched data across trials within each condition (RW, PW, CS and FF) 

(Litvak et al., 2011; Wager, Keller, Lacey, & Jonides, 2005). 

Event-related Field (ERF) Analysis 

Prior to the topographical analysis in sensor space, root mean square (RMS) averaging 

across sensors was used to track the time-course of event-related fields (ERFs) and to determine 

global onsets/offsets of each ERF component in sensor space (Skrandies, 1990). The RMS 

value is the square root of the arithmetic mean of the squares of the values (averaged over trials) 

in all MEG sensors at a given time-point and reflects how strong an ERF is. The average RMS 

values for four conditions across two tasks were calculated in the first 500 ms after stimulus 

presentation. The ERFs peaking at around 100 ms, 150 ms, 200 ms and 400 ms are clearly 

evident, as can be seen in Figure 2. Thus, based on the time points of peaks of the average RMS 

value across the semantic categorisation task and visual discrimination task, five time-windows, 
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80-120 ms, 120-170 ms, 170-250 ms, 250-350 ms and 350-450 ms were obtained. The 

observation is generally consistent with previous studies of visual word recognition (e.g., Hauk 

et al., 2006; Chen et al., 2013). The RMS value in these five time-windows was averaged and 

used to examine differences between conditions.   

 

Figure 2. The average root mean square (RMS) values across the semantic categorisation task 

and visual discrimination task as a function of time.  

 Averaged MEG data was entered into a topographical analysis. To calculate the 

significance of differences between conditions within each task and differences between tasks, 

we used a non-parametric cluster-based permutation test (Maris & Oostenveld, 2007) that is 

implemented in the FieldTrip toolbox (Oostenveld et al., 2011). Using a clustering algorithm 

based on the assumption that ERF effects should be spatially clustered with adjacent sensors 

or channels, the permutation test estimates how many sensors show a significant effect. The 

approach provides a straightforward way to solve the multiple comparisons problem.  

Here, we used several steps to detect the significance of differences between conditions 

for each of the time-windows (i.e., components). First, the topographic amplitude was averaged 

within time-windows pre-defined above for each sensor. Second, a dependent-sample t-test 

was used to calculate differences between conditions for each MEG sensor; the sensors whose 

significance did not exceed .05 were zeroed. Subsequently, adjacent non-zero sensors were 
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combined into clusters whose cluster-level t-values were the sum of all t-values within each 

cluster. Then, a null-distribution which assumes no difference between conditions was 

generated by randomly assigning participant averages to one of two conditions for 2000 times, 

and calculating the cluster-level statistics for each randomisation. Finally, the observed cluster-

level test statistical values were compared against the null-distribution by using a Monte-Carlo 

estimate of the significance probabilities; if an observed value fell into one of the 2.5th 

percentiles of the null-distribution (i.e., two-tailed test), the observed value was considered 

significant. Using this approach, we tested the three comparisons pre-defined above, i.e., RW 

vs. PW, PW vs. CS and CS vs. FF, for each one of the five time-windows. See 

ft_statfun_depsamplesT in the FieldTrip toolbox; this function is used to test statistical 

significance of the differences between two dependent samples. The minimal number of 

neighbouring sensors was set to 5, which means that only significant clusters with at least 5 

adjacent sensors would be considered as significant clusters.  We used the same approach to 

estimate the significance of differences between the two tasks for each comparison. To do so, 

we firstly computed the amplitude differences between conditions within each task for each 

sensor and then applied the non-parametric cluster-based permutation test to the data using the 

function ft_statfun_indepsamplesT that is used to obtain statistical significance of the 

differences between two independent samples.  

Behavioural Version of the MEG Experiments 

The participants in these two tasks were asked to respond by pressing a button to an 

animal word or a hash string, but they did not respond to the critical conditions, RW, PW, CS, 

and FF. Thus, accuracy and reaction time for the critical conditions were not obtained. Because 

of the importance of these two behavioural measures in unveiling differences in performance 

between the critical conditions and how task goals modulate these differences, we conducted a 
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behavioural experiment for each MEG experiment in a different participant sample to collect 

accuracy and reaction time for each critical condition. Twenty native English speakers (18 

females, 4 males; age range: 19-31 y; mean age: 21.55 y) were recruited from the university 

campus to participate in the behavioural experiment with the semantic categorisation task; 

another twenty native English speakers (19 females, 3 males; age range: 18-29 y; mean age: 

20.64 y) from the university campus to participate in the behavioural experiment with the visual 

discrimination task. A signed consent form was obtained from each participant. Two course 

credits were given as compensation to each participant. Two repeated-measures ANOVAs with 

stimulus type as within-subject factor (four levels: RW, PW, CS and FF) were performed 

within each task. The significance of differences between conditions were obtained by using a 

Post-Hoc comparison with Bonferroni correction.   

Results 

Task Performance  

Average RTs for the catch trials (animal words and hash strings) with correct responses 

in the semantic categorisation task and the visual discrimination task were 659 ms (SD = 89 

ms) and 490 ms (SD = 69 ms) respectively. A two-sample t-test (two-tailed) revealed that the 

average reaction time for animal words in the semantic categorisation task was significantly 

longer than that for hash strings in the visual discrimination task (t (28) = 5.8, p < .001). The 

average accuracy for catch trials in the two tasks was 0.94 (SD = 0.04) and 0.98 (SD = 0.043) 

respectively. Another two-sample t-test (two-tailed) revealed that the accuracy for animal 

words in the semantic categorisation task was significant lower than that for hash strings in the 

visual discrimination task (t (28) = -2.39, p = .02).  

 



Chapter 4: Task Modulation of the Time Course of Visual Word Recognition 

 

 - 124 - 

Event-related Fields (ERFs) 

Based on the peaks of the average RMS values across two tasks, several event-related 

time-windows were defined. These time-windows were M100 (80-120 ms), M150 (120-170 

ms), M200 (170-250 ms), M300 (250-350 ms) and M400 (350-450 ms) (see Figure 2 for the 

time course of RMS values). A series of paired-t tests were conducted to detect differences 

between conditions to examine how tasks modulate the strength of ERFs in each window. Here 

the focus was on the three comparisons, RW vs. PW, PW vs. CS, and CS vs. FF, for lexicality, 

phonological, and letter effects respectively. The results of the semantic categorisation task 

showed that the difference between PW and CS was significant in the M200 and M400 (p 

< .05), and was marginally significant in the M300 (p = .055); the difference between CS and 

FF was significant in all time-windows (p < .05) (Figure 3). The results of the visual 

discrimination task showed that the difference between PW and CS was marginally significant 

in the M100 (p = .089), and the difference between CS and FF was marginally significant in 

the M300 (p = .081) (Figure 3).  
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Figure 3. (A) RMS curves for four conditions in the semantic categorisation task (left) and 

the visual discrimination task (right); (B) the differences in RMS between RW and PW, PW 

and CS, and CS and FF in each task. RW, real words; PW, pseudowords; CS, consonant 

strings; FF, false fonts. † p < .10, * p < .05, ** p < .01, *** p < .001. 

