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Abstract

The purpose of this thesis is to study the new criterion for boundedness of some singular
integrals. The main results of this thesis are presented in four parts.

1. Recall the Hörmander condition for boundedness of singular integrals which has
been an important result of the Calderón-Zygmund theory.

2. Discuss a new criterion for singular integral operators to be bounded on Lp(X), 1 <
p <∞, where X is a space of homogeneous type. This criterion is an improvement
of the Hörmander condition and it has had many applications in recent research of
singular integrals in the last 20 years.

3. Discuss new function spaces which suit these operators such as BMOA spaces asso-
ciated to operators.

4. Use these results to study the functional calculus of operators satisfying certain
kernel estimates.
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1
Introduction

Harmonic analysis is a mathematical discipline that is originated with the fundamental
problem of representing functions as sum of sine and cosine functions. Nowadays, har-
monic analysis has been developed extensively which has had important links to other
fields of mathematics, especially complex analysis, number theory and partial differential
equations. Applied harmonic analysis has been instrumental in a number of engineering
and industrial mathematics, such as signal processing.

A central part of modern harmonic analysis is the Calderón-Zygmund theory which
was developed by many famous mathematicians since 1960’s. A main aim of this theory
is to study the boundedness of singular integral operators. A typical example of singular
integral operator is the Hilbert transform. It is given by

Hf(x) =
1

π
p.v.

� ∞
−∞

f(x− y)

y
dy

where p.v. is abbreviation for the term “principal value”. Historically, the study of
Hilbert transform on the real line R relied on complex analysis. The extension of the
Hilbert transform to higher dimension spaces, namely Rn, gives us the Riesz transform
Rj = ∂

∂xj
∆−1/2 (where ∆ denotes the Laplace operator). The boundedness of the Riesz

transform Rj gives one tool to compare the norm of the partial derivatives ∂
∂xj

and the

square root of the Laplace operator. Let us remind that the Calderón-Zygmund theory
asserts a sufficient condition so-called the Hörmander integral condition for a singular
integral to be of weak type (1, 1). Recall that an integral operator T with the associated
kernel k(x, y) satisfies the Hörmander integral condition if there exist C > 0 and δ > 0
such that �

d(x,y)≥δd(x,y1)

|k(x, y)− k(x, y1)|dν(x) ≤ C

for all y, y1 ∈ X.
However, in practice, there are a number of operators which do not fall within the

scope of the Calderón–Zygmund theory, i.e. their associated kernels do not satisfy the
Hörmander integral condition. For example, in this thesis we consider the functional
calculus f(L) of an general operator L which enjoys only the suitable upper bound where
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f is a bounded holomorphic function. One of the most typical examples for a such operator
is the Schrödinger operator L = −∆ + V on Rn where 0 ≤ V ∈ L1

loc(Rn). For the details,
we refer to Chapter 5.

Therefore, in order to treat these operators, we require new approaches. In [4], Duong
and McIntosh introduced a sufficient condition which is weaker than the Hörmander
integral condition for a class of singular integrals to be of weak-type (1, 1). We now briefly
describe the main result in [4]. Let T be a linear/sublinear operator which is bounded
on L2(X) and with associated kernel k(x, y). Suppose that there are operators At with
associated kernels at(x, y) satisfying suitable upper bound estimates. If the operators TAt
have the associated kernels Kt such that there is a constant δ, C > 0 so

�
d(x,y)≥δt

1
m

|k(x, y)−Kt(x, y)|dν(x) ≤ C, for all y ∈ X, (1.1)

then the operator is of weak type (1, 1).
Under the particular choice of the family At, the condition (1.1) turns out to be the

Hörmander integral condition. The flexibility of the family At allows us to prove the
weak type estimates of singular integrals beyond the Calderón-Zygmund theory such as
the functional calculus of a general operator and the generalized Riesz transforms in
various settings. See for example [4].

Motivated by this problem, the main aim of this thesis is to discuss the main results
in [4] and [5]. More precisely, we present the proof of the weak type (1, 1) estimate for
singular integrals satisfying the condition (1.1). Then we also review the main results in
[5] which considered a new BMO space associated to the family of operators At. It is
interesting to note that the new BMO space in [5] is similar to the classical BMO space in
the sense that it pertains a number of important properties of the classical BMO spaces
such as the interpolation property with the Lebesgue spaces and the endpoint estimates
in the study of the boundedness of singular integrals.

The structure of the thesis is organized as follows. In Chapter 2, we recall some
backgrounds in harmonic analysis related to interpolation theorem, singular integrals and
BMO spaces in the classical case Rn with simple settings. Chapter 3 will discuss the main
results in [4]. A discussion on the theory of the new BMO space associated to a general
family of operator At in [5] will be given in Chapter 4. We first recall the definition of
the new BMO space and then reprove important properties of the new spaces such as
John–Nirenberg’s inequality and the interpolation property for the new BMO space with
the Lp space. In Chapter 5, we consider a case study of the functional calculus of a general
operator satisfying a suitable upper bounds for its heat kernel. We will show that the
functional calculus fits nicely into the settings in [4] and [5], hence we obtain the weak
type estimate and the endpoint estimate on the new BMO space for this operator.
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2
Calderón-Zygmund Theory and BMO(Rn)

2.1 Calderón-Zygmund Theory on Singular Integrals

in Rn

We will first discuss some results for real and complex valued functions on Rn. For a ∈ Rn
and r > 0, we denote B(a, r) the ball of center a and radius r. In addition, for every
measurable sets B,C ⊂ Rn we denote B − C to be B ∩ Cc and |B| to be the measure of
B. Throughout this paper, the letters c and c′ will denote (possibly different) constants
that are independent of the essential variables.

2.1.1 Maximal Function

For a locally integrable function f , for any r > 0 and for any open ball B ⊂ Rn, we define
the centered Hardy-Littlewood maximal function of f as

Mcf(x) = sup
r>0
|B(x, r)|−1

�
B(x,r)

|f(y)|dy (2.1)

and the uncentered Hardy-Littlewood maximal function of f as

Mf(x) = sup
x∈B
|B|−1

�
B

|f(y)|dy (2.2)

where the supremum in (2.2) is taken over all open balls containing x.

Lemma 2.1.1 The uncentered Hardy-Littlewood function and the centered Hardy-Littlewood
function are equivalent in the sense:

Mcf(x) ≤Mf(x) ≤ cMcf(x)

for every locally integrable function f .
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Proof. The first inequality is clear. On the other hand, if x ∈ B(x0, r), then B(x0, r) ⊂
B(x, 2r) and

1

|B(x0, r)|

�
B(x0,r)

|f(y)|dy ≤ |B(x, 2r)|
|B(x0, r)|

1

|B(x, 2r)|

�
B(x,2r)

|f(y)|dy

≤ cMcf(x).

Hence, the second inequality is obtained by taking the supremum over all the balls con-
taining x.

The following lemma and theorem illustrate some properties of the Hardy-Littlewood
maximal functions.

Lemma 2.1.2 Let f be a locally integrable function. Then Eλ = {x ∈ Rn : Mf(x) > λ}
is an open set.

Proof. Let x ∈ Eλ. There exists a ball B containing x such that:

1

|B|

�
B

|f(y)|dy > λ.

Hence, for every z ∈ B we have Mf(z) > λ, and

B ⊂ Eλ.

Therefore, Eλ is open in Rn.

Lemma 2.1.3 Let X be a measurable subset of Rn covered by a family {Bα}α∈I of balls
of bounded diameters. Then there exists a disjoint sequence Bαi of these balls such that

|X| ≤ 5n
∑
i

|Bαi |. (2.3)

For the proof of the lemma see chapter 1, page 9 of [9].

Theorem 2.1.4 Let f be a function defined on Rn.

a. If f ∈ Lp(Rn), 1 < p <∞, then Mf is finite almost everywhere.

b. If f ∈ L1(Rn), then |{x ∈ Rn : |f(x)| > α}| ≤ c
α
‖f‖1.

c. If f ∈ Lp(Rn), 1 < p <∞, then ‖M(f)‖p ≤ cp‖f‖p.
In the above estimates c and cp are constants depend on the dimension n.

Proof. For the case where f = 0 the proof is direct. Now if f 6= 0 and α > 0, let
Eα = {x ∈ Rn,Mf(x) > α}. Thus, for each x ∈ Eα, there is rx > 0 such that

|B(x, rx)|−1

�
B(x,rx)

|f(x)|dx > α.

Therefore,

|B(x, rx)| <
1

α

�
B(x,rx)

|f(x)|dx.

In addition, we have
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Eα ⊆ ∪
x∈Eα

B(x, rx).

Hence, by using Lemma 2.1.3 there is a mutually disjoint family of balls B(xi, rxi) such
that

5n
∑
i

|B(x, rxi)| ≥ |Eα|.

Thus,

|Eα| ≤ c
∑
i

|B(x, rxi)| ≤
c

α

�
∪B(x,rxi )

|f(x)|dx < c

α
‖ f ‖1

which proves (b).

We now prove (c).
For p =∞ we have

1

|B(x, r)|

�
B(x,r)

|f(x)|dx ≤ 1

|B(x, r)|

�
B(x,r)

‖f‖∞dx = ‖f‖∞.

Thus, ‖M(f)‖∞ ≤ ‖f‖∞.
Suppose that 1 < p <∞ and let f1 = 1{x,|f(x)|≥α

2
}f(x). Note that if f ∈ Lp(Rn),

then |{x ∈ Rn, |f(x)| ≥ α
2
|} <∞. Thus, by using Hölder’s inequality we have

�
Rn
|f1(x)|dx =

�
Rn
|f(x)|1{x∈Rn:|f(x)|≥α

2
}dx ≤ ‖f‖p|{x ∈ Rn |f(x)| ≥ α

2
}|

1
q .

Hence, f1 ∈ L1(Rn). In addition, we have M(f) < M(f1) + α
2
, so

|Eα| ≤ |{x ∈ Rn : M(f1)(x) > α
2
}| ≤ c

α
‖f1‖1.

Therefore,
�
Rn
M(f)(x)pdx = p

� ∞
0

αp−1|{x ∈ Rn;M(f(x)) > α}|dα

≤ c

� ∞
0

αp−2

�
{x∈Rn;|f(x)|>α

2
}
|f(x)|dxdα

= c

�
Rn
|f(x)|

� 2|f(x)|

0

αp−2dαdx (due to Fubbini’s theorem)

= c

�
Rn
|f(x)||2f(x)|p−1dx = c‖f‖p

which proves (c) and then (a).

Definition 2.1.5 Let T be a mapping from Lp(Rn) to Lq(Rn), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞.
Then we say

(i) T is of type (p, q) if T is bounded operator from Lp(Rn) to Lq(Rn).

(ii) T is of weak-type (p, q), for q =∞, if T is bounded operator from Lp(Rn) to L∞(Rn).

(iii) T is of weak-type (p, q) , for q <∞, if for every α > 0 and f ∈ Lp(Rn) we have

|{x ∈ Rn : |Tf(x)| > α}| ≤ (
c‖f‖p
α

)q.
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Lemma 2.1.6 If T is of type (p, q), then T is of weak-type (p, q).

Proof. For q <∞, we have

|{x ∈ Rn; |Tf(x)| > α}| ≤
�
|{x∈Rn;|Tf(x)|>α}|

|Tf(y)|q

αq
dy ≤ c

‖Tf‖qq
αq

≤ c
‖f‖qp
αq

.

2.1.2 Calderón-Zygmund Decomposition

In Fourier analysis, harmonic analysis and singular integrals, the Calderón-Zygmund de-
composition is a fundamental result. The idea is partitioning Rn into two sets: one where
the function is essentially small and the other where the function is essentially large but
with some control.

In order to prove the Calderón-Zygmund decomposition, we first state the two lemmas
below.

Lemma 2.1.7 Given a non empty close subset E of Rn, then its complement is a union
of countable cubes Qi, whose sides are parallel to the x-axis, whose interiors are mutually
disjoint, and whose diameters are approximately proportional to their distances from E.
More explicitly:

(a) ∪iQi = Ec.

(b) The interiors of Qi are mutually disjoint.

(c) There exists positive constants c1 and c2 so that

c1diam(Qi) ≤ d(Qi, E) ≤ c2diam(Qi).

Where d(Qi, E) is the distance between Qi and the set E and diam(Qi) is the length
of its diameter.

For the proof of the lemma see page 16 of [9].

Lemma 2.1.8 Let f : Rn → R be a non negative integrable function and α be a positive
constant. Then there is an open set Ω such that:

(i) Ω is a union of cubes Qi whose interiors are mutually disjoint.

(ii) |Ω| ≤ c
α
‖f‖1.

(iii) 1
|(Qi)|

�
Qi
f(x)dx ≤ cα.

(iv) f(x) ≤ α almost everywhere in F = Ωc.

Proof. Let F = {x ∈ Rn : Mf(x) ≤ α}, F is a closed set. Thus, by using Lemma 2.1.7,
we have that Ω = F c is equal to union of countable cubes Qi that verifies (a), (b) and (c).
Furthermore, Theorem 2.1.4 (b) shows that |Ω| ≤ c

α
‖f‖1.

Let Qi be one of these cubes and let Bi be a closed sphere that contains Qi and intersects
F . Let {xn} be a sequence of points in Bi ∩ F such that d(xn, Qi) converges to d(Qi, F )
where d(xn, Qi) is the distance between the point xn and the set Qi and where d(Qi, F )
is the distance between Qi and F . Since Bi is a compact set, there is a subsequence
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(xnk)k that converges to a point pi. F is a closed set, thus pi ∈ F and the distance
d(pi, Qi) = d(F,Qi). Let B(pi, ri) be the smallest ball which contains Qi. Furthermore,

Lemma 2.1.7 and some elementary geometry show that the ratio σi = |B(pi,ri)|
|Qi| is bounded

by a constant for any Qi. As pi ∈ F , Mf(pi) ≤ α. Therefore,

1

|Qi|

�
Qi

f(x)dx =
1

|B(pi,ri)||Qi|
|B(pi,ri)|

�
Qi

f(x)dx ≤ σiM(f)(pi) ≤ cα.

