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Abstract

Two fundamental biostatistical measures are the risk and the rate of event occurrence,

representing the probability of an event and the expected number of events during a

fixed time period. Regression models can be used to relate an individual’s character-

istics to the risk or rate of an event, such as the occurrence of disease or death. This

allows identification of high-risk individuals and can reveal ways in which risk may be

reduced.

Generalised linear models (GLMs) for binary and count data are an important

statistical tool for risk and rate modelling, and semi-parametric extensions provide

additional flexibility. However, some key GLMs of interest have parameter constraints

implied by the risk and rate models, and standard model-fitting algorithms can be

numerically unstable. This is particularly true for GLMs that allow estimation of risk

differences, rate differences and relative risks.

In this thesis by publication, new variants of the Expectation–Maximisation (EM)

algorithm are developed in order to provide reliable and flexible methods for fitting

such models to binary and count data. This begins with the development of a method

for additive binomial GLMs, which allows for reliable adjustment of risk differences. An

extension of this and other EM-type algorithms for binomial and Poisson GLMs is then

provided, which allows for flexible semi-parametric regression based on spline models.

As well as risk differences, these models allow reliable estimation of rate differences and

relative risks. A method for additive regression under a negative binomial model is also

developed, which can be used to estimate rate differences when the observed counts

show more variation than is expected under a Poisson model. These methods all ensure

that the fitted models respect the required parameter constraints, and their stability

vii



allows us to reliably use resampling methods that require many auxiliary analyses, such

as the bootstrap.

The utility of these approaches is demonstrated by applying them to various clin-

ical datasets. The methods described in this thesis have all been implemented in

open-source packages for the R computing environment and have been made available

online.
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1
Introduction

An important part of biostatistics is the study of factors that affect the occurrence of

events relevant to human health. In this thesis we will develop new regression method-

ology motivated by biostatistical applications, focusing on the relationship between

risk factors and health events.

The most important event relevant to the health of an individual is death. Accordingly,

mortality is a common outcome in biostatistical applications, but there are nonetheless

many other types of events that are significant in the study of human health. Com-

monly, such events are the manifestation of an underlying disease process, and may

be the trigger for a patient to be hospitalised, to undergo a corrective or preventative

procedure, or to change their ongoing treatment approach. These events and their sub-

sequent consequences therefore usually have a negative impact on health status and

quality of life, and increase the financial burden on the individual and the public health

system. Therefore, our motivation for studying such events is typically to reduce the

number of events that occur on both an individual and population level. On the other

1



2 Introduction

hand, an event of interest may instead involve a positive outcome, such as a cessation

of disease symptoms, in which case the goal will be to increase its frequency. In ei-

ther case, an essential step towards achieving the desired objective is to improve our

understanding of the factors that contribute to the occurrence of the events of interest.

Statistical models of event occurrence require a quantitative measure of such occur-

rence. In this thesis we will develop methodology for models of event risks and event

rates, which are two of the most fundamental biostatistical measures. We therefore

begin with a brief discussion of the concepts of risk and rate, before moving onto a

discussion of how these measures will be studied in this thesis.

1.1 Risk and rate modelling

In biostatistics, an individual’s risk of an event is the probability of the event occurring

within a fixed period of time (Lachin, 2011). As such, risk is always defined with

reference to a specific time period of interest that is common to all individuals. In this

thesis, we will be particularly interested in modelling the relationship between risk and

individual characteristics by using regression models. The risk for an individual with

characteristics specified by the covariate vector x is

Risk(x) = Pr(event | x). (1.1)

As a measure of event susceptibility, risk is relevant in situations involving binary

outcomes, that is, those that can take one of only two possible values. In this context,

we denote these values as ‘event’ and ‘no event’, but the same framework can be applied

in a wide variety of similar scenarios. In biostatistics, these outcomes are modelled as

the realisation of a Bernoulli random variable, or more generally, a binomial random

variable. The assumption underlying the binomial distribution is that the risk, or

the probability of an event, is constant across a fixed number of independent trials,

which would typically correspond to multiple individuals with the same characteristics

observed in a single fixed time period. The number of events cannot exceed the number

of trials, and this binomial model includes the special case of a single trial for each

observation, such that only one event is possible within the risk period. Binomial

regression, including binary regression, is therefore a key methodology in the modelling
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of risk.

Alternatively, the outcome of interest may be such that multiple events are possible

over time and there is no upper limit on the number of events that can occur. In this

context, the event rate is defined as the expected number of events in one unit of time.

Thus, the rate for an individual with characteristics x is

Rate(x) = E(events in 1 time unit | x). (1.2)

Unlike the definition of risk, event rates are defined per time unit and therefore allow

for different periods of observation for different individuals.

Events over time are often modelled as the realisation of a Poisson process, so that

the event count has a Poisson distribution with mean equal to the event rate per time

unit multiplied by the observation time. Such count outcomes can also be modelled as

the realisation of many binary trials, where the risk of an event within a small time

period depends on the underlying event rate. Under some weak conditions, as the time

period for each hypothetical binary trial becomes infinitesimally small, the resulting

number of events will again have a Poisson distribution (Cameron and Trivedi, 1998,

p. 5). Poisson regression is therefore an important methodology in the modelling of

event rates associated with count data outcomes.

However, the Poisson distribution has the property that the variance of the number

of events is equal to the expected number of events, which often does not hold true

in real data. We commonly observe overdispersion, in which the variance exceeds

the expected value, meaning that a Poisson model is inappropriate. An alternative

distribution for modelling count data in the presence of overdispersion is the negative

binomial distribution, which allows for heterogeneity between individuals beyond that

captured by their observed characteristics (Greenwood and Yule, 1920). As with the

Poisson model, the expected total number of events for a single observation is dependent

on the fixed period of exposure and the average event rate, which may be affected by

certain individual characteristics.

One purpose of regression modelling in the above contexts is to examine the relationship

between individual characteristics and the risk or rate of events in the population. This

may assist in understanding complex disease processes by highlighting factors that
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form part of the direct causal chain, or act indirectly through their association with

the direct causes. The resulting model could be used to identify high-risk individuals

such that personalised preventative measures can be undertaken, as well as to highlight

modifiable risk factors that could potentially be targeted as part of a new intervention.

By quantifying the effects of these risk factors, we are able to estimate the impact that

a successful approach would be expected to have on the number of events that occur,

as well as on secondary outcomes such as public health costs.

Regression modelling is also useful in controlled clinical trials, in order to quantify the

effect of the intervention under study while also taking into account other variables that

impact on the risk or rate of events. In a randomised study, we expect that important

risk factors will be evenly distributed between the treatment groups, but adjusting

for these will account for differences that may have occurred due to chance, and will

usually produce a more efficient estimate of the effect of interest (Hauck, Anderson,

and Marcus, 1998). An accurate estimate of the effect of the intervention allows for

an assessment of its potential utility, particularly in terms of the trade-off between the

expected number of events that could be prevented and the cost of its introduction.

A further application of regression modelling is to identify interactions. A statistical

interaction exists if the magnitude of the effect of one characteristic on the risk or rate

differs depending on the value of a second characteristic (Rothman, Greenland, and

Walker, 1980). Identification of interactions can further help to improve understanding

of the underlying disease mechanisms, and in the case of a clinical trial, may identify

subgroups of patients in which the intervention is expected to be more or less efficacious.

1.2 Effect measures

In quantifying the impact of a risk factor or an intervention on the risk or rate of an

event, an appropriate effect measure must be used. This refers to the scale on which

the change in risk or rate is expressed. A large number of studies have shown that

the choice of effect measure can have a substantial impact on the interpretation of the

effect itself, and hence influence subsequent treatment decisions (e.g. Forrow, Taylor,

and Arnold, 1992; Bobbio, Demichelis, and Giustetto, 1994; Lacy et al., 2001). This

suggests that the effect measure should be chosen based on interpretability.
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Different biological models lead to different relationships between covariates and the

risk or rate of events, and this should be taken into consideration when assessing

potential interactions (Walter and Holford, 1978). But when the biological mechanism

is unknown, Rothman (1978) argues that the best summary of the treatment effect is

that which gives the most parsimonious model. This suggests that model fit relative

to the number of parameters in the model should also be a factor in choosing an effect

measure.

Risk and rate effect measures are often expressed on a relative scale, that is, as a

multiplicative effect on the baseline risk or rate. However, if there is a constant absolute

risk or rate difference across strata, this will appear as a statistical interaction on a

relative scale (e.g. Marschner, Gillett, and O’Connell, 2012), and an additive model

would provide a more appropriate summary of the data.

The choice of effect measure may also be driven by the aims of a particular study. Rel-

ative measures, provided they are presented alongside baseline risks and rates (Berry,

Knapp, and Raynor, 2006), are useful for identifying factors that have a large effect on

individual risk. On the other hand, absolute measures may be preferred from a public

health perspective (Egger, Smith, and Phillips, 1997). In particular, an estimate of the

effect of the intervention or risk factor on an absolute scale can be directly related to

the change in the number of events that we would expect on a population level as a

result of introducing the intervention or modifying the risk factor in question.

In the following subsections we review some of the principal effect measures used for

binary and count data.

1.2.1 Odds ratio

The odds ratio is often used as the effect measure for a binary outcome. If p1 = Risk(x1)

denotes the risk of an event for an individual with some characteristic x1, as specified in

(1.1), and p2 = Risk(x2) the risk for an otherwise similar individual with characteristic

x2, then

Odds ratio (x2 vs. x1) =
p2/(1− p2)

p1/(1− p1)
.

An important property of the odds ratio is that it is symmetric with regards to the

outcome definition. That is, if events and non-events are interchanged, then the odds
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ratio is inverted (Walter, 2000). Furthermore, the odds ratio is the only estimable effect

measure in a retrospective case-control study. Outside of case-control studies, odds

ratios are widely used because they result naturally from logistic regression models,

which have favourable mathematical properties. This is partially because no limit is

required on the range of the logarithm of the odds ratio: an odds ratio anywhere in

[0,∞) can be applied to any p1 ∈ [0, 1] to produce a valid risk p2 ∈ [0, 1]. As a result,

Cook (2002) argues that odds ratios may be relevant in a broader population of patients

than the other common relative effect measure, the relative risk, which we discuss in

the next subsection.

Although it has some theoretical advantages, the odds ratio has received criticism

as an effect measure because its interpretation is not straightforward, and it is often

reported as if it were a relative risk (Holcomb et al., 2001). In situations in which the

event of interest is rare, the odds ratio is a close approximation to the relative risk,

so the distinction between them may be inconsequential. However, the odds ratio will

always be more extreme than the relative risk, and hence it may be seen to exaggerate

the size of the effect (Davies, Crombie, and Tavakoli, 1998). Such exaggeration can

be substantial when the outcome of interest is not rare, and so odds ratios are often

viewed as an undesirable effect measure in prospective studies of common outcomes.

1.2.2 Relative risk and rate ratio

Relative risks and rate ratios provide a more easily interpretable effect measure on a

multiplicative scale. As above, if p1 and p2 represent the risk or rate for individuals

with characteristics x1 and x2, as specified in (1.1) and (1.2), then

Relative risk or rate ratio (x2 vs. x1) =
p2

p1

.

Unlike the odds ratio, the relative risk is not symmetric with respect to the outcome

definition. However, it does have another desirable property, called collapsibility. This

means that, in the absence of confounding, the overall relative risk is equivalent to the

weighted average of stratum-specific relative risks, and the unadjusted effect measure

will not change after adjustment for a covariate that is not a confounder (Cummings,

2009). This is not true of the odds ratio, which can hence show apparent confounding
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even where none exists.

In order to ensure that the resulting risk p2 lies within [0, 1], the permitted range of the

relative risk is dependent on the baseline risk p1: it must lie in [0, 1/p1]. On the other

hand, because rates have no upper limit, there is no similar limit on the rate ratio,

which can take any non-negative value. The rate ratio is the natural effect measure

that results from Poisson regression, and as a result, it is widely used in regression

analysis of count data. Although the same is not true for the relative risk in binomial

regression models of binary outcomes, it has been increasingly recommended in this

context (Wacholder, 1986; Blizzard and Hosmer, 2006; Lumley, Kronmal, and Ma,

2006).

1.2.3 Risk and rate difference

The risk and rate difference are absolute effect measures, where

Risk difference or rate difference (x2 vs. x1) = p2 − p1,

using the same notation as above. As opposed to the multiplicative effect measures,

the risk difference and rate difference allow for calculation of the effect of a risk factor

or intervention on the absolute number of events that are expected to occur.

In two groups of equal size n, with average risks of p2 and p1, we expect np2 and

np1 events respectively. The difference in the expected number of events is therefore

np2 − np1 = n× (Risk difference). If these groups are representative of a hypothetical

population before and after the introduction of an effective intervention, the risk differ-

ence can be used in a cost-effectiveness analysis, to estimate the amount of money that

could be saved by preventing events, in order to compare it to the cost of implementing

the intervention (Willan and Briggs, 2006).

The risk difference is closely linked to the concept of the number needed to treat (NNT),

which estimates the number of patients that would need to receive a novel intervention

in order to avoid a single event during the fixed time period (Laupacis, Sackett, and

Roberts, 1988). The NNT is sometimes cited as a more clinically meaningful represen-

tation of a treatment effect (Cook and Sackett, 1995), but some care must be taken

with its interpretation (Kristiansen and Gyrd-Hansen, 2004). The risk difference is
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both symmetric and collapsible, but given p1 ∈ [0, 1], it must lie in [−p1, 1 − p1] to

ensure that p2 ∈ [0, 1].

Similarly for rates, n × (Rate difference) is the expected difference in the number of

events occurring in exposure time n for two groups with rates p2 and p1. Thus it

can be used in cost-effectiveness analyses in a similar way to the risk difference, but

caution must be exercised when the exposure time for an individual is affected by the

occurrence of events, or if it is dependent on the individual’s covariates (Greenland,

1996). The permissible range of the rate difference, given p1, is [−p1,∞), in order to

ensure that p2 ≥ 0.

1.3 Semi-parametric regression

The standard methods for relating a continuous covariate to the risk or rate of an

event require that the form of the relationship between the covariate and the outcome

is specified in advance. A linear or log-linear relationship is often used, but others

can be implemented by applying an appropriate transformation to the covariate in

question. However, this requires that we have some prior information about the form

of the relationship, which is often not available when we are investigating a new risk

or rate model. Semi-parametric regression is a method that removes the constraint of

a fully parametric model, allowing for additional flexibility in the relationship between

a covariate and the outcome by assuming only that it belongs to a flexible class of

functions.

Semi-parametric regression provides an estimate of the shape of this covariate relation-

ship, which may allow a better representation of the underlying biological association

than one in which the functional form has been precisely specified. This may allow us

to identify a parametric functional form that better approximates the true relationship,

producing a more parsimonious model and providing a more appropriate estimate of the

effect size associated with a continuous covariate. For example, if the semi-parametric

model suggests that the effect of the covariate on the risk or rate of an event takes

a piecewise linear form, we can use this as the functional form in a fully parametric

model in order to estimate the size of the effect below and above the change point.

Additionally, semi-parametric regression is useful in situations where the effect of a
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continuous covariate is not of direct interest, but we wish to adjust for it in estimating

the effect of an intervention or another risk factor. In particular, if we wish to estimate

a particular effect measure for the characteristic of interest, we must use an appropriate

model, as discussed in Section 2.1.1. A fully parametric model imposes constraints on

the possible forms of the relationship between other covariates in the model and the

risk or rate. With a semi-parametric model, however, we can estimate the effect of

interest but relax the restrictions on the effect of other covariates. As a result, we

can expect that the adjustment is a more realistic representation of reality, and the

estimated effect of interest should be more accurate.

1.4 Example datasets

Throughout this thesis, examples from real datasets are used to demonstrate the utility

of the methods described. These datasets, and the context of the studies that generated

them, are summarised briefly below.

1.4.1 ASSENT-2 study

The Assessment of the Safety and Efficacy of a New Thrombolytic (ASSENT-2) study

was a double-blind randomised trial to compare two fibrinolytic therapies in 16,949 pa-

tients with acute myocardial infarction (ASSENT-2 Investigators, 1999). This type of

treatment aims to dissolve blood clots so that blood flow can be stabilised. The treat-

ments being studied were the gold standard, alteplase, versus a genetically engineered

variant, tenecteplase, which allows for easier administration.

A previous study estimated a dose of the new therapy with equivalent efficacy as

alteplase (Van de Werf et al., 1999), and the aim of ASSENT-2 was to test this hy-

pothesis. The primary endpoint of the study was all-cause mortality within 30 days,

a binary outcome. A number of individual characteristics that might affect risk of

death were collected at baseline, and the primary analysis included adjustment for

these covariates. It showed that alteplase and tenecteplase were equivalent for 30-day

mortality on both absolute and relative scales, with tenecteplase showing lower rates

of some complications.
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1.4.2 ASSENT-3 study

The ASSENT-3 study was an open-label randomised study that combined the new

fibrinolytic therapy tenecteplase with one of three different antithrombotic conjunctive

therapies: enoxaparin, abciximab or unfractionated heparin (ASSENT-3 Investigators,

2001). A total of 6095 patients with acute myocardial infarction were randomised to the

study, with the main comparison of interest being between the enoxaparin (n = 2040)

and unfractionated heparin (n = 2038) groups.

The study had two binary primary endpoints: efficacy (a composite of 30-day mortality,

in-hospital reinfarction or in-hospital refractory ischaemia) and efficacy plus safety (the

efficacy endpoint along with in-hospital major bleeding). The power calculation of the

study was based on a hypothesis of non-inferiority with a 1% risk difference margin,

and enoxaparin showed a clear advantage over unfractionated heparin on both primary

endpoints, with unadjusted relative risks of 0.74 (95% CI 0.63–0.87) and 0.81 (0.70–

0.93), respectively.

1.4.3 BOOST-NZ study

The Benefits Of Oxygen Saturation Targeting New Zealand (BOOST-NZ) study was

one of a group of similar randomised trials examining the effects of in-hospital oxygen

saturation targeting for premature infants (Darlow et al., 2014). Treatment was blinded

by the use of specially designed oximeters which displayed a value either 3% higher or

lower than the true oxygen saturation (SpO2) at any time. Study nurses were instructed

to target a displayed SpO2 of 88–92%, such that one group received a range of 85–89%

and the other received 91–95%. The true SpO2 level at times when the infants were

receiving supplementary oxygen was stored by the oximeter.

Current evidence suggests that low levels of oxygen saturation can increase the risk of

death, but excessively high levels can lead to other complications, such as blindness

caused by retinopathy of prematurity. The range of SpO2 examined in the study

was considered safe, but the level for optimising the trade-off between these negative

outcomes was unknown. As such, the primary endpoint of the study was a composite

of death or severe disability at 2 years corrected gestational age, with a secondary

endpoint being 2-year mortality alone. Both of these outcomes are binary, and the
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primary analyses showed relative risks of 1.15 (95% CI 0.90–1.47) and 1.10 (0.68–1.78)

in favour of the low-target group for these endpoints, respectively.

1.4.4 FIELD study

The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study was a

double-blind randomised trial in 9795 patients with type 2 diabetes mellitus (FIELD

Study Investigators, 2005). The aim of the study was to compare the effect of fenofi-

brate, a cholesterol-lowering medication, with placebo on a primary outcome of coro-

nary events (coronary heart disease death or non-fatal myocardial infarction). The

primary analysis showed an unadjusted hazard ratio of 0.89 in favour of fenofibrate,

but it was not statistically significant at the pre-specified 5% level (p = 0.16).

With fibrates having shown potentially beneficial effects on microvascular endpoints,

a secondary outcome of the FIELD study was the impact of fenofibrate on diabetic

retinopathy (Keech et al., 2007). Specifically, the number of courses of laser photo-

coagulation therapy undertaken by each patient was a count data outcome, because

patients could receive laser treatment multiple times. Fenofibrate showed a highly

significant rate ratio of 0.63 (95% CI 0.49–0.81; p = 0.0003) compared to placebo in

unadjusted analysis of this count outcome.

1.5 Thesis outline

The remainder of this thesis is organised as follows. Chapter 2 gives an overview

of existing methods for semi-parametric regression modelling of rate differences, risk

differences and relative risks, and their deficiencies, as well as some brief theoreti-

cal background of the methods that will be used to address these in the subsequent

chapters. Chapter 3 contains a peer-reviewed journal article that describes a stable

algorithm for fitting an additive binomial model in order to estimate adjusted risk dif-

ferences. This is demonstrated with an application to data from the ASSENT-3 study.

The method includes the possibility of semi-parametric adjustment through an isotonic

step function, which we apply to data from the ASSENT-2 study. Chapter 4 contains a

peer-reviewed journal article that provides an extension of the additive binomial (risk
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difference) method, as well as the existing additive Poisson (rate difference) and mul-

tiplicative binomial (relative risk) methods to allow for more flexible semi-parametric

adjustment. The ability to use smooth semi-parametric regression functions — with

or without a monotonicity restriction — is implemented, without compromising the

stability of the underlying algorithms. This is illustrated using applications of the

methods to the ASSENT-2 study. In Chapter 5, a manuscript that has been prepared

for submission addresses the problem of rate difference regression modelling in the pres-

ence of overdispersion, by describing a stable algorithm for fitting an additive negative

binomial model. This method is applied to laser therapy data from the FIELD study.

Finally, Chapter 6 provides a summary and discussion of the thesis, including a review

of open-source software that implement the methodology. Future research directions

based on this work are also presented.

Appendices A and B contain the documentation for two R software packages — logbin

and addreg — that implement the methods described in this thesis. In Appendix C,

we include a published conference proceedings paper that is an earlier version of the

semi-parametric method described in Chapter 4, including an application to a different

clinical trial dataset, obtained from the BOOST-NZ study.
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Background

Methods for semi-parametric regression modelling of binary and count data are well

established, and have been implemented in many widely used statistical software pack-

ages. However, the usual methods for fitting such models have some weaknesses, par-

ticularly with the non-standard models that are needed to estimate adjusted risk dif-

ferences, rate differences and relative risks. In the first part of this chapter, the existing

methods and their potential problems are described, and in the second part, we intro-

duce some previous results upon which our approach will be based. Finally, we give a

brief outline of the methods that will be described in detail in the following chapters.

2.1 Usual approaches and limitations

2.1.1 Generalised linear models

A generalised linear model (GLM) relates an outcome variable Y to a vector of predic-

tors or covariates x, assuming Y has one of the wide range of probability distributions

13
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included in the exponential family (McCullagh and Nelder, 1989). In a GLM, the pa-

rameter λ = E(Y ) is related to a linear combination of the covariates x through a link

function g,

g(λ) = xθ.

In binomial models and count data models, the distributional parameter of interest λ is

the risk or rate, and the above specification can be modified to include a multiplicative

standardising term N , representing the number of trials or exposure time over which

Y was observed. That is, E(Y ) = Nλ.

The linear predictor xθ contains an intercept, and for the methods we describe in this

thesis, it is convenient to separate the covariates into a collection of A categorical and

B continuous covariates: x = (u,v) = (u1, . . . , uA, v1, . . . , vB), so

g(λ) = Λ(u,v;θ) = α0 +
A∑
a=1

αa(ua) +
B∑
b=1

βbvb, (2.1)

where, without loss of generality, each ua ∈ {1, . . . , ka} and vb ∈ R.

The parameter vector θ contains an intercept term α0,
∑

a ka parameters associated

with the categorical covariates and B parameters associated with the continuous co-

variates. In order for the model parameters to be identifiable, for each categorical

covariate a = 1, . . . , A we choose a reference level ra ∈ {1, . . . , ka} and set αa(ra) = 0

so that a total of J = 1 +
∑A

a=1(ka − 1) +B parameters must be estimated.

Keeping all other covariates constant, the parameter αa(k) represents the change in

g(λ) associated with having ua = k compared to ua = ra. Likewise, βb represents the

change in g(λ) for a one-unit increase in vb. A simple transformation of the parameter

can thus provide adjusted effect measures for each of the covariates in the model.

The choice of link function is crucial to the interpretation of these parameters, in par-

ticular with regard to the effect measures discussed in Section 1.2. The canonical link

is the function that relates the canonical parameter of an exponential family distri-

bution to its expected value. GLMs that use the canonical link generally have good

mathematical properties, and so it is typically used as the default link function.

For binomial random variables where Y ∼ Bin(N, λ), the canonical link is the logit

function g(λ) = log(λ/(1 − λ)) and so exp(αa(k)) and exp(βb) are the adjusted odds

ratios associated with the categorical and continuous covariates, respectively. In order
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to estimate relative risks, the log link g(λ) = log(λ) must be used, and these effect

measures can be obtained by exponentiating the model parameters. Adjusted risk

differences can be obtained by using the identity link g(λ) = λ, with no transformation

required.

In a Poisson GLM, Y ∼ Poisson(Nλ), where N is the exposure time and λ is the under-

lying event rate per unit time. The log link g(λ) = log(λ) is the canonical link, giving

adjusted rate ratios when the parameters are exponentiated. Rate differences result

from the identity link g(λ) = λ, again without needing to transform the parameters.

As explained in Section 2.1.4, a complication of these non-canonical models is that

they impose implicit constraints on the parameter vector θ.

2.1.2 Maximum likelihood estimation

In order to find estimates of the parameters of interest, we use maximum likelihood

estimation. Given a vector Y of n independent random outcome variables (Y1, . . . , Yn),

where the distribution of Yi depends on λi, which is related to θ through (2.1), we wish

to find

θ̂ = arg max
θ∈Θ

L(θ;Y ) = arg max
θ∈Θ

`(θ;Y ),

where L is the likelihood function, ` is the log-likelihood and Θ is the parameter space

which contains the valid possible values of θ. The form of L and ` will be determined

by the particular exponential family distribution that is used to model Y , such as the

binomial or Poisson distribution.

Under certain conditions — all of which hold in the models that we consider in this

thesis — the maximum likelihood estimator (MLE) θ̂ is asymptotically consistent for

the true value θ0 (Fahrmeir and Kaufmann, 1985). Furthermore, if θ0 is not on the

boundary of the parameter space, the MLE is asymptotically normal with

√
n(θ̂ − θ0)

d−→ N (0, I−1)

as n→∞, where I is the expected information matrix with (j, k) entry:

I(j,k) = −E
{

∂2

∂θj∂θk
`(θ;Y )

∣∣∣∣ θ0

}
.
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Thus the expected information, evaluated at the MLE, can be used to estimate standard

errors and hence confidence intervals for the parameters when the MLE is not on the

boundary of the parameter space. An alternative is to use the observed information

matrix I(O), which has (j, k) element

I
(O)
(j,k) = − ∂2

∂θj∂θk
`(θ;Y ).

If the MLE is on the boundary, information matrix estimates of sampling variation

are invalid. In this case, confidence intervals may be estimated by using a resampling

procedure such as the bootstrap. Marschner (2015) has demonstrated that such an

approach gives accurate coverage probabilities for the parameters in a log-link bino-

mial model. However, bootstrapped confidence intervals require that we have a reliable

method of maximum likelihood estimation that is able to find the MLE in every boot-

strap resample. As discussed in the next two sections, this is not always true of the

standard methods that are commonly implemented in statistical software packages.

2.1.3 Iterative methods

It is usually not possible to derive an explicit formula for the MLE of a GLM, and

instead we must use an iterative approach to maximise the likelihood. In most pop-

ular statistical software packages, either the Newton–Raphson or the Fisher scoring

algorithm is implemented via an iteratively reweighted least squares (IRLS) routine.

At the (c+ 1)th step, both algorithms update the current parameter estimates θ̂(c) by

an equation of the form

θ̂(c+1) = θ̂(c) −H−1s, (2.2)

where s = (s1, . . . sJ)> is the vector of first derivatives of the log-likelihood, that is,

sj = ∂`/∂θj, evaluated at the current estimate θ̂(c). In (2.2), H is either the observed

information matrix I(O) (for Newtown–Raphson) or the expected information matrix

I (for Fisher scoring), evaluated at θ̂(c). When the canonical link function is used, the

two methods are identical.

The IRLS routine derives from the fact that for GLMs, H can be written in the form

H = −X>WX,
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where X is the n × J design matrix associated with the model and W is a diagonal

matrix with elements that depend on the outcome distribution and link function. Sim-

ilarly, s can be expressed as X>WỸ with the same W and a transformed outcome

vector Ỹ . Then the parameter estimate update (2.2) is

θ̂(c+1) = (X>WX)−1X>WZ,

where Zi = Λ(ui,vi; θ̂(c))+Ỹi. This is the solution of a weighted least squares regression

problem, where Z andW must be recomputed at each step and the process is repeated

until convergence of the parameter estimates.

A typical way of defining convergence is to use

‖θ̂(c+1) − θ̂(c)‖
‖θ̂(c)‖

< ε (2.3)

for some small positive constant ε. This convergence criterion will be used for all of

the algorithms defined in this thesis.

2.1.4 Convergence issues

The iterative methods described in Section 2.1.3 work well for canonical models but

they can be subject to convergence problems for the non-canonical models described in

Section 2.1.1. Unlike the canonical models, these non-canonical models impose implicit

parameter constraints that complicate the convergence behaviour. This arises because

the iterative methods are based on the gradient of the score function, which can cause

the updated estimates to overshoot the maximum and leave the constrained parameter

space. In this section, we discuss these issues.

In binomial models, the range of the log-odds is unrestricted, as any value will cor-

respond to a valid risk λ ∈ [0, 1]. Similarly for count models, the rate λ must be

non-negative, so log(λ) can take any value. Thus when the canonical link is used with

these models, there is no constraint on the parameter space; that is, Θ = RJ .

With the other link functions described in Section 2.1.1, however, Θ must be con-

strained such that the fitted model will produce only valid risks and rates. Specifically,
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for the log-link binomial model, the parameter space

Θ = {θ : Λ(u,v;θ) ≤ 0, (u,v) ∈ U × V} (2.4)

ensures that fitted risks are in [0, 1], where U × V is the Cartesian product of the

covariate spaces corresponding to u and v, respectively. We will take these covariate

spaces to be the Cartesian product of the observed ranges of the covariates,

U =
A∏
a=1

{1, . . . , ka} and V =
B∏
b=1

[v
(0)
b , v

(1)
b ], (2.5)

where v
(0)
b = mini{vib} and v

(1)
b = maxi{vib}.

Likewise, for the identity-link binomial model, we have

Θ = {θ : 0 ≤ Λ(u,v;θ) ≤ 1, (u,v) ∈ U × V} , (2.6)

and for the identity-link count data model

Θ = {θ : Λ(u,v;θ) ≥ 0, (u,v) ∈ U × V} . (2.7)

The Newton–Raphson and Fisher scoring algorithms have no inbuilt mechanism for

these constrained optimisation problems, and it is possible for the estimates to move

outside the parameter space at any iteration. A common method for attempting to

resolve this is to use step-halving: if θ̂∗(c+1) is the (invalid) proposed update to the

vector of parameter estimates, it is replaced by

θ̂(c+1) = θ̂(c) +
1

2d

(
θ̂∗(c+1) − θ̂(c)

)
,

for d = 1, 2, . . ., until the new θ̂(c+1) is inside the parameter space. This too is not guar-

anteed to yield the MLE, particularly if the MLE is on the boundary of the parameter

space and the gradient of the log-likelihood is almost perpendicular to the boundary, in

which case convergence may be declared before the MLE is reached (Lumley, Kronmal,

and Ma, 2006). Problems can also occur even when the MLE is a stationary point

in the interior of the parameter space. Examples of such behaviour are provided in
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subsequent chapters.

2.1.5 Generalised additive models

In some situations, we may wish to relax the modelling assumption that the relationship

between g(λ) and each of the continuous covariates is strictly linear. Generalised

additive models (GAMs) were introduced by Hastie and Tibshirani (1990), and provide

this additional flexibility by introducing unspecified functions fc, c = 1, . . . , C into the

linear predictor (2.1), so

g(λ) = Λ(u,v,w;θ) = α0 +
A∑
a=1

αa(ua) +
B∑
b=1

βbvb +
C∑
c=1

fc(wc).

There are a number of ways in which this can be achieved, and in this thesis we will

employ regression splines. The unknown fc are assumed to belong to a class of functions

that can be expressed in terms of a set of Dc basis functions Bcd, such that

fc(w) =
Dc∑
d=1

γcdBcd(w), (2.8)

and the problem becomes one of estimating the γcd parameters. Details of the spline

basis functions used in this thesis are provided in Sections 2.2.4 and 2.2.5 below.

Software packages implement GAMs in different ways: a summary of these is given in

Section 4.6. All of them, however, use an iterative algorithm that is some variant of

the Newton–Raphson or Fisher scoring algorithm and are hence subject to the same

instability that can occur with GLMs, particularly for the constrained models that we

consider in this thesis.

2.2 Theoretical background

The following sections provide more theoretical details of the important results that

are used but only introduced briefly in the later chapters of this thesis.
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2.2.1 Multinomial–Poisson transformation

The multinomial–Poisson transformation (Baker, 1994) is a method for performing

maximum likelihood estimation for a multinomial model by maximising a likelihood

function associated with a Poisson model.

Let Zi = (Zi1, . . . , Zij, . . .), i = 1, . . . , n, be observations from a multinomial distribu-

tion with parameters gij(θ)/Gi(θ) for j ∈ Ji, where Ji is the set of possible outcomes

for individual i and

Gi(θ) =
∑
j∈Ji

gij(θ).

After removing terms that do not depend on the parameter vector θ, the likelihood for

the multinomial model is

LM(θ;Z) =
n∏
i=1

∏
j∈Ji

(
gij(θ)

Gi(θ)

)Zij

. (2.9)

We introduce n new parameters ϕ = (ϕ1, . . . , ϕn), restricting each ϕi > 0. The

multinomial–Poisson transformation of (2.9) is

LP(θ,ϕ;Z) =
n∏
i=1

∏
j∈Ji

(ϕigij(θ))
Zij exp(−ϕgij(θ)). (2.10)

For fixed θ, it is easy to find the maximum likelihood estimate of ϕ, denoted by

ϕ̂(θ) = (ϕ̂1(θ), . . . , ϕ̂n(θ)). With Ni =
∑

j Zij,

ϕ̂i(θ) =
Ni

Gi(θ)
.

Substituting this back into (2.10) gives

LP(θ, ϕ̂(θ);Z) =

(
N∏
i=1

NNi
i exp(Ni)

)
LM(θ;Z)

∝ LM(θ;Z).

It follows from the work of Richards (1961) on profile likelihoods that the value of θ

that maximises LP is the same as that which maximises LM. This means that in order

to find the MLE from a multinomial model, we can instead find the MLE associated
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with LP which, up to a multiplicative constant, takes the same form as the likelihood

for a Poisson model where

Zij ∼ Poisson(ϕigij(θ)).

We will make use of this for the binomial special case of the multinomial distribution,

where the equivalent Poisson likelihood is easier to work with than the actual binomial

likelihood.

2.2.2 Expectation–Maximisation (EM) algorithm and variants

The Expectation–Maximisation (EM) algorithm (Dempster, Laird, and Rubin, 1977) is

a method for performing maximum likelihood estimation with incomplete data. Begin-

ning with an initial set of parameter estimates, the algorithm uses these to ‘fill in’ the

missing observations, and updates the estimates by maximising the likelihood based

on the hypothetical complete data. Each of these iterations increases the likelihood

of the observed data monotonically, and the process is repeated until convergence is

achieved.

A large number of variations of the basic EM algorithm have been described, providing

faster convergence or simpler mathematical derivations in some situations (McLachlan

and Krishnan, 1997). We give details of some of these below.

EM algorithm

The concept of ‘incomplete data’ in the context of an EM algorithm refers to the

situation in which we have an observed data vector Y that is associated with an

unobserved data vector Y through a many-to-one mapping from the sample space of

Y to the sample space of Y . The ‘complete data’ Y is not observed directly, but only

indirectly through Y .

We wish to find the MLE of the parameter vector θ ∈ Θ based on the log-likelihood

`(θ;Y ) for the observed data. The EM algorithm is useful in situations where this

maximum likelihood estimation would be straightforward if the complete data Y was

available, in which case we could instead maximise the complete-data log-likelihood

L(θ;Y).

The basic EM algorithm is made up of alternating E- and M-steps, iterated until
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convergence. Given an initial value for the parameter estimate θ̂(0), the E-step at the

(c+ 1)th iteration requires calculation of

Q(θ | θ̂(c)) = E
(
L(θ;Y) | Y , θ̂(c)

)
. (2.11)

The M-step then involves maximisation of Q with respect to θ, so the updated param-

eter estimate is

θ̂(c+1) = arg max
θ∈Θ

Q(θ | θ̂(c)).

The EM algorithm ensures that the likelihood will never decrease between iterations,

and because the M-step only considers estimates in the parameter space, this approach

can never lead to iterates outside the parameter space, as can occur with the gradient-

based algorithms described in Section 2.1.3. This makes the EM algorithm a potentially

useful approach in constrained estimation problems such as those considered in this

thesis.

Wu (1983) has shown that if the log-likelihood is unimodal in the interior of the param-

eter space Θ and ∂Q(θ | θ′)/∂θ is continuous in both θ and θ′, then the sequence of

estimates {θ̂(c)} from an EM algorithm will converge to the unique MLE. Unimodality

of ` holds for exponential family distributions because the log-likelihood function is

globally concave with respect to θ.

ECM algorithm

The Expectation–Conditional Maximisation (ECM) algorithm (Meng and Rubin, 1993)

is an extension of the EM algorithm in which the M-step of each iteration is replaced

by a sequence of D conditional maximisation (CM) steps. Each CM-step maximises Q

with respect to θ, but keeps a subset of the parameters hd(θ) (d = 1, . . . , D) fixed at

their current estimates.

At the (c + 1)th iteration, the E-step remains as defined by (2.11). The first CM-

step updates the current estimate by maximising Q(θ | θ̂(c)) subject to the constraint

h1(θ) = h1(θ̂(c)), giving θ̂(c+1/D). The second CM-step requires maximisation of Q(θ |

θ̂(c)) subject to h2(θ) = h2(θ̂(c+1/D)), to get θ̂(c+2/D). This is repeated for d = 3, . . . , D,

where, in general

θ̂(c+d/D) = arg max
θ∈Θ(c,d)

Q(θ | θ̂(c)), (2.12)
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with Θ(c, d) = {θ ∈ Θ : hd(θ) = hd(θ̂(c+(d−1)/D))}, and the whole sequence of E- and

CM-steps is repeated until convergence.

The ECM algorithm is useful in situations where it is easier to maximise Q with

respect to particular subsets θ1, . . . ,θD of the parameter vector separately, instead of

considering the entire θ at once, as is required by the M-step of the EM algorithm. In

such a case, each hd(θ) would consist of all of the elements in θ except for θd.

Meng and Rubin (1993) showed that the ECM algorithm has similar convergence prop-

erties to the EM algorithm, with monotone convergence to the MLE in the interior of

the parameter space, subject to the additional condition that the set H = {hd(θ); d =

1, . . . , D} is ‘space-filling’. Intuitively, this condition means that from any point in Θ,

one is able to search in any direction for the maximum, so that the resulting maximi-

sation is over the original Θ rather than a subspace of it.

ECME algorithm

The ECME algorithm (Liu and Rubin, 1994) is a generalisation of the ECM algo-

rithm. Standing for Expectation–Conditional Maximisation–Either, the ECME algo-

rithm allows some of the CM-steps of the ECM algorithm, which maximise the expected

complete-data log-likelihood, to be replaced by steps that maximise the observed-data

log-likelihood.

That is, the E-step is the same as for the EM and ECM algorithms, and we define D pa-

rameter subsets {h1(θ), . . . , hD(θ)}, as for the ECM algorithm. Then D = {1, . . . , D}

is partitioned into two sets, DQ and DL, such that within the (c + 1)th iteration, if

d ∈ DQ, we update the parameter estimates using (2.12), and for d ∈ DL, we use

θ̂(c+d/D) = arg max
θ∈Θ(c,d)

`(θ;Y ).

If the DL steps in an iteration are performed after all of the DQ steps have been

completed, this algorithm shares similar convergence properties to the EM and ECM

algorithms, requiring only the additional condition that each of the conditional max-

imisations within an iteration are unique (Meng and Van Dyk, 1997).
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2.2.3 Combinatorial EM algorithms

The EM algorithm and its variants lend themselves to situations in which the outcome

variable can be represented as a function of a collection of unobserved latent outcome

variables. These underlying outcome variables can be thought of as the missing data

in an EM-type formulation. This is the manner in which we will use the EM algorithm

and its variants in this thesis.

We will see that when the usual gradient-based algorithms fail to converge to the MLE,

an EM-type algorithm can provide stable monotone convergence, while still respecting

the required parameter space constraints.

The parameter spaces for the models considered in this thesis, defined in (2.4), (2.6)

and (2.7), do not impose constraints on the individual parameters, only on the resulting

linear predictor. However, due to the way in which we will define the latent outcome

variables, an EM algorithm will apply additional constraints to the individual model

parameters. Modifications are therefore needed so that the entire parameter space Θ is

searched for the MLE. This is the basic idea behind the combinatorial EM (CEM) al-

gorithm described by Marschner (2014). We give two examples of applications of CEM

algorithms below, before giving a more general description. In subsequent chapters,

our methods will be based on implementations of CEM algorithms.

Additive Poisson model

We will refer to the identity-link Poisson GLM as an additive Poisson model. In an

additive Poisson model, we assume each Yi ∼ Poisson(Niλi), i = 1, . . . , n, where the

standardised event rate is λi = Λ(ui,vi;θ), as defined in (2.1). The parameters in this

model represent adjusted rate differences, and the parameter space (2.7) ensures that

the fitted rates are non-negative.

A CEM algorithm for additive Poisson regression has been described by Marschner

(2010). We begin by choosing r = (r1, . . . , rA), where each ra ∈ {1, . . . , ka}, imposing

the necessary identifiability constraints on the categorical parameters. For the linear

continuous covariates, we also choose s = (s1, . . . , sB), where each sb = v
(ςb)
b for a choice

of ςb ∈ {0, 1}. Given s, we define the transformed covariates v′ib = (−1)ςb(vib − sb)

for b = 1, . . . , B, which are always non-negative. Then the rate can be equivalently
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expressed as

Λ(ui,vi;θ) = Λ(ui,v
′
i;θ
′)

= α′0 +
A∑
a=1

αa(uia) +
B∑
b=1

β′bv
′
ib,

where

α′0 = α0 +
B∑
b=1

βbsb and β′b = (−1)ςbβb. (2.13)

Because the sum of independent Poisson random variables also has a Poisson distri-

bution, Yi can be thought of as the sum of 1 + A + B latent outcome variables, that

is

Yi = Y(0)
i +

A∑
a=1

Y(a)
i +

B∑
b=1

Y(A+b)
i ,

where

Y(0)
i ∼ Poisson(Niα

′
0)

Y(a)
i ∼ Poisson(Niαa(uia)) a = 1, . . . , A

Y(A+b)
i ∼ Poisson(Niβ

′
bv
′
ib) b = 1, . . . , B.

