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Abstract

The common envelope interaction is a short lived phase in the evolution of binary systems. A number

of evolved binary systems have been discovered that have separations too large to fit our understanding

of the common envelope, and yet they are too close that a common envelope interaction must have

occurred. In some of these systems, an outer tertiary companion is present, suggesting that the presence

of an additional companion could have an influence on the final separation of the inner binary. We

present the first hydrodynamic simulations of common envelope interactions involving triple systems.

The first simulation contains a low-mass giant with two planets, the second is a 10 M� RGB star with

two solar-mass companions. We observe in our simulations that the outermost companion tends to

move outward (or at best remains at a similar distance) from its initial position. Our findings do not

support the hypothesis that a triple system could provide a pathway to leave the outer companion at

an intermediate separation after a common envelope interaction.
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1
Introduction

A binary system consists of two stars in orbit around each other, bound together by their mutual

gravitational force. Binary systems are of a great interest in astronomy as the majority of stars with

mass larger than the Sun do not exist on their own, but have one or more companions.

Almost all O-type stars on the main sequence are in multiple stellar systems, with ∼ 71% expected to

interact with their companion at some point in their lifetime (Sana et al., 2012). The binary fraction

for spectral classes B through F is approximately 60 − 50% (Kouwenhoven et al., 2005; Fuhrmann &

Chini, 2012; Duchêne & Kraus, 2013; Fuhrmann & Chini, 2015), for G- and K-types its 46 − 42%

(Raghavan et al., 2010), and for M-types down to brown dwarfs is 26−22% (Duchêne &Kraus, 2013).

If the stars in a binary system are sufficiently close together, when one of the stars evolves off the main

sequence and begins to expand, the growing star can interact with its companion by transferring mass

onto it. Under certain circumstances, stable mass transfer can become unstable and gives rise to a

"common envelope" (CE) event.

In this chapter we will introduce the CE interaction, outlining its importance and explaining the

physics involved. We will also present observations of typical post-CE binaries. We will then present

observations of binaries that orbit each other close enough that they must have gone through a CE

phase, yet they are unlike regular post-CE binaries. Lastly we will suggest how a triple system may

affect the CE and play a role in the formation of these systems.
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1.1 The importance of the CE interaction
The CE interaction is a phase in the evolution of a binary systemwhere one of the stars expands rapidly

to many times its original size, engulfing its companion(s) or planetary system, causing two or more

stars to orbit inside a single shared envelope. Orbital in-spiral of the companion(s) results in a close

binary and an ejected envelope or in a merger.

As reviewed by Ivanova et al. (2013), the CE phase is the cornerstone of our understanding of many

important astrophysical phenomena, because it is likely to be the main pathway to form most evolved,

compact binaries including those containing white dwarfs (WD), neutron stars (NS) or black holes

(BH). These binaries are the progenitors of type Ia supernovae (SNe Ia), gamma ray bursts and can

be sources of detectable gravitational waves. The CE is also responsible for the formation of X-ray

binaries, cataclysmic variables and at least one in five planetary nebulae (PNe). For a review how

stellar evolution is affected by companions see De Marco & Izzard (2017).

Despite its importance in astrophysics, the CE phase is still poorly understood. The CE interaction

is a complex problem that involves numerous physical processes and a huge range of space and time

scales, making it difficult to model both analytically and computationally.

1.1.1 Cataclysmic variables and other compact binaries

Paczynski (1976) put forth the CE interaction to explain the formation of V 471 Tau, a pre-cataclysmic

variable (a main sequence star and a WD in a close binary) with an orbital separation much smaller

than the radius of the WD progenitor. Since the WD progenitor was, in the past, larger than the orbit

is today, the binary must have had a much larger separation in the past. The CE phase is currently the

favoured mechanism to dramatically reduce the orbital separation in such binary systems.

There are many other classes of compact evolved, binaries whose formation is best explained by

a CE interaction. They include low- and high-mass X-ray binaries (a NS or BH accreting from a

low- or high-mass star), cataclysmic variables (a WD accreting from a main sequence star) and all

combinations of close, double degenerate binaries. The CE interaction can also lead to the companion

merging with the core of the primary, which has been hypothesised to explain a range of transient

events including V838 Mon (Bond et al., 2003), V 1309 Sco (Tylenda et al., 2011), NGC 4490-OT

(Smith et al., 2016), M101-OT (Blagorodnova et al., 2017) and M31-2015 LRN (Macleod et al.,

2017b). The merger of a NS with a giant inside a CE is also hypothesised to form exotic objects

known as Thorne-Żytkow objects where a NS merges with a red supergiant becoming the supergiants

core (Thorne & Żytkow, 1977)).
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1.1.2 Type Ia supernovae and gravitational waves

SNe Ia are energetic outbursts presenting no hydrogen in their spectra. They are currently modelled as

the thermonuclear explosion of a carbon-oxygen WD that reached the Chandrasaker limit because of

accretion from a companion or because of the merger of two WDs (Hillebrandt & Niemeyer, 2000).

SNe Ia are incredibly important as both standardiseable candles used to measure the rate of expansion

of the Universe (Riess et al., 1998) and as tools to understand the star formation histories of galaxies

(Hopkins & Beacom, 2006). Binary population synthesis models are used to calculate the rate of SNe

Ia events. By comparing calculated to observed rates we can determine the likely progenitor of SNe Ia

(Livio & Pringle, 2011). However, uncertainties in the CE interaction carry through to uncertainties

in the population synthesis models, resulting in large uncertainties in estimates of the SNe Ia outburst

rate (Claeys et al., 2014; Toonen et al., 2014). These uncertainties are one of the main stumbling

blocks preventing models from identifying the progenitors of SNe Ia.

One of main unknowns is the efficiency at which the orbital energy is transferred to the envelope.

As a result we cannot predict the post-CE orbital separation(s), and this translates directly into our

ignorance of the time it takes a post-CE binary to explode as a SN Ia. This is further complicated

when considering that double degenerate systems such as binary NSs have likely experienced multiple

CE phases (Belczyński & Kalogera, 2001).

Gravitational wave astronomy also requires binary population synthesis models to predict the expected

number of binary BH and NS merger events. With the first four gravitational wave detections from

the Advanced Laser Interferometer and Gravitational-Wave Observatory (Advanced ligo) being from

merger of binary BHs (Abbott et al., 2016a,b, 2017a,b), and with the most recent detection being from

a binary NS merger (Abbott et al., 2017c), a huge amount of new information on binary systems will

soon be available. However, for the data to be interpreted we require a far better grasp on CE theory

in massive binaries.

1.1.3 The morphologies of planetary nebulae

PNe are expanding shells of luminous gas that have been ejected from low- and intermediate-mass

stars during the end phase of their evolution. Observations from the Hubble Space Telescope indicate

that PNe show a range of different morphologies (approximately 20% are spherical with the remaining

80% showing deviation from spherical symmetry (Jones & Boffin, 2017)).

Traditionally PN shaping has been explained with a combination of a fast-rotating star, with or without

a global magnetic field leading to increased mass-loss at the equator Garcia-Segura et al. (1999).
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Occasionally, the direct interaction with a closely-orbiting companion may have also been involved

in the shaping of the PN. However, there is currently no theory to explain how a single star can have

the required rotational velocity (García-Segura et al., 2014) and or global magnetic fields cannot be

sustained in a single mass-losing giant (Soker, 2006; Nordhaus et al., 2007). This leaves a binary

interaction as the only known mechanism to explain extreme shapes, where the companion could

be the agent promoting the magnetic fields and the rotation or could shape the outflow directly (De

Marco, 2009). Currently, we don’t know the PN binary fraction but we do know that at least one in

five PN form via a CE interaction, because we can detect the post-CE binary (Jones & Boffin, 2017).

The PN around these binaries are therefore ejected CEs.

1.2 The physics of the CE interaction
Stars in binary systems can evolve differently than they would in isolation, since they are influenced by

the gravitational potential of their companions (Taam&Sandquist, 2000). In regions close to each star,

the gravitational potential is dominated by that star. However, farther away from the stellar surface,

the gravity of the companion plays a role and causes an elongation of the gravitational potential. This

restricts the material gravitationally bound to each star in a binary to a tear-shaped volume known as

the Roche lobe. Material outside of the Roche lobe can fall onto the companion, orbit around both

stars or escape from the system entirely. The size of a star’s Roche lobe is typically measured by an

average radius RRL , defined such that 4/3πR3
RL has the same volume as the Roche lobe (Eggleton,

1983):

RRL = a × 0.49 q2/3

0.6 q2/3 + ln
(
1 + q1/3) , (1.1)

where a and q are the orbital separation of the system and the mass ratio between the primary and

the companion respectively. In this work we will be using ‘primary’ to refer to the donor star (i.e

q = M1/M2).

Evolved stars such as red giant branch (RGB) or asymptotic giant branch (AGB) stars grow to hundreds

of times the size of their progenitors. As described by Paczynski (1976), if a giant star has a companion

sufficiently close, its radius growth will be limited and the star will expand to fill its Roche lobe. As

the star continues to expand, mass is transferred onto the companion through the first Lagrangian

point (L1 in Fig. 1.1), this is known as Roche lobe overflow (RLOF). Once both the primary star and

its companion have filled their Roche lobes, the system enters the CE phase, and the companion is

rapidly engulfed by the primary. The CE dynamical phase is very short: a typical time scale for the

CE interaction is of the order of the dynamical time scale of the star, which, for solar-mass giants, is

between a month and a year depending on its radius.



1.2 The physics of the CE interaction 5

Figure 1.1: The equipotential surfaces around an orbiting binary system. The Roche lobes of the two stars are shown here

by the thick black line. M1 and M2 are the masses of the primary and the companion, respectively. When M1 fills its

Roche lobe it will transfer mass onto M2 through the inner Lagrangian point, L1. Adapted from (Iben & Livio, 1993).

Once the companion starts to in-spiral inside the giant’s envelope it creates a wake of material behind

it as it moves through the medium. The gravitational interaction between the companion and this

wake creates a drag force, causing the companion to slow down and in-spiral towards the core of the

primary. We call this drag "gravitational drag" to distinguish it from hydrodynamic drag which tends

to be much weaker. Iben & Livio (1993) approximated the gravitational drag, Fdrag, on the engulfed

companion to be:

Fdrag = ξπR2
aρ (v − ve)2 , (1.2)

where ρ is the local density, v − ve is the relative velocity between the companion (v) and the envelope

gas (ve), ξ is a factor that depends on Mach number (see also Ostriker (1999)), and Ra is the accretion

radius which is given by:

Ra =
2GM

(v − ve)2 + c2
s
, (1.3)

where G is the gravitational constant, M is the mass of the companion and cs is the sound speed1.

