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Abstract

In e-commerce environments, the trustworthiness of a seller is very important to po-

tential buyers, especially when the seller is not known to them. Most existing trust

evaluation models compute a single value to reflect the general trustworthiness of a

seller without taking any transaction context information into account. With such a re-

sult as the indication of reputation, a buyer may be easily deceived by a malicious seller

in a transaction where the notorious value imbalance problem is involved, namely, a

malicious seller accumulates a high level reputation by selling cheap products then

deceives buyers by inducing them to purchase more expensive products.

This thesis aims to systematically investigate some key and open challenging re-

search problems in context-aware transaction trust computation in e-commerce envi-

ronments. In general, it includes our work from the following two aspects.

The first aspect is the trust vector based approach to context-aware transaction trust

evaluation. In contrast to most existing trust management models that compute a single

trust value, a trust vector is first presented consisting of three major values for Con-

textual Transaction Trust (CTT). In the computation of CTT values, three identified

important context dimensions, including Product Category, Transaction Amount and

Transaction Time, are taken into account. In the meantime, the computation of each

CTT value is based on both past transactions and the forthcoming transaction. In par-

ticular, with different parameters specified by a buyer regarding context dimensions,

different sets of CTT values can be calculated. As a result, all these trust values can

outline the reputation profile of a seller that indicates his/her dynamic trustworthiness

in different products, product categories, price ranges, time periods, and any necessary

combination of them. We term this new model as ReputationPro. Nevertheless, in

ReputationPro, the computation of reputation profile requires new data structures for
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appropriately indexing the pre-computation of aggregates over large-scale ratings and

transaction data in three context dimensions, as well as novel algorithms for promptly

answering buyers’ CTT requests. In addition, storing pre-computed aggregation result-

s consumes a large volume of space, particularly for a system with millions of sellers.

Therefore, reducing storage space for aggregation results is also a great demand.

The second aspect is efficient computation of a seller’s reputation profile. To-

wards efficient computation of CTT values aiming at outlining a seller’s reputation

profile, four index schemes have been proposed. We first extend the approaches to

the two-dimensional (2D) Range Aggregate (RA) problem as the preliminary solu-

tions for CTT computation. They are effective approaches, but have low efficiency in

computing CTT values in some cases. Then, to overcome the problems in the prelim-

inary solutions, a new disk-based index scheme and a new query algorithm are further

proposed. Compared with the preliminary solutions, when answering a buyer’s CTT

queries for each brand-based product category, the new index scheme has almost linear

query performance. This is a significant advantage in answering queries on CTT val-

ues especially when a large number of buyers are accessing a seller’s reputation data

simultaneously. In addition, several strategies are proposed for storage space reduc-

tion in CTT computation. These strategies include aggregating ratings and transaction

data at different time granularity as well as deleting the index records that are gener-

ated based on the ratings and transaction data from remote history. The experiments

conducted on synthetic datasets generated from eBay datasets have demonstrated that

the proposed ReputationPro model can be more effectively applied to large-scale e-

commerce websites in terms of efficiency and storage space consumption.
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Chapter 1

Introduction

“Trust is the glue of life. It’s the most essential ingredient in effective communication.

It’s the foundational principle that holds all relationships.” – Stephen Covey

Trust, in society, plays an important role that, literally, is the basis for interpersonal

relationships. For example, we trust our neighbours to leave the house keys with them,

so they can look after our house while we are overseas. Similarly, our friends trust us,

so will lend us money if we find ourselves in a debt crisis. In these cases, trust has

been established, based on past experiences and direct interactions.

With the rapid development of Internet and Web technologies, people are more ac-

tive in various large, open network systems, including social networks (e.g., Facebook1

and Twitter2), Peer-to-Peer systems (e.g., uTorrent3 and iMesh4) and e-commerce (e.g.,

Amazon5 and eBay6). In particular, since the mid-1990s, many e-commerce appli-

cations have emerged and have been attracting a large number of customers, such

as Amazon (founded in 1994) and eBay (founded in 1995), which have about 145

million [10] and 233 million [33] customers worldwide, respectively. According to

statistics provided by comScore7 (an American Internet analytics company), on 26

November 2013 [26], e-commerce spending in the United States during 2013 (from

1http://www.facebook.com/
2http://www.twitter.com/
3http://www.utorrent.com/
4http://www.imesh.com/
5http://www.amazon.com/
6http://www.ebay.com/
7http://www.comscore.com/
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2 Introduction

January to October) was $164.0 billion which is 14% more than for the same period

in 2012. Apparently, e-commerce, or online trading, has greatly changed people’s tra-

ditional behaviours, and the changes are not only limited to the spending patterns, but

also extend to trust management.

Within e-commerce systems, which typically form a virtual community, people

(sellers and buyers) do not meet or interact physically. Consequently, in contrast to

direct interactions, trust establishment between sellers and buyers is usually through

the witness information or word-of-mouth [121]. For example, at eBay, a centralised

trust management system was developed to evaluate the reputation of sellers. After

each transaction, a buyer has an opportunity to provide a rating (+1, 0, or -1) to the

centralised trust management system based on the transaction quality. The ratings

given to a seller are accumulated over a recent time period (e.g., one month or six

months) and a single positive feedback rate is calculated as the indication of the seller’s

trustworthiness or reputation score. This single positive feedback rate can be used by

buyers to select a trustworthy seller from a large pool of sellers, particularly when the

sellers are not known to the buyer.

1.1 Motivation

1.1.1 Background and Problem Statement

In e-commerce environments, the trustworthiness of a seller is a crucial issue in the

decision-making process prior to a purchase [90, 40, 121, 61, 68, 16]. The rating

system used at eBay sets a good example for managing a seller’s trustworthiness or

reputation. However, such a simple trust management system is vulnerable to some

frauds from malicious sellers [66, 113, 50, 58]. As shown in Fig. 1.1, within eBay

community8, we can see evidence of cheating. For example, a malicious seller can

gain a good reputation by honestly selling good and low value (price) products. Once

8http://community.ebay.com/



§1.1 Motivation 3

having accumulated a good reputation, s/he may then deceive buyers by inducing them

to buy more expensive products, but either not delivering the ordered product, or de-

livering a fake product. In the literature, this is referred to as the value imbalance

problem [66, 29, 58, 67, 57] and such malicious sellers are named as traitors [92, 50].

Likewise, several real world cases are reported in [113]. For instance, an Australian

traitor, who traded honestly by selling cheap products to gain a positive profile before

selling expensive products, defrauded people of more than AU$10K in total. A Cali-

fornian traitor, in the same way, managed to earn a high positive feedback rate before

defrauding buyers of over US$300k.

In view of this problem, Zhang et al. [170, 172] identified the key issues related to

value imbalance in transactions, as outlined below.

• The lack of consideration of context in transaction trust evaluation: In e-

commerce environments, different transactions generally have different natures

and contexts; even the same seller needs to be considered differently with regard

to the trustworthiness in different forthcoming transactions [164, 158, 159, 121,

150, 149, 74, 111]. Actually, the value imbalance is only a type of the context

imbalance [172] in transactions, where imbalance can also exist in product cate-

gories. For example, following a few cases of fraud at Alibaba9, which is found-

ed in 1999 and supports both B2B (Business to Business) and B2C (Business to

Consumer) online trading, buyers are explicitly reminded to manually check if

the products offered by a supplier fall into in the same categories as the products

that the supplier usually sells [9]. This example also indicates that reputation-

based transaction trust evaluation should be “transaction context-aware”.

• The static results of trust evaluation: Most models compute a single trust val-

ue based on past transactions [120, 64, 159, 153, 154, 151, 88, 146]. However,

such a single value basically only reflects a seller’s general or global trust status,

and is static with regard to any forthcoming transactions [149]. As illustrated

9http://www.alibaba.com/
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above, different transactions may have different contexts. The static trust eval-

uation of a seller can hardly predict the likelihood of a successful forthcoming

transaction. Thus, trust evaluation should be associated with both past transac-

tions and the forthcoming transaction.

1.1.2 New Challenges in Transaction Trust Computation

Now, let us consider a simple example. Suppose a malicious seller S1 has complet-

ed 198 transactions with good quality selling “AT&T SIM Card” at the price of $1

and obtained 198 positive ratings. The seller S1 has also completed another 2 trans-

actions with poor quality selling “Apple iPhone5s 16GB” at the price of about $700

and obtained 2 negative ratings. Based on the trust evaluation model used at eBay, the

trustworthiness of S1 is as high as 0.99. Next, consider a scenario that a buyer B plans

to buy an “Apple iPhone5s 16GB”. In the meantime, the seller S1 is selling this prod-

uct, and the price $700 offered by S1 is cheaper than other sellers. Clearly, the seller

S1 is very attractive and appears to be trustworthy as well. Thus, the buyer B tends to

buy the “Apple iPhone5s 16GB” from S1. In such a case, B is likely to suffer mone-

tary loss. However, in addition to the general trust value 0.99 to buyers, if B knew that

S1 received negative ratings in occurred transactions selling “Apple iPhone5s 16GB”,

B would not purchase from S1. In fact, from buyers’ point of view, they are more

concerned about the trustworthiness of a seller in a potential forthcoming transaction,

rather than a general trust value resulting from all occurred transactions.

Suppose a seller S2 has completed many more transactions, selling products in

a variety of categories over a long period of time. When the buyer B plans to buy

a “Canon EOS 6D SLR Digital Camera” at the price of around $1600 from S2, in

addition to the trustworthiness of S2 in selling this product, B could also be concerned

about the trustworthiness of S2 in selling “Canon DSLR camera” with a price range of

“$1000-$2000” (i.e. a query w.r.t. a higher layer in the hierarchical product category

in a price range) in the latest 3 months or the latest 6 months. This is particularly the
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case when the product in the forthcoming transaction is just available in market and

the number of existing transactions selling this product is quite low or even zero. If S2

is reputable in all these related transactions, there should be good reasons for B to trust

S2 in a new transaction for purchasing a “Canon EOS 6D SLR Digital Camera” at the

price of around $1600. Otherwise, if S2 has problems in the transactions in a certain

product category or a certain price range (e.g., S2 received a lot of negative ratings in

the transactions in selling “Canon EOS 6D SLR Digital Camera”), it is necessary for

the trust evaluation to indicate the flaw of S2 in reputation.

The above process follows the suggestion provided on the Alibaba website, which

advises buyers to check if the product to be purchased from a seller is in the categories

in which the seller usually sells and if the existing transactions in these categories are

reputable. Similarly, as a buyer is very concerned about the possibility of monetary

loss, trust evaluation needs to indicate trustworthiness over different price ranges, each

of which takes the price of the product to be purchased as approximately the medium

value. In addition to them, a further step is to evaluate trust over the combination

of product category and price range, as well as time period, as different buyers buy

products in different categories and with difference prices from the same seller. Such

evaluation results can reveal potential risk if a seller has problems in reputation in

the transactions in a product category, a price range and a time period, related to the

potential new transaction that the buyer plans to complete with the seller.

Obviously, these identified needs cannot be satisfied by any single-value trust eval-

uation model. In the meantime, the new needs bring challenges to trust computation

as a long-existing seller usually has large-scale transactions with a wide variety of

product categories as well as a wide price range. These challenging problems will be

addressed in this thesis.

Broadly speaking, the context of transactions can be modelled or described by

transaction dimension. Let us suppose that the number of identified transaction con-

text dimensions is n and the cardinality for each dimension is m (i.e. each dimension

takes m values). Basically, in order to promptly answer a buyer’s request on trust-
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worthiness of a seller for a specific transaction context, the corresponding trust value

can be pre-computed and kept in a multi-dimensional structure (e.g., a matrix). Ob-

viously, a brute-force algorithm for computing this multi-dimensional structure incurs

a computational complexity of O(mn). Therefore, the computation of a seller’s trust-

worthiness in various transaction contexts incurs high computational complexity.

In summary, this thesis is not confined to the approaches designed to avoid some

attacks from malicious sellers [67, 58], but systematically investigates some key and

open challenging research problems in context-aware transaction trust computation

in e-commerce environments. These problems include identifying important context

dimensions, proposing a new trust evaluation model that takes identified transaction

context dimensions into account, and giving technical solutions, i.e. designing new

data structures and novel algorithms that can efficiently and comprehensively evaluate

the contextual trust of large-scale online transactions, and prevent frauds and monetary

loss. The detailed contributions of the thesis are given in the following section.

1.2 Contributions of the Work

This thesis makes a contribution in the following three major aspects.

1. The first contribution of this thesis lies in the proposed trust vector based ap-

proach to context-aware transaction trust evaluation.

(a) We distinguish the definitions of context in different applications, and fo-

cus on discussing and defining transaction context in e-commence environ-

ments. In particular, we identify three important transaction context dimen-

sions, i.e. Product Category, Transaction Amount (Price) and Transaction

Time with influence on the trustworthiness of a forthcoming transaction.

(b) In situations where there are no, or not enough, ratings from the past trans-

actions with the same context as the forthcoming transaction, we provide

a set of methods to calculate transaction context similarity, the results of
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which are used in inferring the trustworthiness of a forthcoming transac-

tion. Our solution, potentially, has wide applications in e-commerce sys-

tems.

(c) In contrast to most existing trust valuation models that compute a single

trust value [120, 27, 64, 159, 163, 154, 88, 146], we present a trust vec-

tor based approach consisting of three major trust values, which are also

termed as CTT (Contextual Transaction Trust) values. In the computation

of CTT values, three identified context dimensions are taken into account.

In the meantime, the computation of each CTT value is based on both past

transactions and the forthcoming transaction. In particular, with differen-

t parameters specified by a buyer regarding context dimensions, different

sets of CTT values can be calculated. As a result, all these trust values

can outline the reputation profile of a seller that indicates his/her dynamic

trustworthiness in different products, product categories, price ranges, time

periods, and any necessary combination of them.

Finally, we have studied the effectiveness of our proposed trust vector

based approach both analytically and empirically. In particular, it can re-

flect a seller’s dynamic trustworthiness in different transaction contexts and

identify risks potentially existing in a forthcoming transaction, thus outper-

forming single-value trust valuation methods [120, 154] and a prior trust

vector based approach [149].

2. The second contribution of this thesis lies in the proposed efficient approaches

to the computation of Contextual Transaction Trust (CTT) values.

At e-commerce websites, a popular seller usually sells a wide variety of prod-

ucts distributed in a number of product categories. In addition, a large number

of buyers can be accessing one seller’s reputation data simultaneously with re-

gard to their potentially forthcoming transactions in various contexts. In order

to promptly answer a buyer’s requests on CTT values, it is necessary to pre-
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compute aggregates over large-scale transaction data and ratings with necessary

combinations of three context dimensions. Thus, our proposed trust vector based

approach for outlining sellers’ reputation profiles is a very challenging problem

that requires new data structures and novel algorithms. Note that, as illustrated

in Section 1.1.2, it may incur the total computational complexity of O(mn).

(a) As mentioned above, with all trust results computed by the trust vector, the

reputation profile of a seller can be outlined, which greatly helps to identify

the value imbalance problem that may exist in forthcoming transactions,

and thus avoids monetary losses for buyers. We term this new model as

ReputationPro. In addition, we term the query on CTT values as a CTT

query, and term the computation of CTT values as CTT computation.

(b) In the literature, our targeted CTT computation problem is similar to data

warehousing and OLAP (On-Line Analytical Processing) technology [25].

In particular, the traditional RA (Range Aggregate) [104] in spatial data

warehouses is relatively close to CTT computation. Thus, to address CT-

T computation problem, we first provide three approaches, i.e. eaR-tree,

eaP-tree and eH-tree, by extending the existing approaches to the two-

dimensional (2D) RA problem. To the best of our knowledge, this thesis

is the first work in the literature which evaluates the reputation profile of a

seller taking advantage of related techniques in data warehousing. Exper-

iments conducted on both eBay datasets and large-scale synthetic datasets

illustrate the advantages and disadvantages of three approaches when an-

swering a buyer’s CTT queries.

(c) Although three disk-based approaches have been proposed that meet the

requirements of CTT computation, they have low efficiency in computing

CTT values in some cases. Towards efficient CTT computation, a new

disk-based index scheme CMK-tree and a new query algorithm are pro-

posed. We have proved that while answering a buyer’s CTT queries for
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each brand-based product category, the CMK-tree has almost linear query

performance. This is a significant advantage in answering CTT queries

when a large number of buyers are accessing a seller’s reputation data si-

multaneously.

3. The third contribution of this thesis lies in the proposed strategies for storage

space reduction in Contextual Transaction Trust (CTT) computation.

Generally speaking, the approaches to CTT computation pre-compute the ag-

gregates over historical large-scale ratings and transaction data of a seller. Then,

the aggregation results are stored appropriately in the specialised index forming

a tree structure. Nevertheless, with continuous growth in transaction time and

significant increase of transaction data, the size of additional storage space for

storing the aggregation results can become much larger.

To address this problem, we propose several strategies to reduce that additional

storage space consumption. With these strategies, we make the new trust eval-

uation model ReputationPro more effectively apply to large-scale e-commerce

websites in terms of efficiency and storage space consumption.

(a) In the literature, Zhang et al. have proposed a Hierarchical Temporal Ag-

gregation model with fixed storage space (HTAFS) to deal with temporal

aggregation over data streams [165]. According to our analysis, we firstly

point out the limitations of HTAFS model in solving our targeted problem.

Then, a new solution CTTFS model for CTT computation is introduced.

The CTTFS model guarantees the fixed storage space for storing the aggre-

gation results as well as good performance in responding to CTT queries.

Also, the experiments are conducted on both an eBay dataset and a large-

scale synthetic dataset to validate our proposed structure and approach.

(b) As stated above, the HTAFS can be applied to CTT computation to control

the size of the storage space allocated to a seller. However, it is difficult
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to select the size of the fixed storage space since the number of distinct

products, as well as the number of product categories in the transactions

traded by different sellers are different. Therefore, a new strategy is adopt-

ed, which aggregates ratings with different time granularities for different

time periods. We apply this strategy to the CMK-tree and propose the

CMK-treeRS approach. According to experimental results, our proposed

CMK-treeRS can further reduce the storage space allocated to each sell-

er as well as the time of computing the CTT values with a little loss in

accuracy of CTT computation.

(c) In solving the large storage space consumption, a fundamental idea is to

delete index records that are generated based on ratings and transaction

data from “remote” history (e.g., “the 12 months ago”). As stated before,

the index scheme CMK-tree is considered as the most efficient approach to

CTT computation. However, in order to achieve nearly linear query perfor-

mance, the deletion operations in the CMK-tree become quite complicated.

Therefore, in this thesis, we propose three different deletion strategies for

the CMK-tree. Also, we have conducted experiments to illustrate both ad-

vantages and disadvantages of our proposed deletion strategies.

1.3 Roadmap of the Thesis

This thesis is structured as follows.

Chapter 2 presents a comprehensive literature review of the basic concepts of trust

management as well as trust evaluation methods, context-aware trust evaluation and

related techniques in data warehousing.

Chapter 3 first presents the definition transaction context, then proposes a set of

methods to compare similarity between transaction context dimensions, and finally,

introduces our proposed trust vector based approach to context-aware transaction trust

evaluation. This chapter includes our papers [170, 172] published at IEEE ICWS 2011
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and IEEE SOCA 2012 (please refer to [6] and [4] in the publication list on page ix).

This chapter is also the basis of whole thesis.

The remainder of this thesis covers the following two aspects.

The first aspect is the proposed efficient approaches to CTT computation, which is

discussed in Chapters 4 and 5. In Chapter 4 we present the differences between Two-

Dimensional Range Aggregate (RA) and our targeted CTT computation problem, and

then, we propose three preliminary solutions, eaR-tree, eaP-tree and eH-tree for CTT

computation. This chapter is based on the papers [171, 173] published in IEEE Trust-

Com 2012 and Security and Communication Networks Journal (SCN) (please refer to

[5] and [2] in the publication list on page ix). In Chapter 5, we propose the CMK-tree,

which is an efficient approach to CTT computation and a new query algorithm. The

experimental results illustrate that the CMK-tree is superior in efficiency when com-

puting CTT values to all three existing approaches in the literature. This chapter is

based on the paper submitted to ACM Transactions on the Web (TWEB) [174] (please

refer to [1] in the publication list on page ix).

The second aspect of the work concerns storage space reduction strategies in com-

puting CTT values. Firstly, in Chapter 6, based on HTAFS model, we propose a new

solution CTTFS model for CTT computation. This part includes our paper [169] pub-

lished at IEEE SCC 2013 (please refer to [6] in the publication list on page ix). Second-

ly, in view of the drawbacks of CTTFS model, we propose another strategy to reduce

the storage space consumption and apply to the CMK-tree, i.e. CMK-treeRS . This part

includes the paper submitted to ACM Transactions on the Web (TWEB) [174] (please

refer to [1] in the publication list on page ix). Thirdly, we present three deletion s-

trategies for CMK-tree, which can eliminate the index records in the CMK-tree that

are generated based on ratings and transaction data from “remote” history.

Finally, Chapter 7 concludes the work in this thesis and discusses some directions

for future research opportunities.



Chapter 2

Literature Review

“Learning to trust is one of life’s most difficult tasks.” –Isaac Watts

“Trust is a complex and slippery notion,....” –Bart. Nooteboom

“...trust is a term with many meanings.” –Oliver. Williamson

Trust is a complex subject relating to belief, truth, competence and reliability be-

tween a trustor (i.e. the subject that trusts a target entity) and a trustee (i.e. the en-

tity that is trusted). After recognising its importance, scientists and researchers from

different disciplines including sociology, psychology, economics and computer sci-

ence, attempted to define the meaning of trust, but without consensus [40]. Moreover,

from the perspective of computer science, the trust management systems have been

extensively studied in different application environments such as Peer-to-Peer (P2P)

networks [131], cloud environments [100], e-commerce environments [61], web ser-

vices [155] and social networks [124].

In e-commerce environments, an effective trust management system can help both

sellers and buyers obtain the maximum benefit [141]. In addition, from the perspective

of economic benefits, large differences in selling prices have been observed between

new sellers (no reputation) and sellers with a good reputation [14]. Furthermore, the

sellers with excellent trustworthiness are more likely to sell items successfully than

those with poor trustworthiness [109, 110]. In light of this, over recent years, trust has

received much attention from researchers to build various trust management system-

s [120, 158, 88, 146, 173].

13
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In this chapter, from the perspective of the general concept of trust to a specific

perspective of context-aware trust evaluation, we present a comprehensive review. In

this way, the contributions of the whole thesis can be more clearly understood. We

organise this chapter as follows:

• Section 2.1 introduces different definitions of trust, the trust properties and basic

processes of building a trust management system. This section is helpful to have

a global picture of trust management.

• The trust evaluation approach is the most essential part for any trust management

system, thus Section 2.2 focuses on classifying the existing trust evaluation ap-

proaches from different perspectives.

• In the literature, it has already been recognised by increasingly more researchers

that “trust evaluation should be context dependent”. In Section 2.3, we first

discuss the definition of context in different application environments. Then,

we introduce existing context-aware trust evaluation approaches and focus on

highlighting the differences from our work and its contributions.

• Section 2.4 reviews related techniques in data warehousing and OLAP (On-Line

Analytical Processing), since they have been improved to solve our targeted

problem in this thesis.

• Finally, Section 2.5 summarises our work in this chapter.

2.1 Overview of Trust Management

The notions of “trust management” and “trust management system” first appear in [20],

which are originally defined to evaluate security policies in traditional distributed sys-

tems. The concept of trust management then spread to many different application en-

vironments. In order to have a global picture of trust management, we first introduce

the basic concept of trust.
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2.1.1 Meanings of Trust in Different Disciplines

The Oxford Reference Dictionary1 states that trust is the “firm belief in the reliability,

truth, or ability of someone or something”. From this definition, we can see the trustee

should be highly reliable and have honest performance when interacting with trustor.

The concept of trust is not new, but people can have different understandings of it. In

the literature, in addition to these definitions, scientists have defined the meaning of

trust in different disciplines [91].

2.1.1.1 Trust in Psychology

In psychology, Deutsch [30] states that trust is considered to be a psychological state

(perception) of the trustor (the individual), where the trustor is willing to take a risk

after balancing both costs and benefits. In addition, from a psychological perspective,

Beatty et al. [16] point out that trust should include three aspects: cognitive, emotive

and behavioural. The cognitive aspect of trust refers to a rational decision [11] based

on the trustor’s evaluation of the trustee; the emotive aspect of trust refers to nonra-

tional decision but emotional drive [137]; the behavioural aspect of trust refers to the

final actions that makes the trustor vulnerable to the trustee.

2.1.1.2 Trust in Sociology

In sociology, Sztompka [133] defines trust as “a bet about the future contingent actions

of others”. To some extent, the trust definitions for both Deutsch and Sztompka are

similar, which are considered as the expectation of unknown.

In fact, the above similarity is due to the fact that sociology contains two parts: in-

dividual (micro level) and societal (macro level). At the individual level, the definition

of trust is similar to the perspective from psychology [117, 124]. At the societal level,

trust is considered to be a property of social groups. For instance, Luhmann [86] con-

siders trust as “a means for reducing the complexity of society”, as people in society

1http://www.oxfordreference.com/
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generally obey certain rules and are, thus, predictable.

However, trust at the individual level and trust at the societal level is not the same

thing. In order to explain these differences, we introduce two forms of trust: “rela-

tional trust” [117] and “generalised trust” [116]. Relational trust at the individual level

refers to specific trust between the trustor and trustee. It is built up through repeat-

ed direct interactions between two parties and declines when trust is betrayed [117].

By contrast, generalised trust at societal level refers to a general belief of the trustor

towards a group of members, such as “scientists are always stiff”. In human society,

the generalised trust allows an initial trust relationship between unfamiliar trustor and

trustee, and then relational trust is established through further interactions between

them. As pointed out by Marsh [91], studying the phenomenon at either level relation-

al or generalised but ignoring the other leads to the inevitable loss of understanding of

trust as a personal and a social concept.

2.1.1.3 Trust in Economics

In economics, the European Commission Joint Research Center [54] defines trust as

“trust is the property of a business relationship, such that reliance can be placed on the

business partners and the business transactions developed with them”. This definition

also implies that trust plays an important role in commercial relations.

To be precise, trust can affect transaction itself, in particular, it will mitigate infor-

mation asymmetry in transactions [8, 14]. During transactions, information asymme-

try may lead to opportunistic behaviour of one party that deceives the other to increase

his/her profits, and this phenomenon is quite evident in online trading. Buyers who

are participating in online trading cannot judge product quality in advance, as it is

difficult to confirm that the product quality, as posted by a seller, is accurate. Even

the information asymmetry may generate price premiums for the sellers who are more

trustworthy [14]. In summary, some economists consider trust as a mechanism that

restricts opportunistic behaviour, and it makes two parties establish a reciprocal rela-

tionship during transactions.
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2.1.1.4 Trust in Computer Science

In computer science, Marsh is among the pioneers who introduced a computational

model for trust [91]. Broadly speaking, the discussion of trust in computer science can

be classified into two different aspects: “target” and “process”.

The definition of trust, from the “target” aspect, is the same as that of psychology,

sociology and economics [91]. More specifically, the work in this aspect focuses on

the subjective property of trust. For example, Mui defines trust as “a subjective ex-

pectation an entity has about another’s future behavior” [97]. Similarly, Jøsang et al.

combine both psychology and economics, and state that “Trust is the subjective prob-

ability by which an individual expects that another performs a given action on which

its welfare depends” [61]. From the “process” aspect, computer science researchers

design various trust evaluation models to help users of trust management systems es-

tablish trust relationships. Usually, these models attempt to simulate the process of

trust establishment amongst people in human society. In the following, we take eBay

(one of most popular online shopping systems) as an example to explain the process

of trust establishment amongst users.

Since most eBay users are not familiar with each other, eBay provides a rating

system to assist buyers and sellers. After each transaction, a buyer can provide a rating

(+1, 0, or -1) to a trust management system according to transaction quality. In this

case, when a potential buyer is planning to buy a product from an unfamiliar eBay

seller, the initial trust establishment of the buyer is based on the experiences (ratings)

of others, i.e. “recommendation trust” [2]. Normally, if a seller has a high level of

“recommendation trust”, it implies that s/he is trustworthy. However, this initial level

of trust may rise, or decline, after direct interactions (transactions) between the buyer

and the seller, and that is “relational trust” [117]. In addition, eBay has identified

“top-rated sellers”2, who consistently deliver outstanding customer experiences, which

helps an initial trust relationship to be established between an unfamiliar buyer and a

2http://pages.ebay.com.au/help/sell/top-rated.html
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seller. This is an example of “generalised trust” [116]. Of course, the members in this

group may then generate price premiums, as they have been identified as being more

trustworthy [14].

Other popular trust evaluation models, such as EigenTrust [64], PeerTrust [159]

and PowerTrust [180], adopt the idea of “recommendation trust” and “relational trust”

for trust establishment. To sum up, the prototype of trust definition in computer sci-

ence, regardless of “target” and “process”, can be found or explained from perspectives

of psychology, sociology and economics. More importantly, they give a solid theoret-

ical foundation for the discussion of trust in computer science.

2.1.1.5 Trust Related Concepts

This subsection introduces two concepts related to trust: risk [62] and reputation [2].

Trust is always accompanied by risk. As pointed by Bohnet [53], the willingness

to trust is closely associated with the willingness to take risk. Ruohomaa [118] even

defines trust using the concept of risk as “Trust is the extent to which one party is

willing to participate in a given action with a given partner, considering the risks”.

Risk has also been studied in many disciplines, including psychology, economics and

computer science. In psychology, risk is the psychological state in emotion facet such

as fear [73] and in cognitive facet such as uncertainty [117], while in economics, risk is

tied to money or profit and thus affects trust decision [53]. In computer science, most

researchers acknowledge that the terms of trust and risk are in an inverse relationship,

with a high level of risk linked to a low level of trust and vice versa [106, 62, 156].

Reputation is another trust related concept, and its discussion depends on the past

behaviours of an individual. For instance, Abdul-Rahman defines reputation as “an

expectation about an individual’s behaviour based on information or observations of its

past behaviours” [2]. Likewise, Mui defines reputation as “a perception a party creates

through past actions about its intentions and norms” [97]. Clearly, the reputation is the

result of the accumulation of past behaviours, or it can be considered as the statistical

result of “recommendation trust” (experiences of others) [2]. In [61], Jøsang et al.
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present the following two statements to differentiate trust and reputation:

(a) I trust you because of your good reputation.

(b) I trust you despite your bad reputation.

The first statement reflects that reputation is essential for two unfamiliar parties

to establish an initial trust relationship. That is because, in this case, experiences of

others (“recommendation trust”) is the only reliable information on which a party can

make a judgement. Therefore, the higher the reputation, the more trustworthy the

party is considered to be. The second statement reflects that reputation is redundant

for “relational trust”, where the trust is formed by direct interactions [117]. That is, if

two parties have direct interaction, the experiences of others is no longer useful. These

two statements also suggest that trust is a subjective phenomenon [97, 61].

2.1.2 Properties of Trust

Following on from the discussion of the meanings of trust, this section focuses on

introducing some trust properties. These proposed properties are based on either ex-

perimental verification or long-term observations of human activities, which provide

the theoretical foundation for researchers in computer science to design various trust

evaluation approaches.

2.1.2.1 Trust is Subjective

It is well acknowledged that trust is subjective, regardless of disciplines. For example,

in psychology, trust is defined as a personal psychological state [116], and it reflects

the trustor’s subjective attitude, or personal opinion, towards the trustee. For the same

person, however, different people may have different opinions. For instance, Alice

trusts Bob, since Bob always keeps promise during their interactions, but, due to a

betrayal, Cathy does not think Bob is trustworthy.
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In computer science, the subjective property of trust is one of the major aspects

in trust discussion. Jøsang took advantage of subjective logic (logic that operates on

subjective beliefs about the world), to explain trust [55, 56]. To be precise, Jøsang’s

model contains three parts: belief (b), disbelief (d) and uncertainty (u), which satisfy

an equation as b+ d+ u = 1. Jøsang further explains that an opinion can be uniquely

described as a point in the triangle where belief, disbelief and uncertainty are three

vertices. Moreover, in e-commerce or service-oriented environments, the above theory

is applied to evaluate the subjective trustworthiness of a consumer during sellers or

services selection [75]. In particular, some mathematical theorems have been proposed

to depict the changes of subjective trustworthiness. For example, with an increase in

the total number of positive/negative experiences (ratings) from other consumers, the

uncertainty decreases and belief/disbelief increases.

In addition, trust is a subjective phenomenon that is also treated as personalisation.

For example, Richardson et al. [112] stress that trust is a personal trust, and the ratings

given by users in a trust management system belong to personal ratings.

2.1.2.2 Trust is Dynamic

Having introduced the subjective property of trust, it is easy to understand that trust

changes dynamically with time. Specifically, based on repeated direct interactions,

trust can build up, or decline, with new experiences [117]. Meanwhile, the dynamics

of trust also reflects a temporal characteristic of trust. In the literature, the concerns of

trust and time have been discussed in three major ways: trust decay, trust time window

and their hybrid.

The experiences will fade over time, thus trust decay refers to the decline of trust

with the fading experiences. This characteristic is widely used in computer science,

with a well-acknowledged method being to gradually reduce the influence of old in-

teractions (experiences), or increase the weighting of more recent interactions (experi-

ences) [120, 64, 153, 88, 147]. Of course, this method is reasonable, since new interac-

tions are more important than old ones for evaluating the recent behaviours of a party.
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In addition to the fading experiences, Spitz and Tüchelmann [128] point out a phe-

nomenon called inactivity. In particular, this phenomenon is common for e-commerce

websites. Inactive members are the sellers where there has been a large lapse of time

since their last transaction. With the existing approaches, such as [120, 153], to deal

with inactivity, an inactive member will never reduce its trustworthiness as long as no

new experiences are made. Apparently, these inactive members are different from the

other active members, but there are few studies to evaluate their trustworthiness.

Trust time window is another way of concern the temporal characteristic of trust.

In some trust evaluation models, such as PeerTrust [158, 159], users are allowed to

choose the recent time window. Similarly, at eBay, the above time window is set to

three different time ranges: “the latest 1 month”, “the latest 6 months” and “the latest

12 months”.

At last, the hybrid of trust decay and time window is adopted to reflect the dynamic

property of trust [154, 153, 147].

2.1.2.3 Trust is Propagative

Trust propagation is an important property that helps unfamiliar parties to establish

a trust relationship. For example, Alice trusts Bob, who trusts Cathy, but Alice and

Cathy are not familiar with each other. Then, Alice and Cathy may establish a trust

relationship, however, how much Alice trusts Cathy should depend on how much Alice

trusts Bob, and how much Bob trust Cathy [162, 59]. Due to trust propagation, the

information of trust can pass from one to another, and finally form a trust path or a

trust chain. Within a large social network, trust propagation becomes quite complex,

since more parties are involved in a trust path.

In e-commerce environments, trust propagation can be considered as a simple form

of “recommendation”, without a complex trust path. Let us take the rating system used

at eBay as an example. The buyer, Alice, gives an eBay seller a positive rating (+1)

after a transaction, which implies that she “recommends” this seller to other buyers

with regard to his/her trustworthiness. The buyer, Bob, who trusts Alice, may then
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carry out a transaction with this eBay seller as well. Likewise, another buyer, Cathy,

who trusts either Alice or Bob, may continue to trade with that seller. Clearly, this

process is the same as “word-of-mouth” in human society.

2.1.2.4 Trust is Context Dependent

Across all the disciplines, Rousseasu et al. provide an extensive review of the con-

cept of trust, and suggest that “research on trust requirements the attention to contex-

t” [117]. Conceptually, context is always bound to situation. For example, the Webster

Dictionary states context as “the situation in which something happens”. Similarly, a

widely accepted definition presented by Dey [31] states “context is any information

that can be used to characterize the situation of an entity”. Rehak et al. [108] point

out the difference between context and situation is that situation is the state of real-

ity and context is a formal, simplified representation of the situation. Therefore, the

statement, “trust is context dependent”, implies different situations require different

considerations with regard to trust.

More specifically, some social scientists propose “interpersonal and personal trust”

as one of topological categories on trust [94], namely, that one person trusts another

person in a specific situation. For example, Alice may trust Bob as a mechanic in the

specific context of servicing her car but probably not in the context of babysitting her

children [2]. Based on the above considerations, Grandison and Sloman [40] intro-

duce context to define trust as “the firm belief in the competence of an entity to act

dependably, securely, and reliably within a specified context”.

In computer science, Marsh proposes the concept of “situational trust”, such as

“Whilst I may trust my brother to drive me to the airport, I most certainly would not

trust him to fly the plane!” [91]. Namely, even for the same person, different con-

texts (situations) may deliver different results for his/her trustworthiness. In addition,

Mui [97], from the reputation point of view, expands the concept of situational trust

and stresses that reputation also depends on the context. “Bill Clinton’s reputation as

a politician is likely to be very different from his reputation as a cook.” It means that,
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from past experiences (these experiences are mainly the comments from others), we

could only infer that we trust Bill Clinton as a politician instead of a cook.

In order to provide an accurate evaluation on the trustworthiness of a trustee, the

calculation of trust needs to consider the contextual information. In recent years, in

recognition of the importance of context, more studies have introduced context in trust

evaluation [159, 81, 108, 150, 142, 74, 170, 111, 83]. In Section 2.3, we will review

some context-aware trust evaluation approaches separately, and context-aware trans-

action trust evaluation in e-commerce, which is the focus of this thesis.

2.1.3 Building Trust Management Systems

At the beginning of this section, we have pointed out that trust is a term with many

meanings, and there is no consensus on its meaning across all the disciplines [72, 40].

Nevertheless, in the field of computer science, the researchers share the same goal of

building an effective trust management system. The trust management system aims

to model the process of trust establishment in human society, help users identify the

trustworthy members and deliver reliable information.

As shown in Fig. 2.1, the trust management systems are built on a logic hierarchy

with three levels: infrastructure level (security-oriented trust), service level (service-

oriented trust) and community level (socially-oriented trust) [118, 43]. In this section,

from the three levels, we give an extended introduction to trust management systems.

2.1.3.1 Logic Hierarchy of Trust Management Systems

In computer science, early trust management systems use security policies to establish

trust. These systems are usually applied for the purposes of security and focus on the

reliability of information (security-oriented trust [43]) thus traditional security tech-

niques [175, 176], e.g., authentication, encryption and access control, can be adopted.

Correspondingly, trust is the extent to which a party is willing to depend on something

or somebody, in a given situation, with a feeling of relative security [94]. For example,
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Figure 2.1: Trust management systems built on a logical hierarchy with three levels

the Kerberos protocol [71] takes advantage of a third party to facilitate the exchange

of credentials (digital signatures) between a user and a computer. PolicyMaker [20]

and KeyNote [19] use signatures authentication to form the trust relationship between

a trustor and a trustee. The trust management systems at infrastructure level are more

concerned about reliability than about the content of information.

