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Summary

This thesis consists of three chapters providing solutions to three problems. All of them

involve morphisms of bicategories: lax functors, enriched categories, and categories enriched

on two sides.

The first problem was to obtain explicit constructions for various 2-categories which rep-

resent 2-categorical concepts involving monads and comonads. We considered lax functors

(these are the morphisms of bicategories in the sense of Bénabou) between 2-categories C and

D and define strictification tensor product for them. Let LaxpC,Dq denote the 2-category

of lax functors, lax natural transformations and modifications, and rC,Dslnt its full sub-2-

category of (strict) 2-functors. Since monads can be seen as lax functors from 1 (the terminal

category), the bicategory of monads in D, denoted MndpDq, is isomorphic to Laxp1,Dq. A

concise way of defining distributive laws is as monads in MndpDq. We give a construction of

a 2-category C bD satisfying LaxpC,LaxpD, Eqq – rC bD, Eslnt, thus generalizing the case of

the free distributive law 1 b 1. We also analyse dual constructions.

The second problem involves enriching in a monoidal category similar to the one used

by Lawvere to obtain (generalized) metric spaces. He expressed Cauchy completeness in

purely categorical terms which led to the possibility of applying it to an arbitrary base; for

example, an ordinary category is Cauchy complete when all its idempotents split. What

we do is to obtain spaces of relativistic events as enriched categories and show that they

are always Cauchy complete in the categorical sense. We then see this as a more general

phenomenon by providing conditions on the base monoidal category which ensure Cauchy

completeness of those enriched categories having all idempotents splitting in the underlying

ix



x Chapter 0. Summary

category. The splitting condition was not seen in the case of our partially ordered base since

the only idempotents are identities.

Finally, in order to analyse Cauchy modules for categories enriched in graded and differ-

ential graded Abelian groups (GAb and DGAb), we consider two-sided enriched categories

between bicategories, forming a tricategory Caten. The construction of DGAb from Ab,

which exists in the literature, can be factored via GAb, and we prove that it is an instance of

semidirect product of Hopf bimonoids, applicable to an arbitrary base symmetric monoidal

category. To extend this approach to the bicategories of modules, we considered a generaliza-

tion from Hopf bimonoids in a symmetric monoidal category to Hopf comonads in Caten. The

crucial property of such comonads is that the forgetful functor creates left Kan extensions,

which generalizes creation of duals and cohoms in the monoidal category case, and adjoints

in the bicategory case.
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1
Introduction and overview

Higher (two-three) dimensional category theory can be sliced and served in different ways,

depending on the taste and use. The quickest way to describe a (strict) n-category C is

by considering a category enriched in pn ´ 1q-Cat; a cartesian closed and (co)complete V

produces a cartesian closed and (co)complete V-Cat [19], and the base of induction 0-Cat “

Set is cartesian closed and (co)complete [25], so for every natural number n the category of

n-categories (n-Cat) is cartesian closed and (co)complete. All compositions and identities in

C are strictly associative and unital, enriched functors F : C Ñ D preserve compositions and

identities, and enriched transformations α : F ñ G are (strictly) natural.

Enrichment does not access 2-cells of V, even if V has them. In two dimensions pV “ Catq

existence of 2-cells allows weakening the laws for C leading to a list of progressively weaker

structures: 2-category, bicategory, left (right) skew bicategory, lax bicategory. Weakening the

1



2 Chapter 1. Introduction and overview

laws for F and α leads to weaker morphisms: (strict) 2-functor, pseudofunctor, lax (or oplax)

functor. And similarly, the list for natural transformations is: strict natural transformation,

pseudonatural transformation, lax (or oplax) natural transformation. With 2-cells in V we

can form modifications between (weak) natural transformations m : α Ñ β. The totality of

strict/pseudo/lax functors, strict/pseudo/lax natural transformations and modifications forms

a different (strict) 2-category for each of the cases. In Chapter 2 we construct a tensor product

of 2-categories such that homing out of it with strict functors, lax natural transformations

and modifications corresponds to taking the lax hom twice.

A different, perhaps more immediate, way to generalise functors is to consider enriched

modules (aka profunctors, distributors). Lawvere showed that metric spaces can be viewed

as enriched categories [24], and Cauchy completeness can be expressed as representability

of left-adjoint modules. The notion of Cauchy completeness can then be generalized to an

arbitrary base, or even proarrow equipment [37, 38]. For example, a usual category pV “ Setq

is Cauchy complete if its idempotents split. A preadditive category pV “ Abq is Cauchy

complete if idempotents split and it has direct sums; rings (one-object Ab-categories) are

Morita equivalent if their Cauchy completions are equivalent [19]. In Chapter 3 we give a

quick review of Lawvere’s argument, and modify the base of enrichment to give a description

of relativistic causal spaces. All such spaces are Cauchy complete, and we provide sufficient

conditions on the base V that ensure that a V-category is Cauchy complete if and only if

idempotents split in its underlying category. In particular, n-Cat satisfies the conditions.

A V-enriched category is a many-object version of a monoid in V. A monoid and a

comonoid on the same object can be compatible in two important and distinct ways; they can

form a Frobenious monoid or a bimonoid (if V is braided). The latter can have a property of

being Hopf, if it has an antipode. Tensoring with a bimonoid A induces a monoidal comonad

on V, whose category of coalgebras, denoted A-CoAlg or VAb´, has a monoidal structure. If

V is symmetric, and A has a braiding element [16] then the monoidal structure on A-CoAlg

becomes braided. In the first half of Chapter 4 we show how graded abelian groups and chain

complexes of abelian groups can be viewed as coalgebras for particular Hopf monoids, which

are related via (a generalization of) the semidirect product.
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Every monoidal category can equivalently be thought of as a one-object bicategory. Also,

enrichment in V can be extended to the case when V is a bicategory [34]. A pseudofunctor

U : W Ñ V whose functors on hom-categories UpW,W 1q : WpW,W 1q Ñ VpFW,FW 1q have

right adjoints, always induces a change of base functor U 1 : W-Cat Ñ V-Cat which has

a right adjoint in1 2-CAT. The main motivation for introducing new morphisms between

bicategories [20], called 2-sided enriched categories (forming a tricategory Caten), was to

introduce a right adjoint of U , call it R, such that U 1 % R1. In the second part of Chapter 4

we will review 2-sided enrichment, characterise comonads G in Caten (generalizing monoidal

comonads of [8]), construct the bicategory of coalgebras VG , show that when the comonad

is (left) Hopf the underlying functor creates left Kan extensions. This then applies to the

underlying functor U : VG Ñ V, as well as change of base functors U 1 : VG-Cat Ñ V-Cat

and rU : VG-Mod Ñ V-Mod, under certain conditions. The general theory then applies to the

(differential) graded abelian groups of the first part of the Chapter 4.

This thesis, although worked out and written by me, grew on the fertile soil of the Centre

of Australian Category Theory, and in the rest of the introduction I will outline the origins

of different concepts presented in the thesis. The motivation for the strictification tensor

product (Chapter 2) comes from my Supervisor Ross Street’s earlier work on free (mixed)

distributive laws [36], and he suggested using computads (defined in [30] and reviewed in

Section 2.3.3) and introduced me to Bénabou’s path construction, described in Section 2.2.1.

During my talk to the Australian Category Seminar on the topic, James Dolan and Richard

Garner suggested that the strictification tensor product would be a 2-step construction via

the Bénabou construction and lax Gray tensor product, see Section 2.2.2.

The construction of causal spaces via enriched categories (Section 3.3) comes from my

physics background, while searching for the conditions on the monoidal base that simplify

Cauchy completeness (Section 3.4) was Ross’ suggestion.

Finally, Ross noticed that DGAb is a category of coalgebras for a Hopf monoid in GAb (see

Section 4.2), that Pareigis’ Hopf monoid is a semidirect product, and that a Hopf-comonadic

forgetful functor creates left Kan extensions (Theorem 4.5.1). Fitting everything into the

1Note that V-Cat has a large set (proper class) of objects, but it is locally small.



4 Chapter 1. Introduction and overview

2-sided enriched setting was my suggestion and realization. Other parts of that work came

after discussions with Ross, followed by my own calculations.

Chapters 2 and 3 are my own original work while Chapter 4 is joint work with Ross Street

and will be published accordingly.



2
Strictification tensor product of 2-categories

2.1 Introduction

Monads (aka triples, standard constructions) are given by a category C, an endofunctor

F : C Ñ C and two natural transformations η : 1C ñ F and µ : F 2 ñ F , satisfying unit

and associativity axioms [25]. Their use is ubiquitous and the most common one is describing

a (possibly complicated) algebraic structure as Eilenberg-Moore (EM) algebras [25] on a

category of simpler ones. An EM algebra is given by a map TX Ñ X compatible with µ and

η. With algebra morphisms, they form a category EMpT q. The full subcategory of EMpT q

consisting of free algebras is (up to equivalence) usually denoted KLpT q. A typical example

is the Abelian group monad on the category of sets taking a set S to the set of elements of

the free Abelian group on S.

5



6 Chapter 2. Strictification tensor product of 2-categories

A distributive law [3] consists of two different monads on the same category satisfying

a compatibility condition. Then their composite is a new monad. A typical example is the

Abelian group monad together with the monoid monad producing the ring monad, hence the

name.

Monads are in fact definable in an arbitrary bicategory E [29], just by replacing words

“functor” with arrow and natural transformation by 2-cell. For example, in a bicategory of

spans, monads are precisely (small) categories [4]. A morphism between a monad T on X and

S on Y , consists of an arrow X
F
ÝÑ Y and a “crossing” 2-cell S˝F σ

ùñ F ˝T which is compatible

with unit and multiplication for both monads. A morphism between monad morphisms F

and G, consists of a 2-cell F α
ùñ G compatible with crossing 2-cells. These form the 2-category

of monads in E , called MndpEq. Now, a distributive law in E has a short description as a

monad in MndpEq. Various duals are expressible using dualities of 2-categories, for instance,

the 2-category of comonads is defined as CmdpEq “ MndpEcoqco, mixed distributive laws as

CmdpMndpEqq. Since objects of E are no longer categories, we have no access to their elements,

and cannot form an EM -category; but we can use the 2-dimensional universal property of

lax limit to obtain, if exists, an EM-object EMpT q, also denoted CT . The main topic of [22]

is completion of E under these limits. Dually, lax colimits give KL(T), also denoted CT .

The free monad [23] is a 2-category FM which classifies monads; that is, the 2-category

of strict functors, lax natural transformations and modifications rFM, Eslnt is isomorphic to

MndpEq. It is given by the suspension of the opposite of the algebraist’s category of simplices,

∆op
a with ordinal sum as the monoidal structure. We will use it a lot, so we review its

definition and some properties in Appendix A.1. The free mixed distributive law (FMDL)

was constructed by Street [36], and is a special case of the construction presented here.

A lax functor [4] (aka morphism) between bicategories generalises the notion of a (strict)

2-functor, by relaxing the conditions of preservation of the unit and composition of arrows.

Instead, a lax functor F : D Ñ E is equipped with comparison maps

ηD : 1FD ñ F p1Dq and µdd1 : F pd1q ˝ F pdq ñ F pd1 ˝ dq

for each object D of D, and composable pair pd, d1q of arrows in D. These are required to
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satisfy unit and associativity laws, and µ is required to be natural in c and c1. The special case

of D “ 1, that is, if D has only one 0/1/2-cell, then giving a lax functor exactly corresponds

to giving a monad in E . A lax functor from the chaotic category1 on a set X corresponds to a

category enriched in E . Another example, lax functors from Ip:“ 0 Ñ 1q into Span correspond

to choosing two categories and a module (aka profunctor, distributor) between them. Lax

natural transformations F σ
ùñ G between two such functors consist of arrows FD σD

ÝÝÑ GD, for

each D P D, and Gd˝σD
σd
ÝÑ σ1D˝Fd, for each D

d
ÝÑ D1 in D, natural in d and compatible with

η and µ. Finally a modification σ m
ÝÑ τ consists of 2-cells σD

mD
ùùñ τD, for each D, compatible

with σ. These form a 2-category LaxpD, Eq. The choice of directions gives an isomorphism

of 2-categories Laxp1, Eq – MndpEq, and by the definition of (free) distributive law (FDL) we

have Laxp1,Laxp1, Eqq – rFDL, Eslnt.

Our goal is, given 2-categories C and D, to construct a 2-category C bD that is “free”, in

the sense that it strictifies the lax functors, so that

LaxpC,LaxpD, Eqq – rC bD, Eslnt. (2.1.1)

The variables C, c, γ used to describe cells in C (similarly for D, d and δ in D), have

sources and targets according to the diagram 2.1.2.

C C 1 C2

c

c̄

¯̄c

c1

c̄1

¯̄c1

γ ó

γ̄ ó

γ1 ó

γ̄1 ó

(2.1.2)

Horizontal composition is denoted by ˝ and vertical by ‚.

2.2 Connection with lax Gray tensor product

In this section we recall a construction due to Bénabou which can be interpreted as a 2-

category of paths in a 2-category. We use it, together with the lax Gray tensor product, to

express our strictification tensor product.

1That is, the category having exactly one arrow in each hom.
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2.2.1 Bénabou construction of the 2-category of paths

Let C be a 2-category and C: the 2-category of “paths” in C, consisting of the same objects

as C, and arrows between C and C 1 are strict 2-functors p representing paths in C between C

and C 1; that is,

rns
p
ÝÑ C, pp0q “ C, ppnq “ C 1, (2.2.1)

where rns is an object of ∆KJ, for details see Appendix A.1. Denote by2 ppqi the ith component

in the path

ppqi “ p ppi´ 1q Ñ iq . (2.2.2)

The identity is a path of zero length on C:

r0s Ñ C (2.2.3)

0 ÞÑ C (2.2.4)

and composition is given by “concatenation”,

pn1, p1q ˝ pn, pq “ pn` n1, p` p1q (2.2.5)

where pp` p1qi “ ppqi if i ď n and pp` p1qi “ pp1qi´n otherwise. This composition is strictly

associative and unital.

Finally, 2-cells between pn, pq and pn̄, p̄q, are pairs pξ, αq where ξ : rn̄s Ñ rns is a morphism

in ∆KJ and α is an identity on components, oplax-natural transformation, shortly icon,

introduced in [21]:

α : p ˝ ξ ñ p̄, with α1i “ 11p̄piq . (2.2.6)

So, α is determined by n̄ components on non-identity arrows:

αi :“ αpi´1qÑi : pp ˝ ξq ppi´ 1q Ñ iq ñ pp̄qi . (2.2.7)

Note that if ξi “ 0, meaning ξpiq “ ξpi ´ 1q (see Appendix A.1 for details), then the source

of the corresponding component of α is the identity, αi : 1pξpiq ñ pp̄qi. The identity is given

2We reserve pi, without brackets, to mean the length of the image as in (A.1.14).
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by 1pn,pq “ p1rns, 1pq. The vertical composite of pξ, αq and pξ̄, ᾱq is obtained by pasting, as in

the diagram 2.2.8.

rns

rn̄s

r¯̄ns

C

p

p̄

¯̄p

ξ

ξ̄

α ó

ᾱ ó

(2.2.8)

The horizontal composition is concatenation, analogous to the one for path (1-cells), pξ1, α1q ˝

pξ, αq “ pξ ` ξ1, α` α1q, where pα` α1qi “ αi if i ď n, and pα` α1qi “ α1i´n otherwise.

Lax functors out of C correspond to strict 2-functors out of C:. In fact, there is an

isomorphism of 2-categories

LaxpC, Eq – rC:, Eslnt . (2.2.9)

2.2.2 Lax Gray tensor product

Lax Gray tensor product [15], bl : 2-Catˆ2-CatÑ 2-Cat, is a tensor product for the internal

hom r´,´slnt, that is

rC, rD, Eslntslnt – rC bl D, Eslnt . (2.2.10)

The left hand side of Eq. (2.1.1) can be transformed

LaxpC,LaxpD, Eqq
(2.2.9)
– rC:, rD:, Eslntslnt (2.2.11)

(2.2.10)
– rC: bl D:, Eslnt (2.2.12)

leading to a characterization

C bD – C: bl D: . (2.2.13)

The lax Gray product bl is defined via its universal property, and the explicit description

involves relations and quotienting. Our direct description, explained in Section 2.4, involves

no quotienting.
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2.3 Tensor product via computads

We begin by fully unpacking the LHS of (2.1.1), which involves familiar, but numerous axioms

- there are eighteen axioms for an object (lax functor) B, five axioms for an arrow (lax natural

transformation) b : B Ñ B1, and two axioms for a 2-cell (modification) β : b ñ b̄. Then we

review the definition of computads [30] which play the same role for 2-categories as graphs do

for usual categories - they are part of a monadic adjunction. We then proceed to construct a

computad G to give a convenient generator-relation description of the tensor product.

2.3.1 Unpacking

An object B of LaxpC,LaxpD, Eqq assigns to each C P C a lax functor BC : D Ñ E , which

amounts to giving the following data in E :

• for each D an object BCD P E

• for each d an arrow BCd : BCD Ñ BCD1

• for each δ a 2-cell BCδ : BCdñ BCd̄, functorially

BC1d “ 1BCd (2.3.1)

BCpδ̄ ‚ δq “ BCδ̄ ‚BCδ (2.3.2)

•(f1) for each D a unit comparison 2-cell ηBC1D : 1BCD ñ BC1D

•(f1) for each composable pair pd, d1q a composition comparison 2-cell µBCdd1 : pBCd1q ˝

pBCdq ñ pBCd1 ˝ dq,

satisfying unit and associativity axioms,

µ ‚ p1 ˝ ηq “ 1 “ µ ‚ pη ˝ 1q (2.3.3)

µ ‚ p1 ˝ µq “ µ ‚ pµ ˝ 1q (2.3.4)

together with a naturality condition,

µBCd̄d̄1 ‚ pBCδ
1 ˝BCδq “ BCpδ1 ˝ δq ‚ µCdd1 . (2.3.5)
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Also, B assigns to each c : C Ñ C 1 a lax natural transformation Bc : BC Ñ BC 1 consisting

of:

• arrows BcD : BCD Ñ BC 1D

•(t1) 2-cells σBcd : BC 1d ˝BcD ñ BcD1 ˝BCd,

with the two axioms expressing compatibility with unit and composition,

σ ‚ pη ˝ 1q “ 1 ˝ η (2.3.6)

σ ‚ pµ ˝ 1q “ p1 ˝ µq ‚ pσ ˝ 1q ‚ p1 ˝ σq (2.3.7)

and one expressing naturality,

σBcd̄ ‚ pBC
1δ ˝ 1BcDq “ p1BcD1 ˝BCδq ‚ σBcd . (2.3.8)

Finally, B assigns (functorially) to each 2-cell γ : cÑ c̄ a modification Bγ : Bcñ Bc̄, which

in E means:

• 2-cells BγD : BcD ñ Bc̄D,

satisfying the modification axiom,

σBc̄d ‚ p1BC1d ˝BγDq “ pBγD
1 ˝ 1BCdq ‚ σBcd (2.3.9)

and the functoriality condition

B1cD “ 1BcD (2.3.10)

Bpγ̄ ‚ γqD “ Bγ̄D ‚BγD . (2.3.11)

Being a lax functor, B has to provide the unit and composition comparison modifications

given by data:

•(f2) unit 2-cells ηB1CD : 1BCD ñ B1CD

•(f2) composition 2-cells µBcc1D : pBc1Dq ˝ pBcDq ñ pBc1 ˝ cDq

which, in addition to the naturality condition

µBc̄c̄1D ‚ pBγ
1D ˝BγDq “ Bpγ1 ˝ γqD ‚ µBcc1D (2.3.12)
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and modification axiom,

σ ‚ p1 ˝ ηq “ η ˝ 1 (2.3.13)

σ ‚ p1 ˝ µq “ pµ ˝ 1q ‚ p1 ˝ σq ‚ pσ ˝ 1q (2.3.14)

satisfy the unit and associativity axioms (2.3.3)-(2.3.4).