To find the MLE, an EM algorithm can be defined in which the unobserved Y(j)
i ,

i = 1, . . . , n, j = 0, . . . , A + B, are treated as missing data. However, because the

means of these latent Poisson variables must be non-negative, this complete-data model

imposes a non-negativity constraint on each of the individual model parameters. Given

non-negative starting estimates θ̂′(0) = (α̂
′(0)
0 , α̂

(0)
1 , . . . , α̂

(0)
A , β̂

′(0)
1 , . . . β̂

′(0)
B ), the updated

estimates at the (c+ 1)th iteration are given by

α̂
′(c+1)
0 = α̂

′(c)
0

∑n
i=1

(
Yi/Λ(ui,vi; θ̂

(c))
)

∑n
i=1 Ni

α̂(c+1)
a (u) = α̂

(c)
0 (u)

∑
i∈Iau

(
Yi/Λ(ui,vi; θ̂

(c))
)

∑
i∈Iau Ni

β̂
′(c+1)
b = β̂

′(c)
b

∑n
i=1

(
Yiv
′
ib/Λ(ui,vi; θ̂

(c))
)

∑n
i=1Niv′ib

,

where Iau = {i : uia = u}, and the estimates are guaranteed to remain non-negative at
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every iteration.

In fact, this non-negativity restriction on each of the parameters ensures that the

covariate vector (r, s) = (r1, . . . , rA, s1, . . . , sB) gives the smallest fitted rate of any

(u,v) ∈ U × V . That is, the parameter space considered by the EM algorithm for a

particular choice of (r, s) is

Θ(r, s) = {θ : Λ(u,v;θ) ≥ Λ(r, s;θ) ≥ 0, (u,v) ∈ U × V}.

The key to the CEM algorithm is that the union of these parameter subspaces coincides

with the full parameter space Θ. This means that if we implement the EM algorithm

for each possible choice of (r, s), we will find a constrained MLE for each parameter

subspace, and that which has the highest likelihood must be the overall MLE. The

total number of parameter subspaces is
∏A

a=1 ka × 2B.

Once we have found the overall MLE, we invert (2.13) to obtain the parameter estimates

on their original scale.

Log-link binomial model

For the log-link binomial model, we have Yi ∼ Bin(Ni, λi) where log(λi) = Λ(ui,vi;θ).

The fitted risk λi must be in [0, 1], and so the linear predictor requires a non-positivity

constraint, as defined in (2.4).

The CEM algorithm for this model, presented by Marschner and Gillett (2012), is based

on the fact that the product of independent Bernoulli random variables is also Bernoulli,

with an event probability that is the product of the individual event probabilities. Thus

the EM algorithm is derived by considering the binary outcome to be composed of a

collection of unobserved Bernoulli random variables.

The parameter space is partitioned in a similar way as for the additive Poisson model,

except here the latent event probabilities must be in [0, 1], so the complete-data model

imposes non-positivity constraints on the individual parameters in the model. This

corresponds to a parameter subspace of

Θ(r, s) = {θ : Λ(u,v;θ) ≤ Λ(r, s;θ) ≤ 0, (u,v) ∈ U × V},

that is, the space in which the reference vector (r, s) corresponds to the largest fittest
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risk. In a similar fashion to the additive Poisson model, it is easy to verify that the

union of these subspaces over all possible choices of (r, s) is the full parameter space

Θ.

At the (c + 1)th iteration of the EM algorithm, the parameter estimates are updated

using

α̂
′(c+1)
0 = log

(
n∑
i=1

Ŷ(0)(c)
i

/
n∑
i=1

Ni

)

α̂(c+1)
a (u) = log

(∑
i∈Iau

Ŷ(a)(c)
i

/∑
i∈Iau

Ni

)

β̂
′(c+1)
b = log

(
n∑
i=1

Ŷ(A+b)(c)
i v′ib

/
n∑
i=1

Niv
′
ib

)
,

where

Ŷ(0)(c)
i = Yi + (Ni − Yi)

exp(α̂
′(c)
0 )− exp(Λ(ui,vi; θ̂

(c)))

1− exp(Λ(ui,vi; θ̂(c)))

Ŷ(a)(c)
i = Yi + (Ni − Yi)

exp(α̂
(c)
a (uia))− exp(Λ(ui,vi; θ̂

(c)))

1− exp(Λ(ui,vi; θ̂(c)))

Ŷ(A+b)(c)
i = Yi + (Ni − Yi)

exp(β̂
′(c)
b )− exp(Λ(ui,vi; θ̂

(c)))

1− exp(Λ(ui,vi; θ̂(c)))
.

Starting with non-positive initial estimates, the updated parameter estimates are guar-

anteed to remain non-positive at all iterations, and hence are always in the parameter

subspace Θ(r, s). The EM algorithm is iterated until convergence, and repeated to

find the constrained MLE for each parameter subspace. Again, the overall MLE is the

constrained MLE with the highest likelihood and we can return the estimates to their

original scale by inverting (2.13).

General CEM algorithm

The previous examples, and the new methods developed in this thesis, are implemen-

tations of CEM algorithms (Marschner, 2014). In general, a CEM algorithm is an

approach in which we consider a finite family of complete-data models, indexed by

t ∈ T , each of which has a parameter space Θ(t) that is a subset of the parameter
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space Θ for the model of interest, such that

⋃
t∈T

Θ(t) = Θ. (2.14)

The complete-data models are defined such that an EM algorithm can be used to find

the constrained maximum likelihood estimate θ̂(t) within each Θ(t). Then, due to

(2.14), the θ̂(t) that attains the highest likelihood is the MLE θ̂.

In fact, any generalised EM algorithm (Dempster, Laird, and Rubin, 1977) can be used

to find each θ̂(t), and will provide stable convergence under the conditions mentioned

in Section 2.2.2. In the examples given above, the standard EM algorithm was used,

while Marschner, Gillett, and O’Connell (2012) employed the ECM algorithm to fit a

stratified additive Poisson model. In Chapter 5, we use an ECME algorithm for fitting

an additive negative binomial model.

For models with a large number of predictors, an exhaustive search over all parameter

subspaces can be computationally expensive, particularly because an EM algorithm

must be applied within each. However, the calculations within each subspace are

independent, and so the total computing time may be reduced by running the EM

algorithms in parallel on multiple CPUs.

There are also some strategies that can be employed to reduce the number of parameter

subspaces that must be searched for the global maximum (Marschner, 2014). One of

the simplest is that when the log-likelihood function is globally concave, stationarity

is a sufficient condition for an estimate to be the overall MLE. Thus, if a stationary

maximum is found within a particular subspace, this is the overall MLE and no further

subspaces need to be searched.

2.2.4 B-splines

Marschner (2010) and Marschner and Gillett (2012) extended the additive Poisson

and log-link binomial GLMs to GAMs by effectively using step functions as the set of

basis functions in (2.8), such that the model parameters represent the increments in the

unknown fc between observed values of the covariate wc. If these increments are allowed

to take any value, the model can be fitted by simply treating the unique observed values

as the levels of a categorical covariate. Alternatively, if the relationship between the
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covariate and the risk or rate can be assumed to be monotonic, the increments can be

restricted to be either non-negative or non-positive by exploiting the natural constraints

applied by the underlying complete-data models. In Section 3.5, we use this approach

to extend the additive binomial model in a similar way.

However, although this method provides some flexibility for continuous covariates be-

yond a linear relationship, it typically requires that a large number of parameters are

estimated, and, in the case of biological processes that produce a smooth relationship

between a continuous covariate and risk, the resulting jagged regression curve may

not be an accurate representation of reality. In Chapter 4, we demonstrate that an

alternative set of basis functions, the B-splines, can be used to provide smooth flexible

regression without requiring a large number of degrees of freedom.

The B-splines (de Boor, 1978) are a family of polynomial splines constructed from the

B-spline basis functions. Any polynomial spline is made up of a series of polynomials

joined end-to-end at a series of q fixed turning points ξ1 < · · · < ξq, where ξ1 and ξq

are the endpoints of the range of the continuous covariate. Between any two adjacent

turning points, the spline is a polynomial of order κ (degree κ − 1). Usually, it is

desirable that the polynomials join smoothly at the turning points, but the B-splines

can be defined to allow for different levels of smoothness at the turning points, or even

discontinuities.

To achieve this, we use the notation of Ramsay (1988) and specify the desired continuity

criteria by using νd ≤ κ (d = 1, . . . , q−2) to represent the case where the curves meeting

at ξd+1 agree up to their (νd − 1)th derivative. That is, if νd = 2, the adjacent curves

will have matching gradients at the turning point; if νd = 1, they meet at the same

value but need not have any matching derivatives; if νd = 0, the resulting spline is

allowed to be completely discontinuous at ξd+1.

The full specification of the spline can be made by defining a sequence of knots τ1 ≤

· · · ≤ τD+κ, where D is the number of free parameters that are required to specify

the resulting spline: D = (q − 1)κ −
∑

d νd. We begin by placing κ knots at both

the lower and upper ends of the range of the covariate, so τ1 = · · · = τκ = ξ1 and

τD+1 = · · · = τD+κ = ξq. The number of knots placed at each of the internal turning

points depends on the desired level of continuity at that point. Specifically, we place

κ− νe−1 knots at each ξe (e = 2, . . . , q − 1).
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In most cases, it is desirable for the component polynomials of order κ to agree up

to their (κ − 1)th derivative, which is achieved by placing a single knot at each of

the internal turning points, giving 2(κ − 1) + q knots in total. The number of free

parameters is then κ + q − 2, that is, the number of internal turning points plus the

order of the component polynomials.

Given a set of knots τ , the D B-spline basis functions of order κ can be defined

recursively as

Bd(w | κ) =

1 if w ∈ [τd, τd+1)

0 otherwise

for κ = 1, and

Bd(w | κ) =
w − τd

τd+κ−1 − τd
Bd(w | κ− 1) +

τd+κ − w
τd+κ − τd+1

Bd+1(w | κ− 1)

for κ > 1. This is implemented in the R function splineDesign in the splines package

(R Core Team, 2013).

The B-splines of order 3 with one internal turning point (q = 3) are shown in Fig-

ure 4.1(A). Each basis function Bd(w | κ) is non-negative for w ∈ [τd, τd+κ) and zero

elsewhere, such that if all of the B-spline coefficients are non-negative, the resulting

function will be non-negative for all w, and each coefficient has only local influence on

the shape of the smooth curve. This is demonstrated with an example in Section 4.4.2.

Furthermore, the B-spline bases are normalised such that
∑

dBd(w) = 1 for all w.

2.2.5 I-splines

Ramsay (1988) also defines a set of I-spline basis functions, which are so named because

they are obtained by integrating the B-spline bases:

Id(w | κ) =
κ

τd+κ − τd

∫ w

ξ1

Bd(w | κ) dw.

In the case where we have the maximum level of (non-trivial) continuity, with each

vd = κ − 1 and so only one knot at each turning point, this can be written in the
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equivalent form

Id(w | κ) =


0 if w < τd∑f

e=dBe(w | κ+ 1) if w ∈ [τf , τf+1) for f = d, . . . , d+ κ

1 if w ≥ τd+κ

=
D∑
e=d

Be(w | κ+ 1),

where D = κ+ q− 1 and the second line follows because Be(w | κ+ 1) is 0 outside w ∈

[τe, τe+κ+1). Note that here, the κ used in the notation of the I-splines refers to the order

of the integrated B-splines, and hence the order of the I-spline polynomial is actually

κ+1. Furthermore, it is easy to verify that the first I-spline, I1(w), is equal to 1 for all w

due to the normalisation of the B-splines. I-splines are useful because if their coefficients

are all non-negative, the resulting curve will be monotonically non-decreasing. We use

such an approach in Section 4.4.5 to impose a monotonicity constraint on the smooth

semi-parametric regression function, which is motivated by the work of Leitenstorfer

and Tutz (2007) and Tutz and Leitenstorfer (2007).

2.2.6 Model selection

The choice of basis functions places some restrictions on the shape of the estimated

semi-parametric function; for example, the location of possible turning points. Maxi-

mum flexibility can be achieved by allowing for a large number of turning points, but

this can lead to overfitting. To remedy this, Eilers and Marx (1996) introduced pe-

nalised B-splines (P-splines), where a penalty term is subtracted from the log-likelihood

such that large fluctuations in the fitted curve are discouraged (Green and Silverman,

1994).

However, any sensible penalty term will lose the parameter separation that is crucial

to the stability of the EM algorithm, turning the M-step into a multidimensional root-

finding problem (Marschner and Gillett, 2012, Supplementary materials). Instead we

will use unpenalised maximum likelihood estimation and focus on choosing the optimal

number of turning points by using a model selection criterion.

The AIC (Akaike, 1974) is an estimate of the Kullback–Leibler divergence between
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two models. In particular, it is used to estimate the information lost when a model f

is used to approximate the unknown ‘full reality’ f ∗. It is defined as

AIC = 2J − 2`,

where ` is the maximised log-likelihood for the model based on the observed data, and

J is a bias-adjustment term, acting as an estimate of model complexity (Burnham and

Anderson, 2002, pp. 60–64). In some generalised additive models, the computation of

J requires complex calculations, but for unpenalised maximum likelihood estimation,

it is simply the number of estimable parameters in the approximating model f (Wood,

2006, pp. 170–171).

The AICc (Sugiura, 1978) includes a second-order bias correction term for small sample

sizes, and is defined as

AICc =
2Jn

n− J − 1
− 2`

= AIC +
2J(J + 1)

n− J − 1
.

For large n, it is practically identical to AIC. Although its derivation is based on a

model with a normally distributed outcome, it has shown good empirical performance

for non-normal outcomes (Simonoff, 2003), and Burnham and Anderson (2002, pp. 66,

328) recommend that it is used instead of AIC for comparing models in which J is

large relative to n, as long as sample observations are independent and the underlying

distribution is unimodal and not heavily skewed.

Out of a set of candidate models with different numbers of turning points, the one with

the smallest AIC or AICc may be selected as the best. The AIC and AICc do not

require that the candidate models are nested, so the placement of the turning points is

flexible in this regard. These criteria can also be used to compare models that propose

different distributional forms for the outcome variable.
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2.3 Method outline

We end this chapter with an outline of the three main contributions of this thesis,

which are presented in detail in subsequent chapters.

2.3.1 Additive binomial model

In order to estimate adjusted risk differences, we use a binomial GLM with an identity

link function, which we refer to as an additive binomial model. Our method for fitting

additive binomial models makes use of the multinomial–Poisson transformation, out-

lined in Section 2.2.1. The binomial distribution is a special case of the multinomial,

and given an additive model for the risk, we can define an equivalent additive Poisson

model that will have the same MLE. After making the appropriate transformations

to the data, we can therefore adapt the method of Marschner (2010) outlined in Sec-

tion 2.2.3 in order to reliably find the MLE of the additive Poisson model, and then

back-transform it to obtain the additive binomial MLE. Our method also allows for

semi-parametric regression by including flexible isotonic relationships between covari-

ates and the risk.

2.3.2 Flexible semi-parametric regression

We present a general method for incorporating smooth semi-parametric regression into

the additive Poisson, log-link binomial and additive binomial models by using B-splines,

introduced in Section 2.2.4. The properties of the B-spline basis functions, along with

the fact that it is straightforward to impose non-negativity or non-positivity constraints

on chosen parameters in the CEM algorithms used to fit these models, mean that

they can be included by extending the latent outcome model underlying the CEM

algorithm and searching the appropriate parameter subspaces for the MLE. It is also

straightforward to impose a monotonicity restriction on the smooth curves, using the

I-splines described in Section 2.2.5.

2.3.3 Additive negative binomial model

The method for fitting an additive negative binomial regression model follows a similar

idea to that used for the CEM algorithms described in Section 2.2.3. We consider
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an additive negative binomial model in which the outcome variable can be viewed

as the sum of independent latent variables, and this complete-data model imposes

some additional parameter constraints. For a particular parameter subspace, we define

an ECME algorithm to find the constrained MLE of the parameters that represent

adjusted rate differences, as well as the coefficient of overdispersion, and search over

the full series of parameter subspaces in order to find the global MLE. This model

can also include semi-parametric regression functions, with or without monotonicity

restrictions.
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As discussed in Chapter 1, risk is the fundamental biostatistical measure associated

with binary outcomes, and the absolute risk difference is a useful measure of the effect

of an intervention or risk factor. Adjusted risk differences can be estimated using a

binomial generalised linear model with an identity link function, which we refer to as an

additive binomial model. However, as described in Chapter 2, the natural constraints

placed on the parameter space can mean that it is difficult for standard algorithms to

find the maximum likelihood estimate in these models.

As a result, a large number of alternative methods for estimating adjusted risk differ-

ences have been proposed, but these are often inflexible, prone to inefficiency or can

produce invalid fitted risks. In this chapter, we remove the need for such approximate

methods by describing a novel method for maximum likelihood estimation in additive

binomial models that ensures that the parameter estimates are valid and that does not

suffer the convergence issues associated with gradient-based approaches. The method

35
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also permits flexible semi-parametric regression through the inclusion of isotonic re-

gression functions.

The content in this chapter is reproduced from the published peer-reviewed journal

article:

Donoghoe, M. W. and I. C. Marschner (2014). Stable computational methods for ad-

ditive binomial models with application to adjusted risk differences. Computational

Statistics and Data Analysis 80: 184–196. doi: 10.1016/j.csda.2014.06.019.

Minor editorial changes have been made to the article in order to maintain consistency

across this thesis. The supplementary materials for the published article include com-

prehensive results of the simulations described in Section 3.4, which are reproduced

here in Appendix 3.A.

R code for implementing the method described in this chapter was also provided as

supplementary material for the article and is available online at http://dx.doi.org/

10.1016/j.csda.2014.06.019. This has since been superseded by the R package

addreg, which is available online at http://CRAN.R-project.org/package=addreg

and its documentation is presented in Appendix B of this thesis.

Specific contribution of co-authors: I. C. Marschner assisted with conception

of the method, and provided general supervision and feedback on research and writing.

The candidate’s contribution was at least 90% of the total effort required to produce

the article.

http://dx.doi.org/10.1016/j.csda.2014.06.019
http://dx.doi.org/10.1016/j.csda.2014.06.019
http://dx.doi.org/10.1016/j.csda.2014.06.019
http://CRAN.R-project.org/package=addreg
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Stable computational methods for additive binomial

models with application to adjusted risk differences

Mark W. Donoghoe1,2, Ian C. Marschner1,2

1 Department of Statistics, Macquarie University, NSW 2109, Australia

2 NHMRC Clinical Trials Centre, University of Sydney, NSW 2006, Australia

Abstract

Risk difference is an important measure of effect size in biostatistics, for both ran-

domised and observational studies. The natural way to adjust risk differences for

potential confounders is to use an additive binomial model, which is a binomial gen-

eralised linear model with an identity link function. However, implementations of the

additive binomial model in commonly used statistical packages can fail to converge to

the maximum likelihood estimate (MLE), necessitating the use of approximate methods

involving misspecified or inflexible models. A novel computational method is proposed,

which retains the additive binomial model but uses the multinomial–Poisson transfor-

mation to convert the problem into an equivalent additive Poisson fit. The method

allows reliable computation of the MLE, as well as allowing for semi-parametric mono-

tonic regression functions. The performance of the method is examined in simulations

and it is used to analyse two datasets from clinical trials in acute myocardial infarction.

Source code for implementing the method in R is provided as supplementary material.

Keywords: Additive binomial model · Multinomial–Poisson transformation · Risk

difference · Semi-parametric regression

Reprinted from Computational Statistics and Data Analysis 80, M. W. Donoghoe and

I. C. Marschner, Stable computational methods for additive binomial models with

application to adjusted risk differences: 184–196, Copyright (2014), with permission

from Elsevier.
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3.1 Introduction

In biostatistical applications, the risk of an event is the probability of the event oc-

curring within a specific time frame. Risk difference is then the absolute difference in

risk between two groups and is an important measure of effect size. For example, in

randomised clinical trials, risk difference can be used to measure the magnitude of the

treatment effect, while in observational studies it can be used to quantify the associa-

tion between a risk factor and a disease event. Risk difference is important in practice

because it is easier to interpret than the odds ratio and can present an alternative

perspective to the relative risk.

As an important measure of effect size, the risk difference often needs to be adjusted

for covariates. Analogous to logistic regression for estimating adjusted odds ratios, the

natural model for estimating adjusted risk differences is a binomial generalised linear

model (GLM) with identity link function, which we refer to as the additive binomial

model.

The purpose of this paper is to address some common computational difficulties that

arise with the additive binomial model for adjusted risk difference estimation. These

difficulties arise from the requirement that the parameter space is constrained so that

the linear probability model only produces probabilities in [0, 1]. This means that the

model fitting is a constrained optimisation problem, and implementations of Fisher

scoring or related procedures in popular statistics packages may fail to converge. Such

numerical instability can occur even when the maximum likelihood estimate (MLE) is

in the interior of the parameter space.

In light of these problems, there have been many proposals for estimating adjusted

risk differences without using the additive binomial model. These include regression-

based methods such as ordinary least squares or Poisson GLMs. However, with these

methods the model is misspecified and fitted probabilities are not restricted to the

[0, 1] range. Alternative approaches can only provide the adjusted risk difference for

a single binary comparison, and are essentially approximations to estimates from the

additive binomial model. As demonstrated later in the paper, approximate methods

for adjusted risk differences can have some undesirable properties, including loss of

efficiency and violation of the parameter constraints.
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In this paper we show that it is possible to retain the natural additive binomial model

for adjusted risk difference estimation, without introducing numerical instability into

the model-fitting process. We propose a computational method that uses a novel

combination of two existing tools, the multinomial–Poisson transformation and a stable

method for fitting additive Poisson models. A useful property of our approach is that

it can be extended to allow semi-parametric adjustment, which is not available in other

approaches.

We begin by specifying the additive binomial model that can be used to estimate ad-

justed risk differences, along with specification of the constrained parameter space and

likelihood function. We then discuss how this can be recast into an equivalent addi-

tive Poisson estimation problem, using the multinomial–Poisson transformation. This

allows application of stable computational methods for the additive Poisson model in

order to fit the additive binomial model. Subsequently we present a range of simulation

studies and analyses of two clinical trial datasets which demonstrate the advantages

of our approach over competing methods for adjusted risk difference estimation. To

facilitate practical implementation of this approach we have provided R code in the

supplementary materials for this paper.

3.2 Method outline

3.2.1 Model definition

We assume that there are n independent observations Y = (Y1, . . . , Yn), where each

observation Yi is associated with a vector of A categorical and B continuous covariates.

The covariate vector for observation i is therefore xi = (ui,vi) = (ui1, . . . , uiA, vi1, . . . ,

viB). Without loss of generality, we assume that uia ∈ {1, . . . , ka} and vib ∈ R, where

ka is the number of levels of categorical covariate a.

In a binomial GLM, Yi is the number of events observed in a fixed number Ni of

independent Bernoulli trials, where each trial has an event probability p(xi,θ) for

some parameter vector θ. This event probability is referred to as the risk. With an
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identity link function, the risk is assumed to have an additive structure

p(xi,θ) = α0 +
A∑
a=1

αa(uia) +
B∑
b=1

βbvib, (3.1)

with θ = (α0,α1, . . . ,αA,β), where αa = (αa(1), . . . , αa(ka)) and β = (β1, . . . , βB).

Model (3.1) requires A identifiability constraints αa(ra) = 0 for a = 1, . . . , A, where ra

is the chosen reference level for categorical covariate a.

The risk difference for comparing two covariate combinations x1 and x2 is the difference

in risks p(x1,θ) − p(x2,θ). Thus, the parameter αa(u) represents the risk difference

for the uth level of the ath categorical covariate versus the reference level ra, adjusted

for the A − 1 other categorical covariates and B continuous covariates in the model.

Likewise, βb represents the adjusted risk difference associated with a one-unit increase

in the bth continuous covariate.

3.2.2 Parameter space and likelihood function

Since the linear functions p(x,θ) are probabilities, they must lie in the interval [0, 1]

for all x in the (A+B)-dimensional covariate space X . We will define X as the space

containing all possible combinations of the observed values of the covariates, that is

X = U × V , where

U =
A∏
a=1

{1, . . . , ka},

represents all possible combinations of the categorical covariates, and

V =
B∏
b=1

[v
(0)
b , v

(1)
b ],

is the B-dimensional Cartesian product of the observed ranges of the continuous co-

variates, with v
(0)
b = mini{vib} and v

(1)
b = maxi{vib}.

We wish to find the MLE θ̂ of the parameter vector θ, subject to the constraint that

θ̂ lies in the parameter space

Θ = {θ : 0 ≤ p(x,θ) ≤ 1, x ∈ X}. (3.2)
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The likelihood function for the additive binomial model, excluding a constant term, is

L(θ;Y ) =
n∏
i=1

p(xi,θ)Yi(1− p(xi,θ))Ni−Yi .

This model can, in principle, be fitted by any GLM software that fits identity-link

binomial models. However, this approach is often numerically unstable due to the box

constraints specified by (3.2), which can be difficult to handle with standard computa-

tional methods such as Fisher scoring. We therefore consider a more reliable approach

that involves the novel combination of two existing tools described in the next two

subsections.

3.2.3 Multinomial–Poisson transformation

The multinomial–Poisson (MP) transformation, described by Baker (1994), relates

the likelihood for a multinomial model to that of a Poisson model. In general, the

MP transformation applies to observations Zi = (Zi1, . . . , Zij, . . .) from a multinomial

distribution with j ∈ Ji, where Ji is any set of outcome categories for individual i.

Here we describe and apply the MP transformation for the special case of Ji = {1, 2}

for all i, that is, the binomial distribution.

If Yi are observations from a binomial distribution with Ni trials and event probability

pi(θ) for some parameter vector θ, we define the functions gi1 and gi2 such that

gi1(θ)

Gi(θ)
= pi(θ) and

gi2(θ)

Gi(θ)
= 1− pi(θ),

where Gi(θ) = gi1(θ) + gi2(θ).

The likelihood function for θ, excluding a multiplicative constant, is therefore

LB(θ;Y ) =
n∏
i=1

(
gi1(θ)

Gi(θ)

)Yi (gi2(θ)

Gi(θ)

)Ni−Yi
.

Using dummy parameters ϕ = (ϕ1, . . . , ϕn), with all ϕi > 0, the MP transformation of

LB is

LP(θ,ϕ;Z) =
n∏
i=1

2∏
j=1

(ϕigij(θ))Zij exp(−ϕigij(θ)), (3.3)

where Zi1 = Yi and Zi2 = Ni − Yi.
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The MLE of ϕ for fixed θ is ϕ̂i(θ) = Ni/Gi(θ), and substituting this back into (3.3)

gives

LP(θ, ϕ̂(θ);Z) ∝ LB(θ;Y ).

Thus, following the work of Richards (1961) on profile likelihoods, the MLE of θ and

the information matrix are identical for LB(θ) and LP(θ,ϕ). This means that the

MLE for the binomial model may be found by maximising LP, which takes the same

form as the likelihood for a Poisson model with

Zij ∼ Poisson(ϕigij(θ)). (3.4)

The problem of finding the MLE for an additive binomial model (3.1) can thus be

transformed into one of finding the MLE of a Poisson model (3.4) which involves both

multiplicative (ϕ) and additive (θ) components.

For model (3.1), the multiplicative component of (3.4) can be eliminated by defining

gi1(θ) = Nip(xi,θ) and gi2(θ) = Ni(1− p(xi,θ)). (3.5)

Then Gi(θ) = Ni, and the MLEs of the dummy parameters are ϕ̂i = 1 for all i, meaning

that the problem reduces to one of finding the MLE of an additive Poisson model.

Note also that the parameter space for θ which restricts the probabilities pi(θ) to lie

within [0, 1] is the same as that which requires both gi1(θ) ≥ 0 and gi2(θ) ≥ 0 for all

i. That is, the parameter constraints on the binomial probabilities are equivalent to

non-negativity constraints on the Poisson means in (3.4).

3.2.4 Additive Poisson regression

The MP transformation converts an additive binomial fit into an additive Poisson fit.

However, although fitting an additive Poisson model tends to be more numerically

stable than fitting an additive binomial model, it can still be subject to instability

in standard software. We therefore make use of the method presented by Marschner

(2010) for additive Poisson models, which always provides reliable convergence to the

MLE. As well as numerical stability, this method also has a number of other advantages.
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The approach described by Marschner (2010) is a stable variant of the Expectation–

Maximisation (EM) algorithm, and applies to any identity-link Poisson GLM. The

computational method is an example of a combinatorial EM algorithm, which was

presented in general terms by Marschner (2014). The main advantage of this approach

is that it reliably accommodates the required non-negativity constraints on the Poisson

means gij(θ) in (3.5). In addition, the method has some flexible features that enhance

its usefulness. Firstly, while always accommodating the non-negativity constraints

on the Poisson means, the method allows the model fitting to be conducted either

with or without non-negativity constraints on the individual regression parameters θ.

This is a useful feature that we make use of in implementing our method in Section

3.3.2. Secondly, the method can accommodate semi-parametric monotone regression

functions, which allows semi-parametric adjustment of risk differences.

Next we describe in detail how the combination of these two basic methods, the MP

transformation and stable additive Poisson regression, yields a reliable method for the

additive binomial model that can be used for adjusted risk difference estimation.

3.3 Additive binomial regression

3.3.1 Linear covariates

We will begin by examining the case of a single continuous covariate vi, with no other

covariates in the model, so (3.1) reduces to

p(vi,θ) = α0 + βvi.

Without loss of generality we use a rescaled version of the continuous covariate

v∗i =
2vi − (v(0) + v(1))

v(1) − v(0)
,

where v(0) = mini{vi} and v(1) = maxi{vi}, so that v∗i ∈ [−1, 1]. Accordingly, we have

a rescaled parameter vector θ∗ = (α∗0, β
∗), such that p(v,θ) = p(v∗,θ∗), using

α∗0 = α0 +
v(0) + v(1)

2
β and β∗ =

v(1) − v(0)

2
β. (3.6)
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The MP transformation is useful for additive binomial models because an additive

model for p(·, ·) implies an additive model for 1 − p(·, ·). Thus, as in (3.5), we can

define

gij(θ
∗) = Nigj(v

∗
i ,θ

∗) j = 1, 2,

where

g1(v∗i ,θ
∗) = p(v∗i ,θ

∗) = α∗0 + β∗v∗i

g2(v∗i ,θ
∗) = 1− p(v∗i ,θ∗) = (1− α∗0) + β∗(−v∗i ).

This leads to a unified additive model

gj(Vij,θ
∗) = δj + β∗Vij, (3.7)

where Vij = (−1)j−1v∗i and (δ1, δ2) = (α∗0, 1 − α∗0). Note that Vij ∈ [−1, 1] for all i, j,

ensuring that the covariate space is preserved in the unified model.

It follows from the MP transformation discussed in Section 3.2.3 that our problem of

finding the MLE for the additive binomial model is equivalent to finding the MLE for

an additive Poisson model with 2n observations, {(Zi1, Zi2), i = 1, . . . , n}, where

Zij ∼ Poisson(Nigj(Vij,θ
∗)), (3.8)

with Zi1 = Yi and Zi2 = Ni − Yi.

Model (3.8) requires the non-negativity constraints gj(V,θ
∗) ≥ 0 for all V ∈ [−1, 1],

which ensures that p(v∗,θ∗) ∈ [0, 1] for all v∗ ∈ [−1, 1]. Fitting (3.8) subject to these

constraints is achieved using the additive Poisson method of Marschner (2010) with

one categorical covariate and one continuous covariate as specified by (3.7). The final

step is then to transform θ∗ back onto its original scale using the relationships in (3.6).

Extension to B > 1 continuous covariates is straightforward. Each covariate is rescaled

onto [−1, 1], and the MLE for the rescaled additive binomial model is the same as

the MLE for an additive Poisson model with one categorical covariate, B continuous

covariates and 2n observations. This approach allows multiple linear regression models,

which include non-linear polynomial models.
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3.3.2 Categorical covariates

The approach used for continuous covariates does not apply directly to categorical

covariates in an additive binomial model. However, a modification of this approach,

again using the MP transformation, does allow incorporation of categorical covariates.

We begin by considering the model with a single categorical covariate ui ∈ {1, 2, . . . , k},

so model (3.1) reduces to

p(ui,θ) = α0 + α1(ui). (3.9)

Using the identifiability constraint α1(1) = 0, model (3.9) can be rewritten as a linear

model

p(ui,θ) = α0 +
k∑
b=2

βbvib, (3.10)

for an appropriately chosen parameterisation, βb and vib. There are many possible

parameterisations and a natural choice is

βb = α1(b) and vib = 1{ui = b}, (3.11)

so that βb is the contrast between level b and the reference level 1. The representation

(3.10) would then seem to allow the categorical covariate model to be fitted using

the methods described in Section 3.3.1 for linear covariates. In particular, note that

the MP transformation described in Section 3.3.1 can again be applied, so that the

additive binomial model (3.10) can be fitted using the equivalent additive Poisson model

(3.8), with k − 1 linear covariates. However, there is a problem in that the procedure

described in Section 3.3.1 will maximise the likelihood function over the parameter

space that restricts the fitted event probabilities to be in [0, 1] for all possible covariate

combinations (vi2, . . . , vik) in which each vib is in [0, 1]. This is overly restrictive, because

(3.11) does not allow more than one of the vib to equal to 1 for each i. Thus, the method

of Section 3.3.1 applied to the linear covariate model (3.10) would impose additional

constraints that would cause the likelihood function to be maximised over a smaller

parameter space than is desired.

An alternative parameterisation is

βb = α1(b)− α1(b− 1) and vib = 1{ui ≥ b}, (3.12)
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so that the parameters βb represent the increments between successive levels of the cat-

egorical covariate. This parameterisation has an analogous problem to that described

above for parameterisation (3.11), so the method of Section 3.3.1 cannot be applied

directly. However, the advantage of (3.12) is that it allows a simple modification that

rectifies the problem.

As described in Section 3.2.4, Marschner (2010) presented a method for fitting the

additive Poisson model, which can be applied subject to non-negativity constraints on

the regression coefficients. When applied in the present context this method is an EM

algorithm that imposes the constraints βb ≥ 0 for all b = 2, . . . , k, or equivalently,

α1(1) ≤ α1(2) ≤ · · · ≤ α1(k). Although this imposes an undesired order restriction

on the parameters, this constraint can be removed by repeatedly applying the order-

restricted method after permuting the levels of the categorical covariate.

To see this, we first define the set T , which consists of the k! possible permutations

of the levels of ui. For each permutation t ∈ T , there is a corresponding vector of

permuted parameters
(
α

(t)
1 (1), α

(t)
1 (2), . . . , α

(t)
1 (k)

)
. Application of the additive Poisson

method with non-negativity constraints leads to maximisation of the likelihood over

the space

Θ(t) ⊂ Θ = {θ : 0 ≤ p(u,θ) ≤ 1, for all u = 1, . . . , k},

where Θ(t) is the subset of the parameter space Θ that has α
(t)
1 (1) ≤ α

(t)
1 (2) ≤ · · · ≤

α
(t)
1 (k). Since the parameter space Θ may be partitioned into k! such subsets corre-

sponding to the k! orderings t ∈ T , it follows that Θ is the union of these subsets,

Θ =
⋃
t Θ

(t). Thus, having found the constrained maximum within each restricted

parameter space Θ(t), the global maximum over Θ will simply be the constrained max-

imum that achieves the highest likelihood. This procedure of cycling through all possi-

ble permutations of the categorical covariate levels, and applying an EM algorithm for

each permutation, is an example of a combinatorial EM algorithm (Marschner, 2014).

For the model with A > 1 categorical covariates, where covariate a has ka distinct

levels, the same procedure is applicable, except that we must consider the Cartesian

product of all possible permutations of each covariate. This leads to K =
∏A

a=1 ka!

restricted parameter spaces that have to be searched for the MLE. In practice, if one

of these spaces is found to have a stationary maximum, then it is the MLE and the

algorithm may be halted. The same approach can be combined with the method
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described in Section 3.3.1 for linear covariates, to fit the model with A categorical and

B continuous covariates specified in (3.1). In this case the EM algorithm would be

applied a maximum of K = 2B+1
∏A

a=1 ka! times.

3.3.3 Data analysis example 1

The ASSENT-3 study (ASSENT-3 Investigators, 2001) was a clinical trial of 6095 pa-

tients with acute myocardial infarction (heart attack), randomly allocated to treatment

regimens containing antithrombotic therapies. The primary treatment comparison of

interest was between the group allocated to unfractionated heparin (UFH; n = 2038)

and the group allocated to receive enoxaparin (n = 2040). The trial was designed as

a non-inferiority study, with the non-inferiority margin being a 1% risk difference in

favour of UFH for the composite endpoint of 30-day mortality and in-hospital reinfarc-

tion or ischaemia. As a brief numerical illustration we consider estimation of the risk

difference between UFH and enoxaparin, adjusted for age.

For comparative purposes, we begin by investigating the form of the relationship be-

tween age, treatment and risk by fitting binomial GLMs with three different link func-

tions: the logit link (adjusted odds ratio), the log link (adjusted relative risk) and

the identity link (adjusted risk difference). We estimated the adjusted risk difference

using the method presented above, as implemented in an R function called addbin.

The resulting parameter estimates and standard errors (derived from the observed in-

formation matrix) were identical to those found using the glm function in R (R Core

Team, 2013) and PROC GENMOD in SAS (SAS Institute Inc., 2008). For all three link

functions, likelihood ratio tests for the inclusion of either a quadratic age relationship

or an interaction between age and treatment were non-significant, and the parameter

estimates and their approximate standard errors are shown in Table 3.1.

The deviances for the three alternative link functions are comparable, suggesting that

any of these may be appropriate for modelling the risk of an event. This is an example

of a scenario in which risk differences may be useful because they may be considered

more interpretable than other measures, particularly odds ratios.

We will focus on the additive binomial model in order to obtain the treatment effect as a

risk difference, adjusted for age. Whilst asymptotic normality would allow construction
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Table 3.1: Comparison of adjusted effect measures in Example 1, based on GLMs with
logit, log or identity link functions. Adjusted estimates are displayed for the odds ratio
(OR), relative risk (RR) and risk difference (RD). Standard errors were estimated using the
information matrix (SEI) and bootstrap resampling (SEB), and are shown on the log scale
for the logit- and log-link models.

Logit link Log link Identity link

Parameter OR SEI SEB RR SEI SEB RD SEI SEB

Treatment 0.70 0.093 0.093 0.74 0.080 0.080 −0.041 0.010 0.010
Age (per year) 1.03 0.004 0.004 1.03 0.003 0.003 0.003 0.0004 0.0003
Intercept 0.06 0.170 0.171 0.06 0.147 0.151 0.044 0.015 0.018

Scaled deviance 1.068 1.065 1.091

of approximate confidence intervals, this assumption is questionable when the MLE is

close to the boundary of the parameter space. We will demonstrate the stability of our

algorithm by constructing non-parametric confidence intervals based on 1000 bootstrap

samples.

The proposed method converged to the MLE in all 1000 bootstrap samples. In contrast,

PROC GENMOD failed to converge in 214 samples. Figure 3.1 compares the distribution

of the MLEs of each parameter, separated by whether or not PROC GENMOD reached

convergence, demonstrating that confidence intervals obtained from only the converged

samples would be biased.

The glm function available in R failed to converge in only one sample, however, this

non-convergence was concerning because both addbin and PROC GENMOD converged to

a point in the interior of the parameter space. Figure 3.2 shows the deviance achieved

at each iteration of glm, demonstrating the potential instability of the algorithm im-

plemented in R. This type of periodic non-convergence in R has been observed in other

related contexts; see for example Marschner and Gillett (2012). In contrast, Figure 3.2

shows that addbin exhibited stable, albeit slow, convergence.

The additive model yields an estimate of 4.11% for the adjusted risk difference favouring

the enoxaparin arm, with a one-sided 95% confidence interval from bootstrap resam-

pling that extends to a 2.37% risk difference, still in favour of enoxaparin. This is

well below the pre-specified 1% margin in favour of UFH, and so we can conclude that

enoxaparin is not inferior (and in fact is superior) to UFH after adjusting for age. These

adjusted results are consistent with the unadjusted results, which is not unexpected
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Figure 3.1: Smoothed density estimates of the MLE from 1000 bootstrap samples in Ex-
ample 1, using addbin to compute the intercept (top), treatment (middle) and age (bottom)
parameter estimates. Results are separated by whether PROC GENMOD converged (79%, solid
line) or not (21%, dashed line). The vertical line shows the parameter estimate in the original
data.

because age was balanced by randomisation. Nonetheless, the example does provide

an initial numerical illustration of the method’s performance.

3.4 Simulation study

For a more detailed evaluation of the performance of the MLE from an additive binomial

GLM as an estimator of adjusted risk difference, we performed a number of simulation

studies. In these simulations, the MLE was computed using the proposed method

described in Section 3.3, as well as using the glm routine in R and PROC GENMOD in

SAS. We empirically assessed the statistical properties of the proposed method, and

compared it with various alternative non-MLE methods for calculating adjusted risk

differences.
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Figure 3.2: Iteration history for glm (dashed line) and addbin (solid line) in a bootstrap
sample from Example 1. For the addbin iteration history, the number of iterations has been
divided by 100. The dotted line denotes the optimal deviance.

3.4.1 Summary of alternative methods

Misspecified regression models

In cases where the additive binomial model fails to converge, alternative models have

been suggested in which the distribution of the outcome variable is misspecified in order

to estimate the model parameters. Using a Poisson GLM with an identity link was

discussed by Spiegelman and Hertzmark (2005), and Cheung (2007) proposed modified

least squares (MLS), where the binomial risk is represented as the expected value

of a binary dependent variable, and ordinary least squares is used to find parameter

estimates. In both cases, a robust variance estimator is used in calculating confidence

intervals. The fitted risks from MLS are unrestricted, and the fitted Poisson means

are only constrained to be non-negative, so both approaches can produce models with

fitted risks outside [0, 1].

Weighted mean methods

Other alternative methods only estimate the adjusted risk difference for a single binary

comparison, rather than for a multivariable regression model. The first such methods
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were based on data in the form of stratified 2× 2 contingency tables, with the risk dif-

ference estimator being a weighted average of the unadjusted risk differences observed

in each stratum. We examine weighting schemes defined by Cochran (1954) (Cochran–

Mantel–Haenszel), Kleinbaum, Kupper, and Morgenstern (1982) (inverse variance),

Rothman and Boice (1982) (null-weighted), Böhning and Sarol (2000), Greenland and

Holland (1991), and Mehrotra and Railkar (2000) (minimum-risk). To avoid problems

with zero cells, we follow Greenland and Robins (1985) and add c = 0.5 to each cell in

calculating the inverse variance weights.

Other approximations

There exist other methods that are also restricted to a single binary comparison. Lee

(1981) suggested fitting a logistic GLM and finding the average of the difference be-

tween the hypothetical fitted risks calculated as if all individuals had been in ‘group

0’ and those calculated as if all individuals had been in ‘group 1’. Stijnen and Van

Houwelingen (1993) proposed a pseudolikelihood approach for sparse stratified data,

where the distribution of the response variable is misspecified as a standard normal

distribution, such that nuisance parameters are removed from the likelihood and a con-

sistent estimate for the adjusted risk difference can be found. Finally, Lunceford and

Davidian (2004) proposed a number of estimators based on propensity scores, where

the probability of group assignment must be modelled with respect to the adjustment

variables. We examine the IPW2 estimator, later also derived by Ukoumunne et al.

(2010), and the double-robustness estimator, which remains consistent if the model for

the propensity scores is misspecified.