See Figure 4 for the details of the topographical maps for each time-window of each 

condition in the semantic categorisation task (left side) and the visual discrimination task (right 

side). Presented below are the topographical results of three crucial comparisons, RW vs. PW, 

PW vs. CS, and CS vs. FF, for each task.  



Chapter 4: Task Modulation of the Time Course of Visual Word Recognition 

 

 - 126 - 

 

Figure 4. Topographical maps for each time-window of each condition in the semantic 

categorisation task (left) and the visual discrimination task (right). RW, real words; PW, 

pseudowords; CS, consonant strings; FF, false fonts. Colour bars denote amplitude value (fT).  

Semantic categorisation task. Non-parametric cluster-based permutation tests were 

used to examine the lexicality effect (RW vs. PW), phonological effect (PW vs. CS) and letter 

effect (CS vs. FF) on the topographical activity in the M100, M150, M200, M300 and M400 

time-windows. Results showed that (1) no significant clusters showing differences between 

RW and PW, PW and CS, and CS and FF were found in the M100 (ps > .05); (2) a cluster 

showed a significant difference between RW and PW in the M150 (p < .05), and the cluster 

was the earliest cluster showing a difference; (3) a cluster in the left hemisphere showed a 

significant difference between PW and CS, and a posterior cluster showed a significant 

difference between CS and FF in the M200 (ps < .05); (4) a cluster in the M300 and two clusters 

in the M400 showed significant differences between PW and CS (p < .05). See Figure 5 for 

details.  
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Figure 5. Topographical t-maps of non-parametric cluster-based permutation analyses for the 

RW vs. PW, PW vs. CS, and CS vs. FF in each time-window in the semantic categorisation 

task. RW, real words; PW, pseudowords; CS, consonant strings; FF, false fonts. Significant 

clusters (p < .05) were marked with black dots. 

Visual discrimination task. Results showed that (1) two frontal clusters in the M100 

window showed significant differences between RW and CS (ps < .05); (2) no clusters in the 

M150 and M200 showed significant differences between RW and PW, PW and CS, and CS 

and FF (ps > .05); (3) two posterior clusters in the M300 showed a significant difference 

between CS and FF (ps < .05); (4) two left clusters showed a significant difference between 

PW and CS, and an anterior cluster showed a significant difference between CS and FF in the 

M400 (ps < .05). See Figure 6 for details.  
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Figure 6. Topographical t-maps of non-parametric cluster-based permutation analyses for the 

RW vs. PW, PW vs. CS, and CS vs. FF in each time-window in the visual discrimination task. 

RW, real words; PW, pseudowords; CS, consonant strings; FF, false fonts. Significant clusters 

(p < .05) were marked with black dots. 

Comparison between two tasks. To examine the topographical differences between 

tasks, a non-parametric cluster-based permutation test was used to compare differences 

between conditions (RW vs. PW, PW vs. CS and CS vs. FF) in the semantic categorisation task 

with those in the visual discrimination task. Results showed that (1) in the RW vs. PW 

comparison, an anterior cluster in the M150 showed a significant difference between tasks; (2) 

in the PW vs. CS comparison, two clusters in the M100 and a cluster in the M150 showed 

significant differences between tasks (ps < .05); (3) in the CS vs. FF comparison, a posterior 

cluster in the M300 and an anterior cluster in the M400 showed significant differences between 

tasks. See Figure 7 for details.  
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Figure 7. Topographical t-maps of non-parametric cluster-based permutation analyses between 

the semantic categorisation and visual discrimination tasks for the RW vs. PW, PW vs. CS, 

and CS vs. FF in each time-window. ERF, event-related field; RW, real words; PW, 

pseudowords; CS, consonant strings; FF, false fonts. Significant clusters (p < .05) were marked 

with black dots. 

Behavioural Version of the MEG Experiments 

 Two behavioural experiments were separately conducted for each MEG experiment to 

obtained behavioural performance for critical conditions, RW, PW, CS, and FF. The trials with 

RT slower than 1400 ms and faster than 200 ms were removed. A two-sample t-test was 

performed to assess differences in difficulty between these two tasks. The results revealed no 

significant difference in the accuracy for catch trials between the semantic categorisation task 

(M =0.88, SD = 0.08) and the visual discrimination task (M = 0.91, SD = 0.07) (t(42) = -1.33, 

p = .196), but a significant difference in the RT for catch trials between the semantic 

categorisation task (M = 595 ms, SD = 72 ms) and the visual discrimination task (M = 502 ms, 

SD = 88 ms) (t(42) = 3.82, p < .001). This indicates that it is harder to perform the semantic 

categorisation task than the visual discrimination task. The RTs of catch trials were similar to 

those obtained in the MEG experiments.  
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The average accuracy for all four conditions in the two tasks was high (M > 0.97, SD < 

0.08), indicating that participants had a high rate of identification with very low between-

subject variations (see Figure 8(A)). However, the average RTs for all four conditions in the 

two tasks had high between-subject variation (453 ms < M < 582 ms and 58 ms < SD < 101 ms 

for the semantic categorisation task; see Figure 8(B)). Thus, the following analyses focused on 

the RTs. A repeated-measures ANOVA with stimulus type as the only within-subject factor 

was used to analyse average correct RTs for both the semantic categorisation task and the visual 

discrimination task. For the semantic categorisation task, the results showed that the main 

effect of stimulus type was significant (F(3, 63) = 127.61, p < .001). A pair-wise comparison 

with Bonferroni correction further revealed that the RTs for both RW and PW were 

significantly longer than both CS (p < .001) and FF (p < .001). One-sample t tests revealed that 

the difference between RW and PW was significant (p = .021); the difference between PW and 

CS was significant (p < .001); and the difference between CS and FF was also significant (p 

= .011). See Figure 8(B). For the visual discrimination task, the results showed that the main 

effect of stimulus type was significant (F(3, 63) = 11.12, p < .001). A pair-wise comparison 

with Bonferroni correction in multiple comparison further revealed that the RTs for both PW 

and CS were significantly shorter than FF (ps < .001). One-sample t tests revealed that the 

difference between RW and PW was not significant (p = .203); the difference between PW and 

CS was marginally significant (p = .065); and the difference between CS and FF was also 

significant (p < .001). See Figure 8(B).  

A pair-wise comparison with Bonferroni correction found that the RTs for RW, PW 

and CS in the semantic categorisation task were longer than that in the visual discrimination 

task (ps < .001 for RW and PW, p = .02 for CS), and the ACCs for RW and PW in the semantic 

categorisation task were higher than that in the visual discrimination task (ps < .05). See Figure 

8(B).  
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Figure 8. Average accuracy (A) and reaction time (B) for four types of stimulus in the semantic 

categorisation and visual discrimination tasks. Black horizontal lines denote significant 

differences between conditions (p < .05). RW, real words; PW, pseudowords; CS, consonant 

strings and FF, false fonts. 

