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Abstract

With the rapid increase in the amount of digital information that needs to be stored,

there has been a growing trend in recent times to store data in the cloud because of

the benefits it provides such as on-demand access and scalability. Cloud data storage

raises the important security issue of how to control and prevent unauthorised access

to data stored in the cloud. Access control is required to specify who can create the

access policies as well as to determine the access mechanisms needed to control access

to the stored data. One well-known access control model is the role-based access control

(RBAC) model, which provides flexible controls and security management by having

two mappings, users to roles and roles to privileges on data objects.

We propose role-based encryption (RBE) schemes, which integrate cryptographic

techniques with RBAC models, to enforce RBAC policies for data stored in the cloud.

Using RBE schemes, the owners of data can encrypt it in such a way that only users

with appropriate roles as specified by the access policy can decrypt and view the

content of the data. We then describe the design of a secure RBE-based hybrid cloud

storage architecture as well as a practical implementation of the proposed RBE-based

architecture and its performance results.

In large-scale RBAC systems, decentralising the administration tasks is an impor-

tant issue as it is usually impractical to centralise the task of managing these users

and permissions, and their relationships with roles. We propose a cryptographic ad-

ministrative model AdC-RBAC to manage and enforce role-based access policies for

vii
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the RBE schemes in large-scale cloud systems. The AdC-RBAC model uses crypto-

graphic techniques to ensure that administrative tasks such as user, permission, and

role management are performed only by authorised administrative roles.

We have also demonstrated the suitability of the proposed RBE schemes and the

developed architecture in two practical applications, one involving secure data storage

in the cloud for a banking organisation and the other concerned with secure storage of

patient-centric health records in the cloud.

The issue of trust is critical in cloud storage systems and it is necessary to address

explicitly trust issues in the enforcement of access policies in cloud data storage as

often implicit assumptions are made that the various system entities behave properly.

We have developed trust models that can help to reason about the behaviour of users,

data owners and role managers, taking into account role hierarchy and permission

inheritance. We then describe the design of trust-enhanced secure cloud data storage

systems integrating trust models and RBE schemes, which reduce risk and improve the

quality of cloud storage services.
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1
Introduction

Cloud computing has attracted much attention in recent times because of its ability to

deliver resources such as computing and storage to users on demand in a cost effective

manner. Due to the continuous growth in the amount of digital information that needs

to be stored, there is a clear incentive for service providers to explore outsourcing of

users’ data to the cloud. Potentially there could be several benefits to storing data in

the cloud. The storage capacity of the cloud is almost unlimited, and users only need

to pay for the storage space that they use for their actual needs. Outsourcing data

to the cloud can also help to save the costs and efforts in storage maintenance tasks,

such as data backup and replication, disaster recovery and hardware maintenance.

Furthermore, cloud storage can provide a flexible and convenient way for users to

access their data from anywhere on any device.

There are different types of infrastructures associated with a cloud [4, 100]. A

1



2 Introduction

public cloud is a cloud that is made available to the general public, and resources are

allocated in a pay-as-you-go manner. A private cloud is an internal cloud that is built

and operated by a single organisation. A community cloud is a cloud shared between

several organisations from a specific community, and a hybrid cloud is a composition

of two or more of the above described types of clouds. Since the public cloud is the

most widely used infrastructure for data storage, in this thesis, when we use the word

cloud, we are referring to the public cloud unless explicitly specified.

Though cloud storage has many benefits, it raises several important security issues.

Since data in the cloud is stored in one or more data centres which are often distributed

geographically in different locations, users do not know where their data is stored and

there is a strong perception that users have lost control over their data after it is

uploaded to the cloud. As the cloud is an open platform, and can be subjected to

malicious attacks from both insiders and outsiders, the need to protect the privacy and

security of the data in the cloud becomes a critical issue.

An important security aspect when data is stored in the cloud is who is able to

access and view it. In order to allow users to control the access to their data stored

in a cloud, suitable access control policies and mechanisms are required. The access

policies must restrict data access to only those intended by the data owners (users who

own the data). These policies need to be enforced by the cloud. In many existing cloud

storage systems, data owners have to assume that the cloud providers are trusted to

prevent unauthorised users from accessing their data. However, a data owner may not

wish the cloud provider itself to view and access the data that is being stored in the

cloud. Typically when we refer to a cloud provider, it can include several or many

employees of the cloud provider organisation. The greater the sensitivity of the data

stored in the cloud, the more stringent are the data owners’ security requirements on

the access to data.
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1.1 Motivation

One common approach to protect the security and privacy of data stored in a cloud

is using access controls. In traditional access control systems, enforcement of access

policies is carried out by trusted parties, which are usually the service providers them-

selves. In a public cloud, as data can be stored in distributed data centres, there may

not be a single central authority which controls all the data centres. Furthermore the

administrators of the cloud provider themselves would be able to access the data if it

is stored in plain format. One potential solution to these problems is for the users to

employ cryptographic techniques to encrypt their data before storing it in the cloud.

Data owners can encrypt the data in such a way that only users who are allowed to

access the data as specified by the access policies are able to decrypt it. We refer to this

approach as a policy-based encrypted data access. The authorised users who satisfy

the access policies will be able to decrypt the data using their private keys, and no one

else can reveal the data content. Therefore, the problem of managing access to data

stored in the cloud is transformed into the problem of management of keys which in

turn is determined by the access policies.

A trivial solution to control the access to stored data in a cloud is that the users can

employ a symmetric key encryption scheme to encrypt the private data and distribute

the decryption key to the users, with whom she or he wishes to share the data, via

a secure channel. However, in the real world, there could be a large number of data

owners1 who may want to store their private data in the cloud as well as a large number

of users who may want to access the stored data. If a user needs to obtain a key for

each owner who wants her or him to access the private data, the number of keys that

each user needs to keep could become very large. Furthermore, when the owner wants

to revoke the permission from existing users, a new key needs to be distributed to all

the other users who have not been revoked to decrypt any future message. This would

lead to significant inefficiencies in the implementation of a large-scale system and cause

poor performance. Therefore, more sophisticated methods of handling access control

1Data owners and users could be ordinary individuals or enterprises or government organisations.
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structures are required to simplify security management.

Many access control models have been proposed over the years in the literature.

One well-known access control model is the role-based access control (RBAC) model.

The central notion of RBAC is that permissions are associated with roles, and users

are assigned to appropriate roles. For instance, users are assigned membership to roles

based on their responsibilities and qualifications in the organisation. RBAC provides

a valuable level of abstraction to promote security management at business function

level of an enterprise rather than at the user identity level. It is able to provide a more

flexible approach to the management of the users and permissions in contrast to the

traditional mandatory access control (MAC) and discretionary access control (DAC),

especially when it comes to large-scale systems.

Since users are not assigned permissions directly, similar or related permissions can

be grouped together and linked to a role. Hence the issue of granting permissions

to users is transformed into the issue of assigning appropriate role(s) to users. This

approach not only helps to reduce the effort in mapping the users and permissions,

but also separates the operations of the individual users from those of the permissions,

which makes the security management in access control systems easier and simpler.

Another important feature of RBAC models is role inheritance; that is, roles can

inherit permissions from other roles in RBAC models. For example, if role A inherits

all the permissions associated with role B, users who are members of role A will be able

to access all the permissions that role B has. Role A is referred to as an ancestor role

of role B, and role B a descendent role of role A. This hierarchical structure simplifies

the task of organising and managing access.

In this thesis, our aim is to propose a comprehensive solution to address security

issues in cloud data storage systems using RBAC models to protect data privacy. We

have developed secure access controls and trust models for encrypted data storage in a

cloud, and have designed architecture for a trust enhanced secure cloud storage system

by integrating these proposed models. Based on the designed architecture, we have

built and implemented a practical system that can provide secure data storage services

in a cloud.
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1.2 Problems and Challenges

The security architecture of a distributed system usually consists of three processes:

authentication, authorisation and accounting. To consider a secure cloud storage sys-

tem, it is necessary to address all these processes. Let us now look at the issues in each

of these processes, in the context of using RBAC in a cloud storage system.

Before enforcing access control, in general it is necessary to determine the identity

of a user who requests access to a resource. The process of authentication involves

verification of the identity of a user that it is who it claims to be. Typical authentication

methods include passwords and tokens such as smart cards, and biometrics such as iris

scans and fingerprints. When a user registers in a system, the administrator of the

system will authenticate the user’s identity before it allows the user to access the

system. We assume that standard authentication mechanisms are available which can

be performed by the system to identify the user. Similarly, before a user is included

into a role, the manager of the role will need to authenticate the user in order to

ensure that the user qualifies for the role. We do not consider the authentication

mechanisms between role managers and users; we assume that such mechanisms exist

and the role managers will grant role membership only to appropriately qualified users

in the system. Since the authentication in the RBAC models can be the same as

in other systems, we assume that the systems which we consider will use standard

authentication mechanisms for the entities to authenticate each other. In this thesis,

we focus on the authorisation and accounting services in a cloud.

Authorisation or access control refers to a set of security policies which define

the users’ permissions to access resources in the system. We will use access control

and authorisation interchangeably in this thesis and will not enter into a detailed

discussion of the differences between these two terms. Accounting typically comes once

the resources have been accessed. Access statistics can be used for different purposes

such as authorisation control, trend analysis, and capacity planning, which in turn can

then be used to further improve security services.

In a cloud data storage system, data owners may wish to specify the policies as to
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who can access their data and cloud providers are required to correctly enforce these

policies. In order to enable the enforcement of the specified access control policies

before putting the data into the cloud, the data owners can encrypt the data in such

a way that only the users that satisfy the access policies specified by the owners are

able to decrypt and access the data. No one else (unqualified users) should be able to

reveal the data content. This restriction also applies to the cloud provider itself. That

is, the cloud provider itself is subjected to these access controls, thereby ensuring that

it does not have access to stored data in its own cloud without the explicit granting of

the access privilege by the data owner.

Therefore, to enforce role-based access policies in cloud storage systems, a crypto-

graphic solution is needed to prevent unauthorised access to stored data in the cloud.

This cryptographic solution should meet the following high level requirements.

Secure The basic requirement of a cloud storage system is that it should protect

the security and privacy of the data stored in the cloud. The system should allow data

to be encrypted in such a way that only users, who are allowed by the access policies,

can decrypt the data. No one else, including the cloud providers themselves, should be

able to reveal the data content.

Flexible Using cryptographic techniques to restrict access control in cloud storage

systems transforms the problem of managing access to stored data in the cloud into

the problem of managing keys for decrypting the data. The proposed solution should

be flexible in terms of both user management and key management when using RBAC

models in cloud storage systems.

• The administrator of the system should have the ability to delegate user manage-

ment operations to the managers of individual roles. That is, the role managers

can add/revoke users to/from the role without the need to get the administrator

involved.

• In addition, the user management operations of a role manager should not affect

users and any other roles in the system. Otherwise, user management operations

could become inefficient, especially when there are a large number of users and
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roles in the system.

• When a user belongs to multiple roles at the same time, the user should be able

to use the same key regardless of the number of the roles that she or he belongs

to. This brings in the benefit that a user does not need to update the key when

her or his role membership changes.

• When the user membership of a role changes, the manager of the role should not

need to inform any user of the role about the changes. That is, the role manager

should be able to change the user membership without affecting other users in

the role.

Efficient A practical cloud storage system should provide good user experience.

The better the user experience, the greater the number of users who will be attracted to

use the service. We consider the practical ease of use and the computational efficiency

of the cloud storage system from two different aspects.

• The setting up of the system should not lead to a significant increase in cost,

which is over and above the cost associated with defining RBAC policies. This

would be extremely useful when the system has a complex role-based access

structure, and when the access policies are often dynamically changed.

• The algorithms involved in carrying out the normal operations of the system

should be computationally efficient; this is especially necessary in large-scale

systems with a large number of users and roles.

A cryptographic RBAC scheme is a cryptographic approach which integrates an

encryption scheme with a RBAC model to enforce the access policies in an untrusted

environment. The cryptographic RBAC scheme allows the data to be encrypted to a

specific role in the system, and only users who are members of this role, or members

of roles that inherit from this role, would be able to access the data by decrypting

it. This approach allows data to be encrypted before storing it in an untrusted cloud

environment and the stored ciphertext can only be decrypted by those who are allowed

by the access policies. Several cryptographic RBAC schemes have been developed to
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enforce role-based access policies on outsourced data [126, 150]. However, each of these

schemes has some problems and none of them satisfies all the requirements mentioned

above.

Defining the access policies for large-scale systems is often a time-consuming and

error-prone task. In small RBAC systems, a central authority is able to manage users

and their permissions. However in large-scale RBAC systems, which have a large num-

ber of roles, users and permissions, it becomes impractical to centralise the task of

security management with a small group of security administrators. Therefore, de-

centralising the administration tasks of RBAC systems is a critical design issue when

developing large-scale role-based systems. Though several administrative RBAC (AR-

BAC) models have been developed to achieve decentralised administration of privileges,

they are not compatible in managing cryptographic RBAC based systems. Secure en-

forcement of the administrative polices in ARBAC models to manage cryptographic

RBAC systems poses significant challenges. In this thesis, we will be addressing not

only the design of cryptographic RBAC schemes but also the decentralised adminis-

tration of privileges in large-scale cryptographic RBAC systems.

Enforcing RBAC policies using cryptographic approaches ensures that only users

with specific roles that are allowed by the data owners can decrypt the data. It is

worth noting that the security of a RBAC system using this approach is under the

assumption that all the entities behave in a trusted manner so they do not breach the

RBAC policies. However, for example, in a cloud storage system that uses RBAC to

control the access to the data, an authorised user of the system may leak the data in

the cloud to unauthorised users; or an authorised user may be excluded by a malicious

administrator of the system from accessing the permissions of the role that have been

legitimately assigned to the user. Such issues relate to aspects of trust in these systems.

Trust plays an important role in the accounting process. Based on the analysis of

data access history, a trust model can assist in evaluating the trustworthiness of the

entities in the system. By utilising the trust evaluation model, the administrator of a

system can exclude untrusted entities from the system. Furthermore, one entity in the

system can determine whether it is safe to have interactions with another entity. There
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have been some works [36, 53, 125] which have addressed only the trustworthiness of

users in RBAC systems. These trust models assist the RBAC systems in determining

the access privileges of users based on their behaviour history. However, there is no

existing trust model which considers the trust of the RBAC systems themselves. Trust

models are also needed to assist data owners and users to determine the trust of the

RBAC system when interacting with it. In addition, considering role hierarchies in the

trust models and their evaluation poses significant challenges. In this thesis, we will be

developing a comprehensive trust model for cryptographic RBAC systems addressing

the various aspects of trust such as users’ trust on the RBAC system, RBAC system’s

trust on the users as well as trust within the RBAC hierarchy.

1.3 Contributions

In this thesis, we propose a comprehensive solution for building a secure RBAC-based

cloud storage system. The proposed solution addresses the security issues in the au-

thorisation and accounting processes of a cloud storage system.

1. We propose three generic constructions of cryptographic RBAC schemes by using

ID-based broadcast encryption (IBBE) techniques. We refer to these new con-

structions as Role-based Encryption (RBE) as it involves the use of cryptography

with RBAC to simplify security management while ensuring the enforcement of

access policies and the schemes are built directly on RBAC policies. We formalise

the definition of the role-based encryption (RBE) scheme based on the security

requirements of a RBAC-based cloud storage system. Our constructions show

that IBBE techniques can be used in different ways to build RBE schemes with

different features. The constructed RBE schemes allow the owner of data to spec-

ify a set of roles to which she or he wishes to grant the permission for accessing

the data, and encrypt the data in such a way that only the users in these roles

can decrypt and view the plain data. In addition, these constructions are able to

deal with role hierarchies, whereby roles can inherit permissions from other roles.

We further discuss the differences in these RBE constructions, and describe the
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suitable scenarios for using individual constructions based on the advantages of

each of them.

2. We propose a specific RBE scheme using a broadcast encryption mechanism

described in [48]. This scheme provides a concrete cryptographic solution to

enforce the RBAC policies on data that is stored in a public cloud. Apart from the

features that the generic constructions have, the proposed scheme has additional

advantages, such as, that the size of the ciphertext and the size of the decryption

key that the user needs to keep are constant, and a user can be revoked from a

role without affecting the owners and other users of the same role. We conduct

a detailed security analysis of the proposed RBE scheme, and prove that the

scheme is secure against adaptive attacks. Our RBE scheme has several superior

characteristics compared to others which have been previously proposed such as

constant size ciphertext and decryption key, efficient user revocation and user

management, and the ability to handle role hierarchies. We also consider design

aspects that can be optimised to achieve efficient implementation. We believe

that the proposed scheme is suitable for large-scale systems, especially in the

context of achieving user centric secure information storage in a cloud computing

environment.

3. We then investigate the design of the secure cloud architecture. We first propose

an improved RBE scheme with more efficient user revocation. With the improved

RBE scheme proposed, there is an assumption that the cloud infrastructure will

faithfully execute the scheme. The improved scheme also requires the cloud to

return the up-to-date role hierarchy information. We then introduce a secure

cloud data storage architecture based on a hybrid cloud infrastructure to over-

come the weaknesses of collusion and the timeliness of role hierarchy information

mentioned above. This hybrid cloud architecture is a composite of private cloud

and public cloud, where the private cloud is used to store only the organisation’s

sensitive structure information such as role hierarchy and user membership in-

formation, and the public cloud is used to store the actual data that is in the
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encrypted form. In this architecture, users who wish to share or access the data

only interact with the public cloud; there is no access for public users to the pri-

vate cloud, which greatly reduces the attack surface for the private cloud. This

architecture not only dispels the organisation’s concerns about risks of leaking

sensitive information about its structure, but also takes full advantage of the

public cloud’s capacity to securely store large volume of data.

We develop a secure cloud storage system using the improved RBE scheme and

the hybrid cloud architecture. Our implementation strategy allows outsourcing

part of the decryption computation to the cloud, in which only public parameters

are involved; the same strategy also improves the efficiency of user membership

management. The most frequently used system operations such as encryption

of data by a data owner, decryption of data by a cloud user are benchmarked.

The result shows that the encryption and decryption time for a given data size

is constant regardless of the number of roles and users that have access to the

data. Since part of the decryption computation is outsourced to the cloud, the

cloud’s decryption time increases with the growth in the number of users in the

role to which the decryptor belongs. We optimise the implementation of the

decryption algorithm and show that the cloud’s decryption time can be reduced

by increasing the processor cores. Hence when deployed in a cloud, depending

on the scale of the system, our architecture can be tailored to achieve the desired

response time by adjusting the number of virtual processor cores.

4. To simplify the administration in a large-scale RBAC system, several admin-

istrative RBAC (ARBAC) models have been developed to decentralise the ad-

ministration privileges. A common feature of these models involves managing a

RBAC system using RBAC itself. The administration privileges are decentralised

to a set of administrative roles in these models, and administrative policies are

specified to limit the privileges of administrative roles.

In order to manage and enforce administrative policies for RBE schemes in large-

scale cloud systems, we first introduce a variant RBE scheme in which the role



12 Introduction

management operations can be decentralised, and we then propose a crypto-

graphic administrative model AdC-RBAC. We show how the proposed model can

be used in an untrusted cloud while guaranteeing its security using cryptographic

access control enforcement techniques for the proposed variant RBE scheme. The

AdC-RBAC model uses cryptographic techniques to ensure that the administra-

tive tasks such as user, permission and role management are performed only by

authorised administrative roles. Any other party, including the cloud providers

themselves, cannot change the RBAC systems and policies. We describe three

components in this model: UAM for user membership management, PAM for

permission management, and RAM for role management.

5. RBAC has been widely used in many systems to provide users with flexible access

control management. Depending on which party specifies the access policies, the

cloud storage systems can be categorised into two different types: admin-centric

and user-centric. In an admin-centric system, access permissions are managed

by administrators of the system, and all the resources are created and owned by

administration team of the storage system. A user-centric system allows data to

be managed by individual users who own the data. Users store their own data

in the storage system, and specify the access policies as to who can access their

data.

We discuss application examples from both these two different types of systems

and show how our proposed system can be used to protect the data privacy

in cloud storage systems. In the admin-centric case, we describe the example

of an end user banking organisation which uses a RBAC model to control the

documents distribution through a cloud platform. For the user-centric case, we

discuss the popular scenario where RBAC models are used for storing and sharing

of health information. In this case, we consider a patient-centric cloud storage

system for personal health records (PHR) data. In both examples, we show how

our proposed RBE scheme can enhance the security and privacy of the cloud

storage system.
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6. Use of the proposed RBE schemes in a cloud storage system can ensure that the

stored data is secure under the assumption that all the entities are trusted to

behave properly. However, this may not be true in some cases. For example,

from a data owner’s perspective, a misbehaved role manager may refuse to give

the access permission to the owner’s data to a user even though the user qualifies

for the role, or a malicious qualified user may leak an owner’s data to other

unauthorised users.

We propose trust models which can be used to enhance the security of the stored

data in cloud storage systems that use the proposed RBE schemes. The trust

models provide an approach for the owners and role managers to determine the

trustworthiness of individual roles and users respectively. The data owners can

use the trust models to decide whether to store their encrypted data in the cloud

for a particular role. The roles can use the trust models in their decision to ensure

that only users with good behaviour are granted memberships to the roles. The

proposed trust models take into account role inheritance and hierarchy in the

evaluation of trustworthiness of roles. In addition, we present the design of a

trust-based cloud storage system which shows how the proposed trust models

can be integrated into a system that uses RBE schemes.

7. Considering the trust of the RBAC systems from the user’s perspective, a ma-

licious role manager may refuse to grant the role membership to a user even if

the user qualifies for the role, or data assigned to a role from an owner could be

infected with virus. We propose trust models for users to address the missing

aspect of trust in RBE schemes to improve the decision making for entities (users

and role managers) in the cloud system. The proposed trust models can assist

(i) the users to evaluate the trust on the roles in a RBAC system and use this

trust evaluation to decide whether to join a particular role or not, and (ii) the

role managers to evaluate the trust on the data owners in the RBAC system and

use this trust in the decision to accept data from an owner. These trust models

can not only prevent users from joining roles which have bad historical behaviour
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in terms of sharing poor quality resources or misleading users on the content of

resources, but also assist the role managers to identify the malicious owners who

have caused bad impact on the roles’ trustworthiness.

1.4 Structure of the Thesis

The thesis is organised as follows.

Chapter 2 briefly reviews several well-known access control models and the crypto-

graphic approaches which can be used to enforce access policies for these access control

models on outsourced data. It extends the discussion on RBAC models and presents

several existing cryptographic schemes in literature for access policy enforcement in

RBAC models. Then it reviews the concept of trust management, and describes sev-

eral different types of trust models including the Bayesian trust model which will be

used to build trust models later in the thesis.

Chapter 3 defines the formulation and the security properties of role-based en-

cryption (RBE) schemes. It gives three generic RBE constructions by making use

of ID-based broadcast encryption schemes, and analyses the security of these RBE

constructions. Parts of the chapter appear in [143].

Chapter 4 proposes a specific RBE scheme using an ID-based broadcast encryption

mechanism (described in [48]). It describes the security analysis of the proposed scheme

and derives proofs showing that the proposed scheme is secure against attacks. It also

analyses the efficiency and performance of the proposed scheme and shows that it has

superior characteristics compared to other previously published schemes. Parts of the

chapter have been published in [142].

Chapter 5 proposes an improved RBE scheme which has an efficient user revocation.

Based on the proposed scheme, it presents a secure RBE based hybrid cloud storage

architecture which allows an organisation to store data securely in a public cloud,

while maintaining the sensitive information related to the organisation’s structure in

a private cloud. It describes a practical implementation of the proposed RBE based

architecture, and discusses the performance results. Parts of the chapter have been
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published in [141].

Chapter 6 proposes a cryptographic administrative model, AdC-RBAC, to manage

and enforce role-based access policies for RBE schemes, and shows how the AdC-

RBAC model decentralises the administrative tasks in a variant of the RBE scheme in

Chapter 5, thereby making it practical for security policy management in large-scale

cloud systems. The AdC-RBAC model consists of three components, namely the User

Administration Model (UAM), the Permission Administration Model (PAM), and the

Role Administration Model (RAM). Parts of the chapter appear in [147, 145].

Chapter 7 considers two application scenarios where the proposed RBE schemes

can be used to protect the security and privacy of the data stored in cloud systems. It

describes an admin-centric banking system which uses RBAC model for the purpose

of sharing documents using the cloud, and a user-centric healthcare system that uses

RBAC model to manage patient health records stored in the cloud. It shows how the

RBE schemes can be used to provide solutions to both these example applications to

share data flexibly and protect the sensitive data from being accessed by unauthorised

parties.

Chapter 8 proposes the trust models for securing data storage in cloud storage

systems that are using RBE schemes. The trust models provide an approach for the

owners and roles to determine the trustworthiness of individual roles and users respec-

tively. In addition, it presents a design of a trust-based cloud storage system which

shows how the trust models can be integrated into a system that uses RBE schemes.

It also describes the relevance of the proposed trust models by considering practical

application scenarios and illustrates how the trust evaluations can be used to reduce

the risks and enhance the quality of decision making by data owners and roles of cloud

storage service. Parts of the chapter have been published in [144].

Chapter 9 proposes the trust models for the users and roles to determine the trust-

worthiness of individual roles and owners in cloud storage systems that are using RBE

schemes. It presents architecture of a trust-based cloud storage system and discusses

an application of the proposed trust models to show how the trust models can be used

to enhance the security decision making processes. Parts of the chapter have been
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published in [146].

Chapter 10 summarises the contributions and discusses some possible further work

that can be carried out in the future.



2
Background

In a cloud storage system, depending on the security requirements, access policies can

be specified in many different ways which can be classified as different access control

models. This chapter first reviews several well-known access control models, and then

discusses the cryptographic approaches which can be used to secure the data storage

in the systems that use these access control models. Following that, several specific

cryptographic approaches for the RBAC models are further discussed. Then we review

the concept of trust models and describe several commonly used probabilistic models.

This chapter is organised as follows. Section 2.1 briefly describes four well-known

access control models. In section 2.2, we discuss the existing cryptographic approaches

which can be used to enforce access control policies in there access control models.

Section 2.3 extends the discussions on cryptographic RBAC schemes, and reviews sev-

eral cryptographic schemes which can be used for RBAC models. In section 2.4, we

17
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review the concept of trust models and describe the Bayesian trust model. Section 2.5

concludes the chapter.

2.1 Access Control Models

Access control has been widely used by data storage systems in the evaluation of

whether a user has access to a particular resource in the system. In a storage system,

the stored data needs to be protected from unauthorised access, and the system is

expected to control the access to the data according to specific security context and

policies that are defined for the storage system. In access control models, the entities

that perform the access are referred as subjects, and the resources to be accessed are

called objects. Depending on the way that the security policies are specified, access

control can be categorised into different models. We first briefly describe several well-

known access control models as follows.

2.1.1 Mandatory Access Control (MAC) Model

In a system that uses the mandatory access control (MAC) model, access policies

are specified by a central security administrator in the system. There is no concept of

individual ownership in the MAC model; all resources are controlled by the system and

subject to the MAC policies, and the central administrator(s) decides who can access

the resources in the system. Typically subjects (users) in the system are allocated

security labels, referred to as security clearances, and objects in the system are allocated

security labels, referred to as security classifications. To access a resource in a MAC-

based system, the subject must hold the proper security clearance required for that

resource with its security classification. The security policy defines rules on the security

labels, that is security clearances and classifications. If these rules are satisfied, then

the access is allowed.

MAC systems are developed based on the lattice-based access control introduced

in [51] where the security is classified into multiple levels and the information flow

among the different levels is determined by the mathematical structure of the lattice.
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The concept of mandatory access models has been developed and formalised by Bell

and Lapadula [11, 99], and the Bell-LaPadula model is the most widely used MAC

model. While the Bell-LaPadula model only assures confidentiality of information

flows, another model was developed by Biba [13] which deals with integrity only.

When using the MAC model in a commercial organisation, conflicts of interest may

arise if a single user simultaneously has access to information from two companies which

are direct competitors. The Chinese-wall policy (CWP) was developed by Brewer and

Nash [30] to prevent the occurrence of conflicts of interest in a MAC system. Sandhu

developed a scheme in which he shows how CWP is mapped to a lattice-based access-

control model [116, 117].

The MAC model is considered to be the strictest access control model, and it has

been widely used by the military and intelligence agencies to manage their classification

access restrictions. However, there are some limitations of the MAC model. Firstly,

implementing a MAC system requires significant amount of efforts and expenses due

to the reliance on trusted components. After a MAC system is implemented, the

overheads to maintain the system can also be very high as the security labels in the

system need to be updated for any change in the categorisation and classification of

entities in the system.

2.1.2 Discretionary Access Control (DAC) Model

Discretionary access control is a user-centric access control model. It implements a

generalised form of access control known as the access-matrix model. This model uses

an access matrix for specifying access policies. The concept of the access matrix was

introduced in [89, 90], followed by the works in [68, 67]. The access matrix model

consists of three types of components, subjects, objects, and access rights. The two-

dimensional matrix represents protection states by having a row for every subject, a

column for every object, and a flag to indicate the protection state. When a subject

requests a resource/object in a DAC system, the system simply looks up the access

matrix for both the subject and the object, and grants the access if the flag indicates

“allowed”.
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In contrast to the MAC model, resources in the system governed by the DAC

model have owners. These owners have the control over the access permissions to the

resources and can determine which users are allowed to access their resources. Since the

access permission to a resource is solely specified by its owner, defining security access

policies in a DAC model can be easy to implement and hence common in practice.

For example, it has been integrated into UNIX operating systems to specify file access

permissions where each file can have a set of three permissions, read, write, or execute,

to be granted to either a user, group, or others.

A primary benefit of using the DAC model is enabling fine-grained control over

system objects. However, the size of the access control matrix can be very large when

there are a large number of subjects and objects, as it creates a row and a column for

each subject and object respectively. A large amount of space would be wasted espe-

cially when the matrix is not dense, for example, when most of the access permissions

are set to “disallowed”, and the lookup in the matrix would also be expensive in such

a case. Thus, DAC access settings are usually stored as either file permission modes

such as on UNIX or as access lists instead of a matrix.

Although the DAC model provides huge flexibility for users to specify access control

policies, it has several limitations. Since individual users can define the access policies

on their data regardless of whether the policies would be inconsistent with the global

policies specified by the system, it is very difficult for the system to conduct high level

management of the access policies in the system. In addition, the DAC model allows

information in one object to be copied to another. Hence, even if the owner of an

object does not want to give access to the object to a subject, the subject may still

access the object from a copy of it.

2.1.3 Attribute-based Access Control (ABAC) Model

Since the late 1990s, attribute-based access control (ABAC) has emerged with the

development of distributed systems. In ABAC models, access permissions to resources

are assigned to a set of attributes instead of individual users. Users who satisfy the

attributes set can access the resource. In ABAC models, attributes are associated with
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characteristics of users. The attributes do not necessarily need to relate to each other,

and the access policies are defined using a combination of attributes with certain logical

relations where a policy can be combined by unlimited number of attributes.

ABAC has been described in various ways [130, 137, 46], and it plays an impor-

tant role in service-oriented architecture (SOA) and has been used as a standard in

web service security specification such as extensible access control markup language

(XACML) [106] and security assertion markup language (SAML) [107].

An ABAC system can provide an efficient administration. ABAC allows an access

policy to be specified without prior knowledge of a specific subject and there is no limit

on the number of subjects that can require access. A major difference between ABAC

and other access control models is that the administrator who defines the access policies

does not need to specify the capabilities of each individual subject directly. The access

control decision is made when a subject makes a request to access a resource in the

system. The ABAC model evaluates the attributes set of the subject and grants the

access if they satisfy the access policy.

On the other hand, the development and maintenance cost can be higher than

simpler access control systems due to the complexity in building an authorisation in-

frastructure, a large number of subject attributes, as well as additional system support.

A careful design requires balancing between the cost of risk and the cost of security.

Some systems may have the requirement to periodically review the capabilities associ-

ated with subjects and access control entries associated with objects. Since the access

each subject has is determined only when it makes a request, the overhead to conduct

these audits can be very high as the system may need to get every object owner to run

a simulation of the access control request for every known subject in the system.

2.1.4 Role-based Access Control (RBAC) Model

With role-based access control, access decisions are based on the roles that individual

users have been assigned to. Users are granted membership to roles based on their

competencies and responsibilities in the organisation. Access rights are grouped by
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role name, and the use of resources is restricted to individuals authorised to the asso-

ciated role. The use of roles to control access can be an effective means for developing

and enforcing enterprise-specific security policies, and for streamlining the security

management process. User membership in roles can be revoked easily and new mem-

berships can be established as needed. Role associations can be established when new

operations are required, and old operations can be deleted as organisational functions

change and evolve. This simplifies the administration and management of permissions;

roles can be updated without updating the permissions for every user on an individual

basis.

The RBAC model was formally introduced in 1992 [54]. In this model, a role can

inherit permissions from other roles. A user who has been granted membership to a

role has access to permissions of this role as well as other roles that this role inherits

permissions from. The RBAC model was extended and updated in 1996 [120], and the

RBAC standard was proposed in 2000 [118]. Four different variations of the RBAC

model are defined in [118], namely flat RBAC, hierarchical RBAC, constrained RBAC

and symmetric RBAC. The last two types are related to the administration of RBAC

systems, and hierarchical RBAC is a more general version of flat RBAC. So in this

thesis, when we use the term RBAC, we are referring to a hierarchical RBAC system.

RBAC provides a valuable level of abstraction to promote security management at

the business function level of an enterprise rather than at the user identity level. It is

able to provide a more flexible approach to management of users and permissions in

contrast to the traditional MAC and DAC models, especially when it comes to large-

scale systems. Since users are not assigned permissions directly, similar or related

permissions can be grouped together and linked to a role. Hence the issue of granting

permissions to users is transformed into the issue of assigning appropriate role(s) to

users. This approach not only helps to reduce the effort in mapping the users and

permissions, but also separates the operations on the individual users from those on the

permissions, which makes the security management in access control systems easier and

simpler. Another important feature of the RBAC models is the role inheritance; that

is, roles can inherit permissions from other roles in RBAC models. This hierarchical
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structure simplifies the task of organising and managing access even further.

RBAC and ABAC

RBAC and ABAC are similar, and it is easy to transform one model to the other.

RBAC can be used as an ABAC model by attaching the role names as attributes and

labels to the user members of each role and the objects that each role has permissions

to access respectively. An ABAC model can be used as RBAC by attaching attributes

to roles, but extra policies need to be specified to define the modes of accessing the

protected objects. A more common approach is to use attributes in RBAC models,

and a new RBAC standard [77] has been set which allows attributes to be used as

constraints for access control decisions, which could bring significant flexibilities to

existing RBAC models.

RBAC and ABAC are different, as they have their own advantages and disadvan-

tages. In a dynamic RBAC system, role management could be complex as constraints

may be required in a rapidly changing environment. Moreover, the permissions granted

to a user through roles need to be evaluated to determine if the permission assignment

will be allowed. ABAC provides a more flexible approach and uses objects’ label and

users’ attributes to control access instead of permissions. In addition, ABAC is suitable

for distributed environment as the attributes can be managed by different authorities.

However, attributes can be difficult to manage if there is a large number of them, and

it is usually impractical to audit which users have access to a given permission and

what permissions have been granted to a given user while auditing users’ permissions

is easy in a RBAC model.

2.2 Cryptographic Access Control Schemes

In traditional access control systems, enforcement of access policies is carried out by

trusted parties which are usually the service providers. In a public cloud, as data can

be stored in distributed data centres, there may not be a single central authority which

controls all the data centres. Furthermore, the administrators of the cloud provider
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themselves would be able to access the data if it is stored in plain format. To protect

the privacy of the data, data owners employ cryptographic techniques to encrypt the

data in such a way that only users who are allowed to access the data, as specified by

the access policies, will be able to do so. We refer to this approach as a policy-based

encrypted data access. The authorised users who satisfy the access policies will be able

to decrypt the data using their private keys, and no one else will be able to recover the

data content. Therefore, the problem of managing access to data stored in the cloud is

transformed into the problem of the management of keys, which in turn is determined

by the access policies.

2.2.1 Broadcast Encryption

A trivial solution to protect the privacy of data stored in cloud is to use a cryptographic

encryption scheme to encrypt the data before storing it in the cloud. This would allow

only the users who have access to the key(s) to decrypt the data and to view the data

in its plain form. The problem of achieving secure access to data stored in the cloud

is transformed into the problem of access to keys. This approach is suitable for MAC

and DAC models, whose access policies can be represented by an access control matrix

(ACM).

Table 2.1 shows an example of such an access control model. Let us assume that the

matrix is for a cloud storage system using a DAC model. The set {f1, f2, f3} represents

all the objects in the model, that is, say files stored in the cloud. The set {u1, u2, u3}

represents all the subjects, that is, the users who want to access these files stored in

the cloud. Each file in the model has an owner, and the owners have the flexibility to

control who can access the files. Each row in the matrix is a capability list (CL) of the

subject, and the column corresponding to each object is called an access-control list

(ACL) for that object. A snapshot of the access matrix represents a protection state

where 1 means “has access” and 0 indicates “no access”. It is clear that the owner of

each file can simply employ a secret key encryption scheme to encrypt the data and

distribute the secret key to the users with whom she or he wishes to share the data,

and store her or his resource in the encrypted form to the cloud. For example, the



2.2 Cryptographic Access Control Schemes 25

f1 f2 f3

u1 1 1 1
u2 0 1 0
u3 1 1 0

Table 2.1: Access Control Matrix Example

owner of the file f1 encrypts and uploads the file and gives the secret key to the users

u1, u3. Then only u1 and u3 can decrypt the file f1 because they possess the secret key

corresponding to the encryption, and no one else can recover the content of the file.

We require a secure way of achieving key distribution to these selected users, who have

the access to view the data according to the access control policies.

Since the secret key encryption requires different keys to encrypt different objects,

the number of keys will become large when there is a massive amount of resources in

the system. Therefore the owners may wish to use public key encryption techniques

to protect the privacy of their files as they can simply use the public keys of users to

encrypt data and do not need to transfer any key to users. However, if an owner uses

a public/private key pair to encrypt/decrypt the file, she or he may need to encrypt

the same file multiple times if she or he wants more than one users to access the file

because the public keys are different for different users. This will make the approach

impractical when there are a large number of users in the system. Fortunately, owners

can use broadcast encryption schemes to encrypt files in this scenario.

The concept of Broadcast Encryption (BE) was introduced by Fiat and Naor in

[56]. In BE schemes, a broadcaster encrypts messages and transmits them to a group

of users who are listening in a broadcast channel. Then they use their private keys to

decrypt the transmissions. While encrypting the messages, the broadcaster can choose

the set of users that is allowed to decrypt the messages. Following this original scheme,

many other BE schemes have been proposed [58, 65, 22]. These schemes require public

parameters for every user, and every time a user wants to join or leave the system, the

public parameters need to be updated.

In the example shown in Table 2.1, the owner of f1 can use a broadcast encryption

scheme to encrypt the file to both u1 and u3 using their public keys and uploads the
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encrypted file to the cloud. Then u1 and u3 will be able to decrypt the file using their

own private keys. This approach needs a public-key infrastructure (PKI) to manage the

public keys of all the users in the system. This is needed for the owners to ensure that

they are using the correct public keys to encrypt their files for the right users. However,

the system can be made even simpler by using ID-based cryptographic techniques.

In 1984, Shamir [123] suggested the possibility of a public key encryption scheme

in which the public key can be an arbitrary string. In 2001, Boneh and Franklin intro-

duced an ID-based encryption (IBE) scheme, in which the sender can use the identity of

the receiver as the public key to encrypt the messages. An ID-based broadcast encryp-

tion scheme (IBBE) is defined in a similar way. In an IBBE scheme, the system does

not need to have any pre-set parameters for every user, and a broadcaster only needs

to know the identity of the user if this user is allowed to decrypt the messages. In this

case, one user joining or leaving the system will not affect any other user. Moreover,

the users do not even need to have the decryption key at the time when the messages

were encrypted. They can obtain their keys afterwards. Several IBBE schemes have

been proposed subsequently [49, 23, 73].

Generally, an IBBE scheme involves three different parties: a Private Key Gener-

ator (PKG), the users with unique identities, and the broadcasters who possess the

messages. The PKG generates decryption keys for each authorised users based on her

or his identities. A broadcaster can encrypt messages to a selected group of users and

transmit the messages via a broadcast channel. The broadcaster uses only the public

key and users’ identities to encrypt the messages. More formally, an IBBE scheme is

composed of four algorithms which are described as follows:

IBBE .Setup(λ): takes as input the security parameter λ and outputs a master key mk

and a group public key pk. mk is given to PKG, and pk is made public.

IBBE .Extract(mk, ID): an algorithm executed by the PKG, on input of a user identity

ID and the master secret mk, returns the user private key skID.

IBBE .Encrypt(pk,U ,M): an algorithm executed by the broadcaster, on input of the

set U of identities of users to whom it wishes to encrypt the message M and
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the public key pk, outputs a pair {HdrU , KU}, where HdrU is called the header

and KU is in the key space of a symmetric encryption scheme Esym (that is, the

generated value KU can be directly used as a key of the encryption scheme Esym).

Assume that a broadcaster wishes to encrypt a message M to a group U of users

with identities {ID1, · · · , IDn}. Let E be the IBBE scheme and Ekeysym(M) be the

encryption of M using Esym under the secret key key. The ciphertext C is denoted

as:

C = EIBBE(M,U) = {HdrU , EKUsym(M)}

IBBE .Decrypt(pk, sk, C): an algorithm executed by the user to decrypt the ciphertext

on input of the user secret key sk and public key pk.

This algorithm has two steps: the first step takes as input the user secret key sk

and the header Hdr, and recovers the value K, and then the second step uses the

symmetric key K to decrypt M from EKsym(M).

Using an IBBE scheme, the owners of the files can encrypt their files using the

identities of the users with whom they wish to share the files and upload the encrypted

files to cloud. The certificate authorities in the system generate the private keys for

users in the system and distribute the private keys to users via a secure channel. The

private keys for users can be issued after the files have been uploaded to the cloud.

2.2.2 Attribute-based Encryption

Integration of cryptographic techniques with the ABAC model has led to a technique

called attribute-based encryption (ABE). In an ABE system, the access permission to

a resource is associated with a set of attributes and a security policy based on these

attributes. Only the users who hold the keys for the attributes are able to decrypt

the content. This feature allows ABE schemes to be used in protecting the privacy

of resources in a cloud storage system which uses the ABAC model to control access

privileges.

Goyal et al. [63] proposed the first ABE scheme, in which ciphertexts are labelled
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with sets of attributes and private keys are associated with access structures that

control which ciphertexts a user is able to decrypt. Hence this scheme is also referred

to as the key-policy ABE or KP-ABE. In the KP-ABE scheme, the owner of the data

does not have the control over who is allowed to access the data. The owner must

trust that the key-issuer who issues the appropriate keys will grant or deny access to

the appropriate users. Bethencourt et al. [12] introduced another form of ABE scheme

which works in the reverse manner where the user keys are associated with sets of

attributes and the ciphertexts are associated with the policies. Hence it is referred to

as the ciphertext-policy ABE or CP-ABE scheme. Both algorithms associated a set of

expressively descriptive attributes with tree-access structures to enforce access control

on the encrypted data, but how the keys and ciphertexts are associated with the access

policies works in a reverse manner. As a result, in the KP-ABE scheme, it is the key

distributor (usually the service provider), who decides the access policy, while in the

CP-ABE scheme, it is the encryptor (usually the data owner) who controls the access

over the encrypted data.

The access policies of a basic ABE are specified in a tree structure. Each leaf node

corresponds to an attribute defined in the system. Each non-leaf node represents a

threshold gate which connects its children attributes or threshold gates. We denote nx

as the number of child nodes that a threshold gate x has and kx as its threshold value

where 0 < kx ≤ nx. It is clear that the threshold gate is an OR gate when kx = 1 and

it is an AND gate when kx = nx. Verifying whether a set of attributes S satisfies the

access tree T is a recursive process. We denote T (x) = 1 if and only if the node x is

satisfied. When x is a leaf node, T (x) returns 1 if the attribute associated to the node

is in the set S. When x is a non-leaf node, T (x) returns 1 if at least kx child nodes are

evaluated as 1. Assume the root node of the access structure is r. The access tree is

satisfied if and only if T (r) = 1.

Let us look at an example shown in Figure 2.1. Assume that a recruitment agency

wants to store the profiles of its job candidates in the cloud so the information can

be easily shared with their client companies. Now the marketing department of a

company is looking for a salesperson, and they want to access the profiles from the
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HR Dept. Level > 3 

AND Manager 

OR 

Figure 2.1: Attribute-based Encryption Access Structure Example

recruitment agency. The recruitment agency specifies in its access policies for the

company that only the managers of the marketing department or staff from the HR

department whose level is greater than three can view the profiles. The recruitment

agency can use an ABE scheme to encrypt the suitable profiles and store them in the

cloud. Three decryption keys will be generated in this example for the three attributes

respectively, and they will be distributed to the employees who qualify the attributes.

