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Summary

This thesis consists of three chapters providing solutions to three problems. All of them
involve morphisms of bicategories: lax functors, enriched categories, and categories enriched
on two sides.

The first problem was to obtain explicit constructions for various 2-categories which rep-
resent 2-categorical concepts involving monads and comonads. We considered lax functors
(these are the morphisms of bicategories in the sense of Bénabou) between 2-categories C and
D and define strictification tensor product for them. Let Lax(C,D) denote the 2-category
of lax functors, lax natural transformations and modifications, and [C, D]y its full sub-2-
category of (strict) 2-functors. Since monads can be seen as lax functors from 1 (the terminal
category), the bicategory of monads in D, denoted Mnd(D), is isomorphic to Lax(1,D). A
concise way of defining distributive laws is as monads in Mnd(D). We give a construction of
a 2-category C [X] D satisfying Lax(C, Lax(D,€)) = [C X D, &]int, thus generalizing the case of
the free distributive law 1[x] 1. We also analyse dual constructions.

The second problem involves enriching in a monoidal category similar to the one used
by Lawvere to obtain (generalized) metric spaces. He expressed Cauchy completeness in
purely categorical terms which led to the possibility of applying it to an arbitrary base; for
example, an ordinary category is Cauchy complete when all its idempotents split. What
we do is to obtain spaces of relativistic events as enriched categories and show that they
are always Cauchy complete in the categorical sense. We then see this as a more general
phenomenon by providing conditions on the base monoidal category which ensure Cauchy

completeness of those enriched categories having all idempotents splitting in the underlying
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X CHAPTER 0. SUMMARY

category. The splitting condition was not seen in the case of our partially ordered base since
the only idempotents are identities.

Finally, in order to analyse Cauchy modules for categories enriched in graded and differ-
ential graded Abelian groups (GAb and DGAD), we consider two-sided enriched categories
between bicategories, forming a tricategory Caten. The construction of DGAb from Ab,
which exists in the literature, can be factored via GAb, and we prove that it is an instance of
semidirect product of Hopf bimonoids, applicable to an arbitrary base symmetric monoidal
category. To extend this approach to the bicategories of modules, we considered a generaliza-
tion from Hopf bimonoids in a symmetric monoidal category to Hopf comonads in Caten. The
crucial property of such comonads is that the forgetful functor creates left Kan extensions,
which generalizes creation of duals and cohoms in the monoidal category case, and adjoints

in the bicategory case.
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Introduction and overview

Higher (two-three) dimensional category theory can be sliced and served in different ways,
depending on the taste and use. The quickest way to describe a (strict) n-category C is
by considering a category enriched in (n — 1)-Cat; a cartesian closed and (co)complete V
produces a cartesian closed and (co)complete V-Cat [19], and the base of induction 0-Cat =
Set is cartesian closed and (co)complete [25], so for every natural number n the category of
n-categories (n-Cat) is cartesian closed and (co)complete. All compositions and identities in
C are strictly associative and unital, enriched functors F' : C — D preserve compositions and

identities, and enriched transformations a : F' = G are (strictly) natural.

Enrichment does not access 2-cells of V, even if V has them. In two dimensions (V = Cat)
existence of 2-cells allows weakening the laws for C leading to a list of progressively weaker

structures: 2-category, bicategory, left (right) skew bicategory, lax bicategory. Weakening the

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

laws for F' and « leads to weaker morphisms: (strict) 2-functor, pseudofunctor, lax (or oplax)
functor. And similarly, the list for natural transformations is: strict natural transformation,
pseudonatural transformation, lax (or oplax) natural transformation. With 2-cells in V we
can form modifications between (weak) natural transformations m : o — 3. The totality of
strict /pseudo/lax functors, strict/pseudo/lax natural transformations and modifications forms
a different (strict) 2-category for each of the cases. In Chapter 2 we construct a tensor product
of 2-categories such that homing out of it with strict functors, lax natural transformations

and modifications corresponds to taking the lax hom twice.

A different, perhaps more immediate, way to generalise functors is to consider enriched
modules (aka profunctors, distributors). Lawvere showed that metric spaces can be viewed
as enriched categories [24], and Cauchy completeness can be expressed as representability
of left-adjoint modules. The notion of Cauchy completeness can then be generalized to an
arbitrary base, or even proarrow equipment [37, 38|. For example, a usual category (V = Set)
is Cauchy complete if its idempotents split. A preadditive category (V = Ab) is Cauchy
complete if idempotents split and it has direct sums; rings (one-object Ab-categories) are
Morita equivalent if their Cauchy completions are equivalent [19]. In Chapter 3 we give a
quick review of Lawvere’s argument, and modify the base of enrichment to give a description
of relativistic causal spaces. All such spaces are Cauchy complete, and we provide sufficient
conditions on the base V that ensure that a V-category is Cauchy complete if and only if

idempotents split in its underlying category. In particular, n-Cat satisfies the conditions.

A V-enriched category is a many-object version of a monoid in V. A monoid and a
comonoid on the same object can be compatible in two important and distinct ways; they can
form a Frobenious monoid or a bimonoid (if V is braided). The latter can have a property of
being Hopf, if it has an antipode. Tensoring with a bimonoid A induces a monoidal comonad
on V, whose category of coalgebras, denoted A-CoAlg or VA®~ | has a monoidal structure. If
V is symmetric, and A has a braiding element [16] then the monoidal structure on A-CoAlg
becomes braided. In the first half of Chapter 4 we show how graded abelian groups and chain
complexes of abelian groups can be viewed as coalgebras for particular Hopf monoids, which

are related via (a generalization of) the semidirect product.



Every monoidal category can equivalently be thought of as a one-object bicategory. Also,
enrichment in V can be extended to the case when V is a bicategory [34]. A pseudofunctor
U : W — V whose functors on hom-categories U(W, W') : W(W,W') — V(FW, FW') have
right adjoints, always induces a change of base functor U’ : W-Cat — V-Cat which has
a right adjoint in' 2-CAT. The main motivation for introducing new morphisms between
bicategories [20], called 2-sided enriched categories (forming a tricategory Caten), was to
introduce a right adjoint of I, call it R, such that ¢4’ - R’. In the second part of Chapter 4
we will review 2-sided enrichment, characterise comonads G in Caten (generalizing monoidal
comonads of [8]), construct the bicategory of coalgebras V9, show that when the comonad
is (left) Hopf the underlying functor creates left Kan extensions. This then applies to the
underlying functor I : V9 — V, as well as change of base functors U’ : V9-Cat — V-Cat
and U : V9-Mod — V-Mod, under certain conditions. The general theory then applies to the
(differential) graded abelian groups of the first part of the Chapter 4.

This thesis, although worked out and written by me, grew on the fertile soil of the Centre
of Australian Category Theory, and in the rest of the introduction I will outline the origins
of different concepts presented in the thesis. The motivation for the strictification tensor
product (Chapter 2) comes from my Supervisor Ross Street’s earlier work on free (mixed)
distributive laws [36], and he suggested using computads (defined in [30] and reviewed in
Section 2.3.3) and introduced me to Bénabou’s path construction, described in Section 2.2.1.
During my talk to the Australian Category Seminar on the topic, James Dolan and Richard
Garner suggested that the strictification tensor product would be a 2-step construction via
the Bénabou construction and lax Gray tensor product, see Section 2.2.2.

The construction of causal spaces via enriched categories (Section 3.3) comes from my
physics background, while searching for the conditions on the monoidal base that simplify
Cauchy completeness (Section 3.4) was Ross’ suggestion.

Finally, Ross noticed that DGAD is a category of coalgebras for a Hopf monoid in GAb (see
Section 4.2), that Pareigis’ Hopf monoid is a semidirect product, and that a Hopf-comonadic

forgetful functor creates left Kan extensions (Theorem 4.5.1). Fitting everything into the

!Note that V-Cat has a large set (proper class) of objects, but it is locally small.
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2-sided enriched setting was my suggestion and realization. Other parts of that work came
after discussions with Ross, followed by my own calculations.
Chapters 2 and 3 are my own original work while Chapter 4 is joint work with Ross Street

and will be published accordingly.



Strictification tensor product of 2-categories

2.1 Introduction

Monads (aka triples, standard constructions) are given by a category C, an endofunctor
F : C — C and two natural transformations n : 1o = F and u : F? = F, satisfying unit
and associativity axioms [25]. Their use is ubiquitous and the most common one is describing
a (possibly complicated) algebraic structure as Eilenberg-Moore (EM) algebras [25] on a
category of simpler ones. An EM algebra is given by a map T X — X compatible with p and
n. With algebra morphisms, they form a category EM(T). The full subcategory of EM(T)
consisting of free algebras is (up to equivalence) usually denoted KL(7T'). A typical example
is the Abelian group monad on the category of sets taking a set S to the set of elements of

the free Abelian group on S.
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A distributive law [3]| consists of two different monads on the same category satisfying
a compatibility condition. Then their composite is a new monad. A typical example is the
Abelian group monad together with the monoid monad producing the ring monad, hence the
name.

Monads are in fact definable in an arbitrary bicategory £ [29], just by replacing words
“functor” with arrow and natural transformation by 2-cell. For example, in a bicategory of
spans, monads are precisely (small) categories [4]. A morphism between a monad 7" on X and
S on Y, consists of an arrow X .y and a “crossing” 2-cell So F' 2 FoT which is compatible
with unit and multiplication for both monads. A morphism between monad morphisms F
and G, consists of a 2-cell F 2aG compatible with crossing 2-cells. These form the 2-category
of monads in &, called Mnd(€). Now, a distributive law in £ has a short description as a
monad in Mnd(€). Various duals are expressible using dualities of 2-categories, for instance,
the 2-category of comonads is defined as Cmd(€) = Mnd(£)°, mixed distributive laws as
Cmd(Mnd(€)). Since objects of £ are no longer categories, we have no access to their elements,
and cannot form an FEM-category; but we can use the 2-dimensional universal property of
lax limit to obtain, if exists, an EM-object EM(T'), also denoted C”. The main topic of [22]
is completion of £ under these limits. Dually, lax colimits give KL(T), also denoted C7p.

The free monad [23] is a 2-category F'M which classifies monads; that is, the 2-category
of strict functors, lax natural transformations and modifications [FM, £]jy is isomorphic to
Mnd(€). It is given by the suspension of the opposite of the algebraist’s category of simplices,
AP with ordinal sum as the monoidal structure. We will use it a lot, so we review its
definition and some properties in Appendix A.1. The free mixed distributive law (FMDL)
was constructed by Street [36], and is a special case of the construction presented here.

A lax functor [4] (aka morphism) between bicategories generalises the notion of a (strict)
2-functor, by relaxing the conditions of preservation of the unit and composition of arrows.

Instead, a lax functor F': D — £ is equipped with comparison maps
np : 1pp = F(1p) and pgg : F(d') o F(d) = F(d od)

for each object D of D, and composable pair (d,d') of arrows in D. These are required to
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satisfy unit and associativity laws, and p is required to be natural in ¢ and ¢’. The special case
of D =1, that is, if D has only one 0/1/2-cell, then giving a lax functor exactly corresponds
to giving a monad in €. A lax functor from the chaotic category! on a set X corresponds to a
category enriched in £. Another example, lax functors from I(:= 0 — 1) into Span correspond
to choosing two categories and a module (aka profunctor, distributor) between them. Lax
natural transformations F = G between two such functors consist of arrows FD 22> GD, for
each D € D, and Gdoop 7% o0 Fd, for each D 4 D'in D, natural in d and compatible with
n and p. Finally a modification o — 7 consists of 2-cells op =2 Tp, for each D, compatible
with . These form a 2-category Lax(D, ). The choice of directions gives an isomorphism
of 2-categories Lax(1,&) = Mnd(&), and by the definition of (free) distributive law (FDL) we
have Lax(1,Lax(1,€&)) = [FDL, &]jnt-

Our goal is, given 2-categories C and D, to construct a 2-category C [x] D that is “free”, in

the sense that it strictifies the lax functors, so that
Lax(C,Lax(D,€)) = [CKI D, &]int- (2.1.1)

The variables C, ¢, v used to describe cells in C (similarly for D, d and § in D), have

sources and targets according to the diagram 2.1.2.

/

/__\ m
C e ! vl o (2.1.2)

z 7

Horizontal composition is denoted by o and vertical by e.

2.2 Connection with lax Gray tensor product

In this section we recall a construction due to Bénabou which can be interpreted as a 2-
category of paths in a 2-category. We use it, together with the lax Gray tensor product, to

express our strictification tensor product.

!That is, the category having exactly one arrow in each hom.
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2.2.1 Bénabou construction of the 2-category of paths

Let C be a 2-category and C' the 2-category of “paths” in C, consisting of the same objects
as C, and arrows between C and C’ are strict 2-functors p representing paths in C between C
and C’; that is,

[n] & C, p(0)=C, pn)=C, (2.2.1)
where [n] is an object of A| T, for details see Appendix A.1. Denote by? (p); the i*" component
in the path

(P)i=p((i—1)—>1). (2.2.2)
The identity is a path of zero length on C"

[0] »¢C (2.2.3)

0—C (2.2.4)
and composition is given by “concatenation”,
(n',p') o (n,p) = (n+n',p+p) (2.2.5)

where (p+p'); = (p); if it <n and (p +p'); = (p')i—n otherwise. This composition is strictly
associative and unital.

Finally, 2-cells between (n,p) and (7, p), are pairs (£, &) where £ : [7] — [n] is a morphism
in A1 and « is an identity on components, oplax-natural transformation, shortly icon,

introduced in [21]:

a:pof=p, withaq, =1y, . (2.2.6)
So, a is determined by n components on non-identity arrows:
@i = a(i_1)oi s (po§) (i —1) = i) = (P)i- (2.2.7)

Note that if & = 0, meaning £(i) = (i — 1) (see Appendix A.1 for details), then the source

of the corresponding component of a is the identity, a; : 1,¢;) = (p)i- The identity is given

2We reserve p;, without brackets, to mean the length of the image as in (A.1.14).
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2.2.

by Lnp) = (1> 1p)- The vertical composite of (£, a) and (€, @) is obtained by pasting, as in
the diagram 2.2.8.

(2.2.8)

The horizontal composition is concatenation, analogous to the one for path (1-cells), (¢/,a/)o
(&, a) =+, a+d), where (a + '), = a; if i <n, and (o + ); = af_,, otherwise.

Lax functors out of C correspond to strict 2-functors out of C. In fact, there is an

isomorphism of 2-categories
(2.2.9)

Lax(C,&) = [CT, &l -

2.2.2 Lax Gray tensor product

Lax Gray tensor product [15], ®; : 2-Cat x 2-Cat — 2-Cat, is a tensor product for the internal

hom [—, —]int, that is
[C,[D, €Nt = [C &1 D, Eme - (2.2.10)

The left hand side of Eq. (2.1.1) can be transformed

(2.2.9)
Lax(C,Lax(D,&)) = [CT,[DT, et (2.2.11)
(2.2.10)
=~ [CT® DI, &t (2.2.12)
leading to a characterization
(2.2.13)

CxD=C'®D.

The lax Gray product ®; is defined via its universal property, and the explicit description

involves relations and quotienting. Our direct description, explained in Section 2.4, involves

no quotienting.
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2.3 Tensor product via computads

We begin by fully unpacking the LHS of (2.1.1), which involves familiar, but numerous axioms
- there are eighteen axioms for an object (lax functor) B, five axioms for an arrow (lax natural
transformation) b : B — B’, and two axioms for a 2-cell (modification) 8 : b = b. Then we
review the definition of computads [30] which play the same role for 2-categories as graphs do
for usual categories - they are part of a monadic adjunction. We then proceed to construct a
computad G to give a convenient generator-relation description of the tensor product.

2.3.1 Unpacking

An object B of Lax(C,Lax(D,£)) assigns to each C' € C a lax functor BC : D — &, which

amounts to giving the following data in &:
e for each D an object BCD € &
e for each d an arrow BCd : BCD — BCD'

e for each 0 a 2-cell BCY : BCd = BCd, functorially
BC1; = 1pcyq (2.3.1)
BC(5ed) = BCGS e BCS (2.3.2)
o(f1) for each D a unit comparison 2-cell npc1,, : 1pecp = BClp

or1) for each composable pair (d,d’) a composition comparison 2-cell pgcqq : (BCd') o
(BCd) = (BCd od),

satisfying unit and associativity axioms,

pe(lon)=1=pe(nol) (2.3.3)

pe(lop)=pe(nol) (2.3.4)
together with a naturality condition,

HBodd ® (BC(;I @) BC(S) = BC((S/ e} 5) ® LUodd - (235)
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Also, B assigns to each ¢ : C' — (' a lax natural transformation Bc : BC — BC’ consisting

of:
e arrows BcD : BCD — BC'D

ot1) 2-cells oy : BC'd o BeD = BeD' o BCd,

with the two axioms expressing compatibility with unit and composition,
ce(nol)=1on (2.3.6)
cge(ppol)=(lou)e(col)e(loo) (2.3.7)
and one expressing naturality,
OBcd ® (BC/(SOlBCD) = (1BCD10305) ® OBcd - (2.3.8)
Finally, B assigns (functorially) to each 2-cell v : ¢ — ¢ a modification B~y : B¢ = B¢, which
in £ means:

e 2-cells ByD : BeD = BeD,

satisfying the modification axiom,
OBed ® (1BC’d o B’yD) = (B")/D/ ©) 1BCd) ® 0 Bcd (239)
and the functoriality condition
B1.D =1p.p (2.3.10)
B(7e~)D = ByD ¢ ByD. (2.3.11)
Being a lax functor, B has to provide the unit and composition comparison modifications
given by data:
o(2) unit 2-cells np1,p : 1pecp = BleD

o(12) composition 2-cells pgeep : (B D) o (BeD) = (B oc¢D)

which, in addition to the naturality condition

{1z ® (BY' D o ByD) = B(y' 0y)D e ipcep (2.3.12)
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and modification axiom,
ge(lon) =nol (2.3.13)
cge(lopu)=(uol)e(loo)e(col) (2.3.14)
satisfy the unit and associativity axioms (2.3.3)-(2.3.4).