The service-oriented trust management re-evaluates the content of information that

refers to direct and indirect experiences or interactions between a trustor and a trustee.

In an open environment, such as e-commerce or web services, where members (e.g.,

service providers and service consumers) can freely access (join and leave) and inter-

act with each other, to evaluate the trustworthiness of a target, security-oriented trust

evaluation leads to a large overhead for trust management systems [89]. In such a case,

each member typically maintains its own trust information about others, possibly in-

corporating the recommendations of others, and, finally, trust is established based on

a combination of all the information. Usually, the above process is also termed as

reputation-based trust evaluation [118, 119, 121, 131, 155, 50]. As the focus of this

thesis, we introduce them separately in the following subsection.

Finally, socially-oriented trust management has many intersections with service-

oriented trust management in terms of components [43]. In the meantime, it brings in
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a new problem regarding the relationship of trust information in social environments.

Generally speaking, socially-oriented trust management is to model and reason about

the relationships between members in social environments where the relationships

may be influenced by social science, psychology or philosophy [43]. More specifi-

cally, within a large-scale social network, the trust path will be extended to involve

more members. Therefore, the relationship of trust information, such as trust prop-

agation [48], becomes quite complex, which may be affected by personal and social

factors [13]. Moreover, the problems, including trust relationship mining [37] and

trustworthy path finding [79] within a large social network, are all challenging issues

at the community level.

2.1.3.2 Trust Management Systems at Service Level

The trust management systems at service level include three fundamental parts: trust

information collection, trust value assessment and trust value dissemination [92, 50,

124]. First, we discuss trust information collection from the following three aspects:

information sources, information expressions and information acquisitions.

• Information sources: The trust information mainly comes from two sources:

direct interactions (first-hand) and indirect interactions or inference (second-

hand). There is no doubt that first-hand, direct interactions between the trustor

and trustee provide the most relevant and reliable information. However, in

most cases, it is difficult to obtain first-hand information, and so second-hand,

or indirect interactions, e.g., “word-of-mouth”, or inference from first-hand in-

teractions is also essential for trust establishment. For trust management system,

however, it can be complex when using second-hand information since it is less

reliable. In fact, the computed trust values based on second-hand information

are the reputation score of trustees.

• Information expressions: In the literature, the computational expressions of

trust information are usually via the form of user ratings. Normally, the user-
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s of a trust management system need to convert qualitative information into

quantitative information. For example, the ratings at eBay are in the set of

{−1, 0, 1}; at Amazon, each rating is an integer in {1, 2, 3, 4, 5}; EigenTrust [64]

and PeerTrust [159] use binary ratings, such as {−1, 1} or {0, 1}. The corre-

sponding ratings measure the level of satisfaction with a past interaction between

the user and provider. Then, trust management systems will collect all ratings

given by users. Finally, a well-designed trust evaluation model is adopted to deal

with the collected ratings in order to compute the trust value of a provider. That

trust value can be either binary, discrete or continuous [50]. In addition, apart

from ratings, at eBay, the buyers are allowed to leave detailed comments. The

comments can be a word or a sentence, which facilitate other buyers to judge the

trustworthiness of a seller.

Other trust information expressions include human verbal statements (Very Trust-

worthy, Trustworthy, Untrustworthy, Very Untrustworthy) and linguistic vari-

ables (fuzzy values) [28]. In [126], information entropy is adopted to reflet the

level of trustworthiness.

• Information acquisitions: Generally speaking, information acquisitions in-

clude centralised mechanism and decentralised mechanism. For a centralised

mechanism, there is a trusted third party to take all the responsibilities of manag-

ing trust information, such as ratings, for the all the members. This mechanism

is particularly common for web services [85, 151].

By contrast, for a decentralised mechanism, there is no trusted third party, and

the members in trust management systems have to share the responsibilities of

managing trust information, e.g. the peer-to-peer networks [131, 92]. Obviously,

it is more complex than centralised mechanism.

Secondly, we discuss trust value assessment and trust value dissemination. For

trust value assessment, various trust evaluation approaches have been proposed, and it

is an important part for the trust management systems. The existing trust evaluation
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approaches can be classified from different perspectives. For example, from the point

of view of applications, they are categorised into trust evaluation models applied in

network and trust evaluation models applied in internet [124]. We close the review of

trust evaluation approaches here, and more details will be given in the next section.

In addition, compared with socially-oriented trust, trust value dissemination for

trust management systems at service level is relatively simple. More specifically, for

a centralised mechanism, the computed trust values are stored and disseminated by

a trusted third party. For instance, eBay uses a centralised trust management sys-

tem, which posts the computed reputation information of each seller. Meanwhile, the

potential buyers can freely access the reputation information of a seller. For a de-

centralized mechanism, each member in trust management system is responsible for

disseminating part of the trust or reputation information. The corresponding responsi-

bility may be symmetrical, e.g., distributed hash tables (DHTs) [129], or asymmetrical,

e.g., power-law peer-to-peer network [32]. In [50], Hoffman et al. further present a

brief review on the dissemination approaches used in decentralised mechanism. Fur-

thermore, reputation-based trust management systems now take advantage of social

networks to extend the range of dissemination. For instance, at eBay, a trustworthy

seller can be recommended via Facebook or Twitter, and, consequently, friends and

relations, as well as friends’ friends, will know the seller.

2.2 Taxonomy of Trust Evaluation

In this section, we will give a detailed review on the existing trust evaluation approach-

es. In contrast to the works in [131, 121, 119, 61] which introduce typical trust evalua-

tion models, we focus on categorising trust models from different perspectives. In ad-

dition, the approaches to be reviewed are not limited to trust evaluation in e-commerce

environments, with the scope extended to include other areas, such as peer-to-peer

networks, social networks and web services.
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2.2.1 Application-Based Taxonomy

In the literature, some works categorise trust evaluation approaches according to their

application environments [76, 124]. These are generally subdivided into trust evalu-

ation models applied in network and those applied in Internet. Specifically, network

applications include peer-to-peer (P2P) networks [131], multi-agent systems [121],

social networks [124] and ad hoc networks [177]. Internet applications include e-

commerce [61], web services [155] and cloud computing [100].

2.2.1.1 Network-Based Trust Evaluation

Peer-to-Peer (P2P) Networks: For network-based trust evaluation, peer-to-peer (P2P)

networks are one of the major application areas. The typical models include P-Grid,

XREP, EigenTrust, PeerTrust and PowerTrust.

The P-Grid [3] model defines a global trust value (measured on a continuous s-

cale from 0 to 1) to determine whether a peer is trustworthy. XREP [27] adopts a

binary rating system and provide a distributed polling protocol to evaluate the repu-

tation of each peer. EigenTrust [64] also adopts a binary rating system that computes

a global reputation for each peer in a network using an algorithm similar to Google’s

PageRank [102]. PeerTrust [159] defines some trust metric formulas that aggregate

ratings into a general trust value. In PeerTrust, important factors including contex-

t factor and community factor, as well as the credibility of feedback are identified,

each of which may influence the result of trust evaluation. In PowerTrust, Zhou and

Hwang [180] find a power-law distribution in a peer’s feedback ratings, and develop

a reputation system PowerTrust that dynamically selects a small number of the most

reputable power nodes. PowerTrust still focuses on computing a global trust value.

Ad-hoc Networks: Trust evaluation approaches are proposed and applied in ad-hoc

networks (both vehicular (VANETs) and mobile (MANETs) networks).

Zhang [177] identifies some characteristics of ad-hoc networks, such as highly dy-

namic and distributed environments, limited information gathering ability of each peer
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and collusion between peers formed easily, which lead to new requirements for de-

signing trust models. The existing trust models in MANETs focus on how to model

the trustworthiness of nodes (e.g., collecting trust information about them from other

nodes in the network [81]) and how to deliver reliable (security and privacy) packet-

s [23, 160, 22, 181]. In VANETs, trust management is not limited to reliable package

delivery, i.e. building a security infrastructure [35, 45], but is also concerned with

detecting false information provided by malicious peers [38].

Multi-Agent Systems: Trust evaluation approaches are also widely discussed in the

fields of multi-agent systems.

Marsh [91] proposes a computational trust model in multi-agent systems, which is

acknowledged as the earliest work on trust evaluation in computer science. In Marsh’s

model, the trust properties, such as non-transitive and propagative, are discussed. In

multi-agent systems, two popular mathematical models for managing trust information

are Bayesian systems [97, 60] and the subjective belief model [56]. In addition, Grif-

fiths [42] provides a Multi-Dimensional Trust (MDT) model which allows agents to

model the trust value of others according to their personal preference. In the REGRET

system [120], an agent-based social-wide trust evaluation method has been proposed.

In particular, it takes into account trust development between groups, i.e. the “social

dimension”. For example, when calculating the trust from agent A to agent B, we

need to consider what the other members of A’s group think about the agent B and

B’s group.

Social Networks: With the rapid development of social network research in recen-

t years, the trust properties, such as non-transitive and propagative, are still hotspot

issues. For example, in social networks, Golbeck et al. [37] propose trust propaga-

tion algorithms based on binary ratings. Guha et al. [44] develop a framework for

both trust and distrust propagation within social networks. Hung et al. [48] propose

an algebraic approach to trust propagation which includes a concatenation operator

for trust aggregation between neighbours, an aggregation operator for combining ev-

idence, and a selection operator for multiple paths selection. Recently, Sherchan et
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al. [124] present a comprehensive review on the trust evaluation models in social net-

works and categorised them into network structure models, interaction-based models

and hybrid models.

2.2.1.2 Internet-Based Trust Evaluation

E-Commerce: An e-commerce environment is like a virtual world that combines in-

dividuals [95] and society [69], economics [14] and culture [139].

In e-commerce environments, the issue of trust has received much attention from

researchers. For instance, Grandison and Sloman [40] explain the importance of trust

and present a survey on trust management systems in e-commerce environment. How-

ever, most trust models mentioned in that article are used for security-oriented trust.

As described in Section 2.1.3.1, the earlier trust management systems are built on low-

er infrastructure level. However, due to the popularity of e-commerce websites, such

as eBay and Amazon, there has been an increase in research studying reputation-based

trust evaluation approaches [164, 97, 158, 150]. In [164], the Sporas and Histos sys-

tems are introduced. The Sporas system takes into account the temporal characteristics

of trust, and the ratings of later transactions are given higher weights. Unlike Sporas,

the Histos system adds direct experience, and the reputation value in Histos is subjec-

tive property that is assigned by each individual. In P2P e-commerce environments,

Xiong and Liu [158] identify some factors, such as context factor and community

factor, which affect a forthcoming transaction between buyer and seller. In addition,

attacks and defence mechanisms [58] and the credibility of ratings [158] are all trust

related topics in e-commerce environments.

Web Services: With the development of websites and applications, trust models are

studied in a wider range of context, such as web services.

Basically, the quality of service (QoS) is the focus of current web service tech-

niques, thus trust has been applied for high quality service selection. In [93, 88], the

basic structures are built, where service providers can advertise their services and con-

sumers can express their preferences and provide ratings. Vu et al. [145] propose a



§2.2 Taxonomy of Trust Evaluation 31

trust model for QoS-based service selection, trust information is obtained by com-

paring the advertised service quality and the delivered service quality. Liu et al. [85]

propose an algorithm for the purpose of combining different QoS metrics to get a fair

general rating. The RATEWeb model [88] aggregates consumers’ ratings which aims

to facilitate the trust-oriented service provider selection. In [151], Wang et al. provide

some trust evaluation metrics and a formula for trust computation, with which a final

trust value is computed. Additionally, they propose a fuzzy logic based approach for

determining reputation ranks that particularly differentiate the service periods of new

and old service providers.

Similarly, web service takes advantage of policies for security-oriented trust as

well. For example, Vimercati et al. [144] provide a solution for secure data access

through web services by using an approach of credential-based access control and

trust management. In addition, the credibility of users’ ratings is also discussed in web

service environments [88, 146]. An important survey has been provided by Jøsang

et al. [61] in which they review a number of typical trust and reputation evaluation

models used in online services.

Cloud Computing: As a new application of web services, cloud computing develops

very quickly. Meanwhile, trust management in cloud service is becoming a challeng-

ing issue [12]. According to the classification given by Noor et al. [100], trust evalua-

tion in cloud environments is based on four ways: policy, recommendation, reputation

and prediction. For example, Hwang and Li [52] propose a security-aware cloud ar-

chitecture, which uses policies to evaluate the credibility of cloud services. Based on

feedback, Habib et al. [46] aggregate the reputation of a particular cloud services.

2.2.2 Technique-Based Taxonomy

Like the taxonomy proposed in [28, 124], we further attempt to categorise trust evalu-

ation approaches according to the techniques that are adopted for trust establishment.
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2.2.2.1 Heuristic-Based Approaches

The heuristic-based trust evaluation approaches have been extensively discussed and

applied in trust management systems. As pointed by Sherchan et al. [124], these ap-

proaches aim to define a practical model that is easy to understand and construct.

Meanwhile, they are robust to resist some attacks from malicious members. There-

fore, in practice, heuristic-based trust evaluation approaches are suitable for the sys-

tems with a large number of users.

From the computational point of view, one type of the heuristic-based approach-

es is to aggregate and average quantitative feedback ratings. For example, the models

in [164, 159, 42, 28, 151, 146] calculate the summation or weighted average of ratings.

At eBay, the ratings given to a seller are accumulated over a recent period and a single

positive feedback rate is calculated as an indication of the seller’s trustworthiness or

reputation score. Xiong and Liu [159] propose a PeerTrust model which aggregate

ratings to measure the trust value of a seller. Wang et al. [146] propose a RLM model,

taking into account malicious ratings before aggregation. The works in [28, 151] pro-

pose new aggregation methods taking advantage of fuzzy models, where membership

functions are used to determine the trustworthiness of targets.

Additionally, the concept of “flow models” is proposed in [28, 61, 147], and “flow

models” are widely used in network environments where a large number of members

are involved. Essentially, they still belong to heuristic-based trust evaluation, which

compute the trust of a target through some intermediate participants and the trust de-

pendency between them. The typical ones are Google’s PageRank [102] and Eigen-

Trust [64]. The basic idea of PageRank [102] is to rank a web page according to how

many other pages are pointing to it. To be precise, all the web pages initially have the

same rank. The rank of a web page is divided evenly among its forward links, and then

it will be recalculated based on its back links. Similarly, within P2P networks, Eigen-

Trust [64] computes an agent trust value via multiple iterations along the trust chain

until the trust values for all the agents become stable. Likewise, in social networks,
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flow-based techniques are also used for trust management [44, 37, 48].

2.2.2.2 Information Theory-Based Approaches

In Section 2.1.1.3, we explained that, from perspective of economics, trust is related

to two major issues: information asymmetry and reciprocity (cooperation).

As illustrated before, trust will mitigate information asymmetry [8]. In other word-

s, the differences in information measured as information entropy, between trustors

and trustees during interactions, can be used to measure the level of trustworthi-

ness. Therefore, some researchers propose an information-based trust evaluation mod-

el [127, 126]. For example, in online trading, there is a gap between the committed

information, such as product quality, and buyers’ actual observations. From the point

of view of information theory, Sierra and Debenham propose a set of formulas to de-

fine commitment and enactment (observation) as well as the concepts like reliability

and reputation [126]. Similarly, in social networks, Adali et al. [4] use entropy to mea-

sure “balance in the conversation” between two users, and they define their model as

behaviour-based trust model.

2.2.2.3 Statistical Theory and Machine Learning-Based Approaches

The statistical theory and machine learning-based approaches focus on proposing a

reasonable mathematical model for managing or inferring trust information. However,

these approaches have highly computational complexity, making them difficult to be

applied to the environments with millions of users [124].

Typically, Bayesian systems [97, 60, 138] and subjective belief model [55, 56,

163, 152] are two major examples based on statistical theory. The former takes binary

ratings as input and computes reputation scores by statistically updating beta proba-

bility density functions (PDF), while the latter uses subjective probability theory in

trust evaluation. On the other hand, machine learning techniques, such as Artificial

Neutral Networks (ANNs) and Hidden Markov Models (HMMs), are adopted for trust
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evaluation. For example, Ham et al. [47] take advantage of RBF Neural Networks

for reputation prediction in mobile ad hoc networks. In [83, 179], HMM is used for

trust prediction before transactions in e-commerce environments, and ElSalamouny et

al. [34], propose a discrete HMM-based trust evaluation model. In [148, 78], condi-

tional probability model is used to infer the trust values between participants within

online social networks.

2.3 Context-Aware Trust Evaluation

According to our review in Section 2.2, most trust evaluation approaches lack consid-

eration of context information. In addition, they often compute one value to reflect a

general or global trust status of a trustee [120, 27, 64, 163, 154, 22, 88, 146, 145, 28].

Nevertheless, as indicated in Section 2.1.2, a very important property of trust is context

dependence. In recent years, increasingly more researchers turn their attention to the

relationship between trust evaluation and contextual information.

This thesis targets context-aware transaction trust evaluation in e-commerce envi-

ronment, thus we will first give a general review on context-aware trust evaluation from

a broader perspective in this section. The review focuses on three aspects: context in

different applications, the granularity of trust evaluation and the existing context-aware

trust evaluation approaches.

2.3.1 Context in Different Applications

Context has been studied in many applications, which is not exactly the same as those

in trust management. As defined by Palmisano et al. [103], context refers to the “con-

ditions or circumstances which affect something”. In different application fields, con-

ditions or circumstances change, resulting in various definitions of context.

Context-Aware Pervasive Systems: Context-aware pervasive systems refer to a gen-

eral class of mobile systems that can sense users physical environment in order to
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automatically recognise their demands [115]. Such systems are a component of a u-

biquitous computing or pervasive computing environment. In context-aware pervasive

systems, context aims to model information from three aspects: where you are, who

you are with, and what resources are nearby. For example, it is initially defined as

the information about the location of a user, the identities of people near the user,

and objects around the user [123]. Additional details, such as the date, season and

temperature information, are then added [21].

Recommendation Systems (Recommender Systems): Recommendation systems refer-

s to the systems, such as Douban3 and MovieLens4, that recommend products, books

or films to potential users. A movie recommendation application, for example, can

take into consideration contextual information [5], such as when, where, and with

whom a movie is seen, resulting in a more accurate recommendation.

Here one may be confused with trust management systems and recommendation

systems, because they are usually combined in practice (e.g., Amazon), and both col-

lect ratings from members or users in a community. However, the two systems have

fundamental differences and they are based on opposite assumptions. This difference

has been explained by Jøsang et al. [61].

• Typically, for example, a recommendation system in e-commerce environments

operates in the Buyer × Item space. Recommendations of a product are made

to a potential buyer based on ratings from those raters (buyers) who share sim-

ilar tastes with the potential buyer. This process is called “Collaborative filter-

ing” [6]. The discussion of contextual information in these systems focuses on

the Buyer space. For example, demographic attributes of buyers (e.g. age and

income) [6] or the intent of buyers [103] mean different tastes, and all these

information could affect the conclusion of a recommendation.

• By contrast, trust management systems operate in the Seller × Transaction s-

pace. The purpose for buyers to give ratings is to evaluate the performance of a
3http://www.douban.com
4http://movielens.org/
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seller during transactions, so as to identify potential malicious sellers or services

with poor quality. This process is called “Collaborative sanction” [98]. For in-

stance, at eBay, buyers’ ratings are mainly based on transaction quality, rather

than significantly depending on subjective opinions compared to recommenda-

tion systems. Specifically, buyers may provide different ratings to the same type

of fridge depending on their different preferences on its functionality or appear-

ance, but they can all judge whether the seller provided a damaged fridge. Thus,

the ratings biased to majority ratings in recommendation systems mean differ-

ent tastes of buyers, but would be more likely to be unfair or incredible in trust

management systems [88].

Context in Web Search: In web search environments, context is considered as the set

of topics potentially related to the search term [103]. For instance, it is used to define

a specialised search engine or narrow search fields, such as ResearchIndex (CiteSeer5)

and DBLP6, which are both specialised search engines for scientific literature. In addi-

tion, by providing user context, such as users’ behaviours and interests (an ontological

profile), better search results will be obtained that are most relevant to the user [125].

Context in Social Networks: In social networks, Liu et al. [80] define social contextu-

al information including social relationships (e.g. a father and a son), social positions

(e.g., a professor at macquarie university), and preferences (e.g., enjoys swimming).

Then, by taking advantage of social contextual information, they will find a better

quality of the extracted trust networks. Furthermore, within a social network, by com-

bining social contextual information, more accurate recommendation results will be

achieved, regardless of item recommendations [87] or people recommendations [148].

2.3.2 The Granularity of Trust Evaluation

Based on the above illustration, context has been applied in various applications for

the purpose of describing things, or obtaining results, with more details and accura-
5http://citeseerx.ist.psu.edu/
6http://www.dblp.org/
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cy. Likewise, after introducing contextual information, trust evaluation will be more

accurate and comprehensive.

In the literature, some works differentiate reputation-based trust evaluation by

granularities and categorise them into the single-context models and the multi-context

models [121, 97]. More specifically, the single-context models refer to models that

compute a single trust or reputation value, without taking into account the context

information. This is the coarse-granularity trust evaluation. By contrast, the multi-

context models refer to models that have the mechanism to deal with several contexts

at a time, while comprising different trust or reputation values associated with them.

This is the fine-granularity trust evaluation. Compared with single-context models,

multi-context trust evaluation models can provide comprehensive and detailed trust

information of a target, and so its results are more accurate. But multi-context trust

evaluation is much more complex, particularly when considering the combinations of

context dimensions. Thus, very limited work has been reported in the literature.

However, one may argue that it is necessary to introduce context information for

trust evaluation with high computational complexity. Due to the diversification of

a member’s performance within certain application environment, the single-context

model has its limitations. For example, in web service environments, an agent may be

trustworthy in the context of providing high quality travel services (flights and accom-

modation); but in the context of car sales, may be untrustworthy [155]. Moreover, in

e-commerce environments, as depicted by the motivation at the beginning of this thesis

(see Section 1.1), value imbalance is a typical problem resulting from single-context

trust evaluation. Similarly, Liu et al. [84] identify an ‘unexpected’ phenomenon of rep-

utable sellers in e-commerce called imprudence, which refers to the situation where

they behave inappropriately (possibly out of complacence to deliver poor products).

All of these evidences suggest that trust evaluation with fine granularity (multi-context

trust evaluation) is in great demand.
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2.3.3 Trust Evaluation with Contextual Information

In this subsection, we review some existing studies considering the relationship be-

tween trust evaluation and context information. We broadly categorise them in follow-

ing three aspects.

2.3.3.1 Multi-faceted Trust Evaluation

In [42], Griffiths proposes a Multi-Dimensional Trust (MDT) model based on Marsh’s

“general trust” [91]. However, MDT is distinct from both “situational trust” [91] and

“general trust”, which studies contextual trust from a multiple-faceted perspective. In

particular, the trustworthiness of a particular task can be modelled in several dimen-

sions (e.g., timeliness, quality and cost), and a trustor gives a trust value according to

its direct experience in each dimension. Note that the trust value is updated after each

interaction between a trustor and trustee. Then, a trustor can weigh personal preference

of these predefined dimensions when the corresponding trust values are aggregated to

compute a single general or global value. Thus, given the same trustee, the trust results

computed for different trustors may vary.

Essentially, from the point of view of granularity, MDT belongs to the single-

context model. As pointed out by Griffiths [42], MDT is complementary to “situational

trust” rather than being a “situational trust” itself. In [155], Wang and Vassileva stress

that trust evaluation should be both context dependent and multi-faceted. For instance,

a user might evaluate a web service (single-context) from several QoS aspects, such

as response time, throughput, and execution time. At eBay, a buyer provides a general

rating after each transaction (single-context), which depends on the combination of the

buyer’s ratings from (a) item as described (i.e. whether the seller provides the quality

of goods as s/he described), (b) shipping time (i.e. whether the seller delivers goods on

time), (c) communication (i.e. whether the seller has prompt and friendly communica-

tion with buyers), and (d) shipping charges (i.e. whether the seller charges a reasonable

price for shipment). Therefore, MDT can be termed as multi-faceted trust. Likewise,
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in REGRET [120] and RATEweb systems [88], the same multi-dimensional structure

is adopted when evaluating a seller or a service provider’s reputation. However, as

mentioned above, they overlook the changes of context (e.g., product/service catego-

ry and transaction amount) in historical transactions, so the likelihood of a successful

forthcoming transaction can hardly be predicted by them.

2.3.3.2 Similarity-Based Context-Aware Trust Evaluation

The context similarity calculation is regarded as an important means to deal with the

context-aware trust evaluation problem. Generally speaking, these trust evaluation

approaches will first model or describe context, and then trust value is computed from

one context to another based on their context similarity.

Context description based on key-values for calculating similarity: Some context-

aware trust models use key-values, such as keywords and task attributes, to model

context. Uddin et al. [142] propose a CAT (Context-Aware Trust) model to compare

the similarity of contexts by using key values that could describe, to some extent,

certain context. For example, in task A: “My brother drives me to the airport”, the

keywords are {my brother, drive, car}; in task B: “My brother flies the plane”, the

keywords are {my brother, fly, plane}. While task A is trustworthy, task B may be

untrustworthy, as two out of three keywords are different. Caballero et al. [24] define

a formula using task key values to calculate the similarity between two tasks in order

to evaluate the trust level of different tasks. Rehak et al. [108] propose a trust model to

resolve contextual trust, which uses clustering to identify full context space to be sev-

eral reference contexts based on the attributes of context. The trust evaluation of a new

targeted problem is the weighted sum of the trust values in all reference contexts. The

weight is based on distance function d; a smaller value of d means higher similarity

between certain reference contexts. In [82], Liu and Datta take advantage of contextu-

al trust to enhance the data availability in Peer-to-Peer (P2P) backup storage systems.

Specifically, they describe context with different attributes/dimensions such as a peer’s

time zone, location, IP address, and similar context refers to the peers having the same
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value in certain dimension, e.g., the same time zone or the same location.

It is true that key-values are easy to manage, but they lack capabilities for sophisti-

cated structure [130], since contextual information is complex and ambiguous in most

cases. For example, a potential buyer may not know whether a seller could sell fridges

with high quality, but s/he knows this seller has a good reputation of selling home ap-

pliances. To a larger extent, these two contexts have similarity, conceptually, fridge

is an instance of home appliances, and thus the potential buyer might choose to buy a

fridge from this seller.

Context description based on ontologies for calculating similarity: Apart from

key-values, Strang et al. [130] point out that “ontologies are a promising instrument

to specify concepts and interrelations”. Therefore, more studies use the ontological

structure to analysis context-aware trust. Uschold et al. give an explanation of related

conception of ontology [143]. Briefly, ontology is a conceptual model, but could ex-

press the relationship between different concepts. The relationship of these concepts

can be “a part-of” (part and overall), “a kind-of” (Inheritance), or an “instance of”.

Toivonen et al. [140] describe a trust determination process base on contextual

information. They propose the ontology structure of a network, and some software

components are downloaded via this network. Suppose that people need to download

some software components from a new node in this network, the trust value of the

node can be calculated from other trustworthy nodes in this ontological structure. The

influence of other nodes on trust evaluation depends on their ontology-based intimacy

to the new node. Tavakolifard et al. propose an enhanced trust model based on the

above model [136]. In their work, a general comparator is defined to find similar and

relevant nodes in ontology structure with few computational details. In addition, based

on hierarchical structures, some researchers proposed a conception of trust inherited

to resolve context-aware trust evaluation. Holtmanns et al. conceptually point out that

context can often be structured hierarchically [51]. For example, if I trust my brother

to drive me to the airport, I can most likely give him my car key, as giving him my car

keys can be considered as a subset of the access rights of driving my car. Samek et
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al. [122] provide a hierarchical model of trust in contexts (HMTC), which is used to

find inclusion relations between contexts.

However, similarity-based context-aware trust evaluation models still do not be-

long to multi-context trust evaluation [121]. As pointed out in [97, 81, 82], the context

similarity is applied to infer the trustworthiness of a target in a certain context where

there is no or not enough trust or reputation information (e.g., ratings) from the same

context. Therefore, these trust models focus on calculating a single trust value un-

der the corresponding specific context. Note that the single trust value can also be

general or global, associated with all the related contexts [81, 108, 24]. Furthermore,

similarity-based context-aware trust evaluation often uses heuristic-based techniques

for trust evaluation.

2.3.3.3 Machine Learning-Based Context-Aware Trust Evaluation

Rettinger et al. [111] propose a context-sensitive trust evaluation model (IHRTM) tak-

ing advantage of statistical relational learning. In the IHRTM model, contextual infor-

mation is discussed in the Seller × Item space. According to the learning results, all

47 selected sellers in their experiments are assigned to 4 groups based on the context

attributes in the Seller space, such as feedback score and positive feedback rate, and

the 630 items sold by these sellers are assigned to 40 clusters based on the context

attributes in the Item space, such as product category and product condition (new or

used). Finally, a 4 × 40 matrix is formed to indicate the trustworthiness of 4 seller

clusters under 40 item clusters. Note that the IHRTM model belongs to multi-context

trust evaluation. In order to improve the accuracy of predicting the trustworthiness

of a forthcoming transaction, Liu and Datta [83] extract useful features from transac-

tion context, such as product category and price, as observations to construct a Hid-

den Markov Model (HMM) for modelling the dynamic trust of a seller. In addition,

to reduce computational complexity, information theories and Multiple Discriminant

Analysis (MDA) are adopted in their model for feature space reduction.

Actually, a major disadvantage of all the machine learning-based trust evaluation
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approaches is their high computational complexity, which makes them difficult to be

applied to the environments with millions of users [124]. For example, when having a

large number of sellers, there will be many clusters of sellers for IHRTM, leading to a

high complexity in learning iterations. As new transactions happen every day, the cost

of re-learning, which takes new transactions into account, is higher. Moreover, from

the transaction context perspective, IHRTM does not support the analysis of reputation

on the product categories along a path in the product category hierarchy (e.g. “Apple

iPhone” and “Smartphone” in sequence). This analysis is particularly necessary when

a new product or a product in a new category is just released. Also, it does not sup-

port the trust evaluation of a seller in the transactions in a given price range. This

need comes from a buyer when s/he is concerned about the risk of monetary loss in a

forthcoming transaction [159, 132].

By contrast, our proposed ReputationPro model in this thesis is typically a heuristic-

based [124] multi-context [121] trust evaluation model. There are two important rea-

sons leading to its outperformance over the existing context-aware trust evaluation

models:

• ReputationPro is a multi-context model which has the mechanisms to deal with

several contexts at a time comprising different trust or reputation values associ-

ated with them.

Compared with single-context trust evaluation and similarity-based context-aware

trust evaluation, multi-context trust evaluation can reflect a seller’s dynamic

trustworthiness in various transaction contexts, which provides comprehensive

and detailed trust information of a seller. As multi-context trust evaluation is

much more complex particularly when considering the combinations of context

dimensions, very limited work reported in the literature. Thus, our proposed

ReputationPro model makes great sense.

• ReputationPro is an efficient heuristic-based multi-context model that can be

directly applied in large-scale e-commerce applications.
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Like PeerTrust [159] and RATEWeb [88] trust evaluation models, Reputation-

Pro adopts heuristic-based technique to aggregate and average trust ratings as

the trustworthiness or reputation values of a seller. Compared with IHRTM

model [111], which is the only multi-context model reported in the literature

and adopts statistical and machine learning-based techniques, ReputationPro is

much more efficient and thus more suitable to be applied to the dynamic en-

vironments of e-commerce applications with millions of users and transactions

that are updated every day.

In Fig. 2.2, the ReputationPro trust evaluation model is compared with some exist-

ing trust evaluation approaches so as to highlight its characteristics and the contribu-

tions of our work from the perspective of trust evaluation.

2.4 Related Techniques in Data Warehousing

This section reviews the related techniques in data warehousing, which will be im-

proved and adopted to resolve context-aware trust evaluation (multi-context trust mod-

el) in e-commerce environments. To the best of our knowledge, the work introduced

in this thesis is the first one in the literature that computes the reputation profile of a

seller taking advantage of related techniques in data warehousing.

2.4.1 OLAP (On-Line Analytical Processing) and Data warehous-

es

In the broader research literature, our targeted context-aware trust evaluation problem

is somewhat similar to sales analysis from multiple perspectives in data warehousing

and business intelligence. Typically, the sales data warehouse for a company contains

three dimensions Product category, Location and Time. The OLAP operations refer

to the queries on the aggregation of sales over each dimension or their combinations,

such as the sum of sales per product category or the sum of sales per product category
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Figure 2.2: The comparison of existing trust evaluation approaches
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and per month combination. Gray et al. [41] point out that there are O(2n) possible

aggregations for a data warehouse with n dimensions composing a “data cube”.

In order to accelerate query processing, some results can be pre-computed and

stored as materialised views [49, 77]. However, these approaches only benefit the

queries on dimensions with predefined hierarchies. In particular, the Time dimension in

sales analysis refers to static calender months, e.g., January, February, etc. By contrast,

as will be discussed in relation to transaction context dimensions in Section 3.1, while

the product category hierarchy is predefined and static, Price and Transaction Time are

dynamic dimensions. Specifically, the dynamicity of the Price dimension refers to the

reality that the price of a product may change over time. Even on a given day, multiple

transactions selling the same product may have different prices. The dynamicity of the

Transaction Time dimension refers to new transactions are to be added to the database

continuously over time, modifying the set of “most recent transactions”. In addition

to materialised views, some other works improve the performance of queries in data

based on specifically designed column-oriented database systems [1]. Different from

these works, our proposed approaches in this thesis are based on popular relational

database management systems that are being widely used by e-commerce websites, so

that the designed models can be directly applicable.

As outlined in the analysis given in Section 4.1, the research on point aggregate

problem based on spatial or spatio-temporal data warehouses is relatively close to our

targeted context-aware trust evaluation problem. In the literature, there are many re-

lated approaches to point aggregation. More specifically, in order to accelerate query

processing, they still pre-compute some results, and then appropriately store the re-

sults in specialised indexes forming various tree structures [105, 135, 134, 168]. We

review them separately in the following subsections. Moreover, since memory-based

approaches [70, 96] are inappropriate for large-scale data processing, we will restrict

our review to some well-known disk-based approaches.
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Figure 2.4: An aR-tree

2.4.2 Range Aggregate (RA)

Fig. 2.3 shows the traditional RA query [104] in a two-dimensional space which is

in regards to computing the total number of points falling into a query region q sur-

rounded by [x1, x2] and [y1, y2], e.g., answering a query in traffic supervision systems,

such as: “What is the total number of cars inside a certain district?”. Usually, a query

region can be any area within the two-dimensional space. Since our targeted multi-

context trust evaluation is modelled as an extend RA problem (see Section 4.1) in

two-dimensional space, we review the approaches to two-dimensional RA problem in

more detail.

2.4.2.1 The aR-tree

The aR-tree [63, 104] maintains the x-y coordinates for each minimum bounding rect-

angle (MBR) (e.g., R1, R2, R3, R4 in Fig. 2.4(a) are all MBRs). In the meantime, each

MBR records the total number as an aggregate of the objects that fall into an MBR. To
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Figure 2.5: An RA query transformed to two Vertical Range Aggregate (VRA) queries

compute the number of objects in a query region q, in Fig. 2.4(a), the MBR R4 within

q will not be accessed. Rather, R4’s pre-computed aggregate (i.e. 3) is directly used.

But R3 needs to be visited, as it partially overlaps with q. The total number of points in

q equals their sum 3 + 1 = 4. A serious problem of the aR-tree is that its performance

significantly degrades when answering a large query region, since in such a case there

are more MBRs overlapping with the query region (see Fig. 2.4(b)).

2.4.2.2 The aP-tree

Tao et al. [135] propose the aP-tree to improve the aR-tree, based on the following

transformation on a query region q. They first convert each spatial point to an interval

(i.e. a horizontal line) (see Fig. 2.5(b)). When q is surrounded by [x1, x2] and [y1, y2]

is transformed to two borders (i.e. two vertical lines): x1 : [y1, y2] and x2 : [y1, y2],

an RA query is converted to retrieving the number of intervals that intersects the two

borders. For instance, in Fig. 2.5, the number of intervals intersecting the left border

x1 : [y1, y2] is 3 while the number of intervals intersecting the right border x2 : [y1, y2]

is 5. The total number of points in q equals their difference 5− 3 = 2. Tao et al. [135]

define the number of intervals intersecting a border as a Vertical Range Aggregate

(VRA). In order to compute each VRA value, the aP-tree is then proposed, extending

the original multiversion B-tree (MVBT) [17], that contains an additional field agg in

each record to store the aggregation result.
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Figure 2.6: An RA query transformed to four dominance-sum queries

2.4.2.3 The MVSB-tree and The BA-tree

Zhang et al. [168] address the RA problem in a two-dimensional space by converting

an RA query to four dominance-sum queries. Given two two-dimensional points x =

(x1, x2) and y = (y1, y2), x dominates y if x1 ≥ y1 and x2 ≥ y2. The corresponding

dominance-sum of the point P is the aggregation of all the points that are dominated by

P . Therefore, in Fig. 2.6(a), the total number of points in the query region P1P2P3P4

equals 7− 5− 2+2 = 2, namely, the dominance-sum of the point P2 (see Fig. 2.6(b))

subtracts the dominance-sum of the point P1 (see Fig. 2.6(c)) and the dominance-sum

of the point P4 (see Fig. 2.6(d)). As the dominance-sum of the point P3 (see Fig. 2.6(e))

has been subtracted twice, their sum must be added again. In order to compute each

dominance-sum query, Zhang et al. further propose the MVSB-tree [166, 168] and the

BA-tree [167], respectively.

The MVSB-tree results from augmenting the SB-tree [161]. It logically divides

the two-dimensional space into multiple nonintersecting rectangles. When inserting

an object with the coordinate (xi, yi), the aggregation operations perform in all the

rectangles within the area [xi,maxx)× [yi,maxy). Here maxx and maxy collectively

form the upper-right corner of the complete space.

The BA-tree is another index scheme for answering RA queries that extends the

K-D-B-tree [114]. Fig. 2.7 depicts a general structure of BA-tree, as in the K-D-B-tree,

each node corresponds to a rectangular space, such as the area A. The node at a higher

level corresponds to a larger rectangular space formed by several adjacent areas, such

as the area formed by A, B and C. The root node corresponds to the complete space.
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Figure 2.7: The structure of BA-tree

The augmentation of the BA-tree over the K-D-B-tree is that each node (e.g., the area

D) also stores three aspects of information: the subtotal of points to the lower left of

D (see Fig. 2.7(a)), the x-coordinates of the points below D (see Fig. 2.7(b)) and the

y-coordinates of the points to the left of D (see Fig. 2.7(c)). The BA-tree achieves

linear performance when answering each dominance-sum query.