The managers of the marketing department will be given the key for the attribute

“Manager”, all the staff in the HR department will be given the key for the attribute

“HR Dept.”, and only the staff whose levels are greater than three will be given the key

for the attribute “Level >3”. Then a staff of the company will be able to decrypt and

view the candidates’ profiles with the given keys if and only if the attributes associated

with her or his keys satisfy the access tree.

When using a KP-ABE scheme to encrypt resources, attributes are assigned to the

ciphertext in the encryption, and the policies for the access structure are associated

with the decryption keys when the keys are generated. It is the authority who generates

the keys that decides the access policies. In the above example, KP-ABE is suitable

in the scenario where the profiles of candidates will be shared with another client

company which has a different organisational structure. Then ciphertext of the profiles

are associated with the same set of attributes, but the decryption keys will be generated

separately under the different access policies of the other company.

In a CP-ABE scheme, the access policies are associated with the ciphertext and



30 Background

are specified in the encryption. Keys can be generated prior to the data encryption,

and remain unchanged when data is encrypted under different access policies. In the

above example, CP-ABE is suitable in the case where the profiles need to controlled

under different policies in the same client company. For example, the profiles of the

sales candidates are encrypted so that only the managers of the marketing department

can view them, and the profiles of the technician candidates are allowed to be viewed

only by the managers of the technical department. Then the employees of the client

company only need to hold a single key for an attribute even it is used in several

different access structures. The recruitment agency only needs to specify the different

access policies while encrypting different profiles.

A typical ABE scheme consists of following four algorithms: Setup, Encrypt, Key-

Gen, and Decrypt. However, the input parameters of the algorithms Encrypt and

KeyGen are different in KP-ABE and CP-ABE because the access structures are asso-

ciated with keys and ciphertexts respectively in these two types of ABE schemes. Let

us now describe the algorithms of an ABE scheme as follows:

ABE .Setup(λ): takes as input the security parameter λ and outputs a master secret key

mk and a public key pk. mk is kept secretly, and pk is made public.

KP -ABE .Encrypt(pk,M, S): an algorithm on input of the system public key pk, a mes-

sage M and a set of attributes S, outputs the ciphertext C. In this algorithm,

only the attributes are used in computing the ciphertext, and the access structure

of the attributes is not specified. Not all the attributes need to appear in the

access structure, but S needs to be the super set of all the attributes which will

be used in the access structure.

KP -ABE .KeyGen(pk,mk, T ): an algorithm on input of the system public key pk, master

secret key mk and the access structure T , outputs a set of decryption keys dk.

CP -ABE .Encrypt(pk,M, T ): an algorithm on input of the system public key pk, a mes-

sage M and the access structure T , outputs the ciphertext C.
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CP -ABE .KeyGen(pk,mk, S): an algorithm on input of the system public key pk, a mes-

sage M and a set of attributes S, outputs a set of decryption keys dk. Similar

to that in KP -ABE .Encrypt , the attribute set S is a super set of the attributes in

the access structure.

ABE .Decrypt(pk, dk, C): an algorithm on input of the system public key pk, the de-

cryption keys dk and the ciphertext C, outputs the message M in the plaintext

form.

In the above described ABE schemes, the access policy can only contain the logical

formula “and” and “or”, and threshold gates. Ostrovsky et al. [110] introduced a KP-

ABE scheme which allows “negative” constraints to be represented in access policies.

Additionally, Many CP-ABE schemes were proposed [39, 76, 52, 92, 131] which are

either chosen ciphertext attack (CCA) secure or built on different security assumptions.

Even though the KP-ABE and CP-ABE work in reverse manner, Goyal et al. [64]

provided a generic approach to transform a KP-ABE scheme into a CP-ABE one.

Malek and Miri combined the two ABE schemes into one system, and proposed a

balanced access control that allows both the service provider setting up system wide

access policies and the data owner setting up access structure to control the access

to their own data [98]. Further research on ABE is also discussed in [136, 139]. In a

dynamic system, access policies may differ from time to time, and user qualifications

may also change. Therefore, the ability to revoke attributes from a user is desired

in ABE systems. Several revocable ABE schemes [138, 113] were proposed where an

ABE system is able to revoke users from accessing encrypted data to which they used

to have access in the system.

In an ABE system, a user needs to authenticate to the key generation authority to

prove her or his identity to obtain the keys to decrypt the data. When using ABE in a

system where there is a large number of attributes, assessing the qualification of users

and generating decryption keys by a central authority is usually impractical. Multi-

Authority Attribute-Based Encryption (MA-ABE) was first proposed to address this

issue in 2007 [37]. In a MA-ABE scheme, attributes are divided into different sets, and
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each set can be managed by an independent attribute authority. Corresponding at-

tribute keys for decryption are issued by multiple attribute authorities, and encryptors

can specify an access policy that requires a user to obtain decryption keys for appropri-

ate attributes from different authorities in order to decrypt a message. Subsequently,

several other MA-ABE constructions were proposed [95, 38, 91].

2.2.3 Cryptographic RBAC Schemes

A cryptographic RBAC scheme is a cryptographic approach which integrates an en-

cryption scheme with RBAC models to enforce the RBAC policies in an untrusted

environment. The cryptographic RBAC scheme allows data to be encrypted to a spe-

cific role in the system, and only users who are members of this role or members of

roles that inherit from this role would be able to access the data by decrypting it. This

approach allows data to be encrypted before storing it in an untrusted cloud environ-

ment and the stored ciphertext can only be decrypted by those who are allowed by

the access policies. There have been many different types of approaches proposed to

consider the security issues for applying RBAC models to data outsourcing scenarios.

Akl and Taylor [1] introduced a hierarchical cryptographic access control scheme in

1983. Because of the similarity in structures between hierarchical access control and

RBAC, a hierarchical cryptographic access control scheme can be easily transformed

into a cryptographic RBAC scheme. MacKinnon et al. [97] proposed an improved

solutions to address a few weaknesses in [1]. Instead of using the top-down design

approach as in the above two schemes, Harn and Lin [66] presented a scheme using

a bottom-up key generating procedure. Since then, a number of approaches [93, 88,

94, 140, 40, 74, 133, 45] have been proposed using cryptographic techniques to enforce

access control policies, which are known as key assignment schemes.

The problem of access control for securely outsourcing data using cryptographic

techniques was first considered by Miklau and Suciu [102]. An improved scheme was

proposed by Vimercati et al. [127] to address access policy updates. Several crypto-

graphic access control approaches [5, 69, 151, 17] have been investigated to address

the problem of secure data access and cost effective key management in a distributed
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environment. Subsequently, a two layer encryption model was proposed [126] to pre-

vent a service provider from accessing the content of data, but the service provider is

able to run queries or perform other operations on the data for users who can decrypt

the data using their keys. The approaches that use similar mechanisms to enforce the

access control policies are further discussed in [114, 128]. However, these solutions have

several limitations. For instance, if there is a large number of data owners and users

involved, the overheads involved in setting up the key infrastructure can be very high.

Furthermore, when a user’s access permission is revoked, all the keys known to this

user as well as all the public values related to these keys need to changed, which makes

these schemes impractical in large-scale systems.

Hierarchical ID-based Encryption (HIBE) is an alternative approach for the man-

agement of keys. In the HIBE schemes [59, 20], a user with an identity in the hierarchy

tree can decrypt messages encrypted to its descendant identities, but cannot decrypt

messages encrypted to other identities. HIBE schemes can be easily used to enforce

access policies in RBAC models by associating the leaf nodes in the hierarchy tree with

users and non- leaf nodes with roles. However, there are several issues with the HIBE

schemes. Firstly, in a HIBE scheme, the length of the identity becomes longer with the

growth in the depth of hierarchy. Secondly, the identity of a node must be a subset

of its ancestor node so that its ancestor node can derive this node’s private key for

decryption. Therefore, this node cannot be assigned as a descendant node of another

node in the hierarchy tree unless the identity of the other role is also the super set of

this node’s identity.

Recently we have seen the development of schemes built directly on RBAC policies.

Zhu et al. [148] introduced a role-based encryption (RBE) scheme which considers

a hierarchical RBAC model and allows data to be encrypted in the way that only

users with appropriate roles can decrypt. However this scheme lacks the ability of

user revocation and the size of the ciphertext increases linearly with the number of all

the ancestor roles. Another RBE scheme was then proposed in [150]. In this scheme,

once again, the size of the ciphertext increases linearly with the number of all the

ancestor roles, and the encryption involves using the identity list of the revoked users.
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Figure 2.2: Hierarchical RBAC Example I

In addition, if a user belongs to different roles, multiple keys need to be possessed by

this user. Moreover, the management of the user membership for each individual role

requires the use of the system secret keys.

Now we show how a cryptographic RBAC scheme can protect the data privacy in

RBAC models by looking at a RBAC example. Assume that Figure 2.2 represents a

hierarchical role structure of a department in a company. The department has two

projects PL1 and PL2, and each project has two sub-roles PE and QE. The role PL

inherits permissions from both roles PE and QE within the project, and there is a

role DIR that inherits from both role PL1 and PL2. Now the department wants to

store confidential documents in the cloud and uses an cryptographic RBAC scheme to

encrypt the documents.

Initially, the administrator sets up the system structure, and generates the keys for

existing users, that is, the staff in the department. Assume one user in the role PL1

has created a document for project 1 and wants to upload it to the cloud for other

leaders of the project 1 to review. The user can simply encrypt the document to the

role PL1, and upload it to the cloud. Other users who are in the role PL1 can use their

own decryption keys to decrypt the document and review. Since the role DIR inherits

from the role PL1, the users in the role DIR who are the directors of the department

can also decrypt the document using their own decryption keys. Meanwhile, neither
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the users in the role PE1 and QE1, nor the users in the role PL2, PE2 and QE2 can

decrypt and view the document.

Mandatory Access Control (MAC) Model
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  F3 : U 
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(a) MAC example
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(b) Cryptographic MAC Model

Figure 2.3: Cryptographic MAC Model Example

In a MAC model, each resource (object) is associated with a security clearance,

and each user (subject) is assigned a clearance. The users are only allowed to access

the resources whose security classification level is lower than or equal to their clearance

level. We consider an example of a MAC model shown in Figure 2.3(a). The system

security classifications are defined as a set {Top Secret (TS), Secret (S), Confidential

(C), Unclassified (U)}. Three files (F1, F2, F3) in the system are associated with the

security classification (TS,C, U) respectively, and three users (U1, U2, U3) of the system

are assigned the (S,C,C). Because of the information flow control in MAC model, U1

can access files with the security level (S,C, U), and the users U2 and U3 can only

access files with the security level (C,U).

Now we transform the access policies into a hierarchical structure, and then use

a cryptographic RBAC scheme to enforce the MAC policies. The hierarchy is shown

in Figure 2.3(b), where we map the four security classifications to four different roles.

We organise the roles following the direction of the information flow propagation, and

let the role TS inherits from S, S inherits from C, and C inherits from the role U .
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Each file is then encrypted to the role that is associated to its security label using

a cryptographic RBAC scheme, and users are granted the membership of the roles

corresponding to their clearance levels. Then we can see that U1 can decrypt the files

encrypted to the role (S,C, U), and U2 and U3 can only decrypt the files encrypted to

the role (C,U). Hence the access policy enforced by the cryptographic RBAC scheme

is identical to the MAC policy specified in Figure 2.3 (a). Therefore, one can see that

we can use cryptographic RBAC schemes to enforce MAC policies. In general, the

cryptographic RBAC schemes are able to be used to enforce the policies of a more

complex lattice-based MAC model in a similar way to that we have described above.

2.3 Cryptographic RBAC Approaches

From the above description, we see that several types of cryptographic approaches can

be used in cryptographic RBAC schemes. In this section, we present several example

cryptographic schemes for each type.

2.3.1 Hierarchical Key Management Schemes

We first look at the hierarchical key management schemes that can be used for role-

based access policies enforcement. The security of the hierarchical key management

scheme relies on the correct execution of the key assignment process, and the key for

the user is generated based on the access control policies of the whole system.

Atallah et al.’s Key Management Scheme [5]

This scheme uses a secure symmetric key encryption scheme to encrypt the data, and

the key management scheme manages the secret keys of the symmetric key encryption.

Each secret key is associated with a node in a hierarchy. Assume that H : {0, 1}∗ →

{0, 1}n is cryptographic hash function, where {0, 1}n is the key space of the symmetric

key encryption scheme, the key management scheme works as follows:



2.3 Cryptographic RBAC Approaches 37

ID1	  ,	  k1	  

ID4	  ,	  k4	  

ID2	  ,	  k2	   ID3	  ,	  k3	  

k2  –  H(k1 , ID2) k3  –  H(k1 , ID3) 

k4  –  H(k3 , ID4) k4  –  H(k2 , ID4) 

Figure 2.4: Key Allocation for HKM Access Graph Example

Key generation. Assume that each node is an entity in the system. The private

key generation process and the nature of public information stored at each node

of the hierarchy are as follows:

• Private key. Each entity vi is assigned a random private key ki ∈ {0, 1}n.

vi is given all keys of the other entities whose access levels are lower than vi.

• Public information. For each entity vi there is a unique identity IDi ∈

{0, 1}∗ that is assigned to the entity. Also for each edge (vi, vj), the value

yi,j = kj −H(ki, IDj) mod 2n is stored publicly for this edge.

• Key derivation. All that needs to be shown is how to generate a child’s key

from the parent’s private information and the public information. Suppose

vi is a parent of vj with respective keys ki and kj. Since IDj and yi,j =

kj −H(ki, IDj) mod 2n are public information, node vi can generate kj with

this information.

Example: Figure 2.4 shows the key allocation for a graph which is more complicated

than a tree structure. First, it is possible for the node with k1 to generate key k2,

because that node can compute H(k1, ID2) and use it, along with the public edge

information, to obtain k2. The node with k3, on the other hand, cannot generate k2,
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since this would require inversion of the H function.

This hierarchical key management scheme is the basis of several other schemes [127,

151, 17]. Next we describe the scheme proposed by Vimercati et al. [127] which is based

on the algorithm described in Atallah et al.’s scheme [5].

Vimercati et al.’s Key Management Scheme [127]

In [127], the authors use the combination of the above hierarchical key management

scheme and a two-layer encryption to protect the privacy of the outsourced data. This

scheme uses two-layer encryption to prevent a service provider from accessing the

content of data while the service provider is able to run queries or perform other

operations on the data for users who can decrypt the data using their keys. Now we

describe the scheme as follows:

Let K be the set of symmetric encryption keys in the system, and T the set of

tokens in the public catalog.

• The direct key derivation function τ : K → 2K is defined as τ(ki) = {kj ∈

K | ∃ti,j ∈ T }.

• The key derivation function τ ∗ : K → 2K is a function such that τ ∗(ki) is the set

of keys derivable from ki by chains of tokens, including the key itself (chain of

length 0).

Keys and tokens can be graphically represented through a graph, which contains a

vertex vi associated with each key in the system, denoted ki, and an edge connecting

two vertices (vi, vj) if token ti,j belongs to the public token catalogue T . Chains of

tokens then correspond to paths in the graph. For example, Figure 2.5 (a) represents

an example of a graph corresponding to a set of seven keys, along with its public token

catalogue composed of six items (see Figure 2.5 (b)). As an example, τ(k1) = {k2, k3}

and τ ∗(k1) = {k2, k3, k5, k6, k7}.

Let U be the set of users of the system and R the set of outsourced resources.

Authorisations can be modelled via a traditional access matrix A, with a row for each

user u ∈ U , a column for each resource r ∈ R. Each entry A[u, r] is set to 1 if u can
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v2	  

v1	  

v3	   v4	  

v5	   v6	   v7	  

(a)

Source Destination Value

v1 v2 k2 ⊕H(k1, ID2)

v1 v3 k3 ⊕H(k1, ID3)

v2 v5 k5 ⊕H(k2, ID5)

v2 v6 k6 ⊕H(k2, ID6)

v3 v7 k7 ⊕H(k3, ID7)

v4 v7 k7 ⊕H(k4, ID7)

(b)

Figure 2.5: Key Derivation for HKM Example

r1 r2 r3 r4 r5 r6 r7 r8 r9

A 1 1 1 0 0 1 1 1 1

B 0 0 0 0 0 1 0 0 0

C 0 0 1 0 0 0 1 1 1

D 0 0 0 1 1 0 1 1 1

E 0 0 0 0 0 1 0 0 0

(a)

u φ(u)

A k1

B k2

C k3

D k4

E k5

(b)

r φ(r)

r1, r2 k1

r3 k3

r4, r5 k4

r6 k5

r7, r8, r9 k7

(c)

Figure 2.6: Access Matrix and Key Assignment for HKM Example

access r; 0 otherwise. Figure 2.6 (a) illustrates an example of an access matrix with

five users (A,B,C,D,E) and nine resources (r1, r2, · · · , r9). Given an access matrix A

over sets U and R, acl(r) denotes the access control list of r (i.e., the set of users that

can access r). For instance, with reference to the matrix in Figure 2.6 (a), acl(r1) = A.

Assume that each user is associated with a single key, communicated to her or

him by the owner on a secure channel at the time the user joins the system. Also,

each resource can be encrypted by using a single key. A key assignment is a function

φ : U ∪ R → K, which associates each user u ∈ U to whom the (single) key released

and each resource r ∈ R to the (single) key with which the resource is encrypted.

From the previously described scheme, it is easy to see that each user u can retrieve

(via her or his own key φ(u) and the set of public tokens T ) all the keys derivable from

φ(u), that is, all the keys in τ ∗(φ(u)).

Figure 2.6 represents an example of a key assignment, with reference to the key
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graph in Figure 2.5 (a). Composing the graph in Figure 2.5 (a) with the function

defined in Figure 2.6 (b), the set of keys each user knows is obtained. As an example,

φ∗(B) = τ ∗(k2) = {k2, k5, k6}.

As an example, consider the access policy in Figure 2.6 (a). Since there is a set

of five different acls (i.e., {A}, {A,C}, {D}, {A,B,E}, {A,C,D}), which includes a

singleton acl, and five users, seven different keys need to be defined. In particular,

keys k1, · · · , k5 are associated, in the order, with users A, · · · , E, k6 is associated with

A,B, and k7 with A,C,D. Then a token is defined between each pair of keys (ki, kj),

i, j = 1, · · · , 7 and i 6= j, such that the set of users corresponding to ki is included in the

set of users corresponding to kj . Figure 2.5 (a) illustrates a graphical representation

of these keys and tokens, where vertex vi corresponds to key ki. Resources r1, · · · , r8

are then encrypted as shown in Figure 2.6 (c).

2.3.2 Hierarchical Identity-based Encryption

Hierarchical ID-based Encryption (HIBE) is a generalisation of ID-based Encryption

(IBE) that mirrors an organisational hierarchy. In HIBE schemes, identities are or-

ganised in a hierarchical structure. A user with an identity in the hierarchy tree can

decrypt the messages encrypted to its descendant identities, but cannot decrypt mes-

sages for other identities. The concept of Hierarchical ID-based encryption was first

introduced by Horwitz and Lynn [72], and Gentry and Silverberg [59] gave the first

HIBE construction. In this construction, the length of ciphertexts and private keys

grow linearly with the depth of the hierarchy tree. Boneh et al. [20] proposed another

HIBE scheme where the ciphertext size as well as the decryption cost are independent

of the depth of the hierarchical tree.

As the roles can be organised in a hierarchical manner in a RBAC system, it is clear

that these roles can be directly mapped to identities in a HIBE scheme. To integrate

HIBE into an existing RBAC system, an identity hierarchy of the HIBE scheme can be

constructed to be the same as the role hierarchical structure of the RBAC system, with

each node in the identity hierarchical tree mapped to the role in RBAC corresponding

to the same path. When data owners encrypt their data to identities of roles to which
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they want to give access, only the ancestor identities (ancestor roles) and the target

identities themselves can decrypt the data, thereby enforcing the RBAC policies.

Gentry-Silverberg’s HIBE [59]

The first HIBE construction was given in [59]. The entities are organised in a tree

structure, and each entity is mapped to an identity of a user. Let Leveli be the set of

entities at level i, where Level0 = {Root PKG}. The scheme consists of the following

algorithms,

Root Setup: The root PKG chooses two groups G1,GT of some prime order q, a

pairing ê : G1 × G1 → GT , a random generator P0 ∈ G1, a random s0 ∈ Z∗q
and set Q0 = s0P0. Then the root PKG picks two cryptographic hash functions

H1 : {0, 1}∗ → G1 and H2 : GT → {0, 1}n for some n.

The message space is M = {0, 1}n, the root PKG’s secret is s0, and the system

parameters are

pub = (G1,GT , ê, P0, Q0, H1, H2)

Lower-Level Setup: Entity Et ∈ Levelt picks a random secret st ∈ Z∗q.

Extraction: Let Et be an entity in Levelt with ID-tuple (ID1, · · · , IDt), where (ID1,

· · · , IDi) for 1 ≤ i ≤ t is the ID-tuple of Et’s ancestor at Leveli. Set S0 to be the

identity element of G1. Then Et’s ancestor does the following:

1. computes Pt = H1(ID1, · · · , IDt) ∈ G1

2. sets Et’s secret point St to be St−1 + st−1Pt =
∑t

i=1 si−1Pi

3. also gives Et the values of Qi = siP0 for 1 ≤ i ≤ t− 1

Encryption: To encrypt M ∈M with the ID-tuple (ID1, · · · , IDt), do the following:

1. computes Pi = H1(ID1, · · · , IDi) ∈ G1 for 1 ≤ i ≤ t− 1

2. choose a random r ∈ Z∗q
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3. set the ciphertext to be

C = [rP0, rP2, · · · , rPt,M ⊕H2(gr)] where g = ê(Q0, P1) ∈ GT

Decryption: Let C = [U0, U2, · · · , Ut, V ] be the ciphertext encrypted using the ID-

tuple (ID1, · · · , IDt). To decrypt C, Et computes:

V ⊕H2(
ê(U0, St)∏t

i=2 ê(Qi−1, Ui)
) = M

Boneh et al.’s HIBE [20]

In the above described HIBE scheme, the size of the ciphertext is linearly proportional

to the size of the identity used in the encryption. The increase in the ciphertext

size also results in an increase in the decryption cost. Therefore, Boneh et al. [20]

proposed a new HIBE scheme with constant ciphertext size and decryption cost. In

this scheme, the public keys (identities ID) at depth k are vectors of elements in (Z∗p)k,

and ID = (I1, · · · , Ik) ∈ (Z∗p)k. The j-th component corresponds to the identity at level

j. We describe the algorithms as follows:

Setup(l): First, let G1 be a bilinear group of prime order p and let ê : G1×G1 → GT

be a bilinear map. To generate system parameters for a HIBE of maximum depth

l, select a random generator g ∈ G1, a random α ∈ Zp, and set g1 = gα. Next,

pick random elements g2, g3, h1, · · · , hl ∈ G1. The message space for the scheme

is M∈ GT . The public parameters and the master secret key are

pk = (g, g1, g2, g3, h1, · · · , hl), mk = gα2

KeyGen(dID|k−1, ID): To generate a private key dID for an identity ID = (I1, · · · , Ik) ∈

(Z∗p)k of depth k ≤ l, using the master secret key, pick a random r ∈ Zp and

output
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dID = (gα2 · (h
I1
1 · · ·h

Ik
k · g3)r, gr, hrk+1, . . . , hrl ) ∈ G2+l−k

The private key for ID can be generated incrementally, given a private key for

the parent identity IDk−1 = (I1, . . . , Ik−1) ∈ (Z∗p)k−1, as required. Let

dID|k−1 = (gα2 · (h
I1
1 · · ·h

Ik−1

k−1 · g3)r
′
, gr

′
, hr

′

k , . . . , h
r′

l ) = (a0, a1, bk, . . . , bl)

be the private key for IDk−1. To generate dID, pick a random t ∈ Zp and output

dID = (a0 · bIkk · (h
I1
1 · · ·h

Ik
k · g3)t, a1 · gt, bk+1 · htk+1, . . . , bl · htl)

This private key is a properly distributed private key for ID = (I1, . . . , Ik) for

r = r′ + t ∈ Zp.

Encrypt(params, ID,M): To encrypt a message M ∈ GT under the public key

ID = (I1, . . . , Ik) ∈ (Z∗p)k, pick a random s ∈ Zp and output

CT = (ê(g1, g2)s ·M, gs, (hI11 · · ·h
Ik
k · g3)s) ∈ GT ×G2

1

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik). To decrypt a given cipher-

text CT = (A,B,C) using the private key dID = (a0, a1, bk+1, . . . , bl), output

A · ê(a1, C)/ê(B, a0) = M

Subsequently, several HIBE schemes are proposed in the literature. Boyen and

Waters introduced an anonymous HIBE scheme in [29] where the ciphertext of their

HIBE scheme does not leak any information about the identities to which the messages

are encrypted. An anonymous HIBE scheme can be extended to applications such as

keywords searchable encryption where keywords can be in a hierarchical structure.
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2.3.3 Role-based Encryption

Several role-based encryption (RBE) schemes [148, 150, 149] have been proposed that

specifically addresses the security of outsourced data with RBAC policies. We describe

the scheme [150] as follows.

Zhu et al.’s Role-based Encryption [150]

Let {U,R,�} is a role-key hierarchy with partial-order �, and U is the set of the users

{u1, u2, · · · , un} and R is the set of roles {r1, r2, · · · , rm}.

Setup(s, λ) Generate three groups G1,G2,GT , and a bilinear map ê : G1×G2 → GT ,

and choose random generators g ∈ G1 and h ∈ G2. Choose a random τ0 ∈ Z∗p
and a random integer τi ∈ Z∗p for each role ri in role key hierarchy, and computes

Di = gτi ∈ Gi,∀ri ∈ R, V = e(g, h) ∈ GT

Each τi and Ui are the secret and the identity of the role ri respectively. The

public parameter is

params = {h, V,D0, D1, · · · , Dm}, where D0 = gτ0

and the master secret is

mk = {g, τ0, τ1, · · · , τm}

GenRKey(params, ri). This algorithm assigns the role encryption key by computing

the follows for each role ri.

pki = {H,V,Wi, {Dk}rk∈↑ri} where Wi = D0 +
∑
ri�rk

Dk = gζi

where {Uk}rk∈↑ri is the set of all the ancestor roles denoted ↑ ri, which denotes

the control domain for the role ri. Note that Wi = g
τ0+

∑
ri�rk

τk , so there is
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ζi = τ0 +
∑

ri�rk τk.

AddUser(mk, ID, ui,j). Given mk = {g, τ0, · · · , τm} and a user index ui,j in the

role ri, the manager generates a unique decryption key by randomly selecting a

xi,j = Hash(ID, ui,j) ∈ Z∗p, and set x′i,j = xi,j−
∑

ri�rk τk ∈ Z
∗
p, and then defining

a public user label labi,j = 〈xi,j, Ai,j, Bi,j〉 and the user decryption key dki,j = Ai,j

where

Ai,j = gxi,j/(ζi+x
′
i,j) ∈ G1, Bi,j = h1/(ζi+x

′
i,j) ∈ G2, Vi,j = V 1/(ζi+x

′
i,j) ∈ GT

Encrypt(R, pki,M). To encrypt the message M ∈ GT , given any pki = {H, V,Wi,

{Dk}rk∈↑ri} and a set of revoked users R = {ui1,j1 , . . . , uit,jt}, the algorithm

randomly picks t ∈ Z∗p and then computes

C1 = W t
i , C2 = (BR)t, C3 = M · (VR)t, C4 = {(Dk)

t}∀rk∈↑ri

and outputs ciphertext as C = (C1, C2, C3, C4,R).

In the above algorithm, BR and VR are computed as

BR =

 h1/
∏t

l=1(ζil+x
′
il,jl

), if R 6= ∅

h, if R = ∅

VR =

 V 1/
∏t

l=1(ζil+x
′
il,jl

), if R 6= ∅

V, if R = ∅

Decrypt(dki,j, C). Given a ciphertext C from the role ri, the k-th user uj,k in the

role rj can recover the message M with dkj,k = Aj,k, when ri � rj and uj,k /∈ R,

by computing

V ′ = e(C1 +
∑

rl∈Γ(rj ,ri)

D′l, B
R
j,k) · e(Aj,k, C2)

where Γ(rj, ri) denotes ∪ri�rk�rj{rk}, D′l = (Dl)
t ∈ C4 for all rl ∈ Γ(rj, ri), and
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BRj,k =

 h1/[
∏t

l=1(ζil+x
′
il,jl

)·(ζj+x′j,k) ], if R 6= ∅

Bj,k, if R = ∅

from {Bil,jl}uil,jl∈R and Bj,k. Then the user can output the message M = C3/V
′.

This scheme gives a cryptographic solution which can enforce RBAC policies in the

encryption of data. The security of this encryption scheme is based on the security of

the cryptographic algorithm. More specifically, when a user is assigned to a role in this

encryption scheme, a key is calculated through a cryptographic algorithm by taking as

input the master secret and identity of the user and role.

2.3.4 Attribute-based Encryption

Attribute-based encryption schemes can also be used to enforce role-based access poli-

cies which we will discuss later. Generally, there are two types of ABE schemes,

KP-ABE and CP-ABE. KP-ABE schemes cannot be used to enforce RBAC due to

the feature that the owner of the data does not have the control over who is allowed

to access the data. Now let us see how to enforce the RBAC policies using CP-ABE

schemes.

First we associate the role with a policy of a set of attributes, and we say that a

user belongs to the role if this user has the keys for all the attributes in the set for the

role. To define a role A which inherits the permissions from another role B, we simply

associate role A with a policy which contains the policy for role B. When the owner

wants to encrypt a message to a role, she or he simply uses the CP-ABE scheme to

encrypt the message under the policy of the role, and all the users in the role will be

able to decrypt as they have the keys for all the attributes in the policy. The ABE

scheme that we used in comparison refers to this approach.

Goyal et al.’s KP-ABE scheme [63]

Goyal et al. [63] proposed the first ABE scheme, in which ciphertexts are labelled with

sets of attributes and private keys are associated with access structures that control
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which ciphertexts a user is able to decrypt. Hence this scheme is also referred to as

key-policy ABE or KP-ABE. The scheme has the following algorithms.

Setup Generate two groups G1,G2, and a bilinear map ê : G1 ×G1 → G2. Choose a

random generator g ∈ G1, and a random u ∈ Zp. The Lagrange coefficient ∆i,S

is defined for i ∈ Z∗p and a set S of elements in Zp: ∆i,S(x) =
∏

j∈S,j 6=i
x−j
i−j .

Define a list of attributes U = {1, 2, · · · , n}. For each attribute i ∈ U , choose a

number ti uniformly at random from Zp. The public parameters are

PK = ( T1 = gt1 , · · · , Tn = gtn , Y = ê(g, g)y )

and the master secret is

MK = (t1, · · · , tn, y)

Encryption(M,γ, PK). To encrypt a message M ∈ G2 under a set of attributes γ,

choose a random value s ∈ Zp and compute the ciphertext as,

C = (γ, C ′ = MY s, {Ci = T si }i∈γ).

Key Generation(T,MK). The algorithm outputs a key that enables the user to

decrypt a message encrypted under a set of attributes γ if and only if T (γ) = 1.

The algorithm proceeds as follows. First choose a polynomial qx for each node x

including the leaves in the tree T . These polynomials are chosen in the following

way in a top-down manner, starting from the root node r.

For each node x in the tree, set the degree dx of the polynomial qx to be one less

than the threshold value kx of that node, that is, dx = kx − 1. For the root node

r, set qr(0) = y and dr other points of the polynomial qr randomly to define it

completely. For any other node x, set qx(0) = qparent(x)(index(x)) and choose dx

other points randomly to completely define qx.

Once the polynomials have been decided, for each leaf node x, give the following
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secret value to the user:

Dx = g
qx(0)
ti , where i = attr(x).

The set of above secret values is the decryption key D.

Decrypt(C,D). This algorithm is defined in a recursive way. A recursive algorithm

DecryptNode(C,D, x) is defined to take as input the ciphertext C = (γ, C ′ =

MY s, {Ci = T si }i∈γ), the private key D, and a node x in the tree. It outputs a

group element of G2 or ⊥.

Let i = att(x). If the node x is a leaf node then:

DecryptNode(C,D, x) =

 ê(Dx, Ci) = ê(g
qx(0)
ti , gs·ti) if i ∈ γ

⊥ otherwise

Considering the recursive case when x is a non-leaf node, DecryptNode(C,D, x)

proceeds as follows: For all nodes z that are children of x, it calls DecryptNode

and stores the output as Fz. Let Sx be an arbitrary kx-sized set of child nodes z

such that Fz 6=⊥. If no such set exists then the node was not satisfied and the

function returns ⊥. Otherwise, denote i = index(z), S ′x = {index(z) : z ∈ Sx},

and computes:

Fx =
∏
z∈Sx

F
∆i,S′x

(0)
z

=
∏
z∈Sx

(ê(g, g)s·qz(0))∆i,S′x
(0)

=
∏
z∈Sx

(ê(g, g)s·qparent(z)(index(z)))∆i,S′x
(0)

=
∏
z∈Sx

ê(g, g)s·qx(i)·∆i,S′x
(0)

= ê(g, g)s·qx(0)

and return the result.

Since DecryptNode(C,D, r) = ê(g, g)ys = Y s if and only if the ciphertext satisfies
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the tree, and C ′ = MY s, the decryption algorithm simply divides out Y s and

recovers the message M .

Bethencourt et al.’s CP-ABE scheme [12]

Another form of the ABE scheme was introduced by Bethencourt et al. [12]. This

scheme works in the reverse manner where the user keys are associated with sets of

attributes and the ciphertexts are associated with the policies. Hence it is referred to

as the ciphertext-policy ABE (CP-ABE) scheme. The scheme is described as follows:

Setup Generate two groups G1,G2, and an bilinear map ê : G1 ×G1 → G2. Choose

a random generator g ∈ G1, and two random exponents α, β ∈ Zp, and a hash

function H : {0, 1}∗ → G1. The Lagrange coefficient ∆i,S is defined for i ∈ Z∗p
and a set S of elements in Zp: ∆i,S(x) =

∏
j∈S,j 6=i

x−j
i−j .

Define a list of attributes U = {1, 2, · · · , n}. The public parameter is

PK = ( G1, g, h = gβ, f = g1/β, ê(g, g)α )

and the master secret is

MK = (β, gα)

Encryption(M,T, PK). The encryption algorithm encrypts a message M under the

tree access structure T . The algorithm first chooses a polynomial qx for each

node x including the leaves in the tree T . These polynomials are chosen in the

following way in a top-down manner, starting from the root node r. For each

node x in the tree, set the degree dx of the polynomial qx to be one less than the

threshold value kx of that node, that is, dx = kx − 1.

For the root node r, set qr(0) = s and dr other points of the polynomial qr ran-

domly to define it completely. For other nodes x, set qx(0) = qparent(x)(index(x))

and choose dx other points randomly to completely define qx.

Let Y be the set of leaf nodes in T . The ciphertext is then constructed by giving
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the tree access structure T and computing the ciphertext CT as

T,C ′ = Mê(g, g)αs, C = hs

{Cy = gqy(0), C ′y = H(att(y))qy(0)}y∈Y .

Key Generation(MK,S). The algorithm takes as input a set of attributes S and

outputs a key that identifies with that set. First choose a random r ∈ Zp, and

then pick random rj ∈ Zp for each attribute j ∈ S. Then it computes the key as

SK = (D = g(α+r)/β, {Dj = gr ·H(j)rj , D′j = grj}j∈S).

Decrypt(CT, SK). First, an recursive algorithm DecryptNode(CT, SK, x) is defined

to take as input the ciphertext CT = (T,C ′, C, {Cy, C ′y}y∈Y ), the private key SK

which is associated with a set S of attributes, and a node x in the tree.

Let i = att(x). If the node x is a leaf node then:

DecryptNode(CT, SK, x) =
ê(Di, Cx)

ê(D′i, C
′
x)

=
ê(gr ·H(i)ri , gqx(0))

ê(gri , H(i)qx(0))
= ê(g, g)r·qx(0)

If i /∈ S, then define DecryptNode(CT, SK, x) =⊥.

Considering the recursive case when x is a non-leaf node, DecryptNode(CT, SK, x)

proceeds as follows: For all nodes z that are children of x, it calls DecryptNode

and stores the output as Fz. Let Sx be an arbitrary kx-sized set of child nodes z

such that Fz 6=⊥. If no such set exists then the node was not satisfied and the

function returns ⊥.
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Otherwise, having i = index(z), S ′x = {index(z) : z ∈ Sx}, compute:

Fx =
∏
z∈Sx

F
∆i,S′x

(0)
z

=
∏
z∈Sx

(ê(g, g)r·qz(0))∆i,S′x
(0)

=
∏
z∈Sx

(ê(g, g)r·qparent(z)(index(z)))∆i,S′x
(0)

=
∏
z∈Sx

ê(g, g)r·qx(i)·∆i,S′x
(0)

= ê(g, g)r·qx(0)

and return the result.

Then the decryption algorithm begins by simply calling the function on the root

node r of the tree T . If the tree is satisfies by S, setA = DecryptNode(CT, SK, r) =

ê(g, g)rqr(0) = ê(g, g)rs. The algorithm now decrypts by computing

M = C ′/(ê(C,D)/A) = C ′/(ê(hs, g(α+r)/β)/ê(g, g)rs).

We have shown that an ABE scheme can be used to enforce RBAC policies. How-

ever, in that approach, the size of users’ decryption key is not constant, and the revo-

cation of a user will result in a key update of all the other users of the same role. There

are also several other approaches which aimed to implement cryptographic RBAC us-

ing ABE schemes. Ferrara et al. [55] defined a special case of predicate encryption [86],

called predicate encryption for non-disjoint sets (PE-NDS), using generic ABE schemes

and showed how to use a PE-NDS scheme to implement a cryptographic RBAC scheme

using a similar approach as what we described above. The user revocation, however,

in their scheme is performed by adding a new attribute to the role. Hence, in the case

of user revocation, all the files encrypted to the role need to be re-encrypted to prevent

revoked users from accessing previously encrypted files. Zhu et al. [149] investigated

the solutions of using an ABE scheme in a RBAC model. However their solution only

maps the attributes to the role level in RBAC, and they assumed that the RBAC
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system itself would determine the user membership. In this thesis, we show how the

weaknesses and the missing aspects of using ABE schemes can be addressed by our

role-based encryption schemes.

2.4 Trust Model

2.4.1 Experience-based Trust

Trust has played a foundational role in security for a long period of time. Perhaps

the most notable one was in the development of Trusted Computer System Evaluation

Criteria (TCSEC) [47] in the late 70s and early 80s, where trust was used in the

process of convincing the observers that a system (model, design or implementation)

was correct and secure. This led to the notions of trusted processes in operating systems

and the Trusted Computing Base (TCB). In the mid 1980s and 1990s, trust played a

key role in the context of distributed system security, leading to the formulation of

trusted authorities involved in the management of security services. Several trusted

authorities such as authentication and access control authorities were introduced. Such

authorities, which are still in use, are “trusted” by the population of entities that use

them to provide guarantees and assurances about the security information and services

that they provide. In the mid 1990s, the idea of trust management [15, 16] became

popular. It was originally proposed to primarily address the management of identity

and authentication information, and then was expanded to authorisation and privilege

information. In the late 1990s and early 2000s, another significant development in the

security space was the notion of a trusted platform. This notion of a trusted platform

was introduced by the Trusted Computing Platform Alliance (TCPA), currently known

as TCG. A trusted platform is one that contains a hardware-based subsystem devoted

to maintaining trust and security between machines. It has some “special processes”

which dynamically collect and provide evidence of behaviour. These special processes

themselves are “trusted” to collect evidence properly. There are also trusted third

parties endorsing platforms which underlie the confidence that the platform can be



2.4 Trust Model 53

“trusted”.

It is clear that two entities normally do not trust each other on the identity alone.

There are a range of other attributes and credentials, such as different types of privi-

leges, the state of the platform being used as well as reputations, recommendations and

histories that come into play in decision making. Most importantly, such information

can be dynamic and can vary in different ways in different contexts. We refer to those

beliefs that are derived from concrete security mechanisms and attributes such as cer-

tificates and credentials as “hard trust”. They are often characterised by “certainty”.

On the other hand, beliefs derived from social control mechanisms and intangible in-

formation such as reputation and experiences are referred to as “soft trust”. These

beliefs are characterised by “uncertainty”, dependent on past behaviour and often in-

volve recommendations from multiple entities and they are progressively tuned over

time. Recently, a number of models have been developed using soft trust techniques

to determine the trustworthiness of systems [50, 134, 84]. The experience-based trust

model is one such trust management system which enables the trust decisions to be

made based on the historical behaviour of an entity [81, 105]. Such a system allows an

entity to rate the transactions with other entities, and the trustworthiness of an entity

is determined using the collection of ratings of the transactions that other entities have

had with this entity.

Most experience-based trust systems derive the trustworthiness of an entity from

both its own experience and the feedback on the transactions provided by other entities

which have had interactions with the entity concerned in the past. Let us consider

a simple example of such a system. When a client c finishes a transaction with a

service provider p, c gives a feedback as either “positive” or “negative” depending on

whether or not it is satisfied with the transaction. The feedback record is of the form

f = (c, p, b, t) where b represents the binary value of the feedback and t is the timestamp

when the transaction took place. This record f is uploaded by the client to a trust

central repository. When another client wants to evaluate the trustworthiness of the

service provider p (assuming this client does not have any previous experience with

the provider), first it obtains the collection of feedback records Hist(p) = {f1, . . . , fn}
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from the central repository, where n is the total number of the feedbacks about p that

have been uploaded to the central repository; Hist(p) represents the feedbacks that

all the clients have made to the service provider p. By adding up the total number

of each different type of feedback, the client gets an evidence tuple (p, r, s) where r

represents the total number of “positive” feedbacks appeared in the collection Hist(p),

and s is the total number of “negative” feedbacks in Hist(p). Then the client makes

the decision whether or not to continue the transaction with the service provider p

based on whether this tuple exceeds a certain threshold; this threshold is dependent

on the context of the application at hand.

2.4.2 Average of Ratings

The simplest and the most straightforward approach to compute trust scores based on

historical feedback is that the total score is the difference between the positive score

and the negative score which are calculated as the total number of positive ratings and

negative ratings separately. This approach intuitively shows an entity’s trustworthiness

derived from its past behaviour, and it is easy to understand and simple to implement.

This is the approach used in eBay’s reputation forum, and it has been described in

detail in [112].

In this trust model, the historical feedback is the only factor considered in calculat-

ing trust scores, and the trust model is fair under the assumption that all the ratings

are precise and accurate. However, this is unlikely to be true in almost every system as

human opinions are usually quite subjective and it is very rare that different persons

would rate an entity based on exactly the same standard. An improvement can be

made by applying a weight to the average of all the ratings, such as the approach in

[122], where the rating weight can be determined by factors such as trustworthiness or

reputation of the entity which provides the ratings, current trust scores of the target

entity, etc.
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2.4.3 Bayesian Trust Models

Many approaches have been proposed that use probabilistic models to evaluate the

trust based on the evidence tuple which contains the number of “positive” and “neg-

ative” transactions in which the given entity has been involved. Perhaps the most

common probabilistic model is the one based on Bayesian trust using a beta probabil-

ity distribution function[105, 83, 104]. The beta family of distributions is a collection

of continuous probability density functions defined over the interval [0, 1]. Suppose a

beta distribution used for a parameter θ is defined as

P (θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

where α and β are two parameters controlling the distribution of the parameter θ, and

0 ≤ θ ≤ 1, α > 0, β > 0. Assume X = {x1, . . . , xn} is the collection of the feedback

from the past n transactions, and X has r “positive” feedbacks and s “negative”

feedbacks. Then the likelihood function can be defined as

P (X|θ) =
n∏
i=1

P (xi|θ) = θr(1− θ)s

The posterior distribution P (θ|X) is proportional to the multiplication of the prior

P (θ) and the likelihood function P (X|θ), and we then have

P (θ|X) =
P (X|θ)P (θ)

P (X)

=
Γ(r + α + s+ β)

Γ(r + α)Γ(s+ β)
θr+α−1(1− θ)s+β−1

Now let xi+1 be the possible feedback of the next transaction. The probability that

xi+1 is a “positive” feedback given the transaction history X can be represented as

P (xi+1|X) =

∫ 1

0

dθ P (xi+1|θ)P (θ|X)

=

∫ 1

0

dθ θP (θ|X)

= E(θ|X)
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Then we write the probability that the next transaction will be a “good” one as

follows:

E(r, s) = P (xi+1|X) = E(θ|X) =
r + α

r + α + s+ β
(2.1)

Using Equation 2.1, the client can derive the probability that the next transaction

with the provider will be positive from the transaction history of the provider. Most

Bayesian trust systems assume that the parameters α = β = 1. Some other approaches

allows the parameters α and β to be chosen depending on the system context.

2.4.4 Belief Trust Models

So far in the described trust models, the trust ratings are either positive or negative.