Discussion 

Using a linguistic semantic categorisation task and a non-linguistic visual 

discrimination task, this study aimed to investigate how task goals modulate the time course of 

visual word recognition. The topographical results showed that the differences between real 

words and pesudowords occurred in the M150 time-window in the semantic task but 

disappeared in the discrimination task; the differences between pseudowords and consonant 

strings occurred in the M200 time-window in the semantic task, but occurred in the M100 time-

window in the discrimination task; and the differences between consonant strings and false 

fonts occurred in the M200 time-window in the semantic task and in the M300 time-window 

in the discrimination task. The behavioural measures further revealed that during the semantic 

categorisation task, the reaction time pattern for four conditions was real words > pseudowords > 

consonant strings > false fonts; during the visual discrimination task, the differences in reaction 
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time were not significant among real words, pseudowords, and consonant strings, but the 

reaction times for consonant strings were shorter than for false fonts. These findings argue for 

a notion that the time course of visual word recognition is highly modulated by task goals, and 

more crucially, linguistic intention plays a key role in the time course of word-related cognitive 

processes. 

Task Modulation of the Time Course of Visual Word Recognition  

The neural differences between real word and pseudowords emerged in the M150 when 

the semantic task was performed, indicating an early lexicality effect. Using a lexical decision 

task which involves high-level lexical-semantic access, two EEG studies have previously 

observed early differences between real words and pseudowords (Hauk et al., 2006, 2012). 

However, the lexicality effect found in the semantic task was absent in all time-windows in the 

discrimination task. This finding is consistent with a previous observation that no significant 

neural difference between real words and pseudowords occurred within the first 500 ms in a 

non-linguistic font size same-different detection task (Bentin et al., 1999). This apparently 

indicates that the neural responses to differences between real words and pseudowords are 

modulated by task goals. Because lexical-semantic processing is not necessary and cannot help 

to improve the performance in the discrimination task, the neural differences between real 

words and pseudowords were not the cognitive focus of participants. In other words, what 

contributes to the absence of the lexicality effect in the discrimination task is the absence of 

linguistic intention. Strijkers et al. (2015) found that a key lexical factor - word frequency effect 

- occurring from 120 ms onward in a linguistic semantic categorisation task occurred from 220 

ms onward during a non-linguistic colour categorisation task. This study indicates that the 

linguistic intention of a task speeds up lexical processing, while non-linguistic intention slows 

down the processing. The current study further showed that lexical processing is fully 
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diminished in a non-linguistic task. One of the crucial reasons behind this could be that the two 

studies focused on different aspects of lexical processing, Strijkers et al. (2015) focused on the 

word frequency effect while the current study focused on the overall differences between real 

words and pseudowords.  

One particular observation did not match our expectations. Both the topographical and 

RMS analysis revealed that the differences between pseudowords and consonant strings 

occurred in the M200 in the semantic task. However, the topographical and RMS differences 

between pseudowords and consonant strings occurred earlier (M100) in the discrimination task. 

In other words, the differences between these two conditions occurred earlier in the 

discrimination task and was not evident in the M100 in the semantic task. These findings could 

be explained by the modulation of task goals. The non-linguistic discrimination task sensitised 

visual feature detection because the aim of the task is to detect meaningless hash strings, and 

facilitations from prior experience are absent. It is important to note here that pseudowords are 

not only pronounceable letter strings but also orthographically-legal letter strings, and 

consonant strings are orthographically-illegal letter strings. Therefore, it is likely that the 

surface distinctness between the orthographically legal and illegal strings became easier to be 

detected in the discrimination task. Because the discrimination task does not explicitly require 

the processing of orthographic legality, the early sensitivity to orthographic forms was 

probably an epiphenomenon of the high demands on visual feature detection. The increased 

sensitivity to visual features in the non-linguistic task compared to the linguistic task at early 

stages has been reported in a previous EEG study (Spironelli & Angrilli, 2007). They found 

that the early stages of brain responses reflecting visual feature extraction, the N130 (120-140 

ms), evoked by words were larger in a non-linguistic visual font case judgment task compared 

to in linguistic phonological and semantic tasks. The increased sensitivity to low-level visual 

features is also supported by our previous result. That is, the early event-related field in the 50-
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77 ms time-window was stronger in the non-linguistic task than the linguistic task (Figure 7 in 

Chapter 3). This time-window is much earlier than the M100 (80-120 ms), indicating that a 

task without linguistic intention but demands on low-level visual processing enhances very 

early stages brain activity.  

A letter effect revealed by the topographical and RMS differences between consonant 

strings and false fonts occurred in the M200 in the semantic task. This finding is consistent 

with a previous study which also used a semantic categorisation task (e.g., Coch & Meade, 

2016) and a study using a lexical decision task (Mahé et al., 2012). These findings indicate that 

the neural sensitivity to surface features appears reliably in tasks with demands on lexical-

semantic access. However, the letter effect in the discrimination task appeared in a late time-

window, the M300, and continued to manifest in the M400. Consonant strings, false fonts, and 

hash strings are all meaningless visual stimuli, and more importantly, false fonts are very 

similar to hash strings in terms of visual features (Figure 1). It is thereby difficult for 

participants to discriminate consonant strings from false fonts and then reject false fonts as 

non-hashes in the discrimination task. It is likely that electrophysiological signatures of the 

differences between consonant strings and false fonts emerged later because of high demands 

on low-level visual features. In an EEG study with a non-linguistic task, dot-string (e.g., ::::) 

detection, Appelbaum et al. (2009) found no significant differences between consonant strings 

and false fonts in the early 130-150 window but significant differences in the late 170-190, 

240-300 and 300-500 windows. The M300 and M400 of the current study covered a long 

window between 250 ms and 450 ms, which is almost covered by the late 300-500 ms time-

window in the aforementioned study (Appelbaum et al., 2009). The current study and 

Appelbaum et al. (2009) collectively indicate that the neural differences between letter strings 

and meaningless symbols occur late in purely visual tasks without linguistic demands. Our 

behavioural findings also reflected the high difficulty of rejecting false fonts as non-hashes; 
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that is, the reaction times for false fonts were longer than those for consonant strings (see “Task 

modulation of behavioural performance” below). 

Briefly, these three effects in the first four time-windows (80-350 ms) in the two tasks 

with distinct goals suggest that task goals modulate the time course of word-related cognitive 

processes during visual word recognition. Because these two tasks used the same experimental 

procedure, critical stimuli, and apparatus, the main differences found between the two tasks 

could be primarily attributed to the task goal itself. Linguistic intention is included in the 

semantic task but not in the discrimination task. Thus, the findings tend to support that whether 

a goal includes linguistic intention likely affects the time-course of word-related cognitive 

processes such as lexicality, phonological and letter effects examined here.  

M400 Effect 

Topographical differences between pseudowords and consonant strings in the M400 

were consistently observed in both the semantic and discrimination tasks. Past studies using a 

semantic task have also found this effect (e.g., Coch, 2015; Coch & Benoit, 2015; Coch & 

Meade, 2016; see a review by Kutas & Federmeier, 2011; Lau, Phillips, & Poeppel, 2008). 

