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Thesis Abstract 

This thesis examines the accuracy and reliability of using conventional remote sensing methods in 

wetland environments, specifically for detecting and analysing burn scars and post-fire recovery. To 

date, the methods have been applied in dryland environments post-fire but have yet to be tested 

comprehensively elsewhere, particularly in large floodplain wetland environments that also 

experience regular wildfires. These ecosystems possess unique physical characteristics that may 

pose challenges to orthodox remote sensing techniques, such as different vegetation composition, 

soil moisture prevalence, and post-fire vegetation regrowth rate. This thesis also aims to provide a 

preliminary insight into how the current methods could be modified or further developed to achieve 

the high levels of accuracy gained in measuring burn scars in dryland environments. It was found 

that spectral indices that measure green vegetation cover, particularly the GNDVI, the EVI2, the 

NBRI, and the SATVI, are more suitable for detecting burn. It was also found that supervised 

classifiers, were more accurate than unsupervised classifiers at determining burned areas. From the 

results, it was concluded that, by a measure of the assessed metrics, post-fire wetland ecosystems 

typically regenerate to pre-fire conditions within a year of the fire event occurring. However, 

different conditions can significantly decrease the time taken for regeneration, with some indices 

returning to pre-fire values as early as 100 days post-fire. 
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1. Preface 

1.1 Introduction and Relevance 

Remote sensing has played a significant role in the history of natural hazards management, being 

used to analyse data of and inform management efforts for a range of natural disasters. One such 

natural disaster of interest is bushfires, which, due to their potentially catastrophic outcomes for 

human and natural environments, require analysis and assessment to limit or prevent the damage 

they cause where possible. As techniques for mapping the patterns and behaviours of fire have 

evolved over time, the utilisation of remote sensing technologies for fire detection has become more 

prevalent, as they allow for a unique approach to spatial data that is difficult to achieve through 

other methodologies (L. B. Lentile et al., 2006). Technological advancements in the fields of 

imagery, data management and computing have driven this increased relevance of remote sensing 

for fire history mapping, with these developments allowing for significant increases in spectral, 

spatial, and temporal resolution, as well as data processing at unprecedented scales and an 

unparalleled ease of access to publicly available data (L. B. Lentile et al., 2006).  

Remote sensing techniques provide many advantages over in-field data collection, including faster 

and easier data collection processes, widely available historical data, and the ability to analyse large 

areas over much shorter time periods than traditional methods. While remote methods cannot be 

used as a complete replacement for scientific data analysis, they provide many unique insights that 

traditional field sampling measures cannot. In studies where the areas of analysis may span several 

square kilometres, traditional field-based measurement methods can be costly, time consuming, and 

also potentially limited in spatial coverage, as data are often collected only at certain points as 

opposed to across the entire study area. Therefore, remote sensing methods, with their many 

advantages and unique form of analysis, are a prime candidate to measure the spatial extent and 

severity of the burn scars left by bushfires. 

The process of mapping burn scars allows researchers to determine the area affected by the fires and 

also their severity, the results of which are crucial information to preventative and rehabilitative 

efforts (Escuin, Navarro, & Fernández, 2008). Monitoring the temporal change of burn scars also 

provides a unique insight into the response of the ecosystem to the fire event, and how it regenerates 

back to its original conditions (Miller & Yool, 2002). There are myriad factors that affect the 

accuracy and efficacy of mapping burn scars, such as the spectral range and other capabilities of the 

sensor, the characteristics of the surveyed surface cover, and any potential atmospheric interference, 

such as from smoke, haze, or clouds (Goodwin, Collett, Denham, Flood, & Tindall, 2013). In 

wetland areas especially, there are some unique challenges that need to be considered, such as the 
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typically quick vegetation regrowth rate, the high probability for increased presence of moisture, 

and the diverse nature of vegetation characteristics within a small physical area (Klemas, 2011). 

Wetland ecosystems in dryland environments in Australia are often characterised by a few distinct 

vegetation types, including but not limited to reed/marsh, shrubland, sclerophyll forest, and 

open/cleared land, and because of their location within dryland environments, they are not 

perennially inundated. Wetlands often differ in their response to fire events when compared to 

dryland fires, which primarily arises from this different vegetation composition and density, and a 

tendency to have higher vegetation and soil moisture content when inundated (Kotze, 2013). If a 

wetland is completely inundated at the time of a fire event, there is a limit to the damage that can be 

caused, as the reed bed and the lower parts of the plants are submerged, shielding them from the 

intense heat and damaging impacts of the fire event. The results of this is an ecosystem that is 

partially damaged, but will likely regenerate quickly as the most vital parts of the plants have been 

left largely untouched (Kotze, 2013). Conversely, if the wetland is dry at the time of the fire event 

occurring, and the plants are burnt down to the reed bed, then the damage is far more significant as 

the plants have been mostly degraded or completely destroyed, and the ecosystem will take much 

longer to regenerate to pre-fire conditions. This variability of ecosystem composition and 

potentially rapid regeneration of wetland vegetation poses a challenge to conventional remote 

sensing methods that rely on information generated at infrequent intervals in the order of weeks to 

fortnights. Therefore, a combination of multi- and hyperspectral imagery, as well as active sensing 

methods like radar or light detection and ranging (LiDAR), are recommended to achieve a 

comprehensive analysis of the key variables of the study site (Kasischke, Melack, & Craig Dobson, 

1997; Ozesmi & Bauer, 2002). 

Thesis Aims and Structure 

This thesis aims to: 

1. Compare conventional remote sensing methodologies and their suitability for measuring 

burn scars in wetlands.  

2. Understand the behaviour of ecosystem regeneration in post-fire wetland environments. 

3. Provide information on fire extent and recovery that can be utilised for preventative and 

rehabilitative management efforts. 

This thesis begins with a review of literature on remote sensing based land cover analysis. The main 

body of the research is presented in the style of a journal article which has been prepared for later 

submission. The thesis then concludes with a synthesis of the main findings, the significance of the 

research to the field, and suggestions for further work.  
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1.2 Previous Research on Remote Sensing Based Land Cover Analysis 

1.2.1 Remote Sensing Methods and Techniques 

A core component of remote sensing is satellite based imaging, which uses a variety of spectral 

bands to capture a diversity of information from the imaged areas at different wavelengths of 

electromagnetic radiation (EMR). They exist under two broad categorisations; active remote 

sensing systems, which propagate EMR towards an area to be sensed and then measure the signal 

response (e.g. radar, lidar), or passive remote sensing systems, which utilise EMR from external 

sources to sense an object or area (e.g. spectroradiometer, camera without flash) (Graham, 1999). 

There are a multitude of sensors aboard the numerous satellites that orbit the earth, which are 

sensitive to visible light, infrared, radio waves, microwaves, and other EMR. Many of these 

imaging techniques have been used to analyse wetland areas, for purposes such as vegetation 

mapping and classification, boundary and extent mapping, and ecological health evaluation 

(Klemas, 2011). This diversity of imagery technologies is accompanied by a diversity of 

advantages, disadvantages and outputs from each type. As such, it is common for different imaging 

sensors to be used in combination to utilise their individual strengths, as well as covering their 

shortcomings. 

There are two distinct subtypes of optical remote sensing systems, namely multispectral sensors and 

hyperspectral sensors, based on the number of bands and their spectral widths. A multispectral 

sensor is one that is sensitive to multiple electromagnetic frequencies, and typically those outside of 

the visible light spectrum. The wavelengths covered by these sensors can include but are not limited 

to; visible, infrared variations, thermal, etc. Some common examples of these sensors include the 

multispectral scanner (MSS), thematic mapper (TM), enhanced thematic mapper (ETM+), and 

operational land imager/thermal infrared sensor (OLI/TIRS) aboard Landsat missions 4/5, 7, and 8 

respectively. A multispectral sensor does not typically cover wavelengths in a directly continuous 

manner, rather leaving space between the wavelengths covered by the specified ‘bands’, e.g. 

Landsat 8 band 2 (Blue) – 0.41µm to 0.51µm, band 3 (Green) – 0.53µm to 0.59µm, and band 4 

(Red) – 0.64µm to 0.67µm. This is in contrast to a hyperspectral sensor, which by definition covers 

continuous wavelength in visible, near infrared and shortwave infrared spectra. The Hyperion 

sensor aboard Earth Observer 1 (EO-1), for example, covers between 0.357µm and 2.576µm in 220 

bands, allocating one band to each .01µm increase in wavelength (United States Geological Survey 

(USGS), 2011). Both multispectral and hyperspectral scanners can cover the same area of the 

electromagnetic spectrum, but it is the fineness of the resolution in which they cover them that 

defines their categorisation as multispectral or hyperspectral. 
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There is a significant and comprehensive selection of satellites, sensors, and spectral products 

available for the detection of large scale disturbances to vegetation cover caused by bushfires. The 

section below details some of the options that have been used to map burn scars previously. 

Passive Remote Sensing Sensors  

Landsat Missions 

The Landsat program of satellites and sensors is the longest serving in history, beginning in July 

1972 with Landsat 1. For this study, the relevant satellites include Landsat 4/5 TM, Landsat 7 

ETM+, and Landsat 8 OLI/TIRS, as these have coverage over the last two decades. Landsat 4/5 

consisted of two essentially identical satellites, both of which carried thematic mappers (TM) and 

multispectral scanners (MSS) covering seven spectral bands from 0.45-12.50µm across both 

scanners. Covered bands include visible RGB, NIR, TIR, and MIR, which can be used to make 

band false colour band composites like the example shown in Figure 1 below. 

The satellite followed a near-polar, sun-synchronous orbit with a 16-day repeat interval, and a 

185km swath width with resolutions of 30m (bands 1-5, 7), and 120m (band 6). Landsat 7 is the 

next generation of the satellite program, and as such carries the new Enhanced Thematic Mapper 

Plus (ETM+), which covers eight spectral bands from 0.45-12.50µm. Covered bands are almost 

identical to Landsat 5, with the addition of the panchromatic band 8, which is imaged at a spatial 

resolution of 15m. Orbital characteristics remain the same as Landsat 4/5. The newest addition to 

the Landsat program is Landsat 8 OLI/TIRS, which began in February 2013, and is comprised of 

two sensors: and operational land imager (OLI) and thermal infrared sensor (TIRS). These newer 

generation sensors allow Landsat 8 to capture additional spectral bands, its range of capture now 

measuring from 0.43-12.51µm. The new bands include coastal aerosol (band 1), cirrus (band 9), and 

two TIR bands (bands 10-11). A detailed index of each sensors bands and characteristics is 

available in Appendix 6. Spatial resolutions remain largely the same as previous iterations of the 

Figure 1: False colour infrared view of Macquarie Marshes wetland with fire boundary overlay before and after a fire. 

(Landsat 8 OLI/TIRS – Blue, Green, and Near-infrared band composite.) 
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program, with the exception of the TIR bands, which have a resolution of 100m. Orbital 

characteristics are again the same as the previous Landsat satellites. Landsat is perhaps the most 

commonly utilised space-borne imaging system when performing vegetation analysis, which is 

largely due to its high spatial and temporal resolution, spectral coverage, and ease of availability. 

Landsat imagery has been used in vegetation extent and burn scar mapping, and is typically 

employed as the imagery component for NDVI/NBR operations and classification processes 

(Escuin et al., 2008; Viedma, Meliá, Segarra, & Garcia-Haro, 1997). Additionally, Landsat has 

already been used in previous studies focusing on the mapping of burned areas in wetlands to 

relative success by utilising the thermal infrared band of the ETM+ module aboard Landsat 7 

(Cassidy, 2007). Landsat data is readily available dating back decades, of good spatial, temporal, 

and spectral resolution, and versatile for classification purposes, making it an excellent candidate 

for inclusion in this research study. 

MODIS 

Moderate Resolution Imaging Spectroradiometer (MODIS) is a wideband sensor duo also on-board 

the NASA EOS Terra and Aqua satellites, and began its mission in December 1999. MODIS covers 

36 spectral bands from 0.62-14.385µm, which covers from the visible range through to the middle 

infrared range (MIR). The sensors cover the earth in a sun-synchronous, low-earth, near-polar orbit, 

with a temporal resolution of one to two days. Swath width is 2300km, and spatial resolutions vary 

by band, and are as follows: 250m (bands1-2), 500m (bands 3-7), 1000m (bands 8-36). A detailed 

index of each sensors bands and characteristics is available in Appendix 6. While the spatial 

resolution of these sensors are relatively coarse, the temporal resolution is far higher than typical 

imaging products, allowing the MODIS system to provide unique benefits to mapping burn scars in 

areas of quick vegetation regeneration (Ling, Du, Zhang, Li, & Xiao, 2015; Loboda, Hoy, Giglio, & 

Kasischke, 2011). While MODIS has quite a coarse spatial resolution, the temporal and spectral 

resolution combined with the long archive of data and history in burn scar mapping makes it a good 

candidate for inclusion in this research project. 

Sentinel-2A/B 

The Sentinel-2A/B satellite system began in 2015 with the launch of Sentinel-2A on the 23/06/15, 

which was followed by the launch of Sentinel-2B almost two years later on the 7/03/17. The two 

satellites run in tandem in a sun-synchronous orbit, resulting in a repeat interval of five days. The 

satellites house multispectral instruments covering twelve spectral bands from 0.443-2.19µm, which 

covers the visible wavelengths through to the shortwave infrared (SWIR) wavelengths. Swath width 

is 290km. and spatial resolution is 60m for bands 1, 9 & 10, 10m for bands 2-4 & 8, and 20m for 

bands 5-7, 8A, 11 & 12. A detailed index of each sensors bands and characteristics is available in 
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Appendix 6. Due to its higher spatial, spectral, and temporal resolution, Sentinel-2 fills many 

criteria for accurate burn scar mapping (Delegido, Verrelst, Alonso, & Moreno, 2011). However, as 

it only recently became operational and only one satellite was in orbit for a part of the time period 

analysed, it is not suitable for this study. 