The belief trust model is a type of probabilistic model where a distinct probability

interpreted as “uncertainty” is used to represent the trustworthiness of entities. A

trust metric for uncertain probabilities, called opinion, was described by Josang [82,

81]. An entity’s opinion about a statement x represents the entity’s belief in the truth

of the statement x, and it is denoted by a set of four elements as follows,

ωx = (bx, dx, ux, ax)

where bx, dx, and ux represent the probability of belief, disbelief and uncertainty respec-

tively, and ax ∈ [0, 1], called the relative atomicity, represents the base rate probability

in the absence of evidence. The belief of an entity can only be one of these three types;

that is, bx + dx + ux = 1.

An opinion’s probability expectation value which represents the probability that

the next transaction will be a “good” one is defined as

E(ωx) = bx + axux

A set of logical operators are described and used for logical reasoning with uncer-

tain propositions. A discounting operator is used (when an entity A holds an opinion

about another entity B) to derive A’s opinion about a proposition x from B’s opinion
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about x. A consensus operator is used (when two entities hold separate opinions about

a proposition x) to combine two opinions into one which can reduce the uncertainty.

Josang [81] shows that opinions can be uniquely mapped to beta PDFs, and the con-

sensus operator in the belief trust model is equivalent to the updating operations in

the Bayesian model. Yu and Singh [135] have proposed an approach to use the belief

model to represent reputation scores.

2.5 Conclusion

In this chapter, we have briefly described several well-known access control models and

the cryptographic approaches which can be used to enforce access policies of different

access control models in an untrusted environment. Then we discussed the crypto-

graphic RBAC schemes, and showed how the existing cryptographic schemes can be

used to enforce RBAC policies. We have discussed the weaknesses of these crypto-

graphic RBAC solutions. Lastly, we have reviewed the concept of trust models, and

described several commonly used probabilistic models.
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3
Generic Role-based Encryption Frameworks

In this chapter, we define the formulation of role-based encryption (RBE) and propose

three generic constructions which make use of ID-based broadcast encryption (IBBE)

techniques to build RBE schemes. Our constructions show that IBBE techniques can

be used in different ways to build RBE schemes with different features. The constructed

RBE schemes allow the owner of data to specify a set of roles to which she or he wishes

to grant permission for accessing the data, and encrypt the data in such a way that

only the users in these roles can decrypt and view the plain data. In addition, we

show that these constructions are able to deal with role hierarchies, whereby roles can

inherit permissions from other roles. Moreover, these generic constructions are able to

deal efficiently with the situation where a user belongs to multiple roles, and the size

of the user’s decryption keys remains constant regardless of the number of roles that

the user has been assigned to.

59
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Another advantage is that our RBE constructions are generic; that is, any secure

IBBE scheme can be converted into a RBE scheme. When developing a RBE scheme,

designers may require their scheme to be built using certain cryptographic technique

such as bilinear pairing or ideal lattice, possibly because they want the scheme to be

more efficient or more secure or even easier to implement. Though it is possible to

propose a specific RBE scheme directly using a particular cryptographic tool, such an

approach requires designing a new scheme each time and proving its security. There-

fore, generic constructions which can work with any secure IBBE schemes provide a

convenient solution for designing a RBE scheme; a suitable IBBE scheme can be chosen

for the RBE scheme, balancing security and performance characteristics depending on

the system requirements.

This chapter is organised as follows. In section 3.1 we give the definition of RBE

schemes. Section 3.2 defines the security properties of RBE schemes. In section 3.3,

we describe the security requirements for the IBBE schemes used in the generic RBE

constructions. Section 3.4 describes our generic constructions for RBE schemes. We

provide a security analysis of our constructions in section 3.5. In section 3.6, we

illustrate and compare the features of our generic RBE constructions using examples.

Finally, section 3.7 concludes the chapter.

3.1 Formulation of Role-based Encryption

Although there are many approaches in the literature, which can enforce RBAC policies

on outsourced data, there is no standard definition for such a scheme that can meet all

the security requirements discussed in section 1.2. In this section, we give the formal

definition of a RBE scheme and describe the participants involved in a RBE scheme.

We first define four types of entities which are involved in a RBE scheme.

• SA, the system administrator of the system. It generates the system parameters

and issues all the necessary credentials. In addition, this administrator manages

the role hierarchy structure for the RBAC system.
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• RM is a role manager who manages the user membership of a role. In systems

where there are a small number of users, the SA can act as the role manager to

manage the user membership of each role to keep the systems compact. However,

in large-scale systems, it is almost impractical for a single party to manage all

the users and permissions. Therefore, having separate role managers can make

the user management tasks more flexible and efficient.

• Users are the parties who want to access and decrypt the stored data. Each

user is required to be authenticated by the SA and issued a credential, which is

associated with the identity of the user, upon successful authentication.

• Owners are the parties who possess data and want to store the encrypted data

in the cloud for other users to access. Owners define role-based access policies

to specify who can access their data. An owner can either be a user within the

system or an external party who wants to send data to users in the system. In this

thesis, we consider an owner to be a logically separate component even though a

user can be an owner and vice versa.

We then define the following algorithms for the RBE scheme:

Setup (λ) takes as input the security parameter λ and outputs a master secret key

mk and a system public key pk. mk is kept secret by the SA while pk is made

public to all users of the system.

Extract (mk, ID) is executed by the SA to generate the key associated with the

identity ID. If ID is the identity of a user, the generated key is returned to the

user as the decryption key. If ID is the identity of a role, the generated key is

returned to the RM as the secret key of the role, and an empty user list U which

will list all the users who are the members of that role is also returned to the

RM.

ManageRole (mk, skR, IDR, T ) is executed by the SA to manage a role with the

identity IDR in the role hierarchy T . This operation returns a set of public

parameters pubR to the role.



62 Generic Role-based Encryption Frameworks

AddUser (pk, skR, UR, IDU) is executed by the role manager RM of a role R to grant

the role membership to a user IDU , which results in the role public parameters

pubR and role user list UR, being updated.

RevokeUser (pk, skR, UR, IDU) is executed by a role manager RM of a role R to

revoke the role membership from a user IDU , which also results in the role public

parameters pubR and role user list UR, being updated.

Encrypt (pk, R, M) is executed by the owner of a message M . This algorithm takes

as input the system public key pk, the role public parameters of the set of roles

R, and outputs the ciphertext C.

The algorithm employs a secure symmetric encryption scheme Enc to perform

the encryption of the message M , and there are two phases in this algorithm. The

first phase selects a random secret key K of the symmetric encryption scheme

Enc and encrypts the key K using the public parameters. Then the second phase

uses the encryption scheme Enc to encrypt the message M with the secret key

K. The output ciphertext C is comprised of the ciphertext of both the key K

and the message M . In this thesis, when we describe RBE constructions, we only

describe the first phase of this algorithm for the simplicity purpose. When we

use the input M , we are referring to the symmetric encryption key K, and we

assume that a secure symmetric encryption scheme will be used to generate the

ciphertext of the real message M .

Decrypt (pk, R, dk, C) is executed by a user who is a member of the role R. This

algorithm takes as input the system public key pk, the role public parameters of

the role R, the user decryption key dk, the ciphertext C, and outputs the message

M .

We assume that the cloud provider provides an underlying service to store the

system public parameters and all the role public information. The SA is a trusted

party who creates the roles and the keys for the users and the roles. We assume that

the master secret key mk is securely stored by the SA, and the SA distributes the secret
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information, such as keys, to the role manager RM and users via a secure channel.

The role manager (RM) is a trusted party per role and it manages the set of users

in a given role. It can assign a role to a user if the user qualifies for the role, or exclude

a user if the user is found to be malicious. When adding a user to a role, RM needs

to verify the user’s qualifications and determine if the user can have this role. When a

user leaves a role or is removed from a role, RM revokes the role permissions for that

user. We assume that there are some standard authentication mechanisms available

that can be performed between a RM and a user.

Users are given appropriate decryption keys by the SA when they join the system

to access ciphertexts stored in the cloud. The users possess some credentials which are

used to prove to an RM that they have appropriate qualifications to join a role. Users

are able to use their decryption keys to decrypt the ciphertext, and we assume that

the users are responsible for keeping their decryption keys secure.

3.2 Security Properties of Role-based Encryption

In this section, we define the security properties of a RBE scheme. We build the security

of the scheme on the standard notion of selective-ID security. In a RBE scheme, users

who have never been granted membership of a role as well as the users who have been

granted membership that has been later revoked should not have the ability to decrypt

the data that is encrypted to the role. Since the revoked users have the access to the

secrets of the role before they are revoked, we assume that the adversary A has more

power when making the query to the challenger; the adversary can make queries on

the identities in the target set before the Challenge stage.

We say that our RBE scheme is secure against chosen ciphertext attack (CCA)

if no polynomially bounded adversary A has a non-negligible advantage against the

challenger in the following game:

Init: The adversary A first chooses a set of identities U = {IDU1 , · · · , IDUn} which A

will query to the challenger.
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Setup: The challenger takes as input a security parameter and runs the Setup algo-

rithm of the RBE scheme. It outputs the system public key pk to the A, and

keeps the master secret key mk as secret. Then the challenger creates a set of roles

with the public identities R = {IDR1 , · · · , IDRm} where R ∩ U = ∅ by running

the Extract algorithm to generate the role secrets and running the ManageRole

algorithm to organise them in a hierarchical structure.

Phase 1: The adversary A can adapt its queries depending upon the results of the

previous queries. The adversary issues queries q1, . . . , qk where each query is one

of the following types:

• Extract query: A submits an identity ID /∈ R to the challenger. The chal-

lenger executes the Extract algorithm on the identity ID and returns the

generated key to A.

• AddUser query: A submits two identities IDUi
and IDRj

to the challenger.

Here we allow IDUi
and IDRj

to be selected from the set U and R respectively.

If IDUi
has already been added as a member in the role IDRj

, the challenger

returns the key dki and the public parameters pubj to A. Otherwise, the

challenger executes the AddUser algorithm to output dki, pubj and returns

them to A.

• Decrypt query: A submits a tuple 〈C, IDRj
, IDUi

〉 to the challenger. The

challenger executes the Decrypt algorithm and returns the result to A.

Challenge: When the adversary A decides that Phase 1 is completed, it outputs

role identity IDR on which it wishes to be challenged. We allow IDR to be one of

the identities that appears in the query in Phase 1. However, if the identity IDR

has been queried in Phase 1, the challenger checks if the identity of any existing

member of the role IDR was added to the role in the AddUser query in Phase 1.

If there are some, the challenger executes RevokeUser algorithm to exclude these

identities from the role and updates pubR to ensure that no existing member was

added to the role R in the queries made by the adversary A in Phase 1. Then
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the challenger runs the Encrypt algorithm and outputs (C∗, K) where K ∈ K.

Next, the challenger picks a random bit b ∈ {0, 1} and sets Kb = K, and then it

picks a random K1−b ∈ K, and returns (C∗, K0, K1) to A.

Phase 2: The adversary A again adapts its queries and issues qk+1, . . . , qqT similar

to Phase 1 with the following restrictions: A cannot make Extract or AddUser

queries on IDR, and A cannot make Decrypt queries on C∗.

Guess: The adversary A outputs a guess b′ ∈ {0, 1}, and wins the game if b = b′.

We denote A’ advantage in attacking the role-based encryption scheme as AdvRBE =

|Pr[b = b′]− 1
2
| and we have the following definition.

Definition 3.1 We say that a role-based encryption scheme is (ε, n, qE, qA, qD) CCA

secure if for all polynomially bounded adversary A who has made a total of qE extraction

queries, qA add-user queries, and qD decryption queries, we have |AdvRBE − 1
2
| < ε.

Next we give the definition of the chosen plaintext attack (CPA) secure of a RBE

scheme by not issuing the decrypt queries in the above game.

Definition 3.2 We say that a role-based encryption scheme is CPA secure if it is

(ε, n, qE, qA, 0) CCA secure.

3.3 Preliminaries

3.3.1 Key-Dependent Message Security

In this section, we begin the discussion by reviewing the definition of Key-Dependent

Message security (KDM). A KDM secure encryption (also referred to circular-secure

encryption) scheme ensures that the adversary cannot distinguish the encryption of a

key-dependent message from an encryption of 0. The KDM security has been discussed

in many works, such as in [32, 14, 26, 31, 3, 2], in which [2] has given the definition of

the KDM security in the context of ID-based encryption. In this chapter, we use the

KDM security based on the definition given in [2].
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Let E = (Setup,Ext,Enc,Dec) be an ID-based encryption scheme. Ext(mk, ID) is a

key-generation algorithm that takes as input an identity ID and a master secret key

mk and outputs a secret key sk. Enc(pk, ID,m) is the encryption algorithm that uses

an identity ID and the public key pk to encrypt message m and outputs a ciphertext c,

and Dec(pk, sk, c) is the decryption algorithm that decrypts ciphertext c using private

key sk and discovers message m. We denote the secret key space of E as K, and the

message space of E as M.

We define a finite set F := {f : Kn → M} of functions to represent the key

dependencies, and we assume that the output size of these functions are independent

of the input.

The KDM security is defined as a game between an adversary A and a challenger

as below.

Init: The adversary A outputs a set of identities U = {IDU1 , · · · , IDUn} which A will

query to the challenger.

Setup: The challenger runs the algorithm Setup and generates a master secret key

mk and a system public system pk. Then the challenger randomly chooses a bit

b ∈ {0, 1}.

Queries:

• Extract query: The adversary A submits any identity IDk /∈ U to the chal-

lenger. The challenger executes the Ext algorithm on the identity IDk and

returns the generated key ski = Ext(mk, IDk) to A.

• Encryption query: The adversary A adaptively issues queries in the form

(i, f) where i ∈ [1, n] and f ∈ F . The challenger computes a message

S = f(sk1, sk2, · · · , skn), chooses an identity IDi ∈ U and responds with

c = Enc(pk, IDi, S).

Challenge: When the adversary A decides that all the queries have been completed,

it computes a message M = f(sk1, sk2, · · · , skn), and sends to the challenger. The
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challenger chooses an identity IDi ∈ U and responds with c = Enc(pk, IDi, M) if

b = 0, or c = Enc(pk, IDi, 0
|M |) if b = 1.

Guess: By using the responses from the challenger in the above phases, the adversary

A outputs a guess b′ ∈ {0, 1}, and wins the game if b = b′.

We denote the advantage thatA wins the game as Advn. Then we have the following

definition.

Definition 3.3 A public key encryption scheme is selective-ID ε-KDM secure if for

all polynomially bounded adversary A the advantage Advn that A wins the game is

negligible. That is,

Advn = |Pr[b = b′]− 1

2
| < ε

3.3.2 ID-based Broadcast Encryption

In a RBE scheme, users can have their individual secret keys to decrypt data en-

crypted to the role to which they belong. This is analogous to broadcast encryption

schemes where users can use their own private keys to decrypt messages encrypted by

a broadcaster. Therefore, we use IBBE schemes to build our RBE constructions.

In order to build a secure RBE scheme, we require that the IBBE scheme to be used

in the generic RBE constructions is KDM secure. We note that there is no specific

IBBE scheme in the literature that was designed to be KDM secure. However, several

generic KDM secure scheme conversions have been proposed [32, 14, 3] which can

convert a non KDM secure encryption scheme to a KDM secure one.

We have described the algorithms of IBBE schemes in section 2.2.1. Now we show

how to apply the generic conversion in [32] on an IBBE scheme to build a KDM secure

IBBE scheme. First we define a hash function H :M→M∗ whereM is the message

space of the original IBBE scheme. Assume that the IBBE ′ represents the original IBBE

scheme in the description, we build the KDM secure IBBE scheme in the random oracle

model as follows:

IBBE .Setup(λ) := IBBE ′.Setup(λ)
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IBBE .Extract(mk, ID) := IBBE ′.Extract(mk, ID)

IBBE .Encrypt(pk, U ,M) : First choose a random r
R←M, and then output the cipher-

text

C = (c1, c2) = (IBBE ′.Encrypt(pk,U , r), H(r)⊕M)

IBBE .Decrypt(pk, sk, C) := H(IBBE ′.Decrypt(pk, sk, c1))⊕ c2

Applying the above conversion on the IBBE scheme before using it in our generic

RBE constructions will ensure that the constructed RBE scheme has the same level of

security as the original IBBE scheme which we will prove later.

To use an IBBE scheme in our generic RBE constructions, we need a collision

resistant hash function that maps user private keys to the message space of the IBBE

scheme. However, in this chapter, we assume that the user private keys are encoded

as elements of the message space to simplify the notation used in descriptions of our

RBE constructions.

3.4 Generic RBE Constructions

In this section, we show three generic constructions to build RBE schemes using IBBE

techniques. Each construction has its own advantages in terms of complexity of man-

agement and computational efficiency. To achieve revocation in these constructions, we

assume that each role is assigned a set of pseudo-identities IDR = {ID1
R, ID

2
R, · · · , IDn

R}

as its role identity, and the real identity IDR is only used to track the role and its asso-

ciated parameters in the system. In this section, when we use the term role identity, we

are referring to the pseudo-identities unless explicitly specified. The public parameters

of each role consists of two parts, and we write them as pubR = {pub1
R, pub

2
R}. The part

pub1
R is used in specifying the role inheritance relationship within the role hierarchy,

and the part pub2
R is used to define the user memberships of the role. They can be

changed independently in RBE operations.

In the following descriptions, we let PRR denote the set of roles which are the

ancestor roles of a role R, and write the set of roles that directly inherit permissions
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from the role R as PRD
R ⊆ PRR.

3.4.1 Construction Type A

In hierarchical key management schemes, assume that a keyK1 is used to derive another

key Kn and the set of keys {K2, · · · , Kn−1} are the keys that lie on the path between

K1 and Kn in the hierarchy. To recover the key Kn using K1, the key holders first

derive the key K2 of its direct descendant, and then one level down until they derive

the key Kn. Similarly, a RBE scheme can be built by running a recursive algorithm

in the decryption for each level of the hierarchical tree. We describe our first generic

RBE construction referred as Construction Type A in Figure 3.1.

Setup(λ): Generate system parameters {mk, pk} ←− IBBE .Setup(λ).

Extract(mk, ID): When ID = IDU is an identity of a user U , the user decryption

key is generated as dkU ←− IBBE .Extract(mk, IDU). When ID = IDR is a

set of pseudo-identities of a role R, the role secret keys are generated as

skiR ←− IBBE .Extract(mk, IDi
R) where IDi

R ∈ IDR.

ManageRole(mk, skR, IDR, T ): We denote the set of existing users of the role

as UR.

To update the position of the role R in the role hierarchy, first an unused

pseudo-identity IDR and the corresponding secret key skR are chosen, and

then the role public parameters {pub1
R, pub

2
R} are updated as pub1

R ←−

IBBE .Encrypt(pk,PRD
R , skR) and pub2

R ←− IBBE .Encrypt(pk,UR, skR).

In addition, the direct descendant roles of the role R need to update their

public parameters to have their permissions inherited by the new role. For

each direct descendant role Rk whose set of direct ancestor roles was PRD
Rk

,

the public parameters are updated as pub1
Rk
←− IBBE .Encrypt(pk,PRD

Rk
∪

IDR, skRk
).
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If the role R has descendant roles before the hierarchy changes, each pre-

vious descendant role Ri needs to choose a new unused pseudo-identity

IDRi
and the corresponding secret key skRi

, and then updates the role

public parameters pub1
Ri
←− IBBE .Encrypt(pk,PRD

Ri
, skRi

) and pub2
Ri
←−

IBBE .Encrypt(pk,URi
, skRi

).

AddUser(pk, skR, UR, IDU): To add a user U with identity IDU into a role R

which has a set UR of existing members, the public parameters pub2
R of the

role R is updated as pub2
R ←− IBBE .Encrypt(pk,UR ∪ U, skR).

RevokeUser(pk, skR, UR, IDU): In this construction, revoking a user affects

all the descendant roles of the role. We denote a role set R = SRR ∪ R

where SRR is the set of all the descendant roles of the role R, and the

directly ancestor role set of each role Ri ∈ R as PRD
Ri

.

When revoking a user U with identity IDU from the role R which has a

set UR of existing members, first the manager of each role Ri ∈ R needs

to choose a new unused pseudo-identity IDRi
and the corresponding secret

key skRi
, and then update the role public parameters pub1

Ri
as pub1

Ri
←−

IBBE .Encrypt(pk,PRD
Ri
, skRi

). Then R updates its public parameters pub2
R

as pub2
R ←− IBBE .Encrypt(pk,UR\U, skR).

Encrypt(pk, R, M): When encrypting the message M to a set of roles R, the

ciphertext is output as C ←− IBBE .Encrypt(pk,R,M).

Decrypt(pk, R, dkU , C): Assume R is a role to which the message M is directly

encrypted, R′ is a role that inherits permissions from R. We denote the roles

which are on the path between R′ and R in the hierarchy as {R1, . . . , Rm}

where R1 = R′ and Rm = R. To decrypt C, a user U of the role R′ decrypts

following the below algorithm.

1: set sk←− dkU

2: for i = 1 to m do
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3: set sk←− IBBE .Decrypt(pk, sk, pub1
Ri

)

4: end for

5: output M ←− IBBE .Decrypt(pk, sk, C)

Figure 3.1: Generic RBE Construction Type A

In this construction, decryption has been split into separate levels. A user can

decrypt the secret key of the role that she or he belongs to using her or his decryption

key, and hence derive the secret key of the direct descendant roles. By recursively

running this derivation process, the user can eventually recover the key of the role to

which the message is encrypted. Hence she or he can decrypt the message.

When attaching a role to the role hierarchy, only the direct descendant roles of the

role (if there are any) need to update their role public parameters, and none of the

other roles and users are affected. This role needs to choose a new pseudo-identity

and secret key because its old secret key might have been accessed by users from its

previous ancestor roles. Since the hierarchy information is not used in the encryption

algorithm, users of this role have access to the messages that were encrypted to its

descendant roles before it became the ancestor role of these roles.

Adding users to roles does not affect the other roles and users either. The newly

joined users have immediate access to the messages that were encrypted before they

join the role, and the messages do not need to be re-encrypted. However, when revoking

a user from the role, all the descendant roles will be affected; that is, all these roles

will have to choose a new pseudo-identity and secret key, and update the role public

parameters to prevent the revoked user from accessing any future messages encrypted

to these roles.

We note that in the decryption algorithm of this construction, the number of times

the IBBE .Decrypt algorithm is executed is linearly proportional to the distance between

the role R and R′ in the role hierarchical tree, which may be inefficient if the depth

of the hierarchical tree is high. In addition, since each execution of the IBBE .Decrypt

algorithm takes as an input the results from the previous execution, it is not possible

to carry out these executions in parallel to improve the performance of the scheme.
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3.4.2 Construction Type B

In this subsection, we give another construction of RBE described in Figure 3.2. In

this construction, when encrypting a message to a set of roles R, the message is not

just directly encrypted to the roles in R, it is also directly encrypted to all the ancestor

roles of the roles in R. The hierarchy relationships of the roles in R are reflected in

the ciphertext. Therefore, a user does not need to run recursive algorithms to decrypt

messages. Users in any role which have permissions to access messages can use the role

secret key to decrypt messages, as messages are directly encrypted to the role.

Setup(λ): Generate system parameters {mk, pk} ←− IBBE .Setup(λ).

Extract(mk, ID): When ID = IDU is an identity of a user U , the user decryption

key is generated as dkU ←− IBBE .Extract(mk, IDU). When ID = IDR is a

set of pseudo-identities of a role R, the role secret keys are generated as

skiR ←− IBBE .Extract(mk, IDi
R) where IDi

R ∈ IDR.

ManageRole(mk, skR, IDR, T ): To update the position of the role R with

identity IDR in the role hierarchy T , the role public parameters are updated

as pub1
R ←− PRR. Here we let PRR be the real identities of the role’s

ancestor roles.

Moreover, all the new descendant roles of the role R need to update their

ancestor roles list to include the real identity of the role R; that is, for

each descendant role Rk whose set of ancestor roles was PRRk
, the public

parameters are updated as pub1
Rk
←− PRRk

∪ IDR.

For the previous descendant roles (if there is any), their public parameters

need to be updated to exclude the real identity of the role R.

AddUser(pk, skR, UR, IDU): To add a user U with identity IDU into a role R

which has a set UR of existing members, the public parameters pub2
R of the

role R are updated as pub2
R ←− IBBE .Encrypt(pk,UR ∪ U, skR).
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RevokeUser(pk, skR, UR, IDU): To revoke a user U with identity IDU from the

role R which has a set UR of existing members, first the role R chooses a new

unused pseudo-identity IDR and the corresponding secret key skR, and then

updates the role public parameters pub2
R ←− IBBE .Encrypt(pk,UR\U, skR).

Other roles do not need to update their public parameters as the real iden-

tity of the role R does not change.

Encrypt(pk, R, M): Assume there are n roles {R1, . . . , Rn} in the setR. Then

we denote the ancestor role set PRR = {PRR1 , . . . ,PRRn} where PRRi
is

the set of ancestor roles of the role Ri. When encrypting the message M to

the set of roles R, the ciphertext is output as C ←− IBBE .Encrypt(pk,R∪

PRR,M) where the pseudo-identities of the roles in the set are used in the

encryption..

Decrypt(pk, R, dkU , C): Assume that R is a role to which the message M

is directly encrypted, and R′ is a role that inherits permissions from R.

Then a user U of the role R′ decrypts the ciphertext C using the following

algorithm.

1: set skR′ ←− IBBE .Decrypt(pk, dkU , pubR′)

2: output M ←− IBBE .Decrypt(pk, skR′ , C)

Figure 3.2: Generic RBE Construction Type B

Putting a role into the role hierarchy requires all the descendant roles of the role to

update their public parameters. The ancestor roles and all the users are not affected.

Since the hierarchy relationships of roles are reflected in the ciphertext, users of the

role cannot access messages that were encrypted to its descendant roles before the role

is added.

Adding a new user to a role is the same as in the Construction Type A, and the new

user can decrypt messages that were encrypted before she or he has joined the role.

Since the hierarchy information is only used when encrypting messages, and the role

public parameters store the real identities of ancestor roles, any change of an individual
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role will not affect other roles. Therefore, when revoking a user from a role, only the

public parameters of this role need to be updated.

This generic construction dramatically simplifies the decryption process where the

IBBE .Decrypt algorithm needs to be executed only twice. Moreover, revoking a user is

efficient and does not affect any other roles. However, since the role public parameters

are the identities of its ancestor roles, the size of the public parameters of each role is

linearly proportional to the number of ancestor roles of the role.

3.4.3 Construction Type C

We now propose another RBE construction where a role can access messages that were

encrypted to its new descendant role before the hierarchy changes and the number

of times that the IBBE .Decrypt algorithm is executed is still independent of the role

hierarchy. This construction is described in Figure 3.3.

Setup(λ): Generate system parameters {mk, pk} ←− IBBE .Setup(λ).

Extract(mk, ID): When ID = IDU is an identity of a user U , the user decryption

key is generated as dkU ←− IBBE .Extract(mk, IDU). When ID = IDR is a

set of pseudo-identities of a role R, the role secret keys are generated as

skiR ←− IBBE .Extract(mk, IDi
R) where IDi

R ∈ IDR.

ManageRole(mk, skR, IDR, T ): To update the position of a role R with iden-

tity IDR in the role hierarchy T , first choose an unused pseudo-identity

IDR and the corresponding secret key skR, and then update the public

parameters of the role R as pub1
R ←− IBBE .Extract(pk,PRR, skR) and

pub2
R ←− IBBE .Encrypt(pk,UR, skR).

In addition, all the new descendant roles of the role R need to update their

public parameters to have their permissions inherited by the new role. For

each descendant role Rk whose set of ancestor roles was PRRk
, update the

public parameters as pub1
Rk
←− IBBE .Extract(pk,PRRk

∪ IDR, skRk
).
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Each previous descendant role Ri (if there is any) needs to choose a new

unused pseudo-identity IDRi
and the corresponding secret key skRi

, and then

update the public parameters as pub1
Ri
←− IBBE .Extract(pk,PRRi

, skRi
)

where IDR /∈ PRRi
, and pub2

Ri
←− IBBE .Encrypt(pk,URi

, skRi
).

AddUser(pk, skR, UR, IDU): To add a user U with identity IDU into a role R

which has a set UR of existing members, the public parameters pub2
R of the

role R are updated as pub2
R ←− IBBE .Encrypt(pk,UR ∪ U, skR).

RevokeUser(pk, skR, UR, IDU): In this construction, revoking a user affects

all the descendant roles of the role. We denote a role set R = SRR ∪ R

where SRR is the set of all the descendant roles of the role R, and the

direct ancestor role set of each role Ri ∈ R as PRD
Ri

.

When revoking a user U with identity IDU from the role R which has a set

UR of existing members, first each roleRi ∈ R chooses a new unused pseudo-

identity IDRi
and the corresponding secret key skRi

, and then updates the

role public parameters as pub1
Ri
←− IBBE .Encrypt(pk,PRD

Ri
, skRi

). Then R

updates its public parameters as pub2
R ←− IBBE .Encrypt(pk,UR\U, skR).

Encrypt(pk, R, M): When encrypting a message M to a set of roles R, the

ciphertext is output as C ←− IBBE .Encrypt(pk,R,M).

Decrypt(pk, R, dkU , C): Assume that R is a role to which the message M

is directly encrypted, and R′ is a role that inherits permissions from R.

Then a user U of the role R′ decrypts the ciphertext C using the following

algorithm.

1: set skR′ ←− IBBE .Decrypt(pk, dkU , pubR′)

2: set skR ←− IBBE .Decrypt(pk, skR′ , pubR)

3: output M ←− IBBE .Decrypt(pk, skR, C)

Figure 3.3: Generic RBE Construction Type C
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In this construction, roles do not need to keep the identity list of their ancestor

roles. Instead, they encrypt their role secret keys to ancestor roles. Therefore, when a

role in the role hierarchy changes, the role manager of this role needs to choose a new

pseudo-identity as its secret key might have been accessed by users from its previous

ancestor roles. Since the role has access to the secret key of its descendant roles, users

of this role have access to messages encrypted to its descendant roles before the role

became the ancestor role of these roles.

The process of adding a user is the same as in the previous two constructions.

Revoking a user requires all the descendant roles to choose new pseudo-identities and

secret keys, and update the role public parameters to prevent the revoked user from

accessing future messages encrypted to these roles.

Note that the decryption needs an additional IBBE .Decrypt execution in this con-

struction, but the number of the executions is still independent of the depth of the role

hierarchy.

3.5 Security Considerations

The intuition behind a KDM secure encryption scheme is that having access to en-

cryptions of the secret keys does not help the adversary in breaking the security of the

scheme. We note that this is exactly the case in our generic constructions where the

public parameters are the encryptions of secret keys of IBBE schemes. If the adver-

sary cannot learn anything from these role public parameters, then the security of a

constructed RBE scheme is somehow equivalent to the security of the selected IBBE

scheme. Therefore we have the following theorem.

Theorem 3.1 Given a selective-ID ε1-KDM secure IBBE scheme. An adversary’s

advantage AdvRBE in attacking a RBE scheme that is built based on our generic con-

structions using this IBBE scheme has AdvRBE < ε.

Proof: In our constructions, apart from the system public keys, the only information

that can be publicly accessed is the encryptions of roles’ secret keys and the ciphertexts.
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Therefore, any attack to the RBE scheme can be disassembled into a KDM security

game, where the function set F ′ that an adversary A′ can use in Queries phase only

contains functions in SK = {sk1, sk2, . . . , skp} and M = {M1,M2, . . . ,Mq}, and SK is

the set of all generated roles’ secret keys and M is the set of all the messages that have

been encrypted.

Now given an attacker A that wins the RBE security game with the advantage

AdvRBE , we construct another attacker B that can successfully win the KDM security

game. B does the following:

Init: B outputs two sets of identities U = {IDU1 , · · · , IDUn} and R = {IDR1 ,

· · · , IDRm} which B will query to the challenger and A.

Setup: The challenger first executes IBBE .Setup(λ) to setup the system and generate

the master secret key mk and the public keys pk. Then the challenger sends the

public keys pk to B, and B forwards pk to the adversary A. Then the challenger

randomly chooses a bit b ∈ {0, 1}.

Queries: Assume that the adversary A chooses an identity IDk ∈ R as the role

identity, and adaptively issues the following two types of queries to B.

• Extract : A chooses a random identity ID /∈ R and ID has not been queried

in the Encryption process, and sends the identity to the challenger. B sends

the identity ID to the challenger, and the challenger computes and returns

skID ←− IBBE .Extract( mk, ID) to B. Then B sends the pair (ID, skID) to A.

• Encryption: A chooses a set Û ⊂ U of identities where none of the identities

in Û either have been queried in the Extract processes or are in the set R,

and sends Û to B. Then B passes the identity set Û and the identity IDk to

the challenger, and the challenger encrypts skIDk
to the set Û and returns the

ciphertext c = IBBE .Encrypt(pk, Û , skIDk
) to B, and B passes all the values

which are returned by the challenger to the adversary A.
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Challenge: When the adversary A decides that all the queries have been completed,

it chooses a function f which satisfies f(sk1, sk2, · · · , skn) = M and sends the

values to B and B forwards it to the challenger. The challenger chooses an identity

IDi ∈ U and responds with c = Enc(pk, IDi, M) if b = 0, or c = Enc(pk, IDi, 0
|M |)

if b = 1.

Guess: Now assume that the adversary A outputs a guess b′ ∈ {0, 1} by using the

responses from the challenger in the above phases, and passes it to B. If A has

the right guess that b = b′, B wins the game.

In our RBE constructions, the ManageRole process has similar outputs as AddUser,

and the only difference is the identity sets and role secret keys. So we omit the process

for simplicity. From the above description, we see that ifA wins the RBE security game,

then B can win the KDM security game which implies AdvRBE = |Pr[b = b′]− 1
2
| < ε.

Hence the theorem is proved.

In the next section, we use an example to illustrate and compare different types of

generic constructions. For simplicity, in the following discussions of this section, we

write EIBBE(M, {ID1, . . . , IDn}) = IBBE .Encrypt(pk, {ID1, . . . , IDn},M).

3.6 Example Scenario and Comparison

Now consider the example role hierarchy shown in Figure 3.4. In Figure 3.4, the role

R1 inherits from role R2 and role R4, and the role R2 inherits from R5 and R6. R3 and

R4 both inherit from role R7, and R6 inherits from roles R8 and R9. Each role obtains

a role secret skRi
from SA.

3.6.1 Role Public Parameters

First, we have a look at the role public parameters which are associated with each role.

In our RBE constructions, each role has its public parameters pubR = {pub1
R, pub

2
R}

where pub1
R is role hierarchy related parameters and pub2

R is user membership related

parameters. Assume that Ri has a set of user members Ui. The public parameters
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Figure 3.4: Hierarchical RBAC Example II

pub2
Ri

for this role will then be set as IBBE .Encrypt(pk,Ui, skRi
) which is the same in all

the three constructions. pub1
Ri

for this role varies in different constructions. Table 3.1

shows the value of pub1
R of each role for the example in different constructions.

In Table 3.1 we see that the role public parameters are constant in size, and are

independent of the depth of the role hierarchy in Construction Types A and C. In

Construction Type B, the size of role parameters of each role is linear to the number

of its ancestor roles.

3.6.2 Encryption and Decryption

In this subsection, we describe the encryption and decryption algorithms of different

constructions using the example shown in Figure 3.4. Assume that an owner encrypts

a message M to role R7 and R9, and a user U with identity IDU who is a member of

role R2 wishes to decrypt M . Since R2 inherits from R9, the user U is able to decrypt

M .

Construction Type A. The owner runs IBBE .Encrypt(pk, {R7, R9},M) to encrypt
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Type A Type B Type C
R1 ∅ {IDR1} ∅
R2 EIBBE(skR2 , {R1}) {IDR1 , IDR2} EIBBE(skR2 , {R1})
R3 ∅ {IDR3} ∅
R4 EIBBE(skR4 , {R1}) {IDR1 , IDR4} EIBBE(skR4 , {R1})
R5 EIBBE(skR5 , {R2}) {IDR1 , IDR2 , IDR5} EIBBE(skR5 , {R1, R2})
R6 EIBBE(skR6 , {R2}) {IDR1 , IDR2 , IDR6} EIBBE(skR6 , {R1, R2})
R7 EIBBE(skR7 , {R3, R4}) {IDR1 , IDR3 , IDR4 , IDR7} EIBBE(skR7 , {R1, R3, R4})
R8 EIBBE(skR8 , {R6}) {IDR1 , IDR2 , IDR6 , IDR8} EIBBE(skR8 , {R1, R2, R6})
R9 EIBBE(skR9 , {R6}) {IDR1 , IDR2 , IDR6 , IDR9} EIBBE(skR9 , {R1, R2, R6})

Table 3.1: Role Public Parameters for Generic RBE Constructions

the message, and outputs the ciphertext as

C = EIBBE(M, {R7, R9})

To decrypt the ciphertext C, the user U first decrypts the secret key skR2 of R2 using

the decryption key skU . Then she or he uses skR2 to decrypt skR6 of role R6, and then

decrypts skR9 of R9 using skR6 , and lastly decrypts the message using skR9 .

Construction Type B. In this construction, the owner first retrieves the ancestor

roles’ identity list of role R7 and R9, and merges them into one list. Then the owner

executes IBBE .Encrypt algorithm to output the ciphertext

C = EIBBE(M, {R1, R2, R3, R4, R6, R7, R9})

To decrypt the ciphertext C, the user U first decrypts the secret key skR2 of R2 using

the decryption key skU , and then decrypts the message directly using skR2 .

Construction Type C. The owner runs IBBE .Encrypt(pk, {R7, R9},M) to encrypt

the message, and outputs the ciphertext as

C = EIBBE(M, {R7, R9})

To decrypt the ciphertext C, the user U first decrypts the secret key skR2 of R2 with

the user decryption key skU , and then uses skR2 to decrypt skR9 of R9. Then the user
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decrypts the message M using skR9 .

The decryption is less efficient in Construction Type A compared to the other two

constructions, as a user needs to perform the IBBE decrypt algorithm every time she

or he recovers the secret of the role one level down. In Constructions Types B and C,

the user only performs IBBE decryption algorithm two and three times respectively,

regardless of the depth of the role hierarchy.

3.6.3 Role Management

Let us now consider the role hierarchy management complexity. First, let us look at a

scenario where a new role R0 is added to the system, and it inherits from R1. From

Table 3.1, we can see that in Construction Type A, only the public parameters of role

R1 need to be changed to EIBBE(skR1 , {R0}), and all the other roles are not affected. In

Construction Type B, all the roles need to update their public parameters to include

role R0 as one of their ancestor roles. However, the role public parameters in this

construction are the identity list of all the ancestor roles, and they do not contain any

secret values. Therefore the presence of a role manager is not compulsory in adding

a new role. In Construction Type C, all the roles also need to update their public

parameters to include role R0 as their ancestor role. Since the role public parameters

are generated using role secret keys, all these role managers have to be involved in

generating the new role public parameters every time a new ancestor role of these roles

is added to the system.

When a role is added to the role hierarchy, whether users of the new role are able to

access messages encrypted to descendant roles before the new role has joined is another

difference between the different construction types. Assume that a message M has been

encrypted to R1 before R0 is added to the role hierarchy. With Construction Types A

and C, messages are encrypted only to the target set of roles. Therefore, a change in

role hierarchy does not affect the encrypted messages; that is, users of R0 can access

the message M once R0 has been added as an ancestor role of R1 without the need

to re-encrypt the message M . However, in Construction Type B, the role inheritance

relationships information has been used in the encryption of messages. Since R0 was



82 Generic Role-based Encryption Frameworks

not an ancestor role of R1 when the message M was encrypted to R1 (and hence was

not involved in the encryption of M), users of R0 do not have access to the message

M . If users of R0 want to access the previously encrypted message M , this message

needs to be re-encrypted.

Now let us consider a case where the role R2 is removed from the system, and R1

inherits directly from R5 and R6. In Construction Type A, all its descendant roles

R5, R6, R8 and R9 need to choose new pseudo-identities and the corresponding secret

keys. This ensures that R2 does not have access to the role secret keys of these roles

which will be used to decrypt future encrypted messages. R5 and R6 need to update

their public parameters to EIBBE(sk′R5
, {R1}) and EIBBE(sk′R6

, {R1}) respectively to allow

the new direct ancestor role R1 to access their new secret keys. Other descendant

roles only re-encrypt their new role secret keys to the set of their ancestor roles. In

Construction Type B, all its descendant roles only need to exclude the identity of R2

from their public parameters, and it is clear that role managers do not need to be

involved in this process. In Construction Type C, all the descendant roles need to

choose new pseudo-identities and the corresponding secret keys for the same reason as

in Construction Type A, and these roles also need to re-encrypt their new secret keys

to their ancestor roles excluding R2.

3.6.4 User Management

In this subsection, we discuss user management aspects. When a new user U has been

granted membership of the role R1, as we have described in section 3.4, the new user has

immediate access to messages encrypted to R1 and all descendant roles of R1 without

the need to re-encrypt these messages. This is the same in all the constructions. Only

R1 needs to update its public parameters, and no other roles and users are affected.

Assume that the role R1 needs to revoke the user membership from an existing user

U ′. In Construction Types A and C, R1 and all its descendant roles need to choose new

pseudo-identities and the corresponding secret keys as the user U ′ might have accessed

their role secret keys while she or he was a user of R1, and hence these roles need to

re-encrypt their new role secret. In Construction Type B, since users of roles do not
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Type A Type B Type C

• Size of role public parameters O(1) O(p) O(1)

• Decryption computation round O(m) O(1) O(1)

• Number of roles affected by adding a role d c c

• Requiring use of the master secret when
adding/removing a role

Yes No Yes

• Ability to decrypt messages that are
encrypted before the new role is created

Yes No Yes

• Number of roles affected by a user revocation c + 1 1 c + 1

Table 3.2: Comparison of Generic RBE Constructions

have access to role secret keys of other roles, U ′ only knows the role secret key of R1.

Therefore, only R1 needs to choose a new pseudo-identity and update its role secret

key and public parameters, and other roles are not affected.

3.6.5 Summary

We conclude by providing a comparison of results of our three generic RBE construc-

tions in Table 3.2. In this table, a role has p ancestor roles, c descendant roles, d direct

descendant roles and there are m roles on the path (including the ends) from this role

to the role to which the messages are encrypted. From Table 3.2, it can be seen that

each construction has different advantages and disadvantages.

Let us now consider several scenarios where these generic RBE constructions can be

used. If a RBAC system requires efficient user revocation, the RBE construction type

B has the most efficient user revocation and can be used. In the type B construction,

when a new role is added to the system, even if it may inherit permissions from other

roles, the users of this role cannot decrypt messages that were encrypted before the

role was created.

Some RBAC systems may wish that users of a new role are able to decrypt any

encrypted message to which they have the access no matter when the message was

encrypted. In these cases, the RBAC systems can use the RBE constructions type A
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and type C. If such a system requires efficient decryption, the construction type C can

be used as it has better decryption performance compared to type A where recursive

computations are used.

In some RBAC systems, the privileges for role administration may be decentralised

to different administrators. Each administrator manages a set of roles in the hierarchy

which we call an administration domain. When a new role is added to the system,

the administrator who manages the new role may not want other administrators to be

affected by the operation. In such a case, the RBE construction type A can be used

where only direct descendent roles will be affected by the operation.

From the above discussion, we can see that different constructions can be used

for different purposes. In practice, the designer can select a suitable construction

depending on the system requirements.

3.7 Conclusion

In this chapter, we have considered the formulation and the security properties of RBE

schemes. We then proposed three different generic role-based encryption (RBE) con-

structions which can be used to enforce RBAC policies in an outsourcing environment.

Compared to other existing cryptographic RBAC approaches, the RBE schemes con-

structed by the proposed generic solutions have common advantages, such as that a

user only needs to keep constant size decryption keys regardless of the number of roles

that the user has been assigned to. Depending on the chosen IBBE scheme, the con-

structed RBE scheme can have additional features, such as constant size ciphertext.

We then compared these generic constructions, and analysed the advantages and dis-

advantages of each of these construction types. Different types of constructions can be

used to build RBE schemes with different features, such as efficient user revocation,

efficient decryption, and we have discussed the situations where different contributions

can be used. These generic constructions would be helpful to the designer to choose a

suitable RBE construction depending on the specific system requirements.



4
A Concrete Role-based Encryption

Construction

In this chapter, we construct a concrete RBE scheme using a specific broadcast encryp-

tion mechanism described in [48]. In this scheme, the ciphertext and the decryption

key that the user needs to keep is constant in size, and the user can be revoked from

the role without affecting the owners and other users of the same role.

This chapter is organised as follows. Section 4.1 describes the Bilinear pairing which

is used to construct the RBE scheme and the security problem that is used to prove

the security of the RBE scheme. In section 4.2, we describe our RBE scheme. We give

an analysis of the security and performance of our scheme in section 4.3. In section 4.4,

we discuss some design aspects that can be optimised to achieve an efficient practical

implementation of our scheme. Section 4.5 concludes the chapter.

85



86 A Concrete Role-based Encryption Construction

4.1 Preliminaries

In this section, we first review the basic cryptographic principles that will be used

throughout the chapter.