This M400 effect was also found in the topographical differences between real word and 

consonant strings in both tasks but not found between real words and pseudowords (see 

supplementary Figure 1). Activity in the M400 window (N400 in EEG) is thought to reflect 

lexical-semantic processing and is sensitive to the orthographic legality of letter strings (e.g., 

Laszlo & Federmeier, 2014; Kutas & Federmeier, 2011; Deacon, Dynowska, Ritter, & Grose-

Fifer, 2004). The reason why M400 is also sensitive to orthographic legality in the semantic 

task could be that the pseudowords may have activated semantic knowledge linked to similar 

looking real words (Kutas & Federmeier, 2011; Hauk, 2016) because the pseudowords were 

generated from real words and they still had some common aspects including similar surface 
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features and orthographic form neighbours (see Table 1). There is also some evidence that the 

M400 is sensitive to lexical neighbourhood size for both real words and pseudowords - stimuli 

with larger size elicit a larger effect (Holcomb, Grainger, & O’Rourke, 2002; Laszlo & 

Federmeier, 2011). In our case, the neighbourhood size of pseudowords and real words was 

well matched. Thus, it is possible that pseudowords also evoked a similar M400 effect.  Thus, 

it is not surprising that the M400 effect was found in the semantic categorisation task due to 

the high demands on linguistic lexico-semantic processing.  

Although the visual discrimination task relied more on low-level visual processing and 

required no linguistic demands, orthographic legality still triggered an M400 effect in the visual 

discrimination task.  The reasons are still unknown. It is possible that the M400 effect for 

orthographic legality could not be fully removed by a non-linguistic task. A possibility behind 

this is that the long stimulus presentation duration (500 ms) made pesudowords be exposed to 

continuous eye fixation so that orthographic legality of pseudowords was sensitised, even 

though pseudowords could have been earlier rejected as non-hashes by the brain. Considering 

that there was also an early difference between pseudowords and consonant strings in the 

discrimination task, it is likely that the early and late differences between these two types of 

stimuli in this task probably reflects different aspects of linguistic processes. The early 

difference in the M100 may reflect more sensitivity to the distinctness between orthographic 

legality and illegality, while the late difference in the M400 may reflect partial semantic 

activation from pseudowords or later sensitivity to orthographic legality.  

Task Modulation of Behavioural Performance 

The semantic categorisation task used here entails the processing of high-level 

linguistic attributes of visual words, whereas the visual discrimination task does not necessarily 

engage this but relies more on low-level visual features. It was expected that differences in 
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behavioural performance between different conditions would be amplified by the linguistic 

task, but would be reduced or diminished by the non-linguistic task. We found that the between-

condition differences were indeed amplified by the semantic categorisation task, but were not 

all diminished by the visual discrimination task. Specifically, there were significant differences 

in reaction time between real words and pseudowords in the semantic task but not in the 

discrimination task; the reactions times for consonant strings were longer than false fonts in 

the semantic task while this pattern was opposite in the discrimination task (Figure 8). In 

addition, because real words and pseudowords both are orthographically and phonologically 

legal letter strings, participants took more time to reject them as non-animal words in 

comparison with consonant strings and false fonts during the semantic task. However, this was 

not the case in the discrimination task. Overall, the differences in reaction time between the 

two tasks suggest that task goals modulate visual word recognition in a flexible manner, which 

is aligned with previous suggestions (Balota & Yap, 2006; Kinoshita & Norris, 2012). The 

overall basic pattern of reaction time in these two tasks (Figure 8) demonstrates that linguistic 

intention in a task modulates the response of brain to visual words. The time course of visual 

word recognition that could be not revealed by behavioural index was captured by the 

electrophysiological measures.    

Conclusion 

This MEG study used a linguistic semantic categorisation task and a non-linguistic 

visual discrimination task to look at task modulation of the time course of visual word 

recognition. The results of the electrophysiological measures suggest that different types of 

linguistic properties - lexical-semantic, phonological/orthographic legality, and surface 

properties of visual words - unfold over time differently in tasks with and without linguistic 

demands such as lexical-semantic access. The results of the behavioural measures echo the 
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electrophysiological results by showing differences in behavioural performance between 

conditions in each task and between the two tasks. These findings collectively indicate that the 

first 500 ms time course of visual word recognition is guided by task goals.  
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Appendix A 

 

Supplementary Figure 1. Topographical t-maps of non-parametric cluster-based permutation 

analyses for all six comparisons in each time-window in the semantic categorisation task (left) 

and the visual discrimination task (right). RW, real words; PW, pseudowords; CS, consonant 

strings; FF, false fonts. Significant clusters (p < .05) were marked with black dots. 

 

 

 

 

 

 

 

 

 

 

 



 

 - 140 - 

Chapter 5 

 

General Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: General Discussion 

 

 - 141 - 

Recognising a visual word involves multiple cognitive processes such as visual feature 

extraction, orthographic form analysis and phonological/lexical-semantic access. As reviewed 

in this thesis, electrophysiological investigations have shown that orthographic form analysis 

and phonological/lexical-semantic access occur within the first 200 ms after visual word onset, 

and these early neural processes are modulated by different task goals with varying linguistic 

demands. A robust and consistent observation in the literature is that the left inferior frontal 

gyrus (LIFG) is activated by visual words within the first 200 ms after stimulus onset. A recent 

study further found that this region sends early top-down feedback to the left ventral occipito-

temporal cortex (LvOT) during visual word recognition (Woodhead et al., 2014). Building on 

this previous work, this thesis used magnetoencephalography (MEG) to investigate the nature 

of this early top-down feedback from LIFG to LvOT (Chapter 2) and to explore how task goals 

modulate it (Chapter 3). This thesis further used MEG data from these experiments to examine 

task modulation of the time course of visual word recognition (Chapter 4).  

In this chapter, I will summarise the main findings in each empirical chapter and discuss 

how these findings contribute to the understanding of the early neural dynamics of visual word 

recognition. I will first focus on the contribution of this thesis to the existing neural models, 

especially the Interactive Account of the LvOT. Then I will move to a discussion of the task-

dependence and -independence of visual word recognition. I will discuss the importance of 

examining early functional integration of visual word recognition and the appropriateness of 

different tasks in examining the neural correlates of this process. Finally, I will discuss the 

limitations of this thesis and potential future directions before making a general conclusion.   
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Summary of Main Findings 

Extending a previous study revealing that the LIFG-to-LvOT top-down feedback is 

stronger for words compared with visual symbols (false fonts) at the early stages of visual word 

recognition (Woodhead et al., 2014), Chapter 2 aimed to determine the nature of this early 

top-down feedback. To this end, I conducted an MEG study using a semantic categorisation 

task and applied dynamic causal modeling (DCM), measuring directional influences of one 

region on another to estimate how this top-down feedback reflects lexicality effects (real words 

vs. pseudowords), phonological effects (pseudowords vs. consonant strings) and letter effects 