Apart from the above reviewed approaches, the CRB-tree has been proposed for

solving RA problem [39, 7]. The general structure of a CRB-tree contains two parts: 1)

one normal B+-tree [15] constructed on the y-coordinates of points in two-dimensional

space; and 2) another B+-tree constructed on the x-coordinates of points, but with each

internal node storing weights as a secondary structure. The CRB-tree has good perfor-

mance for answering RA queries as well as further compresses the space consumption.

However, as pointed out in [135, 168], it is based on a stringent assumption that it runs

on top of bit-wise machines. Specifically, the integers in secondary structure are stored

by bits. Namely, an integer with value v is represented by exactly log2 v bits so that

multiple integers may be compressed into a single word. By contrast, a typical word-

wise machine model uses four bytes to store a single integer. Therefore, as pointed out

in [135, 168], the CRB-tree “is mainly of theoretical interest”, and does not apply to

the prevalent commercial word-wise computers. Note that our proposed approaches in

the thesis are all based on common word-wise machine models and thus can directly

apply to commercial servers.
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2.5 Summary

This chapter provides a general overview of the research studies on trust, trust man-

agement systems, trust evaluation, context-aware trust evaluation and related tech-

niques in data warehousing. Conceptually, we first present the definition of trust in

different disciplines as well as its properties. Second, we introduce three logic levels

of trust management systems. Third, the typical trust evaluation methods are cate-

gorised and reviewed based on their application environments and adopted technolo-

gies. Fourth, we present a comprehensive review on context-aware trust evaluation ap-

proaches and highlighted the contributions of this thesis. Finally, we introduce some

related techniques in data warehousing to be improved and adopted for solving our

targeted context-aware trust evaluation problem.



Chapter 3

A Trust Vector Approach to

Context-Aware Transaction Trust

Evaluation

The trustworthiness of sellers is an essential issue for buyers before placing an order.

With simple trust management mechanisms at some e-commerce websites, such as e-

Bay, a single trust value of a seller is computed based on the ratings of past transactions

given by buyers. Likewise, in the literature, single value (e.g. a value in the range of

[0,1]) based trust models [120, 27, 64, 163, 154, 22, 88, 146] still play an important role

in measuring the trustworthiness of trustees. Such a single value, however, can only

reflect the general or global trustworthiness, without any contextual transaction infor-

mation taken into account. With such a result as the indication of reputation, a buyer

may be easily deceived by a malicious seller in a transaction where the notorious value

imbalance problem [66, 29, 58, 67, 57] is involved, i.e. a malicious seller accumulates

a high level reputation by selling cheap products then deceives buyers by inducing

them to purchase more expensive products. In addition, the single value computed

by these trust evaluation models is based on past transactions, and it is static with re-

gard to any forthcoming transaction of selling different products. As a result, they can

hardly predict the likelihood of a successful forthcoming transaction [150, 149, 170].

Thus, a good trust management system in e-commerce environments should be

transaction context-aware. In the meantime, the computed trust values need to be

51
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based on both past transactions and the forthcoming transaction. Therefore, in contrast

to most existing trust evaluation models that compute a single trust value, we propose

a trust vector approach to context-aware transaction trust evaluation.

This chapter is organised as follows. In Section 3.1, we distinguish the definitions

of context in different application environments, and focus on discussing and defining

transaction context in e-commence environments. In particular, we model transac-

tion context with several dimensions, and first propose the concept of the transaction

context imbalance problem and several types of it in e-commerce environments. In

situations where there are no, or not enough, ratings from the transactions with the

same context as the forthcoming transaction, we propose a set of methods to calculate

transaction context similarity in Section 3.2, the results of which are used in inferring

the trust level of a forthcoming transaction. Our solution has potentially wide applica-

tions in e-commerce environments. Section 3.3 introduces the trust vector approach to

outline a seller’s reputation profile. In Section 3.4, we present empirical studies on the

proposed trust vector. Section 3.5 summarises our work in this chapter.

3.1 Transaction Context

This section first discusses the meaning of transaction context, differentiates some

related concepts, and then models transaction context for evaluating the trustworthi-

ness of sellers. Finally, the concept of transaction context imbalance problem in e-

commerce environments is proposed.

3.1.1 What is Transaction Context?

As defined by Palmisano et al. [103], context refers to “conditions or circumstances

which affect something”. But different application fields have many definitions of con-

text. For instance, in Section 2.3.1, we have illustrated that, in context-aware pervasive

systems, contextual information is defined as the information about the location of a
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user, the identities of people near the user, objects around the user, the date, season

and temperature information [123, 21].

Differently, in recommendation (recommender) systems, which recommend prod-

ucts to potential buyers, the discussion of contextual information focuses on the Buyer

space. For example, demographic attributes of buyers (e.g. age and income) [6] or the

intent of buyers [103] mean different tastes, and all these information could affect the

conclusion of a recommendation. By contrast, trust management systems operate in

the Seller×Transaction(Item) space [61]. As sellers’ information is relatively simple

and static, in this thesis, the discussion of context focuses on the transaction space w.r.t

transaction trust evaluation.

Definition 1: transaction context refers to the factors that can determine, imply or

affect the trustworthiness of a forthcoming transaction.

3.1.2 Transaction Context Modeling

Based on Definition 1, our work considers the factors with influence on the trustwor-

thiness of a forthcoming transaction.

3.1.2.1 Transaction Context Dimensions

• Product Category (a static but hierarchical dimension): Product Category refers

to the category of item traded in a transaction. The product category determines the

nature of the transaction which greatly influences transaction trust [158, 159].

The category of transaction items has a hierarchical structure. There are some

Products and Services Categorization Standards (PSCS) that aim at constructing the

product category hierarchy, such as UNSPSC1 and eCl@ss2, each of which groups

similar products and provide an industry-neutral hierarchical structure of product cat-

egories with up to four layers. eBay has a different product category3 schema with

1http://www.unspsc.org/
2http://www.eclass.de/
3http://pages.ebay.com/sellerinformation/ebaycatalog/categories.html
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simply two layers, and it groups products by considering factors such as marketing

and common use.

• Transaction Amount (a dynamic linear dimension): Transaction amount refers

to the sum of prices of all products in a transaction. A transaction of about US$10 is

different in nature to the one of about US$10K. The larger the transaction amount,

the more likely a fraud will occur, since the benefits of cheating are greater [14]. For

the sake of simplicity, like eBay, each item in a transaction is considered separately in

our work. Hence, the transaction amount equals the price of the item in a transaction.

In this thesis, we use “transaction amount” and “price” interchangeably.

The Price dimension is dynamic as the price of a product may vary from time to

time. Owing to product condition (new and used) and product value changes over

time, the prices of transactions selling the same product may be different.

• Transaction Time (a dynamic linear dimension): Transaction time is the time

when a transaction happens. As mentioned in Section 2.1.2, transaction trust evalua-

tion is time-sensitive, because transaction quality may change with time [128].

The Transaction Time dimension is also dynamic because the time point “now”

changes every day, and new transactions added to the database over time change the

set of “most recent transactions”.

3.1.2.2 Transaction is Multi-Faceted

In [155], Wang and Vassileva stress that trust evaluation should be both context depen-

dent and multi-faceted. Even in the same context, there is a need to develop differen-

tiated trust in different aspects. For instance, in the process of transactions, the quality

of services affects the transaction trustworthiness as well. With regard to the quality

of these services, buyers can provide corresponding ratings in some e-commerce web-

sites. At eBay, buyers’ ratings also evaluate (a) item as described (i.e. whether the sell-

er provides the quality of goods as s/he described), (b) shipping time (i.e. whether the

seller delivers goods on time), (c) communication (i.e. whether the seller has prompt

and friendly communication with buyers), and (d) shipping charges (i.e. whether the
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seller charges a reasonable price for shipment).

Imagine that both sellers, Sa and Sb, sell the same high quality product. In past

transactions, Sa always provided good quality services, such as delivering goods on

time and having prompt and friendly communication with buyers, while Sb delayed

delivery now and then and had poor communication with buyers. Surely, in such

situations, seller Sa is more trustworthy and preferable.

3.1.3 Transaction Context Imbalance

As stated before, malicious sellers and fraudulent transactions could take advantage

of transaction trust result without considering any context. Consequently, it may lead

to some transaction context imbalance problems, which is first proposed in this thesis

and can include the following types.

• Transaction Amount Imbalance: There are two different cases in the transac-

tion amount imbalance.

(a) A seller accumulates a high level of trust by offering cheap and attractive

products, and then s/he may deceive buyers with expensive products. In the

literature, this issue is also termed as value imbalance [66, 29, 58, 67, 57].

(b) Buyers usually believe that if a seller has successfully finished many trans-

actions selling expensive products, s/he may not cheat in forthcoming trans-

actions selling cheaper products. In fact, such a “reputable” seller may not

be as prudent as in expensive transactions to serve each buyer well due to

limited profit.

• Product Category Imbalance: A seller has accumulated a high trust level by

selling certain products, and then s/he can utilise this high trust value to sel-

l products in different categories for more profit. According to the sugges-

tion from Alibaba (see Section 1.1.2), such a seller should have different levels
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of trustworthiness with respect to different products or different product cate-

gories [159]. For instance, a seller, who sold watches before and now starts to

sell a certain type of notebook computers, should not have the same level of

trust as before due to the lack of sufficient experience and reputation in selling

the new products with a completely different nature.

The focus of our work is to identify and prevent potentially malicious transactions

with respect to different types of transaction context imbalance problems. Based on

the modelled transaction context, we will first propose methods for transaction context

similarity comparison in Section 3.2. According to the comparison result, we will

propose a trust vector consisting of a set of trust values to reflect the trust level of a

seller from different transaction context in Section 3.3. In particular, this trust vector

is also bound to a forthcoming transaction, rather than past transactions only.

3.2 Similarity Comparison Between Transaction Con-

text Dimensions

In order to obtain the trustworthiness of a seller in a specific transaction context, a

buyer needs to take other buyers’ ratings on this seller in the same transaction context

into account. But when there are no, or not enough, ratings for the same transaction

context, it is a good practice to derive the trustworthiness of the seller from all the

ratings in any related transaction context. In this case, the similarity of the context in

the forthcoming transaction, and the different context in a past transaction, should be

compared to weight the rating for the past transaction [97]. According to our modelled

transaction context, we propose methods for computing transaction context similarity.

3.2.1 Similarity Comparison of Product Category

Next, let us consider the dimension of Product Category, for example, a buyer plans

to buy a ‘Cannon EOS 6D SLR (single-lens reflex) Digital Camera’ from a seller.
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The related items that s/he could be also concerned about the trustworthiness of this

seller in selling various ‘Cannon SLR digital cameras’ or ‘SLR Digital Camera’. In

subsection 3.2.1.1, we propose a hierarchical structure of product category. With this

structure, all the related products can be located by comparing their similarity, and the

method for similarity measurement is given in subsection 3.2.1.2.

3.2.1.1 Hierarchical Structure of Product Category

As stated before, there are three existing popular product classification schemas which

aim at grouping similar products, UNSPSC, eCl@ss and eBay. They all adopt hi-

erarchical structures. In [18], Beneventano et al. briefly review these three product

classification schemas.

Similarly, we establish the product category hierarchy for the analysis of dynamic

reputation of a seller. We extend eCl@ss due to its reasonable classification in prac-

tice, i.e. products in eCl@ss are more functionally grouped and are subdivided for

specific usage. For example, in eCl@ss, “Digital Camera” can be further classified as

“DSLR (Digital single-lens reflex cameras)”, “Compact Digital Camera” and “Mirror-

less Digital Camera”. But it is not subdivided in both UNSPSC and eBay. In addition,

we sort out the logical relations between product categories in eCl@ss. Then, add the

attribute, “Brand”, to the product category hierarchy to support finer-grained analysis

on transaction trust with “drill-down” and “roll-up” operations in the hierarchy. Under

each brand, there are corresponding products that belong to this brand.

Fig. 3.1 presents a small part of our extended product category hierarchy. For

instance, if the product is “Apple iPod nano 16GB (mc696ll/a)”, then its ancestors

in the product category hierarchy, in sequence, are “Apple MP3 player (iPod)” and

“MP3 player”. If the product is “Apple iPhone5 16GB”, then its ancestors in the

product category hierarchy, in sequence, are “Apple iPhone” and “Smartphone”. The

category hierarchy for the product “Canon EOS 6D SLR Digital Camera” is complex

that has sever layers, and its ancestors are “Canon DSLR camera”, “DSLR camera”

and “Digital camera” in sequence. In our extend hierarchy, each product category has
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Figure 3.1: Part of product category hierarchy for the segment “Information, communication
and media”

a unique id termed as C-value (see Fig. 3.1), with which a layer, the layer’s parent and

children can be located. Note that C-value is also available in eCl@ss.

3.2.1.2 Similarity Measurement within Product Category

To measure the similarity of two nodes within a hierarchical structure, a crucial factor

is the depth d of the deepest common ancestor of the two nodes. For instance, the deep-

est common ancestor of Notebook and Tablet PC is Computer System (see Fig. 3.1),

and the depth d of Computer System within the product hierarchy is 2. If the deepest

common ancestor is located high in the hierarchy, it indicates that the two products

have general classification without much similarity between them. If the deepest com-

mon ancestor is located in the low hierarchy, it indicates that the two products have a

common classification with stronger similarity. Hence, the transaction item similarity

STI between two products p and p′ should be a monotone function with respect to the

depth d of the deepest common ancestor of them. We use a hyperbolic tangent func-
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tion to follow this principle. Thus, the similarity of two products p and p′ can then be

defined as the function of d as follows.

STI(p, p
′) =

eαd(p,p
′) − e−αd(p,p′)

eαd(p,p′) + e−αd(p,p′)
(3.1)

where α > 0 is a constant, and d(p, p′) denotes the the depth d of the deepest common

ancestor between two products. Moreover, we draw the following properties from this

product hierarchy (i.e. Fig. 3.1):

Property 1: When d ≥ 3, the two products have strong similarity. For example, for

Tablet PC and Notebook, their common ancestor is Mobile PC with d = 3.

Property 2: When d ≤ 2, the two products have weak similarity. For example, for

Camera (digital) and Lens, their common ancestor is Photo technology, video technol-

ogy with d = 2.

Property 3: When the two products belong to different segments, their similarity is

0. For example, Tablet PC is in segment 19 and Food is in segment 16, as plotted in

Fig. 3.1.

According to the above properties, we take the parameter α = 0.4 to illustrate the
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Table 3.1: Examples of transaction item similarity

Product Pair (p, p’) STI d
Canon EOS T3i Rebel , Canon A2200 Digital Camera 0.96 5

Camera (digital), Video camera 0.83 3
Camera (digital), Lens 0.66 2

Laptop, Camera (digital) 0.38 1
Tablet PC, Food 0 0

comparison process of our approach, leading to the curve plotted in Fig. 3.2. Algo-

rithm 1 presents how to find the deepest common ancestor of two products p and p′ in

a category hierarchy, and then return the depth d of their ancestor. Some examples of

similarity measure are listed in Table 4.1.

Algorithm 1 Similarity Measurement within Product Category
Input: ccode and c′code are the C-value of two products or items within category hierarchy, p,

m, d.
Output: STI

1: for all numbers in ccode and c′code do
2: if ccode and c′code contain different number then
3: record position p.
4: m = p mod 2
5: if m=1 then
6: set d = floor(p/2)
7: else
8: set d = (p/2)− 1
9: end if

10: else
11: ccode and c′code are the same; return S = 1
12: end if
13: end for
14: return STI(ccode, c

′
code) =

eαd−e−αd

eαd+e−αd

3.2.2 Similarity Comparison of Transaction Amount

As pointed out in Section 3.1.3, when the transaction amount of a forthcoming trans-

action is much smaller or much larger than those of past transactions, the significant

difference may lead to the transaction amount imbalance. Hence, the similarity com-
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parison of transaction amount is important for trust evaluation.

For calculating the transaction amount similarity STA between the amount tap of a

past successful transaction and the amount taf of a forthcoming one, we first consider

two typical examples below:

(1) tap = $50 while taf = $550;

(2) tap = $5000 while taf = $5, 500.

In the existing studies, the difference of transaction amounts (denoted by Dta =

|taf − tap|) has been used in trust evaluation [149, 157], but it cannot distinguish the

above two examples. Although the values of Dta in these two examples are both $500,

$500 is only 10% increase in example (2) while it is 10-times increase in example (1).

To this end, our model also introduces the relative value between tap and taf , denoted

by Rta (i.e. Rta =
taf
tap

) for calculating STA. Both Dta and Rta are used to determine

STA according to the following principles:

Principle 1: When Rta is fixed, Sta increases, if Dta decreases;

Principle 2: When Dta is fixed, Sta becomes larger, if Rta approaches 1.

Based on both principles, some definitions for calculating STA are proposed below.

Definition 2: If tap ≤ taf , then the transaction amount similarity of taf and tap is

STA(taf , tap) = ε ∗ fD(Dta(taf , tap)) + (1− ε) ∗ fR(Rta(taf , tap)) (3.2)

The definition of function fD in Eq. (3.2) can be based on the transaction amount

category partitions in e-commerce environments that is proposed in [157].

fD(Dta(taf , tap)) =
2

eC(Dta(taf ,tap))∗β + e−C(Dta(taf ,tap))∗β
(3.3)

where
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C(Dta(taf , tap)) =



0, if Dta(taf , tap) ∈ (0, 1]

1, if Dta(taf , tap) ∈ (1, 10]

2, if Dta(taf , tap) ∈ (10, 50]

3, if Dta(taf , tap) ∈ (50, 100]

4, if Dta(taf , tap) ∈ (100, 500]

5, if Dta(taf , tap) ∈ (500, 103]

6, if Dta(taf , tap) ∈ (103, 5× 103]

7, if Dta(taf , tap) ∈ (5× 103, 104]

8, if Dta(taf , tap) ∈ (104, 3× 104]

9, if Dta(taf , tap) ∈ (3× 104, 105]

10, if Dta(taf , tap) > 105

ε, β ∈ (0, 1] and we choose ε = 0.5, β = 0.2, as an example in our approach. As a

result, if taf = 550 and tap = 50, fD(Dta(taf , tap)) = 0.75.

In addition, the definition of function fR used in Eq. (3.2) is based on a threshold

λR of relative value (λR > 1), which can be specified as a default value by the trust

management authority (e.g. λR = 20). With λR, the function fR can be defined below.

fR(Rta(taf , tap)) =

0, if Rta(taf , tap) ≥ λR

λR−Rta(taf ,tap)

λR−1
, if Rta(taf , tap) < λR

(3.4)

In Eq. (3.4), when Rta ≥ λR, fR(Rta(taf , tap)) is set to 0, which indicates a large

relative value in transaction amounts between the forthcoming transaction and the past

one. When Rta < λR, fR(Rta(taf , tap)) is a projection from 0 to 1 of Rta.

Definition 3: If tap ≥ taf , then the transaction amount similarity of taf and tap can

be calculated as:
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STA(taf , tap) = ε ∗ fD(Dta(taf , tap)) + (1− ε) ∗ fR(Rta(taf , tap)
−1) (3.5)

where fD is defined in Eq. (3.3) and fR is defined in Eq. (3.4).

According to Definition 2 and Definition 3, when the past transaction amount tap

gets closer to the forthcoming transaction taf , their transaction amount similarity STA

has a higher value, which follows Principles 1 and 2.

3.2.3 Similarity Comparison of Transaction Time

As suggested by some studies on trust evaluation, ratings of recent transactions should

be assigned higher weights in trust evaluation [120, 88, 147]. We use STT to denote

the transaction time similarity between a forthcoming transaction and a past transac-

tion, and use STT as the weight for the rating of a past transaction. The higher the

transaction time similarity, the higher the weight for the rating of the past transaction.

Definition 4: During a time period [t1, tn], where tk < tk+1 (1 ≤ k < n), tn is the

most recent transaction time, and the time for a forthcoming transaction is tn+1 (tn+

1 = tn+1). The transaction time similarity STT can be calculated by the exponential

moving average:

STT (tk, tn+1) = γtn−tk , 0 < γ < 1, 0 < k ≤ n (3.6)

The exponential moving average has also been widely used in financial markets [99],

as the weight for each older data decreases exponentially. Moreover, in Eq. (3.6),

the value of γ should be high enough (e.g., γ = 0.9) so as to avoid that the weight

decreases too rapidly.
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3.3 A Trust Vector Approach to Outlining Reputation

Profile

In the literature, there also exist some approaches using trust vectors, but most of them

have no focus on context-aware trust evaluation. In [107], Ray et al. propose a trust

vector that consists of experience, knowledge and recommendation. The focus is how

to address these three independent aspects of trust. Zhao et al. [178] propose a method

using a trust vector to represent the directed link with a trust value between two peers.

In [147], Wang et al. use a trust vector to describe the trustworthiness and trust trend

of sellers. Different from these works, in this section, we introduce a trust vector

approach to context-aware transaction trust evaluation.

3.3.1 Trust Data Representation and Trust Metrics

This subsection first defines the data that are needed for computing trust values in

e-commerce environments.

TR(t) =< S;B; p;C-hrchy; ta; t; r > (3.7)

• TR(t) is a transaction between a seller S and a buyer B happening at time t;

• p is the product (i.e. transaction item) traded in the transaction TR(t);

• C-hrchy represents the path in product category hierarchy to which p belongs;

• ta is the transaction amount in transaction TR(t) for p;

• r is a rating (an integer in a range, e.g., {−1, 0, 1} or {1, 2, 3, 4, 5}) that the

buyer B gives to the seller S for TR(t) to reflect a seller’s performance during

the whole transaction;

• A set of n past transactions are denoted as Trans = {TR(t1), TR(t2), ..., TR(tn)}.
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In addition, the approaches proposed in this thesis are considered to be directly

applied in large-scale e-commerce applications. Thus, for trust metrics, in line with the

studies [120, 64, 158, 159, 153, 147, 88], our work adopts heuristic-based [124] (see

Section 2.2.2) techniques to aggregate and average trust ratings as the trustworthiness

or reputation values of a seller.

3.3.2 A Trust Vector

Our proposed trust vector approach consists of three major elements, which are called

Contextual Transaction Trust (CTT) values. For each element in the trust vector, the

higher the value, the more trustworthy the seller will be.

(a) Transaction Item Specific Trust (TIST): TIST is the average of all the ratings

{ri} in the past transactions Trans for trading the same transaction item p as in

a forthcoming transaction.

(b) Product Category based Trust (PCT): PCT is the average of all the ratings

{ri} of the past transactions Trans for selling the products in a product category

(e.g., “Canon DSLR cameras” or “DSLR cameras”) of p (e.g., “Canon 6D DSLR

camera”) in the product category hierarchy (see Fig. 3.1). When computing

PCT, a price range covering the price ta and a time range can be specified as the

parameters. The variables p and ta come from the context of the forthcoming

transaction.

(c) Similar Transaction Amount based Trust (STAT): STAT is the trust value of

a seller in a specific price range covering price ta and a time range. STAT is

important for analysing the trustworthiness of a seller in different price ranges.

In the above trust vector, all three CTT values are associated with both past trans-

actions and the forthcoming transaction. With the same seller, but a different forth-

coming transaction, the computed trust values may be different. Even with the same

forthcoming transaction, the trust values can vary. This is because a buyer can specify
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and change the layer in the product category hierarchy, the price range and the time pe-

riod for computing the last two CTT values: PCT and STAT. With the combinations of

the parameters specified in all three context dimensions, different sets of CTT values

can be computed, all of which can outline the reputation profile of the seller indicating

the trustworthiness in various types of transactions.

3.3.3 Similarity Used in Trust Vector Computation

This subsection presents theoretical solutions for computing our proposed trust vector

by taking advantage of similarity comparison introduced in Section 3.2.

3.3.3.1 Transaction Item Specific Trust (TIST)

Transaction Item Specific Trust (TIST) in the trust vector takes into account past trans-

actions, which sell the same transaction item as the forthcoming transaction. However,

three cases are identified below in the calculation of TIST.

Case 1: If there is a sufficient number of ratings (named as “direct reference” ratings)

from past transactions selling the same item as a forthcoming one, TIST can be

determined from these ratings directly;

Case 2: If the transaction item in a forthcoming transaction has never been sold by

a seller, as stated in Section 3.2, the value of TIST can to be inferred from the

ratings on the transactions selling different items (named as “indirect reference”

ratings). Transaction context similarity should be compared to discount these

ratings [97];

Case 3: If both cases are not true, we need to use both “direct reference” ratings and

“indirect reference” ratings to compute TIST.

Transaction Content Similarity: Before giving formulas for calculating TIST, we

first introduce transaction content similarity STC , which includes transaction item sim-

ilarity STI and transaction amount similarity STA.
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Definition 5: With a set of n past transactions Trans = {TR(t1), TR(t2), ..., TR(tn)}

between buyers and seller S in the time period [t1, tn] and TR(tf ) denoting the forth-

coming transaction at time tn+1, we define transaction content similarity STC as:

STC(TR
(ti), TR(tf )) =

STI(TR
(ti), TR(tf )) + STA(TR

(ti), TR(tf ))

2
(3.8)

where STC ∈ [0, 1]. For convenience of description, in the following, we denote

STC(i, f) = STC(TR
(ti), TR(tf )), STI(i, f) = STI(TR

(ti), TR(tf )), STA(i, f) =

STA(TR
(ti), TR(tf )) and STT (i, f) = STT (TR

(ti), TR(tf )) (defined in Eq. (3.6)).

The Calculation of TIST: Assume a buyer B is planning to buy a product p in a

forthcoming transaction TR(tf ) from seller S.

In Case 1, we use θ to denote the threshold of sufficient number of “direct ref-

erence” ratings4. Thus, all the “direct reference” ratings are used in the calcula-

tion of TIST, where the transaction time similarity STT is used to weight each rat-

ing [120, 88, 147, 153].

T
[t1,tn]
TISTs(p)

=

∑m1

i=1(r(TR
(ti)) ∗ STT (i, f))∑m1

i=1 STT (i, f)
(3.9)

In Eq. (3.9), m1 is the number of “direct reference” ratings from past transaction set

Trans, θ1 ≤ m1 ≤ n.

In Case 2, when evaluating TIST, transaction content similarity STC is regarded

as the weight to discount these “indirect reference” ratings, and thus TIST can be

computed as:

T
[t1,tn]
TISTs(p)

=

∑n
i=1(r(TR

(ti)) ∗ STC(i, f) ∗ STT (i, f))∑n
i=1 STT (i, f)

(3.10)

In Case 3, there are not enough “direct reference” ratings from past transaction set

Trans. It is necessary to combine both “direct reference” and “indirect reference”

4The parameters θ can be specified by buyers or by the trust management authority.
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Figure 3.3: The variation of ω (u = 0.7)

ratings, and then give “direct reference” ratings higher weight ω. Moreover, the deter-

mination of weight ω should follow some principles.

Principle 3: When the number of “direct reference” ratings increases, the weight for

these ratings increases as well.

Principle 4: The initial value of weight ω should be low to avoid that trust level of

seller S tears down very fast after a few misbehaviours at the beginning.

Following these two principles, our model uses a function in Eq. (3.11) with two

parameters u and v to control the changes of ω.

Definition 6: Given parameters u and v, the weight ω can be calculated as follows:

ω(m1) = 1− um
1
v
1 , u ∈ (0, 1) (3.11)

where u determines the initial value of weight ω and v ∈ {1, 2, 3, ...}. According to

Principle 4, the value of u should be more than 0.5 (i.e. 0.5 < u < 1). The variations

of ω are plotted in Fig. 3.3. With two fixed parameters u and v, the larger m1, the

larger is ω(m1), which confirms Principle 3.
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The value of v depends on the parameter θ1 (i.e., the threshold of sufficient number

of “direct reference” ratings). For example, if θ1 is 10, v = 1 is suitable according to

Fig. 3.3. If θ1 is 50, v = 2 is suitable.

TIST in Case 3 is the weighted summation of T [t1,tn]
TISTs(p)

defined in both Eq. (3.9)

and Eq. (3.10):

T
[t1,tn]
TISTs(p)

= ω(m1) ∗
∑m1

i=1 (r(TR
(ti)) ∗ STT (i, f))∑m1

i=1 STT (i, f)
+

(1−ω(m1)) ∗
∑m−m1

j=1 (r(TR(tj)) ∗ STC(i, f) ∗ STT (i, f))∑n−m1

j=1 STT (i, f)
(3.12)

3.3.3.2 Product Category based Trust (PCT) and Similar Transaction Amount

based Trust (STAT)

In addition to TIST, the buyer may also be concerned about whether the seller obtained

a high level of trust in selling various products similar to p. Product Category based

Trust (PCT) is computed based on the ratings of transactions containing products sim-

ilar to that in the forthcoming transaction. Its value is defined in Eq. (3.13):

T
[t1,tn]
PCTs(p)

=

∑m3

k=1(r(TR
(tk)) ∗ STT (k, f))∑m3

i=1 STT (k, f)
(3.13)

where m3 =| {TR(tk)|TR(tk) ∈ Trans, STI(k, f) ≥ θTI} | and m1 ≤ m3 ≤ m;

θTI is the threshold for transaction item similarity STI , i.e. PCT considers the ratings

from the transactions selling products with a similarity larger than θTI . Essentially,

the process of computing PCT is equivalent to performing “roll-up” operations in the

hierarchy, and the number of “roll-up” operations determine the θTI .

Similar Transaction Amount based Trust (STAT) is to outline the trustworthiness

of the forthcoming transaction in terms of transaction amount. The STAT is different

from PCT, because a seller may have lots of past transactions with the amounts similar
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to the forthcoming transaction but their corresponding transaction items may be in

different product categories.

T
[t1,tn]
STATs(p)

=

∑m4

l=1(r(TR
(tl)) ∗ STT (l, f))∑m4

l=1 STT (l, f)
(3.14)

where m4 =| {TR(tl)|TR(tl) ∈ Trans, STA(l, f) ≥ θTA} | and m1 ≤ m4 ≤ m; θTA

is the threshold for transaction amount similarity STA, i.e. STAT considers the ratings

with the transaction amount similarity higher than θTA.

3.4 Empirical Studies

In this section, empirical studies are presented to illustrate the effectiveness our pro-

posed trust vector approach for context-aware transaction trust evaluation in e-commerce

environments.

3.4.1 Study 1 - Transaction Item Specific Trust (TIST)

In this study, an example is used to study the changes of TIST when a seller provides

new products.

Example: Four sellers S1, S2, S3 and S4 provide a latest popular model of Apple

MacBooK Pro laptop (e.g., MC700LL/A) with an attractive price of around $900 at

time t (t > t50). Assume that the four sellers sold different products respectively

before, but since t51 they start to sell this popular laptop. The products that they have

sold before are listed in Table 3.2 below.

Furthermore, the example adopts the rating model where each rating r(TR(ti)) is

an integer in {1, 2, 3, 4, 5}5. We normalize ratings to [0, 1], namely {0, 0.25, 0.5, 0.75, 1}.

A good quality transaction means the value of r(TR(ti)) lies in the range [0.75, 1]. By

contrast, the r(TR(ti)) for a poor quality transaction lies in the range [0, 0.25]. We

5This rating model provides more accurate information than the tripple-rating model with 1 for
positive, 0 for neutral and −1 for negative as eBay [88]



§3.4 Empirical Studies 71

Table 3.2: The products sold by four sellers

transaction context
time period time period
[t1, t50] t51 and after

Sellers Product Price Product Price
S1 Apple iPad Air $600 MacBook Pro Laptop $900

S2 Canon A2200 Digital Camera $150 MacBook Pro Laptop $900

S3 Luxury Watch $2500 MacBook Pro Laptop $900

S4 Food $10 MacBook Pro Laptop $900

adopt other parameters γ = 0.9 in Eq. (3.6), v = 2 and u = 0.7 in Eq. (3.11), λR = 20

in Eq. (3.4), and θ = 20. We also assume that the four sellers all had good quality

transactions during time period [t1, t50] and obtained similar high rating values. After

time t50, S1 and S3 still have good quality transactions but S2 and S4 start to provide

poor quality transactions (e.g., they sell refurbished laptops).

Note that this example uses the above four typical sellers which aims to fully

demonstrate the changes of TIST value under different situations. More specifical-

ly, compared with their past transactions, seller S1 has similar transaction item and

transaction amount in the new transaction; seller S2 has similar transaction item but

different transaction amount; seller S3 has similar transaction amount but different

transaction item; seller S4 has totally different transaction item and transaction amount.

In addition, these four sellers are set to perform differently so as to reflect and observe

the fluctuation of TIST value. The corresponding performance includes continuously

having good quality transactions and having poor quality transactions after a series of

good quality transactions.

Evaluation: In order to highlight the changes of TIST value, we compare it with

the general transaction trust (GTT) value which is calculated by a trust evaluation

approach without context consideration proposed in [154]:

T
[t1,tn]
GTTs

=

∑n
i=1(r(TR

(ti)) ∗ STT (i, f))∑n
i=1 STT (i, f)

(3.15)

where TR(ti) ∈ Trans, TR(tf ) is the forthcoming transaction and STT is transaction
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Figure 3.4: The changes of Transaction Item Specific Trust (TIST) for four different sellers

time similarity (defined in Eq. (3.6)), used to weight the rating of TR(ti).

Results: The comparative results of the TIST value and the GTT value are shown in

Fig. 3.4.

(a) As shown from Fig. 3.4(a) to 3.4(d), the TIST values and the GTT values of four

sellers are very close to each other in time period [t1, t50] (i.e., T [t1,t50]
GTT ≈ 0.89),

when the products they sell do not change.

(b) At time t51, when the four sellers start to provide new products, their TIST values

decrease differently. The extent of decrease depends on the similarity between

past transactions and the new transaction at time t51.

(1) In Fig. 3.4(a), S1, who has approximately the same transaction items (iPad

Air vs Laptop) and transaction amounts ($600 vs $900) as those in the past

transactions, the TIST value decreases slightly only.
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(2) In Fig. 3.4(b) and 3.4(c), both S2 and S3, with decreased transaction con-

text similarity (i.e., Digital Camera vs Laptop and $150 vs $900 for S2,

Luxury Watch vs Laptop and $2500 vs $900 for S3), the TIST value drops

remarkably. However, it also can be observed in Fig. 3.4(c) that TTISTS3

quickly reaches a high value after accumulating for a while (i.e., above 0.8

after t75) when S3 keeps selling high quality laptops.

(3) In Fig. 3.4(d), S4, who starts to have transactions at t51 with completely

different transaction context (Food vs Laptop and $10 vs $900), his TIST

values are quite low due to the potential transaction context imbalance.

(c) After time t51, as depicted from Fig. 3.4(a) to 3.4(d), when the four sellers have

completed a series of transactions, the TIST values and the GTT values tend to

be close to each other again due to the increased number of “direct reference”

ratings. The TIST values can be determined from them directly (Case 1 in E-

q. (3.9)), which are the same as the GTT values (calculated in Eq. (3.15)).

Summary: (1) Obviously, it is unreasonable to use GTT to indicate the trust level

of sellers, because it cannot reflect the changes of trustworthiness when a seller starts

to provide new products. (2) By contrast, our proposed TIST takes into account the

transaction context similarity. Only for those sellers who provide transaction items and

transaction amounts similar to a forthcoming transaction, the trust value will be as high

as before (such as S1). (3) Therefore, TIST can be used to identify some potentially

malicious transactions with the transaction amount imbalance problem, such as S4

who obtains a quite low TIST value with our model.

3.4.2 Study 2 - Comparison with Existing Trust Evaluation Ap-

proaches

In this study, we compare our approach with a single-context but multi-faceted trust

valuation model REGRET [120] and a prior trust vector based approach proposed by



74 A Trust Vector Approach to Context-Aware Transaction Trust Evaluation

Wang and Lim [149].

3.4.2.1 Comparison with REGRET

As depicted in Section 3.1.2.2, the rating r(TR(ti)) is usually regarded as a “general”

rating in e-commerce, which combines with trust information from different aspects,

such as the quality of product p, sellers’ services (e.g., whether seller S processed

buyer B’s order on time and whether seller S had prompt and friendly communication

with buyer B), delivery or shipping services, etc. In REGRET [120], the above multi-

faceted trust is considered where a buyer B can specify the weight in each aspect

based on personal preference, and then an aggregated value is computed to reflect the

trustworthiness of seller S.

However, in the subsection, an example is given to explain that, compared with our

proposed trust vector based approach, trust evaluation based on the REGRET model

may lead to an unreasonable result for seller selection. To be precise, let us suppose

that two other sellers, S5 and S6, have completed a series of transactions in time period

[t1, t10]. The products that they have sold and the corresponding ratings that they have

obtained are listed in Table 3.3. Note that, to facilitate discussion, we also assume that:

1) trust value computed based on the REGRET model derives from three aspects: the

quality of product, the seller’s service and delivery service. Correspondingly, as shown

in Table 3.3, r(TR(ti)) =< rq(TR
(ti)), rs(TR

(ti)), rd(TR
(ti)) > is a rating vector6 that

buyer B gives to seller S for TR(ti), which consists of three ratings. rq(TR(ti)) is the

rating for the quality of product p; rs(TR
(ti)) is the rating for the seller’s service;

and rd(TR
(ti)) is the rating for delivery service; and 2) the “general” rating r(TR(ti))

equals to rq(TR
(ti)), since the quality of product determines transaction quality to a

large extent in practice.

Then, we compare the trust value of two sellers computed based on the REGRET

6As mentioned in Section 3.1.2.2, at eBay, a buyer have to provide a rating vector after each trans-
action. Usually, there are five elements in that rating vector. For sake of simplicity, we only use three
elements rq(TR

(ti)), rs(TR
(ti)) and rd(TR

(ti)) as the example which are also available at eBay. In
addition, as introduced in Study 1, all the ratings will be normalized.
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model and our approach as shown in Table 3.4, and we set the same parameters as the

example introduced in Section 3.4.1.