Thus (iii) is proved. In addition, by using the Lebesgue differentiation theorem f(x) ≤ α
for x ∈ F . Hence, (iv) is proved.

Lemma 2.1.9 Suppose f ∈ L1(Rn) and α > 0. Then there is a decomposition of f to a
“good” function g and a “bad” function b, where

f = g + b and where b =
∑

i bi

such that:

(i) |g(x)| ≤ cα for almost all x ∈ Rn .

(ii) There is a sequence of cubes {Qi} with mutually disjoint interiors, such that the
support of each bi is contained in Qi.

(iii)
�
Rn bi(x)dx = 0 and f(x) ≤ α, for x ∈ (∪

i
Qi)

c .

(iv)
�
Qi
|bi(x)|dx ≤ cα|Qi|.

(v) Σi|Qi| ≤ c
α

�
|f(x)|dx.

Proof. Using Ω, F and the sequence of cubes {Qi} defined in Lemma 2.1.8 for the function
|f |, let

g(x) =

{
f(x), x ∈ F

1
|Qi|

�
Qi
f(y)dy, x ∈ Qi

and

bi(x) =

{
0, x ∈ F
f(x)− 1

|Qi|

�
Qi
f(y)dy, x ∈ Qi.

Property (iii) is obtained by integration. However, (i), (ii) and (v) are obtained directly
from Lemma 2.1.8.
Furthermore, �

Rn
|bi|dx ≤ 2

�
Qi

|f(x)|dx ≤ cα|Qi|.

Hence, (iv) is proved. In addition, by using (iv) and (v) we have
�
|b(x)|dx ≤ c

�
|f(x)|dx.

7



2.1.3 Marcinkiewicz Interpolation Theorem

The interpolation theorem is used to prove the boundedness of an operator. In order to
prove this theorem, we need to discuss some properties of Lp(Rn)+Lq(Rn), for 1 ≤ p ≤ ∞,
1 ≤ q ≤ ∞. We define Lp(Rn)+Lq(Rn) to be the space of all functions, so that f = f1+f2,
with f1 ∈ Lp(Rn) and f2 ∈ Lq(Rn).

Lemma 2.1.10 For all r such that p ≤ r ≤ q, we have Lr(Rn) ⊆ Lp(Rn) + Lq(Rn).

Proof. For f ∈ Lr(Rn) and α > 0, let

f1(x) =

{
f(x), |f(x)| > α
0, |f(x)| ≤ α

and

f2(x) =

{
f(x), |f(x)| ≤ α
0, |f(x)| > α.

So �
|f1(x)|p =

�
{x∈Rn,|f(x)|>α}

|f1(x)|r|f1(x)|p−rdx ≤ αp−r
�
|f(x)|rdx <∞

and �
|f2(x)|qdx =

�
|f2(x)|r|f2(x)|q−rdx ≤ αq−r

�
|f(x)|rdx <∞.

Hence, f1 ∈ Lp(Rn), f2 ∈ Lq(Rn) and f(x) = f1(x) + f2(x).

Theorem 2.1.11 Suppose that 1 < r ≤ ∞. Let T be a sublinear operator which is
of weak-type (1, 1) and of weak-type (r, r). Then T is of type (p, p) for all p such that
1 < p < r. In another way, for every 1 < p < r, if f ∈ Lp(Rn), then

‖T (f)‖p ≤ Ap‖f‖p.

Proof. First consider the case r < ∞. Let f ∈ Lp(Rn) and α > 0. Then by using
the decomposition in Lemma 2.1.10, there are f1 ∈ L1(Rn) and f2 ∈ Lr(Rn) such that
f(x) = f1(x) + f2(x) .
We have

|T (f)(x)| ≤ |T (f1)(x)|+ |T (f2)(x)|.

Therefore,

{x ∈ Rn; |T (f)(x)| ≥ α} ⊆ {x ∈ Rn; |T (f1)(x)| ≥ α

2
} ∪ {x ∈ Rn; |T (f2)(x)| ≥ α

2
}.

Hence,

�
Rn
|T (f)(x)|pdx = p

� ∞
0

αp−1|{x ∈ Rn, |T (f)| ≥ α}|dα

≤ p

� ∞
0

αp−1(|{x ∈ Rn; |T (f1)(x)| ≥ α

2
}|+ |{x ∈ Rn; |T (f2)(x)| ≥ α

2
}|)dα.
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In addition, using the weak type (1, 1) and the weak type (r, r) of T we have� ∞
0

αp−1(|{x ∈ Rn; |T (f1)(x)| ≥ α

2
}|)dα ≤ c

� ∞
0

αp−2

�
Rn
|f1(x)|dxdα

≤ c

� ∞
0

αp−2

�
{x∈Rn;|f(x)|>α}

|f(x)|dxdα

≤ c

�
Rn
|f(x)|

� |f(x)|

0

αp−2dαdx

≤ c

�
Rn
|f(x)|pdx

and� ∞
0

αp−1(|{x ∈ Rn; |T (f2)(x)| ≥ α

2
}|)dα ≤ c

� ∞
0

αp−r−1

�
Rn
|f2(x)|rdxdα

≤ c

� ∞
0

αp−r−1

�
{x∈Rn;|f(x)|≤α}

|f(x)|rdxdα

≤ c

�
Rn
|f(x)|r

� ∞
|f(x)|

αp−1−rdαdx

≤ c

�
Rn
|f(x)|pdx.

Thus, ‖T (f)‖p ≤ c‖f‖p.

Now consider the case r =∞. There is a > 0 such that for every g ∈ L∞, ‖T (g)‖∞ ≤
a‖g‖∞. Let f ∈ Lp. Write f = fα1 + fα2 such that

fα1 (x) =

{
f(x) , |f(x)| > α

2a

0 , |f(x)| ≤ α
2a

and

fα2 (x) =

{
f(x) , |f(x)| ≤ α

2a

0 , |f(x)| > α
2a
.

We have fα2 ∈ L∞(Rn). Hence, ‖Tfα2 ‖∞ ≤ a α
2a

= α
2
. Thus,

|{x ∈ Rn : |T (fα2 )(x)| > α

2
}| = 0

and

|{x ∈ Rn : |T (f)(x)| > α|}| ≤ |{x ∈ Rn : |T (fα1 )(x)| > α

2
}| ≤ c

α

�
|f(x)|> α

2a

|f(x)|dx.

Therefore,

‖T (f)‖pp =p

� ∞
0

αp−1|{x ∈ Rn : |T (f)(x)| > α}|dα

≤ c

� ∞
0

αp−2

�
|f(x)|> α

2a

|f(x)|dxdα

≤ c

�
Rn
|f(x)|

� 2af(x)

0

αp−2dα

≤ c

�
Rn
|f(x)|pdx.

Thus the theorem is proved.
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2.1.4 Singular Integral Operators with The Hörmander Condi-
tion

The following theorem studies the boundedness of some singular operators where their
kernels have some specific conditions such as the condition (3) below.

Theorem 2.1.12 Let K ∈ L2(Rn) and T be an operator such that

1. for all f ∈ L1(Rn) ∩ Lp(Rn), we have

(Tf)(x) =

�
Rn
K(x− y)f(y)dy,

2. K̂ ∈ L∞(Rn) where K̂ is the Fourier transform of K,

3. there exists a constant C > 0, such that�
{x∈Rn:|x|>2|y|}

|K(x− y)−K(x)|dx ≤ C.

Then T is of weak-type (1,1). Furthermore, T can be extended to be a bounded operator
on Lp(Rn), with 1 < p <∞.

Proof. First, we will prove that T is bounded on L2(Rn), then we will prove that T is of
weak-type (1, 1) in order to use the interpolation theorem.
Let f ∈ L1(Rn) ∩ L2(Rn), we have T (f)(x) = K ∗ f(x) and (Tf)∧(y) = K̂(y)f̂(y). Thus,
by using Plancherel theorem and the boundedness of K̂, we have

‖T (f)‖2 ≤ C‖f‖2

In addition, L1(Rn) ∩ L2(Rn) is dense in L2(Rn). Therefore, T can be extended to be a
unique bounded operator on L2(Rn). Hence, T is weak-type (2, 2).

We now prove that T is weak-type (1, 1). Let f(x) ∈ L1(Rn) ∩ L2(Rn). Fix α for
a moment. Then by using Lemma 2.1.8 we have Rn = F ∪ Ω, F ∩ Ω = ∅; |f(x)| < α,
x ∈ F and Ω = ∪

i
Qi. Using g, b and bi defined in the proof of Lemma 2.1.9 we have

f = g + b = g +
∑
i

bi and

‖g(x)‖2
2 =

�
Ωc
|g(x)|2dx+

∑
i

�
Qi

|g(x)|2dx

=

�
Ωc
|f(x)|2dx+

∑
i

(
1

|Qi|

�
Qi

|f(x)|dx)2

�
Qi

dx

≤ α

�
Rn
|f(x)|dx+

∑
i

1

|Qi|
(

�
Qi

|f(x)|dx)2

≤ α

�
Rn
|f(x)|dx+ cα(

∑
i

�
Qi

|f(x)|dx) ≤ cα‖f‖1

Furthermore, T is bounded on L2(Rn). Thus,

|{x ∈ Rn, |T (g)(x)| > α

2
}| ≤ c‖g‖2

α2
≤ cα‖f‖1

α2
=
c

α
‖f‖1.

Set Q∗i = 2n
1
2Qi. Let Ω∗ = ∩Q∗i and F ∗ = Ω∗c. Thus,
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1. Qi ⊂ Q∗i .

2. |Ω∗| ≤ (2n
1
2 )n|Ω|.

3. If x /∈ Q∗i , then |x− yi| ≥ 2|y − yi| for all y ∈ Qi, with yi is the center of Qi.

Given that
�
Qi
bidx = 0, we have

Tbi(x) =

�
Qi

(K(x− y)−K(x− yi))bi(y)dy.

and �
F ∗
|Tb(x)|dx ≤

∑
i

�
∩Q∗cj

�
Qi

|K(x− y)−K(x− yi)||b(y)|dydx

≤
∑
i

�
Q∗ci

�
Qi

|K(x− y)−K(x− yi)||b(y)|dydx

≤
∑
i

�
Qi

(�
|x−yi|≥2|y−yi|

|K(x− y)−K(x− yi)|dx
)
|b(y)|dy

≤ c
∑
i

�
Qi

|b(y)|dy

≤ c‖f‖1.

In addition,

|{x ∈ Rn, |Tb(x)| > α

2
}| = |{x ∈ F ∗, |Tb(x)| > α

2
}|+ |{x ∈ Ω∗, |Tb(x)| > α

2
}|

≤ c

α
‖f‖1 + |Ω∗|

≤ c

α
‖f‖1 + (2n

1
2 )n|Ω|

≤ c

α
‖f‖1.

Hence,

|{x ∈ Rn, |Tf(x)| > α| ≤ |{x ∈ Rn, |Tb(x)| > α

2
}|+ |{x ∈ Rn, |T (g)(x)| > α

2
}|

≤ c

α
‖f‖1.

It follows that T is of weak-type (1,1). Hence, by using interpolation theorem, we have
T is bounded on Lp(Rn) for 1 < p < 2. In another way, for every f ∈ Lp(Rn) there is
cp > 0, such that

‖T (f)‖p ≤ cp‖f‖p
We now prove the boundedness in case p > 2. Let C0(Rn) be the set of continuous

functions with compact a support and q be a positive real number such that 1
q

+ 1
p

= 1.
Let

Sq = {φ ∈ C0(Rn) : ‖φ‖q ≤ 1}
If f is locally integrable and

sup
φ∈Sq
|〈f, φ〉| = sup

φ∈Sq
|
�
Rn
f(x)φ(x)dx| <∞,

11



then f ∈ Lp(Rn) and ‖f‖p = sup
φ∈Sq
|〈f, φ〉|.

Let g ∈ Lp(Rn) ∩ L1(Rn). We have K ∈ L2(Rn), so K ∗ g ∈ L2(Rn). Hence, for every
φ ∈ Sq �

Rn
(K ∗ g)(x)φ(x)dxdy

converge absolutely and by using Fubini’s theorem, we have

〈Tg, φ〉 =

�
Rn

(K ∗ g)(x)φ(x)dx =

�
Rn
g(y)

�
Rn
K(x− y)φ(x)dxdy.

Let K∗(x) = K(−x) and T ∗ be an operator such that for all f ∈ L1(Rn) ∩ Lq(Rn),

(T ∗f)(x) =

�
Rn
K∗(x− y)f(y)dy.

Let φ ∈ Sq. Given that p > 2 then q ∈ (1, 2), so by using the previous result we have T ∗

is bounded on Lq(Rn) and
‖T ∗(φ)‖q ≤ cq‖φ‖q ≤ cq.

Hence,

|〈Tg, φ〉| = |
�
Rn
T (g)(x)φ(x)dx|

= |
�
Rn
g(y)

�
Rn
K(x− y)φ(x)dxdy|

= |
�
Rn
g(y)T ∗(φ)(y)dy|

≤ ‖g(y)‖p‖T ∗φ‖q
≤ cq‖g‖p.

Thus, ‖T (g)‖p ≤ cq‖g‖p and this completes our proof.
Theorem 2.1.12 can be generalized as follow.