(consonant strings vs. false fonts). It was expected that lexicality and phonological effects but 

not letter effects would influence the early top-down feedback, because the LIFG is thought to 

involve high-level phonological and lexical-semantic processing. It was shown that the LIFG-

to-LvOT top-down feedback was stronger for real words than for false fonts in the 1-150 ms 

time-window, replicating Woodhead et al. (2014). More importantly, the top-down feedback 

was stronger for real words than for pseudowords in both 1-150 ms and 1-200 ms time-

windows, indicating a lexicality effect; the feedback was stronger for pseudowords than for 

consonant strings in the 1-200 ms time-window, indicating a phonological effect; furthermore, 

the feedback was also stronger for consonant strings than for false fonts both 1-150 ms and 1-

200 ms time-windows, indicating a letter effect. These findings collectively suggest that 

compared with phonological information, lexical-semantic and letter information have an 

earlier influence on top-down feedback. All findings of this study point to early top-down 

feedback not being purely triggered by a single property of visual words, but by multiple 

properties; and that lexical-semantic and letter properties trigger top-down feedback earlier 

than phonological properties.  
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Following the study reported in Chapter 2, Chapter 3 aimed to investigate whether the 

LIFG-to-LvOT top-down feedback is modulated by task goals. I conducted an MEG 

experiment using a visual discrimination task requiring participants to detect symbol strings (a 

string of # signs) and applied DCM for evoked responses to the data. On the assumption that 

the visual discrimination task relies on low-level visual feature processing but not necessarily 

high-level linguistic properties, it was expected that the early top-down feedback in the 

discrimination task would be different from that in the semantic task in Chapter 2. The results 

showed that the LIFG-to-LvOT feedback was comparable for real words compared to false 

fonts in all time-windows in the visual discrimination task, which is in contrast to the findings 

in the semantic task in Chapter 2. Interestingly, the LIFG-to-LvOT feedback was stronger for 

real words than for pseudowords in both 1-150 ms and 1-200 ms time-windows in the visual 

discrimination task, which was similar to that in the semantic task, indicating a task-

independent lexicality effect. However, in the discrimination task the LIFG-to-LvOT feedback 

was stronger for consonant strings than for pseudowords in the 1-200 ms time-window and 

was stronger for false fonts than for consonant strings in both 1-150 ms and 1-200 ms time-

windows, which was almost opposite to that in the semantic task, indicating task-dependent 

phonological and letter effects. Similar to the semantic task, compared with phonological 

information, lexical-semantic and letter information have an earlier influence on this top-down 

feedback. These results reveal that several aspects of the early top-down feedback from frontal 

cortex to ventral occipito-temporal cortex are modulated by task goals, but that influence of 

lexical-semantic properties appears to occur independently of task goals.  

Using the MEG data from Chapters 2 and 3 but adopting a different focus, Chapter 4 

sought to examine task modulation of the time course of visual word recognition in the 

linguistic semantic categorisation task and the non-linguistic visual discrimination task. 

Lexicality effects (defined by real words vs. pseudowords), phonological effects (defined by 
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pseudowords vs. consonant strings), and letter effects (defined by consonant strings vs. false 

fonts) were examined in five time-windows covering the first 500 ms after stimulus onset. 

Because the semantic categorisation task recruits lexical-semantic properties of visual words 

and the visual discrimination task only requires processing of visual features but not necessarily 

any linguistic information, it was hypothesised that the time course of visual word recognition 

would be modulated by the two different tasks. The results of event-related field analysis 

showed that a lexicality effect emerged in the M150 for the semantic task, but was absent in 

all windows in the discrimination task; a phonological effect emerged in the M200 in the 

semantic task and in the M100 in the discrimination task; a letter effect emerged in the M200 

in the semantic task and in the M300 in the discrimination task. The complementary 

behavioural studies showed that the pattern of reaction times of four types of stimuli was real 

word > pseudowords > consonant strings > false fonts in the semantic task. For the visual 

discrimination task, there were no significant differences among real word, pseudowords, and 

consonant strings, but the reactions times for consonant strings were shorter than for false fonts. 

In addition, overall reaction times were much shorter in the discrimination task than the 

semantic task. This study demonstrated that the time course of visual word recognition unfolds 

differently in a non-linguistic task and a linguistic task and in general is modulated by task 

goals.  

The findings revealed by this thesis have several implications for the understanding of 

the early neural dynamics of visual word recognition. First and foremost, they add new 

knowledge to inform neural models of visual word recognition.  
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Neural Models of Visual Word Recognition 

The findings in Chapters 2 and 3 contribute to the current understanding of neural 

models of visual word recognition. According to the neural model proposed by Price and 

Mechelli (2005), the reading brain has different systems which have subregions with different 

functional roles. Within the LIFG, the anterior and ventral part is more responsible for semantic 

processing while the posterior and dorsal part is more responsible for phonological processing. 

The current thesis did not divide this frontal language region into subregions, but did find that 

lexical-semantic and phonological properties of words could influence the early LIFG-to-

LvOT top-down feedback. This observation is consistent with the proposal that the LIFG is a 

region for lexical-semantic and phonological processing. In addition, it was found that letter 

effects also have an influence on this early top-down feedback, indicating the LIFG is also 

involved in the processing of letter information about visual words. This is supported by 

previous fMRI investigations in which the LIFG was found to be activated by single letters 

(Flowers et al., 2004; Liu et al., 2010, 2011). Thus, the current findings tend to support that the 

LIFG is a multi-functional region for visual word recognition.  

There are two models with differing views regarding the functional roles of the LvOT 

in reading and visual word recognition. According to the local combination detector (LCD) 

model proposed by Dehaene, Cohen, Sigman, & Vinciker (2005), the visual word form area 

(VWFA) in LvOT is specific for written words. It computes visually abstract, pre-lexical 

orthographic representations in a primarily feed-forward manner. In contrast, according to the 

Interactive Account proposed by Price & Devlin (2011), the LvOT is not specific for written 

words, but is also responsible for encoding other visual stimuli such as pictures. It functions as 

an interface linking bottom-up, feedforward, low-level visual information from occipital cortex, 

and top-down feedback of high-level linguistic information from language areas. Chapters 2 
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and 3 demonstrate that the LvOT receives top-down feedback from high-order language areas 

at the early stages of visual word recognition, and this early top-down feedback is influenced 

by high-level lexical-semantic and phonological properties and low-level letter information. 

Thus, the results described in these two chapters can be well explained in the framework of the 

Interactive Account (Price & Devlin, 2011). However, the findings do not exclusively speak 

against the view that the VWFA within the LvOT functions as an area for orthographic form 

analysis (Dehaene et al., 2005; Dehaene & Cohen, 2011).  