Active Remote Sensing Methods 

Radar is another form of electromagnetic radiation based sensing than can be used to measure, 

detect and analyse numerous surface characteristics (such as the ecological and geomorphological) 

as well as atmospheric characteristics, and is available in both space-borne and airborne 

applications (Kasischke et al., 1997). In the context of burned area mapping, radar-based imaging 

processes can be used to examine various characteristics of the surface of the Earth, which can then 

be used to create indices of burned areas. These can include the properties of vegetation (height, 

density, and extent etc.), soil moisture, or surface roughness, amongst others (Dubois, Zyl, & 

Engman, 1995; Durden, Zyl, & Zebker, 1989). These different and diverse physiognomies of the 

surface can pose a challenge to remote sensing systems, as their inherent diversity can require 

different methodologies to acquire accurate results.  

Synthetic aperture radar (SAR) is a form of microwave imaging technology that operates across 

multiple wavelengths, and is capable of reading both linear and circular polarisations (Bourgeau-

Chavez, Kasischke, Brunzell, Mudd, & Tukman, 2002). A current radar satellite mission, the 

European Space Agency (ESA) Sentinel 1A/B, has imaging sensor, with swath widths from 80km 

to 400km, and spatial resolutions from 5m x 5m to 25m x 100m (European Space Agency (ESA), 

2017). Radar images are also largely unimpeded by diverse atmospheric conditions, such as cloud 

cover or rain, providing a distinct advantage over satellite based visible/infrared spectrum imagers 

such as the Landsat array (Bourgeau-Chavez et al., 2002). Over the many years since the authors 

conducted their initial study, imaging and computing technology has drastically improved, with 

contemporary radar sensors alone allowing for far finer spatial resolutions through ultra-wideband 

and terahertz SAR instruments. 

SAR can be used to measure fire scarring in dryland areas, which is achieved by measuring physical 

changes in a post-fire environment as a means of generating indices to inform the mapping of fire 

affected areas. An article by Bourgeau-Chavez et al. (2002) explored the use of C-band SAR for fire 

scar mapping in boreal forest environments. By using electromagnetic radiation (EMR) on the 

microwave end of the frequency spectrum, the authors were able to measure a distinct scattering 

and interference caused by the excess moisture prevalent in post-fire soil, which was used as an 

indicator of a recent fire event (Bourgeau-Chavez et al., 2002). Radar imaging techniques can also 

be utilised to directly map vegetation coverage and density, which is useful to analyse the 
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characteristics of recently burned areas and map them accordingly (Bourgeau-Chavez et al., 2002; 

Ling et al., 2015; Stroppiana et al., 2015). 

There are a few inherent characteristics of radar that make it suitable for a diversity of imaging 

applications. For example, the different wavelengths that comprise radar imaging methodologies 

can be used to measure and analyse different vegetation indices (canopy cover and depth, 

vegetation extent and density, etc.), through the level of backscatter, reflection and penetration they 

achieve. Current radar imaging services include both the airborne and space-borne varieties, and use 

ranging and detection methods across wavelengths ranging from larger than 1m (Frequency - 

300MHz) down to 2.5cm (Frequency - 12GHz). A summary of the different bands used, their 

properties, and their applications is present in the table below. 

Table 1: Table showing different bands of radar, their properties, and their common applications. 

 Frequency Range Wavelength Range Uses 

P-band <300MHz >1m Canopy penetration mapping 

L-band 1-2GHz 15-30cm Moisture backscatter analysis 

S-band 2-4GHz 7.5-15cm Soil moisture analysis 

C-band 4-8GHz 3.75-7.5cm Vegetation fuel load analysis 

X-band 8-12GHz 2.5-3.75cm High resolution imagery 

 

Wavelength 

P-band 

P-band radar uses electromagnetic waves in the >1m wavelength/sub-300MHz frequency range, 

which is within the very high frequency range (VHF). Electromagnetic waves at this frequency 

have wavelengths in the one to ten metre range and can be used for general applications such as 

broadcasting and communications. In imaging technologies, P-band radar can be used to measure 

characteristics of multi-layered vegetation such as forests, as it’s long wavelength combined with 

the correct polarisation allows it to penetrate through dense canopies, and achieve secondary returns 

of up to 10-15m from lower layers of vegetation (Hensley et al., 2001; Rignot, Zimmermann, & 

Zyl, 1995). 

L-band 

L-band radar uses electromagnetic waves in the 15-30cm wavelength/1-2GHz frequency range, 

which is within the ultra-high frequency range (UHF). Electromagnetic waves at this frequency 

have wavelengths in the 15-30cm range and can be used for general applications such as 

communications and device networking. The most common use of L-band radar in surface imaging 

is using backscatter analysis to detect soil moisture or vegetation density, and subsequently 

infer/estimate biomass (Lucas et al., 2010; Mitchard et al., 2009, 2011). An article by Paloscia, 
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Macelloni, Pampaloni, & Sigismondi (1999) determines that both P- and L-band radar wavelengths 

are useful for detecting forests and herbaceous vegetation respectively, when analysed using HV 

polarisation methods. 

S-band 

S-band radar uses electromagnetic waves in the 7.5-15cm wavelength/2-4GHz frequency range, 

which is within the ultra-high frequency (UHF) and super-high frequency (SHF) ranges. 

Electromagnetic waves at this frequency have wavelengths in the 7.5-15cm range, and are 

conventionally used for wireless networking, and short-range inter-device communications. S-band 

is not as commonly used for vegetation analysis as the other bands mentioned, but can be combined 

with L-band to perform soil moisture analysis on post-fire areas (Bolten, Lakshmi, & Njoku, 2003). 

C-band 

C-band radar uses electromagnetic waves in the 3.75-7.5cm wavelength/4-8GHz frequency range, 

which is within the super-high frequency range (SHF). Electromagnetic waves at this frequency 

have wavelengths in the 3.75-7.5cm range and are conventionally used for short-range 

communications or weather forecasting radars. C-band radar has applications in fuel load 

estimations for forest ecosystems, where it is typically combined with P-band and L-band to 

determine indicators of fuel loading, such as canopy density and foliage moisture content (Saatchi, 

Halligan, Despain, & Crabtree, 2007). 

X-band 

X-band radar uses electromagnetic waves in the 2.5-3.75cm wavelength/8-12GHz frequency range, 

which is within the super-high frequency range (SHF). Electromagnetic waves at this frequency 

have wavelengths in the 2.5-3.75cm range, and common uses include terrestrial and outer-space 

communications, and civilian, military, and government radar. X-band radar imaging can either be 

airborne or space-borne, and allows for much higher resolution imagery than the previously 

mentioned bands. Previous articles on the applications of X-band SAR have found that it is 

effective at detecting vegetation and biomass, but can also be useful for mapping the distribution of 

wetlands in a dryland environment when combined with a cooperative C-band system (Stofan et al., 

1995). 

It is evident that certain wavelengths are better suited for specific applications, and each have their 

own unique limitations in terms of resolution, penetration depth, and sensitivity. As such, a 

common approach for surveying an area with significant surface diversity and variation is to utilise 

multiple radar imaging bands to combine their individual strengths in a multi-frequency approach 

(Evans, Farr, Ford, Thompson, & Werner, 1986). This approach is typically complimented with the 
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use of multiple divergent polarisations, each of which are sensitive to different surface 

characteristics, to achieve a more comprehensive analysis of the target area (Mougin et al., 1999). 

Polarization  

Another key characteristic of electromagnetic radiation that can influence the data output of radar-

based remote sensing system is the polarisation of the outgoing electromagnetic waves. In regards 

to radar systems, electromagnetic waves can be polarised in two ways, including linear polarisation 

and circular polarisation (Collett, 2005). Linear polarisation is considered as ‘single direction’, and 

consists primarily of two ‘planes’ of polarisation; the horizontal (side to side movement) and the 

vertical (up and down movement) (Collett, 2005). The polarisation of the electromagnetic wave is 

determined by the arrangement of the electric and magnetic fields generated by the sensing 

apparatus, which are always at angles perpendicular to each other. The polarisation of the electric 

field component is the used to describe the overall polarisation of the electromagnetic wave. 

Knowing the desired polarisation of the electromagnetic wave will then dictate the mounting 

arrangement of the sensor or antenna itself, in order to receive the correct result. Using this physical 

property of electromagnetic radiation, it is possible to use known and measured polarisations as data 

to construct images, a process known as polarimetry (Collett, 2005). In the context of remote 

sensing for environmental and geomorphological surveying, differing polarisations can be used to 

gain diverse data from different surface types. Polarisations of different alignments can be used to 

sense a wide variety of surfaces, from grassed areas, to forest canopies, to urban areas, each of 

which respond differently to different polarisations (Treuhaft & Cloude, 1999). 

1.2.2 Spectral Indices and Transformations 

A spectral index (or vegetation index) is an equation typically performed on different bands of 

multispectral sensors to develop a metric that is a direct representation of a certain physical 

characteristic of the area sensed. Numerous indices have been developed over the past 50 or so 

years to serve a number of purposes, such as detecting biomass density, surface water, soil 

brightness, and burn scars, amongst others (Silleos, Alexandridis, Gitas, & Perakis, 2006). Often, 

spectral indices can prove suitable to detect changes or disturbances that they were not designed to, 

as events like fires tend to cause a significant change in the spectral signature of the ground. The 

following section details some spectral indices that have been commonly utilised for the detection 

of burn scars in post-fire environments. There are various indices which can be used for the 

detection of burn scars, such as the leaf area index (LAI), the burned area index (BAI), and 

composite burn index (CBI), are not discussed here because while they are still pertinent to the 

topic, they were not utilised in the study for various reasons. 
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Simple Ratio (SR) 

The simple ratio vegetation index (SR) was one of the first spectral indices to be developed, and 

was published by Birth & McVey in 1968. It is generated by the simple equation NIR/Red, and was 

used to test the different spectral reflectance properties of turf types and life stages, as the NIR band 

was largely reflected by the structure of green vegetation (Birth & McVey, 1968). The SR has 

primarily been found to be a good indicator of vegetation cover and leaf area, but has also been 

used to detect burn scars, such as in a study by Boer et al. (2008) where it was included in a 

regression model to determine ΔLAI as an indicator of burned areas. In this study, it was found the 

SR was more sensitive to changes in LAI than the NDVI, and the results produced were comparable 

in accuracy to those generated by using ΔNBR to assess the area (Boer et al., 2008). However, due 

to its somewhat simplistic nature, it has some inherent errors, such as the potential for zero value 

denominators and a lack of scale linearity (Silleos et al., 2006). 

Normalised Differential Vegetation Index (NDVI)  

Perhaps the most commonly used method for detecting the severity and extent of past fires is the 

Normalised Difference Vegetation Index (NDVI), which utilises multispectral imagery to perform a 

change detection operation on vegetated surfaces by subtracting the red band from the NIR band 

and dividing it by the sum of the red and NIR bands, resulting in an accessible -1 to 1 representation 

scale (Silleos et al., 2006). The significance of the red and NIR bands especially is that healthy 

green vegetation will reflect a majority of the radiance in this part of the spectrum, allowing for the 

easy delineation of vegetated and non-vegetated areas, as well as vegetation health, quality and 

density (Knipling, 1970). While an NDVI is perhaps the most common approach for vegetation 

change detection, it is not without its deficiencies, and is susceptible to skewed results due to 

atmospheric interference (Pereira, 1999). Additionally, newer indices that can take advantage of the 

higher spectral diversity in contemporary satellites are showing results with finer discriminations 

within burned areas, resulting in a more detailed and comprehensive analysis (Chuvieco, Martín, & 

Palacios, 2002).  

Normalised Burn Ratio Index (NBR/NBRI) 

The NBR is another commonly employed burn index, operating similarly to the NDVI, but 

substituting the visible red band for the shortwave infrared band because of the distinct patterning 

of burned areas that can be measured by infrared radiation (Kontoes, Poilvé, Florsch, 

Keramitsoglou, & Paralikidis, 2009). Studies by Escuin et al. (2008) determined that the NBR 

modulations was generally more accurate than the NDVI at mapping pre-/post-fire displacements, 

making it particularly apt for measuring fire severity. However, the accuracy of the NBR is strongly 

dependent on the type of vegetation being analysed, and previous research by Mallinis & Koutsias 
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(2012) concluded that the NBR produced relatively variable results depending on survey area, with 

a result of 95.04% matching to the control group fire extent for one study, and as low as 90.06% in 

another. Areas with greater uniformity of surface covering typically result in a more accurate 

analysis when using the NBR (Kontoes et al., 2009). See Figure 1 below for a visual comparison of 

the NBR and NDVI processes. 

 

Normalised Difference Water Index (NDWI)/Normalised Difference Water Index II (NDWI2) 

The NDWI/NDWI2 are different to the indices mentioned above in that they are designed to 

measure open water features and vegetation liquid water respectively, as opposed to vegetation 

cover or other variables. The NDWI is calculated by subtracting the NIR band from the green band 

and dividing it by the sum of the green and NIR bands, and the NDWI2 is calculated by subtracting 

the SWIR2 band from the NIR band, and dividing it by the sum of the NIR and SWIR2 bands (Gao, 

1996; McFeeters, 1996). Further research by Xu (2006) led to a modification of the NDWI by 

substituting the NIR band for the SWIR2 band, which further highlighted open water features, while 

simultaneously supressed noise from built-up land, vegetation, and soil. These indices have been 

used in the detection of fire previously, but generally in a supportive capacity, such as in a study by 

Ding, Zhang, Fan, & Chen (2012), in which the MNDWI was used to mask out areas of open water, 

before being combined with a number of other indices like the NBR, BAI, SAVI, and GEMI to be 

Figure 2: Comparison between NDVI (top) and NBRI (bottom) pre-fire (left – taken 8/03/16) and 

post-fire (right – taken 24/03/16), generated from Landsat 8 OLI/TIRS imagery. (Background: 

Landsat 8 OLI/TIRS - Blue, Green, and Near-infrared band composite.) 
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used as training data for a support vector machine classifier. However, the effect of the significant 

amounts of moisture and open water bodies present in wetland ecosystems has on the ability of 

these indices to measure the direct disturbances to vegetation caused by fires is not well 

documented, and may well confuse these moisture based indices. 

