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Abstract

The purpose of this thesis is to study the new criterion for boundedness of some singular
integrals. The main results of this thesis are presented in four parts.

1. Recall the Hormander condition for boundedness of singular integrals which has
been an important result of the Calderén-Zygmund theory.

2. Discuss a new criterion for singular integral operators to be bounded on LP(X), 1 <
p < 0o, where X is a space of homogeneous type. This criterion is an improvement
of the Hormander condition and it has had many applications in recent research of
singular integrals in the last 20 years.

3. Discuss new function spaces which suit these operators such as BM O 4 spaces asso-
ciated to operators.

4. Use these results to study the functional calculus of operators satisfying certain
kernel estimates.
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Introduction

Harmonic analysis is a mathematical discipline that is originated with the fundamental
problem of representing functions as sum of sine and cosine functions. Nowadays, har-
monic analysis has been developed extensively which has had important links to other
fields of mathematics, especially complex analysis, number theory and partial differential
equations. Applied harmonic analysis has been instrumental in a number of engineering
and industrial mathematics, such as signal processing.

A central part of modern harmonic analysis is the Calderén-Zygmund theory which
was developed by many famous mathematicians since 1960’s. A main aim of this theory
is to study the boundedness of singular integral operators. A typical example of singular
integral operator is the Hilbert transform. It is given by

Hf(x) = %p.v./oo @dty

where p.v. is abbreviation for the term “principal value”. Historically, the study of
Hilbert transform on the real line R relied on complex analysis. The extension of the
Hilbert transform to higher dimension spaces, namely R", gives us the Riesz transform

R; = %Afl/ 2 (where A denotes the Laplace operator). The boundedness of the Riesz

transform R; gives one tool to compare the norm of the partial derivatives 6% and the

square root of the Laplace operator. Let us remind that the Calderén—Zygmuﬁd theory
asserts a sufficient condition so-called the Hormander integral condition for a singular
integral to be of weak type (1,1). Recall that an integral operator 7" with the associated
kernel k(z,y) satisfies the Hormander integral condition if there exist C' > 0 and § > 0

such that
/ ) = Ko ) (o) < ©
d(x,y)>dd(z,y1)

for all y, 1, € X.

However, in practice, there are a number of operators which do not fall within the
scope of the Calderén—Zygmund theory, i.e. their associated kernels do not satisfy the
Hormander integral condition. For example, in this thesis we consider the functional
calculus f(L) of an general operator L which enjoys only the suitable upper bound where
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f is a bounded holomorphic function. One of the most typical examples for a such operator
is the Schrodinger operator L = —A 4V on R™ where 0 <V € L{ (R"). For the details,
we refer to Chapter 5.

Therefore, in order to treat these operators, we require new approaches. In [4], Duong
and McIntosh introduced a sufficient condition which is weaker than the Hormander
integral condition for a class of singular integrals to be of weak-type (1,1). We now briefly
describe the main result in [4]. Let T be a linear/sublinear operator which is bounded
on L*(X) and with associated kernel k(z,y). Suppose that there are operators A, with
associated kernels a;(x, y) satisfying suitable upper bound estimates. If the operators T' A,
have the associated kernels K; such that there is a constant §,C > 0 so

/d( - |k(z,y) — Ki(x,y)|dv(z) < C, for all y € X, (1.1)
z,y)>0tm

then the operator is of weak type (1,1).

Under the particular choice of the family A;, the condition (1.1) turns out to be the
Hormander integral condition. The flexibility of the family A; allows us to prove the
weak type estimates of singular integrals beyond the Calderén-Zygmund theory such as
the functional calculus of a general operator and the generalized Riesz transforms in
various settings. See for example [4].

Motivated by this problem, the main aim of this thesis is to discuss the main results
in [4] and [5]. More precisely, we present the proof of the weak type (1,1) estimate for
singular integrals satisfying the condition (1.1). Then we also review the main results in
[5] which considered a new BMO space associated to the family of operators A;. It is
interesting to note that the new BMO space in [5] is similar to the classical BMO space in
the sense that it pertains a number of important properties of the classical BMO spaces
such as the interpolation property with the Lebesgue spaces and the endpoint estimates
in the study of the boundedness of singular integrals.

The structure of the thesis is organized as follows. In Chapter 2, we recall some
backgrounds in harmonic analysis related to interpolation theorem, singular integrals and
BMO spaces in the classical case R” with simple settings. Chapter 3 will discuss the main
results in [4]. A discussion on the theory of the new BMO space associated to a general
family of operator A; in [5] will be given in Chapter 4. We first recall the definition of
the new BMO space and then reprove important properties of the new spaces such as
John—Nirenberg’s inequality and the interpolation property for the new BMO space with
the LP space. In Chapter 5, we consider a case study of the functional calculus of a general
operator satisfying a suitable upper bounds for its heat kernel. We will show that the
functional calculus fits nicely into the settings in [4] and [5], hence we obtain the weak
type estimate and the endpoint estimate on the new BMO space for this operator.



Calderén-Zygmund Theory and BMO(R")

2.1 Calderén-Zygmund Theory on Singular Integrals
in R"

We will first discuss some results for real and complex valued functions on R™. For a € R"
and r > 0, we denote B(a,r) the ball of center a and radius r. In addition, for every
measurable sets B, C' C R" we denote B — C' to be BN C* and |B| to be the measure of
B. Throughout this paper, the letters ¢ and ¢ will denote (possibly different) constants
that are independent of the essential variables.

2.1.1 Maximal Function

For a locally integrable function f, for any r» > 0 and for any open ball B C R", we define
the centered Hardy-Littlewood maximal function of f as

Mf@) = sl B [ 1)y (2.)
r>0 B(z,r)
and the uncentered Hardy-Littlewood maximal function of f as
M) = suplBI [ |7y (2.
Te

where the supremum in (2.2) is taken over all open balls containing x.

Lemma 2.1.1 The uncentered Hardy-Littlewood function and the centered Hardy-Littlewood
function are equivalent in the sense:

Mef(z) < Mf(x) < M f(z)

for every locally integrable function f.



Proof. The first inequality is clear. On the other hand, if © € B(xzg,r), then B(xg,r) C
B(z,2r) and

1 |B(x 2r)|
oo [ Wy [ it
|B(l‘0,7‘)| B(zo,r) |B($0, | |B z,2r | B(x,2r)

< eMef(x).

Hence, the second inequality is obtained by taking the supremum over all the balls con-
taining x.

The following lemma and theorem illustrate some properties of the Hardy-Littlewood
maximal functions.

Lemma 2.1.2 Let f be a locally integrable function. Then E\ = {x € R" : M f(z) > A}
1S an open set.

Proof. Let x € E). There exists a ball B containing = such that:

,—; / F@)ldy > A

Hence, for every z € B we have M f(z) > A, and
B C E,.
Therefore, F is open in R™.

Lemma 2.1.3 Let X be a measurable subset of R™ covered by a family {Ba}acr of balls
of bounded diameters. Then there exists a disjoint sequence B, of these balls such that

1 X| <5") B, (2.3)

For the proof of the lemma see chapter 1, page 9 of [9].

Theorem 2.1.4 Let f be a function defined on R™.

a. If f € LP(R"), 1 < p < oo, then M f is finite almost everywhere.
b. If f € L'(R"), then [{z € R" : | f(2)] > a} < £[| 1.

c. If f € LP(R"), 1 <p < oo, then [[M(f)[l, < el fllp-
In the above estimates ¢ and c, are constants depend on the dimension n.

Proof. For the case where f = 0 the proof is direct. Now if f # 0 and a > 0, let
E,={x e R", M f(xz) > a}. Thus, for each = € E,, there is r, > 0 such that

B [ Jf@lde>a.
B(z,re)
Therefore,

(0%

1
|B(z,7,)| < —/B( )If(x)]dx.

In addition, we have



E,C U B(x,ry).

T z€E,

Hence, by using Lemma 2.1.3 there is a mutually disjoint family of balls B(z;,7,,) such
that

5" 1B 2, 72,)| > |Eal:

Thus,
c c
Bl ey B << [ (p@lde< S £
B < Bl < p [ i< L)
which proves (b).
We now prove (c).
For p = oo we have
1
’B(iL‘, 7")| B(z,r)

Thus, |M(f)llee < [flloo-
Suppose that 1 <p < oo and let fi = 1{; () >2}f(x). Note that if f € LP(R"),
then [{z € R",|f(z)| > 5|} < oo. Thus, by using Holder’s inequality we have

|f(2)]dx < [flloodz = [[fl]oo-

|B(3§', 7“)’ B(z,r)

. a1
- |f1(2)|de = - (@) [Lzernis@izgyde < [ fllo{z € R* [f(2)] = 5}
Hence, f; € L'(R"). In addition, we have M(f) < M(f1)+ %, so
Bl < [{z e R": M(f1)(z) > 5} < 2l Al

Therefore,

M(f)(zx)Pdx = p/OOO o Tz e R M(f(z)) > a}|da

< c/ ozp_2/ |f(x)|dzda
0 {zeR™;|f(2)[>5}

2[f ()]
= c/ |f(x)] / P 2dadz (due to Fubbini’s theorem)
R" 0

R”

—c [ @IfErds =],
which proves (c¢) and then (a).

Definition 2.1.5 Let T be a mapping from LP(R"™) to LI(R"), 1 <p < o0, 1 < ¢ < o0.
Then we say

(1) T is of type (p,q) if T is bounded operator from LP(R™) to LI(R™).
(13) T is of weak-type (p,q), for ¢ = 0o, if T is bounded operator from LP(R™) to L>(R™).
(1ii) T is of weak-type (p,q) , for g < oo, if for every a > 0 and f € LP(R") we have

fr e B [1f(2)] > a}] < (Dhoye
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Lemma 2.1.6 If T is of type (p,q), then T is of weak-type (p,q).

Proof. For ¢ < oo, we have

q T flle q
T ()] dych g NG
o4 ol

{z € R™[Tf(x)] > o] s/

[{zeRm|Tf(@)|>a} ¥

2.1.2 Calderéon-Zygmund Decomposition

In Fourier analysis, harmonic analysis and singular integrals, the Calderén-Zygmund de-
composition is a fundamental result. The idea is partitioning R™ into two sets: one where
the function is essentially small and the other where the function is essentially large but
with some control.

In order to prove the Calderén-Zygmund decomposition, we first state the two lemmas
below.