Both the LCD model and the Interactive Account hold the view that the lateralisation 

of the spoken language network influences lateralisation of the vOT. In an EEG study, Cai, 

Lavidor, Brysbaert, Paulignan, & Nazir (2008) previously observed that frontal lobe activity 

during a word generation task co-lateralised with the occipito-temporal activity during a word 

reading task, which demonstrates the top-down influences of language network in the 

development of the vOT. A crucial hub in the spoken language network is the LIFG. The 

current thesis revealed that early top-down feedback from frontal to ventral occipito-temporal 

cortex showed a strong left-lateralisation in both the semantic categorisation task and the visual 

discrimination task. It demonstrates that early top-down feedback is highly influenced by the 

left-lateralised spoken language network. The left-lateralisation of early top-down feedback is 

generally in line with both the LCD model and the Interactive Account in that the lateralisation 

of language network determines the lateralisation of the vOT.  

The occurrence of the left-lateralised early top-down feedback for lexicality and 

phonological effects in both linguistic and non-linguistic tasks further indicates that the left-

lateralisation of early top-down feedback is highly robust and is free from the modulation of 

task goals. Left-lateralisation of early top-down feedback has also been revealed by Woodhead 

et al. (2014) who used a semantic categorisation task. Previous studies with similar linguistic 

tasks also found left-lateralised word-recognition network (see a meta-analysis by McNorgan, 
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Chabal, O’Young, Lukic, & Booth, 2015). Previous fMRI studies with non-linguistic tasks 

such as hash string detection and size judgment have also observed similar left-lateralised 

activity of the vOT and IFG (e.g., Vinckier et al., 2007; Liu et al., 2008). For example, Liu et 

al. (2008) found that the activity in the IFG and vOT elicited by Chinese characters was left-

lateralised in a font size detection task. Using a hash detection task, Vinckier et al. (2007) found 

a neural hierarchy in the left vOT with increasing sensitivity to word-like stimuli progressing 

from the posterior part to the anterior part, but not in the right vOT. A novel finding of Chapters 

2 and 3 is the demonstrated left-lateralised early top-down feedback that appears in both a 

linguistic semantic categorisation task and a non-linguistic visual discrimination tasks. 

In summary, this thesis extends the current Interactive Account (Price & Devlin, 2011) 

by adding new knowledge that the LvOT receives top-down feedback modulation from the 

frontal language area, even at the very early stages of visual word recognition. More 

importantly, lexical-semantic, phonological, and letter information all influence early top-

down feedback from frontal to ventral occipito-temporal cortex at early stages; the left-

lateralised top-down feedback occurs in the first 200 ms of visual word recognition.  

Task-Dependence of Early Neural Activity 

Behavioural studies have revealed that task goals modulate visual word recognition 

(Balota et al., 2004; Balota & Yap, 2006; Yap & Balota, 2009). There is also a growing body 

of neuroimaging evidence that brain activity during visual word recognition, including local 

activation and inter-regional connectivity, is dependent upon task goals (e.g., McNorgan et al., 

2015; Bitan et al., 2005, 2006). This behavioural and neuroimaging evidence demonstrates the 

high flexibility of the brain in responding to visual words. 
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In this thesis, task dependence of the early neural dynamics of visual word recognition 

was examined. Chapters 3 and 4 used the same dataset but different methods. Task-dependent 

brain activity was found in both Chapters 3 and 4. Interestingly, the overall strength of the 

event-related fields at very early stages, in the 50-80 ms window, was modulated by task goals. 

The combined findings of task modulation from these two chapters demonstrate that a task 

with specific goals biases brain activity at the early stages of visual word recognition. However, 

not all aspects of neural dynamics are modulated by task. For example, the findings in Chapter 

3 indicate that the influences of the lexical-semantic properties of visual words on early top-

down feedback are independent of task goals. The finding in Chapter 4 that the M400 

differences in the neural responses between pseudowords and consonant strings occurred in 

both tasks (Figures 6 and 7), demonstrates that M400 for orthographic legality may be free 

from the modulation of task goals. These findings imply that the human brain flexibly responds 

to visual words in serving specific cognitive goals in different tasks, but some processes may 

not be fully guided by task goals. Due to the earliness of task modulation effects observed in 

this thesis, these findings extend existing observations from behavioural and fMRI studies 

examining task modulation of cognitive and neural aspects of visual words. With the focus on 

task modulation of early stage inter-regional connectivity, it builds on previous 

electrophysiological studies examining task modulation of regional activity during visual word 

recognition (e.g., Chen, Davis, Pulvermuller, & Hauk, 2013, 2015; Strijkers, Bertrand, & 

Grainger, 2015; Wang & Maurer, 2017). 

It is important to note that Chapter 4 used the data from previous two chapters, but 

focused on different neural measures: Chapter 4 on time course while Chapters 2 and 3 on 

inter-regional connectivity. However, there were some apparent discrepancies in different 

effects across these different investigations. For example, a lexicality effect for early top-down 

feedback was found in both the semantic and discrimination tasks, but it was not found in the 
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time course measure of the discrimination task. The reason for these discrepancies remains to 

be explored. Chapters 2 and 3 examined inter-regional connectivity, which reflects neural 

interaction or communication between two local regions with different functions per se. 

However, the focus of Chapter 4 was on the event-related field activity that measures summed 

electromagnetic activities on the scalp. Using different neural measures could have led to the 

observed discrepancies. Using the discrepancies as a starting point, future studies could 

examine the relationship between these two different neural measures.  

Early Stage Functional Integration 

        Chapters 2 and 3 further highlight the importance of early stage functional integration 

during visual word recognition. The understanding of the neural correlates of visual word 

recognition over the past 150 years can be generally divided into two parts. The first part 

focuses on functional segregation, i.e., local activation and corresponding functions. For 

example, investigations with brain damaged patients originally found that the LIFG and LvOT 

play an important role in speech production and visual word recognition respectively (Broca, 

1861; Dejerine, 1892). Using modern neuroimaging techniques, especially fMRI, researchers 

have further found that visual word recognition involves multiple local areas in the brain, 

including the occipital cortex, LvOT, LIFG, and some subcortical structures such as the 

putamen, caudate and thalamus (e.g., Pugh et al., 2000; Bolger, Perfetti, & Schneider, 2005; 

Houdé, Rossi, Lubin, & Joliot, 2010; Taylor, Rastle, & Davis, 2013; Martin, Schurz, 

Kronbichler, & Richlan, 2015). As neuroimaging methods have developed, researchers have 

increasingly examined how remote brain areas interact during reading-related tasks. This is 

functional integration, and involves considering neural interactions between remote regions 

with different functional roles, which can be quantified by neural measures such as functional 

and effective connectivity (Friston, 2011). The application of functional and effective 
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connectivity to neuroimaging data has helped reveal neural couplings between reading-related 

regions such as the LIFG and LvOT (van der Mark et al., 2011; Finn et al., 2013; Bitan et al., 

2005, 2006; Heim et al., 2009; Perrone-Bertolotti, Kaufmann, Pichat, Vidal, & Baciu, 2017) 

and their predictive roles in reading competence (Howitz, Rumsey, & Donohue, 1998; van der 

Mark et al., 2011; Koyama et al., 2011; Finn et al., 2013; Li et al., 2017). These inter-regional 

connections are structurally supported by white matter pathways (Ben-Shachar, Dougherty, & 

Wandell, 2007; Yeatman, Rauschecker, & Wandell, 2013; Vandermosten, Boets, Wouters, & 

Ghesquiere, 2012).   