Tasseled Cap Transformation 

Indices are not the only method of transforming imagery into simplified products ready for analysis. 

The Tasseled Cap Transformation technique is a different type of method for manipulating the raw 

spectral data of multispectral sensors (i.e. thematic mappers) into a format that allows for the 

extraction of physical scene characteristics from the spectral data (Crist & Cicone, 1984). By 

transforming the spectra into a usable orientation, the Tasseled Cap is able to derive three key 

components of the area surveyed: brightness – a measure of the total reflectance or soil brightness 

of the scene, derived by calculating a weighted sum of all the bands of the image, greenness – an 

indicator of healthy green vegetation cover, measured as the contrast between NIR and visible 

bands, and wetness – a measure of soil moisture, calculated by contrasting the sum of the NIR and 

visible bands with the sum of the long-IR bands (Crist & Cicone, 1984). These three surface 

characteristics can be used as determinants of land cover change from a number of causes, including 

flooding, deforestation, or bushfires, and can also be used as supplemental or supporting 

information in other surface cover classification methods (Dymond, Mladenoff, & Radeloff, 2002; 

Jin & Sader, 2005). 

When used alone, the Tasseled Cap method can be used as the Tasseled Cap Index (TCI), which 

provides an absolute measure of the three components (brightness, greenness, and wetness) 

normalised across a scale of -1 to +1 (Haywood, Verbesselt, & Baker, 2016). This index can be 

calculated for sequence of imagery before and after a known event, and the relative differences in 

the components compared to create a profile of surface characteristics over time. The TCI has been 

used in previous research to map disturbance dynamics in the wet sclerophyll forests of the Central 

Highlands of NSW, Australia, where it was tested with the normal burn ratio (NBR) to determine 

the accuracy of delineating between acute and low severity surface cover change events and their 

respective agents (Haywood et al., 2016). The combination of the TCI and NBR fitted to random 

forest classification methods was found to be ~ 72% accurate at distinguishing between acute and 

low severity disturbance events, and up to ~ 95% accurate at determining the agent responsible for 

the disturbance (Haywood et al., 2016). This suggests that that the use of the TCI, in conjunction 

with other suitable indices, is appropriate for the delineation of burn scars in post-fire environments.  
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1.2.3 Classification Methods 

Imagery classification is a process that categorises input spectral data based on a predetermined set 

of algorithms into distinct spectral classes, and can be performed in multiple unsupervised (no 

external training data) or supervised (external training data required) forms (Lu & Weng, 2007). 

The use of classifications to determine burned areas is well researched, with numerous previous 

studies comparing and contrasting the merits and deficiencies of diverse classification techniques 

for detecting burn scars (Brumby et al., 2002; Chen, Moriya, Sakai, Koyama, & Cao, 2016; 

Mallinis & Koutsias, 2012; Patterson & Yool, 1998; George P. Petropoulos, Vadrevu, 

Xanthopoulos, Karantounias, & Scholze, 2010). Research by Mallinis & Koutsias (2012) critically 

evaluated ten different classification approaches for burn scars in post-fire environments, 

determining the overall accuracy and confidence interval for each method. However, the study  

ultimately concluded that different approaches are suitable for different subject areas, and it is still 

not completely understood which approach is suitable for each area (Mallinis & Koutsias, 2012). 

Discussed below are some of the more common methodologies for classifying burned areas from 

imagery with varying levels of accuracy and efficiency. 

Random Forest (RF) 

The RF classification is a supervised, machine-learning ensemble method consisting of a ‘forest’ of 

individual decision trees, utilising the mode of the input classes as the output result (Breiman, 

2001). Previous research has established the random forest method as an accurate classifier of land 

cover types, which could indicate that it would be an effective approach to extracting burn scars 

from otherwise relatively spectrally homogenous environments (Gislason, Benediktsson, & 

Sveinsson, 2004, 2006). Land cover classification results with accuracies over 90% have been 

recorded, and the method generally requires less user input and training, and computer resources to 

achieve similarly precise results as other supervised classification methods (Pal, 2005; Rodriguez-

Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012). However, due to the relative 

‘youth’ of the random forest classification methodology when compared to ANN and SVM, not 

much research has been undertaken to determine the effectiveness of this method when applied to 

burn scar mapping, but the practice is of course similar to land cover classification. 

Support Vector Machine (SVM) 

SVMs are supervised machine learning models that use learning algorithms for classification and 

regression analyses on datasets. In the context of classifying burn scars in vegetation, SVMs operate 

in a linear fashion, using class borderline pixels to establish more defined boundaries between 

classes (Mallinis & Koutsias, 2012). On average, SVM was the most accurate across the three study 

sites in the Mallinis & Koutsias (2012) article, with an overall accuracy of 91.11%. Two articles by 
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(George P. Petropoulos, Kontoes, & Keramitsoglou, 2011) and Petropoulos, Knorr, Scholze, 

Boschetti, & Karantounias (2010) confirm the accuracy of this method with comparable studies in 

similar areas, achieving results with accuracies of 95.87% and 94.6%, respectively. SVMs have 

been used on varied multispectral imagery, such as those captured by ASTER, MODIS, SPOT and 

Landsat satellites, with similar success, and can prove to be a cost effective and accurate method of 

classifying burn scars in post-fire environments (Mallinis & Koutsias, 2012; G. P. Petropoulos et 

al., 2010). However, as these studies were all conducted in areas of limited surface covering 

diversity within the Mediterranean, the aptness of this classifier may be limited in alternate 

ecosystems like wetlands. 

Neural Networks (NNs) 

Neural networks (NN) or artificial neural networks (ANN) are a supervised classification method 

consisting of a collection of individual yet interconnected neurons or nodes designed to mimic the 

operation of the human brain by providing a systematic approach to problem solving and pattern 

identification (Civco, 1993). In a comparison between an ANN and a Spectral Angle Mapper 

(SAM) conducted by Petropoulos, Vadrevu, Xanthopoulos, Karantounias, & Scholze (2010), it was 

found that ANNs are typically a highly precise methodology for classifying burnt areas in Landsat 

TM imagery, with an overall accuracy of 90.29% and mean absolute percentage difference from the 

designated control data of ~1%. Similarly accurate results were also obtained consistently across the 

three study sites in the Mallinis & Koutsias (2012) article, returning accuracy values of 96.49%, 

94.21%, and 95.05%. These results render it one of the most accurate methods of burn scar 

classification as tested by Mallinis & Koutsias (2012), and its versatility across these study sites 

may be indicative of its aptitude for classifying burn scars in wetland areas. 

Logistic Regression (LOG) 

Logistic regression is a form of statistical analysis predicated upon the relationships of numerous 

independent variables to a dichotomous dependent variable, which in this case is a burned or 

unburned pixel (Mallinis & Koutsias, 2012; Pu & Gong, 2004). In the Mallinis & Koutsias (2012), 

LOG is the third most accurate classification method overall, while also retaining a relatively high 

confidence interval. A study conducted by Pu & Gong (2004) on single L7 ETM+ images in the 

forests of California also concluded that the LOG methodology was highly accurate, and typically 

on par with the results generated by the neural network approach. However, LOG managed to 

achieve those results in a much shorter timeframe, rendering it a more efficient method to use, 

especially if time is considered a factor (Pu & Gong, 2004). 
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Classification and Regression Trees (CARTs) 

A CART analysis consists of the application of either a classification tree or regression tree to a 

dataset when the output is predicted to be qualitative or quantitative, respectively. These techniques 

can then be used to construct more complex statistical analysis methods, such as a random forest 

approach, which can be employed to achieve a faster classification rate by using multiple trees in 

tandem. When used in the Mallinis & Koutsias (2012) study, CART analysis had varying results 

across the three sample sites, with higher accuracy in the Kassandra study area, which is a generally 

semi-arid ecosystem comprised largely of pine stands and shrubs. This type of environment is of 

course very different to the intended study area for this research project, so classification accuracy 

through this method may vary with the physical characteristics of the environment. 

Spectral Mixture Analysis (SMA) 

Linear or least squares SMA operates on the assumption that the input spectrum is a “linear 

combination of the end-member spectra weighted by the percentage ground cover of each end-

member of all components within the pixel” (Mallinis & Koutsias, 2012). An end-member is 

described as being a pure version of the spectra that corresponds to a given land cover class, and 

can be generated from the image or from reference material (Mallinis & Koutsias, 2012; Maselli, 

2001). Previous research by Elmore, Mustard, Manning, & Lobell (2000) and Small (2001) have 

found SMA to be an effective classification tool for vegetation in diverse surface types, often 

exceeding the accuracy of the NDVI by up to 20%. In the Mallinis & Koutsias (2012) study, SMA 

had varying results depending on the survey area, but was typically less accurate in comparison to 

the other techniques. These sites, however, all consist mostly of dense forest, woodland, or 

shrubland, which may react differently to classification techniques compared to wetlands (Mallinis 

& Koutsias, 2012). Additionally, SMA results had on average lower confidence indices, suggesting 

that SMA is perhaps one of the less accurate methods of classification. 

There has been a significant research effort into analysing the capability of diverse remote sensing 

techniques for the detection and mapping of burn scars in multiple types of dryland environments, 

however the research for whether the same techniques are applicable in wetland ecosystems is 

lacking, and even more so for wetland ecosystems that are not perennially moist. As such, this study 

aims to provide a preliminary insight into the suitability and efficacy of these remote sensing 

techniques, and the nature of ecosystem regeneration in post-fire environments. 



16 
 

2. Journal Paper 

A Comparative Analysis of Remote Sensing Techniques for 

Burn Scar Mapping in the Macquarie Marshes, Australia 

2.1 Abstract 

This study explores the impact of bushfire events in the Macquarie Marshes with three key 

objectives: (1) to compare remote sensing methodologies and their ability to measure burn scars in 

wetland areas; (2) to understand the behaviour of ecosystem regeneration in post-fire wetland 

environment; and (3) to provide information on fire extent and recovery that can be utilised for 

preventative and rehabilitative management efforts. Focusing on three fires that occurred between 

2014 and 2016, the methodology employs a multi-part approach. Part one included generating a 

range of spectral indices on satellite imagery collected pre- and post-fire and comparing the relative 

responses of each index to the fire event. Part two includes the comparison of four classification 

methods, including neural networks (NNs), support vector machine (SVM), random forest (RF) and 

K-means/Iso-Cluster on the imagery pre- and post-fire. Finally, an extended term analysis was 

performed to observe ecosystem regeneration in post-fire wetland environments. The indices found 

to be most efficient at determining burned areas were those designed to measure burned areas or 

areas of green vegetation, such as the normalised burn ratio index (NBRI), or the green normalised 

difference vegetation index (GNDVI). The SVM classifier proved to be the most adept at 

identifying burned pixels, with an average error rate of 36.02%, with the RF and NN classifiers 

close behind at 42.13% and 43.69% respectively. 

2.2 Introduction 

Bushfires are known to be one of the more devastating natural disasters that affect Australia, often 

resulting in significant and widespread environmental and socioeconomic damage that can take 

years to decades to recover from (Stephenson, Handmer, & Betts, 2013). They cause the destruction 

of natural and human environments, and disrupt and unbalance normal ecosystem functioning for 

extended periods of time (Stephenson et al., 2013). That is not to say that bushfires are not without 

their benefits, as it is true that many Australian flora species rely upon the intense energy of 

bushfire events for germination and to stimulate new growth in post-fire environments (Gill et al., 

1999). For wetland environments, bushfires can be catastrophically damaging if the vegetation is 

burnt down to the reed bed, resulting in a lengthy regeneration period that may permanently change 

the characteristics of the landscape (Kotze, 2013). 
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However, the extent of the impacts of bushfires on wetland environments are not always clear, and 

previous fire events that have occurred in wetland environments have caused varying amounts of 

environmental and socioeconomic damage, usually depending on the state of inundation at the time 

(Kotze, 2013). Conversely, assuming the wetland has a sufficient level of inundation, a bushfire 

event can act as a stimulant for new growth, and areas that have been burned can regenerate within 

the space of weeks or months, as can be seen in Figure 3 below (Aber, Pavri, & Aber, 2012). This is 

often faster than the return time of many satellites, which is typically captured on a minimum 16-

day cycle. As such, detecting burn scars left by fires in wetland areas can pose issues when the same 

methodologies that are used in drylands are applied without the consideration of the quick 

regeneration, unique vegetation, and variable moisture composition present in wetlands in drylands. 

There exist many methods for assessing the characteristics and distribution of land cover change 

with multispectral satellite imagery, with two of the most common being spectral indices and 

classifications. Previous research in this field has focused on the analysis of two major components 

of a fire event: spatial footprint/area burnt, and severity/intensity, and while these two components 

are frequently related in a given fire event, measurement and detection methodologies can be 

distinctly different (Mallinis & Koutsias, 2012; Rogan & Franklin, 2001). This study compares 22 

different spectral indices and four classification methods to determine the efficacy of each in 

identifying and quantifying the extent and severity of burn scars in comparison to a control dataset.  

With consideration to the current knowledge in the field, this study is designed to provide insight 

into existing knowledge gaps by fulfilling a selection of key aims. Firstly, through a process of 

comparison by statistical analysis, this study aims to determine the most suitable method for 

delineating burn scars in wetland environments, with regard to accuracy, but also efficiency and 

Figure 3: Wetland environment at one week post-fire (Left) and the same area at three weeks post-fire (Right). Image credit 

Peter Berney, Office of Environment and Heritage (OEH), NSW. 
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applicability for practical implementations. Secondly, this study aims to analyse the response of 

wetland ecosystems by monitoring the post-fire regeneration of three fire events in the Macquarie 

Marshes. Thirdly, this study aims to translate what is learnt from the first two aims into practical 

information that could be used to inform management efforts in post-fire environments, so that the 

environmental and socioeconomic impact of bushfire events in wetland areas can be limited where 

possible. 