An arrow b : B — B’, being a lax transformation between lax functors B and B’, assigns
to each C € C a lax transformation bC' : BC' — B’C and to each ¢ : C' — C’ a modification

Ope : B'cobC = bC’ o Be, which means the following data in &:

e l-cells CD: BCD — B'CD
o1) 2-cells opcyq : B'Cd o bCD = bCD' o BCd

o(t2) 2-cells opep : B'cD o bC'D = bC'D o BeD,

subject to naturality

ovep ¢ (B'yD o Lyep) = (Lec'p © BYD) ¢ 0bep (2.3.15)
opca® (B'Colyep) = (lycpr 0 BOS) @ oycy (2.3.16)

lax transformation
ce(nol)=1oy (2.3.17)
ge(uol)=(lop)e(sol)e(loo) (2.3.18)

and a modification
(loo)e(col)e(loog)=(col)e(loo)e(ocol) (2.3.19)

axioms.

A 2-cell : b — b in Lax(C,Lax(D, £)), being a modification, assigns to each C € C a
modification AC : bC = bC, which in £ means

e 2-cells BCD : bCD = bC D, with modification axioms,
04ep ® (1prep © BCD) = (BC'D 0 1pcp) ® Gbep (2.3.20)

Opcd ® (1B’Cd o ,BCD) = (BCD/ o 1BCd) ® OpCd - (2.3.21)
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2.3.2 Symmetries

Denote by (Op)Lax,,(D,€) the 2-category of (op)lax functors (first op), (op)lax natural

transformations (subscript op) and modifications.

Proposition 2.3.1. There are isomorphisms:

Lagoy(D, £) = Las(DP, £)°P (2.3.22)
OpLaz,,(D,€) = Lax(D, £%)® (2.3.23)

Law(C, Lazop(D, E)) = Lazey(D, Laz(C, £)) (2.3.24)
Lax(C, OpLaz,,(D, £)) = OpLaz,,(D, Lax(C,E)) . (2.3.25)

Proof. Data and axioms for the LHS of (2.3.22) (resp. (2.3.23)) are obtained from the begin-
ning of Section 2.3.1 until the equation (2.3.11), by ignoring the letter B in all the names, and
reversing the direction of 2-cells for data marked by (t1) (resp. (f1) or (t1)). On the other
hand, the data and axioms for the RHS of (2.3.22) (resp. (2.3.23)) have reversed sources and
targets of arrows (resp. 2-cells), compared to the diagram (2.1.2), but they also live in £°P
(resp. £), rather than &; interpreted in &, they have reversed 2-cells marked by (t1) (resp.
(f1) or (t1)). A possibly easier way to see this is to draw string diagrams in E°P (resp. £°),
and then flip them horizontally (resp. vertically).

To prove (2.3.24), observe that the data and axioms in Section 2.3.1, with (t1) 2-cells
reversed (LHS), and second and third letter in all labels formally swapped, corresponds to the
same data and axioms when C' (resp. ¢, ) is substituted for D (resp. d, d), and vice versa,
and then (t2) 2-cells are reversed (RHS).

Similarly, in (2.3.25) reversing (f1) and (t1) 2-cells, followed by swapping positions in
labels, leads the same result as swapping variables and then reversing 2-cells marked by (£2)
and (t2).

Once the directions for data are fixed, all axioms are determined in a unique way, and

there is no need to analyse them separately. O

Corollary 2.3.1. There are isomorphism:

OpLax(D, &) = Lax(D P, E@P)“P (2.3.26)
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OpLax(C, Laz,, (D, E)) = Laz,,(D, OpLax(C,E)) . (2.3.27)

Corollary 2.3.2. There are isomorphism:

[D, E]ons = [D?,EP]Y, (2.3.28)
[D, E]ont = [P, E] 5, (2.3.29)
[C? [D7 g]ont]lnt = [Da [C, g]lnt]ont . (2330)

2.3.3 Reviewing computads

The content of this part is taken from [30]. We describe the major ideas and leave out the

details.

Definition 2.3.1. (/30], with a technical modification®) A computad G consists of a graph
|G| (providing a set of objects |Glo and a set of generating arrows |G|1), and for each pair of
objects G,G" € |G|y a graph G(G,G") with a set nodes* G(G,G")o = (FIG|)(G,G’) and a set
of edges denoted G(G,G")1 (providing generating 2-cells).

A computad morphism assigns all the data, respecting sources and targets, forming a
category Cmp.

There is a free 2-category FG on the computad G that has the same objects as G. Arrows
between G and G’ are “paths” between G and G’; that is, elements of G(G,G)g. To define
2-cells, it is not enough to take the free category on G(G, G’) since it does not take whiskering

into account. Instead, consider the set of whiskered generating 2-cells

G (G,G") ={(p,a,p)|p € G(G, X)o,
(04 Q(X, X/)l,

p e G(X',G"o}.
Finally, to impose the middle of four interchange, take the set of whiskered pairs

G*(G,G") = {(p,a,p,d,p")|p € G(G, X)o,

%We take all paths between two objects to be the nodes of G(G, G'); that is, G(G,G")o = (F|G])(G,G").
4F|G| is the free category on a graph |G|
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[eAS] Q(X,X’)l,
p/ c g( ,,X”)O
o e G X X///)

(
p// e g(X/// ) }
and form a coequalizer in Cat to obtain the hom (FG)(G,G’)
FG¥(@,0") 3 FGL(G, G - (FG)(G,G") (2.3.31)

where the two parallel arrows are the two obvious ways to compose whiskered o with whiskered
o/; see [30] for details and the rest of the construction.

Given a 2-category &, the underlying computad € has the underlying graph obtained
from the underlying category of &; that is, [UE| = U|E|, and the hom graphs have edges
UE)(E,E")(p,p') = E(E, E")(op, op), where op denotes the arrow in £ obtained by composing
the path p in £. Assignments F and U extend to morphisms and form an adjunction, giving

a bijection between arrows in Cmp and 2-Cat
T:G—->UE ——> T:FG—E. (2.3.32)

Intuitively, the 2-category FUE is the 2-category of pasting diagrams in £, and the counit

of the adjunction is the operation of actual pasting to obtain a (2-)cell in €.

2.3.4 The tensor product computad

The goal is to construct a computad G which has data analogous to the one in Section 2.3.1,
and then to impose further identification of 2-cells in FG, analogous to the axioms (2.3.1)-

(2.3.14). Consider the computad G defined by the following data:
e aset |Glp = ObC x ObD of nodes, whose elements are denoted C'[x] D

e the set |G|1((C, D), (C’,D’)) of edges consists of arrows in C(C,C") if D = D’, denoted
¢X D, and arrows in D(D,D’) if C = C’, denoted C [x1d, otherwise it is empty. The

concatenation of ¢[x]D and C’[Xld, as an arrow in the free category on |G|, will be denoted



16 CHAPTER 2. STRICTIFICATION TENSOR PRODUCT OF 2-CATEGORIES

by {C® D C'® D C'® D'}, and the empty path on C'® D by {C & D}.

When the meaning is clear from the context we omit the tensor product character. A

concise way of expressing the collection of edges is as a disjoint union
\Q[l((C,D), (Cl, D/>) = C(C, Cl> X 5DD’ + 6CC’ X D(D, D/), (2333)
with dxy being an empty set when X # Y and singleton {X} when X =Y.

o 2-cells
— for each object C of C and 2-cell § : d = d in D,
C®d:{cD % cpy = {cD % cp)y (2.3.34)
— for each object D of D and 2-cell v:¢c= ¢ in C,
YR D :{CD <L ¢'D}y = {¢D £ ¢'D} (2.3.35)
—1) for each (C, D) € |G|p, the unit comparisons
idcy, : {CD} = {CD <2 oD} (2.3.36)
—(t2) for each (C, D) € |G|o, the unit comparisons
id;,.p : {CD} = {CD 1<% oD} (2.3.37)
—(r1) for each C' € C and composable pair (d,d’) in D, a composition comparison

X(d’ od)
_—

compgyy - {CD 24 op' €4, cpy = (oD < cD"} (2.3.38)

—(2) for each D € D and composable pair (¢, ) in C, a composition comparison
comp,,p, : {CD 2 ¢'D €2, "D}y = {CD C"D} (2.3.39)
—1) for each pair of 1-cells (¢, d),

swap, : {CD <2 ¢'D €% ¢'D'y = {cD &4 cp' <2 ¢'D'}. (2.3.40)
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The 2-category C [Xlemp D is obtained from FG, the free 2-category on the computad G, by

imposing identifications:
e preservation of identity 2-cells

CX1g =l

1CD = 1cD

e distributivity of [X] over vertical composition
(CRI) e (CK6) =CXI(6 00)
(YR D)e(yXD) = (y' e7) XD
e compatibility with the composition comparison 2-cells
Compcgdv (] (C (5/ oC (S) =C ((5/ e} (S) ® COMpPc
compyp ¢ (Y XD oyXD) = (7 o7y) KD ecomp.p
e compatibility with the swapping 2-cells

swap_;e (C'KdoyXD) = (yX D' oC[XJ)eswap,

e unit and associativity laws

compe (loid)=1& compe (idol) =1

comp e (comp o 1) = comp e (1 o comp)

e compatibility of swapping with unit and composition

swape (loid) =idol
swap e (ido1) =10id
swap o (1 o comp) = (compo 1) e (1 oswap) e (swapo 1)
) =

swap e (comp o 1) = (1 ocomp) e (swapo 1) e (1 oswap).

(2.3.41)

(2.3.42)

(2.3.43)

(2.3.44)

(2.3.45)

(2.3.46)

(2.3.47)
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Proposition 2.3.2. Let C, D and £ be 2-categories, C Kemp D the 2-category defined above,

then there is an isomorphism
Lax(C, Laz(D, E)) = [C Kemp D, E] . (2.3.54)

Proof. The data for G and identifications when forming C Xlemp D correspond exactly to
data and laws (2.3.1)-(2.3.14) for B € Lax(C,Lax(D,€&)) in the Section 2.3.1. So, giving
B corresponds to giving a computad map Bemp : G — UE such that the strict 2-functor
Bemp : FG — & respects the identifications (2.3.41)-(2.3.53), which corresponds to giving a
strict 2-functor B : C Xemp D — €£.

Define £P := [D, &]ons. From (2.3.30) we get the following isomorphism
[FG. €, = [FG, € Tine - (2.3.55)

In particular, we have a bijection on objects, so for a free arrow J = I(:= 0 — 1), (resp. free
2-cell 7 =D(:= 0 | 1)), we get a bijection between arrows (resp. 2-cells) of [FG, E]me and
2-functors FG — E; (resp. FG — EP).

Consider a lax natural transformation between 2-functors respecting identifications (2.3.41)-

(2.3.53) (as above)

l;(:mp : chp = E’Cmp FG—E&. (2.3.56)
It corresponds to a 2-functor
by . FG — &' (2.3.57)

which corresponds to a lax natural transformation b : B = B’ - the correspondence goes as

follows
G emp’ 7461 (2.3.58)
CXD — bCD (2.3.59)
cX D, CXdw~ opep, Obcd (2.3.60)
y® D, CK 6§ — (ByD, B'yD), (BC6, B'CY) (2.3.61)
id_, comp_, swap_ — (np—,np—), (kB—, pp—), (0B, 0p1-). (2.3.62)
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The RHS of (2.3.61) (resp. (2.3.62)) being 2-cells of ! is equivalent to (2.3.15) and (2.3.16)
(resp. (2.3.17), (2.3.18) and (2.3.19)). The 2-functor by respects identifications (2.3.41)-

(2.3.53) because its source and target do, and so it also corresponds to a 2-functor
b C Wemp D — E! (2.3.63)

which is equivalently a lax natural transformation

b:B= B :CHempD — E. (2.3.64)
Similarly, a modification
Bemp * bemp — bemp : Bemp = Blemp : FG — € (2.3.65)
corresponds to a 2-functor
ey . FG — P (2.3.66)

which corresponds to a modification 3 : b — b via

curry

G ==, el (2.3.67)

CX D — BCD (2.3.68)

c® D, CRd— (0ben, 05.p)s (Tocds Tog) (2.3.69)

v® D, CR®S — (ByD, B'yD), (BCS, B'CY) (2.3.70)

id_, comp_, swap_ — (np—,np'-), (tB—, - ), (0B—,0p—). (2.3.71)

The RHS of (2.3.69) being 1-cells of £P is equivalent to modification axioms (2.3.20) and
(2.3.21). The RHS of (2.3.70) and (2.3.71) being 2-cells of EP, and S respecting identific-

ations (2.3.41)-(2.3.53), are just componentwise properties of Bg‘rﬁ;y and ZS};{{,Y O]

2.3.5 Dual strictifications

Notice that all the data and identifications for G(=: GEP), apart from those involving swap,

lax

are invariant (up to relabelling) with respect to exchanging C and D. However, if we ex-

change C and D and consider oplax natural transformations at the same time, we arrive at
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an isomorphic computad gopm >~ ggf, the isomorphism consisting of exchanging the two
positions in all the labels. All the identifications are isomorphic as well. This directly leads

us to observe
Corollary 2.3.3. There is an isomorphism
CXID ~ (D?xICP)P. (2.3.72)

Proof. The computad GP¢
On the other hand,

with its identifications, generates a 2-category strictifying Laxop, (D, Laxp(C, £)).

oplax’

2.3.22
Laxop (D, Laxop (C, £)) ( x> )LaX(DOP,LaX(COP,SOP))Op (2.3.73)
(2.3.54)
> [DPRCP,EPE (2.3.74)
(2.3.28)
= [(DPRICP)P, Elont - (2.3.75)
O
Corollary 2.3.4. Given 2-categories C and D there are isomorphisms
Laxop((:"LaxOP(Dvg)) = [Dcyg]ont (2376)
OpLaz,,(C, OpLaz,,(D,&)) = [(C*KD“)?, E]om (2.3.77)
OpLaz(C, OpLax(D,E)) = [(D K C®), E]int - (2.3.78)
When C = D = 1, we get free distributive laws between monads with opmorphisms

(opfunctors in [29]), between comonads with opmorphisms and between comonads with mor-
phisms, respectively.

Now we consider strictification for the case when one of the homs has oplax functors -
Lax(C, OpLax(D,£)). Consider a computad G,,, obtained from G by reversing 2-cells marked
by (f1) and changing identifications accordingly. It generates a mixed tensor product Cxy,, D,

which analogously to Proposition 2.3.2 and Corollary 2.3.3 satisfies Corollary 2.3.5.

Corollary 2.3.5. There are isomorphisms:

Lax(C, OpLax(D, €)) = [CKL,, D, Emt (2.3.79)

cmp

CRZ,, D = (D&, C). (2.3.80)
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The cases based on this one are:
OpLax,, (C, Laxop(D, €)) = [D Kemp C, Eont (2.3.81)
Laxp(C, OpLaxop(D, £)) = [(CP anp DP)P Eont (2.3.82)

OpLax(C,Lax(D,€))

le

[(Dop anp Cop)0p7 g]lnt . (2383)

Finally, when the two homs have different choice for the direction of natural trans-
formations, there is no strictification tensor product, mainly because we have to choose
a type of natural transformation for the strict hom. For example, note that the objects
B e Lax(C, Laxop(D, £)) correspond to the objects B € [D[XIC, £](1yo)nt but crossings in the
former allow® cobod = doboc while crossings of the latter allow codob = bod o c for lax
and bocod = docob for oplax natural transformations, suggesting that this case cannot be

strictified. In a similar way, Lax(C, OpLax,,(D,£)) does not permit strictifications.

2.3.6 The n-fold product

Here we generalize the computad construction of the (binary) tensor product to the n-fold
case. Then we show how it can be organized into a lax monoidal structure [11] on the category
of 2-categories and lax functors, denoted Lax. A list of data will be denoted by an arrow on
top of the typical letter, & := (x1,...,2,). The same list of data with z; substituted with
y; will be denoted by Z[y;]. When emphasizing that the substitution is at place 7, or when
it is not clear from the context, we use Z[y;];. More than one argument means multiple
substitutions.