Theorem 2.1.13 Let T be a bounded operator on L2(Rn) such that:

1. T has an associated kernel K(x, y), i.e

(Tf)(x) =

�
Rn
K(x, y)f(y)dy

for each continuous function of compact support f and for almost all x not in the
support of f .

2. There are positive constants a and C so that :�
|x−y|≥a|y−y1|

|K(x, y)−K(x, y1)|dx < C

and �
|x−y|≥a|x−x1|

|K(x, y)−K(x1, y)|dy < C.

Then T is of weak-type (1, 1). Furthermore, T can be extended to be a bounded operator
on Lp(Rn), with 1 < p <∞.

The proof of Theorem 2.1.13 is similar to the proof of Theorem 2.1.12 with some modifi-
cations and we omit the details.
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2.2 BMO Spaces

Definition 2.2.1 For a complex-valued locally integrable function f on Rn and for a
measurable set Q ⊂ Rn, we define the mean of f over Q as:

fQ =
1

|Q|

�
Q

f(x)dx

Definition 2.2.2 For a complex-valued locally integrable function f on Rn, we define

‖f‖BMO = sup
Q

1

|Q|

�
Q

|f(x)− fQ|dx (2.4)

where the supremum is taken over all cubes Q in Rn. Let BMO(Rn) be the set of all
locally integrable functions f on Rn with ‖f‖BMO <∞.

Note that if f is a constant function then ‖f‖BMO = 0, therefore ‖.‖BMO is not a norm.
However, if f, g ∈ BMO(Rn) and λ ∈ C, then f + g ∈ BMO, λf ∈ BMO and

‖λf + g‖BMO ≤ |λ|‖f‖BMO + ‖g‖BMO

In addition, L∞(Rn) ⊂ BMO(Rn) and if f ∈ L∞(Rn) then ‖f‖BMO ≤ 2‖f‖∞.

Definition 2.2.3 For a complex-valued locally integrable function f on Rn, set

‖f‖BMOball = sup
B

1

|B|

�
B

|f(x)− fB|dx (2.5)

where the supremum is taken over all balls B in Rn.

Note that there are an, bn > 0 such that

an‖f‖BMO ≤ ‖f‖BMOball ≤ cn‖f‖BMO.

Proposition 2.2.4 Let f ∈ BMO(Rn). We have the following properties:

(1) If a cube Q1 is contained in a cube Q2, then

|fQ2 − fQ1| ≤
|Q2|
|Q1|
‖f‖BMO.

(2) Given a ball B and a positive integer m, we have

|fB − f2mB| ≤ m2n‖f‖BMO.

Proof. For the inequality (1), we have

|fQ2 − fQ1| ≤
1

|Q1|

�
Q1

|fQ2 − f(x)|dx

≤ 1

|Q1|

�
Q2

|fQ2 − f(x)|dx

≤ |Q2|
|Q1|
‖f‖BMO.
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For the inequality (2), we have

|fB − f2mB| ≤
m∑
i=1

|f2i−1B − f2iB|

≤
m∑
i=1

|2iB|
|2i−1B|

‖f‖BMO

≤
m∑
i=1

2n‖f‖BMO

= m2n‖f‖BMO

2.2.1 John-Nirenberg Inequality

One of the features of BMO functions is their exponential integrability. This is the main
aim of the following theorem.

Theorem 2.2.5 For f ∈ BMO(Rn), for all cubes Q, and all positive α we have:

|{x ∈ Q : |f(x)− fQ| > α}| ≤ c|Q|e
−aα

‖f‖BMO

with a and c are positive constants that depend on n only.

Proof. It is sufficient to prove the case when ‖f‖BMO = 1.
Let Q be a fix cube in Rn and a constant b > 1. We will set up a criterion in order to
have a collection of cubes Qk

i such that there is some control on their measures and

{x ∈ Rn : |f(x)− fQ| > 2nkb} ⊆ ∪
i
Qk
i .

We will set the stopping time for a cube P :

1

|P |

�
P

|f(x)− fQ|dx > b. (2.6)

Given ‖f‖BMO = 1, then we have that Q doesn’t verify the property (2.6). Subdivide
Q into 2n equal closed subcubes with disjoint interiors. We choose the subcubes with
property (2.6) and then for the subcubes that are not chosen, we subdivide them to 2n

equal closed subcubes and choose again the ones that verify (2.6). By repeating the
process, we will obtain a countable set of cubes {Q1

i } that satisfy:

(1) b < 1
|Q1
j |

�
Q1
j
|f(x)− fQ|dx ≤ 2nb.

(2) |fQ − fQ1
i
| ≤ 2nb.

(3)
∑

i |Q1
i | ≤ 1

b
|Q|.

(4) |f − fQ| ≤ b almost everywhere on the set Q− ∪iQi.

The first inequality in (1) can be obtained from property (2.6). For second inequality in
(1), we have

1

|Q1
i |

�
Q1
i

|f(x)− fQ|dx ≤
|Q|
|Q||Q1

i |

�
Q1
i

|f(x)− fQ| ≤ 2n
1

|Q|

�
Q

|f(x)− fQ|dx ≤ 2nb.
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For (2), we have |fQ − fQ1
i
| ≤ 1

|Q1
i |

�
Q1
i
|fQ − f(y)|dy ≤ 2nb.

Using (1) and the fact that Q1
i have disjoints interiors, we have:∑

i

|Q1
i | ≤

1

b

∑
i

�
Q1
j

|f(x)− fQ|dx ≤
1

b

�
Q

|f(x)− fQ|dx ≤
1

b
‖f‖BMO|Q| ≤

1

b
|Q|.

Thus, the proof of (3). Finally (4) is obtained by using the Lebesgue differentiation the-
orem.

We repeat the same process for each Q1
i , but with the property

1

|P |

�
P

|f(x)− fQ1
i
|dx > b. (2.7)

Hence, we obtain a countable set of cubes of {Q2
j}. We repeat the process for all Q2

i to get
a collection of cubes {Q3

s}. By iteration, we will get a collection of cubes Qs
i that verifies:

(a) The interior of each Qs
j is included in a unique Qs−1

k

(b) b < 1
|Qsj |

�
Qsj
|f(x)− fQs−1

k
|dx ≤ 2nb.

(c) |fQs−1
k
− fQsj | ≤ 2nb.

(d)
∑

j |Qs
j| ≤ 1

bs
|Q|.

(e) |f − fQs−1
j
| ≤ b for almost everywhere on the set Qs−1

k − ∪jQs
j .

The proof of these properties is similar to the one above.
Furthermore, we have |f − fQ1

i
| ≤ b for a.e on Q1

i − ∪
j
Q2
j and |fQ − fQ1

i
| ≤ 2nb.

Thus
|f − fQ| ≤ sup{b, b+ 2nb} = b+ 2nb ≤ 2n2b

a.e on Q− ∪
j
Q2
j .

With a similar argument with some modifications, we obtain:

|f − fQ| ≤ 2nsb

almost everywhere on Q− ∪
j
Qs
j . Hence,

|{x ∈ Q : |f(x)− fQ| > 2nsb}| ≤ | ∪
j
Qs
j| ≤ b−s|Q|.

Let α > 0. If α ≤ 2nb, then

|{x ∈ Q : |f(x)− fQ| > α}| ≤ |Q| ≤ |Q|e2nbe−α ≤ |Q|e2nbe−
log b
2nb

α

If α > 2nb , then there is a positive integer s such that

2nsb < α ≤ 2n(s+ 1)b.

Thus,

|{x ∈ Q : |f(x)− fQ| > α}| ≤ |{x ∈ Q : |f(x)− fQ| > 2nsb}|
≤ b−s|Q|

≤ |Q|be−
log b
2nb

α

≤ |Q|e2nbe−
log b
2nb

α.

Thus the proof of Theorem 2.2.5 is complete.
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Corollary 2.2.6 For all 1 < p <∞, we have

sup
Q

(
1

|Q|

�
Q

|f(x)− fQ|pdx)
1
p ≈ ‖f‖BMO

Proof. We first prove that

sup
Q

(
1

|Q|

�
Q

|f(x)− fQ|pdx
) 1

p

≤ c‖f‖BMO.

We have

1

|Q|

�
Q

|f(x)− fQ|pdx =
p

|Q|

� ∞
0

αp−1|{x ∈ Q : |f(x)− fQ| > α}|dα

≤ pc|Q|
|Q|

� ∞
0

αp−1e
− aα
‖f‖BMO dα

= c‖f‖pBMO.

By taking the supremum over all cubes we get the inequality.
In addition,

1

|Q|

�
Q

|f(x)− fQ|dx ≤
|Q|

1
q

|Q|

(�
Q

|f(x)− fQ|pdx
) 1

p

=
1

|Q|
1
p

(�
Q

|f(x)− fQ|pdx
) 1

p

.

By taking the supremum of both sides over all cubes we get

‖f‖BMO ≤ sup
Q

(
1

|Q|

�
Q

|f(x)− fQ|pdx
) 1

p

.

This completes the proof of Corollary 2.2.6.

2.2.2 Interpolation of BMO Spaces

Theorem 2.2.7 Let 1 ≤ p0 <∞. Let T be a bounded linear operator from Lp0(Rn) into
Lp0(Rn) and from L∞(Rn) into BMO(Rn). Then for all p with p0 < p < ∞ there is a
constant c such that for all f ∈ Lp(Rn) we have

‖T (f)‖p ≤ c‖f‖p.

For the proof of Theorem 2.2.7 see Theorem 7.4.7 of [7]. This proof is similar to the proof
of Theorem 4.3.6 in chapter 4.

2.3 Hardy Spaces

Definition 2.3.1 A complex-valued function a is called 2-atom if there is a cube Q such
that

(a) a is supported by Q

(b)
�
Rn a(x)dx = 0

16



(c) ‖a‖2 ≤ 1

|Q|
1
2

Definition 2.3.2 We define H1(Rn) as

H1(Rn) = {
∑
i

λiai : ai 2-atom, λi ∈ C,
∑
i

|λi| <∞}

and the norm on H1(Rn) as

‖f‖H1,2 = inf{
∑
i

|λi| : f = λiai, λi ∈ C, ai 2-atom}.

Theorem 2.3.3 The dual of H1(Rn) is isomorphic to BMO(Rn) with equivalent norms.

For the proof of this theorem see [7], chapter 7.
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3
Singular Integrals with Rough Kernels

In this section, we will discuss a new criterion for singular integral operators to be bounded
on Lp(X), 1 < p < ∞, where X is a space of homogeneous type. This criterion is an
improvement of the Hörmander condition and it has had many applications. The main
reference of this chapter is [4].

3.1 Preliminaries

Definition 3.1.1 A quasi metric d on a set X is a function from X ×X to [0,∞) such
that :

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. There is a constant C1 ∈ [1,∞) such that for all x, y, z ∈ X,

d(x, y) ≤ C1(d(x, z) + d(z, y)).

Let X be a topological space equipped with a measure ν and a quasi metric d which is
a measurable function on X × X. We define (X, d, ν) to be of homogeneous type if the
doubling property is verified uniformly for all x ∈ X and r > 0. That is,

ν(B(x; 2r)) ≤ c1ν(B(x, r)) <∞ (3.1)

for some c1 ≥ 1 uniformly for all x ∈ X and r > 0 . Note that the doubling property
implies that there are c2, n > 0 such that for all x ∈ X and λ ≥ 1

ν(B(x, λr)) ≤ c2λ
nν(B(x, r)) (3.2)

and there are c3 > 0 and N , 0 ≤ N ≤ n, such that for all x, y ∈ X and r ≥ 0

ν(B(y, r)) ≤ c3(1 +
d(x, y)

r
)Nν(B(x, r)). (3.3)
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In the following, we will state some useful theorems for space (X, d, v) of homogeneous
type that are similar to Theorem 2.1.4 and Theorem 2.1.9 in classical case.

Definition 3.1.2 Let f ∈ Lp(X), 1 ≤ p ≤ ∞. We define the maximal function of f as

Mf(x) = sup
x∈B

1

B

�
B

|f(x)|dν(x), where B is an open ball in X.

Theorem 3.1.3 Let f be a measurable function on X;

1. If f ∈ L1(X), then ν{x ∈ X, (Mf)(x) > α} ≤ c
α
‖f‖1.

2. If f ∈ Lp, with 1 < p ≤ ∞, then there is Cp > 0, such that for all f ∈ Lp(X) we
have

‖Mf‖p ≤ Cp‖f‖p.

For the proof of part (1), see [2]. For the part (2), we mimic the proof of (c) in Theorem
2.1.4 by replacing Rn by X.

Theorem 3.1.4 Let O  X be an open set. Then there is a collection of balls {B(xi, ri)}I
such that:

1. ∪
i
B(xi, ri) = O,

2. each point of O is contained in at most a finite number K of balls B(xi, ri),

3. there is c > 1 such that B(xi, cri) ∩Oc 6= ∅.

For the proof see chapter 3 of [2].

Theorem 3.1.5 Suppose that f ∈ L1(X) and α > ‖f‖1
ν(X)

. Then there exist functions g
and b such that:

(a) f = g + b,

(b) |g(x)| ≤ cα for almost all x ∈ X,

(c) There is a sequence of functions bi and balls Bi so that the support of each bi is
contained in Bi and b =

∑
i bi,

(d)
�
Bi
bi(x)dν(x) = 0,

(e)
�
Bi
|bi(x)|dν(x) ≤ cαν(Bi),

(f)
∑

i ν(Bi) ≤ c
α

�
|f(x)|dν(x),

(g)
∑

i 1Bi ≤ N .

For the proof see Corollary 2.3 in Chapter III of [2].