An arrow b : B Ñ B1, being a lax transformation between lax functors B and B1, assigns

to each C P C a lax transformation bC : BC Ñ B1C and to each c : C Ñ C 1 a modification

σbc : B1c ˝ bC ñ bC 1 ˝Bc, which means the following data in E :

• 1-cells bCD : BCD Ñ B1CD

•(t1) 2-cells σbCd : B1Cd ˝ bCD ñ bCD1 ˝BCd

•(t2) 2-cells σbcD : B1cD ˝ bCD ñ bC 1D ˝BcD,

subject to naturality

σbc̄D ‚ pB
1γD ˝ 1bCDq “ p1bC1D ˝BγDq ‚ σbcD (2.3.15)

σbCd ‚ pB
1Cδ ˝ 1bCDq “ p1bCD1 ˝BCδq ‚ σbCd (2.3.16)

lax transformation

σ ‚ pη ˝ 1q “ 1 ˝ η (2.3.17)

σ ‚ pµ ˝ 1q “ p1 ˝ µq ‚ pσ ˝ 1q ‚ p1 ˝ σq (2.3.18)

and a modification

p1 ˝ σq ‚ pσ ˝ 1q ‚ p1 ˝ σq “ pσ ˝ 1q ‚ p1 ˝ σq ‚ pσ ˝ 1q (2.3.19)

axioms.

A 2-cell β : b Ñ b̄ in LaxpC,LaxpD, Eqq, being a modification, assigns to each C P C a

modification βC : bC ñ b̄C, which in E means

• 2-cells βCD : bCD ñ b̄CD, with modification axioms,

σb̄cD ‚ p1B1cD ˝ βCDq “ pβC
1D ˝ 1BcDq ‚ σbcD (2.3.20)

σb̄Cd ‚ p1B1Cd ˝ βCDq “ pβCD
1 ˝ 1BCdq ‚ σbCd . (2.3.21)
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2.3.2 Symmetries

Denote by (Op)Lax(op)pD, Eq the 2-category of (op)lax functors (first op), (op)lax natural

transformations (subscript op) and modifications.

Proposition 2.3.1. There are isomorphisms:

LaxoppD, Eq – LaxpDop, Eopqop (2.3.22)

OpLaxoppD, Eq – LaxpDco, Ecoqco (2.3.23)

LaxpC,LaxoppD, Eqq – LaxoppD,LaxpC, Eqq (2.3.24)

LaxpC,OpLaxoppD, Eqq – OpLaxoppD,LaxpC, Eqq . (2.3.25)

Proof. Data and axioms for the LHS of (2.3.22) (resp. (2.3.23)) are obtained from the begin-

ning of Section 2.3.1 until the equation (2.3.11), by ignoring the letter B in all the names, and

reversing the direction of 2-cells for data marked by (t1) (resp. (f1) or (t1)). On the other

hand, the data and axioms for the RHS of (2.3.22) (resp. (2.3.23)) have reversed sources and

targets of arrows (resp. 2-cells), compared to the diagram (2.1.2), but they also live in Eop

(resp. Eco), rather than E ; interpreted in E , they have reversed 2-cells marked by (t1) (resp.

(f1) or (t1)). A possibly easier way to see this is to draw string diagrams in Eop (resp. Eco),

and then flip them horizontally (resp. vertically).

To prove (2.3.24), observe that the data and axioms in Section 2.3.1, with (t1) 2-cells

reversed (LHS), and second and third letter in all labels formally swapped, corresponds to the

same data and axioms when C (resp. c, γ) is substituted for D (resp. d, δ), and vice versa,

and then (t2) 2-cells are reversed (RHS).

Similarly, in (2.3.25) reversing (f1) and (t1) 2-cells, followed by swapping positions in

labels, leads the same result as swapping variables and then reversing 2-cells marked by (f2)

and (t2).

Once the directions for data are fixed, all axioms are determined in a unique way, and

there is no need to analyse them separately.

Corollary 2.3.1. There are isomorphism:

OpLaxpD, Eq – LaxpDco op, Eco opqco op (2.3.26)
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OpLaxpC,LaxoppD, Eqq – LaxoppD,OpLaxpC, Eqq . (2.3.27)

Corollary 2.3.2. There are isomorphism:

rD, Esont – rDop, Eops
op
lnt (2.3.28)

rD, Esont – rDco, Ecoscolnt (2.3.29)

rC, rD, Esontslnt – rD, rC, Eslntsont . (2.3.30)

2.3.3 Reviewing computads

The content of this part is taken from [30]. We describe the major ideas and leave out the

details.

Definition 2.3.1. ([30], with a technical modification3) A computad G consists of a graph

|G| (providing a set of objects |G|0 and a set of generating arrows |G|1), and for each pair of

objects G,G1 P |G|0 a graph GpG,G1q with a set nodes4 GpG,G1q0 “ pF |G|qpG,G1q and a set

of edges denoted GpG,G1q1 (providing generating 2-cells).

A computad morphism assigns all the data, respecting sources and targets, forming a

category Cmp.

There is a free 2-category FG on the computad G that has the same objects as G. Arrows

between G and G1 are “paths” between G and G1; that is, elements of GpG,G1q0. To define

2-cells, it is not enough to take the free category on GpG,G1q since it does not take whiskering

into account. Instead, consider the set of whiskered generating 2-cells

G1pG,G1q “ tpp, α, p1q|p P GpG,Xq0,

α P GpX,X 1q1,

p1 P GpX 1, G1q0u .

Finally, to impose the middle of four interchange, take the set of whiskered pairs

G2pG,G1q “ tpp, α, p1, α1, p2q|p P GpG,Xq0,

3We take all paths between two objects to be the nodes of GpG,G1q; that is, GpG,G1q0 “ pF |G|qpG,G1q.
4F |G| is the free category on a graph |G|
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α P GpX,X 1q1,

p1 P GpX 1, X2q0

α1 P GpX2, X3q1,

p2 P GpX3, G1q0u

and form a coequalizer in Cat to obtain the hom pFGqpG,G1q

FG2pG,G1q Ñ FG1pG,G1q Ñ pFGqpG,G1q (2.3.31)

where the two parallel arrows are the two obvious ways to compose whiskered α with whiskered

α1; see [30] for details and the rest of the construction.

Given a 2-category E , the underlying computad UE has the underlying graph obtained

from the underlying category of E ; that is, |UE | “ U |E |, and the hom graphs have edges

pUEqpE,E1qpp, p1q “ EpE,E1qp˝p, ˝p̄q, where ˝p denotes the arrow in E obtained by composing

the path p in E . Assignments F and U extend to morphisms and form an adjunction, giving

a bijection between arrows in Cmp and 2-Cat

T : G Ñ UE ÞÐÑ T̂ : FG Ñ E . (2.3.32)

Intuitively, the 2-category FUE is the 2-category of pasting diagrams in E , and the counit

of the adjunction is the operation of actual pasting to obtain a (2-)cell in E .

2.3.4 The tensor product computad

The goal is to construct a computad G which has data analogous to the one in Section 2.3.1,

and then to impose further identification of 2-cells in FG, analogous to the axioms (2.3.1)-

(2.3.14). Consider the computad G defined by the following data:

• a set |G|0 “ ObC ˆObD of nodes, whose elements are denoted C bD

• the set |G|1ppC,Dq, pC 1, D1qq of edges consists of arrows in CpC,C 1q if D “ D1, denoted

c b D, and arrows in DpD,D1q if C “ C 1, denoted C b d, otherwise it is empty. The

concatenation of cbD and C 1bd, as an arrow in the free category on |G|, will be denoted
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by tC b D
cbD
ÝÝÝÑ C 1 bD

C1bd
ÝÝÝÑ C 1 bD1u, and the empty path on C b D by tC b Du.

When the meaning is clear from the context we omit the tensor product character. A

concise way of expressing the collection of edges is as a disjoint union

|G|1ppC,Dq, pC 1, D1qq “ CpC,C 1q ˆ δDD1 ` δCC1 ˆDpD,D1q, (2.3.33)

with δXY being an empty set when X ‰ Y and singleton tXu when X “ Y .

• 2-cells

– for each object C of C and 2-cell δ : dñ d̄ in D,

C b δ : tCD
Cd
ÝÝÑ CD1u ñ tCD

Cd̄
ÝÝÑ CD1u (2.3.34)

– for each object D of D and 2-cell γ : cñ c̄ in C,

γ bD : tCD
cD
ÝÝÑ C 1Du ñ tCD

c̄D
ÝÝÑ C 1Du (2.3.35)

–(f1) for each pC,Dq P |G|0, the unit comparisons

idC1D : tCDu ñ tCD
C1D
ÝÝÝÑ CDu (2.3.36)

–(f2) for each pC,Dq P |G|0, the unit comparisons

id1CD : tCDu ñ tCD
1CD
ÝÝÝÑ CDu (2.3.37)

–(f1) for each C P C and composable pair pd, d1q in D, a composition comparison

compCdd1 : tCD
Cd
ÝÝÑ CD1

Cd1
ÝÝÑ CD2u ñ tCD

Cbpd1˝dq
ÝÝÝÝÝÝÑ CD2u (2.3.38)

–(f2) for each D P D and composable pair pc, c1q in C, a composition comparison

compcc1D : tCD
cD
ÝÝÑ C 1D

c1D
ÝÝÑ C2Du ñ tCD

pc1˝cqbD
ÝÝÝÝÝÑ C2Du (2.3.39)

–(t1) for each pair of 1-cells pc, dq,

swapcd : tCD
cD
ÝÝÑ C 1D

C1d
ÝÝÑ C 1D1u ñ tCD

Cd
ÝÝÑ CD1

cD1
ÝÝÑ C 1D1u. (2.3.40)
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The 2-category CbcmpD is obtained from FG, the free 2-category on the computad G, by

imposing identifications:

• preservation of identity 2-cells

C b 1d “ 1Cbd (2.3.41)

1c bD “ 1cbD (2.3.42)

• distributivity of b over vertical composition

pC b δ1q ‚ pC b δq “ C b pδ1 ‚ δq (2.3.43)

pγ1 bDq ‚ pγ bDq “ pγ1 ‚ γqbD (2.3.44)

• compatibility with the composition comparison 2-cells

compCd̄d̄1 ‚ pC b δ1 ˝ C b δq “ C b pδ1 ˝ δq ‚ compCdd1 (2.3.45)

compc̄c̄1D ‚ pγ
1 bD ˝ γ bDq “ pγ1 ˝ γqbD ‚ compcc1D (2.3.46)

• compatibility with the swapping 2-cells

swapc̄d̄ ‚ pC
1 b δ ˝ γ bDq “ pγ bD1 ˝ C b δq ‚ swapcd (2.3.47)

• unit and associativity laws

comp ‚ p1 ˝ idq “ 1 & comp ‚ pid ˝ 1q “ 1 (2.3.48)

comp ‚ pcomp ˝ 1q “ comp ‚ p1 ˝ compq (2.3.49)

• compatibility of swapping with unit and composition

swap ‚ p1 ˝ idq “ id ˝ 1 (2.3.50)

swap ‚ pid ˝ 1q “ 1 ˝ id (2.3.51)

swap ‚ p1 ˝ compq “ pcomp ˝ 1q ‚ p1 ˝ swapq ‚ pswap ˝ 1q (2.3.52)

swap ‚ pcomp ˝ 1q “ p1 ˝ compq ‚ pswap ˝ 1q ‚ p1 ˝ swapq . (2.3.53)
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Proposition 2.3.2. Let C, D and E be 2-categories, C bcmp D the 2-category defined above,

then there is an isomorphism

LaxpC,LaxpD, Eqq – rC bcmp D, Es . (2.3.54)

Proof. The data for G and identifications when forming C bcmp D correspond exactly to

data and laws (2.3.1)-(2.3.14) for B P LaxpC,LaxpD, Eqq in the Section 2.3.1. So, giving

B corresponds to giving a computad map Bcmp : G Ñ UE such that the strict 2-functor

B̂cmp : FG Ñ E respects the identifications (2.3.41)-(2.3.53), which corresponds to giving a

strict 2-functor B̂ : C bcmp D Ñ E .

Define ED :“ rD, Esont. From (2.3.30) we get the following isomorphism

rFG, EsJlnt – rFG, E
J slnt . (2.3.55)

In particular, we have a bijection on objects, so for a free arrow J “ Ip:“ 0 Ñ 1q, (resp. free

2-cell J “ Dp:“ 0
Ñ
ó
Ñ

1q), we get a bijection between arrows (resp. 2-cells) of rFG, Eslnt and

2-functors FG Ñ EI (resp. FG Ñ ED).

Consider a lax natural transformation between 2-functors respecting identifications (2.3.41)-

(2.3.53) (as above)

b̂cmp : B̂cmp ñ B̂1cmp : FG Ñ E . (2.3.56)

It corresponds to a 2-functor

b̂currycmp : FG Ñ E I (2.3.57)

which corresponds to a lax natural transformation b : B ñ B1 - the correspondence goes as

follows

G bcurry
cmp
ÝÝÝÑ UE I (2.3.58)

C bD ÞÑ bCD (2.3.59)

cbD, C b d ÞÑ σbcD, σbCd (2.3.60)

γ bD, C b δ ÞÑ pBγD,B1γDq, pBCδ,B1Cδq (2.3.61)

id´, comp´, swap´ ÞÑ pηB´, ηB1´q, pµB´, µB1´q, pσB´, σB1´q . (2.3.62)
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The RHS of (2.3.61) (resp. (2.3.62)) being 2-cells of E I is equivalent to (2.3.15) and (2.3.16)

(resp. (2.3.17), (2.3.18) and (2.3.19)). The 2-functor b̂currycmp respects identifications (2.3.41)-

(2.3.53) because its source and target do, and so it also corresponds to a 2-functor

b̂curry : C bcmp D Ñ E I (2.3.63)

which is equivalently a lax natural transformation

b̂ : B̂ ñ B̂1 : C bcmp D Ñ E . (2.3.64)

Similarly, a modification

β̂cmp : b̂cmp Ñ
ˆ̄bcmp : B̂cmp ñ B̂1cmp : FG Ñ E (2.3.65)

corresponds to a 2-functor

β̂currycmp : FG Ñ ED (2.3.66)

which corresponds to a modification β : bÑ b̄ via

G βcurry
cmp
ÝÝÝÝÑ UED (2.3.67)

C bD ÞÑ βCD (2.3.68)

cbD, C b d ÞÑ pσbcD, σb̄cDq, pσbCd, σb̄Cdq (2.3.69)

γ bD, C b δ ÞÑ pBγD,B1γDq, pBCδ,B1Cδq (2.3.70)

id´, comp´, swap´ ÞÑ pηB´, ηB1´q, pµB´, µB1´q, pσB´, σB1´q . (2.3.71)

The RHS of (2.3.69) being 1-cells of ED is equivalent to modification axioms (2.3.20) and

(2.3.21). The RHS of (2.3.70) and (2.3.71) being 2-cells of ED, and β̂currycmp respecting identific-

ations (2.3.41)-(2.3.53), are just componentwise properties of b̂currycmp and ˆ̄bcurrycmp .

2.3.5 Dual strictifications

Notice that all the data and identifications for Gp“: GCDlax q, apart from those involving swap,

are invariant (up to relabelling) with respect to exchanging C and D. However, if we ex-

change C and D and consider oplax natural transformations at the same time, we arrive at
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an isomorphic computad GDC
oplax – GCDlax , the isomorphism consisting of exchanging the two

positions in all the labels. All the identifications are isomorphic as well. This directly leads

us to observe

Corollary 2.3.3. There is an isomorphism

C bD – pDop b Copqop . (2.3.72)

Proof. The computad GDC
oplax, with its identifications, generates a 2-category strictifying LaxoppD,LaxoppC, Eqq.

On the other hand,

LaxoppD,LaxoppC, Eqq
p2.3.22q
– LaxpDop,LaxpCop, Eopqqop (2.3.73)

p2.3.54q
– rDop b Cop, Eopsoplnt (2.3.74)

p2.3.28q
– rpDop b Copqop, Esont . (2.3.75)

Corollary 2.3.4. Given 2-categories C and D there are isomorphisms

LaxoppC,LaxoppD, Eqq – rD b C, Esont (2.3.76)

OpLaxoppC,OpLaxoppD, Eqq – rpCco bDcoqco, Esont (2.3.77)

OpLaxpC,OpLaxpD, Eqq – rpDco b Ccoqco, Eslnt . (2.3.78)

When C “ D “ 1, we get free distributive laws between monads with opmorphisms

(opfunctors in [29]), between comonads with opmorphisms and between comonads with mor-

phisms, respectively.

Now we consider strictification for the case when one of the homs has oplax functors -

LaxpC,OpLaxpD, Eqq. Consider a computad Gm, obtained from G by reversing 2-cells marked

by (f1) and changing identifications accordingly. It generates a mixed tensor product Cbm
cmpD,

which analogously to Proposition 2.3.2 and Corollary 2.3.3 satisfies Corollary 2.3.5.

Corollary 2.3.5. There are isomorphisms:

LaxpC,OpLaxpD, Eqq – rC bm
cmp D, Eslnt (2.3.79)

C bm
cmp D – pDco bm

cmp Ccoqco . (2.3.80)
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The cases based on this one are:

OpLaxoppC,LaxoppD, Eqq – rD bm
cmp C, Esont (2.3.81)

LaxoppC,OpLaxoppD, Eqq – rpCop bm
cmp Dopqop, Esont (2.3.82)

OpLaxpC,LaxpD, Eqq – rpDop bm
cmp Copqop, Eslnt . (2.3.83)

Finally, when the two homs have different choice for the direction of natural trans-

formations, there is no strictification tensor product, mainly because we have to choose

a type of natural transformation for the strict hom. For example, note that the objects

B P LaxpC,LaxoppD, Eqq correspond to the objects B P rD b C, Es(l)(o)nt but crossings in the

former allow5 c ˝ b ˝ dñ d ˝ b ˝ c while crossings of the latter allow c ˝ d ˝ bñ b ˝ d ˝ c for lax

and b ˝ c ˝ dñ d ˝ c ˝ b for oplax natural transformations, suggesting that this case cannot be

strictified. In a similar way, LaxpC,OpLaxoppD, Eqq does not permit strictifications.

2.3.6 The n-fold product

Here we generalize the computad construction of the (binary) tensor product to the n-fold

case. Then we show how it can be organized into a lax monoidal structure [11] on the category

of 2-categories and lax functors, denoted Lax. A list of data will be denoted by an arrow on

top of the typical letter, ~x :“ px1, . . . , xnq. The same list of data with xi substituted with

yi will be denoted by ~xryis. When emphasizing that the substitution is at place i, or when

it is not clear from the context, we use ~xryisi. More than one argument means multiple

substitutions.

For a list of 2-categories ~C define a computad G~C with a set of nodes t~C|Ci P Ciu. For

each ~C, i, and C 1i P Ci define a set of edges6 |G~C |p~C, ~CrC
1
isq “ CpCi, C 1iq, whose elements are

denoted by ~Crcis. Similarly, the two cells in the computad, coming from the 2-cells of Ci will

be denoted ~Crγis. Denote by p.p1 the concatenation of paths in F |G~C |. For each ~C, i and

Ci P Ci, there is a unit comparison

id
piq
~Cr1Ci s

: ~C ñ ~Cr1Cis . (2.3.84)

5which is a shorter notation for B1cD1 ˝ bCD1 ˝BCdñ B1C 1d ˝ bC 1D ˝BcD
6When Ci “ C 1i the the set of edges is defined twice, but the definitions coincide.
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For each ~C, i and ci, c
1
i P Ci, a composable pair in Ci, as in (2.1.2), there is a composition

comparison computad 2-cell

comp
piq
~Crpci,c1iqis

: ~Crcis. ~Crc
1
is ñ

~Crpc1i ˝ ciqis . (2.3.85)

For each ~C, i, j ą i and ci P Ci, and cj P Cj , there is a computad 2-cell

swap
piăjq
~Crci,cjs

: ~Crcis. ~CrC
1
i, cjs ñ ~Crcjs. ~Crci, C

1
js . (2.3.86)

When forming the tensor product 2-category, denoted bn
~C we need to impose identifications

analogous to (2.3.41), (2.3.43), (2.3.45), (2.3.48) and (2.3.49) for each i, and (2.3.47), (2.3.50)-

(2.3.53), for each i and j ą i.