For a list of 2-categories C define a computad Gz with a set of nodes (C|C; € C;}. For
each C, i, and C! € C; define a set of edges® |g5|(6, C[C)) = €(Cy, CY), whose elements are
denoted by c [¢;]. Similarly, the two cells in the computad, coming from the 2-cells of C; will
be denoted 5[72] Denote by p.p’ the concatenation of paths in .F\Qg[. For each C_”, ¢ and

C; € C;, there is a unit comparison

10 N S o
1dc~[1c'] :C = Cllg,]. (2.3.84)

7

Swhich is a shorter notation for B’¢D’ o bCD' o BCd = B'C'd o bC'D o BeD
5When C; = C! the the set of edges is defined twice, but the definitions coincide.
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For each (3", i and ¢, ¢, € C;, a composable pair in C;, as in (2.1.2), there is a composition

comparison computad 2-cell

comply .+ Cleil.Clef] = Cl(c o )il (2.3.85)

For each C_", i, j > and ¢; € C;, and ¢; € Cj, there is a computad 2-cell

Swapg[j,)cj] : Clei].C[C ¢j] = Clej)-Cles, il (2.3.86)

When forming the tensor product 2-category, denoted x1,C we need to impose identifications
analogous to (2.3.41), (2.3.43), (2.3.45), (2.3.48) and (2.3.49) for each i, and (2.3.47), (2.3.50)-
(2.3.53), for each i and j > i.

Let F; : C; — D; be a list of lax functors. Denote by Fég) the unit and by Fc(fi,l the
composition comparison maps, and by FC = (F1Ch, ..., F,C),) the assignment on list of

objects. Form the computad morphism

LYo (2.3.87)

C,Cle), Clyi] — FC, (FO)[Fyei], (FC)[Fyvy) (2.3.88)
idg)[lci] (FO)ED] o 1d;)5[1m] (2.3.89)
comp()[ ] ™ (FO)[F?), e comp;)c[ Frenri)] (2.3.90)
swapg[CZ?C]] — swapggj[;i%chj] . (2.3.91)

The induced functor FGz — ), D respects identifications imposed on FGs, which follows
from the axioms for a lax functor and the fact that the quotienting map Qp : FG5 — D

respects them. Hence, there is a 2-functor

When each component is the identity on C; the induced functor is the identity on ,D. To
see that the composition of lax functors is preserved by tensoring, note that both ways lead

to the following assignments

id? o (GFO)GiFY) (0) (i)
idg, (GFO)[GiFpp ] » (GFO)[GY, CALSE AP (2.3.93)
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compg@c)] —~(GFO)[GiF?)] (2.3.94)

(GFC)[G;)C“F /]
(i)

e COm
pGFC[(G Fici,GiFich)i]

following from the definition of comparison cells for the composite lax functor on one hand,
and the fact that [,G is functorial on homs. The rest of the assignments are trivially the
same.

This proves that the assignment
X, : Lax" — Lax (2.3.95)

is a functor. Note that the unary tensor product [xJ;C is just the Bénabou construction of the
2-category of paths CT, described in section 2.2.1.

Until the end of this part we informally discuss some further properties and generalizations
without proofs.

It is known that bicategories, lax functors and lax natural transformation do not form a
bicategory because whiskering on the right cannot be defined. If we restrict to strict functors,
adding ((op)lax)) natural transformations as 2-cells is not compatible with the tensor [X].
However, if we take 2-categories, lax functors, and icons (defined in [21]|, and here in Eq.

(2.2.6)), we get a nice 2-category Licon, and the n-fold tensor product extends to a 2-functor
X}, : Licon™ — Licon. (2.3.96)

The need to define n-fold product already suggests that 2-fold does not determine the
higher ones, in the way it does for monoidal categories. However, we give components of the

unit

ne:C—Cl (2.3.97)
C.e,y e Ce,y (2.3.98)

{C} =2 ne(1c) (2.3.99)
1e(6) e (¢) =2 pe(d o ¢) (2.3.100)
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as well as for each partition £ : {m) — (n) of m a comparison functor pe which “fattens out”

the structure. Given a list of lists of categories d form a 2-functor

e 5B, Ci = BmC (2.3.101)
from the computad morphism
G—. = UK, C (2.3.102)
xIC
C—C (2.3.103)
> l i —
Clpi] = PV Cl(pi);i = fi(p:) (2.3.104)
3 m;) ~
Clmi] — -j(zl)C[(m)J]@ (2.3.105)
(i)
d” 1 2.3.106
' gl ¢ ( )
(i)
COMP e Lapi+p)) (2.3.107)
swap%;j)p_] =L Al(p) () = A(p))A(ps) - (2.3.108)
)P

We omit proving that it preserves identifications, naturality in C;;, axioms for lax monoidal

structure, how it is defined on icons, and just state the following proposition.

Proposition 2.3.3. Functors [}, together with natural transformations n and pg¢, form a lax

monoidal structure on Licon.

2.4 Simplicial approach

We proceed to describe a model C [Xls;p, D for the strictification tensor product and then show
that it is isomorphic to C Xlemp D.
Objects of C Klsjm D are pairs (C; D) with C € C and D € D.
An arrow in C Xls;m, D is a sextuple (n,p,r;m,q,s). It consists of a path in C of length n,
a path in D (of length m)
p:[n]—C, q:[m]—>D (2.4.1)

and a way to combine them into a string of length n 4+ m; that is, a shuffle

[n] < [n+m] > [m] (2.4.2)
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where r and s satisfy a compatibility condition (A.1.28) saying that one increases if and only
if the other one does not.

The identity (empty path) on (C; D) is defined by taking m = n = 0, r = s = 1|}, and
p and ¢ pick the objects C' and D. Composition is defined by path concatenation, formally
expressed as tensor product of shuffles.

Below is an example of a 1-cell {c1,dy, co,c3,d2} : (C1,D1) — (C4, D3) in C [Xlgiy D. Here,
n=3 m=2r:[5] — [3] and s : [5] — [2] give the coordinates of the corresponding node
in the path, and p : [3] — C and ¢ : [2] — D are the obvious functors producing the paths
{ci}3_; and {d;}?_; in C and D.

Cc1 C2 Cc3

Ch Cs Cs Cy

Dy ClDl L CZDl
d1\L d1l (2.4.3)

D2 CQDQ & 03D2 CH:S C4D2
dQ\L d2l
Ds CyDs
A 2-cell
({7 a? p? /B) : (n7p7 /r; m? Q? S) - (ﬁ7ﬁ7 /F; m? Q7 5) (2'4'4)

consists of:

e a shuffle morphism, that is functors £ : [i] — [n], p : [m] — [m] preserving the first

and the last element and satisfying, for all i < n + m,
min ! (&7) < max s~ (p5i) (2.4.5)

a condition ensuring that there are no swaps of arrows from C and D in the wrong
direction. The condition (2.4.5) is an explicitly written condition for the existence of

the natural transformation (A.1.31).

e path 2-cells, that is, icons a: po& = pand 5 : go p = @, as defined in section 2.2.1
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Below is an example of a 2-cell.

ClDl H CQDl H CQDQ H 03D2 H C4D2 H C4D3

R

ClDl H Cng H CQDg e CQDg CB C4D3

The above graph represents two 1-cells and data of & and p, and what remains is to specify
icon components oy : ¢y = €1, g : 1o, = €2, a3 : c3ocy = c3inC and By : dyody = dy in D.

Vertical composition and whiskerings are defined componentwise as in Shuff, CT and DF.

2.4.1 As a limit

The category C Xlgim D is a limit of the following diagram in 2-Cat.

Ct > AT <« FDL -  YA;T <« Df
C — % i * — % i D
(n,p) — [n] <« (n,m,s,r) —[m] <« (m,q)

&a) —» & < (&py) e = (pB)
2.4.2 TIsomorphism between two constructions
This part is about proving the following proposition.

Proposition 2.4.1. There is an isomorphism

We shall define a computad morphism 7" : G — U(C Xlsim D), show that the induced strict
2-functor 7' : FG — CXsim D respects the identifications (2.3.41)-(2.3.53), and that any other
2-functor V : FG — & respecting them factors uniquely through 7.7 hen, from the universal
property of C Xlemp D it will follow that C Xemp D = C Ksim D

The computad morphism 7" : G — U(C Ksim D) is defined on nodes by

T(C® D) = (C; D), (2.4.8)
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on edges by

T(CRd) = (0,{C},08;1,{D L D'}, 1)) (2.4.9)

T(CD) = (1a{0£>0/}71[1];07 {D},O’é), (2410)
on 2-cells inherited from C and D by

T(C®6) = (1o, {1310, {0)) « (0.{C} o5 1,{D % D'}, 1)

= (0,{C}0:1,{D % D'}, 1p) (2.4.11)
T(y® D) = (g, {7} 1o ) £ (1{C S €'} 102350, {D} 03)

= (1,{C 5 C'},113;0,{D}, o}) (2.4.12)

and on the comparison and swapping 2-cells by

T(idiep) = (00, {11c}; 1o, {}) : (0, {C}, 1jo3: 0, { D}, 11oy)

= (1,{C 2% C}, 14350, {D}, o) (2.4.13)
T(idc1,) = (L), {100, {115}) : (0,{C},1[0}; 0, {D}, 1[o))
= (0,{C},08;1,{D 12 D}, 1py)) (2.4.14)

T(comp,.. s p) =(7F, {1eec}; 1o}, {}) :

(2,{C 5 C" 5 O}, 115;0,{D}, a1 o])

= (1,{C L5 O}, 115;0,{D}, o) (2.4.15)
T(compg g 4) =1, {}: 0%, {Larea}) :

(0,{C}, oo 2, {D % D' L5 D"}, 1py)

= (0,{C},00;1,{D L% D"} 1)) (2.4.16)

T(swap, 4) =(1j1), @ = {1c}; 11, 8 = {1a}) :
(1,{C' 5 €'} 08 1,{D % D'}, o)

= (1,{C 5 C"},0%1,{D % D'}, 0?). (2.4.17)
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To check that the last 2-cell is the valid one, write equation (A.1.31) as
Lo?olool =03002 = 0200? = Rogoloo?. (2.4.18)

The cells on the RHS of (2.4.11)-(2.4.17) will be called elementary 2-cells.

To see that the induced strict 2-functor respects identifications (2.3.41)-(2.3.53), note that
T(id), T(comp), and T (swap) have trivial icon components, while the definition of 7" on
other parts of the computad have trivial components in Shuff, and that the composition of
2-cells in C Xlgjm D is done independently in each of the components.

Given a computad map V : G — UE, such that Vo FG — & respects the identifications
(2.3.41)-(2.3.53), form the following assignments W : C Kls;m, D — £ on objects

W(C;D) = V(CRE D) (2.4.19)

and on elementary arrows
W(0,{C},08;1,{D % D'}, 1)) = W(T(CRd)) = V(C K d) (2.4.20)
W(L{C 5 C'}, 1110, {D},00) = W(T(c® D)) = V(cH D). (2.4.21)

Since every shuffle can be written uniquely as a sum of shuffles of unit length, the above as-
signment determines assignment on all 1-cells; given (n, p,;m, g, s), assign to it the composite
given by (2.4.22).

V((p); ®gsi), if s; = 0
W (0,p.75m,,5) = Ol (2.4.22)

V(priX(q)q), if r; =0

When n = m = 0 we get that W preserves identities; that is,
W(lc;p)) = lwc:p) - (2.4.23)
Also, W preserves composition
W', p'r'sm! ¢ s o W(n,p,r;m,q,s) =

V((p)yX¥¢'s'i), if sl, =0 . V((p)i X gsi), if s; =0

i=n+m

V'ri'®(q ), ifrl, =0 V(pri=(q)i), if r; =0

ol

i'=n/+m/’ °

(2.4.24)
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-

V((p)iXK¢s),if s, =0,and i >n+m

V(p'r'ikd(¢):), if rj = 0, and i > n +m
) (2.4.25)

V((p)iXigsi), if s, =0, and i <n +m

— ol
— Yi=n/4+m/+n+m

Vprix1(q)i), if r; =0,and i <n+m

=W +n,p +p,r’ +r;m +m, ¢ +q,8 +3) (2.4.26)

=W((n,p/,r'sm', ¢, s") o (n,p,r;m,q,5)). (2.4.27)

Hence, it is a functor on the underlying categories.

The requirement that WT = V determines the assignment on identities
T(1y) = 174 (2.4.28)

on elementary 2-cells T

W(Tr) =V (r) (2.4.29)
and similarly on whiskered elementary 2-cells
W(Tg"oTrnoTg):=Vg"oVrnoVg=V(g"omog) (2.4.30)

where T'r is an elementary 2-cell and T'g and T'g" are 1-cells.
Given any 2-cell (&, «; p, 3), as in (2.4.4), choose a decomposition into whiskered element-

ary 2-cells in the following order, starting from the target 1-cell,

e elementary 8, j =m, .., 1
Ji=10T(prjXpj) o1 (2.4.31)
= (1[ﬁ]7 {1p17 r 1pﬁ}; 1[7’71]7 {1l11¢ ! 5]’1 - 1f1ﬁ}) (2432)

e clementary o, i =n, .., 1

I = 10T (o [XG5i) o 1 (2.4.33)

= (1[73], {1p1, ey Oy ey 1pﬁ}; 1[m], {1q1, vey 1%}) (2.4.34)
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e comparisons in D, j =m,.., 1

— if pj = 0 then
L1 =10T(id —. pid)
il oT(id)ol=:L;

—ifp; =2 k=p;—1,..,1

. 7 (comp)
=: L;7™P

Lj, =10T(comp) o i

This order corresponds to left bracketing.

— if pj = 1 then L;; =1, and can be ignored.
e comparisons in C, ¢ = 7, .., 1

— if & = 0 then

Ki,l =1lo T(ld) ol =: Kj(id)

—if§ =2 k=¢-1,..,1
K;r=10T(comp)ol =: K](.iomp)

This order corresponds to left bracketing.

— if f_j =1 then K;; = 1, and can be ignored.

(2.4.35)

(2.4.36)

(2.4.37)

(2.4.38)

e crossings - the remaining 2-cell to decompose has trivial icon components as well as

trivial £ and p. In the relation tables - which define the two shuffles - elementary

crossings correspond to switching ones to zeros, or, going backwards, switching zeros to

ones. Let (x,y) be the coordinates of the corresponding crossings, order them by =z —y

and then (if the x — y value is the same) by = + y. Our backward decomposition starts

with the last crossing in the table. Denote them by S;.

Now, define

W (&, a;p, B) = oiW (J;) 0i W(I;) 055 W(Li ;) 03 W(K; ;) oi W(S;)

(2.4.39)
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Given a composable pair of 2-cells, the composite of their their images under W, W (€, &; p, 3)o

W (€, o p, B), is equal to

OzW(Jz) o W( Z) oi,j W(Lz,]) Oi,j W(Kl,j) O; W(Sz)

OZW(Jz) o W(IZ) Oi,j W(LZ’]> Oi,j W(Kzﬂ) O; W(Sz) (2440)

which need not be in the canonical form. The assignment on the composite 2-cell

((o&ae(ac)ipop,Be(Bop) (2.4.41)

is in the canonical form, and the two are equal which we show by “bubble-sorting” the decom-

position (2.4.40). In each step one of two cases can happen:

e the output (target of the elementary part) of the first 2-cell does not overlap with the
input (source of the elementary part) of the second 2-cell. Then we can write the vertical

composite of their images as

W(Tgs0TgsoTgsoTny0Tgr)

e W(TgsoTm oTgsoTgsoTgr)
=V(gsomoggomogy) =
W(Tgs0Tm0Tg30Tge0Tgr)

e W(Tg50Tgs0TgsoTmyoTy) (2.4.42)

meaning that we can change the order of their composition after suitably changing the

whiskering 1-cells.

e the output of the first 2-cell overlaps with the input of the second 2-cell. Depending on
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which elementary 2-cells meet, do an operation according to the following table.

1hond | 7 |[Gd)| f(comp) |f(id)| f(comp) g
J o |(2343)] L | L | (2345 | L L |L/(2.3.47)
I L |(2.3.44) L i L | (2.3.46) |(2.3.47)/L
L0d) R L] L] (2348 | L 1 |L/(2.3.51)
(2.4.43)
L{comp)| R 1L | L |R/(2.3.49) L 1L |L/(2.3.53)
K(d) 1 R | L il 1| (2.3.48) |(2.3.50)/L
K(comp)| | R | L i 1 |R/(2.3.49)((2.3.52)/L
S /R | R/L | L | 1/l/R | L | R/L/L | R/L/L

If the first 2-cell has n outputs and the second 2-cell has m inputs, there are n +m — 1
ways to match them. When different, these cases are separated by “/”. The symbol L
denotes that matching is not possible for that case, and R denotes that the matching is
possible, but the order is already correct (lower triangle). Finally, an equation number
tells us to apply apply T to both sides, and substitute the LHS, which appears in the
composition, with the RHS. Each step changes the decomposition of the 2-cell, and the

fact that V preserves relations ensures that the composite in £ does not change.

This proves that W is functorial on homs.
A 2-cell in C XI D, obtained by whiskering, has the same elementary 2-cells in its decom-

position as the original 2-cell. Hence, the two different composites

(WTg oW (& a;p,B)) e (W(E, 50, f') o WTg) (2.4.44)

and

(W&, o5p,8)oWTg) e (WTg' o W(E,;p,3)) (2.4.45)

necessarily bubble-sort to W ((¢', 50, 8') o (£, a; p, 8)). This completes the proof that W is
a 2-functor.

The functor 71" is bijective on objects and arrows, and surjective on 2-cells, so W is the

unique 2-functor satisfying V = WT.
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2.4.3 Mixed tensor product

The case covering the free mixed distributive law, strictifying Lax(C, OpLax(D, £)), produces
C XIgi, D that has the same objects and arrows as C [X] D, and 2-cells differ by changing the
direction of p : [m] — [m] to accommodate comultiplication and counit, change in icon

B :q= qp:[m] — D, with the restriction for crossings taking a slightly different form
LrofoF= RsoRpos. (2.4.46)

With a proof following the same steps as the non-mixed case, we state the following proposi-

tion.