Lemma 2.1.7 Given a non empty close subset EJ of R™, then its complement is a union
of countable cubes QQ;, whose sides are parallel to the x-axis, whose interiors are mutually
disjoint, and whose diameters are approximately proportional to their distances from FE.
More explicitly:

(a) UZQZ = k-,

(b) The interiors of Q; are mutually disjoint.

(¢) There exists positive constants ¢; and ¢y so that

crdiam(Q;) < d(Qi, E) < codiam(Q;).
Where d(Q;, E) is the distance between Q; and the set E and diam(Q;) is the length
of its diameter.

For the proof of the lemma see page 16 of [9].

Lemma 2.1.8 Let f: R" — R be a non negative integrable function and o be a positive
constant. Then there is an open set € such that:

(1) Q is a union of cubes Q; whose interiors are mutually disjoint.
(i) | < 2l /11
(vi1) mf@ f(x)dx < ca.
(1) f(x) <« almost everywhere in F' = QF.

Proof. Let FF={x € R": M f(x) < a}, F is a closed set. Thus, by using Lemma 2.1.7,
we have that 2 = F° is equal to union of countable cubes @); that verifies (a), (b) and (c).
Furthermore, Theorem 2.1.4 (b) shows that [Q] < £]|f][;.

Let Q; be one of these cubes and let B; be a closed sphere that contains Q; and intersects
F. Let {x,} be a sequence of points in B; N F such that d(x,, Q;) converges to d(Q;, F)
where d(z,,Q;) is the distance between the point x,, and the set Q; and where d(Q;, F)
is the distance between ); and F. Since B; is a compact set, there is a subsequence
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(@, )r that converges to a point p;. F' is a closed set, thus p; € F' and the distance
d(p;, Qi) = d(F,Q;). Let B(p;,r;) be the smallest ball which contains @);. Furthermore,
Lemma 2.1.7 and some elementary geometry show that the ratio o; = % is bounded

by a constant for any @;. As p; € F', M f(p;) < a. Therefore,

1 1
Qi (z)dx = TBoirlQd f(x)dz < oiM(f)(pi) < cav.
e BECTI

Thus (iii) is proved. In addition, by using the Lebesgue differentiation theorem f(x) < «
for x € F. Hence, (iv) is proved.

Lemma 2.1.9 Suppose f € L'(R") and o > 0. Then there is a decomposition of f to a
“good” function g and a “bad” function b, where

f=g+band where b=">_b;
such that:
(1) |g(z)| < ca for almost all x € R™ .

(13) There is a sequence of cubes {Q;} with mutually disjoint interiors, such that the
support of each b; is contained in Q);.

(191) [on bi(x)dr =0 and f(x) < «, for z € (UQ;)° .
(iv) [, Ib)ldr < colQ]

(v) Zi|Qi| < £ [|f(x)|dx.

Proof. Using €2, F' and the sequence of cubes {Q;} defined in Lemma 2.1.8 for the function
|1, let

| flo), reF
o) = { @1 Jo, fW)dy, v € Qi

and

b R reF
(@) = { F@) = 2 fo Fu)dy, = € Q.

Property (iiz) is obtained by integration. However, (i), (ii) and (v) are obtained directly
from Lemma 2.1.8.
Furthermore,

bl <2 [ 17@)de < colQ.
Qi

Hence, (iv) is proved. In addition, by using (iv) and (v) we have [ |b(z)|dz < ¢ [ |f(x)|dx.
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2.1.3 Marcinkiewicz Interpolation Theorem

The interpolation theorem is used to prove the boundedness of an operator. In order to
prove this theorem, we need to discuss some properties of LP(R™)+ L1(R"™), for 1 < p < oo,
1 < g < oo. Wedefine LP(R™)+4 L4(R™) to be the space of all functions, so that f = f1+ fa,
with f; € LP(R") and f, € LI(R").

Lemma 2.1.10 For all v such that p < r < q, we have L"(R") C LP(R") 4+ L¢(R").

Proof. For f € L"(R™) and a > 0, let

[ f@). 1f@)]>a
“@‘{u @) < a
and
Cf f@). 1f@)]<a
fal) = { 0, |f(z)] > a.
So
()P = () fi()PTde < o7 z)|"dx < oo
Juer=[ A [1s@rds <
and

/ummwxzfux@MﬁQMWWIsw#/IMMWx<m.
Hence, fi1 € LP(R"), fo € LY(R") and f(z) = fi(z) + f2().

Theorem 2.1.11 Suppose that 1 < r < oo. Let T be a sublinear operator which is
of weak-type (1,1) and of weak-type (r,r). Then T is of type (p,p) for all p such that
1 <p <r. In another way, for every 1 <p <r, if f € LP(R"), then

ITCHlp < Apll Fllp-

Proof. First consider the case r < oco. Let f € LP(R™) and o > 0. Then by using
the decomposition in Lemma 2.1.10, there are f; € L'(R") and f, € L"(R™) such that

f(x) = filz) + folz) .
We have

T @) < T )]+ T (f2) ()]

Therefore,

{z e R [T(f)(2)] = o} S {x e R [T(f1)(x)] = %} U{z e R [T(f2)(z)| =

(e
et

Hence,

Wﬁxwﬂmzp/wd”erRﬂﬁﬁﬂzawm

R™ 0

<p [T e cRATR@I 2 D+ € RATE) @) 2 )i



In addition, using the weak type (1,1

/0 T (e € RS IT(R) @) 2

and the weak type (r,r) of T we have

H)da < ¢ / "o [ (i) deda

<c / aP” 2/ |f(x)|dzda
{OJGR" |f )|>a}

|f (=
< C/Rn |f(x)|/0 ap_2dadx

c [ [f(x)[Pde
R

ol =

and

/°° o (|{z € R%|T(fo) ()] > %}Dda < C/OO o [ | fo(2)] dwda
0 p z

< c/ ozp_r_l/ |f(z)|"dzda
0 {weRn|f (@) <a)

<c [ Af@r [ ot rdads
R™ /()]
<c |f(z)[Pdz.
Rn
Thus, [7()l, < el

Now consider the case r = oco. There is a > 0 such that for every g € L, ||T(9) |0 <
allglloo- Let f € LP. Write f = fi* 4+ f$ such that

@) @) > =
fi@) {o @) < &
and
[ F@) @) <
f2<‘”>‘{o @) > &

We have f5' € L>(R"). Hence, ||Tf5|| < ag- = 5. Thus,
{z e R": |T(f§‘)(fﬂ)| > §}| =0
and

{z € R": [T()(2)| > al}| < [{z € R |T(f) ()] > S} < = / |f(2)|da.

If(2)]> 55
Therefore,

1T CHI Zp/ma”_ll{l“ e R |T(f)(x)] > a}|da

<c/ aP” 2/ x)|dzdo
|>—
2af(x
<[ 1sr [ w
R™ 0

|f (@)["d.

R”
Thus the theorem is proved.



2.1.4 Singular Integral Operators with The Hormander Condi-
tion

The following theorem studies the boundedness of some singular operators where their
kernels have some specific conditions such as the condition (3) below.

Theorem 2.1.12 Let K € L*(R") and T be an operator such that
1. for all f € LY(R™) N LP(R"), we have

(Tf)(x)= [ Kz —y)f(y)dy,

R
2. K e L>*(R™) where K is the Fourier transform of K,

3. there exists a constant C' > 0, such that

/ |K(x —y) — K(z)|de < C.
{weRn:|z|>2]yl}

Then T is of weak-type (1,1). Furthermore, T can be extended to be a bounded operator
on LP(R™), with 1 < p < oo.

Proof. First, we will prove that T is bounded on L?(R"), then we will prove that T is of

weak-type (1, 1) in order to use the interpolation theorem. o
Let f € LY(R") N L*(R"), we have T'(f)(z) = K * f(x) and (Tf)"(y) = K(y)f(y). Thus,
by using Plancherel theorem and the boundedness of K, we have

IT(H)ll2 < CllfIl2

In addition, L'(R") N L?*(R") is dense in L?*(R"). Therefore, T' can be extended to be a
unique bounded operator on L?(R"). Hence, T is weak-type (2,2).

We now prove that T is weak-type (1,1). Let f(z) € L'(R") N L*(R"). Fix « for
a moment. Then by using Lemma 2.1.8 we have R = FUQ, FNQ = 0; |f(2)] < «,
x € F and Q) = LiJQZ Using g, b and b; defined in the proof of Lemma 2.1.9 we have

f=g+b=g+3b and

o)l = | lo(@Par+ 3 | ot
2 1 2
= [, 1@ ar+ Sap [ 1 [ a
<o [ 1@lir+ 3 et [ 1oy
<o [ V@t +eo(y [ 1) < calll,

Furthermore, T is bounded on L?*(R™). Thus,

callfli _ ¢
o? «Q

cllgll?

<
o2

£l

n «Q
{z € R, |[T(g)(x)] > 5} <
Set QF = 2n2Q;. Let Q* = NQ* and F* = Q*. Thus,

10



L Qi CQi.

2. || < (2n2)"Q.

3. If ¢ QF, then |x — y;| > 2|y — y;| for all y € Q;, with y; is the center of Q);.
Given that fQi b;dx = 0, we have

Thi(z) = / (K (x — ) — K(x — ))bi(y)dy.

i

and

[ mia)iie < Z/ VG =) = K G o)l ool

Q*c

<>/ /Q VK@ = y) = Kz = )0y
<YL 0 Kl bl
<3 [ pway

<c[|fx-

In addition,

{z € R, |Tb(x)] > S} = [{z € F*,|Th(a)| > S} + [{x € @, |Tb(x)] > S}

IN

c *
—|[fll + 167
(0%

IA

=[|ll + (2n#)"1

Cc

)7l

IA

Hence,
{z € R",|Tf(2)] > a] < [{z € R",|Tb(z)| > T} + [{x € B"|T(g) ()| > 5}

C
E 1

IN

It follows that T" is of weak-type (1,1). Hence, by using interpolation theorem, we have
T is bounded on LP(R™) for 1 < p < 2. In another way, for every f € LP(R") there is
cp > 0, such that

1Ty < el fllp

We now prove the boundedness in case p > 2. Let Cy(R™) be the set of continuous
functions with compact a support and ¢ be a positive real number such that é + 110 = 1.
Let

Sq = {0 € CoR") - [|0fl, < 1}
If f is locally integrable and

S;’%’“f’ ¢)| = sup| [ f(x)p(x)dz| < oo,

(be q NG

11



then f € L,(R") and [|f]|, = Su§|<f, o).
€95q
Let g € LP(R™") N L*(R™). We have K € L*(R"), so K x g € L*(R"). Hence, for every
ses,
| (5 < g)@)o(a)dody

converge absolutely and by using Fubini’s theorem, we have

To.0) = [ (Kxa@owis = [ o) [ Koty
Let K*(z) = K(—x) and T* be an operator such that for all f € L'(R") N LY(R"™),
(@) = | K@ =y)fy)dy.