Remark 3.1.6 If ν(x) = ∞, then we take any α > 0. In addition, using the properties
(e) and (f) of Theorem 3.1.5 we have

‖b‖1 ≤
∑
i

�
|bi(x)|dν(x) ≤ cα

∑
i

ν(Bi) ≤ c‖f‖1.

Thus, ‖g‖1 ≤ (1 + c)‖f‖1.
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Definition 3.1.7 Let T be a mapping from Lp(X) to Lq(X), 1 ≤ p, q ≤ ∞. Then we say

1. T is of type (p, q) if T is bounded operator.

2. T is of weak-type (p, q), for q =∞, if T is bounded operator.

3. T is of weak-type (p, q) , for q <∞, if for every α > 0 and f ∈ Lp(X) we have

ν({x ∈ X : |Tf(x)| > α}) ≤ (
c‖f‖p
α

)q. (3.4)

Theorem 3.1.8 Suppose that p < r ≤ ∞. Let T be a sublinear operator of weak-type
(p, p) and of weak-type (r, r), then T is of type (q, q) for all q such that p < q < r. In
another way, there is Aq > 0, such that if f ∈ Lq(X) then

‖T (f)‖q ≤ Aq‖f‖q.

For the proof see Theorem 1.3.2 of [7].
The following theorem gives an analogue of the dyadic cubes in Rn. For the proof see

Theorem 11 of [3].

Theorem 3.1.9 Let (X, d, ν) be a space of homogeneous type where d is a quasi metric.
There exist a collection of open sets {Qk

α ⊂ X : k ∈ Z, α ∈ Ik}, and constants δ ∈ (0, 1),
a0 > 0, η > 0 and 0 < D < ∞, where Ik denotes some index set depending on k, such
that

(i) ν(X − ∪
α
Qk
α)→ 0 as k → 0.

(ii) If l ≥ k then either Ql
β ⊂ Qk

α or Qk
α ∩Ql

β = ∅.

(iii) For each (k, α) and each l < k, there is a unique β such that Qk
α ⊂ Ql

β.

(iv) Diameter (Qk
α) ≤ Dδk.

(v) Each Qk
α contains some ball B(zkα, a0δ

k).

3.2 Singular Integral Operators with Rough Kernels

In this section, (X, d, ν) is a space of homogeneous type where d is a metric.

Definition 3.2.1 A family of operators {At, t > 0} is said to be a generalized approx-
imation of the identity if, for every t > 0, At is represented by a kernel at(x, y) in the
following sense: for every function f ∈ Lp(X), 1 ≤ p ≤ ∞,

Atf(x) =

�
X

at(x, y)f(y)dν(y) (3.5)

and
|at(x, y)| ≤ ht(x, y), (3.6)

for all x, y ∈ X where ht(x, y) is given by

ht(x, y) =
1

ν(B(x, t
1
m ))

g(d(x, y)mt−1) (3.7)
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in which m > 0 and g is a positive, bounded, decreasing function satisfying

lim
r→∞

rn+N+εg(rm) = 0 (3.8)

for some ε > 0, where n and N are the constants that appeared previously in (3.2) and
(3.3).

Now we list some lemmas related to the functions ht.

Lemma 3.2.2 Given k > 0 and the function ht(x, y) defined in (3.7), there are c, k > 0
such that

sup
z∈B(y,r)

ht(x, z) ≤ c inf
z∈B(y,r)

hkt(x, z) (3.9)

uniformly for all x, y ∈ X, and r, t > 0 with rm ≤ kt.

Proof. If x ∈ B(y, 3r), then d(x, z) ≤ 4r for every z ∈ B(y, r). Hence

g(d(x, z)mt−1) ≥ g(4mrmt−1).

Therefore, for all z1, z2 ∈ B(y, r) we have

ht(x, z2) ≤ g(0)

ν(B(x, t
1
m ))

≤ g(0)

ν(B(x, t
1
m ))
× g(d(x, z1)mt−1)

g(4mrmt−1)

≤ g(0)(g(4mrmt−1))−1ht(x, z1).

Thus,
sup

z∈B(y,r)

ht(x, z) ≤ g(0)(g(4mrmt−1))−1ht(x, z1).

In addition,

ht(x, z1) =
g(d(x, z1)mt−1)

ν(B(x, t
1
m ))

× ν(B(x, 2t
1
m ))

ν(B(x, 2t
1
m ))

≤ c2mh2mt(x, z1).

Therefore,
sup

z∈B(y,r)

ht(x, z) ≤ c2mh2mt(x, z1).

Thus, the Lemma is valid for x ∈ B(y, 3r). Now for x /∈ B(y, 3r), we have for all
z1, z2 ∈ B(y, r)

d(x, z1) ≤ d(x, z2) + d(z2, z1) ≤ 2d(x, z2). (d is a metric)

Thus,

ht(x, z2) ≤ B(x, 2t
1
m )

B(x, t
1
m )

h2mt(x, z1) ≤ c′h2mt(x, z1).

This leads to the conclusion that

sup
z∈B(y,r)

ht(x, z) ≤ c′ inf
z∈B(y,r)

hkt(x, z).

Hence, the proof is complete.
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Lemma 3.2.3 There are constant a, b > 0 such that

a ≤
�
X

ht(x, y)dν(x) ≤ b. (3.10)

Proof. Note that

ν(B(y, t
1
m )) ≤ c(1 +

d(x, y)

t
1
m

)Nν(B(x, t
1
m )).

Hence,

�
X

ht(x, y)dν(x) =

�
d(x,y)≤t

1
m

g(d(x,y)m

t
)

ν(B(x, t
1
m ))

dν(x) +
∞∑
i=0

�
2it

1
m<d(x,y)≤2i+1t

1
m

g(d(x,y)m

t
)

ν(B(x, t
1
m ))

dν(x)

≤ cg(0)

ν(B(y, t
1
m ))

�
d(x,y)≤t

1
m

dν(x) + c

∞∑
i=0

�
B(y,2i+1t

1
m )

2(i+1)Ng(2mi)

ν(B(y, t
1
m ))

dν(x)

≤ c′ + c
∞∑
i

2(i+1)(N+n)g(2im) = b.

It is enough to take a = g(1)
2

to complete the lemma.

Lemma 3.2.4 For any f ∈ Lp(X), 1 ≤ p ≤ ∞, we have
�
X

|f(y)ht(x, y)|dν(y) ≤ cMf(x).

The proof of this lemma is similar to the proof of lemma 3.2.3, and we omit the details.

Definition 3.2.5 Let T be a bounded linear operator in L2(X). We say T has an asso-
ciated kernel k(x, y) if

(Tf)(x) =

�
X

k(x, y)f(y)dν(y), (3.11)

where k(x, y) is a measurable function, and the above formula holds for all continuous
functions with compact support, and for almost all x not in the support of f .

The following theorem discusses a new criterion for singular integral operators to be
bounded on Lp(X), 1 < p <∞, where X is a space of homogeneous type. This criterion
is an improvement of the Hörmander condition (2.1.12).

Theorem 3.2.6 Let T be a bounded linear operator on L2(X), we suppose:

(A-1) T has an associated kernel k(x, y).

(A-2) There is integral operators At, t > 0, which plays the role of approximation of the
identity with kernel at(x, y) satisfying the conditions (3.5)− (3.7).

(A-3) The operators TAt have associated kernels kt, in the sense of (3.11), such that there
are constants δ, C > 0, so�

d(x,y)≥δt
1
m

|k(x, y)− kt(x, y)| ≤ C, for all y ∈ X. (3.12)

Then T is of weak type (1, 1). Therefore, T can be extended to a bounded operator on
Lp(X), for all 1 < p ≤ 2.

23



Proof. Let f ∈ L2(X) ∩ L1(X) and α > ‖f‖1
ν(X)

. By applying Theorem 3.1.5 there are
functions f, b and bi that verify the properties of this theorem.

We have Tf = Tg + Tb, thus

ν({x ∈ X, |Tf(x)| > α}) ≤ ν({x ∈ X, |Tg(x)| > α

2
}) + ν({x ∈ X, |Tb(x)| > α

2
})

First, we examine ν({x ∈ X, |Tg(x)| > α
2
}). By using (b) of Theorem 3.1.5, we have

‖g‖2
2 =

�
X

|g(x)|2dx ≤ cα

�
X

|f(x)|dν(X).

Thus, g ∈ L2(X). Additionally, T is bounded on L2(X). Hence, T is of weak-type (2, 2).
Therefore, we have

ν({x ∈ X, |Tg(x)| > α

2
}) ≤ c

α2
‖g‖2 ≤ c

α
‖f‖1. (3.13)

Now we examine ν({x ∈ X, |Tb(x)| > α
2
}). Let ri be the radius of the ballBi mentioned

in Theorem 3.1.5. We have

Tb =
∑
i

Tbi =
∑
i

(Tbi + (TArmi − TArmi )bi) =
∑
i

(TArmi bi + (T − TArmi )bi)

where m is the constant for ht that appeared in (3.7). Thus,

ν({x ∈ X, |Tb(x)| > α

2
})

≤ ν({x ∈ X : |
∑
i

TArmi bi(x)| > α

4
}) + ν({x ∈ X : |

∑
i

(T − TArmi )bi(x)| > α

4
}).

We now analyze:

(i) ν({x ∈ X : |
∑

i(TArmi bi(x))| > α
4
}),

(ii) ν({x ∈ X : |
∑

i(T − TArmi )bi(x)| > α
4
}).

For (i), we first prove that
∑

iArmi bi ∈ L
2(X).

|Armi bi(x)| ≤
�
Bi

|hrmi (x, y)bi(y)|dν(y)

≤
�
Bi

sup
z∈Bi
|hrmi (x, z)bi(y)|dν(y)

≤ c

�
Bi

inf
z∈Bi
|hkrmi (x, z)bi(y)|dν(y) (due to lemma 3.2.2).

Hence,

|Armi bi(x)| ≤ c

�
Bi

inf
z∈Bi
|hkrmi (x, z)bi(y)|dν(y)

= c inf
z∈Bi

hkrmi (x, z)‖bi‖1

≤ cαν(Bi) inf
z∈Bi

hkrmi (x, z) (due to theorem 3.1.5 (e))

= cα

�
X

hkrmi (x, y)1Bi(y)dν(y).
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Thus, for every ψ ∈ L2(X), we have:

|〈ψ,Armi bi〉| ≤ cα

�
X

�
X

|ψ(x)|hkrim(x, y)1Bi(y)dν(y)dν(x)

≤ cα

�
X

1Bi(y)(

�
X

|ψ(x)|hkrim(x, y)dν(x))dν(y)

≤ cα〈Mψ, 1Bi〉.

Hence,

|〈ψ,
∑
i

Armi bi〉| ≤
∑
i

|〈ψ,Armi bi〉|

≤ cα
∑
i

〈Mψ, 1Bi〉

= cα〈Mψ,
∑
i

1Bi〉

≤ cα‖Mψ‖2‖
∑
i

1Bi‖2

≤ cα‖ψ‖2‖
∑
i

1Bi‖2.

In addition, by using (g) of Theorem 3.1.5, we have
∑

i 1Bi ≤ N1∪Bi . Thus,

|〈ψ,
∑
i

Armi bi〉| ≤ cα‖ψ‖2‖N1(∪Bi)‖2

≤ cα‖ψ‖2(
∑
i

ν(Bi))
1
2

≤ cα
1
2‖ψ‖2‖f‖

1
2
1 . (due to theorem 3.1.5)

Therefore,

‖
∑
i

Armi bi‖2 ≤ cα
1
2‖f‖

1
2
1 .

Using the fact that T is of weak-type (2, 2), we have

ν({x ∈ X : |T (
∑
i

(Armi bi))| >
α

4
}) ≤ c

α2
α‖f‖1 ≤

c

α
‖f‖1. (3.14)

Now for (ii), let Di = (1+δ)Bi, so if y ∈ Bi and x ∈ Dc
i then d(x, y) ≥ δri. Let Ω∗ = ∪iDi
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and F ∗ = Ω∗c = ∩iDc
i . Hence

�
F ∗
|
∑
i

(T − TArmi )bi(x)|dν(x)

≤
∑
i

�
F ∗
|(T − TArmi )bi(x)|dν(x)

≤
∑
i

�
Dci

|(T − TArmi )bi(x)|dν(x)

≤
∑
i

�
Dci

|
�
Bi

(k(x, y)− krmi (x, y))bi(y)dν(y)|dν(x)

≤
∑
i

�
Bi

|bi(y)|(
�
d(x,y)≥δri

|k(x, y)− krmi (x, y)|dν(x))dν(y)

≤ c
∑
i

�
Bi

|bi(y)|dν(y)

≤ c‖f‖1.

Furthermore,

ν({x ∈ X : |
∑
i

(T − TArmi )bi| >
α

4
})

≤
∑
i

ν(Di) + ν({x ∈ F ∗ : |
∑
i

(T − TArmi )bi| >
α

4
})

≤ c2(1 + δ)n
∑
i

ν(Bi) +
4

α

�
F ∗
|
∑
i

(T − TArmi )bi(x)|dν(x)

≤ c

α
‖f‖1.

Thus,

ν({x ∈ X : |
∑
i

(T − TArmi )bi| >
α

4
}) ≤ c

α
‖f‖1. (3.15)

Combining the results in (3.13), (3.14) and (3.15) implies that T is of weak-type (1, 1).
Thus, T can be extended to be a bounded on Lp(X) for all 1 < p ≤ 2.