Table 3.3: Rating vectors of sellers S5 and S6

S5transaction transaction
time rq(TR

(ti)) rs(TR
(ti)) rd(TR

(ti)) item

t1 0.75 1 0.75 iPad Air
t2 0.75 0.75 1 MacBook Pro Laptop
t3 0.5 1 1 iPad Air
t4 1 0.75 0.75 iPad Air
t5 0.75 0.75 0.75 MacBook Pro Laptop
t6 0.5 1 0.75 iPad Air
t7 0.75 0.75 1 iPad Air
t8 1 1 0.75 MacBook Pro Laptop
t9 0.75 0.75 1 iPad Air
t10 0.5 0.75 1 iPad Air

S6transaction transaction
time rq(TR

(ti)) rs(TR
(ti)) rd(TR

(ti)) item

t1 1 0.75 1 Canon A2200 Digital Camera
t2 1 1 1 Canon A2200 Digital Camera
t3 0.75 0.75 0.75 Canon A2200 Digital Camera
t4 0.5 1 1 MacBook Pro Laptop
t5 0.75 1 0.75 Canon A2200 Digital Camera
t6 1 1 0.75 Canon A2200 Digital Camera
t7 0.5 0.75 1 MacBook Pro Laptop
t8 1 1 0.75 Canon A2200 Digital Camera
t9 0.25 0.75 1 MacBook Pro Laptop
t10 1 1 1 Canon A2200 Digital Camera

Analysis and Summary: In REGRET, as both sellers sell this laptop with an attractive

price of $900, they have the same level of trustworthiness on price. Based on the

ratings rq(TR(ti)) in time period [t1, t10], we can know that the trustworthiness of a new

transaction selling this laptop is 0.71 for S5 and the trustworthiness of service quality

is 0.89 for S5 based on ratings rd(TR(ti)). Similarly, we know that the trustworthiness

of a new transaction selling this laptop is 0.74 for S6 and the trustworthiness of service

quality is 0.90 for S6 (see Table 3.4). Thus, with any weights specified by a buyer
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that are used for both sellers simultaneously, the aggregated trust value of S6 is always

greater than S5, i.e. S6 is more trustworthy, denoted as T [t1,t10]
S5

<T
[t1,t10]
S6

. Note that the

higher the value, the more trustworthy the seller will be.

Table 3.4: The computed trust values of sellers S5 and S6 based on REGRET and the proposed
trust vector approach

REGRET Trust Vector
transaction service

Seller trustworthiness trustworthiness TTIST TPCT TSTAT

S5 0.71 0.89 0.75 0.72 0.72

S6 0.74 0.90 0.40 0.76 0.40

In Table 3.3, the ratings rq(TR(ti)) of S5 for selling MacBook Pro laptop are higher

than S6. Compared to the single value result T [t1,t10]
S5

<T
[t1,t10]
S6

from REGRET system,

our approach is more reasonable when selecting a seller for a specific product, since

the computed trust vector is particularly bound to each forthcoming transaction. As

we can see in Table 3.4, S6 has a lower TTIST value (0.40 vs 0.75) and TSTAT value

(0.40 vs 0.72 ) than S5.

3.4.2.2 Comparison with Prior Trust Vector based Approach

In [149], Wang and Lim propose a preliminary trust vector approach for evaluating the

context-aware transaction trust, which includes 1) product specific trust (ST), calculat-

ed from the ratings of all past transactions selling the same product as the forthcom-

ing transaction; 2) product category specific trust (SCT), based on the ratings of past

transactions having the same product category as that in the forthcoming transaction;

3) transaction amount specific trust (TAST), based on the ratings of past transactions

having the same transaction amount category as that in the forthcoming transaction;

and 4) global weighted trust (GWT). The GWT value is the weighted average of rat-

ings from all past transactions in a recent time period, in which the transaction amount

difference between the forthcoming transaction, and each past transaction, is used to

calculate the weight for the rating of the past transaction.
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Table 3.5: The computed two trust vectors of sellers S1 and S3 at time t51

Trust vector Our proposed
in [149] Trust vector

Sellers TST TSCT TTAST TGWT TTIST TPCT TSTAT

S1 0 0 0.89 0.67 0.76 0.89 0.89

S3 0 0 0.89 0.86 0.45 0 0.89

Analysis and Summary: However, their model does not consider transaction item

similarity, i.e. hierarchical structure of product category. As a result, the selection of

the most trustworthy seller may be unreasonable when a seller just starts to sell a new

product in the forthcoming transaction. As introduced in Study 1, for two sellers S1

and S3, we assume that S3 sells a Luxury Watch for $1, 000. When S1 and S3 start to

sell a model of MacBook Pro Laptop at time t51, the calculated trust vectors of S1 and

S3 using the approach in [149] and our approach (with θTI = 0.8 and θTA = 0.8) are

both listed in Table 3.5, respectively.

Following the model in [149], with any specified weights, considering the aggre-

gated trust values of two sellers, it always has T [t41,t50]
S3

>T
[t1,t50]
S1

at t51. That is because

both S1 and S3 have the same TST , TSCT and TTAST values, but TGWT of S3 is higher

than that of S1 (0.86 vs 0.67). By contrast, in our model, transaction item similarity

is introduced. Thus, S1, who has sold more transaction items similar to the one in the

forthcoming transaction, obtains a higher transaction specific trust value. Compared

with S3, S1 has higher TTIST value (0.76 vs 0.45) and TPCT (0.89 vs 0) value.

3.5 Summary

In this chapter, we first have differentiated the definitions of context in different appli-

cations, and then discussed and defined transaction context in e-commence environ-

ments. We have identified three important transaction context dimensions, i.e. Prod-

uct Category, Transaction Amount (Price) and Transaction Time with influence on the

trustworthiness of a forthcoming transaction. Second, in situations where there are
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no or not enough ratings from the transactions with the same context as the forthcom-

ing transaction, we propose a set of methods to calculate transaction context similarity.

Third, a trust vector approach has been proposed to outline a seller’s reputation profile.

Finally, we have studied trust vector based approach both analytically and empirically

to illustrate its effectiveness.

This chapter is the basis of this thesis. As mentioned in Section 2.3, our proposed

trust vector provides more detailed and comprehensive trust information of a seller. In

particular, it reflects a seller’s dynamic trustworthiness in various transaction contexts

and identifies risks potentially existing in a forthcoming transaction, thus outperform-

ing single-value trust valuation methods. On the other hand, multi-context transaction

trust computation is also complex, in order to clearly outline a seller’s reputation pro-

file, if a user can specify or adjust layers in the product category, price range as well

as transaction time range, accordingly, different ratings from different transaction con-

texts need to be taken into account for computation. If this trust vector is applied in

e-commerce environments with millions of transactions, all these factors incur a high

computational complexity. Thus, in the following chapters, we will focus on designing

the new data structures to store the trust data and computation results. In addition, effi-

cient algorithms are in high demand to facilitate buyers’ context-aware trust enquiries

on each element of the trust vector.



Chapter 4

Two-Dimensional Range Aggregate

(RA) and CTT Computation

Over the past few years, in e-commerce and e-service environments, it has been re-

ceiving much attention from researchers to build various trust evaluation models [120,

158, 88, 146]. In brief, the basic idea of most existing trust evaluation models is to

rate sellers (or service providers), and then use the aggregated ratings as the indication

of their trustworthiness or reputation score. However, a single value only reflects the

general trustworthiness of a seller without taking any transaction context information

into account. With such trust evaluation models, buyers (or consumers) are vulnerable

to some frauds from malicious sellers [66, 67, 58, 57].

In contrast to most existing trust management models that compute a single trust

value, in Chapter 3, we have proposed to compute a trust vector for a seller. The

computation of trust values in the trust vector takes transaction context into account

and is associated with a forthcoming transaction.

The trust vector consists of three major elements, which are called Contextual

Transaction Trust (CTT) values. They are

(a) Transaction Item Specific Trust (TIST): the trustworthiness of a seller in sell-

ing a specific product to be traded in a forthcoming transaction;

(b) Product Category based Trust (PCT): the trustworthiness of the seller in a layer

in the product category hierarchy that is higher than the specific product to be

79
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traded in the forthcoming transaction, within a price range and a time period;

(c) Similar Transaction Amount based Trust (STAT): the trustworthiness of the

seller in a valid price range and a time period.

For each element in the trust vector, the higher the value, the more trustworthy the

seller will be. When computing the last two elements, the parameters, such as product

category, price range and time range, can be specified and adjusted by the buyer. For

example, if “Apple iPhone5s 16GB” is the product in the forthcoming transaction, the

buyer can specify and adjust “product category” along a path in the product category

hierarchy, such as, “Apple iPhone” and “Smartphone”, in sequence. Meanwhile, the

buyer may also specify and adjust the price range and the time range. Each price range

takes the price of a product as approximately the medium value. Each time range takes

the recent time period. Note that, in Section 2.1.2, we have pointed out the temporal

characteristic of trust. More specifically, the concerns of trust and time in the literature

are discussed in three major ways: trust decay, trust time window and hybrid. In

Section 3.3.3, like the studies in [120, 88, 147, 153], we adopt trust decay and weight

more to recent ratings for computing the trust vector. However, trust decay is mainly

of theoretical interest, since a seller may have hundreds of transactions within a short

time period in practice. Therefore, to facilitate application in large-scale e-commerce

websites, like PeerTrust [158, 159] or trust evaluation model used at eBay, a more

reasonable approach is to allow buyers to choose the recent time window, such as “the

latest 1 month”, “the latest 6 months” or “the latest 12 months”.

We use granularity to represent the differences in transaction context determined

by a layer in the product category hierarchy, a price range and a time period. In addi-

tion, we term the query on CTT values as a CTT query, and term the computation of

CTT values as CTT computation. Hence, with all computed trust results, the reputation

profile of a seller can be outlined, which can indicate the dynamic trustworthiness of a

seller in different products and product categories, price ranges, time periods and nec-

essary combination of them. We term this new trust model as ReputationPro, which
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greatly helps identify the transaction context imbalance problem potentially existing

in forthcoming transactions, and thus avoid monetary losses of buyers.

However, at e-commerce websites, a popular seller usually sells a wide variety of

products distributed in a number of product categories. In addition, a large number of

buyers can be accessing one seller’s reputation data simultaneously with regard to their

potentially forthcoming transactions. In order to promptly answer a buyer’s CTT re-

quests, it is necessary to pre-compute aggregates over large-scale transaction data and

ratings with necessary combinations of three context dimensions, i.e. Product Catego-

ry, Price and Transaction Time. Therefore, the CTT computation for outlining sellers’

reputation profiles is a very challenging problem that requires new data structures and

novel algorithms.

This chapter is organized as follows. In Section 4.1, we introduce how to extend

two-dimensional (2D) Range Aggregate (RA) for CTT Computation. Three prelimi-

nary solutions, namely, eaR-tree, eaP-tree and eH-tree are proposed for efficient CTT

computation in Section 4.1. These approaches particularly fit the CTT computation

with large-scale transaction data and ratings over a long time period. Section 4.3

presents the experimental results to illustrate both advantages and disadvantages of

these approaches. Section 4.4 summarises our work in this chapter.

4.1 Extending Two-Dimensional RA for CTT Compu-

tation

As illustrated in Section 3.3.1, like the existing studies in [120, 64, 158, 159, 153,

147, 88], our proposed ReputationPro trust model adopts heuristic-based techniques

that average the ratings for calculating the trust value. To this end, two aggregates

are pre-computed and stored separately. They are count r, the number of ratings of

the corresponding transactions, and sum r, the sum of ratings in a specific layer of

product category hierarchy within a specific transaction price range and a specific time
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period. With a pair of count r and sum r, accordingly, the trust value can be com-

puted as T = sum r
count r

. In addition, based on the parameters of a CTT query, a set of

{count ri, sum ri} can be returned. Accordingly, the trust value is T =
∑

sum ri∑
count ri

.

4.1.1 Relationship Between Two-Dimensional RA and CTT Com-

putation

In this subsection, we discuss the relationship between the two-dimensional RA prob-

lem and our targeted CTT computation problem. In Section 3.1.2, we have introduced

that transaction context includes a static and hierarchical dimension, i.e. Product Cate-

gory, and two dynamic linear dimensions, i.e. Transaction Amount (Price) and Trans-

action Time. When computing PCT and STAT values, a CTT query covers both the

Transaction Amount dimension and the Transaction Time dimension. Similar to the

case depicted in Fig. 2.3 in Section 2.4.2, a CTT query can first be regarded as an

RA problem in a two-dimensional space, where the x-axis represents the Transaction

Time dimension in days and the y-axis represents the Transaction Amount dimension.

Consequently, a CTT query on a seller in a time range [t1, t2] and a transaction amount

range [ta1, ta2] can be converted by computing the number of the ratings count r and

the sum of the ratings sum r of the transactions that fall into the query range formed

by [t1, t2] and [ta1, ta2]. Then, we further extend RA in a two-dimensional space and

take Product Category as the third dimension.

4.1.2 The Extension Process

This subsection introduces how to extend the two-dimensional RA problem to CTT

computation after taking into account the Product Category as the third dimension:

Step 1: Each transaction has a numeric string C-hrchy (see the definitions in Sec-

tion 3.3.1) to represent the path in the product category hierarchy to which the

product traded in the transaction belongs;
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Following eCl@ss introduced in Section 3.2.1.1, a two-digit number is added to

each layer of the product category hierarchy. Thus a unique C-value is assigned

to each product category. For example, in Fig. 3.1, the node “MP3 player” at

layer 4 has the C-value of “19081009” representing the path from the “product

category root” to it. As the products traded in the transactions are at the bottom

of product category hierarchy, the value of C-hrchy equals the C-value in the

corresponding brand-based product category;

Step 2: Each product category in the product category hierarchy maintains the ag-

gregates count r and sum r that are obtained from the past transactions selling

the products in this product category as well as the corresponding transaction

amount range and transaction time range;

Step 3: Each product category is an intermediate node in the product category hier-

archy. In the meantime, for each brand-based product category (e.g., “Canon

SLR Digital Camera”), it is the root of a subtree that is external to the hierarchy.

This subtree can be regarded as a tree for solving the RA problem in a two-

dimensional space, which records the pairs of count r and sum r in the Trans-

action Amount dimension and the Transaction Time dimension. Accordingly,

as we take the points depicted in Fig. 2.3 as transactions, all these transactions

should belong to the same brand-based product category. Also, the subtree can

be of multiple layers, depending on the number of transactions and the distri-

butions in transaction amount and transaction time in the corresponding brand-

based product category.

4.1.3 Why Not a Box Aggregate Problem?

Our targeted CTT computation can also be transformed into a three-dimensional box

aggregate problem where the point aggregation is performed in three linear dimension-

s [167, 134]. More specifically, as shown in Fig. 4.1(a) and (b), instead of assigning a
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Figure 4.1: Convert Product Category dimension to a linear dimension

C-value for each node in product category hierarchy, only the nodes at the brand-based

product category layer (i.e. the bottom of product category hierarchy) are assigned the

numbers. However, the numbers assigned to the nodes at the brand-based product cat-

egory layer should be sequential from left to right, such as 1, 2, ...k, k + 1, k + 2, ..., n

(see Fig. 4.1(b)). In this way, all brand-based product categories will be mapped to

a linear dimension1. Then, with the other two dimensions Transaction Amount and

Transaction Time, CTT computation is transformed to a three-dimensional box aggre-

gate problem.

However, our work does not convert product category hierarchy to a linear dimen-

1Based on the above transformation in Fig.3.1, let us assume that “Canon SLR Digital Camera”
is assigned integer 10, “Nikon SLR Digital Camera” assigned 11 and “Olympus SLR Digital Camera”
assigned 12, etc. In such a case, when performing a “roll-up” operation, i.e. the CTT query on the
category of “SLR Digital Camera”, it is equivalent to computing the aggregation result within range
[10, 12].
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sion; rather, we regard CTT computation as an extended two-dimensional RA problem.

That is because a problem arises when the product hierarchy updates.

Generally speaking, for each expansion (insertion) operation, the hierarchical struc-

ture is flexible. For example, as shown in Fig. 4.1(c), when a new product category

is inserted into the product category hierarchy, a path is first searched from top (the

product category root) to bottom (the brand-based product category) to locate the node

where it is to be inserted. Then, the C-value of the new product category simply adds

a two-digit number forming the C-value8. By contrast, in a mapped linear dimension,

after each update or expansion, we have to recode and map new product category hier-

archy. For example, the product categories coded with k+2, k+3, ..., etc. as depicted

in Fig. 4.1(c) will change to k + 3, k + 4, ..., etc. as depicted in Fig. 4.1(b). More

importantly, after the above mapping operations, the corresponding index for comput-

ing each seller’s reputation profile also has to be regenerated. In practice, the product

category hierarchy, such as UNSPSC and eCl@ss standards, is regularly updated. In

such a case, the index for computing each seller’s reputation profile has to be contin-

uously regenerated. Considering a system with millions of sellers, this will lead to

unnecessary overhead.

4.2 Preliminary Solutions for CTT Computation

This section proposes the preliminary solutions eaR-tree, eaP-tree and eH-tree for

CTT computation which extend the existing approaches to a two-dimensional (2D)

RA problem as introduced in Section 2.4.2. Note that the solutions proposed in this

chapter are mainly based on extending the aR-tree [63, 104] and the aP-tree [135],

since the others do not fully meet the requirements of CTT computation. The detailed

summary of the limitations of them for CTT computation are given in the next chapter.

Moreover, we introduce an additional new element, i.e. element (d), into trust vector,

which is termed as Transaction Proportion based Trust (TPT). TPT computes the trust

value of a seller with regard to the proportion of transactions that are similar to the new
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transaction amongst all past transactions. The introduction of TPT aims to illustrate

the possibility of transaction context imbalance (see Section 3.1.3) in a forthcoming

transaction. In the following, we first explain the meaning of TPT.

4.2.1 Transaction Proportion based Trust (TPT)

According to the definitions presented in Section 3.3.1, Transaction Proportion based

Trust (TPT) is specifically designed to indicate the risk of context imbalance in a forth-

coming transaction. The intent is to compute the trust level of the seller with regard to

the proportion of past transactions in Trans that are similar to the forthcoming trans-

action. As mentioned in Section 3.4.2.2, Wang and Lim propose a similar concept

of Global Weighted Trust (GWT), which also takes into account the influence of the

proportion of similar transactions [149]. The nature of the GWT is depicted as: 1)

The GWT value is high if the transactions similar to TR(t) have a large proportion in

Trans and their ratings are high; 2) The GWT value is low if that proportion is small

even if each corresponding transaction rating r(t) (r(t) is a short form of r(TR(t))) is

high. Then, in order to calculate transaction similarity, only the difference in transac-

tion amounts is considered [149]. By contrast, TPT is a new element introduced in the

trust vector which improves GWT. Being distinct to TIST, PCT and STAT, the value

of TPT is global in the sense that it is based on all past transactions.

With a past transaction TR(i) in Trans and a forthcoming transaction TR(f), in

Section 3.3.3.1, we have defined the transaction content similarity STC between TR(i)

and TR(f). More specifically, STC combines STI (the transaction item similarity) and

STA (the transaction amount similarity). Table 4.1 lists some examples of transaction

content similarity measures based on the product category hierarchy in Fig. 3.1.

Following the definition of STC , the TPT can be calculated as:

TTPT =
1

m

m∑
i=1

(r(i) ∗ STC(TRi, TRf )), (4.1)

where m is the number of transactions in the past transaction set Trans. In the fol-
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Table 4.1: Examples of transaction content similarity

Product Pair depth d STI STA STC

Canon EOS T3i Rebel ($700), Canon EOS T2i Rebel ($600) 7 0.99 0.92 0.96
Canon EOS T3i Rebel ($700), Canon A2200 Digital Camera ($150) 5 0.96 0.73 0.85
Canon EOS T3i Rebel ($700), Olympus Zuiko Macro Lens ($450) 2 0.66 0.86 0.76

Canon EOS T3i Rebel ($700), MacBook Pro Laptop ($900) 1 0.38 0.87 0.63
Canon EOS T3i Rebel ($700), AT&T SIM Card ($1) 1 0.38 0.32 0.35

lowing subsections, based on our proposed tree structures for computing CTT values,

we also introduce how to compute TPT values in Equation (4.1).

4.2.2 The eaR-tree

The eaR-tree extends the aR-tree [63, 104], and it has three types of nodes: R-node

(Rn), I-node (In) and L-node (Ln), each of which can have multiple records depend-

ing on the node capacity. As shown in Fig. 4.2, one eaR-tree consists of a C-tree and

multiple aR-trees that are external to the C-tree. The C-tree consists of R-nodes, and

an aR-tree consists of I-nodes and L-nodes. Here we need to emphasise that Fig. 4.2

essentially shows the general structure of our proposed approaches for CTT compu-

tation. Basically, the idea of extending C-tree with multiple subtrees for CTT com-

putation is applied to three approaches proposed in this chapter as well as the index

scheme CMK-tree (an optimal solution for efficient CTT computation), which will be

proposed in the next chapter.

4.2.2.1 The C-tree (Product Category Tree)

Following Step 2 in the extension process described in Section 4.1.2, each record in an

R-node Rni has the form

< C-value, [tamin, tamax], [tmin, tmax], count r, sum r, pointer >,

where the C-value denotes the unique id of the product category within the product

category hierarchy; [tamin, tamax] and [tmin, tmax] are the transaction amount range

and the transaction time range of all the transactions belonging to the current product
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Figure 4.2: The general structure of our proposed approaches for CTT computation

category; count r and sum r denote the aggregates over these transactions; pointer

points to its child, which is an R-node or an I-node. Therefore, an R-node contains

multiple product categories represented by corresponding records, and these product

categories are on the same layer within the product category hierarchy. All R-nodes

form an N-ary tree, and we term it as a C-tree (product Category-tree).

4.2.2.2 The Other Node Structures

Apart from R-nodes, each record Ii in an I-node contains < [tamin, tamax], [tmin, tmax],

count r, sum r, pointer >, where pointer points to its child node, which is another

I-node or an L-node. Each record Li in an L-node contains < price, time, count r,

sum r, pointer >, where pointer points to a record of a transaction in the database.

Essentially, each I-node is equivalent to an internal node and each L-node is equiv-

alent to a leaf node in an aR-tree [104], respectively. However, in an eaR-tree, the

structure of each record Li in an L-node is different from the leaf record in the original

aR-tree. That is because, for the two-dimensional RA problem, one point in space rep-

resents one object only (e.g., a car). Therefore, each leaf record in an aR-tree does not

need to maintain the aggregate of objects since they are always 1. By contrast, in the

eaR-tree, we introduce count r and sum r in each record of L-node to aggregate the
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ratings derived from the repeated transactions on a given day selling the same prod-

uct with the same price. On one hand, the structure of eaR-tree guarantees that each

specific product can be indexed so as to compute its trust value (i.e., TIST). On the

other hand, the added data fields count r and sum r allow operations on the index of

product space rather than the whole transaction space on each day, which can reduce

space consumption and the number of accessed nodes for answering a CTT query.

4.2.2.3 The Construction of an eaR-tree

Before inserting the data of a newly occurred transaction into an eaR-tree, a path is

first searched from the product category root to the brand-based layer in the product

category hierarchy based on the C-hrchy of the transaction. If the transaction be-

longs to a new product category on which the seller has no prior transactions, the new

record in an R-node is generated for this product category as well as its correspond-

ing sub-categories. Otherwise, the set of ranges and aggregates (i.e., [tamin, tamax],

[tmin, tmax], count r, sum r) in each record along the path are updated accordingly.

After that, the insertion operations should be performed in a subtree pointed by the

corresponding record in an R-node in the brand-based product category layer.

Fig. 4.3 depicts the construction of an eaR-tree after inserting the data for three

transactions trading different products, but these products all belong to the same prod-

uct category with the same C-hrchy. In addition, the transaction information < tai

(transaction amount), ti (transaction time), ri (rating) > of these three transactions

is < 5, 1, 1 >, < 15, 1, 1 > and < 10, 2, 1 >. The node I denotes an I-node, and

count r and sum r in one record of I (< [5, 15], [1, 1], 3, 3 >) maintain the sum of all

the aggregates count r and sum r respectively in the L-node A. Each record in the

L-node A has the fields count r and sum r for the inserted multiple transactions that

happened on a given day selling the same product.

For the split of an R-node, the corresponding new record in an R-node is generat-

ed, which contains a C-value to represent the parent of current R-node. Meanwhile,

[tamin, tamax], [tmin, tmax], count r and sum r in the new record also need to be up-
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Figure 4.3: The construction of an eaR-tree

dated to reflect the ranges and aggregates of its child node. Then, the generated new

record is added to the corresponding layer in the product category hierarchy. The in-

sertion and split of either an L-node or an I-node in the eaR-tree is the same as the

aR-tree, and more details can be found in [104].

4.2.2.4 Performance Analysis

To compute each of TIST, TPT, PCT and STAT to answer a CTT query, the search is

first performed in a C-tree.

The queries on TIST, PCT and STAT: To answer a query on PCT: <product-category:

“DSLR Camera”; price-range: “$500-$900”; time-range: from “the latest 6 months”>,

all sub-categories under “DSLR Camera” (see Fig. 3.1) are first considered. As each

record in R-node contains a transaction amount range ([tamin, tamax]) and a transaction

time range ([tmin, tmax]), three different cases arise, as follows:

Case 1: If a CTT query on the transaction amount range and the transaction time

range falls into the region surrounded by [tamin, tamax] and [tmin, tmax], then it

is not necessary to search its child node (sub-categories). Instead, count r and

sum r in that record can be used directly.
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Case 2: If a CTT query on the transaction amount range and the transaction

time range are out of the region surrounded by [tamin, tamax] and [tmin, tmax],

then it is not necessary to search its child node (sub-categories) either.

Case 3: If a CTT query on the transaction amount range and the transaction time

range overlaps with the region surrounded by [tamin, tamax] and [tmin, tmax],

then the search iteratively executes from Case 1 to Case 3 in its descendants

until reaching the layer of I-nodes. Taking each reached I-node as a root, its

child I-nodes and L-nodes will be searched.

For Case 3, when searching a subtree containing I-nodes and L-nodes, as in the aR-

tree, the query cost in the eaR-tree depends on the size of the query region formed by

the transaction amount range and transaction time range. The larger the query region,

the more overlapped MBRs (see Fig. 2.4(b)).

Compared with the computation of PCT, the search process for computing TIST

and STAT is almost the same. The only difference is that in the computation of TIST,

there is a need to further search the actual records in the database. In the computation

of STAT, Case 1 to Case 3 need to be executed in all the categories of the products

sold by the seller. For the sake of simplicity, we use the computation of PCT as the

example to analyse these approaches.

The queries on TPT: Next, based on C-tree (Product Category Tree), we explain the

search process for answering (computing) the queries on TPT (see subsection 4.2.1).

Assume that all the m transactions in the past transaction set Trans in Eq. (4.1) be-

longs to k brand-based product categories (see Fig. 3.1). As illustrated above, each

record in R-node maintains the transaction amount range [tamin, tamax], the number

of ratings count r and the sum of ratings sum r over all these transactions in the cor-

responding product category. Therefore, the number m also equals
∑k

i=1 count ri.

Furthermore, given a forthcoming transaction TR(f), the following transformation is

proposed so as to compute
∑m

i=1(r
(i) ∗ STC(TR

(i), TR(f))) in Eq. (4.1).

(1) To calculate the transaction amount similarity STA(TR
(i), TR(f)) (denoted as
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Si
TA), we introduce an approximate calculation method. Instead of using the

transaction amount ta in each transaction TR(i), we set the mean value tamin+tamax

2

of [tamin, tamax] as the input for computing Si
TA. [tamin, tamax] represents the

transaction amount range of a brand-based product category, to which the trans-

action TR(i) belongs.

(2) The way to calculate the transaction item similarity STI(TR
(i), TR(f)) (denoted

as Si
T I) is first to locate the deepest common ancestor between the transaction

item in TR(f) and the brand-based product category, to which TR(i) belongs.

Then, the formulas proposed in Eq. (3.1) can be used to calculate STI . In such a

case, the original Eq. (4.1) is converted as:

TTPT =

∑k
i=1(sum ri ∗ (

Si
TI+Si

TA

2
))∑k

i=1 count ri
, (4.2)

where sum ri is the sum of ratings for certain brand-based product category.

Obviously, the search needs to be performed from top to bottom in the whole

product category hierarchy, i.e., C-tree, for computing TTPT . Its time complexity is

O(k ∗ d), where k is the number of brand-based product categories and d is the depth

from the product category root (top) to a brand-based product category (bottom). As

the eaR-tree, eaP-tree, eH-tree and CMK-tree (to be introduced in next chapter) have

the same C-tree structure, they have the same time complexity in answering a TPT

query. Therefore, in the following, the method for computing TPT values will not be

described again; rather, we will focus on introducing their structures.

4.2.3 The eaP-tree

4.2.3.1 The Structure of an eaP-tree

The eaP-tree adopts an aP-tree [135] as each subtree to extend C-tree, thus it has the

same structure as the eaR-tree for each record Ri in R-nodes. But each record Ii in an
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I-node has a different structure as < tamin, [tstart, tend), count r, sum r, pointer >,

where count r and sum r denote the number of ratings and the corresponding rating

sum in its subtree that is alive in [tstart, tend). The term tamin indicates all transactions

in its children with a transaction amount no less than tamin. The term [tstart, tend)

records the time period within which the corresponding transactions occurred. If tend

is “*”, it means the records are alive; otherwise they have died before tend [135]. Each

record Li in an L-node also has the structure < price, time, count r, sum r, pointer

>. In the following subsection, we further explain that, for an eaP-tree, the additional

data fields count r and sum r in each record of L-node cannot essentially aggregate

repeated transactions that occurred on a day.

4.2.3.2 The Construction of an eaP-tree

The main difference between an eaP-tree and an eaR-tree lies in the construction of

the subtrees containing I-nodes and L-nodes that are external to a C-tree. Thus we

briefly introduce the construction of a subtree in the eaP-tree in this subsection. To

some extent, it is similar to constructing an aP-tree [135].

In Fig. 4.4(a), three more transactions with x-y coordinates (1, 25), (1, 35), (1, 45)

(day represented by the x-axis and price represented by the y-axis) are inserted into the

L-node A, and we assume the node capacity is 6. Also, these transactions represent

different products, but they all belong to the same product category with the same C-

hrchy. In an eaP-tree (see Fig. 4.4(a)), the record < 5, [1, ∗), 6, sum r,A > in I-node

I is generated to indicate that there are 6 records in the L-node A, which are alive from

xstart = 1 and their transaction amounts are at least 5. The term sum r in each record

of an I-node is the sum of sum r for all the records in the L-node A. Note that the

fields count r and sum r in each record of L-node are ignored, and we use count r

in each record of I-node as the example to illustrate the aggregation process.

Fig. 4.4(b) illustrates when a new record (2, 55) with a different transaction day

(i.e. x-coordinate) is inserted into A, the record < 5, [1, ∗), 6, sum r,A > dies with its

xend modified to 2. Since the L-node A is overflown after inserting the new record, it
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Figure 4.4: The construction of an eaP-tree

splits into two L-nodes B and C as shown in Fig. 4.4(b). The additional two records

< 5, [2, ∗), 4, sum r,B > and < 35, [2, ∗), 3, sum r,C > are generated with xstart =

2, which points to the L-nodes B and C, respectively. Meanwhile, the whole process

is also accompanied by the split of transaction amount (i.e. the y-coordinates).

When inserting a newly occurred transaction into a subtree that is external to the C-

tree, the operation is to iteratively search the live record [xstart, ∗) whose y-coordinate

(i.e., transaction amount) is the largest among all the records in I-nodes. This process

is the same as the aP-tree [135]. For example, Fig. 4.4(c) illustrates the eaP-tree struc-

ture after inserting three more records (4, 60), (5, 65), (5, 70). When the record (4, 60)

with a different transaction time is inserted, the record < 35, [2, ∗), 3, sum r,C > in

an I-node dies, and a new record is duplicated from < 35, [2, ∗), 3, sum r,C > with

its xstart set to 4 and its count r incremented by 1 (see the I-node I in Fig. 4.4(c)).

Fig. 4.4(d) illustrates that two L-nodes D and E are generated after inserting the record
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(6, 40). Thus, the insertion of two additional records leads to the overflown of the I-

node I overflown, and thus two new I-nodes I1 and I2 (I2 contains all the alive records)

are generated from the spilt of the original I-node I . In addition, like the aP-tree, the

eaP-tree has only a single parameter svo that denotes the threshold of strong version

overflow. The svo occurs when the number of alive records in a new node exceeds

b ∗ svo (b is node capacity). More details about svo can be found in [135].

4.2.3.3 Performance Analysis

When answering a CTT query on PCT, the search in an eaP-tree still starts from lo-

cating the corresponding product category in the product category hierarchy according

to three different cases (see subsection 4.2.2.4). For Case 3, unlike the eaR-tree, t-

wo VRAs are computed in the specific transaction amount range and transaction time

range as in an aP-tree [135]. However, the eaP-tree has two obvious drawbacks when

dealing with CTT computation in e-commerce environments.

(a) Fixed right border leads to a large number of nodes to be accessed in the eaP-

tree. One of the important characteristics for a CTT query is that the transaction

time range should start from a previous point and end at the time point “now”.

Hence, the right border VRA query is fixed to the “now” (i.e. the end time)

in the CTT computation. In such a case, all the alive records (i.e. the records

with xend =“*”) need to be checked regarding whether their transaction amount

ranges intersect with the query range [ta1, ta2].

(b) Insertion algorithm leads to a large number of nodes to be accessed in an eaP-

tree. In subsection 4.2.3.2, we have mentioned that the way to insert a newly

occurred transaction in an eaP-tree is to iteratively find the live record whose

y-coordinate (i.e., Transaction Amount) is the largest among all the records of

I-nodes in a specific brand-based product category. An important observation is

that the efficiency of the eaP-tree depends on whether the transaction amounts

(i.e., the y-coordinates of all records) are inserted in order. As the example
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Figure 4.5: Another example for the construction of an eaP-tree

shown in Fig. 4.4, the transaction amounts are also in ascending order. In such

a case, it is easy to infer the range of transaction amounts in the subtree pointed

by a record of I-node. For example, in Fig. 4.4(d), based on the records <

5, [2, ∗), 4, sum r,B > and < 35, [6, ∗), 4, sum r,D >, the transaction amount

range [5, 35) in L-node B can be inferred.

Regarding our targeted CTT computation problem, it is difficult to satisfy the

requirement that transactions are inserted in the order of transaction amounts. In

e-commerce environments, it is quite common that a seller has multiple trans-

actions representing the sale of the same product on a given day or at different

transaction time. The range of transaction amounts in the subtree pointed by

a record of I-node is difficult to infer as indicated above. As a result, there

are a large number of nodes to be accessed in an eaP-tree. For instance, in

Fig. 4.5(a), if the inserted records are (4, 5), (5, 25), (5, 15), (6, 40) instead of

(4, 60), (5, 65), (5, 70), (6, 40) as in Fig. 4.4(c), the additional two records are

< 5, [6, ∗), 4, sum r,D > and < 40, [6, ∗), 3, sum r,E > (see Fig. 4.5(b)),

rather than < 35, [6, ∗), 4, sum r,D > and < 60, [6, ∗), 3, sum r,E > as shown

in Fig. 4.4(d). In such a case, the transaction amount range in the L-node

B cannot be inferred based on the records < 5, [2, ∗), 4, sum r,B > and <

5, [6, ∗), 4, sum r,D >. Assume that a VRA query is 6 : [20, 50], then all the
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L-nodes pointed by three alive records in an I-node should be visited.

As pointed out in [168], the insertion algorithm leads to a problem of aP-tree

that operations on the index are performed on all the objects in order to solve RA

problem in two-dimensional space. Likewise, the eaP-tree indexes each transaction

separately and cannot essentially aggregate repeated transactions that occurred on a

day. Therefore, the data field count r in each record in L-nodes of the eaP-tree is

always 1 and the corresponding sum r is a single rating. In fact, the operation on

the index of the whole transaction space is an important reason, leading to inferior

performance for an eaP-tree when compared to an eaR-tree. This is also illustrated in

our experiments to be introduced in Section 4.3.

4.2.4 The eH-tree

To overcome the disadvantages of the eaP-tree, we propose another structure, eH-tree

which is an extended hybrid structure.

4.2.4.1 The Structure of an eH-tree

Basically, the eH-tree also extends a C-tree, where a subtree is generated and pointed

by each brand-based product category. Therefore, it still has the same structure for

each record in R-nodes. But the eH-tree has a different structure in each subtree. In

particular, instead of using only a key (the field tamin) as each record in I-nodes of the

eaP-tree, the field [tamin, tamax] is used to record the minimum and the maximum of

transaction amounts respectively in its subtree. In order to differentiate from the origi-

nal aP-tree, we denote the new structure as aP+-tree. Although each record introduces

one additional data field, it can reduce the number of nodes to be accessed in answering

a CTT query. This advantage is further explained in the following subsection.

In addition to the aP+-tree, another B+-tree [15] is constructed in the separate

transaction amount space. Meanwhile, the B+-tree contains additional fields to store

the aggregates count r and sum r, forming an aB+-tree. Each record in an aB+-tree
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has the structure < tamin, count r, sum r, pointer > where pointer points to its

child. But for a record in the leaf node of the aB+-tree, pointer points to the record

of a transaction in the database. Notice that, unlike a B+-tree, the size of an aB+-tree

depends on the number of distinct products in a brand-based product category rather

than the number of distinct transaction amounts, as some different products can be sold

with the same price. Also, as an extended hybrid structure, the records of R-nodes in

the brand-based product category layer are modified with two pointers.

4.2.4.2 The Construction of an eH-tree

When inserting the data of a newly occurred transaction into an eH-tree, as illustrated

in subsection 4.2.2.3, the set of ranges and aggregates (i.e., [tamin, tamax], [tmin, tmax],

count r, sum r) in each record along the path from the product category root to the

brand-based product category layer in the C-tree will be updated first. After that, both

the aP+-tree and the aB+-tree in the corresponding subtree that is external to the C-tree

are also updated.

The process of the aP+-tree construction is similar to that of the aP-tree [135] ex-

cept for recording the minimal and the maximal of the transaction amount in its subtree

during insertion and split operations. While the process of an aB+-tree construction

is similar to that of a B+-tree [15], different products are inserted as different records

into an aB+-tree, even if they have the same price. Fig. 4.6 depicts the construction of

an eH-tree, after inserting three transactions as introduced in subsection 4.2.2.3. Given

a CTT query, in the eH-tree, there is a need to search the aP+-tree for the left border

VRA and the aB+-tree for the right border VRA, respectively.

4.2.4.3 Performance Analysis

When searching in a subtree that is external to the product category hierarchy, the

eH-tree improves eaP-tree in two aspects for CTT queries on PCT.

(a) Fewer nodes will be accessed for the left border VRA.
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Figure 4.6: The contraction of an eH-tree

In an eH-tree, the number of accessed nodes can be reduced in some cases

when computing the left border VRA. For example, in Fig. 4.5(a), if the in-

serted records are (5, 4), (25, 5), (15, 5), (40, 6), the additional two records in

an I-node will be < 5, [6, ∗), 4, sum r,D > and < 40, [6, ∗), 3, sum r,E >

(see Fig. 4.5(b)) in eaP-tree. By contrast, in the eH-tree, the generated two

records are < [5, 35], [6, ∗), 4, sum r,D > and < [40, 55], [6, ∗), 3, sum r,E >.