Using 3D hydrodynamic simulations of wind tunnels, Macleod & Ramirez-Ruiz (2015) and Macleod

et al. (2017a) found that density gradients across the direction of motion also affect the strength of the

gravitational drag, but this has not been captured by any analytical formalisms so far.

As the companion in-spirals towards the centre of the primary, its orbital energy is dissipated into the

envelope. The gas around the companion is both accelerated and heated due to the formation of weak

1This formulation is for subsonic speeds.
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shocks. If enough orbital energy is transferred into the envelope, the envelope can be ejected from

the system. Alternatively, if the envelope doesn’t have the required energy to escape the companion,

it will presumably merge with the core of the primary.

The standard "energy formalism" description of the CE interaction equates the binding energy of the

envelope (the energy required to unbind the gas in the envelope) to the difference in orbital energy

between the initial and final configurations (van den Heuvel, 1976; Webbink, 1984, 2008). There

are many forms of the energy formalism in the literature (De Marco et al., 2011), however the most

common form of the energy formalism is shown in Eq. (1.4) (de Kool, 1990; Dewi & Tauris, 2000;

Ivanova et al., 2013):

− GM1M1,env

λR1
= −αCE

(
GM1M2

2ai
− GM1,cM2

2a f

)
. (1.4)

Here ai and a f are the initial and final binary separations respectively, M1 and M2 are the masses of

the primary and the companion at the time of CE, M1,c is the final mass of the primary after losing

its envelope, M1,env and R1 are the envelope mass and radius of the primary at the onset of RLOF, λ

is a parameter that depends on the structure of the star. Dewi & Tauris (2000) find λ ranges between

0.2 and 0.8 for main sequence stars, but it can be much higher (λ > 5) for low mass AGB (De Marco

et al., 2011)). Finally, αCE is the CE efficiency parameter which describes the fraction of available

orbital energy that is used in ejecting the envelope.

By assuming a value for αCE, a value for the final separation(s) can be derived for a binary system

containing a CE interaction making reasonable assumptions. What simulations have shown, however,

is that there is no single value of αCE and that orbital energy never succeeds in unbinding the envelope,

even if the binding energy is low and the orbital in-spiral is large (Iaconi et al., 2017a).

This description is common in the literature, but this formalism neglects the effects recombination

energy (Nandez et al., 2015; Nandez & Ivanova, 2016; Ivanova & Nandez, 2016), which is likely of

importance in determining whether the CE interaction will lead to envelope ejection or a merger event

(see Section 2.2).

1.3 Too close, yet too far
Post-CE binaries typically comprise one or two evolved stars at an orbital separation of a few solar

radii. There is however observational evidence of a diverse group of evolved binary and triple systems,

whose orbital separation is quite a bit larger than typical post CE systems, yet small enough that a CE

must have taken place. These systems include post-AGB binaries, a triple system comprising a pulsar

and two WDs, and a circumbinary planetary system.
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1.3.1 Post AGB binaries

A class of post-AGB stars were discovered to have circumbinary disks encircling a binary with an

orbital period between 100 and 2000 days (VanWinckel, 2003; VanWinckel et al., 2009). Presumably,

those of these binaries with the shortest periods must have gone through a CE at some point in their

history, because their orbit is smaller than the primary’s progenitor size. Yet, this CE did not lead

to the dramatic in-spiral typical of post-CE binaries, which are typically observed to have periods of

hours to a day. Hence these binaries are too close together to have avoided a CE interaction, but they

are too far from each other to fit our understanding of a CE in-spiral.

1.3.2 A millisecond pulsar in a triple system

A pulsar is a highly magnetised, rotating NS with collimated beams of electromagnetic radiation

emitted from its poles, likely formed after a massive star undergoes a supernova explosion. The

rotational period of a pulsar is extremely regular, ranging from milliseconds to a few seconds.

The millisecond pulsar PSR J0337+1715, discovered by Ransom et al. (2014), is unusual in that it is

a NS (mass of 1.438 M�) with two WD companions (with masses of 0.197 M� and 0.410 M�). This

system is highly hierarchical, with a tight inner binary (period 1.63 days) and an outer companion at

a much farther distance (period 327 days).

Tauris & van den Heuvel (2014) proposed that this system could have formed in a CE event followed

by two low-mass X-ray binary phases. The CE scenario proposed involves a 9.9 M� RGB primary

entering a CE with a 1.1 M� main sequence companion. A second, outer, 1.3 M� main sequence

companion should have orbited farther out from the binary with a period of 4020 days. The model

proposed by Tauris & van den Heuvel (2014) suggests that both the companion stars must have suffered

some in-spiral during the CE phase, indicating that the outer companion must be close enough to be

affected by the gas being ejected by the interaction of the inner companion and the giant, but far

enough to have avoided the full force of the CE event.

1.3.3 Surviving planets

Planets are regularly found around main sequence stars in short-period orbits (e.g., Udry & Santos,

2007). However, planets with short-period orbits have also been found around evolved stars, whose

precursor had a radius larger than that of the planets’ orbit today (Charpinet et al., 2011). Hence the

planet must have experienced a CE with the giant progenitor of its host star at some point in the past

and survived. Since we can observe these planets, these observations suggest that planets are not
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destined to merge with the core of their host star, but are able to survive the CE interaction, although

this does not appear likely from the energetic point of view (Staff et al., 2016b; Passy et al., 2012a).

Staff et al. (2016b) found in their simulations that even massive planets are unable to survive a CE

interaction, and they instead merge with the core.

NNSerpentis (NNSer) is a post-CE eclipsing binary system consisting ofWD and a red dwarf (Parsons

et al., 2010). A circumbinary planetary system has been detected around this binary, consisting of

two planets (Beuermann et al., 2010; Marsh et al., 2013) with orbital periods of approximately 8 and

15 years. These two planets would have been closer to the binary in the past. This suggests that either

these two planets have survived the CE ejection or that they have formed in the material ejected by the

CE interaction (Mustill et al., 2013).

There is some diversity in all these phenomena: some are single companions orbiting around a post-

giant primary too close yet too far, some are two companions around a post-giant, and some are a

pair of planets around a close, post-CE binary. The common feature to all these systems is that the

companion(s) avoided a dramatic in-spiral, yet are today located close enough to the primary that one

must wonder how it (they) got to its (their) current location in the face of what must have been a large

primary in the past or worse, a fully-fledged CE interaction ejecting copious mass.

1.4 The role of tertiaries in the CE interaction: this work
Approximately 20 − 30% of all binary systems are actually members of a triple system (Tokovinin

et al., 2006; Rappaport et al., 2013). The fraction of triples is even larger in more massive stars (Sana

et al., 2012). The presence of an outer companion in orbit around a binary system can significantly

influence the evolution of that binary system. An outer companion can cause the period of an inner

binary to shrink via Lidov-Kozai Cycles (Kozai, 1962; Fabrycky & Tremaine, 2007). Akashi & Soker

(2017) suggested that ‘messy’ PNe (PNe that lack any form of symmetry) could arise from a triple

system interaction. How a triple system functions in the context of a CE interaction has never been

studied before.

Staff et al. (2016b) simulated the interaction between an RGB star and a planet and found that even

massive planets are unable to disrupt the star and survive the interaction. They instead merge with the

core. On the other hand they carried out a preliminary simulation (analysed in this work as part of the

thesis) with two planets that appeared to lead to a somewhat stable orbit of the outer planet. Since we

know that a single planet merges with the star, we wonder whether a second planet orbiting farther

out, but still in range of the interaction, could survive because of the "sacrifice" of the inner planet.



1.4 The role of tertiaries in the CE interaction: this work 9

On the other hand, the class of post-AGB stars discovered by Van Winckel (2003) and Van Winckel

et al. (2009) (Section 1.3.1) do not have an inner binary that could be responsible for preventing a

more dramatic in-spiral of the companion observed today. However, we wonder if it is possible that

these post-AGB stars were triple systems at some point in the past and the inner companion merged

with the primary. We wonder to what extent the inner merger may have played a role in allowing the

outer companion to fall into today’s orbit.

Similarly we wonder whether the triple configuration of PSR J0337+1715 played a significant role in

the lack of in-spiralling of the outer companion (tertiary).

In Chapter 2 we describe the process of simulating the CE interaction using hydrodynamic codes. Then

in Chapter 3 we describe the set-up and present the results of a simulation involving a RGB star and

two planets. In Chapter 4 we describe a CE simulation of a 9.9 M� star with two stellar companions

aimed at understanding the pulsar system. Finally in Chapter 5 we will present my conclusions and

the options for future work.



2
Simulating the common envelope

As described in Chapter 1, the CE interaction is incredibly important to understand various astrophys-

ical phenomena. The CE interaction is the basis upon which we understand the formation of compact,

evolved binaries, such as SNe Ia progenitors. To create a model of the CE interaction we carry out 3D

hydrodynamical simulations. The simulations are required to be 3D as the lack of symmetries prevents

1D models of the CE interaction. In terms of the physics, self-gravity and an ideal gas equation of

state are included in these simulations.

In this chapter we will introduce the main techniques used to carry out hydrodynamic simulations,

including a Lagrangian technique (Smooth Particle Hydrodynamics - SPH) and an Eulerian technique.

We will also present previous simulations of the CE interaction.
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2.1 Hydrodynamic simulations
The CE interaction occurs on a very short time scale, and is inherently asymmetric. Any hydrodynamic

model therefore needs to be 3-dimensional (3D). The goal of these hydrodynamic simulations is to

predict the parameters of post-CE systems given pre-CE binary parameters.

In general hydrodynamic codes solve a set of hydrodynamic equations. These equations describe the

properties of a fluid and changes in the density, momentum and energy over time. More specifically

they are:
∂ρ

∂t
+ ∇ · (ρv) = 0 (2.1)

∂v
∂t
+ (v · ∇) v = −1

ρ
∇P − ∇φGrav (2.2)

∂u
∂t
+ v · ∇u = −1

ρ
∇ · (pv) − v · ∇φGrav (2.3)

∇2φGrav = 4πGρ (2.4)

uint =
1

γ − 1
P
ρ

(2.5)

where, ρ is the density of the fluid, v is the velocity of the fluid, P is the pressure, φGrav is gravitational

potential energy, u is the specific total energy, uint is the specific internal energy, and t is time.

Eqs. (2.1), (2.2) and (2.3) represent the continuity of mass, conservation of momentum and the

conservation of energy, respectively. Since the CE is self-gravitating, the gravitational potential term

was added and appears in Eqs. (2.2) and (2.3) as determined by the Poisson equation (2.4). To close

the system, an equation of state is needed. In these simulation an ideal gas equation of state (Eq. (2.5))

for a monoatomic gas (γ = 5/3) is used.

2.1.1 Eulerian grid codes vs. smooth particle hydrodynamics codes

Hydrodynamic simulations can be divided into two main classes: Eulerian grid codes and Lagrangian

codes.