4.1.1 Bilinear Pairings

Let G1, G2 be two cyclic multiplicative groups of prime order p, and GT be a cyclic

multiplicative group of prime order p. g and h are two random generators where

g ∈ G1, h ∈ G2. A bilinear pairing ê : G1×G2 → GT satisfies the following properties:

• Bilinear: for a, b ∈ Z∗p we have ê(ga, hb) = ê(g, h)ab.

• Non-degenerate: ê(g, h) 6= 1 unless g = 1 or h = 1.

• Computable: the pairing ê(g, h) is computable in polynomial time.

In this chapter, we require asymmetric bilinear groups, where the bilinear map takes

inputs from two distinct isomorphic groups G1, G2 and G1 6= G2. The reason that we

choose asymmetric bilinear groups is that we keep the generator of one group as part

of the master secret key. The benefit that we gain by defining two distinct groups is

that our scheme can make use of certain families of non-supersingular elliptic curves

defined in [103, 9].

4.1.2 Security Assumptions

A General Diffie-Hellman Exponent Problem assumption ((P,Q, f)-GDHE) has been

introduced and extended to the General Decisional Diffie-Hellman Exponent assump-

tion ((P,Q,R, f)-GDDHE) by Boneh et al. [20]. The security of our scheme is based

on this assumption. First, let us review the GDDHE problem.

Let p be an integer prime and s, n be positive integers. Let P,Q,R ∈ Fp[X1, . . . , Xn]s

be three s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . , Xn]. We write

P = (p1, p2, . . . , ps), Q = (q1, q2, . . . , qs) and R = (r1, r2, . . . , rs), and the first compo-

nents of P,Q,R satisfy p1 = q1 = r1 = 1. For a set Ω, a function h : Fp → Ω, and a
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vector x1, . . . , xn ∈ Fp, we write

h(P (x1, . . . , xn)) = (h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ Ωs

Similar notation is used for the s-tuple Q and R. Let G1,G2,GT be groups of order

p and let ê : G1×G2 → GT be a non-degenerate bilinear map. Let g1 ∈ G1 and g2 ∈ G2

be generators of G1,G2 and set gt = e(g1, g2) ∈ GT .

A polynomial f ∈ Fp[X1, . . . , Xn] is said to be dependent on the sets (P,Q,R) if

there exist 2s2 + s constants {ai,j}si,j=1, {bi,j}si,j=1, {ck}sk=1 ∈ Zp such that

f =
s∑
i=1

s∑
j=1

ai,jpipj +
s∑
i=1

s∑
j=1

bi,jqiqj +
s∑

k=1

ckrk

Definition 4.1 GDDHE Problem (P,Q,R, f)-GDDHE Problem in G is defined as

follows: Given a random T ∈ GT and the vector

H(x1, . . . , xn) = (g
P (x1,...,xn)
1 , g

Q(x1,...,xn)
2 , g

R(x1,...,xn)
t ) ∈ Gs

1 ×Gs
2 ×Gs

T

decide whether T = gf(x1,...,xn).

The (P,Q,R, f)-GDDHE problem has been proved to have generic security when f

is independent of (P,Q,R) by Boneh et al. [20]. In the subsequent security proof, we

only need to give a specific P,Q,R and f and show that P,Q,R, f meet the require-

ment, as the (P,Q,R, f)-GDDHE problem has been proved to be hard for any choice

of P,Q,R and f .

4.2 The RBE Scheme Construction

4.2.1 The RBE Scheme

In this section, we propose our specific RBE scheme. The scheme is designed as follows:

Setup(λ): Generate three groups G1,G2,GT of order p, and an bilinear map ê :

G1 × G2 → GT . Choose random generators g ∈ G1 and h ∈ G2, a random value
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t ← Z∗p, two secret values s, k ← Z∗p and select two hash functions H1 : {0, 1}∗ →

Z∗p, H2 : GT → Z∗p. The master secret key mk and system public key pk are defined

as

mk = (s, k, g), pk = (w, v, y, gk, h, hs, · · · , hsq)

where w = gs, v = ê(g, h), y = gt and q is the maximum number of involved users and

roles.

Extract(mk, ID): When ID = IDU is an identity of a user U , SA computes the user

secret as

dkU = g
1

s+H1(IDU )

and gives dkU to the user. dkU is the secret key of the user and it will be used to

decrypt the data.

When ID = IDR is an identity of a role R, SA first computes the role secret as

skR = g
1

s+H1(IDR)

and gives skR to the role manager of R together with the user list UR which is initially

set to empty.

ManageRole(mk, skRi
, IDRi

, T ): Let us consider the positioning of a role with identity

IDRi
in the role hierarchy. Assume that PRRi

= {IDR1 , · · · , IDRm} is the set of the

identities of all the ancestor roles of the role Ri, the role manager RM of the role Ri

first outputs an empty role user list RULi and chooses a random secret value r ← Z∗p.

Then RM computes

Ki = vr, Wi = w−r

and sends Ki to SA via a secure channel. After receiving Ki, SA computes the role

public parameters as

Ai = h(s+H1(IDRi
))

∏m
j=1(s+H1(IDRj

)), Bi = Ai
k



4.2 The RBE Scheme Construction 89

Si = skRi
· yk · yH2(Ki) = g

1
s+H1(IDRi

)
+t(k+H2(Ki))

AddUser(pk, pubRi
, N , IDUk

): A user Uk with identity IDUk
wishes to join the role

Ri, and assume that Ri already has a set N of n users, where Uk /∈ N . RM first

computes

Vi = hri·(s+H1(IDUk
))

∏n
j=1(s+H1(IDUj

))

Then RM adds IDUk
into RULi and outputs the role public information

(IDRi
, Ai, Bi,Wi, Vi, Si,RULi)

Encrypt(pk, pubRx
, M): Assume that the owner of the message M ∈ GT wants to

encrypt M for the role Rx. Given pk = (w, v, y, gk, h, hs, · · · , hsm), the owner randomly

picks z ← Z∗p and computes and outputs the ciphertext C = 〈C1, C2, C3, C4〉 as

C1 = w−z, C2 = y−z, C3 = Ax
z, C4 = M · v−z

Decrypt(pk, pubRi
, dkUk

, C): Assume role Rx has a set R of ancestor roles, and the

set M = Rx ∪ R has m roles {R1, · · · , Rm}. Ri ∈ R is one ancestor role of Rx, and

there is a set N of n users {U1, · · · , Un} in Ri, and the user Uk ∈ N who is entitled to

the role Ri wants to decrypt the message M . Uk computes

M ′ = C4 · (ê(C1, h
pi,M(s))ê(C2, Bx)ê(

Si
yH2(Ki)

, C3))
1∏m

j=1,j 6=i
H1(IDRj

)

where

Ki = (ê(dkUk
, Vi) · ê(Wi, h

pk,N (s)))
1∏n

j=1,j 6=k
H1(IDUj

)

pi,M(s) =
1

s
· (

m∏
j=1,j 6=i

(s+H1(IDRj
))−

m∏
j=1,j 6=i

(H1(IDRj
))).

pk,N (s) =
1

s
· (

n∏
j=1,j 6=k

(s+H1(IDUj
))−

n∏
j=1,j 6=k

(H1(IDUj
))).
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We will show that M = M ′ later.

RevokeUser(pk, pubR, N , IDU): To revoke a user Uk from a role Ri which has a set

UR of n users, and Uk ∈ UR, the role manager RM first removes IDUk
from role user list

UR and chooses a random value r′i ← Z∗p. Then RM computes

K ′i = vr
′
i , W ′

i = w−r
′
i , V ′i = hr

′
i·
∏n

j=1,j 6=k(s+H1(IDUj
))

and sends K ′i to SA via a secure channel. Suppose {R1, · · · , Rm} are all the existing

roles in the system, SA then chooses a random secret value t′ ← Z∗p, and computes

y = gt
′
, S ′j = g

1
s+H1(IDRj

)
+t′(k+H2(Kj))

, 1 ≤ j ≤ m

and publishes all these values. The role public information now changes to

(IDRi
, Ai, Bi,W

′
i , V

′
i , S

′
i,RUL)

Correctness: To check the correctness of the scheme, now we show that M = M ′.

Assume that dkUk
is a valid decryption key for identity IDUk

of user Uk in the system,

and Uk is the member of role IDR which the message was encrypted to.

First, we look into the computation of Ki:

K∗i = ê(dkUk
, Vi) · ê(Wi, h

pk,N (s))

= ê(g
1

s+H1(IDUk
) , hri

∏n
j=1(s+H1(IDUj

))) · ê(w−ri , hpk,N (s))

= ê(g, h)ri
∏n

j=1,j 6=k(s+H1(IDUj
)) · ê(g, h)−ri·s·pk,N (s)

= ê(g, h)ri·
∏n

j=1,j 6=kH1(IDUj
)

Then we have

Ki = (K∗i )
1∏n

j=1,j 6=k
H1(IDUj

)
= ê(g, h)ri = vri
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Next we verify:

K∗ = ê(C1, h
pi,M(s)) · ê(C2, Bx) · ê(Si · y−H2(Ki), C3)

= ê(g−zs, hpi,M(s)) · ê(g−zt, hk
∏m

j=1(s+H1(IDRj
))) · ê(g

1
s+H1(IDRi

)
+kt
, hz

∏m
j=1(s+H1(IDRj

)))

= ê(g, h)
−zs·pi,M(s)+ 1

s+H1(IDRi
)
·z

∏m
j=1(s+H1(IDRj

))

= ê(g, h)z·
∏m

j=1,j 6=iH1(IDRj
)

Thus, we have

M ′ = C4 · (K∗)
1∏m

j=1,j 6=i
H1(IDRj

)
= Mv−z · ê(g, h)z = M

In the above scheme, the owner of the message is able to specify a role R and

encrypts the message M to this role. Only this role R and the roles which are ancestors

of the role R can decrypt the message with their role secrets or randomised role secrets.

For an individual role, the randomised role secret is encrypted in such a way that only

the users in the role have the ability to decrypt the randomised role secret, and therefore

are able to recover the message M . Clearly a user who cannot decrypt the randomised

role secret cannot learn anything about the content of the message.

Note that the encryption has been split into separate levels. The role manager

can add new users without changing the randomised role secret, which means that

new users will be able to decrypt the message that was encrypted before she or he

was assigned to this role, and the owner does not need to re-encrypt the message.

On the other hand, when revoking a user, a role manager will need to have the SA

re-randomise the role secret, so that this user cannot use the previous randomised role

secret to decrypt messages any more, but no other roles will be affected by the changes

to this role.

Let us now illustrate the scheme using some simple example scenarios.
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R1 

R2 

R3 

(a)

R1 

R2 R3 

R4 

(b)

Figure 4.1: Hierarchical RBAC Example III

4.2.2 Example Scenarios

In this section, we give two small examples to illustrate the proposed RBE scheme (see

Figure 4.1).

In Figure 4.1(a), the role R1 is the ancestor role of role R2, and the role R2 is the

ancestor role of role R3. SA generates role public parameters pubRi
for each role, where

pubRi
contain the identities of all the ancestor roles. When a user (owner of data)

wishes to encrypt a message M for role R3, pubR3
will be used as the public key. Since

pubR3
includes the identities of R1 and R2, the message M is also encrypted for role

R1 and R2.

When a user U1 in role R1 wants to decrypt the message, she or he only needs to

use the user decryption key dkU1 and the public parameters pubR1
of role R1 to decrypt

the ciphertext. In this case, when the role manager wants to assign the role to a new

user, RM only needs to update the pubR1
.

Figure 4.1(b) illustrates a situation whereby the role R1 is the ancestor role of

two roles R2 and R3, and both R2 and R3 are ancestor roles of the role R4. Firstly,

SA generates role public parameters for each role. Note that pubR4
will have the

information for the identities of R1, R2 and R3. Whenever a user encrypts a message

M for role R4, all the users in R1, R2 and R3 will be able to decrypt the message. Here
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we can see that the size of pubR4
remains constant regardless of the number of roles

which inherit from it.

When adding a new role to the system, or removing an old role, only the descendent

roles will be affected. In Figure 4.1(b), if SA wants to remove R3 from the hierarchical

structure, only the pubR4
will need to be updated, and R1 and R2 will not be affected.

In a healthcare scenario, assume that Alice is a patient who wants to store her

health record in an online personal health record (PHR) cloud server, so that she can

easily share the information with other people she chooses. Now let us assume that

Alice wishes to allow her doctors to access her PHR but not the nurses in the practice.

In our hybrid RBE scheme, we first create the roles for Doctor and Nurse, and each

role public key contains an encrypt form randomised role secret which can be used to

decrypt the messages encrypted to the role itself. Alice simply encrypts her PHR to

the role Doctor, and stores the ciphertexts in the online PHR cloud server. Assume

that John is a doctor, and Jane is a nurse. Each of them will be given a decryption

key.

Since Alice’s PHR was encrypted to the role Doctor, John can use his decryption

key with the public parameters of role Doctor to decrypt the randomised role secret of

Doctor, and hence decrypt Alice’s PHR. Because Alice’s PHR was not encrypted for the

role Nurse, Jane cannot use role Nurse’s public parameters to decrypt the ciphertexts,

so she will learn nothing about Alice’s PHR. Let us assume that Tom is one of the

technicians who is maintaining the service of the cloud. Though Tom can access the

ciphertexts stored in the cloud, he cannot use any role public parameters to decrypt,

as he is not assigned to any role.

Now assume that the hospital has created a new role Staff, which is a descendent

role of role Doctor and Nurse. Let us assume that all the staff in the hospital will be

added to this new role. The role Doctor and Nurse do not need to update their public

parameters. If Alice has a message encrypted to the role Staff, John and Jane can

both use their keys with the public parameters of role Doctor and Nurse to decrypt the

Alice’s message separately. When a new doctor joins the hospital, only the role Doctor

needs to update the public parameters, and all the other roles will not be affected.
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4.3 Analysis of Our RBE Scheme

In this section, we discuss our RBE scheme from the aspects of security and efficiency.

4.3.1 Security Analysis

We have defined the security properties of a RBE scheme in section 3.2. In this section,

we analyse our scheme to show that it is chosen plaintext attack (CPA) secure.

Theorem 4.1 The proposed RBE scheme is CPA secure against active adversary un-

der the GDDHE assumption in the Random Oracle Model.

To prove Theorem 4.1, we start by defining a specific GDDHE problem based on

the security assumption given in section 4.1.2, where we give a specific definition of

P,Q,R and f which satisfies f /∈ (P,Q,R).

Definition 4.2 GDDHE Problem I Let (p,G1,G2,GT , ê) be a bilinear map group

system and let g and h be the generator of G1 and G2 respectively, and v = ê(g, h).

Solving the (P,Q,R, f)−GDDHE problem consists, given

g, gγ, . . . , gγ
2n

, h, hγ, . . . , hγ
2n

,

(gP (x1,...,xn), hQ(x1,...,xn), vR(x1,...,xn))

and K ∈ GT , in deciding whether K is equal to ê(g, h)f(x1,...,xn) or some random element

of GT .

Given an attacker A that wins the following game with probability AdvRBEIND−sID, we

construct another attacker B that solves the GDDHE problem.

Let q be the maximum number of identities of users and roles that the adversary

can query, U = {IDU1 , . . . , IDUn} and R = {IDR1 , . . . , IDRm} are the set of users’ and

roles’ identities respectively that the adversary will issue the queries. B will be given

g0, g
s
0, . . . , g

s2n

0 , h0, h
s
0, . . . , h

s2n

0 , where s is a random number chosen by the challenger.

We define the following polynomials,
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• g1(x, k) =
∏k

i=1(x+H1(IDRi
))

• g2(x, k) =
∏k

i=1(x+H1(IDUi
))

• f(x) = g1(x,m) · g2(x, n)

• f1(x, i) = f(x)
x+H1(ID∗Ri

)
, where i ∈ [1,m]

• f2(x, i) = f(x)
x+H1(ID∗Ui

)
, where i ∈ [1, n]

Init: The adversary A first outputs a set {ID1, · · · , IDk} of identities that he wants

to attack (with k ≤ q).

Setup: Adversary B will set the following values to generate the system parameters,

g = g
f(s)
0 , h = h0, w = g

s·f(s)
0 , v = ê(g, h) = ê(g0, h0)f(s),

y = gt = g
t·f(s)
0 , where t

R← Z∗p

Then B defines the public key as pk = (w, v, y, gk, h, hs, · · · , hsq), and creates the

role parameters

A = h
∏m

i=1(s+H1(IDRi
)) = h

g1(s,m)
0 ,

B = hk
∏m

i=1(s+H1(IDRi
)) = h

k·g1(s,m)
0

Phase 1: The adversary A adaptively issues queries q1, . . . , qm,

• If A issues a query on a user’s identity IDUj
, and IDUj

has not been queried

before, B computes the user decryption key as

skUj
= g

1
s+H1(IDUj

)
= g

f2(s,j)
0

• If A has issued the query on IDUj
, B then computes the role public param-

eters for role with IDRi
as follows to assign the role to the user (t is the



96 A Concrete Role-based Encryption Construction

number of the users currently in the role),

Ki = vri , Wi = w−ri = g
−ri·s·f(s)
0 , Vi = hri·

∏t
j=1(s+H1(IDUj

)) = h
ri·g1(s,t)
0

Si = yH2(Ki) · g
1

s+H1(IDRi
) · gkt = yH2(Ki) · gf1(s)+kt·f(s)

• If A issues a query on a role’s identity IDRi
, and IDRi

has not been queried

before, B computes the role secret and re-randomises as

skRi
= g

1
s+H1(IDRi

)
+kt

= g
f1(s,i)+kt·f(s)
0

• If A has issued the query on IDRi
, B then re-randomises the role secret as

skRi
= g

1
s+H1(IDUi

)
+kt′

= g
f1(s,i)+kt′·f(s)
0

and updates the system public parameter y to

y = gt
′
= g

t′·f(s)
0

As we use the ID-based broadcast encryption to encrypt the re-randomised role

secret, and this IBBE scheme has been proven to be secure in [48], we assume

this to be the case here as well, so the adversary will learn nothing about Si here.

Challenge: Once A decides that Phase 1 is over, it publishes the identity IDRi
of the

role to which it wishes to encrypt the message and two messages M0,M1 on which

it wishes to be challenged. Then B simulates Encrypt algorithm by constructing

the ciphertext for the message Mb for a random b ∈ {0, 1} as,

C1 = w−z = g
−z·s·f(s)
0 , , C2 = y−z = g

−z·t·f(s)
0

C3 = Az = h
z·g1(s,m)
0 , C4 = Mb · ê(g0, h0)−z·f(s)
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Phase 2: The adversary A adaptively issues more queries qm+1, . . . , qn which does

the same as the steps in Phase 1.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1}, and wins the game if

b = b′.

Then we have

Advgddhe =
1

2
(Pr[b = b′|real] + Pr[b = b′|rand])− 1

2

=
1

2
(
1

2
+ AdvRBEIND−sID) +

1

2
· 1

2
− 1

2

=
1

2
· AdvRBEIND−sID

Chosen-Ciphertext Security: Our security definition and proof are in the chosen-

plaintext model. However, our scheme can be extended to the chosen-ciphertext model

by using a standard transformation in [57]. Let E be a probabilistic public key encryp-

tion scheme, and Epk(M ; r) be the encryption of M using the random bits r under the

public key pk. A hybrid scheme Ehy is defined in [57] as:

Ehypk (M) = Epk(δ;H(δ,M)) ‖ G(δ)⊕M

where H and G are two hash functions H : MSPC× {0, 1}n → {0, 1}n, G : MSPC→

{0, 1}n and δ is randomly chosen from MSPC. In [57], the authors show that if E is a

one-way encryption scheme then Ehy is a chosen ciphertext secure system (IND-CCA)

in the random oracle model. Since semantic security implies one-way encryption, this

result also applies if E is semantically secure (IND-sID-CPA).

Now we apply this generic conversion to our proposed CCA secure RBE scheme

and the chosen-ciphertext secure RBE scheme is as follows:

Setup(λ): Same as in the original RBE scheme with two additional hash functions

H3 : GT × {0, 1}n → Z∗p, H4 : GT → {0, 1}n.

Extract(mk, ID): Same as in the original RBE scheme.
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ManageRole(mk, skR, IDR, T ): Same as in the original RBE scheme.

AddUser(pk, skRi
, N , IDUk

): Same as in the original RBE scheme.

Encrypt(pk, pubR, M): Assume that the owner of the message M ∈ {0, 1}n wants

to encrypt M for the role Rx. Given pk = (w, v, y, gk, h, hs, · · · , hsm), the owner

randomly picks δ ← GT , sets z = H3(δ,M) and computes

C1 = w−z, C2 = y−z, C3 = Ax
z, C4 = δ · v−z

The owner outputs the ciphertext

C = 〈C1, C2, C3, C4, H4(δ)⊕M〉

Decrypt(pk, pubR, dkUk
, C): Let C = 〈C1, C2, C3, C4, C5〉 be a ciphertext. The user

first computes δ as in the original scheme, and then computes

M = C5 ⊕H4(δ)

RevokeUser(pk, skR, N , IDU): Same as in the original RBE scheme.

4.3.2 Scheme Efficiency

Our scheme has several distinct advantages compared with the schemes that are earlier

mentioned in the Related Work in section 2.3.

Size of Ciphertext and Decryption Key

Our scheme has constant-size ciphertext and decryption keys. That is, the size of the

ciphertext and decryption key is independent of the number of roles and users in the

system, and it will not increase when new roles are created or more users join the

system. These are significant features when it comes to development of large-scale

systems. In comparison, for the schemes given in [126, 12], the size of the ciphertext is
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linearly proportional to the number of users, which make these schemes inefficient in

practical systems where there can be a large number of users. Furthermore, in these

schemes, when a user has multiple roles, multiple copies of the keys or ciphertexts

are required for a single user in every role, while in our scheme, no matter how many

roles a user has, the size of keys and ciphertexts remain constant. The scheme in [148]

has reduced the size of the ciphertext to be linearly proportional to the depth of the

role hierarchy. However their scheme is not able to deal with user revocation, and the

ciphertext size is still not constant.

User Management

The schemes mentioned in the Related Work in section 2.3 all assume the existence of

a single trusted party who manages the role memberships of the users. In this case,

this single trusted party needs to verify the qualifications of the user whenever a role

wishes to add a new user. However, in the real world, whether a user is entitled to a

role or not is usually decided by different entities who are responsible for validating

the users’ qualifications for different roles. In our scheme, the role memberships of the

users are no longer decided by a single trusted party. Instead, they are controlled by

role managers, who could be different for each role. This is more natural and reflects

the situation in practice. A role manager can add or revoke a user without having to

gain admissions from other parties, including the trusted party.

As mentioned earlier, in our scheme, a role manager RM can exclude the user from

accessing future encrypted data. In [148], once the user obtains the decryption key,

the manager cannot revoke the user’s permission even if the user does not qualify for

the role, as the decryption relies on the hierarchical structure of the roles. Unless the

ancestor roles have changed, the user can always decrypt the messages. In addition,

when a user has been excluded in our scheme, the other users of the same role will not

be affected. In the scheme described in [126], as the key structure had been constructed

based on the access matrix, when a user is removed from the access matrix, the key

management structure needs to be updated as well. This in turn will change the keys

of all the other users. In the scheme [12], as the ciphertext is associated with the
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Our scheme [126] [12] [148]

Ciphertext length O(1) O(n) O(n) O(m)
Encryption complexity O(1) O(1) O(n) O(n)
Decryption complexity O(n) O(1) O(n) O(n)

Computation Round(s) in Decryption 1 m m 1
Users revocation Yes Yes Yes No

Users affected in a revocation 0 n n

Table 4.1: Comparison of Cryptographic RBAC Schemes

hierarchical structure, the system parameters need to be re-generated every time a

user’s permission is revoked, which results in all the other users having to update their

keys. In our scheme, when a user is excluded, we can see that only roles need to update

their public information.

Computations

Table 4.1 shows a comparison of our scheme with the other schemes in [126, 12, 148].

The Table assumes that there are n users of the same role and there are m roles between

the role of the user and the specified role for the encryption in the role hierarchical

structure.

The decryption algorithm in our scheme only requires one round of computation,

while in [126, 12], the user needs to compute the secrets of all the roles (nodes) which

are on the path from the entitled role to the target one in the policy tree.

As shown in Table 4.1, though the scheme in [126] is computationally more efficient

in terms of decryption, the complexity of role creation, user grant and revocation

operations is linearly proportional to the number of authorised users. This makes

the scheme not scalable in practice. Moreover, the number of computation rounds

in decryption is linearly proportional to the number of roles in between in the role

hierarchical structure. However our scheme, with its constant size ciphertext and

decryption key, is more efficient for large-scale systems, and the decryption only requires

one computation round. Comparing our scheme to the other two schemes in [12, 148],

our scheme has similar performance but has constant size ciphertext and decryption

keys. Furthermore, our scheme also supports dynamic user revocation while the other
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two schemes do not. Effective dynamic user revocation is a fundamental requirement

in most practical systems.

4.4 Discussion

In this section, we briefly consider some aspects that can be optimised in the imple-

mentation of the proposed RBE scheme.

Preventing malicious cloud provider

When an owner of the data wants to encrypt private data, she or he needs to obtain

the system public parameters w, v ∈ pk and role public information AR ∈ pubR from

the cloud in order to run the Encrypt algorithm. This process can be susceptible to

a man-in-the-middle attack because a malicious cloud provider can return the pub′R of

another role R′ instead of the real pubR of the role R that the owner wants to encrypt

the private data with. If this is done, then the malicious cloud provider will be able to

reveal the content of data without the knowledge of the owner.

In order to prevent this kind of attack, we propose the following: first we make

the SA return system parameters w, v together with the decryption key to the user

while executing the Extract algorithm. Then we let SA sign the value AR under the

identity of role R using an appropriate ID-based signature scheme (eg. [71, 35]), and

return the signature sig(AR, IDR) along with AR. Upon receiving AR in running the

Encrypt algorithm, the owner should verify the signature corresponding to the identity

of the role, to which she or he wants to encrypt the private data, before sending the

ciphertext to the cloud. If the verification fails, it means that the value AR is not the

public information of the specified role R and the owner should not use it to encrypt

the data.

Decrypting previously generated messages

After executing the RevokeUser algorithm in our RBE scheme, the role public informa-

tion pubR is updated to prevent the excluded user from decrypting any future messages.
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However, the Decrypt algorithm uses pubR which means the messages encrypted before

executing RevokeUser algorithm cannot be decrypted even by the existing users of the

role because the pubR used to decrypt the previously generated messages has been

replaced.

We can allow for this and enable decryption of previously generated messages in

our RBE scheme by simply creating the indices for the ciphertext C and role public

information pubR. When RM runs the AddUser or RevokeUser algorithm to create

or update pubR, the algorithm will create a unique index for pubR, and insert it in

the cloud rather than replacing the previous pubR. When an owner of the data is

encrypting the private data, the Encrypt algorithm can be modified to attach the

index of the latest version pubR to the ciphertext C.

When a user wants to decrypt a ciphertext C, she or he can ask the cloud provider

to return the ciphertext C and pubR of the role. The cloud provider can easily choose

and return the corresponding pubR according to the index included in the ciphertext

C.

Moreover, the role public information’s update in RevokeUser algorithm requires

the changes in the public parameter S of all the roles in the system, and it could be

inefficient when there are a large number of roles. However, this work can be delegated

to a trust authority by SA without giving out the master secret. Such an approach is

being addressed as part of the implementation of the scheme.

Optimising decryption strategy

In our RBE scheme, let us assume that m is the number of ancestor roles of a specific

role, and assume that there are n users in the same role with the user who runs the

Decrypt algorithm. The Decrypt algorithm requires the expansion of two polynomials

of degrees m + 1 and n + 1 respectively. This calculation could be time consuming if

m and n are very large numbers.

We note that these two polynomials remain the same in the decryption of two

different messages if the identities of roles and users are not changed. Therefore, in

implementation, the user can keep these values as auxiliary information to help with
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decrypting messages. These values only need to be re-calculated when the ancestor

roles of the specific role are changed or the permission is revoked from another user in

the same role.

In addition, the user needs the system public keys pk = (w, v, gk, h, hs, · · · , hsq)

to calculate the expansion of the polynomials, which is inefficient in practice because

downloading the pk every time could cost network traffic if q is a very large number.

We can then utilise the computing power of the cloud to do the polynomial expansion

because calculating them does not require any secret values, and the cloud only needs

to return the result of the polynomial expansion to the user, which can dramatically

simplify the work for the user as well.

More precisely, in the decryption algorithm, the user in role R1 wants to decrypt

the message which is encrypted to role R2, and R1 inherits all the permissions of R2.

When the user retrieves the ciphertext from the cloud, the cloud computes the value

of hpi,M(s) and hpk,N (s) for the user and returns them to the user. This user can keep

two auxiliary values (AuxR, AuxU), where

AuxR = hpi,M(s), AuxU = H2(Ki)

If a user wants to decrypt other messages which are encrypted to role R2 in future,

AuxR can be reused in Decrypt algorithm, and the user only needs to ask the cloud to

re-calculate the value when one or more ancestor roles of R2 are changed. Similarly, the

user can reuse AuxU to decrypt any future messages, and AuxU only needs to be re-

calculated when one or more users are excluded from R1. This “caching” strategy can

improve the decryption performance substantially as the user only needs to compute

three pairings most of the time.

Implementation Issues

After the users have been given the decryption keys (when they join the system), the

users should take the responsibility to store their secret keys safely. If a user’s secret key

is revealed to others, other parties will have the ability to decrypt any data on behalf
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of the actual user. If a user discovers that her or his secret key has been revealed to

other users, she or he should report this to all appropriate role managers immediately

and request that this user’s identity be excluded from the role.

Before a user is included into a role, the role manager will need to authenticate the

user so that the role manager can be convinced that the user qualifies for the role. We

have not considered the authentication mechanisms in this chapter; we have assumed

that such mechanisms exist and assume that the role manager will assign the role only

to qualified users in the system.

In our scheme, the cloud platform is only used for storage purposes. The encryption

and decryption computations do not occur in the cloud; hence the original private data

from the owner and the secret key of a user will not be given to the cloud. Even if the

cloud may be involved in the decryption algorithm, the computations in the cloud will

not involve any secret values from either the owners or the users.

In our RBE scheme, the system public key pk is stored publicly in the cloud, and

can be retrieved by any user, who has access to the cloud, to encrypt the data. However

in the case where a user needs to identify the original source of the data, we can simply

employ an ID-based digital signature scheme (e.g. [71, 35]), and have the owner sign

the ciphertext. Then the ciphertext can be stored along with its signature. When a

user wants to decrypt the ciphertext, she or he will need to verify the signature to check

if the ciphertext is correctly signed by the owner from whom the user is expecting the

data.

Comparison with Constructions in Chapter 3

In Chapter 3, we have described three generic RBE constructions and provided a

comparison of them. In this chapter, we used a different approach to build the RBE

scheme in order to show that a specific RBE scheme can have features that are different

from the ones in the generic constructions. To compare the differences of them, we reuse

the result from the Table 3.2 and include the concrete RBE scheme in the comparison

in Table 4.2. In this table, the construction “RBE” refers to the concrete RBE scheme.

Same as in the Table 3.2, we assume that a role has p ancestor roles, c descendant
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Type A Type B Type C RBE

• Size of role public parameters O(1) O(p) O(1) O(1)

• Decryption computation round O(m) O(1) O(1) O(1)

• Number of roles affected by adding a
role

d c c c

• Requiring use of the master secret
when adding/removing a role

Yes No Yes Yes

• Ability to decrypt messages that are
encrypted before the new role is created

Yes No Yes No

• Number of roles affected by a user
revocation

c + 1 1 c + 1 n

• Constant size ciphertext Yes

• Constant size decryption key Yes

Table 4.2: Comparison of RBE Constructions

roles, d direct descendant roles, and there are m roles on the path (including the ends)

from this role to the role to which the messages is encrypted, and n roles in total in

the hierarchy. From the Table 4.2, we can see that the RBE scheme described in this

chapter has different features compared to the generic RBE constructions. In addition,

the concrete RBE scheme shows that constant size ciphertext and decryption keys can

be achieved by choosing a proper IBBE scheme. Given the differences of these RBE

constructions, a RBAC system can choose a suitable RBE scheme depending on the

requirements of the system.

4.5 Conclusion

In this chapter, we have proposed a Role-based Encryption (RBE) scheme that com-

bines RBAC with encryption to address security requirements for storage of information

in the cloud. We have constructed a specific RBE scheme using the broadcast encryp-

tion scheme described in [48]. We have conducted security analysis of our scheme and

have given proofs to show that our scheme is secure against adaptive attack. We have

discussed the performance and efficiency of our scheme and have compared it with
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other previously related work. We have shown that our scheme has several superior

characteristics such as constant size ciphertext and decryption keys, efficient user re-

vocation and user management, and the ability to handle role hierarchies. We have

also considered some aspects that can be optimised to achieve efficient implementation.

We believe that the proposed scheme is suitable for large-scale systems, especially in

the context of achieving user centric secure information storage in a cloud computing

environment.



5
A Secure Cloud Storage System based on

Role-based Encryption

In this chapter, we present the design of a secure RBAC-based cloud storage system

where the access control policies are enforced by an improved RBE scheme with an

efficient user revocation based on the RBE scheme described in Chapter 4. With the

improved RBE scheme, revocation of a user from a role does not affect other users and

roles in the system. In addition, we outsource part of the decryption computation in

the scheme to the cloud, in which only public parameters are involved. By using this

approach, our RBE scheme achieves an efficient decryption on the client side. We have

also used the same strategy of outsourcing to improve the efficiency of the management

of user to role memberships, involving only public parameters.

We have developed a secure cloud storage system using an improved RBE scheme

107
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and hybrid cloud architecture. The most frequently used system operations such as

encryption of data by a data owner and decryption of data by a cloud user have been

benchmarked. The result shows that the encryption and decryption time for a given

data size is constant regardless of the number of roles and users that have the access

to the data. Since part of the decryption computation is outsourced to the cloud, the

cloud’s decryption time increases with the growth in the number of users in the role

(to which data has been encrypted). We have optimised the implementation of the

decryption algorithm and shown that the cloud’s decryption time can be reduced by

increasing the processor cores. Hence when deployed in a cloud, depending on the scale

of the system, our architecture can be tailored to achieve the desired response time by

adjusting the number of virtual processor cores.

This chapter is organised as follows. Section 5.1 briefly describes the structure of

our hybrid system. In Section 5.2, we introduce the improved RBE scheme and an

ID-based signature scheme that will be used in the development of the secure cloud

storage system. The architecture for our secure cloud storage system is presented in

section 5.3. Section 5.4 describes the methods that are used in our implementation,

and gives the result of our experiments. Section 5.5 concludes the chapter.

5.1 System Overview

Data privacy has become a critical issue when people consider using the cloud to store

their private or sensitive data. Several recent surveys [78, 87] show that 88% of potential

cloud consumers are worried about the privacy of their data, and security is often cited

as the top obstacle for cloud adoption. Since a private cloud is usually operated by a

single organisation, it is considered to be more secure than a public cloud. A recent

survey [7] shows that nearly half (43%) of all companies report utilising private clouds

and 34% of companies say they will begin to use some form of private cloud in the

next six to twelve months. However, storing all data in a private cloud will sacrifice

the benefits that have been brought by the public cloud.

In this chapter, we develop a secure cloud data storage architecture using a hybrid
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Figure 5.1: Hybrid Storage Cloud Overview

cloud infrastructure. This hybrid cloud architecture is a composite of private cloud and

public cloud, where the private cloud is used to store only the organisation’s sensitive

structure information such as the role hierarchy and user membership information, and

the public cloud is used to store the actual data that is in the encrypted form. The

high level architecture of the hybrid cloud storage system is illustrated in Figure 5.1.

In this architecture, the users who wish to share or access the data only interact with

the public cloud; there is no access for public users to the private cloud, which greatly

reduces the attack surface for the private cloud. This architecture not only dispels

the organisation’s concerns about risks of leaking sensitive structure information, but

also takes full advantage of the public cloud’s power to securely store large volume

of data. Another significant benefit of this architecture is that it overcomes collusion

attacks such as the public cloud colluding with a revoked user, thereby allowing this

user to decrypt data that has been encrypted to a role of which the user was a member

previously.
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5.2 Cryptographic Schemes

In this section, we describe the cryptographic schemes which we use in building the

secure data storage cloud. We first propose an improved RBE scheme based on the one

we described in Chapter 4 to protect the stored data in the system. Then we describe

a variant ID-based signature scheme, which is derived from the scheme introduced in

[10], for the authentication purpose in the system.

5.2.1 An Improved Role-based Encryption Scheme

In order to develop our secure cloud storage system, we propose an improved RBE

scheme which is designed using asymmetric bilinear groups. In this section, we present

this improved RBE scheme which is used in our cloud storage system to enforce the

RBAC policies.

We use an asymmetric bilinear pairing which takes inputs from two distinct iso-

morphic groups in this scheme, so that a wider range of curves is able to be used in

our system. Assume that these two input groups are denoted as G1, G2 and an elliptic

curve E is defined over a field Fq, then G1 is a subgroup of points on this elliptic curve

denoted by E(Fq), and G2 is usually a subgroup of E(Fqk), where k is a parameter

called the embedding degree in pairing-based cryptography. The average size of the

elements in G2 is larger than that of the elements in G1. Therefore the computation

in G1 is faster than in G2. In this chapter, we will make use of this characteristic to

improve the performance of our RBE scheme.

Now we describe the RBE scheme as follows:

Setup: Generate three groups G1,G2,GT , and a bilinear map ê : G1 × G2 → GT .

Randomly choose two generators g ∈ G1 and h ∈ G2, two secret values s, k ← Z∗p and

two hash functions H1 : {0, 1}∗ → Z∗p, H2 : GT → G1. The master secret key mk

and system public key pk are defined as

mk = (s, k, h), pk = (w, v, ws, gk, g, gs, · · · , gsq)
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where w = hs, v = ê(g, h), and q is the maximum number of users that each role can

have and the maximum depth of the role hierarchy.

Extract(mk, ID): When ID = IDU is an identity of a user U , SA computes the user

secret as

dkU = h
1

s+H1(IDU )

and gives dkU to the user U . dkU is the secret key of the user and it will be used to

decrypt the data.

When ID = IDR is an identity of a role R, SA first computes the role secret as

skR = g
1

s+H1(IDR)

and gives skR to the role manager of R together with the RULR which is initially set

to empty.

ManageRole(mk, IDR, T ): Assume that PRR is a set of identities {IDR1 , · · · , IDRm}

of all the roles which will be the new ancestor roles of a role R with the identity IDR.

To place this role R in the role hierarchy, SA publishes the tuple (AR, BR,RULR) as

role public parameters in the cloud where

AR = h(s+H1(IDR))
∏m

i=1(s+H1(IDRi
)), BR = AkR

AddUser(pk, skRi
, RULRi

, IDUk
): Assume that the role manager RM of role Ri wants

to add a user Uk with the identity IDUk
to the role. RULRi

is the set of n users who

belong to the role Ri and Uk is not in RULRi
. The role manager RM first sends the

identity IDUk
to the cloud. When receiving the user’s identity, the cloud computes the

value

Yi = g(s+H1(IDUk
))

∏n
j=1(s+H1(IDUj

))

and returns Yi to the role manager RM. Assume that Y ′i is the existing parameter that

RM has received from the cloud previously, and Y ′i = g if Yi is the parameter that RM
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receives from cloud for the first time. RM verifies the following equation:

ê(Y ′i , w
s · wH1(IDUk

))
?
= ê(Yi, w)

If the equation holds, RM chooses two random values ri, ti ← Z∗p if Yi is received from

cloud for the first time, or uses the existing ri, ti otherwise. Then it computes

Ki = vri , Ti = g−ti , Wi = w−ri ,

Vi = Y ri
i = gri·(s+H1(IDUk

))
∏n

j=1(s+H1(IDUj
)),

Si = H2(Ki) · skRi
· gkti = H2(vri) · g

1
s+H1(IDRi

)
+kti

RM adds IDUk
into RULRi

, and sends the tuple (Ti,Wi, Vi, Si) to the cloud. The cloud

then publishes another set of role parameters as

(IDRi
,Wi, Vi, Si,RULRi

)

RevokeUser(pk, skRi
, RULRi

, IDU): To revoke a user Uk from a role Ri which has a

set N of n users in RULRi
, and Uk ∈ N , the role manager RM first removes IDUk

from

role user list RULRi
and sends the user identity IDUk

to the cloud. When receiving the

user’s identity, the cloud computes the value

Yi = g
∏n

j=1,j 6=k(s+H1(IDUj
))

and returns Yi to the role manager RM. Assume that Y ′i is the existing parameter that

RM received from the cloud previously. RM verifies the following equation

ê(Y ′i , w)
?
= ê(Yi, w

s · wH1(IDUk
))

If the equation holds, RM chooses two random values r′i, t
′
i ← Z∗p and re-computes

Ki = vr
′
i , Ti = g−t

′
i , Wi = w−r

′
i ,
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Vi = Y
r′i
i = gr

′
i·
∏n

j=1,j 6=k(s+H1(IDUj
)),

Si = H2(Ki) · skRi
· gkt′i = H2(vr

′
i) · g

1
s+H1(IDRi

)
+kt′i

RM then replaces the old role parameters (T ′i ,W
′
i , V

′
i , S

′
i) in the cloud with the new

values.

Encrypt(pk, pubRx
, M): Assume that the owner of the data M wants to encrypt M

for the role Rx. The owner randomly picks z ← Z∗p, and computes

C1 = w−z, C2 = Ax
z, C3 = Bx

z, K = vz

Then the owner uses K to encrypt the message M , and upload the ciphertext together

with C = {C1, C2, C3} to the cloud.

Decrypt(pk, pubRi
, dkUk

, C): Assume that a role Rx has a set R of ancestor roles,

and the set M = Rx ∪ R has m roles {R1, · · · , Rm}. Ri ∈ M is one ancestor role

of Rx, and there is a set N of n users {U1, · · · , Un} in Ri. When a user Uk who is a

member of the role Ri wants to decrypt the ciphertext C, the user first requests the

ciphertext from the cloud. The cloud computes

D = ê(Ti, C3), gpi,M(s), gpk,N (s),

Aux1 =
m∏

j=1,j 6=i

H1(IDRj
), Aux2 =

n∏
j=1,j 6=k

H1(IDUj
)

where

pi,M(s) =
1

s
· (

m∏
j=1,j 6=i

(s+H1(IDRj
))−

m∏
j=1,j 6=i

(H1(IDRj
)))

pk,N (s) =
1

s
· (

n∏
j=1,j 6=k

(s+H1(IDUj
))−

n∏
j=1,j 6=k

(H1(IDUj
)))

Then the cloud returns the following tuple and the ciphertext of M to the user Uk

(C1, C2, D, g
pi,M(s), gpk,N (s), Aux1, Aux2)
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After receiving the ciphertext from the cloud, Uk recovers the systemic encryption key

that is used to encrypt M by computing

K = (ê(gpi,M(s), C1) · ê(Si ·H2(Ki)
−1, C2) ·D)

1
Aux1

where

Ki = (ê(Vi, dkUk
) · ê(gpk,N (s),Wi))

1
Aux2

By using the key K, Uk can decrypt the ciphertext of M and recover the data M .

As we discussed previously, the Decrypt algorithm requires the expansion of two

polynomials of m (the number of ancestor roles) and n (the number of users) degrees

respectively. This computation could be time consuming if m and n are very large num-

bers. We note that in computing these two polynomials, no secret values are required.

The computation only takes as inputs system public keys and identities of users and

roles. Therefore, outsourcing these computations to the cloud will significantly reduce

the workload of users in decryption. The decryption time will also be reduced as the

cloud has much more computer power than a user device. Therefore, we have made the

cloud compute these two polynomials and pass the results to users in the decryption

step. This approach also helps avoid transferring the full identity lists of users and

roles which may cause lots of network traffic if the lists are long.

Compared to the RBE scheme described in Chapter 4, this RBE scheme has made

a few improvements. First, this RBE scheme switches the use of G1 and G2 which

results in a better performance in implementations. Second, the user revocation in this

scheme requires only one role to update its public parameters in contrast to all the

roles in the RBE scheme in Chapter 4. In addition, in this scheme, role managers of

individual roles can revoke users without the need of having the administraor involved.

Security Analysis

Chosen Plaintext Security. Similarly, we first prove CPA security of our RBE

scheme based on the GDDHE assumption.
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Theorem 5.1 The proposed RBE scheme is chosen plaintext secure under the GDDHE

assumption.

To prove Theorem 5.1, we start by defining another specific GDDHE problem where

it clearly shows that f = czh(s) is independent from P and Q. In the following

definition, s, k, c, z, t are random elements chosen from Z∗p as described in our RBE

scheme.

Definition 5.1 GDDHE Problem II Let (p,G1, G2,GT , ê) be a bilinear map group

system and let g0 and h0 be the generator of G1 and G2 respectively, and v = ê(g, h).