Let Fi : Ci Ñ Di be a list of lax functors. Denote by F
p0q
Ci

the unit and by F
p2q
ci,c1i

the

composition comparison maps, and by F ~C :“ pF1C1, . . . , FnCnq the assignment on list of

objects. Form the computad morphism

G~C
pbn ~F qcmp

ÝÝÝÝÝÝÑ UFG ~D (2.3.87)

~C, ~Crcis, ~Crγis ÞÑ F ~C, pF ~CqrFicis, pF ~CqrFiγis (2.3.88)

id
piq
~Cr1Ci s

ÞÑ pF ~CqrF
p0q
Ci
s ‚ id

piq

F ~Cr1FiCi s
(2.3.89)

comp
piq
~Crpci,c1iqis

ÞÑ pF ~CqrF
p2q
ci,c1i
s ‚ comp

piq

F ~CrpFici,Fic1iqis
(2.3.90)

swap
piăjq
~Crci,cjs

ÞÑ swap
piăjq

F ~CrFici,Fjcjs
. (2.3.91)

The induced functor FG~C Ñ bn
~D respects identifications imposed on FG~C , which follows

from the axioms for a lax functor and the fact that the quotienting map QD : FG ~D Ñ bn
~D

respects them. Hence, there is a 2-functor

bn
~F : bn

~C ÝÑ bn
~D . (2.3.92)

When each component is the identity on Ci the induced functor is the identity on bn
~D. To

see that the composition of lax functors is preserved by tensoring, note that both ways lead

to the following assignments

id
piq
~Cr1Ci s

ÞÑpGF ~CqrGiF
p0q
FiCi

s ‚ pGF ~CqrG
p0q
FiCi

s ‚ id
piq

GF ~Cr1GiFiCi s
(2.3.93)
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comp
piq
~Crpci,c1iqis

ÞÑpGF ~CqrGiF
p2q
ci,c1i
s (2.3.94)

‚ pGF ~CqrG
p2q
Fici,Fic1i

s

‚ comp
piq

GF ~CrpGiFici,GiFic1iqis

following from the definition of comparison cells for the composite lax functor on one hand,

and the fact that bn
~G is functorial on homs. The rest of the assignments are trivially the

same.

This proves that the assignment

bn : Laxn Ñ Lax (2.3.95)

is a functor. Note that the unary tensor product b1C is just the Bénabou construction of the

2-category of paths C:, described in section 2.2.1.

Until the end of this part we informally discuss some further properties and generalizations

without proofs.

It is known that bicategories, lax functors and lax natural transformation do not form a

bicategory because whiskering on the right cannot be defined. If we restrict to strict functors,

adding ((op)lax)) natural transformations as 2-cells is not compatible with the tensor b.

However, if we take 2-categories, lax functors, and icons (defined in [21], and here in Eq.

(2.2.6)), we get a nice 2-category Licon, and the n-fold tensor product extends to a 2-functor

bn : Liconn Ñ Licon . (2.3.96)

The need to define n-fold product already suggests that 2-fold does not determine the

higher ones, in the way it does for monoidal categories. However, we give components of the

unit

ηC : C Ñ C: (2.3.97)

C, c, γ ÞÑ C, c, γ (2.3.98)

tCu
idC
ùùñ ηCp1Cq (2.3.99)

ηCpcq.ηCpc
1q

compc,c1

ùùùùùñ ηCpc
1 ˝ cq (2.3.100)
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as well as for each partition ξ : xmy Ñ xny of m a comparison functor µξ which “flattens out”

the structure. Given a list of lists of categories ~~C, form a 2-functor

µξ : bn

ÝÝÝÑ
bmi

~Ci Ñ bm
~C (2.3.101)

from the computad morphism

GÝÑ
b~C
ÝÑ U bm

~C (2.3.102)

~~C ÞÑ ~C (2.3.103)

~~Crpis ÞÑ .
lppiq
j“1

~Crppiqjsi “: flppiq (2.3.104)

~~Crπis ÞÑ ‚
lpπiq
j“1

~Crpπiqjsi (2.3.105)

id
piq
~~Cr1~Ci

s
ÞÑ 11~C

(2.3.106)

comp
piq
~Crppi,p1iqsi

ÞÑ 1flppi`p1iq (2.3.107)

swap
piăjq
~~Crpi,pjs

ÞÑ! : flppiq.flppjq ñ flppjq.flppiq . (2.3.108)

We omit proving that it preserves identifications, naturality in Cij , axioms for lax monoidal

structure, how it is defined on icons, and just state the following proposition.

Proposition 2.3.3. Functors bn, together with natural transformations η and µξ, form a lax

monoidal structure on Licon.

2.4 Simplicial approach

We proceed to describe a model CbsimD for the strictification tensor product and then show

that it is isomorphic to C bcmp D.

Objects of C bsim D are pairs pC;Dq with C P C and D P D.

An arrow in C bsim D is a sextuple pn, p, r;m, q, sq. It consists of a path in C of length n,

a path in D (of length m)

p : rns Ñ C, q : rms Ñ D (2.4.1)

and a way to combine them into a string of length n`m; that is, a shuffle

rns
r
ÐÝ rn`ms

s
ÝÑ rms (2.4.2)
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where r and s satisfy a compatibility condition (A.1.28) saying that one increases if and only

if the other one does not.

The identity (empty path) on pC;Dq is defined by taking m “ n “ 0, r “ s “ 1r0s, and

p and q pick the objects C and D. Composition is defined by path concatenation, formally

expressed as tensor product of shuffles.

Below is an example of a 1-cell tc1, d1, c2, c3, d2u : pC1, D1q Ñ pC4, D3q in C bdir D. Here,

n “ 3, m “ 2, r : r5s Ñ r3s and s : r5s Ñ r2s give the coordinates of the corresponding node

in the path, and p : r3s Ñ C and q : r2s Ñ D are the obvious functors producing the paths

tciu
3
i“1 and tdiu2i“1 in C and D.

C1 C2 C3 C4
c1 c2 c3

D1

D2

D3

d1

d2

C1D1 C2D1

C2D2 C3D2 C4D2

C4D3

c1

d1
c2 c3

d2

(2.4.3)

A 2-cell

pξ, α; ρ, βq : pn, p, r;m, q, sq Ñ pn̄, p̄, r̄; m̄, q̄, s̄q (2.4.4)

consists of:

• a shuffle morphism, that is functors ξ : rn̄s Ñ rns, ρ : rm̄s Ñ rms preserving the first

and the last element and satisfying, for all ī ď n̄` m̄,

min r´1pξr̄īq ď max s´1pρs̄̄iq (2.4.5)

a condition ensuring that there are no swaps of arrows from C and D in the wrong

direction. The condition (2.4.5) is an explicitly written condition for the existence of

the natural transformation (A.1.31).

• path 2-cells, that is, icons α : p ˝ ξ ñ p̄ and β : q ˝ ρñ q̄, as defined in section 2.2.1



26 Chapter 2. Strictification tensor product of 2-categories

Below is an example of a 2-cell.

C1D1 C2D1 C2D2 C3D2 C4D2 C4D3c1 d1
c2 c3 d2

C1D1 C2D1 C2D3 C2D3 C4D3
c̄1 d̄1 c̄2 c̄3

(2.4.6)

The above graph represents two 1-cells and data of ξ and ρ, and what remains is to specify

icon components α1 : c1 ñ c̄1, α2 : 1C2 ñ c̄2, α3 : c3 ˝ c2 ñ c̄3 in C and β1 : d2 ˝d1 ñ d̄1 in D.

Vertical composition and whiskerings are defined componentwise as in Shuff , C: and D:.

2.4.1 As a limit

The category C bsim D is a limit of the following diagram in 2-Cat.

C: Ñ Σ∆KJ Ð FDL Ñ Σ∆KJ Ð D:

C ÞÑ ˚ Ð[ ˚ ÞÑ ˚ Ð [ D

pn, pq ÞÑ rns Ð [ pn,m, s, rq ÞÑ rms Ð [ pm, qq

pξ, αq ÞÑ ξ Ð[ pξ, ρ, γq ÞÑ ρ Ð[ pρ, βq

2.4.2 Isomorphism between two constructions

This part is about proving the following proposition.

Proposition 2.4.1. There is an isomorphism

C bsim D – C bcmp D . (2.4.7)

We shall define a computad morphism T : G Ñ UpCbsimDq, show that the induced strict

2-functor T̂ : FG Ñ CbsimD respects the identifications (2.3.41)-(2.3.53), and that any other

2-functor V̂ : FG Ñ E respecting them factors uniquely through T̂ . Then, from the universal

property of C bcmp D it will follow that C bcmp D – C bsim D.

The computad morphism T : G Ñ UpC bsim Dq is defined on nodes by

T pC bDq “ pC;Dq , (2.4.8)
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on edges by

T pC b dq “ p0, tCu, σ1
0; 1, tD

d
ÝÑ D1u, 1r1sq (2.4.9)

T pcbDq “ p1, tC
c
ÝÑ C 1u, 1r1s; 0, tDu, σ1

0q , (2.4.10)

on 2-cells inherited from C and D by

T pC b δq “ p1r0s, tu; 1r1s, tδuq : p0, tCu, σ1
0; 1, tD

d
ÝÑ D1u, 1r1sq

ñ p0, tCu, σ1
0; 1, tD

d̄
ÝÑ D1u, 1r1sq (2.4.11)

T pγ bDq “ p1r1s, tγu; 1r0s, tuq : p1, tC
c
ÝÑ C 1u, 1r1s; 0, tDu, σ1

0q

ñ p1, tC
c̄
ÝÑ C 1u, 1r1s; 0, tDu, σ1

0q (2.4.12)

and on the comparison and swapping 2-cells by

T pid1CDq “ pσ
1
0, t11Cu; 1r0s, tuq : p0, tCu, 1r0s; 0, tDu, 1r0sq

ñ p1, tC
1C
ÝÝÑ Cu, 1r1s; 0, tDu, σ1

0q (2.4.13)

T pidC1Dq “ p1r0s, tu;σ
1
0, t11Duq : p0, tCu, 1r0s; 0, tDu, 1r0sq

ñ p0, tCu, σ1
0; 1, tD

1D
ÝÝÑ Du, 1r1sq (2.4.14)

T pcompc,c1,Dq “pB
2
1, t1c1˝cu; 1r0s, tuq :

p2, tC
c
ÝÑ C 1

c1
ÝÑ C2u, 1r2s; 0, tDu, !r2sÑr0sq

ñ p1, tC
c1˝c
ÝÝÑ C2u, 1r2s; 0, tDu, σ1

0q (2.4.15)

T pcompC,d,d1q “p1r0s, tu; B
2
1, t1d1˝duq :

p0, tCu, !r2sÑr0s; 2, tD
d
ÝÑ D1

d1
ÝÑ D2u, 1r2sq

ñ p0, tCu, σ1
0; 1, tD

d1˝d
ÝÝÑ D2u, 1r1sq (2.4.16)

T pswapc,dq “p1r1s, α “ t1cu; 1r1s, β “ t1duq :

p1, tC
c
ÝÑ C 1u, σ2

1; 1, tD
d
ÝÑ D1u, σ2

0q

ñ p1, tC
c
ÝÑ C 1u, σ2

0; 1, tD
d
ÝÑ D1u, σ2

1q . (2.4.17)
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To check that the last 2-cell is the valid one, write equation (A.1.31) as

Lσ2
1 ˝ 1 ˝ σ2

0 “ B
2
2 ˝ σ

2
0 ñ B2

0 ˝ σ
2
1 “ Rσ2

0 ˝ 1 ˝ σ2
1 . (2.4.18)

The cells on the RHS of (2.4.11)-(2.4.17) will be called elementary 2-cells.

To see that the induced strict 2-functor respects identifications (2.3.41)-(2.3.53), note that

T pidq, T pcompq, and T pswapq have trivial icon components, while the definition of T on

other parts of the computad have trivial components in Shuff , and that the composition of

2-cells in C bsim D is done independently in each of the components.

Given a computad map V : G Ñ UE , such that V̂ : FG Ñ E respects the identifications

(2.3.41)-(2.3.53), form the following assignments W : C bsim D Ñ E on objects

W pC;Dq “ V pC bDq (2.4.19)

and on elementary arrows

W p0, tCu, σ1
0; 1, tD

d
ÝÑ D1u, 1r1sq “W pT pC b dqq “ V pC b dq (2.4.20)

W p1, tC
c
ÝÑ C 1u, 1r1s; 0, tDu, σ1

0q “W pT pcbDqq “ V pcbDq . (2.4.21)

Since every shuffle can be written uniquely as a sum of shuffles of unit length, the above as-

signment determines assignment on all 1-cells; given pn, p, r;m, q, sq, assign to it the composite

given by (2.4.22).

W pn, p, r;m, q, sq “ ˝1
i“n`m

$

’

&

’

%

V pppqi b qsiq, if si “ 0

V pprib pqqiq, if ri “ 0

(2.4.22)

When n “ m “ 0 we get that W preserves identities; that is,

W p1pC;Dqq “ 1W pC;Dq . (2.4.23)

Also, W preserves composition

W pn1, p1, r1;m1, q1, s1q ˝W pn, p, r;m, q, sq “

˝1
i1“n1`m1

$

’

&

’

%

V ppp1qi1 b q1s1i1q, if s1i1 “ 0

V pp1r1i1 b pq1qi1q, if r1i1 “ 0

˝1
i“n`m

$

’

&

’

%

V pppqi b qsiq, if si “ 0

V pprib pqqiq, if ri “ 0

(2.4.24)
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“ ˝1
i“n1`m1`n`m

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

V ppp1qi b q1s1iq, if s1i “ 0, and i ą n`m

V pp1r1ib pq1qiq, if r1i “ 0, and i ą n`m

V pppqi b qsiq, if si “ 0, and i ď n`m

V pprib pqqiq, if ri “ 0, and i ď n`m

(2.4.25)

“W pn1 ` n, p1 ` p, r1 ` r;m1 `m, q1 ` q, s1 ` sq (2.4.26)

“W ppn1, p1, r1;m1, q1, s1q ˝ pn, p, r;m, q, sqq . (2.4.27)

Hence, it is a functor on the underlying categories.

The requirement that WT “ V determines the assignment on identities

T p1gq “ 1Tg (2.4.28)

on elementary 2-cells Tπ

W pTπq “ V pπq (2.4.29)

and similarly on whiskered elementary 2-cells

W pTg2 ˝ Tπ ˝ Tgq :“ V g2 ˝ V π ˝ V g “ V pg2 ˝ π ˝ gq (2.4.30)

where Tπ is an elementary 2-cell and Tg and Tg1 are 1-cells.

Given any 2-cell pξ, α; ρ, βq, as in (2.4.4), choose a decomposition into whiskered element-

ary 2-cells in the following order, starting from the target 1-cell,

• elementary β, j “ m̄, .., 1

Jj “ 1 ˝ T pp̄r̄j b βjq ˝ 1 (2.4.31)

“ p1rn̄s, t1p1 , .., 1pn̄u; 1rm̄s, t1q1 , .., βj , .., 1qn̄uq (2.4.32)

• elementary α, i “ n̄, .., 1

Ii “ 1 ˝ T pαi b q̄s̄iq ˝ 1 (2.4.33)

“ p1rn̄s, t1p1 , .., αi, .., 1pn̄u; 1rm̄s, t1q1 , .., 1qn̄uq (2.4.34)
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• comparisons in D, j “ m̄, .., 1

– if ρ̄j “ 0 then

Lj,1 “ 1 ˝ T pidq ˝ 1 “: L
pidq
j (2.4.35)

– if ρ̄j ě 2, k “ ρ̄j ´ 1, ..., 1

Lj,k “ 1 ˝ T pcompq ˝ 1 “: L
pcompq
j,k (2.4.36)

This order corresponds to left bracketing.

– if ρ̄j “ 1 then Lj,1 “ 1, and can be ignored.

• comparisons in C, i “ n̄, .., 1

– if ξ̄i “ 0 then

Ki,1 “ 1 ˝ T pidq ˝ 1 “: K
pidq
j (2.4.37)

– if ξ̄j ě 2, k “ ξ̄j ´ 1, ..., 1

Ki,k “ 1 ˝ T pcompq ˝ 1 “: K
pcompq
j,k (2.4.38)

This order corresponds to left bracketing.

– if ξ̄j “ 1 then Kj,1 “ 1, and can be ignored.

• crossings - the remaining 2-cell to decompose has trivial icon components as well as

trivial ξ and ρ. In the relation tables - which define the two shuffles - elementary

crossings correspond to switching ones to zeros, or, going backwards, switching zeros to

ones. Let px, yq be the coordinates of the corresponding crossings, order them by x´ y

and then (if the x´ y value is the same) by x` y. Our backward decomposition starts

with the last crossing in the table. Denote them by Si.

Now, define

W pξ, α; ρ, βq “ ˝iW pJiq ˝iW pIiq ˝i,j W pLi,jq ˝i,j W pKi,jq ˝iW pSiq (2.4.39)
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Given a composable pair of 2-cells, the composite of their their images underW ,W pξ̄, ᾱ; ρ̄, β̄q˝

W pξ, α; ρ, βq, is equal to

˝iW pJ̄iq ˝iW pĪiq ˝i,j W pL̄i,jq ˝i,j W pK̄i,jq ˝iW pS̄iq

˝iW pJiq ˝iW pIiq ˝i,j W pLi,jq ˝i,j W pKi,jq ˝iW pSiq (2.4.40)

which need not be in the canonical form. The assignment on the composite 2-cell

pξ ˝ ξ̄, ᾱ ‚ pα ˝ ξ̄q; ρ ˝ ρ̄, β̄ ‚ pβ ˝ ρ̄qq (2.4.41)

is in the canonical form, and the two are equal which we show by “bubble-sorting” the decom-

position (2.4.40). In each step one of two cases can happen:

• the output (target of the elementary part) of the first 2-cell does not overlap with the

input (source of the elementary part) of the second 2-cell. Then we can write the vertical

composite of their images as

W pTg5 ˝ T ḡ4 ˝ Tg3 ˝ Tπ2 ˝ Tg1q

‚W pTg5 ˝ Tπ1 ˝ Tg3 ˝ Tg2 ˝ Tg1q

“ V pg5 ˝ π1 ˝ g3 ˝ π2 ˝ g1q “

W pTg5 ˝ Tπ1 ˝ Tg3 ˝ T ḡ2 ˝ Tg1q

‚W pTg5 ˝ Tg4 ˝ Tg3 ˝ Tπ2 ˝ Tg1q (2.4.42)

meaning that we can change the order of their composition after suitably changing the

whiskering 1-cells.

• the output of the first 2-cell overlaps with the input of the second 2-cell. Depending on
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which elementary 2-cells meet, do an operation according to the following table.