Let ¢ € S,. Given that p > 2 then ¢ € (1,2), so by using the previous result we have T
is bounded on L?(R™) and

IT*(@)lg < cqllollg < g
Hence,

(Tg,o)| = | . T(g)(z)p(x)dx]
IIWMM K(z —y)¢(x)drdy|

Rn

=| [ 9y)T"(o)(y)dy|

R"l
< Ilg@W)lpl T¢Il
< cqllgllp-

Thus, || T(g9)|l, < ¢4llg]l, and this completes our proof.
Theorem 2.1.12 can be generalized as follow.

Theorem 2.1.13 Let T be a bounded operator on L*(R™) such that:

1. T has an associated kernel K(x,y), i.e

(Tf)(x)=[| K(z,y)f(y)dy

RT’L
for each continuous function of compact support f and for almost all x not in the
support of f.

2. There are positive constants a and C' so that :

/ K(z,y) — K(e,y)|de < C
lz—y|>aly—y1|

and

/ o HK@w%ﬁﬂme@<G
z—y|>alr—z1

Then T is of weak-type (1,1). Furthermore, T can be extended to be a bounded operator
on LP(R™), with 1 < p < 0.

The proof of Theorem 2.1.13 is similar to the proof of Theorem 2.1.12 with some modifi-
cations and we omit the details.
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2.2 BMO Spaces

Definition 2.2.1 For a complex-valued locally integrable function f on R™ and for a
measurable set () C R™, we define the mean of f over Q) as:

1
fo = @/Qf(%’)dx

Definition 2.2.2 For a complex-valued locally integrable function f on R™, we define

W%mz?ﬁémwﬁwx (2.4)

where the supremum is taken over all cubes @ in R™. Let BMO(R™) be the set of all
locally integrable functions f on R™ with || f||pmo < oo.

Note that if f is a constant function then || f||gpo = 0, therefore ||.|| a0 is not a norm.
However, if f,g € BMO(R™) and A € C, then f+¢g € BMO, \f € BMO and

IAf + gllBaro < Al fllBrio + 19l Bro

In addition, L*(R") ¢ BMO(R") and if f € L>®(R"™) then || f||zro < 2| f]lco-

Definition 2.2.3 For a complex-valued locally integrable function f on R™, set

1
I £llmsion = supz [ 1£(2) = falds 25)
B |B|Jp
where the supremum is taken over all balls B in R™.

Note that there are a,,, b, > 0 such that

anl|fllBao < |[f | BrOsan < call fllBaro-
Proposition 2.2.4 Let f € BMO(R™). We have the following properties:

(1) If a cube Qy is contained in a cube Q2, then

um—mJ_gﬁmmm

(2) Given a ball B and a positive integer m, we have
/5 = famp| < m2"||f|[ 570

Proof. For the inequality (1), we have

— d
|fQ2 fQ1| = |Q | o |fQ2 f($)| x
1
d
IQ a1 o, |fq, — f(x)|dx
:gQ:HfHBMo

13



For the inequality (2), we have

|f2i*1B - fQiB

|fB — fomp| <

2B
<213

£l Breo

IN

Ms llMS M=

2" f|lBaro

.

|
Il
[\DH

"I f 1l Baro

2.2.1 John-Nirenberg Inequality

One of the features of BM O functions is their exponential integrability. This is the main
aim of the following theorem.

Theorem 2.2.5 For f € BMO(R"), for all cubes Q, and all positive o we have:
{z € Q:|f(x) - fo| > a}| < ¢|Q|eTTaro

with a and c are positive constants that depend on n only.

Proof. 1t is sufficient to prove the case when || f||gro = 1.
Let @ be a fix cube in R™ and a constant b > 1. We will set up a criterion in order to
have a collection of cubes QF such that there is some control on their measures and

{z €R":|f(2) — fol > 2"kb} € UQ;.

We will set the stopping time for a cube P:

% /P |f(x) — foldx > b. (2.6)

Given ||f||smo = 1, then we have that @ doesn’t verify the property (2.6). Subdivide
@ into 2™ equal closed subcubes with disjoint interiors. We choose the subcubes with
property (2.6) and then for the subcubes that are not chosen, we subdivide them to 2"
equal closed subcubes and choose again the ones that verify (2.6). By repeating the
process, we will obtain a countable set of cubes {Q}} that satisfy:

(1) b< @ Jor 11 () = foldx < 27,
(2) [fo — forl <27

(3) 22, 1Qi1 < 3lQl.
(4) |f — fol < b almost everywhere on the set Q) — U;Q;.

The first inequality in (1) can be obtained from property (2.6). For second inequality in
(1), we have

@] B W1 - i
m/ — folde < |@\|@\/Q%'f($> fol <2 /Q F(2) ~ faldz < 2°.

14



For (2), we have | fo — foil < g Jor 1fo = f(y)ldy < 2"D.
Using (1) and the fact that @} have disjoints interiors, we have:

1 1 1 1
gmwsgg%;ﬂw—mwsgLum—mwﬁﬁwmmmuﬁwy

Thus, the proof of (3). Finally (4) is obtained by using the Lebesgue differentiation the-
orem.

We repeat the same process for each @}, but with the property

%/me) — forldz > b (2.7)

Hence, we obtain a countable set of cubes of {Q?} We repeat the process for all Q? to get
a collection of cubes {Q?}. By iteration, we will get a collection of cubes @Q$ that verifies:

(a) The interior of each @7 is included in a unique Q; "'
(0) b < e Jos 1£(2) — gyl < 2%

(c) |fQZ*1 - fQ;
(@) >2;1Q51 < 51Q.

(e) |f — fgs—1| < b for almost everywhere on the set Qy ' —U;Qs.
J

< 2".

The proof of these properties is similar to the one above.
Furthermore, we have |f — fo1| < b for a.e on Q; —UQ? and |fq — for| < 2"b.
K2 ,] T

Thus
|f — fol < sup{b,b+2"b} = b+ 2"b < 2"2b

a.e on Q — UQ3.
J
With a similar argument with some modifications, we obtain:
|f = fol <2"sb

almost everywhere on () —UQ;. Hence,
J

{zr €Q:1/() = fol > 2"sb} < [U Q5] < 7|QI.
Let o > 0. If a < 27D, then
{z € Q:[f(x) = fol > a}| <1Q < [Qle¥ e < [Qle* e 50
If o > 2"b , then there is a positive integer s such that
2"sb < oo < 2"(s+1)b.
Thus,
{z € Q:[f(x) - fol > o} < {z € Q:|f(2) — fol > 2"sb}|
<b7°|Q|
< | Qe 3o

log

< |Qle? e e,

Thus the proof of Theorem 2.2.5 is complete.

15



Corollary 2.2.6 For all1 < p < oo, we have

D=

~ || fllBamo

1 Py
sl /Q (@) — folPde)

Proof. We first prove that

sup (ﬁ /Q () - fQ|pdcc) < el fllmro.

We have

1 0o
o 150 darae = B [ e € @2 1560 — ol >

< @l [~
— 1@l Jo

= cllfizaro-

1

___ao
ol e Tfismo dov

By taking the supremum over all cubes we get the inequality.
In addition,

1

o1 1)~ falte < '%’f ( / ) foPir)” = |Ql|; ( / If(x)—lepd«’r>;-

By taking the supremum of both sides over all cubes we get

1 » p
| fllBaro < Sgp <|5|/Q|f(az) — fol dx)

This completes the proof of Corollary 2.2.6.

2.2.2 Interpolation of BMO Spaces

Theorem 2.2.7 Let 1 < py < co. Let T be a bounded linear operator from LP°(R™) into
LPo(R™) and from L>*(R™) into BMO(R™). Then for all p with py < p < oo there is a

constant ¢ such that for all f € LP(R™) we have

1Al < ell £y

For the proof of Theorem 2.2.7 see Theorem 7.4.7 of [7]. This proof is similar to the proof

of Theorem 4.3.6 in chapter 4.

2.3 Hardy Spaces

Definition 2.3.1 A complex-valued function a is called 2-atom if there is a cube @) such

that

(a) a is supported by Q
(b) [na(z)de =0

16



c) llalls < -
(©) lalls < 4
Definition 2.3.2 We define H'(R") as

H'(R") = {>_ Aia; : a;2-atom, \; € C, Y |\i| < o0}

and the norm on H'(R") as

| fll e = inf{z INi| - f = Nag, A € C,a; 2-atom}.

Theorem 2.3.3 The dual of H'(R") is isomorphic to BMO(R™) with equivalent norms.

For the proof of this theorem see [7], chapter 7.
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Singular Integrals with Rough Kernels

In this section, we will discuss a new criterion for singular integral operators to be bounded
on LP(X), 1 < p < oo, where X is a space of homogeneous type. This criterion is an
improvement of the Hérmander condition and it has had many applications. The main
reference of this chapter is [4].

3.1 Preliminaries

Definition 3.1.1 A quasi metric d on a set X is a function from X x X to [0,00) such
that :

1. d(z,y) =0 if and only if x = y.
2. d(z,y) = d(y,x) for all z,y € X.
3. There is a constant Cy € [1,00) such that for all x,y,z € X,

d(z,y) < Ci(d(z,2) + d(z,y)).

Let X be a topological space equipped with a measure v and a quasi metric d which is
a measurable function on X x X. We define (X, d, ) to be of homogeneous type if the
doubling property is verified uniformly for all x € X and r > 0. That is,

v(B(xz;2r)) < qqv(B(z, 1)) < 00 (3.1)

for some ¢; > 1 uniformly for all x € X and » > 0 . Note that the doubling property
implies that there are ¢, n > 0 such that for all x € X and A > 1

v(B(z,Ar)) < coA"v(B(z, 7)) (3.2)
and there are c3 > 0 and N, 0 < N < n, such that for all z,y € X and r >0

W(Bly.r) < 1+ CEE N (B ). (33)
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In the following, we will state some useful theorems for space (X, d, v) of homogeneous
type that are similar to Theorem 2.1.4 and Theorem 2.1.9 in classical case.