3.4.2 Simulation assumptions

We simulated samples of three different sizes, n = 100, 500 and 5000. Motivated by

Example 1, the risk for individual i was determined by an additive model

p(xi,θ) = α0 + α1(ui) + β1vi,

where ui ∈ {0, 1} is the indicator for randomly-allocated treatment group (0 = control,

1 = intervention) and vi is a continuous covariate for age, generated from a normal
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distribution with mean 62.5 and variance 102, truncated to lie in the range [40, 85].

The parameter of interest is the adjusted risk difference between the treatment groups,

α1(1)− α1(0).

With the adjusted treatment effect taking values 0.05 and 0.15, and the gradient of age

being 0.0015, 0.0030 or 0.0060 per year, we changed the value of α0 to provide three

different scenarios in which the properties of our method could be tested: an average

risk of 0.5; a minimum risk of 0; and a maximum risk of 1.

For each sample size and set of parameter values, we produced 1000 simulations and

estimated the parameters in an additive binomial model using the method described

in Section 3.3, as implemented in the addbin routine. We estimated the bias of the

risk difference parameter estimate, and calculated its sample variance.

We also calculated adjusted risk differences using each of the methods described in

Section 3.4.1, and compared them to the MLE using the estimated mean squared error

(MSE). For the misspecified regression models, which provide estimated risks for each

individual, we counted the number of simulations in which all fitted risks were valid

(within [0, 1]).

3.4.3 Results

The addbin routine found the MLE in all 1000 simulated samples for all 18 parameter

combinations and all sample sizes, demonstrating its stability. The glm routine in R

performed almost as well, but failed to converge in a small number of samples (< 1%)

with low or high risk ranges. PROC GENMOD in SAS converged to the MLE in over 99%

of samples where the average risk was 0.5, but consistently failed to converge in around

50% of samples with risks close to 0 or 1, even with n = 5000.

Misspecified regression models

The MLE and the misspecified regression models all performed well for an average risk

of 0.5, with the relative efficiency of the MLE being in the range 100–106%. Table 3.2

shows results for scenarios with 5% treatment effect and 0.6% age effect per year.

The additive Poisson model was slightly less efficient than the binomial MLE in terms

of both the variance and MSE of its treatment effect estimate, but the difference was
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usually less than 5%. The estimate from the least squares method (MLS) generally

had a lower variance, though the gain in efficiency was less than 1%.

At the lower and upper ends of the risk range, MLS mostly produced estimates with

slightly lower bias but much higher variance than the binomial MLE, and around half

of these MLS models had fitted risks outside [0, 1]. This led to the MLE being more

efficient, in the range 115–125% for this parameter combination. The Poisson model

performed similarly to the MLE at low risks, where its non-negativity constraint on the

fitted means was imposed. At high risks, the additive Poisson model often produced

invalid fitted risks, and was less efficient than the MLE from the additive binomial,

with relative efficiency around 125%.

The full range of results are presented in Section 3.A, Tables 3.A.1–3.A.6, where it

is shown that the differences between methods may be smaller for other parameter

combinations, albeit almost always in favour of the binomial MLE. Nonetheless, this

example shows the potential for large differences in efficiency between the estimates.

Weighted mean methods

The weighted mean approaches generally performed best when the age covariate was

split into 5 categories, and the results for n = 100 and n = 5000 are shown in Ta-

bles 3.A.7–3.A.12. When the average risk was 0.5, the performance of the alternative

methods was generally similar to that of the MLE, with the exception of the inverse

variance and Böhning–Sarol methods, which had inferior performance. Greenland and

Holland’s estimator performed particularly well in the interior of the parameter space

for small n, having a small efficiency advantage (5%) compared to the MLE, but this

was not consistently true close to the boundaries, where relative efficiency ranged from

a 15% advantage to a 20% disadvantage in the parameter combinations we tested.

Other estimators also generally suffered at least some loss of efficiency when risks were

close to 0 or 1, with the exception of the null-weighted method in small samples, which

often had a large bias but small variance, giving efficiency gains of up to 16% in some

scenarios.
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Table 3.2: Simulation results for adjusted treatment effect estimates from additive bino-
mial, Poisson and modified least squares methods with a true treatment risk difference of 5%
and age effect of 0.6% per year. Relative MSE is mean squared error relative to the binomial
method, and “Valid” refers to the percentage of simulations with all fitted risks in [0, 1].

Risk Bias Standard Relative Valid
range n Method (%) deviation MSE (%)

0.34–0.66 100 Binomial 7.25 0.0989 1 100
Poisson 9.51 0.1017 1.058 99.4
Least squares 6.74 0.0987 0.996 99.5

500 Binomial −1.72 0.0445 1 100
Poisson −1.15 0.0449 1.021 100
Least squares −1.57 0.0444 0.998 100

5000 Binomial −1.15 0.0141 1 100
Poisson −1.12 0.0143 1.022 100
Least squares −1.16 0.0141 0.999 100

0–0.32 100 Binomial −6.95 0.0678 1 100
Poisson −6.68 0.0678 1.002 100
Least squares 2.07 0.0745 1.205 47.8

500 Binomial −6.43 0.0285 1 100
Poisson −6.64 0.0287 1.009 100
Least squares −0.36 0.0307 1.140 49.5

5000 Binomial −1.51 0.0089 1 100
Poisson −1.42 0.0089 0.999 100
Least squares −0.48 0.0100 1.252 47.9

0.68–1 100 Binomial −5.31 0.0669 1 100
Poisson 6.32 0.0745 1.242 47.7
Least squares 5.04 0.0719 1.156 48.7

500 Binomial −7.74 0.0300 1 100
Poisson −1.48 0.0338 1.248 49.4
Least squares −1.61 0.0329 1.188 48.4

5000 Binomial −1.12 0.0093 1 100
Poisson −0.22 0.0104 1.252 52.3
Least squares −0.13 0.0102 1.195 51.0

Other approximations

For the approaches that allow only a binary risk difference comparison to be made, we

show the empirical properties relative to the binomial MLE in Tables 3.A.13–3.A.18.

The estimates from the fitted logistic model and pseudolikelihood approach have almost

identical properties, which are very similar to those of the binomial MLE when risks

average 0.5. When risks were closer to 0 or 1, these estimators tended to be less

efficient, resulting in 10–20% greater efficiency for the MLE in some scenarios. Both

propensity score-based methods produced estimates with similar performance to the

MLE in the interior of the parameter space. At the upper and lower boundaries, the

propensity score methods generally had slightly lower bias but larger variance than the
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MLE, resulting in efficiency losses of up to 25%.

3.4.4 Conclusions

Although there were some isolated scenarios in which alternative methods outperformed

the additive binomial MLE for estimating adjusted risk difference, when viewed across

the full range of scenarios, the MLE was the most efficient approach. Those estimators

from misspecified regression models were generally less efficient than the correctly-

specified binomial model, and also were not constrained to produce fitted risks inside

[0, 1]. Other approximate methods required additional assumptions, and while they

performed similarly to the MLE in the interior of the parameter space, they were

substantially less efficient near the boundaries. The various weighted methods require

that adjustment covariates be categorised, and only challenged the efficiency of the

MLE in isolated scenarios.

3.5 Flexible monotonic regression

In some situations we may be confident of the direction of the effect of a continuous or

ordered categorical covariate, but we may not want to restrict the relationship to be

linear. To provide for more flexible modelling, we can include unspecified monotonic

regression functions in our proposed method. This allows semi-parametric adjustment

of risk differences, as well as exploration of an appropriate parametric form for the

regression function.

We now include C monotonic covariates wi = (wi1, . . . , wiC) in the model, where the

contribution of wic to risk is determined by an unspecified non-decreasing function fc.

This leads to a semi-parametric extension of model (3.1):

p(xi,θ) = α0 +
A∑
a=1

αa(uia) +
B∑
b=1

βbvib +
C∑
c=1

fc(wic). (3.13)

The function fc is only estimable at the unique observed values of wic, zc(0) < · · · <

zc(lc), and so for each monotonic covariate we introduce lc parameters

γc(d) = fc(zc(d))− fc(zc(d− 1)), d = 1, . . . , lc,
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with γc(0) = fc(zc(0)) = 0. These parameters represent the non-negative increments

in risk between the observed covariate values. Model (3.13) can then be rewritten in

the linear form

p(xi,θ) = α0 +
A∑
a=1

αa(uia) +
B∑
b=1

βbvib +
C∑
c=1

lc∑
d=1

γc(d)hicd,

where hicd = 1{zc(d) ≤ wic}.

This form of the model means that for each monotonic covariate c we have lc dummy

linear covariates {hicd; d = 1, . . . , lc}. These covariates can therefore be handled in the

same manner as the linear covariates discussed in Section 3.3.1 after transformation to

an additive Poisson model. The only difference with Section 3.3.1 is that the constraints

γc(d) ≥ 0 must be imposed to retain monotonicity of the regression function fc. This

can be handled straightforwardly by the additive Poisson method of Marschner (2010),

which as discussed previously, allows such non-negativity constraints on the parameters.

3.5.1 Data analysis example 2

In Section 3.3.3, we showed an example in which different link functions produced

similar fit, and our method allowed us to estimate an adjusted risk difference with

bootstrapped confidence intervals. Here we demonstrate an example in which an addi-

tive binomial model provides a superior fit, but this is only apparent after identifying

an appropriate functional form for a continuous covariate by first including it in the

model as a semi-parametric monotonic covariate.

The ASSENT-2 study was a double-blind clinical trial to assess the safety and efficacy

of tenecteplase versus alteplase in 16,949 patients with acute myocardial infarction

(MI) treated within six hours (ASSENT-2 Investigators, 1999). The primary outcome

was 30-day mortality after randomisation.

Marschner and Gillett (2012) analysed the ASSENT-2 data using a binomial GLM with

a log link function, focusing on the age-specific relative risk of mortality, adjusting for

MI severity, treatment delay and geographic region. Since mortality in the treatment

arms was virtually identical, treatment was not included in the model.

We repeated the same analysis of the ASSENT-2 data, but this time with an additive

binomial model, such that the parameters represent adjusted risk differences. With



3.5 Flexible monotonic regression 57

40 50 60 70 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Age

R
is

k

Figure 3.3: Age-specific risk of heart attack mortality in Example 2, using an additive risk
model fitted with addbin and adjusted for event severity, treatment delay and region. The
effect of age is specified using linear (dashed), piecewise linear (dotted) and semi-parametric
monotonic (solid) regression functions. Fitted risks are presented for the Western region with
low severity event and treatment delay < 2 hours.

age as a 3-level categorical variable (40–59, 60–75, 76–85 years), and adjusted for MI

severity (Killip class I, II or III/IV), treatment delay (< 2, 2–4, > 4 hours) and region

(Western countries, Latin America, or Eastern Europe), the residual deviance of the

additive risk model fitted using addbin was 91.92 on 65 degrees of freedom compared

to 149.32 for the relative risk model, indicating a superior fit. The fitted risks lie within

[0, 1], and both the glm function in R and PROC GENMOD in SAS successfully converged

to the MLE in the main analysis. However, in 1000 bootstrap samples taken in order

to estimate 95% confidence intervals, while both our method and the glm function

converged in 100% of replications, PROC GENMOD failed to converge in 2.4% of samples.

Since a scaled deviance of 91.92/65 = 1.41 is not adequate, we further investigated

the effect of increasing age on risk by entering it into the model as a 46-level covariate

using a flexible monotonic function, and adjusting for the same categorical covariates

as above. The adjusted age-specific risk from this model is plotted in Figure 3.3, shown
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for the following covariate pattern: low severity event, < 2 hour delay and Western

region. The monotonic model is compared to a model in which age is assumed to have

a linear effect on risk, as well as a model with a piecewise linear effect of age, where the

risk gradient changes at 65 years, as suggested by the shape of the monotonic function.

The linear model is clearly inadequate, having a deviance of 926.13 on 744 degrees of

freedom. The piecewise linear model, however, compares favourably to the monotonic

model and has an adequate fit to the data with a deviance of 722.36 on 743 degrees of

freedom.

The parameter values and their 95% confidence intervals (estimated using bootstrap

resampling) for the piecewise linear model are shown in Table 3.3, compared to those

from the model with age as a simple linear covariate. Under the piecewise linear model,

each year of age up to 65 leads to a mortality risk difference of 0.08%, adjusted for

MI severity, treatment delay and region. After 65 years of age, this rises to a risk

difference of 0.9% per year. This illustrates that flexible monotonic regression, which

is not available in standard implementations of the additive binomial GLM such as in

R and SAS, can suggest a simpler parametric form for modelling risk. In constructing

confidence intervals for the piecewise linear model, our method converged in all 1000

bootstrap samples, whereas the glm function in R failed to converge in one sample and

PROC GENMOD in SAS failed to converge in over 20% of samples.

3.6 Discussion

We have described a computational method for estimating adjusted risk differences

using the additive binomial model. The proposed approach is a novel combination

of two existing methods: the MP transformation and a combinatorial EM algorithm

for additive Poisson regression. This leads to a reliable procedure for computing the

additive binomial MLE, which avoids the convergence problems inherent in standard

GLM algorithms such as Fisher scoring.

Since the proposed method retains the natural additive binomial model, it avoids the

need for other approximate methods for adjusted risk differences, which require us to

misspecify the outcome distribution, make additional assumptions, or classify covari-

ates into a one-dimensional list of strata. Furthermore, even when a standard GLM
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Table 3.3: Risk differences (RD) and 95% confidence intervals (CI) from an additive risk
model with a linear age term, and those from an additive risk model with a piecewise linear
age term on the Example 2 data.

Linear model Piecewise linear model

RD 95% CI RD 95% CI

Age (per year):
40–85 0.0022 (0.0020, 0.0023) — —

40–65 — — 0.0008 (0.0006, 0.0011)
65–85 — — 0.0086 (0.0077, 0.0096)

Severity (Killip class):
I 0 — 0 —
II 0.066 (0.050, 0.082) 0.061 (0.045, 0.076)
III/IV 0.281 (0.226, 0.335) 0.269 (0.216, 0.322)

Delay:
< 2 hours 0 — 0 —
2–4 hours −0.000 (−0.003, 0.003) −0.001 (−0.006, 0.004)
> 4 hours 0.003 (−0.002, 0.010) 0.002 (−0.005, 0.009)

Region:
Western 0 — 0 —
Latin America −0.002 (−0.004, 0.001) −0.002 (−0.008, 0.016)
Eastern Europe 0.032 (0.013, 0.052) 0.037 (0.018, 0.056)

Deviance 926.13 (744 df) 722.36 (743 df)

algorithm does converge for an additive binomial model, the proposed method may still

be advantageous for auxiliary analyses such as the bootstrap, which require convergence

in many samples.

Standard algorithms such as Fisher scoring can sometimes be modified to increase their

stability. One such approach is offered by the glm2 package in R (Marschner, 2011),

which uses a modified step-halving algorithm to ensure that the deviance will decrease

at each iteration. This method converged to the MLE for the model in Example 1,

and had a greater percentage of convergence in our simulations than the standard glm

function, but still failed to converge in some samples. An alternative to standard GLM

methods is a generic constrained optimisation algorithm applied to the additive bino-

mial model. For example, Kovalchik et al. (2013) recently developed a method based

on an adaptive barrier approach, which also includes the more general LEXPIT model.

However, this too failed to converge to the MLE in some of our simulations. Impor-

tantly, our method has an advantage over all others in that it allows for the additional

flexibility of unspecified monotonic regression functions. This allows semi-parametric

adjustment of risk differences, and can also assist in identifying the functional form of
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continuous covariates.

Adjusted risk differences have wide applicability in biostatistics, and this has led to

the use of the additive binomial model in real applications (e.g. Grotvedt et al., 2008;

Adelstein et al., 2011). From an individual perspective, risk difference is often a better

effect measure than relative risk or odds ratio. Furthermore, from a population health

perspective, risk difference is often more relevant than relative measures for assessing

the benefit of a population intervention policy. One reason for this is that the reciprocal

of the risk difference can be interpreted as the average number of individuals from the

population that need to be treated with the intervention for a given time period to

observe one fewer event within that time compared to the control, commonly referred

to as the number needed to treat (Laupacis, Sackett, and Roberts, 1988).

In some datasets the additive binomial model may better characterise the simultaneous

contribution of risk factors to an absolute change in risk, compared to a multiplicative

model such as logistic regression. For example, the presence of an interaction between

covariates on a multiplicative scale may disappear when their effects are considered on

an additive scale, leading to a more parsimonious model for risk.

Our method for additive binomial models has been developed with adjusted risk dif-

ferences in mind, but this model is also appropriate in many other situations. In

epidemiology, adjusted prevalence differences from cross-sectional studies can be es-

timated using the additive binomial model. Linear probability models are also used

in econometrics (Gujarati, 2003) and psychometrics (Maydeu-Olivares, 2005). This

suggests that the proposed method may have broad applicability beyond our primary

motivation of adjusted risk difference estimation.

Supplementary material

Supplementary material related to this article, including R code for implementing this

method, can be found online at http://dx.doi.org/10.1016/j.csda.2014.06.019.

Tables 3.A.1–3.A.18, referenced in Section 3.4.3 are reproduced in Appendix 3.A.

http://dx.doi.org/10.1016/j.csda.2014.06.019
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Appendix

3.A Supplementary material

The following tables summarise the simulation results comparing the adjusted treat-

ment effect estimates from the additive binomial to alternative methods. Tables 3.A.1–

3.A.6 compare the additive binomial to the misspecified regression methods, Tables

3.A.7–3.A.12 compare the additive binomial to weighted methods, and Tables 3.A.13–

3.A.18 compare the additive binomial to approximate methods. Relative MSE is mean

squared error relative to the binomial method. For the regression methods, “Valid” is

the percentage of simulations in which all fitted risks were within [0, 1].
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Table 3.A.1: Additive binomial versus regression methods, with 5% treatment effect and
0.15% age effect.

Risk Bias Standard Relative Valid
range n Method (%) deviation MSE (%)

0.44–0.56 100 Binomial MLE 2.95 0.0988 1 100
Poisson 3.38 0.1002 1.027 99.7
Least squares 3.13 0.0988 1.000 99.8

500 Binomial MLE 0.82 0.0444 1 100
Poisson 0.90 0.0446 1.010 100
Least squares 0.82 0.0444 1.000 100

5000 Binomial MLE −0.20 0.0141 1 100
Poisson −0.17 0.0141 1.001 100
Least squares −0.20 0.0141 1.000 100

0–0.12 100 Binomial MLE −8.60 0.0459 1 100
Poisson −8.17 0.0460 1.005 99.7
Least squares −3.85 0.0461 1.003 37.2

500 Binomial MLE −1.93 0.0205 1 100
Poisson −1.84 0.0205 1.002 100
Least squares 0.20 0.0206 1.005 50.3

5000 Binomial MLE 0.50 0.0065 1 100
Poisson 0.52 0.0065 0.999 100
Least squares 1.01 0.0068 1.082 49.4

0.88–1 100 Binomial MLE −4.95 0.0471 1 100
Poisson 1.52 0.0478 1.026 36.7
Least squares 0.56 0.0472 1.001 36.0

500 Binomial MLE −2.72 0.0205 1 100
Poisson −0.20 0.0207 1.021 50.4
Least squares −0.37 0.0206 1.011 50.1

5000 Binomial MLE −0.60 0.0064 1 100
Poisson 0.04 0.0067 1.092 49.0
Least squares 0.02 0.0066 1.082 47.3
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Table 3.A.2: Additive binomial versus regression methods, with 5% treatment effect and
0.3% age effect.

Risk Bias Standard Relative Valid
range n Method (%) deviation MSE (%)

0.41–0.59 100 Binomial MLE 9.54 0.1006 1 100
Poisson 9.14 0.1023 1.035 99.9
Least squares 9.14 0.1005 0.997 99.8

500 Binomial MLE 0.98 0.0440 1 100
Poisson 1.25 0.0443 1.012 100
Least squares 0.94 0.0440 1.001 100

5000 Binomial MLE −0.83 0.0147 1 100
Poisson −0.83 0.0148 1.009 100
Least squares −0.83 0.0147 1.000 100

0–0.19 100 Binomial MLE −3.33 0.0539 1 100
Poisson −3.19 0.0543 1.012 100
Least squares 3.47 0.0568 1.107 45.9

500 Binomial MLE −4.60 0.0241 1 100
Poisson −4.57 0.0242 1.006 100
Least squares −0.93 0.0252 1.079 49.2

5000 Binomial MLE −1.68 0.0073 1 100
Poisson −1.66 0.0073 1.004 100
Least squares −0.68 0.0076 1.086 50.5

0.82–1 100 Binomial MLE −5.61 0.0566 1 100
Poisson −1.04 0.0608 1.154 47.1
Least squares −1.56 0.0597 1.111 46.8

500 Binomial MLE −6.42 0.0246 1 100
Poisson −1.68 0.0260 1.102 50.8
Least squares −1.90 0.0256 1.074 49.9

5000 Binomial MLE −1.17 0.0076 1 100
Poisson −0.29 0.0083 1.192 51.7
Least squares −0.32 0.0083 1.166 50.2
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Table 3.A.3: Additive binomial versus regression methods, with 5% treatment effect and
0.6% age effect.

Risk Bias Standard Relative Valid
range n Method (%) deviation MSE (%)

0.34–0.66 100 Binomial MLE 7.25 0.0989 1 100
Poisson 9.51 0.1017 1.058 99.4
Least squares 6.74 0.0987 0.996 99.5

500 Binomial MLE −1.72 0.0445 1 100
Poisson −1.15 0.0449 1.021 100
Least squares −1.57 0.0444 0.998 100

5000 Binomial MLE −1.15 0.0141 1 100
Poisson −1.12 0.0143 1.022 100
Least squares −1.16 0.0141 0.999 100

0–0.32 100 Binomial MLE −6.95 0.0678 1 100
Poisson −6.68 0.0678 1.002 100
Least squares 2.07 0.0745 1.205 47.8

500 Binomial MLE −6.43 0.0285 1 100
Poisson −6.64 0.0287 1.009 100
Least squares −0.36 0.0307 1.140 49.5

5000 Binomial MLE −1.51 0.0089 1 100
Poisson −1.42 0.0089 0.999 100
Least squares −0.48 0.0100 1.252 47.9

0.68–1 100 Binomial MLE −5.31 0.0669 1 100
Poisson 6.32 0.0745 1.242 47.7
Least squares 5.04 0.0719 1.156 48.7

500 Binomial MLE −7.74 0.0300 1 100
Poisson −1.48 0.0338 1.248 49.4
Least squares −1.61 0.0329 1.188 48.4

5000 Binomial MLE −1.12 0.0093 1 100
Poisson −0.22 0.0104 1.252 52.3
Least squares −0.13 0.0102 1.195 51.0
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Table 3.A.4: Additive binomial versus regression methods, with 15% treatment effect
and 0.15% age effect.

Risk Bias Standard Relative Valid
range n Method (%) deviation MSE (%)

0.39–0.61 100 Binomial MLE 0.33 0.0977 1 100
Poisson 1.24 0.0991 1.030 99.8
Least squares 0.08 0.0974 0.994 99.9

500 Binomial MLE −1.13 0.0441 1 100
Poisson −0.94 0.0442 1.006 100
Least squares −1.14 0.0441 1.000 100

5000 Binomial MLE 0.20 0.0140 1 100
Poisson 0.24 0.0140 1.001 100
Least squares 0.20 0.0140 1.000 100

0–0.22 100 Binomial MLE −3.58 0.0616 1 100
Poisson −3.38 0.0617 1.003 100
Least squares −2.05 0.0610 0.976 30.8

500 Binomial MLE 0.14 0.0274 1 100
Poisson 0.21 0.0274 1.000 100
Least squares 0.46 0.0274 0.999 46.6

5000 Binomial MLE −0.18 0.0085 1 100
Poisson −0.17 0.0085 1.000 100
Least squares −0.04 0.0085 1.014 48.8

0.78–1 100 Binomial MLE −2.29 0.0589 1 100
Poisson 0.11 0.0587 0.991 33.7
Least squares −0.89 0.0580 0.969 34.4

500 Binomial MLE −0.38 0.0276 1 100
Poisson 0.19 0.0277 1.008 48.8
Least squares −0.01 0.0276 0.997 48.8

5000 Binomial MLE 0.02 0.0086 1 100
Poisson 0.13 0.0087 1.027 51.0
Least squares 0.11 0.0087 1.020 48.4
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Table 3.A.5: Additive binomial versus regression methods, with 15% treatment effect
and 0.3% age effect.

Risk Bias Standard Relative Valid
range n Method (%) deviation MSE (%)

0.36–0.64 100 Binomial MLE 1.34 0.1073 1 100
Poisson 2.55 0.1091 1.036 99.2
Least squares 1.15 0.1070 0.995 99.9

500 Binomial MLE −0.46 0.0443 1 100
Poisson −0.31 0.0445 1.010 100
Least squares −0.48 0.0443 1.001 100

5000 Binomial MLE 0.34 0.0136 1 100
Poisson 0.34 0.0136 1.005 100
Least squares 0.34 0.0136 1.000 100

0–0.29 100 Binomial MLE −2.13 0.0688 1 100
Poisson −1.87 0.0691 1.008 100
Least squares 0.28 0.0683 0.983 45.1

500 Binomial MLE −1.53 0.0307 1 100
Poisson −1.40 0.0307 0.998 100
Least squares −0.87 0.0314 1.037 48.5

5000 Binomial MLE −0.43 0.0095 1 100
Poisson −0.41 0.0095 1.000 100
Least squares −0.33 0.0096 1.027 53.1

0.72–1 100 Binomial MLE −1.46 0.0683 1 100
Poisson 0.99 0.0694 1.033 47.0
Least squares 0.13 0.0682 0.997 46.9

500 Binomial MLE −0.56 0.0306 1 100
Poisson 0.61 0.0310 1.024 49.9
Least squares 0.37 0.0308 1.010 50.1

5000 Binomial MLE −0.31 0.0094 1 100
Poisson −0.11 0.0097 1.065 52.8
Least squares −0.13 0.0096 1.048 52.0
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Table 3.A.6: Additive binomial versus regression methods, with 15% treatment effect
and 0.6% age effect.

Risk Bias Standard Relative Valid
range n Method (%) deviation MSE (%)

0.29–0.71 100 Binomial MLE −1.79 0.1038 1 100
Poisson −0.51 0.1054 1.030 99.2
Least squares −1.87 0.1036 0.997 99.1

500 Binomial MLE 1.14 0.0443 1 100
Poisson 1.42 0.0443 1.002 100
Least squares 1.13 0.0443 0.999 100

5000 Binomial MLE −0.05 0.0144 1 100
Poisson −0.04 0.0145 1.014 100
Least squares −0.05 0.0144 1.000 100

0–0.42 100 Binomial MLE −5.62 0.0799 1 100
Poisson −5.22 0.0806 1.015 100
Least squares −2.20 0.0807 1.009 51.1

500 Binomial MLE −2.27 0.0339 1 100
Poisson −2.18 0.0339 1.002 100
Least squares −0.87 0.0352 1.069 49.6

5000 Binomial MLE −0.14 0.0104 1 100
Poisson −0.11 0.0104 1.003 100
Least squares 0.09 0.0109 1.097 51.2

0.58–1 100 Binomial MLE −5.91 0.0806 1 100
Poisson −1.34 0.0849 1.097 54.0
Least squares −2.31 0.0820 1.024 54.2

500 Binomial MLE −3.44 0.0356 1 100
Poisson −1.50 0.0374 1.083 49.9
Least squares −1.72 0.0365 1.036 49.9

5000 Binomial MLE −0.61 0.0105 1 100
Poisson −0.28 0.0112 1.137 50.2
Least squares −0.30 0.0109 1.081 49.8
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Table 3.A.7: Additive binomial versus weighted methods, with 5% treatment effect and
0.15% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.44–0.56 100 Binomial MLE 2.95 0.0988 1
CMH 4.29 0.1008 1.041
Böhning–Sarol 8.02 0.1097 1.234
Inverse variance 9.05 0.1083 1.202
Null-weighted 2.63 0.1000 1.023
Greenland–Holland 0.59 0.0974 0.972
Minimum risk 4.96 0.1017 1.060

5000 Binomial MLE −0.20 0.0141 1
CMH −0.19 0.0141 1.002
Böhning–Sarol −0.64 0.0147 1.088
Inverse variance −0.01 0.0141 1.007
Null-weighted −0.18 0.0141 1.003
Greenland–Holland −0.27 0.0141 1.001
Minimum risk −0.15 0.0141 1.003

0–0.12 100 Binomial MLE −8.60 0.0459 1
CMH −4.03 0.0467 1.031
Böhning–Sarol −2.54 0.0506 1.209
Inverse variance −21.57 0.0415 0.865
Null-weighted −24.41 0.0405 0.844
Greenland–Holland −20.13 0.0419 0.874
Minimum risk −9.38 0.0450 0.963

5000 Binomial MLE 0.50 0.0065 1
CMH 1.01 0.0068 1.078
Böhning–Sarol 1.33 0.0073 1.248
Inverse variance −0.69 0.0066 1.033
Null-weighted −0.82 0.0066 1.028
Greenland–Holland 1.00 0.0068 1.081
Minimum risk 0.73 0.0067 1.051

0.88–1 100 Binomial MLE −4.95 0.0471 1
CMH 0.51 0.0481 1.039
Böhning–Sarol 2.18 0.0520 1.214
Inverse variance −17.52 0.0431 0.870
Null-weighted −20.27 0.0420 0.839
Greenland–Holland −16.68 0.0430 0.861
Minimum risk −4.96 0.0464 0.971

5000 Binomial MLE −0.60 0.0064 1
CMH 0.01 0.0067 1.084
Böhning–Sarol 0.02 0.0071 1.226
Inverse variance −1.24 0.0064 1.026
Null-weighted −1.36 0.0064 1.027
Greenland–Holland 0.00 0.0067 1.086
Minimum risk −0.21 0.0066 1.058
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Table 3.A.8: Additive binomial versus weighted methods, with 5% treatment effect and
0.3% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.41–0.59 100 Binomial MLE 9.54 0.1006 1
CMH 7.36 0.1022 1.032
Böhning–Sarol 11.34 0.1098 1.192
Inverse variance 12.01 0.1120 1.240
Null-weighted 5.73 0.1015 1.016
Greenland–Holland 3.46 0.0983 0.954
Minimum risk 7.77 0.1032 1.051

5000 Binomial MLE −0.83 0.0147 1
CMH −0.85 0.0147 1.000
Böhning–Sarol −0.60 0.0158 1.154
Inverse variance −0.69 0.0148 1.004
Null-weighted −0.85 0.0147 1.000
Greenland–Holland −0.93 0.0147 0.998
Minimum risk −0.82 0.0147 1.001

0–0.19 100 Binomial MLE −3.33 0.0539 1
CMH 4.87 0.0585 1.175
Böhning–Sarol 4.03 0.0614 1.295
Inverse variance −8.66 0.0526 0.956
Null-weighted −12.17 0.0510 0.905
Greenland–Holland −1.11 0.0560 1.078
Minimum risk 1.78 0.0569 1.114

5000 Binomial MLE −1.68 0.0073 1
CMH −0.71 0.0076 1.089
Böhning–Sarol −0.67 0.0082 1.250
Inverse variance −2.26 0.0075 1.090
Null-weighted −2.41 0.0075 1.093
Greenland–Holland −0.72 0.0076 1.091
Minimum risk −0.97 0.0075 1.060

0.82–1 100 Binomial MLE −5.61 0.0566 1
CMH −1.02 0.0600 1.123
Böhning–Sarol 1.10 0.0639 1.271
Inverse variance −12.94 0.0533 0.898
Null-weighted −16.23 0.0514 0.842
Greenland–Holland −6.77 0.0569 1.011
Minimum risk −3.68 0.0584 1.064

5000 Binomial MLE −1.17 0.0076 1
CMH −0.31 0.0083 1.168
Böhning–Sarol −0.44 0.0089 1.366
Inverse variance −1.20 0.0077 1.032
Null-weighted −1.35 0.0077 1.033
Greenland–Holland −0.33 0.0083 1.170
Minimum risk −0.45 0.0081 1.127
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Table 3.A.9: Additive binomial versus weighted methods, with 5% treatment effect and
0.6% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.34–0.66 100 Binomial MLE 7.25 0.0989 1
CMH 6.88 0.1001 1.023
Böhning–Sarol 6.73 0.1069 1.167
Inverse variance 12.95 0.1092 1.222
Null-weighted 4.66 0.1003 1.027
Greenland–Holland 2.87 0.0964 0.949
Minimum risk 6.83 0.1013 1.048

5000 Binomial MLE −1.15 0.0141 1
CMH −1.17 0.0141 1.002
Böhning–Sarol −1.17 0.0151 1.144
Inverse variance −1.02 0.0141 1.004
Null-weighted −1.18 0.0141 1.002
Greenland–Holland −1.24 0.0141 1.001
Minimum risk −1.14 0.0141 1.002

0–0.32 100 Binomial MLE −6.95 0.0678 1
CMH 1.88 0.0765 1.272
Böhning–Sarol 0.47 0.0821 1.462
Inverse variance −6.60 0.0717 1.118
Null-weighted −10.85 0.0680 1.012
Greenland–Holland −1.02 0.0744 1.203
Minimum risk 0.41 0.0755 1.237

5000 Binomial MLE −1.51 0.0089 1
CMH −0.45 0.0100 1.258
Böhning–Sarol −0.18 0.0108 1.470
Inverse variance −1.24 0.0094 1.107
Null-weighted −1.39 0.0093 1.105
Greenland–Holland −0.47 0.0100 1.261
Minimum risk −0.58 0.0098 1.206

0.68–1 100 Binomial MLE −5.31 0.0669 1
CMH 4.18 0.0740 1.224
Böhning–Sarol 5.45 0.0781 1.364
Inverse variance −0.76 0.0694 1.076
Null-weighted −6.03 0.0655 0.960
Greenland–Holland 0.69 0.0718 1.153
Minimum risk 3.25 0.0729 1.186

5000 Binomial MLE −1.12 0.0093 1
CMH −0.07 0.0102 1.196
Böhning–Sarol −0.03 0.0109 1.380
Inverse variance −0.11 0.0097 1.083
Null-weighted −0.25 0.0096 1.078
Greenland–Holland −0.12 0.0102 1.198
Minimum risk −0.04 0.0100 1.157
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Table 3.A.10: Additive binomial versus weighted methods, with 15% treatment effect
and 0.15% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.39–0.61 100 Binomial MLE 0.33 0.0977 1
CMH −0.14 0.0996 1.040
Böhning–Sarol −0.56 0.1046 1.147
Inverse variance 7.02 0.1103 1.287
Null-weighted −0.64 0.0999 1.046
Greenland–Holland −3.91 0.0961 0.971
Minimum risk 1.02 0.1012 1.074

5000 Binomial MLE 0.20 0.0140 1
CMH 0.21 0.0140 1.002
Böhning–Sarol 0.32 0.0149 1.136
Inverse variance 0.38 0.0140 1.006
Null-weighted 0.21 0.0140 1.001
Greenland–Holland 0.13 0.0140 1.000
Minimum risk 0.24 0.0140 1.002

0–0.22 100 Binomial MLE −3.58 0.0616 1
CMH −2.19 0.0615 0.990
Böhning–Sarol −1.80 0.0669 1.172
Inverse variance −12.84 0.0600 1.039
Null-weighted −16.39 0.0583 1.046
Greenland–Holland −11.92 0.0570 0.934
Minimum risk −4.48 0.0609 0.982

5000 Binomial MLE −0.18 0.0085 1
CMH −0.06 0.0086 1.017
Böhning–Sarol −0.02 0.0090 1.134
Inverse variance −0.58 0.0086 1.026
Null-weighted −0.70 0.0086 1.035
Greenland–Holland 0.00 0.0086 1.020
Minimum risk −0.15 0.0085 1.014

0.78–1 100 Binomial MLE −2.29 0.0589 1
CMH −0.85 0.0588 0.996
Böhning–Sarol −1.26 0.0632 1.150
Inverse variance −11.24 0.0590 1.082
Null-weighted −14.54 0.0579 1.102
Greenland–Holland −10.22 0.0554 0.949
Minimum risk −3.09 0.0587 0.996

5000 Binomial MLE 0.02 0.0086 1
CMH 0.12 0.0087 1.020
Böhning–Sarol 0.20 0.0092 1.148
Inverse variance −0.28 0.0087 1.011
Null-weighted −0.41 0.0087 1.017
Greenland–Holland 0.15 0.0087 1.022
Minimum risk 0.05 0.0087 1.015
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Table 3.A.11: Additive binomial versus weighted methods, with 15% treatment effect
and 0.3% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.36–0.64 100 Binomial MLE 1.34 0.1073 1
CMH 0.37 0.1086 1.024
Böhning–Sarol 0.65 0.1153 1.154
Inverse variance 6.55 0.1188 1.234
Null-weighted −0.92 0.1079 1.012
Greenland–Holland −3.34 0.1045 0.951
Minimum risk 1.16 0.1097 1.045

5000 Binomial MLE 0.34 0.0136 1
CMH 0.34 0.0136 0.999
Böhning–Sarol 0.33 0.0146 1.161
Inverse variance 0.50 0.0136 1.004
Null-weighted 0.34 0.0136 0.999
Greenland–Holland 0.26 0.0136 0.997
Minimum risk 0.37 0.0136 1.000

0–0.29 100 Binomial MLE −2.13 0.0688 1
CMH 0.32 0.0698 1.027
Böhning–Sarol −0.24 0.0728 1.117
Inverse variance −6.50 0.0696 1.041
Null-weighted −10.72 0.0678 1.022
Greenland–Holland −3.76 0.0673 0.961
Minimum risk −0.96 0.0702 1.041

5000 Binomial MLE −0.43 0.0095 1
CMH −0.33 0.0096 1.026
Böhning–Sarol −0.30 0.0101 1.137
Inverse variance −0.66 0.0095 1.010
Null-weighted −0.80 0.0095 1.014
Greenland–Holland −0.25 0.0096 1.030
Minimum risk −0.39 0.0096 1.016

0.72–1 100 Binomial MLE −1.46 0.0683 1
CMH −0.23 0.0693 1.031
Böhning–Sarol 0.75 0.0760 1.238
Inverse variance −6.94 0.0688 1.039
Null-weighted −11.17 0.0661 0.996
Greenland–Holland −4.09 0.0672 0.976
Minimum risk −1.70 0.0689 1.020

5000 Binomial MLE −0.31 0.0094 1
CMH −0.14 0.0096 1.052
Böhning–Sarol −0.20 0.0103 1.202
Inverse variance −0.42 0.0094 1.007
Null-weighted −0.55 0.0094 1.012
Greenland–Holland −0.08 0.0097 1.059
Minimum risk −0.18 0.0096 1.039
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Table 3.A.12: Additive binomial versus weighted methods, with 15% treatment effect
and 0.6% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.29–0.71 100 Binomial MLE −1.79 0.1038 1
CMH −2.03 0.1054 1.032
Böhning–Sarol −2.55 0.1144 1.217
Inverse variance 3.92 0.1120 1.167
Null-weighted −2.90 0.1043 1.011
Greenland–Holland −5.47 0.1020 0.972
Minimum risk −1.35 0.1060 1.044

5000 Binomial MLE −0.05 0.0144 1
CMH −0.05 0.0144 1.002
Böhning–Sarol −0.09 0.0153 1.118
Inverse variance 0.10 0.0145 1.006
Null-weighted −0.07 0.0144 1.003
Greenland–Holland −0.13 0.0144 1.001
Minimum risk −0.03 0.0145 1.003

0–0.42 100 Binomial MLE −5.62 0.0799 1
CMH −1.91 0.0823 1.050
Böhning–Sarol −1.72 0.0868 1.168
Inverse variance −4.81 0.0816 1.039
Null-weighted −9.90 0.0773 0.959
Greenland–Holland −4.74 0.0805 1.011
Minimum risk −2.41 0.0820 1.042

5000 Binomial MLE −0.14 0.0104 1
CMH 0.10 0.0109 1.103
Böhning–Sarol 0.16 0.0119 1.309
Inverse variance −0.13 0.0106 1.050
Null-weighted −0.28 0.0107 1.054
Greenland–Holland 0.20 0.0109 1.112
Minimum risk 0.07 0.0108 1.083

0.58–1 100 Binomial MLE −5.91 0.0806 1
CMH −2.30 0.0830 1.049
Böhning–Sarol −1.55 0.0882 1.185
Inverse variance −5.18 0.0833 1.065
Null-weighted −9.98 0.0778 0.955
Greenland–Holland −5.34 0.0811 1.010
Minimum risk −2.88 0.0827 1.043

5000 Binomial MLE −0.61 0.0105 1
CMH −0.30 0.0109 1.083
Böhning–Sarol −0.28 0.0115 1.188
Inverse variance −0.49 0.0107 1.031
Null-weighted −0.63 0.0106 1.031
Greenland–Holland −0.23 0.0110 1.091
Minimum risk −0.33 0.0108 1.065
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Table 3.A.13: Additive binomial versus approximate methods, with 5% treatment effect
and 0.15% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.44–0.56 100 Binomial MLE 2.95 0.0988 1
Fitted logistic 3.11 0.0988 1.000
Pseudolikelihood 3.13 0.0988 1.000
IPW2 prop. score 2.94 0.0987 0.997
DR prop. score 2.99 0.0988 1.000

5000 Binomial MLE −0.20 0.0141 1
Fitted logistic −0.20 0.0141 1.000
Pseudolikelihood −0.20 0.0141 1.000
IPW2 prop. score −0.20 0.0141 1.000
DR prop. score −0.20 0.0141 1.000

0–0.12 100 Binomial MLE −8.60 0.0459 1
Fitted logistic −3.71 0.0463 1.011
Pseudolikelihood −3.85 0.0461 1.003
IPW2 prop. score −3.98 0.0461 1.005
DR prop. score −2.49 0.0464 1.016

5000 Binomial MLE 0.50 0.0065 1
Fitted logistic 1.01 0.0068 1.083
Pseudolikelihood 1.01 0.0068 1.082
IPW2 prop. score 1.01 0.0068 1.082
DR prop. score 1.01 0.0068 1.082

0.88–1 100 Binomial MLE −4.95 0.0471 1
Fitted logistic 0.86 0.0473 1.007
Pseudolikelihood 0.56 0.0472 1.001
IPW2 prop. score 0.58 0.0472 1.002
DR prop. score −0.77 0.0477 1.022

5000 Binomial MLE −0.60 0.0064 1
Fitted logistic 0.02 0.0066 1.083
Pseudolikelihood 0.02 0.0066 1.082
IPW2 prop. score 0.02 0.0066 1.082
DR prop. score 0.01 0.0066 1.082
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Table 3.A.14: Additive binomial versus approximate methods, with 5% treatment effect
and 0.3% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.41–0.59 100 Binomial MLE 9.54 0.1006 1
Fitted logistic 9.07 0.1004 0.996
Pseudolikelihood 9.14 0.1005 0.997
IPW2 prop. score 8.99 0.1004 0.996
DR prop. score 9.13 0.1005 0.997

5000 Binomial MLE −0.83 0.0147 1
Fitted logistic −0.83 0.0147 1.000
Pseudolikelihood −0.83 0.0147 1.000
IPW2 prop. score −0.83 0.0147 1.000
DR prop. score −0.82 0.0147 1.000

0–0.19 100 Binomial MLE −3.33 0.0539 1
Fitted logistic 4.06 0.0571 1.122
Pseudolikelihood 3.47 0.0568 1.107
IPW2 prop. score 3.50 0.0569 1.112
DR prop. score 4.37 0.0569 1.113

5000 Binomial MLE −1.68 0.0073 1
Fitted logistic −0.67 0.0076 1.088
Pseudolikelihood −0.68 0.0076 1.086
IPW2 prop. score −0.68 0.0076 1.086
DR prop. score −0.68 0.0076 1.085

0.82–1 100 Binomial MLE −5.61 0.0566 1
Fitted logistic −1.15 0.0598 1.114
Pseudolikelihood −1.56 0.0597 1.111
IPW2 prop. score −1.48 0.0597 1.111
DR prop. score −2.56 0.0600 1.124

5000 Binomial MLE −1.17 0.0076 1
Fitted logistic −0.31 0.0083 1.167
Pseudolikelihood −0.32 0.0083 1.166
IPW2 prop. score −0.32 0.0083 1.166
DR prop. score −0.31 0.0083 1.166
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Table 3.A.15: Additive binomial versus approximate methods, with 5% treatment effect
and 0.6% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.34–0.66 100 Binomial MLE 7.25 0.0989 1
Fitted logistic 6.72 0.0987 0.995
Pseudolikelihood 6.74 0.0987 0.996
IPW2 prop. score 6.80 0.0988 0.998
DR prop. score 6.46 0.0988 0.998

5000 Binomial MLE −1.15 0.0141 1
Fitted logistic −1.16 0.0141 0.999
Pseudolikelihood −1.16 0.0141 0.999
IPW2 prop. score −1.16 0.0141 0.999
DR prop. score −1.17 0.0141 0.999

0–0.32 100 Binomial MLE −6.95 0.0678 1
Fitted logistic 2.57 0.0748 1.214
Pseudolikelihood 2.07 0.0745 1.205
IPW2 prop. score 2.08 0.0745 1.206
DR prop. score 2.61 0.0747 1.211

5000 Binomial MLE −1.51 0.0089 1
Fitted logistic −0.50 0.0100 1.253
Pseudolikelihood −0.48 0.0100 1.252
IPW2 prop. score −0.48 0.0100 1.252
DR prop. score −0.48 0.0100 1.251

0.68–1 100 Binomial MLE −5.31 0.0669 1
Fitted logistic 5.06 0.0721 1.162
Pseudolikelihood 5.04 0.0719 1.156
IPW2 prop. score 5.11 0.0719 1.158
DR prop. score 5.14 0.0723 1.169

5000 Binomial MLE −1.12 0.0093 1
Fitted logistic −0.15 0.0101 1.192
Pseudolikelihood −0.13 0.0102 1.195
IPW2 prop. score −0.13 0.0102 1.195
DR prop. score −0.14 0.0102 1.194
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Table 3.A.16: Additive binomial versus approximate methods, with 15% treatment effect
and 0.15% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.39–0.61 100 Binomial MLE 0.33 0.0977 1
Fitted logistic 0.06 0.0973 0.993
Pseudolikelihood 0.08 0.0974 0.994
IPW2 prop. score 0.05 0.0974 0.995
DR prop. score −0.06 0.0975 0.997

5000 Binomial MLE 0.20 0.0140 1
Fitted logistic 0.20 0.0140 1.000
Pseudolikelihood 0.20 0.0140 1.000
IPW2 prop. score 0.20 0.0140 1.000
DR prop. score 0.20 0.0140 1.000

0–0.22 100 Binomial MLE −3.58 0.0616 1
Fitted logistic −1.89 0.0611 0.977
Pseudolikelihood −2.05 0.0610 0.976
IPW2 prop. score −2.05 0.0610 0.977
DR prop. score −1.74 0.0613 0.983

5000 Binomial MLE −0.18 0.0085 1
Fitted logistic −0.04 0.0085 1.014
Pseudolikelihood −0.04 0.0085 1.014
IPW2 prop. score −0.04 0.0085 1.014
DR prop. score −0.04 0.0085 1.014

0.78–1 100 Binomial MLE −2.29 0.0589 1
Fitted logistic −0.76 0.0580 0.968
Pseudolikelihood −0.89 0.0580 0.969
IPW2 prop. score −0.93 0.0581 0.970
DR prop. score −1.27 0.0584 0.982

5000 Binomial MLE 0.02 0.0086 1
Fitted logistic 0.12 0.0087 1.020
Pseudolikelihood 0.11 0.0087 1.020
IPW2 prop. score 0.11 0.0087 1.020
DR prop. score 0.12 0.0087 1.021
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Table 3.A.17: Additive binomial versus approximate methods, with 15% treatment effect
and 0.3% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.36–0.64 100 Binomial MLE 1.34 0.1073 1
Fitted logistic 1.14 0.1070 0.994
Pseudolikelihood 1.15 0.1070 0.995
IPW2 prop. score 1.10 0.1070 0.994
DR prop. score 1.11 0.1069 0.993

5000 Binomial MLE 0.34 0.0136 1
Fitted logistic 0.34 0.0136 1.000
Pseudolikelihood 0.34 0.0136 1.000
IPW2 prop. score 0.34 0.0136 1.000
DR prop. score 0.34 0.0136 1.000

0–0.29 100 Binomial MLE −2.13 0.0688 1
Fitted logistic 0.41 0.0684 0.985
Pseudolikelihood 0.28 0.0683 0.983
IPW2 prop. score 0.30 0.0684 0.987
DR prop. score 0.57 0.0686 0.992

5000 Binomial MLE −0.43 0.0095 1
Fitted logistic −0.33 0.0096 1.027
Pseudolikelihood −0.33 0.0096 1.027
IPW2 prop. score −0.33 0.0096 1.027
DR prop. score −0.33 0.0096 1.027

0.72–1 100 Binomial MLE −1.46 0.0683 1
Fitted logistic 0.27 0.0682 0.997
Pseudolikelihood 0.13 0.0682 0.997
IPW2 prop. score 0.18 0.0682 0.997
DR prop. score 0.06 0.0684 1.004

5000 Binomial MLE −0.31 0.0094 1
Fitted logistic −0.13 0.0096 1.048
Pseudolikelihood −0.13 0.0096 1.048
IPW2 prop. score −0.13 0.0096 1.048
DR prop. score −0.13 0.0096 1.048
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Table 3.A.18: Additive binomial versus approximate methods, with 15% treatment effect
and 0.6% age effect.