The Eulerian approach uses volume coordinates, which is analogous to a grid. We used the Eulerian

grid code enzo (O’Shea et al., 2004; Bryan et al., 2014) for our simulations as adapted to the CE



12 Simulating the common envelope

−3 −2 −1 0 1 2 3
x (AU)

−3
−2
−1
0
1
2
3

y
(A

U
)

t = 0.00yr

−3 −2 −1 0 1 2 3
x (AU)

t = 2.00yr

−3 −2 −1 0 1 2 3
x (AU)

t = 5.00yr

10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4

D
en
si
ty

(g
/
cm

3
)

Figure 2.1: Density slices from an AMR enzo simulation with 4 levels of refinement. The white, grey and black lines

indicate the regions of higher refinement, with the black regions being the most refined. The refined grids change over the

course of the simulation such that the most dense regions have the highest refinement. The figure was created using the

visualisation package YT (Turk et al., 2011).

problem by Passy et al. (2012b) and Passy & Bryan (2014). In the Eulerian regime, quantities such as

mass, momentum and energy are advected through the grid cells. The resolution of the simulation is

limited by the size of the grid cells.

Adaptive Mesh Refinement (AMR) is a technique that has been developed for grid codes (including

enzo) to increase the resolution of the simulation where needed, rather than increasing the total

number of cells over the entire domain. AMR involves creating refinement regions according to some

criteria, such as the distribution and density of the gas. The higher the density the higher the level of

refinement. See Fig. 2.1 for an example of the grid structure in an AMR-enzo simulation.

The Lagrangian technique does not use a grid. The system is represented instead by particles of fluid.

In SPH, mass coordinates are used to track these particles and their movement with respect to each

other is followed. We used the SPH code phantom developed by Price et al. (2017). Particles in SPH

simulations have volumes that are inversely proportional to their density. SPH has the advantage of

not requiring a grid, meaning that there is no mass or energy loss due to fluid leaving the grid like

in Eulerian grid-codes. However, since in phantom the particles have equal mass, SPH has a much

lower resolution at lower densities, as the particles are smoothed over a larger area.

A summary of the strengths and weaknesses of the Eulerian and Lagrangian techniques is shown

in Table 2.1. Due to the complementary strengths and weaknesses of the Eulerian and Lagrangian

techniques we have used both types of codes in our simulation.
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Eulerian Lagrangian
– Has better resolution in low density regions

that form in the CE.

– Ideal for problems that trace mass such as

ejecta from the CE interaction.

–Has a long history in computational physics.

Schemes already developed to model shocks

and radiative transport.

– Physical quantities such as mass, energy,

linear and angular momentum are better con-

served.St
re
ng
th
s

–Mass can leave the boxwhichmakes tracing

CE ejecta difficult.

– Low-mass regions that have been ejected

from the CE can suffer from poor resolution.

– The re-zoning of AMR grids can lead to

non-conservation of energy and density, and

non-continuity of pressure-gradients.

– Dynamical instabilities such as Kelvin-

Helmholtz instabilities are occasionally

poorly resolved.W
ea
kn
es
se
s

Table 2.1: A summary of the strengths and weaknesses of the Eulerian and Lagrangian techniques in

hydrodynamic simulations of the CE interaction.

2.1.2 The hydrodynamic codes ENZO and PHANTOM

Enzo is a parallel 3D hydrodynamicAMREulerian grid code that was originally used for cosmological

simulations (O’Shea et al., 2004; Bryan et al., 2014; Passy & Bryan, 2014). Enzo is able to perform

both hydrodynamic and N-body simulations. Passy et al. (2012b) modified enzo to model the CE

interaction by enabling enzo to map a 1D radial profile from a stellar evolution code such asModules

for Experiments in Stellar Astrophysics (mesa, Paxton et al., 2011, 2013) to a 3D stellar model and

introduced point masses with an analytical potential.

In enzo we use point particles to represent very dense regions such as the primary’s core and the

companion stars or planets. These particles only interactwith the gas and other particles gravitationally.

For these point particles we use a smoothed gravitational potential, meaning that at large separations

the gravitational potential is very close to the exact values given by the standard φ ∼ r−1. However,

at small separations of the order of the “smoothing length” the interactions become significantly

weaker, and the potential is flat. This is done for numerical reasons: when two particles are very

close to each other, or when a particle is very close to a cells centre, the gradient of the gravitational

potential becomes arbitrary steep. Poorly sampled steep gradients cause energy conservation issues in

hydrodynamical codes. By smoothing the gravitational potential it is possible to avoid some of these
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Figure 2.2: A comparison between the exact potential and the smoothed potential used in enzo (Ruffert, 1993; Passy et al.,

2012b). The solid line is the exact potential from a point particle given by φ ∼ r−1. The dotted black line is the smoothed

potential as shown in Eq. (2.6) with εδ = 1.

conservation problems. The smoothed potential used in enzo is given by Ruffert (1993):

φP(r) = −
GMP√

r2 + ε2δ2 exp
[
−r2

(εδ)2

] , (2.6)

where φP is the particle potential, MP is the mass of the particle, G is the gravitational constant, r is

the distance from the particle, δ is the size of the smallest cell, and ε is the number of cells over which

the smoothing occurs (Fig. 2.2).

Phantom is a 3D hydrodynamic SPH code (Price et al., 2017) that was originally developed to model

star formation, but has since been expanded to simulate a wide array of astrophysical problems. Iaconi

et al. (2017b) modified phantom to allow the code to create 3D stellar models from 1D radial profiles

enabling it to perform CE interaction simulations. In a similar manner to enzo, in phantom we use

point masses to simulate the core of the primary and the companions. A smoothed potential similar

to the one shown in Eq. (2.6) is also implemented in phantom.

2.2 Previous common envelope simulations
Not many CE simulations have been carried out in the last 20 years. (e.g., Rasio & Livio 1996;

Sandquist et al. 1998; Ricker & Taam 2008, 2012; Passy et al. 2012b; Nandez et al. 2015; Kuruwita

et al. 2016; Ohlmann et al. 2016a,b; Nandez& Ivanova 2016; Staff et al. 2016a,b; Iaconi et al. 2017a,b).

In all these simulations the set-up involves placing a companion at or near the surface of a non-rotating

giant star. The simulations are then evolved in their choice hydrodynamic code until the companion
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has sufficiently in-spiralled. At the end of the simulation, the post-CE parameters such as the final

separation and the total unbound mass are then determined. However, all simulations are limited in

one way or another.

These simulations often use non-physical initial conditions. In particular, the companions are almost

always positioned at a distance from the primary such that the primary is grossly outflowing its own

Roche lobe (Passy et al., 2012b; Ricker & Taam, 2012). This configuration is used to significantly

reduce the computational time required as the timescale of themass transfer phase of the CE interaction

is much longer than the in-spiral phase. Iaconi et al. (2017b) performed a simulation with a much

more realistic initial separation and found that the post-CE separation was larger and slightly more

mass was unbound.

Very limited coverage of the parameter space has been explored: Iaconi et al. (2017b) showed that the

vast majority of common envelope simulations use a primary star with mass between 0.88− 2M� and

there are no simulations with a primary mass grater than 5M�. All previous simulations have been

restricted to binaries, and as a result there is zero attempts to determine the result of a CE interaction

that involves three bodies.

In all CE interaction simulations that include only gravitational energy, very little of the CE is unbound

(Iaconi et al., 2017b). As the orbital in-spiral occurs, the envelope is lifted from the binary and the

separation stabilises however only of the order of 10% of the lifted envelope is unbound. As showed by

Kuruwita et al. (2016) the lifted envelope could return as a “fall-back disk” which reduces the orbital

separation further, but it fails to unbind the gas. These simulations suggest that an additional energy

source is required to unbind the envelope, otherwise all CE interactions would result in a merger.

Nandez et al. (2015), Nandez & Ivanova (2016) and Ivanova & Nandez (2016) recently showed that

by including the energy released by hydrogen and helium nuclei recombining with electrons in the

expanding and cooling envelope (termed “recombination energy”), it is possible to unbind all of the

envelope. However, what is unclear is whether all this energy is available to do work, or whether

some escapes as radiation. Since neutral hydrogen is virtually transparent, some of this recombination

energy could escape and thus that energy would not assist in unbinding the envelope.

Staff et al. (2016b) are the only ones to simulate the interaction between a giant star and planets. They

found that even massive planets (∼ 10MJ) are unable to disrupt the star. As a result they do not survive

the interaction, merging eventually with the core of the primary.

The role of magnetic fields is also not very well understood. Ohlmann et al. (2016b) performed

the first magnetohydrodynamic simulations of the CE interaction. They report that the magnetic
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fields appeared to play no role in the overall dynamics of the interaction, but found that fields were

amplified to a strength of 10 -100 kG. The magnetic fields that Ohlmann et al. (2016b) reached in their

simulation are similar to values determined from observational data of jets from post-CE binaries in

PNe (Tocknell et al., 2014). The dynamical impact of magnetic fields is still an open question.

Although there have been a few attempts to understand the CE interaction using hydrodynamic

simulation our ability to match observations is still extremely limited.

In Chapter 3 and Chapter 4 we will explore the CE interactions with 2 companions at two ends of the

mass spectrum: a 0.8 M� RGB star with two 10 MJ planets and a 10 M� red super giant with two,

solar-mass companions. In so doing we will explore some of the questions posed in Chapter 1.



3
Two-planet simulation

In Chapter 1 we posited that a third body acting in the context of a CE interaction may play a key

role in the evolution of the system. Staff et al. (2016b) found that a CE interaction between a single

massive planet and a 3 M� RGB or AGB star, results in a merger. Staff (in private communication)

also carried out two additional simulations involving a giant star with a lower mass of 0.77 M� and

one or two, 10 MJ planets, in order to test the effect of planets on a lower mass star. These simulations

were never analysed. They form the basis of our investigation.

SIM1, SIM2 and SIM3 (Table 3.1) were performed by Jan Staff in 2016. SIM4 and SIM5 were

performed by the Author. SIM6, carried out with phantom, was performed by Thomas Reichardt

under the direction of the Author and analysed fully by the Author. All plots and analysis was

performed by the Author.
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Table 3.1: Parameters for the simulations in this chapter. All simulations have M1 = 0.77 M�

Sim. No. Codea nb Resolution c τrun Mcore M2 a2/R∗ d M3 a3/R∗ d

(R� or part.) (yrs) (M�) (MJ) (MJ)

SIM1 a-grid(E) 1 1.4 0 - 13.6 0.455 10 1.1 – –

SIM2 a-grid(E) 2 1.4 0 - 14.3 0.455 10 1.1 10 2.0

SIM3 a-grid(E) 1 1.4 5.6e - 23.1 0.455 – – 10 1.75

SIM4 a-grid(E) 1 1.4 4.0e - 11.0 0.455 – – 10 1.86

SIM5 a-grid(E) 1 1.4 5.6e - 8.9 0.465 – – 10 1.75

SIM6 SPH(P) 2 80k 0 - 11.4 0.455 10 1.1 10 2.0

a a-grid: adaptive mesh refinement grid, SPH: smooth particle hydrodynamics, E: enzo, P: phantom.
b The number of planets in the simulation.
c Smaller is better for a-grid, larger is better for SPH.
d R∗ is the radius of the primary. In all simulations R∗ = 169 R� except SIM6 where R∗ = 165 R�.

a2 and a3 are the orbital separation between the core and the innermost planet and the core and the

outermost planet, respectively.
e Restarted time, measured from the beginning of SIM2.