Definition 3.1.2 Let f € LP(X), 1 < p < oco. We define the mazimal function of f as

Mf(z) = Supg/ |f(x)|dv(x), where B is an open ball in X.
zeB

Theorem 3.1.3 Let f be a measurable function on X;
1. If f € LNX), then v{z € X, (M f)(z) > a} < £[|f]|x.

2. If f € LP, with 1 < p < oo, then there is C, > 0, such that for all f € LP(X) we
have

IM fllp < Coll fllp-

For the proof of part (1), see [2]. For the part (2), we mimic the proof of (¢) in Theorem
2.1.4 by replacing R™ by X.

Theorem 3.1.4 Let O & X be an open set. Then there is a collection of balls { B(x;, ;) }r
such that:

1. UB(ZE“T’Z) = O,

2. each point of O is contained in at most a finite number K of balls B(x;,r;),

3. there is ¢ > 1 such that B(x;, cr;) NO° # (.

For the proof see chapter 3 of [2].

Theorem 3.1.5 Suppose that f € L'(X) and o > ﬂ{)”;) Then there exist functions g
and b such that:

(o) f=9+0,
(b) |g(x)| < ca for almost all v € X,

(c) There is a sequence of functions b; and balls B; so that the support of each b; is
contained in B; and b= b;,

(d) [p, bi(x)dv(z) =0,
(¢) fB |bi(2)|dv () < cav(By),

(f) v < J1f(@)|dv(x
(g) Zz 1Bi S N.

For the proof see Corollary 2.3 in Chapter III of [2].

Remark 3.1.6 If v(z) = oo, then we take any o > 0. In addition, using the properties
(e) and (f) of Theorem 3.1.5 we have

ol < 32 f In@ivta) < en 3 u(3) <l
Thus, [lglly < (1 + )|l f]1-
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Definition 3.1.7 Let T be a mapping from LP(X) to LY(X), 1 < p,q < co. Then we say
1. T is of type (p,q) if T is bounded operator.
2. T is of weak-type (p,q), for g = oo, if T is bounded operator.

3. T is of weak-type (p,q) , for q < oo, if for every a > 0 and f € LP(X) we have
V(e € X [T > a) < (Do (3.4

Theorem 3.1.8 Suppose that p < r < oo. Let T be a sublinear operator of weak-type
(p,p) and of weak-type (r,r), then T is of type (q,q) for all q¢ such thatp < g < r. In
another way, there is A, > 0, such that if f € LI(X) then

IT(H)llg < Agll flla-

For the proof see Theorem 1.3.2 of [7].
The following theorem gives an analogue of the dyadic cubes in R™. For the proof see
Theorem 11 of [3].

Theorem 3.1.9 Let (X,d,v) be a space of homogeneous type where d is a quasi metric.
There exist a collection of open sets {Q% C X : k € Z,«a € I}, and constants § € (0,1),
ap>0,n>0and 0 < D < oo, where I}, denotes some index set depending on k, such
that

(i) v(X —UQ%) — 0 as k — 0.

(it) If 1 > k then either Q% C QF or QXN Q4 = 0.
(iii) For each (k,«) and each | < k, there is a unique 3 such that Q% C Q%,
(iv) Diameter (QF) < Dé*.

(v) Each QF contains some ball B(z*, agd").

3.2 Singular Integral Operators with Rough Kernels
In this section, (X, d,v) is a space of homogeneous type where d is a metric.

Definition 3.2.1 A family of operators {A;,t > 0} is said to be a generalized approz-
imation of the identity if, for every t > 0, A; is represented by a kernel a,(x,y) in the
following sense: for every function f € LP(X),1 <p < 0,

AM@—A%@WMW@) (3.5)

and
|a(z,y)| < hi(2,y), (3.6)

for all x,y € X where hy(x,y) is given by

1

———g(d(z, y)™t 3.7
V(B(%m))g(( y)"t) (3.7)

hi(z,y) =
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in which m > 0 and g is a positive, bounded, decreasing function satisfying

limr" N eg(r™) = 0 (3.8)

T—00

for some € > 0, where n and N are the constants that appeared previously in (3.2) and

(3.3).
Now we list some lemmas related to the functions h;.

Lemma 3.2.2 Given k > 0 and the function hi(x,y) defined in (3.7), there are ¢,k > 0
such that
sup hy(x,z) <c inf hg(z,2) (3.9)

2€B(y,r) z€B(y,r)

uniformly for all x,y € X, and r,t > 0 with r™ < kt.
Proof. If © € B(y,3r), then d(z, z) < 4r for every z € B(y,r). Hence
gld(z, 2)™t™") > g(4™r™t1).
Therefore, for all z1, 2o € B(y,r) we have
9(0)
v(B(w, t))
o0)  gld(r.z)" )
T u(B(x,tw))  gdmrmitt)
< g(0)(g(4™r™t ™) hu(w, 21).

hi(z, z9) <

Thus,
sup hy(z, z) < g(0)(g(4™r™t™ 1)) " hy(w, 21).
z€B(y,r)
In addition,
d mi=1 Bz, 2t
(o, o) — LG V(B 2%

v(B(z,tw))  v(B(z,2tw))
< 2™ hgmy(x, 21).

Therefore,
sup hi(x, z) < 2™hgm(x, 21).
z€B(y,r)
Thus, the Lemma is valid for x € B(y,3r). Now for x ¢ B(y,3r), we have for all
21,29 € B(y,r)

d(z,z1) < d(z, 29) + d(22,21) < 2d(z, 29). (d is a metric)
Thus,
B x,Qt%
he(z, 22) < thmt(%zl) < homy(, 21).

This leads to the conclusion that

sup hy(z,2) < inf  hy(z, 2).
z€B(y,r) z€B(y,r)

Hence, the proof is complete.
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Lemma 3.2.3 There are constant a,b > 0 such that

a < /Xht(x,y)dy(x) <b. (3.10)

Proof. Note that

d
V(Bly,t5)) < o1+ (fi YN (B, 1)
Hence,
d(z,y)™ 00 d(z,y)™
[t = [ Sy [ ) )
s sy V(B 1)) 2t Syt catemperinit (Bl 1)

<

o 2(i+1)N omi
—1/ . du(ac)+cZ/ o #du(x)
v(B(y,tm)) Jdey)<tm — JBy2itim) v(B(y,tm))

(2

S C, + CZ 2(i+1)(N+n)g(2im) —b.

)

It is enough to take a = @ to complete the lemma.

Lemma 3.2.4 For any f € LP(X), 1 < p < oo, we have

[ 1w plavty) < eMs(o)
b's
The proof of this lemma is similar to the proof of lemma 3.2.3, and we omit the details.

Definition 3.2.5 Let T be a bounded linear operator in L*(X). We say T has an asso-
ciated kernel k(x,y) if

(Tf)(x) = /X k(. 9) f(y)dv(y), (3.11)

where k(x,y) is a measurable function, and the above formula holds for all continuous
functions with compact support, and for almost all x not in the support of f.

The following theorem discusses a new criterion for singular integral operators to be
bounded on LP(X), 1 < p < oo, where X is a space of homogeneous type. This criterion
is an improvement of the Hérmander condition (2.1.12).

Theorem 3.2.6 Let T' be a bounded linear operator on L?(X), we suppose:
(A-1) T has an associated kernel k(x,y).

(A-2) There is integral operators Ay, t > 0, which plays the role of approzimation of the
identity with kernel a,(z,y) satisfying the conditions (3.5) — (3.7).

(A-3) The operators T A; have associated kernels kt, in the sense of (3.11), such that there
are constants 6,C > 0, so

[ ke k) <C poraitye X .12
d(x,y)>0tm

Then T is of weak type (1,1). Therefore, T can be extended to a bounded operator on
LP(X), forall1l <p <2,
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Proof. Let f € L*(X)N LYX) and a > ﬂ{)”;) By applying Theorem 3.1.5 there are

functions f,b and b; that verify the properties of this theorem.
We have T'f =Tg + Tb, thus

v({e € X, |Tf(2) > a}) < vlfe € X, |Tg(a)| > T}) + v({a € X, |[Tb()] > 5})

First, we examine v({z € X, [Tg(z)| > $}). By using (b) of Theorem 3.1.5, we have

loll2 = /X l9(@)2de < ca /X 1 (@) dv(X).

Thus, g € L*(X). Additionally, T' is bounded on L?(X). Hence, T is of weak-type (2,2).
Therefore, we have

v(fa € X, |Tg(@) > 51 < Slgl> < < IIf 1. (3.13)

Now we examine v({z € X, [Tb(z)| > §}). Let r; be the radius of the ball B; mentioned
in Theorem 3.1.5. We have

Tb=Y Th=>» (Th+ (TAw — TAwm)bi) = > (TAmb; + (T — TAm)b;)

K3 K3

where m is the constant for h; that appeared in (3.7). Thus,
v({a € X, |Tb()] > 5})

<v({reX: |ZTATZ”bi(x)| > %}) +v({re X: |Z(T — TAm)bi(z)| > %})

(2

We now analyze:
(1) v({z € X : [ X)(TArbi(x))] > 7}),
(i) v({z € X : | X2,(T — T A )bs(x)| > §}).
For (i), we first prove that 3, A.mb; € L*(X).

Apbi@)| < [ Ihop(ebilvty)

< / sup |y (1, 2)bi(y) |dv(y)

f 2€DB;

< c/ inf |Ap,m (7, 2)bs(y)|dv(y) (due to lemma 3.2.2).
5 €8,

2€EB;
k2

Hence,

|Aybi(a)] < c/

B;

= czlenéihkr;n (, 2)||b; 1

< cav(B;) inlg hirm (2, 2) (due to theorem 3.1.5 (e))
zeDb; g

—ca [ Buop (e, )1 ().
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Thus, for every ¢ € L*(X), we have:

(@, Apebi)] < co /X /X 1462 s, (2 9) L () () ()

< ca /X 15, /X 10(@) s, () () ) ()
< ca{Mi,1g,).

Hence,

(0, > Amnbidl < D10, Arpebi)]
Z < C;Z<M¢>1Bi>
— ca<]\z4w, Z 15,)
< cal|Mollal| Y 1,
< call o} Y 1

2

2.

In addition, by using (g) of Theorem 3.1.5, we have ) .15, < N1yg,. Thus,

2

(@, 32 Awprbi)| < calllloll N1y
< callglL (3 v(B)?