Given K ∈ GT and

g0, g
s
0, . . . , g

sm−1

0 , g
c·g(s)
0 , g

ckg(s)
0 , g

ctg(s)
0 , g

cktg(s)
0 , g

ch(s)
0

h0, h
s
0, . . . , h

sn−1

0 , h
sf(s)
0 , h

s2f(s)
0 , h

zsf(s)
0 , h

h(s)
0 , h

kh(s)
0 , h

zh(s)
0 , h

kzh(s)
0

in deciding whether K is equal to ê(g0, h0)czh(s) or some random element of GT .

Given an attacker A who wins the following game with probability AdvRBEA , we

construct another attacker B that solves the GDDHE problem. In our scheme, we

assume that cloud is trusted, and will not collude with malicious adversaries.

Let q be the maximum number of identities of users and roles that the adversary

can query. Let U = {IDU1 , . . . , IDUn} and R = {IDR1 , . . . , IDRm} be the sets of users

and role identities respectively that the adversary will issue queries on. B will be given

a (f, g, F)-GDDHE instance defined in Definition 5.1. Next we define the following

polynomials:

• g(x) =
∏m

i=1(x+H1(IDRi
))

• f(x) =
∏n

i=1(x+H1(IDUi
))

• h(x) = g(x) · f(x)

• gi(x) = g(x)
x+H1(ID∗Ri

)
, where i ∈ [1,m]

• fi(x) = f(x)
x+H1(ID∗Ui

)
, where i ∈ [1, n]
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Init: The adversary A first chooses a set of identities U = {IDU1 , · · · , IDUn} which A

will attack (with n ≤ q).

Setup: B will set the following values to generate the system parameters

g = g
c·g(s)
0 , w = h

s·f(s)
0 , ws = h

s2·f(s)
0 , v = ê(g, h) = ê(g0, h0)c·h(s)

This implies that h = h
f(s)
0 . Then B defines the public key as pk = (w, v, gk, g, gs,

· · · , gsq), and creates a role IDR by outputting the role parameters

A = h
h(s)
0 = hg(s) = h

∏m
i=1(s+H1(ID∗Ri

)),

B = h
kh(s)
0 = Ak

Phase 1: The adversary A once again adapts its queries and issues queries q1, . . . , qk

• Extract query: If A has not issued the query on IDUi
, B computes the user

decryption key as

dkUi
= hfi(s) = h

1
s+H1(ID

∗
Ui

)

0

• AddUser query: If A has issued the query on IDUi
and the role created in

Setup, B then updates the role public parameters for the role to grant the

role membership to the user. When n users are the member of the role, the

role parameters B outputs will be

W = h
−r′sf(s)
0 = w−r

′
,

V = g
cr′h(s)
0 = gr

′f(s) = gr
′·
∏n

i=1(s+H1(ID∗Ui
))

S = H2(ê(g0, h0)r
′c·h(s)) · ggi(s)0 · gkt

′c·g(s)
0

where r′ and t′ are the random number chosen by B.

Challenge: Once A decides that Phase 1 is over, B first revokes all the members of
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the role IDR. B outputs the following role parameters when all the users have

been revoked from the role.

W = h
−rsf(s)
0 = w−r, V = g

rg(s)
0 = gr

S = H2(ê(g0, h0)rc·h(s)) · ggi(s)0 · gktc·g(s)0

where r is the random number chosen by B.

Then B simulates Encrypt algorithm by constructing the ciphertext C∗ for the

message Mb for a random b ∈ {0, 1} as

C1 = h
−zsf(s)
0 = w−z, C2 = h

zh(s)
0 = Az

C3 = h
kzh(s)
0 , D = ê(g0, h0)−tc·g(s)kzh(s), K = K ′

Note that if K ′ = ê(g0, h0)zc·h(s), then we have K = vz

Phase 2: The adversary A again adapts its queries and issues qqk+1, . . . , qqT similar

to Phase 1 with the following restrictions: A cannot make Extract or AddUser

queries on IDR, and A cannot make Decrypt queries on C∗.

Guess: The adversary A outputs a guess b′ ∈ {0, 1}, and wins the game if b = b′.

Then we have

Advgddhe =
1

2
(Pr[b = b′|real] + Pr[b = b′|rand])− 1

2

=
1

2
(
1

2
+ AdvRBEA ) +

1

2
· 1

2
− 1

2

=
1

2
· AdvRBEA

Chosen Ciphertext Security. In the above, we have proved that the proposed

RBE scheme is chosen plaintext secure. Generic conversion methods [33, 24] exist

to convert a CPA-secure scheme to a CCA-secure scheme. Our RBE scheme can be
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extended to a CCA-secure scheme using a similar approach, such as using strongly

unforgeable signatures.

5.2.2 An Extended Scheme Supporting Multiple-role Encryp-

tion

In the above described RBE scheme, we have shown how to encrypt data to a single

role in a RBAC system so that only the authorised users can decrypt the data. In

this subsection, we show an extension of our improved RBE scheme which supports

the encryption for multiple roles. In the extended scheme, only the Encrypt and

Decrypt algorithms are modified from the ones in the improved scheme, and the

other algorithms are the same as in the improved RBE scheme. The two modified

algorithms in the extended RBE scheme are described as follows:

Encrypt(pk, {pubRx
}x∈[1,l]): Assume that the owner of the data M wants to encrypt

M for the set of roles (R1, R2, . . . , Rl). The owner randomly picks z ← Z∗p, and

computes

K = vz, C1 = w−z, {C2,i = ARi

z, C3,i = BRi

z}i∈[1,l]

Then the owner uses K to encrypt the message M , and upload the ciphertext together

with C = (C1, {C2,i, C3,i}i∈[1,l]) to the cloud.

Decrypt(pk, pubRi
, dkUk

, C): Assume that each role Rx, x ∈ [1, l] in the set to which

the data is encrypted has an ancestor role set Rx, and a role Ri ∈ Rj is an ancestor role

of Rjwhere l ≤ j ≤ l. We denote N as the n user members {U1, · · · , Un} of Ri, and

M = Rj ∪Rj. When a user Uk ∈ N wants to decrypt the ciphertext C, the user first

requests the ciphertext from the cloud. The cloud computes and returns the following

tuple and the ciphertext of M to the user Uk in the same way as in the original RBE

scheme:

(C1, C2, D, g
pi,M(s), gpk,N (s), Aux1, Aux2)

After receiving the ciphertext from the cloud, Uk recovers the systemic encryption key

K that is used to encrypt M in the same way as in the original RBE scheme. By using



5.2 Cryptographic Schemes 119

the key K, Uk can decrypt the ciphertext of M and recover the data M .

Compared with the improved RBE scheme, the extended RBE scheme inherits most

of the features from the improved scheme except that the size of the ciphertext is now

linearly proportional to the number of roles to which the data is encrypted. However,

we note from the above description that the size of the additional parameters required

for the encryption for extra roles is relatively small. Therefore, the ciphertext size will

remain at a similar level to the size of plaintext which we will show in section 5.4.

5.2.3 An ID-based Signature Scheme

In this section, we describe the IBS scheme proposed in [10]. However, in order to

make the scheme cater for the same key format as the RBE scheme in our system, we

introduce a modified scheme by switching the usage of the two input groups of the

pairings as follows,

Setup: Generate three groups G1,G2,GT , and a bilinear map ê : G1 × G2 → GT .

Randomly choose two generators g ∈ G1 and h ∈ G2, a secret value s ← Z∗p and two

hash functions H1 : {0, 1}∗ → Z∗p, H2 : {0, 1}∗ × GT → Z∗p. The master secret key

mk and system public key pk are defined as

mk = {s}, pk = {w, v, g} where w = gs, v = ê(g, h)

KeyGen: For an identity ID, the private key is generated as

skID = h
1

s+H1(ID)

Sign: To sign a message M ∈ {0, 1}∗, the signer picks a random value x ← Z∗p and

computes r = vx. The signature is output as

σ = (H,S) where H = H2(M, r), S = sk
(x+H)
ID

Verify: a signature σ = (H,S) on a message M is accepted if the following equation
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Figure 5.2: Hybrid RBE System Architecture

holds

H = H2(M, ê(gH1(ID) · w, S) · v−H)

5.3 Architecture

In this section, we present the architecture of our secure cloud storage system. It is a

hybrid cloud architecture comprising a private cloud which is used to store sensitive

role hierarchy of the organisation and user memberships, and a public cloud storing

the encrypted data and public parameters associated with the RBE system. The users

who wish to access the encrypted data and the data owners who wish to encrypt their

data only interact with the public cloud. The role hierarchy and user to role mappings

related to the organisation are maintained in the private cloud which is only accessible

to the administrator of the organisation. The administrator specifies the role hierarchy

and the role managers who manage the user membership relations.

5.3.1 Architectural Components

We first consider the components of the system architecture shown in Figure 5.2. The

numbers shown in the figure refer to the system operations which will be described in

section 5.3.2.

Public Cloud : Public cloud is a third party cloud provider which resides outside
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the infrastructure of organisations, and organisations outsource their users’ encrypted

data to the public cloud. Since the public cloud is untrusted, data stored in the

public cloud could be accessed by unauthorised parties, such as employees of the cloud

provider and users from other organisations who are also using services from the same

cloud. Therefore only public information and encrypted data will be stored in the

public cloud.

An untrusted public cloud may deny a user’s request for accessing stored data in

the cloud or provide users with incorrect data. Such behaviours will result in the users

not being able to access the data stored in cloud (cf denial of service attacks), but will

not cause violation of RBAC policies. These behaviours can be detected, as a user can

observe the failure immediately after she or he communicates with the public cloud. In

this case, the organisation may choose to change the cloud provider to a more reliable

one, especially if the current provider is found to be malicious. The discussion of such

denial of service attacks type behaviours are beyond the scope of this thesis; hence in

this chapter, we will assume that the public cloud will faithfully execute the steps of

the proposed RBE scheme and provide valid responses to users’ requests.

Private Cloud : A private cloud is built on an internal data centre that is hosted and

operated by a single organisation. The organisation only stores critical and confidential

information in this private cloud. The amount of this information is relatively small

compared to the data stored in the public cloud, so this cloud does not need to have the

capacity to handle large volumes of data. The private cloud only provides interfaces

to the administrator and role managers of the role-based system as well as the public

cloud, and users do not have direct access to it. This helps to reduce the attack surface

of the private cloud. The purpose of using a private cloud is to ensure that correct

and up-to-date information about the organisation’s structure and user membership

are used in decision making.

User : Users are the parties who wish to acquire certain data from the public

cloud. Each user is authenticated by the administrator of the role-based system. Upon

successful authentication, the user is given a secret key which is associated with the
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identity of the user. Users are not involved in any process related to organisation struc-

ture updates, including user membership updates and changes in the role hierarchy.

So they are not allowed to communicate directly with the private cloud.

Role Manager : A role manager is the party who manages the relationship between

users and roles. Each role has its own role parameters which defines the user member-

ship. These role parameters are stored in the private cloud. When updating the user

membership of a role, the role manager needs to compute new role parameters and

update them in the private cloud. None of the users are affected by this operation, so

role managers do not need to communicate with users, and they only need to interact

with the private cloud.

Administrator: The administrator is the system administrator of the organisation.

The administrator generates the system parameters and issues all the necessary cre-

dentials. In addition, the administrator manages the role hierarchy structure of the

organisation. To put a role into the organisation’s role hierarchy, the administrator

computes the parameters for that role. These parameters represent the position of the

role in the role hierarchy, and are stored in the private cloud. When the role hierar-

chy changes, the administrator updates these parameters for the roles that have been

changed in the private cloud.

Owner: Owners are the parties who possess the data and want to store the en-

crypted data in the public cloud for other users to access; owners specify who can

access the data in terms of role-based policies. In the RBAC model, they are the par-

ties who manage the relationship between permissions and roles. An owner can be a

user within the organisation or an external party who wants to send data to users in

the organisation. In this architecture, we consider an owner to be a logically separate

component even though a user can be an owner and vice versa. Owners only interact

with the public cloud, and no secret values are required for these interactions. They

do not have to keep any parameters in the RBE scheme, and they need to obtain all

the required parameters from the public cloud when they perform their encryption

operations.

Secure Communications: We use an ID-based signature (IBS) scheme in our system
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to certify the data communicated between the different parties. Using this technique

the receiving party can verify the integrity of data content and authenticate the source

of data. Shamir introduced the concept of identity based cryptography in 1984[123],

and he gave the first construction of IBS. Since then, many different IBS schemes have

been proposed. We have chosen the scheme proposed in [10] in our system implemen-

tation, as it has a similar key format to our RBE scheme. We use the IBS scheme

described in section 5.2.3 in our implementation as it has the same key format as our

proposed RBE scheme. With this IBS scheme, in our system, users use their secret

decryption keys to sign the data. The private cloud is assigned an unique identity

and regarded as a system user even though it is not granted membership to any role.

Therefore the private cloud can sign data using its user secret key. We use DR(M) to

denote data M ’s signature, which is signed to the identity of R.

5.3.2 System Operations

Now we describe the system operations of our proposed architecture using the steps

shown in Figure 5.2. Assume the system uses a secure encryption scheme Enc to

encrypt messages using the key generated in the Encrypt algorithm.

Extract: This operation is executed by the administrator to add a user or a role

into the system. Step 1 represents the interaction to generate a decryption key for a

user, and step 2 represents the interaction to generate a role secret for a role. The

administrator computes the secret key dk for the user or sk for the role, and sends the

secret key to the user or role via a secret channel; we denote a secret channel using a

dotted line in this figure.

ManageRole: The operation of managing a role in the role hierarchy structure is also

executed by the administrator. Step 3 represents the interactions in the management of

a role. The administrator decides the inheritance relationship of the role, and updates

the position of a role in the role hierarchy. This is done in step 3 where the administrator

computes and uploads the following tuple to the private cloud,

〈IDR, AR, BR,PR〉
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where IDR is the identity of the role, AR, BR are computed as shown in the ManageRole

algorithm, and PR is the set of all the immediate roles that inherit permissions from

the role IDR.

Add User/Revoke User: These two operations are performed by role managers to

update the user membership of roles, and the interactions for these operations are

represented by steps 4 to 6. When adding or revoking users, a role manager sends the

pair 〈IDU , τ〉 (IDU is the user identity and τ indicates the type of operation - add or

revoke) to the private cloud in step 4. In step 5, the private cloud forwards this request

to the public cloud, and the public cloud computes and returns YR to the private cloud.

In step 6, the private cloud forwards the value YR to the role manager, and the role

manager verifies YR, computes and uploads the following tuple to the private cloud,

〈IDU , TR,WR, VR, SR〉

where IDU is the identity of the user, and TR,WR, VR, SR are the values computed as

in AddUser/RevokeUser algorithms.

Encryption: Steps 7 to 9 show the processes involved in encrypting a message.

When an owner wants to encrypt data M to a role R, she or he retrieves the role

public parameters from the public cloud as part of the encryption key, which is shown

as step 7. Since these parameters are stored in the private cloud, the public cloud

forwards the owner’s request to the private cloud, and the private cloud passes back

the following tuple to the public cloud in step 8,

〈P = (IDR, AR, BR, t), DC(P )〉

where t is the current timestamp of the system, and DC(P ) denotes the signature of

the message that is signed by the private cloud. In step 9, the public cloud simply

forwards the tuple to the owner. Upon receiving the role public parameters, the owner

checks if the timestamp t is up-to-date and verifies the attached signature to check its

validity and whether it is issued by the private cloud. If the role public parameters are

verified to be valid, then the owner computes and uploads the following ciphertext to
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the public cloud,

〈C1, C2, C3, Enck(M)〉

After receiving the ciphertext, the public cloud generates a unique index to identify

the message, and stores this index-value pair in the cloud.

Decryption: Steps 10 and 12 show the processes involved in data decryption. When

a user U wants to view the data M that has been previously encrypted and stored in

the public cloud, the user first requests the ciphertext of M from the public cloud in

step 10. Since the role parameters used in decryption are stored in the private cloud,

the public cloud needs to request these parameters from the private cloud. The public

cloud sends the following tuple to the private cloud,

〈IDR, C1, C2, C3〉

where IDR is the identity of the role that the user U belongs to and C1, C2, C3 are parts

of the ciphertext stored in the public cloud. The private cloud computes the value D,

and returns the following tuple to the public cloud in step 11.

C = 〈 P = (C1, C2, D,WR, VR, SR, t),DC(P ) 〉

where t is the current timestamp of the system, and DC(P ) denotes the signature of

the message signed by the private cloud.

In step 12, when the public cloud receives the above tuple, it computes and returns

the following values to the user.

〈 C, gpi,M(s), gpk,N (s), Aux1, Aux2, EncK(M) 〉

Note that the public cloud only calculates the values gpi,M(s), gpk,N (s) when the role

hierarchy or user membership has changed. More specifically, gpi,M(s) is re-computed

if the role parameter AR has changed since the last decryption request from the same

user, and gpk,N (s) is re-computed if the value VR has changed since the last decryption
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request from the user. The user first checks if the timestamp t in C is up-to-date and

verifies the attached signature to check its validity and whether it is issued by the

private cloud. If the verification is successful, the user runs the Decrypt algorithm of

the RBE scheme using the above values, and recovers the data M .

Recall in our architecture, ciphertext data is identified by unique indices in the

cloud. When a user needs to access certain data, the user will need to find its index

first. To allow users to be able to search for certain messages in the cloud, it is possible

to integrate searchable encryption schemes in our system. A searchable encryption

scheme allows us to make search queries to encrypted data without leaking information

on both the queries and the data. Many searchable encryption schemes are proposed in

public key systems, such as the constructions in [27, 60, 25]. Using one such searchable

encryption scheme, a user can make a query to the public cloud about the data that

she or he wants to view. The cloud returns a list of indices for the data that satisfy

the query and which are accessible to the user; the cloud learns nothing about either

the query or the content of the data. Since our aim is to build a system prototype of

a secure cloud storage system, we have provided this functionality which we intend to

use further in our future work on secure data searches and archiving.

A user in this architecture may want to authenticate the source of data, as the

public cloud may return the wrong ciphertext data to mislead the user. It is easy to

see that the data owner can employ an IBS scheme to sign the data and encrypt the

signature together with the data. When the user decrypts the data, the user is able to

verify the signature attached to the data to ensure it is created by a valid owner. If the

owner is one of the users in the system, she or he can simply use the secret decryption

key to sign the data using the IBS scheme described in section 5.2.3.
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5.4 Implementation

5.4.1 System Prototype

We have implemented the above architecture of the secure cloud data storage system.

The system is implemented in Java. The interfaces of the cloud are exposed as JAX-

WS[79] web services, and the web services are hosted in Apache Tomcat. The clouds

use the HyperSQL[75] database which can be easily replaced by other databases for

server side data storage. The client side is written as a Java Applet which can run in

any Internet browser with Java support. To ensure that the client side gets the valid

system public keys, these keys are embedded in the Java Applet, and the Applets are

signed by the key generated by the trusted certificate authority when the Java Applet

is compiled.

Our RBE scheme uses asymmetric bilinear groups, where the bilinear map takes

inputs from two distinct isomorphic groupsG1, G2. This allows a greater variety of pair-

ings to be used in the implementation, especially certain families of non-supersingular

elliptic curves [124]. In our implementation, we use a 163-bit MNT curve [103] with the

embedding degree of 6. In practice, the security of a 160-bit elliptic curve is roughly

equivalent to 1024-bit RSA[8]. We use SHA-1 to map the identities to points on the

elliptic curve as the output size of SHA-1 is 160-bit, which is of similar length as the

input of the pairing.

We use ISAAC[85] as the symmetric encryption algorithm Enc. The reason for this

choice is that a stream cipher can work with the MTOM[129] feature of the web service

to perform encryption and decryption while transferring the data. Moreover, ISAAC

takes keys from 8-bit to 8288-bit length, so the output of the pairing can be directly

used as the symmetric encryption key without being transformed. We consider ISAAC

as a secure symmetric encryption algorithm as the attack complexity is 4.67×101240[111]

for the best known attack to ISAAC [6].

To protect the data integrity while using a stream cipher, we deployed the web

services through a SSL channel. When the encrypted data is stored in the cloud, it

is stored along with a signature generated by the data owner. Since the symmetric
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Plaintext Size 10 Roles 100 Roles 1000 Roles

1000 1432 1432 1432
10000 10432 10432 10432
100000 100432 100432 100432

Table 5.1: RBE System Benchmark - Ciphertext Size (Bytes)

encryption algorithm can be chosen independently from the RBE scheme, it can be

replaced by other symmetric encryption algorithms in other implementations depending

on the system’s requirements, such as using a block cipher algorithm.

We use jPBC[34] and PBC[96] as our pairing-based crypto library (jPBC wraps

the PBC library to generate a MNT curve), and Bouncy Castle crypto library[28] for

SHA-1 and ISAAC.

5.4.2 Experimental Evaluation

We have performed our experiments on a cluster of three machines, each with a quad-

core Intel Q6600 2.40 GHz processor, 4 GB of RAM, two 7200 RPM hard disks, that

were connected by gigabit switched Ethernet.

Let us first consider the size of the ciphertext. From the description of the RBE

scheme, we see that the ciphertexts do not contain user related information, but are

computed using the parameters containing the identities of all the ancestor roles of the

target role. We compare the size of the ciphertext when the target role has 10, 100,

1000 ancestor roles respectively.

Table 5.1 shows the ciphertext sizes when the sizes of plaintext are 1000 Bytes, 10000

Bytes and 100000 Bytes respectively. First we note that the differences in size between

the plaintext and ciphertext are constant. Secondly, the ciphertext size remains the

same when the number of ancestor roles changes. We conclude that the ciphertext size

is linearly proportional to the size of the plaintext regardless of the number of roles

and users who can decrypt the ciphertext.

The size of the decryption key is another important factor in a cloud storage system.

The decryption key needs to be portable as users may use the storage service from

different clients. Our experimental results show that the size of the decryption key is



5.4 Implementation 129

0 

5 

10 

15 

20 

25 

10 50 100 200 400 600 800 1000 

D
ec

ry
pt

io
n 

Ti
m

e 
(s

ec
on

d)
 

Number of Users in the Role 

1-Core 2-Core 3-Core 

(a) Public Cloud Decryption Time

0 

5 

10 

15 

20 

25 

10 50 100 200 400 600 800 1000 

C
lo

ud
 O

pe
ra

tio
n 

Ti
m

e 
(s

ec
on

d)
 

Number of Users in the Role 

1-Core 2-Core 3-Core 

(b) Public Cloud Operation Time in User Man-
agement

Figure 5.3: RBE System Benchmark - Public Cloud Operation Time

48 bytes, which is convenient for users. A non-constant size decryption key will usually

make it difficult for users to decide the memory requirements that are needed on the

client devices to store the keys. Our system does not have this problem.

Encryption and decryption are the most frequently used operations in the system.

Since we have a split decryption algorithm to run it in both client and the cloud, we

first measured the time taken at the cloud for performing decryption. The time for

cloud decryption is measured from the time the public cloud receives the computed role

parameters from the private cloud, to the time the cloud starts sending the ciphertext

to the user. We have split the computation task of the cloud decryption into multiple

threads. This approach helps to reduce the decryption time in the cloud, as the cloud

can have multiple processor cores on demand running these multiple threads. In our

experiments, we have simulated increasing number of processor cores by increasing the

number of running threads. Since we used one thread as the master thread in the

computation task, the maximum cores that we have simulated on our quad-core server

is three.

Figure 5.3(a) shows the time that the cloud server has spent in executing the de-

cryption algorithm on a ciphertext of a 1KB file when different number of users are

in the role to which the user performing the decryption belongs. In this case, 4 roles
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have been created as the ancestor roles of this role. Increasing the number of ancestor

roles of the role that the user belongs to also increases the decryption time. Increasing

the number of ancestor roles has the same impact on the cloud decryption time as

increasing the number of users does. However it is important to note that the number

of roles is usually much smaller than the number of users involved in each role.

We note that the cloud decryption time is the cloud’s response time to users’ de-

cryption requests. This is the time that users need to wait after they have initiated

decryption requests to the cloud. To have good user experience in using this cloud

storage system, this time needs to be small. We have conducted a series of experi-

ments with 1, 2 and 3 cores to perform the decryption. From the results, we note that

increasing the number of processor cores participating in the decryption shortens the

response time of the cloud. When deployed in a real cloud environment which has a

large number of virtual processor cores, we believe that the cloud response time can

be controlled to a suitable range that is acceptable to the users. Recall that the cloud

caches the result of the cloud decryption, so it does not have to compute for every

decryption request, reducing the average cloud decryption time even further.

In our system, role managers also outsource part of the computations to the cloud

which are concerned with user management. Figure 5.3(b) shows the time that the

cloud has spent in collaborating with role managers on this computation; in this ex-

periment, we have created 4 roles as the ancestors of this role. Similar to the cloud

decryption, the time for this computation can be reduced by increasing the number of

processor cores.

Next we look at the client operation time. Figure 5.4(a) shows the time for en-

crypting and decrypting files of different sizes on the client side. In this experiment,

we created 5 roles and 10 users in each role. In our measurements, the encryption

time was measured from the time when an owner clicks on the upload button in the

Java Applet after choosing the file to be encrypted, to the time when the file upload

has been completed and the owner receives the cloud’s response indicating that the

transaction was successful. The decryption time was measured from the time when a

user starts receiving the ciphertext from the cloud until the time the plaintext is saved
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Figure 5.4: RBE System Benchmark - Client Operation Time

to a file on the local disk drive.

Since we are using the stream cipher ISAAC in our implementation, the encryp-

tion/decryption of data can happen while the data is being transferred over the net-

work. In the encryption/decryption algorithm of the RBE scheme, a key is computed

and used in the symmetric encryption scheme. As seen from Figure 5.4(a), when

the size of the plaintext is smaller than 100KB, the time for the symmetric encryp-

tion/decryption including data transfer is trivial compared to the time for the symmet-

ric key generation by the RBE scheme. Hence the time in our measurement remains

the same. When the size of the plaintext exceeds 1MB, the time for the symmetric

encryption/decryption increases to a similar order as that of the time for symmetric

key generation. Hence we notice the increase in the time with the growth of the size

of the plaintext.

By outsourcing these heavy computations to the cloud, the operation time of clients

is reduced dramatically. Figure 5.4(b) shows the time that we measured for the en-

cryption of 1KB data by the owner, decryption of 1KB data by the users, and the user

management of role managers (when a role contains different number of users). Once

again there are 4 ancestor roles for this role. The results show that the time for these

operations is somewhat constant regardless of the number of users and roles involved

in the computation. Hence it would be possible to perform these operations on mobile
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devices with less computational power.

5.5 Conclusion

In this chapter, we first proposed a new RBE scheme that achieves efficient user re-

vocation. We then presented a RBAC-based cloud storage architecture which allows

an organisation to store data securely in a public cloud, while maintaining the sensi-

tive information related to the organisation’s structure in a private cloud. Then we

have developed a secure cloud storage system architecture. From our experiments, we

observe that both encryption and decryption computations are efficient on the client

side, and decryption time at the cloud can be reduced by having multiple processors,

which is common in a cloud environment. We believe that the proposed system has

the potential to be useful in commercial situations as it captures practical access poli-

cies based on roles in a flexible manner and provides secure data storage in the cloud

enforcing these access policies.



6
Administrative Model for Role-based

Encryption

In this chapter, we propose a cryptographic administrative model AdC-RBAC to man-

age and enforce role-based access policies for RBE schemes in large-scale cloud systems.

The AdC-RBAC model uses cryptographic techniques to ensure that the administrative

tasks such as user, permission, and role management are performed only by authorised

administrative roles. Any other party, including the cloud providers themselves, can-

not change RBAC systems and policies. Our proposed model uses RBE techniques to

ensure that only administrators who have the permissions to manage a role can add or

revoke users to or from the role, and owners can verify whether a role is managed by

qualified administrators before giving out their data. We show how the proposed model

can be used in an untrusted cloud while guaranteeing its security using cryptographic

133
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and trusted access control enforcement techniques. We describe three components in

this model: UAM for user membership management, PAM for permission management,

and RAM for role management. We describe the operation of the AdC-RBAC model

using a proposed variant RBE scheme based on the RBE scheme described in Chapter

5.2.1. We describe how our proposed AdC-RBAC model can be integrated with the

variant RBE scheme.

The rest of this chapter is organised as follows. Section 6.1 introduces the back-

ground of our work. In section 6.2, we propose the new variant of RBE scheme which

supports decentralised role management. In section 6.3, we present the cryptographic

administrative RBAC model AdC-RBAC, and describe how the administration tasks

of the RBE scheme can be simplified in a large-scale system, and how the administra-

tive policies of the RBAC system are enforced in a cloud system. Finally, section 6.4

concludes the chapter.

6.1 Administration in Role-based Access Control

RBAC has been widely used for security administration in distributed systems since

being first formalised in the 1990’s. However, the administration of RBAC systems

themselves has been less widely studied. In small RBAC systems, a central authority

is usually sufficient to manage all the users and permissions. However large-scale RBAC

systems may have hundreds or even thousands of roles and hundreds of thousands of

users and permissions. In such cases, it becomes impractical to centralise the task of

managing these users and permissions, and their relationships with the roles to a small

team of security administrators. Therefore, decentralising the administration tasks of

RBAC systems is an important issue when developing such large-scale RBAC systems.

Several administrative RBAC (ARBAC) models have been developed to provide

solutions to decentralise the administration privileges. The administrative model for

RBAC was first considered in [115], and a comprehensive model was proposed in this

work, called ARBAC97. It was later extended and improved in [119, 108, 109, 44,

43, 42]. A common feature of these works is managing a RBAC system using RBAC
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Figure 6.1: ARBAC97 Role Hierarchy Example

itself. The administration privileges are decentralised to a set of administrative roles

in these models, and administrative policies are specified to limit the privileges of

administrative roles. Each administrative role is assigned an administration domain,

and the role is allowed to perform administration tasks only on the roles that reside

in the administration domain. Next we review two existing administrative models for

RBAC systems.

6.1.1 ARBAC97 Model

The challenge of administering RBAC was first considered in [115] where a compre-

hensive administrative model, ARBAC97, was introduced. ARBAC97 is based on the

RBAC model defined in [120]. In ARBAC97, a RBAC system is administered by an ad-

ministrative RBAC, which contains a set of administrative roles AR that are separate

from the roles R in the normal RBAC system.

The ARBAC97 model defines three components: URA97 for user-role assignment,

PRA97 for permission-role assignment, and RRA97 for role-role assignment. In each

component, the ability to perform the assignment is associated with administrative
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roles. In other words, the administrative roles have control over the administrative

operations in the normal RBAC. For each administrative role in these components, the

authority range of the role is specified by a concept of role range, which is defined as

a set of roles in the normal RBAC, and is denoted by following notations

[x, y] = {r ∈ R | x ≤ r ∧ r ≤ y} (6.1)

(x, y] = {r ∈ R | x < r ∧ r ≤ y} (6.2)

[x, y) = {r ∈ R | x ≤ r ∧ r < y} (6.3)

(x, y) = {r ∈ R | x < r ∧ r < y} (6.4)

where x < y means that role y inherits the permissions from role x.

The URA97 component defined the following two relations: can-assign: (a, C,R)

and can-revoke: (a,R), where a is an administrative role, andR is either a role range or

a role set that has been explicitly specified. C denotes a prerequisite condition which is

a boolean expression using the operators ¬, ∨, ∧ on regular roles of the system. Sandh

et al. [115] gives the example role hierarchies as shown in Figure 6.1 to illustrate the

model. In this example, can-assign(DSO,ED∧¬PL1, (ENG2, PL2]) means that the

members of the administrative role DSO can assign a user, who is currently a member

of the role ED and not a member of the role PL1, to be a member of regular roles of

the set {PL2, PE2, QE2}. can-revoke(PSO2, [ENG2, PL2]) means that the members

of the administrative role PSO2 can revoke membership of a user from any regular

role in the set {PL2, PE2, QE2, ENG2}. PRA97 is defined as the dual of the URA97

model. Thus it has two relations can-assignp: (a, C,R) and can-revokep: (a,R) which

are similar to the can-assign and can-revoke in the URA97.

The RRA97 component defined five relations: can-assigna, can-revokea, can-assigng,

can-revokeg, can-modify. In order to support establishing relationships among different

administrative models, two special types of roles are defined in RRA97: Abilities are

roles that can only have permissions and other abilities as members, and Groups are

roles that can only have users and other groups as members. The relations can-assigna,

can-revokea are defined for Abilities role assignment and revocation, and the relations



6.1 Administration in Role-based Access Control 137

can-assigng, can-revokeg are defined for Groups role assignment and revocation. In

this chapter, we do not consider these four relations as they are not required by RBE

schemes.

The relation can-modify specifies the authorisation of operations role creation, dele-

tion, and modification, and is defined as (a,R) where a is an administrative role, and

R is a role range. The role range in RRA97 is a special case where no end points is

included, and any role range referenced in the can-modify relation is called an author-

ity range. For example, can-modify: (PSO1, (ENG1, PL1)) means that the members

of the administrative role PSO1 can create, delete, and modify roles in the range

(ENG1, PL1). In order to maintain global consistency when modifying roles, several

restrictions have been placed for defining the authority range in RRA97. First, author-

ity ranges do not overlap partially. In the example, as the role hierarchies, (E2, DIR)

and (ED,PL1) are partially overlapping, they are not allowed to be defined at the

same time. Secondly, authority ranges must be encapsulated. ARBAC97 defines the

encapsulated range as follows.

Definition 6.1 A range (x, y) is said to be encapsulated if for all roles ri ∈ (x, y) and

all roles re /∈ (x, y),

re > ri ⇔ re > y, and re < ri ⇔ re < x

The ARABC97 model further defined the restrictions on individual operations in the

relation can-modify, including role creation, role deletion, edge insertion, and edge

deletion. ARBAC97 has been extended in ARBAC99[119] and ARBAC02[108] where

there have been changes to the URA and PRA relations.

6.1.2 SARBAC Model

Crampton and Loizou [44, 43] proposed another administrative model, SARBAC, for

RBAC, and the model was then improved in [42] where a role-based administration

template (RBAT) model was proposed. The intention of SARBAC is to improve the
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RRA model in ARBAC97. RRA97 was based on encapsulated ranges, which are rela-

tively complicated to administer and require a significant effort in deciding an admin-

istrative policy. In order to simplify the RRA model, SARBAC introduced the concept

of the administrative scope, which is defined based on the role hierarchies. Similar to

the authority range in ARBAC97, an administrative scope is used to specify a set of

roles that can be modified by an administrative role. In this chapter, we follow the

description of SARBAC given in [42].

First, let us look at the notations given in [42]. Let s ∈ R; define ↑ s = {r ∈ R :

r ≥ s} and ↓ s = {r ∈ R : r ≤ s}. The expression ↑ s∪ ↓ s is denoted as l s. The

administrative scope is defined as follows.

Definition 6.2 The administrative scope of a role r, denoted by σ(r), is defined to be

σ(r) = {s ∈ ↓ r : ↑ s ⊆ l r}

Based on this definition, a role-based administration template (RBAT) was intro-

duced. RBAT defines a single relation can-administer: (a, r), which means that

an administrative role a can control the set of roles in σ(r). For example, can-

administer(PSO1, PL1) means that the administrative role PSO1 can create, delete,

and modify the roles in σ(PL1), which specifies the set of roles {PL1, PE1, QE1, ENG1}.

One feature of SARBAC is that when some RRA operations affect the authority

ranges of the administrative roles, no new relation policy needs to be specified; the

administrative scope changes following the updating of the role hierarchy, while in

ARBAC97, these operations are not allowed. RBAT formalised the relations between

the RRA operations and the administrative scopes by defining the scope preserving

hierarchy operations and the preserving conditions of the scopes.
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6.2 A RBE Scheme for Decentralised Role Man-

agement

In this section, we propose our variant RBE scheme based on the RBE scheme de-

scribed in section 5.2.1. This variant RBE scheme will be later used with our proposed

cryptographic administrative model AdC-RBAC.

6.2.1 Formulation of the RBE Scheme

The RBE schemes defined in previous chapters allow the user membership to be man-

aged by individual roles which makes the scheme easy to be used with administrative

RBAC systems as the user management in the schemes has already been decentralised.

To use RBE schemes with ARBAC, the administration tasks in the RBE schemes also

need to be decentralised so that they can be performed by the administrative roles

instead of the system administrator. Moreover, in ARBAC models, one single admin-

istrative role can administer multiple roles, so each individual role does not have to

be allocated a role manager. Therefore, we replace the party role managers RM with

administrative roles AR in the new RBE scheme. Taking into account the above re-

quirement changes, we modify the definition of the RBE scheme in Chapter 3, and the

algorithms of the new RBE scheme are described as follows,

Setup (λ): takes as input the security parameter λ and outputs a master secret key

mk and a system public key pk. mk is kept secret by the SA while pk is made

public to all users of the system.

CreateRole (mk, IDR): an algorithm executed by the SA to create a new role with

identity IDR. The algorithm returns the role secret skR, a set of public parameters

pubR for the role and an empty user list RUL which will list all the users who

are the members of that role.

CreateUser (mk, IDU): an algorithm executed by the SA to add a new user to the

system. IDU is the unique identity of the new user. The algorithm returns the
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secret decryption key dk, which the user will use to decrypt all the data retrieved

from the system.

ManageRole (pk, IDR, T ) is executed by the AR to manage a role with the identity

IDR in the role hierarchy T . This operation publishes a set of public parameters

pubR to the cloud.

AddUser (pk, skR, RULR, IDU): an algorithm executed by the administrative role

AR of a role, taking as input the role secret skR, to add the user IDU to the set

of users who are members of that role by updating the role’s public parameter

pubR and the user list RULR if the user qualifies the role.

RevokeUser (pk, skR, RULR, IDU): an algorithm executed by the administrative

role AR on input an identity IDU of the user U and the role secret skR, removes

U from the RUL and updates the role’s public parameters.

Encrypt (pk, pubR, M): an algorithm executed by the owner to encrypt the private

data M , outputs the ciphertext C.

Decrypt (pk, pubR, dk, C): an algorithm executed by the user to decrypt the

ciphertext C, taking as input the user decryption key skR, outputs the plain text

message M if the user has the permission to access the data, and fails otherwise.

In this RBE definition, all the administration operations for the RBAC are carried

out by the administrative roles AR, and the system administrator SA only needs to

participant in the system setup and the key generation phase. After the role and user

secret keys are generated in the algorithms CreateRole and CreateUser, they are sent

to the administrative roles and the users respectively via a secure channel. Note that

in the above it has been assumed that the cloud provider has the capability to store

both the ciphertexts and the public parameters of the system. The latter includes the

public parameters for all the roles and the public key, pk, of the system. We assume

that the information that is private to each user, such as the decryption key of each

user, is held securely by the user. We also assume that the system and the role secret

information are stored securely by the SA and role managers respectively. We will refer



6.2 A RBE Scheme for Decentralised Role Management 141

to some of the above mentioned operations and parameters in the following sections.

6.2.2 The RBE Scheme Construction

Now we describe the RBE scheme which is designed using asymmetric bilinear groups

as follows,

Setup: Generate three groups G1,G2,GT , and a bilinear map ê : G1 × G2 → GT .

Randomly choose two generators g ∈ G1 and h ∈ G2, two secret values s, k ← Z∗p and

two hash functions H1 : {0, 1}∗ → Z∗p, H2 : GT → G1 and a secure symmetric

encryption scheme Enc whose key space is GT . The master secret key mk and system

public key pk are defined as

mk = (s, k, g), pk = (w, v, gk, h, hs, · · · , hsq1 , hk, hk·s, · · · , hk·sq2 )

where w = gs, v = ê(g, h)

and q1 is the maximum number of users that each role can have and q2 is the maximum

depth of the role hierarchy. If q1 is less than q2 in practice, we set q1 equal to q2.

CreateRole(mk, IDR): To create a role R with identity IDR, SA computes the role

secret as

skR = g
1

s+H1(IDR)

and gives skR to the administrative role of R along with the RULR which is initially set

to empty. This gives the administrative role the ability to manage the user membership

of the role.

CreateUser(mk, IDU): To create a user U with identity IDU in the system, the SA

computes the user decryption key as

dkU = g
1

s+H1(IDU )

and gives dkU to the user U . This effectively adds the user to the system. The user
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will use dkU as their decryption key in recovering information from the system.

ManageRole(pk, IDR, T ): Assume that PRR is a set of identities {IDR1 , · · · , IDRm} of

all the roles which will be the ancestor roles of a role R with the identity IDR. To place

this role R in the role hierarchy, AR computes and publishes the tuple (AR, BR,RULR)

as role public parameters in the cloud where

AR = h(s+H1(IDR))
∏m

i=1(s+H1(IDRi
)), BR = hk·(s+H1(IDR))

∏m
i=1(s+H1(IDRi

))

AddUser(pk, skRi
, RULRi

, IDUk
): Assume that the administrative role AR of the role

Ri wants to add a user Uk with the identity IDUk
as a member of the role Ri. RULRi

is the set of n users who are the members of the role Ri and Uk is not in RULRi
. The

administrative role AR chooses two random values ri, ti ← Z∗p if RULRi
is empty, or

uses the existing ri, ti otherwise. Then it computes

Ki = vri , Ti = g−ti , Wi = w−ri , Vi = hri·(s+H1(IDUk
))

∏n
j=1(s+H1(IDUj

))

and

Si = H2(Ki) · skRi
· gkti = H2(vri) · g

1
s+H1(IDRi

)
+kti

AR adds IDUk
into RULRi

, and sends the tuple (Ti,Wi, Vi, Si) to the cloud via a secure

channel. The cloud then publishes another set of role parameters as

(IDRi
,Wi, Vi, Si,RULRi

)

RevokeUser(pk, skRi
, RULRi

, IDU): To revoke a user Uk from a role Ri which has

a set N of n users in RULRi
, and Uk ∈ N . The administrative role AR first removes

IDUk
from role user list RULRi

. Then AR chooses two random values r′i, t
′
i ← Z∗p and

re-computes

K ′i = vr
′
i , T ′i = g−t

′
i , W ′

i = w−r
′
i , V ′i = hr

′
i·
∏n

j=1,j 6=k(s+H1(IDUj
))
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and

S ′i = H2(K ′i) · skRi
· gkt′i = H2(vr

′
i) · g

1
s+H1(IDRi

)
+kt′i

AR sends the new role parameters (T ′i ,W
′
i , V

′
i , S

′
i) to the cloud, and the cloud replaces

the public parameters of the role with

(IDRi
, Ai, Bi, W

′
i , V

′
i , S

′
i, RULRi

)

Encrypt(pk, pubRx
): Assume that the owner of the data M wants to encrypt M for

the role Rx. The owner randomly picks z ← Z∗p, and computes

C1 = w−z, C2 = ARx

z, C3 = BRx

z, K = vz

Then the owner uses the encryption scheme Enc to encrypt the message M with the

key K, and uploads the ciphertext EncK(M) together with C = {C1, C2, C3} to the

cloud.

Decrypt(pk, pubRi
, dkUk

, C): Assume that a role Rx has a set R of ancestor roles,

and the set M = Rx ∪ R has m roles {R1, · · · , Rm}. Ri ∈ M is one ancestor role

of Rx, and there is a set N of n users {U1, · · · , Un} in Ri. When a user Uk who is a

member of the role Ri wants to decrypt the ciphertext C, the user first requests the

ciphertext from the cloud. The cloud computes and returns the following tuple to the

user Uk,

{C1, C2, D,EncK(M), where D = ê(Ti, C3)}

After receiving the ciphertext from the cloud, Uk recovers the systemic encryption key

that is used to encrypt M by computing

K ′ = (ê(C1, h
pi,M(s)) · ê( Si

H2(Ki)
, C2) ·D)

1∏m
j=1,j 6=i

H1(IDRj
)

where

Ki = (ê(dkUk
, Vi) · ê(Wi, h

pk,N (s)))
1∏n

j=1,j 6=k
H1(IDUj

)
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and

pi,M(s) =
1

s
· (

m∏
j=1,j 6=i

(s+H1(IDRj
))−

m∏
j=1,j 6=i

(H1(IDRj
))).

pk,N (s) =
1

s
· (

n∏
j=1,j 6=k

(s+H1(IDUj
))−

n∏
j=1,j 6=k

(H1(IDUj
))).

By using the key K ′, Uk can decrypt the ciphertext of M and recover the data M .

6.2.3 Security Proof

In this subsection, we only prove CPA security of our RBE scheme based on GDDHE

assumption. Similar to previous RBE constructions, our RBE scheme can be extended

to a CCA-secure scheme using some exist generic conversion methods that can convert

a CPA-secure scheme to a CCA-secure scheme.

Theorem 6.1 The proposed RBE scheme is chosen plaintext secure under the GDDHE

assumption.

To prove Theorem 6.1, we start by defining another specific GDDHE problem where

it shows that f = zh(s) is independent from P and Q. In the following definition,

s, k, z, c are random elements chosen from Z∗p as described in our RBE scheme.

Definition 6.3 GDDHE Problem III Let (p,G1, G2,GT , ê) be a bilinear map group

system and let g0 and h0 be the generator of G1 and G2 respectively, and v = ê(g, h).