1stz2nd J̄ Ī L̄pidq L̄pcompq K̄pidq K̄pcompq S̄

J p2.3.43q K K p2.3.45q K K K{p2.3.47q

I K p2.3.44q K K K p2.3.46q p2.3.47q{K

Lpidq R K K p2.3.48q K K K{p2.3.51q

Lpcompq R K K R{p2.3.49q K K K{p2.3.53q

Kpidq K R K K K p2.3.48q p2.3.50q{K

Kpcompq K R K K K R{p2.3.49q p2.3.52q{K

S K{R R{K K K{K{R K R{K{K R{K{K

(2.4.43)

If the first 2-cell has n outputs and the second 2-cell has m inputs, there are n`m´ 1

ways to match them. When different, these cases are separated by “{”. The symbol K

denotes that matching is not possible for that case, and R denotes that the matching is

possible, but the order is already correct (lower triangle). Finally, an equation number

tells us to apply apply T̂ to both sides, and substitute the LHS, which appears in the

composition, with the RHS. Each step changes the decomposition of the 2-cell, and the

fact that V̂ preserves relations ensures that the composite in E does not change.

This proves that W is functorial on homs.

A 2-cell in C b D, obtained by whiskering, has the same elementary 2-cells in its decom-

position as the original 2-cell. Hence, the two different composites

pWTḡ1 ˝W pξ, α; ρ, βqq ‚ pW pξ1, α1; ρ1, β1q ˝WTgq (2.4.44)

and

pW pξ1, α1; ρ1, β1q ˝WTḡq ‚ pWTg1 ˝W pξ, α; ρ, βqq (2.4.45)

necessarily bubble-sort to W ppξ1, α1; ρ1, β1q ˝ pξ, α; ρ, βqq. This completes the proof that W is

a 2-functor.

The functor T̂ is bijective on objects and arrows, and surjective on 2-cells, so W is the

unique 2-functor satisfying V̂ “WT̂ .
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2.4.3 Mixed tensor product

The case covering the free mixed distributive law, strictifying LaxpC,OpLaxpD, Eqq, produces

C bm
dir D that has the same objects and arrows as C b D, and 2-cells differ by changing the

direction of ρ : rms Ñ rm̄s to accommodate comultiplication and counit, change in icon

β : q ñ q̄ρ : rms Ñ D, with the restriction for crossings taking a slightly different form

Lr ˝ ξ ˝ r̄ ñ Rs ˝Rρ ˝ s̄ . (2.4.46)

With a proof following the same steps as the non-mixed case, we state the following proposi-

tion.

Proposition 2.4.2. There is an isomorphism

C bm
dir D – C bm

cmp D . (2.4.47)

2.5 Properties and an example

There is an obvious 2-functor L : CbD Ñ CˆD that forgets shuffles and composes paths. It

has a right adjoint R in the 2-category of 2-categories, lax functors and icons:

C ˆD R
ÝÑ C bD (2.5.1)

pC,Dq ÞÑ C bD (2.5.2)

pc, dq ÞÑ CD
Cd
ÝÝÑ CD1

cD1
ÝÝÑ C 1D1 (2.5.3)

pγ, δq ÞÑ pγ bD1q ˝ pC b δq (2.5.4)

with identity and composition comparison maps

! : 1CbD ñ CD
C1D
ÝÝÝÑ CD

1CD
ÝÝÝÑ CD (2.5.5)

pB2
1, 1; B2

1, 1q : CD
Cd
ÝÝÑ CD1

cD1
ÝÝÑ C 1D1

C1d1
ÝÝÑ C 1D2

c1D2
ÝÝÝÑ C2D2 (2.5.6)

ñ CD
Cpd1˝dq
ÝÝÝÝÝÑ CD2

pc1˝cqD2
ÝÝÝÝÝÑ C2D2 . (2.5.7)

The composite L ˝R is just the identity functor 1CˆD, while the unit of the adjunction is an

icon

η : 1CbD ñ R ˝ L (2.5.8)
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assigning to each arrow pn, p, r;m, q, sq in C bD a 2-cell

p!r1sÑrns, 1˝p; !r1sÑrms, 1˝qq : pn, p, r;m, q, sq ñ p1, ˝p, σ2
0; 1, ˝q, σ2

1q . (2.5.9)

Whiskering η on the left (resp. right) by L (resp. R) gives the identity on L (resp. R),

proving the adjunction axioms.

Any strict functor B̂ : C bD Ñ E can be precomposed with R to give a lax functor

B̂ ˝R : C ˆD Ñ E . (2.5.10)

This generalizes the notion of a composite monad induced by a distributive law.

2.5.1 Parametrizing parametrization of categories

Take C and D to be just categories (seen as locally discrete 2-categories), and7 E “ Span.

The bicategory of spans is equivalent to the bicategory of matrices, which is in turn a

full subcategory of8 Mod. Each strict functor B̂ : C b D Ñ Span is, in particular, a normal

lax functor, so we can use the Bénabou construction [33] (after forgetting 2-cells) to obtain a

category B̃nerve parametrised over CbD. Explicitly, B̃nerve has objects over CbD given by the

set BCD. Arrows over Cbd and cbD are elements of spans BCd and BcD respectively, and

they generate arrows over arbitrary paths, which are, due to composition in Span, composable

tuples.

The 2-cells that we have temporarily forgotten are mapped to span morphisms. In par-

ticular, the images B̂ηp of the unit of the adjunction (2.5.8) give a unique way of “com-

posing” arbitrary arrows in B̃nerve, resulting in an arrow over a path in C b D of the form

CD
Cd
ÝÝÑ CD1

cD
ÝÝÑ C 1D1. The image of this assignment forms a category B̃ whose composition

is concatenation in B̃nerve followed by applying (the unique) appropriate Bη. Uniqueness

guarantees the identity and associativity laws.

Explicitly, B̃ with the same objects as B̃nerve, and arrows between X P BpC b Dq and

X 1 P BpC 1 b D1q are elements of BpCD Cd
ÝÝÑ CD1

cD
ÝÝÑ C 1D1q, denoted by pairs pg, fq,. The

7Instead of Span one can take a strict version with objects sets X,Y... and arrows cocontinuous functors

Set{X Ñ Set{Y which are determined by the assignment of singletons.
8Consisting of categories and modules (aka profunctors or distributors)
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identity is

1X “ p1
D
X , 1

C
Xq, with (2.5.11)

1DX :“ pBidC1DqpXq (2.5.12)

1CX :“ pBid1CDqpXq (2.5.13)

and composition is given by

pg1, f 1q ˝ pg, fq “ Bppcomp ˝ compq ‚ p1 ˝ swap ˝ 1qqpg1, f 1, g, fq . (2.5.14)

For each object D P D we get a subcategory πDB̃ parametrized by C - an object X over

C is an element of BCD, and arrow f : X Ñ X 1 over c is an element of BcD, which can be

identified with an arrow p1DX , fq of B̃. Similarly, each object C P C gives a subcategory πCB̃,

parametrized by D. Furthermore, each arrow pg, fq in B̃ can be decomposed as

p1D1 , fq ˝ pg, 1Cq (2.5.15)

or as

pg, 1C1q ˝ p1D, fq . (2.5.16)
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3
Cauchy completeness and causal spaces

3.1 Introduction

Considering causal structures as fundamental and space-time as emerging was considered in

[7]. We provide a novel way to construct causal preordered sets, together with maximal

intervals between events, as categories enriched in a particular monoidal category we called

RK. All RK-enriched categories turn out to be Cauchy complete, and we address the question

of which bases share this property. This abstract approach to general relativity might shine

new light on already existing categorical approaches to quantum foundations [1] or quantum

gravity [2].

In Section 3.2 we review the work of Lawvere who viewed positive real numbers as a

monoidal category, denoted R, to obtain generalized metric spaces as enriched categories.

37
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In Section 3.3 we give a modification of the base category R, call it RK, which gives causal

spaces as RK-enriched categories, and explain how black holes and wormholes (see 3.3.3) can

be described using enriched modules. We also prove a surprising fact that all causal spaces

are Cauchy complete, in the sense of enriched category theory.

In Section 3.4 we give conditions on a monoidal category V which ensure that a V-category

C is Cauchy complete if and only if the underlying (Set-enriched) category C0 is Cauchy

complete, which for Set-enrichment means that idempotents in C0 split. As a corollary we

add a few more conditions on V ensuring that all V-enriched categories are Cauchy complete,

generalizing the case of RK.

3.2 Metric spaces as enriched categories

A generalized metric space X consists of a set of points and, for each pair of points P and Q,

a distance dpP,Qq P r0,8s from P to Q such that, for all points P , Q and R,

dpP, P q “ 0 (3.2.1)

dpP,Qq ` dpQ,Rq ě dpP,Rq . (3.2.2)

“Generalized” comes from dropping conditions of finiteness (allowing infinite distance), sym-

metry (allowing dpP,Qq ‰ dpQ,P q), and distinguishability (allowing dpP,Qq “ 0 without

P “ Q). Those spaces correspond precisely [24] to categories enriched in R - a monoidal

category (more concretely, a totally ordered set) with positive reals and infinity as objects, an

arrow between a and b if and only if b ď a, and monoidal structure given by sum. R is also

closed, with internal hom given by truncated subtraction, uniquely defined right adjoint to

summation. To see the correspondence, recall [19] that a category X enriched in a monoidal

category V consists of a set of objects (points in this case), for each pair of objects a hom, that

is, an object in V (a number providing distance in this case), and unit and composition arrows

of V (providing (in)equalities (3.2.1)-(3.2.2), in this case) satisfying unit and associativity laws

(trivially true in this case because R is a poset).

Denote by I the space having only one point ˚. An enriched module (aka profunctor,

distributor) I M
ÞÑ X , alternatively expressed as an enriched presheaf M : X op Ñ R, assigns to
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each point P in X a distance from P to ˚,MpP, ˚q, with an action ensuring triangle inequality

for the newly introduced distances

X pP,Qq `MpQ, ˚q ěMpP, ˚q . (3.2.3)

For example, each point P P X defines a module MP pQ, ˚q “ X pQ,P q - this motivates a

general definition A.2.2 for convergent modules. Dually, an enriched module X N
ÞÑ I assigns

to each point P in X a distance from ˚ to P , with actions

Np˚, P q ` X pP,Qq ě Np˚, Qq . (3.2.4)

Asking for M and N to form an adjunction in R-Mod imposes existence of a counit

MpP, ˚q `Np˚, Qq ě X pP,Qq (3.2.5)

expressing that the newly introduced distances do not violate the triangular inequality via

˚, enabling us to consider a new space X˚, with an added point ˚. Finally, the unit of the

adjunction1

0 ě inf
PPX

pNp˚, P q `MpP, ˚qq (3.2.6)

forces the newly adjoined point to have zero distance from (and to) the rest of the space,

providing a Cauchy condition analogous to the one for Cauchy sequences. This motivates

general definitions A.2.1 of Cauchy modules, and of Cauchy completeness of enriched categor-

ies A.2.3.

An important base is the monoidal category Ab of Abelian groups, where one-object

Ab-categories are rings, and they are Morita equivalent (have equivalent categories of (left)

modules) if and only if their Cauchy completions are equivalent [19]. We review definitions

and some results related to general Cauchy completeness in Appendix A.2.

3.3 Causal spaces as enriched categories

Given a space-time E one can assign to each time-like path p in E its proper time T ppq.

Maximizing the proper time T ppq over all time-like paths between two events gives an interval
1The coend involved in the module composition reduces to inf when the base of enrichment is R.
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or “distance” between them. This is not distance in the sense of a metric space, mainly because

the triangle inequality is inverted. The maximal time will usually (in physical situations)

correspond to time measured by an inertial observer, while any accelerated reference frame

would measure a shorter time, with a photon bouncing from appropriately set up mirrors

would “measure” a zero time. However, we used maximizing over all time-like paths, rather

than an inertial path, because of possible existence of Lorentzian manifolds where there are

causally related points which do not have a (unique) inertial path between them. This is

analogous to minimizing path length over all paths on a Riemannian manifold to obtain a

metric; for example, antipodal points on a sphere have multiple shortest paths, or two points

in a plane on the opposite side of a cut out (closed) disc have no path with a minimal length

between them.

To get the inverted triangular inequality one could just invert the arrows of R. On one

hand, such a category could no longer be closed because the object 0 would be the monoidal

identity and the initial object at the same time, which would mean that tensoring (summing)

does not preserve colimits (in particular, the initial object), since, for example

1 “ 1` 0 ‰ 0 . (3.3.1)

On the other hand, physically, there would be no object in the monoidal category that could

be assigned to space-like separated events. Both of the problems are solved by freely adding

an initial object which we denote by K. So, the correct base for enrichment is formally given

by

Definition 3.3.1. A symmetric closed monoidal category RK is defined to have

• objects the real positive numbers r0,8q with infinity 8 and the additional object K

• arrows aÑ b existing uniquely if a “ K, b “ 8 or a ď b, forming a total order
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• tensor product ` : RK ˆRK Ñ RK given by

` K b 8

K K K K

a K a` b 8

8 K 8 8

(3.3.2)

• internal hom ´ : RKop ˆRK Ñ RK given by

´ K a 8

K 8 K K

b 8

$

’

&

’

%

b´ a, a ď b

K, a ą b

K

8 8 8 8

(3.3.3)

With this direction of arrows, all the colimits are suprema, and limits are infima.

A category E enriched inRK has objectsX, Y, ... interpreted as events, and homs EpX,Y q P

RK interpreted as “distances” or intervals. If EpX,Y q “ K then Y is not in the future of X,

equivalently said, X cannot cause Y . The composition of homs witnesses that the chosen

time between the two events is the largest,

EpX,Y q ` EpY,Zq ď EpX,Zq (3.3.4)

and the unit

0 ď EpX,Xq (3.3.5)

prevents endohoms from being K. The associativity and unit axioms are trivially satisfied

because RK is a poset.

Example 3.3.1. In a Minkowski 2D space-time objects are points in pt, xq P R2 and homs

are

Eppt, xq, pt1, x1qq “

$

’

&

’

%

a

pt1 ´ tq2 ´ px1 ´ xq2, if t1 ´ t ě |x1 ´ x|

K, otherwise .

(3.3.6)
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Proposition 3.3.1. Properties of homs of E include

(i). endohoms are monoidal idempotents

EpX,Xq ` EpX,Xq “ EpX,Xq (3.3.7)

(ii). the action of endohoms on other homs is given by equalities

EpY,Xq ` EpX,Xq “ EpY,Xq (3.3.8)

EpX,Xq ` EpX,Y q “ EpX,Y q (3.3.9)

(iii). possible endohoms are

EpX,Xq “ 0 or EpX,Xq “ 8 (3.3.10)

(a) if EpX,Xq “ 8, all the homs EpY,Xq and EpX,Y q are either K or 8

(b) if EpX,Xq “ 0, either both EpX,Y q and EpY,Xq equal 0 or at least one equals K

Proof. (i). Adding EpX,Xq to the unit (3.3.5) gives

EpX,Xq ď EpX,Xq ` EpX,Xq (3.3.11)

On the other hand, the composition (3.3.4) for Y and Z equal X gives

EpX,Xq ` EpX,Xq ď EpX,Xq (3.3.12)

(ii). Adding EpX,Y q to the unit, and the compositions

EpX,Y q ` EpX,Xq ď EpX,Y q (3.3.13)

EpX,Xq ` EpY,Xq ď EpY,Xq (3.3.14)

give the required result.

(iii). By part (i) of the proposition, noting that objects K, 0 and 8 are the only monoidal

idempotents in RK, and using the unit (3.3.5), restricts possible endohoms to 0 and 8.

(a) Case analysis on (3.3.8)-(3.3.9)
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(b) Case analysis on EpY,Xq ` EpX,Y q ď EpX,Xq “ 0

Call an event with the infinite endohom (situation (3a)) irregular. Although unphysical,

these are needed to keep RK closed. For instance, K is irregular, since K´K “ 8. However,

part (3a) of Proposition 3.3.1 ensures that such points in space are either causally unrelated

to, or at an infinite temporal distance from, the rest of the (physical) space. Part (3b) of

Proposition 3.3.1 prevents the grandfather paradox in the physical part of the space - given

two regular (endohom being 0) events X and Y , it is not possible for both of them to cause

each other, unless they happen simultaneously.

A program for formulating quantum gravity using discrete partial orders, started in [7] and

reviewed in, for example, [12], has a notion of causal set as a basic mathematical structure.

If we take the underlying category E0 of a causal space E , we get a general preordered set

without requirements for antisymmetry and local finiteness - the information about local time-

like intervals is contained in homs, and allows different events to happen at the same point

in space-time. On the other hand, each causal set has a corresponding causal space, where

homs come from the local finiteness condition - if A causes B, then EpA,Bq is the (integer)

length of the longest (necessarily finite) path between A and B.

3.3.1 Enrichment in r´8,8s

A possible generalization of both metric and event spaces, would be enrichment in r´8,8s,

with an arrows from A to B, if B ď A. Then positive length would denote space-like intervals,

with triangle inequality (3.2.2), while negative numbers would be interpreted as time-like in-

tervals. However, the triangle inequality with mixed entries is too restrictive, so the Minkowski

2D space-time is not enriched in r´8,8s. For example,

A “ p0, 0q (3.3.15)

B “ p´1, 0q (3.3.16)

C “ p0, 1q (3.3.17)
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gives

EpA,Bq ` EpB,Cq “ ´1` 0 “ ´1 (3.3.18)

EpA,Cq “ 1 . (3.3.19)

3.3.2 RK-Cat

An RK-functor F : D Ñ E maps events in D to events in E such that the distances increase

DpA,Bq ď EpFA,FBq . (3.3.20)

In particular, space-like intervals (given by K) can map to time-like intervals.

Natural transformations η : F Ñ G indicate that for all A P D the event GA is in the

future of FA.

Since RK is symmetric, closed and (co)complete, so is RK-Cat [19]. Explicitly, the tensor

product D ` E of D and E has

• objects pairs pA,Xq

• homs pD ` EqppA,Xq, pB, Y qq “ DpA,Bq ` EpX,Y q

and rD, Es has

• objects RK-functors F , G...

• homs

rD, EspF,Gq “
ż

APD
EpFA,GAq “ inf

APD
EpFA,GAq . (3.3.21)

Finally, given a causal space E , using symmetry of RK we can form the opposite Eop by

taking the same set of objects and

EoppX,Y q “ EpY,Xq (3.3.22)

for homs.
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3.3.3 Modules, black holes and wormholes

A (2-sided) module M : D Û E is defined as an RK-functor

M : Eop `D Ñ RK (3.3.23)

and can be equivalently given by actions

EpY,Xq `MpX,Aq ďMpY,Aq (3.3.24)

MpX,Aq `DpA,Bq ďMpX,Bq . (3.3.25)

These inequalities enable us to “glue” the two causal spaces with homs between objects of E

and D given by M , and all homs from D to E being K, a process known as a lax colimit or

collage [33].

Remark 3.3.1. Physically, such a module can be interpreted as a wormhole going from E to

D. In particular, when D “ I the module M is a black hole in E.

Composition of modules N : C Û D and M : D Û E is given by

pM ˝NqpX,P q “

ż APD
MpX,Aq `NpA,P q (3.3.26)

“ sup
APD

pMpX,Aq `NpA,P qq (3.3.27)

for all P P C and X P E .

3.3.4 Cauchy completeness

To give a pair of adjoined modules pM % Nq : I ÞÑ E is the same as to give a pair of

RK-functors

M : Eop Ñ RK (3.3.28)

N : E Ñ RK (3.3.29)

which, in addition to the actions (3.3.24)-(3.3.25)

EpY,Xq `MpXq ďMpY q (3.3.30)
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NpXq ` EpX,Y q ď NpY q (3.3.31)

satisfy (existence of the unit and counit of the adjunction)

0 ď sup
X
pNpXq `MpXqq (3.3.32)

EpX,Y q ěMpXq `NpY q . (3.3.33)

Proposition 3.3.2. Any RK enriched category E is Cauchy complete.

Proof. First, consider the case when E is empty. Then M and N are unique empty functors,

but they cannot be adjoint as the RHS of (3.3.32) equals K. Since there are no Cauchy

modules, E is Cauchy complete.