2.3 Methods 

2.3.1 Site Selection 

This study will focus on fires that occurred in the Macquarie Marshes, a large inland wetland 

system covering 19,850 ha located in the centre-north of New South Wales (NSW), Australia (See 

Figure 4 below). The area also contains two of Australia’s 65 Ramsar listed wetlands; the 

Macquarie Marshes Nature Reserve (northern and southern sections, ARSN 28), and U-block. This 

designation indicates that this area is of high environmental significance, and plays a key role as a 

component of the surrounding environment, providing habitat for numerous threatened ecological 

communities, and performing vital ecosystem services (Department of the Environment and 

Energy, 2009). 

The study area is a wetland ecosystem situated within a dryland environment, which lends it some 

unique physiological characteristics in terms of biota, hydrology, and geomorphology. It can be 

separated into two major areas, the Southern Marshes, which is generally accepted as the area south 

of Gibson Way, and the Northern Marshes, which is the area north of Gibson Way, and the area of 

interest for this study (See Appendix 1). The Marshes contains a mixture of landscapes and 

vegetation types, but the most dominant cover types are chenopod shrublands, grasslands, 

sclerophyll forests and open plains, which cover close to 73,000 of the total 243,918 ha of the 

Marshes. Bodies of open water and partially submerged vegetation are also common depending on 

seasonality, which are in stark contrast to dryland environments that are commonly proliferated by 

woodland ecosystems or dry grassy shrubs, and, especially in inland Australia, can be characterised 

by protracted periods of low moisture (Power, Casey, Folland, Colman, & Mehta, 1999).  

The Macquarie Marshes was chosen as the study area for several reasons; the wetlands are 

significant in size, they have a diversity of vegetation types, and they are currently the focus of a 

dedicated research group for wetlands in drylands. The size of the wetlands also allows for larger 

fires to occur, which in turn leave larger burn scars upon the earth, which results in their easier 

detection through remote methods and higher resolution analyses. 
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Figure 4: Map of study area and fire events. Imagery © Land and Property Information (LPI), 2015. 

There is a well-documented short-term history of fire in this area, supported by both empirical and 

anecdotal evidence. Datasets indicate that several bushfire events of natural and anthropogenic 

origin, have occurred in past decade, resulting in a varied pool of samples which will contribute 

towards more robust results. Additionally, these fire events were also reported to be of significant 

extent and intensity, making them easier to analyse due to their larger spatial footprint in relation to 

satellite resolution. A summary of the bushfire events analysed in this study can be found in the 

Table 2 below. 
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Table 2: Properties of wildfire events analysed in study. 

Fire Name Start Date End Date Duration Area (Ha) Perimeter (KM) 

Carinda Rd Fire 15/03/16 26/03/16 11 days 3308.9 30.8 

Cresswell Fire 25/02/15 14/03/15 17 days 383.0 12.3 

Masmans Fire 29/12/14 6/01/15 8 days 15.4 1.9 

 

2.3.1 Data Acquisition 

As the temporal period being used for analysis is not insignificant in size and the size of the study 

area crosses multiple image footprints, a more refined method for fire identification and spatial 

positioning is required, so a chronology of imagery for the study area can be formed. The best 

approach was determined to be a collation of several different methods so as to achieve the most 

accurate and comprehensive identification of fire occurrences in the study area.  

NSW OEH/NPWS Datasets 

The New South Wales Office of Environment and Heritage (OEH) and National Parks and Wildlife 

Service (NPWS) are two leading environmental management organisations in Australia, and each 

create and maintain datasets relating to vegetation and bushfires. The OEH has supplied a native 

vegetation community extent map and historical bushfire extent map of the Macquarie Marshes in 

for this project. The vegetation community dataset consists of polygon features used to show the 

extent of different types of vegetation, and also contains attribute data for the polygons, such as 

vegetation characteristics and scientific names (See Figure 5 below). The historical fire dataset 

contains polygon features delineating the maximum spatial footprint of the fire event, and relevant 

attribute data pertaining to the events, such as date, duration, and origin, amongst others. This 

dataset will be used as the primary method of fire event identification. 

Sentinel Hotspot 

Geoscience Australia’s Sentinel Hotspot system was then used to verify the fire events recorded in 

the NPWS dataset. The Sentinel system uses data from three sensors (Advanced Very High 

Resolution Radiometer [AVHRR], Moderate Resolution Imaging Spectroradiometer [MODIS], and 

Visible Infrared Imaging Spectroradiometer [VIIRS]) to establish a hotspot dataset representing 

active fires over the last 72 hours. Active fire points were then cross-referenced with the NPWS fire 

history records, verifying the occurrence of the selected fire events mentioned previously.  
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Figure 5: Map of vegetation communities for study area. Data from OEH (2013). Imagery © Land and Property 

information (LPI), 2015. 

Satellite Imagery 

Once the spatial and temporal locations of the fires were identified and confirmed, suitable imagery 

data were obtained. Imagery from the Landsat program was selected for its reasonably high spatial 

resolution and moderate return time of 16 days, properties which have resulted in it being 

commonly utilised for burn scar mapping in previous research (Leigh B. Lentile et al., 2006). 

Additionally, the increased spectral resolution in the infrared segment of the electromagnetic 

spectrum compared to typical tri-band or quad-band imagery can also be used to generate spectral 

indices such as the NDVI and NBR amongst many others, which utilise the infrared frequencies to 

CRESSWELL 
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monitor vegetation and provide more accurate burn scar detection (Holden, Smith, Morgan, Rollins, 

& Gessler, 2005). 

By cross referencing the fire dates from the NPWS dataset and the image intervals of the Landsat 

satellites, it was possible to identify that all fires had adequate imagery coverage before and after 

the event. Imagery was then acquired from the Operational Land Imager/Thermal Infrared Sensor 

(OLI/TIRS) of the Landsat 8 mission at intervals around the fire events, with one image being 

chosen as close as possible before the fire, and then multiple images at intervals during and after the 

fire event. Images were then also acquired at repeat intervals during and after the fire event, where 

available. Images were collected for dates amounting to one or two months’ worth post-fire, as it 

was assumed that the typically quick regeneration time of wetland vegetation species (reliant upon 

inundation) would obscure any scars past this time (Cassidy, 2007). Table 3 below shows the details 

of the imagery acquired for each fire event. 

2.3.2 Data Pre-processing and Quality Control 

Radiometric Corrections 

While the imagery used for analysis was already processed to USGS Level 1-C standards (including 

georectification and projection to WGS 1984 UTM Zone 55N), further radiometric corrections were 

recommended by many of the classification methods, including the conversion to radiance or 

reflectance for some indices. Radiometric correction was implemented with the radCor function of 

the RSToolbox package in the R statistical programming language, which applies corrections and 

converts the digital numbers to radiance values (Leutner & Horning, 2017). Cloud masking was 

also applied where appropriate using the cloudMask function of the RSToolbox R package. Cloud 

masked pixels were marked as ‘no data’, and not included in any analysis or result calculations. 

2.3.3 Data Analysis 

The two forms of imagery analysis selected for this project are spectral indices and imagery 

classifications. These two techniques utilise the same input data, can provide distinctly different 

results, and each have their own unique strengths and weaknesses. Spectral indices are typically 

simpler than imagery classifications, and generally consist of simple band arithmetic from a few 

bands of a raster image but can also include known constants or parameters in some cases. Imagery 

classifications are characteristically more complex and can require additional user input that isn’t 

necessary with the calculation of spectral indices. However, imagery classifications can be 

generated using all the available bands of the raster image, allowing them to better define spectrally 

unique areas, which ultimately results in a more accurately classified image. 
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Spectral Indices 

Multiple spectral indices are chosen for this project, with the intent to compare the outputs of the 

indices and determine the accuracy and efficacy of each method. The indices in Table 4 below were 

calculated in R for each image using the spectralIndices function of the RSToolbox package 

(Leutner & Horning, 2017). Spectral indices were then calculated on each individual image and 

compiled in chronological order to form a time sequence analysis, so any changes over time could 

be observed at the pixel level (Yang & Lo, 2002). This sequencing process allows for the 

observation and analysis of post-fire vegetation regrowth, and any associated behaviours or patterns 

it may display. 

Table 3: List of spectral indices used in the study and how they were calculated. Adapted from Leutner & Horning 

(2017). s = Slope of the soil line, L = soil brightness factor (0.5). 

Index Name Source Bands Formula 

CTVI 

Corrected 

Transformed 

Vegetation Index 

Perry, 1984 red, NIR (NDVI + 0.5)/sqrt(abs(NDVI + 0.5)) 

DVI 
Difference 

Vegetation Index 

Richardson, 

1977 
red, NIR s * NIR - red 

EVI 
Enhanced 

Vegetation Index 
Huete, 1999 

red, NIR, 

blue 

2.5 * ((NIR - red)/(NIR + C1 * red - 

C2 * blue + L_evi)) 

EVI2 

Two-band 

Enhanced 

Vegetation Index 

Jiang, 2008 red, NIR 2.5 * (NIR - red)/(NIR + 2.4 * red + 1) 

GEMI 

Global 

Environmental 

Monitoring Index 

Pinty, 1992 red, NIR 

(((NIR^2 - red^2) * 2 + (NIR * 1.5) + 

(red * 0.5))/(NIR + red + 0.5)) * (1 - 

((((NIR^2 - red^2) * 2 + (NIR * 1.5) + 

(red * 0.5))/(NIR + red + 0.5)) * 

0.25)) - ((red - 0.125)/(1 - red)) 

GNDVI 

Green Normalised 

Difference 

Vegetation Index 

Gitelson, 

1998 

green, 

NIR 
(NIR - green)/(NIR + green) 

MNDWI 

Modified 

Normalised 

Difference Water 

Index 

Xu, 2006 
green, 

SWIR2 
(green - SWIR2)/(green + SWIR2) 

MSAVI 

Modified Soil 

Adjusted 

Vegetation Index 

Qi, 1994 red, NIR 
NIR + 0.5 - (0.5 * sqrt((2 * NIR + 1)^2 

- 8 * (NIR - (2 * red)))) 

MSAVI2 

Modified Soil 

Adjusted 

Vegetation Index 

2 

Qi, 1994 red, NIR 
(2 * (NIR + 1) - sqrt((2 * NIR + 1)^2 - 

8 * (NIR - red)))/2 

NBRI 
Normalised Burn 

Ratio Index 

Garcia, 

1991 

NIR, 

SWIR3 
(NIR - SWIR3)/(NIR + SWIR3) 

NDVI 

Normalised 

Difference 

Vegetation Index 

Rouse, 1974 red, NIR (NIR - red)/(NIR + red) 
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NDWI 

Normalised 

Difference Water 

Index 

McFeeters, 

1996 

green, 

NIR 
(green - NIR)/(green + NIR) 

NDWI2 

Normalised 

Difference Water 

Index 

Gao, 1996 
NIR, 

NIR2 
(NIR - NIR2)/(NIR + NIR2) 

NRVI 
Normalised Ratio 

Vegetation Index 
Baret, 1991 red, NIR (red/NIR - 1)/(red/NIR + 1) 

RVI 
Ratio Vegetation 

Index 
N/A red, NIR red/NIR 

SATVI 

Soil Adjusted 

Total Vegetation 

Index 

Marsett, 

2006 

red, 

SWIR2, 

SWIR3 

(SWIR2 - red)/(SWIR2 + red + L) * (1 

+ L) - (SWIR3/2) 

SAVI 
Soil Adjusted 

Vegetation Index 
Huete, 1988 red, NIR (NIR - red) * (1 + L)/(NIR + red + L) 

SLAVI 
Specific Leaf Area 

Vegetation Index 

Lymburner, 

2000 

red, NIR, 

SWIR2 
NIR/(red + SWIR2) 

SR 
Simple Ratio 

Vegetation Index 
Birth, 1968 red, NIR NIR/red 

TVI 
Transformed 

Vegetation Index 

Deering, 

1975 
red, NIR sqrt((NIR - red)/(NIR + red) + 0.5) 

TTVI 

Thiam's 

Transformed 

Vegetation Index 

Thiam, 

1998 
red, NIR 

sqrt(abs((NIR - red)/(NIR + red) + 

0.5)) 

WDVI 

Weighted 

Difference 

Vegetation Index 

Richardson, 

1977 
red, NIR NIR - s * red 

 

Classifications 

The process of image classification categorises pixels into new distinct classes based upon a 

particular training process or algorithm. Two major types of machine learning classification exist: 

supervised classification and unsupervised classification. Supervised classifications require the 

input of external training data in the form of sample data with ‘known’ values, which for the 

classification process to apply to a broader scale (Kotsiantis, 2007). Unsupervised classifications 

use no known data from external sources, and learn solely within the target dataset (Kotsiantis, 

2007). This study will compare four classification techniques against each other, and evaluate their 

effectiveness, efficiency, and accuracy in discerning spectral class differentiations from imagery in 

the study areas. All of the classifications were performed on a ten band raster stack of Landsat 8 

bands, generated by the stackMeta function of the RSToolbox package in the R programming suite. 

This stack included all of the available 30m resolution bands including the downsampled thermal 

infrared bands but excluded the 15m panchromatic band and quality assessment band. 
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Training Polygons 

The three supervised classification methods used in this study require training and/or validation data 

to train the classifier. These data were created in the form of spatial vector data delineating the 

target spectral classes in the imagery. Training polygons were created for the set of imagery for 

each fire event as opposed to every image, as it was determined that this would provide the best 

compromise between time taken for the analysis and accuracy of results. Polygons were created as 

equally as possible in size, shape and amount for each class, and to further ensure training equality, 

a random sample of 100 pixels was taken from within the designated areas to use as the final 

training data. This process was repeated to create a second set of training data that was used as a 

validation dataset, and it was ensured that the training and validation sets were spatially exclusive, 

so as not to introduce potential training errors. Areas inside the NPWS fire boundary were selected 

as the ‘Burned’ class, and the rest were distributed amongst the majority land cover types included 

in the scene, including rivers/open water bodies, wetland marsh, dryland vegetation, field/paddock, 

etc. A cross validation accuracy analysis and confusion matrix was created for the training polygons 

of each fire event and is available in Appendix 1. 

Unsupervised Classification (K-Means/Iso-Cluster) 

Both of these classifiers were completed using the RSToolbox package of the R programming suite. 