Let f and g be two coprime polynomials with pairwise distinct roots, of respective orders

m and n. Given K ∈ GT and

g0, g
s
0, . . . , g

sm−1

0 , g
s·c·g(s)
0 , g

k·c·g(s)
0 , g

z·s·c·g(s)
0

h0, h
s
0, . . . , h

sn

0 , h
f(s)
0 , h

s·f(s)
0 , h

h(s)
0 , h

k·h(s)
0 , h

z·h(s)
0 , h

k·z·h(s)
0

in deciding whether K is equal to ê(g0, h0)z·c·h(s) or some random element of GT .
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Given an attacker A who wins the following game with probability AdvRBEA , we

construct another attacker B that solves the GDDHE problem. In our scheme, we

assume that the cloud is trusted, and will not collude with malicious adversaries.

Let q be the maximum number of identities of users and roles that the adversary

can query. Let U = {IDU1 , . . . , IDUn} and R = {IDR1 , . . . , IDRm} be the sets of users

and role identities respectively that the adversary will issue queries on. B will be given

a (f, g, F)-GDDHE instance defined in Definition 6.3. Next we define the following

polynomials:

• g(x) =
∏m

i=1(x+H1(IDRi
))

• f(x) =
∏n

i=1(x+H1(IDUi
))

• h(x) = g(x) · f(x)

• gi(x) = c·g(x)
x+H1(ID∗Ri

)
, where i ∈ [1,m]

• fi(x) = f(x)
x+H1(ID∗Ui

)
, where i ∈ [1, n]

Init: The adversary A first chooses a set of identities U = {IDU1 , · · · , IDUn} which A

will attack (with n ≤ q).

Setup: B will set the following values to generate the system parameters by randomly

choosing s, k, z, t, c from Z∗p.

h = h
f(s)
0 , w = g

s·c·g(s)
0 , v = ê(g, h) = ê(g0, h0)c·h(s)

This implies that g = g
c·g(s)
0 . Then B defines the public key as pk = (w, v, gk, h, hs,

· · · , hsq , hk, hk·s, hk·sq), and creates a role IDR by outputting the role parameters

A = h
h(s)
0 = hg(s) = h

∏m
i=1(s+H1(ID∗Ri

)),

B = h
kh(s)
0 = Ak

Phase 1: The adversary A once again adapts its queries and issues queries q1, . . . , qk,
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• CreateRole query: If A has not issued the query on IDRi
, B computes the

user decryption key as

skRi
= g

gi(s)
0 = g

1
s+H1(ID

∗
Ri

)

• AddUser query: If A has issued the query on IDUi
and the role created in

Setup, B then updates the role public parameters for the role to grant the

role membership to the user. When n users are the member of the role, the

role parameters B outputs will be

W = g
−r′sc·g(s)
0 = w−r

′
,

V = h
r′·f(s)·f(s)
0 = hr

′f(s) = hr
′·
∏n

i=1(s+H1(ID∗Ui
))

S = H2(ê(g0, h0)r
′c·h(s)) · ggi(s)0 · gkt

′c·g(s)
0

where r′ and t′ are the random number chosen by B.

Challenge: Once A decides that Phase 1 is over, B first revokes all the members of

the role IDR. B outputs the following role parameters when all the users have

been revoked from the role.

W = g
−rsc·g(s)
0 = w−r, V = h

r·f(s)
0 = hr

S = H2(ê(g0, h0)rc·h(s)) · ggi(s)0 · gktc·g(s)0

where r is the random number chosen by B.

Then B simulates Encrypt algorithm by constructing the ciphertext C∗ for the

message Mb for a random b ∈ {0, 1} as,

C1 = g
−zsc·g(s)
0 = w−z, C2 = h

zh(s)
0 = Az

C3 = h
kz·h(s)
0 , D = ê(g0, h0)−tc·g(s)·kz·h(s), K = K ′
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Note that if K ′ = ê(g0, h0)zc·h(s), then we have K = vz

Phase 2: The adversary A again adapts its queries and issues qqk+1, . . . , qqT similar to

Phase 1 with the following restrictions: A cannot make CreateRole or AddUser

queries on IDR, and A cannot make Decrypt queries on C∗.

Guess: The adversary A outputs a guess b′ ∈ {0, 1}, and wins the game if b = b′.

Then we have

Advgddhe =
1

2
(Pr[b = b′|real] + Pr[b = b′|rand])− 1

2

=
1

2
(
1

2
+ AdvRBEA ) +

1

2
· 1

2
− 1

2

=
1

2
· AdvRBEA

6.2.4 Discussion

One feature of the variant RBE scheme is that all the administrative tasks, such as

role management, permission and user assignment, are decentralised. The system

administrator does not need to be involved in any administrative tasks. Since no

secret parameter is required to construct the role hierarchy, any party who has the

access to the system public keys can define the public parameters of a role. In the

administrative RBAC model that we will propose, we will show how to restrict the role

management permissions in the RBE scheme. For the user management, a role secret

key is generated for each role, and the role secret key can be given to any administrative

role to manage the user membership. Note that this does not manage the permissions

of the roles, only the users. Therefore, the problems of managing the user-role mapping

are transferred into the problems of managing role secret keys.

Any data owner is allowed to encrypt data using the role public parameters and

thereby add a permission to the role. While we recognise that this is unusual for

RBAC systems, it does allow significant flexibility in adding data to the cloud storage.

This activity could be controlled by restricting access to the role public parameters, or
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at least the part required for encryption. At the extreme, we could restrict access to

the encryption-related role public parameters to the administrative role itself, restoring

that entity to control over the role-permission mapping. Data owners would then make

requests of the administrative role for it to encrypt data to the role. However, this

would complicate the explanation of the algorithms corresponding to the operations

set out above.

In this RBE scheme, only users that are members of the role to which the data

was encrypted, or members of one of the ancestor roles of that role, can decrypt the

ciphertext. It is assumed that users keep secret the decryption key given to them by

the SA. It is further assumed that users have some credentials that they can use to

prove their identity to administrative roles, and the administrative roles will use these

credentials as the basis for deciding whether or not to assign users to the roles that

they manage. A user is able to join a role after the owner has encrypted the data for

that role, and the user will be able to access that data from then on, without the owner

needing to re-encrypt the data. A user can be revoked at any time (e.g. if the user is

found to be malicious), in which case the revoked user will not have access to any data

encrypted to this role.

So far we have only discussed the read permission; that is, a user who belongs to

a role to which a message was encrypted can decrypt and read the message. Now let

us consider the write permission. The write permission is for encrypting data to a

role, and we have discussed previously that we can either allow any user to encrypt

messages or restrict the write access by giving out the role public parameters to the

authorised users only. Now let us extend this case to a more general scenario. Assume

an owner wishes to assign multiple permissions, such as read, add, modify, and delete,

to a role, and these permissions are protected by cryptographic keys. For example,

the read and the add permissions can be controlled by managing the associated keys

as we discussed above, and the system can require the modification and the deletion

operations to come with signatures generated by separate keys. The owner can create

a key for each different permission, and encrypts these keys to this role. Since the

user who has access to messages encrypted to this role can recover the keys for the
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permissions of that role, the user is able to obtain these permissions and receives the

ability to carry them out.

6.3 Administrative Model for RBE Schemes

In this section, we propose a cryptographic administrative model AdC-RBAC that can

manage and enforce role-based access policies for RBE schemes in large-scale cloud sys-

tems, and we use the role hierarchies shown in Figure 6.1 as an example to explain our

proposed administrative model. The AdC-RBAC model uses cryptographic techniques

to ensure that the administrative tasks such as user, permission and role management

are performed only by authorised administrative roles. This model consists of three

components: UAM for user membership management, PAM for permission manage-

ment, and RAM for role management.

6.3.1 User Administration Model

In RBE schemes, user membership administration has already been decentralised. The

management of user membership for each role is controlled by a role secret key skR

which is used as an input parameter to the AddUser and RevokeUser operations. Only

the parties who hold this key can add or revoke users to or from this role. Therefore,

we define the following relation for UAM.

Definition 6.4 User management policies in AdC-RBAC are specified by the following

relation

can-manage ⊆ AR×R

where AR is the set of administrative roles and R is either a role range or a role set

that has been explicitly specified.

The example shown in Table 6.1(a) means that the members of the administra-

tive role PSO1 can manage the user membership of the roles specified by the range

[ENG1, PL1]. To enforce this relation in UAM, the secret keys skR of the roles that
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Administrative
Role

Role Range

PSO1 [ENG1, PL1]

(a) Single relation

Administrative
Role

Role Range

DSO [DIR, DIR]
PSO1 [ENG1, PL1]
PSO2 [ENG2, PL2]

(b) Multiple relations

Table 6.1: AdC-RBAC Model: can-manage Example

are within the range are encrypted to the role PSO1. We note that the problem of

specifying the role range has been transformed into the problem of encrypting a set of

role secret keys. The concepts of partial overlap and incomparable have been intro-

duced in [115] to define restrictions for the ARBAC97 model. We give our definitions

as follows.

Definition 6.5 Assume that there exist two key sets K1 and K2 which correspond to

two role ranges R1 and R2. We say two ranges overlap partially if K1 ∩K2 6= ∅ and

K1 * K2 and K2 * K1. Ranges R1 and R2 are said to be incomparable if K1∩K2 = ∅.

In UAM, to avoid any potential conflict that may be caused by managing the

user membership of a role by multiple administrative roles, we introduce the following

restriction.

Definition 6.6 In UAM, role ranges are incomparable.

In some cases, the system may want an administrative role to have full control over

another administrative role; that is, one role range is allowed to be the superset of

another role range. In UAM, this can be achieved by the inheritance in the encryption.

Table 6.1(b) shows a more complex scenario which contains a list of relations. We

explain using this example to show how we can achieve this requirement.

First, we assume that the administrative roles are organised in a hierarchy as shown

in Figure 6.1(b), and the role DSO inherits permissions from the role PSO1 and PSO2.
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We use our RBE scheme to encrypt the corresponding set of role secret keys to each

administrative role. Assume that the secret keys for the roles are encrypted to the

administrative roles following the relations specified in Table 6.1(b). Since the role

DSO can decrypt the data encrypted to the role PSO1 and PSO2, it can recover the

secret keys for roles in the set [DIR,DIR] ∩ [ENG1, PL1] ∩ [ENG2, PL2]; hence it

can manage the user membership of these roles. Therefore the effective range that the

role DSO can manage is (ED,DIR].

6.3.2 Permission Administration Model

Recall that in the RBE system, all the owners who can access the system are able to

encrypt the data to the roles; hence in a general case, anyone is allowed to encrypt

the data to the roles in a RBAC system. Since the RBE scheme does not have specific

requirements on permissions-role assignment, there is no restriction on the permission

assignment in the RBE scheme. Therefore, the permission administration model is not

mandatory in the AdC-RBAC model.

However, in some cases, the RBAC system may want to allow only the specific

administrative roles to encrypt data to roles. For example, in our proposed RBE

scheme, role public parameters pubR are required in encrypting a data to a role. These

role parameters are defined as public, so that the data can be encrypted to the roles by

any parties using these parameters as part of the encryption key. In order to restrict

permission assignment in PAM, we encrypt these role parameters to the administrative

roles who are permitted to assign permissions to these roles, so that only the authorised

administrative roles can encrypt data to these roles. Hence we define the following

relations in PAM.

Definition 6.7 Permission assignment policies in AdC-RBAC are specified by the fol-

lowing relation

can-assign ⊆ AR×R

where AR is the set of administrative roles and R is either a role range or a role set

that has been explicitly specified.
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Administrative
Role

Role Range

PSO1 [E, PL1]

(a) Single relation

Administrative
Role

Role Range

DSO [DIR, DIR]
PSO1 [E, PL1]
PSO2 [ED, PL2]

(b) Multiple relations

Table 6.2: AdC-RBAC Model: can-assign Example

The example shown in Table 6.2(a) means that the members of the administrative

role PSO1 can assign permissions to the roles specified by the range [E,PL1]. To

enforce this relation in PAM, the parameters pubR of the roles within the range are

encrypted to the role PSO1.

Table 6.2(b) shows an example with multiple relations. Different from UAM, one

administrative role assigning permissions to a normal role does not affect permissions

assignment of other administrative roles. Therefore we do not have restrictions in PAM,

and ranges specified are allowed to overlap with each other. We discuss two different

modes using this example for our PAM: flat mode and hierarchy mode.

Flat mode

In a flat mode, the administrative roles are organised in a flat manner; that is, these roles

do not inherit permissions from each other. Each administrative role is only allowed to

assign permissions to the roles that are specified in the role range in the relation. In the

example, DSO can only assign permissions to the role DIR, and the role PSO1, PSO2

can only assign permissions to the roles in the ranges [ENG1, PL1] and [ENG2, PL2]

respectively. To encrypt the roles’ parameters (which are used to encrypt data) to

the administrative roles, an identity-based encryption (IBE) scheme [41, 21, 18, 19] is

sufficient. Administrative roles can use their private keys to decrypt the parameters

pubR of the roles for which they have the authority to assign permissions; hence they

can encrypt the data using the parameters of the corresponding role.
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Hierarchy mode

In a hierarchy mode, the administrative roles are organised in a hierarchical manner;

that is, these roles can inherit permissions from other roles. As shown in Figure 6.1(b),

the role DSO inherits permissions from the role PSO1 and PSO2. Hence the difference

from the flat mode is that the role DSO can assign permissions not only to the role

DIR, but also to all the roles to which the role PSO1 and PSO2 can assign permissions.

The IBE scheme cannot be used to encrypt the role parameters in this scenario as it

cannot reflect the relationship among these administrative roles. Thus we need to use

the RBE scheme for the encryption in this mode. Assume that the parameters for the

regular roles are encrypted to the administrative roles following the relations specified

in Table 6.2(b). Since the role DSO can decrypt the data encrypted to the role PSO1

and PSO2, it can recover the parameters of all the roles in the range [E,DIR]; hence

it can assign permissions to all these roles.

6.3.3 Role Administration Model

In the proposed RBE scheme, we discussed that it is possible for any administrative

role to administer the regular roles. Now we see how to restrict the role management

operations in the RBE scheme. In RAM, we use authentication mechanisms to allow

other parties to verify whether or not a role in the RBAC system is created/modified

by an authorised administrative role. First we define the following relation.

Definition 6.8 Role administration policies in AdC-RBAC are specified by the follow-

ing relation

can-administer ⊆ AR×R

where AR is the set of administrative roles and R is either a role range or a role set

that has been explicitly specified.

We follow the ARBAC97 and require the same restriction on authority ranges in

this relation.
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Administrative
Role

Role Range

DSO (E, DIR)
PSO1 (ENG1, PL1)
PSO2 (ENG2, PL2)

Table 6.3: AdC-RBAC Model: can-administer Example

Definition 6.9 In RAM, authority ranges of the administrative roles do not overlap

partially and must be encapsulated, and the edge roles of the authority ranges cannot

be modified.

In RAM, we use identity-based signature schemes [71, 35, 10] to certify the authority

of the administrative roles. We use DAR(M) to denote data M ’s signature which

is signed to the identity of the administrative role AR. In order to facilitate the

verification of the authority, we define a set of administrative parameters AP for each

regular role. Now consider the relation can-administer: (a, (x, y)) which means that

the members of an administrative role a can administer the roles in the range (x, y). In

this relation, the following parameters are associated with the edge roles of the range,

〈 IDr,PRr,SRr, ARr, τ,Ds(Pr) 〉

where Pr denotes IDr||PRr||SRr||ARr||τ , IDr is the identity of the edge role of the

range, PRr is the set of the identities of r’s immediate senior roles, SRr is the set of

the identities of r’s immediate junior roles, ARr is the identity of the administrative

role who can administer the range, τ denotes the type of the edge: upper bound or

lower bound, and Ds(Pr) is the signature on the parameters, which is issued by the

most senior administrative role who defines the relations in RAM. These parameters

are computed and attached to the role when this role is specified as the edge of the

authority range by the most senior role s. For other regular roles within the range, the

parameters associated with them are as follows,

〈 IDr,PRr,SRr, ARr,Da(Pr) 〉
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Algorithm 1 Algorithm to Verify the Authorisation

function IsEdge(r, a, t)
if role r has parameter τ and τ = t and ARr = IDa then

return true
end if
return false

end function

function VerifyRole(r, a, t)
if role r has parameter τ then

return verify(Ds(Pr), IDs)
end if
return verify(Da(Pr), IDa)

end function

function VerifyAuth(r, a, t)
Stater ← false
if IsEdge(r, a, t) then

Stater ← verify(Ds(Pr), IDs)
else if VerifyRole(r, a, t) then

if t = upper-bound then
R ← PRr

else if t = lower-bound then
R ← SRr

end if
for each x ∈ R do

Stater ← Statex
if Stater = false then . Only verify the role that has not been verified

if a ≥ ARx then . Check if a inherits the permissions from ARx

Stater ← VerifyAuth(x, a, t)
end if
if Stater = false then

return Stater
end if

end if
end for

end if
return Stater

end function

Require: Initiate a Stater for each role r ∈ R to false
Input w . Checking if the role w is administered by the authorised administrator.
b← false
if VerifyAuth(w, ARw, upper-bound) then . Verify the senior roles of the role w.

b← VerifyAuth(w, ARw, lower-bound) . Verify the junior roles of the role w.
end if
Output b . true if w is administered by the authorised administrator, or false
otherwise.
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where Pr denotes IDr||PRr||SRr||ARr, IDr is the identity of the regular role within

the range, PRr is the set of the identities of r’s immediate senior roles, SRr is the set

of the identities of r’s immediate junior roles, ARr is the identity of the administrative

role who can administer the range, and Da(Pr) is the the parameters’ signature which

is issued by the administrative role ARr. These parameters are computed and attached

to the role when this role is created or modified by the administrative role.

Assume that a user of the system wants to encrypt some data to a role, or decrypt

some data that are encrypted to a role. Then the user will need to verify the parameters

AP of the role to check whether this role is certified by the authorised administrative

roles of the system. Now we describe an algorithm, Algorithm 1, for this verification

process. In Algorithm 1, we define a function to denote the verification of an ID-based

signature. This function verify(Dz, IDz) verifies a signature Dz against the identity

of the role z; it returns true if the verification succeeds, and otherwise returns false.

When running this algorithm to verify a role, a user gets true if the last change of

the role was made by authorised administrative roles, and otherwise gets false. In

addition, creating a role out of the specified role range by an administrative role will

cause failures in the verification of all the roles which have inheritance relationships

with this role.

In RAM, the parameters AP associated with each role specifies only one adminis-

trative role. In the example shown in Table 6.3, the authority range of the role DSO

is the superset of that of the role PSO1. We require that the private key of the role

PSO1 is known to both the role DSO and PSO1. When DSO modifies the roles in

(ENG1, PL1), it will need to use the private key of PSO1 to sign the parameters AP

associated with the roles. Similarly, DSO needs to have the access to the private key of

the role PSO2. Therefore, we require that the identity of the administrative role speci-

fied in the role parameters AP is set to the role who administers the smallest authority

range that contains the role. Alternatively, a hierarchical ID-based signature (HIBS)

scheme [59] can be used to simplify the key management. When the administrative

role DSO modifies the roles in (ENG1, PL1), it signs the parameters AP associated

with the roles using its own private key, and HIBS schemes allows the signature to be
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verified against the identity of the role PSO1. The signature generated by DSO can

also be verified against the identity of the role PSO2.

6.4 Conclusion

In this chapter we have proposed a new RBE scheme and a cryptographic adminis-

trative model AdC-RBAC to manage and enforce role-based access policies for the

proposed RBE scheme. The propose RBE scheme can be used to enforce access poli-

cies on encrypted data, which can therefore be used to protect data privacy in a cloud

storage system. An important feature of the new RBE scheme is that it allows the

administrative tasks to be decentralised, and this feature makes the scheme suitable to

be used with our proposed administrative model AdC-RBAC.

Different from existing administrative RBAC models, the AdC-RBAC model can

be used in an untrusted environment, and its security is guaranteed by using crypto-

graphic RBAC techniques. AdC-RBAC uses cryptographic techniques to ensure that

the administrative tasks such as user, permission, and role management are performed

only by authorised administrative roles; that is, only the administrators who have per-

missions to manage a role can add or revoke users to or from the role and owners can

verify that a role is created by qualified administrators before giving out their data.

Other parties who do not have permissions cannot perform administrative tasks to

modify RBAC systems and their policies.
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7
Applications of Role-based Encryption

With RBAC models, access policies can be specified by different entities in a system

depending on the security requirements. Generally, there are two different types of

systems depending on which party defines the access policies. Typically in organisation-

based systems, administrators specify the access policies that govern which users can

upload and view the data stored in the cloud. We will refer to such systems as admin-

centric systems. Then there are systems which are open to public users for the purpose

of data storage; with these systems, users are allowed to specify their own access policies

on the data they want to store in the cloud. Since the access is controlled by users in

this type of systems, we refer to these systems as user-centric systems. This chapter

considers application scenarios from both these types of systems to illustrate how our

proposed RBE schemes can be used to secure the data stored in the cloud. First we

briefly describe an admin-centric application scenario involving a banking organisation.

159
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Then we describe in detail a user-centric application scenario involving secure storage

of patient-centric health records in the cloud.

This chapter is organised as follows. In section 7.1, we describe an admin-centric

cloud-based document sharing system in a banking organisation based on an European

bank. In section 7.2, we consider the user-centric healthcare scenario, and present

an overview of an electronic patient record system called the Personally Controlled

Electronic Health Record (PCEHR) System recently developed by the Australia Gov-

ernment. In Section 7.3, we give the design of our secure cloud-based personal health

record (PHR) data storage system, and show how the issues of the PCEHR system can

be addressed by our proposed system. Section 7.4 concludes the chapter.

7.1 RBE-based Cloud Storage System for a Bank-

ing Organisation

In this section, we describe a cloud storage system that uses RBE for secure document

sharing in a bank. The roles and the hierarchy are based on the case studies in [121,

80], which describe a RBAC policy structure for a branch in an European bank. We

show how our RBE schemes can enforce the RBAC policies in a cloud storage system

for such a banking application.

7.1.1 System Structure

The list of roles defined in the system is shown in table 7.1, which only lists part of

the roles in a branch of the bank. Each branch has been divided into several business

divisions, and we only consider two divisions, Financial Analyst (FA) and Office Bank-

ing (OB), in this example. Since the roles are the same in each division, the example

can be easily extended to applications with more divisions. Each business division has

eight roles which are defined as follows:

• Two managerial roles Head of Division and Group Manager. For example, in the

FA division, the two managerial roles are FA-HOD and FA-GM. They manage
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Function Position Role

Financial Analyst Head of Division FA-HOD

Financial Analyst Group Manager FA-GM

Financial Analyst Specialist FA-Special

Financial Analyst Assistant FA-Asst

Financial Analyst Senior FA-Senior

Financial Analyst Junior FA-Junior

Financial Analyst Clerk FA-Clerk

Office Banking Head of Division OB-HOD

Office Banking Group Manager OB-GM

Office Banking Specialist OB-Special

Office Banking Assistant OB-Asst

Office Banking Senior OB-Senior

Office Banking Junior OB-Junior

Office Banking Clerk OB-Clerk

Financial Analyst - FA

Office Banking - OB

Branch Employee - Employee

Table 7.1: List of Roles for a Bank Branch

the resources for the division.

• Five non-managerial roles. For example, in the FA division, the five non-managerial

roles are created for different positions in the division as FA-Asst, FA-Clerk, FA-

Junior, FA-Senior, and FA-Specialist.

• A role for the business division. This role is inherited by all the other roles in

the same business division. For example, all the roles in the FA business division

inherit from the FA role.

In each branch, there is a separation of privilege constraint that a user may not be

assigned to more than three non-managerial roles. Apart from these eight roles for each

division, each branch has a role called Employee, and all other branch-specific roles are

inherited from the Employee role. The role hierarchy of the bank branch is shown

as in Figure 7.1. The direction of the arrows indicates the inheritance relationships

among these roles in the system. For example, the role FA-HOD inherits from the role
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Employee	  

FA-‐HOD	  

FA-‐GM	  

FA-‐Asst	  
FA-‐Special	  

FA-‐Senior	  
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FA	  

OB-‐HOD	  

OB-‐GM	  

OB-‐Asst	  
OB-‐Special	  

OB-‐Senior	  

OB-‐Junior	  OB-‐Clerk	  

OB	  

Figure 7.1: A Hierarchical Access Structure for a Bank Branch

FA-GM.

In the branch of the bank, the privilege of each business division is separated from

other divisions; that is, a role within a division should not be able to access resources

which are assigned to roles within other divisions. In each division, only managerial

roles can publish documents in the cloud storage system. Other non-managerial roles,

including the role for the division and the role Employee, are only allowed to read the

published documents which they have the permissions to access.

7.1.2 System Operations

In this subsection, we discuss how to use our RBE scheme to secure the cloud stor-

age system. We discuss several cases where the components of the system and their

relationships change dynamically. First, we assume that the administrators of the

bank have created the system parameters and the role hierarchy for the branch, and
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generated the role secret for each role in the branch.

In our RBE schemes, the data owners can encrypt data to any role by using the

public role parameters as the encryption keys. These public role parameters comprise

different parts for different uses. Among them, one part of the parameters is used

for encryption, and one part is used for decryption. In this system, since only the

managerial roles can store documents into the cloud, we ensure that the parts for

encryption in the role parameters are only accessible to the managerial roles of the

division. To achieve this in the framework of using RBE schemes, we assume that the

administrators encrypt the role parameters for encryption to the managerial roles of

each division while setting up the system. The administrators only need to re-encrypt

these role parameters when the role hierarchy changes in a division.

Next we discuss several cases showing how the branch can utilise the system for

document sharing.

Case 1 The division FA publishes a document for the clerks of the division.

When the division FA has a new policy document for the clerks of the division to view,

the document will be given to a group manager first. Since we have assumed that all

the role parameters for encryption have been encrypted to the role FA-GM using the

RBE scheme when the system was set up by the administrators, the group manager can

use her or his own decryption key to recover the role parameters for the role FA-Clerk.

Then the group manager encrypts the document to the role FA-Clerk using the RBE

scheme and uploads it to the cloud. When a clerk wants to view the document, she or

he simply uses her or his decryption key to decrypt the document and view. Any other

roles in the branch, except the role FA-HOD and FA-GM, will not be able to decrypt

the document.

Case 2 The division FA publishes a document for all the employees in the branch.

When the division FA wants to share a document with other divisions of the branch,

the group manager who has been given the document decrypts the role parameters of

the role Employee, and encrypts the document to the role Employee. Recall that our
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RBE schemes support role inheritance; that is, the document encrypted to the role

Employee can be decrypted by any role that inherits from Employee. Assume that a

group manager of the division OB wants to view the document, she or he can use her

or his decryption key to decrypt the document directly.

Case 3 A new head of division has joined the FA division.

Now let us assume that the branch has newly assigned a head to the FA division.

This new head will be given a decryption key corresponding to her identity by the

administrator when she joins the system, and her identity will be included in the

updated role parameters for the role FA-HOD. The new head can now use her own

decryption key to view the documents for the division including the ones which were

uploaded before she joined the system. Note that only the role FA-HOD needs to

update the role parameters, and other roles are not required to take any action.

Case 4 An assistant in the FA division has resigned from the bank.

Let us assume that one of the assistants in the FA division has resigned from the bank.

The role parameters for FA-Asst need to be updated to exclude the identity of this

assistant. Even though this assistant still holds the previous decryption key which was

able to decrypt the documents encrypted to the role FA-Asst, she will not be able to use

it to decrypt any future documents after the role parameters are updated. Similarly,

only the role FA-Asst needs to update its role parameters and none of the other roles

in the branch needs to make any change. In addition, other assistants in the same

division do not need to update their keys, and hence are not affected by the leaving of

this assistant.

Case 5 A specialist has been assigned to both the FA and OB divisions.

Assume that the branch has recruited a specialist who will be working for both the FA

and OB divisions. First she will be given a decryption key which is associated to her

identity by the administrator. Then her identity will be included in the updated role

parameters for both the role FA-Specialist and OB-Specialist. Note that the specialist
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only needs to keep a single key for decrypting documents which are encrypted to any

of these two roles and their descendent roles. Similarly, if the specialist has been

assigned to other business divisions of the branch, her decryption key does not need to

be changed, and the key size remains constant regardless the number of roles that she

belongs to at the same time.

Case 6 A group manager in the OB division has been appointed as a group manager

of the FA division.

Now consider the situation where a group manager of the OB division has been assigned

to manage the division FA. Two actions need to be performed for this position change.

The role OB-GM needs to revoke this user’s role membership, and the role FA-GM will

need to grant the role membership to this user. To account for this change, both the

roles OB-GM and FA-GM need to update their role parameters, but the decryption

key of this user remains unchanged. This decryption key cannot be used to decrypt any

future document for the OB division, but can decrypt documents for the FA division

from then on.

7.2 Secure Electronic Health Record System

In recent years, there is an increasing trend in the use of the cloud to store personal

health records (PHR) online. A number of cloud providers has started providing such

services which allow patients’ PHR data to be used more effectively, such as the Mi-

crosoft HealthVault [101], Google Health1 [61] and WebMD [132]. In Australia, the

Government has recently announced an electronic patient record system called the Per-

sonally Controlled Electronic Health Record System (PCEHR) [62] to assist patients

in better organising their PHR and provide the patients with flexibility in controlling

the access to their PHR.

In this section, we first present an overview of the PCEHR system by describing

the involved components and the approaches used by the system to ensure the security

1Google Health was closed in 2012 due to the lack of widespread adoption.
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of the system. We review the existing access control mechanisms used by PCEHR, and

then describe several challenges and issues of the PCEHR system.

7.2.1 PCEHR System Overview

A typical way to store patients’ personal health records (PHR) that is adopted by most

of the healthcare providers is to use centralised databases that are running on local

storage servers. Since each healthcare provider keeps the PHR individually, it is usually

impossible for them to share efficiently the medical records of patients. For example,

assume that a patient has done the blood test in one clinic, and later on if she or he

goes to see a doctor in a different clinic, it is most likely that she or he will need to

do the blood test again because as it stands there is no easy way for these two clinics

to share electronically the medical records of this patient. Another issue is that the

healthcare providers usually do not allow patients to view their health records directly

in their databases. Moreover, patients are not able to know whether their PHR data

has been accessed by unauthorised persons. Using the cloud to store PHR could make

the data sharing among different healthcare providers and patients easier. However,

security is the main concern when it comes to storing the PHR in the cloud.

In order to provide an easy and quick access to health information for individuals,

the Australian Government launched a personally-controlled electronic health record

(PCEHR) system in July 2012. The aim of this national PCEHR system is to al-

low patients to share efficiently their health information with doctors, hospitals and

other healthcare organisations. The PCEHR system enables secure sharing of health

information between a user’s healthcare providers, while enabling the user to control

who can access their PCEHR data. Figure 7.2 shows an example scenario of using

the PCEHR system among several parties. Patients store their health information in

the PCEHR system, and the other parties may wish to access this data for various

purposes. For instance, when a patient goes to see a general practitioner (GP) or the

specialist, she or he may wish that the GP or the specialist access her or his PCEHR

data directly from the PCEHR system. In the case of an emergency, there needs to

be a emergency access policy which will allow the emergency department to access the
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Figure 7.2: PCEHR System Example Scenario

patient’s PCEHR data directly. Meanwhile, a hospital may want to access the patient’s

health information for research purposes.

Let us now review the operations of the PCEHR system to see how these various

interaction scenarios are developed in the PCEHR system.

There are two main types of participants in the PCEHR system, namely individual

users who wish to store their health information in the system, and healthcare providers

and organisations who wish to access the stored health information in order to provide

healthcare services to individual users. The users use a Consumer Portal interface to

access the PCEHR services. Through the portal, users can view their health informa-

tion stored in the system, share information with their healthcare providers, manage

their access control settings, and view the access history on their PCEHR data. Health-

care providers can access the PCEHR system via either the Provider Portal interface

provided by the PCEHR system or the local clinical systems built and owned by them-

selves. The healthcare providers can seek permissions to access users’ PCEHR data,

search and view the PCEHR data of individual users, and upload clinical documents.

In the PCEHR system, the PCEHR data is a collection of health documents stored
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in a network of connected registered repositories. A multi-layer approach that consists

of firewalls, gateways, and portals is used to ensure only authorised users can access

the PCEHR system. An authorised user who wishes to access the PCEHR data on

behalf of a healthcare organisation needs to be authorised by the organisation first.

When an authorised user wishes to access the PCEHR system from the clinical system

of the organisation, the local clinical system needs to authenticate itself to the PCEHR

system using the organisation’s digital credentials and pass on the user details. If

authorised users want to use the Provider Portal to access the PCEHR system, they

need to present a National Authentication Service for Health (NASH) token (e.g. a

smart card or USB token) asserting their identity to log in. Individual users/patients

will make use of username/password authentication process combined with challenge-

response using shared knowledge questions and one-time passwords to log into the

PCEHR system.

The protection and security of users’ personal information are the responsibility of

the system operator who is in charge of establishing and operating the PCEHR sys-

tem. The system operator is committed to keeping secure the personal information

that is stored in the PCEHR system, and is acted by the Secretary of the Department

of Health and Ageing. The system operator will take reasonable precautions to pro-

tect the personal information it holds from misuse and loss and unauthorised access,

modification or disclosure. Customer service officers from the Medicare area of the

Department of Human Services (DHS-Medicare) will undertake some of the PCEHR

system’s daily tasks on behalf of the system operator. In addition, the system operator

is authorised to prepare and provide de-identified data for research and other public

health purposes. The PCEHR rules will ensure that appropriate protections are put

in place around the preparation and disclosure of de-identified data.

7.2.2 Access Control in PCEHR System

The PCEHR system allows the users to choose from two different methods to specify

their access control policies for their health records, namely basic access control and

advanced access control. Let us now review the access control mechanisms that are
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currently used by the PCEHR system.

Access List

The core of the access control in the PCEHR system is the “access list”. A user

has the flexibility to add or remove organisations to or from the access list. Only

the organisations on the access list are permitted to access the user’s PCEHR data.

Users can see their access list and update it at any time via different channels. The

organisations on the access list will be removed automatically if they have not accessed

any of the user’s PCEHR data for three years or more, and the user needs to grant the

permission to the organisations again if she or he wishes to allow the organisations to

access the PCEHR data. Note that the access control policy is enforced by the system

itself in the PCEHR system.

Basic Access Control

When users choose to use basic access controls, the PCEHR system operates on a

“care-based access” model. In this model, users do not need to manage the access list

explicitly. Any healthcare organisation involved in the care of a user is added to the

user’s access list automatically. To make users aware of what happens to their PCEHR

data stored in the system, the PCEHR system gives the users the option of setting

up a range of notifications when: 1) a new organisation is added to the access list; 2)

new PCEHR data has been uploaded to the system; 3) their PCEHR data has been

accessed by a nominated representative.

Users can request the healthcare providers not to upload clinical documents to the

PCEHR system if they do not want to share the documents. Users should also be in-

formed when a healthcare provider finds that a clinical document may be inappropriate

to be added to the users’ PCEHR. If a clinical document has already been added to a

user’s PCEHR, and the user wants to remove it from the system, the user can request

the PCEHR system operator to remove the document. If the request comes with a

legal reason, the system operator will lock the document to prevent future access by

any user and healthcare organisation. The “removed” clinical document can be later
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restored by the system operator upon the request of the user.

Advanced Access Control

Advanced access control settings are the combinations of basic access control settings

and some additional access controls.

In basic access control, healthcare organisations are added to a user’s access list

automatically if they are involved in the care of the user. In advanced access control,

the user is able to mark an organisation on the access list as being “revoked” if the

user does not want the organisation to access her or his PCEHR data. In addition,

users are able to specify if they want their PCEHR to be “findable” or not. If a user

set her or his PCEHR to be “not findable”, any future healthcare organisation which is

not currently on the access list and any “revoked” organisation will not be able to find

the user’s PCEHR data, and any search for the user’s PCEHR will return nothing. By

default, a PCEHR will be set to findable, and users can change the setting after the

PCEHR data is loaded into the system.

Provider Access Consent Code (PACC): Under the advanced access control set-

tings, users are able to set up PACC which is used as a PIN or passphrase. Organisa-

tions will not be able to add themselves to the access list unless they have the valid

PACC. The organisations which have already been added on the access list can access

the users’ PCEHR with valid PACC even if they are marked as “revoked” on the list.

The following question needs to be answered if a user chooses to set up a PACC,

• If you forget your PACC, do you wish participating organisations to be able to

access your PCEHR by obtaining your consent?

If the user responds “no”, organisations will not be able to access the user’s PCEHR

unless the valid PACC is presented. If the user chooses “yes” to the above question, the

participating organisations will still be able to access the user’s PCEHR without the

valid PACC, but only limited access will be granted which we will discuss below. Users

can choose the setting about whether to be notified if an organisation has accessed

their PCEHR data without their PACC.
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Document Level Access Controls: The PCEHR data of a user will have different

levels of access controls if the user chooses to set up a PACC. The access control level

is set on each clinical document for each healthcare organisation. The available levels

are as follows:

General access: The clinical documents of this level are accessible by any healthcare

organisation which has access to the user’s PCEHR. For example, when an organ-

isation accesses a user’s PCEHR data without the valid PACC, only the clinical

documents with general access can be accessed by the organisation.

Limited access: The clinical documents of this level are accessible only to a more

limited group of healthcare organisations as specified by users. The healthcare

organisation that uploaded the clinical documents can access the documents re-

gardless of the access control level of the documents. Clinical documents can be

set as limited access to nominated representatives in the healthcare organisation

so as to ensure only the authorised representatives can access the documents.

The access level to clinical documents is managed by users. Healthcare providers

do not need to specify the access level while uploading documents. The access level for

a clinical document is set when it is uploaded to the PCEHR system, and the default

access level is set to be the same as the level of access that the healthcare organisation

has when it uploads the document. In some cases a user may want to set different

access levels to the documents from the same organisation. In that case, the user can

change the access level accordingly after the documents have been uploaded to the

system.

By default healthcare organisations on the access list have access to the users’

clinical documents with a “general access” level. In order to access “limited access”

documents of a user, a healthcare organisation needs to obtain a special provider access

consent code (PACCX) from the user at the point of care. Users can reset their PACCX

if they forget the PACCX or they want to choose a new PACCX. Creation of a PACCX

is only available to users who have opted to set up a PACC.
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Emergency Access

It is important to ensure that healthcare provider can access user’s PCEHR data re-

gardless of the access control settings in the case of an emergency where the user is not

capable of giving or communicating consent.

Emergency access will override the access control policies that are set on users’

PCEHR data. However, it is not required for the users that are using basic level

access controls, as the organisation who are providing healthcare services to the users

will be granted the access automatically. It is required for the users who have set

up advanced access controls which may prevent access to their PCEHR data in an

emergency situation. With the emergency access, those organisations which are not

on the access list or have been marked as “revoked” as well as the ones without the

PACC can have unlimited access to all the users’ PCEHR data except the documents

that have been “removed” upon the user’s request previously.

Emergency access will add the healthcare organisation to the users’ access list if

it is not already on the list and provide the organisation with access to both “limited

access” and “general access” clinical documents. The organisation’s access level will

be reverted to the previous access level prior to emergency access after a period of

five days from the time of last access to the user’s PCEHR data. If the access is still

required after the timeout, the healthcare organisation could assert emergency access

again. There is no limit on how many times the emergency access can be used, though

the organisation may want to obtain a more persistent form of access from the user or

her or his authorised representatives.

To prevent the abuse of emergency access, all use of emergency access will be audited

and recorded by the PCEHR system.

Forward Consent

When a user is referred by a healthcare organisation to another organisation, it may

be necessary for the referred organisation to have access to the user’s PCEHR before

the user’s visit. In order to have this access, the referred healthcare provider needs to
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contact the user and obtain the PACC to add itself to the access list of the user.

7.2.3 Challenges and Issues

In the PCEHR system, users trust the system and the operators to protect the security

and privacy of their sensitive health information. However, since PCEHR data is stored

in a distributed manner over a network of multiple registered repositories, risks can

arise as one repository may be compromised or employees of the distributed system

may access the PCEHR data without the users’ permissions. In addition, flaws can

also arise in system implementations, for instance in the enforcement of access control

policies that are set up on PCEHR data by users. A flaw in the system software

could potentially leak the users’ sensitive health information to unauthorised healthcare

organisations as the data is stored in the plain form in the PCEHR system.

Now let us use the example shown in Figure 7.2 to discuss other security issues that

may occur in the PCEHR system. We assume that users are using advanced access

controls in all of the following cases.

Limited Access: In order to provide users the capability to have flexible control on

their PCEHR data, the PCEHR system allows users to set up advanced access

controls where certain clinical documents can be set a limited access level, so that

only the organisations with special permits can access. For example, a patient

may wish that her or his GP can access only documents with “general access”

by giving the general access to the GP, and the limited access to the specialists.

Now let us assume that two specialists, a cardiologist and an endocrinologist,

are involved in providing care to a user. The user may not want the cardiologist

to access the clinical documents uploaded by the endocrinologist. In this case,

the user cannot set different “limited access” level to the documents for different

specialists due to the limitation of the PCEHR system.

Access Revocation: Assume that a user has moved to a different suburb, and wishes

to change to a different GP. In the PCEHR system, a healthcare organisation can

still access a user’s PCEHR data when it has been “revoked” from the access list
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by the user if it knows the PACC of the user. The PCEHR system allows users to

reset their PACC if they forget the PACC or want to choose a new one. Hence the

user can revoke the access from the previous GP by generating a new PACC, and

not letting the previous GP know the new PACC. However, this operation will

affect all the organisations that have “general access” as the PACC they possess

cannot be used to access the user’s PCEHR data any more. The user needs to

resend them the new PACC to grant them the access to the PCEHR data. In

short, users need to distribute the new PACC or PACCX whenever they want to

revoke the access of one organisation which knows the PACC or PACCX.

Forward Consent: When a user is referred by a healthcare organisation to another

organisation in the PCEHR system, the referred organisation needs to contact

the user to obtain the access to the user’s PCEHR data. This could be an issue

if the referred organisation needs to provide care to a large number of patients.

For example, when a large number of users have been referred by their GPs to

a specialist, the specialist needs to spend significant efforts in contacting each

individual patient for access to their PCEHR data. If a user does not grant the

access to the specialist in a timely manner, the specialist may give inadequate or

inappropriate care to the user due to the lack of health information of the user.

De-identified Data Sharing: The PCEHR system allows the system operator to reveal

users’ PCEHR data for research and other public health purposes after removing

the identities from the data. To prepare de-identified data has always been a

challenge and it may not be safe in all cases. For example, a patient who has

had a special disease can be identified easily from her or his health information.

Hence some users may wish their PCEHR data not to be revealed to others under

any circumstance. Therefore it is necessary for users to decide whether they want

to participate in particular research projects.

Now consider a general healthcare information storage system which uses the cloud

to store patients’ personal health record (PHR). A well-designed PHR storage system

should ensure that the PHR data stored in the cloud will be accessed only by the users
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who are allowed by the access policies. In such a system, when a user wants to view

the PHR data of a patient, the patient should be able to grant the user access only to

the data that the user needs to view. We list the important security requirements that

the system needs to meet in order to provide a secure and flexible PHR storage service

as follows:

• The system should allow the patients to have fine-grained access control on their

PHR data.

• The system should make the data communication easy among multiple users who

can access the data in the system.

• The system should ensure that the stored PHR data can only be accessed by the

users who are allowed by the access policies.

• The sensitive parts of the PHR should be stored in an encrypted form and not

in plain format.

• The patient should have the ability to easily grant or revoke the access to or from

an user.

• The patient should be able to delegate the permission management to other

organisations.

7.3 Our Healthcare Information Storage System

To address all the needs discussed above, we have developed a secure patient-centric

PHR storage system using our role-based encryption (RBE) scheme described previ-

ously. This system can provide a practical solution for securely storing PHR data. Our

system can work as either a standalone PHR storage system or a security enhancement

component which can be integrated with the PCEHR system.

To reduce the reliance on the trust of the system’s security, we use cryptographic

techniques to encrypt the health information before storing it into the system which

could further enhance the security of the PHR storage system. Similar to the PCEHR
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Figure 7.3: PHR Access Structure for the PHR Storage System

system, the PHRs in the system are patient-centric (user-centric); that is, the patients

themselves specify who can access their PHR data stored in the system.

We first describe the design of the PHR structure. Then we explain how it satisfies

the various security requirements by describing several operations of the system.

7.3.1 Patient-centric PHR Structure

In our system, the PHR data of each patient is divided into several different categories

which are organised in a hierarchical structure. Using this approach, patients can

define multiple access levels on their PHR data. Let us now consider the design of the

patient-centric PHR structure. We let the categories of PHR data be organised in a

hierarchical structure shown as in Figure 7.3.

In the designed PHR structure, Personal Details stores the personal information
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of the patient, such as name, date of birth and address. Basic Medical Records stores

the commonly used records, such as immunisation history, medications and allergies.