Risk Bias Standard Relative
range n Method (%) deviation MSE

0.29–0.71 100 Binomial MLE −1.79 0.1038 1
Fitted logistic −1.92 0.1036 0.996
Pseudolikelihood −1.87 0.1036 0.997
IPW2 prop. score −1.86 0.1035 0.995
DR prop. score −1.78 0.1035 0.996

5000 Binomial MLE −0.05 0.0144 1
Fitted logistic −0.05 0.0144 1.000
Pseudolikelihood −0.05 0.0144 1.000
IPW2 prop. score −0.05 0.0144 1.000
DR prop. score −0.05 0.0144 1.000

0–0.42 100 Binomial MLE −5.62 0.0799 1
Fitted logistic −2.14 0.0808 1.012
Pseudolikelihood −2.20 0.0807 1.009
IPW2 prop. score −2.21 0.0807 1.011
DR prop. score −2.15 0.0809 1.015

5000 Binomial MLE −0.14 0.0104 1
Fitted logistic 0.09 0.0109 1.099
Pseudolikelihood 0.09 0.0109 1.097
IPW2 prop. score 0.09 0.0109 1.096
DR prop. score 0.09 0.0109 1.096

0.58–1 100 Binomial MLE −5.91 0.0806 1
Fitted logistic −2.22 0.0819 1.021
Pseudolikelihood −2.31 0.0820 1.024
IPW2 prop. score −2.41 0.0821 1.026
DR prop. score −2.51 0.0821 1.028

5000 Binomial MLE −0.61 0.0105 1
Fitted logistic −0.30 0.0109 1.081
Pseudolikelihood −0.30 0.0109 1.081
IPW2 prop. score −0.30 0.0109 1.081
DR prop. score −0.30 0.0109 1.081





4
Semi-parametric regression

In Chapter 3, we described a method for maximum likelihood estimation in additive

binomial models which allows us to estimate adjusted risk differences. By using a

combinatorial EM algorithm, the method avoids the convergence issues that can occur

with the usual gradient-based approaches, and ensures that the estimates always remain

within the parameter space of the model.

This method stands alongside the approaches described by Marschner (2010) and

Marschner and Gillett (2012) that we outlined in Section 2.2.3, which use CEM al-

gorithms to fit additive Poisson and log-link binomial models respectively, in order to

estimate adjusted rate differences and relative risks.

However, these models are somewhat restrictive if we wish to use them to estimate or

adjust for the effect of a continuous covariate on the risk or rate of events. With a fully

parametric model, we must specify in advance the functional form of the relationship

between the covariate and the risk.

Some level of flexibility is provided in each method through semi-parametric isotonic
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regression functions. We showed with an example in Section 3.5.1 how this can be

useful in identifying a parsimonious functional form for a continuous covariate. In that

case, the shape of the isotonic regression curve, which uses a large number of degrees

of freedom, suggested that a piecewise linear model might be appropriate, and this

substantially improved the fit over a simple linear term.

In other situations, however, the shape of the isotonic curve may not suggest a simple

transformation of the continuous covariate, meaning that we cannot find a parsimonious

model with adequate fit. In many contexts, it is also more plausible that the effect of

a continuous covariate on the risk or rate of an event is smooth rather than changing

suddenly at a point, as does a piecewise or step function.

In this chapter, we describe an approach that extends the CEM algorithms for addi-

tive Poisson, additive binomial and log-binomial models to allow for the inclusion of

smooth semi-parametric terms. We demonstrate its use in the ASSENT-2 data from

Section 3.5.1, including a smooth term in place of the piecewise linear function in es-

timating adjusted risk differences and relative risks.

The content in this chapter is reproduced from the published peer-reviewed journal

article:

Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate

differences, risk differences and relative risks. International Journal of Biostatistics

11(1): 91–108. doi: 10.1515/ijb-2014-0044.

Minor editorial changes have been made to the published version of the article in

order to maintain consistency across this thesis. The R packages that implement the

methods described in the article are available online at http://CRAN.R-project.org/

package=logbin and http://CRAN.R-project.org/package=addreg, with their doc-

umentation presented in Appendices A and B of this thesis.

Specific contribution of co-authors: I. C. Marschner assisted with conception

of the method, and provided general supervision and feedback on research and writing.

The candidate’s contribution was at least 90% of the total effort required to produce

the article.

http://dx.doi.org/10.1515/ijb-2014-0044
http://CRAN.R-project.org/package=logbin
http://CRAN.R-project.org/package=logbin
http://CRAN.R-project.org/package=addreg
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Abstract

Generalised additive models (GAMs) based on the binomial and Poisson distribu-

tions can be used to provide flexible semi-parametric modelling of binary and count

outcomes. When used with the canonical link function, these GAMs provide semi-

parametrically adjusted odds ratios and rate ratios. For adjustment of other effect

measures, including rate differences, risk differences and relative risks, non-canonical

link functions must be used together with a constrained parameter space. However, the

algorithms used to fit these models typically rely on a form of the iteratively reweighted

least squares algorithm, which can be numerically unstable when a constrained non-

canonical model is used. We describe an application of a combinatorial EM algorithm

to fit identity-link Poisson, identity-link binomial and log-link binomial GAMs in order

to estimate semi-parametrically adjusted rate differences, risk differences and relative

risks. Using smooth regression functions based on B-splines, the method provides sta-

ble convergence to the maximum likelihood estimates, and it ensures that the estimates

always remain within the parameter space. It is also straightforward to apply a mono-

tonicity constraint to the smooth regression functions. We illustrate the method using

data from a clinical trial in heart attack patients.

Keywords: B-splines · Generalised additive models · Risk models · Semi-parametric

regression

Reprinted from International Journal of Biostatistics 11(1), M. W. Donoghoe and

I. C. Marschner, Flexible regression models for rate differences, risk differences and

relative risks: 91–108. The final publication is available at www.degruyter.com. doi:

10.1515/ijb-2014-0044.

http://www.degruyter.com/
http://dx.doi.org/10.1515/ijb-2014-0044
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4.1 Introduction

Binary and count response data are commonly encountered in biostatistical settings,

and generalised linear models (GLMs) are used to estimate the adjusted effects of

several covariates on the risk or rate of these outcomes. The link function in the GLM

determines the scale on which the effect measure is expressed. Using the canonical link

with a binomial model for binary data gives adjusted odds ratios, and with a Poisson

model for count data gives adjusted rate ratios (McCullagh and Nelder, 1989).

In biostatistics, other effect measures such as adjusted rate differences, risk differences

or relative risks are often of interest, meaning that a non-canonical link function must

be used. Under such models, constraints on the parameter space are required to ensure

that fitted rates are non-negative and fitted risks lie within [0, 1]. However, the fitting

procedures for GLMs in standard statistical software typically rely on a form of the

iteratively reweighted least squares algorithm, which can be numerically unstable and

fail to converge when parameter space constraints are present (Marschner, 2011). Gen-

eral step-size optimisation approaches can improve stability when estimates are close

to the boundary of the parameter space, but these are not guaranteed to converge in

all situations.

Marschner (2010), Donoghoe and Marschner (2014), and Marschner and Gillett (2012)

have described stable methods for finding the maximum likelihood estimate (MLE) of

Poisson GLMs with an identity link, and binomial GLMs with identity and log links.

The methods allow estimation of adjusted rate differences, risk differences and relative

risks respectively, avoiding convergence problems. All of these are applications of the

combinatorial Expectation–Maximisation (CEM) algorithm presented by Marschner

(2014).

With these models, however, the functional form of any continuous covariates must be

specified. Generalised additive models (GAMs) are an extension of GLMs that allow for

extra flexibility through the inclusion of semi-parametric terms (Hastie and Tibshirani,

1990; Wood, 2006). This can potentially lead to a better model fit, or help to identify a

more parsimonious model for the outcome. Model-fitting with GAMs often uses similar

algorithms as those used for GLMs, and hence is subject to similar convergence issues,

particularly with non-standard link functions. In fact, in some GAM packages such as
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PROC GAM in SAS (SAS Institute Inc., 2008), only the canonical link is permitted. In

other packages, such as the R packages discussed in Section 4.6, non-canonical links

are permitted but can be numerically unstable.

In this paper, we extend the existing CEM algorithms for GLMs to GAMs by the

addition of smooth semi-parametric functions based on B-splines (de Boor, 1978; Eilers

and Marx, 1996). We begin by defining the general GAM in Section 4.2, and in

Section 4.3 we explore the properties of the B-spline basis functions. In Section 4.4

we explain the method for finding the MLE of each of these models, as well as how

to apply an optional monotonicity constraint to the smooth functions. In Section 4.5,

we demonstrate our methods by applying them to data from a clinical trial in heart

attack patients. In Section 4.6, we summarise other popular methods for fitting GAMs

and their performance in this dataset.

4.2 Model specification

Consider a sample of independent random variables (Y1, . . . , Yn) with either

Yi ∼ Bin(Ni, λi) or Yi ∼ Poisson(Niλi),

so that E(Yi) = Niλi for some fixed known Ni. The quantity λi is interpreted as a

standardised mean which will be a probability (risk) for the binomial model and a rate

for the Poisson model.

In a GAM, the standardised mean λi is related to a linear combination of covariates

through the link function

g(λi) = Λ(ui,vi,wi;θ) = α0 +
A∑
a=1

αa(uia) +
B∑
b=1

βbvib +
C∑
c=1

fc(wic). (4.1)

Here, ui = (ui1, . . . , uiA) are categorical covariates, where, without loss of generality,

each uia takes a discrete value in {1, . . . , ka}. Linear continuous covariates are denoted

by vi = (vi1, . . . , viB), with each vib allowed to take any value in the range [v
(0)
b , v

(1)
b ],

where v
(0)
b = mini{vib} and v

(1)
b = maxi{vib}. The flexible part of the model is included

through the unspecified non-parametric functions f1, . . . , fC , which take as input the

continuous covariates wi = (wi1, . . . , wiC), and have domain wic ∈ [w
(0)
c , w

(1)
c ].
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In order to impose a finite dimensional structure on the problem, the MLE f̂c of the

unknown fc is restricted to be in the space defined by a specified set of basis functions

Bc1, . . . , BcDc . That is, each fc can be expressed as

fc(w) =
Dc∑
d=1

γcdBcd(w), (4.2)

a restriction we denote by fc ∈ Bc. Thus, the problem becomes one of finding the

MLE of the parameter vector θ = (α0,α,β,γ), where α = (α1(1), . . . , αA(kA)), β =

(β1, . . . , βB) and γ = (γ11, . . . , γcDc).

One possible choice of basis functions is a sequence of indicator functions that serve

as the increments between successive unique observed values of the covariate. That is,

if zc(0) < . . . < zc(Dc) are the Dc + 1 ordered unique values of wic, we can define Dc

basis functions

Bcd(w) = 1{w ≥ zc(d)}, d = 1, . . . , Dc.

The resulting fc is a step function, and each γcd represents the change in g(λ) associated

with an increase in the covariate from zc(d−1) to zc(d). If we constrain these increments

to be strictly non-negative, this is the semi-parametric isotonic model described by

Marschner (2010), Donoghoe and Marschner (2014), and Marschner and Gillett (2012).

Under the step function model, a large number of degrees of freedom are sacrificed in

order to ensure that the semi-parametric function estimate fits closely to the observed

data. Here we will instead focus on a smooth semi-parametric regression technique, in

which the number of parameters that need to be estimated is reduced and fc is smooth.

This could be achieved with any of a wide range of basis functions (Wood, 2006,

pp. 146–167). We will use the polynomial B-splines, as they are highly flexible and

their properties allow us to easily integrate them into the existing CEM algorithms, as

discussed in the next section.
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4.3 B-splines

4.3.1 Definition and properties

The B-splines are a series of basis functions for polynomial splines, defined by a grid of

qc fixed turning points ξc1 < · · · < ξcqc , where ξc1 = w
(0)
c and ξcqc = w

(1)
c , are positioned

at the extremes of the domain. The grid is expanded to form a sequence τc of knots

that determine the degree and continuity of the resulting curve (Ramsay, 1988).

We will restrict our focus to the case of B-splines of order 3, where each basis function

is made up of a series of quadratic curves between each pair of turning points, with

adjacent curves constrained to have equal gradient at their boundaries. The sequence

of qc + 4 knots is defined such that there are three knots at the lower boundary, three

knots at the upper boundary, and one at each of the internal turning points. That is:

τc1 = τc2 = τc3 = ξc1

τcd = ξc(d−2) for d = 4, . . . , qc + 1

τc(qc+2) = τc(qc+3) = τc(qc+4) = ξcqc .

Given a knot sequence, the Dc = qc + 1 B-splines can be calculated recursively (de

Boor, 1978, pp. 128–135). We use Bcd(w) to represent the dth basis function Bd(w; τc)

on knot sequence τc, and Bc = B(τc) to denote the associated function space for fc.

The B-splines are normalised such that

Dc∑
d=1

Bcd(w) = 1 (4.3)

for all w, meaning that a constraint must be applied to the parameters for each c to

ensure that they are identifiable. We do this by setting γctc = 0 for some choice of

tc ∈ {1, . . . , Dc}.

Each basis function Bcd(w) is positive for all w ∈ (τcd, τc(d+3)) and zero elsewhere, taking

its maximum value for some w ∈ (τc(d+1), τc(d+2)). This means that each parameter γcd

has only local influence on the smooth function fc.
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Figure 4.1: (A) B-spline basis functions and (C) example resulting curve with one internal
knot, and (B) the equivalent monotonic B-spline basis functions and (D) resulting curve based
on the same coefficients.

As an illustration, we present a graphical representation in Figure 4.1. The four B-

spline basis functions of order 3 with a single internal turning point, and hence 7 knots,

are shown in Figure 4.1(A). Figure 4.1(C) shows the curve f that results from taking

a particular linear combination of these basis functions

f(w) = 0.009B1(w) + 0.009B2(w) + 0.055B3(w) + 0.235B4(w), (4.4)

which can be equivalently expressed as

f(w) = 0.009 + 0.000B2(w) + 0.045B3(w) + 0.226B4(w)

by using (4.3). Figures 4.1(B) and (D) illustrate the use of B-splines to restrict f to

be monotonic, and will be discussed in Section 4.3.3.
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4.3.2 Model constraints

The models considered in this paper have constraints on their parameter spaces due

to the restricted range of the response variable: rates must be non-negative and risks

must lie in [0, 1]. These constraints are often the source of instability in standard fitting

algorithms, particularly when the MLE is close to the boundary of the parameter space

(Marschner, 2011).

The CEM algorithm is ideal for fitting these models, as it applies the parameter space

constraints while guaranteeing stable convergence to the MLE. A crucial step in the

definition of a CEM algorithm is that the parameter space is partitioned into a sequence

of subspaces, each of which corresponds to a particular set of constraints on individual

parameters. The properties of the B-splines as discussed in Section 4.3.1 allow us to

extend the existing methods to include these semi-parametric functions.

As an example, we restrict our attention to fc ∈ B+
c , the space of strictly non-negative

curves in Bc. This can be done without loss of generality due to (4.3), such that the

range of fc is determined by the intercept α0, and its shape by the B-spline coefficients.

The function space B+
c can be partitioned into subspaces defined by the index of the

smallest coefficient. That is, if we define

B+
c (tc) =

{
f ∈ B+

c : γctc = min
d
{γcd}

}
, (4.5)

it is easy to see that

B+
c =

Dc⋃
tc=1

B+
c (tc). (4.6)

For a particular identifiability constraint γctc = 0, if the remaining coefficients are

restricted to be non-negative, the resulting fc will be a strictly non-negative curve.

Furthermore, γctc will be the smallest of the coefficients; that is, fc ∈ B+
c (tc).

One characterisation of the constrained function space is that any curve fc(w) ∈ B+
c (tc)

will have a local minimum for w ∈ [τc(tc+1), τc(tc+2)]. The special case of tc = 1 cor-

responds to the family of non-negative curves that take their minimum at the lower

limit of the domain, w
(0)
c , and likewise tc = Dc will constrain the curves to take their

minimum at w
(1)
c . This is demonstrated with an example in Section 4.4.2.

An analogous result can be achieved by fixing γctc = 0 and restricting the remaining
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parameters to be non-positive. Then fc(w) will be a non-positive curve with γctc being

the largest coefficient, a function space we denote by B−c (tc). Similarly to the non-

negative case discussed above, B−c (tc) can be characterised by its restriction on the

location of local maxima.

A useful property of the existing CEM algorithms is that they can easily accommodate

non-negativity or non-positivity constraints on individual coefficients. By applying

such constraints, we can find the MLE of the GAM under the restriction that each

fc ∈ B+
c (tc) or B−c (tc), and by repeating this process for all possible choices of the

identifiability constraint, we can find the overall MLE. This process is explained in

more detail for the specific models of interest in Section 4.4.

4.3.3 Monotonic B-splines

In some contexts, it may be sensible to restrict fc(w) to increase with increasing w. A

sufficient condition for fc to be monotonically non-decreasing is that the coefficients

of the B-splines are themselves strictly non-decreasing (Leitenstorfer and Tutz, 2007),

that is, γc1 ≤ · · · ≤ γcDc .

Assuming non-negative coefficients, the identifiability constraint γc1 = 0 ensures that

fc(w
(0)
c ) = 0 is the minimum of the smooth function. We can then introduce Dc − 1

new parameters that represent the increments between successive B-spline coefficients:

δcd = γcd − γc(d−1),

for d = 2, . . . , Dc. Restricting these increments to be non-negative will then ensure

that the original coefficients are monotonically non-decreasing, as desired.

This can be achieved in the same manner as the unrestricted case by re-expressing

(4.2) as

fc(w) =
Dc∑
d=2

[
d∑
e=2

δce

]
Bcd(w)

=
Dc∑
d=2

δcd

[
Dc∑
e=d

Bce(w)

]

=
Dc∑
d=2

δcdB
m+
cd (w).
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Here, {Bm+
cd , d = 2, . . . , Dc} denotes a new series of non-negative monotonic basis func-

tions, which we will refer to as monotonic B-splines. In fact, for the order 3 B-splines

used here, these new basis functions are equivalent to the piecewise quadratic integrated

splines (I-splines) introduced by Ramsay (1988) and used by Tutz and Leitenstorfer

(2007) for generalised smooth monotonic regression.

Continuing with the illustration provided in Section 4.3.1, the monotonic B-spline

basis functions associated with the B-spline bases in Figure 4.1(A) are shown in Fig-

ure 4.1(B). Because the B-spline coefficients in (4.4) are monotonically non-decreasing,

the resulting curve in Figure 4.1(C) can be expressed in terms of the monotonic B-

splines

f(w) = 0.009 + 0.000Bm+
2 (w) + 0.045Bm+

3 (w) + 0.181Bm+
4 (w),

and this is demonstrated in Figure 4.1(D), where the intercept term is shown as a

horizontal line.

For the alternate case in which we wish for the curve fc to be non-positive and mono-

tonically non-decreasing with its maximum value at w
(1)
c , a similar process applies. We

fix γcDc = 0, and define Dc−1 new parameters, δcd = γcd−γc(d+1) for d = 1, . . . , Dc−1.

The associated monotonic basis functions are defined as

Bm−
cd (w) =

d∑
e=1

Bce(w), d = 1, . . . , Dc − 1, (4.7)

and their coefficients δcd are constrained to be non-positive.

4.3.4 Knot selection

The number and placement of the turning points will influence the shape of the resulting

function by determining the space in which our estimated fc is constrained to lie.

Ideally, external information would be used to determine the turning points; however,

in many applications this will not be available and we are forced to depend on our data

to guide this decision.

In some situations, such as OLS, the positioning of the turning points is crucially im-

portant (Ruppert, Wand, and Carroll, 2003), and a large number of knot selection
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methods have been derived (e.g. de Boor, 1978, pp. 174–196, Friedman and Silver-

man, 1989). Many of these methods can be integrated into the approach we describe,

but they often lead to a large increase in the computational burden. In a general set-

ting, Ramsay (1988) noted that the shape of the resulting estimate is not particularly

sensitive to knot placement.

We apply an adaptation of cardinal splines discussed by Hastie and Tibshirani (1990, p.

24), placing the qc−2 internal turning points at evenly spaced quantiles of the observed

covariate values wic. This is often the standard approach used with regression splines

(e.g. Ruppert, 2002). Alternatively, our implementation in R discussed in Section 4.6

optionally allows the user to specify their own list of knots, so other knot-placement

regimes could be used, such as equally spaced knots, nested knot structures, or the

approach proposed by Yao and Lee (2008), in which knots are placed at the local

minima and maxima of an initial estimate of the smooth curve, fitted using a basic

knot structure.

Of greater importance is the choice of the number of turning points. With too few, we

may fail to detect important features of the relationship, but with too many, we are at

risk of over-fitting. One common way to resolve this trade-off is to use a sufficiently

large number of turning points to broaden the function space for fc, but add a penalty

term to the likelihood function such that spurious fluctuations in the smooth function

are avoided (Green and Silverman, 1994).

However, with a penalty term, the CEM algorithm central to these stable methods

cannot be used directly. We discuss this further, and propose a possible solution in

Section 4.7. In general, we will use the Akaike information criterion AIC = 2J − 2`

(Akaike, 1974) to choose between models with different numbers of knots, where `

is the log-likelihood of the fitted model. This similarly includes a penalty for model

complexity, and in the case of unpenalised maximum likelihood estimation, the effective

degrees of freedom J is simply the number of estimated parameters in the model (Wood,

2006, pp. 170–171). The AICc is a bias-corrected version of the AIC for small samples

(Burnham and Anderson, 2002, p. 66), which becomes virtually identical as n increases.

Figure 4.4 illustrates the use of the AIC in determining the optimal number of knots

for the example in Section 4.5.
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Figure 4.2: Results from 500 simulations of the performance of the AIC for selecting
the optimal number of knots. The panels on the left-hand side show the true risk function
p(w) with (A) 1, (B) 2 and (C) 3 internal knots. The panels on the right-hand side show a
histogram of the model selected by AIC in each simulation, with the bar corresponding to
the true model shaded.

As a criterion for choosing the optimal smoothing parameter in a wide range of sce-

narios, the AIC and AICc have been shown to be generally superior to other classical

approaches such as BIC and GCV in the context of general non-parametric regres-

sion by Hurvich, Simonoff, and Tsai (1998), semi-parametric Cox regression by Malloy,

Spiegelman, and Eisen (2009) and likelihood-based boosting by Leitenstorfer and Tutz

(2007).
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Figure 4.2 shows the results from a simulation study in which we examined the perfor-

mance of the AIC value in selecting the optimal number of knots. We simulated 500

datasets of 750 binomial observations, each with true risk functions that were based

on B-splines with 1, 2 or 3 internal knots. For each dataset, we found the MLE cor-

responding to a binomial model in which the continuous variable was included as a

linear term or as a B-spline with between 0 to 5 internal knots. Of these, the model

with the smallest AIC was selected as the optimal model. This approach selected the

correct number of knots in the vast majority of samples, and the mean number of knots

selected was close to the true value. As has been observed in other contexts, the BIC

was biased towards a low number of knots (oversmoothing), and the GCV criterion

tended to undersmooth by choosing a higher number of knots more often (data not

shown).

The computational effort required by full cross-validation renders it infeasible in this

situation. Nevertheless, the focus of this paper is on providing a method of estimation

for a single model, which may be applied within any scheme for determining the optimal

number of knots.

4.4 Method

4.4.1 CEM algorithm

Each of the methods that we use to fit the models in the subsequent sections is an

application of a CEM algorithm (Marschner, 2014). A CEM algorithm is a general

approach in which we consider a finite family of complete-data models, indexed by

t ∈ T , each of which has a parameter space Θ(t) that is a subset of the parameter

space Θ for the model of interest, such that

⋃
t∈T

Θ(t) = Θ. (4.8)

The complete-data models are defined such that an Expectation–Maximisation (EM)

algorithm (Dempster, Laird, and Rubin, 1977) can be used to find the constrained

maximum of the likelihood θ̂(t), within each Θ(t). Then, due to (4.8), the θ̂(t) that

attains the highest likelihood is the MLE θ̂.
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When the model of interest is a GLM, the complete-data models typically impose some

constraint on the individual model parameters, such as non-negativity. In the case of

GAMs as described below, we use augmented complete-data models, where the effect

of such constraints on the spline coefficients is to constrain the shape of the smooth

curves fc. The overall MLE will then correspond to one of these constrained maxima.

We now describe the details for each of the specific models of interest.

4.4.2 Adjusted rate differences

Adjusted rate differences can be estimated by fitting an identity-link Poisson GAM.

Specifically, if Ni is the period of time over which Yi events were observed, and we

assume Yi ∼ Poisson(Niλi), then λi is the event rate for an individual with covariate

vector (ui,vi,wi).

With link function g(λ) = λ, the absolute rate difference is simply the difference

between two linear functions. Keeping all other covariates constant, the adjusted rate

difference associated with changing the ath categorical covariate from level uia to uja is

αa(uja)− αa(uia). Likewise, the adjusted rate difference for a one-unit increase in the

bth linear covariate is βb.

The Poisson means must be non-negative, and so the parameter space within which

the MLE θ̂ must lie is

Θ = {θ : Λ(u,v,w;θ) ≥ 0, (u,v,w) ∈ U × V ×W} ,

where U , V and W denote the covariate spaces defined by the Cartesian products of

the observed ranges of covariate values:

U =
A∏
a=1

{1, . . . , ka}, V =
B∏
b=1

[v
(0)
b , v

(1)
b ], W =

C∏
c=1

[w(0)
c , w(1)

c ]. (4.9)

For C = 0, Marschner (2010) has described a stable CEM algorithm to find the MLE

θ̂ ∈ Θ. This is achieved by partitioning the parameter space into a sequence of distinct

constrained parameter spaces Θ′(r, s), in which (r, s) = (r1, . . . , rA, s1, . . . , sB) is the

covariate vector associated with the minimum fitted Poisson mean.

For a particular choice of r and s, a complete-data model is defined, consisting of
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A + B + 1 independent latent random variables underlying each observed random

variable Yi. These latent variables have Poisson distributions with means that each

depend on just one of the model parameters. Using this separation of parameters, an

EM algorithm is then defined to find the constrained MLE θ̂(r, s) ∈ Θ′(r, s).

By considering all possible reference vectors (r, s) that could result in the minimum

fitted mean, and finding the MLE within each corresponding constrained parameter

space, we can be sure that one of these constrained MLEs will be the overall MLE

θ̂ ∈ Θ.

For C > 0, it is straightforward to extend this idea to handle smooth semi-parametric

components. The reference vector is expanded to include t = (t1, . . . , tC), where each

tc ∈ {1, . . . , Dc}. For a particular choice of t, the identifiability constraint γctc = 0 is

applied for each c = 1, . . . , C.

The complete-data model is augmented with
∑

c(Dc − 1) latent Poisson random vari-

ables Y
(cd)
i , each having an expected value that depends on one of the remaining pa-

rameters, that is,

Y
(cd)
i ∼ Poisson(NiγcdBcd(wic)), d 6= tc. (4.10)

If the basis function values Bcd(wic) are viewed as additional continuous covariates, this

augmented complete-data model has the same form as that used by Marschner (2010).

Thus the EM algorithm can be applied directly to find its MLE θ̂(r, s, t), noting that

due to (4.10), each γcd is constrained to be non-negative.

As discussed in Section 4.3.2, the non-negativity constraints on the γcd force each

estimated fc to belong to B+
c (tc) as defined in (4.5). The constrained MLE will then

belong to the parameter space

Θ(r, s, t) = Θ(r, s)
⋂ {

C⋂
c=1

{θ : fc ∈ B+
c (tc)}

}
,

where

Θ(r, s) = {θ : Λ(u,v,w) ≥ Λ(r, s,w) ≥ 0, (u,v,w) ∈ U × V ×W}.

Let R denote the set of all possible choices for r, S the set of possible choices for s
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and T the set of possible choices for t. Then due to (4.6), we have that

Θ =
⋃
r∈R

⋃
s∈S

⋃
t∈T

Θ(r, s, t).

We have thus defined a CEM algorithm for finding the overall MLE θ̂ ∈ Θ, which will

be the constrained estimate θ̂(r, s, t) associated with the highest likelihood.

This approach can be implemented directly using the existing CEM algorithm for

identity-link Poisson GLMs. Using this algorithm, it is straightforward to apply non-

negativity constraints to the coefficients of some continuous covariates by considering

only one of the two possible reference levels for that covariate.

For a particular choice of t, if we apply the CEM algorithm to the categorical and

linear covariates as usual, and include the basis function values Bcd(wic) (for d 6= tc)

as linear covariates with non-negativity constraints, we will find a constrained MLE

θ̂(t) ∈ Θ(t), where

Θ(t) = Θ
⋂ {

C⋂
c=1

{θ : fc ∈ B+
c (tc)}

}
.

Repeating this for all t ∈ T will result in a collection of constrained MLEs θ̂(t), one of

which will be the overall MLE θ̂ ∈ Θ. There are a total of
∏C

c=1Dc elements in T , so

by applying the CEM algorithm for each, the maximum total number of applications

of the EM algorithm required to find the MLE is

A∏
a=1

ka × 2B ×
C∏
c=1

Dc.

The process can be halted if one such application converges to a point in the interior

of the constrained parameter space, as we can be sure that this is the overall MLE.

The process of cycling through the parameter space partition is illustrated in Figure 4.3

for a Poisson model with C = 1 covariate. Here we have simulated 500 observations

with covariate values wi and means λi = 50(α0 + f(wi)), based on a B-spline with two

internal knots

f(w) =
5∑
d=1

γdBd(w),
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where the usual dependence on c has been suppressed since C = 1. By virtue of the

constraint (4.3), one of the γd parameters must be set to zero while all others must be

non-negative. The specific B-spline used to simulate the data for Figure 4.3 is

α0 + f(w) = 0.1 + 0.2B1(wi) + 0.3B2(wi) + 0.4B4(wi) + 0.3B5(wi),

which has γ3 = 0 and is represented by the red dotted line in each plot. In this example,

cycling through the parameter space partition involves computing the constrained MLE

for each of the five models corresponding to the constraint γd = 0, d = 1, . . . , 5. Thus,

we would expect the constrained MLE with γ3 = 0 to yield the overall MLE. This

is shown in Figure 4.3(A), while the constrained MLEs obtained by using the other

constraints are shown in Figures 4.3(B)–(E). As expected, the log-likelihood for the

curve with γ3 = 0 is higher than that for the other constrained MLEs (−1378 compared

to −1437 through −1548), so it is the overall MLE.

One point to note is that the non-negativity of the coefficients γcd is a sufficient, but not

necessary, condition for the non-negativity of the estimated fc. Thus, the parameter

space over which we search for the MLE is not guaranteed to include all fc ∈ B+
c .

However, in practice it would be highly unlikely that the true relationship we are

modelling is exactly a quadratic spline on the selected knot sequence τc, and so if we

find a MLE that is restricted by this deficiency, we can modify τc in order to achieve

a better fit. In testing, we found that simply including an additional knot close to the

minimum of the curve will generally resolve this issue.

4.4.3 Adjusted relative risks

With binomial data we have Yi ∼ Bin(Ni, λi), where Ni is the number of independent

trials over which Yi binary events were observed, and λi is the constant event proba-

bility, or risk, at each trial. The adjusted relative risk is the ratio of event probabilities

associated with a change in one covariate, keeping the others constant.

With g(λ) = log(λ), the risk is λi = exp{Λ(ui,vi,wi;θ)}, and so the relative risk is a

ratio of two exponential functions. Keeping the other covariates constant, the adjusted

relative risk associated with a change in the ath categorical covariate from uia to uja is

then exp{αa(uja)−αa(uia)}. Similarly, the adjusted relative risk for a one-unit increase
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in the bth linear covariate is exp(βb).

The fitted risks must lie within [0, 1], and so the fitted linear predictors must be strictly

non-positive. That is, the parameter space for this model is

Θ = {θ : Λ(u,v,w;θ) ≤ 0, (u,v,w) ∈ U × V ×W},

where U , V and W are as defined in (4.9).
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Figure 4.3: Illustration of the effect of parameter constraints on the smooth curve in
a simulated Poisson data set. The red dotted line represents the true underlying rate and
the grey dotted lines denote the knot locations. The black solid line in each panel is the
MLE under the identifiability constraint shown in the heading, with all other parameters
constrained to be non-negative. The MLE is obtained with the constraint γ3 = 0.
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With C = 0, Marschner and Gillett (2012) provide a CEM algorithm for finding the

MLE θ̂ ∈ Θ. The approach is similar to that used for the identity-link Poisson GLM:

for a given reference vector (r, s), the model is reparameterised and a complete-data

model is defined, which imposes non-positivity constraints on each of the transformed

parameters. An EM algorithm is used to find the MLE θ̂(r, s) of the complete-data

model, which is constrained to lie in the parameter space

Θ′(r, s) = {θ : Λ(u,v;θ) ≤ Λ(r, s;θ) ≤ 0, (u,v) ∈ U × V}.

That is, (r, s) is the covariate vector associated with the maximum linear predictor,

which is constrained to be non-positive.

The union of these constrained parameter spaces over all possible choices of (r, s) is

Θ, and so the constrained MLE with the highest likelihood will be the overall MLE. It

is straightforward to apply non-positivity constraints to individual parameters.

Extension to include smooth terms follows an analogous approach to that used in

Section 4.4.2. For a particular t = (t1, . . . , tC), we set γctc = 0 and apply the CEM

algorithm, including the remaining basis function values Bcd(wic) as continuous covari-

ates with non-positivity constraints. Then each fc ∈ B−c (tc), the space of non-positive

B-splines that have their shape constrained by the choice of γctc as the largest coeffi-

cient. The resulting estimate θ̂(t) is the constrained MLE over the parameter space

Θ(t) = Θ
⋂ {

C⋂
c=1

{θ : fc ∈ B−c (tc)}

}
.

By considering each possible t ∈ T , and hence all possible locations for the maximum

of each fc, we find a collection of constrained MLEs θ̂(t), and the one with the highest

likelihood is then the overall MLE θ̂ ∈ Θ.

Again, the sequence may stop early if a maximum in the interior of the parameter space

is identified. Furthermore, the same caution also applies here as it did for the identity-

link Poisson model: non-positivity of the coefficients is only a sufficient condition for

non-positivity of the linear predictor, so we are not searching the entire parameter

space where fc ∈ B−c . As before, this may be remedied by adjusting the choice of τc if

necessary.
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4.4.4 Adjusted risk differences

Adjusted risk differences can be estimated using a binomial GAM with identity link,

that is, Yi ∼ Bin(Ni, λi) and g(λ) = λ. The adjusted risk difference associated with a

change in the ath categorical covariate from uia to uja is αa(uja)−αa(uia). Similarly, βb

represents the adjusted risk difference for a one-unit increase in the bth linear covariate.

Again we require that the probabilities λ lie within [0, 1], but now the parameter space

Θ simultaneously imposes both lower and upper boundaries on the linear predictors,

that is,

Θ = {θ : 0 ≤ Λ(u,v,w;θ) ≤ 1, (u,v,w) ∈ U × V ×W}.

With C = 0, Donoghoe and Marschner (2014) have presented an approach for finding

the MLE θ̂ ∈ Θ. It exploits the multinomial–Poisson transformation (Baker, 1994) to

convert the model into an equivalent identity-link Poisson fit, and the CEM algorithm

of Marschner (2010) can then be applied to the transformed data to find the MLE. As

with the other CEM algorithms, non-negativity constraints can be applied to some of

the parameters, which is achieved by imposing such constraints when employing the

identity-link Poisson CEM algorithm.

However, the inclusion of the semi-parametric terms cannot proceed in exactly the

same way as in Sections 4.4.2 and 4.4.3. The covariate space considered for continu-

ous covariates entered into the identity-link binomial CEM algorithm is the Cartesian

product of the observed ranges of those covariates, that is, V in (4.9). So if we include

the observed B-spline values Bcd(wic) as continuous covariates, the covariate space will

include vectors in which more than three of the basis functions for a given c are non-

zero. By definition, this cannot correspond to the B-spline values for any w. Since

the parameter space constraints are imposed for all points in the covariate space, using

a larger covariate space than is necessary means that the parameter space is overly

restrictive, and may not include the overall MLE.

Instead we must use a slightly different approach, based on the ordering of the B-spline

coefficients. We begin by choosing t = (t1, . . . , tC), where each tc = (tc1, . . . , tcDc) is

now a vector containing some permutation of {1, . . . , Dc}.

Recall that if we define new basis functions Bm+
cd as described in Section 4.3.3, non-

negativity constraints on the coefficients δcd will impose monotonicity on the coefficients
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of the original basis functions, that is, γc1 ≤ · · · ≤ γcDc . Similarly, for a particular

permutation tc, we can define

B
(tc)
cd (w) =

Dc∑
e=d

Bctce(w), d = 2, . . . , Dc,

and non-negativity constraints on the associated coefficients will impose an order re-

striction on the original coefficients, that is, 0 = γctc1 ≤ · · · ≤ γctcDc
.