Note that if there exits a class of operators Bt whose kernel satisfy the conditions
(3.5)− (3.7) so that BtT have associated kernels Kt(x, y), and there are constants δ′ and
C ′, such that �

d(x,y)≥δ′t
1
m

|k(x, y)−Kt(x, y)|dν(y) ≤ C ′ (3.16)

for all x ∈ X. Then the adjoint operator T ∗ can be extended to be bounded on Lp(X) for
1 < p ≤ 2. Therefore, T can be extended to a bounded operator on Lq(X) for 2 ≤ q <∞.
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4
Spaces BMOA Associated with the

Generalized Approximation to the Identity

In this chapter, we will discuss a new function spaces BMOA(X). We demonstrate that
the John-Nirenberg holds in these spaces and they interpolate with Lp(X). In this chapter,
(X, d, ν) is a space of homogeneous type where d is a quasi metric and the condition (3.8)
of ht(x, y) is replaced by

lim
r→∞

rn+2N+εg(rm) = 0 (4.1)

for some ε > 0, where n and N are the constant that appeared previously in (3.2) and
(3.3). In addition, if B is a set in X, we denote 2−1B to be the empty set. The main
reference of this chapter is [5].

4.1 BMOA Spaces.

Definition 4.1.1 Let β ∈ (0, ε). A function f ∈ L1
loc(X) is said to be a function of type

(x0, β) if f satisfies

�
X

|f(x)|
(1 + d(x0, x))2N+βν(B(x0, 1 + d(x0, x)))

dν(x) ≤ c <∞. (4.2)

We denote by M(x0,β) the collection of all functions of type (x0, β). For f ∈ M(x0,β),
we denote

‖f‖M(x0,β) = inf{c ≥ 0 : (4.2) holds}.
In addition, ‖.‖M(x0,β) defines a norm on M(x0, β) and (M(x0,β), ‖.‖M(x0,β)) is a Banach
space. In fact let fn be a Cauchy sequence in (M(x0,β), ‖.‖M(x0,β)). Then

|fn(x)|
(1 + d(x0, x))2N+βν(B(x0, 1 + d(x0, x)))

is a Cauchy sequence in L1(X). Therefore,

|fn(x)|
(1 + d(x0, x))2N+βν(B(x0, 1 + d(x0, x)))
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converges to a function g in L1(X). Let f = (1 + d(x0, x))2N+βν(B(x0, 1 + d(x0, x)))g. It
is clear that f ∈M(x0,β) and that fn converges to f in (M(x0,β), ‖.‖M(x0,β)

).
We denote

M = ∪
x∈X

∪
0<β<ε

M(x,β)

where ε is the constant in (4.1). In this section, {At, t > 0} is a family of operators having
associated kernels at(x, y) in the following sense: for every function f ∈M, 1 ≤ p ≤ ∞,

Atf(x) =

�
X

at(x, y)f(y)dν(y) (4.3)

where

|at(x, y)| ≤ ht(x, y).

Before we give the definition of BMOA(X), we will list some of the properties of set
M.

Lemma 4.1.2 Let {At, t > 0} be a family of operators as mentioned above. Then

(1) BMO(X) ⊂M

(2) If f ∈M then |Atf(x)| <∞, for all x ∈ X and t > 0.

(3) If f ∈M then |At(Asf)(x)| <∞, for all x ∈ X and t, s > 0.

For property (1). Let f ∈ BMO(X). Then we have

�
X

|f(x)|
(1 + d(x0, x))2N+βν(B(x0, 1 + d(x0, x)))

dν(x)

≤
∑
i=0

�
2iB(x0,1)−2i−1B(x0,1)

|f(x)− f2iB(x0,1)|+ |f2iB(x0,1)|
(1 + d(x0, x))2N+βν(B(x0, 1 + d(x0, x)))

dν(x)

≤ ‖f‖BMO + |fB(x0,1)|+
∑
i=1

�
2iB(x0,1)

|f(x)− f2iB(x0,1)|+ |f2iB(x0,1)|
(1 + 2i−1)2N+βν(B(x0, 1 + 2i−1))

dν(x).

Furthermore, we have |f2kB − fB| ≤ c(1 + k)‖f‖BMO (for the proof see [10]). Thus,

|f2kB| ≤ c(1 + k)‖f‖BMO + fB.

Hence,

�
X

|f(x)|
(1 + d(x0, x))2N+βν(B(x0, 1 + d(x0, x)))

dν(x)

≤ ‖f‖BMO + |fB(x0,1)|+ c′′
∑
i=1

2−(i−1)(2N+β)(c′‖f‖BMO + c(1 + i)‖f‖BMO + fB(x0,1)) <∞.

Thus, BMO(X) ⊂M.
For property (2), let f ∈ M. Then there are x0 ∈ M and β > 0 such that f ∈ M(x0,β).
Fix x0 ∈ X and let x ∈ X. Then

|Atf(x)| ≤
�
X

|at(x, y)f(y)|dν(y) ≤
�
X

ht(x, y)|f(y)|dν(y).
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Let X1 = {y ∈ X : d(x, y) > max(1 + d(x0, x), t
1
m )} and X2 = Xc

1. Given f ∈ L1
loc(X),

then �
X2

ht(x, y)|f(y)|dν(y) ≤ g(0)

ν(B(x, t
1
m ))

�
X2

|f(y)|dν(y) <∞.

For X1 we have

�
X1

ht(x, y)|f(y)|dν(y) =

�
X1

g(d(x,y)m

t
)|f(y)|

ν(B(x, t
1
m ))

dν(y)

≤ sup
y∈X1

(
g(d(x,y)m

t
)(1 + d(x0, x))2N+βν(B(x0, 1 + d(x0, y)))

ν(B(x, t
1
m ))

)‖f‖M(x0,β)

≤ sup
y∈X1

(
g(d(x,y)m

t
)(d(x, y))2N+βν(B(x0, 1 + d(x0, y)))

ν(B(x, t
1
m ))

)‖f‖M(x0,β)
.

Note that if y ∈ X1, then

1 + d(x0, y) ≤ 1 + C1d(x0, x) + C1d(x, y)

≤ C1 + C1d(x0, x) + C1d(x, y)

≤ C1(1 + d(x0, x) + d(x, y))

≤ 2C1d(x, y).

Therefore,
�
X1

ht(x, y)|f(y)|dν(y)

≤ c sup
y∈X1

(
g(d(x,y)m

t
)(d(x, y))2N+βν(B(x0, d(x, y)))

ν(B(x, t
1
m ))

)‖f‖M(x0,β)

≤ c sup
y∈X1

(
g(d(x,y)m

t
)(d(x, y))2N+β(1 + d(x0,x)

d(x,y)
)Nν(B(x, d(x, y))

ν(B(x, t
1
m ))

)‖f‖M(x0,β)

≤ c sup
y∈X1

(
g(d(x,y)m

t
)(d(x, y))2N+β(2)Nν(B(x, d(x, y))

ν(B(x, t
1
m ))

)‖f‖M(x0,β)

≤ 2Nc sup
y∈X1

(
g(d(x,y)m

t
)(d(x, y))2N+β+nν(B(x, t

1
m ))

t
n
mν(B(x, t

1
m ))

)‖f‖M(x0,β)

≤ ct
2N+β
m sup

y∈X1

(g(
d(x, y)m

t
)(
d(x, y)

t
1
m

)2N+β+n)‖f‖M(x0,β)

<∞.

Thus,

|Atf(x)| ≤
�
X1

ht(x, y)dν(y) +

�
X2

ht(x, y)dν(y) <∞.

For (3), we have

|At(Asf)(x)| ≤
�
X

�
X

ht(x, z)hs(z, y)f(y)dν(y)dν(z)

≤
�
X

f(y)

�
X

ht(x, z)hs(z, y)dν(z)dν(y).
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Now we examine the last term of the inequality. For any x, y ∈ X, let

F1 = {z ∈ X, d(x, z) ≥ (3C1)−1d(x, y)}

and
F2 = {z ∈ X, d(z, y) ≥ (3C1)−1d(x, y)}.

If z /∈ F1, then

d(x, y) ≤ C1d(x, z) + C1d(y, z) ≤ d(x, y)

3
+ C1d(y, z).

Hence,

d(y, z) ≥ 2d(x, y)

3C1

.

Therefore, z ∈ F2 which implies that X = F1 ∪ F2. In addition,

�
F1

ht(x, y)hs(y, z)dν(z) =

�
F1

1

ν(B(x, t
1
m ))

g(
d(x, y)m

t
)hs(z, y)dν(z)

≤ c
1

ν(B(x, t
1
m ))

g(
d(x, y)m

(3C1)mt
)

�
F1

hs(z, y)dν(z)

≤ c(1 +
s

t
)
n
m

1

ν(B(x, (t+ s)
1
m ))

g(
d(x, y)m

(3C1)m(t+ s)
)

≤ c(1 +
s

t
)
n
mh(3C1)m(t+s)(x, y)

where in the second step we used the fact that g is decreasing and in the third step we
used Lemma 3.2.3.

Similarly, we get

�
F2

ht(x, y)hs(y, z)dν(z) ≤ c(1 +
t

s
)
n+N
m h(3C1)m(t+s)(x, y).

Hence, �
X

ht(x, y)hs(y, z)dν(z) ≤ c(s,t)h(3C1)m(t+s)(x, y).

Thus, we have

|At(Asf)(x)| ≤ c(s,t)

�
X

h(3C1)m(t+s)(x, y)|f(y)|dν(y) <∞.

Definition 4.1.3 For f ∈ M , we say that f ∈ BMOA(X) if there is a constant c such
that for every open ball B in X we have:

1

ν(B)

�
B

|f(x)− AtBf(x)|dν(x) ≤ c (4.4)

where tB = rmB and rB is the radius of B. We denote

‖f‖BMOA = inf{c ∈ R : c verifies (4.4)}.
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Let KA = {f ∈ M : (Atf)(x) = f(x)}, note that ‖f‖BMO = 0 if f ∈ KA. Hence,
BMOA(X) modulo KA is a normed vector space. In the rest of this section, BMOA(X)
is understood to be KA modulo and the operators {At} form a semigroup where A0 is the
identity operator.

The following proposition is similar to the proposition 2.2.4

Theorem 4.1.4 Let f ∈ BMOA(X). Then for any k > 1 and t > 0 we have

|Atf(x)− Aktf(x)| ≤ c(1 + log k)‖f‖BMOA (4.5)

for almost all x ∈ X, where c > 0 is a constant independent of x and k.

In order to prove the theorem, we will use the following lemma;

Lemma 4.1.5 Let f ∈ BMOA(X). Then for any t > 0 we have

|Atf(x)− At+sf(x)| ≤ c‖f‖BMOA (4.6)

for almost all x ∈ X, where t
4
≤ s ≤ t and c > 0 is independent of x.

Proof.
Let x ∈ X, t > 0 and s ∈ [ t

4
, t]. We have

|Atf(x)− At+sf(x)| ≤
�
X

ht(x, y)|f(y)− Asf(y)|dν(y)

=
1

ν(B(x, t
1
m ))

�
X

g(
d(x, y)m

t
)|f(y)− Asf(y)|dν(y)

≤ g(0)

ν(B(x, s
1
m ))

�
B(x,s

1
m )

|f(y)− Asf(y)|dν(y)

+
1

ν(B(x, s
1
m ))

�
B(x,s

1
m )c

g(
d(x, y)m

t
)|f(y)− Asf(y)|dν(y)

≤ c‖f‖BMOA +
1

ν(B(x, s
1
m ))

�
B(x,s

1
m )c

g(
d(x, y)m

t
)|f(y)− Asf(y)|dν(y).

Therefore, in order to prove Lemma 4.1.5 it is suffices to prove that

1

ν(B(x, s
1
m ))

�
B(x,s

1
m )c

g(
d(x, y)m

t
)|f(y)− Asf(y)|dν(y) ≤ c‖f‖BMOA .

By using Theorem 3.1.9, there exists a collection of open sets {Qk
α ⊂ X : k ∈ Z, α ∈ Ik},

and constants δ ∈ (0, 1), a0 > 0, η > 0 and 0 < D <∞, where Ik denotes some index set
depending on k, such that

(i) ν(X − ∪
α
Qk
α) = 0.

(ii) If l ≥ k, then either Ql
β ⊂ Qk

α or Qk
α ∩Ql

β = ∅.

(iii) For each (k, α) and each l < k, there is a unique β such that Qk
α ⊂ Ql

β.

(iv) Diameter (Qk
α) ≤ Dδk.
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(v) Each Qk
α contains some ball B(zkα, a0δ

k).

Let l0 ∈ Z such that Dδl0 ≤ s
1
m < Dδl0−1. There is Ql0

α0
such that x ∈ Ql0

α0
. Hence, by

using (iv) of Theorem 3.1.9 we have Ql0
α0
⊂ B(x,Dδl0). Let

Mk = {β ∈ Il0 , Ql0
β ∩B(x,Dδl0−k) 6= ∅}

and k0 be an integer such that δ−k0 > 2C1.
For β ∈Mk, y

′ ∈ Ql0
β and x′ ∈ Ql0

β ∩B(x,Dδl0−k), we have

d(x, y′) ≤ C1(d(x, x′) + d(x′, y′)) ≤ 2C1Dδ
l0−k ≤ Dδl0−k−k0 .

Thus Ql0
β ⊂ B(x,Dδl0−k−k0). Hence,

B(x,Dδl0−k) ⊂ ∪
β∈Mk

Ql0
β ⊂ B(x,Dδl0−(k+k0)).

Using zkα defined in (v) of the Theorem 3.1.9 we have for any β1, β2 ∈Mk,

d(zl0β1, z
l0
β2

) ≤ C1(d(zl0β1 , x) + d(x, zl0β2)) ≤ 2C1Dδ
l0−(k+k0).