General Practitioner stores the medical records that the general practitioner (GP) of

the patient can view. Cardiology, Endocrinology, and Physiotherapy stores the medical

records for the specialists to read. Reception stores the appointment information and

the visit history with the specialists. Pathology stores the pathology test requests and

result reports. Medicare and Hospital store the Medicare-related information and PHR

data that the patient agrees to share with the hospital for research and public health

purposes respectively. Patient’s Health Records is a category that the patient uses to

access all of her or his PHR data.

As specified by the PCEHR operation specification [70], the health information

stored in the PCEHR system can be one of the following clinical document types. Now

we show how these document types supported by the PCEHR system can be mapped

to the categories in the designed PHR structure.

Shared Health Summaries is a clinical document sourced from the user’s nom-

inated provider. It provides a clinically reviewed summary of a user’s health-

care status as well as information about a user’s allergies and adverse reactions,

medicines, medical history, and immunisations. The nominated provider is the

healthcare provider chosen by the user to provide ongoing care to the user. For

example, for the majority of Australians, the nominated provider will be the

user’s regular general practitioner (GP).

This type of document contains only the basic health information of a user. Hence

it should be accessible to most of the parties in the system. As the information

is provided by a GP in most of the cases, we let this type of document be stored

in the category General Practitioner ; that is, these documents are encrypted to

the role General Practitioner, the user’s regular GP.

Event Summaries is used to capture key health information about significant

healthcare events that are relevant to the ongoing care of a user. Any partici-

pating healthcare provider can submit Event Summaries to the PCEHR System.
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An event summary is intended to be the “default” clinical document type and is

used when none of the other types of clinical document are appropriate.

As this document type is “generic”, it can be stored in any category. In general,

we let it be encrypted to the role to which the creator belongs. For example, the

documents created by a cardiologist will be encrypted to the role Cardiology.

Discharge Summaries is the summary information in regards to the discharging

of the user from an acute setting hospital. This type of document should be

encrypted to the specialist role who is in charge of the treatment of the user so

that the specialist will see the summary information of the treatment provided

by the hospital.

Specialist Letters are the messages that specialists wish to send directly to the

intended recipients. These documents are created by a specialist, and can be

encrypted by a specialist to any intended recipient role that users have created.

Referrals are the messages from a healthcare provider to another organisation for the

purpose of referring the user to the receiving organisation. Usually, the referrals

are created by a GP to refer a user to a specialist. Therefore, in most cases, the

documents are encrypted to specialist roles by a GP.

Prescribing and Dispensing Information is a copy of prescription and dispens-

ing information uploaded to the PCEHR system by participating prescribers and

dispensers who have access to the system. This type of document will be en-

crypted to the role to which the doctor who prescribed the medicines belongs.

For example, the prescription of Amoxicillin prescribed by a GP will be encrypted

to the General Practitioner role.

Pathology Result Reports is a copy of the result reports uploaded to the PCEHR

system by participating pathologists. We suggest a Pathology role for each doctor

role, including all the specialists and the GP. The reason is that a patient may

not want a cardiology specialist to see her or his endocrinology test result report.

However, the Pathology role for the specialist roles can inherit from the Pathology
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role for the General Practitioner role because the patients may allow the specialist

to access the result reports of some basic pathology tests, such as the report for

a routine blood test.

Medicare Information is the information provided by the Department of Human

Services, such as the Medicare claims history, Pharmaceutical Benefits Scheme

(PBS) data, Organ Donor information and the Australian Childhood Immunisa-

tion Register. We have defined a Medicare role to store all the Medicare related

information. This role resides in the external system where the user manage-

ment permissions are delegated to the managers of individual roles; that is, who

can access users’ Medicare information is determined by the managers of the

Department of Human Services instead of the users themselves.

Consumer Entered Health Summary is the summary information that users

wish to share with their healthcare providers, such as their contact details, aller-

gies, and medications. These documents can be encrypted to either the role Basic

Medical Records or the role Personal Details depending on their detail types. For

example, the contact details of users are encrypted to the role Personal Details,

which, for example, the receptionists of doctors can read, and the allergies and

medications are encrypted to the role Basic Medical Records which only doctors

can access.

Consumer Notes are the records entered by users as a memory aid for individuals

and their representatives, and are not visible to healthcare providers. We let this

information to be encrypted to the role Patient’s Health Records which only users

themselves can access.

This hierarchy only shows an example of categories that may be used in practice.

The actual categories can be defined by patients themselves depending on their own

cases. For example, the list of categories for the specialists can be extended according

to the ones that an individual patient wants to see, such as Dermatology and Gas-

troenterology. Moreover, each specialist category can be extended to multiple levels
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depending on the certificate level of the specialist. The list of the external organisations

can also be extended depending on those with whom the patient wishes to share the

PHR data. An external organisation may have its own hierarchical structure. There-

fore, when a patient shares PHR data with an external organisation, it will be the

external organisation that decides which individual user can access the data. In this

example, we only consider such an organisation as a single category for the sake of

simplicity, and we assume that the patient does not specify the access policies for the

external system, but the patient has the ability to revoke the access from malicious

users.

Figure 7.3 also shows the permission inheritance relationships in the system. In

general, the users who have been granted access to a category should be able to both

read and write the data from or to this category. Consider, for instance, the read

permission inheritance. For example, the receptionist of the cardiologist can only

read the personal details of the patient whereas the cardiologist should be able to

read the medical records written by the GP as well as the basic medical records of the

patient. The write permissions can be assigned independently from the read permission.

For example, the patient may not want the receptionist to write data to any other

categories, and a specialist should have the write access to the appropriate category

such as Pathology.

7.3.2 System Architecture

Next we discuss how our PHR data storage system protects the privacy of stored PHR

data. First, we look at the architecture of our PHR storage system. As mentioned

previously, our system can work as either a standalone PHR storage system or a security

enhancement component that can be integrated with the current PCEHR system.

Our system is implemented using the RBE schemes described in both Chapter 4 and

Chapter 5. The system will use one of these two RBE schemes depending on the

architecture chosen in the particular application scenario. The architecture for these

two cases are shown in Figure 7.4.
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Figure 7.4: PHR Storage System Architecture

Standalone PHR Storage System

The PHR storage system can be deployed in the cloud for providing services to public

users as shown in Figure 7.4(a). In this scenario, we adopt the architecture presented

in Chapter 5 which is a hybrid of a private cloud and a public cloud. The private cloud

is set up and managed by the organisation which provides the PHR storage services,

and the public cloud is a chosen third party cloud provider which can provide reliable

storage services.

In our system, the definitions of the categories in PHR structure are considered to

be important. If a category definition has been tampered with, it may lead to a failure

in the access policy constraint. For example, when a doctor encrypts a PHR record

to a pre-defined category of a patient, and if a malicious user, who does not have the

access to this category, has replaced the definition of the category with the one that she

or he has the access to, then the PHR record will be assigned to the wrong category,

and the user can access the PHR record even if she or he is not allowed to.

In order to ensure that the category definitions are genuine and up-to-date, we

use the hybrid cloud infrastructure in this system. We use a public cloud to store all
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the encrypted PHR data, whereas the definitions of the categories that the PHR data

belongs to and the access policies are stored in a private cloud to which only authorised

registered users can make changes. We assume that the public cloud system is honest-

but-curious. That is, the public cloud will faithfully execute the protocol, but it may

analyse the protocol and try to reveal the data content that it does not have permission

to access. We assume that the private cloud is trusted, and it will verify the identities

of users who want to modify the stored information in the private cloud.

In this scenario, each user sets up the hierarchical PHR structure and uploads the

public parameters to the private cloud. The master secret keys and role secret keys are

kept secret by the user. When a doctor wants to upload a clinical document for a user,

she or he downloads the role hierarchy definitions of the user and encrypts the document

to the appropriate role agreed by the user. When the user or other doctors wish to

view this document, the public cloud will compute and return the auxiliary parameters

along with the encrypted document. Only light-weight computation is performed on the

client side in order to decrypt the document. Standard access controls are implemented

on the cloud side to restrict the access to users’ health information which is stored in

the cloud. Since the data is encrypted before being stored in the cloud, the privacy will

be guaranteed even if unauthorised users have accessed the stored data in the cloud.

PCEHR System’s Security Enhancement Component

Our PHR storage system can also work with the PCEHR system as a security enhance-

ment component used by individual healthcare organisations. Figure 7.4(b) shows the

architecture when a healthcare organisation uses our PHR storage system to access

the PCEHR system. In this scenario, we use the PCEHR system to provide storage

services instead of the previously described hybrid cloud infrastructure, as the PCEHR

system is a trusted system. Our RBE-based PHR storage system will use the RBE

scheme implementation described in Chapter 4 as there is only a single repository to

store all the information, and this RBE scheme only needs a public cloud to work with.

However with this scheme (as mentioned earlier on Chapter 4), when a user is revoked

from the system, all the role parameters need to be updated. This is not a major issue
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in this application, as the number of roles that each user needs to manage is relatively

small. Therefore, using this RBE scheme does not affect the performance of the system

in terms of user management.

Note that the PCEHR system does not provide any computing service, so we need

to have an extra layer between end users and the PCEHR system to provide computing

services. Recall that the PCEHR system allows healthcare organisations to access the

system via their own local clinical systems. Our PHR storage system can therefore

be deployed in local clinical systems of healthcare organisations that want to adopt

this solution. We have developed an application which users can install on their client

device to manage and access their PHR data stored in the system. To use the system,

users can set up their hierarchical PHR structure, upload the public parameters to

the PCEHR system, and keep all the secret keys. When a doctor of a healthcare

organisation wants to upload a clinical document, she or he will use the local clinical

system to encrypt the document, and then upload it to the PCEHR system. When

a doctor wants to view a clinical document in the PCEHR system, she or he can

download and decrypt the document again via the local clinical system.

7.3.3 System Operations

Now we describe the operations in our PHR storage system to show how they can

remedy the weaknesses in the PCEHR system. We assume that each user that uses the

system has a unique identity and a public/private key pair of a public key encryption

and signature scheme, and all the data that has been written to the cloud has the

signature generated by the creator.

Creating User Account: When a patient wants to use the system, she or he

first registers online and runs the Setup algorithm to generate the system parameters

for herself or himself. Then the user can run the ManageRole algorithm using the

generated master secret key to create the PHR data hierarchy and upload the role

public parameters to the system. A separate public/private key pair of the chosen

public key encryption and signature scheme will also be generated for the patient.
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Organising Patient’s Records: After initialising the system parameters, the

patient can start using the hierarchy to store the PHR data. For example, the patient

runs the Encrypt algorithm to encrypt her or his name, address, and contact details

to the Personal Details role, and encrypt the allergies and medications to the Basic

Medical Records role. Later on when the patient wants to see a GP, the GP can access

this information directly after being added to the role General Practitioner, and the

patient does not need to re-encrypt the information to the GP.

Before a Doctor Appointment: When the patient wants to make an appoint-

ment with a doctor, she or he generates the user decryption key for the unique identity

of the doctor by running the Extract algorithm and adds the doctor to the proper

role by running the AddUser algorithm. Then she or he encrypts the generated user

decryption key using the doctor’s public key, and sends the encrypted key to the doc-

tor. If appointments with doctors of this role need to be made through receptionists,

the patient then creates a Reception role, and includes the receptionist who she or he

contacts as a member. The patient also creates the user decryption key for the unique

identity of the receptionist and sends the key to the receptionist. Then the patient

sends the appointment request to the doctor or the receptionist, and the doctor or the

receptionist decrypts the decryption key for her or him, and confirms the appointment

time with the patient by encrypting the appointment information to the role that the

doctor belongs to or the Reception role of the doctor role.

After a Doctor Appointment: When a doctor wants to write some notes after

seeing the patient, the doctor and the patient can decide the role to which the PHR

data will be written. Then the doctor runs the Encrypt algorithm to encrypt the PHR

data, signs the data using her or his own private key, and then uploads the encrypted

data to the cloud along with the signature. When a GP needs to refer the patient to

a specialist, the notes from the GP can be encrypted to the particular specialist role

which the patient will see. A specialist can also write notes to another specialist role.

For example, an endocrinologist can encrypt some notes to the role Physiotherapy if

the patient needs to be sent to a physiotherapist for treatment.
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Sharing PHR Data: An external organisation that wants to access the patient’s

PHR data needs to send a request to the patient first. If the patient agrees to share the

data, she or he runs CreateRole algorithm to create a role for the organisation and sends

the role secret key to the organisation. All the users in an external organisation need to

obtain the decryption keys either from the patient directly or through the organisation.

The organisation can also request a shared decryption key, and give it to all the users

in the organisation. With the decryption keys generated by the patient, users can run

the Decrypt algorithm to reveal the patient’s PHR data if they are allowed by the

administrator of the organisation to access the data.

Emergency Access: In an emergency, most systems are required to provide a

direct access to the patient’s PHR data regardless of the access policies that the patient

has set for the PHR data. To provide such an emergency access, the patient can

create a decryption key for a Trust Authority using a pseudo-identity allocated to the

authority, and include the pseudo-identity to the Patient’s Health Records role2. When

an emergency happens, the emergency department needs to authenticate to a Trust

Authority to request the decryption key. When the emergency department finishes

using the decryption key, the patient runs the RevokeUser algorithm to revoke the

access to the Patient’s Health Records role. Then the patient creates a new key for

the Trust Authority with a new pseudo-identity, and includes the new identity to the

Patient’s Health Records role.

Revoking Access: Patients can add users to any role to access their PHR data,

and they are also able to exclude users from any role. For example, when the patient

changes the GP or the specialist, the previous doctor may not be allowed to access the

future patient’s PHR data any more. The patient then runs the RevokeUser algorithm

to exclude the previous doctors from the roles to which they used to belong. If the

patient does not want to share the PHR data with an external organisation, such as

a hospital, she or he removes the public parameters of any role that is related to the

2Different entities can act as the Trust Authority in different architectures. In the standalone mode,
a private cloud can act as a Trust Authority to store the emergency access key. In the integration
mode with the PCEHR system, the decryption key can be stored in the PCEHR system, and can only
be accessed by the emergency access of the PCEHR system
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hospital, and the users in the hospital will lose the access to the shared PHR data.

Pathology Test: When a specialist needs a patient to do a pathology test, the

particular specialist can search the stored pathology result reports for the specialist

role to which she or he belongs as well as the reports for the patient’s GP. If the same

test has been done recently, the patient may not need to do it again. If the patient does

need to do the test, the specialist encrypts the pathology test request to the Pathology

role for the specialist. Before doing the test, the pathologist can also check if the result

of some test can be found in existing result reports. When the test is done, the result

report will be encrypted to the same Pathology role for the specialist to view.

From the above description, we can see that all the weaknesses discussed previously

have been addressed by our system.

• The sensitive parts of a patient record are stored in encrypted form and not in

plain format.

• Instead of using the limited access, our system allows fine-grained access controls

by using the hierarchical PHR data structure. Patients can set their PHR data

to be accessed only by the intended users.

• To revoke the access from any user, the features of the RBE scheme allow none

of other existing users to be affected by the revocation of one user. Once the

decryption key is generated for a user, it can be used no matter how the access

policy changes.

• When a healthcare organisation is referred by another healthcare organisation,

the referred organisation only needs to obtain the decryption key from the patient

when she or he registers in the organisation for the first time. From then on, the

same decryption key can be used to decrypt any future referrals for the patient

no matter how the patient changes her or his access control settings.

• The external organisations need to request the access to patients’ PHR data in

our system, and the de-identified PHR data will be shared only if the patient
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agrees to share the data. Even the system operator cannot reveal the PHR data

without the permission granted by the patients.

7.3.4 An Example Scenario

In this subsection, we use an example to explain how a patient can use PHR storage

service provided by such a healthcare information storage system.

Assume that Alice is a user who wants to use the PHR storage service. Before she

uses the service, she needs to register herself and get an account created in the system.

Once her account has been created, she will obtain her master secret keys for managing

her PHR data from the system, and the system will generate a default hierarchical PHR

structure as shown in Figure 7.3 for her on the server side. Assume that she leaves

this hierarchical structure unchanged, though she can update the hierarchy using her

master secret keys at any time. To grant users access to her PHR data, she can add the

users to particular roles in the hierarchy. For example, she first generates a decryption

key for her GP’s unique identity, and sends the decryption key to the GP via a secret

channel. Then she can add her GP to her General Practitioner role by updating the

role public parameters in the system.

Now assume that Alice is feeling unwell, and goes to see her GP. Her GP gives her

the diagnosis, and stores the medical report to Alice’s General Practitioner role in the

system. Assume that the GP wishes to send her to a cardiologist for further checking.

Then the GP can write a referral letter to the Cardiology role and upload it to the

system. Alice then adds the appointed cardiologist to her Cardiology role when she

has booked an appointment with the cardiologist. When Alice visits the cardiologist,

the cardiologist can read the GP’s diagnosis from the system. Then the cardiologist

gives Alice another diagnosis and writes a new report.

Now we have two cases. In the first case, the cardiologist’s report needs to be

viewed by Alice’s GP. To achieve this, the cardiologist simply encrypts the report to

Alice’s General Practitioner role, then Alice’s GP can view the report. Note that other

specialists may also be able to see the report, so it is important that the patient agrees

if she or he thinks the report only contains general contents. Another case is that
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the cardiologist report has sensitive information. Alice may allow the cardiologist to

encrypt the report to the Cardiology role only, in which case only the cardiologist can

view the report.

The cardiologist can then issue an invoice to Alice, and write a copy to the Medicare

role for the claim purpose. The Medicare office will assess the claim by viewing the

invoice online directly.

From this example, we can see that Alice does not need to bring any paper form

letter or document with her when visiting a doctor. All her healthcare information can

be accessed by authorised parties from anywhere at any time. Moreover, she does not

need to worry about the leak of her health records, as they are stored in encrypted

form in the PHR storage system.

7.4 Conclusion

In this chapter, we have considered two applications of using our proposed RBE schemes

in cloud storage systems. Firstly, we described a RBAC system for a banking applica-

tion example by considering the structure of an existing European bank and presented

the role hierarchy in a branch of the bank. We analysed several cases of documents

sharing in the branch, and discussed how to use the RBE schemes to protect data

privacy in these cases. Then we have considered a secure cloud healthcare data stor-

age system using our proposed RBE scheme. We first reviewed the existing electronic

health record services, the PCEHR system, provided by the Australian government,

and we discussed a few issues and weaknesses of the PCEHR system. Then we pro-

vided our solution for a secure PHR data storage system. We presented a design of

the PHR structure which allows the patients to have flexible controls over their stored

PHR in the system. We described two different ways in which our proposed system

can be deployed; one as a standalone system, and the other as a security enhancement

component of the existing PCEHR system of the Australian government. We described

the system operations in detail and showed how the weaknesses in the existing PCEHR

system can be addressed by our proposed secure RBE system.



8
Owner’s Trust Model for Role-based

Encryption

Now we consider the design of trust models that can enhance the security of cloud data

storage systems which use RBE schemes. In some RBAC systems, roles and their users

are managed by administrators who have control over all the resources in the systems.

When using our RBE schemes in these systems, all the administration tasks can be

centralised and performed by using the master secret keys of the systems. Therefore, if a

data owner wants to know if a RBAC system is secure, she or he only needs to determine

the trustworthiness of the administrators of the system. However, in large-scale RBAC

systems, users and permissions management may be decentralised to individual roles;

that is, the administrators only manage the roles and the relationships among them

while the individual roles have the flexibility in specifying the user memberships and

189
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associated permissions themselves. Hence considering the trust relationships between

data owners/users and role managers is important in such large-scale systems. Though

a role manager can manage the user memberships and permission assignments for

several different roles, we assume that each role manager manages only one role in our

discussion for the purpose of simplicity. In general, one can identify four types of trust

relationships: data owners’ trust in role managers, role managers’ trust in users, data

users’ trust in role managers and role managers’ trust in data owners.

In this chapter, we describe the first two trust models: owners’ trust in role man-

agers and role managers’ trust in users. These two trust models form a natural pair

as they consider trust from a data owner’s perspective. We refer to these trust models

as Owner-Role RBAC and Role-User RBAC trust models respectively. The remaining

two models will be described in the next chapter.

The Owner-Role RBAC trust model assists the data owners to evaluate the trust

in role managers in a RBAC system and use this trust evaluation to decide whether

to store their encrypted data in the cloud for particular roles. The Role-User RBAC

trust model helps the role managers to evaluate the trust in users in the RBAC system

and use this trust in deciding whether to grant membership to the users. These trust

models can not only prevent the owners from interacting with role managers which have

a poor track record in terms of carrying out their functions properly, but also assist the

role managers to identify the malicious users who caused the negative impacts on the

role managers’ trustworthiness. This can in turn be used to reduce the risks associated

with interacting with the RBAC system for the data owners and help role managers

to keep the RBAC system authentic. The Owner-Role RBAC and Role-User RBAC

trust models are independent of each other and serve different purposes.

An important feature of the proposed trust models is that they take role inheri-

tance into account. Since our trust models are for cloud storage systems dealing with

hierarchical RBAC schemes, the trustworthiness of a role manager is also affected by

the historical behaviour of the role managers of its ancestor roles and/or descendent

roles. Similarly, the trustworthiness of a user is also affected by her or his historical

behaviour in other roles in the RBAC system. Hence in our trust evaluation, we take
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into account the impact of role hierarchy and inheritance on the trustworthiness of the

role managers and users. As far as we are aware, this is the first time such a trust

model for RBAC system taking into account role inheritance has been proposed. We

also present the architecture of a trust-based cloud storage system which integrates

the trust models with a RBE system. Moreover, we describe the relevance of the trust

models by considering practical application scenarios and illustrating how the trust

evaluations can be used to enhance the quality of decision making by data owners and

role managers of cloud storage service.

The chapter is organised as follows. Section 8.1 describes the trust issues in a

system that uses RBE schemes and discusses the trust requirements for data owners

and role managers. The formal Owner-Role and Role-User RBAC trust models are

presented in section 8.2 and section 8.3 respectively. The architecture for our trust

enhanced secure cloud storage system is presented in section 8.4. In section 8.5, we

illustrate how our trust models can be used in a cloud service application to enhance

the quality of security decision making. Section 8.6 concludes the chapter.

8.1 Trust Issues in RBE Systems

By using RBE schemes in cloud storage systems, a data owner can encrypt the data

to a role, and only the users who have been granted the membership to the role or

the ancestor role of that role can decrypt the data. In this chapter, we assume that

the data owners and users reside outside this role system infrastructure (where the

roles are being administered). Hence the issues to consider are how the data owners

can decide whether or not to trust the role managers in the system and how the role

managers can decide whether and how much to trust the users in the system. Owners

consider the trust of role managers in order to ensure that their data is secure after

being assigned to the roles, and role managers consider the trust of users so that users

with negative behaviours are excluded from the roles, which in turn makes owners trust

these roles. In this section, we discuss the trust issues that need to be considered by

the data owners and role managers of a cryptographic RBAC system.
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8.1.1 Data Owners’ Trust in Role Managers

In a cloud storage system, owners are the parties who want to share the data. When

they encrypt their data to the roles (in an RBAC system), they need to determine

the trustworthiness of the role managers to reduce the risks of unauthorised parties

accessing their data. For instance, a data owner may choose not to encrypt the data to

a specific role if the role manager is found to have “bad” behaviour histories. Let us now

consider some of the key requirements that the owner must consider in determining

whether a role manager should be trusted or not. From the owner’s perspective, a

trusted role manager should meet the following requirements.

• Requirement 1: The role manager should grant membership to users who are

qualified for that role.

When a data owner encrypts her or his data to a role, the intention of the owner is

to allow the data to be decrypted by the users who are qualified to be in that role.

Therefore, it is a basic requirement that the qualified users should have the access

to the data. The violation of this requirement is detected by checking whether

or not the qualified users can decrypt the data. Not granting the membership to

a qualified user is therefore considered as a bad behaviour of a role.

• Requirement 2: The role manager should not grant membership to users who are

not qualified to that role.

Another requirement that is expected by a data owner is to prevent users who

are not qualified from accessing the permissions to decrypt the data stored in the

cloud. A trusted role manager should only grant membership to a user when the

qualifications of the user are verified. Granting membership to an unqualified

user is therefore considered as a bad behaviour.

• Requirement 3: The qualified users in a role should not leak the data to unqualified

users.

Even if a role manager grants membership only to the qualified users, it is possible

that a qualified user may leak the data to unqualified users. For example, consider
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the situation whereby a user, who is allowed to access the private information

that an owner has stored in the cloud, leaks it to another user to whom the

owner does not want to reveal the information. The violation of this requirement

is detected if it is found that an unqualified user has knowledge of the data. It

may or may not be possible to discover this situation. In general, we assume that

it is not possible to track down the user who leaks the data; this implies that all

the users in that role will need to be under suspicion when such a data leak is

detected.

In a hierarchical RBAC system, a role can inherit permissions from other roles.

The users of a role have access to the data encrypted to any of its descendant roles.

When a leakage is detected in the data encrypted to one of the descendant roles

of a role, the users of this role are also under suspicion as they have the potential

ability to cause the leakage. Therefore, when an owner wants to determine the

trustworthiness of a role manager, the behaviour histories of role managers of

descendant roles of this role need to be taken into account in the evaluation, as

the users in this role could be the cause of the leakage of its descendant roles’

data which are not reflected in the behaviour history of the role manager of this

role.

• Requirement 4: The role managers of ancestor roles of the role under considera-

tion should be trusted.

Since a role’s permissions are inherited by all its ancestor roles, when an owner

encrypts data to a role, all its ancestor roles also have access to the data. So the

data owners need to consider the trustworthiness of not only the role to which

they want to encrypt the data, but also of all the ancestor roles of this role, as

encrypting data to this role is equivalent to encrypting data to any of the ancestor

roles of this role.
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8.1.2 Role Managers’ Trust in Data Users

Since roles have the role managers to manage their user memberships, it is role man-

agers’ responsibility to build up their own reputation. Therefore it is important for

each role manager to be able to evaluate the trustworthiness of users. Role managers

can exclude malicious users from the roles; so these users would not affect the trust-

worthiness of the roles. The ability to evaluate the trust of users is also useful when a

user wants to join the role. The role manager can determine the trustworthiness of the

new user and decide whether or not to grant the membership to that user. The proper

management of users can result in a good behaviour history for a role manager, which

in turn affects the owners’ decisions on the role manager. From the role managers’

perspective, a trusted user should meet the following requirements.

• Requirement 1: The user should not be involved in the event of leaking resources

of the role.

When a leak of data is detected, we assume that the role manager can track which

users have accessed the data but the role manager does not know who leaked the

data. Here we say that a user is involved in leaking data if the data was found

to be leaked, and this user has accessed the data before the leaking is detected.

A user who has been involved in the leaking event m times will be considered as

less trusted than the user who has been involved in the leaking n times if m > n.

• Requirement 2: The user should not be considered as untrusted by any role man-

ager in the system, if the user has more than one role.

A user may belong to different roles in a RBAC system. Therefore, the role

managers of some other roles to which the user belongs may also hold trust

opinions on the user. A trusted user is supposed to act consistently in different

roles. Though a user may behave well in one role, she or he will still be considered

as untrusted if she or he has bad behaviours in the other roles. The trust opinions

of the role managers of other roles on a user can support the evaluation of the

user’s trustworthiness. A role manager who does not have any trust records in
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regards to a user (e.g. when a new user requests to join the role) will still be able

to determine the trust of the user.

8.2 Owner-Role RBAC Trust Model

In this section, we consider the owner trust models for RBAC systems. We define

three entities in our models, namely Owner, User and Role. Owner is the entity who

owns the data and stores it in an encrypted form in the cloud, and User is the entity

who wishes to access the data from the cloud. Role is the entity that associates users

with the access to owners’ data, and each role manages the user membership of itself.

When we refer to Role in such a context we imply role managers. Hence when we say

that users are managed by a role, we refer to the managers of the role who determine

the user set of the role. Then we present an example to illustrate how the behaviour

histories of roles in the RBAC system affect the trust of a particular role that a user

wants to interact with.

8.2.1 Trust Model

Now we give the formal definition of the Owner-Role RBAC Trust Model.

Definition 8.1 (Interaction) From an owner’s perspective, an interaction is a trans-

action whereby an owner encrypts data to a role, and the role gives the access to the

data to qualified users.

A successful interaction is an interaction where only qualified users in the role to

which the data is encrypted or users in the ancestor roles of the role have accessed

the data. An unsuccessful interaction is an interaction where an unqualified user has

accessed the data. Next we define two types of unsuccessful interactions.

User Management Failure: User management failure is an unsuccessful interaction

caused by a role who did not manage the user membership properly; that is, the

role did not grant the membership to users even when the users have qualified for

the role, or the role manager has granted the membership to unqualified users.
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User Behaviour Failure: User behaviour failure is an unsuccessful interaction where

the data is leaked to unqualified users. When an owner detects that her or his

data has been accessed by unqualified users, she or he may or may not know which

qualified user(s) has leaked the data. Here we define User Behaviour Failure as

such an unsuccessful interaction where the owner does not know which user has

leaked the data. If the owner knows who has leaked the data, we consider this

unsuccessful interaction as User Management Failure.

Definition 8.2 (Trust Vector) We define a trust vector to represent the behaviour

history of a role as

v = (r, sM , sB)

In this trust vector, r is the value related to successful interactions that this role has

been involved with, sM is the value related to the User Management Failure of the

role, and sB is the value related to User Behaviour Failure.

By using the function E in Equation 2.1, we define the trust function T (v) that

represents the trust value derived from the trust vector v as

T (v) = E(r, sM + sB)

In order to assist owners to collect feedbacks from other owners, we assume that

there exists a central repository in the system to collect the ratings on all the inter-

actions between owners and roles. The feedbacks are stored in the central repository

and are available to the owners.

Definition 8.3 (Interaction History) We define the interaction history derived

from these ratings of a role R as

HistO(R) = {HR
1 , H

R
2 , · · · , HR

n }

Each entry HR
i in HistO(R) is defined as a pair of parameters HR

i = 〈IDi,vi,R〉,

where vi,R = (r, sM , sB) is a trust vector that represents the trust record of interactions
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that the owner IDi has had with the role R. r is the number of IDi’s positive feedbacks

on the interactions with R, sM is the number of negative feedbacks on the interactions

withR due to the User Management Failure, and sB is the number of negative feedbacks

on the interactions with R due to the User Behaviour Failure.

Assume that an owner IDi has assigned a resource to the role R. The central

repository will increase r in vi,R = (r, sM , sB) by 1. However, if the owner later reports

a leak of this resource, the central repository will decrease r by 1 first. Then depending

on the failure type, the central repository will increase sM by 1 if the owner knows who

has leaked the resource, or increase sB by 1 if the owner does not know who has leaked

the resource.

In section 8.1.1, we have discussed the trust requirements that an owner should

consider when deciding whether or not to trust a role. From that discussion, we

see that the factors which can affect the owners’ decision come from the interaction

history of the role with whom owners have interacted as well as its ancestor roles and

descendant roles. When an owner evaluates the trust of a role R, the owner needs to

consider the following different trust classes.

Individual Trust: Individual trust is a belief that is derived directly from the

interaction history of the role R.

When computing the trust of the role R, an owner obtains the interaction history

HistO(R) of the role R from the central repository. Assume wo is the weight that the

owner IDk assigns to the feedbacks from other owners. The individual trust value of

the role R is computed as

TO(R)D = T (vDk,R), vDk,R = vk,R + wo

n∑
i=1,i 6=k

vi,R

The trust vector vDk,R in this equation is a combination of all the trust vectors in

HistO(R) with regard to the role R considering the weighting for the ones from other

owners.
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Inheritance Trust: Inheritance trust is a belief that is derived from the interaction

history of other roles that have inheritance relationships with the role.

First we have a look at the inheritance trust where only the interaction history of

the descendant roles is considered. When an owner detects a User Behaviour Failure

with a descendant role Rd of a role R, the feedback that the owner provided should

not only be applied to that descendant role Rd, but should also affect the trust of R

(as users belonging to the role R also have the access to owner’s data assigned to Rd

and hence are under suspicion of causing an unsuccessful interaction). Therefore, while

evaluating the trust of the role R, the interaction history from all its descendant roles

including Rd needs to be considered.

Assume a role R has m immediate descendant roles {R1, · · · , Rm}, and we define

a weight vector wRi
= (wRRi

, 0, wRRi
) where wRRi

∈ [0, 1] is the system specified weight

between R and Ri. We define the second element of wRi
as zero because the User

Management Failure is not considered in inheritance trust. We denote the number of

users that have been included in the role Ri as nRi
, and the total number of users that

have been included in the role Ri and all its ancestor roles as NRi
. Here we assume

that the probability that each user violates the trust requirement is the same. The

inheritance trust value derived from the descendant roles is computed as

TO(R)I = T (vIk,R), vIk,R = nR

m∑
i=1

[(
vDk,Ri

NRi

+
vIk,Ri

nRi

),wRi
]

where [v,w] := vTw is the usual dot product on Z3
q.

Combination Trust: To combine these two types of trusts together, we define a

combination trust function for a role R as TO(R). Assume that w ∈ [0, 1] is the weight

of the inheritance trust. The trust is first computed as follows:

TO(R)C = (1− w) · TO(R)D + w · TO(R)I

Consider the scenario where the combination trust of a role is higher than the trust

value of one of its ancestor roles. Then the owners will trust this role at the same level
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Figure 8.1: Hierarchical RBAC Example IV

as its ancestor role which has a lower trust value, as the users of its ancestor role have

the same level of access as the users in this role. So the combination trust of the role

will be the minimum value of the trust of this role and the trust of all its ancestor

roles. Assume the role R has m immediate ancestor roles {R1, · · · , Rm}. Then the

combination trust is amended to be the following:

TO(R) = min(TO(R)C , TO(R1), · · · , TO(Rm))

8.2.2 Example

Now we use an example to show how the owners’ trust in a role is affected by the

feedbacks for different roles in a RBAC system. In this example, we consider all the

bad feedbacks as User Behaviour Failure, as our intention is to show how the role

hierarchy affects the trust value of roles. Consider the role hierarchy example shown

in Figure 8.1.

In Figure 8.1, the role R1 inherits from role R2 and role R3, and the role R2 inherits

from R4 and R5. For simplicity, let us assume that the number of users in all these

roles are the same. We set the weight between every two roles and the weight of
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other owners’ feedbacks to 1; that is, the weight vector for each role is defined as

wRi
Ri+1

= (1, 0, 1), i ∈ [1, 5), and wo = (1, 1, 1). When an owner wants to encrypt data

to the role R2, she or he will need to evaluate the trust value of R2 to decide whether

it is safe to give access to the data to R2. In Figure 8.2, we show the trust values of R2

when only different individual roles in the RBAC system have feedbacks. For example,

the curve for R1, GFP = 75% shows the trust values of R2 when only R1 in the RBAC

system has feedbacks, and 75% of these feedbacks are positive.

When the good feedbacks percentage is 75%, the trust value for R2 goes up with

increasing number of feedbacks. When the feedbacks are only given for R1, the increase

in the trust value is the fastest. This is because all the feedbacks are used in the

calculation of the individual trust of R1, and the combination trust of R1 is not affected

by other roles as there is no feedback for others. Since R2 has neither individual trust

nor inheritance trust, its combination trust is the minimal value among the set which

contains the trust value of R1 only. Therefore, it has the highest value as it is calculated

based on all the feedbacks in which the positive ones are in the majority. When the

feedbacks are only provided for R4, the increase in the trust value is the slowest. This

is because the feedbacks used in the calculation of the inheritance trust of R2 has been

averaged over three roles, R1, R2, and R4, and only 1/3 of the feedbacks are considered

in calculating the trust value of R2. We see that the trust value of R2 increases slightly

faster when the feedbacks are only provided for R3. This is because the population

in two roles is less than that in three roles, and 1/2 of the feedbacks are considered

in the calculation of R2’s trust value. This is analogous to the case where R2 has

more feedbacks where the positive ones are in the majority. When the feedbacks are

only provided for R2, we see that the curve overlaps with the trust value where the

feedbacks are only for R3. Since R2 and R3 have the same population in this example,

the feedbacks for R2 and those for R3 have the same impact on the trust value of R1.

When not considering R1, R2 has a higher trust value as the value is based on all the

feedbacks. However, taking the lowest trust value among R2 and all its ancestor roles

makes R2’s trust value the same as the one when feedbacks are only for R3.

When the good feedbacks percentage is 25%, the trust value for R2 goes down with
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Figure 8.2: Trust Values for R2 Evaluated by Owners

the increasing number of feedbacks. When the feedbacks were only provided for R1, the

decrease in the trust value is the fastest. Similar to the above, this is because all the

feedbacks have been used in the calculation of R1’s trust value which in turn becomes

the trust value of R2, and the majority of these feedbacks are negative. When the

feedbacks are only provided for R4, the decrease in the trust value is the slowest. This is

because the feedbacks used in the calculation of the inheritance trust has been averaged

by three roles, R1, R2, and R4. We also see that the trust value decreases slightly faster

when the feedbacks are only for R3 because more feedbacks whose majority are negative

are used in calculating R2’s trust value. When the feedbacks are only provided for R2,

we see that the curve overlaps with the trust value when feedbacks are only for R1

instead of R3. Since the feedbacks for R2 and those for R3 have the same impact on

the trust value of R1, the trust value of R1 is the same as when the feedbacks are for

R3. However, the unamended combination value of R2 is the same as R1’s trust value

(the same as the trust value of R2) when the feedbacks are only for R1 as they both
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are calculated based on the same amount of feedbacks. This trust value is lower than

that of the role R1, and is used as the amended trust value of R2.

From Figure 8.2, we see that the feedbacks for different roles in the system have

different impact on the trust value of R2. Firstly, the feedbacks on ancestor roles have

the most significant impacts on the trust of a role. Secondly, the more users have

access to a role’s data, the less impact the feedbacks for the role will have on each role

that the users belong to. These results show that our owners’ trust model is useful in

assisting owners to determine properly the trust of roles in RBAC systems.

8.3 Role-User RBAC Trust Model

Since the trustworthiness of a role is primarily determined by the behaviour of users

of the role, it is important for the role to ensure that only users with good behaviour

are granted the memberships. If roles do not have a way to evaluate the trust of their

users, it would be difficult for them to distinguish the malicious users from those with

good behaviours. In this section, we present a trust model for roles’ trust in users as

an extension of the owners’ trust model on roles. This trust model aims to assist a role

to determine the trust of users who belong to the role or want to join the role.

This trust model can either work independently or work together with the owner’s

trust model. Roles can use this model to periodically check the trust value of the

existing users in the roles, and revoke the memberships from users whose trust values

are below the preset threshold. This trust model can also be used by roles to determine

the trust value of a new user requesting to join; the request from the users whose trust

values are below the threshold will be rejected.

8.3.1 Trust Model

In this subsection, we give the formal definition of the roles’ trust in users.

Definition 8.4 (Trust Vector) Since there is no interaction between the roles and

users, we define a trust vector to represent directly the behaviour history of a user as
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follows:

v = (h, s)

In the trust vector, h is the total number of resources that have been assigned to

the role, and s is the value related to the leaking events that the user was involved in.

Recall that we say that a user is involved in a leaking event of a resource if the resource

has been found to be leaked, and this user has accessed the resource before the leaking

was detected.

Using the function E in Equation 2.1, we define the trust function T (v) that rep-

resents the trust value derived from the trust vector v as

T (v) = E(h− s, s)

Definition 8.5 (Trust Records) We assume that there exists a central repository in

the system that collects and stores the behaviour histories of users provided by roles of

which the user was a member. We define the trust record provided by a set R of n roles

as

HistR(U) = {HU
1 , H

U
2 , · · · , HU

n }

Each entry HU
i in Hist(U) is defined as a pair of parameters, HU

i = 〈Ri, vi,U〉 where

vi,U = (h, s) is a trust vector that represents the trust record of the user U when she or

he is the member of the role Ri. h is the number of resources that have been assigned

to Ri when U is the member of the role Ri, and s is the number of leaks related to Ri

that U was involved in when U is the member of Ri.

We assume that a role Rk currently has a set U of n users. When a new user

joins the role, Rk will create a trust vector for the user in the central repository. The

vector is initialised as (h, 0) where h is the current number of resources that have been

assigned to the role.

When a new resource is assigned to Rk, Rk will update the trust records (HU1
k , HU2

k ,

· · · , HUn
k ) in the central repository by increasing h in each vector by 1. When a leak

is detected by or reported to the role Rk, Rk tracks the set of users who have accessed

the leaked resource, and increases the value s in trust vectors of this set of users by 1.
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Since a role can inherit from another role in RBAC systems, besides updating the

trust records maintained by Rk, Rk will need to notify all its ancestor roles about the

leak, and all the ancestor roles of Rk will update their trust records for their users in

the same way that Rk does.

Next we define the trust function used in the model.

Direct Trust: Direct trust of a role on a user U is the belief that is derived directly

from trust records of the user U from the role itself.

When a role Rk wishes to evaluate the trust value of a user U , the role first obtains

the trust record HistR(U) of the user from the central repository. Taking as input the

trust record HU
k maintained by Rk itself, the direct trust value can be computed as

follows:

TR(U)D = T (vk,U)

Recommended Trust: Recommended trust is the belief that is derived from the

trust records of the user from other roles in the system.

Assume there are n roles {R1, · · · , Rn} who have provided the trust records for the

user. The recommended trust value of the user from the perspective of the role Rk is

computed as

TR(U)R = T (vRk,U), vRk,U =
n∑

i=1,i 6=k

vi,U

Combination Trust: To combine these two types of trust together, we define a

combination trust function for a user U as TR(U). Assume that w ∈ [0, 1] is the weight

of the recommended trust. The trust value is computed as

TR(U) = (1− w) · TR(U)D + w · TR(U)R

This trust value is evaluated based on all the trust records in HistR(U) considering

the weighting for the trust records from other roles.
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Figure 8.3: Hierarchical RBAC Example V

8.3.2 Example

Now let us consider an example to illustrate how a role’s trust in users is related to

role(s) that users belong to in a RBAC system. In this example, we assume that we do

not know whether these users are the causes of the bad feedbacks. Consider the role

hierarchy example shown in Figure 8.3.

In Figure 8.3, the role R1 inherits from role R2 and role R3, the users U1 and U2

are the members of the role R2 and R3 respectively, and the user U3 is the member of

both the role R2 and R3. For simplicity, let us assume that the number of resources

assigned to all the roles are the same, and users’ feedbacks are from the role(s) to which

they belong. For example, U2’s feedback is provided only by R3 while U3 is getting

feedbacks from both R2 and R3. In Figure 8.4, we show the trust values for these users

U1, U2, and U3 evaluated from the role R2’s perspective.

When the users’ good feedbacks percentage is 75%, the trust values for the users

are increasing. The increase in the trust value for U2 is slowest because the weight of

feedbacks from other roles is low where w = 0.25. The trust value for U1 increases faster

as the weight for the direct trust in this example is more than that of the recommended

trust. The trust value for U3 increases the fastest as this user is receiving good feedbacks

from both roles R2 and R3 and the combined value is higher than any one of them.

When the users’ good feedbacks percentage is 25%, the trust values for the users are
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Figure 8.4: Trust Values for Users Evaluated by R2

decreasing. The decrease in the trust value for U2 is slowest because the weight for

feedbacks from other roles is low. The trust value for U1 decreases faster as the weight

for the direct trust in this example is more than that for the recommended trust. The

trust value for U3 decreases the fastest as this user is receiving bad feedbacks from both

roles R2 and R3.

From Figure 8.4, we see that the feedbacks for users in different roles result in a

different trust value when R2 evaluates the trust of these users. When a user has good

trust records in other roles only, the role will trust the user less than another user who

has the same trust record in the role itself. A user who has good trust records in both

this role and other roles will be trusted the most among the three users. These results

show that our roles’ trust model is intuitive. Hence it is useful in assisting roles to

determine properly the trust of users in RBAC systems.
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8.4 Architecture

In this section, we present the design of a secure cloud storage system combining the

trust models for RBAC proposed in section 8.2 and 8.3 with a RBE system. This ar-

chitecture provides a practical solution in building a reliable and trusted RBAC system

while retaining the use of cryptographic techniques. We have developed a prototype

implementation of this architecture and used it in carrying out our experimental anal-

ysis.

8.4.1 System Overview

Consider the system architecture shown in Figure 8.5. Since our trust models are

based on RBE schemes, our system contains all the entities that a RBE scheme has,

which include an administrator, roles, users, and owners. The administrator is the

system administrator of the RBAC system. The administrator generates the system

parameters and issues all the necessary credentials. In addition, the administrator

manages the role hierarchical structure of the system. To put a role into the role

hierarchical structure, the administrator needs to compute the parameters for the role.

These parameters represent the position of the role in the role hierarchy. They are

stored in the cloud, and are available publicly. Roles are the entities that associate

users and owners together. Each role has its own role parameters which defines the

user membership. These role parameters are stored in the cloud, and a role needs to

update them in the cloud when updating the user membership of the role. Owners are

the parties who possess the data and want to store the encrypted data in the cloud

for other users to access. Owners specify who can access the data in terms of role-

based policies. In the RBAC model, they are the parties who manage the relationship

between permissions and roles. An owner can be a user within the organisation or an

external party who wants to send data to users in the organisation. In this architecture,

we consider an owner to be a logically separate component even though a user can be

an owner and vice versa. Users are the parties who wish to acquire certain data from

the cloud. When a user wishes to access stored data in the cloud, she or he first sends
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Figure 8.5: Architecture for Using Owners’ Trust Models in a RBE System

the request to the cloud, and decrypts the data upon receiving the response from the

cloud.