We denote by B(tc)+
c the subspace of B+

c in which the coefficients are ordered in this

way, and note that the overall MLE must correspond to one such permutation. If for a

particular t we enter the new basis function values B
(tc)
cd (wic) as continuous covariates

into the identity-link binomial CEM algorithm, and impose non-negativity constraints

on their coefficients, the resulting estimate θ̂(t) will be the MLE for the parameter

space

Θ(t) = Θ
⋂ {

C⋂
c=1

{θ : fc ∈ B(tc)+
c }

}
.

There are Dc! possible choices for each tc, and hence
∏C

c=1Dc! possible choices for the

vector t. In order to find the overall MLE θ̂ ∈ Θ, we find the constrained MLE θ̂(t)

for each possible choice of t, and choose the one with the highest likelihood.

As with the other models, we may stop early if we find a constrained MLE in the

interior of the parameter space, and there are various strategies to identify the param-

eterisations that are more likely to contain this MLE in order to potentially reduce

computing time (Marschner, 2014).

4.4.5 Monotonic smooth regression

Imposing a monotonicity restriction on one or more of the smooth curves is straight-

forward for all of the models examined so far. As discussed in Section 4.3.3, a sufficient

condition for fc to be monotonically non-decreasing is that the B-spline coefficients

themselves are monotonically non-decreasing, that is, γc1 ≤ · · · ≤ γcDc . Because only

one possible choice for the value tc or the vector tc needs to be considered, adding a

smooth monotonic covariate to a model requires no additional applications of the EM

algorithm.

For the identity-link binomial model in Section 4.4.4, applying this constraint is trivial.
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In iterating through the possible choices of t, we need only to consider tc = (1, . . . , Dc)

rather than all possible permutations, giving 0 = γc1 ≤ · · · ≤ γcDc .

For the other models, we employ the methods discussed in Section 4.3.3. In an identity-

link Poisson model, we replace the B-spline function values Bcd(wic) by their monotonic

B-spline equivalents, Bm+
cd (wic), and enter these into the CEM algorithm as continu-

ous covariates with non-negativity constraints on the associated coefficients δcd. The

resulting estimate will have 0 = γc1 ≤ · · · ≤ γcDc , as desired.

For the log-link binomial model we proceed similarly, replacing Bcd(wic) by Bm−
cd (wic)

as defined in (4.7). These are entered into the CEM algorithm as continuous covariates

with non-positivity constraints, ensuring γc1 ≤ · · · ≤ γcDc = 0.

It is important to note that the monotonicity of the coefficients is only a sufficient

condition for the monotonicity of the resulting smooth function. Hence the function

space over which we search for the MLE f̂c is only a subset of the space of monotonic

functions on a B-spline basis. However, when Tutz and Leitenstorfer (2007) used

boosting techniques to impose constraints on the monotonicity of the function rather

than only the coefficients, they found “much higher computational costs without much

effect on performance”.

4.5 Application

The ASSENT-2 study (ASSENT-2 Investigators, 1999) was a randomised clinical trial

designed to assess the safety and efficacy of tenecteplase versus alteplase in 16,949

patients treated within 6 hours of an acute myocardial infarction (MI). The primary

outcome was 30-day mortality after randomisation, and the primary analysis of this

outcome showed that the two treatments were equivalent.

To demonstrate our method, we undertake a risk factor analysis, in which the risk

of death is modelled in terms of a semi-parametric age effect and three categorical

covariates: MI severity (Killip class I, II or III/IV), treatment delay (< 2, 2–4, > 4

hours) and geographic region (Western countries, Latin America or Eastern Europe).

In view of the natural relationship between age and death, the age-specific risk is

constrained to be monotonically non-decreasing. Figure 4.4 shows the AIC for models

with different numbers of knots, using both log and identity link functions.
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Figure 4.4: AIC of the fitted binomial model in the ASSENT-2 study with identity (black,
solid line) and log (red, dotted line) links, for a varying number of parameters associated with
the age covariate.

Figure 4.4 shows that the inclusion of a linear age term (1 parameter) improves the AIC

considerably for both the log-link and identity-link models. In the risk difference model,

allowing the age term to be quadratic (2 parameters) and semi-parametric with one

internal knot (3 parameters) further reduces the AIC substantially, but beyond this,

the penalty of additional parameters overrides the small improvements in fit. In the

relative risk model, additional flexibility in the age term does not give vastly superior

AIC values when compared to the linear age model, although the best in terms of AIC

is a model with two internal knots, and hence 4 parameters for the semi-parametric

age term. The fitted risks by age for all 27 groups (3 × 3 × 3 levels of the categorical

covariates) for the best model with each link are shown in Figure 4.5. These results

show that the identity-link model provides a better fit to the data, suggesting that risk

differences are a more appropriate measure than relative risks for this data set.

Although a monotonic dependence on age is natural for mortality, in this particular

analysis it has little effect on the fitted model. Figure 4.6 displays the fitted age-specific

regression functions for both models, showing that the fitted function is virtually iden-

tical for the identity-link model with and without monotonicity, and is identical for the
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Figure 4.5: Fitted risk of 30-day mortality by age in the ASSENT-2 study for different
combinations of MI severity (thin: I, medium: II, thick: III/IV), treatment delay (solid:
< 2 hours, dashed: 2–4 hours, dotted: > 4 hours) and region (black: Western, red: Latin
America, blue: Eastern Europe), for (A) identity-link and (B) log-link models.

log-link model.

Also shown in Figure 4.6 is a comparison of two approaches for confidence interval

estimation. The first approach, shown by the shaded regions, uses asymptotic normality

and the information matrix evaluated at the MLE. The information matrix is obtained

from the expected second derivative matrix corresponding to the binomial log-likelihood

function with probabilities specified by (4.1) and (4.2), with either the identity or log

link function. The second approach, shown by the dashed lines, uses bootstrapping

with pointwise confidence intervals determined using the percentile method. We used

1000 bootstrap resamples with replacement, and due to the stability of our fitting

methods, convergence to the MLE was achieved in every resample. It can be seen that

the two methods of confidence interval estimation show very close agreement, which

provides some level of support for their use in this analysis.

Adjusted rate differences can also be estimated for this data by using our method for

an identity-link Poisson model, with semi-parametric adjustment for age. Because in

this case all of the patients were observed for the same period of time, the parameter
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Figure 4.6: (A) Adjusted risk difference and (B) adjusted relative risk associated with age
(versus 40 years), with pointwise 95% confidence intervals, estimated using the information
matrix (shaded) and bootstrap resampling (dashed lines). The dotted red line in panel (A)
shows the estimated risk difference when a monotonicity constraint is applied.

Table 4.1: Parameter estimates from identity-link binomial (risk difference) and identity-
link Poisson (rate difference) models on the ASSENT-2 data.

Covariate Risk difference Rate difference

Severity (vs. I)
II 0.0607 0.0605
III / IV 0.2676 0.2692

Treatment delay (vs. < 2 hours)
2–4 hours −0.0024 −0.0025
> 4 hours 0.0014 0.0010

Region (vs. Western)
Latin America −0.0047 −0.0050
Eastern Europe 0.0373 0.0359

Age (vs. 40 years)
50 years 0.0045 0.0045
60 years 0.0179 0.0178
70 years 0.0553 0.0553
80 years 0.1534 0.1541

estimates are very similar to those from the identity-link binomial model; however,

they have a different interpretation: they are the absolute change in the rate of death

per patient-month. A comparison of the parameter estimates from the two models is
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shown in Table 4.1.

4.6 Other methods

The methods described in this paper are fully implemented in R packages addreg

(Donoghoe, 2015a) and logbin (Donoghoe, 2015b), available from the Comprehensive

R Archive Network (CRAN). There are three other notable R packages that provide

methods for fitting GAMs: gam, gamlss and mgcv. Each of these allow the models

with non-canonical link functions discussed in this paper; however, all employ itera-

tive algorithms involving variants of Fisher scoring or Newton–Raphson, making them

subject to instability.

The gam function in the gam package in R (Hastie, 2013) fits GAMs using cubic smooth-

ing splines by employing a local scoring algorithm. This consists of a backfitting

(Gauss–Seidel) algorithm for fitting the non-parametric parts of the model within a

Newton–Raphson step for updating the parametric parts (Hastie, 1992). The inner

loop can be shown to always converge, but the outer loop is only guaranteed to do

so if some form of step-size optimisation is performed (Hastie and Tibshirani, 1990,

p. 151). However, the implementation in R does not include any option for step-size

modification, and additionally there is no check for the validity of the fitted means.

This means that convergence is not guaranteed, and when the method does converge,

it may be to a value outside the parameter space. For the 1000 bootstrap samples used

to produce the confidence intervals in Figure 4.6, the algorithm failed to converge to

a valid solution in nearly half (49.1%) of the samples for the identity-link model. For

the log-link model, the algorithm converged in all 1000 samples, but some of the fitted

risks exceeded 1 in every case.

The gamlss package (Rigby and Stasinopoulos, 2005) provides a method for non-

parametric modelling of various parameters of the distribution, including the mean.

Similarly to gam, its fitting algorithm uses backfitting iterations for the non-parametric

parts within Newton–Raphson steps that update the parameter estimates. Unlike gam,

the user is able to specify the step length for updating parameter estimates, but the

function terminates with an error if the update produces invalid fitted values. For the

relative risk model fitted on the bootstrap samples from Section 4.5, gamlss converged
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in only 57 samples when the default step size was used. Convergence in all 1000 samples

was achieved when the step size was made sufficiently small. For the risk difference

model however, gamlss did not converge in any of the bootstrap samples regardless

of the step size chosen, due to the error caused by violation of the parameter space

constraint.

The mgcv package (Wood, 2011) provides a flexible gam function, allowing for a wide

variety of smoothers, as well as methods for automatic selection of the level of smooth-

ing. The fitting method uses a penalised iteratively reweighted least squares algorithm

(Wood, 2011), which is not guaranteed to converge, but step-halving is invoked if

the penalised deviance increases markedly between iterations, or the estimates move

outside the parameter space. Additionally, the user can specify a ridge regression

penalty to assist with convergence issues caused by unidentifiable estimates. In or-

der to directly compare the performance of mgcv’s gam function to our method, we

fitted identical unpenalised B-spline models to the ASSENT-2 bootstrap data. We

found that gam achieved stable convergence whenever the MLE was in the interior of

the parameter space, but convergence problems were possible when the MLE was on

the parameter space boundary, particularly for the identity-link model. The nature of

these convergence problems was dependent on the version of mgcv that was used. In

particular, when using version 1.7 we found that convergence could occur to a sub-

optimal boundary point, while in version 1.8 we found that the algorithm could fail

to declare convergence when the estimates reached the MLE. This behaviour occurred

in a large proportion of our bootstrap replications and persisted even when a stricter

convergence criterion and a greater number of iterations were used.

None of these methods support monotonicity constraints on the smooth curves. The

GMBBoost (Leitenstorfer and Tutz, 2007) and GMonBoost (Tutz and Leitenstorfer, 2007)

methods employ likelihood-based boosting techniques to fit GAMs with monotonicity

constraints, but in the current implementation only canonical-link models are allowed,

so we cannot compare them with our approach.

Overall, this discussion illustrates that although there are other approaches that could

potentially be used for semi-parametric modelling of rate differences, risk differences

and relative risks, numerical instability is often an issue. Furthermore, monotonicity

constraints for non-canonical models are not available in existing software. The stability
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and flexibility of our method therefore means that it is a useful addition to existing

GAM methodology.

4.7 Discussion

We have presented a method for smooth semi-parametric adjustment of rate differences,

relative risks and risk differences. In general, this can be achieved by using GAMs;

however, these effect measures require non-standard link functions and the usual fitting

algorithms can fail to converge to the MLE. Our method avoids this by employing

variants of existing stable CEM algorithms for fully parametric versions of these models,

using B-spline basis functions for the smooth components.

The method is itself a CEM algorithm, and relies on the fact that the EM algorithm will

always converge to the MLE within a constrained parameter space. Each constrained

parameter space is defined by placing a restriction on the shape of the smooth curve,

and by applying the algorithm for each constrained parameter space we are guaranteed

to find the overall MLE.

We applied our method to data from the ASSENT-2 clinical trial, showing that semi-

parametric adjustment for age provided a better fit than entering age as a linear term

in both risk difference and relative risk models. Furthermore, the stability of our fitting

algorithm allowed us to use bootstrap resampling to estimate confidence intervals for

the semi-parametric relationship. Adjusted rate differences can also be estimated using

an identity-link Poisson model.

The calculations required at each iteration of the EM algorithms for each method pre-

sented here are very simple, although the EM algorithm may take a large number of

iterations to converge. The overall computational time required by these methods de-

pends on the number of parameters that must be estimated in a particular model. The

models presented in Figure 4.5 required approximately 3 and 2 minutes, respectively,

to find the MLE on a 3.4 GHz processor. One potential method for reducing the com-

putational time is to exploit the fact that the EM algorithms for each parameterisation

are independent, and could be conducted in parallel on a multi-core processor. Other

techniques for speeding up convergence of CEM algorithms have been discussed by

Marschner (2014).
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Further adaptations of our approach are possible. For example, Marschner, Gillett, and

O’Connell (2012) have presented an extension of the CEM algorithm for the identity-

link Poisson model, in which additional categorical stratification factors have a multi-

plicative effect on the Poisson means. The algorithm is similar to that for the additive

model, but each constrained MLE is found by using an Expectation–Conditional Max-

imisation (ECM) algorithm. It is straightforward to impose non-negativity constraints

on the additive parameters, so we can extend this method to allow smooth semi-

parametric components by using the same approach described in Section 4.4.2. An

alternative approach to incorporating both additive and multiplicative effects in the

same model was provided by the LEXPIT model of Kovalchik et al. (2013). We an-

ticipate that our approach may be useful in extending this model semi-parametrically,

although we have not yet investigated this.

Most applications of GAMs use penalised likelihood to allow for flexibility while lessen-

ing the tendency to overfit. However, any reasonable penalty term will cause the M-step

of the EM algorithm to lose its parameter separation and become a multi-dimensional

maximisation problem. Marschner and Gillett (2012) proposed a solution to this for

log-binomial models by employing the one-step-late algorithm of Green (1990). Here,

the M-step is modified such that parameters associated with the penalty term are re-

placed by their current estimates. However, this is no longer an EM algorithm, and

does not guarantee that the parameter estimates will remain in the parameter space,

or even that the likelihood will increase at each step. This can be remedied by a

process similar to step-halving, whereby if the new estimate has lower likelihood or is

outside the parameter space, we replace it with an estimate between the unpenalised

and penalised updates, moving closer to the unpenalised estimate until the conditions

are met. Nonetheless, while a penalised likelihood version of our method would be pos-

sible, the simple spline-based model used here is likely to provide sufficient flexibility

in practice.

Rate differences, relative risks and risk differences are useful in biostatistical settings to

provide effect size measures in randomised trials and epidemiological studies. However,

the GLMs and GAMs used to estimate these effects are also used in other areas. For

example, the identity-link Poisson model has been recently used in an ecological study

(Stjernman et al., 2013), the log-link binomial model in a study of socioeconomic status
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(Hiyoshi et al., 2013), and the identity-link binomial model in a study of international

politics (Berger et al., 2013). This suggests that our method may also have wide

applicability outside biostatistics.
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5
Additive negative binomial regression

Marschner (2010) has described a stable method for estimating adjusted rate differences

by using an additive Poisson regression model, and in Chapter 4, we extended this

approach so that flexible smooth regression functions can be included, allowing for

semi-parametric adjustment of rate differences.

However, the Poisson model assumes equidispersion, meaning that the conditional

variance of the number of events is equal to the conditional mean. In this chapter,

we consider the phenomenon that is often observed with real data, where the variance

exceeds the mean, known as overdispersion.

We show that a model for the unobserved heterogeneity that leads to overdispersion in

count data gives the negative binomial distribution, and so additive negative binomial

regression can be used to estimate adjusted rate differences when overdispersion is

present. We describe a stable algorithm for maximum likelihood estimation in additive

negative binomial models, using repeated applications of an ECME algorithm.

121
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The method also allows for the inclusion of flexible smooth terms, resulting in semi-

parametrically adjusted rate differences. We provide an example of its use in estimating

the effect of fenofibrate treatment on the rate of laser therapy for retinopathy in data

from the FIELD clinical trial.

The content in this chapter makes up a manuscript that has been prepared for submis-

sion to a peer reviewed journal:

Donoghoe, M. W. and I. C. Marschner. Additive negative binomial regression for

overdispersed count data with application to adjusted rate differences. Manuscript

ready for submission.

The manuscript includes supplementary material, which has been reproduced here in

Appendices 5.A and 5.B. The R package that implements the method described in this

chapter is available online at http://CRAN.R-project.org/package=addreg, with its

documentation presented in Appendix B of this thesis.

Specific contribution of co-authors: I. C. Marschner assisted with conception

of the method, and provided general supervision and feedback on research and writing.

The candidate’s contribution was at least 90% of the total effort required to produce

the article.

http://CRAN.R-project.org/package=addreg
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Abstract

Rate differences are an important effect measure in biostatistics and provide an al-

ternative perspective to rate ratios. When the data are event counts observed during

an exposure period, adjusted rate differences may be estimated using an identity-link

Poisson generalised linear model, also known as additive Poisson regression. A problem

with this approach is that the assumption of equality of mean and variance rarely holds

in real data, which often show overdispersion. An additive negative binomial model is

the natural alternative to account for this, however, standard model-fitting methods

are often unable to cope with the constrained parameter space arising from the non-

negativity restrictions of the additive model. In this paper, we propose a novel solution

to this problem using a variant of the ECME algorithm. Our method provides a reli-

able way to fit an additive negative binomial regression model and also permits flexible

generalisations using semi-parametric regression functions. We illustrate the method

using a placebo-controlled clinical trial of fenofibrate treatment in patients with type

II diabetes, where the outcome is the number of laser therapy courses administered to

treat diabetic retinopathy. An R package is available that implements the proposed

method.

Keywords: ECME algorithm · Negative binomial regression · Overdispersion · Rate

difference · Semi-parametric regression
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5.1 Introduction

In many biostatistical contexts we observe an outcome that counts the number of times

an event of interest occurred and often these counts are observed over differing units of

exposure, such as differing time periods of follow-up. When a collection of covariates

is also available, such data allow us to build a regression model quantifying the effects

of the covariates on the rate at which events occur. In this context, the parameters

in an additive regression model represent adjusted rate differences, and provide an

alternative to the adjusted rate ratios from a multiplicative model.

Rate differences may often be preferable to rate ratios as a measure of effect size in

biostatistical applications. In studies evaluating an intervention, a rate difference quan-

tifying the effect of the intervention directly relates to the expected number of events

that may be prevented by its use. For example, in vaccine studies the rate difference

is called the vaccine-attributable reduction, and can provide better information about

the number of infections prevented than the vaccine efficacy, which is a relative effect

size (Greenwood, 2005). A similar distinction exists in epidemiological cohort studies

where the rate difference is called the attributable risk. Rate differences are also useful

in health economics, because they allow quantification of the cost of an intervention per

event prevented within a given time period. Furthermore, risk factor models used for

prediction and stratification are sometimes best presented in terms of rate differences

rather than rate ratios, both from an interpretation perspective and because additive

models sometimes fit the data better than multiplicative models.

A common approach for estimating adjusted rate differences is to fit a generalised linear

model (GLM) with an identity link function, and assume that the observed counts have

a Poisson distribution. We will refer to this analysis as additive Poisson regression.

Provided the mean model is correctly specified, the parameter estimates from such a

model will be consistent (Winkelmann, 2008, p. 80), but the Poisson constraint that

the variance of the count is equal to its expected value often does not hold true in real

data. In particular, it is common for count data to exhibit overdispersion, where the

variance exceeds the mean (Tang, He, and Tu, 2012).

Overdispersion can result from various causes. Perhaps the most common cause is

the presence of unobserved heterogeneity between individuals. Other causes are also
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possible, including the so-called positive contagion phenomenon discussed by Bates

and Neyman (1952). The presence of overdispersion leads to an excess of both low and

high counts compared to those predicted by the Poisson distribution (Cameron and

Trivedi, 1998, pp. 98–100). An important consequence of this is that the estimated

standard errors from a Poisson model will be underestimates, leading to overly narrow

confidence intervals and inflated type I error rates (Gourieroux, Monfort, and Trognon,

1984).

Valid standard errors can be obtained by using a robust sandwich variance estimator

(Winkelmann and Zimmermann, 1992), or by using the quasilikelihood approach of

Wedderburn (1974), which only requires the mean–variance relationship rather than a

full model (Winkelmann, 2008, pp. 91–93). However, because these methods do not

employ a distributional model, likelihood-based criteria such as AIC and BIC cannot

be applied for model selection (Burnham and Anderson, 2002), and it is not possible

to estimate the expected distribution of event counts in a population.

Several alternatives to Poisson GLMs for analysing overdispersed count data have been

presented in the literature. The most common approach is to use negative binomial

regression, which has been reviewed by various authors; see for example the books by

Cameron and Trivedi (1998) and Hilbe (2011). In principle, additive negative bino-

mial regression using an identity link function would therefore provide a method to

estimate adjusted rate differences accounting for overdispersion. However, in practice

this presents challenges. The model fitting methods used to implement negative bino-

mial regression are generally reliable for multiplicative models, because on the log link

scale the parameter space is unconstrained. However, for additive models a restriction

must be placed on the possible values of the parameters to ensure that estimated mean

counts and rates are non-negative. For this reason, standard gradient-based algorithms

for fitting additive negative binomial models often suffer convergence issues and can

be unreliable.

The purpose of this paper is to address these challenges by presenting a reliable and

flexible approach to additive negative binomial regression and using it to estimate

adjusted rate differences in count data subject to overdispersion. Section 5.2 will

outline the additive model that we will use based on the negative binomial distribu-

tion, and then Section 5.3 will describe how a variant of the Expectation–Conditional
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Maximisation–Either (ECME) algorithm can be used to reliably fit this model. We

will then extend this in Section 5.4 to allow additional flexibility through smooth semi-

parametric regression functions. A detailed illustrative application of the methods will

then be provided in Section 5.5, using data from a large clinical trial in type II dia-

betics where the outcome is the number of laser therapy courses administered to treat

diabetic retinopathy.

5.2 Additive negative binomial regression

The negative binomial distribution can be derived in several ways (Johnson, Kotz, and

Kemp, 1993), but in this context we motivate its use by introducing multiplicative

Gamma-distributed errors into the Poisson model. We begin by assuming that the

number of events Yi for individual i (i = 1, . . . , n) is distributed as

Yi ∼ Poisson(Niλi).

Here, Ni is the fixed exposure over which Yi is observed, such that λi represents the

event rate per unit of exposure for individual i. Typically, Ni will correspond to a fixed

time period of observation for individual i, so that λi is the event rate per unit of time,

although other types of exposure are also possible. When modelling count data rather

than rates, we can set Ni = 1 for all i so that λi is the expected count.

Under an additive regression model, the event rate is a linear function of the covariate

vector xi and its associated parameter vector θ∗, which we denote by

λi = Λ(xi,θ
∗) = xiθ

∗. (5.1)

This is an identity-link Poisson GLM in which component j of θ∗ is the adjusted rate

difference per unit change in component j of xi. This model is a natural alternative

to the multiplicative Poisson model with log link function, where the (exponentiated)

parameters are adjusted rate ratios.

The Poisson model has the restrictive assumption that Var(Yi) = E(Yi), which is

frequently violated in the direction of overdispersion, Var(Yi) > E(Yi). A natural

way to accommodate this overdispersion is to adopt a more general mean–variance
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relationship, Var(Yi) = σ2E(Yi), for σ2 > 1. For notational convenience we will rewrite

this relationship in the equivalent form Var(Yi) = (1 + φ)E(Yi), for φ > 0. Then the

desired mean–variance relationship can be achieved by generalising the Poisson model

such that the mean is perturbed by multiplicative errors,

Yi | ηi ∼ Poisson(Niλiηi),

where ηi is a random variable with E(ηi) = 1 and Var(ηi) = φ/(Niλi). This can be

confirmed by a straightforward application of the law of total variance.

One possible cause of such overdispersion is unobserved heterogeneity in which some

individuals are more event-prone than others due to factors that are not captured

by the observed covariates. Whatever the cause of the overdispersion, λi retains its

interpretation as an event rate, and θ∗ its interpretation as a vector of adjusted rate

differences, averaged over the population.

Specification of the model is completed by assuming a distribution for ηi. A commonly

used approach is to assume that ηi is Gamma-distributed, which dates back to Green-

wood and Yule (1920). This results in a negative binomial marginal distribution for

Yi, equivalent to the model referred to as NegBin I by Cameron and Trivedi (1986).

The parameter φ > 0 measures the extent of the overdispersion, and the distribution

of Yi converges to a Poisson distribution as φ→ 0.

It should be noted that other types of negative binomial models are also possible. In

particular, if ηi is assumed to be Gamma-distributed with constant variance φ, the

resulting negative binomial distribution has a quadratic mean–variance relationship,

Var(Yi) = E(Yi)(1 + φE(Yi)). This model is referred to as NegBin II by Cameron and

Trivedi (1986) and various other comparative discussions of the two models have been

provided; see for example Hilbe (2011). In Section 5.5 we will present a motivating

application in which our additive NegBin I approach is more appropriate, and this

model will be our main focus in this paper. However, comparison with the additive

NegBin II model will also be considered.

Expressing our model in terms of the usual negative binomial parameters leads to

Yi ∼ NegBin(ri(θ), p) where ri(θ) =
1

φ
Niλi = NiΛ(xi,θ)
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with θ = θ∗/φ and p = φ/(1 + φ). By finding the MLEs θ̂ and p̂ of this marginal

negative binomial distribution, we can transform them back to obtain the MLEs of the

coefficient of overdispersion φ̂ and the adjusted rate differences θ̂∗:

φ̂ =
p̂

1− p̂
and θ̂∗ = φ̂θ̂. (5.2)

However, in practice the additive structure for ri(θ) leads to substantial model-fitting

challenges stemming from the constraint ri(θ) ≥ 0. Indeed, as discussed in Section 5.6,

there is no standard commercial software package that fits this model. In the next

section we will describe how the additive structure combined with the fact that p is

constant across individuals allows us to use the convolution properties of the negative

binomial distribution to construct an underlying latent outcome model. This will then

allow us to implement the ECME algorithm (Liu and Rubin, 1994), which provides a

stable approach to model fitting.

5.3 Model fitting

In this section we describe how the additive negative binomial model can be reliably

fitted using a variant of the ECME algorithm. To do this, we need to first describe

the constrained parameter space and a latent outcome model that will be used as the

complete-data model in an ECME algorithm. We then describe a variant of the ECME

algorithm based on the combinatorial EM algorithm of Marschner (2014).

5.3.1 Parameter space

In describing the model-fitting procedure, it is helpful to keep the categorical and

continuous covariates separate. We will examine a model that includes A categorical

covariates, ui1, . . . , uiA, and B continuous covariates, vi1, . . . , viB, for each individual

i. Without loss of generality, the possible values of the ath categorical covariate are

{1, . . . , ka}, and the bth continuous covariate can take any value in the range [v
(0)
b , v

(1)
b ],

where v
(0)
b = mini{vib} and v

(1)
b = maxi{vib}.

The parameter vector θ associated with this model has J = 1 +
∑A

a=1 ka + B com-

ponents: θ = (α0,α1, . . . ,αA, β1, . . . , βB)>, where α0 is an intercept term, each αa =
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(αa(1), . . . , αa(ka)) is a vector of parameters associated with the ath categorical covari-

ate and βb is the parameter associated with the bth continuous covariate.

Thus the additive model is

Λ(xi,θ) = α0 +
A∑
a=1

αa(uia) +
B∑
b=1

βbvib, (5.3)

which for simplicity we can express in the form equivalent to (5.1)

Λ(xi,θ) =
J∑
j=1

θjxij,

where θj is the jth component of the parameter vector θ and we have defined the

covariate vector for individual i as xi = (1,u′i1, . . . ,u
′
iA, vi1, . . . , viB), where u′ia is a

vector of length ka with 1 in the uth
ia position and 0 elsewhere.

The parameter space for the additive negative binomial model requires that the ex-

pected counts are non-negative and the Gamma scale parameter is positive, that is

(θ, p) ∈ Θ× Φ, where

Θ = {θ : Λ(x,θ) ≥ 0, x ∈ X} and Φ = (0, 1) (5.4)

for a covariate space X , which consists of all possible combinations of the levels of the

categorical covariates and any value of the continuous covariates within their observed

ranges

X =
A∏
a=1

{1, . . . , ka} ×
B∏
b=1

[v
(0)
b , v

(1)
b ].

Note that the parameter space (5.4) does not place any restrictions on the individ-

ual components of the parameter vector θ, but we will introduce such restrictions in

defining the latent outcome model.

5.3.2 Latent outcome model

In order to define a complete-data model for the ECME algorithm, we begin by con-

sidering a particular t = (t1, . . . , tA+B), giving the reference level for each of the A+B

covariates. For each categorical covariate a = 1, . . . , A, we choose ta ∈ {1, . . . , ka} and
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set αa(ta) = 0. For each of the continuous covariates b = 1, . . . , B, the reference level

is either the minimum or maximum observed value. That is, tA+b = v
(ςb)
b for a choice of

ςb ∈ {0, 1}. For a particular ςb, we define the shifted covariate v′ib = (−1)ςb(vib − v(ςb)
b ),

which will be non-negative for all i, and (5.3) can be equivalently written as

Λ(xi,θ) = Λ(x′i,θ
′)

= α′0 +
A∑
a=1

αa(uia) +
B∑
b=1

β′bv
′
ib (5.5)

=
J∑
j=1

θ′jx
′
ij,

where x′i = (1,u′i1, . . . ,u
′
iA, v

′
i1, . . . , v

′
iB) and θ′ = (α′0,α1, . . . ,αA, β

′
1, . . . , β

′
B)>, with

α′0 = α0 +
B∑
b=1

βbv
(ςb)
b and β′b = (−1)ςbβb. (5.6)

For a particular choice of t, the complete-data model consists of J independent latent

negative binomial random variables with common p underlying the observed Yi. That

is,

Yi =
J∑
j=1

Y(j)
i ,

where each Y(j)
i ∼ NegBin(rij(θ

′), p) and rij(θ
′) = Niθ

′
jx
′
ij.

Because the sum of independent negative binomial random variables with common p

is itself negative binomial, the complete-data model is equivalent to the observed-data

model, with the additional restriction that the rij(θ
′) parameter of each of the latent

variable distributions must be non-negative. As each x′ij is defined to be non-negative

for all i and j, this natural restriction imposed by the complete-data model for a given

t is effectively a non-negativity constraint on each of the components of θ′.

From (5.5) it is clear that for any choice of the reference level vector t, Λ(t,θ) = α′0,

and the non-negativity constraints on the transformed parameters ensure that the

fitted value for any other transformed covariate vector will be larger than this. Thus,

the parameter space related to the complete-data model for a particular choice of t is

Θ(t)× Φ, where

Θ(t) = {θ : Λ(x,θ) ≥ Λ(t,θ) ≥ 0, x ∈ X}.
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There are
∏

a ka × 2B possible choices for the reference level vector t, which define

a family of complete-data models. Importantly, for any θ ∈ Θ, the smallest fitted

value must correspond to one of these possible choices of t. Hence, if we can find the

constrained MLE associated with each of the complete-data models, the MLE for the

observed-data model is simply the constrained MLE that attains the highest likelihood.

This means that the MLE can be found by cycling through each of the possible choices

of t, which constitutes an implementation of the combinatorial EM algorithm described

by Marschner (2014).

A useful feature of this approach is that it is straightforward to consider a parameter

space in which a particular coefficient βb associated with a continuous covariate is

constrained to be non-negative. This can be achieved by considering only the reference

level vectors in which ςb = 0. Likewise, a non-positivity constraint can be imposed by

considering only the reference level vectors in which ςb = 1. We will take advantage of

this feature to include semi-parametric terms in our model, described in Section 5.4.

5.3.3 ECME algorithm

We find the MLE for a particular complete-data model by using the ECME algo-

rithm described by Liu and Rubin (1994). In the ECME algorithm, the M-step of the

EM algorithm (Dempster, Laird, and Rubin, 1977) is replaced by a series of condi-

tional maximisation (CM) steps, which act on a subset of the unknown parameters

while keeping the others fixed at their current estimates. It differs from the ECM

algorithm (Meng and Rubin, 1993) in that some of the CM-steps can be designed to

maximise the observed-data log-likelihood rather than the expected complete-data log-

likelihood from the E-step. In order to ensure that the likelihood increases monotoni-

cally, Meng and Van Dyk (1997) noted that the CM-steps maximising the observed-data

log-likelihood must be performed after all steps that maximise the expected complete-

data log-likelihood at each iteration.

After removing terms that do not depend on θ or p, the observed-data log-likelihood

for the additive negative binomial model is

`(θ, p;Y ) =
n∑
i=1

log(Γ(Yi + ri(θ)))− log(Γ(ri(θ))) + ri(θ) log(1− p) + Yi log(p),
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and the complete-data log-likelihood for a chosen t has a similar form:

L(θ′, p;Y) =
n∑
i=1

J∑
j=1

log(Γ(Y(j)
i +rij(θ

′)))−log(Γ(rij(θ
′)))+rij(θ

′) log(1−p)+Y(j)
i log(p).

Given a set of starting parameter estimates θ̂′(0) and p̂(0), the E-step at the (c + 1)th

iteration requires calculation of

Q(θ′, p | θ̂′(c), p̂(c)) = E
(
L(θ′, p;Y) | Y , θ̂′(c), p̂(c)

)
,

for which we use the property that the conditional distribution of negative binomial

random variables with common p given their sum is beta-binomial (Wisniewski, 1966).

That is,

Pr(c)(Y(j)
i = y | Yi) = Pr(Y(j)

i = y | Yi, θ̂′(c), p̂(c))

=

(
Yi
y

)B
(
y + rij(θ̂

′
(c)), Yi + ri(θ̂(c))− (y + rij(θ̂

′
(c)))

)
B
(
rij(θ̂′(c)), ri(θ̂(c))− rij(θ̂′(c))

) ,

for y = 0, . . . , Yi, where B(·, ·) denotes the Beta function.

The first CM-step involves conditional maximisation of Q with respect to θ′, holding

p constant at its current estimate p̂(c). To do this, for each θ′j we must find the non-

negative root of the derivative

∂Q

∂θ′j
=

n∑
i=1

Nix
′
ij

{
Yi∑
y=0

(ψ(y + rij(θ
′))− ψ(rij(θ

′))) Pr(c)(Y(j)
i = y | Yi) + log(1− p̂(c))

}
.

This does not have an explicit solution, but we can exploit the property of the digamma

function

ψ(y + r)− ψ(r) =

y−1∑
k=0

1

r + k
≤ y

r
y = 1, 2, . . .

in order to find an upper bound for the root

θ̂′j(c+1) ≤

∑n
i=1 E(c)

(
Y(j)
i | Yi

)
log( 1

1−p̂(c)
)
∑n

i=1Nix′ij
= Uj(c+1) where E(c)

(
Y(j)
i | Yi

)
= Yi

rij(θ̂
′
(c))

ri(θ̂(c))
.

This allows the straightforward use of an omnibus root-finding routine, such as uniroot
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in R, to find the root in the finite interval [0, Uj(c+1)].

In the second CM-step, we keep the additive part θ̂′(c+1) fixed at its current estimate,

and update the estimate for p by maximising the observed-data log-likelihood, giving

p̂(c+1) =

∑n
i=1 Yi∑n

i=1 Yi +
∑n

i=1 ri(θ̂(c+1))
.

If our starting estimates are within the parameter space for a given complete-data

model, the updated estimates at each iteration are guaranteed to remain within the

parameter space, and the likelihood will increase until it converges to its maximum

value within the restricted parameter space Θ(t).

This process is repeated for each possible choice of the reference vector t in order to

find the global maximum, which is the constrained MLE with the highest likelihood.

However, there are some situations in which we can stop early, having only searched a

subset of the restricted parameter spaces (Marschner, 2014). In particular, if we find

a stationary point in the interior of the parameter space Θ(t), we can be sure that it

is the overall MLE.

Finally, after finding the overall MLE (θ̂′, p̂), we can use the inverse of (5.6) to obtain

the unshifted intercept and linear slope parameters, and then (5.2) to calculate the

estimated coefficient of overdispersion φ̂, and the estimated rate difference parameters

θ̂∗ = (α̂∗0, α̂
∗
1, . . . , α̂

∗
A, β̂

∗
1 , . . . , β̂

∗
B)>.

For categorical covariates, α̂∗a(u) is the rate difference associated with level u compared

to the reference level ta, adjusted for the other A + B − 1 covariates. For continuous

covariates, β̂∗b is the adjusted rate difference associated with a one-unit increase in the

bth continuous covariate.

5.3.4 Variance estimation

If our distributional assumption and mean model are correct, the MLE resulting from

this method will be consistent, with an asymptotic multivariate normal distribution.

We can obtain an estimate of the covariance matrix for the parameter estimates (θ̂∗, φ̂)

by using the inverse of the observed information matrix, evaluated at the MLE. The

relevant formulae are given in Appendix 5.A.

However, asymptotic normality of the MLE may be questionable if the estimate is on



134 Additive negative binomial regression

or close to the boundary of the parameter space. In this case, confidence intervals

for parameter estimates may be obtained by using a resampling method such as the

bootstrap. The stability of our fitting method ensures that the MLE can be obtained

in every resampled dataset, and so there will be no bias caused by non-convergence in

some samples.

5.4 Semi-parametric model

In some situations it may be desirable to relax the linearity restriction on the effect

of continuous covariates on the expected count or rate, and instead adjust for these

covariates semi-parametrically. To allow this, we extend (5.3) to include C additional

unspecified functions, so

Λ(xi,θ) = α0 +
A∑
a=1

αa(uia) +
B∑
b=1

βbvib +
C∑
c=1

fc(wic).

As demonstrated by Donoghoe and Marschner (2015) for the additive Poisson model,

it is possible to incorporate the estimation of the unknown functions fc into the ad-

ditive negative binomial model by using B-spline basis functions. This allows us to

retain the stability of our estimation method, while still ensuring that the fitted means

are non-negative. The approach relies on the fact that it is straightforward to impose

non-negativity constraints on any of the parameters associated with continuous covari-

ates. This is easy to do for the additive negative binomial model also, as discussed in

Section 5.3.2. We now describe the B-spline model.

5.4.1 B-spline model

For notational convenience, in this subsection we will first consider the case of C = 1

and drop the subscript c from the unspecified function fc. We parameterise these

regression functions using the B-spline model

f(w) =
D∑
d=1

γdBd(w),

where {Bd; d = 1, . . . , D} are B-spline basis functions (Ramsay, 1988).
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Let τ be a set of D+κ knots on which the B-spline basis is defined, where κ− 1 is the

desired degree of the smooth curve and D − κ of the knots are distinct turning points

in the interior of the range of the continuous covariate. Then the above model means

that f is restricted to belong to B(τ ), the function space defined by the B-spline basis

on τ . For simplicity, here we use κ = 3 and choose the D − 3 turning points to be

evenly spaced quantiles of the observed {wi}, but these methods will work with any

choice of κ and knot vector. We allow the level of smoothness to vary by fitting models

with different numbers of turning points and choosing the one with the smallest AIC

(Akaike, 1974). Other suitable model selection criteria can also be used, such as the

small-sample version, AICc (Hurvich, Simonoff, and Tsai, 1998).

Each basis function Bd is positive in (τd, τd+3) and zero elsewhere, meaning that if all

of the γd coefficients are non-negative, the resulting f will also be strictly non-negative.

Furthermore, the B-spline bases are normalised such that
∑D

d=1 Bd(w) = 1 for all w,

so we must include an identifiability constraint on the coefficients of each curve.

We begin by choosing a reference level tA+B+1 ∈ {1, . . . , D}, and impose an identifia-

bility constraint by setting γtA+B+1
= 0. The remaining coefficients can be estimated

by treating the basis function values Bd(wi) as continuous covariates in the ECME

algorithm, restricting their associated parameters to be non-negative. The resulting

f will belong to B+(τ ; tA+B+1), which denotes the subspace of strictly non-negative

curves in B(τ ) that have their shape constrained by the choice of tA+B+1. We repeat

this for all D possible choices of tA+B+1, and the estimate with the highest likelihood

is the MLE for the semi-parametric model.

Extension to C > 1 is straightforward: for each c = 1, . . . , C, we choose a reference

level tA+B+c ∈ {1, . . . , Dc}, set γctA+B+c
= 0 and use the ECME algorithm to find

the MLE, constraining the remaining B-spline coefficients to be non-negative. To find

the global maximum, we repeat this for all
∏C

c=1Dc possible choices of these reference

levels.

5.4.2 Monotonicity restriction

This approach also allows us to impose a monotonicity restriction on any of the smooth

curves. A sufficient condition for the monotonicity of f is that coefficients of the B-

spline basis functions are themselves strictly non-decreasing, that is γ1 ≤ · · · ≤ γD
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(Leitenstorfer and Tutz, 2007). If we set γ1 = 0 and introduce parameters δ2, . . . , δD

that represent the increments between successive coefficients, so

δd = γd − γd−1 d = 2, . . . , D,

an equivalent condition is to require these increments to be non-negative.

Under this parameterisation,

f(w) =
D∑
d=2

δd

(
D∑
e=d

Be(w)

)
, (5.7)

so a monotonicity restriction can be applied simply by treating the partial sums of

B-spline bases in (5.7) as continuous covariates, and constraining their associated pa-

rameters to be non-negative in the CEM algorithm. Because we only need to consider

one parameterisation for each monotonic regression function, extension to C > 1 is

trivial, and in fact the inclusion of additional semi-parametric monotonic covariates

does not require additional applications of the ECME algorithm.

5.5 Application

The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study was a

double-blind randomised clinical trial examining the effect of fenofibrate treatment on

cardiovascular risk in 9795 participants with type II diabetes, aged between 50–75

years over a median follow-up time of 5 years (FIELD Study Investigators, 2005). A

pre-specified secondary endpoint of the study was laser photocoagulation treatment for

diabetic retinopathy, a microvascular complication of diabetes. Laser therapy is used

to slow or prevent vision loss caused by retinopathy, but is associated with visual field

reduction and other side-effects (Aiello, 2003), so reducing the need for its use would

be a positive outcome.

The vast majority of patients (96%) did not undergo laser therapy during the follow-

up period, but individuals could have multiple courses of laser therapy, and we wish

to estimate the effect of fenofibrate treatment on the number of laser therapy courses

administered per 5 patient-years. In the primary analysis of this data (Keech et al.,

2007), a Poisson GLM with a log link function was used to estimate a rate ratio (RR)
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for the treatment effect. The overdispersion apparent under the Poisson model was

accounted for by rescaling the estimated standard errors.

There was no evidence of an interaction between fenofibrate treatment and the presence

of known prior retinopathy at baseline on the multiplicative scale, with an estimated

overall RR of 0.63 (95% CI 0.49–0.81). This estimate was applied to the observed mean

rates of laser therapy in the placebo group for those with and without known prior

retinopathy to obtain estimates of the absolute rate reduction, and hence the expected

number of laser therapy courses that may be avoided by administering fenofibrate in

these cohorts.