. 1
< caz||Y|2lfl7- (due to theorem 3.1.5)

Therefore,

L1
1D Awmbilla < caz| £}
Using the fact that T is of weak-type (2,2), we have

v({e € X [T (Apb))| > 71 < Sallfll < =[£Il (3.14)

i

Now for (i7), let D; = (1+09)B;, soif y € B; and x € D then d(z,y) > or;. Let Q* = U;D;
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and F* = Q" =N, D{. Hence

/]ZT T Ay )by () |dv ()
<3 /F (T = T A )bifw)]dv ()
<Z T = T A b))
<Y / 1 k)~ b b)) )
<3 /o o k) — b () )
153 [ i)

< <[ f]x

Furthermore,

Y € X 1137~ TAyp)b| > o)

<Z D)+ v({ze Fre ]ZT T Ay )bi| > })

< 02(1+5)”Zy(Bi) / ’Z (T — T A )bi()|dv(z)

< =[£I
Thus, N .

v({r e X !Z(T—TAr;n)bz-l > = Sl (3.15)

Combining the results in (3.13), (3.14) and (3.15) implies that T" is of weak-type (1,1).
Thus, T can be extended to be a bounded on LP(X) for all 1 < p < 2.

Note that if there exits a class of operators B; whose kernel satisfy the conditions
(3.5) — (3.7) so that B;T have associated kernels K;(z,y), and there are constants ¢’ and
(', such that

/ k(e y) — Ko y)ldu(y) < C (3.16)
d(z,y)>d8'tm

for all z € X. Then the adjoint operator T* can be extended to be bounded on LP(X) for
1 < p < 2. Therefore, T' can be extended to a bounded operator on L?(X) for 2 < ¢ < 0.
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Spaces BMO 4 Associated with the
Generalized Approximation to the Identity

In this chapter, we will discuss a new function spaces BMO4(X). We demonstrate that
the John-Nirenberg holds in these spaces and they interpolate with LP(X). In this chapter,
(X, d,v) is a space of homogeneous type where d is a quasi metric and the condition (3.8)
of hy(z,y) is replaced by

limr" 2N eg(rmy = 0 (4.1)

7—00

for some € > 0, where n and N are the constant that appeared previously in (3.2) and
(3.3). In addition, if B is a set in X, we denote 27'B to be the empty set. The main
reference of this chapter is [5].

4.1 BMO, Spaces.

Definition 4.1.1 Let 8 € (0,¢). A function f € L, (X) is said to be a function of type
(zo, B) if f satisfies

/ |f(z)]
x (1 +d(zg, 2))N*Bu(B(z0, 1 + d(xo, x)))

We denote by M, 5 the collection of all functions of type (xo, ). For f € My, ),
we denote

dv(z) < ¢ < o0. (4.2)

| fll M (zo,8) = inf{e > 0 : (4.2) holds}.

In addition, ||.||ar(z,5) defines a norm on M (xo, 5) and (M, 8), ||-|[a(z0,8)) is @ Banach
space. In fact let f,, be a Cauchy sequence in (Mg, gy, ||-||a1(z0,8)). Then

| fu(2)]
(14 d(xo, 2))*NtPu(B(xo, 1 + d(zg,7)))

is a Cauchy sequence in L'(X). Therefore,

| fa(2)]
(1 + d(zg,x))*N*tBu(B(x, 1 + d(xg, x)))
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converges to a function g in L'(X). Let f = (1 + d(xo, z))*YPv(B(xg,1 + d(xg,2)))g. It
is clear that f € M, 5 and that f, converges to f in (M, g). [|[lar,, 5 )-
We denote

M= U U Mgg

z€X 0<B<e

where € is the constant in (4.1). In this section, {A;, ¢ > 0} is a family of operators having
associated kernels a;(x,y) in the following sense: for every function f € M, 1 < p < oo,

Af(r) = /X ar(z, ) f () dv(y) (4.3)

where
|a't(‘ra y)| S ht(xv y)

Before we give the definition of BMO4(X), we will list some of the properties of set
M.

Lemma 4.1.2 Let {A;,t > 0} be a family of operators as mentioned above. Then
(1) BMO(X)c M

(2) If f € M then |Aif(z)| < oo, for all x € X and t > 0.

(3) If f € M then |A(Asf)(x)] < oo, for allz € X and t,s > 0.

For property (1). Let f € BMO(X). Then we have

/ |f(2)]

x (1 +d(xg, z))*N Py (B(xo, 1 + d(z0,)))
|f(2) = foiBao)| + | foiB(zo1)]

=2 IO o oo 7 e e

|f(2) = faiBao) + |f2i Bao,n)]
< o + fnwon| + / , ’ ),
oy ; 2B(ao,1) (1 + 20712V 4By (B (2, 1+ 2i71))

dv(z)

Furthermore, we have |fo.p — fg| < c(1+ k)| f||smo (for the proof see [10]). Thus,

| forg| < (14 E)| fllBpmo + fB.

Hence,
/ ()]
x (1 +d(zg, 2))?N*Bu(B(xo, 1 + d(xg, x)))

< fllsaeo + [ FB@on] + ¢ 27 VN flpao + e(1 + D) fllsro + fo@) < o0
=1

dv(z)

Thus, BMO(X) C M.

For property (2), let f € M. Then there are zo € M and § > 0 such that f € My, g).
Fix zg € X and let x € X. Then

Af(x)] < /X au(e,y) F ()l du(y) < /X e, 9)| ()l dw (y).
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Let X; = {y € X : d(z,y) > max(1 + d(zo,x),tw)} and X, = X¢. Given f € LL_(X),
then

9(0) , ~
et ls @ity <~ 1wl <o

For X, we have

[ ntemrtat = [ L0y,

(g(%)(l + d(wo, 2))*M v (B(xo, 1 + d(z0,y)))

e v(B(r, 7)) Wt
g (=0 (d(w, )N v (B(ao, 1 + d(z0,y))
= v(B(r, 1)) Wt

Note that if y € X3, then

1+ d(zo,y) <1+ Cid(wo,7) + Crd(,y)
< Cy + Crd(zo, z) + Crd(z, y)
< Cy(1 +d(xg,x) + d(z,y))
< 2C1d(z,y).

Therefore,

ém@wmmww

g("=7) (d(w, )N +P(Blao, d(w, )

=t v(B(r. 1)) Wt
(M=) (A, )N (1 + G )Ny (B(x, d(x, y))

=t v(B(r. 1)) Wt
g (A0 (d(, )N () Vv (B, d(x, y))

< caup v(B(x, tr)) altt

@Y™ (A u)2NHB L (B2 1o
S QNCSUp(g( t )( ( y)) ( ( ’t )))HfHM(zO,ﬁ)
yeXy ( ( ))

<<cj2ﬁlﬁsup<g<d<xty> ><d<?Ly>>2N+ﬁ+">nfu o
yeX1 tm

< 0.

Thus,
MMMSLWMMW@+AWMMW@<M

For (3), we have
|Ai(Asf)(z / / hi(z, 2)hs(z,y) f(y)dv(y)dv(z)
/ fly / hi(z, 2)hs(z, y)dv(2)dv(y).
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Now we examine the last term of the inequality. For any z,y € X, let
Fy={z¢€ X,d(z,2) > (3C,) 'd(z,y)}

and
Fy={z¢€ X,d(z,y) > (3C))*d(x,y)}.

If z ¢ Fy, then

d(z,y)

+ Chd(y, 2).

Hence,

2d(z,y)
d > .

Therefore, z € F; which implies that X = F; U F,. In addition,

[ et 2yivte) = [ I e v
)/F hs(z,y)dv(z)

1 ; d(x,y)™
v(B(z, (t+s)w))" (BC)™(t + s)

S
<c(l+ ;) hacyym (t+s) (T, Y)

)

where in the second step we used the fact that g is decreasing and in the third step we
used Lemma 3.2.3.
Similarly, we get

/ ht('r?y)hs(yv Z)dV(Z) < C(l + g)Th(Z’;Cﬁ) (t-‘rs)(x?y)'
Fy

Hence,
/ ht(m7 y)hs (ya Z)dl/(z) S C(s,t)h(BCl)m(t-i-s) (ZL’, y)
X

Thus, we have

’At<Asf)(x)| < C(s,t)/ h(3C’1)m(t+s)('x7 y)’f(y)‘dy(y) < 0.

X

Definition 4.1.3 For f € M, we say that f € BMO4(X) if there is a constant ¢ such
that for every open ball B in X we have:

— A f (@)|du(2) < ¢ (4.4)

where tg = r and rp s the radius of B. We denote
| fllBao, = inf{c € R : ¢ verifies (4.4)}.
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Let Ky = {f € M : (Af)(z) = f(x)}, note that || f|lgmo = 0 if f € K. Hence,
BMO4(X) modulo K, is a normed vector space. In the rest of this section, BMO(X)
is understood to be K4 modulo and the operators { A;} form a semigroup where Ay is the
identity operator.

The following proposition is similar to the proposition 2.2.4

Theorem 4.1.4 Let f € BMOA(X). Then for any k > 1 and t > 0 we have

[Auf () = A f (2)] < (1 +log k)| fll Bro, (4.5)

for almost all x € X, where ¢ > 0 is a constant independent of x and k.

In order to prove the theorem, we will use the following lemma;

Lemma 4.1.5 Let f € BMO(X). Then for any t > 0 we have

[Auf(x) = Ao f (2)] < cll fllBro, (4.6)

for almost all x € X, where fl < s <t andc >0 is independent of x.

Proof.
Let z € X, ¢t >0 and s € [£,t]. We have

mmw—&ﬁMMSAmmwww—&ﬂmww

B 1 d(z,y)™ B y
‘meﬁnéﬁ )1 () = Auf ()l (y)
g(0)
v(B(z, 7))

1 d(z,y)" ) dv
+Z§@gzﬁl¥ﬁyﬂ< )1 £(y) — At (y)ldv(y)

1 d(z,y)™ B 5
Sellfloon + oo [ oI~ Ay

lL(%Jﬂw—Awaw@)

Therefore, in order to prove Lemma 4.1.5 it is suffices to prove that

1 / g(d(ﬂa y)"
V(B(z,57)) JBsm)e t

)W) = Asf()ldv(y) < cll fllsrmon-

By using Theorem 3.1.9, there exists a collection of open sets {Q* C X : k € Z,a € I},
and constants 0 € (0,1), ap > 0, 7> 0 and 0 < D < oo, where I, denotes some index set
depending on k, such that

() (X —UQk) —0.