Proposition 2.4.2. There is an isomorphism

CEL.D~CRE" D. (2.4.47)

cmp

2.5 Properties and an example

There is an obvious 2-functor L : CX]ID — C x D that forgets shuffles and composes paths. It

has a right adjoint R in the 2-category of 2-categories, lax functors and icons:

R ENARE (2.5.1)
(C,D)— CKRD (2.5.2)
(e,d) — CD C% cp 2. o' (2.5.3)
(7,0) = (v®D") o (C ) (2.5.4)
with identity and composition comparison maps
I legn = CD <2, op 22, ¢p (2.5.5)
(02,1;0%,1): D %% op' 2, o'p' L, o' pr <2 o pr (2.5.6)
— cp C9D, qpr AP iy (2.5.7)

The composite L o R is just the identity functor 1¢xp, while the unit of the adjunction is an
icon

n:legp = RolL (2.5.8)
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assigning to each arrow (n,p,r;m,q,s) in CXID a 2-cell

('[1]—>[1’L]’ ]-Op; '[1]—>[m]a ]-Oq) : (n7p) rm,q, 8) = (]—7 op, 0(2)7 ]-7 oq, O-%) . (259)

Whiskering 7 on the left (resp. right) by L (resp. R) gives the identity on L (resp. R),
proving the adjunction axioms.

Any strict functor B:CXD — & can be precomposed with R to give a lax functor
BoR:CxD—E. (2.5.10)

This generalizes the notion of a composite monad induced by a distributive law.

2.5.1 Parametrizing parametrization of categories

Take C and D to be just categories (seen as locally discrete 2-categories), and” £ = Span.

The bicategory of spans is equivalent to the bicategory of matrices, which is in turn a
full subcategory of® Mod. Each strict functor B:CXD — Span is, in particular, a normal
lax functor, so we can use the Bénabou construction [33] (after forgetting 2-cells) to obtain a
category Bherve parametrised over CRD. Explicitly, Bherve has ob jects over C'xX]D given by the
set BCD. Arrows over C'[xld and c[X] D are elements of spans BCd and BcD respectively, and
they generate arrows over arbitrary paths, which are, due to composition in Span, composable
tuples.

The 2-cells that we have temporarily forgotten are mapped to span morphisms. In par-
ticular, the images Enp of the unit of the adjunction (2.5.8) give a unique way of “com-
posing” arbitrary arrows in Bperve, resulting in an arrow over a path in C & D of the form
cp 4 op' 2, ¢'D'. The image of this assignment forms a category B whose composition
is concatenation in Byerve followed by applying (the unique) appropriate Bn. Uniqueness
guarantees the identity and associativity laws.

Explicitly, B with the same objects as Byerve, and arrows between X € B (CX D) and
X' e B(C'" X D') are elements of B(CD <, op 2, C'D’), denoted by pairs (g, f),. The

"Instead of Span one can take a strict version with objects sets X,Y... and arrows cocontinuous functors

Set/X — Set/Y which are determined by the assignment of singletons.
8Consisting of categories and modules (aka profunctors or distributors)
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identity is

1x = (12,15), with (2.5.11)
12 := (Bidcy, ) (X) (2.5.12)
1§ := (Bidy.p)(X) (2.5.13)
and composition is given by
(¢, f') o (g, f) = B((comp o comp) e (1L oswap o 1))(¢, f', g, f) - (2.5.14)

For each object D € D we get a subcategory mpB parametrized by C - an object X over
C'is an element of BC'D, and arrow f : X — X’ over c¢ is an element of BeD, which can be
identified with an arrow (1%, f) of B. Similarly, each object C € C gives a subcategory m¢ B,

parametrized by D. Furthermore, each arrow (g, f) in B can be decomposed as

(Iprs f)e(g,1c) (2.5.15)

or as

(9:1¢r) o (1p, f)- (2.5.16)
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Cauchy completeness and causal spaces

3.1 Introduction

Considering causal structures as fundamental and space-time as emerging was considered in
[7]. We provide a novel way to construct causal preordered sets, together with maximal
intervals between events, as categories enriched in a particular monoidal category we called
R1. All R, -enriched categories turn out to be Cauchy complete, and we address the question
of which bases share this property. This abstract approach to general relativity might shine
new light on already existing categorical approaches to quantum foundations [1] or quantum
gravity [2].

In Section 3.2 we review the work of Lawvere who viewed positive real numbers as a

monoidal category, denoted R, to obtain generalized metric spaces as enriched categories.

37
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In Section 3.3 we give a modification of the base category R, call it R, which gives causal
spaces as R | -enriched categories, and explain how black holes and wormholes (see 3.3.3) can
be described using enriched modules. We also prove a surprising fact that all causal spaces
are Cauchy complete, in the sense of enriched category theory.

In Section 3.4 we give conditions on a monoidal category V which ensure that a V-category
C is Cauchy complete if and only if the underlying (Set-enriched) category Cp is Cauchy
complete, which for Set-enrichment means that idempotents in Cy split. As a corollary we
add a few more conditions on V ensuring that all V-enriched categories are Cauchy complete,

generalizing the case of R .

3.2 Metric spaces as enriched categories

A generalized metric space X consists of a set of points and, for each pair of points P and @),

a distance d(P, Q) € [0,00] from P to @ such that, for all points P, @ and R,
d(P,P) =0 (3.2.1)

d(P,Q) + d(Q,R) > d(P,R). (3.2.2)

“Generalized” comes from dropping conditions of finiteness (allowing infinite distance), sym-
metry (allowing d(P,Q) # d(Q, P)), and distinguishability (allowing d(P,Q) = 0 without
P = Q). Those spaces correspond precisely [24] to categories enriched in R - a monoidal
category (more concretely, a totally ordered set) with positive reals and infinity as objects, an
arrow between a and b if and only if b < a, and monoidal structure given by sum. R is also
closed, with internal hom given by truncated subtraction, uniquely defined right adjoint to
summation. To see the correspondence, recall [19] that a category X" enriched in a monoidal
category V consists of a set of objects (points in this case), for each pair of objects a hom, that
is, an object in V (a number providing distance in this case), and unit and composition arrows
of V (providing (in)equalities (3.2.1)-(3.2.2), in this case) satisfying unit and associativity laws
(trivially true in this case because R is a poset).

Denote by Z the space having only one point *. An enriched module (aka profunctor,

distributor) Z M x , alternatively expressed as an enriched presheaf M : X°P — R, assigns to
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each point P in X a distance from P to x, M (P, ), with an action ensuring triangle inequality

for the newly introduced distances
X(P,Q) + M(Q,+) = M(P, ). (3.2.3)

For example, each point P € X defines a module Mp(Q,*) = X(Q, P) - this motivates a
general definition A.2.2 for convergent modules. Dually, an enriched module X e assigns

to each point P in X a distance from * to P, with actions
N(#,P)+ X(P,Q) = N(x,Q). (3.2.4)
Asking for M and N to form an adjunction in R-Mod imposes existence of a counit
M(P,#) + N(x,Q) = X(P,Q) (3.2.5)

expressing that the newly introduced distances do not violate the triangular inequality via
*, enabling us to consider a new space X,, with an added point *. Finally, the unit of the
adjunction?

0= Igrelg((N(*, P) + M(P, *)) (3.2.6)

forces the newly adjoined point to have zero distance from (and to) the rest of the space,
providing a Cauchy condition analogous to the one for Cauchy sequences. This motivates
general definitions A.2.1 of Cauchy modules, and of Cauchy completeness of enriched categor-
ies A.2.3.

An important base is the monoidal category Ab of Abelian groups, where one-object
Ab-categories are rings, and they are Morita equivalent (have equivalent categories of (left)
modules) if and only if their Cauchy completions are equivalent [19]. We review definitions

and some results related to general Cauchy completeness in Appendix A.2.

3.3 Causal spaces as enriched categories

Given a space-time E one can assign to each time-like path p in E its proper time T'(p).

Maximizing the proper time T'(p) over all time-like paths between two events gives an interval

'The coend involved in the module composition reduces to inf when the base of enrichment is R.



40 CHAPTER 3. CAUCHY COMPLETENESS AND CAUSAL SPACES

or “distance” between them. This is not distance in the sense of a metric space, mainly because
the triangle inequality is inverted. The maximal time will usually (in physical situations)
correspond to time measured by an inertial observer, while any accelerated reference frame
would measure a shorter time, with a photon bouncing from appropriately set up mirrors
would “measure” a zero time. However, we used maximizing over all time-like paths, rather
than an inertial path, because of possible existence of Lorentzian manifolds where there are
causally related points which do not have a (unique) inertial path between them. This is
analogous to minimizing path length over all paths on a Riemannian manifold to obtain a
metric; for example, antipodal points on a sphere have multiple shortest paths, or two points
in a plane on the opposite side of a cut out (closed) disc have no path with a minimal length

between them.

To get the inverted triangular inequality one could just invert the arrows of R. On one
hand, such a category could no longer be closed because the object 0 would be the monoidal
identity and the initial object at the same time, which would mean that tensoring (summing)

does not preserve colimits (in particular, the initial object), since, for example

1=1+0#0. (3.3.1)

On the other hand, physically, there would be no object in the monoidal category that could
be assigned to space-like separated events. Both of the problems are solved by freely adding

an initial object which we denote by L. So, the correct base for enrichment is formally given

by

Definition 3.3.1. A symmetric closed monoidal category R is defined to have

e objects the real positive numbers [0,00) with infinity oo and the additional object L

e arrows a — b existing uniquely if a = 1, b =00 or a < b, forming a total order
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o tensor product +: Ry x R — R given by

+ | L b o0
1L 1 il
(3.3.2)
al|Ll|la+b| o
o | L o0 o0
e internal hom — : R1°P x R — R given by
— | L a o0
1] s 1
b—a, a<b (3.3.3)
b | © L
1, a>b
o0 | 0 o0 0

With this direction of arrows, all the colimits are suprema, and limits are infima.

A category € enriched in R | has objects X, Y, ... interpreted as events, and homs £(X,Y") €
R interpreted as “distances” or intervals. If £(X,Y) = L then Y is not in the future of X,
equivalently said, X cannot cause Y. The composition of homs witnesses that the chosen

time between the two events is the largest,
EX, )+ &Y, 2)<&EX,2) (3.3.4)

and the unit

0<E&(X,X) (3.3.5)

prevents endohoms from being 1. The associativity and unit axioms are trivially satisfied

because R | is a poset.

Example 3.3.1. In a Minkowski 2D space-time objects are points in (t,r) € R? and homs

are

' —t)2— (2 —x)2, iftl —t=>r —x
e 0ty — | VP e I

1 otherwise .

)
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Proposition 3.3.1. Properties of homs of £ include

(i). endohoms are monoidal idempotents

EX, X) + (X, X) =E(X,X) (3.3.7)

(i1). the action of endohoms on other homs is given by equalities

E(Y,X) + £(X, X) = £(Y, X) (3.3.8)

E(X,X) + E(X,Y) = E(X,Y) (3.3.9)
(i11). possible endohoms are

EX,X)=0or £(X,X)=00 (3.3.10)

(a) if E(X,X) = o0, all the homs E(Y, X) and E(X,Y) are either L or oo

(b) if E(X, X) =0, either both £(X,Y) and E(Y, X) equal 0 or at least one equals L
Proof.  (i). Adding £(X, X) to the unit (3.3.5) gives
(X, X) < E(X,X) + £(X, X) (3.3.11)
On the other hand, the composition (3.3.4) for Y and Z equal X gives

E(X,X)+E(X,X) < E(X,X) (3.3.12)

(ii). Adding £(X,Y) to the unit, and the compositions

E(X,Y) + E(X, X) < £(X,Y) (3.3.13)

EX, X))+ &Y, X) < &Y, X) (3.3.14)
give the required result.

(iii). By part (i) of the proposition, noting that objects L, 0 and oo are the only monoidal

idempotents in R, and using the unit (3.3.5), restricts possible endohoms to 0 and co.

(a) Case analysis on (3.3.8)-(3.3.9)
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(b) Case analysis on £(Y, X) +E(X,Y) < E(X,X) =0

O

Call an event with the infinite endohom (situation (3a)) irregular. Although unphysical,
these are needed to keep R closed. For instance, L is irregular, since | — | = co. However,
part (3a) of Proposition 3.3.1 ensures that such points in space are either causally unrelated
to, or at an infinite temporal distance from, the rest of the (physical) space. Part (3b) of
Proposition 3.3.1 prevents the grandfather paradox in the physical part of the space - given
two regular (endohom being 0) events X and Y, it is not possible for both of them to cause
each other, unless they happen simultaneously.

A program for formulating quantum gravity using discrete partial orders, started in |7] and
reviewed in, for example, [12], has a notion of causal set as a basic mathematical structure.
If we take the underlying category & of a causal space £, we get a general preordered set
without requirements for antisymmetry and local finiteness - the information about local time-
like intervals is contained in homs, and allows different events to happen at the same point
in space-time. On the other hand, each causal set has a corresponding causal space, where
homs come from the local finiteness condition - if A causes B, then £(A, B) is the (integer)

length of the longest (necessarily finite) path between A and B.

3.3.1 Enrichment in [—o0, «0]

A possible generalization of both metric and event spaces, would be enrichment in [—o0, o0],
with an arrows from A to B, if B < A. Then positive length would denote space-like intervals,
with triangle inequality (3.2.2), while negative numbers would be interpreted as time-like in-
tervals. However, the triangle inequality with mixed entries is too restrictive, so the Minkowski

2D space-time is not enriched in [—o0, c0]. For example,

A = (0,0) (3.3.15)
B =(-1,0) (3.3.16)
C =(0,1) (3.3.17)
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gives
E(A,B)+€&(B,C)=—-14+0=-1 (3.3.18)

E(A,C) =1. (3.3.19)

3.3.2 R, -Cat
An R | -functor F' : D — £ maps events in D to events in £ such that the distances increase
D(A,B) < E(FA,FB). (3.3.20)

In particular, space-like intervals (given by L) can map to time-like intervals.
Natural transformations 7 : F' — G indicate that for all A € D the event GA is in the
future of FA.

Since R | is symmetric, closed and (co)complete, so is R -Cat [19]. Explicitly, the tensor

product D + £ of D and £ has

e objects pairs (A, X)

e homs (D + &)((A,X),(B,Y)) =D(A,B)+ £(X,Y)
and [D, £] has

e objects R -functors F', G...

e homs

(D, €](F,G) - Lepg(FA, GA) = il E(FA,GA). (3.3.21)

Finally, given a causal space £, using symmetry of R we can form the opposite £°P by

taking the same set of objects and
EP(X,Y)=E(Y,X) (3.3.22)

for homs.
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3.3.3 Modules, black holes and wormholes

A (2-sided) module M : D — £ is defined as an R -functor
M:EP+D >R, (3.3.23)
and can be equivalently given by actions

EY, X))+ M(X,A) < M(Y,A) (3.3.24)
M(X,A)+D(A,B) < M(X,B). (3.3.25)
These inequalities enable us to “glue” the two causal spaces with homs between objects of £

and D given by M, and all homs from D to £ being L, a process known as a lax colimit or

collage [33].

Remark 3.3.1. Physically, such a module can be interpreted as a wormhole going from & to

D. In particular, when D = T the module M is a black hole in E.

Composition of modules N : C - D and M : D —» £ is given by

(Mo N)(X,P) = o M(X,A) + N(A,P) (3.3.26)
= sup(M(X, A) + N(4, P)) (3.3.27)
AeD

forall PeC and X € &.

3.3.4 Cauchy completeness

To give a pair of adjoined modules (M - N) : Z - &£ is the same as to give a pair of

R | -functors

M:EP R, (3.3.28)

N:E>RL (3.3.29)
which, in addition to the actions (3.3.24)-(3.3.25)

E(Y, X) + M(X) < M(Y) (3.3.30)
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N(X) + E(X,Y) < N(Y) (3.3.31)

satisfy (existence of the unit and counit of the adjunction)

0 < sup(N(X) + M (X)) (3.3.32)
X
E(X,Y) = M(X)+ N(Y). (3.3.33)

Proposition 3.3.2. Any R, enriched category & is Cauchy complete.

Proof. First, consider the case when £ is empty. Then M and N are unique empty functors,
but they cannot be adjoint as the RHS of (3.3.32) equals L. Since there are no Cauchy
modules, £ is Cauchy complete.

Now, assume & is non-empty and M is a Cauchy module, that is there is N such that
(3.3.30)-(3.3.33) hold. In particular, since L is the only element smaller than 0, equation
(3.3.32) implies that there is Z € £ such that

0< N(Z)+ M(Z). (3.3.34)

If either N(Z) or M(Z) was equal to L the sum would equal L as well, so we have that both

terms are greater or equal than 0,

0< N(Z) and 0< M(Z). (3.3.35)

Now we have

M(Y)<MY)+ N(Z) (3.3.36)
<E&(Y,Z) (3.3.37)
<E(Y,Z)+ M(Z) (3.3.38)
< M(Y) (3.3.39)

proving that M(Y) = (Y, Z), and showing that Z represents M. O
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3.4 Cauchy completeness via idempotent splitting

Here we consider which monoidal categories V produce enriched categories whose Cauchy
completeness is determined by idempotent splitting in the corresponding underlying category.