Alternatively, by using an additive model we are able to directly estimate these absolute

rate differences and their confidence intervals. The model will also allow us to adjust

for individuals’ duration of diabetes prior to study entry, which is strongly associated

with the risk of retinopathy, and confounded with prior retinopathy status. A negative

binomial model for the number of laser therapy events will account for overdispersion

with a distributional form.

Assuming no interaction between treatment and known prior retinopathy, we esti-

mated the effect of fenofibrate, first unadjusted for any covariates, then adjusted for

baseline retinopathy, in an additive negative binomial model. The results are shown

in Figure 5.1 as rate differences per 5 patient-years, along with their 95% confidence

intervals.

Unadjusted

Retinopathy

Ret. + diabetes duration

No retinopathy history

Retinopathy history

No retinopathy history

Retinopathy history

No interaction

Interaction

Int. + diabetes duration

0.00 0.25 0.50 0.75 1.00
Rate difference (per 5 patient−years)

−0.3 −0.2 −0.1 0.0
Rate difference (per 5 patient−years)

−0.033 (−0.050, −0.015)

−0.022 (−0.034, −0.010)

−0.007 (−0.015,  0.002)

−0.021 (−0.034, −0.009)

−0.158 (−0.311, −0.005)

−0.006 (−0.014,  0.002)

−0.162 (−0.313, −0.010)

<0.001

<0.001

0.127

<0.001

0.043

0.153

0.037

0.080

0.044

RD (95% CI) p−value p(Int)

0.00 0.25 0.50 0.75 1.00
Rate difference (per 5 patient−years)

Figure 5.1: Estimated effect of fenofibrate on the rate of laser therapy in the FIELD
study from additive negative binomial models, unadjusted and adjusted for prior retinopathy
status and diabetes duration. p(Int) denotes the p-value for testing an interaction between
treatment and retinopathy history.
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Diabetes duration up to 20 years was then entered into the model as a flexible smooth

term with a maximum of 5 internal knots. The inclusion of diabetes duration substan-

tially improved the model fit as measured by the AIC (3853.4 with diabetes duration

compared to 4014.3 without), and led to a noticeable reduction in the treatment effect

estimate.

In order to obtain an estimate of the rate difference for fenofibrate separately in patients

with and without known prior retinopathy, the model must include an interaction

between treatment allocation and retinopathy status. The estimates from this model,

with and without adjustment for diabetes duration, are also shown in Figure 5.1. As

expected from the analysis that showed no interaction on a multiplicative scale, the

common relative effect of treatment is manifested in a smaller absolute rate difference

for individuals at low risk, that is those without known prior retinopathy, compared to

those at high risk. After adjustment for diabetes duration, this interaction is marginally

significant (p = 0.044).

Under this model, the effect of diabetes duration on the rate of laser treatment is

assumed to be the same for patients with and without known prior retinopathy. The

estimated effect is shown in Figure 5.2, with a 95% confidence interval obtained using

the information matrix standard errors. This effect of increasing diabetes duration was

allowed to be non-monotonic, and the estimate shows a small reduction in rate just

prior to 20 years, which may be due to sampling error. The estimated effect of diabetes

duration under a monotonicity constraint is also shown in Figure 5.2.

The estimated rates under our additive NegBin I model were very similar to those

under an equivalent additive Poisson model, and did not exceed 0.75 events per 5

patient-years in either case. The coefficient of overdispersion in the negative binomial

model was estimated to be φ̂ = 2.44 (with estimated standard error 0.25), such that

the linear mean–variance relationship has a gradient of 3.44, compared to the equidis-

persion imposed by the Poisson model. The test statistic for a score test of the Poisson

versus the NegBin I distribution, which has a standard normal distribution under the

null hypothesis (Cameron and Trivedi, 1986), is 114.6, suggesting strong evidence of

overdispersion. Likewise the likelihood ratio test statistic, with a 0.5χ2(1) distribution

under the null (Lawless, 1987), is 1476.9.



5.5 Application 139

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

Diabetes duration (years)

R
at

e 
di

ffe
re

nc
e

(v
s.

 0
 d

ia
be

te
s 

du
ra

tio
n)

Figure 5.2: Laser therapy rate difference associated with increasing diabetes duration in
the FIELD study under an additive negative binomial model, with 95% confidence interval
(shaded). The dotted line shows the same fitted rate difference if a monotonicity constraint
is applied.

Accounting for overdispersion by using a distributional model allows us to estimate the

number of patients in our sample expected to undergo a certain number of laser therapy

courses, and these are shown in Figure 5.3, compared to those from the additive Poisson

model and the observed histogram. The Poisson model substantially underestimates

the number of patients who would not undergo any laser therapy, overestimates the

number receiving a single course, and underestimates the number receiving 3 or more

courses. In contrast, the NegBin I model shows very good fit to the observed counts,

even in the tail of the distribution.

Under an equivalent additive NegBin II model, the mean–variance relationship was

estimated to be Var(µ) = µ + 9.9µ2, and the expected counts under this model are

also shown in Figure 5.3. The NegBin II model underestimates the number of patients

receiving between 2–6 courses of laser therapy, suggesting that the quadratic mean–

variance relationship has inferior fit to the linear overdispersion of the NegBin I model

for this data. This is supported by a comparison of AIC values (4132.8 for NegBin II

versus 3851.3 for NegBin I) and Chi-squared goodness of fit statistics (48.3 for NegBin

II versus 3.44 for NegBin I) for the fitted models. Empirically, a plot of the observed

means and variances of the event rate within groups of patients defined by their assigned

treatment, prior retinopathy status and diabetes duration (Figure 5.4) also suggests
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Figure 5.3: Observed number of individuals with each number of laser therapy courses in
the FIELD study, compared to the expected number under additive Poisson, NegBin I and
NegBin II models.

that a linear mean–variance relationship is more appropriate for these data.

As an extension, we considered the possibility that the effect of increasing diabetes

duration may differ between patients with and without known prior retinopathy. We

fitted a similar additive NegBin I model, with a monotonicity constraint but without

the assumption of a common effect, and the expected rates under each model are

shown in Figure 5.5. The model that allowed different diabetes duration curves had

superior fit in terms of AIC (3842.7 versus 3852.8), and shows a dramatic increase in

the expected rate between 5 and 15 years of diabetes duration for patients with known

prior retinopathy. As can be seen by examining the vertical distance between the pairs

of lines in each case however, the estimated treatment effect is virtually identical under

both models.

5.6 Discussion

We have described a stable method for finding the MLE in additive negative binomial

regression, which allows for estimation of adjusted rate differences in the presence of

overdispersion. It also allows for smooth semi-parametric regression using B-splines,
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Figure 5.4: Observed mean and variance of laser therapy rates in the FIELD study, for
groups defined by assigned treatment, prior retinopathy status and diabetes duration. The
solid black line shows the estimated mean–variance relationship from the fitted NegBin I
model; the grey lines show the estimated mean–variance relationship under Poisson (solid)
and NegBin II (dotted) models.

with optional monotonicity constraints on these curves. The method respects the natu-

ral non-negativity restriction on the fitted means, which can cause issues for approaches

that employ standard gradient-based algorithms such as Newton–Raphson.

Appendix 5.B gives a detailed summary of existing software that can potentially fit

models for estimating adjusted rate differences in the presence of overdispersion. At

present, the gamlss package in R (Rigby and Stasinopoulos, 2005) is the only other

available implementation of a method for fitting additive NegBin I models. However, it

employs a variant of the Newton–Raphson algorithm, which may perform poorly when

the MLE is on or near the boundary of the parameter space. In the current version

(4.3), the routine stops with an error if the estimates move outside the parameter space

at any iteration, and although this may be improved by step-size reduction, it is not
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Figure 5.5: Fitted rates of laser therapy per 5 patient-years by baseline diabetes duration
in the FIELD study under an additive negative binomial model, for patients with (thick lines)
and without (thin) known prior retinopathy, assigned to placebo (solid lines) or fenofibrate
(dashed) treatment. In (A), the effect of diabetes duration was restricted to be the same for
all patients, whereas in (B) it was allowed to differ for those with and without known prior
retinopathy.

straightforward to guarantee convergence in all cases. Together with the superiority

of the additive NegBin I model in the analysis of Section 5.5, these considerations

illustrate the practical usefulness of our method.

Our method has been implemented in the addreg package in R (Donoghoe, 2015a),

which is available from the Comprehensive R Archive Network (CRAN). Currently the

package implements a basic version of the method, searching every possible constrained

parameter space consecutively. We plan that future releases will focus on optimising the
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computational efficiency using techniques to reduce the number of ECME algorithms

that need to be run, such as those discussed by Marschner (2014), and by taking

advantage of the independent nature of the multiple ECME algorithms using parallel

implementation on a multi-core processor.

The additive NegBin I model that we consider in this paper has a linear relationship

between the conditional mean and variance, distinguishing it from the additive NegBin

II model, which has a quadratic relationship. Both of these are nested in the NegBin-

p model (Cameron and Trivedi, 1986), which could be used to test which is more

appropriate, but there are no existing methods for fitting this model with an additive

mean. Alternatively, a scatterplot similar to that used by Armitage (1957) or Figure 5.4

can help to distinguish between NegBin I and NegBin II.

Both overdispersion and zero-inflation may be observed in the same data as a result

of the data generating process. A possible extension of our method is the inclusion of

zero-inflation by introducing a latent Bernoulli random variable into the complete-data

model associated with the CEM algorithm. By utilising the methods of Marschner and

Gillett (2012) and Donoghoe and Marschner (2014), stability of the algorithm could

be maintained for any choice of logit, log or identity link in the regression model for

the binary component. Such extensions are the subject of ongoing research.

Software

The methods described in this paper have been implemented in an R package addreg,

available in the Comprehensive R Archive Network (CRAN) at http://cran.r-project.

org/package=addreg.

Supplementary material

Supplementary material for this chapter is presented in Appendices 5.A and 5.B.

http://cran.r-project.org/package=addreg
http://cran.r-project.org/package=addreg
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Appendix

5.A Information matrix for the additive negative

binomial model

Given maximum likelihood estimates (θ̂∗, φ̂) for the additive NegBin I model defined

in Section 5.2, the (J + 1)× (J + 1) observed information matrix Io can be expressed

as

Io =

[
I1 I2

I>2 I3

]
,

where we begin by defining

Ψ0i = ψ

(
Yi +

1

φ̂
NiΛ(xi, θ̂

∗)

)
− ψ

(
1

φ̂
NiΛ(xi, θ̂

∗)

)
= ψ

(
Yi + ri(θ̂)

)
− ψ

(
ri(θ̂)

)
=

0, Yi = 0∑Yi−1
k=0 (ri(θ̂) + k)−1, Yi = 1, 2, . . .

and

Ψ1i = ψ1

(
Yi +

1

φ̂
NiΛ(xi, θ̂

∗)

)
− ψ1

(
1

φ̂
NiΛ(xi, θ̂

∗)

)
= ψ1

(
Yi + ri(θ̂)

)
− ψ1

(
ri(θ̂)

)
=

0, Yi = 0

−
∑Yi−1

k=0 (ri(θ̂) + k)−2, Yi = 1, 2, . . .
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where ψ1 denotes the trigamma function. Then I1 is a symmetric J × J matrix with

(j, k) entry

I1(j,k) = − ∂2`

∂θ∗j∂θ
∗
k

∣∣∣∣
(θ̂∗,φ̂)

= −
n∑
i=1

(
Ni

φ̂

)2

xijxikΨ1i,

I2 is a J × 1 vector with jth element:

I2(j) = − ∂2`

∂θ∗j∂φ

∣∣∣∣
(θ̂∗,φ̂)

=
n∑
i=1

Nixij

φ̂2

(
ri(θ̂)Ψ1i + Ψ0i +

φ̂

φ̂+ 1
− log(φ̂+ 1)

)
,

and I3 is a scalar:

I3 = − ∂2`

∂φ2

∣∣∣∣
(θ̂∗,φ̂)

=
n∑
i=1

Yi
2φ̂+ 1

φ̂2(φ̂+ 1)2

− ri(θ̂)

φ̂

{
ri(θ̂)

φ̂
Ψ1i +

2

φ̂

(
Ψ0i +

φ̂

φ̂+ 1
− log(φ̂+ 1)

)
+

φ̂

(φ̂+ 1)2

}
.

5.B Other approaches for overdispersed count data

In the following sections, we summarise existing approaches that could potentially

be used to estimate adjusted rate differences in the presence of overdispersion, and

highlight their shortcomings that motivate the study of new methods. We end with

some conclusions about the merits of our proposed method compared to these existing

approaches.

5.B.1 Negative binomial regression

Table 5.B.1 summarises the availability of fitting methods for additive and multiplica-

tive negative binomial regression models in popular statistical software packages. The

majority of these methods use a gradient-based approach such as the Newton–Raphson
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algorithm to find the MLE, and this usually performs well when there are no restric-

tions on the parameter space, as in the case of the multiplicative model. In fact, some

texts that discuss negative binomial regression only consider multiplicative models (e.g.

Winkelmann, 2008), which is reflected in the fact that some implementations, such as

nbreg and gnbreg in Stata (StataCorp, 2013), only permit a log-linear mean function.

Adjusted rate difference estimates can be obtained from a fitted multiplicative model

by using the approach of Greenland (2004), but these estimates will be inconsistent if

the true mean specification is based on an additive model.

The NegBin II model is often used because it is a member of the linear exponential

family if φ is fixed, it has a block diagonal information matrix such that the MLEs

for the mean and dispersion parameters are independent, and the mean estimates are

robust to distributional misspecification (Cameron and Trivedi, 1998, p. 74). Indeed, it

is sometimes the only negative binomial distribution considered in texts (e.g. Thurston,

Wand, and Wiencke, 2000; Venables and Ripley, 2002) and used by some software

packages (e.g. PROC GENMOD in SAS; SAS Institute Inc., 2008). But consistency of

Table 5.B.1: Availability of routines for fitting additive and multiplicative negative bi-
nomial regression in popular statistical packages.

Software Function Additive Multiplicative
NB I NB II NB I NB II

R aod::negbin* ×
COUNT::ml.nb1 ×
COUNT::ml.nb2 ×
gamlss::gamlss* � � × × × ×
MASS::glm.nb × ×
mgcv::gam� × ×
msme::nbinomial* × ×
VGAM::vgam� × ×
VGAM::vglm × ×

SAS PROC COUNTREG × ×
PROC GENMOD × ×

Stata glm × ×
gnbreg* × ×
nbreg × ×

SPSS genlin × ×
* These methods allow a regression model for the scale parameter.
� These methods allow smooth semi-parametric terms in the mean regression formula.
� In gamlss, NegBin I models are accessed with family = NBII() and NegBin II

models with family = NBI().
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the estimated standard errors only holds if the distributional assumption is correct

(Cameron and Trivedi, 1998, p. 75), and the superiority of the NegBin I model in

the illustrative analysis in the main paper demonstrates the practical usefulness of our

NegBin I approach.

Karlis (2001) has proposed an EM-based method for fitting mixed Poisson models, in

which the random mixing variables are treated as the missing data. The method is

presented for a multiplicative NegBin II model, and requires a log-link Poisson GLM to

be fitted in the M-step of each iteration. This could possibly be adapted for an additive

model by using an identity-link Poisson GLM at that step, with stability maintained

by employing the CEM algorithm of Marschner (2010). It is not clear, however, if this

could be easily translated to a NegBin I model.

Other packages that implement general optimisation algorithms can also potentially

be used to find the MLE in additive NegBin I models. For example, the gnlm package

(Lindsey, 2013) only includes the NegBin II distribution as an inbuilt option, but

the additive NegBin I likelihood can be entered manually. The negbin function in

the aod package (Lesnoff and Lancelot, 2012) and the fitting functions in the COUNT

package (Hilbe, 2014) in R assume a multiplicative model, but use the optim function,

which implements several different maximisation algorithms (R Core Team, 2013).

This approach could be adapted to fit an additive NegBin I model. However, these

methods do not easily handle the parameter constraints of an additive model, and it

may be difficult to ensure convergence close to the boundary.

Without specifying a regression function, a more general mean–variance relationship

can be achieved by using the NegBin-p model (Cameron and Trivedi, 1986). Here, the

variance of the Gamma-distributed random error is φ(Niλi)
p−2, resulting in a negative

binomial marginal distribution with Var(Yi) = E(Yi)+φ [E(Yi)]
p. This nests the NegBin

I and NegBin II models when p = 1 and p = 2 respectively, and this is often noted to

be a typical range for p in practice (Engel, 1984). The additional parameter can be

estimated using an iterative algorithm such as BHHH (Greene, 2008), and hypothesis

tests can be performed to assess for deviation away from NegBin I or NegBin II.

The gamlss method allows for an alternative approach to overdispersion modelling

within the context of a negative binomial model. This is achieved by allowing the

dispersion parameter φ, as well as the mean, to vary across individuals through a
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regression function. This may be appropriate, for example, if certain subgroups exhibit

a greater degree of overdispersion than others.

5.B.2 Alternative models for overdispersion

A number of alternative regression models for dealing with extra-Poisson dispersion

have been proposed in the literature. Instead of the Gamma distribution being used

for the random effects, Dean, Lawless, and Willmot (1989) use the inverse Gaussian

distribution, and Hinde (1982) uses the log-normal distribution. These models can

be parameterised so that they share the same mean and variance as the negative

binomial distribution, and hence differ only in the higher moments (Winkelmann, 2008,

p. 133). Even more generally, Gourieroux, Monfort, and Trognon (1984) considered

the situation where the random effect could come from any unspecified exponential

family distribution.

Holgate (1970) shows that for any continuous mixing distribution, the resulting marginal

likelihood will be unimodal and hence can be maximised by using standard algo-

rithms. For the Poisson–inverse Gaussian model, Guo and Trivedi (2002) define an

iterative Broyden–Fletcher–Goldfarb–Shanno algorithm to find the MLE, while Hinde

(1982) uses a combination of numerical integration, the EM algorithm and iteratively

reweighted least squares for the log-normal mixture. However, in both cases, only mul-

tiplicative regression models are defined, and so no consideration is given to the issues

that can arise with these algorithms when parameter space restrictions apply.

As with the NegBin II model, the EM algorithm proposed by Karlis (2001) may be

used for Poisson–inverse Gaussian models. The step to update the dispersion parameter

here has a closed form, so the method appears to be stable for multiplicative models.

In an additive model, the M-step of each iteration requires the maximisation of an

additive Poisson likelihood, and the CEM algorithm of Marschner (2010) may be used

to maintain stability.

The generalised Poisson distribution proposed by Consul (1989) is also an example

of a mixed Poisson, although the mixing distribution is difficult to identify (Joe and

Zhu, 2005). However, it has the undesirable property that the range of the outcome

variable, rather than being unbounded, is dependent on the parameters. This is also

true of the generalised event count model (King, 1989; Winkelmann and Zimmermann,
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1991), but both distributions have the additional feature of nesting both under- and

overdispersion in a single parameter, allowing for hypothesis testing to distinguish

between these possibilities.

Less commonly used models include the double Poisson (Efron, 1986), which also allows

both under- and overdispersion but only provides approximate expectations, and the

Poisson polynomial distribution (Cameron and Johansson, 1997), which has unintuitive

parameter interpretations in the regression framework (Winkelmann, 2008, p. 49).

Many of the fitting methods for these models are based on a multiplicative mean spec-

ification, and rely on gradient-based algorithms. These could be adapted to additive

models, with some step-size adjustment strategy (e.g. Thall, 1988) to help achieve

convergence within the parameter space, but we are unaware of any available imple-

mentations of such an approach.

In some contexts, it may be appropriate to assume that a particular data generating

process is responsible for observed overdispersion. For example, the NegBinX model

of Santos Silva and Windmeijer (2001) results from a stopped-sum characterisation of

the negative binomial distribution, and has been used to model the number of visits

to a doctor. Similarly, overdispersed data may appear to be zero-inflated, but fitting

such a model implies that some of the zero counts are the result of a separate process,

which may not be plausible in some scenarios (e.g. Lord, Washington, and Ivan, 2005).

Wang, Cockburn, and Puterman (1998) used a combination of EM and quasi-Newton

algorithms to fit a finite mixed Poisson model, which is a special case of the finite

mixed GLM proposed by McLachlan (1997), for which a multicycle ECM algorithm

has been defined. Even more generally, Aitkin (1996) described an EM algorithm to

fit a non-parametric finite mixture model, where the mixing distributions themselves

are considered to be nuisance functions. Adjusted rate differences could be estimated

by such models, although the stability of these methods with an identity link function

is unclear.

5.B.3 Model-independent adjustment

A method for estimating an adjusted rate difference and its variance in the presence of

overdispersion has been provided by Stukel et al. (1994). This was a generalisation of

the approach of Glynn et al. (1993) to allow for an arbitrary mean–variance structure,
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and the adjustment is based on direct standardisation of rates. However, this only

allows for categorical adjustment covariates, and therefore loses the flexibility of a

regression-based approach. Furthermore, this method can be subject to problems with

estimation if the strata are sparse (Stijnen and Van Houwelingen, 1993).

A regression-based method was provided by Xu et al. (2010), which allows for any

number of adjustment covariates by using an ordinary least squares (OLS) approach

on transformed data. Overdispersion is modelled by the introduction of a random

frailty term, and robust standard errors are used to account for this. However, because

the OLS framework does not impose constraints on the outcome variable, the fitted

means resulting from this method are not guaranteed to be non-negative.

5.B.4 Conclusions

In summary, although there is a vast array of potential methods and software for

estimating adjusted rate differences in count data subject to overdispersion, none have

been designed with the required additive (identity-link) model structure in mind and

the consequent constrained maximisation problem that follows. This generally leads

to the potential for implementation and stability problems in practice with existing

methods. The stability and flexibility of the proposed method, together with the

implementation available in the R package addreg (Donoghoe, 2015a), is therefore

likely to make this a useful method in practice.
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6
Discussion

In this thesis, we have developed new methodology for fitting semi-parametric regres-

sion models for risks and rates. These methods allow us to estimate adjusted risk

differences, rate differences and relative risks, which are useful measures of effect in

clinical studies. In this final chapter, we provide an overview of the methods, their

implementation and potential future extensions.

6.1 Overview

In Chapter 3 we defined a new algorithm for maximum likelihood estimation in additive

(identity-link) binomial generalised linear models (GLMs), and demonstrated its relia-

bility and flexibility compared to existing methods. We then extended this method in

Chapter 4 to allow for flexible smooth semi-parametric terms in a generalised additive

model (GAM), as well as adapting existing stable methods for additive Poisson and log-

link binomial models in a similar way. Finally, in Chapter 5 we defined an algorithm

161
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for maximum likelihood estimation in additive negative binomial regression models,

providing a method for estimating semi-parametrically adjusted rate differences in the

presence of overdispersion.

Our methods are particularly useful when a standard GLM routine, such as the Newton–

Raphson or Fisher scoring algorithms that are implemented in most popular statistical

software, fails to converge to the maximum likelihood estimate (MLE). As described

in Section 2.1.4, these algorithms do not have a natural way of dealing with the pa-

rameter constraints that are required in many non-canonical models to ensure that the

fitted risks and rates take valid values. In an application to real data presented in

Section 3.3.3, we showed an example in which the glm function in R could not con-

verge to the MLE, with the parameter estimates becoming caught in a periodic cycle.

In simulations presented in Section 3.4, we saw that SAS’s GENMOD procedure suffered

convergence issues with additive binomial models, particularly when the MLE was near

the boundary of the parameter space.

Semi-parametric models provide additional flexibility for situations in which we do not

wish to specify a parametric functional form for the relationship between a covariate

and the risk or rate. We showed an example of this in Section 4.5. Methods for semi-

parametric regression models typically rely on the same gradient-based algorithms

as GLMs for fitting the parametric components, and can suffer similar convergence

problems. In particular, PROC GAM in SAS only permits models that use the canonical

link function, while gamlss in R is the only other available method for fitting additive

NegBin I models, but has no inbuilt method for ensuring that the necessary parameter

constraints are enforced.

Each of the methods presented in this thesis is an application of a combinatorial EM

algorithm. These algorithms provide stable convergence to the MLE and ensure that

the parameter estimates always remain within the parameter space at every iteration.

Even when a standard approach successfully converges to the MLE, if it is on or close

to the boundary of the parameter space, we cannot rely on asymptotic normality to

estimate confidence intervals for the model parameters. In such situations, we can

instead use bootstrapping, and as demonstrated in Sections 3.3.3 and 4.5, the stability

of our approach is important because no bias will be introduced by conditioning on

convergence to the MLE in bootstrapped samples.
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The models we have examined in this thesis are not restricted to clinical settings: risk

differences, rate differences and relative risks are relevant outside of biostatistics. In

epidemiology, prevalence can be viewed as the probability that an individual in the

population under study has the disease at the observation time, and so additive and

multiplicative binomial models can be used to estimate prevalence differences and ra-

tios, both of which are important effect measures (Pearce, 2004). In an epidemiological

cohort study, if observed over a fixed time period for all individuals, incidence is also a

measure of risk, but may alternatively be expressed as a rate (Rothman and Greenland,

1998). Attributable risk is the absolute difference in incidence (Koepsell and Weiss,

2003), and thus can be estimated by using an additive binomial, Poisson or negative

binomial model.

In Section 3.6, we gave some examples of recent applications of additive binomial

models in areas such as econometrics and psychometrics. In count data, overdispersion

has been observed in a wide range of applications; for example, ecological species counts

(Ver Hoef and Boveng, 2007), patent issuance (Hausman, Hall, and Griliches, 1984),

violent incidents in behavioural science (Gardner, Mulvey, and Shaw, 1995), and motor

vehicle accidents (Lord and Mannering, 2010). In such situations, additive negative

binomial models allow estimation of adjusted absolute differences in expected counts

or rates, which may be desired due to their simple interpretation, or may provide

superior fit over a multiplicative model. Semi-parametric regression of binary and

count outcomes has been used for descriptive and exploratory analyses in studies of

bank mergers (Behr and Heid, 2011), landslide susceptibility (Goetz, Guthrie, and

Brenning, 2011) and social unrest (Yeeles, 2015), and the stable methods described in

this thesis for non-canonical models are similarly applicable in such areas. Thus, while

the methodology developed in this thesis has been illustrated using clinical applications,

it is likely to be relevant for a broad range of other areas.

6.2 Software

The algorithms described in this thesis have been implemented in two open-source

software packages for the R computing environment: logbin and addreg. Both of

these packages are available online at the Comprehensive R Archive Network (CRAN).
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The full documentation for these packages is reproduced in Appendices A and B, which

includes example code for running the main functions. We provide a brief overview of

each package here.

6.2.1 logbin

The logbin package implements the CEM algorithm for log-binomial regression models

described by Marschner and Gillett (2012) and extended to include semi-parametric

regression in Chapter 4 of this thesis.

The workhorse function that performs the constrained maximum likelihood estimation

for a particular parameterisation, nplbin, is based on code published in the supple-

mentary materials of Marschner and Gillett (2012). The main function logbin, and

the auxiliary functions that perform the necessary data manipulations, however, have

been rewritten so as to work with the formula and model.frame structures that are

used by the glm function in R. In particular, each categorical covariate must be en-

tered into the model as a factor, distinguishing them from continuous covariates and

allowing the possible reference levels to be easily identified.

The value returned by logbin is of class logbin, a subclass of glm and lm. This means

that many of the functions associated with these classes — for example, summary, vcov

and anova — are also compatible with results from a call to logbin.

Semi-parametric regression is performed by using the logbin.smooth function, and

including one or more B() (B-spline) or Iso() (isotonic step function) terms in the

model formula. Workhorse functions identify the possible reference levels, and iterate

through these by creating the associated basis functions and passing the appropriate

call to logbin. For terms that use a B-spline basis, the set of internal turning points

can be specified by the user through the knots argument, or a range for the possible

number of internal knots can be set in knot.range. In the latter case, for each number

in the range, the knots are placed at evenly-spaced quantiles of the covariate, and the

number of knots that gives the smallest AICc is chosen for the resulting model.

The mono argument may be used to reduce the number of times that the EM algorithm

must be applied, if we are certain that the relationship between a particular covari-

ate and risk is monotonically non-decreasing. For continuous covariates, it constrains
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the associated parameter to be non-negative by only considering one of the two pos-

sible reference levels. For semi-parametric terms, the fitted curve is constrained to be

monotonic by the method described in Section 4.4.5, which also only requires a single

parameterisation for that covariate.

The start argument allows the user to specify a starting value for the parameter

estimates in the EM algorithm, which may also improve the speed of convergence, but

only if the MLE is a stationary point in the interior of the parameter subspace in which

the start value lies. If not, the constrained MLE will be a point on the boundary of

the parameter subspace, and the algorithm will continue searching for the global MLE

in the other parameter subspaces.

Further documentation on the logbin package is provided in Appendix A, along with

some examples using datasets available in the glm2 package (Marschner, 2014), includ-

ing the ASSENT-2 study discussed in Chapters 3 and 4.

6.2.2 addreg

The addreg package fits additive Poisson (Marschner, 2010) and additive binomial

(Chapter 3) models, including semi-parametric regression (Chapter 4), as well as ad-

ditive negative binomial regression models (Chapter 5).

It is structured similarly to the logbin package, with a single main function, addreg,

which calls the appropriate workhorse functions to manipulate the data and fit the

model, depending on the specified family. The nnpois function, which implements

the EM algorithm for a constrained additive Poisson model, is based on code published

in the supplementary material of Marschner, Gillett, and O’Connell (2012). Additive

binomial models (family = binomial) are fit by manipulating the data as described

in Chapter 3 and making a second call to addreg with family = poisson.

The nnnegbin workhorse function is similar to nnpois, except that it implements an

ECME algorithm in order to estimate the rate difference and overdispersion parameters

simultaneously. In this case, the convergence criterion (2.3) may be applied in different

ways: in testing, we found the best results when convergence was declared if the

condition was met separately for both the vector of rate difference parameters and the

coefficient of overdispersion.

For negative binomial models, it is important to note that there is no unique saturated
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model, and so the deviance returned by addreg for a particular fitted model is relative

to a saturated model with the same estimated overdispersion parameter. It is not

appropriate to use likelihood ratio tests for comparing negative binomial models, as

the dispersion will not be the same in each, and hence they are not nested. Another

model selection criterion such as AIC or AICc should be used instead.

Further documentation on the addreg package is available in Appendix B, along with

examples using datasets available in the glm2 package (Marschner, 2014).

6.3 Future directions

Combinatorial EM algorithms are often useful in constrained maximum likelihood esti-

mation problems where the observed outcome variable can be represented as a function

of a collection of unobserved latent outcome variables. The applications in this thesis

suggest a range of more complex models for which a CEM algorithm may be applied

in order to achieve a stable fit.

For example, in Chapter 3, we used a special case of the multinomial–Poisson trans-

formation in order to fit an additive binomial model for estimating adjusted risk dif-

ferences. With some modifications to ensure that the parameter space constraints are

respected, this could be extended to be used in a more general additive multinomial

model for ordinal or nominal outcome data. In such a model, the parameter estimates

would correspond to the absolute differences in the probability of the outcome taking

a particular value.

Alternatively, the additive binomial model could be extended by combining the ap-

proach with a similar idea to that used by Marschner and Gillett (2012) for relative

risk regression. There, the binary outcome is expressed as the product of a collection

of latent binary outcome variables, and an additive model underlying each of these

would result in a stratified additive binomial model, similar to the stratified additive

Poisson model of Marschner, Gillett, and O’Connell (2012). Such a model could be

used in situations in which the risk depends multiplicatively on some covariates, but

additively on others.

The stratified additive Poisson model could also be extended to account for overdis-

persion by instead using a negative binomial model for the outcome and adapting the
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algorithm appropriately, using the ideas for additive negative binomial models discussed

in Chapter 5.

Zero-inflated additive Poisson and negative binomial models could also be fitted using

a CEM algorithm. Under such a model, the outcome is zero with some probability,

and otherwise comes from the proposed count distribution. A latent binary random

variable could be used to model this mixing, using a logistic, multiplicative or additive

structure.

Each of these extensions could incorporate semi-parametric regression by using B-

splines as in Chapter 4. The semi-parametric regression itself could be extended to

allow for additional flexibility through the inclusion of penalised maximum likelihood

estimation, and this can be achieved while maintaining stability, as discussed briefly in

Section 4.7. However, such extensions are likely to be quite computationally expensive,

and may only become viable with greater processor speed and large-scale parallelism.

Overall, the methods described in this thesis have a wide range of applications both

within and outside biostatistics. Extensions to these approaches could provide ad-

ditional flexibility for risk and rate modelling, while maintaining the stability of the

procedures presented in this thesis.





A
logbin package documentation

This appendix contains the documentation for the R package logbin, which im-

plements methods for fitting log-link binomial GLMs and GAMs, as described in

Marschner and Gillett (2012) and Chapter 4 of this thesis.

The package is available online from the Comprehensive R Archive Network:

Donoghoe, M. W. (2015b). logbin: Relative Risk Regression Using the Log-Binomial

Model. R package version 1.2. url: http://CRAN.R-project.org/package=

logbin.

The function nplbin, which implements the constrained log-binomial regression EM

algorithm, is based on code written by Alexandra Gillett and published as supplemen-

tary material to Marschner and Gillett (2012). All other functions were written entirely

by the candidate.
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http://CRAN.R-project.org/package=logbin
http://CRAN.R-project.org/package=logbin
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Package ‘logbin’

Title Relative Risk Regression Using the Log-Binomial Model

Description Methods for fitting log-link GLMs and GAMs to binomial data, using
EM-type algorithms with more stable convergence properties than standard
methods.

Version 1.2

Date 2015-05-12

Author Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

Maintainer Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

Depends R (≥ 3.0.1)

Imports splines, glm2

License GPL (≥ 2)

LazyData true
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logbin-package Relative Risk Regression Using the Log-Binomial
Model

Description

Methods for fitting log-link GLMs and GAMs to binomial data, using EM-type
algorithms with more stable convergence properties than standard methods.

Details

Package: logbin
Type: Package
Version: 1.2
Date: 2015-05-12
License: GPL (≥ 2)

This package provides methods to fit generalised linear models (GLMs) and gener-
alised additive models (GAMs) with log link functions to binomial data. It has two
primary functions: logbin and logbin.smooth, together with various supporting
functions.

It is useful in two main situations. The first is when a standard GLM routine,
such as glm, fails to converge with such a model. The second is when a flexible
semi-parametric component is desired in these models. One of the main purposes
of this package is to provide parametric and semi-parametric adjustment of relative
risks.

The computational method is a combinatorial EM algorithm (Marschner, 2014),
which accommodates the parameter constraints and is more stable than iteratively
reweighted least squares. A collection of restricted parameter spaces is defined
which covers the full parameter space, and the EM algorithm is applied within
each restricted parameter space in order to find a collection of restricted maxima of
the log-likelihood function, from which can be obtained the global maximum over
the full parameter space.

The methodology implemented in this package is presented in Marschner and Gillett
(2012) and Donoghoe and Marschner (2015).

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

Maintainer: Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate
differences, risk differences and relative risks. International Journal of Biostatistics
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11(1): 91–108.

Marschner, I. C. (2014). Combinatorial EM algorithms. Statistics and Computing
24(6): 921–940.

Marschner, I. C. and A. C. Gillett (2012). Relative risk regression: reliable and
flexible methods for log-binomial models. Biostatistics 13(1): 179–192.

See Also

glm

Examples

## For examples, see example(logbin) and example(logbin.smooth)

anova.logbin Analysis of Deviance for logbin Fits

Description

Compute an analysis of deviance table for more than one GLM fitted using logbin.

Usage

## S3 method for class 'logbin'

anova(object, ..., test = NULL)

Arguments

object, ... objects of class "logbin", typically the result of a call to logbin,
or a list of objects for the “logbinlist” method.

test a character string, (partially) matching one of "Chisq", "LRT",
"Rao", "F" or "Cp". See stat.anova.

Details

Unlike anova.glm, specifying a single object is not allowed.

The table has a row for the residual degrees of freedom and deviance for each
model. For all but the first model, the change in degrees of freedom and deviance
is also given. (This only makes statistical sense if the models are nested.) It is
conventional to list the models from smallest to largest, but this is up to the user.

Models where the MLE lies on the boundary of the parameter space will be au-
tomatically removed from the list (with a warning), because asymptotic results to
not apply to such models.

The table will optionally contain test statistics (and p-values) comparing the reduc-
tion in deviance for the row to the residuals. Mallows’ Cp statistic is the residual
deviance plus twice the estimate of σ2 times the residual degrees of freedom, which
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is closely related to AIC. You can also choose "LRT" and "Rao" for likelihood ra-
tio tests and Rao’s efficient score test. The former is synonymous with "Chisq"

(although both have an asymptotic chi-square distribution).

Value

An object of class "anova" inheriting from class "data.frame".

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

logbin, anova.glm, anova

Examples

## For an example, see example(logbin)

B.Iso Defining Smooths in logbin.smooth Formulae

Description

Function used in the definition of smooth terms within logbin.smooth model for-
mulae. The function does not evaluate a smooth — it exists purely to help set up
a model using smooths.

Usage

B(..., knots = NULL, knot.range = 0:5)

Iso(...)

Arguments

... variable that this smooth is a function of. Note that unlike gam,
smooths that are functions of more than one variable are not
supported.

knots unique positions of interior knots of a B-spline basis. Boundary
knots are created automatically.

knot.range if knots is not specified, a vector containing a series of non-
negative integers denoting the number of interior knots for which
the model will be fit. These are placed at evenly-spaced quantiles
of the observed covariate values.

At least one of knots or knot.range must be non-missing.



174 logbin package documentation

Details

The function does not evaluate the variable arguments; the output from this func-
tion is passed as part of the arguments to logbin.smooth.design, which constructs
the actual basis functions.

B is used to specify an order-3 B-spline basis (which can be restricted to be monoton-
ically non-decreasing via the mono argument in logbin.smooth). If length(knot.
range) > 1, models with each of the specified number of interior knots will be fit,
and the model with the best (smallest) aic.c will be returned.

Iso is used to specify an isotonic basis, designed such that the resulting function
has non-negative increments at each observed covariate value. When Iso is used,
the resulting function will always be monotonically non-decreasing, regardless of
the value of mono.

Value

An object of class "B.smooth" (for B) or "Iso.smooth" (for Iso), which is a list
with the following elements:

term name of the term provided in the ... argument.

termlabel label for the term in the model; e.g. for term "x" it will be
"B(x)" or "Iso(x)".

knots vector of interior knots (if specified). NA for Iso.

knot.range vector of number of interior knots. NA for Iso.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

logbin.smooth, logbin.smooth.design

s performs a similar function in the mgcv package.

Examples

## See example(logbin.smooth) for an example of specifying smooths in

## model formulae.
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confint.logbin Confidence Intervals for logbin Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted logbin model.

Usage

## S3 method for class 'logbin'

confint(object, parm, level = 0.95, ...)

Arguments

object a fitted model object, resulting from a call to logbin.

parm a specification of which parameters are to be given confidence
intervals, either a vector of numbers or a vector of names. If
missing, all parameters are considered.

level the confidence level required.

... additional argument(s) passed to confint.default.

Details

Calculates confidence intervals for model parameters assuming asymptotic normal-
ity and using the result from vcov.logbin(object). As such, if the MLE is on
the boundary of the parameter space, (as per object$boundary) the normality
assumption is invalid and NA is returned.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each
parameter. These will be labelled as (1-level)/2 and 1-(1-level)/2 in % (by default
2.5% and 97.5%).

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

confint.default, vcov.logbin

Examples

## For an example, see example(logbin)
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contr.isotonic.rev Contrast Matrix for Reversed Isotonic Covariate

Description

Return something similar to a contrast matrix for a categorical covariate that we
wish to be monotonically non-decreasing in a specified order.

Usage

contr.isotonic.rev(n, perm, contrasts = TRUE, sparse = FALSE)

Arguments

n a vector of levels for a factor, or the number of levels.

perm a permutation of the levels of n (or of the numbers 1:n), which
define the order in which the coefficients must be monotonically
non-decreasing.

contrasts a logical indicating whether constrasts should be computed.

sparse included for compatibility reasons. Has no effect.

Details

This function is used within logbin.design for categorical covariates with a spec-
ified order under a particular parameterisation. This is required if a categorical
covariate is defined as monotonic.

In the order specified by perm, the coefficient associated with each level is the sum
of increments between the following levels. That is, if there are a total of k levels,
the first level is defined as d2 + d3 + d4 + · · ·+ dk, the second as d3 + d4 + · · ·+ dk,
the third as d4 + · · · + dk, and so on. In fitting the model, these increments are
constrained to be non-positive.

Note that these are not ‘contrasts’ as defined in the theory for linear models, rather
this is used to define the contrasts attribute of each variable so that model.matrix
produces the desired design matrix.

Value

A matrix with n rows and k columns, with k = n − 1 if contrasts is TRUE and
k = n if contrasts is FALSE.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>
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See Also

logbin.design, which uses contr.isotonic.rev to create the design matrix using
model.matrix.

contr.treatment, contrasts for their usual use in regression models.

Examples

contr.isotonic.rev(4,1:4)

contr.isotonic.rev(4,c(1,3,2,4))

# Show how contr.isotonic.rev applies within model.matrix

x <- factor(round(runif(20,0,2)))

mf <- model.frame(~x)

contrasts(x) <- contr.isotonic.rev(levels(x), levels(x))

model.matrix(mf)

conv.test Convergence Test Based on L2 Norm

Description

Performs a test of convergence based on the L2 norm of the change in the parameter
estimates.

Usage

conv.test(theta1, theta2, epsilon)

Arguments

theta1 vector of parameter estimates at previous step.

theta2 vector of parameter estimates at current step.

epsilon positive convergence tolerance.

Details

This is used as the convergence test in the logbin fitting functions, because the
EM algorithm may converge slowly such that the test based on the deviance used
in glm.fit (see glm.control) may report convergence at a point away from the
actual optimum.

Value

A logical; TRUE if sqrt(sum((theta1-theta2)**2))/sqrt(sum(theta1**2)) <

epsilon; FALSE otherwise.



178 logbin package documentation

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

Examples

theta.old <- c(-4,-5,-6)

theta.new <- c(-4.05,-5,-6)

conv.test(theta.old, theta.new, 0.01)

conv.test(theta.old, theta.new, 0.005)

interpret.logbin.smooth Interpret a logbin.smooth Formula

Description

This is an internal function of package logbin. It is a service routine for logbin.

smooth which interprets the smooth parts of the model formula and returns modi-
fied formulas to be used in the fitting functions.

Not normally called directly.

Usage

interpret.logbin.smooth(formula)

Arguments

formula A formula as supplied to logbin.smooth, which includes at least
one B or Iso term.

Value

A list with components:

full.formula a formula object which is the same as the formula supplied,
but with additional arguments removed from the smooth terms.
E.g. B(x, knot.range = 0:2) would appear as B(x) in this
formula.

fake.formula a formula object which is the same as the formula supplied, but
with smooth terms replaced by their covariates alone. E.g. B(x,
knot.range = 0:2) would appear as x in this formula. Used to
construct the model matrix.

smooth.spec a named list containing the results of evaluating the smooth
terms. See B and Iso for details.

smooth.ind a vector containing the indices of the smooth components in the
formula.

terms the result of running terms.formula(formula, specials = c(

"B", "Iso")).
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Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

logbin.smooth

Examples

# Specify a smooth model with knot.range

res <- interpret.logbin.smooth(y ~ B(x, knot.range = 0:2) + x2)

# The knot.range is removed from the full.formula...

print(res$full.formula)

# ...but is stored in the $smooth.spec component of the result:

print(res$smooth.spec$x$knot.range)

logbin Log-Binomial Regression

Description

logbin fits relative risk (log-link) binomial regression models using a stable com-
binatorial EM algorithm.