The unsupervised classification was undertaken using the K-means/Iso-Cluster method in the 

unsuperClass tool of the RSToolbox package in the R programming suite. Eight classes were 

chosen as a recommended default for general heterogenous vegetation unsupervised classification 

as per Horning, Leutner, & Wegmann (2016), and the number of starts and samples were linked to 

that. Normalisation was used to align all values to the same scale for better comparison. Table 5 

below details the parameters used for the classification. 

Table 4: Parameters for K-means/Iso-Cluster unsupervised classifier. 

Parameter Value 

Classes 8 

Starts 50 

Samples 10000 

Normalisation Yes 

 

Random Forest (RF) 

The random forest classifiers were performed using the superClass and predict tool of the 

RSToolbox and randomForest packages in R respectively. The classifier was first trained using the 

previously mentioned training polygons, and a classification model was developed. This was then 

fitted to the entire image, and cross-validated by a secondary ‘validation’ training polygon set to 
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achieve a more accurate result. A summary of the parameters used for the RF classifier can be 

observed in Table 5 below. 

Table 5: Parameters for Random Forest Classifier. 

Parameter Value 

Sampling Random 

Sampling Points 100 

Cross Validation True 

N/A Values Omitted 

 

Neural Networks (NN) and Support Vector Machine (SVMs) 

The neural network and support vector machine classifications were performed using the Neural 

Net Classifier and Support Vector Machine tool in ENVI 5.3. Training data for the classifications 

was prepared via the method mentioned above, but the polygons were split into their respective 

classes in ArcMap to be consumed properly by ENVI. For the neural net classifier, the training 

threshold contribution was set to 0.9 as more complete footprints were desired over absolute pixel 

accuracy. 1000 training iterations was considered to typically be a good balance between achieving 

the 0.1 training RMS exit criteria and taking sufficient time to process. The training rate was set on 

the low end, as a more accurate classification was desired over a faster classification process. For 

the SVM classifier, the radial basis function kernel type was chosen as it is generally known to 

work well in most cases. The penalty parameter was set relatively high to avoid excessive 

smoothing, and the pyramid levels and classification probability threshold were kept low to increase 

the resolution of the classification and improve accuracy. Parameters for the tools are outlined in 

Tables 6 and 7 below. 

Table 6: Parameters for Neural Net Classifier. 

Parameter Value 

Activation Logistic 

Training Threshold Contribution 0.9 

Training Rate 0.2 

Training Momentum 0.9 

Training RMS Exit Criteria 0.1 

Number of Hidden Layers 1 

Number of Training Iterations 1000 
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Table 7: Parameters for Support Vector Machine Classifier. 

Parameter Value 

Kernel Type Radial Basis Function 

Gamma in Kernel Function 0.1 

Penalty Parameter 100 

Pyramid Levels 0 

Classification Probability Threshold 0 

 

2.3.4 Validation of Results 

Once the outputs have been generated, they will need to be validated to determine their accuracy 

and robustness. Due to the remoteness of the study site and the time at which the fire events 

occurred, there is no sample data available for conventional ground truthing means. As such, the 

main source of validation is therefore the OEH/NPWS fire boundary dataset, as all results are being 

compared to the spatial footprints contained within this and the results then compared against one 

another. This dataset was created through empirically robust means, which included the burn 

perimeter being flown and tracked with GPS data daily and supplemented with digitisation from 

high resolution aerial imagery where needed. It provides a suitable control against which the other 

techniques in this study can be assessed. However, further research efforts would ideally validate 

the results of this study against suitable first-hand, empirical ground control data. 

The supervised classifiers underwent an internal validation process as part of the classification 

process. The random forest supervised classifier is unique amongst the methods used in that it 

utilises a secondary set of external data for validation. This is achieved by utilising a set of 

validation polygons, which are essentially the same as the training polygons except they must differ 

in spatial location, to confirm that the training of the random forest model is accurate and valid. 

Validation accuracy is provided in the form of Kappa values, confidence intervals, and P-values, 

and confusion matrices. 
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2.4 Results and Analysis 

2.4.1 Results of Spectral Indices 

The change in spectral indices from pre- to post-fire environments varied widely between fire 

events, but a majority of the indices calculated exhibited a significant response to the fire occurring 

when compared to the background change during the same period. The ability of an index to detect 

a fire event was determined by the differential between the mean index value from within the fire 

boundary of the pre-fire image and the first mid-fire image as per the equation below, and is 

expressed as dIndex (e.g. dNDVI, dEVI2) (Escuin et al., 2008; Miller & Thode, 2007).  

𝑑𝐼𝑛𝑑𝑒𝑥 =  𝑎𝑏𝑠(𝑀𝑒𝑎𝑛 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒𝑝𝑟𝑒−𝑓𝑖𝑟𝑒 −  𝑀𝑒𝑎𝑛 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑑−𝑓𝑖𝑟𝑒) 

Equation 1: Calculation of dIndex (difference mean index value). 

As not all of the indices shared a similar scale (e.g. -1 to 1), they were then standardised across the 

recorded range of mean values for the extended profile (~ 1 year) to show the relative change of the 

mean index values, which allowed for a direct comparison of all indices. The values were 

standardised as per the following equation:  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 (𝑆𝑡𝑑. ) 𝑑𝐼𝑛𝑑𝑒𝑥 =  
𝑑𝐼𝑛𝑑𝑒𝑥

𝑎𝑏𝑠(𝑀𝑒𝑎𝑛 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒𝑚𝑎𝑥 −  𝑀𝑒𝑎𝑛 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒min )
 

Equation 2: Standardisation of dIndex value. 

Carinda Rd Fire 

The Carinda Rd fire event displayed the greatest disturbance to land cover change as viewed 

through the profile, with a high majority of the indices exhibiting a strong positive or negative 

swing away from pre-fire conditions in the post-fire result. The indices that exhibited the most 

significant change between pre- and post-fire environments were the EVI2, the RVI, the NBRI, the 

NDWI, and the GNDVI. Of the five indices that exhibited the most significant change between pre- 

and post-fire ecosystems, three utilise only the red and NIR bands, and two utilise the green and 

NIR bands. The changes observed in these indices over the pre-/post-fire period indicates a large 

decrease in the reflection of these bands after the fire event has occurred, indicating a significant 

loss of vegetation and the presence of a new surface covering which does not reflect these bands to 

the same degree. The indices that displayed the least degree of change between the pre- and post-

fire environments of the Carinda Rd fire tended to have low dIndex values as well as low Std. 

dIndex values, with the exception of the SR, which showed a dIndex of 1.405, but had a total range 

of ~6, resulting in a low Std. Index value. Table 8 below displays the five highest and lowest values 

for the data series. 
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Cresswell Fire 

The Cresswell fire exhibited lower average dIndex values than the Carinda Rd fire event, indicating 

that the total change in land cover between pre- and post-fire events in the Cresswell event was to a 

lesser degree than the Carinda Rd event. However, the Cresswell event does present on average 

higher Std. dIndex values, which would suggest that the Cresswell event was more impactful on its 

locality in the context of the profile. The indices that exhibited the most significant change between 

the pre- and post-fire environments of the Cresswell fire were the EVI2, the SATVI, the NBRI, the 

GNDVI, and the NDWI, which are largely similar to the most responsive indices for the Carinda Rd 

event, with the exception of the SATVI. Table 8 below displays the five highest and lowest values 

for the data series. 

Masmans Fire 

The average dIndex value for the Masmans fire event is lower again than the Cresswell event, 

suggesting that the Masmans fire had less of an on the spectral signature of the ground cover than 

the other two fire events. Additionally, the most responsive indices also changed somewhat, with 

the EVI2 and NBRI being replaced by the GEMI and SAVI as those with the highest dIndex values. 

Table 8 below displays the five highest and lowest values for the data series.  

Table 8: Highest (left) and lowest (right) index values Std. dIndex values in Masmans fire event. 

Carinda Rd      

Highest dIndex Std. dIndex Lowest dIndex Std.  dIndex 

EVI2 0.601 0.891 DVI 0.138 0.403 

RVI 0.446 0.643 MNDWI 0.15 0.37 

NBRI 0.533 0.64 MSAVI 0.166 0.322 

NDWI 0.368 0.632 SLAVI 0.371 0.275 

GNDVI 0.368 0.632 SR 1.405 0.228 

Cresswell      

Highest dIndex Std. dIndex Lowest dIndex Std.  dIndex 

EVI2 0.316 0.905 DVI 0.094 0.528 

SATVI 0.096 0.852 MSAVI 0.121 0.466 

NBRI 0.293 0.744 NDWI2 0.105 0.353 

GNDVI 0.204 0.693 SR 1.009 0.347 

NDWI 0.204 0.693 SLAVI 0.216 0.344 

Masmans      

Highest dIndex Std. dIndex Lowest dIndex Std.  dIndex 

GNDVI 0.104 0.949 EVI2 0.129 0.46 

NDWI 0.104 0.949 MSAVI 0.037 0.452 

SATVI 0.079 0.913 SR 0.271 0.419 

GEMI 0.079 0.878 SLAVI 0.027 0.198 

SAVI 0.066 0.867 NDWI2 0.007 0.052 
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2.4.2 Results of Classifications 

Unsupervised Classification 

K-means/Iso-Cluster 

The K-means/Iso-Cluster unsupervised classification proved to be the least discerning of the 

selection of classification methods used, with very little class variation within diverse vegetation 

communities, and little to no measurable detection of the disturbance caused by the fire across any 

of the events analysed. Class diversity, an indicator of spectral variation expressed as the number of 

unique classes that were classified within the fire boundary, averaged at three classes across the 

post-fire imagery for the Carinda Rd fire event, two classes for the Cresswell fire event, and two 

classes for the Masmans fire event. The areas in which the fires occurred were predominantly 

miscategorised in the same class as the surrounding unburned wetland marsh vegetation, 

shrub/grassland, or open watercourses. As the results were not meaningful, they are not shown here. 

Supervised Classifications 

Supervised classification accuracy was analysed with two metrics: (1) Commission error rate as % 

(false positive): the percent of total pixels classified as burned that were located outside of the 

NPWS fire boundary and shouldn’t have been (2) Omission error rate as % (false negative): the 

percent of pixels within the NPWS fire boundary that were not classified as burned. 

Neural Networks 

The Neural Networks classifier was the least consistent performer of the supervised classifications, 

as its accuracy varied quite dramatically across the fire events, even so far as not detecting any 

burned pixels in the Masmans fire event imagery. The results of the Neural Net classifier are 

displayed in Table 9 below. As mentioned previously, the neural networks classification of the 

Masmans fire event failed to detect any burned pixels in any of the post-fire imagery, and instead 

frequently misclassified the area as the equivalent of either wetland marsh, low shrubland/grassland 

or sclerophyll forest. 

Random Forest 

The results of the random forest classifier varied across the different fire events, but generally 

showed a consistency of progression within the same fire event. The areas delineated as burned in 

the post-fire images were the smallest compared to the other two classifiers and tended to be 

scattered with pixels of other classes. The results of the random forest classifier can be found in 

Table 9 below, and the results of the cross-validation accuracy report can be found in Appendix 1. 



31 
 

Support Vector Machine 

Despite being generally inefficient in terms of classifier training time, the SVM classifier produced 

some accurate results across the fire events, especially regarding the delineation of burned pixels. 

Other classes were also relatively accurately classified. The results of the analysis can be found in 

Tables 9 below. 

Table 9: Average commission and omission error rates for each classifier per fire event. 

Neural Net Commission Error Rate (%) Omission Error Rate (%) 

Carinda Rd 13.97% 35.43% 

Cresswell 34.99% 90.37% 

Masmans 0.00% 0.00% 

Average 16.32% 41.93% 

Random Forest Commission Error Rate (%) Omission Error Rate (%) 

Carinda Rd 0.06% 64.26% 

Cresswell 0.36% 69.49% 

Masmans 98.79% 33.95% 

Average 33.07% 55.90% 

Support Vector Machine Commission Error Rate (%) Omission Error Rate (%) 

Carinda Rd 3.33% 34.81% 

Cresswell 2.68% 63.65% 

Masmans 93.91% 26.74% 

Average 33.31% 41.73% 

 

2.4.3 Detection of Burned Areas based on Spectral Indices 

The results of the spectral indices analysis were quite varied, both between different fire events, and 

between the indices measured within a single event, but certain indices displayed consistently 

stronger responses to the fire disturbances than others. Of the spectral indices utilised, the most 

consistently effective and responsive indices were those that were targeted at measuring either the 

presence of burned areas, green vegetation cover, or soil moisture. This was achieved by utilising 

the green, red, near-infrared, mid-infrared, and thermal infrared bands of the satellites sensors, and 

occasionally some known constants, to analyse the reflected radiation of these wavelengths by the 

ground coverings in the scene and determine when a change in reflection occurs. Indices such as the 

green normalised difference vegetation index (GNDVI), the normalised difference water index 

(NDWI), the soil-adjusted transformed vegetation index (SATVI), the normalised burn ratio index 

(NBRI), and the enhanced two-band vegetation index (EVI2) showed very pronounced and 

significant responses to fire events, exhibited through a drastic change in values between the pre-

fire image and the image taken immediately post-fire. Others, however, displayed far more subtle 

reactions to the fire events, with much smaller variations between pre- and post-fire environments. 
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Poorly performing indices were generally consistent across the separate fire events, and tended not 

to share similar properties or formulas, often using similar band combinations as indices that 

performed well, but to somewhat different results. A majority of the most poorly performing 

indices, such as the SR, the DVI, the MSAVI, the SLAVI, and the MNDWI, still elicited a response 

to the fire events, but in the context of the change measured across the rest of the profile and across 

the background, these responses were not as significant as the others. Poor performance can be the 

result of a number of variables, which most likely are caused by the not being designed for use with 

wetland vegetation and the potentially excessive presence of moisture when compared to dryland 

ecosystems (Chuvieco et al., 2002). 