We begin with an easy direction.

Proposition 3.4.1. Let V be a locally small, cocomplete symmetric monoidal closed category.
If a small V-category € is Cauchy complete then idempotents split in the underlying category?
&o-

Proof. Let I 5 £(FE, E) be an idempotent in &. Let Ey : Z » £ and E* : £ - T denote the

modules induced by the V-functor picking the object E. That is

Eu(X) = £(X, E) (3.4.1)

E*(X) = £(E, X) (3.4.2)

with actions given by composition in £. The induced module endomorphisms e, : F, = FE,
and e* : E* = E* are idempotent because e is. Since in the corresponding presheaf category
idempotents split, there is a module M : Z —» &, and module morphisms f : E, = M,
g : M = FE, splitting e,. Similarly, there is a module N : £ —-» Z, and module morphisms
k:E* = N,l: N = E* splitting e*. Using the fact that e* and e, are mates under the
adjunction E, — E*, it is easy to show that?® (k® f) on and eo (¢ ®1) are unit and a counit
of the adjunction M — N. Since £ is Cauchy complete, M is represented by an object, say
D e &£, and so, using the weak Yoneda lemma, e splits through it. O

Proposition 3.4.2. Consider the following properties of a cocomplete, locally small, symmet-

ric monotdal closed category V:

(i) the underlying functor
V(I,—):V — Set (3.4.3)

takes regular epi families to epi families (joint surjections),

2The underlying (Set-enriched) category [19] of a V-category £ has the same objects as £, and homsets

defined by mapping out of the unit of V.
3Here ® denotes the horizontal composition, and o the vertical composition of module morphisms.
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(ii) the function
V(I,A) x V(I,B) & VIQI,AQ B) =L V(I,A® B) (3.4.4)
s a bijection,

then a small V-category £ is Cauchy complete if idempotents split in the underlying category
&.

Proof. Let M : L - & be a Cauchy module with a right adjoint N which amounts to giving

actions

M(X)®E(Y,X) 255 M(Y) (3.4.5)
E(X,Y)® N(X) 22, N(Y) (3.4.6)

compatible with unit and composition in £, and unit and counit for the adjunction

Y
n:l— J MY)®@N(Y), (3.4.7)

exy :NY)@M(X) - E(X,)Y). (3.4.8)
The coend cowedge components
Y
MQﬁ@N@jﬂif M(Y)® N(Y) (3.4.9)

form a jointly regular epic family, see section A.3 example A.3.3. By condition (i), the functor
V(I,—) takes them to a jointly surjective family of functions V(I,wyx). This in particular
means that the unit of the adjunction is in the image of a function V(I,wyz), for some Z.
So, the unit decomposes as n = wyz o z. From condition (ii) we get that z can be further
decomposed as m ® n for a unique pair of maps m: I — M(Z) and n: I — N(Z), to give a

final decomposition of the unit

n=wzo(m®n) (3.4.10)

One of the adjunction axioms, together with (3.4.10) gives a commutative diagram shown
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in (3.4.11).
M(Y)
I®M(Y)
n®1 W
1 SCM(C)@)N(C)@M(Y)LWM(Z)@N(Z)@)M(Y) (3.4.11)
SC]-®6Y,C l1®6y7z
{°M(C)®E(Y,C) 2 M(Z)®E(Y, )
M(Y)

From the outside of the diagram (3.4.11) it follows that the identity on M (Y") decomposes

into the following two maps

MY) 2L N(2Z2)@ M(Y) 25 £(Y, 2) (3.4.12)
E(Y,2) 284 M(Z)QE(Y, Z) 225 M(Y). (3.4.13)

Both of these sets of arrows are V-natural in Y, following from V-naturality of ¢ and com-
patibility of action a with composition in £. Composing them the other way around we get
an idempotent V-natural transformation on £(—, Z), which is represented by an idempotent
arrow Z — Z in &. Since idempotents split, there is Z’ through which e splits, hence Z’ is a

representing object for M. O

Remark 3.4.1. The only place we used symmetry and closedness of V was the definition of
module compositions using coends, and the definition of the category of enriched presheaves.
Both of these notions are definable for non-symmetric ¥V, or even when the base of enrichment

is a bicategory [34], so we expect the above theorems to work at that level of generality as well.

Corollary 3.4.1. A cocomplete quantale Q such that any collection of its objects {A;} with

an arrow

1-\/ 4 (3.4.14)
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contains an object Z € {A;} with an arrow
N/ (3.4.15)
has the property that all small Q-categories £ are Cauchy complete.
Example 3.4.1. The motivating example R has this property.
Corollary 3.4.2. If a cocomplete category V is Cartesian closed and
V(1,-):V — Set (3.4.16)
has a right adjoint, then V satisfies the requirements of proposition 3.4.2.
Denoting by G the right adjoint we need a (natural) bijection
V(A,GS) = Set(V(I,A),S). (3.4.17)

Example 3.4.2. For V = Set, G = lset. More generally, if V = [C°P,Set] and C has a

terminal object 1 then
(GS)C = Set(C(1,C),5) (3.4.18)

functorially in C. The isomorphism (3.4.17) follows from

[C°P, Set](A, Set(C(1,—), 5)) (3.4.19)
~ f Set(AC, Set(C(1,C), S)) (3.4.20)
CeC e
~ Set ( AC x C(1,0), S> (3.4.21)
~ Set(Al, S) (3.4.22)
~ Set ([C°P, Set](C(—, 1), A), S) (3.4.23)
~ Set ([C°P, Set](1, A), S) (3.4.24)

where 1 in the last line denotes the terminal presheaf which is the monoidal unit in [C°P, Set].
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Example 3.4.3. For V = Cat, GS is the chaotic category on the set S, because mapping
into it is uniquely determined by the assignment on objects. More generally, for V = n-Cat,
GS is a the chaotic category seen as a locally discrete n-category (each hom is the terminal

(n — 1)-category).
In some cases condition (ii) holds when the product is not Cartesian.

Example 3.4.4. Gray() has the same objects and arrows as 2-Cat, but (laz) Gray tensor
product, rather than the Cartesian one for the monoidal structure. Strict functors 1 — A®) B
detect (pick) objects, which are pairs consisting of an object in A and an object in B, hence

satisfying condition ().
Proposition 3.4.3. Let V be a monoidal category. The following are equivalent:
(1). every V-category C has a Cauchy complete underlying category Co,

(i1). every monoid (T,u,n) in V induces an idempotent-splitting monoid on the hom-set

V(I,T).

Proof. (1 = 2) Consider a one-object category C with the endohom, multiplication and unit
given by (T, pt,n7). The underlying category is precisely the suspension of the monoid V(I,T),
so idempotent-splitting in Cp is the same as idempotent-splitting in V(I,T).

(2= 1) Let I 5 C(A, A) be an idempotent in Cy. Since C(A, A) is a monoid in V), e is also
an idempotent in the induced monoid on V(I,C(A, A)), and, by condition 2, it splits. O]

Remark 3.4.2. Under condition 2, all idempotents in Cq split through the same object they
live on. As a consequence, if an array of maps composes to the identity on an object A, then

all intermediate objects are isomorphic to A.

Corollary 3.4.3. A monoidal category V satisfying conditions of the proposition 3.4.2, and
the second of 3.4.3, has all small V-categories Cauchy complete.
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Comonadic base change

4.1 Introduction

Characterising Cauchy completeness of differential graded (DG) categories provided motiva-
tion for this chapter. We showed that a DGAb-module is Cauchy if and only if its underlying
GAb-module (or Ab-module) is: an enriched module is Cauchy (by definition) if it has a right
adjoint in the bicategory of modules, adjoints can be expressed using Kan extensions, and our

main theorem states that underlying 2-functors for certain comonads create Kan extensions

(Theorem 4.5.1).

Chain complexes of abelian groups (also called differential graded Abelian groups) form a

symmetric monoidal closed category DGAD (explained in detail in Section 4.2) which can be

53
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obtained as a category of coalgebras for a Hopf ring! in Ab, the symmetric monoidal closed
category of abelian groups [28]. DGAD has a full symmetric monoidal closed subcategory
GAD, consisting of graded abelian groups seen as complexes with trivial differential, which

can also be obtained as a category of coalgebras of a different Hopf ring in Ab.

In Section 4.3 we consider Hopf monoids A in an arbitrary symmetric monoidal category
V. We need a braiding in the category of (co)algebras in order to consider Hopf monoids
H there, which is obtained using a braiding (co)element [16], and symmetry in V. Their
semidirect product H x A, called bosonization in [26], is also a Hopf monoid, and its category
of (co)algebras is isomorphic to the category of H-(co)algebras. A particular example, when
V is additive, resembles the V = Ab case, and Pareigis’ ring is an instance of it, see Section

4.4.

Semidirect product works even when V has no braiding if we consider Hopf monoidal
comonads [10], or dually Hopf opmonoidal monads [8], not necessarily induced by tensoring
with a Hopf monoid. These are comonads in the 2-category of monoidal categories, monoidal
functors and monoidal natural transformations, in the sense of [29], with a Hopf condition: the
fusion maps are invertible. In order to study categories, and modules between them, enriched
in a category of coalgebras, in Section 4.5, we generalize further, by considering comonads
in Caten [20], whose objects are bicategories, arrows are categories enriched on 2-sides, and
2-cells are enriched functors. Then, a change of base along the forgetful functor U : V9 — V
induces comonadic arrows in Caten U : V9-Cat — V-Cat and U : V9-Mod — V-Mod. The
main theorem (4.5.1) states that when a comonad in Caten is Hopf, the comonadic forgetful
functor creates left Kan extensions. Left extensions (dually liftings) are a generalization of
left (dually right) cohoms from monoidal to bicategorical setting, so if V is (a suspension of)
a monoidal category, U creates cohoms and duals. Adjunctions in a bicategory can also be

expressed using left extensions, so U creates Cauchy modules.

The word “ring” will denote a monoid in an additive monoidal category. We save the word “(co)algebra”

for (co)algebras for a (co)monad.
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4.2 (Differential) graded abelian groups

The category DGAD (differential graded abelian groups) has chain complexes A, B, as objects.
They are defined by diagrams in Ab

S A S A, 54, % (4.2.1)

with group homomorphisms d (full notation would be d4) satisfying d o d = 0. An arrow
f A — B, called chain map, consists of group homomorphisms f, : A, — B,, indexed by
integers, satisfying

fnod=do f_1. (4.2.2)

DGAD is monoidal with tensor product defined by
(A® B)y, = Xi4j—nd; ® B (4.2.3)
dla®b) =da®b+ (—1)'a®db, forae A; andbe B . (4.2.4)

The unit is given by I, = d,0Z. There is a symmetry

c(a®b) = (-1)"b®a (4.2.5)
and a closed structure
[B,Cl, = H Ab(Bja Cj+n) (4.2.6)
J
(df)]b = d(f](b)) — (—1)nfj71(db), for f € [B, C]n and b e Bj . (4.2.7)

The category DGAbD can be obtained as the EM-category of P-coalgebras, for a Hopf ring
P [28]

P = Z{E, €71 00/ (6 + 9, 4%) (4.2.8)
A =E®¢, €(§) =1 (4.2.9)

AW) =y @1+ @Y, e(v) =0 (4.2.10)

s(§) =¢! (4.2.11)

s(¥) = ¥¢ (4.2.12)

where A is the comultiplication, s is the antipode, and corner brackets denote non-commutativity.
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4.2.1 GAb

The category of graded abelian groups, denoted GAb, can be seen as a full subcategory of
DGAD consisting of chain complexes with all d = 0. GAb inherits symmetric monoidal closed
structure, which follows from (4.2.4) and (4.2.7). On the other hand, there is a forgetful
functor U : DGAb — GAb, with adjoints L 4 U - R given by

L(C)y = Cpi1 ®Ch (4.2.13)
R(C)p = Cr®Cpy (4.2.14)
0 1
d= . (4.2.15)
0 0

U reflects isomorphisms, since f~! satisfies (4.2.2) if and only if f does. The functor U,
having both adjoints, preserves all limits and colimits, in particular U-split equalizers and
coequalizers. Hence, U is both comonadic and monadic.

There is a functor ¥ : GAb — Ab that takes the coproduct (sum) of all components. It
has a right adjoint which creates Z copies of an abelian group. The diagram below summarises

all relevant adjunctions.

F>h

DGAD GAb > Ab (4.2.16)

~_ L -

c

ZU<Q

Both ¥ o C' and R o U are comonads isomorphic to tensoring with a certain Hopf ring in
Ab and GAD respectively. In section 4.3 we discuss the semidirect product construction in
general, and then in section 4.4 we show that the Pareigis biring is the semidirect product of

the two birings generating > o C' and Ro U.

4.3 Semidirect product

Let W = VA®~ be the category of algebras for a (Hopf) bimonoid A in a symmetric monoidal
(closed) V. For W to be braided we need A to have a braiding element v : I — A® A
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satisfying the three axioms at page 58 of [16], which we quote here in the form we are going

to use later (half-turned compared to the ones in [16]; that is, we read from top to bottom):

: (4.3.1)
_ (4.3.2)
_ (4.3.3)
Explicitly, the braiding of (X, ax) and (Y, ay) is?
syy = XY 25 AAXY 19N AXAY XY, xy Sy X (4.3.4)
For an A-algebra (X, ax) define
mx = AX 25 AAX 1945, Ax A XL x A, (4.3.5)

Proposition 4.3.1. If X is a monoid in W, then Tx is a distributive law in V.

Proof. There are 4 axioms to check. The two involving unit and multiplication for A use the
compatibility of unit with the comultiplication of A, and the bimonoid axiom, respectively.
The two involving unit and multiplication for X follow from the fact that they are A-algebra

morphisms. O

Let H be a (Hopf) bimonoid in W. It automatically inherits a (co)monoid structure in V
by forgetting that (co)unit and (co)multiplication maps are A-algebra morphisms. Note that,

unless v = n®n, H need not be a bimonoid in V.

2We sometimes omit writing ®.
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Definition 4.3.1. The semidirect product of a bimonoid A in V and a bimonoid (H, o)
in A-Mod, denoted H x A, is given by the object HA, with monoid structure given via the
distributive law Ty, and comonoid structure via the codistributive law s ag. Using a thick line
for H, thin line for A, the multiplication and the comultiplication of H x A are given by the

following string diagrams

(4.3.6)

where all relevant arrows in V are uniquely determined by their source and target, so there is

no need for labelling.

Proposition 4.3.2. The semidirect product, H x A, is a bimonoid in V. If H and A are
Hopf, with antipodes graphically represented by dots, then so is H x A, with the antipode given
by diagram (4.3.7).

(4.3.7)

Proof. The defined (co)multiplication is already part of a (co)monoid structure. The compat-
ibility of counit with unit, counit with multiplication and unit with comultiplication follows
directly. What remains to show is the bimonoid axiom, which we have done using the manip-
ulation of string diagrams shown in Figure 4.3 and described below.

In line (4.3.8), after rearrangement we used the compatibility of multiplication of A with
action of A on H, in the bottom right corner of the middle diagram.

Going from line (4.3.8) to line (4.3.9) we used the bimonoid axiom for A on the top-left part
of the diagram, followed by the (co)associativity for A. In the line (4.3.9) we used the element
axiom (4.3.1). When passing from line (4.3.9) to line (4.3.10) we used the (co)associativity
for A, together with the bimonoid axiom for A, in the right side of the diagram. In the line
(4.3.10) we used the element axiom (4.3.2) on the top-left. Line (4.3.10) to (4.3.11) involves
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W @
O @
0 €
0 o
i K
¢

Figure 4.1: Diagrams used in the proof of Proposition 4.3.2.

(4.3.8)

(4.3.9)

(4.3.10)

(4.3.11)

(4.3.12)

(4.3.13)
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just a rearrangement, followed by the element axiom (4.3.3), on the left of the diagram, in
line (4.3.11).

Passing from line (4.3.11) to line (4.3.12) uses the compatibility of multiplication of A with
action of A on H at three different places. In line (4.3.12) we used that the (co)multiplication
of H is an A-algebra morphism. Finally, going from line (4.3.12) to line (4.3.13) uses the
bimonoid axiom for H.