3.1 Simulations background and set-up
These simulations expand on the work of Staff et al. (2016b) and introduce a second companion farther

out from the primary. In Staff et al. (2016b), the planet is unable to survive the interaction with its

3 M� giant star and merges with the core. SIM1 (Table 3.1) uses a less massive primary (a 0.77 R�,

RGB star) to determine if a less massive giant could be “disturbed” more than a 3 M� one. SIM2

(Table 3.1) is the same as SIM1, but contains a second massive planet farther out, to see if the addition

of a second planet could help change the outcome of the interaction.

SIM1 - SIM5 (and SIM7 see Chapter 4) were performed on the supercomputer raijin at the National

Computing Infrastructure in Canberra, Australia. These simulations utilised 128 cores. Since phan-

tom is not yet able to perform CE simulations in parallel clusters, SIM6 was performed on a server at

Macquarie University with 88 cores.

3.1.1 Initial conditions

SIM1 - SIM5 were performed using enzo in a cubic box with a side length of 6.68 AU (1437 R�).

Each simulation utilises AMR with 4 levels of refinement, with each level having a refinement factor
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of 2 (i.e., each cell is divided into 2 along each of its dimensions for each level of refinement). The

coarse grid has a resolution of 128 cells per side (cell size of 11.2 R�). The refinement occurs in the

coarse grid when the density in the cell is greater than 9.5 × 10−10 g/cm3. The smallest cell has a

size δ = 1.40 R�. Staff et al. (2016a) found that using smoothing length of ε = 3 resulted in better

energy conservation in their simulations. Due to the similarity between Staff et al. (2016a) and these

simulations, a smoothing length ε = 3 was also used in all of the enzo simulations. The length scale

of the smoothed potential is 4.2 R�.

The stellar model was created using the one-dimensional stellar evolution code mesa (Paxton et al.,

2011, 2013). A 1 M�, zero-age main sequence, solar-metallicity (Z = 0.02) star was evolved in mesa

until the model was 12.34 billion years old. The model is an RGB star with a radius of 169 R� with a

mass of 0.77 M�.

The 1D stellar model is then mapped into the 3D computational domain. Since the resolution of enzo

is much lower than that of mesa models, the core of the star, where most of the mass is concentrated,

is not resolved, resulting in a mass deficit. To account for this, a point particle is added to the centre

of the star with a mass equal to the missing stellar mass. In these simulations the core has a mass of

0.455 M� (the actual core in mesa has an almost identical mass of 0.458 M�) and the gas has a mass

of 0.319 M�.

Unlike mesa, enzo does not account for the stellar micro-physics. It instead uses an ideal gas equation

of state. With the addition of a massive point particle as a core and a smoothed gravitational potential,

the star is not in perfect hydrostatic equilibrium. Following the method described in Passy et al.

(2012b) and Iaconi et al. (2017b), the velocities of the gas are damped for a few dynamical times (of

the order of a few years) to force the star to relax into its hydrodynamic equilibrium. The structure is

then evolved for a further few dynamical times without damping, to check for stability.

In SIM1 and SIM2 the point masses used to represent planets have a mass of 10 MJ. The initial

configuration of SIM1 has a planet placed near the surface of the star at 186 R� (1.1 times the radius of

the primary) from the core. The planet and star are placed in Keplerian orbits with an initial velocity

in the y direction of −0.346 km/s for the RGB star and +28.3 km/s for the planet.

SIM2 is similar to SIM1 except it also has a second planet placed at 338 R� (2.0 times the radius of

the primary). Using an N-body integration code that we wrote, described in Section 4.1.4, we ensured

that the 3 body orbits were not inherently unstable over the time of the simulation. These planets are

placed on the same side of the core in co-planar orbits. Whilst the outer planet in SIM2 was placed

on a Keplerian orbit with an initial velocity in the y direction of +20.8 km/s, the inner planet was
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Figure 3.1: The separation between the stellar core (0.455 M�) and the planet (10 MJ) in SIM1.

erroneously placed in orbit with the same velocity as the outer planet. Since the inner planet has a

velocity that is ∼ 26% slower than Keplerian, the inner planet begins on an elliptical orbit. This orbit

causes the inner planet to in-spiral more rapidly than it otherwise would if the orbit were circular. As

we will explain below, we do not believe that a more rapid in-spiral had an effect on our conclusions.

SIM6 is an SPH simulation identical to of SIM2 using phantom with a resolution of 80,000 particles,

but where both planets were correctly placed on Keplerian orbits (+28.3 km/s and +20.8 km/s for the

inner and outer planets, respectively). This simulation confirms that our conclusions are not affected

by the sub-Keplerian orbit of the innermost planet in enzo and provides us with additional verification

checks. The SPH control simulation was started early on in the project, however due to phantom’s

speed, the 6 month computational time meant that the results only became available towards the end

of the project.
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3.2 Results: an RGB star with one or two massive planets
SIM1 contains a single planet initially situated near the surface of the primary star. Fig. 3.1 shows the

separation of the planet as it in-spirals towards the the stellar core. The orbital evolution is similar to

what is observed by Staff et al. (2016b) with a more massive giant. The final separation in SIM1 is

9 R�, which is of the same order as the smoothing length. This and the fact that the stellar structure

is minimally affected by the in-spiral indicates that a merger between planet and giant core is likely.

Almost no gas is unbound, such that one would conclude that a lower mass giant does not change the

conclusions reached by Staff et al. (2016b) for a more massive giant.

In SIM2 the radius of the star’s Roche lobe with respect to the innermost planet is 132 R�, which

is much less than the stellar radius (169 R�). Thus the star is massively overflowing its Roche lobe,

which leads to instantaneous RLOF onto the inner planet. As shown in the density slices in Fig. 3.2

and Fig. 3.4, the inner planet is engulfed by the envelope of the primary and the in-spiral phase begins

immediately.
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Figure 3.2: (a) Density slices along the orbital plane after from top to bottom 0, 1, 2, 3 and 4 years from the beginning of

SIM2. The core of the primary and the two planetary companions are represented as the black dots. The size of the points

is not indicative of any physical property of the planets. (b) Density slices perpendicular to the orbital plane (x-z) at the

same times as in (a).
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Figure 3.3: (a) Sound speed slices along the orbital plane after from top to bottom 0, 1, 2, 3 and 4 years from the beginning

of SIM2. The black vectors represent the velocity field of the envelope. (b) Sound speed slices perpendicular to the orbital

plane (x-z) at the same times as in (a).
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Figure 3.4: (a) the separation between the stellar core (0.455 M�) and the two planetary companions (10 MJ) throughout

the 14.3 year simulation. (b) The same as the left-hand side but with a log-scale y-axis. The inner and outer planets initially

have separations of approximately 186 R� and 338 R�, respectively. The black line horizontal indicates the smoothing

length of the simulation (4.2 R�).

3.2.1 Orbital evolution

The orbital separations between the core of the primary and the two planets are shown in Fig. 3.4.

The inner planet is placed in orbit at the stellar radius (186 R�, as is typically done in CE simulations,

e.g., Iaconi et al., 2017b). The planet is rapidly engulfed by the primary star. After 4 years the orbital

separation has shrunk to 12 R�, a reduction of approximately 94%. At that time the inner planet’s

in-spiral slows dramatically as it approaches the smoothing length. Once it reaches the smoothing

length the inner planet experiences a much weaker gravitational force and thus the in-spiral is slowed.

The outer planet does not experience a sudden in-spiral. Instead it maintains an orbital separation of

approximately 300 R�, with a very gradual decay over 14 years (Fig. 3.4). The outer companion is

embedded in a low, but not insignificant density. Over the relatively long 14 years of the simulation,

we would expect to see a more significant in-spiral. However this lack of a significant in-spiral could

be the result of weaker drag forces and/or radially moving gas (see Section 3.2.3).

3.2.2 Energy and angular momentum conservation

The simulations of Staff et al. (2016b) displayed reasonable energy and angular momentum con-

servation properties. Enzo does not conserve energy and angular momentum implicitly and strong

gradients in any of the physical quantities such as internal energy or density can result in energy

non-conservation. Gradients are usually large near the core point mass. In Fig. 3.5 we show the
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Figure 3.5: (a) The total energy and energy components as function of time for SIM2. ETotal is the total energy, KTotal is the

total kinetic energy, KGas is the kinetic energy of the gas, KParticles is the kinetic energy of the companions and primary core,

φTotal is the total potential energy, φGG is the potential energy gas-to-gas, φPP is the potential energy particle-to-particle,

φPG is the potential energy particle-to-gas, UTotal is the total thermal energy. Since the kinetic energy of the gas is almost

zero, the total kinetic energy is dominated by the kinetic energy of the particles. (b) Total envelope mass (Menv) and

envelope mass loss rate ( ÛMenv) of the envelope for SIM2.

various energy components including kinetic energy, potential energy and thermal energy. The kinetic

energy of the particles and of the gas is calculated using:

Kα =
1
2

∑
i

miv
2
i (3.1)

where Kα is the kinetic energy component (particle or gas), mi and vi are the mass and the velocity

magnitude of the particle or gas cell respectively. The total kinetic energy is calculated by summing

the two kinetic energy terms for the particles and the gas. The potential energy is calculated using:

φα = −
G
2

∑
i

∑
j

mim j

ri j
(3.2)

where φα is the potential component, G is the gravitational constant, mi and m j are the masses of the

particle or gas cell and, ri j is the separation between mi and m j . The total potential energy is calculated

by summing the three potential energy components: particle-to-particle (PP), particle-to-gas (PG) and

gas-to-gas (GG).