We now have

ν(Ql0
β1

) ≤ ν(B(zl0β1 , Dδ
l0)

≤ c(1 +
d(zl0β1, z

l0
β2

)

Dδl0
)Nν(B(zl0β2 , Dδ

l0))

≤ c(1 +
(2C1Dδ

l0−(k+k0))

Dδl0
)Nν(B(zl0β2 , Dδ

l0))

≤ cδ−kNν(B(zl0β2 , Dδ
l0))

≤ cδ−kNν(B(zl0β2 , a0δ
l0))

≤ cδ−kNν(Ql0
β2

).

Hence,

ν(Ql0
α0

) ≤ cδ−kN inf
β∈Mk

ν(Ql0
β ).

Let mk be the cardinal number of Mk. We have

mkν(B(x,Dδl0)) ≤ cmkν(B(zl0α0
, Dδl0)) (due to (3.3))

≤ cmkν(B(zl0α0
, a0δ

l0))

≤ cδ−kNmk inf
β∈Mk

ν(Ql0
β )

≤ cδ−kNν(B(x,Dδl0−(k+k0))) (Ql0
β ⊂ B(x,Dδl0−(k+k0)) for β ∈Mk)

≤ cδ−k(n+N)ν(B(x,Dδl0)).

Thus, there is c > 0 such that

mk ≤ cδ−k(n+N) (4.7)
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We have s ∈ [ t
4
, t] and Dδl0 ≤ s

1
m < Dδl0−1. Hence,

1

ν(B(x, s
1
m ))

�
B(x,s

1
m )c

g(
d(x, y)m

t
)|f(y)− Asf(y)|dν(y)

≤ 1

ν(B(x, s
1
m ))

�
B(x,Dδl0 )c

g(
d(x, y)m

t
)|f(y)− Asf(y)|dν(y)

≤ 1

ν(B(x, s
1
m ))

∞∑
k=0

�
B(x,Dδl0−(k+1))−B(x,Dδl0−k)

g(
d(x, y)m

t
)|f(y)− Asf(y)|dν(y))

≤ 1

ν(B(x, s
1
m ))

∞∑
k=0

g(
(Dδl0−k)m

t
)

�
B(x,Dδl0−(k+1))−B(x,Dδl0−k)

|f(y)− Asf(y)|dν(y)

≤ 1

ν(B(x, s
1
m ))

∞∑
k=0

g(
δ(1−k)m(s

1
m )m

4s
)

�
B(x,Dδl0−(k+1))−B(x,Dδl0−k)

|f(y)− Asf(y)|dν(y)

≤ 1

ν(B(x, s
1
m ))

∞∑
k=0

g(4−1δ−(k−1)m)

�
B(x,Dδl0−(k+1))

|f(y)− Asf(y)|dν(y)

≤ 1

ν(B(x, s
1
m ))

∞∑
k=0

∑
β∈Mk+1

g(4−1δ−(k−1)m)

�
Q
l0
β

|f(y)− Asf(y)|dν(y).

In addition, we have

ν(B(zl0β , s
1
m ) ≤ (1 +

d(x, zl0β )

s
1
m

)Nν(B(x, s
1
m ))

≤ (1 +
Dδl0−k−k0

Dδl0
)Nν(B(x, s

1
m ))

≤ cδ−kNν(B(x, s
1
m )),

and Ql0
β ⊂ B(zl0β , Dδ0) ⊂ B(zl0β , s

1
m ). Hence,

1

ν(B(x, s
1
m ))

�
B(x,s

1
m )c

g(
d(x, y)m

t
)|f(y)− Asf(y)|dν(y)

≤ c

∞∑
k=0

∑
β∈Mk+1

δ−kNg(4−1δ−(k−1)m)
1

ν(B(zl0β , s
1
m ))

�
Q
l0
β

|f(y)− Asf(y)|dν(y))

≤ c
∞∑
k=0

∑
β∈Mk+1

δ−kNg(4−1δ−(k−1)m)‖f‖BMOA

≤ c

∞∑
k=0

mk+1δ
−kNg(4−1δ−(k−1)m)‖f‖BMOA

≤ c
∞∑
k=0

δ−k(n+2N)g(4−1δ−(k−1)m)‖f‖BMOA (due to (4.7))

≤ c‖f‖BMOA .

Thus, Lemma 4.1.5 is proved.
We will now prove Theorem 4.1.4.

Proof. In case 0 < s < t
4
, we have t+s

4
≤ t − s < t + s. Thus, by using Lemma 4.1.5 we
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have

(Atf(x)− At+s(f(x)) = (Atf(x)− At+t(f(x))− At+s(f − At−sf)(x) ≤ c‖f‖BMOA .

So we proved Theorem 4.1.4 for the case 1 < k ≤ 2. Now for the case k > 2, let l be an
integer such that 2l ≤ k < 2l+1. Then

|Atf(x)− Aktf(x)| ≤
l−1∑
k=0

|A2ktf(x)− A2k+1tf(x)|+ |A2ltf(x)− Aktf(x)|

≤ c(l + 1)‖f‖BMOA

≤ c(1 + log k)‖f‖BMOA .

Hence, the proof of the theorem is complete.

4.2 The John-Nirenberg Inequality on BMOA(X)

Theorem 4.2.1 If f ∈ BMOA(X), then there are constants c1 and c2 such that for every
ball B = B(x0, r) and every α > 0, we have:

ν{x ∈ B(x0, r) : |f(x)− AtBf(x)| > α} ≤ c1ν(B(x0, r))e
− c2α
‖f‖BMOA (4.8)

where x0 ∈ X and r > 0 and tB = rm.

Proof. Similarly to Theorem 2.2.5, it is enough to prove the theorem for the case when
‖f‖BMOA = 1. The case α < 1 is obvious if we take c1 > e and c2 < 1, so we only study
the case where α ≥ 1.
Let β > 1 and B be a fixed ball of center x0 ∈ X and radius rB > 0. We will set up a
criterion in order to have a collection of balls Bi,k = B(xBi,k , rBi,k) that verifies:

(i) For any Bk,m ∩Bk+1,j 6= ∅, we have |AtBk,mf(x)− AtBk+1,j
f(x)| ≤ cβ, x ∈ Bk+1,j.

(ii) {x ∈ B : |f(x)− AtBf(x)| > ckβ} ⊆ ∪
i
Bk,i .

(iii)
∑∞

i=1 ν(Bk,i) ≤ ( c
β
)kν(B), where in this inequality we have c

β
< 1.

Let f0 = (f − AtB)110C4
1B(x0,rB), where C1 > 1 is the constant in Definition 3.1.1.

‖f0‖1 ≤
�

10C4
1B

|f(x)− Arf(x)|dν(x) ≤ ‖f‖BMOAν(10C4
1B(x0, r)) = c3ν(B) <∞.

Let β > 0, Ω = {x ∈ X : M(f0)(x) > β} and F = Ωc. We have Ω is open set. Using
Theorem 3.1.4, there exists a collection of open balls B1,i such that Ω = ∪iB1,i, each point
of Ω is contained in no more then K balls B1,i and there is c > 1 such that cB1,i ∩ F 6= ∅
for each i. Using (i) of the Theorem 3.1.3, we have∑

i

ν(B1,i) ≤ Kν(Ω) ≤ c

β
‖f0‖1 ≤

c4

β
ν(B).

We now prove that if B1,i ∩B 6= ∅, then there is c5 > 0 such that

|AtB1,i
f(x)− AtBf(x)| ≤ c5β, for all x ∈ B1,i.

34



Let B1,i ∩B 6= ∅ and assume that rB1,i
≥ rB. Then

ν(B(x0, rB)) ≤ c(
rB
rB1,i

)nν(B(x0, rB1,i
))

≤ c(
rB
rB1,i

)n(1 +
C1(rB + rB1,i

)

rB1,i

)Nν(B(xB1,i
, rB1,i

))

≤ c(1 + 2C1)Nν(B1,i)

≤ c6

β
ν(B(x0, rB)).

Hence, if we take β > c6, we get a contradiction. Therefore, in case β > c6 we have
rB1,i

< rB and

ν(B(x0, rB)) ≤ c(
rB
rB1,i

)n(1 +
C1(rB + rB1,i

)

rB1,i

)Nν(B(xB1,i
, rB1,i

))

≤ c7

β
(
rB
rB1,i

)n+Nν(B(x0, rB)).

We choose β such that β > max{c7(10C1)n+N , c2
4, c6}. Then rB > 10C1rB1,i

.
Let B1,i ∩B 6= ∅. We have

AtB1,i
f(x)− AtBf(x) = AtB1,i

(f − AtBf)(x) + (A(tB1,i
+tB)f(x)− AtBf(x)).

Additionally, we have tB1,i
+ tB ≤ 2tB. Thus, by using Theorem 4.1.4 we have

|A(tB1,i
+tB)f(x)− AtBf(x)| ≤ c.

We now prove that

|AtB1,i
(f − AtBf)(x))| < cβ, for x ∈ B1,i.

Let x ∈ B1,i, qi be the smallest integer such that 2C2
1B ⊂ 2qi+1B1,i and 2C2

1B∩(2qiB1,i)
c 6=

∅. Then for y ∈ 2C2
1B ∩ (2qiB1,i)

c, we have

2qirB1,i
< d(y, xB1,i

) ≤ C1(d(y, x0) + d(x0, xB1,i
)) ≤ C1(2C2

1rB + C1(rB + rB1,i
))

For x′ ∈ 2qi+1B1,i, we have

d(x, x0) ≤ C1(d(x′, xB1,i
) + d(xB1,i

, x0))

≤ C1(2qi+1rB1,i
+ C1(rB + rB1,i

))

≤ C1

(
2C1(2C2

1rB + C1(rB + rB1,i
)) + C1(rB + rB1,i

)
)

≤ 10C4
1rB.

Thus 2qi+1B1,i ⊂ 10C4
1B.

Furthermore, we have B1,i ∩B 6= ∅ and rB > 10C1rB1,i
. Let y′ ∈ B1,i, then

d(y′, x0) ≤ C1(d(y′, xB1,i
) + d(xB1,i

, x0)) ≤ C1(rB1,i
+ C1(rB + rB1,i

)) ≤ 2C2
1rB.
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Hence, B1,i ⊂ 2C2
1B. We write

|AtB1,i
(f − AtBf)(x)| ≤ c

1

ν(B1,i)

�
X

g(
dm(x, y)

tB1,i

)|f(y)− AtBf(y)|dν(y)

≤ c

qi+1∑
k=0

1

ν(B1,i)

�
2kB1,i−2k−1B1,i

g(
dm(x, y)

tB1,i

)|f(y)− AtBf(y)|dν(y)

+ c
1

ν(B1,i)

�
X−2qi+1B1,i

g(
dm(x, y)

tB1,i

)|f(y)− AtBf(y)|dν(y)

≤ I + II.

We now study I.
We have 2qi+1B1,i ⊂ 10C4

1B. Hence, for 0 ≤ k ≤ qi + 1 we have

1

ν(2kB1,i)

�
2kB1,i

|f(y)− AtBf(y)|dν(y) =
1

ν(2kB1,i)

�
2kB1,i

|f0(y)|dν(y)

≤ cn

ν(c2kB1,i)

�
c2kB1,i

|f0(y)|dν(y)

≤ c′β (due to (Mf0)(y) ≤ β in F )

where c is the constant in Theorem 3.1.4.
Note that if an integer k > [log2C1] + 1 (where [log2C1] denotes the integer part of

log2C1) then for all x′ ∈ B1,i and y ∈ 2kB1,i − 2k−1B1,i we have

2k−1rB1,i
< d(y, xB1,i

) ≤ C1d(x′, y) + C1d(x′, xB1,i
).

Thus,

d(x′, y) ≥ 1

C1

(2k−1 − C1)rB1,i
≥ c82k−1rB1,i

.

Therefore,

I ≤ c

[log2C1]+1∑
k=0

2kng(0)
1

ν(2kB1,i)

�
2kB1,i

|f(y)− AtBf(y)|dν(y)

+

qi+1∑
k=[log2C1]+2

2kng((c82k−1)m)
1

ν(2kB1,i)

�
2kB1,i

|f(y)− AtBf(y)|dν(y)

≤ c′β + c′′β

qi+1∑
k=[log2C1]+2

2kng((c82k−1)m) ≤ cβ.

Now we study II.
Let pi be an integer such that 2pirB1,i

≤ rB < 2pi+1rB1,i
. Then

ν(B(x0, rB1,i
)) ≤ c(1 +

C1(rB + rB1,i
)

rB1,i

)Nν(B1,i) ≤ c2piNν(B1,i).

Since 2C2
1B ⊂ 2qi+1B1,i we have

II ≤ c

∞∑
k=[2log2C1]+1

1

ν(B1,i)

�
2k+1B−2kB

g(
dm(x, y)

tB1,i

)|f(y)− AtBf(y)|dν(y)

≤ c
∞∑

k=[2log2C1]+1

2piN2(k+1)n

ν(2k+1B)

�
2k+1B−2kB

g(
dm(x, y)

tB1,i

)|f(y)− AtBf(y)|dν(y).
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In addition, if k > [2log2C1] + 1, x′ ∈ B1,i and y ∈ 2k+1B − 2kB then there is c9 > 0 such
that d(x′, y) ≥ c92k+pirB1,i

. Hence

II ≤ c
∞∑

k=[2log2C1]+1

2piN2(k+1)ng(cm9 2(k+pi)m)

ν(2k+1B)

�
2k+1B

|f(y)− AtBf(y)|dν(y)

≤ c
∞∑

k=[log2C1]+1

2(k+pi)(n+N)g(cm9 2(k+pi)m)‖f‖BMOA ≤ cβ.

Combining the results for I and II, we have |AtB1,i
(f −AtBf)(x))| < cβ for all x ∈ B1,i .

Hence, |AtB1,i
f(x)− AtBf(x)| ≤ c5β, for all x ∈ B1,i.