That (4.3.7) is indeed an antipode follows in a similar way. The strategy to show the
“right inverse” axiom is to use the compatibility of ayg with p4, and bimonoid axioms to
get all comultiplications to the top, and multiplications to the bottom of the diagram, and
then use the right inverse axiom for A multiple times, followed by the right inverse axiom for
H. The strategy to show the “left inverse” axiom is to bring all actions ap below pgr, using
the definition of action on the product of algebras, followed by the left inverse axiom for H,

followed by the compatibility of €4 with pa, and the left inverse axiom for A. O

Proposition 4.3.3. The comparison functor

WwH®= £, HxA@- (4.3.14)
((B,as),xB) — (B,xp o luap) (4.3.15)
(f:B—C)—(f: B—C) (4.3.16)

1s strict monoidal and has a strict monoidal inverse

pHxAe= F2, yyHe- (4.3.17)
(B,B) = ((B,BonulacAy"),Bolunacpy') (4.3.18)
(f:B—C)m (f:B—C). (4.3.19)

Proof. Using Beck’s monadicity theorem, we show that the forgetful functor

wihe= 4y (4.3.20)
((BvaB)7XB) — B (4321)

(f:B—C)—(f: B—C) (4.3.22)
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is monadic. Since U is the composite of two monadic functors, Uy and Uy, it has a left adjoint
and it reflects isomorphisms. The third criterion, not necessarily preserved by composition,

is the existence and preservation of U-split coequalizers. So, assume the parallel pair

E ((BvaB)7XB) - ((Ca aC)vXC) (4323)

in WH®™ has a split coequalizer h: C — E in V. That is, there are maps

ESCcLB (4.3.24)
satisfying

hos=1g (4.3.25)

fot=1¢ (4.3.26)

soh=got. (4.3.27)

Monadicity of U4 implies that E is an A-algebra, with action
1s ac h
ap = (AF — AC — C - EF) (4.3.28)

and that h is a coequalizer in W, but not necessarily split. The proof involves the following

identities

hoacolsolh=hoacolgolt (4.3.29)
=hoagolfolt (4.3.30)
=hoac (4.3.31)

where the first equality follows from (4.3.27), the second from ho f = h o g and the fact
that f and g are A-algebra morphisms, and the third comes from (4.3.26). Exactly the same

equalities hold with A replaced by H, for the same reasons:

hoxcolsolh=hoxcolgolt (4.3.32)
=hoxcolfolt (4.3.33)

=hoxc. (4.3.34)
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Now, the map
1s xXc h
xg=(HE — HC = C - E) (4.3.35)

is an A-algebra morphism

xpoamapoloaglodall L hoxcolsolhoapgacoloamlodals (4.3.36)
339 ) o o o amac o loagl o dals (4.3.37)
XEW b o agolyo o 1ls (4.3.38)
330 1 o apolso1holygolls (4.3.39)
e polyg (4.3.40)

compatible with unit and multiplication on H, which follows from the compatibility of xo
with unit and multiplication and equations (4.3.25) and (4.3.34). Therefore ((F,ag), xE) is

an object of VH®~,

The arrow h : C' — E is an H-algebra morphism, which follows directly from (4.3.34). To
show that it coequalizes f and g, take ((X, ax), xx) to be an H-algebrain W and m: C' — X
an H-algebra morphism satisfying mo f = mog. In V, mos : E — X is the unique comparison

map, since h is the coequalizer of f and g. But m o s is an H-algebra

moszEdif‘mosohoXCols (4.3.41)
a2 o ogotoxools (4.3.42)
—mofotoxcols (4.3.43)
4326) oxcols (4.3.44)
mei®” o lmols (4.3.45)

completing the proof that ¢ is monadic.

The comparison functor F is strict monoidal: F(((B,ag),xn) ® ((C,ac), xc)) is given
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by the following action

HABC
(4.3.46)
while F/((B,ag),xs) ® F((C,ac), xc) is given by the following action
HABC
(4.3.47)
which are equal because ap is compatible with multiplication on A. O

Example 4.3.1. When V = (Set, x), the comultiplication is forced to be the diagonal map,
A is a monoid - with identity ey, and the only possible braiding element is (ea,eq). An
A-algebra bimonoid H is the same as a monoid morphism ¢ : A — End(H), and H x A is

precisely the semidirect product for monoids generalizing the one for groups.

4.4 Birings

In this section we consider a particular choice for bimonoids in a braided monoidal additive
category with direct sums preserved by tensoring. Braiding, being a natural transformation

between additive functors, is compatible with direct sums - for H = A@ B and H' = A’ @ B’

TAA 0 0 0
OHH' = (441)
0 OAB/ 0 0

0 0 0 OBRB!

which can be concisely written by specifying non-zero components

AA L A'A
AB' —Zap' A'B 4.4.2
BA %< B'A ( )

BB’ B — B'B
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where concatenation is the tensor product and vertical empty space is the direct sum.

4.4.1 Grading Hopf ring

Let W be a symmetric monoidal additive category with direct sums preserved by tensoring.
We also assume WV has countable coproducts, and denote by Z - C' the copower of the object

C € W by the set of integers Z. In particular, there is an object
Z:=7-1I. (4.4.3)

The addition of integers gives Z a group (Hopf monoid) structure in (Set, x), and induces a

Hopf ring structure on Z, given by

1.1 AT
I={«}-1 Z-1 (Zx7) 1=2QZ. (4.4.4)
0-71 +. 7

Tensoring with Z gives a functor isomorphic to taking a copower by Z

Z®C=(Z-1)®C (4.4.5)
~7.-(IQC) (4.4.6)
~7-C. (4.4.7)

Since W is symmetric monoidal, the category Z-CoAlg of Z-coalgebras is monoidal, and
with a braiding coelement given by
(ZxZ)- 155
vl (4.4.8)

(-1
I

Z-CoAlg becomes braided. Arrows c;; denote coproduct coprojections, and + satisfies the
coelement axioms, dual to the element axioms drown in (4.3.1)-(4.3.3). Because of duality,

we need to invert the direction (read the diagrams from bottom to top):

(+9)(D7 (DG )

(4.4.9)
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(71)‘1‘(‘]‘#}»‘) (_1)1]<_1)ik

_ (4.4.10)

(4.4.11)

Z-CoAlg inherits direct sums: if B LN Z-Band C 5 Z-C are Z- coalgebras, then
s
B ﬁ 7Z-B (4.4.12)
C—Z-C
is a Z-coalgebra as well, and the braiding induced from the cobraiding element - is automat-

ically compatible with direct sums.

Example 4.4.1. When W = Ab, the biring Z = Z[x,x~'] is the Laurent polynomial ring

with integer coefficients. The coring structure is given by 1 <=z +— x @ x. Then

GAb —Z-CoAlg (4.4.13)
C —>XCp 5 Z®%C, (4.4.14)
ceCp—2"®c (4.4.15)

1s an equivalence of categories. Consider a Z-coalgebra

BL zeB (4.4.16)

b Dzl @AY (4.4.17)

B being a group homomorphism ensures that
BY 4 8 = B0 4 5O = g (4.4.18)

which enable us to define abelian subgroups

B; = {8 e B} (4.4.19)
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while the compatibility with counit and comultiplication give

28" = (4.4.20)
(b)
g\ = 5,80 (4.4.21)
which ensure that
B = %,B; (4.4.22)

0;; denotes the Kronecker delta, it equals 1 when i = j and 0 otherwise.

The braiding coelement (4.4.8) corresponds to the group homomorphism

Zz,z @2z, 27 L 7 (4.4.23)

'@l (—1)Y (4.4.24)

and gives a braiding (symmetry, in fact) in GAb.

4.4.2 Differential Hopf ring
Let V be a braided monoidal additive category with direct sums preserved by tensoring.

Proposition 4.4.1. An object D with braiding cpp = —1pp induces a Hopf ring H = D®I,

whose monoid structure HH 2 H <L I has non-zero components

DD

DI ﬁ D 1 T. (4.4.25)

the comonoid structure (A, €) has inverses of (4.4.25) as non-zero components, and the anti-
pode s

-1 0

0 1

Proof. The (co)associativity and (co)unit axioms follow from coherence for monoidal categor-
ies, after noting that a component is non-zero if and only if it contains either one D in its
source and target, or none.

The compatibility of unit with counit and comultiplication is obvious.
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The bimonoid axiom

HH 25 HHHH %S HHHH S HH (4.4.26)
—HHY 05 HH (4.4.27)

imposes that

_, DIID — " DIID
" IDDI —"— IDDI \Mﬁ
DD — a7t lorrl A DD
s DI —""—Dprrr
DI \)‘717’.71ﬂ - ZE DI (4428)
IDII oo IDIT
ID— ., D
"= rpr — " 21Dl /;’7
IT 7oty i I
— uip —"" s~

—1.—1 i\
) \ . /

I —" I

equals

DI F— D —" DI (4.4.29)

which follows from opp = —1, braiding coherences [17]: op; = AN lop orp=ptoland
orr = 1, and coherences for unit and associator.

Finally, the Hopf axioms hold, for example the left inverse part gives

-1
_ ¢ s DI ——— DI 14
D=2 0p_* p re—1 ) (4.4.30)

Iy —y—1
equals

D 1 1 D 4.4.31
.

V as a category of coalgebras

Let W be a symmetric monoidal additive category with direct sums preserved by tensoring,

and A a biring there, with a braiding coelement A ® A X I. Take V = A-CoAlg. Now D as



68

CHAPTER 4. COMONADIC BASE CHANGE

an A-coalgebra is an object of W, together with a coaction d : D — A ® D satisfying

(v11) o (1oapl) o (dd) o opp = —1pp (4.4.32)

where on the left we have the braiding in V and o is the symmetry in W. From Proposition
4.4.1, we have that H = D @ I with the coaction

D % AD (4.4.33)
I—— A

is a Hopf ring in V. Hence, by (the dual of) Proposition 4.3.2, there is a semidirect product
Hx A=DA® A, with the Hopf ring structure in YW having components

DADA )
?féﬁ mﬁ#ﬂ 119544 " I (4.4.34)
—lposap «—
[ATA— 7
DADA
DAIA % DA €
[ADA &—rplols

L
1A I

(4.4.35)
TAIA <5

Pareigis’ example

Finally, take W = Ab, and A = Z(= Z[x,z7!]). The coalgebra (D, d) can be thought of as a
graded abelian group, see Example 4.4.1. Let d; € D; and d; € D;. Condition (4.4.32) gives

(—1)d; ®d; = —d; ® d; (4.4.36)

which forces all D; = 0, except for j = i for a fixed odd 4. In addition, D; can have only one
generator, call it d.

The biring (D®Z) x Z[z, x~ 1] has underlying abelian group Q := Z[x, 2~ |®@DRZ[z,x 1],
with (co)unit and (co)multiplication determined using (4.4.34) and (4.4.35):

Q57 (4.4.37)
d® ! — 0

|
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zZ5Q (4.4.38)
1 2°
Q>Q®Q (4.4.39)

d@r) —»d®2? @2 + ' ®d® 1’
¥ ka®xk
QRQHQ (4.4.40)
d®r@d®z* —0
d@ 2’ @z* — d@ itk
PRIk — (-1)d@ s’ *F
j+k.

Y

To see what the antipode is, consider the general antipode diagram (4.3.7), and label the

edges

(=D*df

2~ (i+5)

(4.4.41)
df
d¥ 2
where either £k = 1 and ¢ is odd, or i = kK = 0. So we have
Q35Q (4.4.42)
d@ 2’ — (1) d® 2~ ()
sz
When i = —1 and D_; = Z, we get exactly the Pareigis Hopf ring P, by identifying
E=x (4.4.43)

Yp=d®a’. (4.4.44)
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4.5 Comonadic base change via 2-sided enrichment

The forgetful functor V9 “, v induces change of base functors
V9-Cat 4 V-Cat (4.5.1)

V9-Mod % V-Mod. (4.5.2)

In this section we introduce the context in which ¢’ and I have right adjoints. It is given
by the tricategory Caten [20] whose objects are bicategories and homs are 2-categories of
categories enriched on 2-sides. First we give a short review of [20], where we also introduce
the notation for the rest of the section, and then generalize the notion of (Hopf) monoidal

comonad [8] to that level.

4.5.1 2-sided enrichment

Objects of Caten are bicategories V, W, etc. Their hom categories V(V, V') are sometimes
denoted V“;/ to shorten the notation. The horizontal composition is denoted by tensor product
®.

Arrows A : W — V are called 2-sided enriched categories. They consist of:

e a set of objects Ob.A whose elements are denoted A, A’, etc. together with a span

(=)= A

PN

ObWw Oby

(4.5.3)

assigning to each object A an object A_ in W and A, in V

e homs A(A, A’), also denoted Aﬁ', defined to be functors

AL W -V (4.5.4)

e unit and composition natural transformations

l1a_ A" Al ® A"
A - - "
1 —— Wy~ Wy x Wy P W,

s l““ﬁ A;‘,‘i’xAﬁ,"l WA lAﬁ” (4.5.5)

1a A A A
+ V2+ VA,+ X VAI ® ? VA:
+ +



4.5. COMONADIC BASE CHANGE VIA 2-SIDED ENRICHMENT 71

satisfying unit and associativity laws.

Composition of 2-sided enriched categories is given by composition of spans (pullback), com-
position of functors defining homs, and pasting unit and multiplication natural transforma-
tions.

A 2-cell F: A— Bis an (enriched) functor consisting of

e a map of spans ObF =: F

F: ObA — ObB (4.5.6)
which means
(FA)_ =A_, and (FA); = Ay (4.5.7)
e natural transformations
Fi AV = BEY (4.5.8)

which are compatible with unit and multiplication of A and B.

A 3-cell ¢ : F — £ is an (enriched) natural transformation consisting of components
Ya:la, = BE41A (4.5.9)

satisfying an enriched naturality condition (the filled in coherence 2-cells in V can be found
in [20])

, wA’ ® (]:A/)w / /
A4 (w) - BES (1y ) ® BEA (w)

X% w“‘l J“ (4.5.10)

BEA (w) @ BEA(1a) BEA (w).

o
All axioms, compositions, whiskerings, and the fact that Caten is a tricategory are ex-

plained in detail in |20].
Example 4.5.1. When W =1, A is precisely a category enriched in the bicategory V.

Example 4.5.2. When ObA = ObW and (—)— =1, A is precisely a lax functor from W to
V, and 2-cells are icons [21].
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Modules

Instead of (enriched) functors we could have chosen enriched modules M : A - B as 2-cells.

They consist of

e functors
Mf Wy~ — Vgt (4.5.11)
e action natural transformations
Wi Wt =S Wt W x W — s W
A4 x Mgl A= lMgl M2, x Bg/l o8 = lMg (4.5.12)
R T i

compatible with each other, and units and compositions in 4 and B.
A module morphism o : M = N consists of natural transformations
on: Mf = Ni (4.5.13)

compatible with actions (4.5.12).

Module morphisms compose, and we get a category of modules between A and B, which
we call Moden(W, V)(A, B). When V is locally cocomplete Moden(W, V) becomes a bicate-
gory equivalent to the bicategory of enriched modules Conv(W, V)-Mod, where Conv denotes
internal hom in Caten for the usual product of bicategories [20].

Each functor F : A — B defines a module F, : A - B by taking (this is properly typed
because of (4.5.7))

(Fo)f =BE: W™ — Vi (4.5.14)
’ 1 .7'-A/ 1 ’ NFA ’ ,
My =@ (A4 x BEY LA D) Q(BEA « BEA) 2L gEA g (4.5.15)
B/
Py =® By x BE) 25 B @ . (4.5.16)

Compatibility of p with 1B and 7B are just the unit and associativity axioms for (& and
nB). Compatibility of A with x4 and nY) follows by applying compatibility of the functor
F with x4 and n™ | followed by unit associativity laws for p and 54,
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Similarly, each natural transformation ¢ : F — £ has an induced module morphism,

Pt Fi = & (4.5.17)

()3 := By = Bp* (4.5.18)

() ) = BEA (w >‘”’*® BEA(14) ® B (w) (4.5.19)
B s

To see that 1), is compatible with A, tensor diagram (4.5.10) by B]};A (w’), whisker the resulting
square with M(B) on the right, and add obvious commutative squares to get the required
compatibility. Compatibility with p follows from associativity of ). Also, every module

morphism between modules induced by functors gives rise to a natural transformation. Given

4. BEA — BEA (4.5.20)
we can form
NFA (014
op:la, = B (lA ):>B (1A ) (4.5.21)

and the natural transformation axiom (4.5.10) is witnessed by commutativity of

’ nra @1 FA A (O-FA> AL et A
AX (w) —E2Z s BEA (1) @ A (w) ————— BEA (1a ) ® A% (w)

\ \1®(]:A Jw
1®7IF\/ (Ffl)w npa @1

BFA’( ) = Bia(1ar) BFA’
10 (F4 w
Ax(w © B \ ( ) ®1
Lar
w A (4522)
F ) ®1 \ BEA, 1y ) @BEA
ot | Fd (L) @ BEA ()

BFA BFA/ )
\(J;EA)“, W

A4 (w) @ BE4(14.) W BEY (w) @ BE (14_) ————— B4 (w)
A w

where the hexagon and the bottom right square are compatibility conditions between module

morphism o and actions (4.5.15) and (4.5.16) respectively.

Proposition 4.5.1. The functor

(=)« : Caten(W,V)(A, B) - Moden(W, V) (A, B) (4.5.23)
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1s full and faithful.

Proof. The processes of turning a natural transformation into a module morphism given
by (4.5.19) and the one turning module morphism of convergent modules into a natural
transformation, given by (4.5.21), are inverse to each other, as witnessed by the commuting

diagrams (4.5.24).

s = Bid(la) BEA(w)
w{ lww)l nm@ll \
BEAL) S B0 oA ) B0 OB ) — B (45.24)
\ Ji (@Fa)1a_ ®1l f”g)‘"
BE4(1a.) BEA(1a2) @ BRA(w) ——> BEA(w)

4.5.2 Comonads in Caten

Let G : V — V be a comonad in Caten, that is, a 2-sided enriched category with enriched

functors

1y < g5 g? (4.5.25)

satisfying the three comonoid axioms. The existence of the span morphism Obg Obe, Oby

forces G4 = G_ = (Obe)(G) =: Gy, for all G. The two counit axioms give (Obd)(G) = (G, G).