As a result, for the same VRA query 6 : [5, 30], the L-node pointed by <

[5, 25], [2, ∗), 4, sum r,B > is not accessed as it is covered by [5, 30], while

it will be visited in an eaP-tree.

(b) Search is performed in the fully ordered transaction amount space for the

right border VRA query.

As stated before, each CTT query on the transaction time range refers to the

latest time period, which starts from a previous point and end at the point “now”

(i.e., the end time). If we take the points depicted in Fig. 2.5(b) as transactions,

an important observation is that all the generated intervals by the transactions

intersect with right border regardless of their transaction time. In order to further

reduce the number of accessed nodes, in eH-tree, we construct another aB+-tree

in the separate transaction amount space. The same as the B+-tree [15], all the
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transaction information in an aB+-tree is kept sorted based on their transaction

amount. Note that each generated aB+-tree is based on the transactions in a

brand-based product category. In such a way, the computation of right border

VRA can be converted to searching in the fully ordered transaction amount space

and thus efficiency is improved.

4.3 Experiments on Preliminary Solutions

This section describes the experiments conducted on two eBay datasets and three large-

scale synthetic datasets, which aim to evaluate the efficiency difference of three pro-

posed approaches eaR-tree, eaP-tree and eH-tree. Here, we need to emphasize that

the advantages of our proposed trust vector based approach have already been studied

both analytically and empirically in Chapter 3.

4.3.1 Datasets

4.3.1.1 eBay Datasets

With eBay APIs2, we have obtained detailed feedback and transaction data for up to

90 days of selected sellers. In seller selection, we first chose a number of popular

products, and the sellers selling them with the largest number of reviews. With them,

we finally selected two sellers S1 and S2 who had totally around 12,000 transactions

(approx. 133 transactions per day) and 4,000 transactions (approx. 44 transactions per

day) respectively within 90 days.

While the products sold by S1 and S2 exist in multiple product categories, most

products are in the category ‘Information, Communication and Media technology’ (see

Fig. 3.1). Specifically, the products sold by S1 include MP3 players, Notebooks, Dig-

ital Cameras, CD & DVD players, LCD monitors etc, and the products sold by S2

include Digital Cameras, Video Cameras, Camera & Photo Accessories, Printers, S-

2developer.ebay.com/support/docs
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martphones etc. The selection of S1 and S2 allows performing both “drill-down”

and “roll-up” operations in the product category hierarchy (see Fig. 3.1) when doing

finer-grained analysis on a seller’s transaction reputation.

4.3.1.2 Synthetic Datasets

Our experiments are also conducted on three synthetic datasets based on S1. The three

synthetic datasets can be categorized into two types:

1) In the first type of synthetic datasets (denoted as SD1), we generated the trans-

action data for a given day at 10 times as much as that of S1, and then duplicated these

transactions for 90 days to form the transaction data for a 12 month period. Thus, there

are about 480, 000 transactions in total in SD1. The first type of synthetic dataset guar-

antees that each product sold in a year has the same proportion of occurrence as that

in the eBay real dataset.

2) The second type of synthetic datasets also contains transaction data at 10 times

the rate as the seller S1 on a given day. It contains 12 months transaction data. Howev-

er, each transaction in the second type synthetic dataset is randomly selected from S1’s

eBay dataset with 12,000 transactions in 90 days. Moreover, in this dataset type, we

generate two datasets SD2 and SD3. In each of them, the proportion of transactions

related to sales of a product or a product category is unlikely to be the same as the

eBay real dataset.

The purpose of generating SD1, SD2 and SD3 is to test the performance of

our proposed approaches under the circumstances of exceptionally large volumes of

transactions both on a single day and over a longer time period (e.g., 12 months).

4.3.2 The Experimental Results

4.3.2.1 Experiment Setup

We compare the proposed eaR-tree, eaP-tree and eH-tree approaches in the experi-

ments. All the trees have the same page size of 512 bytes. The svo (strong version
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overflow) for both the eaP-tree and the eH-tree is set to 5/6. The svo is used to control

the number of alive entries in an internal node after splitting [17]. In addition, each

of the eaR-tree, the eaP-tree and the eH-tree is implemented using C++ running on a

Lenovo Y560 laptop with an Intel Core i5 CPU (2.20GHz), 2GB RAM, Windows 7

Professional operation system and MySql 5.1.35 relational database.

To evaluate the performance of our proposed approaches, we measure the number

of accessed nodes for computing the value of Product Category based Trust (PCT) and

the value of Similar Transaction Amount based Trust (STAT) proposed in trust vector

(see subsection 3.3.2). Computing the trust value of a specific product (TIST) has a

procedure very similar to the computation of PCT. The only difference is that in the

computation of TIST, it needs to further search the actual record in the database. Thus

we will not test for TIST. Similarly, we will not compare the performance of the three

approaches in computing the TPT values, as they all have the same time complexity

O(k ∗ d) (see subsection 4.2.2.4).

As stated before, the products sold by S1 and S2 exist in multiple product cate-

gories. For S1, we select a product category “Apple MP3 player (iPod)” at layer 5

in the product category hierarchy with numerous transactions. Moreover, S1 also has

lots of transactions at both layer 3 (i.e., “Audio device”) and layer 2 (i.e., “Multimedia,

Entertainment technology”), in the product category hierarchy (see Fig. 3.1). For S2,

we select a product category “DSLR Camera” at layer 6, “Digital Camera” at layer 5

and “Photo, video technology” at layer 2 respectively in the product category hierarchy

(also see Fig. 3.1).

4.3.2.2 Results of eBay datasets

The first set of experiments is conducted on the real eBay datasets containing two

different sellers as described above. We evaluated our three proposed approaches in

the following two scenarios:

Scenario 1: Buyer B1 plans to buy an “Apple mc526ll/a iPod nano 16GB” for

about $150 from the seller S1. In order to measure the number of accessed nodes,
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when computing the value of PCT (Product Category based Trust), we assume that

B1 specifies a transaction amount range of [$100,$200], and a time range “the latest

one month”, “the latest two months”, and “the latest three months”, respectively. Note

that, for simplicity, all the changes of CTT queries on the time dimension will be the

same as the above for computing both PCT and STAT. Also, we assume B1 adjusts the

product category to layers 5, 3 and 2 respectively for computing PCT.

To measure the number of accessed nodes for computing the value of STAT (Sim-

ilar Transaction Amount based Trust), we assume B1 also plans to buy another prod-

uct “Samsung Galaxy tab 16GB Android Tablet” for about $400 from seller S1. We

measured the number of accessed nodes at each of four possible transaction amount

ranges. They are [$350,$450] (difference = $100), [$300,$500] (difference = $200),

[$300,$600] (difference = $300) and [$250,$650] (difference = $400). Note that the

difference in price, instead of the price itself, may affect the number of accessed n-

odes. All parameters set in Scenario 1 for computing PCT and STAT are summarised

in Table 4.2 and the experimental results of Scenario 1 are plotted in Fig. 6.2.

Scenario 2: The buyer B2 plans to buy a “Canon EOS T3i Digital Camera” at

a price of about $670 from the seller S2. B2 specifies a transaction amount range

of [$600,$700] for computing the value of PCT (Product Category based Trust), and

adjusts the product category to layers 6, 5 and 2 respectively for computing PCT. The

four possible transaction amount ranges for computing STAT (Similar Transaction

Amount based Trust) are [$600,$700], [$500,$700], [$500,$800] and [$500,$900]. All

parameters set in Scenario 2 for computing PCT and STAT are summarised in Table 4.3

and the experimental results of Scenario 2 are plotted in Fig. 6.3.

We adjusted the product category to layer 3 and layer 2 respectively in queries

to measure the number of accessed nodes for computing PCT, with the same price

range and time range as the previous experiment, and the results are also plotted from

Fig. 6.2(a) to 6.2(c). In addition, Fig. 6.2(d) to 6.2(f) show the numbers of accessed

nodes for computing STAT at a specific price range and a specific time range. Fig. 6.3

illustrates the three approaches operate on the data of another seller S2.
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Figure 4.7: The performance of three proposed approaches in Scenario 1 (S1, eBay dataset)
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Figure 4.8: The performance of three proposed approaches in Scenario 2 (S2, eBay dataset)
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4.3.2.3 Results on synthetic datasets

We also conducted the same experiments on the three synthetic datasets SD1, SD2

and SD3, which contain transactions distributed in 12 months.

For computing the PCT and STAT, we assume that two buyers B1 and B2 both

specify the same time range “the latest 3 months”, “the latest 6 months”, and “the

latest 12 months”, respectively. The results are plotted from Fig. 4.9 to Fig. 4.11.

4.3.3 Discussions of Results

From our experimental results, we can observe:

(1) Compared with the eaR-tree, the performance of the eaP-tree and the perfor-

mance of the eH-tree all show a different trend corresponding to a buyer’s CTT

query. From Fig. 6.2(a) to 6.2(c), we can see that when the time range in a query

increases (i.e., the left border shifts to the left), the number of accessed nodes in

an eaP-tree decreases. As stated before, the right border is fixed to “now” in CT-

T computation. Correspondingly, in the eaP-tree, the number of accessed nodes

is also fixed for computing the right border VRA. However, when the left border

shifts to the left, the number of accessed nodes for computing the left border

VRA decreases. This is because the children of all the records in I-nodes, whose

starting time is later than the left border of the time range, will not be visited. If

the time range in a query covers the whole time period, in such a case, only the

right border VRA needs to be computed for answering a CTT query.

In addition, we can observe the same feature from the eH-tree, which improves

the eaP-tree. Surprisingly, the eH-tree has a smaller number of accessed nodes

in CTT computation than the eaP-tree in all cases. The reasons for this are

twofold. As illustrated in subsection 4.2.4.3, on one hand, the eH-tree adopts

the aP+-tree to reduce the number of accessed nodes for the left border VRA.

On the other hand, in eH-tree, for the right border VRA, the search is done in the
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fully ordered transaction amount space maintained in the aB+-tree. Unlike the

above two approaches, when the time range in a CTT query becomes larger, the

number of accessed nodes for the eaR-tree increases linearly due to more MBRs

overlapped by the enlarged query range.

(2) The eaR-tree has the best performance for over 50% CTT queries. The reason

is that the added data fields count r and sum r in each record of L-nodes in the

eaR-tree allow operations on the index of product space rather than the whole

transaction space on each day, which can reduce the number of accessed nodes.

By contrast, both the eaP-tree and the eH-tree extend the aP-tree. As illustrat-

ed in subsection 4.2.3.3, they index all the transactions, and cannot essentially

aggregate repeated transactions that occurred on a day, leading to inferior per-

formance.

(3) According to the results on two eBay real datasets and three large-scale synthetic

datasets, we can draw the conclusion that the eaR-tree has the best performance

when the CTT query region for the Transaction Time dimension is small (e.g.,

in Fig. 6.2(a) and 6.2(d), where the queries of the transaction time range are

regarding one month). By contrast, the eH-tree has the best performance when

the CTT query region of the Transaction Time dimension becomes larger (e.g.,

in Fig. 6.2(c) and 6.2(f), where the queries of the transaction time range are

regarding three months).

(4) Unlike the eaR-tree and the eaP-tree, the performance of the eH-tree is the least

affected by the large-scale of synthetic datasets containing transactions distribut-

ed in 12 months. The reason is that when transaction time extends to a longer

period (e.g., 12 months), it means a larger query region for the eaR-tree and more

alive nodes for the eaP-tree when computing the right border VRA. By contrast,

the eH-tree only needs to search the additional aB+-tree which is fully ordered

in the transaction amount space for the right border VRA, and thus a long time

period in CTT computation does not much affect the number of accessed nodes.
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Figure 4.9: The performance of three proposed approaches on SD1 (synthetic dataset)
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Figure 4.10: The performance of three proposed approaches on SD2 (synthetic dataset)
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Figure 4.11: The performance of three proposed approaches on SD3 (synthetic dataset)
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4.4 Summary

In the literature, many researchers have pointed out that it is necessary to introduce

context factors to trust evaluation in e-commerce environments [164, 158, 159, 121,

150, 149, 74, 111]. To this end, in Chapter 3, we target the context-aware transaction

trust evaluation problem and have proposed a trust vector which can be used to outline

the reputation profile of a seller. It aims to identify the context imbalance problem in

forthcoming transactions that can cause a huge monetary losses for victim buyers. To

the best of our knowledge, this is the first solution in the literature to the computation

of contextual transaction trust (CTT) in e-commerce environments.

In this chapter, we first modelled CTT computation as a two-dimensional (2D)

Range Aggregate (RA) problem. Then, we presented how to extend two-dimensional

RA for CTT Computation. Finally, we have proposed three new approaches to con-

textual transaction trust (CTT) computation in e-commerce environments, namely, the

eaR-tree, the eaP-tree and the eH-tree. From the result of our experiments, we can

draw a conclusion that, among these three approaches, the eaR-tree has better perfor-

mance when the query region for the transaction time dimension is small. The eH-tree

has better performance when the CTT query for the transaction time dimension be-

comes larger. This is an important advantage when processing large-scale datasets

containing transactions for a 12 month period.

In next chapter, we will propose a new data structure CMK-tree for CTT computa-

tion. In particular, the new structure may further reduce the number of accessed nodes

in response to CTT queries. In our proposed eH-tree, aP+-tree is used for computing

the left border VRA. Therefore, it still has the same drawbacks as the eaP-tree with

low efficiency when the query range for the Transaction Time dimension is small. If

we can record the number of intersecting intervals (VRA) continuously over time, the

total number of accessed nodes for both the left border VRA and the right border VRA

will be reduced.



Chapter 5

An Efficient Approach to the

Computation of Reputation Profile

In Chapter 3, we have presented a trust vector consisting of three values for represent-

ing Contextual Transaction Trust (CTT). In the computation of CTT values, three iden-

tified important context dimensions, including Product Category, Transaction Amount

and Transaction Time, are taken into account. In the meantime, the computation of

each CTT value is based on both past transactions and the forthcoming transaction. In

particular, with different parameters specified by a buyer regarding context dimension-

s, different sets of CTT values can be calculated. As a result, all these trust values can

outline the reputation profile of a seller that indicates the dynamic trustworthiness of a

seller in different products, product categories, price ranges, time periods, and any nec-

essary combination of them. We term this new model as ReputationPro. Nevertheless,

in ReputationPro, the computation of reputation profile requires new data structures for

appropriately indexing the pre-computation of aggregates over large-scale ratings and

transaction data in three context dimensions as well as novel algorithms for promptly

answering buyers’ CTT requests.

To solve this challenging problem, in this chapter, we propose a new index scheme

CMK-tree by extending the two-dimensional K-D-B-tree [114] that indexes spatial data

to support efficient computation of CTT values. The CMK-tree is not only applicable

to the three context dimensions that are either linear or hierarchical, but also takes

into account the characteristics of the transaction-time model, i.e. transactions data is

113
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inserted in chronological order. Moreover, the proposed data structures can index each

specific product traded in a time period in order to compute the trustworthiness of a

seller in selling a product. Finally, the experimental results illustrate that the CMK-tree

is superior in efficiency of computing CTT values to all three existing approaches in

the literature (the approaches proposed in Chapter 4). In particular, while answering a

buyer’s CTT queries for each brand-based product category, the CMK-tree has almost

linear query performance.

This chapter is organised as follows: Section 5.1 presents our proposed new index

scheme CMK-tree in detail; Section 5.2 presents CTT computation algorithm based on

our proposed CMK-tree; Section 5.3 provides the analysis of the structure and perfor-

mance of CMK-tree; Section 5.5 depicts the experiments on CMK-tree; and Section 5.5

concludes our work in this chapter.

5.1 The Proposed CMK-tree

This section introduces the CMK-tree — a disk-based index structure that supports

efficient computation for a buyer’s CTT queries. While Section 5.1.1 summarises

limitations of existing approaches to two-dimensional (2D) Range Aggregate (RA)

after being extended to solve the CTT computation problem. To overcome all these

limitations, we propose a MK-tree — an extended multi-version “domain 0” two-

dimensional K-D-B-tree [114]. Then, with the third dimension Product Category taken

into account, a CMK-tree is formed. While Section 5.1.2 describes the structure of the

CMK-tree, the process of CMK-tree construction is provided in Section 5.1.3.

5.1.1 The Limitations of Existing Approaches

5.1.1.1 The Summary of Two-Dimensional (2D) Range Aggregate (RA)

In Section 2.4.2, we have reviewed the existing approaches to two-dimensional (2D)

RA problem, including aR-tree [63, 104], aP-tree [135], MVSB-tree [166, 168] and
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the BA-tree [167]. Instead of introducing them again, this subsection focuses on iden-

tifying the limitations of these techniques in resolving our targeted problem.

(a) As pointed out in Section 2.4.2, a serious problem of the aR-tree is that its perfor-

mance significantly degrades when answering a large query region, since in such

a case there are more MBRs overlapping with the query region (see Fig. 2.4(b)).

(b) In order to answer an RA query, the aP-tree indexes all the objects [168, 173].

As shown in Fig. 2.3, in the traditional RA problem, one point in a two-dimensional

space represents only one object (e.g., a car). However, in our targeted CTT

computation problem, one point may represent multiple such objects. For ex-

ample, it is quite common that a seller has multiple transactions with the same

price selling the same product on a day. Here the x-axis represents days, and

the transactions occurred on the same day have the same x-coordinate. In this

case, the proposed new index scheme should take this characteristic into accoun-

t. Unlike the aP-tree, the new index does not need to index all the transactions;

rather, multiple repeated transactions should be aggregated, and then the new

index only needs to store the aggregation results.

(c) Although the MVSB-tree considers that a point may represent multiple such ob-

jects, it overlooks the inserted objects themselves [168]. If it is applied to the

CTT computation problem, each specific product cannot be indexed. As a result,

computing the trustworthiness of a seller in selling a product (i.e. TIST) cannot

be fulfilled. Furthermore, the MVSB-tree is particularly designed for solving the

dominance-sum problem. Thus, four dominance-sum queries are needed to an-

swer an RA query (see Fig.2.6). By contrast, our proposed new index scheme

answers only two VRA queries for the same purpose, and thus improves effi-

ciency (see Fig. 2.5).

(d) Moreover, the BA-tree achieves linear performance when answering each domi-

nance sum query. However, as pointed out by [168], it does not fit the transaction-
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Table 5.1: The summary of limitations

Approaches Limitations
aR-tree Performance degrades with a larger query region
aP-tree Cannot essentially aggregate the same objects

Overlooks the inserted objects themselves;
MVSB-tree Based on four dominance-sum queries

BA-tree Does not fit the transaction-time model

time model where the records of transactions are inserted in chronological order.

Table 5.1 summarises the limitations of existing approaches to two-dimensional

(2D) Range Aggregate (RA) after being extended to solve CTT computation problem.

5.1.1.2 The Characteristics of CMK-tree

In Section 4.2, we have proposed three disk-based index schemes for CTT computa-

tion, i.e. eaR-tree, eaP-tree and eH-tree. All these approaches can meet the require-

ments of answering a buyer’s CTT queries on the dynamic trustworthiness of a seller in

different product categories, price ranges and time periods. However, they have poor

performance in some cases. Specifically, as the eaR-tree extends the aR-tree [63, 104],

the query cost for eaR-tree depends on the size of the CTT query region formed by

the price range and transaction time range: the larger the query region, the worse the

performance in answering a CTT query. For both the eaP-tree and the eH-tree that ex-

tend the aP-tree [135], they index all the transactions and cannot essentially aggregate

repeated transactions that occurred on a day, leading to inferior performance.

Towards efficient CTT computation, we propose a new disk-based index scheme

CMK-tree and a new query algorithm. In this new index scheme, the above problems

will be solved. Like the BA-tree [167], the CMK-tree extends the K-D-B-tree, how-

ever, it adopts a different extension strategy that is particularly designed to efficiently

support CTT computation. Combined with our targeted CTT computation problem,

we summarise some important and special characteristics of the CMK-tree as below:
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• In the traditional two-dimensional RA problem [135] (see Fig. 2.3), one point

represents one object only (e.g., a car). By contrast, as a common case in e-

commerce environments, a seller may have multiple transactions with the same

price on a given day selling the same product, i.e. one point may represent

multiple such transactions. The CMK-tree does not index all transactions but

aggregates the repeated transactions on a given day, which sell the same product;

• Some existing approaches to the two-dimensional RA problem overlook the in-

serted objects. Unlike these approaches, the CMK-tree guarantees that each spe-

cific product can be indexed in order to compute the trustworthiness of the seller

in selling a product (i.e., TIST, see Section 3.3.2);

• The CTT computation has the same characteristic as the transaction-time mod-

el [168], i.e. the records of newly happened transactions are inserted in chrono-

logical order. The CMK-tree adopts multi-version structure [17] to effectively

deal with transaction-time model;

• Only two Vertical Range Aggregate (VRA) queries [135] are carried out to an-

swer a CTT query based on the CMK-tree. This is more efficient than the MVSB-

tree which needs to carry out four dominance-sum queries for a RA query.

Finally, considering that each point in a two-dimensional space represents one

transaction or a set of transactions, for further analysis, we differentiate the follow-

ing three cases. Let us refer to a two-dimensional space plotted in Fig. 2.3. Note that

all the notations or symbols follow the definitions given in Section 3.3.1.

Case 1: Given one point at (ti, tai), it may represent only one transaction that

occurred on a day ti with the transaction amount tai.

Case 2: As mentioned above, one point at (ti, tai) may represent a set of repeat-

ed transactions that occurred on a day ti selling the same product with the same

price tai. In such a case, we need data structures to aggregate these repeated

transactions.
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Figure 5.1: The node structure of a CMK-tree

Case 3: Given one point at (ti, tai), it may represent a set of transactions that

occurred on a given day ti selling different products with the same price tai. In

such a case, they should be regarded as different transactions and aggregated

separately.

Note that if the prices of transactions selling the same product are different, we

regard them as different transactions and aggregate them separately.

5.1.2 Structure of the CMK-tree

As depicted in Fig. 4.2, there are also three types of nodes in the CMK-tree: R-node

(Rn), I-node (In) and L-node (Ln), each of which can have multiple records depend-

ing on the node capacity. Generally speaking, one CMK-tree consists of a C-tree and

multiple MK-trees that are external to the C-tree. The C-tree consists of R-nodes, and

an MK-tree consists of I-nodes and L-nodes.

Following Step 2 in the extension process described in Section 4.1.2, each record

in an R-node Rni has the form

< C-value, [tamin, tamax], [tmin, tmax], count r, sum r, pointer >,

As mentioned in Section 4.2.2.1, all R-nodes form an N-ary tree, and we term it as a

C-tree (product Category-tree).
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Figure 5.2: A special case of 2-D-B-tree

In addition to a C-tree consisting of R-nodes, following Step 3 in the extension

process, each record in an R-node at the brand-based product category layer (i.e. the

bottom of the C-tree) points to a subtree that is external to the C-tree. Specifically,

the design of each such subtree is based on extending the original two-dimensional

K-D-B-tree or 2-D-B-tree [114] that is used for indexing spatial data.

The 2-D-B-tree partitions a two-dimensional space into multiple nonintersecting

rectangles (see Fig. 5.2(a)). Each record in a node in the 2-D-B-tree corresponds to a

rectangular space. Unlike the general structure depicted in Fig. 5.2(a), a special case

“domain 0” K-D-B-tree has been proposed in [114]. In particular, for a general K-D-

B-tree, a rectangular space can be split along any dimension (e.g., x-axis or y-axis).

By contrast, for a “domain 0” K-D-B-tree, the space cannot be split along a specific

dimension. For example, in Fig. 5.2(b), instead of dividing x-axis, the split can only

be operated along the y-axis.

In the CMK-tree, the idea of “domain 0” K-D-B-tree [114] is adopted to generate

each subtree to extend the C-tree. Since the x-axis (Transaction Time dimension) con-

tinuously moves to the right in our targeted problem, each subtree can be considered

as a multi-version structure that makes partial persistence1 [168] a “domain 0” 2-D-

1partial persistence implies that updates are only applied to the latest version of the data structure,
creating a linear ordering of versions.
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Figure 5.3: MK-tree – An extended multi-version “domain 0” two-dimensional K-D-B-tree

B-tree. In order to further demonstrate the structure of a subtree, we assume that each

point in a two-dimensional space depicted in Fig. 5.3(a) represents a transaction, and

all the transactions belong to the same brand-based product category. Corresponding-

ly, in the subtree generated by these transactions (see Fig. 5.3(a)), a record in the node

X surrounds the rectangular a1a2a3a4 (R1). This is the first version of “domain 0”

2-D-B-tree as illustrated in Fig. 5.2(b). Another record in the node X surrounds the

rectangular b1b2b3b4 (R2) which is the second version. The record in the node Z at

a higher level surrounds a larger rectangular space formed by a1a2b3b4. Furthermore,

like the transformation given in Section 2.4.2.2, each transaction will generate an inter-

val along the Transaction Time dimension (see Fig. 5.3(b)). As an extended structure,

each record simultaneously maintains the transactions whose generated intervals in-

tersect with the left border of the corresponding rectangle as well as the aggregates of

transactions. For example, in Fig. 5.3(b), the record surrounding the rectangle b1b2b3b4

also stores the aggregates of transactions α1, α2 and α3 whose generated intervals a-

long the Transaction Time dimension intersect with the left border b1b2 as well as the

indexes of these three transactions for computing the trustworthiness of the seller in

selling a specific product. To facilitate discussion, we term such a subtree, i.e. an

extended Multi-version “domain 0” two-dimensional K-D-B-tree, as MK-tree.

Next, we introduce the I-nodes and the L-nodes of an MK-tree. Based on the above

description, the record in an I-node Ini (see Fig. 5.1(b)) has the form
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< [tamin, tamax], [tmin, tmax], count r, sum r, Pi, Qi > ,

where [tamin, tamax] and [tmin, tmax] surround each nonintersecting rectangle; the term

Pi is a pointer pointing to its child, which is an I-node or an L-node; the term Qi is

another pointer pointing to an aB+-tree that derives from the B+-tree [15]. As stated

before, the purpose of building an aB+-tree is to index the transactions whose gen-

erated intervals along the Transaction Time dimension intersect with the left border

of the rectangle surrounded by [tamin, tamax] and [tmin, tmax]. In the meantime, the

aggregates over these transactions are maintained in count r and sum r. Specifically,

each aB+-tree is built in the separate transaction amount space. Like the B+-tree, the

records in an aB+-tree are kept sorted based on their transaction amount (price). Al-

so, each node in an aB+-tree has the same structure that consists of multiple records,

each of which has the form < price, count r, sum r, pointer > (see Fig. 5.1(b)).

The pointer points to its child, but for the records at leaf level, pointer points to the

transaction record stored in the database. Note that each generated aB+-tree is based

on the transactions in a brand-based product category. In addition, unlike the origi-

nal B+-tree, the number of records to be inserted in an aB+-tree may be larger than

the number of distinct values of transaction amount (y-coordinates) due to the reason

illustrated in Case 3 in Section 5.1.1.2.

Moreover, when building an MK-tree, in order to avoid duplication of aB+-trees,

the I-nodes actually include two types: (1) the I-node pointing to aB+-trees, and (2)

the I-node without pointing to aB+-trees. To differentiate the above two situations, we

call the I-node ‘L-I-node (In(L))’ if its children are L-nodes, and ‘I-I-node (In(I))’ oth-

erwise. Therefore, the I-node depicted in Fig. 5.1(b) is an L-I-node In(L)i. These two

node structures will become clearer after introducing insertions in the next subsection.

Each record appearing in an L-node Lni (see Fig. 5.1(c)) also contains count r

and sum r because of aggregating the repeated transactions with the same price on a

given day which sell the same product. It has the following form

< price, time, count r, sum r, pointer > ,
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Figure 5.4: The state of a CMK-tree after inserting three transactions

where the pointer points to the transaction record stored in the database.

5.1.3 The Construction of a CMK-tree

This section formally describes the insertion of transactions for the CMK-tree, includ-

ing the path in the product category hierarchy (C-hrchyi), transaction amount (tai),

transaction time (ti) and the rating for the transaction (ri). In the meantime, the trans-

action records are inserted in chronological order.

5.1.3.1 Insertion

Before inserting the data of a newly happened transaction into a CMK-tree, a path is

first searched in a C-tree from top (the product category root) to bottom (the brand-

based product category) (see Fig. 4.2) based on the C-hrchy of the transaction. If the

product in the transaction belongs to a new product category on which the seller has

no prior transactions, the new records are generated for this product category as well

as its sub-categories and inserted to the corresponding R-nodes. Otherwise, the set of

ranges and aggregates (i.e., [tamin, tamax], [tmin, tmax], count r, sum r) maintained in

each record along the path are updated accordingly. After that, the insertion operations

should be performed in an MK-tree pointed by the corresponding record in an R-node

at the brand-based product category layer. Fig. 5.4 depicts the state of a CMK-tree
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after inserting the data of three transactions trading different products, which belong

to the same product category with the same C-hrchy. In addition, the information <

tai (transaction amount), ti (transaction time), ri (rating) > of three transactions is

< 5, 1, 1 >, < 15, 1, 1 > and < 10, 2, 1 >.

5.1.3.2 Split

The split of an R-node is relatively simple. Unless stated otherwise, in the following

example, we assume the capacity of all the nodes is five. In addition, the field sum r in

all the records is ignored, and we only use the field count r as the example to illustrate

the aggregation process. Fig. 5.5(a) shows an example of the R-node split where Rn1

is an R-node containing a record < C-valuep, [10, 60], [1, 5], 32 > at a higher level

of the C-tree. The R-node Rn1 points to its child node Rn2 containing five records,

i.e. from C-valuech1 to C-valuech5 . Here we use C-valuep and C-valuech to denote

the parent product category and the child product category, respectively. [10, 60] is the

transaction amount range, and [1, 5] is transaction time range. 32 is the total number

of transactions in the current product category represented by C-valuep.

When a new record < C-valuech6 , [15, 15], [6, 6], 1 > (i.e., a new product category)

is inserted to the R-node Rn2, it overflows, and then this record is moved to a new

R-node Rn3. In the meantime, Rn3 is pointed to by another new record generated in

Rn1, and the data fields [tamin, tamax], [tmin, tmax], count r and sum r in this record

are updated to reflect the ranges and aggregates of its child node (see Fig. 5.5(a)).

The split of either an L-node or an I-node that occurs in an MK-tree is more com-

plicated, and includes two situations, respectively.

1) L-node split

Situation 1: If the record to be inserted in an L-node has the same transaction

time (i.e., x-coordinate) as a record existing in it, the L-node splits according to the

transaction amounts of all the records it contains.

Fig. 5.5(b) illustrates the split of an L-node Ln1 after inserting a new record <
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30, 2, 1 >, which leads to a new L-I-node In(L)1. The number 30 is the transaction

amount, 2 is the transaction time and 1 is the field count r in sequence. Note that the

inserted record first needs to be checked whether the transactions with the same price

selling the same product have already been indexed by the records in Ln1. If there

exists repeated transactions, instead of splitting the L-node Ln1, it is only to update

count r and sum r in the corresponding record within Ln1. For the L-I-node In(L)1,

in order to get the full partition on the entire transaction amount space, the boundary is

set to the intermediate value of the maximal transaction amount in the new L-node Ln1

and the minimal transaction amount in the L-node Ln2. For instance, in Fig. 5.3(b),

the y-coordinate of a boundary K1K2 equals to ⌊yβ2
+yβ3

2
⌋. Hence, the two records in a

generated L-I-node In(L)1 are < [0, 13], [1, 2], 0, Q1 > and < [13,∞), [1, 2], 0, Q2 >,

respectively, where both Q1 and Q2 point to an aB+-tree.

• aB+-tree split: When an L-node pointed by a record in the L-I-node is split into

two L-nodes, correspondingly, the aB+-tree pointed by this record also needs to

split. For example, we assume that all the transactions represented by the points

in Fig. 5.3(b) are in the same brand-based product category. If the rectangle

b1b2b3b4 splits into two rectangles b1K1K2b4 and K1b2b3K2, the original aB+-

tree splits into two aB+-trees that store the information of one point (i.e., α1)

and two points (i.e., α2, α3) in a1a2a3a4, respectively.

Situation 2: If the record to be inserted in an L-node has a different transaction

time (i.e., x-coordinate), a new L-node is generated.

Fig. 5.5(c) illustrates that if the record inserted to the L-node Ln1 is < 30, 3, 1 >,

a new L-node Ln2 is generated. In the meantime, an L-I-node In(L)1 is generated

with two records pointing to Ln1 and Ln2. The two records in the I-node In(L)1 are

< [1, 15], [1, 3), 0, Q1 > and < [0,∞), [3,∞), 9, Q2 >.

• Generate a new aB+-tree: In Fig. 5.5(c), the record < [0,∞), [3,∞), 9, Q2 >

in the I-node In(L)1 surrounds a new rectangle. Accordingly, a new aB+-tree
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pointed by Q2 has to be generated to index the transactions in the same brand-

based product category whose generated intervals along the Transaction Time

dimension intersect with the left border 3 : [0,∞). In addition, the number 9

(i.e. count r) denotes the total number of such transactions.

In Fig. 5.5(c), we assume that two records < 5, 1, 1 > and < 5, 2, 2 > in the L-node

Ln1 index the transactions selling the same product but traded at different time; anoth-

er two records < 15, 1, 1 > and < 15, 2, 3 > index the transactions selling different

products but traded at the same price. The new aB+-tree pointed by Q2 is equivalent to

the aB+-tree pointed by Q1 after inserting four different records: < 5, 3 >, < 10, 2 >,

< 15, 1 > and < 15, 3 >. However, since the record < [1, 15], [1, 3), 0, Q1 > in the

I-node In(L)1 represents the initial rectangle, the aB+-tree pointed by Q1 is null in

this example and the field count r is 0. Here the above four records do not include

the Transaction Time dimension, as each aB+-tree is built in a separate Transaction

Amount dimension. The insertion and split of an aB+-tree are the same as those of a

B+-tree [15].

Notice that 3 in the record < 5, 3 > is the aggregated value for the field of count r

in two records < 5, 1, 1 > and < 5, 2, 2 >, as they index the transactions selling the

same product. Also, the records < 15, 1 > and < 15, 3 > index the transactions selling

different products, and thus they should be inserted separately.

• Merge aB+-trees: Several aB+-trees may need to be merged to generate a new

aB+-tree. In Fig. 5.5(b), assume another record < [0,∞), [3,∞), 10, Q3 > is to

be inserted in the L-I-node In(L)1. Since two records < [0, 13], [1, 2], 0, Q1 >

and < [13,∞), [1, 2], 0, Q2 > in the original L-I-node In(L)1 have the same

time range [1, 2], the two aB+-trees pointed by Q1 and Q2 respectively first need

to be merged to form a new aB+-tree. Then, the newly generated aB+-tree is

pointed by Q3. The above operations are performed on all the records with the

same time range.

Here we need to emphasise that since the L-node split in Situation 2 leads to the
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problem of space utilisation, in order to guarantee the minimum space utilisation for

each L-node larger than 50%, Situation 2 happens only when all the L-nodes are at

least half full.

2) I-node split

Situation 1: If the record to be inserted in an I-node has the same transaction time

range as an existing record in that I-node, all the records with the same transaction time

range as the inserted record will be moved to a newly generated I-node. In addition, if

each record in an I-node has the same transaction time range as the inserted record, the

same as the L-node split in Situation 1, the I-node splits according to the transaction

amount ranges of all the records it contains.

In Fig. 5.5(d), for example, if the record < [15, 30], [3,∞), 9, Q5 > in the L-I-node

In(L)1 splits into two new records < [15, 20], [3,∞), 5, Q5 > and < [20,∞), [3,∞), 4

, Q6 >, the above two records lead to the overflow of In(L)1. Then, the node In(L)1

will continue to split into two L-I-nodes: a new In(L)1 and a new In(L)2. In the

meantime, another I-I-node In(I)3 with two records < [0, 50], [1, 3), 0 > and <

[0,∞), [3,∞), 19 > (19 = 10 + 9 = 10 + 5 + 4) is generated to point to the node

In(L)1 and the node In(L)2, respectively.

Situation 2: If the record to be inserted in an I-node has a different transaction time

range, similar to the L-node split in Situation 2, a new I-node is generated to contain

the inserted record. Such a strategy is to guarantee the maximum space utilisation for

an I-node.

In Fig. 5.5(e), after the record < [0,∞), [4,∞), 19 > inserted to In(L)1, a new

L-I-node In(L)2 is generated. Meanwhile, an I-I-node In(I)3 with two records <

[0, 50], [1, 4), 0 > and < [0,∞), [4,∞), 19 > is generated to point to the I-nodes

In(L)1 and In(L)2, respectively. Notice that each record in node In(I)3 will not

include a pointer Qi to avoid duplication of the aB+-tree. This is because the same

aB+-tree has already been indexed by its child node In(L)2, which is an L-I-node.

Algorithm 2 presents pseudo-code for the complete insertion process.
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Figure 5.5: The construction of a CMK-tree
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Algorithm 2 The CMK-tree Construction
Input: A transaction TRi includes C-hrchyi, tai, ti and ri.
Output: CMK-tree

1: // construct a C-tree
2: Starting from the “Root” of the product category hierarchy
3: Determine the path in C-tree based on the C-hrchyi of each transaction TRi.
4: for all R-nodes along the path do
5: if The product traded in TRi belongs to a new product category on which the seller has

no prior transactions then
6: i. insert the generated new record in corresponding R-node.
7: ii. if the R-node overflows, split.
8: else
9: update corresponding ranges and aggregates maintained in a record

10: end if
11: end for
12: // construct the MK-trees that are external to the C-tree
13: for all L-nodes and I-nodes in the path from bottom up do
14: if the node is the L-node then
15: i. if transaction time ti is different from any transactions in the L-node, and this

L-node is at least half full, then generate a new L-node.
16: ii. if transaction time ti is the same as a record in the L-node, and repeated transac-

tions have already been indexed in this L-node, then update corresponding count r
and sum r.