SIM2 initially has total energy of−1.02×1046 ergs. As shown in Fig. 3.5a, the total energy is reasonably

conserved in the simulation for approximately 5 years. After 5 years energy non-conservation starts to

occur and the total energy becomes more negative, i.e, the system becomes more bound. The decrease

in the total energy must be due to an excessive decrease in the particle-gas potential energy. The

kinetic energy of the gas remains at virtually zero for the entire simulation.
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Figure 3.5b shows the mass of the envelope and the mass loss rate from SIM2. The decrease in

total energy must be caused by a non-conservation in the particle-to-gas potential energy (since

the decreasing particle-to-particle potential energy is calculated analytically). All previous enzo

simulations by our group displayed almost perfect mass conservation (except for the mass flowing out

of the simulation domain boundary). However, upon checking mass conservation for this simulation

we noticed that the outflow boundary conditions could only account for 80% of the mass loss from

the domain over 14 years, namely 0.04 M�, or 12% of the total envelope mass. The remaining 20%

must be due to mass non-conservation, which can gauge at the 2.5% level. An analysis showed that

there is mass-loss at the boundaries of newly formed sub grids. A loss of mass near the core, where

the grids are spawned, would result in an increase of the (negative) potential energy, not a reduction.

We are unable at this time to determine the origin of the non-conservation, but we suspect that the

penetration of the inner planet below the smoothing length, which happens at approximately 6 years

and corresponds to the approximate time of energy non-conservation, may have something to do

with the problem. Alternatively it could be a bug in the script that measures the respective energy

components of the particle-gas interaction from the simulation data1.

To check that the main features of SIM2 are not due to this lack of conservation, an SPH simulation

(SIM6) using phantom was performed using the same set-up as in SIM2 with a resolution of 80,000

particles (and with the two planets correctly positioned in their respective Keplerian orbits). The

resolution of SIM6 is average for typical SPH simulations of the CE interaction. However, the

resolution tests carried out by Iaconi et al. (2017b) using 80,000 to 1 million particles show reasonable

convergence.

Past SPH simulationswith phantom (Iaconi et al., 2017b) have exhibited better conservation properties

than the equivalent enzo simulations, so if energy or angular momentum non-conservation is causing

any of the observed effects, and in particular the orbital stability of outer planet, then we should see

a difference in the outcomes of the SPH simulation. As shown in Figs. 3.6a and 3.6b, energy and

angular momentum are almost perfectly conserved in SIM6.

In SIM6 the inner planet takes much longer to begin its plunge towards the stellar core than in SIM2

(compare Fig. 3.4a for enzo and Fig. 3.6c for phantom). This is due to the elliptical nature of the

inner planet’s orbit in SIM2. Fig. 3.7 shows density slices of the z plane from SIM2 (enzo) and SIM6

(phantom) at 1.50 years and 7.17 years, respectively. These slices are taken when the inner planet is

at similar orbital separations in their in-spiral (the SPH in-spiral is slightly more advanced). Since the

1All scripts for the analysis of this thesis had to be adapted to analyse three, instead of the typical two, particles. The

way enzo keeps tracks of particles made it non-trivial to carry out the sums.
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Figure 3.6: (a) The total energy and energy components for SIM6. The label are the same as from Fig. 3.5. (b) The total

angular momentum from SIM6. JTotal, JParticle and JGas are the total angular momentum, the angular momentum of the

particles and the angular momentum of the gas respectively. (c) The separations between the core of the primary and the

two planets from SIM6.

outer planet has negligible impact on the inner planet’s in-spiral, a fairer comparison of the properties

of the inner planet’s orbital evolution would be between SIM1 and SIM6: the in-spiral time scale for

SIM1 and SIM6 (inner planet) are very similar, with a reduction in initial orbital separation of 85%

by 8.4 years for SIM1 and 8.8 years for SIM6.

To compare SIM2 and SIM6 we need to remember that the orbital in-spiral is much faster in SIM2

because of the elliptical nature of the innermost planet’s orbit. What we observe in the SPH simulation

(SIM6) is that the outer planet orbit is stable, as is the case in the enzo simulation. Arguably the SPH

simulation does not extend for as long a time as the enzo simulation. It is only carried out to the early

end of the innermost planet in-spiral, rather than for several years after the end of the in-spiral as is
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Figure 3.7: (a) Density slice from SIM2 at 1.5 years. (b) Density slice from SIM6 at 7.17 years. In both slices the the

separation between the inner planet and the core is approximately 60 R�.

the case in the enzo simulation. The simulation is still running as this thesis is being written, so we

will be able to confirm whether the orbit of the outer planet in the SPH simulation is quite as stable as

in enzo.

We also notice that the SPH star has a larger low density halo than the enzo star by this time in teh

simulation. This is partly due to the fact that the SPH star stabilises differently into the computational

domain. As is also true in other simulations (Iaconi et al., 2017b) the SPH star is mapped from 1D

and stabilised, but a few particles are outside of the stellar radius. In the case of Fig. 3.6 (b) we

see that a density ∼10−11 g/cm−3 permeates a large volume. Since each SPH particle has a mass of

0.315 M�/80 000 = 4 × 10−6 M�, we calculate that the low density halo contains approximately 100

particles. Finally, even assuming that the low density medium present in the SPH simulation but not

in the enzo simulation has an effect on the outer planet, it would have a destabilising effect and yet

the orbit is stable.

Based on the analysis of our simulation data, and including caveats, there could be a number of

reasons for the outer planet not in-spiralling more promptly. In Fig. 3.6 we can see that the outer

planet does not in-spiral, but energy and angular momentum is almost perfectly conserved. This leads

us to believe, though cautiously, that energy and angular momentum non-conservation do not play a

role in the orbital stability of the outer planet. To put this conclusion on firmer ground we need (1)

to establish the cause of the energy non-conservation in enzo and (2) to run the SPH simulation for
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approximately another 5 years of physical time, to test the orbital stability of the outer planet over the

same time scale as the enzo simulation.

Another cause of erroneous results can be resolution effects. We did not perform a convergence test.

However, Staff et al. (2016b) did a convergence test for their simulations and Iaconi et al. (2017b)

carried out convergence testing for the SPH simulations similar to SIM6. Staff et al. (2016b) found

that an under-resolved simulation leads to an over estimation of drag forces. The Bondi radius (Bondi,

1951) of the outer planet at the start of the simulation is ∼ 8 R�, smaller but comparable to the coarse

resolution of ∼ 11 R�. This resolution rapidly increases due to the additional grids that form near both

planets. Even if the gravitational drag force were stronger in the simulation than in nature, this would

contribute to more in-spiral of the outer planet, not stability. We conclude that the orbital stability is

not due to lack of resolution, though a formal convergence test should be carried out (we note that

convergence testing is highly problematic in this kind of extremely time-consuming simulations).

Could there be resonances between the inner and outer planet that could justify the orbital stability of

the outer planet? There is nothing in the enzo simulation that leads us to that conclusion. The high

frequency motion of the inner planet’s orbit is not reflected in the outer planet’s orbit. However the

dump frequency of the data of the enzo simulation could hinder a proper analysis. On the other hand,

we observe in Fig. 3.6c that after 5.9 years there appears to be a high frequency oscillation in the

outer planet’s separation, which has the same frequency as the oscillation of the inner planet’s orbit.

This oscillation also increases in frequency at the same rate as the orbital oscillations increase during

the inner planet’s in-spiral. This correlation between the high frequency oscillation in the outer and

inner planet’s separations, could mean that there is a kind of resonance in SIM6 between the inner and

outer planet during the in-spiral. This may be evidence that the outer planet is directly affected by

the inner planet during the CE interaction. We have recently involved an expert in dynamics into this

discussion, Dr. Rosmary Mardling of Monash University, to help with the analysis of any interaction

of this type.

3.2.3 Gas flow and drag forces

As shown in Eq. (1.2), the gravitational drag is dependent on density and the relative velocity between

the gas and the planet. The drag is in the direction of the relative velocity vector, which in a typical

in-spiral is in the direction opposite to the particle’s orbital motion. An in-spiralling body usually

experiences a drag that slows the orbital speed and promotes orbital reduction (see Chapter 1).

It may be possible, however, that outwards moving envelope gas, flung out because of the interaction
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Figure 3.8: (a) The velocity components of the gas around the planets in SIM2. “Outer” and “Inner” refer to the outer

and inner planets respectively. |vg | is the average velocity magnitude of the gas at the position of the planet, v | | is radial

component of |vg |, v⊥ is the component of |vg | perpendicular v | | , |vp | is the velocity magnitude of the planet. v | | represents

the outwards moving gas and v⊥ represents the gas moving in the same direction as the planet. (b) The average density of

the gas in the cells surrounding the planet as a function of time.

with the inner planet, is creating a radially outwards gravitational drag on the outer planet. This radial

gravitational drag could be delaying the outer planet’s in-spiral.

By decomposing the velocity of the gas in the orbital plane (the velocity perpendicular to the orbital

plane is neglected) into radial and perpendicular components we can compare the gravitational drag

on the planets in both these directions.

We selected a 3× 3× 3 cell box centred on the location of each point mass planet. We then calculated

the average of the 27 gas velocity vectors. This allowed us to compute the average velocity of the gas

(with respect to the grid) parallel to the radial direction and perpendicular to that direction.

The velocity components v| | and v⊥ (the radial and perpendicular direction components, respectively)

for both planets are shown in Fig. 3.8a. The overall velocity of the gas surrounding the inner planet

(dotted lines) is small for the entire duration of SIM2 as expected: the planet in-spirals into the gas

that is effectively at rest. This is what we should expect as the velocities of the gas are damped at

the beginning of SIM2 and the relatively light planet has only a small impact on the stellar envelope.

The orbital velocity of the inner particle with respect to the grid is not shown in this plot. However,

its velocity ranges from around 40 km/s in the first 2 years before increasing to its peak velocity

(∼ 170 km/s) at 7 years.

Unlike the inner planet, the gas surrounding the outer planet has a fairly high velocity (> 5km/s). The
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radial velocity component of the gas is typically positive indicating outwards gas flow at an average

speed of ∼ 5 km/s. The velocity component along the orbital direction is slightly higher, at ∼ 7 km/s.

The orbital velocity of the outer planet, on the other hand, is ∼ 22 km/s. This means that the relative

velocity of the gas with respect to the planet is 15 km/s in the direction against the orbital motion.

Overall there is a substantial outward component of the motion that is about one third of the component

that creates the in-spiralling drag. However, it is an important caveat that the analytical formulation

of gravitational drag is known to not capture the effects of density gradients (see Section 1.2).

The gravitational drag is also dependant on the density of the gas around the planet. In Fig. 3.8b we

show the average density of gas that surrounds the two planets. Clearly the outer planet is embedded

in gas with a density that is approximately 4 orders of magnitudes smaller than the inner planet. This

significant difference in density partly justifies the lower drag on the outer planet. An rough order

of magnitude estimation of the drag forces can be determined using Eq. (1.2). In a uniform density

medium the ratio of the drag between the outer and inner planets is would be the ratio of the relative

velocities. Fouter/Finner ∼
v2
| |,outer

v2
⊥,inner

. After approximately 2 years the Fouter/Finner ∼ 52

152 ∼ 0.11. However

since the outer planet is in a lower density medium, the ratio of the drag forces is 1.1 × 10−5.