As one of the primary objectives of this paper was to gain an insight into the behaviour of 

vegetation regrowth in post-fire wetland environments, it is important to not only determine which 

remote sensing method can most clearly and accurately delineate the burn scars, but what the results 

of the methods tell us about what’s happening on the ground to create this change. For example, 

within the range of the spectral indices used in the analysis, some focus on vegetation cover, some 

on the presence of moisture, and others on soil brightness or a lack thereof. Drilling down further 

upon that, these indices measure the response of the ground to certain wavelengths of 

electromagnetic radiation, which can reveal a significant amount of information about the surface of 

the study area. 

EVI2 

The EVI2 is similar to the NDVI in that it is a measure of vegetation cover, but the formula for 

calculating vegetation cover is different. Where the NDVI uses a simple ratio of the red and near-

infrared bands, the EVI2 uses some known constants to better discern between vegetation and other 

ground cover types, such as soil and water, while simultaneously controlling for other variables like 

soil and atmospheric influences (Jiang, Huete, Didan, & Miura, 2008). The EVI2 showed a 

consistently significant response to the disturbance caused by all three fire events, which is 

observable as a large dip in the mid-fire and first post-fire images of the spectral index profile. 

In the Carinda Rd fire event, the EVI2’s most divergent value was the mid-fire image, which 

experienced a drop of approximately 0.62 from the pre-fire value. This indicates that a significant 

loss of green vegetation cover occurred between these two sampling points, a result that is 

consistent with the effects of a large bushfire. Following this large decrease, the profile displayed an 

accelerating increase for about three months, regaining 76% of its difference to the pre-fire value, 

before it experienced a small dip at roughly four months post-fire, as can be observed in Figure 6 

below. The cause of this sudden yet small decrease is not clear, but is most likely attributable to 

external factors, as the profile began to increase again for the following three months, where it 
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reached a peak 0.08 above the pre-fire value at 0.84. The shape of this profile indicates that a level 

of green vegetation cover equivalent to that of the pre-fire ecosystem was present at ~ 208 days 

post-fire, with regrowth continuing to occur past this point. Similar results were observed in the 

Cresswell event, where the mid-fire image was the lowest value, and the most significant decrease 

throughout the profile at 0.31. The remainder of the Cresswell fire profile was characterised by an 

almost linear increase over the following seven months, a small dip that lasted for a month, and 

finally a return to the pre-fire value at 248 days. The response to the Masmans fire event was a little 

more subdued, but exhibited the same rough shape, albeit with a quicker return to the pre-fire level 

at 107 days, and a greater variability towards the tail-end of the profile.  

GNDVI/NDWI 

The green normalised difference vegetation index (GNDVI) and normalised difference water index 

(NDWI) utilise an inverse arrangement of the green and near-infrared bands to sense either the 

presence of green vegetation or water in the surveyed area, and as such are inextricably linked in 

their response to disturbances in the environment. Previous studies by Navarro et al. (2017) and 

Fernandez-Manso, Quintano, & Roberts (2016) have found the GNDVI to be an effective tool to 

detect and quantify burn scars, especially in areas of denser vegetation canopy cover that may 

otherwise confuse other indices such as the NDVI and NBR.  

Like many of the other vegetation-based indices, the GNDVI displays a strong response to the fire 

event, dropping by 0.367 between the pre-fire and mid-fire images in the Carinda Rd fire event, by 

0.204 in the Cresswell event, and by 0.092 in the Masmans event. The Carinda Rd and Creswell 

post-fire regeneration periods are both characterised with a steady increase over the subsequent 

Figure 6: Comparison of post-fire EVI2 mean index value change over time. 
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months, with minor dips and plateaus before returning to pre-fire conditions at 176 and 216 days 

respectively. Shortly after the point at which pre-fire values are reached, both profiles also exhibit a 

secondary plateau and decrease, which is likely unrelated to the impacts of the fire event. 

 The Masmans fire event shows a less aggressive post-fire regeneration, and after an initial 

significant increase in the secondary post-fire image, exhibits a plateau for the ensuing four months. 

The GNDVI eventually returns to pre-fire conditions at 251 days post-fire, but due to the 

surrounding variability, it is unsure whether this is the direct result of post-fire regeneration, or 

natural variability. Figure 7 below displays the post-fire profile of the GNDVI graphically.  

NBRI / ΔNBR 

The NBRI works similarly to the NDVI in that it is a simple ratio, but it substitutes the red band for 

one of the shortwave infrared bands, which is more sensitive to the vegetation loss caused by fire 

disturbance events. While the NBRI was designed for use in dryland systems, with a consideration 

of the phenological and compositional differences present in different environments, it is possible to 

apply the same technique to wetland ecosystems. The NBRI responded quite significantly to the 

large disturbances caused by the fire events in this study, displaying an almost absolute loss of 

infrared reflection in post-fire ecosystems. This was observable in the Carinda Rd fire event as a 

decrease from pre-fire to mid-fire value of 0.53, and as decreases of 0.29 and 0.16 in the Cresswell 

and Masmans fire events respectively. Like the other indices, the NBRI profile for the Carinda Rd 

fire shows strong increases almost immediately after the fire occurs, indicating that post-fire 

regrowth is prevalent across the area. A return to pre-fire values is seen at approximately 128 days 

post-fire, one of the fastest return times of the indices measured. The Cresswell fire profile exhibits 

different post-fire behaviour, characterised by an inconsistent but gradual rise in NBRI, with a 

Figure 7: Comparison of post-fire GNDVI mean index value change over time. 
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return to pre-fire values recorded at 216 days post-fire, suggesting that the regrowth for the 

Cresswell fire is not as strong as the Carinda Rd fire, despite it being a smaller, less severe event. 

These results are displayed graphically in Figure 8 below. 

 

The NBRI can also be used to generate a metric for fire severity known as the ΔNBR, which can be 

simply expressed as the change or differential in NBRI over time, typically calculated from the 

imagery of pre- and post-fire environments and used to determine burn severity. Based on the 

normalised values of the NBRI, it is divided into seven categories of burn severity and regrowth as 

seen in Table 10 below. 

 

Table 10: Categories of burn severity for the ΔNBR. Adapted from Escuin et al. (2008). 

ΔNBR Burn Severity 

< -0.25 High post-fire regrowth 

-0.25 to -0.1 Low post-fire regrowth 

-0.1 to +0.1 Unburned 

0.1 to 0.27 Low-severity burn 

0.27 to 0.44 Moderate-low severity burn 

0.44 to 0.66 Moderate-high severity burn 

> 0.66 High-severity burn 

 

While the ΔNBR is most commonly applied to the images closest in time to the fire event, it can 

also be applied to additional images after the fire event, to monitor the degree of regrowth that the 

ecosystem is undergoing. However, the results from closer to the fire period are more relevant to 

and accurate at describing burn severity. This process can be utilised until the ecosystem 

regenerates to pre-fire conditions, at which point the ΔNBR can no longer detect the presence of a 

Figure 8: Comparison of post-fire NBRI mean index value change over time. 
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fire. Since the NBRI was calculated for both the pre-/post-fire imagery and the background 

imagery, it was possible to also determine the ΔNBR for each of the fire events at varying points 

across the regeneration of the ecosystems. As such, ΔNBR was measured for the mid-fire images 

and three post-fire images for each fire event.  

 

The Carinda Rd fire event shows the most severe burn intensity of the four events analysed, with an 

initial ΔNBR of 0.533 for the mid-fire image, which placed it in the moderate-high severity burn 

category. In the first post-fire image, the ΔNBR decreased to 0.492, still in the moderate-high 

category, but showing signs of regeneration. These results are displayed graphically in Figure 9 

below.  

The second post-fire image decreases again to 0.402, which drops a category to moderate-low 

severity. Finally, the third post-fire image decreases yet again to 0.235, which drops a category 

further to low-severity. The Cresswell fire event yielded the most unstable profile of the four 

events, displaying some variation between the first and third post-fire images. The mid-fire image 

recorded a ΔNBR of 0.293, classifying it as a moderate-low severity burn. This was followed by a 

minor decrease in the first post-fire image to a ΔNBR 0.276, which places it in the same category. 

The second post-fire image measured an increase in ΔNBR to 0.299, which was higher than the 

initial mid-fire figure, but still in the moderate-low severity category. This was followed by a 

decrease in ΔNBR to 0.262 in the third post-fire image, moving it down a category to low-severity. 

The Masmans fire event has a less severe burn intensity when compared to some of the other fire 

events with an initial ΔNBR of 0.164 for the mid-fire image, which placed it in the low severity 

category. Unlike the Carinda Rd fire, the degree of regeneration across the same period of time was 

Figure 9: ΔNBR profile for each fire event. 
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not as significant in magnitude and followed a more linear progression. The first post-fire image 

showed a decrease in ΔNBR to 0.147, which was followed by a further decrease to 0.109 in the 

second post-fire image, both of which were still classified in the low-severity category. The third 

post-fire image showed another decrease in ΔNBR to 0.075, which reclassified the area as 

unburned, suggesting that the area is largely regenerated to pre-fire conditions by measure of its 

vegetation cover.  

SATVI 

While the SATVI only displayed a > 0.25 variation in index value across the entire profile, the 

standardised difference between the pre-fire and mid-fire image was close in magnitude to the 

indices that had much higher overall variation, such as the EVI2, GNDVI, and NBRI. The SATVI 

also exhibited a subtler post-fire regeneration profile than many of the other high performing 

indices, which was apparent in all the fire events. Like the other indices, the SATVI recorded its 

most significant change between the pre-fire and mid-fire images, with a decrease of 0.163 in the 

Carinda Rd fire, 0.164 in the Cresswell fire, and 0.106 in the Masmans fire. In contrast to the other 

indices, however, the degree of absolute change between the fire events is much more similar, 

which would indicate that the SATVI isn’t as responsive to burn severity as some other indices but 

can still detect burned areas quite accurately. The SATVI also proved to be a useful indicator for 

degree of difference between the burned area and the background area, with mid-fire and post-fire 

values being consistently different from the background values in the same observation period. This 

suggest that the SATVI would be a useful tool for large scale applications, where the exact fire 

boundary is not known and needs to be discerned from a noisy background. These results are 

displayed graphically in Figure 10 below.  

Figure 10: Comparison of post-fire SATVI mean index value change over time. 
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Recovery of Vegetation Determined by Extended Term Analysis 

While the results show that significant vegetation regrowth occurs in wetland environments within 

one or two months of a fire event occurring, an extended term analysis was undertaken, which 

revealed the lasting effects of fires over a greater timespan (~1 year). However, due to the length of 

the period of analysis, it is important to consider the role of seasonality/phenology on vegetation 

prevalence. To control for this, the same indices were calculated across the entirety of the Northern 

Marshes as a form of background data, and the results from within the fire boundary were compared 

to these results. The period it took for post-fire environments to return to pre-fire conditions varied 

between each fire event, and between each index used for measurement, but in most cases, the data 

showed that post-fire environments regenerated to pre-fire conditions by measure of most indices 

within a year. Figure 9 below displays the percentage of indices regenerated to greater than or equal 

to the pre-fire value, over time. While the indices may indicate that the ecosystem has regenerated 

to pre-fire conditions, there are numerous variables and determinants of environmental capacity that 

cannot be directly assessed by some of these indices alone. Factors such as vegetation height and 

density, soil nutrient capacity, and biodiversity are important metrics of environmental health that 

cannot be accurately measured by these indices, and therefore must be analysed through other 

means. Other indices such as the leaf area index, other methods of remote sensing such as lidar and 

radar, or ground studies should be used to supplement the findings of the indices when making an 

assessment of ecosystem regeneration in order to achieve an accurate result. 

Carinda Rd Fire 

The extended term analysis of the Carinda Rd fire event shows the eventual return of the area to 

pre-fire conditions in regard to a majority of the spectral indices, but with differing rates of 

regeneration for many of them. Amongst the spectral indices utilised for the analysis, the mean 

return time to pre-fire conditions for the Carinda Rd fire was approximately 144 days, with a 

minimum return time of ~ 96 days as reported by the NDWI2, SLAVI, & SR, and a maximum 

return time that wasn’t recorded in the observation period by the MNDWI. The next longest 

regenerative period was ~ 224 days, as reported by the SATVI. All indices showed a constant 

progression away from post-fire conditions for the entire analysis period except for EVI2, which 

decreased again at ~ 288 days post-fire. A complete list of the return times for each index can be 

viewed in Table 11 on page 41, and a visual representation of the profile in Figure 11 below. 

Despite being the largest and most severe fire of the three events analysed, the Carinda Rd fire 

exhibits the lowest mean return time to pre-fire values, which would indicate that it was the fastest 

regenerating post-fire ecosystem. It is important to note that this regrowth is only immature 
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vegetation and does not indicate that the ecosystem has completely regenerated to its pre-fire 

conditions. 

Figure 11: Return to pre-fire conditions profile for six key indices after Carinda Rd fire (15/03/16 – 26/03/16). 

Cresswell Fire 

The Cresswell fire event extended term analysis shows on average a longer return to pre-fire levels 

when compared to the Carinda Rd fire event, even though the ΔNBR indicated that it was a less 

severe burn. Average return time was approximately 212 days, with a minimum of ~ 184 days as 

measured by the NDWI2 and SLAVI, and a maximum of 248 days as reported by the EVI2 and 

SATVI. Sixty-eight percent of the indices experienced a decrease at ~344 days post-fire, rising to 

95% by 360 days post-fire. This is most likely attributable to seasonal variation heading into 

autumn, or from other external factors unrelated to the fire event. However, the younger vegetation 

of the recently burned area may be less hardy, causing it to be more susceptible to environmental 

change. The Cresswell fire event saw the longest average return time to pre-fire values, taking 

almost four months longer than the Carinada Rd fire event and one month longer than the Masmans 

fire event for post-fire ecosystem regeneration to return the environment to its previous state. A 

complete list of the return times for each index can be viewed in Table 11 on page 41, and a visual 

representation of the profile in Figure 12 on the next page. 