(ii) If I > K, then either Q4 C Q% or QX N QYL = 0.
(iii) For each (k,a) and each [ < k, there is a unique 3 such that Q* C Qlﬁ.
(iv) Diameter (Q¥) < D"
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(v) Each QF contains some ball B(z*, aod*).

Let Iy € Z such that Ddl < sw < D§lo~1. There is foo such that x € Qf;?o.

using (iv) of Theorem 3.1.9 we have Q% C B(x, Dé"). Let
Mk = {6 € ]lo7QIl80 N B(x7D6l0_k) 7& @}

and ko be an integer such that 6% > 2C,.
For g€ My, y € Q? and 2’ € Qg’ N B(z, D&~*), we have

d(JC, y’) < Cl(d(g', x') + d(ilj'/, y/)) < QClD(slofk < DélO*k*kO_
Thus Qlf? C B(x, D§lo=F=*0), Hence,

B(l‘, Ddlo—k) c U ngo C B(ZL’,D(SZO_(k+kO)),
BEMy

Using 2% defined in (v) of the Theorem 3.1.9 we have for any 1, 3, € My,
(2, 28) < Ci(d(28 @) + d(w, z3)) < 2C, Do~ F+ho),
We now have

V(Qﬁ?l) <v(B (ZﬁlaDalo)

d(zlO ,2102)
T T (Bl D)

(20 D5l0 (k+ko) )

Ddlo
5—’“%(3(25 , D™))

V(B(252, a05l°))
_kNV(ng)'

<c(l+

IN
o
—~
—_

)Y v(B(z5,, D3"))

ININ TN
Qo o
=%
=
=z

Hence,

v(QP) < e inf I/(Q ).

BeEM,

Let my, be the cardinal number of M. We have
myv(B(z, D6")) < emyv(B(22, D)) (due to (3.3))

< cmku(B( z0,a 610))
—kN
<cd mkﬁler}\gky(Qﬁ)

Hence, by

< 6 "Ny (B(z, Dy~ kho)y) (Qlﬁo C B(z, DS~ "k for 3 € M)

< 6Ny (B(x, D).

Thus, there is ¢ > 0 such that
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We have s € [£,#] and D% < sw < D§~!. Hence,

- d(z,y)" .
V(B(x,s%)) /B(z,s,i)cg( t )W) sf(y)ldv(y)
1 d(z, y)™
. s g
< T / o LN W) =~ AT wlavty)
5 A, y)"
— A, d
= <B(37 5%)) k= O/B(:sziZO<k+1>) (z,D&lO*k)g( t )|f(y) f(y)| V(y))
5l0 ) A d

< —
~ v(B(z, Sm ZQ /(x,Dalo(k+1))B(x,Dgzok)|f(y) S (W)ldv(y)

1 )m

A, d
= V(B(xs%) ( Z, Sm Zg )/B(I,D5l0(k+1))B(x,Dalok) |f(y) f<y)| V(y)
P fl (47170m) / 1) = Asf ()ldv(y)
S (B(gj s =0 B(z,Dslo—(k+1))
S (Blos2) ™) | 1) = A @)lde(y).
SE Sm 256%-5-1 /C;;O
In addition, we have
lo
V(B(leé), 5%) <(1+ d(x—lzﬁ)> (B(:c,s#))
Sm
Délo—k—ko L
< (14 2 (B, 7))
< 6N u(B(x, s7)),
and Q (25 , Ddo) C B(zﬁ,Sm) Hence,

B d(z,y)" A
v(B(x, 3#1))/3(“%) 9= (W) = Asf(y)ldv(y)

° 1
< gt ) [ 15() — Af ()
g E%-H (B(Zlﬁo’sm)) Qlﬂo
Z Z 5N (4715~ =DM || £l paros
k=0 BEM} 1
< ey mpnd N oT )| fllaso,
k=0
< CZ(S K t2N) (471~ ®=Dm)|| £l aro, (due to (4.7))

< CHf||BMoA-

Thus, Lemma 4.1.5 is proved.
We will now prove Theorem 4.1.4.
Proof. In case 0 < s < & +» we have tTTS <t—s <t+s. Thus, by using Lemma 4.1.5 we
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have

(Acf(2) = Aprs(f () = (Aef () — Ao (f () — A s (f — Ao f) (@) < || fllBrros-

So we proved Theorem 4.1.4 for the case 1 < k < 2. Now for the case k > 2, let [ be an
integer such that 2! < k < 241, Then

Af(x) — A f(2)] < i At f(2) = Agior f(2)] + [ Agt f(2) — Aguf(2)

k=
c(l+ D[ flzao.,
c(1 +log k)| fllBaro.-

Hence, the proof of the theorem is complete.

4.2 The John-Nirenberg Inequality on BMO4(X)

Theorem 4.2.1 If f € BMO4(X), then there are constants ¢ and ¢y such that for every
ball B = B(xo, ) and every o > 0, we have:

coa

v{z € B(xo,7) : |f(z) — A, f(2)| > a} < crv(B(xzg,r))e VTBm04 (4.8)

where xo € X andr >0 and tg = r™.

Proof. Similarly to Theorem 2.2.5; it is enough to prove the theorem for the case when
| flleamro, = 1. The case av < 1 is obvious if we take ¢; > e and ¢; < 1, so we only study
the case where o > 1.

Let B > 1 and B be a fixed ball of center xy € X and radius rz > 0. We will set up a
criterion in order to have a collection of balls B, = B(xp, ,,7p,,) that verifies:

(i) For any By N Byyij # 0, we have |AtBk,mf($) - f(@)] < B, x € Byt

By 11,

(i) {z € B: |f(x) ~ Ay f(x)| > ckB} C UBy, .

(i) 3272, v(Bki) < (§)"v(B), where in this inequality we have § < 1.

Let fo = (f — Atp)li0c4B(zo.ry): Where C1 > 1 is the constant in Definition 3.1.1.

I folly < /IOC4B\f(%’) — Ao f(@)ldv(z) < || fllBao,v(10CT B(wo, 7)) = esv(B) < oo.

Let >0, Q= {x e X : M(fy)(z) > p} and F = Q°. We have Q) is open set. Using
Theorem 3.1.4, there exists a collection of open balls B; ; such that € = U,; By ;, each point
of 2 is contained in no more then K balls By ; and there is ¢ > 1 such that ¢By; N F # ()
for each i. Using (i) of the Theorem 3.1.3, we have

> v(Bi) < Kv(Q) < —||fo||1_—V( )-

i
We now prove that if By; N B # (0, then there is ¢5 > 0 such that

]AtB”f(:c) — A, f(x)] <58, for all x € By .
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Let By; N B # () and assume that 75, , > rg. Then

V(B(ao,r5)) < (2 (Blao, r5,,)

Cy(rg +rp,,
By, By,
S C(l + 201)NV(B1’Z')

< %I/(B(xo,rB)).

)NV<B(‘$31,N rBl,i))

=

Hence, if we take 0 > ¢, we get a contradiction. Therefore, in case § > ¢ we have
rB,; < rp and

Cl(TBJr?“Bl,i))N

V(B(xo,75)) < o(—2-)"(1 + v(B(xp,, 75,.,))

B, By,
Cr, T'B

< —(—=)"""v(B(x0,78)).
B By,

We choose 3 such that § > max{c;(10C,)"™, ¢}, ¢s}. Then rg > 10C;rp, ,.
Let By; N B # (. We have

Atsl,,-f(w) — Ay flz) = AtBM (f = Az f)(z) + (A(tBM-‘rtB)f(l’) — A, f()).
Additionally, we have tp,, +tp < 2tg. Thus, by using Theorem 4.1.4 we have
A, i F (@) = Ay f(2)] < c.
We now prove that

|At31,i (f - Ath)(ZL'))| < CB, for x € Bl,i-

Let x € By, ¢; be the smallest integer such that 2C? B C 2%+ By ; and 2C? BN (2% By ;)¢ #
(. Then for y € 2C?B N (2% B ;)¢, we have

2qiTB1,i < d(ya IBl,i) < Ol (d(y’ IU) + d(l’o, xBl,i)) < Ol (2012TB + Cl (TB + rBl,i))
For 2/ € 241 By ;, we have

d(z,z0) < C1(d(2, zp,,) + d(zp,,,%0))
< 01(2%“7031,1. + Ci(rg +r1B,,))
< (201(20127’3 + Ci(rp +1p,,)) + Ci(re + TBl,i))
< 10C¢rp.

Thus 2% By ; C 10C}B.
Furthermore, we have By; N B # () and r5 > 10Cirp, ;. Let y' € By, then

d(yla xO) < Cl(d<y/7 xBl,i) + d(xBl,me)) < Cl(rBl,i + Cl(TB + TBL@')) < 20127GB'
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Hence, By ; C 2C?B. We write

Au (= A0, D) < oo [ o) = Ay i)

V(BL%> tBl,i
q;+1
1 d™(z,

< / o8I 1) — a4, £ (y)

k=0 U(Blyz) 2k31’1—2k7131,¢ tBl,i

1 d™(z,y)

+c — 7 — A dv

i /X e SN = A S0
<IT+1]

We now study I.
We have 24! B ; € 10C}B. Hence, for 0 < k < ¢; + 1 we have

V(Zlelyi) /2kB1,i |f(y) = A f(y)ldv(y) = m /2’€Bl,i | fo(y)|dv(y)
<5 ) oy BN
<dp (due to (M fy)(y) < Bin F)

where c is the constant in Theorem 3.1.4.
Note that if an integer k > [log2C1] + 1 (where [logC}] denotes the integer part of
logoC1) then for all 2’ € By; and y € 2B, ; — 2871 By ; we have

2k717’Bl,i <d(y,rp,,) < Crd(z',y) + Chd(z', xp, ).