It appears, in conclusion that there is a substantial component of the drag force in the outward direction

and this may, at least in part, counter the inward drag caused by the in-spiralling motion. The test of

whether this is what is balancing out the inward drag, is to determine the actual force against the orbital

direction and the resulting change in angular momentum of the planet. Then we would compare this

to the balancing force in the outward direction. This would have to be done following the technique

of Staff et al. (2016b), which overcomes a series of problems that arise when measuring the needed

quantities from simulation data.

3.3 The effect of the inner planet and core “merger”
As the inner planet gets close to the core, it approaches the smoothing length (4.2 R�) of the

gravitational potential. At this point the orbital evolution of the inner planet cannot be considered

viable. It is likely that, in nature, the inner planet would merge with the core of the primary (see also

Staff et al. (2016b)). To simulate this type of merger event we carried out two simulations (SIM3 and

SIM4) by removing the inner planet at 5.6 years in SIM3 and 4.0 years in SIM4. Since the mass of

the planet is small relative to the mass of the primary core, the mass was not added to the core.

The Roche limit is the minimum distance from a massive body that an object held together by its own

gravity can exist without being torn apart by tidal forces. Hence the Roche limit of the primary’s core
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is the point at which the in-spiralling planet would break up. The Roche limit of an object is given by

Shu (1982):

dRoche = 1.26Rs

(
ρs

ρp

) 1
3

= 1.26Rp

(
Ms

Mp

) 1
3

,

(3.3)

where dRoche is the Roche limit of the star, Rs and Rp are the radii of the star and the planet, respectively,

Ms and Mp are the masses of the star and the planet, respectively. Finally, ρs and ρp are the densities

of the star and the planet.

Although our planets are point masses, in reality they have typical sizes. As shown in Bodenheimer

et al. (2001), all gas-giant exoplanets have a radius somewhat similar to the radius of Jupiter. The

exact radius is actually a function of the planet’s distance from its host star, as the closer the planet is

the more it is heated and “puffed up”. Typical gas giant exoplanets have radii in the range of 1 − 1.5

that of Jupiter (0.1 − 0.15R�). Using these values of Rp we find that the core of our planet has a

Roche limit of dRoche ∼ 0.46− 0.69R�. The planet will also break-up when it fills its Roche lobe. We

calculate that the planet will fill its Roche lobe at a separation between 0.77 R� and 1.2 R�. From

these values we reason that the break-up radius of the planet is roughly on the order of 1 R�.

This break-up distance is significantly smaller than the smoothing length of the gravitational potential

(4.2 R�), hence we cannot follow the inner planet to its merger moment. However here as in Staff et al.

(2016b) we make the assumption that the in-spiral would continue because there is nothing to stop it:

neither the local density, nor the relative velocity of the planet and the local gas are decreasing, which

means that the gravitational drag on the planet should not diminish.

For this reasonwe decided to simulate amerger event by removing the inner planet as it was approaching

the smoothing length. In SIM3 the simulated merger occurred at t = 5.6 years. At this time the inner

planet has a separation of 3.8 R�. We also tested a second merger (SIM4) at t = 4.0 years where the

companion has a separation of 12.2 R�. This second time was chosen for three reasons: first, energy

is well conserved for the first 4 years; second, at 4 years the outer planet is situated in a lower density

medium than at 5.6 years and this may play a role. Third, because 4 years corresponds to the outer

planet being at orbital apastron (314 R�) as opposed to the time of 5.6 years when it is at periastron

(296 R�).
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Figure 3.9: The separation between the core (0.455 M�) and the two planetary companions (10 MJ) throughout the 14.3

year simulation. The solid blue and red lines are the separations of the inner and outer planet respectively. The black stars

indicate the position of the inner planet when it was removed. The dotted and dashed red lines are the separations of the

outer planet after the inner planet was removed in SIM4 and SIM3 respectively.

3.3.1 Orbital evolution after the “merger”

As shown in Fig. 3.9, when the inner planet is removed, the outer planet no longer remains on a stable

orbit. In both SIM3 and SIM4 the outer planet starts an in-spiral towards the primary core. In SIM4

after removing the inner planet, the outer planet temporarily moves further out before falling back to

an in-spiral. The sharp turn in the orbital evolution of SIM3 after the “merger” at 5.6 years is due to

the delay in the first post-merger data dump. The merger dump frequency was increased for SIM4.

The effect of the “merger” in both SIM3 and SIM4 appears to have a destabilising effect on the outer

planet, causing a drastic shift in the orbital motion. For this effect to be considered “real” the delay

between the removal of the planet and the deviation of the dynamics from SIM2 must be longer

than the delay of information transfer. For example if the information propagation is via the gas

in the envelope, then we would find a delay after removing the planet The sound speed of the gas

is approximately 10 km/s (see Figure 3.3), if this was the method of information propagation then

it would take in excess of half a year to reach 300R�. From this we can conclude that either the
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Figure 3.10: The total energy and energy components of SIM3. The labels are the same as in Fig. 3.5a

.

information is propagated by gravity, or this effect is a likely artifact.

We are cautious to believe that this effect is “real” as we are uncertain at this time of the mechanise for

gravity to cause the destabilisation. This could be studied further by varying the strength of gravity in

our simulations and seeing if there is a dynamical change. We are currently performing an analogous

“merger” simulation in phantom to add a verification step and determine that the effect is not code

dependant.

To ensure that the removal of the mass was not to blame for the orbital change we carried out another

simulation (SIM5 in Table 3.1). In SIM5we replicated SIM3with the only difference was that themass

of the “merged” inner planet was added to the mass of the cell containing the primary core. We saw

no differences in the energy components between SIM3 and SIM5 over the 3.3-year test (Fig. 3.10).

This suggests that not replacing the mass on the inner planet in SIM3 (and presumably SIM4) did not

affect the results of the simulation. In Fig. 3.10 there is a jump in the total energy just after the restart

of the simulation. Since the inner planet is deep in the potential well of the core, its total energy is

negative. Removing the inner planet causes an increase in the total energy of the system.
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3.4 Problems and Future Work
We mentioned in Section 3.1.1 that in SIM2 the inner particle was erroneously set-up on a sub-

Keplerian orbit, which caused it to in-spiral faster. We also noted that from the analysis of SIM6, we

do not believe that this had an effect on our conclusions. However, we should also attempt a second

simulation of SIM2 with both planets correctly placed on Keplerian orbits.

We have found evidence of mass non-conservation as the inner planet gets very close to the core.

This could be linked to how the AMR performed its re-griding at each time step, though logic would

indicate that total energy would increase not decrease. We have also discussed how energy non-

conservation worsens at the time when the inner particle penetrates the smoothing length and how the

smoothing-length is poorly resolved. Finally we have not excluded an undetected bug in the energy

measuring scripting, due to the difficulties encountered in keeping track of the three particles. This is

the first time that mass non-conservation at this level has been seen in CE interaction enzo.

To appropriately compare the long term stability of the outer planet’s orbit in SIM2 and SIM6, we

would have to run SIM6 for an additional 5 years of physical time. We expect to have some results in

approximately two months from the time of writing.

Due to time constraints we only performed one SPH simulation, however this means that it is currently

not possible to test the convergence of the simulation. We would require at least two more simulations

with resolutions of ∼ 600, 000 and ∼ 2 million particles. The latter may not be feasible.

In SIM6 we noticed the presence of a higher frequency oscillation in the orbital separation of the

outer planet that matched the frequency of the in-spiral of the inner planet. A further investigation is

required to determine the significance of this oscillations.

At the time of writing, we are also carrying out a phantom simulation equivalent to the enzo merger

simulations SIM4 and SIM5.
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Neutron Star Triple System

In Chapter 1 we explained that there exists an interesting pulsar known as PSR J0337+1715. This

pulsar is unusual as it is a 1.438 M� NS that has two WD companions. We would like to understand

how a system such as this one could form. Tauris & van den Heuvel (2014) proposed a CE scenario

that involved a 10 M� entering a CE with a 1.1 M� main sequence companion with a second, 1.3 M�

main sequence companion orbiting farther out.

The model presented by Tauris & van den Heuvel (2014) predicts that both the inner and outer stellar

companions will in-spiral dramatically during the CE interaction. However, given that the ejection of

the CE at the hand of the inner binary must have resulted in a dense outflow of gas, this raises the

question, how was the outer star able to remain so far to the inner binary?

In this chapter we present the set-up and results of an enzo simulation of a 10 M� RGB primary,

with two companions of masses 1.1 M� and 1.3 M�. This is the first simulation carried out with high

resolution and modern techniques of a common envelope with a massive giant (M > 5M�)1 and it is

the first CE simulation ever to tackle a triple system.

The star stabilisation process described in Section 4.1.2 was performed by Roberto Iaconi. The 1D

stellar modelling and the 3D binary simulation was performed by the Author.

1There have been only a couple of CE simulations in the past with massive giants; a 16 and a 24 M� giant stars (Terman

et al., 1995).
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Table 4.1: Parameters for the simulations performed in this chapter. M1 = 9.99M�

Sim. No. Code n Resolution τrun Mcore M2 a2/R∗ M3 a3/R∗

(R�) (yrs) (M�) (M�) (M�)

SIM7 a-grid(E) 3 5.3 0 - 4.2 2.65 1.1 1.8 1.3 7.3

4.1 Background and set-up
This simulation (SIM7 in Table 4.1) attempts to model the formation of a pulsar triple system similar

to the one described by Tauris & van den Heuvel (2014). The formation method proposed by Tauris

& van den Heuvel (2014) requires that both of the companion stars in-spiral, such that their periods

decrease from 849 days and 4080 days (inner and outer, respectively) at the onset of the CE, to post-CE

periods of 2.5 and 17.1 days.

SIM7 was performed in enzo using a cubic box with side lengths of 25 AU (5376 R�). The coarse

grid resolution has 128 cells per side resulting in each cubic cell having a size of 42 R�. We used four

levels of refinement with a refinement factor of 2 at each level. The critical density for cell refinement

is 4.18 × 10−10 g/cm3. The smallest cell size is 5.3 R� on a side. We also use a smoothing length of

ε = 3 in SIM7, making the smoothing length scale 15.9 R�.

4.1.1 Stellar structure model

Tauris & van den Heuvel (2014) (in private communication) informed us that their primary star was

modelled using the stellar evolution code BEC. Their model was generated from a 10 M� zero-age

main sequence, MilkyWay metallicity (Z = 0.0088) star, which reached a maximum radius of 733 R�

at the peak of the RGB.

We were unable to replicate such a star using our stellar evolution code mesa. We tested 4 different

metallicities Z = 0.001, Z = 0.0088 (Milky Way value), Z = 0.0132 (most recent solar value) and

Z = 0.02 (the canonical solar value) and found that increasing the metallicity increased the maximum

radius of the star at the RGB (Fig. 4.1), however the maximum RGB radius was still more than 300 R�

less than the RGB model used by Tauris & van den Heuvel (2014).