Usage

logbin(formula, mono = NULL, data, subset, na.action, start = NULL,

offset, control = list(...), model = TRUE, warn = TRUE, ...)

Arguments

formula an object of class "formula" (or one that can be coerced into
that class): a symbolic description of the model to be fitted. The
details of model specification are given under “Details”. Note
that the model must contain an intercept, and 2nd-order terms
(such as interactions) or above are currently not supported —
see “Note”.

mono a vector indicating which terms in formula should be restricted
to have a monotonically non-decreasing relationship with the
outcome. May be specified as names or indices of the terms.

data an optional data frame, list or environment (or object coercible
by as.data.frame to a data frame) containing the variables in
the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which
logbin is called.

subset an optional vector specifying a subset of observations to be used
in the fitting process.
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na.action a function which indicates what should happen when the data
contain NAs. The default is set be the na.action setting of
options, and is na.fail if that is unset. The ‘factory-fresh’
default is na.omit. Another possible value is NULL, no action.
Value na.exclude can be useful.

start starting values for the parameters in the linear predictor.

offset this can be used to specify an a priori known component to
be included in the linear predictor during fitting. This should
be NULL or a non-positive numeric vector of length equal to the
number of cases. One or more offset terms can be included in
the formula instead or as well, and if more than one is specified
their sum is used. See model.offset.

control a list of parameters for controlling the fitting process, passed to
logbin.control.

model a logical value indicating whether the model frame should be
included as a component of the returned value.

warn a logical indicating whether or not warnings should be provided
for non-convergence or boundary values.

... arguments to be used to form the default control argument if
it is not supplied directly.

Details

logbin fits a generalised linear model (GLM) with a binomial error distribution
and log link function. Predictors are assumed to be continuous, unless they are
of class factor, or are character or logical (in which case they are converted to
factors). Specifying a predictor as monotonic using the mono argument means that
for continuous terms, the associated coefficient will be restricted to be non-negative,
and for categorical terms, the coefficients will be non-decreasing in the order of
the factor levels. This allows semi-parametric monotonic regression functions,
in the form of unsmoothed step-functions. For smooth regression functions see
logbin.smooth.

As well as allowing monotonicity constraints, the function is useful when a standard
GLM routine, such as glm, fails to converge with a log-link binomial model. If
glm does achieve successful convergence, and logbin converges to an interior point,
then the two results will be identical. However, as illustrated in one of the examples
below, glm may still experience convergence problems even when logbin converges
to an interior point. Note that if logbin converges to a boundary point, then it
may differ slightly from glm even if glm successfully converges, because of differences
in the definition of the parameter space. logbin produces valid fitted values for
covariate values within the Cartesian product of the observed range of covariate
values, whereas glm produces valid fitted values just for the observed covariate
combinations (assuming it successfully converges). This issue is only relevant when
logbin converges to a boundary point.

The computational method is a combinatorial EM algorithm (Marschner, 2014)
which accommodates the parameter contraints in the model and is more stable than
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iteratively reweighted least squares. A collection of restricted parameter spaces is
defined which covers the full parameter space, and the EM algorithm is applied
within each restricted parameter space in order to find a collection of restricted
maxima of the log-likelihood function, from which can be obtained the global max-
imum over the full parameter space. See Marschner and Gillett (2012) for further
details.

Value

logbin returns an object of class "logbin", which inherits from classes "glm" and
"lm". The function summary.logbin can be used to obtain or print a summary of
the results.

The generic accessor functions coefficients, fitted.values and residuals can
be used to extract various useful features of the value returned by logbin. Note
that effects will not work.

An object of class "logbin" is a list containing the same components as an object
of class "glm" (see the “Value” section of glm), but without contrasts, qr, R or
effects components. It also includes:

loglik the maximised log-likelihood.

aic.c a small-sample corrected version of Akaike’s An Information
Criterion (Hurvich, Simonoff and Tsai, 1998). This is used
by logbin.smooth to choose the optimal number of knots for
smooth terms.

xminmax the minimum and maximum observed values for each of the
continuous covariates, to help define the covariate space of the
model.

As well as:

np.coefficients

estimated coefficients associated with the non-positive parame-
terisation corresponding to the MLE.

nn.x non-negative model matrix associated with np.coefficients.

Note

Due to the way the covariate space is defined in the CEM algorithm, specifying
interactions in the formula is not currently supported by logbin. 2-way interactions
between factors can be included by calculating a new factor term that has levels
corresponding to all possible combinations of the factor levels. See the Example.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>
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Examples

require(glm2)

data(heart)

#======================================================

# Model with periodic non-convergence when glm is used

#======================================================

start.p <- sum(heart$Deaths) / sum(heart$Patients)

fit.glm <- glm(cbind(Deaths, Patients-Deaths) ~ factor(AgeGroup) +

factor(Severity) + factor(Delay) + factor(Region),

family = binomial(log), start = c(log(start.p), -rep(1e-4, 8)),

data = heart, trace = TRUE, maxit = 100)

fit.logbin <- logbin(formula(fit.glm), data = heart, trace = 1)

## (Note that convergence may be sped up by specifying mono = c(1,2))

summary(fit.logbin)

#=============================

# Model with interaction term

#=============================

heart$AgeSev <- 10 * heart$AgeGroup + heart$Severity

fit.logbin.int <- logbin(cbind(Deaths, Patients-Deaths) ~ factor(AgeSev) +

factor(Delay) + factor(Region), data = heart, trace = 1, maxit = 100000)

summary(fit.logbin.int)

vcov(fit.logbin.int)

confint(fit.logbin.int)

summary(predict(fit.logbin.int, type = "response"))

anova(fit.logbin, fit.logbin.int, test = "Chisq")
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logbin.allref Parameterisation for CEM Algorithm

Description

A workhorse function for logbin, logbin.allref takes the formula and data for a
log-link binomial GLM and produces a list of all parameterisations needed for the
associated CEM algorithm.

Usage

logbin.allref(object, data = environment(object), mono, start = NULL)

Arguments

object a model formula or a terms object for the logbin model.

data a data frame created with model.frame. If another sort of ob-
ject, model.frame is called first.

mono a vector indicating which terms should be restricted to have a
monotonically non-decreasing relationship with the outcome.

start starting values for the parameters in the linear predictor.

Details

In the CEM algorithms employed by logbin, the parameter space is partitioned into
a collection of restricted parameter spaces (see Marschner, 2014). logbin.allref

finds the list of possible parameterisations of each term in the model.

If a term x has a TRUE value for is.factor(x), is.character(x) or is.logical(x),
it is considered to be a categorical covariate. This has a parameterisation for each
level of the factor.

Otherwise the covariate is considered to be continuous, in which case it has two
possible parameterisations, relating to the minimum and maximum observed values.

If a covariate is restricted to be monotonic via the mono argument, it has only one
parameterisation.

logbin considers all possible combinations of the parameterisations of each covari-
ate, and for each calls logbin.design to create the appropriate non-negative design
matrix to be used in the EM algorithm.

Value

A list with components:

allref a named list, with one component for each term in the model.
Each component is itself a list, whose components are each of
the parameterisations for that term.
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If start was specified, the first component for each term will
correspond to the parameterisation specified by start.

terms the terms component of object.

data the object passed into the data argument, or the result of calling
model.frame with data.

monotonic a named logical vector indicating which components of terms

are restricted to be monotonically non-decreasing.

start.new a reparameterised version of start, corresponding to the first
parameterisation in allref. NULL if start was not supplied.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

References

Marschner, I. C. (2014). Combinatorial EM algorithms. Statistics and Computing
24(6): 921–940.

Marschner, I. C. and A. C. Gillett (2012). Relative risk regression: reliable and
flexible methods for log-binomial models. Biostatistics 13(1): 179–192.

See Also

logbin

logbin.control Auxiliary for Controlling logbin Fitting

Description

Auxiliary function for logbin fitting. Typically only used internally by nplbin,
but may be used to construct a control argument to that function.

Usage

logbin.control(bound.tol = 1e-06, epsilon = 1e-08, maxit = 10000,

trace = 0)

Arguments

bound.tol positive tolerance specifying the interior of the parameter space.
If the fitted model is more than bound.tol away from the bound-
ary of the parameter space then it is assumed to be in the in-
terior. This can allow the computational method to terminate
early if an interior maximum is found. No early termination is
attempted if bound.tol = Inf.
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epsilon positive convergence tolerance ε; the estimates are considered to
have converged when

√∑
(θold − θnew)2/

√∑
θ2
old < ε, where θ

is the vector of parameter estimates. See conv.test.

maxit integer giving the maximum number of EM algorithm iterations
for a given parameterisation.

trace number indicating level of output that should be produced. >=
1 gives output for each parameterisation, >= 2 gives output at
each iteration.

Details

This is used similarly to glm.control. The control argument of logbin is by
default passed to the control argument of nplbin.

When trace is greater than zero, calls to cat produce the output. Hence, options(
digits = *) can be used to increase the precision.

Value

A list with components named as the arguments.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

glm.control, the equivalent function for glm fitting.

nplbin, the function used to fit logbin models.

Examples

## Variation on example(glm.control) :

evts <- c(18,17,15,20,10,20,25,13,12)

obs <- rep(30,9)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

oo <- options(digits = 12)

logbin.D93X <- logbin(cbind(evts,obs-evts) ~ outcome + treatment,

trace = 2, epsilon = 1e-2)

options(oo)

coef(logbin.D93X)
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logbin.design Construct Design Matrix for logbin Model

Description

logbin.design constructs the design matrix for a logbin model, given a particular
parameterisation.

This is a workhorse function — it would not normally be called directly.

Usage

logbin.design(terms, data, allref, design.ref)

Arguments

terms terms component of object returned from a call to logbin.

allref for the desired model.

data data component of object returned from a call to logbin.allref
for the desired model.

allref allref component of object returned from a call to logbin.

allref for the desired model.

design.ref vector of indices for a particular parameterisation in allref.
That is, each element corresponds to a term x in the model,
and the value of the element indicates which item in the list
allref[[x]] is the reference level in this parameterisation.

Details

In the CEM algorithm employed by logbin, we must consider the Cartesian product
of all possible parameterisations. The list of these for each term in the model is
constructed by a call to logbin.allref, and a list of all possible combinations
created using expand.grid.

For a particular combination of reference levels, logbin.design constructs the
associated design matrix by transforming data. Continuous covariates are trans-
formed such that their minimum or maximum observed value corresponds to a
transformed value of zero; categorical covariates are transformed by using either
contr.treatment with a specified reference level or contr.isotonic.rev so that
the levels are increasing in the specified order.

Value

A strictly non-negative design matrix to be passed to the relevant fitting function.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>



187

See Also

logbin.allref, model.matrix, contr.treatment, contr.isotonic.rev

logbin.smooth Smooth Log-Binomial Regression

Description

logbin.smooth fits log-link binomial regression models using a stable CEM al-
gorithm. It provides additional flexibility over logbin by allowing for smooth
semi-parametric terms.

Usage

logbin.smooth(formula, mono = NULL, data, subset, na.action, offset,

control = list(...), model = TRUE,

model.logbin = FALSE, ...)

Arguments

formula an object of class "formula" (or one that can be coerced into
that class): a symbolic description of the model to be fitted.
The details of model specification are given under “Details”.
The model must contain an intercept and at least one semi-
parametric term, included by using the B or Iso functions. Note
that 2nd-order terms (such as interactions) or above are not
currently supported (see logbin).

mono a vector indicating which terms in formula should be restricted
to have a monotonically non-decreasing relationship with the
outcome. May be specified as names or indices of the terms.

Iso() terms are always monotonic.

data an optional data frame, list or environment (or object coercible
by as.data.frame to a data frame) containing the variables in
the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which
logbin.smooth is called.

subset an optional vector specifying a subset of observations to be used
in the fitting process.

na.action a function which indicates what should happen when the data
contain NAs. The default is set be the na.action setting of
options, and is na.fail if that is unset. The ‘factory-fresh’
default is na.omit. Another possible value is NULL, no action.
Value na.exclude can be useful.
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offset this can be used to specify an a priori known component to
be included in the linear predictor during fitting. This should
be NULL or a non-positive numeric vector of length equal to the
number of cases. One or more offset terms can be included in
the formula instead or as well, and if more than one is specified
their sum is used. See model.offset.

control a list of parameters for controlling the fitting process, passed to
logbin.control.

model a logical value indicating whether the model frame should be
included as a component of the returned value.

model.logbin a logical value indicating whether the fitted logbin object should
be included as a component of the returned value.

... arguments to be used to form the default control argument if
it is not supplied directly.

Details

logbin.smooth performs the same fitting process as logbin, providing a stable
maximum likelihood estimation procedure for log-link binomial GLMs, with the
added flexibility of allowing semi-parametric B and Iso terms (note that logbin.

smooth will stop with an error if no semi-parametric terms are specified in the
right-hand side of the formula; logbin should be used instead).

The method partitions the parameter space associated with the semi-parametric
part of the model into a sequence of constrained parameter spaces, and defines a
fully parametric logbin model for each. The model with the highest log-likelihood
is the MLE for the semi-parametric model (see Donoghoe and Marschner, 2015).

Value

An object of class "logbin.smooth", which contains the same objects as class
"logbin" (the same as "glm" objects, without contrasts, qr, R or effects com-
ponents), as well as:

model.logbin if model.logbin is TRUE; the logbin object for the fully para-
metric model corresponding to the fitted model.

xminmax.smooth the minimum and maximum observed values for each of the
smooth terms in the model, to help define the covariate space.

full.formula the component from interpret.logbin.smooth(formula) that
contains the formula term with any additional arguments to the
B function removed.

knots a named list containing the knot vectors for each of the smooth
terms in the model.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>
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References

Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate
differences, risk differences and relative risks. International Journal of Biostatistics
11(1): 91–108.

Marschner, I. C. (2014). Combinatorial EM algorithms. Statistics and Computing
24(6): 921–940.

See Also

logbin

Examples

## Simple example

x <- c(0.3, 0.2, 0.0, 0.1, 0.2, 0.1, 0.7, 0.2, 1.0, 0.9)

y <- c(5, 4, 6, 4, 7, 3, 6, 5, 9, 8)

m1 <- logbin.smooth(cbind(y, 10-y) ~ B(x, knot.range = 0:2), mono = 1,

trace = 1)

m2 <- logbin.smooth(cbind(y, 10-y) ~ Iso(x))

plot(m1)

plot(m2)

summary(predict(m1, type = "response"))

summary(predict(m2, type = "response"))

logbin.smooth.allref Parameterisation for CEM Algorithm with Smooth
Terms

Description

A workhorse function for logbin.smooth, logbin.smooth.allref takes the for-
mula and data for a log-link binomial GLM with smooth terms and produces a
list of all parameterisations needed for the CEM algorithm associated with the
semi-parametric part of the model.

Usage

logbin.smooth.allref(object, data = environment(object), mono,

logbin.smooth.spec, num.knots)

Arguments

object terms object for the “fake.formula” associated with a logbin.

smooth model (see interpret.logbin.smooth).

data a data frame created with get all vars for the fake.formula.
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mono a vector indicating which terms in fake.formula should be
restricted to have a monotonically non-decreasing relationship
with the outcome. May be specified as names or indices of the
terms.

logbin.smooth.spec

details of the smooth terms in the formula; this must be in the
format returned by interpret.logbin.smooth.

num.knots a vector containing the number of interior knots to be used for
each smooth term in the model (NA for Iso terms).

Details

Semi-parametric models in logbin.smooth use an extended CEM algorithm by
partioning the parameter space associated with the smooth terms into a collection
of restricted parameter spaces, each corresponding to a restricted fully parametric
model that can be fit using logbin. This is a workhorse function that creates the
list of possible parameterisations of each smooth term.

Isotonic terms and monotonic B-spline terms have only one parameterisation: where
the maximum fitted value occurs at the maximum of the covariate range.

Unrestricted B-spline terms each have k + 3 parameterisations (where k is the
number of internal knots), corresponding to the possible locations of the maximum
of the smooth curve along the range of the covariate.

logbin.smooth considers all possible combinations of the number of knots for each
smooth term, and all possible combinations of the associated parameterisations,
and logbin.smooth.design creates the appropriate formula and design matrix to
be used in the call to logbin.

Value

A list with components:

allref a named list, with one component for each smooth term in the
model. Each component is itself a list, whose components are
each of the parameterisations for that term.

terms the terms component of object.

data the object passed into the data argument.

monotonic a named logical vector indicating which components of terms

are restricted to be monotonically non-decreasing.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate
differences, risk differences and relative risks. International Journal of Biostatistics
11(1): 91–108.
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See Also

logbin.smooth

logbin.smooth.design Construct Design Matrix for logbin.smooth Model

Description

logbin.smooth.design constructs the design matrix and associated formula for
an logbin.smooth model, given a particular parameterisation, to be passed into
logbin for fitting.

This is a workhorse function — it would not normally be called directly.

Usage

logbin.smooth.design(interpret, allref, design.knots, design.param)

Arguments

interpret the object returned by running interpret.logbin.smooth for
the desired model, containing details of the smooth components.

allref the object returned by running logbin.smooth.allref for the
desired model.

design.knots a vector containing the number of internal knots for each smooth
term (NA for Iso terms).

design.param a vector of indices for a particular parameterisation in allref$

allref. Each element corresponds to a smooth term in the
model, and the value indicates which item in the associated list
is the reference level for this parameterisation.

Details

For a particular combination of reference levels, logbin.smooth.design constructs
the associated design matrix and formula. Specifically, for Iso smooth components,
it creates the matrix of indicator covariates for increments between levels. For B

smooth components, it creates the basis functions using splineDesign and remov-
ing the column associated with the reference level (see Donoghoe and Marschner,
2015).

The formula component is altered to include the terms in the design matrix, and
allref$monotonic is altered such that all of the smooth coefficients are restricted
to be non-negative, as required.
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Value

A list with components:

formula an updated version of interpret$full.formula, with smooth
terms removed and replaced by the names of their associated
basis components.

data an updated version of interpret$data, with columns for the
basis functions of the smooth terms added.

monotonic an updated version of allref$monotonic, such that the coeffi-
cients associated with the smooth terms for this parameterisa-
tion are constrained to be non-negative.

knots a list, with one component for each smooth term, containing the
knot vector for that term (NA for Iso terms).

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate
differences, risk differences and relative risks. International Journal of Biostatistics
11(1): 91–108.

See Also

logbin.smooth, interpret.logbin.smooth, logbin.smooth.allref,
logbin.design

nplbin Non-Positive Log-Binomial Regression

Description

Finds the maximum likelihood estimate of a log-link binomial GLM using an EM
algorithm, where each of the coefficients in the linear predictor is restricted to be
non-positive.

Usage

nplbin(y, x, offset, start, control = list())
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Arguments

y binomial response. May be a single column of 0/1 or two columns,
giving the number of successes and failures.

x non-negative covariate matrix.

offset non-positive additive offset vector. The default is a vector of
zeros.

start starting values for the parameter estimates. All elements must
be less than or equal to -control$bound.tol.

control a logbin.control object, which controls the fitting process.

Details

This is a workhorse function for logbin, and runs the EM algorithm to find the con-
strained non-positive MLE associated with a log-link binomial GLM. See Marschner
and Gillett (2012) for full details.

Value

A list containing the following components

coefficients the constrained non-positive maximum likelihood estimate of the
parameters.

residuals the residuals at the MLE, that is y - fitted.values

fitted.values the fitted mean values.

rank the number of parameters in the model (named “rank” for com-
patibility — we assume that models have full rank)

family included for compatibility — will always be binomial(log).

linear.predictors

the linear fit on link scale.

deviance up to a constant, minus twice the maximised log-likelihood.

aic a version of Akaike’s An Information Criterion, minus twice the
maximised log-likelihood plus twice the number of parameters.

aic.c a small-sample corrected version of Akaike’s An Information Cri-
terion (Hurvich, Simonoff and Tsai, 1998).

null.deviance the deviance for the null model, comparable with deviance. The
null model will include the offset and an intercept.

iter the number of iterations of the EM algorithm used.

weights included for compatibility — a vector of ones.

prior.weights the number of trials associated with each binomial response.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y the y vector used.
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converged logical. Did the EM algorithm converge (according to conv.

test)?

boundary logical. Is the MLE on the boundary of the parameter space —
i.e. are any of the coefficients < control$bound.tol?

loglik the maximised log-likelihood.

nn.design the non-negative x matrix used.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>.

This function is based on code from Marschner and Gillett (2012) written by
Alexandra Gillett.

References

Hurvich, C. M., J. S. Simonoff and C.-L. Tsai (1998). Smoothing parameter selec-
tion in non-parametric regression using an improved Akaike information criterion.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60(2):
271–293.

Marschner, I. C. and A. C. Gillett (2012). Relative risk regression: reliable and
flexible methods for log-binomial models. Biostatistics 13(1): 179–192.

plot.logbin.smooth Default logbin.smooth Plotting

Description

Takes a fitted logbin.smooth object produced by logbin.smooth and plots the
component smooth functions that make it up, for specified values of the other
covariates.

Usage

## S3 method for class 'logbin.smooth'

plot(x, type = c("response", "link"), at = data.frame(),

knotlines = TRUE, nobs = 1000, ...)

Arguments

x a fitted logbin.smooth object as produced by logbin.smooth.

type the type of prediction required. Note that, unlike predict.

logbin.smooth, "terms" is not a valid option.

at a data frame containing the values at which the prediction should
be evaluated. The columns must contain the covariates in the
model, and several rows may be provided (in which case, multiple
lines are drawn on the same plot). Cannot be missing or NULL.
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knotlines logical; if vertical lines should be drawn on the plot to indicate
the locations of the knots for B-spline terms.

nobs the number of points which should be used to create the curve.
These are placed evenly along the range of the observed covariate
values from the original model.

... other graphics parameters to pass on to plotting commands
(note: some will not work).

Details

For each smooth covariate in the model of x, predict.logbin.smooth is used
to obtain predicted values for the range of that covariate, with the other covari-
ates remaining fixed at their values given in at. Several rows may be provided
in at, in which case, one curve is drawn for each, and they are coloured using
rainbow(nrow(at)). If the model contains a single smooth covariate and no other
covariates, at may be provided as an empty data frame, data.frame().

Value

The function simply generates plots.

Note

If this function is too restrictive, it may be easier to use predict.logbin.smooth

to get predictions for the dataset of your choice, and do the plotting manually.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

logbin.smooth, predict.logbin.smooth

Examples

## For an example, see example(logbin.smooth)

predict.logbin Predict Method for logbin Fits

Description

Obtains predictions from a fitted logbin object.
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Usage

## S3 method for class 'logbin'

predict(object, newdata = NULL, type = c("link", "response",

"terms"), terms = NULL, na.action = na.pass,

checkminmax = TRUE, ...)

Arguments

object a fitted object of class inheriting from "logbin".

newdata optionally, a data frame in which to look for variables with which
to predict. If omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of
the linear predictors; the alternative "response" is on the scale
of the response variable. The "terms" option returns a matrix
giving the fitted values of each term in the model formula on the
linear predictor scale.

The value of this argument can be abbreviated.

terms with type = "terms" by default all terms are returned. A char-
acter vector specifies which terms are to be returned.

na.action function determining what should be done with missing values
in newdata. The default is to predict NA.

checkminmax logical indicating whether or not values of continuous covariates
in newdata should be checked to ensure they lie within the covari-
ate space associated with the fitted model. Otherwise predicted
values could lie outside the parameter space.

... further arguments passed to or from other methods.

Details

If newdata is omitted the predictions are based on the data used for the fit. In that
case how cases with missing values in the original fit are treated is determined by
the na.action argument of that fit. If na.action = na.omit, omitted cases will
not appear in the residuals. If na.action = na.exclude they will appear, with
residual value NA. See also napredict.

Value

A vector or matrix of predictions. For type = "terms", this is a matrix with a
column per term, and may have an attribute "constant".

Note

Variables are first looked for in newdata and then searched for in the usual way
(which will include the environment of the formula used in the fit). A warning will
be given if the variables found are not of the same length as those in newdata if it
was supplied.
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Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

logbin

predict.glm for the equivalent method for models fit using glm.

Examples

## For an example, see example(logbin)

predict.logbin.smooth Predict Method for logbin.smooth Fits

Description

Obtains predictions from a fitted logbin.smooth object.

Usage

## S3 method for class 'logbin.smooth'

predict(object, newdata = NULL, type = c("link", "response",

"terms"), terms = NULL, na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from "logbin.smooth".

newdata optionally, a data frame in which to look for variables with which
to predict. If omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of
the linear predictors; the alternative "response" is on the scale
of the response variable. The "terms" option returns a matrix
giving the fitted values of each term in the model formula on the
linear predictor scale.

The value of this argument can be abbreviated.

terms with type = "terms" by default all terms are returned. A char-
acter vector specifies which terms are to be returned.

na.action function determining what should be done with missing values
in newdata. The default is to predict NA.

... further arguments passed to or from other methods.
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Details

predict.logbin.smooth constructs the underlying basis functions for smooth vari-
ables in newdata and runs predict.logbin to obtain predictions. Note that if
values of smooth covariates in newdata are outside the covariate space of object,
an error will be returned.

If newdata is omitted, the predictions are based on the data used for the fit. In that
case how cases with missing values in the original fit are treated is determined by
the na.action argument of that fit. If na.action = na.omit, omitted cases will
not appear in the residuals, whereas if na.action = na.exclude they will appear,
with residual value NA. See also napredict.

Value

A vector or matrix of predictions. For type = "terms", this is a matrix with a
column per term, and may have an attribute "constant".

Note

Variables are first looked for in newdata and then searched for in the usual way
(which will include the environment of the formula used in the fit). A warning will
be given if the variables found are not of the same length as those in newdata if it
was supplied.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

logbin.smooth, predict.logbin

predict.glm for the equivalent method for models fit using glm.

Examples

## For an example, see example(logbin.smooth)

summary.logbin Summarising logbin Model Fits

Description

These functions are all methods for class logbin or summary.logbin objects.
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Usage

## S3 method for class 'logbin'

summary(object, correlation = FALSE, ...)

## S3 method for class 'summary.logbin'

print(x, digits = max(3L, getOption("digits") - 3L),

signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "logbin", usually from a call to logbin or
logbin.smooth.

x an object of class "summary.logbin", usually from a call to
summary.logbin.

correlation logical; if TRUE, the correlation matrix of the estimated param-
eters is returned and printed.

digits the number of significant digits to use when printing.

signif.stars logical; if TRUE, ‘significance stars’ are printed for each coeffi-
cient.

... further arguments passed to or from other methods.

Details

These perform the same function as summary.glm and print.summary.glm, pro-
ducing similar results for logbin models. print.summary.logbin additionally
prints the small-sample corrected AIC (aic.c), and the number of EM iterations
for the parameterisation corresponding to the MLE.

The dispersion used in calculating standard errors is fixed as 1.

Value

summary.logbin returns an object of class "summary.logbin", a list with compo-
nents

call the component from object.

family the component from object.

deviance the component from object.

aic the component from object.

aic.c the component from object.

df.residual the component from object.

null.deviance the component from object.

df.null the component from object.

iter the component from object.

deviance.resid the deviance residuals: see residuals.glm.
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coefficients the matrix of coefficients, standard errors, z-values and p-values.

aliased included for compatibility — always FALSE.

dispersion the inferred/estimated dispersion.

df included for compatibility — a 3-vector of the number of co-
efficients, the number of residual degrees of freedom, and the
number of coefficients (again).

cov.unscaled the unscaled (dispersion = 1) estimated covariance matrix of
the estimated coefficients. NaN if object$boundary == TRUE.

cov.scaled ditto, scaled by dispersion.

correlation if correlation is TRUE, the estimated correlations of the esti-
mated coefficients. NaN if object$boundary == TRUE.

Note

If object$boundary == TRUE, the standard errors of the coefficients are not valid,
and a matrix of NaNs is returned by vcov.logbin.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

logbin, summary.glm

Examples

## For examples see example(logbin)

vcov.logbin Calculate Variance-Covariance Matrix for a Fitted
logbin Model Object

Description

Returns the variance-covariance matrix of the main parameters of a fitted logbin

model object.

Usage

## S3 method for class 'logbin'

vcov(object, ...)
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Arguments

object an object of class "logbin", usually from a call to logbin or
logbin.smooth.

... additional arguments for method functions.

Details

An equivalent method to vcov, to use with logbin models.

Value

A matrix of the estimated covariances between the parameter estimates in the
linear or non-linear predictor of the model. This should have row and column
names corresponding to the parameter names given by the coef method.

Note

If object$boundary == TRUE, the standard errors of the coefficients are not valid,
and a matrix of NaNs is returned.

Author(s)

Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

See Also

summary.logbin, vcov.glm

Examples

## For an example see example(logbin)





B
addreg package documentation

This appendix contains the documentation for the R package addreg, which imple-

ments methods for fitting semi-parametric additive Poisson, binomial and negative

binomial regression models as described in Marschner (2010), and Chapters 3, 4 and 5

of this thesis.

The package is available online from the Comprehensive R Archive Network:

Donoghoe, M. W. (2015a). addreg: Additive Regression for Discrete Data. R package

version 2.0. url: http://CRAN.R-project.org/package=addreg.

The function nnpois, which implements the constrained additive Poisson regression

EM algorithm, is based on code written by Alexandra Gillett and published as sup-

plementary material to Marschner, Gillett, and O’Connell (2012). All other functions

were written entirely by the candidate.
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Package ‘addreg’

Title Additive Regression for Discrete Data

Description Methods for fitting identity-link GLMs and GAMs to discrete data,
using EM-type algorithms with more stable convergence properties than
standard methods.

Version 2.0

Date 2015-05-12

Author Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

Maintainer Mark W. Donoghoe <mark.donoghoe@mq.edu.au>

Depends R (≥ 3.0.1)

Imports splines, combinat, glm2

License GPL (≥ 2)

LazyData true
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addreg-package Additive Regression for Discrete Data

Description

Methods for fitting identity-link GLMs and GAMs to discrete data, using EM-type
algorithms with more stable convergence properties than standard methods.

Details

Package: addreg
Type: Package
Version: 2.0
Date: 2015-05-12
License: GPL (≥ 2)

This package provides methods to fit generalised linear models (GLMs) and gener-
alised additive models (GAMs) with identity link functions to discrete data using
binomial, Poisson and negative binomial models. It is planned that future versions
will incorporate other types of discrete data models, such as multinomial regression.

The package has two primary functions: addreg and addreg.smooth, together with
various supporting functions. It is useful in two main situations. The first is when a
standard GLM routine, such as glm, fails to converge with such a model. The second
is when a flexible semi-parametric component is desired in these models. One of
the main purposes of this package is to provide parametric and semi-parametric
adjustment of risk differences and rate differences.

The computational method is a combinatorial EM algorithm (Marschner, 2014),
which accommodates the parameter constraints and is more stable than iteratively
reweighted least squares. A collection of restricted parameter spaces is defined
which covers the full parameter space, and the EM algorithm is applied within
each restricted parameter space in order to find a collection of restricted maxima of
the log-likelihood function, from which can be obtained the global maximum over
the full parameter space.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

Maintainer: Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2014). Stable computational methods for
additive binomial models with application to adjusted risk differences. Computa-
tional Statistics and Data Analysis 80: 184–196.
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Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate
differences, risk differences and relative risks. International Journal of Biostatistics
11(1): 91–108.

Marschner, I. C. (2010). Stable computation of maximum likelihood estimates in
identity link Poisson regression. Journal of Computational and Graphical Statistics
19(3): 666–683.

Marschner, I. C. (2014). Combinatorial EM algorithms. Statistics and Computing
24(6): 921–940.

See Also

glm

Examples

## For examples, see example(addreg) and example(addreg.smooth)

addbin Fitting Additive Binomial Regression Models

Description

Workhorse function for addreg with binomial family.

Usage

addbin(y, x, start = NULL, control = list(), allref)

Arguments

y binomial response. May be a single column of 0/1 or two columns,
giving the number of successes and failures.

x non-negative design matrix. Must have an intercept column.

start starting values for the parameters in the linear predictor.

control list of parameters for controlling the fitting process, passed to
addreg.control.

allref a list of all parameterisations for this model, obtained from
addreg.allref.
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Details

An additive binomial fit can be converted into an additive Poisson fit via the
multinomial–Poisson transformation (Baker, 1994). This function transforms the
data as described by Donoghoe and Marschner (2014) and passes it to addreg with
a Poisson family to get the maximum likelihood estimate. The coefficients (and
other values) from the Poisson model are transformed back to relate to the additive
binomial model.

This is a workhorse function for addreg when a binomial family is specified. It
would not usually be called directly.

Value

A list of (most of) the components needed for an object of class "addreg"; see
addreg for details.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

References

Baker, S. G. (1994). The multinomial–Poisson transformation. The Statistician
43(4): 495–504.

Donoghoe, M. W. and I. C. Marschner (2014). Stable computational methods for
additive binomial models with application to adjusted risk differences. Computa-
tional Statistics and Data Analysis 80: 184–196.

See Also

addreg

addreg Additive Regression for Discrete Data

Description

addreg fits additive (identity-link) Poisson, negative binomial and binomial regres-
sion models using a stable combinatorial EM algorithm.

Usage

addreg(formula, mono = NULL, family, data, standard, subset,

na.action, start = NULL, offset, control = list(...),

model = TRUE, warn = TRUE, ...)
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Arguments

formula an object of class "formula" (or one that can be coerced into
that class): a symbolic description of the model to be fitted. The
details of model specification are given under “Details”. Note
that the model must contain an intercept, and 2nd-order terms
(such as interactions) or above are currently not supported —
see “Note”.

mono a vector indicating which terms in formula should be restricted
to have a monotonically non-decreasing relationship with the
outcome. May be specified as names or indices of the terms.

family a description of the error distribution to be used in the model.
This can be a character string naming a family function, a family
function or the result of a call to a family function (see family

for details of family functions), but here it is restricted to be
poisson, negbin1 or binomial family with identity link.

data an optional data frame, list or environment (or object coercible
by as.data.frame to a data frame) containing the variables in
the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which
addreg is called.

standard a numeric vector of length equal to the number of cases, where
each element is a positive constant that (multiplicatively) stan-
dardises the fitted value of the corresponding element of the
response vector. Ignored for binomial family (two-column spec-
ification of response should be used instead).

subset an optional vector specifying a subset of observations to be used
in the fitting process.

na.action a function which indicates what should happen when the data
contain NAs. The default is set be the na.action setting of
options, and is na.fail if that is unset. The ‘factory-fresh’
default is na.omit. Another possible value is NULL, no action.
Value na.exclude can be useful.

start starting values for the parameters in the linear predictor, also
with the starting value for the scale as the last element when
family = negbin1.

offset this can be used to specify an a priori known component to be
included in the linear predictor during fitting. This should be
NULL or a non-negative numeric vector of length equal to the
number of cases. One or more offset terms can be included in
the formula instead or as well, and if more than one is specified
their sum is used. See model.offset.

Ignored for binomial family.

control list of parameters for controlling the fitting process, passed to
addreg.control.
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model a logical value indicating whether the model frame (and, for bi-
nomial models, the equivalent Poisson model) should be included
as a component of the returned value.

warn a logical indicating whether or not warnings should be provided
for non-convergence or boundary values.

... arguments to be used to form the default control argument if
it is not supplied directly.

Details

addreg fits a generalised linear model (GLM) with a Poisson or binomial error
distribution and identity link function, as well as additive NegBin I models (which
are not GLMs). Predictors are assumed to be continuous, unless they are of class
factor, or are character or logical (in which case they are converted to factors).
Specifying a predictor as monotonic using the mono argument means that for contin-
uous terms, the associated coefficient will be restricted to be non-negative, and for
categorical terms, the coefficients will be non-decreasing in the order of the factor
levels. This allows semi-parametric monotonic regression functions, in the form of
unsmoothed step-functions. For smooth regression functions see addreg.smooth.

As well as allowing monotonicity constraints, the function is useful when a stan-
dard GLM routine, such as glm, fails to converge with an identity-link Poisson or
binomial model. If glm does achieve successful convergence, and addreg converges
to an interior point, then the two results will be identical. However, glm may still
experience convergence problems even when addreg converges to an interior point.
Note that if addreg converges to a boundary point, then it may differ slightly from
glm even if glm successfully converges, because of differences in the definition of the
parameter space. addreg produces valid fitted values for covariate values within
the Cartesian product of the observed range of covariate values, whereas glm pro-
duces valid fitted values just for the observed covariate combinations (assuming it
successfully converges). This issue is only relevant when addreg converges to a
boundary point.

The computational method is a combinatorial EM algorithm (Marschner, 2014),
which accommodates the parameter contraints in the model and is more stable than
iteratively reweighted least squares. A collection of restricted parameter spaces is
defined which covers the full parameter space, and the EM algorithm is applied
within each restricted parameter space in order to find a collection of restricted
maxima of the log-likelihood function, from which can be obtained the global max-
imum over the full parameter space. See Marschner (2010) and Donoghoe and
Marschner (2014) for further details.

Value

addreg returns an object of class "addreg", which inherits from classes "glm" and
"lm". The function summary.addreg can be used to obtain or print a summary of
the results.

The generic accessor functions coefficients, fitted.values and residuals can
be used to extract various useful features of the value returned by addreg. Note
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that effects will not work.

An object of class "addreg" is a list containing the same components as an object
of class "glm" (see the “Value” section of glm), but without contrasts, qr, R or
effects components. It also includes:

loglik the maximised log-likelihood.

aic.c a small-sample corrected version of Akaike’s An Information
Criterion (Hurvich, Simonoff and Tsai, 1998). This is used
by addreg.smooth to choose the optimal number of knots for
smooth terms.

xminmax the minimum and maximum observed values for each of the
continuous covariates, to help define the covariate space of the
model.

As well as, for Poisson and negative binomial models:

nn.coefficients

estimated coefficients associated with the non-negative parame-
terisation corresponding to the MLE.

nn.x non-negative model matrix associated with nn.coefficients.

standard the standard argument.

Or, for binomial models:

model.addpois if requested, the addreg object for the associated identity-link
Poisson model.

The scale component of the result is fixed at 1 for Poisson and binomial models,
and is the constant overdispersion parameter for negative binomial models (that is,
scale = 1 + φ) where V ar(µ) = (1 + φ)µ).

Note

Due to the way the covariate space is defined in the CEM algorithm, specifying
interactions in the formula is not currently supported by addreg. 2-way interactions
between factors can be included by calculating a new factor term that has levels
corresponding to all possible combinations of the factor levels. See the Example.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2014). Stable computational methods for
additive binomial models with application to adjusted risk differences. Computa-
tional Statistics and Data Analysis 80: 184–196.

Hurvich, C. M., J. S. Simonoff and C.-L. Tsai (1998). Smoothing parameter selec-
tion in nonparametric regression using an improved Akaike information criterion.



211

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60(2):
271–293.

Marschner, I. C. (2010). Stable computation of maximum likelihood estimates in
identity link Poisson regression. Journal of Computational and Graphical Statistics
19(3): 666–683.

Marschner, I. C. (2014). Combinatorial EM algorithms. Statistics and Computing
24(6): 921–940.

Examples

require(glm2)

data(crabs)

#==============================================================

# Poisson model with periodic non-convergence when glm is used

#==============================================================

crabs.boot <- crabs[crabs$Rep1,-c(5:6)]

crabs.boot$width.shifted <- crabs.boot$Width - min(crabs$Width)

fit.glm <- glm(Satellites ~ width.shifted + factor(Dark) +

factor(GoodSpine), family = poisson(identity), data = crabs.boot,

start = rep(1,4), control = glm.control(trace = TRUE))

fit.addreg <- addreg(formula(fit.glm), family = poisson,

data = crabs.boot, trace = 1)

summary(fit.addreg)

vcov(fit.addreg)

confint(fit.addreg)

summary(predict(fit.addreg), type = "response")

fit.addreg2 <- addreg(update(formula(fit.glm), ~ . - factor(GoodSpine)),

family = poisson, data = crabs.boot, trace = 1)

anova(fit.addreg2, fit.addreg, test = "LRT")

# Account for overdispersion (use start to speed it up a little)

fit.addreg.od <- addreg(Satellites ~ factor(Dark) + factor(GoodSpine),

family = negbin1, data = crabs.boot, trace = 1,

start = c(4.3423675,-2.4059273,-0.4531984,5.969648))

summary(fit.addreg.od)

addreg.allref Parameterisation for CEM Algorithm

Description

A workhorse function for addreg, addreg.allref takes the formula and data for
an identity-link GLM and produces a list of all parameterisations needed for the
associated CEM algorithm.
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Usage

addreg.allref(object, data = environment(object), mono, family,

start = NULL)

Arguments

object a model formula or a terms object for the addreg model.

data a data frame created with model.frame. If another sort of ob-
ject, model.frame is called first.

mono a vector indicating which terms should be restricted to have a
monotonically non-decreasing relationship with the outcome.

family the result of a call to a family function. Its component $family
must be one of "poisson", "negbin1" or "binomial".

start starting values for the parameters in the linear predictor.

Details

In the CEM algorithms employed by addreg, the parameter space is partitioned into
a collection of restricted parameter spaces (see Marschner, 2014). addreg.allref

finds the list of possible parameterisations of each term in the model.

If a term x has a TRUE value for is.factor(x), is.character(x) or is.logical(x),
it is considered to be a categorical covariate. For Poisson and negative binomial
models, this has a parameterisation for each level of the factor, and for binomial
models, every permutation of the levels must be considered (see Donoghoe and
Marschner, 2014).

Otherwise the covariate is considered to be continuous, in which case it has two
possible parameterisations, relating to the minimum and maximum observed values.

If a covariate is restricted to be monotonic via the mono argument, it has only one
parameterisation.

The addreg function considers all possible combinations of the parameterisations
of each covariate, and uses addreg.design to create the appropriate non-negative
design matrix to be used in the EM algorithm.

Value

A list with components:

allref a named list, with one component for each term in the model.
Each component is itself a list, whose components are each of
the parameterisations for that term.

If start was specified, the first component for each term will
correspond to the parameterisation specified by start.

terms the terms component of object.

data the object passed into the data argument, or the result of calling
model.frame with data.
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monotonic a named logical vector indicating which components of terms

are restricted to be monotonically non-decreasing.

start.new a reparameterised version of start, corresponding to the first
parameterisation in allref. NULL if start was not supplied.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2014). Stable computational methods for
additive binomial models with application to adjusted risk differences. Computa-
tional Statistics and Data Analysis 80: 184–196.

Marschner, I. C. (2014). Combinatorial EM algorithms. Statistics and Computing
24(6): 921–940.

See Also

addreg

addreg.control Auxiliary for Controlling addreg Fitting

Description

Auxiliary function for addreg fitting. Typically only used internally by nnpois,
nnnegbin and addbin, but may be used to construct a control argument to these
functions.