Studies of functional segregation and integration are complementary to each other in 

contributing to a better understanding of how visual words are processed in the brain. Because 

cognitive processes in visual word recognition take place so rapidly (Sereno & Rayner, 2003; 

Carreiras, Armstrong, Perea, & Frost, 2014; Hauk, 2016) and a word can be recognised within 

several hundred milliseconds (Keuleers, Diependaele, & Brysbaert, 2010; Keuleers, Lacey, 

Rastle, & Brysbaert, 2012), studies exploring this must use neuroimaging measures with high 

temporal resolution. As Hauk states, “If the brain processes we are interested in are fast, then 

our measurements should be fast.” (Hauk, 2016, p. 1073). In the current thesis, with the 

application of DCM for evoked responses to MEG data, Chapters 2 and 3 examined directional 

interactions from LIFG to LvOT in the first 200 ms of visual word recognition. The results of 

both Chapters 2 and 3 indicate that although the influences of different properties of words on 

the early top-down feedback vary, the neural interactions between the LIFG and the LvOT 

occur at the early stages of visual word recognition. This type of investigation is beyond the 

scope of fMRI techniques due to their relatively poor temporal resolution. 

These new observations in Chapters 2 and 3 update our previous understanding of 

neural interactions during visual word recognition in that they add new knowledge about early 

inter-regional effective connectivity. The field calls for more research to uncover early stage 
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functional integration in the brain during reading and visual word recognition. This thesis may 

provide a basis for future research on this topic. 

Appropriateness of Word-Recognition Tasks 

In the field of reading and visual word recognition, researchers usually use word 

reading, lexical decision, semantic categorisation tasks, and their derived versions to 

investigate how the brain responds to visual words (e.g., McNorgan et al., 2015; Taylor et al., 

2013; Woodhead et al., 2014). These linguistic tasks have different emphases on linguistic 

properties, either phonologically oriented or semantically oriented. A smaller number of 

studies have used non-linguistic tasks such as feature detection, repetition detection, symbol 

detection, colour categorisation tasks (e.g., Price, Wise, & Frackowiak, 1996; Binder et al., 

2006; Vinkier et al., 2007; Liu et al., 2008). Some researchers term linguistic tasks as explicit 

tasks because they all by default require cognitive processing of linguistic properties of visual 

words, and term non-linguistic tasks as implicit tasks because they all by default do not 

explicitly require word-recognition processing (Price et al., 1996; Liu et al., 2008). Implicit 

tasks, compared with explicit tasks, are thought to reduce phonological and lexical-semantic 

processing and restrict as much as possible attentional and top-down effects on brain activity 

(Price et al., 1996; Binder, Medler, Westbury, Liebenthal, & Buchanan, 2006; Vinkier et al., 

2007; Liu et al., 2008). For this reason, they are appropriate to examine sensory-driven brain 

activity evoked by visual words. Implicit tasks have been applied to investigations of the LvOT 

during visual word recognition and reading (Price et al., 1996; Binder et al., 2006; Vinkier et 

al., 2007; Liu et al., 2008; Vartiainen, Liljeström, Koskinen, Renvall, & Salmelin, 2011; 

Strijkers et al., 2015), even though not all studies label these tasks as implicit tasks.  
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In the current case, the semantic categorisation task required high-level lexical-

semantic access while the visual discrimination task only required low-level visual feature 

detection. If the classification above is used here, the semantic task is explicit and the 

discrimination task is implicit. Note that the discrimination task is similar to the symbol 

detection task used in Vinkier et al. (2007) in that these authors also used occasionally-

presented hash strings as targets. The findings of effective connectivity, time course, and 

reaction time in chapters 3 and 4 collectively demonstrate that the visual discrimination task 

biases participants’ attention to the detection of low-level features and also evokes early top-

down feedback from frontal to ventral occipito-temporal cortex. A good example is that the 

reaction times for false fonts were shorter than consonant strings during the discrimination task, 

but this pattern reversed in the semantic task; and the differences in reaction time between real 

words and pseudowords were almost absent in the discrimination task, but were present in the 

semantic task. Interestingly, the discrimination task appeared to enhance early neural 

sensitivity to orthographic legality and overall enhanced the strength of early event-related 

fields. This general pattern is supported by a previous EEG study using a non-linguistic task 

(implicit) and two linguistic tasks (explicit) (Spironelli & Angrilli, 2007), which also found 

that, compared with the linguistic tasks, the non-linguistic task led to increased brain activity 

for words in visual cortex.  

An open question is whether brain activity during an “implicit” task is purely sensory-

driven and bottom-up by nature. Specifically, for the LvOT, does the activity within this region 

during an “implicit” task fully reflect sensory-driven processing? The findings in the 

discrimination task in Chapter 3 indicate that although the discrimination biased participants’ 

attention to low-level visual features, the LvOT also receives early top-down feedback from 

the LIFG; thus, there is no fully sensory-driven activity during an “implicit” task. The task-

modulation of brain activity during visual word recognition in this thesis does not speak against 
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the classification of explicit versus implicit. However, this thesis tends to support that the 

nature of the task used should be carefully considered in interpreting findings. In addition, it is 

important to consider the cognitive biases produced by a task when interpreting brain activity 

during that task. McNorgan et al. (2015) provides a good example. That study examined task 

by lexicality interactions in the brain, and explicitly stated that “interpreting lexicality effects 

should account for task” (McNorgan et al., 2015, p. 157). 

The discussion above also raises a further question: what a specific task should one use 

to examine neural activity during visual word recognition? The viewpoint here is that the 

answer here depends on what specific cognitive processes of visual word recognition one wants 

to focus on. If one aims to examine neural responses of phonological processing, then a 

phonological-oriented task such as word reading and rhyming tasks which emphasise 

phonological retrieval and manipulation can be used. In contrast, if the focus is on neural 

responses associated with accessing lexical representations and the meanings of words, then a 

more semantically-based task might be chosen. 

Limitations and Future Directions 

Although the studies presented in this thesis have contributed new knowledge about the 

early neural dynamics of visual word recognition, they have some limitations. As discussed in 

Chapters 2 and 3, not all DCM models in the six-node network were established due to 

computational limitations, which could lead to a possibility that the estimation of information 

flow in the network was biased. Future studies could use powerful computation to estimate all 

possible models in a pre-defined word-recognition network, as Ge et al. (2015) did in a recent 

fMRI study of language comprehension. In addition, the two DCM chapters specifically 

focused on the first 200 ms of top-down feedback, but not late time-windows such as 200-500 
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ms after stimulus onset. Obviously, only the first 200 ms brain activity cannot fully capture the 

full picture of visual word recognition. There is mounting evidence that late time-windows 

involve some key visual word recognition cognitive processes such as word comprehension, 

stimulus re-evaluation, and episodic memory (Carreiras et al., 2014; Hauk, 2016). Building on 

the effective connectivity findings in this thesis, future studies could examine how information 

exchange in the brain, especially top-down feedback, occurs at late stages of visual word 

recognition.  