By replacing B by B1,i and f0 by fB1,i
= (f − AtB1,i

f)X10C4
1B1,i

, we get a sequence of

balls {B2,j}j such that:

1.
∑

j ν(B2,j) ≤ c4
β
ν(B1,i),

2. for any x ∈ B1,i − ∪jB2,j we have |f(x)− AtB1,i
f(x)| ≤ β,

3. for any B2,j ∩B1,i 6= ∅ we have |AtB2,j
f(x)− AtB1,i

f(x)| ≤ c5β, for all x ∈ B2,j.

Doing this for all B1,i, we get countable open balls {B2,i}J . Hence if x ∈ B−∪mB2,m, we
have

|f(x)− AtBf(x)| ≤ |f(x)− AtB1,i
f(x)|+ |AtB1,i

f(x)− AtBf(x)| ≤ 2c5β.

In addition, ∑
j=1

ν(B2,j) ≤
c4

β

∑
i

ν(B1,i) ≤ (
c4

β
)2ν(B).

By repeating the procedure we get a collection of balls Bk,i = B(xBi,k , rBi,k) which verifies

(i) For any Bk,m ∩ Bk+1,j 6= ∅, we have |AtBk,mf(x) − AtBk+1,j
f(x)| ≤ c5β, for all x ∈

Bk+1,j.

(ii) {x ∈ B : |f(x)− AtBf(x)| > c5kβ} ⊆ ∪
i
Bk,i .

(iii)
∑∞

i=1 ν(Bk,i) ≤ ( c4
β

)kν(B).

We now study ν({x ∈ B : |f(x)− AtBf(x)| > α}) where α > 0.
The case if α < c5β we have

ν({x ∈ B : |f(x)− AtBf(x)| > α}) ≤ e
1− α

c5β ν(B).

For kc5β ≤ α < (k + 1)c5β, where k ≥ 1 is an integer and β > c2
4, we have

ν({x ∈ B : |f(x)− AtBf(x)| > α}) ≤
∑
i

ν(Bk,i)

≤ (
c4

β
)kν(B)

≤ e
−k log β

2 ν(B)

≤ β
1
2 e
−αlogβ
2c5β ν(B).

Combining these two estimates demonstrates

ν{x ∈ B(x0, r) : |f(x)− AtBf(x) > α} ≤ c1ν(B(x0, r))e
−c2α.

Hence the proof of Theorem 4.2.1 is complete.
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Definition 4.2.2 Given p ∈ [1,∞), we define the space BMOp
A(X) as follows: We say

that f ∈M is in BMOp
A(X) if there exists some constant c such that for any ball B,(

1

ν(B)

�
B

|f(x)− AtBf(x)|pdν(x)

) 1
p

≤ c (4.9)

where tB = rmB and rB is the radius of the ball B. The smallest c which (4.9) is satisfied
is taken to be the norm of f in this space and is denoted by ‖f‖BMOpA

.

Theorem 4.2.3 For p ∈ [1,∞), the spaces BMOp
A coincide, and the norms are equiva-

lent with respect to different values of p.
The proof is similar to Corollary 2.2.6, where the John-Nirenberg Inequality was an es-
sential tool to prove it.

4.3 The Spaces BMOA(X) and Lp Interpolation

Similar to the classical case, we have interpolation between BMOA and Lp(X). One of
the main tools to prove this interpolation is the good-λ inequality.

Definition 4.3.1 Let f be a locally integrable function and 1 ≤ s < ∞. The Hardy-
Littlewood maximal function Msf is defined by

Msf(x) =

(
sup
x∈B

1

ν(B)

�
B

|f(y)|sdν(y)

) 1
s

.

Note that by using Ms(f) = M(|f |s) 1
s , Ms is of weak-type (s, s) and bounded from Lp to

itself for s < p <∞.

Definition 4.3.2 Let f ∈M and 1 ≤ s <∞. The sharp maximal function M#
A,s associ-

ated with the generalized approximation to the identity {At}t>0 is defined by

M#
A,sf(x) = sup

x∈B

(
1

ν(B)

�
B

|f(y)− ArmB f(y)|sdν(y)

) 1
s

where rB is the radius of the ball B. We denote M#
A,1 by M#

A .

Remark: for f ∈ Lp(X), M#
A,s is pointwise bounded by Msf . Therefore we have

‖M#
A,sf‖p ≤ c‖Msf‖p ≤ c‖f‖p.

Lemma 4.3.3 For every ball B0 ⊂ X and every function f ∈ Lp(X), 1 ≤ p < ∞, such
that there exists x0 ∈ B0 with Mf(x0) ≤ λ. Then there is c0 > 0 such that

A2mrm0
(f)(x) ≤ c0λ

for any x ∈ B0, where r0 is the radius of B0.

Proof. Let B0 = B(xB0 , r0) and let x ∈ B0. Hence,

ν(B(xB0 , 3r0)) ≤ c

(
1 +

d(x, xB0)

3r0

)N
ν (B(x, 3r0)) ≤ cν

(
B(x,

3

2
2r0)

)
≤ cν (B(x, 2r0)) .
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Hence,

|A2mrm0
f(x)| ≤ cν (B(x, 2r0))−1

�
X

g

(
dm(x, y)

2mrm0

)
|f(y)|dν(y)

≤ cν(B(xB0 , 3r0))−1

∞∑
k=0

�
3kB0−3k−1B0

g

(
dm(x, y)

2mrm0

)
|f(y)|dν(y)

≤ cν(B(xB0 , 3r0))−1

∞∑
k=0

g(3(k−2)m)

�
3kB0

|f(y)|dν(y)

≤ c
∞∑
k=0

g(3(k−2)m)ν(3B0)−1ν(3kB0)λ

≤ cλ
∞∑
k=0

3kng(3(k−2)m) ≤ c0λ.

Thus, the proof of Lemma 4.3.3 is complete.
The following lemma is called good-λ inequality.

Lemma 4.3.4 There exist K0 > 1 and c > 0, such that for every λ > 0 and every
K > K0 and γ > 0, for every ball B0 in X and every function f ∈ Lp(X), 1 ≤ p < ∞,
such that there is x0 ∈ B0 with Mf(x0) ≤ λ, we have

ν{x ∈ B0 : |f(x)| > Kλ,M#
A,sf(x) ≤ γλ} ≤ cγsν(B0). (4.10)

Proof. Let B0 = B(x0, r0) be an open ball in X and let K0 = c0 + 1, where c0 is the
constant defined in Lemma 4.3.3. Set

UB0 = {x ∈ B0 : |f(x)| > Kλ,M#
A,sf(x) ≤ γλ}.

If UB0 = ∅, then (4.10) is obvious. Assume that UB0 6= ∅. Using Lemma 4.3.3 we have for
every x ∈ B0,

A2mrm0
(f)(x) ≤ c0λ.

Hence, when x ∈ UB0 ,

|f(x)− A2mrm0
f(x)| ≥ |f(x)| − |A2mrm0

f(x)| ≥ Kλ− c0λ ≥ (c0 + 1)λ− c0λ ≥ λ.

Therefore, for any x ∈ UB0 we have

ν(UB0) =

�
UB0

1dν(y) ≤ λ−s
�
UB0

|f(y)− A2mrm0
f(y)|sdν(y)

≤ λ−sν(B(x, 2r0))(M#
A,sf(x))s

≤ λ−sν(3B0)(λγ)s

≤ cγsν(B0).

Hence, Lemma 4.3.4 is proved.
The following lemma is a consequence of good-λ inequality and it is essential to the

proof of interpolation theorem using BMOA.

Lemma 4.3.5 For every f ∈ L1(X), for < p <∞, there is cp such that

‖f‖Lp ≤ cp(‖M#
A,sf‖p + ‖f‖1)

where the last term on the right-hand side can be canceled if ν(X) =∞.
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Proof. For λ > 0 , let Eλ = {x ∈ X : Mf(x) > λ}. We take λ0 = 0 if ν(X) = ∞ and
λ0 = c‖f‖1(ν(X))−1 if ν(X) < ∞, where c is the constant appearing in the Theorem
3.1.3. By using Lemma 3.1.4 and assuming λ > λ0 we have a collection of balls Bi such
that:

1. ∪
i
Bi = Eλ,

2. each point of Eλ is contained in at most a finite number K of balls Bi,

3. there is c > 1 such that cBi ∩ Ec
λ 6= ∅.

Given that cBi∩Ec
λ 6= ∅, there is xi ∈ cBi such that Mf(xi) < λ. Hence, by using Lemma

4.3.4 we have for every γ > 0 and K > K0 (note that K0 > 1),

ν{x ∈ cBi : |f(x)| > Kλ,M#
A,sf(x) ≤ γλ} ≤ cγsν(cBi) ≤ cγsν(Bi).

In addition, we have

{x ∈ X : |f(x)| > Kλ,M#
A,sf(x) ≤ γλ} ⊂ Eλ.

Thus,

ν
(
{x ∈ X : |f(x)| > Kλ,M#

A,sf(x) ≤ γλ}
)

≤ ν
(
∪
i
{x ∈ cBi : |f(x)| > Kλ,M#

A,sf(x) ≤ γλ}
)

(c > 1 and cBi ∩ Ec
λ 6= ∅)

≤
∑
i

ν
(
{x ∈ cBi : |f(x)| > Kλ,M#

A,sf(x) ≤ γλ}
)

≤ cγs
∑
i

ν(Bi) ≤ cγsν(Eλ).

We will prove first the lemma for the case where X is unbounded. Using good-λ
inequality we have

‖f‖pp = pKp

� ∞
0

λp−1ν({x ∈ X : |f(x)| > Kλ})dλ

≤ pKp

� ∞
0

λp−1
(
ν({x ∈ X : |f(x)| > Kλ,M#

A,sf(x) ≤ γλ})

+ ν({x ∈ X : M#
A,sf(x) ≥ γλ})

)
dλ

≤ cpKpγs
� ∞

0

λp−1ν(Eλ)dλ+
pKp

γp
‖M#

A,sf‖
p
p

≤ cpKpγs‖Mf‖pp +
pKp

γp
‖M#

A,sf‖
p
p

≤ c′pKpγs‖f‖pp +
pKp

γp
‖M#

A,sf‖
p
p.

Therefore,

‖f‖pp ≤ c′pKpγs‖f‖pp +
pKp

γp
‖M#

A,sf‖
p
p.

Hence, by choosing γ = (2c′pKp)−
1
s and moving the first part of the right side of the

inequality to other side, we obtain

‖f‖pp ≤ c‖M#f‖pp.
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If X is bounded, we have:

‖f‖pp = pKp

� ∞
0

λp−1ν({x ∈ X : |f(x)| > Kλ})dλ

≤ pKp

(� λ0

0

λp−1ν({x ∈ X : |f(x)| > Kλ})dλ+

� ∞
λ0

λp−1ν({x ∈ X : |f(x)| > Kλ})dλ
)
.

Additionally,

� ∞
λ0

λp−1ν({x ∈ X : |f(x)| > Kλ})dλ

≤ pKp

� ∞
λ0

λp−1(ν({x ∈ X : |f(x)| > Kλ,M#
A,sf(x) ≤ γλ}) + ν({x ∈ X : M#

A,sf(x) ≥ γλ}))dλ

≤ cpKpγs
� ∞
λ0

λp−1ν(Eλ)dλ+
pKp

γp
‖M#

A,sf‖
p
p

≤ cpKpγs‖Mf‖pp +
pKp

γp
‖M#

A,sf‖
p
p

≤ c′pKpγs‖f‖pp +
pKp

γp
‖M#

A,sf‖
p
p.

Therefore,

‖f‖pp ≤ Kpλp0ν(X) + c′pKpγs‖f‖pp +
pKp

γp
‖M#

A,sf‖
p
p

≤ c‖f‖p1 + c′pKpγs‖f‖pp +
pKp

γp
‖M#

A,sf‖
p
p. (λ0 = c‖f‖1(ν(X))−1)

Thus,

‖f‖p ≤ c(‖M#
A,sf‖p + ‖f‖1).

We now state the main result of this section on the interpolation of the space BMOA.

Theorem 4.3.6 Let 1 ≤ s ≤ q. Assume that T is a sublinear operator that is bounded
on Lq(X), 1 ≤ q <∞ and

‖M#
A,sTf‖∞ ≤ c‖f‖∞.

Then T is bounded on Lp(X) for all q < p <∞.

Proof. Let f ∈ Lp(X) and 1 ≤ s ≤ q. We define the operator M#
T,A,s as

M#
T,A,sf(x) = M#

A,sTf(x).

The aim is to show that M#
T,A,s is bounded from Lp(X) to it self for all q < p <∞.

First, we prove that M#
T,A,sf(x) ≤ cMs(Tf)(x). We have

1

ν(B)

�
B

|Tf(y)− AtBTf(y)|sdν(y) ≤ c
1

ν(B)

�
B

(|Tf(y)|s + |AtBTf(y)|s)dν(y)

≤ c
1

ν(B)

�
B

|Tf(y)|sdν(y) + c
1

ν(B)

�
B

|AtBTf(y)|sdν(y).
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Thus,

sup
x∈B

1

ν(B)

�
B

|Tf(y)− AtBTf(y)|sdν(y)

≤ sup
x∈B

c

ν(B)

�
B

|Tf(y)|sdν(y) + sup
x∈B

c

ν(B)

�
B

|AtBTf(y)|sdν(y)

≤ c(Ms(Tf)(x))s.

Hence, M#
T,A,sf(x) ≤ cMs(Tf)(x).