With these simplifications, the remaining data for G is given by endofunctors

’ G{ G
G VEh - Vg (4.5.26)

and natural transformations with components

(Een)wr v = G5 () ® GE (v) = GG (v ® v) (4.5.27)
ne : g, = G4 (1a,) ( )

(680 : 6§ (v) = (GF)*(v) (4.5.29)
(4.5.30)

(6o GE (v) = v
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satisfying enriched functor compatibility axioms, which together with the comonad axioms,
correspond exactly to the monoidal comonad axioms dual to opmonoidal monad ones appear-
ing in [8].

The bicategory of G-coalgebras

Each hom gg’ becomes a comonad in the usual sense (in Cat). Let VY denote a (soon to

become) bicategory with the same objects as G and with homs the categories of EM-coalgebras

VI9(G, @) = V(Go, Gh)9EE) (4.5.31)
The identity coalgebra is (1g,,n¢) and composition is given on coalgebras by
VI, Q" x VG, G - VIGE,G") (4.5.32)
(V' 70)s (0, 70) = (V) @0, () © (T ® )

The assigned map is a coalgebra: compatibility with ¢ is witnessed by commutativity of

,Ul®,U L gvl®gv % g(v/®v)
v®vl 6®6l
Gv' ® Gu W 921)’ ® g2,v o 5 (4533)
o
| i
G ®@v) —— G(GV ® Gv) ————— G%(v @)
Gvy®") G

where the upper left square is a componentwise compatibility of local coalgebras ~ with
comultiplication, the bottom left square is naturality of u, the triangle is the definition of
composition for the composite category, and the remaining square is compatibility of the en-
riched functor § with compositions in its source and target, which one can also identify as a
typical bimonoid (bialgebra) axiom. Similarly, e being an enriched functor implies compatibil-
ity of (4.5.32) with e. The assignment extends to coalgebra morphisms, which follows directly
from naturality of u. The unitors and associators are inherited from V), they are coalgebra

morphisms, and satisfy the usual monoidale axioms as they do in V.

3When indices are omitted they can be deduced from the context. For example, gg’/ (v) is the full notation.
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There is an underlying (strict) functor & : V¥ — V sending G to the underlying object

Gy in V, and disregarding the colagebra structure on homs. By construction, each L{“// " has a

right adjoint RY,, and by Theorem 2.7 of [20] the right adjoints are part of a 2-sided enriched

category R : V — V9 which has the same objects as G, with span legs given by G_ = Gy and

G+ = G, with unit and multiplication given by

B RE () ©RE (v) = RE' (v @ v)
iu’v/,v

:(gvl ® gv, Moyt p © (511’ ® 51})) —— (g(vl ® U)) 6v’®v)
ngz) g = Rg(lgo)

:(1G07UG) ":G (glGoa 5100) .

Now we have an adjunction in Caten.

V9 1 %
R

The counit and the unit of the adjunction are given by the enriched functors

UoR =G5 1y
1yg l’ Rold
(0by)(G) = (G, G)

(v, 10— gg/v) Xy (ggv, Oy) -

(4.5.38)

(4.5.39)

(4.5.40)

Now we present a version of Beck’s theorem that we are going to use in the rest of the chapter.

Proposition 4.5.2. Any 2-sided enriched category L : W — V such that
e L has a right adjoint R in Caten
o L is locally conservative

o W has, and L preserves, local L-split equalizers

gives rise to an equivalence to W ~ V9, where G is the generated comonad G = Lo R.
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Proof. As was shown in [20], £ has a right adjoint if and only if it is a pseudo-functor and
each functor £(L, L") has a right adjoint, call it R(L, L’). Then, the right adjoint R has the
same objects as £ (and W, since L is a pseudo-functor), and homs are precisely R(L, L’).
From the usual Beck (co-)monadicity theorem it follows that W ~ VY: they have the same

objects and equivalent homs. O

The category Caten(X, V) has an induced comonad Caten(X', G) on it. In particular, when

X = VY there is a natural coalgebra structure on I given by an enriched functor
Uory
U——>-Golu (4.5.41)
whose components are exactly v, : v = Gv.

Lemma 4.5.1. Let X be a bicategory. Whiskering with U
Moden (X, V9)(A, B) %25 Moden(X, V)(U o A,U o B) (4.5.42)
is conservative and the source has, and (U o —) preserves, (U o —)-split equalizers.

Proof. Let M, N : A - B be modules, and ¢ : M = N a module morphism, with components

(08)s : Mf(z) = Nj(x) (4.5.43)

which are 2-cells in V9, natural in z € X g:.

Let ¢ : U o M = U o N be an inverse of U o o. This precisely means that the component
(¥R)x : UNg () = UM (x) (4.5.44)

is an inverse of the component 2-cell (64), in V. Since U is locally conservative, (1/4), is also
a coalgebra morphism. Hence, naturality squares for wg consist of the same arrows regardless
of whether it is seen as a morphism from UN g to UMA, or from N g to M ‘é‘. Compatibility
of ¢ with actions for M and N follows from the same compatibility conditions for ¢ and the
fact that they are inverse of each other.

Consider a pair o,y : M = N with a split equalizer

E%L{OM_&%XEUON (4.5.45)
\U W
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meaning that we have the following componentwise formulas:

(¢8)z » (§8)e = Lpaw (4.5.46)
(@Z)g)x b (Ué)w = 1L{M§(x) (4.5.47)
(¢£’)x o (Xé)x = (gg)x b (Qbé)x . (4.5.48)

This in particular means that the pair (04), (x2)z : M#a(z) = Nj(z) has a Z/lgi—split
equalizer in Vgig. Since Z/{g: is comonadic, (£4); is an equalizer of (04), and (x7)s in Vgi,

with an algebra structure on its source

(€R)
V) = Eie) =22 UMA()

TMA ()

—— G UM () (4.5.49)

Gpt (6h):

The action components for the module E are coalgebra morphisms, the proof for A (dually

for p) comes from the diagram (4.5.50) (all indices can be deduced from the top left term).

A

Af (2') ® E(x) E
T®E 8¢ 13
GA® M A®M A M
17 % v y (4.5.50)
GA®GM ———— GA® M) —— " GM
1®Go G(1®9) Go
GA®GE ———— G(A® E) - GE

Diagrams for compatibility of actions of F with units and multiplications in A and B are the
same as the ones for U o A and U o B. This proves that E : A - B is a module. Components
(ﬁg)x are natural in x, and compatible with actions of F as coalgebra morphisms because
they are natural and compatible as usual arrows. This proves that £ is a module morphism

between E (with coalgebra structure) and M.
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It remains to show that ¢ is an equalizer of o and x, so assume L > M is another V9-
module morphism satisfying o e w = x e w. The components of ¢ e w, obtained by composing
components of ¢ and w, are coalgebra maps since U is locally comonadic, and naturality in «

and compatibility with actions follows as for . O
Corollary 4.5.1. Whiskering with U

Caten(X,V9)(A, B) Ho, Caten(X,V)(U o A,U o B) (4.5.51)
is conservative and the source has, and (U o —) preserves, (U o —)-split equalizers.

Proof. Direct consequence of Proposition 4.5.1, Lemma 4.5.1, and commutativity of (—), with

Uo—. O
Proposition 4.5.3. The bicategory V9 is an EM-object for the comonad G in Caten.

Proof. Mapping out of X,
Caten(X, —) : Caten — 2-CAT (4.5.52)

is a pseudo-functor, therefore preserves adjunctions. In particular, applying it to (4.5.38)

gives
U’ := Caten(X,U)

/_\

Caten(X,V9) 1  Caten(X,V). (4.5.53)

\/

R’ := Caten(X,R)
The composite is isomorphic to Caten(X, G), and what remains to show is that ¢’ is comonadic
in the sense of Proposition 4.5.2. It has a right adjoint R’, and the rest follows from Corollary
4.5.1. O

4.5.3 Hopf comonads

Definition 4.5.1. A comonad G is left Hopf if, for all G, G', G", v € VI(G,G") and v' €
V(GY, GE), the fusion map

Gl
1@71} (MG,G”)”,’M”

Vi 1 GV QUYL == GV @ GUY == G(v QUV) (4.5.54)
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is invertible. This is equivalent to (left) Hopf maps

(G cn)or
hyy - R ® 0 2% Ro! @ RU éﬁ R(v' @Uv) (4.5.55)

being invertible.

Proposition 4.5.4. The inverse fusion maps are G-compatible in the first variable, meaning

1

G(v' ®v) *> G ®v *> G2 ®u

v X® v
Vo - 4.5.56
€ ,®’U\L \ 5v'®’UJ’ TVQU’,'U ( o )
Gv !

VRV o GV ®v GF (V' ®V) - G(Gv' ®v)

as well as compatible with any coalgebra structure existing on v', in the sense

G ®v)

w@ﬁ \ (4.5.57)

—— G .
v Qv el g ®uv

Proof. Follows directly from the commuting diagrams:

G(v' ®v) %gv ® Gv

€ /@U\L //@61; Tl@yv (4558)

VRv +—— Gv®uv

€,/ ®1
Gv' ®v
109 ool
G(v' ®v) +—— G @Gv ;> G*' ®v
5@5 f@y (4.5.59)
2 2 2
s Qv’®gv<1®—ggv’®gv
u lu

G*(v' ®v) o G(Gv' ® Gv) S G(Gv' ®v)

G ®v) <7QU ® Gv

, 4.5.60
Yo ®1;T %’}/v T1®'YU ( )

U@UWQ'U@'U
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Theorem 4.5.1. If the comonad G is left Hopf, then the underlying (pseudo-)functor U :

V9 — V creates left Kan extensions.

Proof. Consider two coalgebras (u,,) and (v, ,) whose underlying arrows have a left exten-

sion k = lan,u as shown

G/l

(“’”“)/ Tk

G
7 (4.5.61)

u
I &
u N
ARL
GO ? G6
The universal property of left Kan extensions says there is a bijection
pu=1Qu (4.5.62)

b k=1 (4.5.63)

such that ¢ = (¢ ® 1) e k. In particular, there is a map 7, : k¥ — Gk corresponding to
—1

u L gu i@ G(k®v) LY Gk ® v such that the diagram below commutes.

u —2y Gu G G(k®w)

k®uv

[ (4.5.64)

Ye®1 g(k‘) Qv

The obtained arrow, v, defines an coalgebra structure on k, the compatibility with § and e
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follows from

\ K
® ¥ Gu k®Qwv
QW
k®uv gu % g2
Gr 2 @1 (4.5.65)
1®1 G(k®v) —%, G*(k®wv) G(k®wv)
Vfl
v vl %(v@l
Gk®v G(Gk®) Gk®u
5@1 4 %
Q2k®v
u / k®v
Y U
. T . (4.5.66)
Gu — G(k®v)
EkQu Gk®wv

®1

The 2-cell k is a coalgebra morphism, which is obvious after substituting v=! in (4.5.64).

To see that x exhibits (k,7x) as a left extension of (u,7,) through (v,~,), consider a
coalgebra (I,7;) : G" — G”, and a coalgebra morphism ¢ : © = [®v. In V, the Kan extension
universal property gives ¢ : k = [. From the following commuting diagram it follows that ¢

is a coalgebra morphism.

U—" 5 kQu )
/ ! ¢ \(@1
E®u Gu [®v
| \ / (4.5.67)
s\ IR ®Y) gy GU®Y) /e,
vl vl

gk@” T gl®v
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O

Recall that m having an adjoint is equivalent to existence of a left Kan extension lan,,1s

which is respected by m; that is, m o lan,,13; = lan,,m.

Corollary 4.5.2. With a Hopf-comonadic U : N — M, an arrow n € N (N, N') has a right

adjoint if and only if Un does.

Proof. U, being a pseudo functor, preserves adjoints.
The other way around, assume Un has a right adjoint, that is both lany,, 1y y and lany,,Un

exist. From the previous theorem, lan, 1y exists and n olan,1y is taken to U(n o lan,1ly) =

O

Un olany,lyy = lany, Un which creates lan,n.

Theorem 4.5.2. IfV is locally cocomplete then the induced underlying functor is well-defined

U:=Moden(X U)
- 5

N := Moden(X,V9) M :=Moden(X, V) (4.5.68)

and it is comonadic in CATEN. Denote its right adjoint by R. If R preserves local colimits,
and G is Hopf, then the induced comonad G:=UoR is also Hopf.

Proof. We will consider the case when X is the terminal bicategory: then A = V9-Mod, and
M = V-Mod. By Proposition 7.5 of [20], U is a lax functor. First we show that it has local

right adjoints ﬁﬁ given by

5B
MU o AU o B) B4 N(A,B) (4.5.69)
UoAYtoB a)— (AR B Ra) (4.5.70)
(6: M= N)— (Ro: RM = RN) (4.5.71)

where a denotes a 2-sided action (the analogous 1-sided ones are denoted by A and p) and

the assignments are defined by

(RM)% := RM§ (4.5.72)
(Ra)pw == A4 @ RMp @ BE (4.5.73)

TR1Rry RL{Aﬁ/@RM’g,@R]/{BB/
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(R

RUAT @ M QUBE)

R«
R g

(Ro)p = Rop = o (4.5.74)

Actions ﬁa, (or separately R and ﬁp) are compatible with unit and composition in 4 and B.
For example, compatibility of p with composition is witnessed by commutativity of diagram

(4.5.75).

1@ u®

RMp, @ B @ BE RM ® B
1®v®~y
1® p(Rot)
19v®1 RM @ RUB® RUB ——— RM @ RU(B® B) 1®y
1®1®y ~

/ 1@,,,(7%\ 1O Ru) 1®Ru“g
RMQRUBR®B 1P o1 RMQRUBRUB) \u® RM ® RUB
WP 1 R(MQUB)@RUB M®U(B®B)) (R (4.5.75)

1®y Iz

/ /‘2(1 ®UUB)
R(MQUB)® B - R(1Qu®)) M Q®UB)

1
et R(1 @ u@B))
Rp®1 R(]V[@Z/{B@L{B) Rp
AR

RM ® B ———> RM @ RUB ——— R(M @UB) —————> RB
187y (R Rp

In this, the non-obvious equalities might be the top pentagon, which is just stating that
components of 1B are coalgebra morphisms, naturality of x squares, and the bottom right
square obtained by applying R to compatibility of p with p“°8). Similarly, components of
n®) being coalgebra morphisms leads to compatibility of 7~2p with 7®). Compatibility of Ro
with Rp (and R\) follows directly from the compatibility of o with p (and \).

The components of the unit and counit of the local adjunctions are given by components

of v and e:
% Invas) = REU -) (4.5.76)
(TN = TN Ng = RUNg (4.5.77)
& UORE(-) = Lywoauos) (4.5.78)
(€))7 = eypa s URME = M . (4.5.79)
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They form module morphisms, as witnessed by diagrams

1®1

N @BE RUNE @ B,

TRy
1®~

Jru)  RUNE @ RUBE,
-
S0 RU(NA @ BE R (R (4.5.80)
P (N B) « P
R(UNE ®UBE)

RUp(N) RpUN)

N§, RUNE,

URM} @UBE,

®1
) ¢

URMA® BE) «®c _ MAQUBE
B B A B/ > B l
p(M)

U1 ®) y
URM{ @ RUBE,) ) M2, (4.5.81)
UpR)

UR(ME @UBE)) .

URP(I\J)
A
URM,
and they satisfy the adjunction axioms because v and € do. Since U has local right adjoints,

it preserves local colimits, which, together with pseudofunctoriality of i, gives sufficient con-

ditions for pseudofunctoriality of u ,

Up®1 coe:
SUME @UBE @UNE ———3 YUMA QUNE — " UN oysUM)2,
1QUN |
) 0 i (@ (4.5.82)
, U(p®1) A coeq v N
SUME ®BE @NE) ———— 2 SUME QNS U(N op M), .
UL N) U(coeq)

Since U is a pseudofunctor and has local right adjoints, by Proposition 2.7 of [20], R extends
to a 2-sided enriched category which is a right adjoint to U. U also satisfies the other two
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conditions of Proposition 4.5.2 as stated in Lemma 4.5.1. This completes the proof that U is
comonadic.

Explicitly, the unit for R is a module morphism defined using the enriched functor (4.5.40)

nff) = (yo A« (4.5.83)
and the multiplication components
~ ~ u® o~
R(N)ogR(M) == R(N oyp M) (4.5.84)
are given by the right column of
, Rp®1 A coeq A
YRMf, @ BE @ RNE ——— 3 Y RM @ RNS —— (RN op RM)g,
1@ RA ‘
(Ripp o p™ 0« 1Qv®1)pp (Rip o pR))p i u® (4.5.85)
, R(p®1) v
RY. Ma QUBE @ NE —— 3 RY M ®NE ——— R(N ous M)§,
R(1®N) R(coeq)

where the top line is defining composition of modules in N, the bottom line is R applied to
the defining composition of modules in M, ig and igps are the coproduct inclusions, and
(—)p denotes the induced map for mapping out of a coproduct.