Thus,
1
d(z',y) > 5(2’“_1 — Ci)rp,, > 2" 'rp, ;.
1
Therefore,
[log2C1]+1 1
I< 2" 9(0) ———— / — A d
=~cC Z g( >V(2kBlz) - ‘f(y) th(Z/)’ V(Z/)
k=0 ’ Li
qit+1 1
2kn 2]671 m / —A d
£ N ) g [0~ A )l
=[log2C1]+2 ’
q;i+1
< Clﬁ—i-cﬂﬁ Z 2kng((c82k—1>m) < Cﬁ.
k=[log2C1]+2

Now we study 1.
Let p; be an integer such that 2Pirp, , < rp < 27 "lrg .. Then
Cl(T’B + ’f‘BM)

)NV(BL,L) S C2piNV(BLZ').
By,

V(B(SL’O,TBM)) < C(l +

Since 2C B C 2% By ; we have

o0

e Y g ) - Ay ity

tg, .
k=[2log2C1]+1 Bui

> opiN 9 (k+1)n 0™ (z.y
<o > T Lo o) - A flavis),
k=[2logaC1]+1 2k+1B—2kB By
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In addition, if k > [2logsCy] + 1, 2’ € By; and y € 2" B — 2% B then there is ¢y > 0 such
that d(a/,y) > ¢g28*Pirp, .. Hence

S 2PiN2(k’+1)ng(Cm2(k’+pi)m)
Hs<e 2 [ 1) - Al Wan(y
<c Z 2(k+pi)(n+N)g( mo(k+p;) " f | B0, < cB.
k=[log2C1]+1

Combining the results for I and 11, we have [A;, (f — Ay, f)(2))] < cBforall x € By; .
Hence, |AtBMf(x) — A, f(x)] <56, for all z € Bu

By replacing B by By ; and fy by fz,, = (f — AtBMf)XIOCfBLp we get a sequence of
balls {B,;}; such that:

1. Zj I/(BQJ‘) S %V(Bl,i)a
2. for any x € By; — U;By; we have |f(z) — Ay f(2)] < B,
3. for any By N By; # 0 we have |At32jf(x) — Ay, (@) <58, for all z € By ;.

Doing this for all By ;, we get countable open balls { By ;},. Hence if x € B —U,,,Ba ,,, we
have

[f(2) = A f ()| < |f(2) = Avg, F(@)] + Ay, f(2) = Arg [ ()] < 2¢50.

In addition,
> v(By;) < Z (By,) _54 v(B).
j=1

By repeating the procedure we get a Collectlon of balls By; = B(xp,,,7s,,) which verifies

(i) For any By N Byy1; # 0, we have [A;,  f(x) — f(@)| < s, for all x €
Biy1,- |

(i) {x € B:|f(z) — Ay f(x)| > cskB} C LIJB;“ :
(i) T, v(Br) < (2)40(B).
We now study v({z € B : |f(z) — A, f(x)] > a}) where o > 0.

The case if a < ¢35 we have
v({z € B: |f(z) = A, f(2)| > a}) < €' "= u(B).

For kesB3 < o < (k + 1)cs3, where k > 1 is an integer and 3 > ¢%, we have

v({z € B:|f(z) = A f(w)] > a}) <D v(By,)

/\

tBji1;

1 —alogB

< B2e 258 p(B).

Combining these two estimates demonstrates
v{z € B(xg,r) : |f(x) — A, f(2) > a} < cv(B(zg,1))e 0.

Hence the proof of Theorem 4.2.1 is complete.
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Definition 4.2.2 Given p € [1,00), we define the space BMOY(X) as follows: We say
that f € M is in BMOY(X) if there exists some constant ¢ such that for any ball B,

(u(lB) /B |fz) — Ath(g;)|pdu(x)) T < (4.9)

where tg = 1y and rp is the radius of the ball B. The smallest ¢ which (4.9) is satisfied
is taken to be the norm of f in this space and is denoted by ||f||BMOQ~

Theorem 4.2.3 For p € [1,00), the spaces BMOY coincide, and the norms are equiva-
lent with respect to different values of p.

The proof is similar to Corollary 2.2.6, where the John-Nirenberg Inequality was an es-
sential tool to prove it.

4.3 The Spaces BMO4(X) and L? Interpolation

Similar to the classical case, we have interpolation between BMO4 and LP(X). One of
the main tools to prove this interpolation is the good-\ inequality.

Definition 4.3.1 Let f be a locally integrable function and 1 < s < oo. The Hardy-
Littlewood maximal function M, f is defined by

Mf) = (sup—s [ 7))

Note that by using M(f) = M(|f|*)s, M, is of weak-type (s,s) and bounded from LP to
itself for s < p < 0.

@ =

Definition 4.3.2 Let f € M and 1 < s < 0co. The sharp maximal function Mﬁs associ-
ated with the generalized approzimation to the identity {A;}i~o is defined by

1 3
M* f(z) =su —/ — Am Sdv )
1t =suwp (oo [ 1760 = A Faviy
where rg 1s the radius of the ball B. We denote M/’T’l by Mf.

Remark: for f € LP(X), Mf’s is pointwise bounded by M, f. Therefore we have

1M fllp < el Mfllp < ell £ll-

Lemma 4.3.3 For every ball By C X and every function f € LP(X), 1 < p < oo, such
that there exists xo € By with M f(xg) < A. Then there is cg > 0 such that

Agmran (f) (l’) S C()A
for any x € By, where 1y is the radius of By.

Proof. Let By = B(xp,, 1) and let x € By. Hence,

3

)N v (B(x,3r)) < ev <B(:L', 5%)) < cv (B(x,2rp)) .

d(x,xp,)

v(B(xp,,3r)) < c (1 + 3re
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Hence,

| Agmpm f(2)| < cv (B(x, 2r0)) /Xg (

)l

<edea, 3o [ (G i

< (Blap, ) 3 g0 [ |flavty)
k=0 3% Bo
< e 3 g3 Dm(3By) (3 B
k=0

< c)\z 3k g(30=2m) < ¢

k=0

Thus, the proof of Lemma 4.3.3 is complete.
The following lemma is called good-\ inequality.

Lemma 4.3.4 There exist Ko > 1 and ¢ > 0, such that for every A > 0 and every
K > Ky and v > 0, for every ball By in X and every function f € LP(X), 1 < p < 0,
such that there is xg € By with M f(xo) < A, we have

viz € Byt |f(z)] > KX\ MY, f(z) <A} < ev*v(By). (4.10)

Proof. Let By = B(xg,ro) be an open ball in X and let Ky = ¢o + 1, where ¢ is the
constant defined in Lemma 4.3.3. Set

B, = {x € Byt |f(z)] > KX\ MF f(z) < yA}.

If U, = 0, then (4.10) is obvious. Assume that Up, # (). Using Lemma 4.3.3 we have for
every x € By,

Asmp (f) (@) < oM.

Hence, when = € Up,,
(@) = Agnig F(@)] 2 17 ()] — Az f(2)] 2 KX — coh = (e + DA — coA = A

Therefore, for any x € Up, we have

Hence, Lemma 4.3.4 is proved.
The following lemma is a consequence of good-)\ inequality and it is essential to the
proof of interpolation theorem using BMO 4.

Lemma 4.3.5 For every f € L'(X), for < p < oo, there is ¢, such that

Iz < cp(IMEF o+ 1 £11)

where the last term on the right-hand side can be canceled if v(X) = oco.
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Proof. For A > 0, let Ex = {x € X : Mf(x) > A}. We take Ay = 0 if v(X) = 0o and
Mo = c|lflli(v(X))~tif v(X) < oo, where ¢ is the constant appearing in the Theorem
3.1.3. By using Lemma 3.1.4 and assuming A > Ay we have a collection of balls B; such
that:

1. UBZ - E)\,
2. each point of E) is contained in at most a finite number K of balls B;,

3. there is ¢ > 1 such that ¢B; N ES # 0.

Given that ¢B;NES # (), there is z; € ¢B; such that M f(x;) < A. Hence, by using Lemma
4.3.4 we have for every v > 0 and K > K (note that Ky > 1),

v{z € cB;: |f(x)] > KX M f(z) <A} < ev'v(eB;) < ey'v(By).
In addition, we have
{z e X :|f(x)| > KX\ M f(z) <yA} C Ej.
Thus,
v ({z € X |f(@) > KA ME (@) 70}
< <U{x € cB;: |f(x)] > KX ME f(x) < m}) (¢>1 and cB; N ES # )

< ZV ({x € cB; | f(z)| > KA, Mj:f(x) < 7)\})

We will prove first the lemma for the case where X is unbounded. Using good-A
inequality we have

12 = pE? / N l({r € X - [f(2)] > KAD)dA

< o7 [0 (vl € X+ [£@)] > KAMELS (@) < 7))
+u({zre X : ME f(x) > 'y)\}))d)\

< cpr»yS/ )\P_ly(E)\)d)\ + %\!Mﬁsf\li
0

s pK?
< epKPYH| M fIID + e HMf,sfHﬁ
pK?
< Ky fID + e HMﬁsin-

Therefore,

s pK?
I £1I5 < Py fIID + p~ M FIE.

Hence, by choosing v = (QC’pr)’i and moving the first part of the right side of the
inequality to other side, we obtain

LA < el £
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If X is bounded, we have:
T / N l({r € X+ |f(x)] > KA})dA
0

< pK” (/0 Nz e X |f(@)] > KAVdA + /OO N lu({o € X | f(z)] > K)\})d)\) |

Ao

Additionally,

/Oo Wz e X ¢ |f(2)] > KA}
Ao

< pr//\ N y({z e X i |f(z)] > K, Mfsf(x) <A +v({re X Mfsf(x) > yA}))dA
<epkmy [ B+ RN I

s pK?
< epKPYR| M fIID + 7|!Mﬁsf|!£

s p
< IpKPyc||f]IE + I
Therefore,
s p
I£12 < KPMv(X) + < pKPA*|| fIIP + s
< el fI2 + epEPy I + P p Ao = X))
< || fIIE + pKPy| FIIP + i Mo = c|l fl(w(X)™)

Thus,
1£llp < eCIME Fllp + 1F11)-

We now state the main result of this section on the interpolation of the space BMO 4.

Theorem 4.3.6 Let 1 < s < q. Assume that T is a sublinear operator that is bounded
on LX), 1 <q< oo and

1ME T flloe < el fllc:
Then T is bounded on LP(X) for all ¢ < p < oo.

Proof. Let f € LP(X) and 1 < s < q. We define the operator MﬁAﬁ as

M’Z:E/jA,sf(x) - MﬁsTf(‘r)

The aim is to show that M#A’S is bounded from LP(X) to it self for all ¢ < p < 0.
First, we prove that M}%A’sf(:c) < cMy(Tf)(x). We have

1 . 1
S 1) = A T i) < o 2 / (T ()l +|AtBTf< )i (y)

y)ldv(y / A, T () dv(y).