Now, assume E is non-empty and M is a Cauchy module, that is there is N such that

(3.3.30)-(3.3.33) hold. In particular, since K is the only element smaller than 0, equation

(3.3.32) implies that there is Z P E such that

0 ď NpZq `MpZq . (3.3.34)

If either NpZq or MpZq was equal to K the sum would equal K as well, so we have that both

terms are greater or equal than 0,

0 ď NpZq and 0 ďMpZq . (3.3.35)

Now we have

MpY q ďMpY q `NpZq (3.3.36)

ď EpY,Zq (3.3.37)

ď EpY,Zq `MpZq (3.3.38)

ďMpY q (3.3.39)

proving that MpY q “ EpY,Zq, and showing that Z represents M .
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3.4 Cauchy completeness via idempotent splitting

Here we consider which monoidal categories V produce enriched categories whose Cauchy

completeness is determined by idempotent splitting in the corresponding underlying category.

We begin with an easy direction.

Proposition 3.4.1. Let V be a locally small, cocomplete symmetric monoidal closed category.

If a small V-category E is Cauchy complete then idempotents split in the underlying category2

E0.

Proof. Let I e
ÝÑ EpE,Eq be an idempotent in E0. Let E˚ : I Û E and E˚ : E Û I denote the

modules induced by the V-functor picking the object E. That is

E˚pXq “ EpX,Eq (3.4.1)

E˚pXq “ EpE,Xq (3.4.2)

with actions given by composition in E . The induced module endomorphisms e˚ : E˚ ñ E˚

and e˚ : E˚ ñ E˚ are idempotent because e is. Since in the corresponding presheaf category

idempotents split, there is a module M : I Û E , and module morphisms f : E˚ ñ M ,

g : M ñ E˚ splitting e˚. Similarly, there is a module N : E Û I, and module morphisms

k : E˚ ñ N , l : N ñ E˚ splitting e˚. Using the fact that e˚ and e˚ are mates under the

adjunction E˚ % E˚, it is easy to show that3 pk b fq ˝ η and ε ˝ pg b lq are unit and a counit

of the adjunction M % N . Since E is Cauchy complete, M is represented by an object, say

D P E , and so, using the weak Yoneda lemma, e splits through it.

Proposition 3.4.2. Consider the following properties of a cocomplete, locally small, symmet-

ric monoidal closed category V:

(i) the underlying functor

VpI,´q : V Ñ Set (3.4.3)

takes regular epi families to epi families (joint surjections),
2The underlying (Set-enriched) category [19] of a V-category E has the same objects as E , and homsets

defined by mapping out of the unit of V.
3Here b denotes the horizontal composition, and ˝ the vertical composition of module morphisms.
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(ii) the function

VpI, Aq ˆ VpI,Bq bÝÑ VpI b I, AbBq ´˝ρIÝÝÝÑ VpI, AbBq (3.4.4)

is a bijection,

then a small V-category E is Cauchy complete if idempotents split in the underlying category

E0.

Proof. Let M : I ÞÑ E be a Cauchy module with a right adjoint N which amounts to giving

actions

MpXq b EpY,Xq
αY,X
ÝÝÝÑMpY q (3.4.5)

EpX,Y q bNpXq
βX,Y
ÝÝÝÑ NpY q (3.4.6)

compatible with unit and composition in E , and unit and counit for the adjunction

η : I ÝÑ

ż Y

MpY q bNpY q , (3.4.7)

εX,Y : NpY q bMpXq Ñ EpX,Y q . (3.4.8)

The coend cowedge components

MpXq bNpXq
wX
ÝÝÑ

ż Y

MpY q bNpY q (3.4.9)

form a jointly regular epic family, see section A.3 example A.3.3. By condition (i), the functor

VpI,´q takes them to a jointly surjective family of functions VpI, wXq. This in particular

means that the unit of the adjunction is in the image of a function VpI, wZq, for some Z.

So, the unit decomposes as η “ wZ ˝ z. From condition (ii) we get that z can be further

decomposed as mb n for a unique pair of maps m : I ÑMpZq and n : I Ñ NpZq, to give a

final decomposition of the unit

η “ wZ ˝ pmb nq (3.4.10)

One of the adjunction axioms, together with (3.4.10) gives a commutative diagram shown
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in (3.4.11).

MpY q

I bMpY q

şC
MpCq bNpCq bMpY q

şC
MpCq b EpY,Cq

MpY q

MpZq bNpZq bMpY q

MpZq b EpY,Zq

1

–

η b 1

şC
1b εY,C

–

mb nb 1

wZ b 1

1b εY,Z
wZ

(3.4.11)

From the outside of the diagram (3.4.11) it follows that the identity onMpY q decomposes

into the following two maps

MpY q
nb1
ÝÝÑ NpZq bMpY q

εY,Z
ÝÝÑ EpY,Zq (3.4.12)

EpY,Zq mb1
ÝÝÝÑMpZq b EpY, Zq

αY,Z
ÝÝÝÑMpY q . (3.4.13)

Both of these sets of arrows are V-natural in Y , following from V-naturality of ε and com-

patibility of action α with composition in E . Composing them the other way around we get

an idempotent V-natural transformation on Ep´, Zq, which is represented by an idempotent

arrow Z
e
ÝÑ Z in E0. Since idempotents split, there is Z 1 through which e splits, hence Z 1 is a

representing object for M .

Remark 3.4.1. The only place we used symmetry and closedness of V was the definition of

module compositions using coends, and the definition of the category of enriched presheaves.

Both of these notions are definable for non-symmetric V, or even when the base of enrichment

is a bicategory [34], so we expect the above theorems to work at that level of generality as well.

Corollary 3.4.1. A cocomplete quantale Q such that any collection of its objects tAiu with

an arrow

I Ñ
ł

i

Ai (3.4.14)
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contains an object Z P tAiu with an arrow

I Ñ Z (3.4.15)

has the property that all small Q-categories E are Cauchy complete.

Example 3.4.1. The motivating example RK has this property.

Corollary 3.4.2. If a cocomplete category V is Cartesian closed and

Vp1,´q : V Ñ Set (3.4.16)

has a right adjoint, then V satisfies the requirements of proposition 3.4.2.

Denoting by G the right adjoint we need a (natural) bijection

VpA,GSq – SetpVpI, Aq, Sq . (3.4.17)

Example 3.4.2. For V “ Set, G “ 1Set. More generally, if V “ rCop,Sets and C has a

terminal object 1 then

pGSqC “ SetpCp1, Cq, Sq (3.4.18)

functorially in C. The isomorphism (3.4.17) follows from

rCop,SetspA,SetpCp1,´q, Sqq (3.4.19)

–

ż

CPC
SetpAC, SetpCp1, Cq, Sqq (3.4.20)

– Set

ˆ
ż CPC

AC ˆ Cp1, Cq, S
˙

(3.4.21)

– SetpA1, Sq (3.4.22)

– Set prCop, SetspCp´, 1q, Aq, Sq (3.4.23)

– Set prCop, Setsp1, Aq, Sq (3.4.24)

where 1 in the last line denotes the terminal presheaf which is the monoidal unit in rCop,Sets.
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Example 3.4.3. For V “ Cat, GS is the chaotic category on the set S, because mapping

into it is uniquely determined by the assignment on objects. More generally, for V “ n-Cat,

GS is a the chaotic category seen as a locally discrete n-category (each hom is the terminal

pn´ 1q-category).

In some cases condition (ii) holds when the product is not Cartesian.

Example 3.4.4. Grayplq has the same objects and arrows as 2-Cat, but (lax) Gray tensor

product, rather than the Cartesian one for the monoidal structure. Strict functors 1 Ñ AbplqB

detect (pick) objects, which are pairs consisting of an object in A and an object in B, hence

satisfying condition (ii).

Proposition 3.4.3. Let V be a monoidal category. The following are equivalent:

(i). every V-category C has a Cauchy complete underlying category C0,

(ii). every monoid pT, µ, ηq in V induces an idempotent-splitting monoid on the hom-set

VpI, T q.

Proof. p1 ñ 2q Consider a one-object category C with the endohom, multiplication and unit

given by pT, µ, ηq. The underlying category is precisely the suspension of the monoid VpI, T q,

so idempotent-splitting in C0 is the same as idempotent-splitting in VpI, T q.

p2 ñ 1q Let I e
ÝÑ CpA,Aq be an idempotent in C0. Since CpA,Aq is a monoid in V, e is also

an idempotent in the induced monoid on VpI, CpA,Aqq, and, by condition 2, it splits.

Remark 3.4.2. Under condition 2, all idempotents in C0 split through the same object they

live on. As a consequence, if an array of maps composes to the identity on an object A, then

all intermediate objects are isomorphic to A.

Corollary 3.4.3. A monoidal category V satisfying conditions of the proposition 3.4.2, and

the second of 3.4.3, has all small V-categories Cauchy complete.
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4
Comonadic base change

4.1 Introduction

Characterising Cauchy completeness of differential graded (DG) categories provided motiva-

tion for this chapter. We showed that a DGAb-module is Cauchy if and only if its underlying

GAb-module (or Ab-module) is: an enriched module is Cauchy (by definition) if it has a right

adjoint in the bicategory of modules, adjoints can be expressed using Kan extensions, and our

main theorem states that underlying 2-functors for certain comonads create Kan extensions

(Theorem 4.5.1).

Chain complexes of abelian groups (also called differential graded Abelian groups) form a

symmetric monoidal closed category DGAb (explained in detail in Section 4.2) which can be

53
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obtained as a category of coalgebras for a Hopf ring1 in Ab, the symmetric monoidal closed

category of abelian groups [28]. DGAb has a full symmetric monoidal closed subcategory

GAb, consisting of graded abelian groups seen as complexes with trivial differential, which

can also be obtained as a category of coalgebras of a different Hopf ring in Ab.

In Section 4.3 we consider Hopf monoids A in an arbitrary symmetric monoidal category

V. We need a braiding in the category of (co)algebras in order to consider Hopf monoids

H there, which is obtained using a braiding (co)element [16], and symmetry in V. Their

semidirect product H¸A, called bosonization in [26], is also a Hopf monoid, and its category

of (co)algebras is isomorphic to the category of H-(co)algebras. A particular example, when

V is additive, resembles the V “ Ab case, and Pareigis’ ring is an instance of it, see Section

4.4.

Semidirect product works even when V has no braiding if we consider Hopf monoidal

comonads [10], or dually Hopf opmonoidal monads [8], not necessarily induced by tensoring

with a Hopf monoid. These are comonads in the 2-category of monoidal categories, monoidal

functors and monoidal natural transformations, in the sense of [29], with a Hopf condition: the

fusion maps are invertible. In order to study categories, and modules between them, enriched

in a category of coalgebras, in Section 4.5, we generalize further, by considering comonads

in Caten [20], whose objects are bicategories, arrows are categories enriched on 2-sides, and

2-cells are enriched functors. Then, a change of base along the forgetful functor U : VG ÝÑ V

induces comonadic arrows in Caten Ū : VG-Cat ÝÑ V-Cat and Ũ : VG-Mod ÝÑ V-Mod. The

main theorem (4.5.1) states that when a comonad in Caten is Hopf, the comonadic forgetful

functor creates left Kan extensions. Left extensions (dually liftings) are a generalization of

left (dually right) cohoms from monoidal to bicategorical setting, so if V is (a suspension of)

a monoidal category, U creates cohoms and duals. Adjunctions in a bicategory can also be

expressed using left extensions, so Ũ creates Cauchy modules.

1The word “ring” will denote a monoid in an additive monoidal category. We save the word “(co)algebra”

for (co)algebras for a (co)monad.
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4.2 (Differential) graded abelian groups

The category DGAb (differential graded abelian groups) has chain complexes A, B, as objects.

They are defined by diagrams in Ab

. . .
d
ÝÑ An`1

d
ÝÑ An

d
ÝÑ An´1

d
ÝÑ . . . (4.2.1)

with group homomorphisms d (full notation would be dAn ) satisfying d ˝ d “ 0. An arrow

f : A Ñ B, called chain map, consists of group homomorphisms fn : An Ñ Bn, indexed by

integers, satisfying

fn ˝ d “ d ˝ fn´1 . (4.2.2)

DGAb is monoidal with tensor product defined by

pAbBqn “ Σi`j“nAi bBj (4.2.3)

dpab bq “ dab b` p´1qiab db, for a P Ai and b P Bj . (4.2.4)

The unit is given by In “ δn0Z. There is a symmetry

σpab bq “ p´1qijbb a (4.2.5)

and a closed structure

rB,Csn “
ź

j

AbpBj , Cj`nq (4.2.6)

pdfqjb “ dpfjpbqq ´ p´1qnfj´1pdbq, for f P rB,Csn and b P Bj . (4.2.7)

The category DGAb can be obtained as the EM-category of P -coalgebras, for a Hopf ring

P [28]

P “ Zxξ, ξ´1, ψy{pξψ ` ψξ, ψ2q (4.2.8)

∆pξq “ ξ b ξ, εpξq “ 1 (4.2.9)

∆pψq “ ψ b 1` ξ´1 b ψ, εpψq “ 0 (4.2.10)

spξq “ ξ´1 (4.2.11)

spψq “ ψξ (4.2.12)

where ∆ is the comultiplication, s is the antipode, and corner brackets denote non-commutativity.



56 Chapter 4. Comonadic base change

4.2.1 GAb

The category of graded abelian groups, denoted GAb, can be seen as a full subcategory of

DGAb consisting of chain complexes with all d “ 0. GAb inherits symmetric monoidal closed

structure, which follows from (4.2.4) and (4.2.7). On the other hand, there is a forgetful

functor U : DGAb Ñ GAb, with adjoints L % U % R given by

LpCqn “ Cn`1 ‘ Cn (4.2.13)

RpCqn “ Cn ‘ Cn´1 (4.2.14)

d “

»

–

0 1

0 0

fi

fl . (4.2.15)

U reflects isomorphisms, since f´1 satisfies (4.2.2) if and only if f does. The functor U ,

having both adjoints, preserves all limits and colimits, in particular U -split equalizers and

coequalizers. Hence, U is both comonadic and monadic.

There is a functor Σ : GAb Ñ Ab that takes the coproduct (sum) of all components. It

has a right adjoint which creates Z copies of an abelian group. The diagram below summarises

all relevant adjunctions.

DGAb GAb Ab
K

K K

L

U

R C

Σ (4.2.16)

Both Σ ˝ C and R ˝ U are comonads isomorphic to tensoring with a certain Hopf ring in

Ab and GAb respectively. In section 4.3 we discuss the semidirect product construction in

general, and then in section 4.4 we show that the Pareigis biring is the semidirect product of

the two birings generating Σ ˝ C and R ˝ U .

4.3 Semidirect product

LetW “ VAb´ be the category of algebras for a (Hopf) bimonoid A in a symmetric monoidal

(closed) V. For W to be braided we need A to have a braiding element γ : I Ñ A b A
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satisfying the three axioms at page 58 of [16], which we quote here in the form we are going

to use later (half-turned compared to the ones in [16]; that is, we read from top to bottom):

= (4.3.1)

= (4.3.2)

= (4.3.3)

Explicitly, the braiding of pX,αXq and pY, αY q is2

sXY “ XY
γ11
ÝÝÑ AAXY

1σ1
ÝÝÑ AXAY

αXαY
ÝÝÝÝÑ XY

σ
ÝÑ Y X (4.3.4)

For an A-algebra pX,αXq define

τX “ AX
δ1
ÝÑ AAX

1σAX
ÝÝÝÑ AXA

αX1
ÝÝÝÑ XA . (4.3.5)

Proposition 4.3.1. If X is a monoid in W, then τX is a distributive law in V.

Proof. There are 4 axioms to check. The two involving unit and multiplication for A use the

compatibility of unit with the comultiplication of A, and the bimonoid axiom, respectively.

The two involving unit and multiplication for X follow from the fact that they are A-algebra

morphisms.

Let H be a (Hopf) bimonoid in W. It automatically inherits a (co)monoid structure in V

by forgetting that (co)unit and (co)multiplication maps are A-algebra morphisms. Note that,

unless γ “ η b η, H need not be a bimonoid in V.
2We sometimes omit writing b.
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Definition 4.3.1. The semidirect product of a bimonoid A in V and a bimonoid pH,αHq

in A-Mod, denoted H ¸ A, is given by the object HA, with monoid structure given via the

distributive law τH , and comonoid structure via the codistributive law sAH . Using a thick line

for H, thin line for A, the multiplication and the comultiplication of H ¸ A are given by the

following string diagrams

(4.3.6)

where all relevant arrows in V are uniquely determined by their source and target, so there is

no need for labelling.

Proposition 4.3.2. The semidirect product, H ¸ A, is a bimonoid in V. If H and A are

Hopf, with antipodes graphically represented by dots, then so is H¸A, with the antipode given

by diagram (4.3.7).

(4.3.7)

Proof. The defined (co)multiplication is already part of a (co)monoid structure. The compat-

ibility of counit with unit, counit with multiplication and unit with comultiplication follows

directly. What remains to show is the bimonoid axiom, which we have done using the manip-

ulation of string diagrams shown in Figure 4.3 and described below.

In line (4.3.8), after rearrangement we used the compatibility of multiplication of A with

action of A on H, in the bottom right corner of the middle diagram.

Going from line (4.3.8) to line (4.3.9) we used the bimonoid axiom for A on the top-left part

of the diagram, followed by the (co)associativity for A. In the line (4.3.9) we used the element

axiom (4.3.1). When passing from line (4.3.9) to line (4.3.10) we used the (co)associativity

for A, together with the bimonoid axiom for A, in the right side of the diagram. In the line

(4.3.10) we used the element axiom (4.3.2) on the top-left. Line (4.3.10) to (4.3.11) involves
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“ “ (4.3.8)

“ “ (4.3.9)

“ “ (4.3.10)

“ “ (4.3.11)

“ “ (4.3.12)

“ (4.3.13)

Figure 4.1: Diagrams used in the proof of Proposition 4.3.2.
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just a rearrangement, followed by the element axiom (4.3.3), on the left of the diagram, in

line (4.3.11).

Passing from line (4.3.11) to line (4.3.12) uses the compatibility of multiplication of A with

action of A on H at three different places. In line (4.3.12) we used that the (co)multiplication

of H is an A-algebra morphism. Finally, going from line (4.3.12) to line (4.3.13) uses the

bimonoid axiom for H.

That (4.3.7) is indeed an antipode follows in a similar way. The strategy to show the

“right inverse” axiom is to use the compatibility of αH with µA, and bimonoid axioms to

get all comultiplications to the top, and multiplications to the bottom of the diagram, and

then use the right inverse axiom for A multiple times, followed by the right inverse axiom for

H. The strategy to show the “left inverse” axiom is to bring all actions αH below µH , using

the definition of action on the product of algebras, followed by the left inverse axiom for H,

followed by the compatibility of εA with µA, and the left inverse axiom for A.