17: iii. otherwise, insert the transaction TRi

18: iv. if the L-node overflows, split it
19: else if the node is the I-node then
20: i. insert the generated new records
21: ii. if the I-node overflows, split it
22: end if
23: end for

5.2 The Proposed CTT Computation Algorithm

Basically, the CTT computation algorithm answers a buyer’s typical CTT queries

covering three transaction dimensions based on our proposed CMK-tree. The process-

ing of CTT computation starts by locating product category in the C-tree according to

the C-value (i.e. product category) in a buyer’s query. Then, it computes the left border

VRA and the right border VRA (see Fig 2.5(b)) in one or several MK-trees, respec-

tively, depending on the number of brand-based product categories that are included
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Algorithm 3 CTT Computation Algorithm in a CMK-tree
Input: A typical CTT query with specific product category, transaction amount range

([ta1, ta2]) and transaction time range ([t1, t2]).
Output: CTT value

1: CTT=0
2: count r1=0, sum r1=0, count r2=0, sum r2=0
3: The Searching starts from the “Root” of product category hierarchy
4: Determine the layer in product category hierarchy based on the CTT query on product

category, and return corresponding record R in an R-node.
5: begin Search(CMK-tree, R)
6: if the record is in an R-node then
7: Case 1: CTT=CTT+ sum r

count r , count r and sum r are from the record
8: Case 2: CTT=CTT
9: Case 3: Search(CMK-tree, Rchildnode)

10: else if the record is in an I-node then
11: Let rec1 be the index record whose rectangle contains t1 : [ta1, ta2] // for the left border

VRA
12: Let rec2 be the index record whose rectangle contains t2 : [ta1, ta2] // for the right

border VRA
13: while neither rec1 nor rec2 is a record in L-I-nodes do
14: i. rec1 be its child whose rectangle contains t1 : [ta1, ta2]
15: ii. rec2 be its child whose rectangle contains t2 : [ta1, ta2]
16: end while
17: for all rec1s do
18: if t1 equals to the left border of rec1 then
19: only search aB+-tree that is pointed by rec1 for left border to aggregate count r1

and sum r1
20: else
21: the search conducts on both the aB+-tree and the L-node pointed by rec1 to ag-

gregate count r1 and sum r1
22: end if
23: end for
24: for all rec2s do
25: the search conducts on both aB+-tree and L-node pointed by rec2 to aggregate

count r2 and sum r2
26: end for
27: CTT=CTT+ sum r2−sum r1

count r2−count r1
28: end if
29: end Search

in a CTT query.

For example, to answer a typical CTT query: <product-category: “Audio device”,

price-range: “$100-$200”, time-range: “the latest 6 months” >, all the sub-categories
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of the product category specified in a CTT query are first considered (see Fig. 4.2).

As illustrated in Section 4.2.2.4, since each record in an R-node contains a transaction

amount range ([tamin, tamax]) and a transaction time range ([tmin, tmax]) for its corre-

sponding product category, there are three cases that should be differentiated. Please

refer to Section 4.2.2.4. For Case 3, in the following, we take the computation of a

VRA 2 : [0, 5] as an example to introduce the search process in an MK-tree.

As depicted in Fig. 5.5(d), the I-nodes, the rectangle represented by which contains

2 : [0, 5], are iteratively searched until reaching the layer of L-I-nodes, and thus the

record < [0, 13], [1, 3), 0, Q1 > in the L-I-node In(L)1 is selected. In order to compute

the VRA 2 : [0, 5], both the aB+-tree and the L-node pointed by the above record need

to be searched, and the VRA equals to the sum of the two search results. Note that

instead of visiting only one record as introduced in the above example, the search

for computing the VRA may be executed on several aB+-trees as well as L-nodes

pointed by the corresponding records, respectively, depending on the number of the

rectangles overlapped by the query range in the Transaction Amount dimension. For

instance, to compute another VRA 3 : [10, 30] based on Fig. 5.5(d), two records <

[0, 15], [3,∞), 10, Q4 > and < [20,∞], [3,∞), 4, Q6 > in the L-I-node In(L)2 are

selected for conducting the further searches. The aggregation results (count r and

sum r) in the record < [15, 20], [3,∞), 4, Q5 > can be used directly, as the transaction

amount range [15, 20] in that record falls into the query range [10, 30] in the Transaction

Amount dimension.

If the transaction time for a VRA equals to the left border of a rectangle represented

by the selected record in an L-I-node, search only performs on the aB+-tree pointed

by this record. For example, in Fig. 5.5(e), to compute the VRA 3 : [5, 10], the record

< [0, 15], [3, 4), 10, Q4 > in the L-I-node In(L)1 is selected. Instead of searching

L-node, only the aB+-tree pointed by the above record is searched. However, since

the right border in CTT computation is always fixed to the point “now”, the search

for computing the right border VRA is performed on both the aB+-trees and L-nodes

pointed by the selected records.
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Algorithm 3 describes the process of CTT computation in a CMK-tree.

5.3 Structure and Performance Analysis

In this section, we will provide an analytical study on the CMK-tree, focusing on its

structure and query performance. The symbols and their meanings used in our analysis

are explained in Table 5.2.

5.3.1 Important Properties

Property 4: Each MK-tree in a CMK-tree represents a two-dimensional space formed

by Transaction Amount and Transaction Time for all the transactions in a brand-based

product category. All the records in each layer of I-nodes in an MK-tree fully partition

the corresponding two-dimensional space into multiple nonintersecting rectangles.

Proof: Assume all the transactions in a brand-based product category are represented

by a number of points in two-dimensional space depicted in Fig. 5.3(a). Since the

insertions come in the nondecreasing time order, an new insertion only happens in the

latest version of “domain 0” 2-D-B-tree, for example, the version 3 in Fig. 5.3(a).

In the meantime, the division within each version can only be operated along the

Transaction Amount dimension (y-axis). As shown in Fig. 5.5(b) and Fig. 5.5(c),

each record in an L-I-node corresponds to either a new version for “domain 0” 2-

D-B-tree (e.g., < [0,∞), [3,∞), 9, Q2 >) or a partition in the latest version (e.g, <

[0, 13], [1, 2], 0, Q1 >). Obviously, these records partition the complete two-dimensional

space. More importantly, the rectangles formed by them are nonintersecting. In ad-

dition, except the records in L-I-nodes, the records in I-I-nodes (a higher level) still

fully partition the two-dimensional space into multiple nonintersecting rectangles, for

example, the records in node In(I)3 as depicted in Fig. 5.5(d) and Fig. 5.5(e).

Property 5: To answer a CTT query for each brand-based product category, the CMK-

tree delivers almost linear query performance.
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Proof: Now, let us go back to the CTT computation algorithm given in Section 5.2,

where the method of computing the left border VRA and the right border VRA is

adopted while answering a CTT query. In order to clearly understand Property 5, we

first examine the performance of computing each VRA. Property 4 has illustrated that

the transaction amount ranges and transaction time ranges of the records in the I-nodes

in an MK-tree do not intersect each other. Thus, when computing a VRA, the search

traverses from top to bottom in an MK-tree until reaching the layer of L-I-nodes. Then,

one or several corresponding records in L-I-nodes are chosen. Finally, both the aB+-

trees and the leaf nodes pointed to by these records are searched. To sum up, the struc-

ture of MK-tree achieves logarithmic time cost (O(log n)) for computing each VRA.

Hence, to answer a buyer’s CTT queries for a specific brand-based product category,

the query of CMK-tree is almost linear. Also, this property has been demonstrated in

the experiments, the results of which are to be introduced in Section 5.4.

When a buyer performs “roll-up” operations, the search iteratively performs from

Case 1 to Case 3 introduced in Section 4.2.2.4 in the descendants of the current R-

node, and finally one or several MK-trees are selected. The search then continues in

the selected MK-trees twice for computing the left VRA and the right border VRA,

respectively. Note that the number of MK-trees may be much less than m in practice.

Therefore, the process has the linearithmic time cost (O(n log n)) in total. However,

the CMR-tree has better performance than all three approaches that were proposed in

Chapter 4 (see Section 5.4). This is a significant advantage in answering CTT queries.

5.3.2 Theorems and Proofs

Next, we analyse the space utilisation of the CMK-tree, which is important to evaluate

disk-based index schemes. We adopt the same analysis method as in [65] and consider

the predictability of space utilisation, i.e. minimum space utilisation of each node.

Lemma 1: The minimum space utilisation is no less than ncL
2

for an L-node; The

minimum space utilisation is no less than ncI
3

on average for an I-node.
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Proof: Let t1, t2 and t3 be three different time periods. Suppose an initial state that

all the records in the L-node Ln1 have the same transaction time t1. For a new record

with the transaction time t2 to be inserted in Ln1, there are two cases. (1) If space

utilisation of Ln1 is no less than ncL
2

, a new L-node Ln2 is established. (2) Otherwise,

the new record with the transaction time t2 is inserted into Ln1 until it overflows. Then,

the node Ln1 splits into a new Ln1 and a new L-node Ln2. The space utilisation of

each generated L-node is still no less than ncL
2

. All the records in the two L-nodes are

within the same time range [t1, t2]. In this case, if the new records with the transaction

time t2 continue to be inserted in an L-node, either Ln1 or Ln2 is selected as the

targeted L-node depending on the transaction amount of the new record. Note that

both Ln1 and Ln2 might split again during insertion, but the minimum space of any

generated new L-nodes is no less than ncL
2

, and the records maintained in each node

are within a time range [t1, t2]. The above operations are repeated until a record with

the transaction time t3 is inserted. This is because a new L-node is established for that

record. So, the minimum space utilisation is no less than ncL
2

for an L-node. In fact,

except the L-nodes with the minimum space utilisation no less than ncL
2

, there is at

most one L-node with the space utilisation less than ncL
2

. In particular, this specific

L-node includes the records that are most recently inserted. For example, the newly

generated L-node maintains only one record with the transaction time t3.

To estimate the space utilisation of I-nodes, we consider the worst case. Let t1, t2,

t3 and t4 be four different time periods. Still, we suppose an initial state that a full

I-node In1 with ncI records includes only one record with the transaction time range

[t1, t2]. The rest of the records in In1 have the same transaction time range [t3, t4]. If

a new record with a transaction time range [t3, t4] to be inserted in the I-node In1, the

node In1 overflows. Then, it splits into a new In1 maintaining the one record with the

transaction time range [t1, t2] and another full I-node Ln2. All the records in node Ln2

have the same time range [t3, t4]. In such a case, if a new record with the transaction

time range [t3, t4] continues to be inserted in an I-node, the node Ln2 is selected as the

targeted I-node. Then, the node In2 overflows and splits into two I-nodes according to
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the transaction amount ranges of all the records it contains. Hence, due to continuous

splits of I-nodes, the records in the original full I-node In1 are distributed in three

different I-nodes. Therefore, we can conclude that, in the worst case, the minimum

space utilisation is no less than ncI
3

on average for an I-node.

Lemma 2: The height of an MK-tree in the CMK-tree is at most ⌈log
⌊ ni

⌈ncL
2 ⌉

⌋

⌈ncI
3

⌉ ⌉ + 1

(∀i ∈ [1,m]). The number of aB+-trees in the CMK-tree pointed by L-I-nodes is at

most
∑m

i=1⌊
ni

⌈ncL
2

⌉⌋.

Proof: First, we examine the height of an MK-tree that is built based on the trans-

actions in a brand-based product category. For m MK-trees in a CMK-tree, we focus

on analysing one of them. Suppose the past transactions in a brand-based product

category form ni (∀i ∈ [1,m]) points in a two-dimensional space. In Lemma 1, we

have proved that the minimum space utilisation is no less than ncL
2

for an L-node. In

addition, there may exist one L-node with space utilisation less than ncL
2

. Hence, the

number of L-nodes in an MK-tree is at most ⌊ ni

⌈ncL
2

⌉⌋. The above L-nodes will be in-

dexed by I-nodes, each of which has the minimum space utilisation no less than ncI
3

on

average. Hence, the height of an MK-tree in the CMK-tree is at most ⌈log
⌊ ni

⌈ncL
2 ⌉

⌋

⌈ncI
3

⌉ ⌉+1.

Since the number of transactions traded by the seller S in m brand-based product

categories has an imbalanced distribution, each MK-tree has a different height. The

CMK-tree is an unbalanced tree.

Second, we examine the total number of aB+-trees, each of which is pointed by

a record in an L-I-node. There are at most ⌊ ni

⌈ncL
2

⌉⌋ L-nodes in an MK-tree, and each

L-node is pointed by a record in an L-I-node. Thus, the number of aB+-trees in an

MK-tree is also ⌊ ni

⌈ncL
2

⌉⌋ at most. Therefore, for m MK-trees in the CMK-tree, the total

number of aB+-trees is at most
∑m

i=1⌊
ni

⌈ncL
2

⌉⌋.

Theorem 1: In a CMK-tree, the number of nodes accessed by an insertion operation

is O(h) +O(log
nh
ncL
ncI ) + 1.

Proof: For an insertion operation in the CMR-tree, we consider the insertion cost in the

worst case. As described in Section 5.1.3.1, an insertion operation first searches a path
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in the C-tree based on the C-hrchy of the newly happened transaction. The number of

accessed nodes is O(h). Then, the insertion operation traverses an MK-tree. Lemma 2

illustrates that the height of an MK-tree in the CMK-tree is at most ⌈log
⌊ ni

⌈ncL
2 ⌉

⌋

⌈ncI
3

⌉ ⌉ + 1

(∀i ∈ [1,m]). Hence, the number of accessed nodes for inserting a newly happened

transaction in an MK-tree is O(log
nh
ncL
nch ) + 1. As a result, the total number of accessed

nodes is O(h) +O(log
nh
ncL
ncI ) + 1 for an insertion operation.

5.4 Experiments on CMK-tree

In this section, we introduce the results of the experiments conducted on four large

datasets, which compare the proposed CMK-tree with three existing approaches eaR-

tree, eaP-tree and eH-tree [173] (also see Section 4.2) with regards to the aspects of

both efficiency in CTT computation. Note that the effectiveness of our proposed trust

vector based approaches has already been studied both analytically and empirically

in Chapter 3. In particular, the trust vector based approach can reflect a seller’s dy-

namic trustworthiness in different transaction contexts and identify risks potentially

existing in a forthcoming transaction, thus outperforming single-value trust valuation

methods [120, 154] and a prior trust vector based approach [149].

5.4.1 Datasets

As mentioned in Section 4.3.1, with eBay APIs, we have obtained detailed feedback

and transaction data for up to 90 days of the sellers who are selling some popular

products with the largest number of reviews. We finally selected two sellers S1 and

S2 who had totally around 12,000 transactions (approx. 133 transactions per day) and

4,000 transactions (approx. 44 transactions per day) respectively within 90 days. The

selection of S1 and S2 allows performing both “roll-up” operations in product category

hierarchy when doing finer-grained analysis on a seller’s transaction reputation.

Considering that only 90 days real transaction data of a seller can be obtained from
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eBay, and the time range in a CTT query can be “the latest 6 months” or ‘the latest

12 months”, we generated four large synthetic datasets SD1(S1), SD2(S1), SD3(S2)

and SD4(S2) based on the transaction data of eBay sellers S1 and S2. In each syn-

thetic dataset, we expanded the time period of transactions and the daily volume of

transactions so as to test the performance of our proposed approaches under the cir-

cumstances with exceptionally large volumes of transactions. Specifically, the above

four synthetic datasets are further categorised into two types.

(1) Type I includes SD1(S1) for S1 and SD3(S2) for S2: For each Type I synthetic

dataset, we first duplicated the transaction data of each seller 10 times on a given day

and thus obtained the transaction data of 10 times as much as the corresponding real

dataset. Then, we continued duplicating the newly obtained transactions data of 90

days for about three times for the rest nine months (actually 365−90 = 275 days). E.g.,

the data of the 91st day duplicates the one of the 1st day. Consequently, with the initial

transaction data of 90 days, we obtained the transactions of 12 months. As a result, two

datasets contain about 480, 000 and 160, 000 transactions in total, respectively. Type I

synthetic datasets guarantee that the proportion of each sold product is the same on a

daily basis in both the synthetic dataset and the corresponding real dataset.

(2) Type II includes SD2(S1) for S1 and SD4(S2) for S2: For each Type II syn-

thetic dataset, a transaction was randomly selected from the corresponding sellers eBay

real dataset of 90 days. This process was repeated until the size of transaction data on

a day within 90 days is 10 times as much as that on the same day in the real dataset.

Then we duplicated the data of 90 days for 365 days (12 months). In each Type II

synthetic dataset, basically the proportion of a transaction selling a product on a day

or in a month is different to that in the corresponding real dataset.

5.4.2 Experiment Setup

The parameters used in the experiments are as follows: the same page size of 1KB

applies to all five index schemes; it is 4 bytes for each of the transaction amount,
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Table 5.3: List of selected products from two popular sellers

seller selected products
Apple iPod nano 16GB (mc696ll/a) at a price of $150,

S1 Dell Laptop (Inspiron i17rv-3529dbk) at a price of $650,
Canon Powershot Digital Camera (sx40 hs) at a price of $380

Canon EOS DSLR Camera (T3i) at a price of $670,
S2 Kodak Pocket Video Camera (Zi8) at a price of $240,

Brother Laser Printer (HL-2220) at a price of $90

transaction time, count r and sum r in a record and the C-value is of 8 bytes. In

addition, each approach is implemented using VC++ 6.0 running on a Lenovo Y560

laptop with an Intel Core i5 CPU (2.20GHz), 2GB RAM, Windows 7 Professional

operation system and MySql 5.1.35 relational database.

In contrast to Section 4.3.2, in order to intuitively reflect CTT query performance,

we measure the CTT values computation time instead of the number of accessed nodes

in the experiments. For each seller, we generated the corresponding queries on either

Transaction Item Specific Trust (TIST) or Product Category based Trust (PCT), cov-

ering three transaction dimensions (denoted as 3D CTT queries), and the queries on

Similar Transaction Amount based Trust (STAT), covering two transaction dimensions

(denoted as 2D CTT queries).

To generate 3D CTT queries, based on eBay datasets, we first selected 5 popular

products traded by the sellers, each of which has two characteristics: (1) “roll-up”

operations can be performed continuously at least 3 times along a path in the prod-

uct category hierarchy; and (2) each product category along the path contains a large

number of transactions. Table 5.3 lists the selected products for two popular sellers.

Then, we set the time range in CTT queries to be “the latest 1 month” and computed

their TIST values. After that, for each of 5 selected products, “roll-up” operations

were performed continuously 3 times along a path in the product category hierarchy

to generate the 3D queries on PCT. To generate the price range in each PCT query,

we adopted a strategy to partition the transaction amount range of the current product

category that is included in a PCT query. Specifically, as each product category in
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the product category hierarchy maintains its corresponding transaction amount range

[ta1, ta2], we partitioned this transaction amount range into 3 equal intervals, and each

interval is regarded as an input for the price range in a PCT query. Thus, each product

category corresponds to 3 PCT queries with different price ranges. In total, there are 45

(5× 3× 3) 3D queries on PCT values. For instance, the generated PCT queries for the

product “Apple iPod nano 16GB (mc696ll/a)” sold by S1 (see Table 5.3) are <product-

category: “Apple MP3 player (iPod)”, price-range: “$100-$200”, time-range: “the

latest 1 month” > (i.e. PCT at layer 5) and <product-category: “MP3 player”, price-

range: “$150-$300”, time-range: “the latest 1 month” > (i.e. PCT at layer 4). Our

experiments also tested the TIST and PCT queries at three different time ranges of

“the latest 3 months”, “the latest 6 months” and “the latest 12 months”, respectively.

Thus, there are totally 200 (i.e. (45 + 5)× 4) 3D CTT queries tested for each seller.

To generate 2D CTT queries, 45 different price ranges for the above PCT queries

were used. In the meantime, the experiments also tested 4 different time ranges of

“the latest 1 month”, “the latest 3 months”, “the latest 6 months” and “the latest 12

months”. Thus, there are totally 180 (i.e. 45×4) 2D CTT queries tested for each seller.

5.4.3 The Experimental Results

This section includes the results of the comparison between the CMK-tree and three

existing approaches eaR-tree, eaP-tree and eH-tree proposed in Section 4.2, in terms

of CTT values computation time, storage space consumption and the time for tree

construction. The experimental results are obtained from the execution on four large

synthetic datasets, and the computation time in answering CTT queries is the average

of the results of 5 independent runs.

Fig. 5.6 and Fig. 5.7 plot the CTT values computation time of the eaR-tree, the

eaP-tree, the eH-tree and the CMK-tree in 3D CTT queries and 2D CTT queries. First

of all, from Fig. 5.6, we can observe:

(1) Compared with other approaches, the performance of the eaR-tree shows a
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(c) 2D CTT queries on SD1(S1) (d) 2D CTT queries on SD2(S1)

Figure 5.6: The query performance on two datasets SD1(S1) and SD2(S1) derived from seller
S1

different trend in CTT values computation time on both SD1(S1) and SD2(S1).

When the time range in a CTT query becomes larger, it means a larger query region

for the eaR-tree, and the computation time increases almost linearly because more

MBRs are overlapped by the expanded query range. In particular, if the time range

in CTT queries is “the latest 12 months”, the eaR-tree has the worst performance in

most cases.

In addition, a similar trend can be observed from the results of eaP-tree, eH-tree

and CMK-tree, since they are all based on two VRA queries (see Section 2.4.2.2) to

answer a CTT query. When the time range in a query expands, the computation time

is stable or even in decline. In CTT queries, as the time range refers to the latest time
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(a) 3D CTT queries on SD3(S2) (b) 3D CTT queries on SD4(S2)
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(c) 2D CTT queries on SD3(S2) (d) 2D CTT queries on SD4(S2)

Figure 5.7: The query performance on two datasets SD3(S2) and SD4(S2) derived from seller
S2

period, the right border is always fixed to the time point “now”. Correspondingly,

the time of computing the right border VRA is also fixed for eaP-tree, eH-tree and

CMK-tree. However, when the time range in a query expands (i.e. the left border

shifts to the left), the time for computing the left border VRA decreases. This is

because the above three approaches take advantage of the multi-version structure (see

Section 5.1.2), and the versions with their starting time later than the left border of the

time range will not be visited. Note that eaP-tree and eH-tree extend a multi-version

B-tree (MVBT) [17], and CMK-tree extends a multi-version “domain 0” 2-D-B-tree.

As illustrated in Fig. 5.6 and Fig. 5.7, if the time range in a query covers the longest

time period, such as “the latest 12 months”, most versions of “domain 0” 2-D-B-trees



142 An Efficient Approach to the Computation of Reputation Profile

(see Fig. 5.3) have their starting time later than the left border of the time range. In

such a case, only a few nodes need to be visited for computing the left border VRA.

Consequently, the computation time for each of three approaches eaP-tree, eH-tree

and CMK-tree drops to their minimum.

(2) The CMK-tree proposed in this chapter is superior in the efficiency of comput-

ing CTT values to the eaR-tree, eaP-tree and eH-tree on both SD1(S1) and SD2(S1).

The eaR-tree extends the aR-tree [104], and its performance greatly depends on the

regions surrounded by the transaction time range and the price range in a CTT query.

The eaP-tree, which extends the aP-tree [135], indexes all transactions and cannot

essentially aggregate repeated transactions, leading to inferior performance. The eH-

tree, which improves the eaP-tree, is faster than the eaP-tree in computing CTT values.

The reasons are twofold. On one hand, the eH-tree adopts the aP+-tree to reduce the

time for computing the left border VRA. On the other hand, in eH-tree, the search is

done in the fully ordered transaction amount space maintained in an additional aB+-

tree for computing the right border VRA (see Section 4.2.4.3). However, as the eH-tree

is still based on the eaP-tree, it does not fundamentally resolve the problem existing in

the eaP-tree. Moreover, the eH-tree takes longer time in constructing the aggregation

index and consumes more storage space than the eaP-tree (see Fig. 5.8 and Fig. 5.9).

By contrast, the CMK-tree cannot only index each specific product traded in a time

period, but also aggregate repeated transactions. More importantly, it delivers shorter

and almost stable computation time for answering CTT queries. On average, for the

200 3D CTT queries based on Type I synthetic dataset SD1(S1), the CMK-tree reduces

computation time by 33.5% of the eaR-tree, by 44.8% of the eaP-tree, and by 16.2%

of the eaH-tree; for the 180 2D CTT queries, the CMK-tree reduces computation time

by 25.2% of the eaR-tree, by 51.5% of the eaP-tree, and by 18.8% of the eaH-tree.

In addition, the improvement is more obvious on Type II synthetic dataset SD4(S2).

On average, for the 200 3D CTT queries, the CMK-tree reduces computation time by

66.7% of the eaR-tree, by 64.9% of the eaP-tree, and by 37.6% of the eaH-tree; for

the 180 2D CTT queries, the CMK-tree reduces computation time by 63.2% of the
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Figure 5.8: I/O time for different index schemes construction on four datasets

eaR-tree, by 61.8% of the eaP-tree, and by 35.4% of the eaH-tree.

From Fig. 5.7 plotting the results executed on SD3(S2) and SD4(S2) for S2, we

can draw the same conclusion as the one from the results on datasets SD1(S1) and

SD2(S1) for S1. On average, for the 200 3D CTT queries based on Type I synthetic

dataset SD3(S2), the CMK-tree reduces computation time by 12.2% of the eaR-tree,

by 41.1% of the eaP-tree, and by 20.0% of the eaH-tree; for the 180 2D CTT queries,

the CMK-tree reduces computation time by 15.6% of the eaR-tree, by 39.0% of the

eaP-tree, and by 17.1% of the eaH-tree. On average, for the 200 3D CTT queries

based on Type II synthetic dataset SD4(S2), the CMK-tree reduces computation time

by 58.0% of the eaR-tree, by 54.4% of the eaP-tree, and by 28.1% of the eaH-tree;

for the 180 2D CTT queries, the CMK-tree reduces computation time by 59.8% of the

eaR-tree, by 62.2% of the eaP-tree, and by 40.3% of the eaH-tree.

We also have tested the storage space consumption and I/O time for construct-

ing these aggregation indexes on four synthetic datasets. As plotted in Fig. 5.8, the

CMK-tree takes shorter time in construction than three existing approaches on four

datasets (see Table 5.4 for detailed percentage). Overall, the proposed CMK-tree leads

to 12%-84% time reduction in index construction. However, as plotted in Fig. 5.9, the

CMK-tree consumes much storage space in some cases (6 out of 12 cases in Table 5.5)
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Figure 5.9: The storage space consumption for different index schemes on four datasets

even if it aggregates repeated transactions (see Table 5.5 for detailed percentage). For

example, on SD4(S2) dataset, the CMK-tree increases 5%-35% in storage space con-

sumption. This is because, in order to achieve nearly linear query performance, the

CMK-tree continuously records the transactions whose generated intervals along the

Transaction Time dimension intersect with the left border of a rectangle using multiple

aB+-trees. Note that each rectangle is formed by a version of “domain 0” 2-D-B-tree

as shown in Fig. 5.3.

Table 5.4: The comparison of constructing time between CMK-tree and the existing index
schemes on four datasets

SD1(S1) SD2(S1) SD3(S2) SD4(S2)

CMK-tree vs. eaR-tree 18 : 100 21 : 100 34 : 100 16 : 100
CMK-tree vs. eaP-tree 88 : 100 86 : 100 60 : 100 73 : 100
CMK-tree vs. eH-tree 78 : 100 78 : 100 52 : 100 63 : 100
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Table 5.5: The comparison of storage space consumption between CMK-tree and the existing
index schemes on four datasets

SD1(S1) SD2(S1) SD3(S2) SD4(S2)

CMK-tree vs. eaR-tree 117 : 100 110 : 100 144 : 100 135 : 100
CMK-tree vs. eaP-tree 63 : 100 42 : 100 96 : 100 115 : 100
CMK-tree vs. eH-tree 59 : 100 40 : 100 87 : 100 105 : 100

5.5 Summary

In this chapter, we first summarised the limitations of existing approaches to two-

dimensional (2D) Range Aggregate (RA) after being extended to solve CTT computa-

tion problem. To overcome all these limitations, we have proposed an MK-tree — an

extended multi-version “domain 0” two-dimensional K-D-B-tree or “domain 0” 2-D-

B-tree [114]. Then, with the third dimension C-tree taken into account, a CMK-tree

is formed. Four important and remarkable characteristics of the CMK-tree are sum-

marised below:

(1) The CMK-tree does not index all transactions; rather, it aggregates repeated

transactions on a given day, which sell the same product.

(2) The CMK-tree guarantees that each specific product can be indexed in order to

compute the trustworthiness of a seller in selling a product.

(3) Each MK-tree in CMK-tree fully partitions a two-dimensional space into mul-

tiple nonintersecting rectangles. In order to achieve linear query performance,

each point in the two-dimensional space generates an interval along the Transac-

tion Time dimension. The intersections between the generated intervals and the

corresponding rectangles are also recorded in MK-tree. A similar idea can be

found in designing the BA-tree [167]. However, compared with BA-tree, CMK-

tree adopts a different extension strategy — a multi-version structure [17], to

effectively deal with the transaction-time model.
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(4) Only two Vertical Range Aggregate (VRA) queries [135] are carried out to an-

swer one CTT query based on the CMK-tree. This is more efficient than the

MVSB-tree based on four dominance-sum queries.

After that, we provided an analytical study on the structure of CMK-tree as well as its

query performance. Finally, our experiments have testified that the CMK-tree achieves

nearly linear query performance in answering a buyer’s CTT query. This is particularly

significant to large-scale transaction data processing.



Chapter 6

Strategies for Storage Space

Reduction in CTT Computation

Trust management is an important but complicated issue in e-commerce environments.

In Chapter 3, we have pointed out that most existing trust evaluation models compute

a single value to reflect the general trustworthiness of a seller without taking any trans-

action context into account. Consequently, consumers may be easily deceived by the

potential risk existing in a forthcoming transaction, e.g., context imbalance problem.

In Chapter 4, we proposed Contextual Transaction Trust computation (termed as

CTT computation) which is considered as an effective approach to resolve this prob-

lem. In particular, CTT computation is to compute a seller’s reputation profile to in-

dicate his/her dynamic trustworthiness in different products, product categories, price

ranges, time periods, and any necessary combination of them. We also term this new

model as ReputationPro. Nevertheless, in order to promptly answer a buyer’s requests

on the results of CTT computation, it requires additional storage space to store the

precomputed aggregation results over large-scale ratings and transaction data of the

seller. In practice, a seller usually has a large volume of transactions. Moreover, with

significant increase of historical transaction data (e.g., one or two years), the size of

that additional storage space can become much larger. Towards solving the above

problem, in this chapter, we propose several strategies for storage space reduction in

CTT computation. As a result, our proposed ReputationPro model will become scal-

able to large-scale e-commerce websites in terms of both efficiency and storage space

147
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consumption.

This chapter is organised as follows. Section 6.1 presents a novel model for CTT

computation with fixed storage space, and corresponding experiments to validate its

effectiveness. The index scheme CMK-tree, proposed in Chapter 5, is considered as the

most efficient approach to CTT computation. In particular, while answering a buyer’s

CTT queries for each brand-based product category, the CMK-tree has almost linear

query performance. Then, in Section 6.2, we further extend the CMK-tree and propose

a CMK-treeRS approach to reducing the storage space allocated to each seller. Apart

from the CMK-treeRS approach, in fact, a fundamental idea of reducing the storage

space is to delete aggregation results which are generated based on the ratings and

transaction data from remote history, e.g., “the 12 months ago”. Note that the deletions

are also reasonable, as the earlier ratings are less important for evaluating a seller’s

recent behaviour. Therefore, in Section 6.3, we aim to propose deletion strategies for

CTT computation based on the CMK-tree. With our proposed deletion strategies, the

additional storage space consumption can be restricted to a limited range. Finally,

we have conducted experiments to illustrate both advantages and disadvantages of the

proposed deletion strategies. Section 6.4 summarises our work in this chapter.

6.1 A Novel Model for CTT Computation with Fixed

Storage Space

In Chapters 4 and 5, several index schemes have been proposed for CTT computation,

which adopt a single fine time granularity and aggregate the ratings by days. However,

with continuous growth in transaction time (e.g., one year or two years) and significant

increase of historical transaction data and ratings, the aggregation index with a single

fine time granularity does not scale in terms of storage space. Here the aggregation

index refers to the index containing some aggregates of ratings. In this section, we

extend HTAFS model [165] and propose a new solution CTTFS model for CTT com-
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Figure 6.1: A general structure of HTAFS model

putation. The CTTFS model guarantees the fixed storage space for aggregation index

as well as good performance in answering CTT queries. Then, we present the results

of experiments conducted on both an eBay dataset and a large-scale synthetic dataset

to validate our proposed structure and approach.

6.1.1 Hierarchical Temporal Aggregation with Fixed Storage S-

pace (HTAFS)

In Section 2.4.2, we have reviewed the well-known approaches to two-dimensional

Range Aggregate (RA) problem including range-temporal aggregation (point aggre-

gate in two-dimensional space with one as the time dimension). In addition, a more

general problem over two-dimensional RA is spatio-temporal aggregation (three di-

mensions with one as the time dimension). In the literature, a number of approaches

have been proposed to solve the above aggregation problems [167, 134, 168]. Howev-

er, they all use a single time granularity without space limitation.

In contrast to the above existing approaches, Zhang et al. [165] propose a Hier-

archical Temporal Aggregation model with fixed storage space (denote as HTAFS) to

control storage space of aggregation index over data streams. Fig. 6.1 depicts the gen-

eral structure of the HTAFS model to deal with points aggregation in a one-dimensional

space. A k-level time hierarchy, where gran1 is at the coarsest time granularity (e.g.,

by days) and grank is at the finest granularity (e.g., by seconds). Suppose that the H-

TAFS model divides the time space [begin, now) into k segments. Each segment segi

(i = 1, 2, ..., k) maintains the corresponding aggregations with the time granularity

grani. The term begin denotes the starting time and now denotes the increasing cur-

rent time. New objects are inserted with the point “now” moving to the right in the
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x-axis. The constraint for the HTAFS model is that the size of available storage space

is fixed. When the size of the total storage becomes more than a threshold S, older

information is aggregated at a coarser granularity of time.

6.1.2 Specific Requirements in CTT Computation

Before introducing our proposed CTTFS model, we first point out the specific require-

ments in CTT computation.

• First, in the traditional multiple dimensional aggregation problem, each dimen-

sion is linear. By contrast, the dimension of Product Category in CTT computa-

tion has a hierarchical structure.

• Second, based on the general structure of approaches for CTT computation given

in Section 4.2.2, when inserting a new record (i.e. a new product category) into

a C-tree (i.e. product category tree), it may affect the allocated storage space of

all the subtrees that are external to the C-tree.

Now, let us consider two cases. Suppose that all the past transactions of a seller

belong to m(m ≥ 2) brand-based product categories (see Fig. 3.1). Hence, m subtrees

are generated corresponding to the m brand-based product categories. Note that the

storage space used for storing aggregation index in the Product Category dimension,

i.e., C-tree, will be ignored, and we assume the aggregation index formed by all the

subtrees that are external to C-tree consume relatively larger storage space.

Case 1: If a newly occurred transaction belongs to any one of the m existing brand-

based product categories, it is unreasonable to allocate average storage space to

each subtree, since a seller would have imbalanced number of transactions in

each brand-based product category;

Case 2: If a newly occurred transaction belongs to a new product category on which

the seller has no prior transactions, it is necessary to allocate additional storage
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space to store the aggregation index so as to know the trust value of the seller

in this product category or the corresponding sub-category. As a result, the

insertion operation surely affects space allocation for the previous m subtrees.

6.1.3 The Proposed CTTFS Model

Our proposed CTTFS model consists of two parts: dynamical storage space allocation

(Algorithm 4) and hierarchical temporal aggregation (Algorithm 5).

6.1.3.1 Algorithms Description

Algorithm 4: Dynamical storage space allocation

This algorithm aims to appropriately allocate storage space for aggregation index

formed by all the subtrees that are external to a C-tree.

As illustrated in subsection 4.2.2.1, in our proposed tree structure for CTT com-

putation (see Fig. 4.2), each record in R-nodes of C-tree also maintains the number

of ratings count r and the sum of ratings sum r in the corresponding product cate-

gory. Suppose that the products sold by a seller in all past transactions belong to m

brand-based product categories. Each brand-based product category includes count rj

(j ∈ 1, 2, ...,m) transactions. Thus,
∑m

j=1 count rj equals the total number of all past

transactions. If the total storage size allocated to a seller is S, we further consider

space allocation in two cases as illustrated before:

• Case 1: The newly occurred transaction belongs to an existing brand-based

product category. For the existing m brand-based product categories, each sub-

tree should be allocated count rj∗S∑m
j=1 count rj

(j ∈ 1, 2, ...,m) disk pages for storing

aggregation index.

• Case 2: The newly occurred transaction belongs to a new brand-based prod-

uct category. In such a case, there are m + 1 brand-based product categories,



152 Strategies for Storage Space Reduction in CTT Computation

and each subtree should be allocated count rj∗S∑m+1
j=1 count rj

(j ∈ 1, 2, ...,m,m+ 1) disk

pages for storing aggregation index.

Algorithm 5: Hierarchical temporal aggregation

However, each of the two cases in Algorithm 4 leads to a problem of compression

of the allocated storage space (i.e. disk pages). Hence, the general idea of the HTAFS

model will be adopted to deal with the subtree, the size of which is larger than the

allocated storage space. For the sake of simplicity, we assume the size of the storage

space allocated for each subtree to store aggregation index is Sj . For m brand-based

product categories, we have
∑m

j=1 Sj = S.

If the size of the aggregation index of a subtree becomes larger than the corre-

sponding allocated space Sj , we need to have a further division. As illustrated before,

each subtree that is external to product category hierarchy maintains the aggregates

count r and sum r in Transaction Amount and Transaction Time dimensions. At the

beginning, each subtree uses a single finer time granularity gran1 in the Transaction

Time dimension. When performing hierarchical temporal aggregation operations, we

choose a new dividing time tnewdiv. Here, different from the HTAFS model, the in-

formation larger than the size Sj/2 will be aggregated at a coarser time granularity

gran2. Consequently, the CTTFS model forms two segments seg1 and seg2 with d-

ifferent time granularities in the Transaction Time dimension. In addition, more time

granularities grank (k > 2) can be introduced to further compress the storage space.

For update operations in the CTTFS model, we should first find all the transactions

and corresponding ratings before tnewdiv in seg2. Then, we standardise these transac-

tions and the corresponding ratings at a coarser time granularity gran2. Finally, we

move standardised results to seg1. If the seg1 is not null, seg1 is updated; otherwise

we directly move them to seg1. The above operations are similar to those defined in

Algorithm 1 proposed in the HTAFS model [165].
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6.1.3.2 eaR-treeFS– A New eaR-tree with Fixed Storage Space for CTT Compu-

tation

In this subsection, we use the eaR-tree as an example to explain how to apply our pro-

posed CTTFS model with fixed storage space in CTT computation. In Section 4.2.2,

based on aR-tree [63, 104], we proposed an eaR-tree for CTT computation. In the

eaR-tree, each subtree that is external to the C-tree is an aR-tree containing aggregates

count r and sum r. Next, we illustrate how to construct an new eaR-tree with fixed

storage space (eaR-treeFS) for CTT computation.