Thus,

!/ITf@)—u%BTf@H%WQD

sup

IEBU

< TF () dv(y) + /ABT *d
“Pith / TIG0) + 3s |, AaTI a0
< (M (Tf

Hence, M7, . f(z) < cMy(Tf)(x).
Therefore, for 1 < s < g and A > 0 we have

V{xGX:MﬁA,Sf(Z‘) > A <v{zreX:MJ(Tf)(x) > c\}

< TSl < 52l fll

SO M#AS is of weak-type (¢, ¢q). In addition, we have

174 o flloe = IME T Flloo < ell llso-

Thus, M# A 18 bounded on L>*(X). Hence, by using interpolation theorem we have

M:#As is bounded from L” to its self for ¢ < p < oo.
If v(X) = oo, we have

17 flly < CHMﬁSTpr due to Lemma 4.3.5
= || M}, oflly
<c[|fll- due to the boundedness of M;%A’S

Therefore, T" is bounded on LP for all ¢ < p < oc.
For the case v(X) < oo we have

IT£lly < cIMETFlp + T F 1) (to Lemma 4.3.5 )
< C(HM#Avspr) +ex||T 1, (Holder’s inequality)
<cllfll, +ex| fllq (due to boundedness of MﬁA’s on LP and of T on L?)
<l fll,- (Holder’s inequality and v(z) < oo)

Thus, the theorem is proved.
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Applications: Holomorphic Functional
Calculus of Elliptic Operators

The main references of this chapter are [4, 5].
In this chapter, (X,d,v) is a space of homogeneous type where d is a metric and the
condition (3.8) of hy(z,y) is replaced by

lim 7" T2V Feg(r™) = 0. (5.1)

r—00

We will first state the holomorphic functional calculus given by McIntoch [11].
Let 0 <w < v < w. We define the S, as

Sw={z€C:|argz| <w}U{0}
Let S? be the interior of S,,, H(SY) be the space of all holomorphic functions on S? |
Heo(Sy) = {b € H(Sy) : [|bllc < oo}
where
Iblloc = sup{[b(2)| : = € S,}}
and
U(SY) = {¢p € H(SY) : thereis s >0, [y(2)] < ¢z|*(1+ |2]*) '}
Let 0 < w < w. A closed operator L in LP(X) is said to be of type w if o(L) C S, and
for each v > w, there exists a constant c,, such that

1L = AN lpp S AT XS,
If L is of type w and ¢ € ¥(S?), we define ¢)(L) € L(LP, L) by

1
L)=— [ (L= X)""%(N\)dA
0() = 5 [(E=AD7 60
where I' = {z € C : 2z = re* r > 0} is parameterized clockwise around S, and

w < 0 < v. This definition is independent of the choice of w < # < v. Furthermore, if L
is one-one and has dense range and if b € H.,(S?), then b(L) can be defined by

b(L) = [(L)] ™ (b)(L),
where ¥(z) = 2(1 + z) 2
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Definition 5.0.1 The operator L has a bounded H., functional calculus in LP, 1 < p <
00, if there exists ¢,, > 0 such that b(L) € L(LP, L?), and

1BC) ]l < Copllblloo

for all b € H,(S?).

The following lemma helps to extend the boundedness of b(L) for bin W(SY) to H.(SY).
For the proof see [11].

Lemma 5.0.2 Let 0 < w < v < 7mand 1 < p < oo. Let L be an operator of type w
which is one-one with dense range. Let {by}a be a uniformly bounded net in Hy(SY). Let
b€ Hy(SY), and suppose, for some M < oo, that

1 |ba(L)[|lpp < M.
2. for each 0 < § < f < 00,

sup{|ba(2) — b(2)| : 2 € SY and 6 < |z| < B} — 0.

Then b(L) € L(LP, LP), bo(L)u — b(L)u in LP(X) for allu € LP(X) and
16(L)]lpp < supallballpp

Theorem 5.0.3 Let L be a linear operator of type w on L*(X) with w < %, so that (—L)
generates a holomorphic semigroup e *4, 0 < |Arg(z)| < £ —w. If

1. The kernel a.(xz,y) of the holomorphic semigroup e~**, |Arg(z)| < 5 — w, satisfy:

|a=(z, y)| < hizi(2,9)
forz,y € X, [Arg(z)| < § — 0 for some 0 > w.
2. The operator L has a bounded holmorphic functional calculus in L*(X).

Then L has a bounded holmorphic function on LP, 1 < p < 0.

Proof. We will first prove that for any b € ¥(SY), b(L) satisfies the conditions of Theorem
3.2.6. Hence, the operator b(L) is bounded on LP, then by using the convergent lemma
5.0.2, we prove that L has a bounded H., functional calculus in LP, 1 < p < oo.

Let b € W(S?), then L? boundedness of b(L) is direct result from (2) of 5.0.3. In addition,
if we take A; in Theorem 3.2.6 to be e7*£, then (1) of Theorem 5.0.3 gives the condition
(Az) of Theorem 3.2.6. Now we will prove (A1) and (A3) of theorem 3.2.6 . Choose v, 0
and v such that w < # < v < v < Z and let b € ¥(S)). Note v = 74 + 7, where
v+ = {te",t > 0} and y— = {—te ™, t <0} , we have

b(L) = —— / (L — AI)~"b(\)d.

 2mi .
If A € vy, then we have
(L—M)' = / e *ldz
o4
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where o, = {te’27% t > 0}, and if A € _ then we have
(L—X)"'= / ey

where o_ = {—te™29 t < 0}.
Note

1 1
bi(L) = —/ / e p(\)dzd\ = —/ e_ZL/ e’\zb()\)d)\dz:/ e f(2)dz
27 Jy, Jos 2 Jo, T+ ot

where fy(z) = 5= [, €*b(A\)d, and

_ / / e* e Ep( A dzd)\—— ZL/ e’\zb()\)d)\dz:/ e " f (2)dz
" i 20 v -

where f_(z) = L.f% e**b(\)d\. We have b(L) = by (L) + b_(L). Hence, the kernel

21

Ky(z,y) of b(L) is given by

o—

Kiwy) = [ aleg)fo@dz+ [ aopf- (s

Let my = e b(z) and ¢4(2) = (1 — e **)b(2) for t > 0. We now prove that:
When d(z,y) > ctm, we have

tm

Baoley) < Pl i gy e

(5.2)

for some a > 0, and this we will lead to prove (As).

We have |1 —e | < cif R(A) > 0and ¢t > 0 and |1 — e ™| < ¢tA| < cftA]? for
0 < B < min{e, 1} when |tA| < 1 (e is constant in 4.1). In addition, e=* < s7#, for s > 0
and # < min{e, 1}.

Let d(z,y) > ctw and 8 < min{1, <1. Setting a = |cos(v + (3)|, we have

K, ()] < b / au(z, y)| / N1 — )| dINd]2]

o) t—1 o)
< bl | |az<x,y>|(/ e Meapa + e—““Zd|A|>d|zr
0 0 i

< ofjb]t? / @z, )2l
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We will find an upper bound for the last term

/0 la(z, )2 )

d(zy)™

o g(=E) i
< [

o v(B(z,[z]m))

d(z,y)™ g(d(w;y)m) 0 g(d(wf)’”>
< / — L |21 Aaz) + / — Lo 1A

0 v(B(z, |z|m) dyym v(B(z,|z]m))

[ e [ —F
<c z z__dz+c/ zZ|7 7P|z

0 V<B(‘Tad(x7y)>> d(z,y)™ V(B({L‘,d(l‘,y)))

—2N—Bm
d(z,y)

< c/d(x’y)m ('Z"}l) 12| 8d)2| +c/oo ! 2|7 d)2|
N 0 V(B(J}7 d((lf,y))) d(z,y)™ V(B(,I‘, d(ZE, y)))

<c :
~ v(B(x,d(x, y))d(z,y)m?
Therefore, by taking o = fm, we have

o

tm
(B(z, d(z,y)))d(z,y)*

Ky (2,9) < el

We will prove (A;3) of Theorem 3.2.6.

tm
K, ()| di(z) < c / dv(x)
/() / oyt B d@,y))d(@, )

o0 [e3

tm
<c / — ———dv(x)
= Joictm <d(@y)<2itierm v(B(x,2idtm))(2ictm )

<c E 2_”‘/ dv(z) <c.
=0 B

w2i+ietm) v(B(y, 2ic’t%))

Therefore, by taking A; = e~'X we have that b(L) verifies (A;), (A3) and (A3) of Theorem
3.2.6. Hence, b(L) is bounded on LP(X), 1 < p < 2. In addition, b(L) and e~** commute.
Thus, by using duality argument we have b(L) is bounded on LP(X), 1 < p < oo.

Theorem 5.0.4 Let T be an operator satisfying the following conditions:

1. T is a bounded linear operator from L*(X) to L*(X) with the kernel k such that for
every f in L (X) with bounded support,

Tf(x) = /X ke, y) f(y)du(y)

for v-almost all x & supp f.

2. There exists a generalized approzimation to the identity {A;}i~o such that the op-
erators (T — A,T) have associated kernels ki(x,y) and there exist positive constants
c1 and cy such that:

/ Rz, y)]dv(y) < e for all x € X.
a(

x,y)>citm
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Then
ITfllaros < el flloo
for all f € L*(X) N L>(X). (Note, we can always assume that ¢; > 1).

Proof. To prove the theorem, we will show that
7 [ T @) = A TS @)dv() < el
Let f - L2(X) N LOO(X) and let fl = 14cle and fQ = 1(4C1B)Cf-
o [T~ A, TH@)dve) < s [ (TG = A, THE)
B) /s 7 ~v(B) Jp ?
T = A T) () ()
<e [ MUTAN@ @) + [ (T = A T) o))

Furthermore,
[ MTAD @) < B[ IMITADE)Favta)?
< c(l/(B))é(/4 N |f(x)] dy(x))% M and T are bounded on L*(X)

< (B[ flle-

I\J‘H

In addition,

[T = 4,1 i) < [ /B g (2 )11 () o) ()

0 kip(x,y)|dv(y)d
Sl [, [ Wl gl
< (B

Hence, .
i) / T () — AT (0)]dv(z) < e fllo.
Thus,
1T fllBrros < cll fllos

and the theorem is proved.
Note that by using Theorem 4.3.6 we can show that T can be extended to a bounded
operator on LP(X), 2 < p < 0.

Remark: The approach in this thesis can be adapted to study the end-point estimates
and LP boundedness of other singular integrals whose kernels are rough and do not belong
to the class of Calderon-Zygmund operators. Examples are the Riesz transforms of the
Laplace Beltrami operators on certain doubling manifolds, the Riesz transforms associated
with the Divergence form operators on R™ or associated to the Schrodinger operators
with non-negative potentials, see [1]. One can also obtain weighted estimates for singular
integrals with rough kernels, see [6]. However, we do not pursue these results within this
Master thesis.
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