Proposition 4.3.3. The comparison functor

WHb´ F
ÝÑ VH¸Ab´ (4.3.14)

ppB,αBq, χBq ÞÑ pB,χB ˝ 1HαBq (4.3.15)

pf : B Ñ Cq ÞÑ pf : B Ñ Cq (4.3.16)

is strict monoidal and has a strict monoidal inverse

VH¸Ab´ F´1

ÝÝÑWHb´ (4.3.17)

pB, βq ÞÑ ppB, β ˝ ηH1A ˝ λ
´1
A q, β ˝ 1HηA ˝ ρ

´1
H q (4.3.18)

pf : B Ñ Cq ÞÑ pf : B Ñ Cq . (4.3.19)

Proof. Using Beck’s monadicity theorem, we show that the forgetful functor

WHb´ U
ÝÑ V (4.3.20)

ppB,αBq, χBq ÞÑ B (4.3.21)

pf : B Ñ Cq ÞÑ pf : B Ñ Cq (4.3.22)
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is monadic. Since U is the composite of two monadic functors, UH and UA, it has a left adjoint

and it reflects isomorphisms. The third criterion, not necessarily preserved by composition,

is the existence and preservation of U-split coequalizers. So, assume the parallel pair

f, g : ppB,αBq, χBq Ñ ppC,αCq, χCq (4.3.23)

in WHb´ has a split coequalizer h : C Ñ E in V. That is, there are maps

E
s
ÝÑ C

t
ÝÑ B (4.3.24)

satisfying

h ˝ s “ 1E (4.3.25)

f ˝ t “ 1C (4.3.26)

s ˝ h “ g ˝ t . (4.3.27)

Monadicity of UA implies that E is an A-algebra, with action

αE “ pAE
1s
ÝÑ AC

αC
ÝÝÑ C

h
ÝÑ Eq (4.3.28)

and that h is a coequalizer in W, but not necessarily split. The proof involves the following

identities

h ˝ αC ˝ 1s ˝ 1h “ h ˝ αC ˝ 1g ˝ 1t (4.3.29)

“ h ˝ αC ˝ 1f ˝ 1t (4.3.30)

“ h ˝ αC (4.3.31)

where the first equality follows from (4.3.27), the second from h ˝ f “ h ˝ g and the fact

that f and g are A-algebra morphisms, and the third comes from (4.3.26). Exactly the same

equalities hold with A replaced by H, for the same reasons:

h ˝ χC ˝ 1s ˝ 1h “ h ˝ χC ˝ 1g ˝ 1t (4.3.32)

“ h ˝ χC ˝ 1f ˝ 1t (4.3.33)

“ h ˝ χC . (4.3.34)
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Now, the map

χE “ pHE
1s
ÝÑ HC

χC
ÝÝÑ C

h
ÝÑ Eq (4.3.35)

is an A-algebra morphism

χE ˝ αHαE ˝ 1σAH1 ˝ δA11
def.
“ h ˝ χC ˝ 1s ˝ 1h ˝ αHαC ˝ 1σAH1 ˝ δA1s (4.3.36)
(4.3.34)
“ h ˝ χC ˝ αHαC ˝ 1σAH1 ˝ δA1s (4.3.37)

χCPW
“ h ˝ αC ˝ 1χC ˝ 11s (4.3.38)

(4.3.31)
“ h ˝ αC ˝ 1s ˝ 1h ˝ 1χC ˝ 11s (4.3.39)

def.
“ αE ˝ 1χE (4.3.40)

compatible with unit and multiplication on H, which follows from the compatibility of χC

with unit and multiplication and equations (4.3.25) and (4.3.34). Therefore ppE,αEq, χEq is

an object of VHb´.

The arrow h : C Ñ E is an H-algebra morphism, which follows directly from (4.3.34). To

show that it coequalizes f and g, take ppX,αXq, χXq to be an H-algebra inW andm : C Ñ X

anH-algebra morphism satisfyingm˝f “ m˝g. In V, m˝s : E Ñ X is the unique comparison

map, since h is the coequalizer of f and g. But m ˝ s is an H-algebra

m ˝ s ˝ χE
def.
“ m ˝ s ˝ h ˝ χC ˝ 1s (4.3.41)
(4.3.27)
“ m ˝ g ˝ t ˝ χC ˝ 1s (4.3.42)

“ m ˝ f ˝ t ˝ χC ˝ 1s (4.3.43)
(4.3.26)
“ m ˝ χC ˝ 1s (4.3.44)

mPVHb´
“ χX ˝ 1m ˝ 1s (4.3.45)

completing the proof that U is monadic.

The comparison functor F is strict monoidal: F pppB,αBq, χBq b ppC,αCq, χCqq is given
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by the following action
H A B C

(4.3.46)

while F ppB,αBq, χBq b F ppC,αCq, χCq is given by the following action

H A B C

(4.3.47)

which are equal because αB is compatible with multiplication on A.

Example 4.3.1. When V “ pSet,ˆq, the comultiplication is forced to be the diagonal map,

A is a monoid - with identity eA, and the only possible braiding element is peA, eAq. An

A-algebra bimonoid H is the same as a monoid morphism φ : A Ñ EndpHq, and H ¸ A is

precisely the semidirect product for monoids generalizing the one for groups.

4.4 Birings

In this section we consider a particular choice for bimonoids in a braided monoidal additive

category with direct sums preserved by tensoring. Braiding, being a natural transformation

between additive functors, is compatible with direct sums - for H “ A‘B and H 1 “ A1‘B1

σHH 1 “

»

—

—

—

—

—

—

–

σAA1 0 0 0

0 0 σBA1 0

0 σAB1 0 0

0 0 0 σBB1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.4.1)

which can be concisely written by specifying non-zero components

AA1

AB1

BA1

BB1

A1A
A1B
B1A
B1B

σAA1

σAB1

σBA1

σBB1

(4.4.2)
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where concatenation is the tensor product and vertical empty space is the direct sum.

4.4.1 Grading Hopf ring

Let W be a symmetric monoidal additive category with direct sums preserved by tensoring.

We also assume W has countable coproducts, and denote by Z ¨ C the copower of the object

C PW by the set of integers Z. In particular, there is an object

Z :“ Z ¨ I . (4.4.3)

The addition of integers gives Z a group (Hopf monoid) structure in pSet,ˆq, and induces a

Hopf ring structure on Z, given by

I – t˚u ¨ I Z ¨ I pZˆ Zq ¨ I – Z b Z .
! ¨ I

0 ¨ I

∆ ¨ I

` ¨ I

(4.4.4)

Tensoring with Z gives a functor isomorphic to taking a copower by Z

Z b C “ pZ ¨ Iq b C (4.4.5)

– Z ¨ pI b Cq (4.4.6)

– Z ¨ C . (4.4.7)

Since W is symmetric monoidal, the category Z-CoAlg of Z-coalgebras is monoidal, and

with a braiding coelement given by

pZˆ Zq ¨ I I

I

cij

p´1qij
γ (4.4.8)

Z-CoAlg becomes braided. Arrows cij denote coproduct coprojections, and γ satisfies the

coelement axioms, dual to the element axioms drown in (4.3.1)-(4.3.3). Because of duality,

we need to invert the direction (read the diagrams from bottom to top):

i j

pi` jqp´1qij

=

i j

p´1qjipj ` iq

(4.4.9)
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i j k

p´1qipj`kq

=

i j k

p´1qijp´1qik

(4.4.10)

i j k

p´1qikp´1qjk

=

i j k

p´1qpi`jqk

(4.4.11)

Z-CoAlg inherits direct sums: if B β
ÝÑ Z ¨B and C γ

ÝÑ Z ¨ C are Z- coalgebras, then

B

C

Z ¨B
Z ¨ C

β

γ
(4.4.12)

is a Z-coalgebra as well, and the braiding induced from the cobraiding element γ is automat-

ically compatible with direct sums.

Example 4.4.1. When W “ Ab, the biring Z “ Zrx, x´1s is the Laurent polynomial ring

with integer coefficients. The coring structure is given by 1 Ð [ x ÞÑ xb x. Then

GAb ÑZ-CoAlg (4.4.13)

C ÞÑΣCn
ξ
ÝÑ Z b ΣCn (4.4.14)

c P Cn ÞÑ xn b c (4.4.15)

is an equivalence of categories. Consider a Z-coalgebra

B
β
ÝÑ Z bB (4.4.16)

b ÞÑ Σix
i b β

pbq
i (4.4.17)

β being a group homomorphism ensures that

β
pbq
i ` β

pb1q
i “ β

pb`b1q
i and βp0qi “ 0 (4.4.18)

which enable us to define abelian subgroups

Bi “ tβ
pbq
i |b P Bu (4.4.19)
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while the compatibility with counit and comultiplication give

Σiβ
pbq
i “ b (4.4.20)

β
pβ
pbq
i q

j “ δi,jβ
pbq
i (4.4.21)

which ensure that

B “ ΣiBi (4.4.22)

δi,j denotes the Kronecker delta, it equals 1 when i “ j and 0 otherwise.

The braiding coelement (4.4.8) corresponds to the group homomorphism

Zrx, x´1s b Zrx, x´1s
γ
ÝÑ Z (4.4.23)

xi b xj ÞÑ p´1qij (4.4.24)

and gives a braiding (symmetry, in fact) in GAb.

4.4.2 Differential Hopf ring

Let V be a braided monoidal additive category with direct sums preserved by tensoring.

Proposition 4.4.1. An object D with braiding σDD “ ´1DD induces a Hopf ring H “ D‘I,

whose monoid structure HH µ
ÝÑ H

η
ÐÝ I has non-zero components

DD
DI
ID
II

D
I

I .
ρ :“ ρD

λ :“ λD

i :“ ρI “ λI

1 (4.4.25)

the comonoid structure p∆, εq has inverses of (4.4.25) as non-zero components, and the anti-

pode is

S “

»

–

´1 0

0 1

fi

fl .

Proof. The (co)associativity and (co)unit axioms follow from coherence for monoidal categor-

ies, after noting that a component is non-zero if and only if it contains either one D in its

source and target, or none.

The compatibility of unit with counit and comultiplication is obvious.
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The bimonoid axiom

HH
∆∆
ÝÝÑ HHHH

1σ1
ÝÝÑ HHHH

µµ
ÝÑ HH (4.4.26)

“ HH
µ
ÝÑ H

∆
ÝÑ HH (4.4.27)

imposes that

DD

DI

ID

II

DIID

DIII

IDDI

IDII

IIDI

IIID

IIII

DIID

DIII

IDDI

IDII

IIDI

IIID

IIII

DD

DI

ID

II

ρ´1λ´1

λ´1ρ´1

ρ´1i´1

λ´1i´1

i´1ρ´1

i´1λ´1

i´1i´1

1σII1

1σDD1

1σII1

1σDI1

1σID1

1σII1

1σII1

ρλ

λρ

ρi

λi

iρ

iλ

iλ

(4.4.28)

equals
DD
DI
ID
II

D
I

DD
DI
ID
II

ρ

λ

i

ρ´1

λ´1

i´1

(4.4.29)

which follows from σDD “ ´1, braiding coherences [17]: σDI “ λ´1 ˝ ρ, σID “ ρ´1 ˝ λ and

σII “ 1, and coherences for unit and associator.

Finally, the Hopf axioms hold, for example the left inverse part gives

D
I

DI
ID
II

DI
ID
II

D
I

ρ´1

λ´1

i´1

´1

1

1

ρ

λ

i

(4.4.30)

equals

D
I

I
D
I

1 1 (4.4.31)

V as a category of coalgebras

Let W be a symmetric monoidal additive category with direct sums preserved by tensoring,

and A a biring there, with a braiding coelement Ab A γ
ÝÑ I. Take V “ A-CoAlg. Now D as
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an A-coalgebra is an object of W, together with a coaction d : D Ñ AbD satisfying

pγ11q ˝ p1σAD1q ˝ pddq ˝ σDD “ ´1DD (4.4.32)

where on the left we have the braiding in V and σ is the symmetry in W. From Proposition

4.4.1, we have that H “ D ‘ I with the coaction

D

I

AD

A

d

η
(4.4.33)

is a Hopf ring in V. Hence, by (the dual of) Proposition 4.3.2, there is a semidirect product

H ¸A “ DA‘A, with the Hopf ring structure in W having components

DADA
DAIA
IADA
IAIA

DA
IA

I
1µ

1µ ˝ sAD1

µ

η (4.4.34)

DADA
DAIA
IADA
IAIA

DA
IA

I .
1δ

τD1 ˝ 1δ

δ

ε (4.4.35)

Pareigis’ example

Finally, take W “ Ab, and A “ Zp“ Zrx, x´1sq. The coalgebra pD, dq can be thought of as a

graded abelian group, see Example 4.4.1. Let di P Di and d1j P Dj . Condition (4.4.32) gives

p´1qijd1j b di “ ´di b d
1
j (4.4.36)

which forces all Dj “ 0, except for j “ i for a fixed odd i. In addition, Di can have only one

generator, call it d.

The biring pD‘Zq¸Zrx, x´1s has underlying abelian group Q :“ Zrx, x´1s‘DbZrx, x´1s,

with (co)unit and (co)multiplication determined using (4.4.34) and (4.4.35):

Q
ε
ÝÑ Z (4.4.37)

db xj ÞÑ 0

xj ÞÑ 1
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Z η
ÝÑ Q (4.4.38)

1 ÞÑ x0

Q
δ
ÝÑ QbQ (4.4.39)

db xj ÞÑ db xj b xj ` xi`j b db xj

xk ÞÑ xk b xk

QbQ
µ
ÝÑ Q (4.4.40)

db xj b db xk ÞÑ 0

db xj b xk ÞÑ db xj`k

xj b db xk ÞÑ p´1qjdb xj`k

xj b xk ÞÑ xj`k .

To see what the antipode is, consider the general antipode diagram (4.3.7), and label the

edges

dki

dki

p´1qkdki

xj

xi

p´1q´ipi`jq

x´pi`jq

(4.4.41)

where either k “ 1 and i is odd, or i “ k “ 0. So we have

Q
s
ÝÑ Q (4.4.42)

db xj ÞÑ p´1qjdb x´pi`jq

xj ÞÑ x´j .

When i “ ´1 and D´1 “ Z, we get exactly the Pareigis Hopf ring P , by identifying

ξ “ x (4.4.43)

ψ “ db x0 . (4.4.44)
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4.5 Comonadic base change via 2-sided enrichment

The forgetful functor VG U
ÝÑ V induces change of base functors

VG-Cat
U 1
ÝÑ V-Cat (4.5.1)

VG-Mod
rU
ÝÑ V-Mod . (4.5.2)

In this section we introduce the context in which U 1 and rU have right adjoints. It is given

by the tricategory Caten [20] whose objects are bicategories and homs are 2-categories of

categories enriched on 2-sides. First we give a short review of [20], where we also introduce

the notation for the rest of the section, and then generalize the notion of (Hopf) monoidal

comonad [8] to that level.

4.5.1 2-sided enrichment

Objects of Caten are bicategories V, W, etc. Their hom categories VpV, V 1q are sometimes

denoted VV 1V to shorten the notation. The horizontal composition is denoted by tensor product

b.

Arrows A :W Ñ V are called 2-sided enriched categories. They consist of:

• a set of objects ObA whose elements are denoted A, A1, etc. together with a span

ObA

ObW ObV

p´q´ p´q` (4.5.3)

assigning to each object A an object A´ in W and A` in V

• homs ApA,A1q, also denoted AA1A , defined to be functors

AA1A :WA1´
A´
Ñ VA

1
`

A`
(4.5.4)

• unit and composition natural transformations

1 WA´
A´

VA`A`

ηAñ

1A´

1A`

AAA

WA2´
A1´
ˆWA1´

A´ WA2´
A´

VA
2
`

A1`
ˆ VA

1
`

A` VA
2
`

A`

µA
1

AA2
ñ

b

b

AA2
A1
ˆAA1A AA2A (4.5.5)
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satisfying unit and associativity laws.

Composition of 2-sided enriched categories is given by composition of spans (pullback), com-

position of functors defining homs, and pasting unit and multiplication natural transforma-

tions.

A 2-cell F : AÑ B is an (enriched) functor consisting of

• a map of spans ObF “: F

F : ObAÑ ObB (4.5.6)

which means

pFAq´ “ A´, and pFAq` “ A` (4.5.7)

• natural transformations

FA1A : AA1A ñ BFA1FA (4.5.8)

which are compatible with unit and multiplication of A and B.

A 3-cell ψ : F Ñ E is an (enriched) natural transformation consisting of components

ψA : 1A` ñ BEAFA1A´ (4.5.9)

satisfying an enriched naturality condition (the filled in coherence 2-cells in V can be found

in [20])

AA1A pwq BEA1FA1 p1A1´q b B
FA1

FA pwq

BEA1EA pwq b BEAFAp1A´q BEA1FA pwq .

ψA1 b pFA
1

A qw

µ

pEA1A qw b ψA µ
(4.5.10)

All axioms, compositions, whiskerings, and the fact that Caten is a tricategory are ex-

plained in detail in [20].

Example 4.5.1. When W “ 1, A is precisely a category enriched in the bicategory V.

Example 4.5.2. When ObA “ ObW and p´q´ “ 1, A is precisely a lax functor from W to

V, and 2-cells are icons [21].
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Modules

Instead of (enriched) functors we could have chosen enriched modules M : A ÞÑ B as 2-cells.

They consist of

• functors

MA
B :WA´

B´
Ñ VA`B` (4.5.11)

• action natural transformations

WA1´
A´
ˆWA´

B´
WA1´
B´

VA
1
`

A`
ˆ VA`B` VA

1
`

B`

λA
BA1

ñ

b

b

AA1A ˆMA
B MA1

B

WA´
B1´
ˆWB1´

B´
WA´
B´

VA`
B1`
ˆ VB

1
`

B`
VA`B`

ρB
1

BAñ

b

b

MA
B1
ˆ BB1B MA

B
(4.5.12)

compatible with each other, and units and compositions in A and B.

A module morphism σ : M ñ N consists of natural transformations

σAB : MA
B ñ NA

B (4.5.13)

compatible with actions (4.5.12).

Module morphisms compose, and we get a category of modules between A and B, which

we call ModenpW,VqpA,Bq. When V is locally cocomplete ModenpW,Vq becomes a bicate-

gory equivalent to the bicategory of enriched modules ConvpW,Vq-Mod, where Conv denotes

internal hom in Caten for the usual product of bicategories [20].

Each functor F : A Ñ B defines a module F˚ : A ÞÑ B by taking (this is properly typed

because of (4.5.7))

pF˚qAB “BFAB :WA´
B´
Ñ VA`B` (4.5.14)

λABA1 “b pAA
1

A ˆ BFAB q
1pFA1A ˆ1q
ùùùùùùñ bpBFA1FA ˆ BFAB q

µFA
B,FA1

ùùùùñ BFA1B b (4.5.15)

ρB
1

BA “b pBFAB1 ˆ BB
1

B q
µB
1

B,FA
ùùùùñ BFAB b . (4.5.16)

Compatibility of ρ with µpBq and ηpBq are just the unit and associativity axioms for µpBq and

ηpBq. Compatibility of λ with µpAq and ηpAq follows by applying compatibility of the functor

F with µpAq and ηpAq, followed by unit associativity laws for µpAq and ηpAq.
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Similarly, each natural transformation ψ : F Ñ E has an induced module morphism,

ψ˚ : F˚ Ñ E˚ (4.5.17)

pψ˚q
A
B :“ BFAB ñ BEAB (4.5.18)

ppψ˚q
A
Bqw “ BFAB pwq

ψAb1
ùùùñ BEAFAp1A´q b BFAB pwq (4.5.19)

µFAB,EA
ùùùùñ BEAB pwq .

To see that ψ˚ is compatible with λ, tensor diagram (4.5.10) by BFAB pw1q, whisker the resulting

square with µpBq on the right, and add obvious commutative squares to get the required

compatibility. Compatibility with ρ follows from associativity of µpBq. Also, every module

morphism between modules induced by functors gives rise to a natural transformation. Given

σAB : BFAB ñ BEAB (4.5.20)

we can form

σA : 1A`
ηFA
ùùñ BFAFAp1A´q

pσAFAq1A´
ùùùùùùñ BEAFAp1A´q (4.5.21)

and the natural transformation axiom (4.5.10) is witnessed by commutativity of

AA1A pwq

AA1A pwq b BFAFAp1A´q

AA1A pwq b BEAFAp1A´q

BFA1FA1 p1A1´q bA
A1

A pwq

BEA1EA pwq b BEA
1

FA p1A´q

BEA1FA1 p1A1´q bA
A1

A pwq

BEA1FA1 p1A1´q b B
FA1

FA pwq

BEA1FA pwq

BFA1FA pwq

BFA1FA pwq b BFAFAp1A´q

BFA1FA1 p1A1´q b B
FA1

FA pwq

BFA1FA pwq

1b ηFA

1b pσAFAq1A´

pEA1A qw b 1
µ

ηFA1 b 1
pσA

1

FA1
q1A1

´

b 1

1b pFA1A qw

µ

pFA1A qw

pFA1A qw b 1

1b pFA1A qw

pσA
1

FA1
q1A1

´

b 1

pσA
1

FAqw

ηFA1 b 1

µ1b ηFA

µ

1
(4.5.22)

where the hexagon and the bottom right square are compatibility conditions between module

morphism σ and actions (4.5.15) and (4.5.16) respectively.