Insertion: When inserting a newly occurred transaction into the eaR-treeFS , Algorith-

m 4 first reallocates storage space for the aggregation index formed by each subtree

(i.e., aR-tree). If the size of aggregation index of a subtree is larger than the allocated

space, then Algorithm 5 will be applied to restrict the storage space. For the sake of

simplicity, in our work, eaR-treeFS only adopts 2-level time granularities and sets the

coarse time granularity at the month level and the fine time granularity at the day level.

As a result, different from original eaR-tree, each subtree in eaR-treeFS is divided into

2 aR-trees logically with different time granularities (seg1 and seg2). Therefore, for

m brand-based product categories, there are at most 2m aR-trees with limited storage

space in the complete eaR-treeFS model.

Query: To answer a CTT query, in the new structure eaR-treeFS , the search is first

conducted on the C-tree (the product category tree). However, there may be an addi-

tional query in a subtree of eaR-treeFS that is external to the product category hierar-

chy depending on the query range in the transaction time dimension. That is because

a subtree of eaR-treeFS may logically have two aR-trees with different time granu-

larities. For example, if a CTT query in transaction time dimension is within range

[tnewdiv, now), only an aR-tree in the subtree needs to be searched in corresponding

brand-based product category; otherwise we need to search two aR-trees. In the fol-

lowing section, we will illustrate that the number of accessed nodes can be significantly

reduced in our proposed new structure when answering a CTT query.
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6.1.4 Experiments

In this section, we introduce the experiments conducted on an eBay dataset and a large-

scale synthetic dataset, which aim to evaluate the efficiency of our proposed model.

6.1.4.1 Experiment Setup

We used the datasets depicted in Section 4.3.1. For sake of simplicity, we only selected

the seller S1 who had the largest trading volume among these popular sellers. S1 had

around 12000 transactions (approx. 4000 transactions per month) in total within 90

days. The products sold by S1 distribute in multiple product categories; but most

products are in the category of ‘Information, Communication and Media technology’

(see Fig. 3.1). Meanwhile, our experiments are also conducted on the synthetic dataset

SD1 based on S1. SD1 contains transaction data for a 12 month period, and there are

about 480, 000 transactions in total. SD1 guarantees that each product sold in a year

has the same proportion of occurrences as that in the eBay dataset.

Moreover, all the parameters and experimental environments are the same as that

used in Section 4.3.1. Considering S1 had numerous transactions in the product cate-

gories ‘Apple MP3 player (iPod)’ at layer 5 and ‘Audio device’ at layer 3 in the product

category hierarchy (see Fig. 3.1). Thus, we assume a scenario that a buyer plans to buy

an ‘Apple mc526ll/a iPod nano 16GB’ for about $150 from this seller, and then s/he

specifies and adjusts the ‘product category’ at the above two layers in product category

hierarchy (i.e. PCT values in our proposed trust vector).

6.1.4.2 Experimental Results

Before presenting the experimental results, we need to emphasise that aggregation

index cannot be compressed without any restriction, i.e., the size of the aggregation

index for eaR-treeFS should be larger than the size of by-month aggregation in the

transaction time dimension for eaR-tree. Meanwhile, the size of aggregation index

for eaR-treeFS should be smaller than the size of the original eaR-tree (aggregation
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Table 6.1: The size of aggregation index for the eaR-tree aggregated by-day and the eaR-tree
aggregated by-month

eaR-tree eaR-tree
(by day) (by month)

The size of aggregation index
over the eBay dataset 205 KB 75 KB

The size of aggregation index
over the synthetic dataset 2800 KB 250 KB
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Figure 6.2: The performance of our proposed model over eBay dataset

by-day). Table 6.1 lists the sizes of aggregation index of the eaR-tree aggregated by-

day and the eaR-tree aggregated by-month over eBay dataset and synthetic dataset,

respectively.

Results on the eBay dataset: When computing the value of PCT on the eBay dataset,

we also assume that the buyer specifies a transaction amount range of [$100,$200],

and time ranges of “the latest one month”, “the latest two months” and ‘the latest three

months’, respectively. For the eaR-treeFS model, according to Table 6.1, we set the

fixed storage space S to be 100 KB and 150 KB, respectively.

As shown in Fig. 6.2, for all three tree structures, when the time range in a query

becomes larger, the number of accessed nodes increases linearly. This is in line with

the nature of the original aR-tree [104]. As the amount of space allocated to the eaR-

tree decreases, i.e., from eaR-tree (150 KB) to eaR-tree (100 KB), more transactions
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Figure 6.3: The performance of our proposed model over synthetic dataset

and ratings in history are aggregated by month. Thus, the complete index size becomes

smaller, and the corresponding number of accessed nodes decreases. On average, com-

pared with eaR-tree, the number of accessed nodes for computing PCT at layer 5 (see

Fig. 6.2(a)) decreases by 29% for eaR-treeFS(150 KB) and 44% for eaR-treeFS(100

KB). The number of accessed nodes for computing PCT at layer 3 (see Fig. 6.2(b))

decreases by 16% for eaR-treeFS(150 KB) and 19% for eaR-treeFS(100 KB).

Results on the synthetic dataset: We also conducted the same experiments on the

synthetic dataset SD1, which contain transactions distributed over a 12 month period.

For computing the PCT, we assume that the buyer specifies time ranges of “the latest

3 months”, “the latest 6 months”, and “the latest 12 months ago”, respectively. For the

eaR-treeFS model, according to Table 6.1, we set the fixed storage space S to be 500

KB and 750 KB, respectively.

From the results plotted in Fig. 6.3, we can draw the same conclusion as the ex-

periments on the eBay dataset. On average, compared with eaR-tree, the number of

accessed nodes for computing PCT at layer 5 (see Fig. 6.3(a)) decreases by 68% for

eaR-treeFS(750 KB) and 74% for eaR-treeFS(500 KB). Similarly, the number of ac-

cessed nodes for computing PCT at layer 3 (see Fig. 6.3(b)) decreases by 71% for

eaR-treeFS(750 KB) and 76% for eaR-treeFS(500 KB).

Summary: In CTTFS model, the past transactions and ratings are aggregated at differ-
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ent time granularities, which provides a trade-off between aggregation hierarchies and

storage space. From the results of the experiments conducted on both an eBay dataset

and a synthetic dataset, we can conclude that the new model not only restricts the al-

located storage space, but also significantly reduces the number of accessed nodes in

responding to buyers’ CTT queries.

The CTTFS model provides a meaningful attempt which takes advantage of H-

TAFS model to reduce storage space consumption for CTT computation. However,

it simultaneously brings some problems including operability in real applications and

accuracy of CTT computation. In the following section, based on the CMK-tree pro-

posed in Chapter 5 (i.e. the most efficient approach to CTT computation), the above

problems will be discussed and resolved.

6.2 The Proposed CMK-treeRS

As illustrated in Section 5.1, in the CMK-tree, transaction data and ratings are ag-

gregated at the granularity of days. Though it consumes smaller storage space than

the actual data, with significant increase of historical transaction data, the size of the

CMK-tree will become much larger. In this section, we introduce a new approach

CMK-treeRS , which reduces storage space consumption for a CMK-tree, and offers

great benefit to trust management with millions of sellers.

In Section 6.1, we have pointed out that the Hierarchical Temporal Aggregation

model with fixed storage space (HTAFS) [165] can be applied to CTT computation, in

order to control the size of the storage space allocated to a seller for storing aggregation

index. However, as a matter of fact, it is difficult to select the size of the fixed storage

space, since the number of distinct products as well as the number of product cate-

gories in the transactions traded by different sellers are different. Now let us consider

an example. Assume two sellers S1 and S2 have the same volume of transaction data

over a period of time. The transactions traded by S1 are widely distributed in multiple

product categories, but seller S2 has numerous repeated transactions belonging to only
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a few product categories. For S1, it is necessary to allocate a relatively large storage

space to store aggregation index so as to obtain his/her trustworthiness in each product

category and a corresponding sub-category. By contrast, for S2, it is not necessary

to allocate the storage space with the same size as S1, because most transactions are

repeated, leading to less storage space consumption for storing aggregation index.

In practice, the time range in CTT queries is usually “the latest 1 month”, “the

latest 3 months”, “the latest 6 months”, or “the latest 12 months”. When adopting a

CMK-tree for CTT computation, the above time ranges can be searched, but the CMK-

tree consumes a large storage space as the aggregation granularity in the Transaction

Time dimension is “days”. Alternatively, if we aggregate ratings at a coarse time gran-

ularity of months, as depicted in Fig. 5.3(a), the number of points in a two-dimensional

space formed by transactions further decreases, since more repeated transactions exist

in a month than on a day. In such a case, the size of storage space consumed for a

CMK-tree can be reduced to a large extent. However, such a coarse aggregation gran-

ularity leads to a serious problem regarding the accuracy of CTT computation. For

instance, if the current time is “10th August”, to answer a buyer’s CTT query with

the specified time range as “the latest 1 month”, the result can be computed based on

either the data of “August” only or the data of both “August” and “July”. However,

neither way can guarantee the accuracy of CTT results. In the worst case, the ratings

for computing a CTT value of “the latest 1 month” come from one day only or one

month plus “29 days” (if one month contains “30 days”). On average, the CTT result

comes from the ratings of 1 month ± 1
2
month.

In the proposed approach CMK-treeRS , a new strategy is adopted, which aggre-

gates ratings with different time granularities for different time periods. In other word-

s, in the CMK-treeRS , the ratings within the latest t days are aggregated at a fine time

granularity of days, and the ratings of t days ago are aggregated at a coarse time

granularity of weeks. Taking into account the problem of accuracy of CTT values as

mentioned in the above, our work provides a tradeoff between storage space consump-

tion and accuracy. In addition, in practice, t is set to be “90 days”, considering the
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typical time ranges in CTT queries are “the latest 1 month”, “the latest 3 months”,

“the latest 6 months” and “the latest 12 months”. Therefore, for CTT queries regard-

ing a seller’s trustworthiness of “the latest 1 month” or “the latest 3 months”, there is

no accuracy problem in the time dimension. For the queries of “the latest 6 months”,

on average, ratings included in computation cover 6 months ± 1
2
week. Likewise, in

the case of “the latest 12 months”, on average, the ratings used in CTT computation

cover 12 months ± 1
2
week.

6.2.1 Construction of a CMK-treeRS

This section describes the process of CMK-treeRS construction. The algorithm for

CMK-treeRS construction adds the following operations to Algorithm 2, which is given

in Section 5.1.3 and is used for building a CMK-tree:

• If tnow − tbegin ≤ t + 1, insert the data of a newly happened transaction

into the initial CMK-tree based on Algorithm 2. The term tbegin denotes the

starting time and the term tnow denotes the current time. As new transactions

happen everyday, in order to guarantee the ratings within the latest t days to be

aggregated at a fine time granularity, firstly, it is necessary to perform insertion

operations leading to the aggregations of t+ 1 days. Then, the ratings of t days

ago are moved to the aggregation index at a coarse time granularity. Note that

this order of operations is necessary because if it is to first remove ratings for the

transactions that happened t days ago, the ratings to be aggregated at a fine time

granularity will include t− 1 days only, affecting the accuracy of CTT values.

• Otherwise, find all the transactions that happened no later than tnow − t whose

corresponding ratings are aggregated by days. Then, the Hierarchical Temporal

Aggregation (HTA) operations are performed to form the CMK-treeRS . Finally,

continue to insert the data of a newly happened transaction into the new CMK-

treeRS based on Algorithm 2.
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Next, we explain HTA operations in detail. In general, HTA operations aim to

split one MK-tree in the initial CMK-tree into two MK-trees with ratings to be

aggregated at different time granularities. To facilitate discussion, we term the

two generated MK-trees as MK-treeday and MK-treeweek, respectively. Suppose

that the number of transactions traded by a seller at the time point tnow belongs to

m brand-based product categories, namely, the initial CMK-tree at the time point

tnow includes m MK-trees. In the meantime, there are m′ (m′ ≤ m) brand-based

product categories which contain the transactions with the transaction time no

later than tnow − t, and their corresponding ratings are aggregated with the time

granularity of days. Then, the HTA operations are performed in the above m′

MK-trees. For the sake of simplicity, we focus on introducing the following

HTA operations within one of m′ MK-trees contained in the initial CMK-tree.

• Remove the records maintained in an MK-tree, which can index the trans-

actions that happened t days ago. Note that our work also guarantees

the space utilisation of each node in the MK-tree during performing re-

moval operation. For instance, as shown in Fig. 5.5(e), if the records <

[0, 13], [1, 3), 0, Q1 >, < [13, 30], [1, 3), 0, Q2 > and < [30, 50], [1, 3), 0, Q3 >

in the I-node In(L)1 are removed, the remaining records in In(L)1 as well

as the record in In(L)2 are merged. In the meantime, the records in the

I-node In(I)3 are updated accordingly. In addition, in a more complex

case, if the removed transactions with the transaction time falling into the

time range of some records, a new aB+-tree is generated1. For example, to

remove the transactions that occurred before the time point 2 in Fig. 5.5(b),

briefly speaking, we need to (1) delete the corresponding records in both

Ln1 and Ln2, (2) merge the remaining records in these two nodes, (3) gen-

erate a new aB+-tree, and (4) update the records in In(L)1.
1The purpose of generating a new aB+-tree is given in Section 5.1.3.2. Each generated aB+-tree

is to keep aggregation index of transactions in the same brand-based product category whose generat-
ed intervals along the Transaction Time dimension intersect with the left border of the corresponding
rectangle.
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Figure 6.4: The CMK-treeRS structure

• Standardise the data of transactions that happened t days ago. A standard-

ization operation is to set the transactions occurred in the same week with

the same x-coordinate. As stated before, the standardization operation es-

sentially leads to a smaller size CMK-treeRS . In Section 6.2.2, we will

further explain how and why the CMK-treeRS can also reduce the time of

computing CTT values.

• Generate the second MK-tree, namely MK-treeweek, using the standardised

results. Consequently, instead of having only one MK-tree, each subtree

that is external to the C-tree has both an MK-treeday and an MK-treeweek in

the new CMK-treeRS . Fig. 6.4 illustrates the general structure of the CMK-

treeRS . Note that if there already exist two MK-trees with aggregation

index at different time granularities in an external subtree, the MK-treeweek

is updated by inserting the standardised results.

6.2.2 CTT Computation Based on CMK-treeRS

When answering a CTT query based on the new structure CMK-treeRS , like Algorith-

m 3 given in Section 5.2, the C-tree is first searched. Then, it computes the left border

VRA and the right border VRA in the subtrees that are external to the C-tree. More-

over, each external subtree in CMK-treeRS has up to two MK-trees with aggregated

ratings at different time granularities (see Fig. 6.4). Therefore, the computation of
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the left border VRA and the right border VRA may also be performed in MK-treeday

and MK-treeweek respectively, depending on the query range in the Transaction Time

dimension. If the specified time range in a CTT query is [tnow − t, tnow), only the

MK-treeday is searched; otherwise, the CTT computation algorithm searches both the

MK-treeday and the MK-treeweek in the corresponding external subtrees.

Now we introduce an example for further explanation. Suppose that the current

time refers to the day of “20th July” and t is set to “90 days”. For an external subtree

in the CMK-treeRS that includes two MK-trees, the MK-treeday maintains the aggre-

gated ratings with the time range [21st April, 20th July) and the MK-treeweek maintains

the aggregated ratings with the time range [1st January, 21st April). In this case, if a

buyer’s CTT query has “the latest 6 months” as the time range, the search for comput-

ing the left border VRA is performed on the MK-treeweek. By contrast, for a CMK-tree

with an MK-tree as each external subtree, the MK-tree maintains the aggregated ratings

for around 200 days in total (i.e. from 1st January to 20th July) with the time granular-

ity of days. Though the CMK-treeRS has two subtrees: MK-treeday and MK-treeweek,

they are much smaller in size. On one hand, the MK-treeday includes the aggregates

of ratings in a short period of time (i.e. 90 days vs 200 days). On the other hand, the

MK-treeweek stores the aggregations for the remaining period of time at a coarse time

granularity of “weeks” rather than “days”. Therefore, based on the CMK-treeRS , the

time of computing both the left border VRA and the right border VRA can be reduced.

The experiment results to be introduced in Section 6.2.3 also have illustrated both sig-

nificant storage space reduction and performance improvement of the CMK-treeRS in

answering buyers’ CTT queries.

6.2.3 Experiments

This subsection focuses on comparing the CMK-tree and the CMK-treeRS in the as-

pects of both CTT computation time and storage space consumption.

As depicted in Section 5.4.1, the experiments are also conducted on four large
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Figure 6.5: The storage space consumption and construction time for CMK-tree and CMK-
treeRS on four datasets

synthetic datasets SD1(S1), SD2(S1), SD3(S2) and SD4(S2) based on the transac-

tion data of eBay sellers S1 and S2. For each seller, we generated the corresponding

queries on either Transaction Item Specific Trust (TIST) or Product Category based

Trust (PCT), covering three transaction dimensions (denoted as 3D CTT queries),

and the queries on Similar Transaction Amount based Trust (STAT), covering two

transaction dimensions (denoted as 2D CTT queries). Note that there are 200 3D

CTT queries and 180 2D CTT queries. For fair comparison, all the parameters and

experimental environments are the same as those used in Section 5.4.2.

Storage space reduction: The Table 6.2 lists the percentage of storage space re-

duction of the CMK-treeRS compared to the CMK-tree (also see Fig. 6.5). Overall,

the CMK-treeRS reduces 23%-53% in storage space consumption on four synthetic

datasets. On average, the reduction is about 38%.

Computation time improvement: the computation time of the two approaches are

plotted in Figure 6.6 and Figure 6.7. In all cases, the CMK-treeRS is faster than the

CMK-tree in computing CTT values. On average, for the 200 3D CTT queries based

on four datasets SD1(S1), SD2(S1), SD3(S2) and SD4(S2), the CMK-treeRS reduces

computation time by 10.4%, 18.0%, 11.8% and 12.4% of the CMK-tree, respectively;

for the 180 2D CTT queries, the CMK-treeRS reduces computation time by 25.0%,
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Table 6.2: CMK-tree vs CMK-treeRS

percentage of
databases storage space reduction accuracy of CTT values

minimal difference: 0 ; maximal difference: 0.0015
SD1(S1) 44% error rate: 1.6%

minimal difference: 0 ; maximal difference: 0.001
SD2(S1) 53% error rate: 1%

minimal difference: 0 ; maximal difference: 0.028
SD3(S2) 31% error rate: 4.2%

minimal difference: 0 ; maximal difference: 0.0034
SD4(S2) 23% error rate: 3.2%

29.3%, 24.1% and 30.0% of the CMK-tree, respectively.

As explained in Section 6.2.2, compared with the CMK-tree, the search in the

CMK-treeRS for computing the left border VRA and the right border VRA is per-

formed in two subtrees, i.e., MK-treeday and MK-treeweek, but they are much smaller

in size than the original MK-tree maintained in the CMK-tree. Thus, the search time

can be reduced in computing two VRA queries. Note that if the time range in a CT-

T is “the latest 1 month” or “the latest 3 months”, only the MK-treeday is searched

for computing both the left border VRA and the right border VRA. Consequently, the

CMK-treeRS also delivers almost stable computation time for answering CTT queries

at the above two time ranges. When the time range in CTT queries is “the latest 6

months”, the MK-treeday is still searched for computing the right border VRA, but the

MK-treeweek is searched for computing the left border VRA leading to a longer com-

putation time2; therefore, we can observe that the computation time increases in this

case for the CMK-treeRS . However, if the time range in CTT queries is “the latest

12 months”, like the eaP-tree, the eH-tree and the CMK-tree, the computation time

delivered by the CMK-treeRS also drops to the minimum, since only a few nodes are

visited for computing the left border VRA.

2The MK-treeday maintains the aggregated ratings of the latest 3 months, and the MK-treeweek

maintains the aggregated ratings of the remaining 9 months. Although 9 month transaction data and
ratings are aggregated at a coarse time granularity of weeks in the MK-treeweek, it still has a larger size
than MK-treeday . Thus, the search in the MK-treeweek consumes more time than that in the MK-treeday .
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Figure 6.6: The query performance of CMK-tree and CMK-treeRS on two datasets SD1(S1)
and SD2(S1) derived from seller S1

Accuracy of CTT values: In the meantime, as we have pointed out at the beginning

of Section 6.2, the CMK-treeRS reduces the storage space consumption at the expense

of the accuracy of CTT values, which exists in the results of the CTT queries regarding

“the latest 6 months” or “the latest 12 months”. Thus, we examined the differences of

the results delivered by the CMK-tree and the CMK-treeRS of the 95 CTT queries (i.e.

50 3D CTT queries and 45 2D CTT queries) regarding the above two time ranges, i.e.,

a totally 190 CTT queries are examined. Specifically, in Table 6.2, we list the maximal

and minimal differences as well as the error rate for the 190 CTT queries on four

datasets. Overall, the CMK-treeRS leads to 0.001-0.028 as the maximal difference3 in

3It can be expected that the maximal difference exists in computing the value of 3D CTT queries
with the parameter of product category at a low layer in the product category hierarchy, since a small
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Figure 6.7: The query performance of CMK-tree and CMK-treeRS on two datasets SD3(S2)
and SD4(S2) derived from seller S2

CTT values in [0, 1] and 2.5% as the average error rate. Therefore, we conclude that the

CMK-treeRS brings a little loss to the accuracy of CTT computation with much gain

in storage space reduction (23%-53% reduction) and computation time improvement.

6.3 The Deletion Strategies for CTT Computation

Generally speaking, in order to reduce storage space consumption for CTT computa-

tion, the approaches introduced in Sections 6.1 and 6.2 are to aggregate ratings and

transaction data at different time granularity. Although storage space can be reduced

amount of ratings involve in the computation. When performing “roll-up” operations, more transaction
data and ratings are involved in computation. As a result, the computation error rate can be reduced.
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to some extent, they does not fundamentally resolve the problem of the large storage

space consumption. Furthermore, it brings the problem of accuracy for computing

CTT values.

Actually, compared with aggregating ratings and transaction data at different time

granularity, a fundamental idea for storage space reduction is to delete index records

that are generated based on ratings and transaction data from remote history (e.g., “the

12 months ago”). In other words, it is reasonable to generate the aggregation index

based on the ratings and transaction data within a specified time period (e.g., “the

latest 12 months”). In practice, the time range in CTT queries usually refers to the

latest time period; therefore, the earlier ratings that are less important for evaluating a

seller’s recent behaviour can be eliminated. More importantly, it restricts the additional

storage space consumption to a limited range.

As mentioned before, the index scheme CMK-tree is considered as the most ef-

ficient approach to CTT computation. In particular, while answering a buyer’s CTT

queries for each brand-based product category, the CMK-tree has almost linear query

performance. With the new transactions of a seller occurred everyday, their corre-

sponding transaction records are continuously added to the database in chronological

order. In the meantime, the CMK-tree will be updated accordingly. However, in the

following, we will explain that, in order to achieve nearly linear query performance,

the deletion operations in the CMK-tree become quite complicated. Therefore, in this

section, we propose three deletion strategies for the CMK-tree. As a result, the CMK-

tree can be more effectively applied to large-scale e-commerce websites in terms of

efficiency and storage space consumption for CTT computation.

6.3.1 The Multi-Version Structure

In the literature, the multi-version structure is an effective means to support aggrega-

tion operations along temporal dimension, e.g., aP-tree [135] and MVSB-tree [168]. A

multi-version structure is to make partial persistence a basic (tree) structure. For ex-
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ample, the aP-tree is an extended Multi-Version B+-tree (MVBT) [17] and the MVSB-

tree is an Multi-Version SB-tree [161]. As stated before, the transaction records of

a seller are continuously added to the database in chronological order which implies

that the updates of generated index for CTT computation only affect the latest index

records. Therefore, the design of index schemes for CTT computation can also adopt

the multi-version structure.

In fact, without supporting insertions to the historical (old) versions is an impor-

tant characteristic for the multi-version structure. However, it simultaneously makes

the application of multi-version structure based index schemes be limited, because the

new points do not necessarily arrive in chronological order for some cases. To solve

this problem, Tao et al. propose the double logarithmic method [135] which supports

both insertions and deletions to the “history” for multi-version structure. In particular,

for deletions, double logarithmic method takes advantage of an invertible deletion s-

trategy [101]. In Section 6.3.2, we will apply the idea of the invertible deletion strategy

and propose a ‘naive’ deletion strategy for CTT computation. In addition to this, we

introduce two other deletion strategies: the space-effective deletion strategy and the

time-effective deletion strategy.

6.3.2 Our Proposed Deletion Strategies

Next, let us consider the structure of a CMK-tree where multiple MK-trees are the

major components. In Section 5.3, we have proved that the CMK-tree has almost

linear query performance when answering a buyer’s CTT queries for each brand-based

product category, and this property largely depends on the well-designed MK-tree.

From the transformation plotted in Figure 5.3(b), in order to achieve linear query

performance, each point4 generates an interval along the Transaction Time dimension.

Meanwhile, all versions of “domain 0” 2-D-B-trees index the points whose generated

4In CTT computation, one point at (ti, tai) may represent a set of repeated transactions that occurred
on a day ti selling the same product with the same price tai. Thus, we use the term ‘point’ rather than
‘transaction’ for accurate description.
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intervals intersect with the left border of them as well as aggregates of corresponding

points. Thus, if the index records for points in a version of “domain 0” 2-D-B-tree

are deleted, all its subsequent versions will be affected. For instance, in Figure 5.3(b),

while deleting the index record in MK-tree for the point α1 in version 1 of “domain 0”

2-D-B-tree, the updates are also performed in version 2 and version 3, since they no

longer need to index α1 whose generated intervals intersect with their left border.

Property 6: The insertions in an MK-tree only affect the latest version of “domain 0”

K-D-B-tree, but the deletions in MK-tree affect all the subsequences of current version.

Clearly, due to Property 6, the deletions in the CMK-tree become quite complicated.

Therefore, in the following, we will introduce three different deletion strategies for the

CMK-tree so as to guarantee the generated aggregation index based on the ratings and

transaction data within a specified time period, such as “12 months”.

6.3.2.1 ‘Naive’ Strategy

In [101], Overmars proposes a general invertible deletion strategy that periodically

rebuilds the entire data structure. The main idea is that it has two insertion-only data

structures, a main structure M and a ghost structure G. To insert an item, the insertion

is performed in M . To delete an item, instead of removing it from M , the item is

actually inserted to another structure G. Then, to avoid the size of M and G becoming

much larger, the entire data structure is rebuilt periodically, i.e., building a new main

structure M with the remaining items (the items are in M but not in G) and a new

empty ghost structure G. The whole process is also termed as global rebuilding.

As mentioned in Section 6.3.1, Tao et al. propose a double logarithmic method [135]

that adopts the idea of invertible deletion strategy to make an aP-tree fully dynamic,

so that the aP-tree (a multi-version structure) can support insertions to the historical

versions as well as the deletions. Here the discussion of the above dynamic data struc-

ture is beyond the scope of this paper, as the insertions are not performed in historical

versions for CTT computation. In addition, we emphasise that the ghost structure is
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not needed for the ‘naive’ strategy. Instead, we only need to periodically rebuild the

entire CMK-tree for each seller. To ease the overhead of rebuilding, the time period

can be set to a month or even longer. In other words, for the ‘naive’ deletion strate-

gy, the generated aggregation index may include “12 months plus one month, i.e., 13

months” (taking “12 months” as the specified time period). The following two steps

are conducted continuously for the ‘naive’ strategy.

Step 1: Perform insertions to the CMK-tree until all the transactions in past m + n

days have completed;

Step 2: Perform rebuilding the entire CMK-tree based on the ratings and transaction

data of a seller in latest m days. Then, execution resumes from Step 1.

Summary: The idea of the ‘naive’ strategy is simple, and it avoids complex deletion

operations introduced in Property 6. Furthermore, this strategy can be easily extend-

ed to make the CMK-tree fully dynamic [135]. However, it consumes more storage

space for storing CMK-tree that is generated based on a longer time period. Also,

periodically rebuilding it for each seller is time-consuming.

Different from the ‘naive’ strategy, the deletions are performed by days for the oth-

er two strategies. Specifically, in real operations, after all new transactions in the cur-

rent day have completed and the CMK-tree is updated accordingly, the index records

for the transactions completed on the first day, e.g., “12 months ago”, in the CMK-tree

should be deleted so as to maintain the transaction information of a seller in a specific

time period, e.g., “12 months”.

6.3.2.2 Space-Effective Strategy

Basically, the space-effective strategy is to delete the index records in a CMK-tree

directly. For the sake of simplicity, we take deleting the index record for the point α3

as an example. Suppose that the point α3 (see Fig. 5.3(b)) includes the information:

C-hrchyα3 , taα3 , tfirst, count rα3 and sum rα3 (|count rα3| ≥ 1, |sum rα3 | ≥ 1).
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Note that C-hrchyα3 (defined in Section 3.3.1) represents the path in product category

hierarchy to which the point α3 belongs. As the products traded in the transactions

are at the bottom of product category hierarchy, the value of C-hrchyα3 equals the

C-value in the corresponding brand-based product category. tfirst represents time of

the first day, e.g., “12 months ago”. The following five steps are conducted for the

space-effective strategy:

Step 1: A top-down (from R-nodes to L-nodes) search is performed in the CMK-tree

to find the index record for the point α3 based on the information of tfirst, C-

hrchyα3 , taα3 . For Step 1, the detailed search process for locating an index record

is given in Section 5.2.

Step 2: Remove the index record in an L-node for the point α3. After removing the

index record, the utilisation of corresponding node may be quite low, i.e. the

node contains only a few records. In Step 4, we will improve the node utilisation

via merging the sibling nodes.

Step 3: Update multiple aB+-trees. In Property 6, we have explained that when the

deletions are performed in an old version of “domain 0” 2-D-B-tree, all its sub-

sequent versions are affected. That is because the information of intersections

between the generated intervals and the corresponding rectangles also have to be

updated. As introduced in Section 5.1.2, multiple aB+-trees are built to maintain

the information of intersections; therefore, they should be updated accordingly,

i.e. removing and merging records in the aB+-trees. Note that removing and

merging records in an aB+-tree are the same as those of a B+-tree [15].

Step 4: Improve the nodes utilisation after removing some node records in Step 2.

In Section 5.3, we have proved that the minimum space utilisation is no less

than ncL
2

for an L-node in a CMK-tree where ncL is the capacity of an L-node.

Thus, if an L-node utilisation is less than ncL
2

after removing some records, the

utilisation of its sibling node will first be checked. During the process, if the
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sum utilisation of current L-node and its sibling node is more than ncL, these

two nodes will not be merged. Otherwise, the records in these two L-nodes need

to be merged. Meanwhile, update and merge the records in an I-node (as well as

the ancestors of this I-node) which point to that two L-nodes.

Step 5: Update the ranges and aggregates from bottom up accordingly, i.e. update

[tamin, tamax], [tmin, tmax], count r, sum r maintained in corresponding R-nodes

and L-nodes (see Fig. 5.1(a) and (b)). Here, in contrast to insertions where the

CMK-tree is updated from top (R-node, the product category root) to bottom

(L-node, pointing to the transaction record stored in the database), the updates

are performed from bottom up for deletions.

Finally, the above five steps are performed in all the index records in the CMK-

tree for the points with the same transaction time tfirst. In practice, in order to ease

the overhead, Step 4 and Step 5 can be executed when all the index records for the

transactions within a brand-based product category, which meet the requirements, have

already been deleted.

Summary: An important advantage of space-effective deletion strategy is that there

is no extra storage space needed during deletion operations. However, inevitably, this

strategy is still time-consuming, since it does not fundamentally resolve the problem

caused by Property 6.

6.3.2.3 Time-Effective Strategy

Generally speaking, both ‘naive’ deletion strategy and space-effective deletion strat-

egy are time-consuming, as they do not provide solutions to the problem caused by

Property 6. In particular, for ‘naive’ deletion strategy, the deletions themselves have

been avoided; for space-effective deletion strategy, searching and updating the corre-

sponding aB+-trees in Step 3 are time-consuming. To solve this problem, a basic idea

is to add indexes to manage the multiple aB+-trees separately which can improve the

performance of deletion operations.
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Now, let us consider the structure of an I-node depicted in Fig. 5.1(b), where each

record in an I-node maintains: [tamin, tamax], [tmin, tmax], count r, sum r and two

pointers. Note that one pointer points to an L-node, and the other points to an aB+-

tree. tmin : [tamin, tamax] implies the left border of the rectangle surrounded by a

record; [tamin, tamax] is transaction amount range within which the aB+-tree is built;

count r and sum r are the aggregates of points (transactions) whose generated inter-

vals intersect with tmin : [tamin, tamax].

In the time-effective deletion strategy, we will design and add a new index to man-

age that multiple aB+-trees pointed by the I-nodes. Specifically, the new index is built

in following ways:

1) The pairs < tmin, tamax > in the record of an I-node is adopted as the unique

ID to identify each aB+-tree. Therefore, each record in the new index has the

form < tmin, tamax, pointer >, where the pointer points to an aB+-tree.

2) The new index is built in each brand-based product category. In a CMK-tree,

the aB+-trees are included in the MK-trees which are external to a C-tree (see

Figure 4.2). Thus, each record in an R-node at the brand-based product category

layer, i.e. the bottom of the C-tree, simultaneously points to the new index.

3) The new index can be organised to form a 2-D matrix. Fig. 6.8 shows an example

of the 2-D matrix. When searching the aB-trees that are effected by a deletion,

they are easily located via this 2-D matrix. For instance, to delete the point

α3 with < tfirst, taα3 > (tfirst < tmin1 , tamax4 < taα3 < tamax2), the aB-

trees with IDs < tmin1, tamax2 >, < tmin2, tamax5 >, < tmin3, tamax6 >, <

tmin4, tamax9 > are selected. Then, the corresponding aB-trees will be updated

accordingly. Note that as the time increases, the 2-D matrix need to be updated.

Except for Step 3 in space-effective strategy, the time-effective strategy has the

same deletion process as space-effective strategy. However, after introducing the new

index, the performance of deletion operations can be improved. Also, their perfor-

mance will be demonstrated in the experiments introduced in Section 6.3.3.
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Figure 6.8: The 2-D matrix formed by the new index

Summary: For the time-effective deletion strategy, the new index is added so as to

reduce time-consuming for deletions in a CMK-tree. In this way, the information of

intersections between the generated intervals and the corresponding rectangles (see

Fig. 5.3(b)) will be managed separately. To some extent, this strategy can be regarded

as a trade-off between time consumption and storage space consumption.

6.3.3 Experiments

This section evaluates the advantages and disadvantages of the three proposed deletion

strategies.

6.3.3.1 Experiment Setup

The experiments conducted on four large-scale synthetic datasets are also used in Sec-

tion 5.4.1 and Section 6.2.3. The four large synthetic datasets SD1(S1), SD2(S1),

SD3(S2) and SD4(S2) are generated from two real-world datasets containing trans-

action data of “12 months”. Furthermore, in order to evaluate our proposed deletion

strategies, we further extended four synthetic datasets by randomly selecting a month

of transactions in each dataset as transactions of “12 months ago”. In this way, we ob-

tained another four datasets SD1(S1)
′, SD2(S1)

′, SD3(S2)
′ and SD4(S2)

′ containing

transaction data of “13 months”. To sum up, the purpose of generating these synthetic

datasets is to test the performance of three deletion strategies under the circumstance
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with a large volume of transactions in both each day and a long time period.

In addition, the experiments aim to compare the three deletion strategies from two

aspects: deletion time consumption and storage space consumption. The CMK-tree as

well as the deletion strategies are implemented using C++ running on a Lenovo Y560

laptop with an Intel Core i5 CPU (2.20GHz), 2GB RAM, Windows 7 Professional

operation system and MySql 5.1.35 relational database.

6.3.3.2 Results

Storage space consumption: Table 6.3 presents the additional storage space con-

sumption of three deletion strategies based on four datasets, i.e. from SD1(S1) to

SD4(S2).

(a) For the ‘naive’ deletion strategy, for instance, the storage space consumption

based on SD1(S1) equals to the size of the CMK-tree built on SD1(S1)
′ (in-

cluding 13 months transaction data) subtracts the size of the CMK-tree built on

SD1(S1) (including 12 months transaction data). Overall, it leads to 0.02 MB–

0.23 MB additional storage space consumption;

(b) For the space-effective deletion strategy, as illustrated in Section 6.3.2.2, there

is no extra storage space required during deletion operations;

(c) For the time-effective deletion strategy, the storage space consumption equals to

the size of added new index. Overall, it leads to 10 KB–150 KB for constructing

additional new index.

Time consumption of deletions: Table 6.4 presents time consumption of three dele-

tion strategies based on four datasets, i.e. from SD1(S1) to SD4(S2).

(a) For the ‘naive’ strategy, the deletion time is equivalent to the constructing time

of the CMK-tree built on four datasets (including “12 months” transaction data).
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Overall, it leads to 4.2 mins–25 mins for constructing the corresponding CMK-

tree. For the other two strategies, we test the time of deleting the index records

for the transactions completed on the first day, respectively.

(b) For the space-effective strategy, the total deletion time is 1.5 secs–21.0 secs

based on four datasets;

(c) For the time-effective strategy, the total deletion time is 1.4 secs–15.2 secs based

on four datasets. In all cases, the time-effective strategy reduces deletion time

by 6.7%–16.7% of space-effective strategy. On average, the reduction is about

11.2%.

Summary: According to the experimental results, we conclude that, compared with

the other two strategies, the time-effective deletion strategy brings a small increase in

the storage space with much gain in the improvement of time consumption in deletion

operations.

6.4 Summary

In our previous work, several index schemes have been proposed for CTT computa-

tion, which uses additional storage space to store the precomputed aggregation results

over large-scale ratings and transaction data of a seller. With significant increase of

historical transaction data (e.g., one or two years), the size of that additional storage

space can become much larger.

Towards solving the above problem, in this chapter, we have firstly proposed a nov-

el model for CTT computation with fixed storage space named CTTFS . The CTTFS

model extends the HTAFS model [165] to reduce storage space consumption, but it

is difficult to be applied in real applications due to difficulty of selecting the size of

the fixed storage space. To overcome this problem, we have then proposed another

approach CMK-treeRS based on extending the CMK-tree to reduce the storage space

allocated to each seller. The CMK-treeRS brings a little loss to the accuracy of CTT
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computation with much gain in storage space reduction and computation time im-

provement. Finally, apart from aggregating ratings and transaction data at different

time granularity, we proposed three different deletion strategies that aim to delete in-

dex records that are generated based on ratings and transaction data from “12 months

ago”.