In addition to these four entities in a basic RBE scheme, our trust-enhanced RBE

system integrates an extra trust management system, which consists of five compo-

nents. Next, we describe the details of these components.

Central Repository : In our trust models, all the interaction histories and trust

records related to roles and users are stored in a central repository. The central reposi-

tory is used to keep records of all these interaction histories and trust records which are

used by the Trust Decision Engine (described as below) in evaluating the trust value

of roles and users. Any entity that is residing outside the trust management system is

not able to access the central repository.

Role Behaviour Auditor : In order to protect the integrity of the feedbacks on roles,

a role behaviour auditor collects the feedbacks for roles from owners. The role behaviour

auditor needs to ensure that an owner who uploads feedback is an authorised owner.
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All the valid feedbacks will be forwarded to the central repository, and invalid feedbacks

will be discarded. Besides the feedbacks from owners, the role behaviour auditor also

collects information about data assignment to roles. Owners need to inform the role

behaviour auditor when they encrypt data to roles. Then the auditor will update the

central repository with the number of resources that have been assigned to the roles.

User Behaviour Auditor : A user behaviour auditor is an entity to collect the

feedbacks on users’ behaviour. However, unlike the role behaviour auditor, the user

behaviour auditor listens on two channels for feedbacks. One is from the roles who

may report the leakage of data, and another is from the user behaviour monitor which

reports the access histories of users to the stored data in the cloud. This auditor will

determine whether a user is involved in the leakage of data, and update the user trust

records in the central repository if the user has accessed the leaked data.

User Behaviour Monitor : A user behaviour monitor acts as a proxy server between

users and the cloud. It only monitors and forwards the users’ requests to access stored

data in cloud. When a user wants to access a resource, she or he does not send the

request to the cloud directly. Instead, the request is sent to the user behaviour monitor,

and the user behaviour monitor will forward the request to the cloud. The monitor

will inform the user behaviour auditor the information about which user has accessed

which resources.

Trust Decision Engine : The trust decision engine is the entity which evaluates the

trust of roles for owners and the trust of users for roles. The trust decision engine takes

as input the interaction histories or trust records stored in the central repository, and

outputs the trust value of a particular role or user.

8.4.2 System Workflow

All the entities in the system are connected through different communication channels

which are labelled with numbers in Figure 8.5. We explain how the system works by

describing the information flow through these channels.

First, the administrator initialises the system and specifies the role hierarchy of

the system. The generated system parameters are uploaded to the cloud via channel
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1. Roles grant the membership to users, and upload role parameters to the cloud via

channel 2. Owners encrypt and upload data to the cloud via channel 3. When a user

wants to access a resource stored in the cloud, she or he first sends the access request

to the user behaviour monitor via channel 4, and the user behaviour monitor forwards

the request to the cloud through channel 5. The cloud then communicates with the

user as in a normal RBE scheme. The monitor also sends the user behaviour auditor

the information about the user identity and the resource identity via channel 6.

When an owner wants to encrypt a resource to a role in the RBAC system, she or

he requests for the trust evaluation on the role to the trust management system. Then

the trust value of the role will be returned to the owner through the channel 13. If the

owner believes that the role is trusted, she or he then encrypts and uploads the resource

to the cloud via channel 3. The owner also notifies the role behaviour auditor about

the identity of the resource in the cloud and the role to whom the resource is encrypted.

The auditor then updates the number of the resources that have been assigned to this

role in the central repository via channel 10. When an owner has found a leak in her

or his resource to unauthorised users, she or he then provides feedback on the role to

whom the resource is encrypted to the role behaviour auditor through channel 9. Once

the role behaviour auditor verifies that the feedback is from an authorised owner, it

will forward the feedback to the central repository.

When a negative feedback of a role has been raised by an owner because of the

leak of a resource, the role will send the identity of the resource to the user behaviour

auditor via channel 7. The auditor then updates the trust records of users, who have

accessed this resource, in the central repository via channel 8. The role can ask the

trust management system about the trust evaluation for a user at any time, and the

trust value will be returned by the trust decision engine through channel 12. Upon

receiving the trust values for users from the trust decision engine, a role can update

the role parameters that represent the user membership in the cloud via channel 2 if

there exist malicious users whose role memberships need to be revoked.
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8.5 Application Scenario

Finally, in this section, we consider an application scenario based on a digital library

system to illustrate how our proposed trust models can be deployed to enhance the

quality of decision making. Assume that the digital library system uses an external

cloud storage platform to store all the resources, and publishers are allowed to share

their digital resources such as books, magazines, and other types of publications on

this platform. A party can subscribe to the publisher for particular resources in order

to access the resources stored in the cloud, and the subscription to a publisher needs

to be authorised by the publisher. The publisher may reject the subscription request

for reasons such as the party is not reliable in paying the subscription or the party has

the potential to leak the resources to unauthorised parties.

Now assume that there is an organisation with several branches in different geo-

graphical locations and that each branch consists of several departments. When em-

ployees of the organisation need to access the digital resources stored in the cloud, the

relevant department or the branch (where the employee works) can subscribe to the

publisher. Let us assume that the organisation uses a RBAC system to control the

access to resources, and the role hierarchy is shown in Figure 8.6.

In this example, the organisation consists of two branches B1 and B2, and each

branch has two departments MD1 and PD1, MD2 and PD2 respectively. Assume

that the head office has two head departments MD and PD which manage the relevant

departments in both branches. Recall that a role can inherit from other roles in the

RBAC system. For example, when PD has subscribed to a resource from a publisher,

both PD1 and PD2 will have access to the resource. Similarly, a resource subscribed

by the role ORG can be accessed by all the roles in the system.

By using a RBE scheme in this system, a publisher is able to encrypt the resource

to the branch or department (who subscribes to the resource) and store it in the cloud

so that the employees who work in the branch or department can access it. There is

an assumption that these employees are trusted and will not redistribute resources of

the publisher to employees who are not in that branch or department. However, it
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MD1 PD2 PD1 MD2 

PD MD B2 
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B1 

ORG Organisation 

B1 Branch 1 
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PD Production Department 

MD1 Marketing Department 1 

PD1 Production Department 1 

MD2 Marketing Department 2 

PD2 Production Department 2 

Figure 8.6: Digital Library System Example I

is possible that an employee leaks the content of a resource to others. Therefore, the

publishers will need a trust system to assist them in identifying the roles who have

malicious users, and hence avoid accepting the subscriptions from them.

Let us now consider how our trust model can be used in this system to assist

the publishers (owners). Assume that no publisher has ever interacted with the role

PD1, PD2, and now a publisher wishes to evaluate the trust of these two roles. We

also assume that B1,MD1 and PD1 are the same as B2,MD2 and PD2 in terms of

the number of employees and percentage of good feedbacks for B1 is higher than that

for B2. Since the trust of the role is affected by descendant roles in our model, the

publisher will get the result where the role PD1 is more trusted than PD2. This result

aligns to the fact that if the branch B1 is more trusted than the branch B2, then

the department PD1 of the branch B1 will also be considered more trusted than the

department PD2 of the branch B2.

Now assume that the role ORG only has good feedbacks; that is, the resources

the role ORG has subscribed have never been leaked. Since the trust value of a role

is taken from the minimum value of the trust value for all its ancestor roles, when a

publisher evaluates the trust of the role ORG, its trust value may be low if the good

feedback percentage for B2 is low. This is because employees in the role B2 inherit

permissions from the role ORG, and employees in this branch could potentially leak
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the resources.

When the role B2 realises that its trust value is low, it may decide to warn or

even exclude some potential malicious users. Then our roles’ RBAC trust model can

be useful to assist roles in identifying the potential malicious users. Our trust model

allows the trust for employees in B2 to be evaluated based on the feedbacks from all

the roles in the organisation. That is, if an employee was working in the branch B1 and

relocated to B2 recently, the feedbacks on the user from B1 when the user was working

in B1 is also taken into account when B2 determines the trustworthiness of the user.

From this digital library system example, we see that our trust model can be used

in the cloud storage system using RBE schemes where role managers themselves have

the flexibility in managing the user membership.

8.6 Conclusion

In this chapter, we have addressed trust issues in RBE systems for securing data storage

in a cloud environment. The chapter has proposed trust models for data owners and role

managers in RBAC systems which are using RBE schemes to secure stored data. These

trust models assist owners and role managers to create flexible access control policies,

and RBE schemes ensure that these policies are enforced in a cloud environment. The

trust models enable the owners and role managers to determine the trustworthiness

of individual role managers and users in the RBAC system respectively. They allow

the data owners to use the trust evaluation to decide whether or not to store their

encrypted data in the cloud for a particular role. The models also enable the role

managers to use the trust evaluation in their decision to grant the membership to a

particular user. Also, the proposed trust models take into account role inheritance

and hierarchy in the evaluation of trustworthiness of roles. As far as we are aware,

this is the first time such trust models for a RBAC system, taking into account role

inheritance, has been proposed. Then we designed the architecture of a trust-based

cloud storage system which has shown how the trust models can be integrated into a

system that uses RBE schemes. We have also described the application of the trust
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models by considering a practical scenario and illustrating how the trust evaluations

can be used to reduce the risks and enhance the quality of decision making by data

owners and role managers of the cloud storage service.



9
User’s Trust Model for Role-based

Encryption

In this chapter, we consider the remaining two trust relationships in RBE systems,

users’ trust in role managers and role managers’ trust in data owners. The two trust

models proposed in this chapter help to improve the decision making for users and

role managers in RBE systems. In a cloud storage system using RBE schemes, it is

important for a user to determine whether or not a role manager in the system is

trusted before joining that particular role. This would be useful especially in systems

where there is a cost associated with users joining a role, for example, users need to

pay a subscription fee for joining roles. When a user evaluates the trust value of a role

manager, she or he may decide to proceed with joining the role only if the trust value

of the role manager is above a certain trust threshold (this threshold being set by the

215
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users, and being different for different applications and context). This is achieved by

our trust model for users’ trust in role managers which we refer to as the User-Role

RBAC trust model. Then there is the role managers’ trust in data owners. In a system

where data owners are allowed to choose the roles to which they can assign their data,

malicious owners can cause negative behaviours of roles by deliberately assigning bad

resources (e.g. virus, malware) to roles. Therefore, role managers will also need to

consider the trust of the data owners to decide whether to accept data from an owner.

This is achieved by our trust model for role managers’ trust in owners which we refer

to as the Role-Owner RBAC trust model.

These two trust models can not only prevent users from joining roles which have

bad historical behaviour in terms of sharing poor quality resources or misleading users

on the content of resources, but also assist the role managers to identify the malicious

owners who have caused a negative impact on the roles’ trustworthiness. Our users’

trust model takes into account the effect of role inheritance in RBAC systems on the

trust evaluation. We also present the architecture of a trust-based cloud storage system

which integrates the trust models with other RBE system. Furthermore, we describe

the relevance of the trust models by considering practical application scenarios and

then illustrate how the trust evaluations can be used to enhance the quality of secure

decision making by users and role managers of cloud storage service.

The chapter is organised as follows. Section 9.1 describes the trust issues in a

cryptographic RBAC system and discusses the trust requirements for users and roles.

We define the formal User-Role RBAC and Role-Owner RBAC trust models in section

9.2. The architecture of our secure cloud storage system is presented in section 9.3. In

section 9.4, we illustrate how our trust models can be used in a cloud service application

to enhance the quality of security decision making. Section 9.5 concludes the chapter.

9.1 Trust Issues in RBE Systems

Our proposed RBE schemes integrate cryptographic techniques with RBAC models to

secure the data storage. They inherit the features and concepts from RBAC models,
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and also have additional components that are specific to data storage systems. In

the standard RBAC model, permissions are assigned to roles by the administrator of

the system. However, in a system using RBE schemes, “permissions” are the data

encrypted to roles, and the security policies are specified to control the users’ access

to data. Because data is usually not owned by a single party, RBE systems assume

that data can be encrypted to a role by whoever owns the data as opposed to the

administrator in the standard RBAC system. We adopt the above described concepts

for RBE systems in our trust models.

In this chapter, we assume that the data owners and users reside outside this role

system infrastructure (where the roles are being administered). The issues to consider

are how the users can decide whether or not to trust the role (role manager)1 in the

system and how the role managers can decide whether to trust the data owners in

the system and how much to trust them. Users consider their trust in roles in order

to ensure that joining roles guarantees access to data assigned to these roles. Role

managers consider their trust in data owners to ensure that data owners who have

assigned malicious data to the roles will not be allowed to assign data to the roles any

more. In this section, we discuss the trust issues that need to be considered by the

users and role managers of a RBE system.

9.1.1 Data Users’ Trust in Role Managers

In some RBAC systems, user-role assignment is managed by administrators of the

systems where the administrators check the qualification of users and grants role mem-

bership to them. In these systems, users trust all the roles at the same level as they

are all managed by the same administrators. The roles are trusted as long as the

administrators are trusted.

In RBAC systems that use the RBE schemes, users-role assignment can be de-

centralised to individual role managers to allow more flexibility in user management,

especially in large-scale systems. Assume that in these systems users join a role based

on subscription for accessing the data assigned to that role. It is clear that users need

1Note when we refer to role in such context we imply role managers.
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to choose a trusted role when subscribing.

If the data that a user wants to access is encrypted to one role only, the user

considers the trustworthiness of that role in deciding whether or not to join that role.

When the same data is encrypted to multiple roles, users will need to evaluate the

trustworthiness of these roles to choose the most reliable role to join. From the user’s

perspective, a trusted role should meet the following requirements:

• Requirement 1: The role manager should grant membership to the users who are

qualified for that role.

In order to access data, a user needs to join a role to which the data is encrypted.

When the user requests to join the role, the role manager should give access

(grant the membership) to the user if the user qualifies for that role, e.g. the

user has paid the subscription fee. Refusing to give access will be considered as

bad behaviour of the role manager.

• Requirement 2: The data that a role claims to have should have been encrypted

properly to that role.

When users want to access data, they need to know what data has been encrypted

to which role so that they can choose a particular role to join. The list of the

data is provided by roles. However, a user may find that she or he cannot locate

or decrypt the data even after she or he has joined that specific role. This may

happen if the data was not encrypted properly to that role by the owner, or the

role claims to possess data that has not been encrypted to the role. Each role

should take the responsibility of providing a valid and up-to-date list of the data

that is in its possession.

• Requirement 3: The data that the descendant roles of the role claim to have should

have been encrypted properly to the descendant roles.

Since a role can inherit permissions from its descendant roles, a user who has

joined a role should be able to access the data that is encrypted to any of its

descendant roles. Each role is liable for the validity of the data that its descendant
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roles claim to have, as it is considered to be part of the data that this role has.

9.1.2 Role Managers’ Trust in Data Owners

In the RBE schemes, owners can encrypt their data to any role. Obviously, role man-

agers do not want owners to encrypt malicious data (e.g. virus, malware) to their

roles. Therefore, role managers need to decide whether or not to accept data that

owners want to assign to them. Having malicious data assigned to a role may result in

a low trust value of the role because users who have joined the role will place negative

trust records against the role if they detect that the data they get from the role is

malicious. In the case where roles are profiting from users’ subscriptions, low trust

values in roles imply the risk of losing business.

To help role managers detect malicious owners, and hence avoid accepting data

from them, another trust model is required to assist role managers in evaluating the

trustworthiness of owners. Each time an owner wants to assign data to a role, the

role manager will use the trust model to determine whether the data is coming from a

trusted owner or not. From a role manager’s perspective, a trusted owner should meet

the following requirements:

• Requirement 1: The data from the owner should be the same as its description.

When owners encrypt and assign data to a role, the role manager may not be

able to verify each individual record from the owners. When a user who has

joined a role finds that the data she or he has accessed is not the data it claims

to be or contains malicious records, the user will inform the role manager about

the malicious data, and the role manager should place a negative trust record

against the owner who owns that data. Then next time this owner wishes to

assign another data to the role, this trust record will be used by the role manager

in making the decision whether or not to accept the data.

• Requirement 2: The owner should not be considered as untrusted by any role

manager in the system, if the owner has assigned data to more than one role

before.
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An owner may have had interactions with more than one role in the system. A

trusted owner is supposed to act consistently in the interaction with different

roles. An owner may still be considered as untrusted even though she or he has

good interaction histories with a small portion of roles in the system. Therefore a

trusted owner should try to maintain good interaction histories with all the roles

in the system. When a role manager is interacting with an owner with which

it has not interacted before, the trust opinions from the role managers of other

roles can assist this role manager to determine the trustworthiness of the owner.

9.2 Trust Models for RBE systems

In this section, we consider the trust models for a RBE system. There are three types of

entities in our trust models, Owner, User and Role. Our trust models can assist a User

to decide whether a Role to interact with is trusted, and assist a Role in determining

the trustworthiness of an Owner. We first review these three entities. Owner is the

entity who owns the data and stores it in an encrypted form for particular roles in the

cloud. User is the entity who wishes to access the data stored in the cloud. Role is

the entity that associates users with the access to owners’ data, and each role manages

the user membership of itself. Here when we say that users are managed by a role, we

refer to the managers of the role who determine the user set of that role.

In our trust models, we assume that all the feedback and recommendations provided

are honest. In other words, we assume that the trust system has the ability to verify the

submitted feedback and recommendations, and only the valid ones will be considered

in the trust evaluations.

9.2.1 User-Role RBAC Trust Model

In this subsection, we consider the trust model for user’s trust in roles in a RBAC

system.
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Definition 9.1 (Interaction) From a user’s perspective, an interaction is a transac-

tion in which a user accesses data that is encrypted to a role to which the user belongs.

A successful interaction is an interaction where a user has successfully accessed the

data. An unsuccessful interaction is an interaction where a user failed in accessing the

data to which she or he should have legitimate access. Next we define two types of

unsuccessful interactions.

User Management Failure: User management failure is an unsuccessful interaction

caused by incorrect user membership management of a role; that is, the role did

not grant the membership to the user even when the user qualifies for the role.

Permission Management Failure: Permission management failure is an unsuccessful

interaction where the data encrypted to a role is invalid, or the data is not

encrypted to the role. In other words, the owner of the data did not encrypt the

data to the role in question or encrypted an invalid data to the role.

Definition 9.2 (Trust Vector) We define a trust vector to represent the behaviour

history of a role as follows:

v = (r, sU , sP )

In the trust vector, r is the value related to successful interactions that users have had

with a given role, sU is the value related to User Management Failure of the role, and

sP is the value related to the Permission Management Failure.

Using the function E in Equation 2.1, we define the trust function T (v) that repre-

sents the trust value derived from the trust vector v as

T (v) = E(r, sU + sP )

Definition 9.3 (Interaction History) We assume that there exists a central repos-

itory in the system that collects and stores the ratings from users on the interactions

between users and roles. We define the trust record history derived from the ratings of
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the role R from n users as

HistU(R) = {HR
1 , H

R
2 , · · · , HR

n }

Each entry HR
i in Hist(R) is defined as a pair of parameters, HR

i = 〈Ui,vi,R〉,

where vi,R = (r, sU , sP ) is a trust vector that represents the trust record of interactions

that the user Ui has had with the role R. r is the number of Ui’s positive feedbacks

on the interactions with R, sU is the number of negative feedbacks on the interactions

with R due to User Management Failure, and sP is the number of negative feedbacks

on the interactions with R due to Permission Management Failure.

In a RBE system, a user who belongs to a role not only has access to the data

of the role, but also has access to the data of descendent roles. Therefore, an invalid

resource from a descendent role may also cause an unsuccessful interaction. Since a

role knows whether a resource comes from its descendent roles, we assume that users

give feedback to the roles to whom the resources are directly assigned; that is, if a user

detects an invalid resource from a descendent role, she or he will update the feedback

for the descendent role directly instead of the role she or he belongs to.

As discussed in section 9.1.1, from the users’ perspective, the trustworthiness of a

role is affected by the interaction history of the role and its descendant roles. There-

fore users need to consider the following types of trust classes when evaluating the

trustworthiness of roles.

Individual Trust: Individual trust is a belief that is derived directly from the

interaction history of the role R.

When a user Uk wishes to evaluate the trust value of a role R, the user first obtains

the interaction history HistU(R) of the role from the central repository. Assume that

wu is the weight that the user Uk assigns to the feedbacks from other users. Then the

individual trust value of the role R can be computed as follows,

TU(R)D = T (vDk,R),
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where vDk,R = vk,R + wu ·
n∑

i=1,i 6=k

vi,R

where the trust vector vDk,R is a combination of all trust vectors in HistU(R) considering

the weighting for the trust vectors from other users.

Inheritance Trust: Inheritance trust is a belief that is derived from the interaction

history of the descendant roles of a given role.

Assume a role R has m immediate descendant roles {R1, · · · , Rm}, and a weight

vector wRi
is defined as (wRRi

, 0, wRRi
) where wRRi

∈ [0, 1] is the weight assigned to the

inheritance relationship between R and Ri. The second element is set to zero because

User Management Failure is not considered in inheritance trust as user management

of descendant roles will not cause any unsuccessful interaction for this role. The inher-

itance trust of roles in a hierarchy is computed as follows:

TU(R)I = T (vIk,R),

where vIk,R =
m∑
i=1

[(vDk,Ri
+ vIk,Ri

),wRi
]

In the above equation, [v,w] := vTw is the usual dot product on Z3
q.

Combination Trust: To compute the trust value of a role, we define a combination

trust function for a role R as TU(R) to combine the above described two types of trust

together. Assume that w ∈ [0, 1] is the weight of the inheritance trust. The trust value

is computed as

TU(R) = (1− w) · TU(R)D + w · TU(R)I

9.2.2 Example of User-Role RBAC Trust Model

Now we use an example to show how the users’ trust in a role is affected by feedback

for different roles in a RBAC system. In this example, we consider all the bad feedback

as Permission Management Failure, as our intention is to show how the role hierarchy

affects the trust value of roles. Consider the role hierarchy example shown in Figure
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R1 

R2 R5 

R3 R4 

Figure 9.1: Hierarchical RBAC Example VI

9.1.

In Figure 9.1, the role R1 inherits from role R2 and role R5, and the role R2 inherits

from R3 and R4. We set the weight between every two roles and the weight of other

owners’ feedback to 1; that is, the weight vector for each role Rk where k ∈ [1, 5] is

defined as wRi
= (1, 0, 1),∀ i ∈ [1, 5], i 6= k, and wu = (1, 1, 1). When a user wants to

access a resource that has been assigned to the role R2, she or he will need to evaluate

the trust value of R2 to decide whether R2 is reliable to join. In Figure 9.2, we show

the trust values of R2 when only different individual roles in the RBAC system have

feedback. For example, the curve for R1, GFP = 75% shows the trust values of R2

when only R1 in the RBAC system has feedback, and 75% of the feedback is positive.

When the good feedback percentage is 75%, the trust value for R2 goes up with the

increasing number of feedbacks that R2 and R3 have. This trend implies that the more

resources a role has, the more impact the good feedback percentage has on the trust

value of the role. Note that the feedback for R1 does not affect the trust value of R2.

This is because an untrusted R1 will not cause an unsuccessful interaction of R2. When

the feedback is only given for R2, the increase in the trust value is the fastest. This

is because the individual trust of the role has more weight than the inheritance trust
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Figure 9.2: Trust Values for R2 Evaluated by Users

by our assumption. It is clear that the increase in the trust value of R2 is slower when

the feedback is for R3 only, because inheritance trust has less weight in this example.

When the good feedback percentage is 25%, the trust value for R2 goes down with

the increasing number of feedbacks that R2 and R3 have. Similarly, this trend implies
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that the more resources a role has, the more impact the good feedback percentage has

on the trust value of the role. The feedback for R1 does not affect the trust value

of R2 either. When feedback is only given for R2, the decrease in the trust value is

the fastest. This is because the individual trust of the role has more weight than the

inheritance trust by our assumption. Therefore the decrease in the trust value of R2 is

slower when the feedback is for R3 only.

From Figure 9.2, we see that the feedbacks for different roles in the system have

different impacts on the trust value of R2. Firstly, the feedback for ancestor roles does

not affect the trust of the role. Secondly, the more resources that have been assigned

to a role, the more impact the feedback for the role will have on its ancestor roles as

well as itself. These results show that our users’ trust model is useful in assisting users

to determine properly the trust of roles in RBAC systems.

9.2.3 Role-Owner RBAC Trust Model

In the case when any owner can choose roles to encrypt their resources to, assigning

malicious resources or invalid resources to a role may cause the Permission Management

Failure of the role. Therefore, it would be useful to have a trust model to assist role

managers in determining the trustworthiness of an owner, and hence decide whether

or not to accept the resources from the owner.

As discussed in section 9.1.2, the trust requirement on owners is simpler comparing

to the users’ trust in roles, and we see some important differences. The trust in owners

is independent from the role hierarchy; that is, the role hierarchy does not affect the

trustworthiness of owners. We note that a general trust model can be used in this

scenario. For completeness purposes, we also give the definition of the trust model for

the role managers’ trust in data owners in this subsection.

Definition 9.4 (Interaction) From a role manager’s perspective, an interaction with

an owner is a transaction in which an owner assigned a resource to that role, and that

the role manager has accepted the resource.

Definition 9.5 (Trust Vector) We define a trust vector to represent the behaviour
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history of an owner as follows:

v = (h, s)

where h is the value related to resources owned by the owner, and s is the value related

to malicious or invalid resources owned by the owner.

Using the function E in Equation 2.1, we define the trust function T (v) that repre-

sents the trust value derived from the trust vector v as

T (v) = E(h− s, s)

Definition 9.6 (Interaction History) We assume that there exists a central repos-

itory in the system that collects and stores the behaviour histories provided by role

managers to which the owner has assigned the resources. We define the trust record

history provided by a set R of n roles as

HistR(O) = {HO
1 , H

O
2 , · · · , HO

n }

Each entry HO
i in Hist(O) is defined as a pair of parameters, HO

i = 〈Ri, vi,O〉 where

vi,O = (h, s) is a trust vector that represents the trust record of the owner O on the

resources that she or he has assigned to the role Ri. h is the total number of O’s

resources that has been assigned to Ri, and s is the number of bad resources assigned

by O.

We assume that an owner O has a resource and wants to assign it to a role Rk.

When this resource is assigned to the role Rk, Rk updates the trust record of the owner

by increasing the value h in the trust vector HO
k of O by 1. Now assume that a user has

found the resource to be invalid, and then she or he reports to the role of this resource.

If the role has confirmed that the user’s complaint is true after verifying the resource,

Rk will find out that it is O who uploaded this resource, and Rk will increase the value

s in trust vectors HO
k for this owner by 1.

A user that belongs to a role has the permission to access resources of the descendant

roles of the role. When the user reports a bad resource from its descendant role, this
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role may not be able to identify the owner of the resource as the resource is not assigned

to this role directly. Hence the role cannot update the trust records of the owner. In

this case, the role can notify all its descendant roles about this bad resource, and the

role to which the resource is assigned to will update the trust record of the owner who

owns the resource.

Assume that w is the weight that the role Rk assigns to the feedback from other

roles. Taking as input the interaction history of an owner, the trust value of the owner

can be computed as follows:

TR(O) = T (vTk,O), vTk,O = vk,O + w ·
n∑

i=1,i 6=k

vi,O

This trust value is evaluated based on a combination of all trust records in HistR(O)

considering the weighting for the trust records from other roles.

9.3 Architecture

In this section, we present the design of a secure cloud storage system by combining the

trust models for RBAC proposed in section 9.2 with a RBE system. This architecture

provides a practical solution for building a reliable and trusted RBAC system while

retaining the use of cryptographic techniques.

9.3.1 System Overview

Consider the system architecture shown in Figure 9.3. Each solid line in the figure

shows the communication channel set by the system between two components joined

together by the line, and the arrows indicate the direction in which the information

flows. Since our trust models are based on RBE schemes, our system contains all

the entities that a RBE scheme has, including an administrator, roles, users, and

owners. The administrator is the system administrator of the RBAC system, and it

generates the system parameters and issues all the necessary credentials. In addition,

the administrator manages the role hierarchy of the system. To put a role into the
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role hierarchy, the administrator needs to compute the parameters for that role. These

parameters represent the position of the role in the role hierarchy. They are stored

in the cloud, and are available publicly. Roles are the entities that associate users

and owners together. Each role has its own role parameters which define the user

membership. These role parameters are stored in the cloud, and a role needs to update

them in the cloud when updating the user membership of the role. Owners are the

parties who possess the data and want to store the encrypted data in the cloud for

other users to access, and they specify the roles who can access the data. In the RBAC

model, they are the parties who manage the relationship between permissions and roles.

Users are the parties who wish to acquire certain data from the cloud. When a user

wishes to access stored data in the cloud, she or he first sends the request to the cloud,

and decrypts the data upon receiving the response from the cloud.

In addition to these four entities in a basic RBE scheme, our trust models enhanced

RBE system by integrating an extra trust management system, which consists of five

components. Next, we describe the details of these components.

Central Repository : In our trust models, all the interaction histories and trust

records related to roles and users are stored in a central repository. The central reposi-

tory is used to keep the records of all these interaction histories and trust records which

are used by the Trust Decision Engine (described below) in evaluating the trust value

of roles and owners. Any entity that is residing outside the trust management system

is not able to access the central repository.

Role Behaviour Auditor : In order to protect the integrity of the feedback on

roles, a role behaviour auditor collects the feedback for roles from users. The role

behaviour auditor needs to ensure that a user who uploads feedback against a role

has been granted the membership of the role or an ancestor role of that role. All the

valid feedback will be forwarded to the central repository, and invalid feedback will be

discarded.

Owner Behaviour Auditor : An owner behaviour auditor is an entity to collect the

feedback on owners’ behaviour. However, unlike the role behaviour auditor, the owner

behaviour auditor listens for feedback on two channels. One is from the roles who
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Figure 9.3: Architecture for Using Users’ Trust Models in a RBE System

may report the invalid data, and another is from the owner behaviour controller which

reports the ownership of the stored data in the cloud. This auditor will determine

whether an owner has uploaded any malicious or invalid data to the cloud, and can

update the central repository.

Owner Behaviour Controller : Owner behaviour controller acts as a proxy server

between owners and the cloud. It controls and forwards the owners’ encrypted data

to the cloud. The controller can decide whether to store data in the cloud based on

the decision from the role to which the data is assigned. The controller will inform the

owner behaviour auditor about which owner the uploaded data belongs to.

Trust Decision Engine : The trust decision engine is the entity which evaluates the

trust of the roles for users and the trust of the owners for roles. The trust decision

engine takes as input the interaction histories or trust records stored in the central

repository, and outputs the trust value of a particular role or owner.
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9.3.2 System Workflow

All the entities in the system are connected through different communication channels

which are labelled with numbers in Figure 9.3. We explain how the system works by

describing the information flow through these channels.

First, the administrator initialises the system and specifies the role hierarchy of

the system. The generated system parameters are uploaded to the cloud via channel

1. Roles grant the membership to users, and upload role parameters to the cloud via

channel 2. Users download and decrypt data from the cloud via channel 3. When an

owner wants to encrypt and store data in the cloud to a particular role, she or he first

encrypts the data and sends a request to the owner behaviour controller via channel 6.

Then the owner behaviour controller notifies the role via channel 11 and forwards the

request to the cloud through channel 7 if the role agrees to accept the data from this

owner. The cloud then communicates with the owner as in a normal RBE scheme. The

controller also sends the owner behaviour auditor the information about the owner’s

identity and the resource’s identity via channel 8.

When a user wants to access a resource in the RBAC system, the system first

returns a list of roles who claim to have this resource. Then the user requests the trust

evaluation on these roles from the trust management system. The trust value of the

roles will be returned to the user through the channel 13. The user may choose a role

who has the highest trust value to send the join request. When a user has found that

the data she or he has accessed from the role is malicious or invalid, she or he then

provides feedback on the role to whom the resource is encrypted to the role behaviour

auditor through channel 4. Once the role behaviour auditor verifies that the feedback

is from an authorised user, it will forward the feedback to the central repository.

When a negative feedback of a role has been raised by a user because of an invalid

resource, the role will send the identity of the resource to the owner behaviour auditor

via channel 10 if it believes that the resource was invalid when the owner uploaded

the resource. The auditor then updates the trust records of the owner of this resource

to the central repository via channel 9. When an owner wants to assign a resource to

a role, the role can ask the trust management system about the trust evaluation for
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an owner, and the trust value will be returned by the trust decision engine through

channel 14. Upon receiving the trust values for the owner from the trust decision

engine, the role can inform the owner behaviour controller via channel 11 whether to

accept the data. Moreover, this trust evaluation process can be made automatically by

connecting the owner behaviour controller to the trust decision engine directly. Roles

can pre-determine a trust threshold for accepting data from owners. Every time an

owner wants to upload a resource, the owner behaviour controller can check the trust

value of the owner from the trust decision engine directly, and decide whether to accept

the resource by comparing the trust value with the role’s threshold.

9.4 Application Scenario

In this section, we describe a digital library system which uses our proposed trust

models to illustrate how the trust models can assist the security decision making in

this system. The digital library system uses an external public cloud to store all the

digital format resources such as books, papers, theses, and other types of publications.

There are many distributors who use the platform provided by the digital library system

to share digital resources. Each distributor can get the authorisations for sharing the

digital resources from the publishers directly. A party who subscribes to a distributor

can access all the resources of the distributor. Assume that the distributors have two

types of subscription licenses; personal licenses that allow only the subscribed user to

access the resources, and business licenses that allow another distributor to resell the

resources to other users or distributors.

Now let us consider the example of a distributors’ network for this digital library

system. The hierarchical relationship of the distributors is shown in Figure 9.4. In

this system, distributors choose the resources to share by their categories. The distrib-

utors AD, CS, PR, C, and M1 get the authorisations for selling digital resources in

the categories Advertising, Customer Service, Public Relations, Commerce and Mar-

keting respectively from the publishers. Distributors M2 and E sell a wider ranger

of resources which cover all the categories in Marketing and Economics respectively,
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Figure 9.4: Digital Library System Example II

and these two distributors get authorisations from the distributors of sub-categories

instead of the publishers directly. Note that the categories of resources sold by M1 and

M2 are overlapped. The difference is the channels they get the resources from: M1

from publishers, and M2 from sub-distributors. Similarly, distributors B1 and B2 get

authorisations from M1, E, and M2, E respectively, and their resources both cover the

categories Business.

To use RBE schemes to protect the resources so that only the authorised users can

access them, the administrator of the digital library system first sets up the system

parameters based on the relationships of the distributors. Then the publishers can

encrypt their resources to the distributors whom they authorised to sell the resources.

Here we consider the distributors as roles in the RBAC, and publishers as owners of

the resources. When a user subscribes to a distributor, the distributor simply adds the

user to the role. Then the user can use the key given by the system administrator to

decrypt the resources of the role. Because the RBE schemes support role hierarchy, in

this example, users who subscribed to the role M2 can also access the resources of the

role AD, CS and PR, and users subscribed to B1 can access the resources of all the

roles M1, E, and C.

First let us consider how the trust model can assist the users. Assume that the

distributor M2 also gets some resources, which the distributors AD, CS, and PR do
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not have directly from the publishers. To save the cost of storing resources in the cloud,

M2 chooses to reprint some resources in a lower quality to reduce the file size. Users

subscribed to M2 may give negative feedbacks on M2 because they have difficulties

in reading some of the resources. Later on, when a user want to access marketing

resources, she or he evaluates the trust of M1 and M2, and the trust model will output

a higher trust value for M1 than for M2 because of the negative feedbacks of M2.

Then the user will know the quality of resources from M1 is better than those from

M2. However, the distributors AD, CS, and PR will not be affected because the poor

quality resources are not coming from them. When a user wants to subscribe to a

distributor for Business, B2 will have lower trust value than B1 as resource the user

would get from B1 may come from M2.

Now let us look at the trust model for roles’ trust in owners. Assume that publishers

want to promote their digital resources, and they actively assign their resources to

distributors. The resources that have come from some publishers may be of poor

quality or alternatively some resources are not what the publishers claim them to be.

The distributors may not be able to verify each individual resource due to the lack of

expertise in certain areas. When users complain about a bad resource, the role can

give a negative feedback on the publisher who owns the resource, after confirming that

the users’ complaints is valid. The feedback of the publisher can be accessed by all the

distributors so they can avoid using this publisher in the future.

9.5 Conclusion

In this chapter, we have addressed trust issues in RBE systems for securing data

storage in a cloud environment. We have proposed trust models for users and role

managers in RBAC systems which are using RBE schemes to secure stored data. These

trust models assist the users and role managers to determine the trustworthiness of

individual roles and owners in the RBAC system respectively. They allow the users

to perform the trust evaluation to decide whether or not to access a resource from a

particular role. Our trust model takes into account role inheritance and hierarchy in
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the evaluation of trustworthiness of roles. The models also enable the role managers

to use the trust evaluation in their decision to accept the resources from a particular

owner. We have given the design of an architecture of a trust-based cloud storage

system which has integrated these trust models with the RBE schemes. We have

also described the application of the proposed trust models by considering a practical

scenario and illustrating how the trust evaluations can be used to reduce the risks and

enhance the quality of security decision-making by users and role managers of the cloud

storage service.

The proposed trust models use a centralised trust management system to assist

users and role managers with their trust evaluations. Though the users and role man-

agers in the system still need to trust the centralised trust management components,

we believe that this approach has improved the cases where users and role managers

need to trust each individual roles and data owners in the system. We note that the

auditing components in our designed architecture need to collect all the provided feed-

back. In large-scale systems, the load of these auditing components could be high.

One solution to this issue involves the use of decentralised auditing components which

will be considered in our future work. In addition, we only considered two types of

feedbacks in our trust models, positive and negative. However, a user who has unsatis-

factory experiences with roles may want to provide varying levels of negative feedback.

For example, one user may have retrieved a malware instead of valid data from a role,

where as another one might have obtained poor quality data instead of good quality

data from the same role. It is clear that the latter case is less harmful than the former

one, and the user may give a lower degree of negative feedback in the former case.



236 User’s Trust Model for Role-based Encryption



10
Conclusions and Future Work

In this chapter, we summarise the main contributions of this thesis, and discuss some

issues that may be addressed in future work.

10.1 Contributions

In this thesis, we have proposed a novel approach to secure the data stored in a cloud

system using a combination of cryptographic techniques and RBAC models to manage

the policies that control access to the stored data. First we proposed new role-based

encryption (RBE) schemes which ensure that the stored data in the cloud is only acces-

sible to those users who satisfy the role-based access policies. The role-based policies

are specified by the data owners, which can be individuals or enterprises. Then we

237
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developed the system architecture of the proposed secure RBE-based data storage sys-

tem using a hybrid cloud infrastructure. The data is stored in an encrypted form

in the public cloud whereas the role-based policies and hierarchy reside in a private

cloud. Such hybrid architecture reflects the practical environment. Then we described

a cryptographic administrative RBAC model to integrate our proposed RBE schemes

with administrative RBAC models to achieve flexible and efficient administration in

large-scale systems using the proposed RBE schemes. We demonstrated the applicabil-

ity of the proposed architecture and the RBE secure system in two realistic scenarios,

namely a banking system storing its documents in a cloud and the secure storage of

electronic patient records in a cloud-based storage system. Finally, the thesis analysed

trust issues in such a secure RBE-based cloud data storage system and developed new

trust models to assist not only role managers to identify untrusted data owners and

users but also data owners and users to determine the trust of the role managers. The

latter is significant as there is no existing trust model which considers the trust of the

RBAC system itself. Our proposed trust models take into account the role hierarchy

and inheritance in the trust evaluation.

• We started with an analysis of the security requirements in cloud storage systems

using a cryptographic approach to protect the data. As RBAC is commonly used

to control access to data, we decided to develop new schemes that can integrate

secure cryptographic techniques with RBAC models to protect data stored in

the cloud. To improve the flexibility and the efficiency of cryptographic RBAC

schemes, we proposed and formalised a new type of cryptographic RBAC scheme

which we called role-based encryption (RBE) and defined the security properties

of the new RBE scheme.

• Three generic constructions for RBE schemes have been proposed to show that

RBE schemes can be constructed by using secure ID-based broadcast encryption

(IBBE) schemes. We developed a framework which described how IBBE tech-

niques could be used to build RBE schemes with different features. We proposed

three RBE constructions, compared the differences between them, and discussed
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suitable scenarios for using these individual constructions depending on each

scheme’s advantages.

• A specific RBE scheme has been proposed using a broadcast encryption mecha-

nism described in [48]. Compared to other existing cryptographic RBAC schemes,

our scheme has several superior characteristics, such as efficient user management

and constant size ciphertext and decryption keys. Then we proposed an improved

RBE scheme which has an efficient user revocation. A significant characteristic

of the improved RBE scheme is that revocation of a user from a role does not

affect other users and roles in the system.

• A secure cloud data storage architecture was then designed based on a hybrid

cloud infrastructure using the improved RBE scheme. In this architecture, the

public cloud is used to store only the encrypted data, whereas the organisation’s

sensitive structure information such as the role hierarchy and user membership

information is stored in a private cloud to which only the administrators and

role managers have access. Such hybrid architecture helps to reduce the attack

surface.

• A complete secure cloud storage system was then developed using the improved

RBE scheme and the hybrid cloud architecture. This system adopted the strategy

of outsourcing part of the computation to the cloud to achieve efficient client

operations in the implementation. We also optimised the implementation of the

decryption algorithm and showed that the cloud’s decryption time can be reduced

by using the parallel computing techniques on the server side.

• To simplify the administration tasks in large-scale RBAC systems, we proposed

a cryptographic administrative model AdC-RBAC. The AdC-RBAC model uses

cryptographic techniques to manage and enforce administrative policies for RBE

schemes. This model allows only the authorised administrative roles to change

RBAC system access policies. We have described three components of this model:

UAM for user membership management, PAM for permission management, and
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RAM for role management.

• Two application scenarios of using the proposed secure RBE-based system have

been discussed. They show how our secure system can be used to protect data

in cloud storage systems. We have described a banking application in which the

RBE scheme is used for document sharing and distribution in a cloud platform.

The second application is a cloud storage system for securely storing the patient-

centric patients’ health records (PHR); we have given a detailed design of the

PHR structure which allows the patients to have flexible control over their PHR

stored in the cloud system.

• Then we analysed the trust issues in RBE-based cloud data storage systems and

proposed trust models to reason about and enhance the security of data stored

in the cloud. The owners’ trust models assist the owners and roles to determine

the trustworthiness of individual roles and users respectively in the RBAC sys-

tem, and the users’ trust models assist the users and roles in determining the

trustworthiness of individual roles and owners respectively.

The proposed security techniques in this thesis constitute an integrated and compre-

hensive secure cloud data storage system. In this thesis, we have provided the designs

of schemes and architecture to show how such an integrated system can be achieved in

practice in a large-scale system, without losing the features and advantages of each of

the individual components.

10.2 Future Work

In this section, we briefly outline some areas of further work that are worth investigating

in the future, as a follow on from the work done in this thesis.

The first area of work worth considering is related to searchable schemes on en-

crypted data. In our system, the data is stored in the cloud in the form of key-value

pairs, and we assume that users know the key (index) of the data that they want to

access. When users want to access data from the cloud, they need to enter the index
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of the data in their requests to the cloud system. In a more general scenario, the

ability to search is desirable, which allows a user to search for a particular resource

using keywords or names. There are many searchable encryption schemes in the litera-

ture which allow users with valid decryption keys to make search queries on encrypted

data without leaking information through the queries or the data. However, there is

no existing searchable encryption scheme that can work directly with RBAC models.

Hence, a solution that allows users to search over the data that is encrypted using RBE

schemes without violating the access control policies would definitely result in a better

user experience. With such a solution, users should be allowed to query a keyword

or a name to the cloud, and only the encrypted data that matches the query and the

access policies will be returned by the cloud to the users. The cloud should not learn

anything about the queries or the data.

Another area of further work could be to add the anonymity feature to our secure

RBE-based cloud data storage system. When a user accesses the data in a cloud

system, for the cloud to make the decision on returning the encrypted data to the

user, the cloud needs to know the identity of the user as well as the identity of the

role that the user belongs to. In our RBE systems, these identities are considered

as public parameters. However, some users may not want the cloud to know their

identities and the roles that they belong to. Therefore, there may be a need for a user

to send the request anonymously to the cloud, and the cloud still needs to determine

whether the user has the access to the encrypted data without knowing the identity of

the user or the role. In the first piece of further work mentioned above, we considered

the possibility of a desirable searchable solution for RBE schemes. We can envisage

combining this anonymity feature with the search scheme leading to an anonymous

search solution. In such anonymous search users would be able to make search queries

to the cloud anonymously, and the cloud will return the suitable encrypted data to the

users without knowing the queries and the data as well as the identities of the users.

Integrating such an anonymous searchable solution into our RBE system would benefit

the users for allowing them to better locate and access the data in secure cloud storage

systems.
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