We also tried increasing the Reimer’s mass-loss parameter to increase the mass loss rate. We assumed

that a higher mass loss rate would cause the star to “puff up” in its outer layers. However, this yielded

no difference in peak RGB radius.

Since we are unable to replicate the large star of Tauris & van denHeuvel (2014), we resigned ourselves



38 Neutron Star Triple System

20 21 22 23 24 25 26 27 28

Star Age (Myr)

0

100

200

300

400

500

600

700

R
ad

iu
s
(R

⊙
)

Z=0. 001

Z=0. 0088

Z=0. 0134

Z=0. 02

Figure 4.1: The radius evolution of 4 stars modelled in mesa with different metallicities (Z). The first peak in each curve

corresponds to the peak of the RGB (the radius of interest). The higher a star’s metallicity the sooner it will reach the RGB

phase and the larger its radius will be.

to using a smaller star with the intention, as we explain below, to scaling down the entire system. We

eventually resolved to using the Z = 0.001 star, with a radius 273 R�, a total mass of 9.99 M� and a

core mass of 3.1 M�. The reason to use this, rather than a larger star is that, as it turned out, it was

simpler to stabilise it in the 3D enzo grid.

4.1.2 Stellar structure stabilisation in the 3D ENZO domain

Stabilising stellar structures in 3D simulations is a complex operation as explained by Passy et al.

(2012a) and Iaconi et al. (2017b). Every new stellar structure seems to present some unique problems

when the 1D profile is mapped into the 3D computational domain in enzo.

Due to the difference in resolution between mesa and enzo (see Section 3.1.1) a point particle with a

mass 2.64 M� is added as the core. This particle has a slightly smaller mass than the core of the mesa

model (3.1 M�). The computational domain is filled with a constant low density medium (of the order

of 10−12 g/cm3) to help prevent the giant’s outer layers from expanding. However, even with the low

density background medium and a point mass core, the star is not in hydrodynamic equilibrium and

expands.

We force the star into hydrodynamic equilibrium by continually damping the velocities of the gas as
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Figure 4.2: (a) Density profile of the 1D mesa model. (b) Density profile of the primary after 10.5 dynamical times of

damping.

discussed in Section 3.1.1. The velocities of the gas are reduced by a factor of 3 at each time step, for

approximately 10.5 dynamical times (the dynamical time of the primary is 1.43 × 107 seconds).

Larger stars are harder to stabilise than compact ones. First, the larger star has a larger range of

densities than a compact star. Hence, for the same level of refinement, the internal regions of the larger

star will be less resolved and thus less stable. Second, the larger star requires a longer damping phase

due to instabilities that arise. The damping phase for SIM7 took 3 months of wall clock time on the

supercomputer raijin with 128 processors.

We chose to damp on time scales of the order of the dynamical time since the pressure gradients

crossing the star act on time scale of the dynamical time. We want to equalise these pressure gradients

for the star to be in hydrostatic equilibrium. Since the star is so large the dynamical time is large hence

the damping time is large.

4.1.3 The orbital set-up of the two companions

The observed triple system described by Tauris & van den Heuvel (2014), has orbital separations of

811 R� and 2303 R� for the inner and outer companions, respectively (e = 0). Since the radius of our

star is too small to undergo RLOF at these separations specified by Tauris & van den Heuvel (2014)

we decided to scale down the the system. A more compact system also has the advantage that we can

reduce the size of the computational domain, which yields a faster computational time.

We placed the inner companion at at a separation of 479 R� from the core. At this position the giant

is filling its Roche lobe. We also placed the outer companion at a separation of 2000R� from the core.
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Figure 4.3: A screenshot from the N-body simulation code to test the inherent stability of the orbits in a 3-body system.

The trajectories of the 9.99 M� primary is in red, the 1.1 M� inner companion is in green and the 1.3 M� outer companion

is in blue. The black points indicate the starting positions of the three particles.

We chose the position of the outer companion such that the ratio of the outer and inner separations to

approximately 4 such that the system was likely to be stable (see Mikkola et al. (2006) on the stability

of triple systems).

4.1.4 N-body Simulation

Before the onset of the CE the triple system is in a stable configuration. Triple systems are able

to remain stable if they have a “hierarchical structure”: a short-period inner binary with the second

companion in a larger distant orbit. Since we are modifying the initial set-up from that described in

Tauris & van den Heuvel (2014) we would like to check if the pre-CE system is stable over a time

scale longer than the CE simulation time. If not, we may not be able to discern between the effect of

the CE and the effect of the natural orbital instability.

In order to check the stability of the new configuration we wrote a 3D N-body simulation visualisation
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Figure 4.4: Density slices along the orbital plane after from left to right 0, 0.5 and 1 years from the beginning of SIM7.

The core of the primary and the stellar companions are represented as black dots. The size of the points is not indicative

of any physical property of the masses.

code. This code (which is available on github2) iteratively solves Newton’s second law (F = −∇U)

using a fourth-order Runge-Kutta method (Chapra, 2006). The code then displays the positions of the

particles visually.

In the N-body code we placed 10 M� particle at the centre of a 5000 × 5000 × 5000 R� display with

two particles with masses 1.1 M� and a 1.3 M� placed with separations of 479 R� and 2000 R� from

the central particle respectively. The particles were placed in Keplerian orbits around the centre of

mass with an initial velocity in the y direction of −6.6 km/s, +59.6 km/s, +27.5 km/s for the primary,

innermost and outermost companion, respectively. We calculated the velocities by first considering

a Keplerian orbit of M1 and M2 and then of M1 + M2 and M3 (M1, M2, M3 are the star, the inner

companion and the outer companion, respectively). This set-up aims to mimic the pre-CE system of

our simulation. Fig. 4.3 displays a screenshot of the simulation.

In the simulation the inner companion maintains a circular orbit around the central star with an orbital

separation of 500 ± 50 R� over 5 years. The outer companion only completes one full orbit in 5 years

before leaving the simulation domain. However, it remains in a close orbit (ETotal < 0) for the 8 years

of the simulation. We therefore surmise that so long as the CE simulation runs for a physical time that

is smaller than 8 years, any effects such as in-spiral or ejection of the outer companion would not be

due to inherent orbital instability, but rather the CE interaction itself.
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Figure 4.5: (a) The separations between the primary core and the two stellar companions. The outer companion is in red

and the inner companion is in blue. (b) The same as left but with a log scaled y axis.

4.2 Results and discussion
Due to the size of the computational domain in SIM7 and the 4 levels of refinement, the computational

time to run the simulation is very long. Combining the damping process and the simulation time,

SIM7 required 7 months to run.

Fig. 4.5 shows the separations of the two stellar companions in SIM7. Since we placed the inner

companion at a radius such that the primary star just fills its Roche lobe, the inner companion is

rapidly engulfed by the envelope and in-spirals towards the core. The velocity components of the gas

surrounding the companions are shown in Fig. 4.6. The relative velocity between the inner companion

and its surrounding gas is large (peaking at ∼ 175 km/s at 1 year) causing a strong gravitational drag

which leads to its in-spiral. The inner companion penetrates the smoothing length just before 1 year

after which time its behaviour cannot be considered reliable.

On the other hand, the outer companion does not in-spiral as envisaged by Tauris & van den Heuvel

(2014). Its separation increases during the in-spiral (it increases by 25% over the first 4 years). The

separation continues to increase even later, when the envelope displaced by the inner companion’s

in-spiral reaches the outer companion. The relative velocity between the outer companion and the

gas surrounding it is very low Fig. 4.6 indicating that the gas is co-rotating. This implies that the

gravitational drag that would typically cause an in-spiral in this case is small. We estimate that the

time scale to establish co-rotation between the secondary and the envelope is approximately 1.2 years.

The radial velocity component of the surrounding gas (solid blue line in Fig. 4.6) oscillates above and

2https://github.com/abatten/gravitational-nbody-visualisation

https://github.com/abatten/gravitational-nbody-visualisation
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Figure 4.6: The velocity components of the gas around the two companions in SIM7. “Outer” and “Inner” refer to the

outermost and innermost companion, respectively. |vg | is the average velocity magnitude of the gas at the position of the

the companion, v | | is radial component of |vg |, v⊥ is the component of |vg | perpendicular v | | , |vp | is the velocity magnitude

of the companion with respect to the grid. v | | represents the outwards moving gas and v⊥ represents the gas moving in the

same direction as the companion.

below zero, suggesting that there is no net outflow of gas, and thereby no net outwards drag (as was

instead the case for the outer companion in SIM2, Chapter 3).

The increase in separation of the outer companion (from 2000 R� to 2500 R�) over 4.2 years is greater

than what we observe in the 3-body case over the same time (2000 R� to 2130). In the 4 years of the

hydrodynamic code, the outer companion has only completed half an orbit, whereas in the N-body

simulation it completed a whole orbit.

Similarly to what we proposed for the planets in Chapter 3, a radial outflow could push the outer

companion farther outwards. However, SIM7 does not display a clear positive outflow at the location

of the outer companion (blue solid curve in Fig. 4.6), but rather we observe a complex behaviour.

Upon checking for mass conservation, we find that 0.08 M� has been lost from the simulation in the

first 2.7 years (Fig. 4.7a). Almost all of this mass loss is due to outflow from the simulation boundary:
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Figure 4.7: (a) The total envelope mass (Menv) and envelope mass loss rate ( ÛMenv) of the envelope for SIM7. (b) The

unbound mass percentage (i.e., ETotal > 0) in SIM7.

we estimate that more than 98% is due to outflow, with ∼ 2% due to mass non-conservation as was

the case in the planet simulation in Chapter 3.

Very little of the envelope becomes unbound (∼ 2%). This is what we expect from simulations that

do not include recombination as an additional source of energy (Passy et al., 2012a; Iaconi et al.,

2017b). Recombination energy has been shown to enable some simulations to eject the envelope

of low mass stars (Nandez & Ivanova, 2016). Our own implementation of recombination energy in

phantom (Reichardt et al. in preparation) confirms this, but also raises the question of how much of

the recombination energy should be available to unbind the envelope and how much would leave as

radiation on short time-scales. Recombination energy would likely increase the mass of the outflow

something that may promote further in-spiral of the outer companion or may contribute to pushing it

farther out.

4.3 Problems, solutions and future work
There is a lot of scope for CE simulations with massive primaries (M > 10 M�), which in the end

result in NSs. The formation path to double NSs, which may merge with the emission of detectable

gravitational waves (Kasliwal et al., 2017), includes multiple CE phases. Modelling these phases

are important for population synthesis studies (Belczyński & Kalogera, 2001), since they assume

knowledge of the CE interaction. Carrying out a simpler, two-body simulation with one companion

would be advisable to catalogue issues pertaining to CE simulations in this new, massive regime. This

said, it is very likely that a simulation with only one companion would be similar to this simulation:
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the addition of an outer companion likely does not affect the inner companion in-spiral and ejection

properties of the envelope.