The findings of this thesis add to a better understanding of the early stages word 

recognition. Several future directions can be suggested from the current work. The first pertains 

to the possible functional relevance of neural oscillations in early top-down feedback. 

Information exchange in the brain is not limited to neural interactions in terms of time-series 

coupling between local regions. Previous studies have also established that neural oscillations 

play an important role in transferring information between remote local regions (Fries, 2015). 

Intriguingly, recent electrophysiological investigations have revealed an overall pattern that 

gamma neural oscillations carry bottom-up feedforward information flow from lower-order to 

higher-order regions and beta neural oscillations carry top-down feedback information flow 

from higher-order to lower-order regions in macaque and human visual cortex (Bastos et al., 

2015; Michalareas et al., 2016). In the field of reading, Schoffelen et al. (2017) found that 

during sentence reading, directed connections from temporal to inferior frontal regions peaked 

in the alpha-band frequency while directed connections from inferior frontal and to temporal 

regions peaked in the beta-band. These findings align with previous observations of differences 

in frequency between feedforward and feedback connections in the visual cortex (Bastos et al., 

2015; Michalareas et al., 2016). Kujala et al. (2007) found that the LvOT is an important hub 

sending information to other regions at a frequency of 8-13 Hz during word-by-word text 
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reading. These studies suggest that frequency-bands of neural oscillations are likely involved 

in information exchange in the reading brain.  

Applying DCM for evoked responses to MEG data, Chapters 2 and 3 has revealed that 

the LIFG sends early top-down feedback to the LvOT during visual word recognition and this 

feedback is modulated by task goals. An open question to be answered is that what specific 

frequencies play an important role in sending early top-down feedback and bottom-up 

feedforward in the reading network. Previous MEG studies have revealed that the early 

activation of LIFG during visual word recognition is mainly driven by neural oscillations in 

beta band such as 10-20 Hz (Pammer et al., 2004), 10-25 Hz (Cornelissen et al., 2009), 15-35 

Hz (Wheat, Cornelissen, Frost, & Hansen, 2010), and 15-20 Hz (Klein et al., 2014). These 

studies indicate a possibility that beta band oscillations in the LIFG may function as top-down 

feedback. But this possibility needs to be confirmed. As such, at what frequency bands neural 

oscillations function bottom-up feedforward in the reading network is still unexamined. A 

further question is how these two types of neural oscillations interact with each other to produce 

efficient and effective word recognition. Using effective connectivity techiniques, such as 

Granger causality analysis or DCM for induced responses, future work could contribute to this 

issue.  

The second direction pertains to early top-down feedback in different linguistic tasks. 

Two very different tasks, a linguistic semantic categorisation task and a non-linguistic 

discrimination task, were used in this thesis. Chapter 3 specifically revealed a strong task 

modulation on early top-down feedback by showing differences between the two tasks in three 

effects (lexicality, phonological, and letter effects) on the LIFG-to-LvOT feedback. This 

reveals that task goals modulate early top-down feedback; however, how early top-down 

feedback occurs in different linguistic tasks is still unclear. A linguistic task can be oriented 

towards phonology, lexicality, or semantics. A good example task for each of these tasks is 
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word reading (reading aloud or silent reading), lexical decision, and semantic 

decision/categorisation. The time course of word recognition has been previously examined in 

studies with different linguistic tasks (e.g., Chen et al., 2013, 2015; Mahé et al., 2015). The 

current results have showed that task modulation of early top-down feedback takes place even 

within 200 ms after stimulus presentation. Because the LIFG has multiple functions in visual 

word recognition (Price & Mechelli, 2005; Price, 2012), it would be intriguing to examine the 

degree to which different kinds of linguistic task modulate this early top-down feedback. For 

example, does this feedback takes place differently in a lexically-stressed lexical decision task 

and a phonologically-stressed word reading task?  Future studies with more than one linguistic 

task could address these questions.  

The third future direction concerns the functional roles of other word-recognition nodes 

in information exchange in the brain. Chapters 2 and 3 of this thesis focused on early top-down 

feedback from LIFG to LvOT. However, reading-related functions are not limited to these two 

areas but also include the left posterior superior temporal cortex, anterior temporal lobe (Pugh 

et al., 2000; Price & Michelle, 2005; Price, 2012; Taylor et al., 2013). The left posterior 

superior temporal cortex plays an important role in auditory word form processing including 

grapheme-to-phoneme conversion (Pugh et al., 2000; Taylor et al., 2013). The anterior 

temporal lobe is thought to be a hub for semantic processing (Ralph, Jefferies, Patterson, & 

Rogers, 2016). These regions are regarded as crucial nodes for visual word recognition and 

reading and they are involved in the processing of different linguistic properties and interact 

with each other during visual word recognition (Hoffman, Ralph, & Woollams, 2015; Boets et 

al., 2013; Finn et al., 2013; Hancock, Richlan & Hoeft, 2017). However, they were not included 

in the word-recognition network in Chapters 2 and 3 because the focus of these two chapters 

was specifically on top-down feedback from frontal to ventral occipito-temporal cortex. Thus, 

it is still unclear what potential roles these regions play and how they interact with the LIFG 
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and LvOT at the early stages of visual word recognition. It would be interesting for future 

studies to examine these outstanding questions. For example, the question of how the left 

anterior temporal lobe is involved in lexical-semantic access at the early stages of visual word 

recognition, and how this region communicates with the LIFG/LvOT, remains to be 

investigated. Hoffman et al. (2015) found neural interactions between these regions, but could 

not reveal early neural interactions due to the poor temporal resolution of BOLD signals. What 

is more, some areas have subregions. For example, LIFG has three subregions that are thought 

to have different preferential functions; the more dorsal and posterior part is involved in 

phonological processing while the more ventral and anterior part is involved in lexico-semantic 

processing (Price & Michelle, 2005). Future studies could pay more attention to these 

subregions in feedback and feedforward information exchange for visual word recognition. 

These three directions for future studies are important for the exploration of early neural 

interactions in the brain when a visual word is recognised.  
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Conclusion 

The current thesis examined the early neural dynamics of visual word recognition. The 

results indicate that early top-down feedback from the LIFG to LvOT is influenced by multiple 

linguistic properties of visual words, such as lexical-semantic and phonological properties. The 

results also indicate that the influences of linguistic properties on this early top-down feedback 

are modulated by task goals, but lexical-semantic influences are free from task modulation. 

Furthermore, the time course of visual word recognition within the first 500 ms after stimulus 

onset is guided by task goals, in which linguistic intention is an important contributor. The 

combination of two neural measures, and the examination of effective connectivity between 

areas and time course, add to the extant knowledge of the early neural dynamics of visual word 

recognition. Future research can use the findings of this thesis as a starting point to investigate 

related topics, such as the role of neural oscillations and the possible functions of other key 

word-recognition regions in early top-down feedback.
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