Proposition 4.5.1. The functor

p´q˚ : CatenpW,VqpA,Bq Ñ ModenpW,VqpA,Bq (4.5.23)
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is full and faithful.

Proof. The processes of turning a natural transformation into a module morphism given

by (4.5.19) and the one turning module morphism of convergent modules into a natural

transformation, given by (4.5.21), are inverse to each other, as witnessed by the commuting

diagrams (4.5.24).

1A` BFAFAp1A´q

BEAFAp1A´q BEAFAp1A´q b BFAFAp1A´q

BEAFAp1A´q

ηFA

1b ηFA

1

ψA ψA b 1

µ

BFAB pwq

BFAFAp1A´q b BFAB pwq BFAB pwq

BEAB pwqBEAFAp1A´q b BFAB pwq
µ

µ

1

pσABqwpσAFAq1A´
b 1

ηFA b 1

(4.5.24)

4.5.2 Comonads in Caten

Let G : V Ñ V be a comonad in Caten, that is, a 2-sided enriched category with enriched

functors

1V
ε
ÐÝ G δ

ÝÑ G2 (4.5.25)

satisfying the three comonoid axioms. The existence of the span morphism ObG Obε
ÝÝÑ ObV

forcesG` “ G´ “ pObεqpGq “: G0, for allG. The two counit axioms give pObδqpGq “ pG,Gq.

With these simplifications, the remaining data for G is given by endofunctors

GG1G : VG
1
0

G0
Ñ VG

1
0

G0
(4.5.26)

and natural transformations with components

pµG
1

GG2qv1,v : GG2G1 pv1q b GG
1

G pvq ñ GG
2

G pv1 b vq (4.5.27)

ηG : 1G0 ñ GGGp1G0q (4.5.28)

pδG
1

G qv : GG1G pvq ñ pGG1G q2pvq (4.5.29)

pεG
1

G qv : GG1G pvq ñ v (4.5.30)
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satisfying enriched functor compatibility axioms, which together with the comonad axioms,

correspond exactly to the monoidal comonad axioms dual to opmonoidal monad ones appear-

ing in [8].

The bicategory of G-coalgebras

Each hom GG1G becomes a comonad in the usual sense (in Cat). Let VG denote a (soon to

become) bicategory with the same objects as G and with homs the categories of EM-coalgebras

VGpG,G1q :“ VpG0, G
1
0q

GpG,G1q . (4.5.31)

The identity coalgebra is p1G0 , ηGq and composition is given on coalgebras by

VGpG1, G2q ˆ VGpG,G1q Ñ VGpG,G2q (4.5.32)

pv1, γv1q, pv, γvq ÞÑ pv1 b v, pµG
1

GG2qv1,v ˝ pγv1 b γvqq .

The assigned map is a coalgebra: compatibility with δ is witnessed by commutativity of3

v1 b v

Gv1 b Gv

Gpv1 b vq GpGv1 b Gvq G2pv1 b vq

Gpv1 b vqGv1 b Gv

G2v1 b G2v

γ b γ

µ

Gpγ b γq Gµ

δ

µγ b γ

Gγ b Gγ

δ b δ

µ
µpG

2q

(4.5.33)

where the upper left square is a componentwise compatibility of local coalgebras γ with

comultiplication, the bottom left square is naturality of µ, the triangle is the definition of

composition for the composite category, and the remaining square is compatibility of the en-

riched functor δ with compositions in its source and target, which one can also identify as a

typical bimonoid (bialgebra) axiom. Similarly, ε being an enriched functor implies compatibil-

ity of (4.5.32) with ε. The assignment extends to coalgebra morphisms, which follows directly

from naturality of µ. The unitors and associators are inherited from V, they are coalgebra

morphisms, and satisfy the usual monoidale axioms as they do in V.
3When indices are omitted they can be deduced from the context. For example, GG

1

G pvq is the full notation.
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There is an underlying (strict) functor U : VG Ñ V sending G to the underlying object

G0 in V, and disregarding the colagebra structure on homs. By construction, each UV 1V has a

right adjoint RV 1V , and by Theorem 2.7 of [20] the right adjoints are part of a 2-sided enriched

category R : V Ñ VG which has the same objects as G, with span legs given by G´ “ G0 and

G` “ G, with unit and multiplication given by

pµ
pRqG1
GG2 qv1,v :RG2G1 pv1q bRG

1

G pvq ñ RG
2

G pv
1 b vq (4.5.34)

“pGv1 b Gv, µv1,v ˝ pδv1 b δvqq
µv1,v
ùùñ pGpv1 b vq, δv1bvq (4.5.35)

η
pRq
G :1G ñ RGGp1G0q (4.5.36)

“p1G0 , ηGq
ηG
ùñ pG1G0 , δ1G0

q . (4.5.37)

Now we have an adjunction in Caten.

VG VK

U

R

(4.5.38)

The counit and the unit of the adjunction are given by the enriched functors

U ˝R “ G ε
ÝÑ 1V (4.5.39)

1VG
γ
ÝÑ R ˝ U (4.5.40)

pobγqpGq “ pG,Gq

pv, γv : v Ñ GG1G vq
γv
ùñ pGG1G v, δvq .

Now we present a version of Beck’s theorem that we are going to use in the rest of the chapter.

Proposition 4.5.2. Any 2-sided enriched category L :W Ñ V such that

• L has a right adjoint R in Caten

• L is locally conservative

• W has, and L preserves, local L-split equalizers

gives rise to an equivalence to W » VG, where G is the generated comonad G “ L ˝R.
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Proof. As was shown in [20], L has a right adjoint if and only if it is a pseudo-functor and

each functor LpL,L1q has a right adjoint, call it RpL,L1q. Then, the right adjoint R has the

same objects as L (and W, since L is a pseudo-functor), and homs are precisely RpL,L1q.

From the usual Beck (co-)monadicity theorem it follows that W » VG : they have the same

objects and equivalent homs.

The category CatenpX ,Vq has an induced comonad CatenpX ,Gq on it. In particular, when

X “ VG there is a natural coalgebra structure on U given by an enriched functor

U U˝γ
ÝÝÑ G ˝ U (4.5.41)

whose components are exactly γv : v ñ Gv.

Lemma 4.5.1. Let X be a bicategory. Whiskering with U

ModenpX ,VGqpA,Bq U˝´
ÝÝÝÑ ModenpX ,VqpU ˝A,U ˝ Bq (4.5.42)

is conservative and the source has, and pU ˝ ´q preserves, pU ˝ ´q-split equalizers.

Proof. LetM,N : A ÞÑ B be modules, and σ : M ñ N a module morphism, with components

pσABqx : MA
B pxq ñ NA

B pxq (4.5.43)

which are 2-cells in VG , natural in x P XA´B´ .

Let ψ : U ˝M ñ U ˝N be an inverse of U ˝ σ. This precisely means that the component

pψABqx : UNA
B pxq ñ UMA

B pxq (4.5.44)

is an inverse of the component 2-cell pσABqx in V. Since U is locally conservative, pψABqx is also

a coalgebra morphism. Hence, naturality squares for ψAB consist of the same arrows regardless

of whether it is seen as a morphism from UNA
B to UMA

B , or from NA
B to MA

B . Compatibility

of ψ with actions for M and N follows from the same compatibility conditions for σ and the

fact that they are inverse of each other.

Consider a pair σ, χ : M ñ N with a split equalizer

U ˝NU ˝ME
U ˝ σ
U ˝ χ
ψ

ξ

φ
(4.5.45)
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meaning that we have the following componentwise formulas:

pφABqx ‚ pξ
A
Bqx “ 1EABpxq

(4.5.46)

pψABqx ‚ pσ
A
Bqx “ 1UMA

B pxq
(4.5.47)

pψABqx ‚ pχ
A
Bqx “ pξ

A
Bqx ‚ pφ

A
Bqx . (4.5.48)

This in particular means that the pair pσABqx, pχ
A
Bqx : MA

B pxq ñ NA
B pxq has a UA`B` -split

equalizer in VA`0

B`0
. Since UA`B` is comonadic, pξABqx is an equalizer of pσABqx and pχABqx in VA`B` ,

with an algebra structure on its source

γEABpxq
:“ EABpxq

pξABqx
ùùùñ UMA

B pxq

γ
MA
B
pxq

ùùùùñ GA`B`UM
A
B pxq (4.5.49)

GA`B` pφ
A
Bqx

ùùùùùùñ GA`B`E
A
Bpxq .

The action components for the module E are coalgebra morphisms, the proof for λ (dually

for ρ) comes from the diagram (4.5.50) (all indices can be deduced from the top left term).

AA1A px1q b EABpxq

GAbM

GAb GM

GAb GE GpAb Eq GE

E

M

GM

AbM

GpAbMq

γ b ξ

1b γ

1b Gφ

µ Gλ

λ

ξ

γ

Gφ

1b ξ

λ

γ b γ

µ

Gλ

γ

Gp1b φq

(4.5.50)

Diagrams for compatibility of actions of E with units and multiplications in A and B are the

same as the ones for U ˝A and U ˝B. This proves that E : A ÞÑ B is a module. Components

pξABqx are natural in x, and compatible with actions of E as coalgebra morphisms because

they are natural and compatible as usual arrows. This proves that ξ is a module morphism

between E (with coalgebra structure) and M .
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It remains to show that ξ is an equalizer of σ and χ, so assume L ω
ÝÑ M is another VG-

module morphism satisfying σ ‚ ω “ χ ‚ ω. The components of φ ‚ ω, obtained by composing

components of φ and ω, are coalgebra maps since U is locally comonadic, and naturality in x

and compatibility with actions follows as for ξ.

Corollary 4.5.1. Whiskering with U

CatenpX ,VGqpA,Bq U˝´
ÝÝÝÑ CatenpX ,VqpU ˝A,U ˝ Bq (4.5.51)

is conservative and the source has, and pU ˝ ´q preserves, pU ˝ ´q-split equalizers.

Proof. Direct consequence of Proposition 4.5.1, Lemma 4.5.1, and commutativity of p´q˚ with

U ˝ ´.

Proposition 4.5.3. The bicategory VG is an EM-object for the comonad G in Caten.

Proof. Mapping out of X ,

CatenpX ,´q : Caten Ñ 2-CAT (4.5.52)

is a pseudo-functor, therefore preserves adjunctions. In particular, applying it to (4.5.38)

gives

CatenpX ,VGq CatenpX ,Vq .K

U 1 :“ CatenpX ,Uq

R1 :“ CatenpX ,Rq

(4.5.53)

The composite is isomorphic to CatenpX ,Gq, and what remains to show is that U 1 is comonadic

in the sense of Proposition 4.5.2. It has a right adjoint R1, and the rest follows from Corollary

4.5.1.

4.5.3 Hopf comonads

Definition 4.5.1. A comonad G is left Hopf if, for all G, G1, G2, v P VGpG,G1q and v1 P

VpG10, G20q, the fusion map

vv1,v : Gv1 b Uv 1bγv
ùùùñ Gv1 b GUv

pµG
1

G,G2
qv1,Uv

ùùùùùùùñ Gpv1 b Uvq (4.5.54)
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is invertible. This is equivalent to (left) Hopf maps

hv1,v : Rv1 b v 1bγv
ùùùñ Rv1 bRUv

pµG
1

G,G2
qv1,v

ùùùùùùùñ Rpv1 b Uvq (4.5.55)

being invertible.

Proposition 4.5.4. The inverse fusion maps are G-compatible in the first variable, meaning

Gpv1 b vq

v1 b v Gv1 b v

v´1
v1,vεv1bv

εv1b1

Gpv1 b vq Gv1 b v G2v1 b v

G2pv1 b vq GpGv1 b vq

v´1
v1,v δv1b1

v´1
Gv1,vδv1bv

Gv´1
v1,v

(4.5.56)

as well as compatible with any coalgebra structure existing on v1, in the sense

Gpv1 b vq

v1 b v Gv1 b v .

v´1
v1,vγv1bv

γv1b1

(4.5.57)

Proof. Follows directly from the commuting diagrams:

Gpv1 b vq Gv1 b Gv

v1 b v Gv1 b v

µv1,v

1bγv
εv1bεv

εv1bv

εv1b1

(4.5.58)

Gv1 b v

Gpv1 b vq Gv1 b Gv G2v1 b v

G2v1 b G2v G2v1 b Gv

G2pv1 b vq GpGv1 b Gvq GpGv1 b vq

δb1
1bγ

δbγ

µ

1bγδbδ

µ

1bGγ
δ

Gµ

µ

Gp1bγq

(4.5.59)

Gpv1 b vq Gv1 b Gv

v1 b v Gv1 b v

µv1,v

1bγv
γv1bγv

γv1bv

γv1b1

(4.5.60)
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Theorem 4.5.1. If the comonad G is left Hopf, then the underlying (pseudo-)functor U :

VG Ñ V creates left Kan extensions.

Proof. Consider two coalgebras pu, γuq and pv, γvq whose underlying arrows have a left exten-

sion k “ lanvu as shown

G G1

G2

G0 G10

G20

.

U

pu, γuq

pv, γvq

pk, γkq

u

v

k
κñ

(4.5.61)

The universal property of left Kan extensions says there is a bijection

φ : uñ l b v (4.5.62)

φ̄ : k ñ l (4.5.63)

such that φ “ pφ̄ b 1q ‚ κ. In particular, there is a map γk : k Ñ Gk corresponding to

u
γu
ùñ Gu Gκ

ùñ Gpk b vq
v´1
k,v
ùùñ Gk b v such that the diagram below commutes.

u Gu Gpk b vq

k b v Gpkq b v

γu Gκ

v´1
k,v

κ

γkb1
(4.5.64)

The obtained arrow, γk, defines an coalgebra structure on k, the compatibility with δ and ε
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follows from
u

Gu k b v

k b v Gu G2u

Gpk b vq G2pk b vq Gpk b vq

Gk b v GpGk b vq Gk b v

G2k b v

κ γ

γ κ

Gκ

Gγ

γb1

γb1

Gκ

δ

G2κ

v´1

δ

Gv´1 v´1

Gpγb1q

δb1 v´1

Gγb1

(4.5.65)

u k b v

u

Gu Gpk b vq

k b v Gk b v

κ

1

γ

κ

κ

ε

Gκ

ε

v´1

γb1

εb1 (4.5.66)

The 2-cell κ is a coalgebra morphism, which is obvious after substituting v´1 in (4.5.64).

To see that κ exhibits pk, γkq as a left extension of pu, γuq through pv, γvq, consider a

coalgebra pl, γlq : G1 Ñ G2, and a coalgebra morphism φ : uñ lb v. In V, the Kan extension

universal property gives φ̄ : k ñ l. From the following commuting diagram it follows that φ̄

is a coalgebra morphism.

u k b v

k b v Gu l b v

Gpk b vq Gpl b vq

Gk b v Gl b v

κ
γ

φ

κ

φ̄b1

γb1

Gκ
Gφ

γ

γb1

v´1

Gpφ̄b1q

v´1

Gφ̄b1

(4.5.67)
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Recall that m having an adjoint is equivalent to existence of a left Kan extension lanm1M

which is respected by m; that is, m ˝ lanm1M “ lanmm.

Corollary 4.5.2. With a Hopf-comonadic U : N ÑM, an arrow n P N pN,N 1q has a right

adjoint if and only if Un does.

Proof. U , being a pseudo functor, preserves adjoints.

The other way around, assume Un has a right adjoint, that is both lanUn1UN and lanUnUn

exist. From the previous theorem, lann1N exists and n ˝ lann1N is taken to Upn ˝ lann1N q –

Un ˝ lanUn1UN – lanUnUn which creates lannn.

Theorem 4.5.2. If V is locally cocomplete then the induced underlying functor is well-defined

N :“ ModenpX ,VGq
rU :“ModenpX ,Uq
ÝÝÝÝÝÝÝÝÝÝÑM :“ModenpX ,Vq (4.5.68)

and it is comonadic in CATEN. Denote its right adjoint by rR. If R preserves local colimits,

and G is Hopf, then the induced comonad rG :“ rU ˝ rR is also Hopf.

Proof. We will consider the case when X is the terminal bicategory: then N “ VG-Mod, and

M “ V-Mod. By Proposition 7.5 of [20], rU is a lax functor. First we show that it has local

right adjoints rRB
A given by

MpU ˝A,U ˝ Bq
rRB
A

ÝÝÑ N pA,Bq (4.5.69)

pU ˝A M
ÞÑ U ˝ B, αq ÞÑ pA

rRM
ÞÑ B, rRαq (4.5.70)

pσ : M ñ Nq ÞÑ p rRσ : rRM ñ rRNq (4.5.71)

where α denotes a 2-sided action (the analogous 1-sided ones are denoted by λ and ρ) and

the assignments are defined by

p rRMqAB :“ RMA
B (4.5.72)

p rRαqB
1,A

B,A1 :“ AA1A bRMA
B1 b BB

1

B (4.5.73)
γb1bγ
ùùùùñ RUAA1A bRMA

B1 bRUBB
1

B
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µpRq

ùùñ RpUAA1A bMA
B1 b UBB

1

B q

Rpαq
ùùùñ RMA1

B

p rRσqAB :“ RσAB “ σAB . (4.5.74)

Actions rRα, (or separately rRλ and rRρ) are compatible with unit and composition in A and B.

For example, compatibility of ρ with composition is witnessed by commutativity of diagram

(4.5.75).

RMA
B2 b BB

2

B1 b BB
1

B

RM bRUB b B

RpM b UBq b B

RM b B RM bRUB RpM b UBq RB

RM b B

RM bRUB

RpM b UBq

RM bRUB bRUB RM bRUpB b Bq

RpM b UBq bRUB

RpM b UB b UBq

RM bRpUB b UBq

RpM b UpB b Bqq

1b γ b 1

µpRq b 1

Rρb 1

1b γ µpRq Rρ

1b µpBq

1b γ

µpRq

Rρ

1b γ b γ

1b 1b γ

1b µpR˝Uq

1bRUµpBq

1b γ

µpRq b 1

Rρb 1
µpRq

Rpρb 1q

Rp1b µpU˝Bqq

1b µpRq
1bRµpUq

µpRq

µpRq

Rp1b µpUqq
Rp1b UµBq

(4.5.75)

In this, the non-obvious equalities might be the top pentagon, which is just stating that

components of µpBq are coalgebra morphisms, naturality of µ squares, and the bottom right

square obtained by applying R to compatibility of ρ with µpU˝Bq. Similarly, components of

ηpBq being coalgebra morphisms leads to compatibility of rRρ with ηpBq. Compatibility of rRσ

with rRρ (and rRλ) follows directly from the compatibility of σ with ρ (and λ).