The addition of recombination energy in the simulation would allow us to study the behaviour of a

more massive outflow on the outer companion. We could have attempted to stabilise the primary in the

SPH code. This would reduce the computational requirements due to the large enzo computational

domain and there would be no danger of the outer star leaving the box. As recombination energy is

now implemented in phantom, we could determine whether this addition can eject the envelope of

10 M� stars. This may change the dynamics of the interaction.

At the time of writing, we are running another simulation with 5 levels of refinement. This simu-

lation better samples the strong gradients around the stellar core and companions. However, due to

the increased resolution, the computational time for the simulation increased tremendously and the

simulation has not reached one year of physical time at the time of writing.



5
Conclusions and future work

In SIM2 although the inner planet was rapidly engulfed into the CE, we found that the outer planet

maintains an orbital separation of approximately 300 R�, with a very gradual decay over 14 years.

We ruled out energy and angular momentum non-conservation as the cause of this result using an

SPH simulation which exhibited similar properties while conserving energy almost perfectly. We also

are reasonably sure that the simulation resolution did not play a role in the orbital stability, though

some testing would be advisable. We may have found evidence for resonances between the inner and

outer planet orbits using the SPH simulation, something that warrants further study. We conclude,

preliminarily, that the orbital stability of the outer planet is due, at least in part, to the outflow of gas

promoted by the in-spiral of the inner companion.

When the innermost planet is removed (it merges with the core) we found some evidence that the

outer planet may in-spiral more readily. We are currently carrying our an SPH “merger” simulation in

phantom to verify the destabilisation effect we see in enzo is not code-dependant.

Our 10 M� RGB star simulation with two, solar-mass companions results in the outer companion

moving out, rather than in, as envision instead by Tauris & van den Heuvel (2014) in the formation
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of the triple pulsar PSRJ0337+1715. In this case we cannot say for sure that the gas outflow is

responsible. This simulation, a first of its kind, needs additional testing to be fully interpreted.

Our original hypothesis Chapter 1, was that the action of a tertiary companion (inner or outer) may

impact the behaviour of the secondary companion in the context of a common envelope interaction,

in that it would leave at least one companion at an intermediate separation. What we observed in our

simulations, however, would point to outer companions moving outwards, farther than they had started

and would therefore be found at larger separation than the original radius of the giant, not smaller. At

best, the outer companion would stay at a similar separation.

This conclusion is reasonably firm for the planet case, where an outward flow would easily generate

an outward force. On the other hand this was less clear in the case of the massive triple simulation.

We also should add the caveat that the inclusion of recombination energy by adopting a non-ideal

gas equation of state (as done by Nandez & Ivanova (2016)) would promote a more massive outflow,

which may result in some in-spiral because of the larger mass bathing the outer companion, though

it could also promote a stronger outer force because of the faster velocities. SPH simulations with

recombination energy, equivalent to our SIM8 should therefore be carried out to test the effect of

recombination energy.



A
Gravitational 3D nbody Code

I wrote a gravitational N-body simulation code in python can displays the interaction visually. The

code solves Newton’s second law using a fourth order Runge-Kutta method. The code is available on

Github (github/abatten/gravitational-nbody-visualisation).

github/abatten/gravitational-nbody-visualisation
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A.1 Example
An example of the output of the N-body code using our own solar system as a model.

Figure A.1: The trajectories of the 4 inner planets of our solar system as modelled using the gravitational N-body code.

The yellow circle is the sun. The grey path is Mercury, orange is Venus, green is Earth and red is Mars.
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A.2 Code

A.2.1 Runge-Kutta Function
def rk4(particle, particleList , dt):

"""

Returns position and velocity of a particle after a timestep.

---- Parameters ----

particle (Particle) : The particle to update its pos and vel.

particleList (List) : The list of all gravitating particles.

dt (float) : The time step to increase by.

---- Returns ----

new_pos (numpy.array) : New position vector of the particle.

new_vel (numpy.array) : New velocity vector of the particle.

"""

# Current Positions , Velocity and Acceleration

kv1 = particle.vel

kp1 = particle.pos

ka1 = particle.acceleration(kp1, particleList)

# Step 2

kv2 = kv1 + 0.5 * dt * ka1

kp2 = kp1 + 0.5 * dt * kv2

ka2 = particle.acceleration(kp2, particleList)

# Step 3

kv3 = kv1 + 0.5 * dt * ka2

kp3 = kp1 + 0.5 * dt * kv3

ka3 = particle.acceleration(kp3, particleList)

# Step 4

kv4 = kv1 + dt * ka3

kp4 = kp1 + dt * kv4

ka4 = particle.acceleration(kp3, particleList)

# Final positions and velocities

new_vel = kv1 + (1./6.) * dt * (ka1 + 2 * (ka2 + ka3) + ka4)

new_pos = kp1 + (1./6.) * dt * (kv1 + 2 * (kv2 + kv3) + kv4)

return new_pos, new_vel
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A.2.2 Particle Class

The RK4 function depends on the class ‘Particle’ as defined below.

class Particle:

"""

Class to represent point masses.

---- Parameters ----

win (pygame.display) : Window to display the particle

pos (list 3D) : Particle coordinates [Unit: Rsun].

vel (list 3D) : Velocity vector of the particle [Unit: km/s].

mas (float) : Mass of the particle [Unit: Msun].

rad (int) : Radius of the particle displayed [Unit: pixels].

col (RGB tuple) : Colour of the particle

"""

def __init__(self, win, pos, vel, mass=1, rad=4, col=(0,0,0)):

self.pos = np.array([x * C.XRSUN for x in pos]) # Rsun -> m

self.vel = np.array([v * C.XKM for v in vel]) # km/s -> m

self.mas = mass * C.XMSUN # Msun -> kg

self.rad = rad

self.col = col

def __repr__(self):

return (’Pos:{x} Vel:{v} Mass:{m} Rad:{r} Col:{c}’.format(

x=self.pos, v=self.vel, m=self.mas,

r=self.rad, c=self.col))

def draw(self, win, SCALE):

"""

Draws the particle in its initial position.

---- Parameters ----

win (pygame.display) : Window to display the particle

"""

pyg.draw.circle(win, self.col,

(int(self.pos[0]/C.XRSUN*SCALE),

int(self.pos[1]/C.XRSUN*SCALE)),

int(self.rad*SCALE) + 2 , 0)

def dist_to(self, other):

""" Find the distance between a particle and itself. """
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dist = np.linalg.norm(self.pos - other.pos)

return dist

def acceleration(self, position, particleList):

"""

Finds the particles acceleration due to other particles.

---- Parameters ----

position (numpy.array) : Position to find the grav accel

particle_list (list) : List of all gravitating particles

---- Returns ----

a (numpy.array) : The acceleration components of particle

"""

a = np.zeros(3)

for p1 in particleList:

if p1 is not self:

delta = p1.pos - position

dist = self.dist_to(p1)

dsquared = dist**2.0

# C.XG is the Gravitational Constant

Force = C.XG * self.mas * p1.mas / dsquared

a += (Force / self.mas) * (delta / dist)

return a



B
Analysis Code

In this appendix I report an original Python analysis code which was specifically written to analyse the

outputs of the enzo simulations. We present only one script but 13 other scriptswere alsowritten for the

data analysis which can be found on Github (https://github.com/abatten/common-envelope-analysis).

B.1 Companion Separation Script
from __future__ import absolute_import , division , print_function

import yt.mods as yt

import numpy as np

import sys

import ConfigParser

import cemodules.cefunctions as cef

def read_inlist(ipath):

inlist_name = ipath.split(’/’)[-1]

config = ConfigParser.ConfigParser()

config.readfp(open(inlist_name , ’r’))

https://github.com/abatten/common-envelope-analysis
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# Read in the config file

root_dir = config.get("Common", "root_dir")

exclude_dir = config.get("Common", "exclude_dir")

plot_dir = config.get("Common", "plot_dir")

initial_path = config.getint("Common", "initial_path")

final_plus_one = config.getint("Common", "final_plus_one")

output_file_name = config.get("Separation", "output_file_name")

particle_number = config.getint("Common", "particle_number")

return (root_dir, exclude_dir , plot_dir, initial_path ,

final_path_plus_one , output_file_name , particle_number)

def open_file(file_name , num_particles):

output_file = open(file_name , ’w’)

header = "Time(yr), Cycle(#)"

# Create header based on the number of particles

header_dict = {}

for i in range(num_particles -1):

dict[str(i)] = "separation_%s_%s_(cm)" % ("Companion", i)

header = ", ".join([header, dict[str(i)]])

# Write the first line of information in the file

output_file.write(header + "\n")

return output_file

def separations(directory , output_file , particle_number):

pf = yt.load(directory)

# Gets the length, time and mass units used in the simulation

lu = pf.parameters[’LengthUnits’]

tu = pf.parameters[’TimeUnits’]

current_cycle = pf.parameters[’InitialCycleNumber’]

current_time = pf.current_time

# Adds the whole data as an object.
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ce = pf.h.all_data()

yr = 365.25 * 24 * 60 * 60

current_time = pf.current_time / yr

# Find the corresponding to the primary index.

# I.e. the particle with the largest mass

particle_masses = ce["ParticleMassMsun"]

prim_mass = np.max(particle_masses)

for i in range(len(particle_masses)):

if particle_masses[i] == prim_mass:

prim_index = i

break

else:

pass

# Coordinates of the Primary Star

prim_coords = [ce[’particle_position_x’][prim_index] * lu,

ce[’particle_position_y’][prim_index] * lu,

ce[’particle_position_z’][prim_index] * lu]

sep = {}

for i in range(particle_number):

# Get particle index list to track individual particles

pdex = ce[’particle_index’]

if i != prim_index:

comp_coords = [ce[’particle_position_x’][i] * lu,

ce[’particle_position_y’][i] * lu,

ce[’particle_position_z’][i] * lu]

separation = cef.distance(prim_coords , comp_coords)

sep[pdex[i]] = separation

row = str(current_time * tu) + " " + str(current_cycle)

for i in range(len(sep.items())):
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row = " ".join([row, str(sep.items()[i][1])])

output_file.write(row + "\n")

if __name__ == "__main__":

yt.mylog.disabled = True

(root_dir, exclude_dir ,

plot_dir , initial_path ,

final_path_plus_one , output_file_name ,

particle_number) = read_inlist(sys.argv[1])

# Sort the root directory

root_dir_list = cef.root_sort(root_dir, exclude=exclude_dir)

# Set output file name and open it to write

output_file_name = plot_dir + output_file_name

output_file = open_file(output_file_name , particle_number)

for index in range(initial_path , final_plus_one):

separations(root_dir_list[index], output_file , particle_number)
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