Masmans Fire  

The Masmans fire event, while having the lowest ΔNBR of the three fire events, exhibited the most 

variable return time results of the fire events, and many indices exhibited oscillations above and 

below pre-fire values towards the end of the profile. The average return time to pre-fire values was 

approximately 178 days, with a minimum of ~ 107 days as reported by the CTVI, EVI2, MNDWI, 

MSAVI, NDVI, NRVI, RVI, SR, TVI, and TTVI and a maximum of ~ 315 days as reported by the 

DVI, GEMI, SAVI, and WDVI. By 251 days, 72% of the indices had reverted to pre-fire values, 
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and by 315 days, 86% of indices has reverted. There were two periods in which > 95% of the 

indices regressed to worse values than the previous, once at ~ 154 days post-fire, and once at ~ 267 

– 283 days post-fire. The Masmans fire event, while the smallest and the least severe, was only the 

second fastest to regenerate, and saw the highest variability in return times. A complete list of the 

return times for each index can be viewed in Table 11 on the next page, and a visual representation 

of the profile in Figure 13 below.  

 

Figure 12: Return to pre-fire conditions profile for six key indices after Cresswell fire (25/02/15 – 14/03/15). 

 

 

 

Figure 13: Return to pre-fire conditions profile for six key indices after Masmans fire (29/12/14 – 06/01/15). 
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Table 11: Time taken for each index to return to its mean pre-fire value by fire event. 

 Carinda Rd Cresswell Masmans 

CTVI 144 200 107 

DVI 176 216 315 

EVI 176 216 203 

EVI2 208 248 107 

GEMI 176 216 315 

GNDVI 176 216 251 

MNDWI No return 240 107 

MSAVI 144 216 107 

MSAVI2 176 216 203 

NBRI 128 216 171 

NDVI 144 200 107 

NDWI 176 216 251 

NDWI2 96 184 155 

NRVI 144 200 107 

RVI 144 200 107 

SATVI 224 248 315 

SAVI 176 216 203 

SLAVI 96 184 155 

SR 96 200 107 

TVI 144 200 107 

TTVI 144 200 107 

WDVI 176 216 315 
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2.4.4 Detection of Burned Areas based on Classification 

Unsupervised Classification 

The K-means/Iso-Cluster unsupervised classification method was fairly consistent when applied 

across the pre-/post-fire environments but failed to show any measurable response to the fire events 

occurring, as can be seen in Figure 14 below. It also lacked the discerning ability of some of the 

supervised classifications, frequently misclassifying areas of diverse vegetation cover by grouping 

together multiple different vegetation species as one class or combining open field and paddocks 

with shrubland vegetation. These different land types were generally more accurately classified by 

the supervised classification methods, which were better suited to identifying the spectral 

differences between the different land cover types present in the scene. Additionally, the 

composition of the unsupervised classification within the fire boundary showed no significant 

changes between the pre- and post-fire images, suggesting that the active fire event and burn scar 

were not spectrally unique enough amongst the rest of the scene to allow them to be classified as a 

separate class. The burn scars were frequently misclassified as various land cover types, indicating 

the lack of spectral diversity present in burned areas to elicit a unique class designation from the 

unsupervised classifier. Previous research by Miller & Yool (2002) notes the difficulty in using an 

unsupervised classification to detect burn scars in woodland ecosystems when compared to a 

trained supervised classification, albeit with a much smaller difference in accuracy. Figure 10 below 

shows the unsupervised classifications of the first post-fire image compared to the indicated fire 

boundary, which clearly exhibits a misclassification of the fire area. 

  

Figure 14: Comparison of post-fire unsupervised classifications for the three fire events. 
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Supervised Classification 

Neural Networks 

The neural networks classifier was the least consistent of the three supervised classification 

methods tested, displaying erratic changes in classification accuracy between images of the same 

fire event that were no more than a month apart, and also failed to classify burned pixels at all in the 

post-fire image of the Masmans fire. It consistently generalised classes across large areas of non-

homogenous land cover and failed to properly discern burned pixels in scenes where the other 

classifications did. Figure 15 below displays the change in burned pixel identification by the Neural 

Networks classifier for the Carinda Rd fire over a period of approximately two months. 

The average commission error rate was 13.97% for the Carinda Rd fire event and 34.99% for the 

Cresswell fire event. The Masmans fire event was excluded from the average as no burned pixels 

were detected in any of the post-fire imagery for the Masmans event. This resulted in an overall 

commission error rate of 24.48%, which suggests that the neural net classifier was only moderately 

accurate at identifying the signature of burned areas in the context of their surroundings. The 

upward trend in the Carinda Rd fire event from 0.14% in the mid-fire image to 28.39% in the third 

post-fire image indicates that the burned areas are becoming more spectrally heterogeneous as 

regrowth occurs, which could confuse the classifier. The higher accuracy result of the Carinda Rd 

fire event compared to the Cresswell and Masmans events may indicate that the Carinda Rd event 

was a more severe and complete burn, resulting in a burned area that was significantly different to 

unburned areas and therefore easier to classify.  

The average omission error rate was 35.43% for the Carinda Rd fire event and 90.37% for the 

Cresswell fire event, resulting in an overall omission error rate of 62.90%. The Masmans fire event 

was again excluded for the reasons mentioned above. The Carinda Rd fire event showed an upward 

trend similar to the results of the first metric, increasing from 23.91% in the mid-fire image to 

Figure 15: Changed in burned pixel classification for Neural Networks classifier over time. 
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49.29% by the second post-fire image, but then decreased to 38.67% in the third image. This 

suggests that the classification of burned pixels may be becoming less accurate as the burn scars 

begin to fade and regrowth begins to influence the training process of the classifier. Other pixels 

inside the fire boundary were generally classified as wetland marsh or water, with these classes 

increasing in prevalence as the distance from fire increases, indicating the presence of vegetation 

regrowth.  

Random Forest 

The random forest classifier fared relatively well with the diverse land coverings present in the 

study area, commonly providing very high accuracy results for the delineation of burn pixels and 

generally strong results amongst the rest of the classes overall. Interpolation and generalisation of 

classes was minimal, sometimes to a fault, inducing pixel noise into the classification, seen as 

random pixels of different classes interspersed amongst relatively large blocks of another, singular 

class, which can be observed in Figure 16 below. As such, to properly delineate the full footprint of 

a burn scar, a smoothing or interpolation algorithm would need to be employed. 

The average commission error rate was 0.06% for the Carinda Rd fire event, 0.36% for the 

Cresswell fire event, and 98.79% for the Masmans fire event, resulting in an overall commission 

error rate of 33.35%. The significantly high results of the Carinda Rd and Cresswell fire events 

suggests that the Random Forest classifier was well suited to identifying the unique spectral 

signature of the burned areas, and accurately discern the burn pixels from a mixture of surrounding 

land cover types, resulting in essentially no false positive results across the two events. This level of 

accuracy was not withheld through the Masmans fire event, however, which experienced a very 

high commission error rate, which suggests the classifier was confused. This is most likely due to 

the Masmans fire event being smaller and less severe, thus leaving a less well-defined burn scar that 

was overtaken by regenerating vegetation faster than the other events.  

Figure 16: Changed in burned pixel classification for Random Forest classifier over time. 
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The average omission error rate was 64.26% for the Carinda Rd fire event, 69.49% for the 

Cresswell fire event, and 33.95% for the Masmans fire event, resulting in an overall omission error 

rate of 50.90%. These results are quite inaccurate in comparison to the accuracy indicated by the 

first metric, and also when compared to the results of the SVM classifier and seems to be the result 

of the misclassification of numerous pixels scattered throughout the fire boundary area, culminating 

in a ‘noisy’ classification. This occurs frequently with large swathes of burned areas being 

interrupted by pixels misclassified as wetland marsh or water. Additionally, the decreasing omission 

error rate from 68.19% in the mid-fire image to 58.61% in the third post-fire image would suggest 

that these speciously classified pixels are a result of the fading burn scar and vegetation regrowth.  

Support Vector Machine 

Previous studies have also used the SVM classifier for mapping burn scars to significant success, 

such as in the study by (George P. Petropoulos et al., 2011), which found that diverse kernel 

function implementation of SVM was up to 98.57% accurate at delineating burn scars in 

Mediterranean grassland ecosystems from immediate post-fire imagery. However, this type of 

environment and the composition of its vegetation is drastically different to a wetland environment, 

and typically slower to regenerate, resulting in a more defined burn scar that would be easier to 

detect with remote sensing methodologies. Additionally, this study only utilised a uni-temporal 

approach, and therefore did not test the capabilities of SVM for measuring the behaviour of burn 

scars over time The support vector machine classification was the least efficient in terms of 

classifier training and execution time, frequently taking multiple hours to complete, but saw strong 

performance in both of the metrics used for analysis, allowing it to edge out random forest as the 

most accurate classifier overall. 

The average commission error rate was 3.33% for the Carinda Rd fire event, 2.68% for the 

Cresswell fire event, and 93.91% for the Masmans fire event, culminating in an overall commission 

error rate of 30.31%. It can be concluded that the SVM classifier was well equipped to identify the 

spectral signature of the Carinda Rd and Cresswell burn scars, but the smaller, less severe burn scar 

of the Masmans fire proved problematic, resulting in a high commission error. This suggests that 

like the other supervised classifiers, the SVM benefits from a larger, more spectrally different burn 

scar for the accurate classifications of burned areas.  
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The average omission error rate was 34.81% for the Carinda Rd fire event, 63.65% for the 

Cresswell fire event, and 26.74% for the Masmans fire event, culminating in an overall omission 

error rate of 41.73%. The SVM was the strongest performer in this metric consistently providing 

more accurate results than the supervised classifiers, which indicates that it is less prone to the 

misclassification of small groups of pixels like the random forest classifier, and therefore, by 

extension, more suitable for detecting more complete burn scars. Figure 17 below shows the change 

in burned pixel identification by the Support Vector Machines classifier for the Carinda Rd fire over 

approximately two months. 

2.5 Evaluation and Conclusion 

The most accurate spectral indices for mapping burn scars in wetlands tended to be those that 

utilised the red, green, and infrared bands with some known constants and coefficients to make an 

indirect measurement of vegetation cover, such as the GNDVI, the NBRI, the EVI2, and the 

SATVI. These indices generally showed consistently high Std. dIndex values across all the fire 

events, proving their capability at detecting fire-induced changes to ground cover. When 

considering the spectral index profiles, it can be concluded form the analysis that wetland 

environments typically regenerate to their pre-fire states within a year of the fire event occurring, as 

can be observed in Figure 18 below, where approximately 75% of indices have a value that is 

greater than or equal to the pre-fire value by 7 months post-fire. However, these indices cannot 

determine certain characteristics that are key indicators of ecosystem health and regeneration, such 

as vegetation maturity and biodiversity, so further information is required to properly determine if 

the ecosystem has regenerated completely. So, while the post-fire ecosystem may have regenerated 

to pre-fire conditions based on the use of one index, the only way to derive a more accurate 

assessment is to use a range of different remote sensing methods and ground studies that analyse the 

different physical characteristics of wetland environments. 

Figure 17: Changed in burned pixel classification for Support Vector Machine classifier over time. 
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Figure 18: Comparison of time taken for indices to return to pre-fire conditions across the three fire events. 

In their comparison of ten classification methods (including neural networks, support vector 

machine, and classification and regression trees) for burn scar mapping in the Mediterranean, 

Mallinis & Koutsias (2012) concluded that the difference between the accuracies of each method 

was largely statistically insignificant, and that considerations such as performance and efficiency 

would have a greater impact on the final decision of classification method. However, the findings of 

this paper suggest that in wetland ecosystems, the choice of classification method used will have a 

greater impact on the accuracy of the results. The most accurate classifications were supervised, 

particularly the SVM classifier, which provided a good balance between low error and footprint 

completeness, although comes with the caveat of increased training and classifying time when 

compared to other methods. While the supervised methods displayed some variability in accuracy 

both between different fire events and at post-fire periods greater than ~ 1.5 months, they were 

consistently more accurate at delineating both burned areas and other classes than the unsupervised 

classification. One of the potential shortcomings of the neural networks and support vector 

machines classifiers in the ENVI suite is that is doesn’t allows for the cross-validation of the 

classification that is available with the random forest classifier, which would likely influence the 

overall accuracy of the classification and eliminate erroneous classifications. 

One of the objectives of this paper is to translate what was learned about the response of wetlands to 

bushfire events into practical recommendations and applications that could be applied by 

environmental managers at varying spatial scales. Based on the results generated by this study, a 

synthesis of different remote sensing techniques is recommended to complete the burn scar 

mapping process from identification to competition. Fire identification could be undertaken through 

various means, such as the Sentinel Hotspot system, the MODIS Active Fires System, or from local 
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fire reports, but the Sentinel system worked well for this study. Once fires are identified, imagery 

should be acquired both during, and as soon after the fire event has occurred as possible, so as to be 

able to assess the full extent of the burn scar without the interference of regrowth. Depending on the 

size of the fire event, imagery of different spatial resolutions could be used, but for more accurate 

results, sensors with small pixel sizes, such as the Landsat 8 or Sentinel-2A/B satellites should be 

preferred. Indices such as the EVI2 or GNDVI could then be performed on the imagery to 

determine burn extent, and the NBRI/ΔNBR could be used for both extent and severity. The results 

of these indices could also be used as inputs to train supervised classifiers for a more specific 

delineation between burned and unburned areas. Due to the diverse selection of variables that 

influence the characteristics of fires, it is imperative that management strategies be tailored to each 

event and take a holistic and adaptive approach, with consideration for the surrounding ecosystems. 

Ultimately, there are multiple factors to consider when comparing these methods of analysis, and 

from the data it is evident that the diverse methodologies all have distinct and different advantages 

and disadvantages. 
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3. Synthesis 

Current projections predict that in the coming years there will be an observable increase in the 

number of extreme fire days and already severe fire seasons will be prolonged as a result of 

anthropogenic climate change. These delicate and vital wetland ecosystems, and the biodiversity 

they foster, will be at greater risk of damage or degradation from bushfire events and being able to 

utilise the most efficient and effective means of limiting these impacts will become of paramount 

importance. The role of remote sensing in assessing damage and informing rehabilitation and 

management efforts will be further developed as new technologies and techniques arise, and more 

information is gathered about post-fire wetland ecosystems. While there exists significant and 

comprehensive information into the accuracy and efficiency of diverse remote sensing methods for 

burn scar delineation in various dryland environments, the information on the efficacy of different 

remote sensing methods in wetland environments is far more limited, and the unique challenges to 

remote sensing posed by wetland ecosystems are not fully investigated or understood. The aim of 

this thesis is to provide a preliminary insight into how current understandings of remote sensing 

might have to be reconsidered for wetland environments, and what techniques may have to be 

modified or created to achieve the levels of accuracy gained in measuring burn scars in dryland 

environments.  