For modules M € N(A,B) and N € M(U o B,U o C), the (left) Hopf map, given by the

right column of

’ ﬁp@l coex
S M ®BE @RNE ———= Y M @ RNE ———— (RN o5 M),
1®RA
Tr®1e1 Y®1 (1®7)E
, Rp®1 coeq A 4.5.86
S RUMP ® BE @ RNE ——3 ¥ RUM# @ RNE, — (RN o RUM), (4.5.86)
1Q®RA
SuRel@y®1 S u® )
A ! B L(p@)l) A By % A
2 RUME @By @ Ni) Raan Y RUME ®ch)7m)R(N ous UM )y

is invertible because the other two columns are invertible: they are determined by Hopf maps

for G. O
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Example 4.5.3. Functors U and X from diagram (4.2.16) create duals and cohoms. An
abelian group A has a dual if and only if it is finitely generated and projective [35]. As a
consequence of X being Hopf-comonadic, a graded abelian group A has a dual if and only if it
has finitely many non-zero components each of which is finitely generated and projective. As
a consequence of U being Hopf-comonadic, a chain compler A has a dual if and only if its

underlying graded abelian group does.

Example 4.5.4. The change of base functors U and f], induced from U and X, create Cauchy

modules.



88

CHAPTER 4. COMONADIC BASE CHANGE




Conclusion and outlook

To finalise, we slice and serve low-dimensional categories in a somewhat different way, com-

pared to the introduction.

We have used, or at least mentioned, various structures that satisfy strict associativity
and unit laws: monoids (in Set, or any monoidal V), monads, categories, lax functors, enrich-
ment, 2-sided enrichment. There are numerous interesting statements connecting them that
arise from this fact: monoids are one-object categories; monads are monoids in endohoms;
categories are monads in Span(Set); monads are one-object categories (enriched in a bicat-
egory); mapping out of 1 gives monads from lax functors, and enrichment (in a bicategory)
from 2-sided enrichment; 2-sided enrichment is a lax functor into the matrix construction on

the codomain bicategory [5].

Structures whose data is not strictly associative and unital, but only up to (invertible)

89
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associators and unitors satisfying 2-dimensional axioms, include: monoidal categories, mon-
oidales (pseudomonoids), pseudomonads, bicategories, bienrichment... Similarly to the above,
a bicategory V, bienriched! [14] in a monoidal bicategory M, is a many-object version of a
monoidale in M. The tricategory M-Caten of M-bicategories and 2-sided enriched categories
was mentioned in [20]. Our analysis of Hopf comonads in Caten, Chapter 4, corresponds to
the M = Cat case. However, it extends to any M which has EM-coalgebra objects, gener-
alizing Hopf monoidal comonads on monoidales [10]. Various Hopf concepts obtainable from
monoidal comonads on monoidales are summarised in [6]. Furthermore, duoidal categories, a
differently generalized context for bimonoids, are monoidales in MonCat. With addition of
2-cells, one could consider (Hopf) bimonoidales, or Frobenious monoidales.

There are structures whose associators and unitors do not satisfy axioms strictly, but have
one dimension higher (invertible) cells satisfying 3-dimensional axioms. We already mentioned
monoidal bicategories, which can be seen as one-object tricategories. The iterated enrichment
from the beginning of the introduction does not directly generalize to bienrichment since Bicat
is a genuine tricategory, but one can use icons [9] instead of pseudonatural transformations, or
by generalizing 1-cells, use 2-sided enrichment (M-Caten is a monoidal bicategory). Finally,
one could as well imagine 2-sided bienrichment as a convenient morphism of tricategories, and

a zoo of structures that could live there.

!weakly enriched, or just enriched



Appendices

A.1 Simplices, intervals and shuffles

The algebraist’s delta, denoted by A, is the full subcategory of Cat consisting of categories
{n) whose objects are numbers 0, ...,n—1 and 1-cells are unique i — j when i < j. The empty
category is denoted (0). Arrows between (n) and (n’) are functors; that is, order preserving

functions, generated by face and degeneracy maps

o :{n+1)y—><{y,i=0,...,n—1 (A.1.1)

o {ny—>{n+1),i=0,...,n (A.1.2)

91
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which can be presented in a diagram

@
@ @

O -@> W) @ @ @ B - (A13)
-

A natural transformation between f and f, if one exists, is unique and witnesses that fi < fi
for all 4, turning A,[(n),{(n’)] into a poset. The 2-category A, is equipped with a strict

monoidal structure, the ordinal sum .

A.1.1 Intervals - free monoid

Denote by A | 7 the subcategory of A, called the category of intervals, consisting of relabelled
objects

[n] :={(n+1),n=0,1,.. (A.1.4)

and 1-cells that preserve the first and the last element; it is generated by the arrows from the

inside of the diagram (A.1.3), represented by the bold part of

—— [0] [1] —@> 2] - (A.1.5)

It is clear that suspension (moving nodes to the left) gives an isomorphism

AT~ A, (A.1.6)

[n] = (n+ 1) — (n) (A.1.7)
ol i=0,...,n—1 (A.1.8)

Mol ti=1,...,n—1 (A.1.9)

The tensor product on A | 7 is inherited from the ordinal sum under the isomorphism (A.1.6),

and has the interpretation of path concatination;

¢ [n] — [m] (A.1.10)
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& n] - [m] (A.1.11)
concatinate to
E+&  n+n]— [m+n] (A.1.12)

D
O LR L (A.1.13)

¢'(i —n), otherwise.

In particular, every such 1-cell £ can be decomposed

n

£ =1 [1] > [&], with i & =m. (A.1.14)

i=1 i=1
The image of £ under the isomorphism is an order preserving function that takes & points in

{m) to i € {n). An example of the isomorphism, for n = 2 and m = 3 can be visualized as

B8] 0->1—-2—->3 {3)

] \W F a115

[2] 0—>1—>2 (2)

The embedding A |1 < A, is a monoidal functor with comparison maps representing

0
© %, (1) = [0] (A.1.16)
Z, 1= 2+"I+1
[nl@n]=h+n+2) - n+n"+1)=[n] + [n] (A.1.17)
There is a functor
1%} L
Af-r = A, (A.1.18)
[n]=+1)—nm+1) (A.1.19)
ol —0i41,1=0,...,n—1 (A.1.20)
o —oi,i=1,...,n—1 (A.1.21)

assigning to each 1l-cell in A 7 its left adjoint (Galois connection) in A,. Explicitly, for
§:[n] — [m],

L)t tm+1) > {n +1) (A.1.22)
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i — min{j|i < ()} (A.1.23)

The functor L is oplax monoidal, with the same comparison maps (A.1.16)-(A.1.17), but the
naturality holds up to a 2-cell

LE+&)o Zmam! = Znn © (LE® L. (A.1.24)
Dually, there is a lax monoidal functor A‘j_p-r EiN A, assigning right adjoints, with a 2-cell
R+ &) o Zmm! = Zn © (RED® RE. (A.1.25)

The free 2-category containing a monad [23] is obtained as the suspension of the monoidal

category of intervals,

FM := A T. (A.1.26)

A.1.2 Shuflles - free distributive law

A shuffle of (n) and {m) in A, is defined to be a pair of complement embeddings (n) —
{(n +m) < {(m). Shuffles in AT are inherited via the isomorphism (A.1.6) and have the

following explicit description:
[n] < [n+m] > [m] (A.1.27)

with the constraint

rit+si=1. (A.1.28)

The numbers r; and s; are lengths (either 0 or 1 in this case) of the image of the i*" subinterval
of [n + m], as in (A.1.14). The condition (A.1.28) states that each subinterval maps to an
interval of length 1 either in [n] or in [m].

An equivalent description of a shuffle is given by a relation of “appearing before in the

shuffle”

(M) x (n) 5 (2). (A.1.29)
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The same relation can be interpreted as a shuffle of segments [n] and [m], for example

[2\[3] 0 1 2 3
0 o | 1 . (A.1.30)
1
J 0 0 0o |
2

A shuffle morphism (¢, p) : (n,m,s,r) — (7, m,§,7) consists of 1-cells £ : [n] — [n] and

p:[m] — [m] in AT, such that the following 2-cell in A, exists
Lrofor= Rsopos. (A.1.31)

When £ = 1(,,) and p = 1{,), the condition (A.1.31) is equivalent to the fact that the induced
relations 1,1 : (m)°P x (n) — (2) satisfy | <[, or that the [ path in the table (A.1.30) appears
to the down-left of the [ path.

Shuffles and their morphisms form a category Shuff with the identity morphism (1), 1)
and composition (£ o &, po p) for which the condition (A.1.31) is obtained by pasting

— 3 _ 1 _ 3
_n] (7] [7] [n]
F/ n U/\ \f/r
LF 7
[7i + ] v [ + m] v [n + m] (A.1.32)
AN J
s\ B el Rs
] > ] —— ] —— [m]
Shuff inherits a tensor product from At which (algebraically) follows from
/ / _ (A.1.17) / / )
Lir+r)o(+&)o(F+m)oz = "L(r+r)ozo((@E)o(TOT) (A.1.33)
WL s (re L) o (@) o (Fa) (A.1.34)
WL o (Rs@ Rs) o (p@ ) o (5@ ) (A.1.35)
(4129 R(s+8)ozo(p®p)o(3®F) (A.1.36)
(A.1.17)

R(s+s8)o(p+p)o(5+5)oz (A.1.37)
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but can also be seen as “direct summing”! the relation tables, for example the shuffle (A.1.30)

() + (1] < [2] 25 1)),

The free 2-category containing a distributive law is obtained as the suspension of the

2543
T(00%5

3
can be interpreted as ([2] Z [3] —

monoidal category of shuffles,
FDL := XShuff. (A.1.38)

A.1.3 Mixed shuffle morphisms - free mixed distributive law

The category of mixed shuffles MShuff can be obtained by slightly modifying the construction
of Shuff; the p component of the mixed shuffle morphism has the opposite direction p : [m] —

[m], and the existence condition (A.1.31) becomes
LroéoF= RsoRpos. (A.1.39)

The 2-category containing a free mixed distributive law (FMDL) is obtained as the sus-

pension of the monoidal category of mixed shufies,

FMDL := SMShuff. (A.1.40)

A.2 Cauchy completeness

Here we summarize basic definitions and results related to the general theory of Cauchy

completeness. The motivating example is in the introduction.

Definition A.2.1. A V-module M : B - C is called Cauchy if it has a right adjoint in
V-Mod.

Proposition A.2.1. [31] A V-module M is Cauchy if and only if all M-weighted colimits are

absolute.

More on absolute colimits in (Set-)categories can be found in [27]. Absolute weights for

enrichment in a bicategory were further examined in [13].

! As one would direct sum k-matrices between finite-dimensional k-vector spaces
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Proposition A.2.2. [19] For symmetric closed complete and cocomplete V, a V-module M :

T - C is Cauchy if and only if it is small-projective; that is, the representable functor
[CPV](M,—): [CP, V] >V (A.2.1)
preserves small colimits.

Definition A.2.2. A right C-module M : B - C is called convergent if there is a V-functor
F : B — C such that M = Fy :=C(—, F—).

When B = Z, M being convergent is equivalent to M being representable in the usual

sense.

Definition A.2.3. A V-category C is Cauchy complete if all Cauchy modules into C are

representable.

Proposition A.2.3. A V-category C is Cauchy complete if and only if it has all absolute-

weighted colimits.

A.3 Familial epiness

In this section we explore the notion of jointly epi families and how it can be extended to
extremal, strong and regular epi families. The letter V denotes an ordinary category. Most

of the concepts here are taken from [32].

Definition A.3.1. A family of maps {A; —> Blicr in V is jointly epi if any two maps B ENYG
and B % C satisfying, for all i, f ow; = g ow; implies f = g.

Definition A.3.2. A family of maps {A; <> Blicr in 'V is jointly extremal epi if it is jointly
epi and satisfies the invertible mono condition: namely, that any mono m through which all

w; factor is mecessarily an isomorphism.

Definition A.3.3. A family of maps {A; = Blicr in V is jointly strong epi if it is jointly
epi and satisfies the diagonal fill in condition: namely, that for any map B %> D, any mono
C % D, and any family of maps {A; LN Clier such that mo f; = g ow;, there is a unique

diagonal filler B 4, ¢ such that all triangles commute.
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Remark A.3.1. As in the single epi case, if equalizers exist in V, the condition of being
jointly epi in order to be jointly extremal/strong, follows from the invertible-mono/diagonal-

fill-in condition.

Remark A.3.2. As in the single epi case, any jointly strong epi family is jointly extremal
ept, and in the presence of pullbacks, every jointly extremal epi family is a jointly strong epi

family.

Definition A.3.4. A relation R on a family {A;}icr of objects in V is given by a set R; j of
spans between A; and Aj, for each i and j. We use R to denote the (disjoint) union of all
w;

R; ;. A quotient of R is a family {A; —> B}icr that is (part of) a colimit cone for the diagram

consisting of objects {A;}ier and spans in R between them. Explicitly, for each span
A, E DL A (A.3.1)

in R; ;, the square

D .

commutes, and the quotient is a universal family with this property. A kernel of an arbitrary
family {A; 25 Blier, denoted Ker({w;}), is the relation containing all spans of the form

(A.3.1) satisfying (A.3.2).

If a family {A; —> Blis quotients some relation, then it quotients its kernel. That is
because adding more spans (such that (A.3.2) commutes) to the colimit diagram does not

change the colimit.

Definition A.3.5. A family of maps {A; =, B}ier in 'V is jointly reqular epi if it is a quotient

for some relation.

Example A.3.1. Cowedge components of a coend form a regular epi family. An (ordinary)
functor T : C°? x C — V has a coend if and and only if the relation on {T'(C,C)}cec formed
by spans

7(c,0) LS e oy DD, e oy (A.3.3)
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for each f : C — C', has a quotient, and they are the same (up to isomorphism). This is a

reformulation of obtaining a coend [25] via a colimit.

Example A.3.2. The same is true for an enriched coend. Let V be a locally small symmetric
monoidal closed category, and C a V-category. An enriched functor T : C?P ® C — V can

equivalently be seen as an endomodule on C, given by actions

Cl

>\ "
C(C',C") @ T(C, ") €<% T(C, ") (A.3.4)
C/
T(C', ")y ®C(C,C") e (o, oy (A.3.5)

It has a coend, defined as the quotient of the relation on {T(C,C)}cec formed by spans
o oo /\C/ /
T(C,C) L c(c, ¢y @ T(C,C) << T(C!, ) (A.3.6)

for each pair of objects C,C". Note that this quotient is isomorphic to the one quotienting the

relation formed from

C
)\C,C,oa

Cl
T(C,C) L2 7(C', 0)®C(C, C") =22 7(C’, ) (A.3.7)

since o is an isomorphism of spans constituting the colimit diagrams.

Example A.3.3. Module composition cocone components form a regular epi family. Let
C,D,E be small V-enriched categories for a cocomplete monoidal category V, together with
a pair of modules C Yo Le Fi objects C € C, EE € £, and consider the relation on
{M(D,C)® N(E,D)}pep consisting of spans as in (A.3.8).
M(D',C)®D(D,D")® N(E, D)

(M) (N)
Pepp ®1 1®Appip

(A.3.8)
M(D,C)®N(E,D)  M(D',C)® N(E, D)
Its quotient is precisely the definition of the composite module, with quotient maps
,wCE
M(D,C)® N(E,D) —2— (N op M)(E,C). (A.3.9)

In particular, when V is symmetric closed, this is isomorphic to the enriched coend

DeD
M(D,C)® N(E,D). (A.3.10)
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Remark A.3.3. If J =1 the above definitions reduce to the definitions of (extremal, strong
or reqular [18]) epimorphisms. Furthermore, if V has coproducts, the induced map Y, A; “ B

is extremal/strong epi if and only if {w;}ier s a jointly extremal/strong epi family.
The regular case is examined in

Proposition A.3.1. In the category V with coproducts, a jointly reqular epi family {w;}ier
induces a reqular epi map Y, A; = B. The converse is true if for all parallel pairs x,y : D —

D Ai the family

Fpy={p:P — D|3i,j,p; : P — A;,p; : P — Aj, such that (A.3.11)

xop=~0;0p; and yop = 6;0p;} (A.3.12)
18 jointly epi.

Proof. Considering the diagram

\

D" 4,0y A (A.3.13)

[

it is easy to see that
Ker(w) c Ker(f) = Ker{w;} < Ker{f;} (A.3.14)

so given f satisfying Ker(w) < Ker(f), and using that {w;} is joint regular epi we get a unique
factorization of f through w, proving that w is regular epi.

Conversely, given a regular epi w, and f such that Ker{w;} < Ker{f;}, consider an ar-
bitrary element of Ker(w), z,y : D — >, A;, that is wox = w oy, and an arrow p € Fyy,.

Chasing diagrams gives

w; o p; = w o 0;0p; (A.3.15)
=woxrop (A316>

=woyop (A.3.17)
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=wofjop; (A.3.18)

= wj o pj (A.3.19)

so (pi,pj) € Ker({w;}), and using the assumption for f, (p;,p;) € Ker({f;}). So we have

fiopi = fjop; (A.3.20)
fobiopi=fobjop; (A.3.21)
foxop=foyop. (A.3.22)

Using joint epiness of F, we conclude that (z,y) € Ker(f), and, because w is regular epi, f

factors uniquely through it. O

Remark A.3.4. As in the single epi case, any jointly reqular epi family is automatically
jointly strong epi. The converse is true when V is familialy reqular, a proof of a stronger

statement is given in [32].
Example A.3.4. In a preordered set V, any family {A; = Blics is jointly epi.

Example A.3.5. In a poset V with arbitrary joins, a family {A; R Blier is jointly ex-
tremal/strong/reqular if and only if B = \/,; A;.
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