Usage

addreg.control(bound.tol = 1e-06, epsilon = 1e-10, maxit = 10000,

trace = 0)

Arguments

bound.tol positive tolerance specifying the interior of the parameter space.
If the fitted model is more than bound.tol away from the bound-
ary of the parameter space then it is assumed to be in the in-
terior. This can allow the computational method to terminate
early if an interior maximum is found. No early termination is
attempted if bound.tol = Inf.

epsilon positive convergence tolerance ε; the estimates are considered to
have converged when

√∑
(θold − θnew)2/

√∑
θ2
old < ε, where θ

is the vector of parameter estimates. See conv.test.
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maxit integer giving the maximum number of EM algorithm iterations
for a given parameterisation.

trace number indicating level of output that should be produced. >=
1 gives output for each parameterisation, >= 2 gives output at
each iteration.

Details

This is used similarly to glm.control. The control argument of addreg is by
default passed to the control argument of nnpois, nnnegbin or addbin.

When trace is greater than zero, calls to cat produce the output. Hence, options(
digits = *) can be used to increase the precision.

Value

A list with components named as the arguments.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

glm.control, the equivalent function for glm fitting.

nnpois, nnnegbin and addbin, the functions used to fit addreg models.

Examples

## Variation on example(glm.control) :

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

oo <- options(digits = 12)

addreg.D93X <- addreg(counts ~ outcome + treatment, family = poisson,

trace = 2, epsilon = 1e-2)

options(oo)

coef(addreg.D93X)

addreg.design Construct Design Matrix for addreg Model

Description

addreg.design constructs the design matrix for an addreg model, given a partic-
ular parameterisation.

This is a workhorse function — it would not normally be called directly.
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Usage

addreg.design(terms, data, allref, design.ref)

Arguments

terms terms component of object returned from a call to addreg.

allref for the desired model.

data data component of object returned from a call to addreg.allref
for the desired model.

allref allref component of object returned from a call to addreg.

allref for the desired model.

design.ref vector of indices for a particular parameterisation in allref.
That is, each element corresponds to a term x in the model,
and the value of the element indicates which item in the list
allref[[x]] is the reference level in this parameterisation.

Details

In the CEM algorithm employed by addreg, we must consider the Cartesian product
of all possible parameterisations. The list of these for each term in the model is
constructed by a call to addreg.allref, and a list of all possible combinations
created using expand.grid.

For a particular combination of reference levels, addreg.design constructs the
associated design matrix by transforming data. Continuous covariates are trans-
formed such that their minimum or maximum observed value corresponds to a
transformed value of zero; categorical covariates are transformed by using either
contr.treatment with a specified reference level or contr.isotonic so that the
levels are increasing in the specified order.

Value

A strictly non-negative design matrix to be passed to the relevant fitting function.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg.allref, model.matrix, contr.treatment, contr.isotonic
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addreg.smooth Smooth Additive Regression for Discrete Data

Description

addreg.smooth fits additive (identity-link) Poisson, negative binomial and binomial
regression models using a stable EM algorithm. It provides additional flexibility
over addreg by allowing for semi-parametric terms.

Usage

addreg.smooth(formula, mono = NULL, family, data, standard, subset,

na.action, offset, control = list(...), model = TRUE,

model.addreg = FALSE, ...)

Arguments

formula an object of class "formula" (or one that can be coerced into
that class): a symbolic description of the model to be fitted.
The details of model specification are given under “Details”.
The model must contain an intercept and at least one semi-
parametric term, included by using the B or Iso functions. Note
that 2nd-order terms (such as interactions) or above are not
currently supported (see addreg).

mono a vector indicating which terms in formula should be restricted
to have a monotonically non-decreasing relationship with the
outcome. May be specified as names or indices of the terms.

Iso() terms are always monotonic.

family a description of the error distribution to be used in the model.
This can be a character string naming a family function, a family
function or the result of a call to a family function (see family

for details of family functions), but here it is restricted to be
poisson, negbin1 or binomial family with identity link.

data an optional data frame, list or environment (or object coercible
by as.data.frame to a data frame) containing the variables in
the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which
addreg.smooth is called.

standard a numeric vector of length equal to the number of cases, where
each element is a positive constant that (multiplicatively) stan-
dardises the fitted value of the corresponding element of the
response vector. Ignored for binomial family (the two-column
specification of response should be used instead).

subset an optional vector specifying a subset of observations to be used
in the fitting process.
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na.action a function which indicates what should happen when the data
contain NAs. The default is set be the na.action setting of
options, and is na.fail if that is unset. The ‘factory-fresh’
default is na.omit. Another possible value is NULL, no action.
Value na.exclude can be useful.

offset this can be used to specify an a priori known component to be
included in the linear predictor during fitting. This should be
NULL or a non-negative numeric vector of length equal to the
number of cases. One or more offset terms can be included in
the formula instead or as well, and if more than one is specified
their sum is used. See model.offset.

Ignored for binomial family.

control list of parameters for controlling the fitting process, passed to
addreg.control.

model a logical value indicating whether the model frame (and, for bi-
nomial models, the equivalent Poisson model) should be included
as a component of the returned value.

model.addreg a logical value indicating whether the fitted addreg object should
be included as a component of the returned value.

... arguments to be used to form the default control argument if
it is not supplied directly.

Details

addreg.smooth performs the same fitting process as addreg, providing a stable
maximum likelihood estimation procedure for identity-link Poisson, negative bi-
nomial or binomial models, with the added flexibility of allowing semi-parametric
B and Iso terms (note that addreg.smooth will stop with an error if no semi-
parametric terms are specified in the right-hand side of the formula; addreg should
be used instead).

The method partitions the parameter space associated with the semi-parametric
part of the model into a sequence of constrained parameter spaces, and defines a
fully parametric addreg model for each. The model with the highest log-likelihood
is the MLE for the semi-parametric model (see Donoghoe and Marschner, 2015).

Value

An object of class "addreg.smooth", which contains the same objects as class
"addreg" (the same as "glm" objects, without contrasts, qr, R or effects com-
ponents), as well as:

model.addreg if model.addreg is TRUE; the addreg object for the fully para-
metric model corresponding to the fitted model.

xminmax.smooth the minimum and maximum observed values for each of the
smooth terms in the model, to help define the covariate space.
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full.formula the component from interpret.addreg.smooth(formula) that
contains the formula term with any additional arguments to the
B function removed.

knots a named list containing the knot vectors for each of the smooth
terms in the model.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate
differences, risk differences and relative risks. International Journal of Biostatistics
11(1): 91–108.

Marschner, I. C. (2014). Combinatorial EM algorithms. Statistics and Computing
24(6): 921–940.

See Also

addreg

Examples

## Simple example

dat <- data.frame(

x1 = c(3.2,3.3,3.4,7.9,3.8,0.7,2.0,5.4,8.4,3.0,1.8,5.6,5.5,9.0,8.2),

x2 = c(1,0,0,1,0,1,0,0,0,0,1,0,1,1,0),

n = c(6,7,5,9,10,7,9,6,6,7,7,8,6,8,10),

y = c(2,1,2,6,3,1,2,2,4,4,1,2,5,7,7))

m1 <- addreg.smooth(cbind(y, n-y) ~ B(x1, knot.range = 1:3) + factor(x2),

mono = 1, data = dat, family = binomial, trace = 1)

plot(m1, at = data.frame(x2 = 0:1))

points(dat$x1, dat$y / dat$n)

addreg.smooth.allref Parameterisation for CEM Algorithm with Smooth
Terms

Description

A workhorse function for addreg.smooth, addreg.smooth.allref takes the for-
mula and data for an identity-link GLM with smooth terms and produces a list
of all parameterisations needed for the CEM algorithm associated with the semi-
parametric part of the model.
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Usage

addreg.smooth.allref(object, data = environment(object), mono,

family, addreg.smooth.spec, num.knots)

Arguments

object terms object for the “fake.formula” associated with an addreg.

smooth model (see interpret.addreg.smooth).

data a data frame created with get all vars for the fake.formula.

mono a vector indicating which terms in fake.formula should be
restricted to have a monotonically non-decreasing relationship
with the outcome. May be specified as names or indices of the
terms.

family the family object for the addreg.smooth model.
addreg.smooth.spec

details of the smooth terms in the formula; must be a list in the
format returned by interpret.addreg.smooth.

num.knots a vector containing the number of interior knots to be used for
each smooth term in the model (NA for Iso terms).

Details

Semi-parametric models in addreg.smooth use an extended CEM algorithm by par-
tioning the parameter space associated with the smooth terms into a collection of re-
stricted parameter spaces, each corresponding to a restricted fully parametric model
that can be fitted using addreg. The workhorse function addreg.smooth.allref

creates the list of possible parameterisations of each smooth term.

Isotonic terms and monotonic B-spline terms have only one parameterisation: where
the minimum fitted value occurs at the minimum of the covariate range.

For Poisson and negative binomial models, general B-spline terms have k + 3 pa-
rameterisations each (where k is the number of internal knots), corresponding to
the possible locations of the minimum of the smooth curve along the range of the
covariate.

For binomial models, general B-spline terms have (k + 3)! parameterisations, cor-
responding to the permutations of the coefficients.

addreg.smooth considers all possible combinations of the number of knots for each
smooth term, and all possible combinations of the associated parameterisations,
and addreg.smooth.design creates the appropriate formula and design matrix to
be used in the call to addreg.

Value

A list with components:

allref a named list, with one component for each smooth term in the
model. Each component is itself a list, whose components are
each of the parameterisations for that term.
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terms the terms component of object.

data the object passed into the data argument.

monotonic a named logical vector indicating which components of terms

are restricted to be monotonically non-decreasing.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate
differences, risk differences and relative risks. International Journal of Biostatistics
11(1): 91–108.

See Also

addreg.smooth

addreg.smooth.design Construct Design Matrix for addreg.smooth Model

Description

addreg.smooth.design constructs the design matrix and associated formula for
an addreg.smooth model, given a particular parameterisation, to be passed into
addreg for fitting.

This is a workhorse function — it would not normally be called directly.

Usage

addreg.smooth.design(interpret, allref, design.knots, design.param)

Arguments

interpret the object returned by running interpret.addreg.smooth for
the desired model, containing details of the smooth components.

allref the object returned by running addreg.smooth.allref for the
desired model.

design.knots a vector containing the number of internal knots for each smooth
term (NA for Iso terms).

design.param a vector of indices for a particular parameterisation in allref$

allref. Each element corresponds to a smooth term in the
model, and the value indicates which item in the associated list
is the reference level for this parameterisation.
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Details

For a particular combination of reference levels, addreg.smooth.design constructs
the associated design matrix and formula. Specifically, for Iso smooth components,
it creates the matrix of indicator covariates for increments between levels. For B

smooth components, it creates the basis functions using splineDesign and then
either removing the column associated with the reference level, or transforming
them into monotonic B-spline bases (see Donoghoe and Marschner, 2015).

The formula component is altered to include the terms in the design matrix, and
allref$monotonic is altered such that all of the smooth coefficients are restricted
to be non-negative, as required.

Value

A list with components:

formula an updated version of interpret$full.formula, with smooth
terms removed and replaced by the names of their associated
basis components.

data an updated version of interpret$data, with columns for the
basis functions of the smooth terms added.

monotonic an updated version of allref$monotonic, such that the coeffi-
cients associated with the smooth terms for this parameterisa-
tion are constrained to be non-negative.

knots a list, with one component for each smooth term, containing the
knot vector for that term (NA for Iso terms).

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

References

Donoghoe, M. W. and I. C. Marschner (2015). Flexible regression models for rate
differences, risk differences and relative risks. International Journal of Biostatistics
11(1): 91–108.

See Also

addreg.smooth, interpret.addreg.smooth, addreg.smooth.allref,
addreg.design
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anova.addreg Analysis of Deviance for addreg Fits

Description

Compute an analysis of deviance table for more than one GLM fitted using addreg.

Usage

## S3 method for class 'addreg'

anova(object, ..., test = NULL)

Arguments

object, ... objects of class "addreg", typically the result of a call to addreg,
or a list of objects for the “addreglist” method.

test a character string, (partially) matching one of "Chisq", "LRT",
"Rao", "F" or "Cp". See stat.anova.

Details

Unlike anova.glm, specifying a single object is not allowed.

The table has a row for the residual degrees of freedom and deviance for each
model. For all but the first model, the change in degrees of freedom and deviance
is also given. (This only makes statistical sense if the models are nested.) It is
conventional to list the models from smallest to largest, but this is up to the user.

Models where the MLE lies on the boundary of the parameter space will be au-
tomatically removed from the list (with a warning), because asymptotic results to
not apply to such models.

The table will optionally contain test statistics (and p-values) comparing the reduc-
tion in deviance for the row to the residuals. Mallows’ Cp statistic is the residual
deviance plus twice the estimate of σ2 times the residual degrees of freedom, which
is closely related to AIC. You can also choose "LRT" and "Rao" for likelihood ra-
tio tests and Rao’s efficient score test. The former is synonymous with "Chisq"

(although both have an asymptotic chi-square distribution).

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted
to the same dataset. This may be a problem if there are missing values and R’s
default of na.action = na.omit is used, and anova will detect this with an error.
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Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg, anova.glm, anova

Examples

## For an example, see example(addreg)

B.Iso Defining Smooths in addreg.smooth Formulae

Description

Function used in the definition of smooth terms within addreg.smooth model for-
mulae. The function does not evaluate a smooth — it exists purely to help set up
a model using smooths.

Usage

B(..., knots = NULL, knot.range = 0:5)

Iso(...)

Arguments

... variable that this smooth is a function of. Note that unlike gam,
smooths that are functions of more than one variable are not
supported.

knots unique positions of interior knots of a B-spline basis. Boundary
knots are created automatically.

knot.range if knots is not specified, a vector containing a series of non-
negative integers denoting the number of interior knots for which
the model will be fit. These are placed at evenly-spaced quantiles
of the observed covariate values.

At least one of knots or knot.range must be non-missing.

Details

The function does not evaluate the variable arguments; the output from this func-
tion is passed as part of the arguments to addreg.smooth.design, which constructs
the actual basis functions.

B is used to specify an order-3 B-spline basis (which can be restricted to be monoton-
ically non-decreasing via the mono argument in addreg.smooth). If length(knot.
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range) > 1, models with each of the specified number of interior knots will be fit,
and the model with the best (smallest) aic.c will be returned.

Iso is used to specify an isotonic basis, designed such that the resulting function
has non-negative increments at each observed covariate value. When Iso is used,
the resulting function will always be monotonically non-decreasing, regardless of
the value of mono.

Value

An object of class "B.smooth" (for B) or "Iso.smooth" (for Iso), which is a list
with the following elements:

term name of the term provided in the ... argument.

termlabel label for the term in the model; e.g. for term "x" it will be
"B(x)" or "Iso(x)".

knots vector of interior knots (if specified). NA for Iso.

knot.range vector of number of interior knots. NA for Iso.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg.smooth, addreg.smooth.design

s performs a similar function in the mgcv package.

Examples

## See example(addreg.smooth) for an example of specifying smooths in

## model formulae.

confint.addreg Confidence Intervals for addreg Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted addreg model.

Usage

## S3 method for class 'addreg'

confint(object, parm, level = 0.95, ...)
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Arguments

object a fitted model object, resulting from a call to addreg.

parm a specification of which parameters are to be given confidence
intervals, either a vector of numbers or a vector of names. If
missing, all parameters are considered.

level the confidence level required.

... additional argument(s) passed to confint.default.

Details

Calculates confidence intervals for model parameters assuming asymptotic normal-
ity, using vcov.addreg(object). As such, if the MLE is on the boundary of the
parameter space, (i.e. object$boundary == TRUE) the normality assumption is
invalid and NA is returned.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each
parameter. These will be labelled as (1-level)/2 and 1-(1-level)/2 in % (by default
2.5% and 97.5%).

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

confint.default, vcov.addreg

Examples

## For an example, see example(addreg)

contr.isotonic Contrast Matrix for Isotonic Covariate

Description

Return something similar to a contrast matrix for a categorical covariate that we
wish to be monotonically non-decreasing in a specified order.

Usage

contr.isotonic(n, perm, contrasts = TRUE, sparse = FALSE)
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Arguments

n a vector of levels for a factor, or the number of levels.

perm a permutation of the levels of n (or of the numbers 1:n), which
define the order in which the coefficients must be monotonically
non-decreasing.

contrasts a logical indicating whether constrasts should be computed.

sparse included for compatibility reasons. Has no effect.

Details

This function is used within addreg.design for categorical covariates with a spec-
ified order under a particular parameterisation. For Poisson and negative binomial
models, this occurs if a categorical covariate is defined as monotonic; for binomial
models, each parameterisation defines a permutation of the levels that must be
monotonically increasing.

In the order specified by perm, the coefficient associated with each level is the sum
of increments between the preceding levels. That is, the first level is defined as 0,
the second as 0 + d2, the third as 0 + d2 + d3, and so on. In fitting the model, these
increments are constrained to be non-negative.

Note that these are not ‘contrasts’ as defined in the theory for linear models; rather
this is used to define the contrasts attribute of each variable so that model.matrix
produces the desired design matrix.

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if
contrasts is FALSE.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg.design, which uses contr.isotonic to create the design matrix using
model.matrix.

contr.treatment, contrasts for their usual use in regression models.

Examples

contr.isotonic(4,1:4)

contr.isotonic(4,c(1,3,2,4))

# Show how contr.isotonic applies within model.matrix

x <- factor(round(runif(20,0,2)))

mf <- model.frame(~x)

contrasts(x) <- contr.isotonic(levels(x), levels(x))

model.matrix(mf)
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conv.test Convergence Test Based on L2 Norm

Description

Performs a test of convergence based on the L2 norm of the change in the parameter
estimates.

Usage

conv.test(theta1, theta2, epsilon)

Arguments

theta1 vector of parameter estimates at previous step.

theta2 vector of parameter estimates at current step.

epsilon positive convergence tolerance.

Details

This is used as the convergence test in the addreg fitting functions, because the
EM algorithm may converge slowly such that the test based on the deviance used
in glm.fit (see glm.control) may report convergence at a point away from the
actual optimum.

Value

A logical; TRUE if sqrt(sum((theta1-theta2)**2))/sqrt(sum(theta1**2)) <

epsilon, FALSE otherwise.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

Examples

theta.old <- c(4,5,6)

theta.new <- c(4.05,5,6)

conv.test(theta.old, theta.new, 0.01)

conv.test(theta.old, theta.new, 0.005)
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interpret.addreg.smooth Interpret an addreg.smooth Formula

Description

This is an internal function of package addreg. It is a service routine for addreg.

smooth which interprets the smooth parts of the model formula and returns modi-
fied formulas to be used in the fitting functions.

Not normally called directly.

Usage

interpret.addreg.smooth(formula)

Arguments

formula A formula as supplied to addreg.smooth, which includes at least
one B or Iso term.

Value

A list with components:

full.formula a formula object which is the same as the formula supplied,
but with additional arguments removed from the smooth terms.
E.g. B(x, knot.range = 0:2) would appear as B(x) in this
formula.

fake.formula a formula object which is the same as the formula supplied, but
with smooth terms replaced by their covariates alone. E.g. B(x,
knot.range = 0:2) would appear as x in this formula. Used to
construct the model matrix.

smooth.spec a named list containing the results of evaluating the smooth
terms. See B and Iso for details.

smooth.ind a vector containing the indices of the smooth components in the
formula.

terms the result of running terms.formula(formula, specials = c(

"B", "Iso")).

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg.smooth



229

Examples

# Specify a smooth model with knot.range

res <- interpret.addreg.smooth(y ~ B(x, knot.range = 0:2) + x2)

# The knot.range is removed from the full.formula...

print(res$full.formula)

# ...but is stored in the $smooth.spec component of the result:

print(res$smooth.spec$x$knot.range)

negbin1 Family Functions for Negative Binomial 1 Models

Description

Specifies the information required to fit a negative binomial 1 (NB1) model.

Usage

negbin1(link, phi = stop("'phi' must be given"))

Arguments

link included for compatibility with family. For addreg models, this
will always be "identity".

phi the value of the scale parameter of the NB1 distribution (see
“Details”). This can be set to NA for initialisation, but during
estimation the family should be updated with the current esti-
mate, and must be strictly positive.

Details

The NB1 distribution can be parameterised in terms of a mean µ and scale pa-
rameter φ (the phi argument of this function), such that if Y ∼ NB1(µ, φ), then
E(Y ) = µ and V ar(Y ) = (1 + φ)µ.

These can be related to the size and prob arguments of the NegBinomial functions
by size = µ/φ and prob = 1/(1 + φ).

Value

An object of class "family": see family for full details. Note that when the
estimate of phi is updated in a model, this family object must be reloaded using
the new estimate.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>
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nnnegbin ECME Algorithm for Additive Negative Binomial 1
Model

Description

Finds the maximum likelihood estimate of an additive negative binomial (NB1)
model using an ECME algorithm, where each of the mean coefficients is restricted
to be non-negative.

Usage

nnnegbin(y, x, standard, offset, start, control = list())

Arguments

y non-negative integer response vector.

x non-negative covariate matrix.

standard standardising vector, where each element is a positive constant
that (multiplicatively) standardises the fitted value of the corre-
sponding element of the response vector. The default is a vector
of ones.

offset non-negative additive offset vector. The default is a vector of
zeros.

start vector of starting values for the parameter estimates. The last
element is the starting value of the scale, and must be > 1. The
remaining elements are for the additive mean parameters, and
must be greater than control$bound.tol.

control an addreg.control object, which controls the fitting process.

Details

This is a workhorse function for addreg, and runs the ECME algorithm to find the
constrained non-negative MLE associated with an additive NB1 model.

Value

A list containing the following components

coefficients the constrained non-negative maximum likelihood estimate of
the mean parameters.

scale the maximum likelihood estimate of the scale parameter.

residuals the residuals at the MLE, that is y - fitted.values

fitted.values the fitted mean values.
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rank the number of parameters in the model (named “rank” for com-
patibility — we assume that models have full rank)

family included for compatibility — will always be negbin1(identity).

linear.predictors

included for compatibility — same as fitted.values (as this is
an identity-link model).

deviance up to a constant, minus twice the maximised log-likelihood (with
respect to a saturated NB1 model with the same scale).

aic a version of Akaike’s An Information Criterion, minus twice the
maximised log-likelihood plus twice the number of parameters.

aic.c a small-sample corrected version of Akaike’s An Information Cri-
terion (Hurvich, Simonoff and Tsai, 1998).

null.deviance the deviance for the null model, comparable with deviance. The
null model will include the offset and an intercept.

iter the number of iterations of the EM algorithm used.

weights included for compatibility — a vector of ones.

prior.weights included for compatibility — a vector of ones.

standard the standard vector passed to this function.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y the y vector used.

converged logical. Did the ECME algorithm converge (according to conv.

test)?

boundary logical. Is the MLE on the boundary of the parameter space —
i.e. are any of the coefficients < control$bound.tol?

loglik the maximised log-likelihood.

nn.design the non-negative x matrix used.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>.

References

Hurvich, C. M., J. S. Simonoff and C.-L. Tsai (1998). Smoothing parameter selec-
tion in non-parametric regression using an improved Akaike information criterion.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60(2):
271–293.
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nnpois EM Algorithm for Identity-link Poisson GLM

Description

Finds the maximum likelihood estimate of an identity-link Poisson GLM using an
EM algorithm, where each of the coefficients is restricted to be non-negative.

Usage

nnpois(y, x, standard, offset, start, control = list())

Arguments

y non-negative integer response vector.

x non-negative covariate matrix.

standard standardising vector, where each element is a positive constant
that (multiplicatively) standardises the fitted value of the corre-
sponding element of the response vector. The default is a vector
of ones.

offset non-negative additive offset vector. The default is a vector of
zeros.

start starting values for the parameter estimates. Each element must
be greater than control$bound.tol.

control an addreg.control object, which controls the fitting process.

Details

This is a workhorse function for addreg, and runs the EM algorithm to find the
constrained non-negative MLE associated with an identity-link Poisson GLM. See
Marschner (2010) for full details.

Value

A list containing the following components

coefficients the constrained non-negative maximum likelihood estimate of
the parameters.

residuals the residuals at the MLE, that is y - fitted.values

fitted.values the fitted mean values.

rank the number of parameters in the model (named “rank” for com-
patibility — we assume that models have full rank)

family included for compatibility — will always be poisson(identity).
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linear.predictors

included for compatibility — same as fitted.values (as this is
an identity-link model).

deviance up to a constant, minus twice the maximised log-likelihood.

aic a version of Akaike’s An Information Criterion, minus twice the
maximised log-likelihood plus twice the number of parameters.

aic.c a small-sample corrected version of Akaike’s An Information Cri-
terion (Hurvich, Simonoff and Tsai, 1998).

null.deviance the deviance for the null model, comparable with deviance. The
null model will include the offset and an intercept.

iter the number of iterations of the EM algorithm used.

weights included for compatibility — a vector of ones.

prior.weights included for compatibility — a vector of ones.

standard the standard vector passed to this function.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y the y vector used.

converged logical. Did the EM algorithm converge (according to conv.

test)?

boundary logical. Is the MLE on the boundary of the parameter space —
i.e. are any of the coefficients < control$bound.tol?

loglik the maximised log-likelihood.

nn.design the non-negative x matrix used.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>.

This function is based on code from Marschner, Gillett and O’Connell (2012) writ-
ten by Alexandra Gillett.

References

Hurvich, C. M., J. S. Simonoff and C.-L. Tsai (1998). Smoothing parameter selec-
tion in nonparametric regression using an improved Akaike information criterion.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60(2):
271–293.

Marschner, I. C. (2010). Stable computation of maximum likelihood estimates in
identity link Poisson regression. Journal of Computational and Graphical Statistics
19(3): 666–683.

Marschner, I. C., A. C. Gillett and R. L. O’Connell (2012). Stratified additive
Poisson models: Computational methods and applications in clinical epidemiology.
Computational Statistics and Data Analysis 56(5): 1115–1130.
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plot.addreg.smooth Default addreg.smooth Plotting

Description

Takes a fitted addreg.smooth object produced by addreg.smooth and plots the
component smooth functions that make it up, on the scale of the linear predictor,
for specified values of the other covariates.

Usage

## S3 method for class 'addreg.smooth'

plot(x, type = c("response", "link"), at = data.frame(),

knotlines = TRUE, nobs = 1000, ...)

Arguments

x a fitted addreg.smooth object as produced by addreg.smooth.

type the type of prediction required. Note that, unlike predict.

addreg.smooth, "terms" is not a valid option. Also, because
addreg.smooth only applies identity-link models, "response"

and "link" will have the same results — they are included for
consistency.

at a data frame containing the values at which the prediction should
be evaluated. The columns must contain the covariates in the
model, and several rows may be provided (in which case, multiple
lines are drawn on the same plot). Cannot be missing or NULL.

knotlines logical; if vertical lines should be drawn on the plot to indicate
the locations of the knots for B-spline terms.

nobs the number of points which should be used to create the curve.
These are placed evenly along the range of the observed covariate
values from the original model.

... other graphics parameters to pass on to plotting commands
(note: some will not work).

Details

For each smooth covariate in the model of x, predict.addreg.smooth is used
to obtain predicted values for the range of that covariate, with the other covari-
ates remaining fixed at their values given in at. Several rows may be provided
in at, in which case, one curve is drawn for each, and they are coloured using
rainbow(nrow(at)). If the model contains a single smooth covariate and no other
covariates, at may be provided as an empty data frame, data.frame().
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Value

The function simply generates plots.

Note

If this function is too restrictive, it may be easier to use predict.addreg.smooth

to get predictions for the dataset of your choice, and do the plotting manually.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg.smooth, predict.addreg.smooth

Examples

## For an example, see example(addreg.smooth)

predict.addreg Predict Method for addreg Fits

Description

Obtains predictions from a fitted addreg object.

Usage

## S3 method for class 'addreg'

predict(object, newdata = NULL, type = c("link", "response",

"terms"), terms = NULL, na.action = na.pass,

checkminmax = TRUE, ...)

Arguments

object a fitted object of class inheriting from "addreg".

newdata optionally, a data frame in which to look for variables with which
to predict. If omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of
the linear predictors; the alternative "response" is on the scale
of the response variable. The "terms" option returns a matrix
giving the fitted values of each term in the model formula on the
linear predictor scale.

The value of this argument can be abbreviated.

terms with type = "terms" by default all terms are returned. A char-
acter vector specifies which terms are to be returned.
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na.action function determining what should be done with missing values
in newdata. The default is to predict NA.

checkminmax logical indicating whether or not values of continuous covariates
in newdata should be checked to ensure they lie within the covari-
ate space associated with the fitted model. Otherwise predicted
values could lie outside the parameter space.

... further arguments passed to or from other methods.

Details

If newdata is omitted the predictions are based on the data used for the fit. In that
case how cases with missing values in the original fit are treated is determined by
the na.action argument of that fit. If na.action = na.omit, omitted cases will
not appear in the residuals; if na.action = na.exclude they will appear, with
residual value NA. See also napredict.

Value

A vector or matrix of predictions. For type = "terms", this is a matrix with a
column per term, and may have an attribute "constant".

Note

Variables are first looked for in newdata and then searched for in the usual way
(which will include the environment of the formula used in the fit). A warning will
be given if the variables found are not of the same length as those in newdata if it
was supplied.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg

predict.glm for the equivalent method for models fit using glm.

Examples

## For an example, see example(addreg)
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predict.addreg.smooth Predict Method for addreg.smooth Fits

Description

Obtains predictions from a fitted addreg.smooth object.

Usage

## S3 method for class 'addreg.smooth'

predict(object, newdata = NULL, type = c("link", "response",

"terms"), terms = NULL, na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from "addreg.smooth".

newdata optionally, a data frame in which to look for variables with which
to predict. If omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of
the linear predictors; the alternative "response" is on the scale
of the response variable. The "terms" option returns a matrix
giving the fitted values of each term in the model formula on the
linear predictor scale.

The value of this argument can be abbreviated.

terms with type = "terms" by default all terms are returned. A char-
acter vector specifies which terms are to be returned.

na.action function determining what should be done with missing values
in newdata. The default is to predict NA.

... further arguments passed to or from other methods.

Details

predict.addreg.smooth constructs the underlying basis functions for smooth vari-
ables in newdata and runs predict.addreg to obtain predictions. Note that if
values of smooth covariates in newdata are outside the covariate space of object,
an error will be returned.

If newdata is omitted, the predictions are based on the data used for the fit. In that
case how cases with missing values in the original fit are treated is determined by
the na.action argument of that fit. If na.action = na.omit, omitted cases will
not appear in the residuals; if na.action = na.exclude they will appear, with
residual value NA. See also napredict.

Value

A vector or matrix of predictions. For type = "terms", this is a matrix with a
column per term, and may have an attribute "constant".
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Note

Variables are first looked for in newdata and then searched for in the usual way
(which will include the environment of the formula used in the fit). A warning will
be given if the variables found are not of the same length as those in newdata if it
was supplied.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg.smooth, predict.addreg

predict.glm for the equivalent method for models fit using glm.

Examples

## For an example, see example(addreg.smooth)

summary.addreg Summarizing addreg Model Fits

Description

These functions are all methods for class addreg or summary.addreg objects.

Usage

## S3 method for class 'addreg'

summary(object, correlation = FALSE, ...)

## S3 method for class 'summary.addreg'

print(x, digits = max(3L, getOption("digits") - 3L),

signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "addreg", usually from a call to addreg or
addreg.smooth.

x an object of class "summary.addreg", usually from a call to
summary.addreg.

correlation logical; if TRUE, the correlation matrix of the estimated param-
eters is returned and printed.

digits the number of significant digits to use when printing.

signif.stars logical; if TRUE, ‘significance stars’ are printed for each coeffi-
cient.

... further arguments passed to or from other methods.
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Details

These perform the same function as summary.glm and print.summary.glm, pro-
ducing similar results for addreg models. print.summary.addreg additionally
prints the small-sample corrected AIC (aic.c), the number of EM iterations for
the parameterisation corresponding to the MLE, and for negative binomial models,
the estimate of φ (scale-1) and its standard error.

The dispersion used in calculating standard errors is fixed as 1 for binomial and
Poisson models, and is estimated via maximum likelihood for negative binomial
models.

Value

summary.addreg returns an object of class "summary.addreg", a list with compo-
nents

call the component from object.

family the component from object.

deviance the component from object.

aic the component from object.

aic.c the component from object.

df.residual the component from object.

null.deviance the component from object.

df.null the component from object.

iter the component from object.

deviance.resid the deviance residuals: see residuals.glm.

coefficients the matrix of coefficients, standard errors, z-values and p-values.

aliased included for compatibility — always FALSE.

dispersion the inferred/estimated dispersion.

df included for compatibility — a 3-vector of the number of co-
efficients, the number of residual degrees of freedom, and the
number of coefficients (again).

cov.unscaled the unscaled (dispersion = 1) estimated covariance matrix of
the estimated coefficients. NaN if object$boundary == TRUE.

cov.scaled ditto, scaled by dispersion.

correlation if correlation is TRUE, the estimated correlations of the esti-
mated coefficients. NaN if object$boundary == TRUE.

For negative binomial models, the object also contains

phi the estimate of φ (scale-1).

var.phi the estimated variance of phi.
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Note

If object$boundary == TRUE, the standard errors of the coefficients are not valid,
and a matrix of NaNs is returned by vcov.addreg.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

addreg, summary.glm

Examples

## For an example, see example(addreg)

vcov.addreg Calculate Variance-Covariance Matrix for a Fitted
addreg Model Object

Description

Returns the variance-covariance matrix of the main parameters of a fitted addreg

model object.

Usage

## S3 method for class 'addreg'

vcov(object, ...)

Arguments

object an object of class "addreg", usually from a call to addreg or
addreg.smooth.

... additional arguments for method functions.

Details

An equivalent method to vcov, to use with addreg models.

Value

A matrix of the estimated covariances between the parameter estimates in the
linear or non-linear predictor of the model. This should have row and column
names corresponding to the parameter names given by the coef method.
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Note

If object$boundary == TRUE, the standard errors of the coefficients are not valid,
and a matrix of NaNs is returned.

Author(s)

Mark W. Donoghoe <Mark.Donoghoe@mq.edu.au>

See Also

summary.addreg, vcov.glm

Examples

## For an example, see example(addreg)
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Conference proceedings paper

This appendix contains a conference proceedings paper that was presented as an oral

presentation at the 29th International Workshop on Statistical Modelling, held 14–18

July 2014 at Georg-August-Universität Göttingen, Germany. The theoretical content

is an earlier, condensed version of the method for semi-parametric regression described

in detail in Chapter 4 of this thesis, but the paper demonstrates an application of the

method to a different dataset, from the BOOST-NZ study (see Section 1.4.3).

The citation for the proceedings paper is:

Donoghoe, M. W. and I. C. Marschner. Smooth semi-parametric adjustment of rate

differences, risk differences and relative risks. Proceedings of the 29th International

Workshop on Statistical Modelling. Ed. by T. Kneib, F. Sobotka, J. Fahrenholz,

and H. Irmer, 2014. 1: 105–110.
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Smooth semi-parametric adjustment of rate differ-

ences, risk differences and relative risks

Mark W. Donoghoe1,2, Ian C. Marschner1,2

1 Department of Statistics, Macquarie University, NSW 2109, Australia

2 NHMRC Clinical Trials Centre, University of Sydney, NSW 2006, Australia

Abstract

New computational methods have recently been developed that allow stable fitting

of constrained GLMs with bounded non-canonical link functions, such as the log-link

binomial model. By employing B-splines, we can extend these approaches to allow

for semi-parametric adjustment of rate differences, risk differences and relative risks.

These methods provide alternatives to standard fitting methods, resulting in greater

stability for accommodating the required parameter bounds. They also provide a

straightforward way to accommodate additional restrictions such as monotonic regres-

sion functions. We demonstrate an application to data from a clinical trial of oxygen

supplementation in premature infants.

Keywords: Generalised additive model · Semi-parametric model · Rate difference · Risk

difference · Relative risk

C.1 Introduction

Rate differences, risk differences and relative risks are often useful effect measures in

biostatistical settings, and their analogues also have broad applicability in other areas

of statistics. However, in order to adjust for covariates we must use a constrained

generalised linear model (GLM) with a non-canonical link where the fitted means

are restricted to a bounded interval. These GLMs include the log-link binomial, and

identity-link Poisson and binomial models. Common fitting methods based on Fisher

scoring and other Newton-type algorithms can fail to converge to the maximum likeli-

hood estimate (MLE) in this situation.
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It is therefore useful to have more stable methods for fitting these models. Combinato-

rial EM (CEM) algorithms have recently been developed for these GLMs, allowing sta-

ble computation of the MLE. Using B-splines, we extend these methods to generalised

additive models (GAMs), where continuous covariates can have a semi-parametric rela-

tionship with the outcome. This approach leads to greater stability for accommodating

the required parameter bounds, and allows additional model constraints such as mono-

tonic regression functions.

C.2 Method

The GLM with link function g is extended to a GAM by the introduction of C con-

tinuous covariates that affect g(µ) through the unspecified functions f1, . . . , fC . We

restrict our estimate of each fc to the space defined by a chosen set of basis functions,

such that

fc(w) =
Dc∑
d=1

γcdBcd(w).

The basis functions we use here are the B-splines of order 3, which are strictly non-

negative. Thus if all of the coefficients are non-negative, fc(w) will be non-negative for

all w; and likewise if the coefficients are non-positive, the curve will always be non-

positive. The B-splines are normalised such that
∑

dBcd(w) = 1, which means that we

must apply an identifiability constraint γctc = 0 for some tc.

When C = 0, methods have been developed for estimating the MLE for identity-

link Poisson (Marschner, 2010), log-link binomial (Marschner and Gillett, 2012) and

identity-link binomial GLMs. The methods are all CEM algorithms (Marschner, 2014),

which will always converge to the MLE. With these methods, we are also able to restrict

certain coefficients to be non-negative or non-positive.

CEM algorithms require that the parameter space is partitioned into distinct subspaces,

and use an EM algorithm to find the constrained MLE within each. One of these

constrained MLEs will be the overall MLE. For these GAMs, we partition the parameter

space based on the index of the smallest or largest B-spline coefficient, which can be

achieved by setting a particular γctc = 0 and restricting the remaining coefficients to be

non-negative or non-positive. We repeat this process for all possible choices of tc and

find the constrained MLE for each, one of which will coincide with the overall MLE.
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A sufficient condition for fc to be monotonically non-decreasing is that the sequence of

B-spline coefficients is non-decreasing. To apply a monotonicity constraint to any of

these models, we can reparameterise the smooth curve such that we are estimating the

increments between successive coefficients, and can constrain these to be non-negative

or non-positive, as required.

C.3 Application

The BOOST-NZ study (Darlow et al., 2014) was a randomised trial in premature

infants, comparing the effects of different target ranges for oxygen saturation (SpO2).

Both high and low levels of oxygen are associated with mortality and other complica-

tions, so the primary outcome of the study was death or major disability at two years

of age. Unadjusted analysis of the primary outcome showed a relative risk of 1.16 (95%

CI 0.90–1.50) and a risk difference of 0.06 (95% CI −0.04–0.17), with lower risk in the

low-target group.

We use the methods outlined in Section C.2 to adjust these effect measures for the

actual level of oxygen that the infant received. Each infant’s median SpO2 level while

receiving supplementary oxygen was entered as the semi-parametric covariate into each

model, and the results are shown in Figure C.1.

The adjusted analyses show that the minimum risk is associated with an SpO2 close

to 94%. The adjusted effect of randomised treatment is a relative risk of 1.46 (95% CI

1.04–2.07) and a risk difference of 0.19 (95% CI 0.06–0.33). The confidence intervals

for these parameters were estimated using a normal approximation.

For the outcome of mortality, the risk of death decreases as the SpO2 level increases,

and so we can restrict the semi-parametric curve to be monotonically non-increasing.

The unadjusted effect of treatment is a relative risk of 1.08 (95% CI 0.65–1.78) or a

risk difference of 0.01 (95% CI −0.06–0.09) in favour of the low-target group.

The results of the adjusted analyses are shown in Figure C.2. The adjusted relative

risk is estimated to be 1.89, and the adjusted risk difference is 0.04.

The estimates from these models are on the boundary of their respective parameter
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Figure C.1: Risk of primary outcome by median SpO2 and randomised treatment (blue
solid = low target, red dashed = high target) in BOOST-NZ, under (A) log-link and (B)
identity-link binomial models.

spaces, so we must estimate confidence intervals using bootstrap resampling. Impor-

tantly, the algorithm will converge to the MLE in every bootstrap sample, eliminating

bias due to non-convergence. From 1000 bootstrap samples, we estimate the 95%

confidence intervals to be 1.10–2.86 for the relative risk, and −0.03–0.10 for the risk

difference.

C.4 Other methods

We compared our approach with other methods for fitting GAMs that have been im-

plemented in R, and were able to show that our method has advantages over existing

methods in some contexts.

The most notable existing methods are implemented in the gam (Hastie, 2013), mgcv

(Wood, 2011) and gamlss (Rigby and Stasinopoulos, 2005) packages. The fitting

procedures underlying these approaches each employ a Newton-type algorithm, which
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Figure C.2: Risk of death by median SpO2 and randomised treatment (blue solid = low
target, red dashed = high target) in BOOST-NZ, under (A) log-link and (B) identity-link
binomial models.

is not guaranteed to converge to the MLE unless step-size optimisation is performed.

In fact, of these packages, only mgcv incorporates automatic step-halving if the po-

tential update of the parameter estimates moves outside the parameter space. This

method reported convergence in all 1000 bootstrap samples for the analysis in Fig-

ure C.1, for both the log and identity links. However, in some cases mgcv converged to

sub-optimal parameter estimates, particularly when the MLE was on the boundary of

the parameter space. Furthermore, mgcv is unable to accommodate the monotonicity

constraint for the analysis depicted in Figure C.2.

The gamlss package allows the user to specify the step size for updating the parameter

estimates and also offers the option to use step-halving if the deviance increases at a

particular iteration. However, the method terminates with an error if the parameter

estimates move outside the parameter space, making it inappropriate for automated

model-fitting such as bootstrapping. It failed to converge in 52 of the 1000 bootstrap

samples using the log link, and did not converge in any of the samples when we used
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the identity link.

The gam package does not include either step-halving or any check for the validity of

the parameter estimates. As such, it may fail to converge or converge to a solution

outside the parameter space, which occurred in 844 and 963 of the 1000 bootstrap

samples, using the log and identity links respectively.

A difference with these methods is that they maximise a penalised likelihood, allowing

greater flexibility in the number and positioning of the knots while discouraging large

fluctuations in the resulting smooth curve. Penalised likelihood could be incorporated

into our methods by a similar approach to that used by Marschner and Gillett (2012,

Supplementary materials), but this would add substantially to the computational load.

Aside from its stability, another benefit of our approach is that it is straightforward

to impose monotonicity constraints on selected smooth curves. If it is appropriate to

assume monotonicity, this can reduce the spurious fluctuations in the estimated curve,

and possibly increase the efficiency of the parameter estimates in the model.

The GMBBoost (Leitenstorfer and Tutz, 2007) and GMonBoost (Tutz and Leitenstorfer,

2007) functions employ the technique of likelihood boosting to apply a monotonicity

constraint to smooth functions in maximising a penalised log-likelihood. The current

implementation of both, however, only allows canonical link functions, and therefore

cannot be used to fit the models considered in this paper.
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