Based on our proposed strategies, the new context-aware transaction trust evalua-

tion model ReputationPro can be more effectively applied to large-scale e-commerce

websites in terms of efficiency and storage space consumption.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In recent years, e-commerce applications have emerged to change our daily life. More

and more people prefer online shopping due to its convenience. However, when a

buyer looks for a product out of a large pool of products provided by different sell-

ers, in addition to functionality, the trust of a seller is also a key factor for product

selection. To this end, effective trust evaluation is in great demand to provide valuable

information to buyers, enabling them to select trustworthy sellers.

In this thesis, two major aspects regarding context-aware transaction trust compu-

tation in e-commerce environments have been studied.

1. One aspect of the work presented in this thesis is a trust vector based approach

to context-aware transaction trust evaluation.

(a) In contrast to most existing trust management models that compute a single

trust value, a trust vector is computed for a seller. The trust vector consist-

s of three major elements, which are called Contextual Transaction Trust

(CTT) values. They are Transaction Item Specific Trust (TIST), Product

Category based Trust (PCT) and Similar Transaction Amount based Trust

(STAT). With our proposed trust vector, the reputation profile of a sell-

er can be outlined to indicate his/her dynamic trustworthiness in different

products, product categories, price ranges, time periods, and any necessary

combination of them. Further, we term this new model as ReputationPro.

179
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According to our review of the articles on context-aware trust evaluation

approaches, our proposed ReputaionPro is a typical heuristic-based multi-

context trust evaluation model which provides more detailed and compre-

hensive trust information of a seller.

(b) A set of methods have been proposed to calculate transaction context sim-

ilarity, which can be used to infer the trustworthiness of a forthcoming

transaction, in particular, when there are no or not enough ratings from

the past transactions with the same context as the forthcoming transaction.

Moreover, with combination of similarity calculation approaches, we have

provided the solutions to the computation of that proposed trust vector. Fi-

nally, based on our experiments and analysis, the ReputaionPro model can

identify risks potentially existing in a forthcoming transaction, thus outper-

forming single-value trust valuation methods and a prior trust vector based

approach.

2. The other aspect of the work presented in this thesis concerns efficient compu-

tation of a seller’s reputation profile.

(a) In order to clearly outline a seller’s reputation profile, if a user or buyer can

specify/adjust layers in product category, price range as well as transaction

time range, accordingly, different ratings from different transaction con-

texts need to be taken into account for computation. On the other hand, in

real e-commerce applications, a popular seller usually sells a wide variety

of products distributed in a number of product categories. In addition, a

large number of buyers can be accessing one seller’s reputation data simul-

taneously with regard to their potential forthcoming transactions in various

contexts. Taking all these factors into account, the computation of a seller’s

reputation profile incurs a high computational complexity. Thus, efficien-

t algorithms are in high demand to facilitate buyers’ context-aware trust

enquiries on each element of the trust vector.
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Towards efficient computation of CTT values, four index schemes have

been proposed. In the literature, our targeted CTT computation problem

is similar to the traditional RA (Range Aggregate) problem in spatial data

warehouses. Therefore, at the beginning, we have extended the approaches

to the two-dimensional (2D) RA problem as the preliminary solutions for

CTT computation. They all meet the requirements of CTT computation,

but have low efficiency in computing CTT values in some cases. Based on

our analysis of the limitations of existing approaches to two-dimensional

RA after being extended to solve CTT computation problem, a new disk-

based index scheme and a new query algorithm are proposed. Compared

with the preliminary solutions, while answering a buyer’s CTT queries for

each brand-based product category, the new index scheme has almost linear

query performance.

(b) In addition, to solve large storage space consumption of proposed index

schemes, several strategies are adopted for storage space reduction in CTT

computation. These strategies include aggregating ratings and transaction

data at different time granularity as well as deleting the index records that

are generated based on the ratings and transaction data from remote history.

Consequently, the ReputationPro model can be more effectively applied to

large-scale e-commerce websites in terms of efficiency and storage space

consumption.

7.2 Future Work

In relation to context-aware trust evaluation in e-commerce environments, some

research problems remain open for which will be solved in our future work.

(a) Our proposed ReputationPro model is based on three identified important

transaction context dimensions, Transaction Category (Product Category),
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Transaction Amount and Transaction Time. With regard to any possible

new transaction context dimension, the approaches to extend the CMK-tree

will be studied.

(b) In the literature, the design of index structures for two-dimensional RA

problem is also studied based on bit-wise machines (e.g. the CRB-tree re-

viewed in Section 2.4.2). The CRB-tree has good performance in answer-

ing RA queries, and can further reduce the space consumption. Therefore,

we will take the CTT computation based on bit-wise models as one of our

future research directions, targeting more efficient solutions.

(c) One of our major concerns for CTT computation is to promptly answer

buyers’ CTT requests, since a large number of buyers can be accessing

one seller’s reputation data simultaneously with regard to their potential-

ly forthcoming transactions in various contexts. Apart from the proposed

index structures in this thesis, we consider to use the query workload pat-

terns [36] to further improve the query performance.

(d) Effective tools are also needed to assist buyers to analyse the CTT values.

The computed CTT values aiming at outlining a seller’s reputation profile

are comprehensive and multi-dimensional. To better use such trust infor-

mation, the analysis methods and tools need to be developed. Among them,

a visualisation tool is necessary to visualise the computed results. For ex-

ample, the zoom in/out analysis allows users to examine the CTT values

for related contexts and facilitates them comparing the trustworthiness of

sellers.



Appendix A

Notations Used in This Thesis

Table A.1: Notations Used in Chapter 3
Notation Representation First occurrence

ta the amount of the transaction Section 3.3.1
taf the amount of a forthcoming transaction Section 3.2.2
tap the amount of past transaction Section 3.2.2
B a buyer Section 3.3.1

C-value unique id of product category Section 3.2.1.1
C-hrchy the path in product category hierarchy Section 3.3.1

CTT Contextual Transaction Trust Section 3.3.2
the depth of the deepest common

d(p, p′) ancestor between two products p and p’ Section 3.2.1.2

Dta difference value of transaction amount Section 3.2.2
p the product purchased in the transaction Section 3.3.1

PCT Product Category based Trust Section 3.3.2
r the rating for transaction quality Section 3.3.1
Rta relative value of transaction amount Section 3.2.2
S a seller Section 3.3.1

STA the similarity of two transaction amounts Section 3.2.2
STC transaction content similarity Section 3.3.3.1
STI the similarity of two transaction items Section 3.2.1.2

the transaction time similarity between
STT a forthcoming transaction and a past one Section 3.2.3

STAT Similar Transaction Amount based Trust Section 3.3.2
TIST Transaction Item Specific Trust Section 3.3.2
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Table A.2: Notations Used in Chapter 3 (continued)
Notation Representation First occurrence
Trans the set of past transactions Section 3.3.1

the transaction between a seller and a buyer
TR at time t

Section 3.3.1

u, v two parameters to compute ω Eq. 3.11
λR The threshold of relative value Eq. 3.4
ω the weight of “direct reference” ratings Section 3.3.3.1

thresholds of sufficient number of
θ “direct reference” ratings Section 3.3.3.1

θTI threshold for transaction item similarity Section 3.3.3.2
θTA threshold for transaction amount similarity Section 3.3.3.2

Table A.3: Notations used in Chapter 4 (continued)
Notation Representation First occurrence
B1, B2 two buyers Section 4.3.2.2
count r the number of ratings Section 4.1

Ii a record in I-node Section 4.2.2.2
In an I-node Section 4.2.2.2

the number of brand-based
k product category Section 4.2.2.4

Li a record in L-node Section 4.2.2.2
Ln an L-node Section 4.2.2.2
RA Range Aggregate Section 4.1.1
Ri a record in R-node Section 4.2.2.1
Rn an R-node Section 4.2.2.1

sum r the sum of ratings Section 4.1
S1, S2 two sellers Section 4.3.1.1
TPT Transaction Proportion based Trust Section 4.2.1



185

Table A.4: Notations used in Chapter 6 (continued)
Notation Representation First occurrence
gran the time granularity Section 6.1.1
HTA Hierarchical Temporal Aggregation Section 6.1.1
k the number of segments for time space Section 6.1.1
m the number of brand-based product categories Section 6.1.2
S the total storage size allocated to a seller Section 6.1.3.1
seg a specific time segment Section 6.1.1
tbegin the starting time Section 6.2.1
tfirst the time of the first day Section 6.3.2.2

the time point where the ratings and transaction data
tnewdiv are aggregated at different time granularities Section 6.1.3.1

tnow the current time Section 6.2.1



186 Notations Used in This Thesis



Bibliography

[1] D. J. Abadi, S. R. Madden, and N. Hachem. Column-Stores vs. Row-Stores:

How different are they really. In ACM SIGMOD, pages 967–980, 2008.

[2] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In

Hawaii International Conference on System Sciences, pages 1–9, 2000.

[3] K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information sys-

tem. In International Conference on Information and Knowledge Management,

pages 310–317, 2001.

[4] S. Adali, R. Escriva, M. Goldberg, M. Hayvanovych, M. Magdon-Ismail,

B. Szymanski, W. Wallace, and G. Williams. Measuring behavioral trust in

social networks. In IEEE International Conference on Intelligence and Securi-

ty Informatics, pages 150–152, 2010.

[5] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incorporat-

ing contextual information in recommender systems using a multidimensional

approach. ACM Transactions on Information Systems, 23(1):103–145, 2005.

[6] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Trans-

actions on Knowledge and Data Engineering, 17(6):734–749, 2005.

[7] P. K. Agarwala, L. Argeb, S. Govindarajanc, J. Yanga, and K. Yi. Efficient

external memory structures for range-aggregate queries. Computational Geom-

etry, 46(3):358–370, 2012.

[8] G. A. Akerlof. The market for ”lemons”: Quality uncertainty and the market

mechanism. The Quarterly Journal of Economics, 84(3):488–500, 1970.

187



188 Bibliography

[9] Alibaba. http://resources.alibaba.com/article/232530/Protect yourself from

fraudsters pretending to be Gold Suppliers.htm.

[10] Amazon. http://askville.amazon.com/customers-amazon-serve-year/Answer

Viewer.do?requestId=88355172.

[11] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin.

An integrated theory of the mind. Psychological Review, 111:1036–1060, 2004.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.

Communications of the ACM, 53(4):50–58, 2010.

[13] R. Ashri, S. D. Ramchurn, J. Sabater, M. Luck, and N. R. Jennings. Trust

evaluation through relationship analysis. In International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 1005–1011, 2005.

[14] S. Ba and P. A. Pavlou. Evidence of the effect of trust building technology

in electronic markets: Price premiums and buyer behavior. MIS Quarterly,

26(3):243–268, 2002.

[15] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered

indices. Acta Informatica, 1:173–189, 1972.

[16] P. Beatty, I. Reay, S. Dick, and J. Miller. Consumer trust in e-commerce web

sites: A meta-study. ACM Computing Surveys, 43(3):1–46, 2011.

[17] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptoti-

cally optimal multiversion B-tree. Very Large Databases, 5(4):264–275, 1996.

[18] D. Beneventano, F. Guerra, S. Magnani, and M. Vincini. A web service based

framework for the semantic mapping amongst product classification schemas.

Electronic Commerce Research, 5(2):114–127, 2004.



Bibliography 189

[19] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. Secure internet

programming. chapter The Role of Trust Management in Distributed Systems

Security, pages 185–210. Springer-Verlag, 1999.

[20] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

IEEE Symposium on Security and Privacy, pages 164–173, 1996.

[21] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware applications: From the

laboratory to the marketplace. IEEE Personal Communications, 4(5):58–64,

1997.

[22] S. Buchegger and J.-Y. L. Boudec. A robust reputation system for mobile ad-

hoc networks. Technical report, P2PEcon, 2003.

[23] S. Buchegger and J.-Y. Le Boudec. Performance analysis of the confidant pro-

tocol. In Proceedings of the 3rd ACM International Symposium on Mobile Ad

Hoc Networking &Amp; Computing, MobiHoc ’02, pages 226–236, New York,

NY, USA, 2002. ACM.

[24] A. Caballero, J. Botia, and A. Gomez-Skarmeta. On the behaviour of the trsim

model for trust and reputation. In German Conference on Multi-Agent System

Technologies, pages 13–24, 2007.

[25] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP

technology. SIGMOD Record, 26(1):65–74, 1997.

[26] comScore. www.comscore.com/companyinfo.

[27] E. Damiani, S. di Vimercati, P. Samarati, and M. Viviani. A reputation-based

approach for choosing reliable resources in peer-to-peer networks. In ACM

conference on Computer and Communications Security, pages 207–216, 2002.

[28] E. Damiani, S. di Vimercati, P. Samarati, and M. Viviani. A wowa-based ag-

gregation technique on trust values connected to metadata. Electronic Notes in



190 Bibliography

Theoretical Computer Science, 157(3):131–142, 2006.

[29] C. Dellarocas. Goodwill hunting: An economically efficient online feedback

mechanism for environments with variable product quality. In International

Workshop on Agent-Mediated Electronic Commerce, pages 238–252, 2002.

[30] M. Deutsh. Cooperation and Trust: Some theoretical notes. Nebraska Univer-

sity Press, 1962.

[31] A. K. Dey. Understanding and using context. Personal and Ubiquitous Com-

puting, 5(1):4–7, 2001.

[32] T. Dimitriou, G. Karame, and I. Christou. Supertrust-a secure and efficient

framework for handling trust in super peer networks. In International Confer-

ence on Distributed Computing and Networking, pages 350–362, 2008.

[33] eBay UK. http://pages.ebay.co.uk/aboutebay/thecompany/companyover/view.html.

[34] E. ElSalamouny, V. Sassone, and M. Nielsen. HMM-based trust model. In

International Workshop on Formal Aspects in Security and Trust, volume 5983,

pages 21–35. Springer Berlin Heidelberg, 2010.

[35] M. Gerlach. Trust for vehicular applications. In International Symposium on

Autonomous Decentralized Systems, pages 295–304, 2007.

[36] M. Gibas, G. Canahuate, and H. Ferhatosmanoglu. Online index recommen-

dations for high-dimensional databases using query workloads. IEEE Transac-

tions on Knowledge and Data Engineering, 20(2):246–260, 2008.

[37] J. Golbeck and J. Hendler. Inferring binary trust relationships in web-based so-

cial networks. ACM Transactions on Internet Technology, 6(4):497–529, 2006.

[38] P. Golle, D. Greene, and J. Staddon. Detecting and correcting malicious data in

vanets. In ACM International Workshop on Vehicular Ad Hoc Networks, pages

29–37, 2004.



Bibliography 191

[39] S. Govindarajan, P. K. Agarwal, and L. Arge. CRB-Tree: An efficient indexing

scheme for range-aggregate queries. In International Conference on Database

Theory, pages 143–157.

[40] T. Grandison and M. Sloman. A survey of trust in internet applications. IEEE

Communications Surveys & Tutorials, 3(4):2–16, 2000.

[41] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, and M. Venkatrao.

Data Cube: A relational aggregation operator generalizing Group-by, Cross-

tab, and Subtotals. In International Conference on Data Engineering, pages

152–159, 1996.

[42] N. Griffiths. Task delegation using experience-based multi-dimensional trust.

In ACM International Conference on Autonomous Agents and Multiagent Sys-

tems, pages 489–496, 2005.

[43] N. Griffiths. Trust: Challenges and opportunities. AgentLink News, 19:9–11,

2005.

[44] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and

distrust. In International Conference on World Wide Web, pages 403–412, 2004.

[45] J. J. Haas, Y.-C. Hu, and K. P. Laberteaux. Design and analysis of a lightweight

certificate revocation mechanism for vanet. In ACM International Workshop on

VehiculAr InterNETworking, pages 89–98, 2009.

[46] S. M. Habib, S. Ries, and M. Muhlhauser. Towards a trust management sys-

tem for cloud computing. In International Conference on Trust, Security and

Privacy in Computing and Communications, pages 933–939, 2011.

[47] F. Ham, E. Imana, A. Ondi, R. Ford, W. Allen, and M. Reedy. Reputation pre-

diction in mobile ad hoc networks using RBF neural networks. In International

Conference on Engineering Applications of Neural Networks, volume 43, pages

485–494, 2009.



192 Bibliography

[48] C.-W. Hang, Y. Wang, and M. P. Singh. Operators for propagating trust and

their evaluation in social networks. In International Conference on Autonomous

Agents and Multiagent Systems, pages 1025–1032, 2009.

[49] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes

efficiently. In ACM SIGMOD, pages 205–216, 1996.

[50] K. Hoffman, D. Zage, and C. Nita-Rotaru. A survey of attack and defense

techniques for reputation systems. ACM Computing Surveys, 42(1):1–31, 2009.

[51] S. Holtmanns and Z. Yan. Context-aware adaptive trust. In Developing Ambient

Intelligence, pages 137–146, 2006.

[52] K. Hwang and D. Li. Trusted cloud computing with secure resources and data

coloring. IEEE Internet Computing, 14(5):14–22, 2010.

[53] R. Z. Iris Bohnet. Trust, risk and betrayal. Economic Behavior & Organization,

55:467–484, 2004.

[54] S. Jones. TRUST-EC: requirements for trust and confidence in e-commerce.

European Commission, Joint Research Center, 1999.

[55] A. Jøsang. Artificial reasoning with subjective logic. Australian Workshop on

Commonsense Reasoning, 1997.

[56] A. Jøsang. A logic for uncertain probabilities. Uncertainty, Fuzziness and

Knowledge-Based Systems, 9(3):279–212, 2001.

[57] A. Jøsang. Robustness of trust and reputation systems: Does it matter? In IFIP

International Conference on Trust Management, pages 253–262, 2012.

[58] A. Jøsang and J. Golbeck. Challenges for robust of trust and reputation systems.

In International Workshop on Security and Trust Management, 2009.



Bibliography 193

[59] A. Jøsang, E. Gray, and M. Kinateder. Simplification and analysis of transitive

trust networks. Web Intelligence and Agent Systems, 4(2):139–161, 2006.

[60] A. Jøsang and R. Ismail. The beta reputation system. In Bled Electronic Com-

merce Conference, 2002.

[61] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for

online service provision. Decision Support Systems, 43(2):618–644, 2007.

[62] A. Jøsang and S. Lo Presti. Analysing the relationship between risk and trust.

In IEEE Conference on Trust Management, pages 135–145, 2004.

[63] M. Jurgens and H.-J. Lenz. The Ra*-tree: An improved R-tree with material-

ized data for supporting range queries on OLAP-data. In International Work-

shop on Database and Expert Systems Applications, pages 186–191, 1998.

[64] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for

reputation management in p2p networks. In International World Wide Web

Conference, pages 640–651, 2003.

[65] S. T. Kang, Y. D. Chung, and M. H. Kim. An efficient method for temporal ag-

gregation with range-condition attributes. Information Sciences, 168(1-4):243–

265, 2004.

[66] R. Kerr and R. Cohen. Modelling trust using transactional, numerical units.

In ACM International Conference on Privacy, Security and Trust, pages 21:1–

21:11, 2006.

[67] R. Kerr and R. Cohen. Smart cheaters do prosper: Defeating trust and reputa-

tion systems. In International Conference on Autonomous Agents and Multia-

gent Systems, pages 993–1000, 2009.

[68] D. J. Kim, D. L. Ferrin, and H. R. Rao. A trust-based consumer decision-

making model in electronic commerce: The role of trust, perceived risk, and



194 Bibliography

their antecedents. Decision Support Systems, 44(2):342–353, 2008.

[69] R. Kingston. The social implications of e-commerce: a review of policy and

research. Technical report, University of Leeds, 2001.

[70] N. Kline and R. Snodgrass. Computing temporal aggregates. In International

Conference on Data Engineering, pages 222–231, 1995.

[71] J. Kohl and C. Neuman. The Kerberos Network Authentication Service (V5).

RFC Editor, 1993.

[72] K. Konrad, G. Fuchs, and J. Barthel. Trust and Electronic Commerce-more

than a technical problem. In IEEE Symposium on Reliable Distributed Systems,

pages 360–365, 1999.

[73] J. S. Lener and D. Keltner. Fear, anger, and risk. Personality and Social Psy-

chology, 81(1):146–159, 2001.

[74] L. Li and Y. Wang. Context based trust normalization in service-oriented envi-

ronments. In IEEE International Conference on Autonomic and Trusted Com-

puting, pages 122–138, 2010.

[75] L. Li and Y. Wang. Subjective trust inference in composite services. In AAAI

Conference on Artificial Intelligence, pages 1377–1384, 2010.

[76] L. Li and Y. Wang. The study of trust vector based trust rating aggregation in

service-oriented environments. World Wide Web, 15(5-6):547–579, 2012.

[77] W.-Y. Lin and I.-C. Kuo. A genetic selection algorithm for OLAP data cubes.

Knowledge and Information Systems, 6(1):83–102, 2004.

[78] G. Liu, Y. Wang, and M. Orgun. Trust inference in complex trust-oriented

social networks. In International Conference on Computational Science and

Engineering, pages 996–1001, 2009.



Bibliography 195

[79] G. Liu, Y. Wang, and M. A. Orgun. Optimal social trust path selection in

complex social networks. In AAAI Conference on Artificial Intelligence, pages

1391–1398, 2010.

[80] G. Liu, Y. Wang, M. A. Orgun, and H. Liu. Discovering trust networks for the s-

election of trustworthy service providers in complex contextual social networks.

In IEEE International Conference on Web Services, pages 384–391, 2012.

[81] J. Liu and V. Issarny. Enhanced reputation mechanism for mobile Ad Hoc

networks. In International Conference on Trust Management, pages 48–62,

2004.

[82] X. Liu and A. Datta. Contextual trust aided enhancement of data availability

in peer-to-peer backup storage systems. Network and Systems Management,

20(2):200–225, 2012.

[83] X. Liu and A. Datta. Modeling context aware dynamic trust using Hidden

Markov Model. In AAAI Conference on Artificial Intelligence, pages 1938–

1944, 2012.

[84] X. Liu, A. Datta, H. Fang, and J. Zhang. Detecting imprudence of ’reliable’

sellers in online auction sites. In IEEE International Conference on Trust, Se-

curity and Privacy in Computing and Communications, pages 246–253, 2012.

[85] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and policing in dynamic

web service selection. In International World Wide Web Conference, pages 66–

73, 2004.

[86] N. Luhmann. Trust and Power. John Wiley & Sons, Inc, 1979.

[87] H. Ma, T. C. Zhou, M. R. Lyu, and I. King. Improving recommender systems by

incorporating social contextual information. ACM Transactions on Information

Systems, 29(2):9:1–9:23, 2011.



196 Bibliography

[88] Z. Malik and A. Bouguettaya. RATEWeb: Reputation assessment for trust es-

tablishment among web services. Very Large Databases, 18(4):885–911, 2009.

[89] Z. Malik and A. Bouguettaya. Trust Management for Service-Oriented Envi-

ronments. Springer-Verlag, 2009.

[90] D. W. Manchala. Trust metrics, models and protocols for electronic commerce

transactions. In IEEE International Conference on Distributed Computing Sys-

tems, pages 312–321, 1998.

[91] S. P. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Uni-

versity of Stirling, 1994.

[92] S. Marti and H. Garcia-Molina. Taxonomy of trust: Categorizing p2p reputation

systems. Computer Networks, 50(4):472–484, 2006.

[93] E. M. Maximilien and M. P. Singh. Conceptual model of web service reputa-

tion. SIGMOD Record, 31(4):36–41, 2002.

[94] D. H. Mcknight and N. L. Chervany. The meanings of trust. Technical report,

University of Minnesota, 1996.

[95] W. W. Moe and P. S. Fader. Dynamic conversion behavior at e-commerce sites.

Management Science, 50(3):326–335, 2004.

[96] B. Moon, I. F. V. Lopez, and V. Immanuel. Efficient algorithms for large-scale

temporal aggregation. IEEE Transactions on Knowledge and Data Engineer-

ing, 15(3):744–759, 2003.

[97] L. Mui. Computational Models of Trust and Reputation: Agents, Evolutionary

Games, and Social Networks. PhD thesis, Massachusetts Institute of Technolo-

gy, 2002.

[98] L. Mui, M. Mohtashemi, and C. Ang. A probabilistic rating framework for

pervasive computing environments. In MIT Student Oxygen Workshop, 2001.



Bibliography 197

[99] J. J. Murphy. Technical Analysis of the Financial Markets. Prentice Hall Press,

1999.

[100] T. H. Noor, Q. Z. Sheng, S. Zeadally, and J. Yu. Trust management of ser-

vices in cloud environments: Obstacles and solutions. ACM Computing Sur-

veys, 46(1):1–30, 2013.

[101] M. H. Overmars. The design of dynamic data structures. Lecture Notes in

Computer Science, 156, 1983.

[102] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

Bringing order to the web, 1999.

[103] C. Palmisano, A. Tuzhilin, and M. Gorgoglione. Using context to improve

predictive modeling of customers in personalization applications. IEEE Trans-

actions on Knowledge and Data Engineering, 20(11):1535–1549, 2008.

[104] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in

spatial data warehouses. In International Symposium on Spatial and Temporal

Databases, pages 443–459, 2001.

[105] D. Papadias, Y. F. Tao, P. Kalnis, and J. Zhang. Indexing spatio-temporal data

warehouses. In International Conference on Data Engineering, pages 166–175,

2002.

[106] A. S. Patrick. Building trustworthy software agents. IEEE Internet Computing,

6(6):46–53, 2002.

[107] I. Ray and S. Chakraborty. A vector model of trust for developing trustworthy

systems. In European Symposium on Research Computer Security, pages 260–

275, 2004.



198 Bibliography

[108] M. Rehak, M. Pechoucek, and J. M. Bradshaw. Representing context for mul-

tiagent trust modeling. In IEEE/WIC/ACM International Conference on Intelli-

gent Agent Technology, pages 737–746, 2006.

[109] P. Resnick and R. Zeckhauser. Trust among strangers in internet transactions:

Empirical analysis of eBay’s reputation system. Advances in Applied Microe-

conomics, 11:127–157, 2002.

[110] P. Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood. The value of repu-

tation on eBay: A controlled experiment. Experimental Economics, 9:79–101,

2003.

[111] A. Rettinger, M. Nickles, and V. Tresp. Statistical relational learning of trust.

Machine Learning, 82(2):191–209, 2011.

[112] M. Richardson, R. Agrawal, and P. Domingos. Trust management for the se-

mantic web. In International Semantic Web Conference, pages 351–368, 2003.

[113] B. Rietjens. Trust and reputation on ebay: Towards a legal framework for

feedback intermediaries. Information and Communications Technology Law,

15(1):55–78, 2006.

[114] J. Robinson. The K-D-B-Tree: A search structure for large multidimensional

dynamic indexes. In ACM SIGMOD, pages 10–18, 1981.

[115] R. J. Robles and T. hoon Kim. Review: Context aware tools for smart home

development. International Journal of Smart Home, 4(1):187–200, 2010.

[116] J. B. Rotter. A new scale for the measurement of interpersonal trust. Personal-

ity, 35(4):651–665, 1967.

[117] D. M. Rousseau, S. B. Sitkin, R. S. Burt, and C. Camerer. Not so different

after all: A cross-discipline view of trust. Academy of Management Review,

23(3):393–404, 1998.



Bibliography 199

[118] S. Ruohomaa and L. Kutvonen. Trust management survey. In International

Conference on Trust Management, pages 77–92, 2005.

[119] S. Ruohomaa, L. Kutvonen, and E. Koutrouli. Reputation management sur-

vey. In International Conference on Availability, Reliability and Security, pages

103–111, 2007.

[120] J. Sabater and C. Sierra. REGRET: reputation in gregarious societies. In ACM

AGENTS, pages 194–195, 2001.

[121] J. Sabater and C. Sierra. Review on computational trust and reputation models.

Artificial Intelligence Review, 24(1):33–60, 2005.

[122] J. Samek and F. Zboril. Hierarchical model of trust in contexts. In Networked

Digital Technologies. Communications in Computer and Information Science,

pages 356–365, 2010.

[123] B. Schilit and M. Theimer. Disseminating active map information to mobile

hosts. IEEE Network, 8(5):22–32, 1994.

[124] W. Sherchan, S. Nepal, and C. Paris. A survey of trust in social networks. ACM

Computing Surveys, 45(4):1–33, 2013.

[125] A. Sieg, B. Mobasher, and R. Burke. Ontological user profiles for representing

context in web search. In IEEE/WIC/ACM International Conferences on Web

Intelligence and Intelligent Agent Technology-Workshops, pages 91–94, 2007.

[126] C. Sierra and J. Debenham. Information-based agency. In International Joint

Conference on Artificial Intelligence, pages 1513–1518, 2007.

[127] C. Sierra and J. Debenham. The logic negotiation model. In International Joint

Conference on Autonomous Agents and Multiagent Systems, pages 1026–1033,

2007.



200 Bibliography

[128] S. Spitz and Y. Tuchelmann. A trust model considering the aspects of time.

In International Conference on Computer and Electrical Engineering, pages

550–554, 2009.

[129] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:

A scalable peer-to-peer lookup service for internet applications. In Internation-

al Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, pages 149–160, 2001.

[130] T. Strang and C. Linnhoff-Popien. A context modeling survey. In International

Workshop on Advanced Context Modelling, Reasoning and Management, 2004.

[131] G. Suryanarayana and R. N. Taylor. A survey of trust management and resource

discovery technologies in peer-to-peer applications. Technical report, Universi-

ty of California, Irvine, 2004.

[132] A. Swaminathan, R. G. Cattelan, Y. Wexler, C. V. Mathew, and D. Kirovski.

Relating reputation and money in online markets. ACM Transactions on the

Web, 4(4):1–31, 2010.

[133] P. Sztompka. Trust A Sociological Theory. Cambridge University Press, 1999.

[134] Y. Tao and D. Papadias. Historical spatio-temporal aggregation. ACM Transac-

tions on Information Systems, 23(1):61–102, 2005.

[135] Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. Range aggregate processing

in spatial databases. IEEE Transactions on Knowledge and Data Engineering,

16(12):1555–1570, 2004.

[136] M. Tavakolifard, S. J. Knapskog, and P. Herrmann. Trust transferability among

similar contexts. In ACM International Symposium on QoS and Security for

Wireless and Mobile Networks, pages 91–97, 2008.



Bibliography 201

[137] R. K. Taylor. Marketing strategies: Gaining a competitive advantage through

the use of emotion. Competitiveness Review, 10(2):146–152, 2000.

[138] W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. TRAVOS: trust and

reputation in the context of inaccurate information sources. Autonomous Agents

and Multi-Agent Systems, 12(2):183–198, 2006.

[139] R. Tian and X. Lan. E-commerce concerns: Cross-cultural factors in internet

marketing. In International Conference on Electronic Commerce and Business

Intelligence, pages 83–86, 2009.

[140] S. Toivonen, G. Lenzini, and I. Uusitalo. Context-aware trust evaluation func-

tions for dynamic reconfigurable systems. In Models of Trust for the Web Work-

shop, 2006.

[141] T. Tran and R. Cohen. Improving user satisfaction in agent-based electronic

marketplaces by reputation modelling and adjustable product quality. In In-

ternational Joint Conference on Autonomous Agents and Multiagent Systems,

pages 828–835, 2004.

[142] M. Uddin, M. Zulkernine, and S. Ahamed. CAT: A context-aware trust model

for open and dynamic systems. In ACM Symposium on Applied Computing,

pages 2024–2029, 2008.

[143] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applica-

tions. Knowledge Engineering Review, 11:93–136, 1996.

[144] S. d. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Psaila, and P. Samarati.

Integrating trust management and access control in data-intensive web applica-

tions. ACM Transactions on the Web, 6(2):6:1–6:43, 2012.

[145] L.-H. Vu, M. Hauswirth, and K. Aberer. QoS-based service selection and rank-

ing with trust and reputation management. In International Conference on Co-

operative information system, pages 466–483, 2005.



202 Bibliography

[146] X. F. Wang, L. Liu, and J. Su. RLM: a general model for trust representa-

tion and aggregation. IEEE Transaction on Service Computing, 5(1):131–143,

2012.

[147] Y. Wang and L. Li. Two-dimensional trust rating aggregations in service-

oriented applications. IEEE Transactions on Service Computing, 4(4):257–271,

2011.

[148] Y. Wang, L. Li, and G. Liu. Social context-aware trust inference for trust

enhancement in social network based recommendations on service providers.

World Wide Web, pages 1–26, 2013.

[149] Y. Wang and E.-P. Lim. The evaluation of situational transaction trust in e-

service environments. In IEEE International Conference of Engineering and

Business Education, pages 265–272, 2008.

[150] Y. Wang and K.-J. Lin. Reputation-oriented trustworthy computing in e-

commerce environments. IEEE Internet Computing, 12(4):55–59, 2008.

[151] Y. Wang, K.-J. Lin, D. S. Wong, and V. Varadharajan. Trust management to-

wards service-oriented applications. Service Oriented Computing and Applica-

tions, 3(2):129–146, 2009.

[152] Y. Wang and M. P. Singh. Formal trust model for multiagent systems. In Inter-

national Joint Conference on Artificial Intelligence, pages 1551–1556, 2007.

[153] Y. Wang and V. Varadharajan. Trust2: Developing trust in peer-to-peer envi-

ronments. In International Conference on Services Computing, pages 24–31,

2005.

[154] Y. Wang and V. Varadharajan. Two-phase peer evaluation in p2p e-commerce

environments. In International Conference on e-Technology, e-Commerce and

e-Service, pages 654–657, 2005.



Bibliography 203

[155] Y. Wang and J. Vassileva. Toward trust and reputation based web service selec-

tion: A survey. Technical report, University of Saskatchewan, 2007.

[156] Y. Wang, D. S. Wong, K.-J. Lin, and V. Varadharajan. Evaluating transaction

trust and risk levels in peer-to-peer e-commerce environments. Information

Systems and e-Business Management, 6(1):25–48, 2008.

[157] Y. Wang, D. S. Wong, K. J. Lin, and V. Varadharajan. Evaluating transaction

trust and risk levels in peer-to-peer e-commerce environments. Information

Systems and e-Business Management, 6(1):25–48, 2008.

[158] L. Xiong and L. Liu. A reputation-based trust model for peer-to-peer ecom-

merce communities. In IEEE International Conference on E-Commerce, pages

275–284, 2003.

[159] L. Xiong and L. Liu. PeerTrust: Supporting reputation-based trust in peer-to-

peer communities. IEEE Transactions on Knowledge and Data Engineering,

16(7):843–857, 2004.

[160] Z. Yan, P. Zhang, and T. Virtanen. Trust evaluation based security solution in

ad hoc networks. In Nordic Workshop on Secure IT Systems, pages 933–939,

2003.

[161] J. Yang and J. Widom. Incremental computation and maintenance of temporal

aggregates. Very Large Databases, 12(3):262–283, 2003.

[162] B. Yu and M. P. Singh. A social mechanism of reputation management in elec-

tronic communities. In International Workshop on Cooperative Information

Agents IV, pages 154–165, 2000.

[163] B. Yu and M. P. Singh. An evidential model of distributed reputation manage-

ment. In ACM International Conference on Autonomous Agents and Multiagent

Systems, pages 294–301, 2002.



204 Bibliography

[164] G. Zacharia and P. Maes. Trust management through reputation mechanisms.

Applied Artificial Intelligence, 14(9):881–907, 2000.

[165] D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger. Temporal and spatio-

temporal aggregations over data streams using multiple time granularities. In-

formation System, 28(1-2):61–84, 2003.

[166] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and B. Seeger. Efficient

computation of temporal aggregates with range predicates. In ACM Interna-

tional Symposium on Principles of Database Systems, pages 237–245, 2001.

[167] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and B. Seeger. Efficien-

t aggregation over objects with extent. In ACM International Symposium on

Principles of Database Systems, pages 121–132, 2002.

[168] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and B. Seeger. On

computing temporal aggregates with range predicates. ACM Transactions on

Database Systems, 33(2):1–38, 2008.

[169] H. Zhang and Y. Wang. A novel model for contextual transaction trust compu-

tation with fixed storage space in e-commerce and e-service environments. In

IEEE International Conference on Services Computing, pages 667–674, 2013.

[170] H. Zhang, Y. Wang, and X. Zhang. Transaction similarity-based contextual trust

evaluation in e-commerce and e-service environments. In IEEE International

Conference on Web Services, pages 500–507, 2011.

[171] H. Zhang, Y. Wang, and X. Zhang. Efficient contextual transaction trust com-

putation in e-commerce environments. In IEEE International Conference on

Trust, Security and Privacy in Computing and Communications, pages 318–

325, 2012.

[172] H. Zhang, Y. Wang, and X. Zhang. A trust vector approach to transaction

context-aware trust evaluation in e-commerce and e-service environments. In



Bibliography 205

IEEE International Conference on Service Oriented Computing and Applica-

tions, pages 1–8, 2012.

[173] H. Zhang, Y. Wang, and X. Zhang. The approaches to contextual transaction

trust computation in e-commerce environments. Security and Communication

Networks, doi:10.1002/sec.839, Preprint, 2014.

[174] H. Zhang, Y. Wang, X. Zhang, and E.-P. Lim. ReputationPro: The efficient

approaches to contextual transaction trust computation in e-commerce environ-

ments. ACM Transactions on the Web, Submitted, 2014.

[175] H. Zhang and H. Zhang. A security enhancement scheme for image perceptual

hashing. In International Joint Conference on INC, IMS and IDC, pages 1445–

1448, 2009.

[176] H. Zhang, H. Zhang, Q. Li, and X. Niu. Predigest watson’s visual model as

perceptual hashing method. In International Conference on Convergence and

Hybrid Information Technology, pages 617–620, 2008.

[177] J. Zhang. A survey on trust management for vanets. In IEEE International

Conference on Advanced Information Networking and Applications, pages 105–

112, 2011.

[178] H. Zhao and X. Li. Vectortrust: Trust vector aggregation scheme for trust man-

agement in peer-to-peer networks. In IEEE International Conference on Com-

puter Communications and Networks, pages 1–6, 2009.

[179] X. Zheng, Y. Wang, and M. A. Orgun. Modeling the dynamic trust of online

service providers using HMM. In International Conference on Web Services,

pages 459–466, 2013.

[180] R. Zhou and K. Hwang. Powertrust: A robust and scalable reputation system for

trusted peer-to-peer computing. IEEE Transactions on Parallel and Distributed

Systems, 18(4):460–473, 2007.



206 Bibliography

[181] C. Zouridaki, B. L. Mark, M. Hejmo, and R. K. Thomas. Robust cooperative

trust establishment for manets. In ACM Workshop on Security of Ad Hoc and

Sensor Networks, pages 23–34, 2006.