3.1 Future Research Directions 

There are numerous and diverse potential avenues for continuing this research, including modifying 

the methodologies already used or adding new techniques, analysing burn scars over longer periods 

of time to obverse possible longer lasting effects, and expanding the analysis into similar wetland 

study areas, both within Australia and globally. The methodology used in this study should be more 

broadly applicable to wetlands of similar structure in terms of vegetation composition and 

inundation regime. One such example is the Gwydir Wetlands, which is located some 230 km to the 

north-east of the Macquarie Marshes, which is an area comparable to the Macquarie Marshes in 

terms of vegetation, hydrology, and fire history. The Gwydir Wetlands are also Rasmsar listed, 

indicating their environmental significance and the desire to limit the amount of damage occurring 

from bushfires. 

Other potential future research avenues include the monitoring of other key environmental variables 

in post-fire environments, which if left unmanaged, can cause severe and lasting degradation of the 

ecosystem, potentially resulting in a shift in total ecosystem capability. An example of this is soil 

erosion arising from vegetation loss, which can be highly detrimental to ecosystems, and can be 

monitored remotely through multispectral satellite imagery. This could be combined with a 
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comparison of spectral index profiles and vegetation community mapping, which would allow for a 

targeted approach of the species that are more severely impacted by fire events. This will also allow 

for the monitoring of species that are dependent on fire for growth and determine whether these 

communities are being burnt frequently enough to stimulate the proper amount of growth. 

Ideally, a synthesis of the methodologies used in this study could be adopted to measure burn scars 

in wetlands at much broader spatial scales, so as to further inform already existing global fire 

monitoring systems, but with greater accuracy and finer resolution. In the interests of increasing 

accuracy and efficiency, the entire process could also be semi- or fully automated, with an output 

product that could be updated almost continuously. This could be achieved through one of the 

recently established collaborative supercomputer networks, such as the Australian Data Cube, 

which would allow for the broader dissemination of information to researchers and managers, as 

well as allow for community development.  
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Appendix 

Appendix 1: Accuracy results of Random Forest Classifiers. 

Carinda Rd 

 8/03/16 24/03/16 25/04/16 11/05/16 27/05/16 Average ST.DEV 

Training Accuracy 0.9920 0.9913 0.9741 0.9930 0.9927 0.9886 0.0073 

Training Kappa 

Value 
0.9940 0.9896 0.9690 0.9916 0.9912 0.9871 0.0092 

Validation Accuracy 0.9193 0.9152 0.4842 0.5951 0.4179 0.6663 0.2126 

95% CI 
0.9117, 

0.9264 

0.9075, 

0.9225 

0.4709, 

0.4975 

0.582, 

0.6082 

0.4048, 

0.4311 
N/A N/A 

No Info Rate 0.1841 0.184 0.184 0.184 0.184 N/A N/A 

P-Value (Acc > NIR) < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 N/A N/A 

Overall Kappa 

Value 
0.9017 0.8977 0.9026 0.5088 0.3235 0.7069 0.2445 

 

Masmans 

 29/10/14 1/01/15 17/01/15 2/02/15 18/02/15 6/03/15 Average ST.DEV 

Training Accuracy 0.9766 0.9814 0.9813 0.9800 0.9820 0.9730 0.9766 0.0032 

Training Kappa 

Value 
0.9715 0.9775 0.9773 0.9757 0.9673 0.9673 0.9715 0.0044 

Validation Accuracy 0.7244 0.6381 0.7054 0.6126 0.5087 0.5741 0.7244 0.0739 

95% CI 
0.7122, 

0.7364 

0.6521, 

0.6509 

0.693, 

0.7176 

0.5994, 

0.6256 

0.4953, 

0.5222 

0.5607, 

0.5873 

0.7122, 

0.7364 
N/A 

No Info Rate 0.1881 0.1865 0.1865 0.1865 0.1865 0.1865 0.1881 N/A 

P-Value (Acc > NIR) 
< 2.2e-

16 

< 2.2e-

16 

< 2.2e-

16 

< 2.2e-

16 

< 2.2e-

16 

< 2.2e-

16 

< 2.2e-

16 
N/A 

Overall Kappa Value 0.6717 0.5621 0.6253 0.5423 0.3977 0.4942 0.6717 0.0885 

 

Cresswell 

 2/02/15 6/03/15 23/04/15 9/05/15 Average ST.DEV 

Training Accuracy 0.9779 0.9727 0.9779 0.9659 0.9736 0.0049 

Training Kappa 

Value 
0.9731 0.9673 0.9731 0.9591 0.9681 0.0057 

Validation Accuracy 0.6289 0.6311 0.6289 0.5837 0.6182 0.0199 

95% CI 
0.6157, 

0.6419 

0.6181, 

0.6438 

0.6157, 

0.6419 

0.5706, 

0.5968 
N/A N/A 

No Info Rate 0.1881 0.1824 0.1824 0.1824 N/A N/A 

P-Value (Acc > 

NIR) 
< 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 N/A N/A 

Overall Kappa 

Value 
0.5599 0.5654 0.3755 0.4972 0.4995 0.0764 
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Appendix 1 cont. 

Individual Class Accuracy Results 

Carinda Rd 

Class 8/03/16 24/03/16 25/04/16 11/05/16 27/05/16 Average 

Inundated Vegetation 0.9586 N/A N/A N/A N/A 0.9586 

River or Stream 0.7439 0.8714 0.7751 0.7305 0.5513 0.7344 

Paddock or Field 0.9994 0.9554 0.9875 0.9553 0.9817 0.9759 

Wetland Marsh 0.9336 0.8546 0.9228 0.6165 0.5078 0.7671 

Open Water or Basin 1.0000 1.0000 0.9915 0.6579 0.4995 0.8298 

Sclerophyll Woodland 0.9539 0.9451 0.9311 0.6487 0.4907 0.7939 

Burned N/A 1.0000 0.9998 0.9052 0.9218 0.9567 

 

Cresswell 

Class 2/02/15 6/03/15 23/04/15 9/05/15 Average 

Burned N/A 0.9991 1.0000 1.0000 0.9997 

Dryland Vegetation 0.9465 0.8965 0.9555 0.9162 0.9287 

Field or Paddock 0.9743 0.8685 0.8678 0.8687 0.8948 

Open Plain or Grassland 0.5764 0.8128 0.4964 0.8226 0.6771 

River or Stream 0.8870 0.7010 0.4845 0.4927 0.6413 

Sclerophyll Woodland 0.4117 0.4655 0.3660 0.4732 0.4291 

Wetland Marsh/Inundated 0.9937 0.9242 0.7621 0.7048 0.8462 

 

Masmans 

Class 29/10/14 1/01/15 17/01/15 2/02/15 18/02/15 6/03/15 Average 

Burned N/A 0.9996 0.9880 0.9990 0.9833 0.9996 0.9939 

Dryland Vegetation 0.9107 0.9730 0.9432 0.9117 0.6950 0.9087 0.8904 

Field or Paddock 0.9316 0.9153 0.8867 0.9751 0.9658 0.8776 0.9254 

Open Plain or Grassland 0.9583 0.6797 0.9664 0.5524 0.5754 0.6254 0.7263 

River or Stream 0.7190 0.8156 0.6351 0.8957 0.4999 0.6870 0.7087 

Sclerophyll Woodland 0.4987 0.4434 0.5038 0.4068 0.4406 0.4182 0.4519 

Wetland Marsh/Inundated 0.9661 0.8750 0.9449 0.9920 0.8652 0.9449 0.9314 
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Appendix 1 cont. 

Random Forest Classification Validation Confusion Matrices 

Mid-fire classification. Columns are reference, rows are prediction. 

Carinda Rd 

 Sclerophyll 

Forest 
Burned 

Open Water or 

Basin 

Paddock or 

Field 

River or 

Stream 

Wetland 

Marsh 

Sclerophyll Forest 905 0 0 0 66 0 

Burned 0 1001 0 0 0 0 

Open Water or 

Basin 
0 0 0 0 0 0 

Paddock or Field 2 0 0 1001 0 33 

River or Stream 61 0 0 0 350 248 

Wetland Marsh 32 0 0 0 13 720 

 

Cresswell 

 Sclerophyll 

Forest 

Open Plain or 

Grassland 
Burned 

Dryland 

Vegetation 

Field or 

Paddock 

River or 

Stream 

Wetland 

Marsh 

Sclerophyll 

Forest 
5 331 0 1 0 1 0 

Open Plain or 

Grassland 
0 653 0 119 1 0 0 

Burned 0 0 167 0 0 10 0 

Dryland 

Vegetation 
0 17 0 820 104 0 0 

Field or 

Paddock 
0 0 0 3 679 0 0 

River or Stream 929 0 0 1 0 191 49 

Wetland Marsh 66 0 0 56 218 121 952 

 

Masmans 

 Sclerophyll 

Forest 

Open Plain or 

Grassland 
Burned 

Dryland 

Vegetation 

Field or 

Paddock 

River or 

Stream 

Wetland 

Marsh 

Sclerophyll 

Forest 
5 517 0 0 0 0 0 

Open Plain or 

Grassland 
44 386 0 3 68 0 0 

Burned 0 0 47 4 0 0  

Dryland 

Vegetation 
0 44 0 979 100 0 0 

Field or 

Paddock 
0 0 0 8 834 0 0 

River or Stream 204 5 0 0 0 203 43 

Wetland Marsh 747 49 0 6 0 103 958 
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Appendix 2: Commission and omission error rates of each classifier by fire 

event. 

Carinda Rd Commission Error Rate (%) Omission Error Rate (%) 

Mid-fire 0.14% 23.91% 

1st Post-fire 0.69% 29.85% 

2nd Post-fire 26.67% 49.29% 

3rd Post-fire 28.39% 38.67% 

Average 13.97% 35.43% 

Cresswell     

Mid-fire 4.97% 83.31% 

1st Post-fire 100.00% 100.00% 

2nd Post-fire 0.00% 87.81% 

Average 34.99% 90.37% 

Masmans     

Mid-fire 0.00% 0.00% 

1st Post-fire 0.00% 0.00% 

2nd Post-fire 0.00% 0.00% 

3rd Post-fire 0.00% 0.00% 

4th Post-fire 0.00% 0.00% 

Average 0.00% 0.00% 

 

Carinda Rd Commission Error Rate (%) Omission Error Rate (%) 

Mid-fire 0.01% 68.19% 

1st Post-fire 0.00% 67.38% 

2nd Post-fire 0.00% 62.86% 

3rd Post-fire 0.24% 58.61% 

Average 0.06% 64.26% 

Cresswell   

Mid-fire 0.97% 59.17% 

1st Post-fire 0.10% 76.87% 

2nd Post-fire 0.00% 72.42% 

Average 0.36% 69.49% 

Masmans   

Mid-fire 100.00% 100.00% 

1st Post-fire 98.80% 19.19% 

2nd Post-fire 98.63% 17.44% 

3rd Post-fire 97.24% 15.12% 

4th Post-fire 99.28% 18.02% 

Average 98.79% 33.95% 

Neural Networks 

Random Forest 
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Appendix 2 cont. 

 

Carinda Rd Commission Error Rate (%) Omission Error Rate (%) 

Mid-fire 0.05% 25.01% 

1st Post-fire 0.04% 34.77% 

2nd Post-fire 4.10% 43.55% 

3rd Post-fire 9.14% 35.90% 

Average 3.33% 34.81% 

Cresswell   

Mid-fire 3.03% 49.50% 

1st Post-fire 4.16% 71.19% 

2nd Post-fire 0.86% 70.25% 

Average 2.68% 63.65% 

Masmans   

Mid-fire 71.72% 12.21% 

1st Post-fire 99.59% 4.65% 

2nd Post-fire 99.10% 100.00% 

3rd Post-fire 99.65% 7.56% 

4th Post-fire 99.51% 9.30% 

Average 93.91% 26.74% 

Support Vector Machine 
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Appendix 3: Three-minute thesis poster submission for Wetlands in Drylands 

(WiDs) 2017 conference. 
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A Comparative Analysis of Classification Methods for Burn Scar Mapping in Wetlands 

Mackenzie L. C. Austin1, Hsing-Chung Chang1, Kerrie M. Tomkins1, Timothy J. Ralph1 

This project explores the role and history of fire in the Macquarie Marshes and Gwydir Wetlands 

(NSW) with two key objectives; to compare the spectral indices and classification methods that 

can be utilised for burn scar mapping, and to understand the behaviour of vegetation regeneration 

and regrowth in post-fire wetland ecosystems, namely the rate of regeneration and its relation to 

variables influencing burn severity, such as wetland moisture content. The methodology consists 

of multiple stages, the first of which includes performing spectral indices such as the normalised 

vegetation differential index (NDVI) and NDVI-Difference, burned area index (BAI), and the leaf 

area index (LAI) using satellite imagery. These processes measure the red and near-infrared light 

reflected from a sensed surface, which can be used to calculate green vegetation cover and density, 

which will allow for the detection of the large vegetation losses caused by bushfires. These outputs 

will then be classified by different classification methods such as neural networks (NNs), support 

vector machine (SVM) and random forest (RF) to determine the accuracy of the delineation 

between ‘burned’ and ‘unburned’ pixels, with a comparative statistical analysis performed to 

ensure accurate results. Finally, these outputs will be sequenced to form a time-series analysis, 

highlighting vegetation regeneration over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, 

Australia. 

 

Appendix 4: WiDs 2017 conference abstract. 



66 
 

Appendix 5: Index of sensors and their characteristics. 

 