Therefore, for 1 ≤ s ≤ q and λ > 0 we have

ν{x ∈ X : M#
T,A,sf(x) > λ} ≤ ν{x ∈ X : Ms(Tf)(x) > cλ}

≤ c

λq
‖Tf‖q ≤

c

λq
‖f‖q,

so M#
T,A,s is of weak-type (q, q). In addition, we have

‖M#
T,A,sf‖∞ = ‖M#

A,sTf‖∞ ≤ c‖f‖∞.

Thus, M#
T,A,s is bounded on L∞(X). Hence, by using interpolation theorem we have

M#
T,A,s is bounded from Lp to its self for q < p <∞.
If ν(X) =∞, we have

‖Tf‖p ≤ c‖M#
A,sTf‖p due to Lemma 4.3.5

= c‖M#
T,A,sf‖p

≤ c‖f‖p. due to the boundedness of M#
T,A,s

Therefore, T is bounded on Lp for all q < p <∞.
For the case ν(X) <∞ we have

‖Tf‖p ≤ c(‖M#
A,sTf‖p + ‖Tf‖1) ( to Lemma 4.3.5 )

≤ c(‖M#
T,A,sf‖p) + cX‖Tf‖q (Holder’s inequality)

≤ c‖f‖p + cX‖f‖q (due to boundedness of M#
T,A,s on Lp and of T on Lq )

≤ c‖f‖p. (Holder’s inequality and ν(x) <∞)

Thus, the theorem is proved.
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5
Applications: Holomorphic Functional

Calculus of Elliptic Operators

The main references of this chapter are [4, 5].
In this chapter, (X, d, ν) is a space of homogeneous type where d is a metric and the
condition (3.8) of ht(x, y) is replaced by

lim
r→∞

rn+2N+εg(rm) = 0. (5.1)

We will first state the holomorphic functional calculus given by McIntoch [11].
Let 0 ≤ w < v < π. We define the Sw as

Sw = {z ∈ C : | arg z| ≤ w} ∪ {0}
Let S0

w be the interior of Sw, H(S0
v) be the space of all holomorphic functions on S0

v ,

H∞(S0
v) = {b ∈ H(S0

v) : ‖b‖∞ <∞}
where

‖b‖∞ = sup{|b(z)| : z ∈ S0
v}}

and
Ψ(S0

v) = {ψ ∈ H(S0
v) : there is s > 0, |ψ(z)| ≤ c|z|s(1 + |z|2s)−1}.

Let 0 ≤ w < π. A closed operator L in Lp(X) is said to be of type w if σ(L) ⊂ Sw, and
for each v > w, there exists a constant cv, such that

‖(L− λI)−1‖p,p ≤ cv|λ|−1, λ /∈ Sv.
If L is of type w and ψ ∈ Ψ(S0

v), we define ψ(L) ∈ L(Lp, Lp) by

ψ(L) =
1

2πi

�
Γ

(L− λI)−1ψ(λ)dλ,

where Γ = {z ∈ C : z = re±iθ, r ≥ 0} is parameterized clockwise around Sw, and
w < θ < v. This definition is independent of the choice of w < θ < v. Furthermore, if L
is one-one and has dense range and if b ∈ H∞(S0

v), then b(L) can be defined by

b(L) = [ψ(L)]−1(bψ)(L),

where ψ(z) = z(1 + z)−2.

43



Definition 5.0.1 The operator L has a bounded H∞ functional calculus in Lp, 1 < p <
∞, if there exists cv,p > 0 such that b(L) ∈ L(Lp, Lp), and

‖b(L)‖p,p ≤ cv,p‖b‖∞

for all b ∈ H∞(S0
v).

The following lemma helps to extend the boundedness of b(L) for b in Ψ(S0
v) toH∞(S0

v).
For the proof see [11].

Lemma 5.0.2 Let 0 ≤ w < v ≤ π and 1 < p < ∞. Let L be an operator of type w
which is one-one with dense range. Let {bα}α be a uniformly bounded net in H∞(S0

v). Let
b ∈ H∞(S0

v), and suppose, for some M <∞, that

1. ‖bα(L)‖p,p ≤M .

2. for each 0 < δ < β <∞,

sup{|bα(z)− b(z)| : z ∈ S0
v and δ ≤ |z| ≤ β} → 0.

Then b(L) ∈ L(Lp, Lp), bα(L)u→ b(L)u in Lp(X) for all u ∈ Lp(X) and

‖b(L)‖p,p ≤ supα‖bα‖p,p

Theorem 5.0.3 Let L be a linear operator of type w on L2(X) with w < π
2
, so that (−L)

generates a holomorphic semigroup e−zL, 0 ≤ |Arg(z)| < π
2
− w. If

1. The kernel az(x, y) of the holomorphic semigroup e−zL, |Arg(z)| < π
2
− w, satisfy:

|az(x, y)| ≤ h|z|(x, y)

for x, y ∈ X, |Arg(z)| < π
2
− θ for some θ > w.

2. The operator L has a bounded holmorphic functional calculus in L2(X).

Then L has a bounded holmorphic function on Lp, 1 < p <∞.

Proof. We will first prove that for any b ∈ Ψ(S0
v), b(L) satisfies the conditions of Theorem

3.2.6. Hence, the operator b(L) is bounded on Lp, then by using the convergent lemma
5.0.2, we prove that L has a bounded H∞ functional calculus in Lp, 1 < p <∞.
Let b ∈ Ψ(S0

v), then L2 boundedness of b(L) is direct result from (2) of 5.0.3. In addition,
if we take At in Theorem 3.2.6 to be e−tL, then (1) of Theorem 5.0.3 gives the condition
(A2) of Theorem 3.2.6. Now we will prove (A1) and (A3) of theorem 3.2.6 . Choose v, θ
and ν such that w < θ < ν < v < π

2
and let b ∈ Ψ(S0

v). Note γ = γ+ + γ−, where
γ+ = {teiν , t ≥ 0} and γ− = {−te−iν , t ≤ 0} , we have

b(L) =
1

2πi

�
γ

(L− λI)−1b(λ)dλ.

If λ ∈ γ+, then we have

(L− λI)−1 =

�
σ+

eλze−zLdz
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where σ+ = {teiπ2−θ, t ≥ 0}, and if λ ∈ γ− then we have

(L− λI)−1 =

�
σ−

eλze−zLdz

where σ− = {−te−iπ2 +θ, t ≤ 0}.
Note

b+(L) =
1

2iπ

�
γ+

�
σ+

eλze−zLb(λ)dzdλ =
1

2iπ

�
σ+

e−zL
�
γ+

eλzb(λ)dλdz =

�
σ+

e−zLf+(z)dz

where f+(z) = 1
2πi

�
γ+
eλzb(λ)dλ, and

b−(L) =
1

2iπ

�
γ−

�
σ−

eλze−zLb(λ)dzdλ =
1

2iπ

�
σ−

e−zL
�
γ−

eλzb(λ)dλdz =

�
σ−

e−zLf−(z)dz

where f−(z) = 1
2πi

�
γ−
eλzb(λ)dλ. We have b(L) = b+(L) + b−(L). Hence, the kernel

Kb(x, y) of b(L) is given by

Kb(x, y) =

�
σ+

az(x, y)f+(z)dz +

�
σ−

az(x, y)f−(z)dz.

Let mt = e−tzb(z) and gt(z) = (1− e−tz)b(z) for t > 0. We now prove that:

When d(x, y) ≥ ct
1
m , we have

Kgt(x, y) ≤ c‖b‖∞
t
α
m

ν(B(x, d(x, y)))d(x, y)α
. (5.2)

for some α > 0, and this we will lead to prove (A3).

We have |1 − e−tλ| ≤ c if <(λ) ≥ 0 and t ≥ 0 and |1 − e−tλ| ≤ c|tλ| ≤ c|tλ|β for
0 < β < min{ε, 1} when |tλ| ≤ 1 (ε is constant in 4.1). In addition, e−s ≤ s−β, for s > 0
and β < min{ε, 1}.

Let d(x, y) ≥ ct
1
m and β < min{1, ε

m
}. Setting a = |cos(ν + β)|, we have

|Kgt(x, y)| ≤ c‖b‖∞
� ∞

0

|az(x, y)|
� ∞

0

|ezλ(1− e−tλ)|d|λ|d|z|

≤ c‖b‖∞
� ∞

0

|az(x, y)|

(� t−1

0

e−a|z||λ||tλ|βd|λ|+
� ∞

1
t

e−a|λ||z|d|λ|

)
d|z|

≤ c‖b‖∞tβ
� ∞

0

|az(x, y)||z|−1−βd|z|.
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We will find an upper bound for the last term� ∞
0

|az(x, y)||z|−1−βd|z|

≤
� ∞

0

g(d(x,y)m

|z| )

ν(B(x, |z| 1m ))
|z|−1−βd|z|

≤
� d(x,y)m

0

g(d(x,y)m

|z| )

ν(B(x, |z| 1m ))
|z|−1−βd|z|+

� ∞
d(x,y)m

g(d(x,y)m

|z| )

ν(B(x, |z| 1m ))
|z|−1−βd|z|

≤ c

� d(x,y)m

0

(d(x,y)

|z|
1
m

)−2N−ε

ν(B(x, d(x, y)))
|z|−1−βd|z|+ c

� ∞
d(x,y)m

1

ν(B(x, d(x, y)))
|z|−1−βd|z|

≤ c

� d(x,y)m

0

(
d(x,y)

|z|
1
m

)−2N−βm

ν(B(x, d(x, y)))
|z|−1−βd|z|+ c

� ∞
d(x,y)m

1

ν(B(x, d(x, y)))
|z|−1−βd|z|

≤ c
1

ν(B(x, d(x, y))d(x, y)mβ
.

Therefore, by taking α = βm, we have

Kgt(x, y) ≤ c‖b‖∞
t
α
m

ν(B(x, d(x, y)))d(x, y)α
.

We will prove (A3) of Theorem 3.2.6.
�
d(x,y)>c′t

1
m

|Kgt(x, y)|dν(x) ≤ c

�
d(x,y)>c′t

1
m

t
α
m

ν(B(x, d(x, y)))d(x, y)α
dν(x)

≤ c
∞∑
i=0

�
2ic′t

1
m<d(x,y)<2i+1c′t

1
m

t
α
m

ν(B(x, 2ic′t
1
m ))(2ic′t

1
m )α

dν(x)

≤ c
∞∑
i=0

2−iα
�
B(y,2i+1c′t

1
m )

1

ν(B(y, 2ic′t
1
m ))

dν(x) ≤ c.

Therefore, by taking At = e−tL we have that b(L) verifies (A1), (A2) and (A3) of Theorem
3.2.6. Hence, b(L) is bounded on Lp(X), 1 < p ≤ 2. In addition, b(L) and e−tL commute.
Thus, by using duality argument we have b(L) is bounded on Lp(X), 1 < p <∞.

Theorem 5.0.4 Let T be an operator satisfying the following conditions:

1. T is a bounded linear operator from L2(X) to L2(X) with the kernel k such that for
every f in L∞(X) with bounded support,

Tf(x) =

�
X

k(x, y)f(y)dν(y)

for ν-almost all x /∈ supp f.

2. There exists a generalized approximation to the identity {At}t>0 such that the op-
erators (T −AtT ) have associated kernels kt(x, y) and there exist positive constants
c1 and c2 such that:�

d(x,y)>c1t
1
m

|kt(x, y)|dν(y) ≤ c2 for all x ∈ X.
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Then
‖Tf‖BMOA ≤ c‖f‖∞

for all f ∈ L2(X) ∩ L∞(X). (Note, we can always assume that c1 > 1).

Proof. To prove the theorem, we will show that

1

ν(B)

�
B

|Tf(x)− AtBTf(x)|dν(x) ≤ c‖f‖∞.

Let f ∈ L2(X) ∩ L∞(X) and let f1 = 14c1Bf and f2 = 1(4c1B)cf .

1

ν(B)

�
B

|Tf(x)− AtBTf(x)|dν(x) ≤ 1

ν(B)

�
B

(|Tf1(x)− AtBTf1(x)|

+ |(T − AtBT )f2(x)|)dν(x)

≤ c

�
B

M(|Tf1|)(x)dν(x) +

�
B

|(T − AtBT )f2(x)|dν(x).

Furthermore,�
B

M(|Tf1|)(x)dν(x) ≤ c(ν(B))
1
2 (

�
X

|M(|Tf1|)(x)|2dν(x))
1
2

≤ c(ν(B))
1
2 (

�
4c1B

|f(x)|2dν(x))
1
2 M and T are bounded on L2(X)

≤ cν(B)‖f‖∞.

In addition,

�
B

|(T − AtBT )f2(x)|dν(x) ≤
�
B

�
(4c1B)c

|ktB(x, y)||f(y)|dν(y)dν(x)

≤ ‖f‖∞
�
B

�
d(x,y)>c1t

1
m

|ktB(x, y)|dν(y)dν(x)

≤ cν(B)‖f‖∞.

Hence,
1

ν(B)

�
B

|Tf(x)− AtBTf(x)|dν(x) ≤ c‖f‖∞.

Thus,
‖Tf‖BMOA ≤ c‖f‖∞

and the theorem is proved.
Note that by using Theorem 4.3.6 we can show that T can be extended to a bounded
operator on Lp(X), 2 < p <∞.

Remark: The approach in this thesis can be adapted to study the end-point estimates
and Lp boundedness of other singular integrals whose kernels are rough and do not belong
to the class of Calderón-Zygmund operators. Examples are the Riesz transforms of the
Laplace Beltrami operators on certain doubling manifolds, the Riesz transforms associated
with the Divergence form operators on Rn or associated to the Schrödinger operators
with non-negative potentials, see [1]. One can also obtain weighted estimates for singular
integrals with rough kernels, see [6]. However, we do not pursue these results within this
Master thesis.
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