The components of the unit and counit of the local adjunctions are given by components

of γ and ε:

η̃BA : 1N pA,Bq ñ rRB
ApU ˝ ´q (4.5.76)

ppη̃BAqN q
A
B “ γNA

B
: NA

B ùñ RUNA
B (4.5.77)

ε̃BA : U ˝ rRB
Ap´q ñ 1MpU˝A,U˝Bq (4.5.78)

ppε̃BAqM q
A
B “ εMA

B
: URMA

B ùñMA
B . (4.5.79)
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They form module morphisms, as witnessed by diagrams

NA
B b BB

1

B RUNA
B b BBB1

NA
B1

RUNA
B bRUBBB1

RpUNA
B b UBBB1q

RUNA
B1

RUpNA
B b BB

1

B qρpNq

γ

γ b 1

γ

µpRUq

RUρpNq

RµpUq

1b γ
γ b γ

µpRq

RρpUNq

(4.5.80)

URMA
B b UBBB1

UpRMA
B b BBB1q

UpRMA
B bRUBBB1q

URpMA
B b UBBB1q

URMA
B1

MA
B b UBBB1

MA
B1

URMA
B b URUBBB1

µpUq

Up1b γq

UµpRq

URρpMq

ε

εb 1

ρpMq

1b Uγ

εb ε

µpUq

µpURq ε
(4.5.81)

and they satisfy the adjunction axioms because γ and ε do. Since rU has local right adjoints,

it preserves local colimits, which, together with pseudofunctoriality of U , gives sufficient con-

ditions for pseudofunctoriality of rU ,

ř

UMA
B1 b UBB

1

B b UNB
C1

ř

UMA
B b UNB

C1 pUN ˝UB UMqAC1

ř

UpMA
B1 b BB

1

B bNB
C1q

ř

UpMA
B bN

B
C1q UpN ˝B MqAC1 .

Uρb 1

1b Uλ

coeq

Upρb 1q

Up1b λq Upcoeqq

coeq

ř

µpUq
ř

µpUq µp
rUq (4.5.82)

Since rU is a pseudofunctor and has local right adjoints, by Proposition 2.7 of [20], rR extends

to a 2-sided enriched category which is a right adjoint to rU . rU also satisfies the other two
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conditions of Proposition 4.5.2 as stated in Lemma 4.5.1. This completes the proof that rU is

comonadic.

Explicitly, the unit for rR is a module morphism defined using the enriched functor (4.5.40)

η
p rRq
A :“ pγ ˝Aq˚ (4.5.83)

and the multiplication components

rRpNq ˝B rRpMq µp
ĂRq

ùùñ rRpN ˝UB Mq (4.5.84)

are given by the right column of

ř

RMA
B1 b BB

1

B bRNB
C1

ř

RMA
B bRNB

C1 pRN ˝B RMqAC1

R
ř

MA
B1 b UBB

1

B bNB
C1 R

ř

MA
B bN

B
C1 RpN ˝UB Mq

A
C1

rRρb 1

1b rRλ

coeq

Rpρb 1q

Rp1b λq Rpcoeqq

pRiBB1 ‚ µpRq ‚ 1b γ b 1qBB1 pRiB ‚ µpRqqB µp
ĂRq (4.5.85)

where the top line is defining composition of modules in N , the bottom line is R applied to

the defining composition of modules in M, iB and iBB1 are the coproduct inclusions, and

p´qB denotes the induced map for mapping out of a coproduct.

For modules M P N pA,Bq and N PMpU ˝ B,U ˝ Cq, the (left) Hopf map, given by the

right column of

ř

MA
B1 b BB

1

B bRNB
C1

ř

MA
B bRNB

C1 pRN ˝B MqAC1

ř

RUMA
B1 b BB

1

B bRNB
C1

ř

RUMA
B bRNB

C1 pRN ˝B RUMqAC1

ř

RpUMA
B1 b BB

1

B bNB
C1q

ř

RpUMA
B bN

B
C1q RpN ˝UB UMqAC1

rRρb 1

1b rRλ

coeq

rRρb 1

1b rRλ

coeq

Rpρb 1q

Rp1b λq Rpcoeqq

coeq

ř

γ b 1b 1
ř

γ b 1 p1b γqA
C1

ř

µpRq ‚ 1b γ b 1
ř

µpRq µp
ĂRq

(4.5.86)

is invertible because the other two columns are invertible: they are determined by Hopf maps

for G.
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Example 4.5.3. Functors U and Σ from diagram (4.2.16) create duals and cohoms. An

abelian group A has a dual if and only if it is finitely generated and projective [35]. As a

consequence of Σ being Hopf-comonadic, a graded abelian group A has a dual if and only if it

has finitely many non-zero components each of which is finitely generated and projective. As

a consequence of U being Hopf-comonadic, a chain complex A has a dual if and only if its

underlying graded abelian group does.

Example 4.5.4. The change of base functors rU and rΣ, induced from U and Σ, create Cauchy

modules.
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5
Conclusion and outlook

To finalise, we slice and serve low-dimensional categories in a somewhat different way, com-

pared to the introduction.

We have used, or at least mentioned, various structures that satisfy strict associativity

and unit laws: monoids (in Set, or any monoidal V), monads, categories, lax functors, enrich-

ment, 2-sided enrichment. There are numerous interesting statements connecting them that

arise from this fact: monoids are one-object categories; monads are monoids in endohoms;

categories are monads in SpanpSetq; monads are one-object categories (enriched in a bicat-

egory); mapping out of 1 gives monads from lax functors, and enrichment (in a bicategory)

from 2-sided enrichment; 2-sided enrichment is a lax functor into the matrix construction on

the codomain bicategory [5].

Structures whose data is not strictly associative and unital, but only up to (invertible)

89
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associators and unitors satisfying 2-dimensional axioms, include: monoidal categories, mon-

oidales (pseudomonoids), pseudomonads, bicategories, bienrichment... Similarly to the above,

a bicategory V, bienriched1 [14] in a monoidal bicategory M, is a many-object version of a

monoidale inM. The tricategoryM-Caten ofM-bicategories and 2-sided enriched categories

was mentioned in [20]. Our analysis of Hopf comonads in Caten, Chapter 4, corresponds to

the M “ Cat case. However, it extends to any M which has EM-coalgebra objects, gener-

alizing Hopf monoidal comonads on monoidales [10]. Various Hopf concepts obtainable from

monoidal comonads on monoidales are summarised in [6]. Furthermore, duoidal categories, a

differently generalized context for bimonoids, are monoidales in MonCat. With addition of

2-cells, one could consider (Hopf) bimonoidales, or Frobenious monoidales.

There are structures whose associators and unitors do not satisfy axioms strictly, but have

one dimension higher (invertible) cells satisfying 3-dimensional axioms. We already mentioned

monoidal bicategories, which can be seen as one-object tricategories. The iterated enrichment

from the beginning of the introduction does not directly generalize to bienrichment since Bicat

is a genuine tricategory, but one can use icons [9] instead of pseudonatural transformations, or

by generalizing 1-cells, use 2-sided enrichment (M-Caten is a monoidal bicategory). Finally,

one could as well imagine 2-sided bienrichment as a convenient morphism of tricategories, and

a zoo of structures that could live there.

1weakly enriched, or just enriched
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Appendices

A.1 Simplices, intervals and shuffles

The algebraist’s delta, denoted by ∆a, is the full subcategory of Cat consisting of categories

xny whose objects are numbers 0, ..., n´1 and 1-cells are unique iÑ j when i ď j. The empty

category is denoted x0y. Arrows between xny and xn1y are functors; that is, order preserving

functions, generated by face and degeneracy maps

σni : xn` 1y Ñ xny, i “ 0, . . . , n´ 1 (A.1.1)

Bni : xny Ñ xn` 1y, i “ 0, . . . , n (A.1.2)

91



92 Appendix A. Appendices

which can be presented in a diagram

x0y x1y x2y x3y . . .B0
0

B1
1

σ1
0

B1
0

B2
2

σ2
1

B2
1

σ2
0

B2
0

(A.1.3)

A natural transformation between f and f̄ , if one exists, is unique and witnesses that fi ď f̄ i

for all i, turning ∆arxny, xn
1ys into a poset. The 2-category ∆a is equipped with a strict

monoidal structure, the ordinal sum ‘.

A.1.1 Intervals - free monoid

Denote by ∆KJ the subcategory of ∆a, called the category of intervals, consisting of relabelled

objects

rns :“ xn` 1y, n “ 0, 1, ... (A.1.4)

and 1-cells that preserve the first and the last element; it is generated by the arrows from the

inside of the diagram (A.1.3), represented by the bold part of

¨ r0s r1s r2s . . .σ1
0

σ2
1

B2
1

σ2
0

(A.1.5)

It is clear that suspension (moving nodes to the left) gives an isomorphism

∆op
KJ
– ∆a (A.1.6)

rns “ xn` 1y ÞÑ xny (A.1.7)

σni ÞÑ B
n´1
i , i “ 0, . . . , n´ 1 (A.1.8)

Bni ÞÑ σn´1
i´1 , i “ 1, . . . , n´ 1 (A.1.9)

The tensor product on ∆KJ is inherited from the ordinal sum under the isomorphism (A.1.6),

and has the interpretation of path concatination;

ξ : rns Ñ rms (A.1.10)
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ξ1 : rn1s Ñ rm1s (A.1.11)

concatinate to

ξ ` ξ1 : rn` n1s Ñ rm`m1s (A.1.12)

i ÞÑ

$

’

&

’

%

ξpiq, if i ď n

ξ1pi´ nq, otherwise.
(A.1.13)

In particular, every such 1-cell ξ can be decomposed

ξ “
n
ÿ

i“1

! : r1s Ñ rξis, with
n
ÿ

i“1

ξi “ m. (A.1.14)

The image of ξ under the isomorphism is an order preserving function that takes ξi points in

xmy to i P xny. An example of the isomorphism, for n “ 2 and m “ 3 can be visualized as

r3s

r2s

ξ

x3y

x2y

ξ̃

0 1 2 3

0 1 2

(A.1.15)

The embedding ∆KJ ãÑ ∆a is a monoidal functor with comparison maps representing

x0y
B0
0
ÝÑ x1y “ r0s (A.1.16)

rns ‘ rn1s “ xn` n1 ` 2y
zn,n1 :“σ

n`n1`1
n

ÝÝÝÝÝÝÝÝÝÝÑ xn` n1 ` 1y “ rns ` rn1s (A.1.17)

There is a functor

∆op
KJ

L
ÝÑ ∆a (A.1.18)

rns “ xn` 1y ÞÑ xn` 1y (A.1.19)

σni ÞÑ Bni`1, i “ 0, . . . , n´ 1 (A.1.20)

Bni ÞÑ σni , i “ 1, . . . , n´ 1 (A.1.21)

assigning to each 1-cell in ∆KJ its left adjoint (Galois connection) in ∆a. Explicitly, for

ξ : rns Ñ rms,

Lpξq : xm` 1y Ñ xn` 1y (A.1.22)
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i ÞÑ mintj|i ď ξpjqu. (A.1.23)

The functor L is oplax monoidal, with the same comparison maps (A.1.16)-(A.1.17), but the

naturality holds up to a 2-cell

Lpξ ` ξ1q ˝ zm,m1 ñ zn,n1 ˝ pLξ ‘ Lξ
1q. (A.1.24)

Dually, there is a lax monoidal functor ∆op
KJ

R
ÝÑ ∆a assigning right adjoints, with a 2-cell

Rpξ ` ξ1q ˝ zm,m1 ð zn,n1 ˝ pRξ ‘Rξ
1q. (A.1.25)

The free 2-category containing a monad [23] is obtained as the suspension of the monoidal

category of intervals,

FM :“ Σ∆KJ. (A.1.26)

A.1.2 Shuffles - free distributive law

A shuffle of xny and xmy in ∆a is defined to be a pair of complement embeddings xny Ñ

xn ` my Ð xmy. Shuffles in ∆KJ are inherited via the isomorphism (A.1.6) and have the

following explicit description:

rns
r
ÐÝ rn`ms

s
ÝÑ rms (A.1.27)

with the constraint

ri ` si “ 1 . (A.1.28)

The numbers ri and si are lengths (either 0 or 1 in this case) of the image of the ith subinterval

of rn `ms, as in (A.1.14). The condition (A.1.28) states that each subinterval maps to an

interval of length 1 either in rns or in rms.

An equivalent description of a shuffle is given by a relation of “appearing before in the

shuffle”

xmyop ˆ xny
l
ÝÑ x2y . (A.1.29)
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The same relation can be interpreted as a shuffle of segments rns and rms, for example

r2szr3s 0 1 2 3

0

1

2

0 1 1

0 0 0

(A.1.30)

A shuffle morphism pξ, ρq : pn,m, s, rq Ñ pn̄, m̄, s̄, r̄q consists of 1-cells ξ : rn̄s Ñ rns and

ρ : rm̄s Ñ rms in ∆KJ, such that the following 2-cell in ∆a exists

Lr ˝ ξ ˝ r̄ ñ Rs ˝ ρ ˝ s̄ . (A.1.31)

When ξ “ 1rns and ρ “ 1rms, the condition (A.1.31) is equivalent to the fact that the induced

relations l, l̄ : xmyopˆxny ÝÑ x2y satisfy l ď l̄, or that the l̄ path in the table (A.1.30) appears

to the down-left of the l path.

Shuffles and their morphisms form a category Shuff with the identity morphism p1rns, 1rmsq

and composition pξ ˝ ξ̄, ρ ˝ ρ̄q for which the condition (A.1.31) is obtained by pasting

r¯̄n` ¯̄ms rn̄` m̄s rn`ms

r¯̄ns rn̄s rn̄s rns

r ¯̄ms rm̄s rm̄s rms

¯̄r

¯̄s

ξ̄

ρ̄

Lr̄

Rs̄

1

1

r̄

s̄

ξ

ρ

Lr

Rs

ó ó

η ó

ε ó

(A.1.32)

Shuff inherits a tensor product from ∆KJ which (algebraically) follows from

Lpr ` r1q ˝ pξ ` ξ1q ˝ pr̄ ` r̄1q ˝ z
pA.1.17q
“ Lpr ` r1q ˝ z ˝ pξ ‘ ξ1q ˝ pr̄ ‘ r̄1q (A.1.33)

pA.1.24q
ñ z ˝ pLr ‘ Lr1q ˝ pξ ‘ ξ1q ˝ pr̄ ‘ r̄1q (A.1.34)

pA.1.31q
ñ z ˝ pRs‘Rs1q ˝ pρ‘ ρ1q ˝ ps̄‘ s̄1q (A.1.35)

pA.1.25q
ñ Rps` s1q ˝ z ˝ pρ‘ ρ1q ˝ ps̄‘ s̄1q (A.1.36)

pA.1.17q
“ Rps` s1q ˝ pρ` ρ1q ˝ ps̄` s̄1q ˝ z (A.1.37)
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but can also be seen as “direct summing”1 the relation tables, for example the shuffle (A.1.30)

can be interpreted as pr2s
σ3

1
ÐÝ r3s

σ2
0˝σ

3
2

ÝÝÝÝÑ r1sq ` pr1s
σ2

1
ÐÝ r2s

σ2
0
ÝÑ r1sq.

The free 2-category containing a distributive law is obtained as the suspension of the

monoidal category of shuffles,

FDL :“ ΣShuff. (A.1.38)

A.1.3 Mixed shuffle morphisms - free mixed distributive law

The category of mixed shufflesMShuff can be obtained by slightly modifying the construction

of Shuff; the ρ component of the mixed shuffle morphism has the opposite direction ρ : rms Ñ

rm̄s, and the existence condition (A.1.31) becomes

Lr ˝ ξ ˝ r̄ ñ Rs ˝Rρ ˝ s̄. (A.1.39)

The 2-category containing a free mixed distributive law (FMDL) is obtained as the sus-

pension of the monoidal category of mixed shuffles,

FMDL :“ ΣMShuff. (A.1.40)

A.2 Cauchy completeness

Here we summarize basic definitions and results related to the general theory of Cauchy

completeness. The motivating example is in the introduction.

Definition A.2.1. A V-module M : B ÞÑ C is called Cauchy if it has a right adjoint in

V-Mod.

Proposition A.2.1. [31] A V-module M is Cauchy if and only if all M -weighted colimits are

absolute.

More on absolute colimits in pSet-qcategories can be found in [27]. Absolute weights for

enrichment in a bicategory were further examined in [13].

1As one would direct sum k-matrices between finite-dimensional k-vector spaces
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Proposition A.2.2. [19] For symmetric closed complete and cocomplete V, a V-module M :

I ÞÑ C is Cauchy if and only if it is small-projective; that is, the representable functor

rCop,VspM,´q : rCop,Vs Ñ V (A.2.1)

preserves small colimits.

Definition A.2.2. A right C-module M : B ÞÑ C is called convergent if there is a V-functor

F : B Ñ C such that M – F˚ :“ Cp´, F´q.

When B “ I, M being convergent is equivalent to M being representable in the usual

sense.

Definition A.2.3. A V-category C is Cauchy complete if all Cauchy modules into C are

representable.

Proposition A.2.3. A V-category C is Cauchy complete if and only if it has all absolute-

weighted colimits.

A.3 Familial epiness

In this section we explore the notion of jointly epi families and how it can be extended to

extremal, strong and regular epi families. The letter V denotes an ordinary category. Most

of the concepts here are taken from [32].

Definition A.3.1. A family of maps tAi
wi
ÝÑ BuiPI in V is jointly epi if any two maps B f

ÝÑ C

and B g
ÝÑ C satisfying, for all i, f ˝ wi “ g ˝ wi implies f “ g.

Definition A.3.2. A family of maps tAi
wi
ÝÑ BuiPI in V is jointly extremal epi if it is jointly

epi and satisfies the invertible mono condition: namely, that any mono m through which all

wi factor is necessarily an isomorphism.

Definition A.3.3. A family of maps tAi
wi
ÝÑ BuiPI in V is jointly strong epi if it is jointly

epi and satisfies the diagonal fill in condition: namely, that for any map B g
ÝÑ D, any mono

C
m
ÝÑ D, and any family of maps tAi

fi
ÝÑ CuiPI such that m ˝ fi “ g ˝ wi, there is a unique

diagonal filler B d
ÝÑ C such that all triangles commute.
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Remark A.3.1. As in the single epi case, if equalizers exist in V, the condition of being

jointly epi in order to be jointly extremal/strong, follows from the invertible-mono/diagonal-

fill-in condition.

Remark A.3.2. As in the single epi case, any jointly strong epi family is jointly extremal

epi, and in the presence of pullbacks, every jointly extremal epi family is a jointly strong epi

family.

Definition A.3.4. A relation R on a family tAiuiPI of objects in V is given by a set Ri,j of

spans between Ai and Aj, for each i and j. We use R to denote the (disjoint) union of all

Ri,j. A quotient of R is a family tAi
wi
ÝÑ BuiPI that is (part of) a colimit cone for the diagram

consisting of objects tAiuiPI and spans in R between them. Explicitly, for each span

Ai
x
ÐÝ D

y
ÝÑ Aj (A.3.1)

in Ri,j, the square

D Ai

Aj B

x

wj

y wi (A.3.2)

commutes, and the quotient is a universal family with this property. A kernel of an arbitrary

family tAi
wi
ÝÑ BuiPI , denoted Kerptwiuq, is the relation containing all spans of the form

(A.3.1) satisfying (A.3.2).

If a family tAi
wi
ÝÑ BuiPI quotients some relation, then it quotients its kernel. That is

because adding more spans (such that (A.3.2) commutes) to the colimit diagram does not

change the colimit.

Definition A.3.5. A family of maps tAi
wi
ÝÑ BuiPI in V is jointly regular epi if it is a quotient

for some relation.

Example A.3.1. Cowedge components of a coend form a regular epi family. An (ordinary)

functor T : Cop ˆ C Ñ V has a coend if and and only if the relation on tT pC,CquCPC formed

by spans

T pC,Cq
T pf,Cq
ÐÝÝÝÝ T pC 1, Cq

T pC1,fq
ÝÝÝÝÝÑ T pC 1, C 1q (A.3.3)
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for each f : C Ñ C 1, has a quotient, and they are the same (up to isomorphism). This is a

reformulation of obtaining a coend [25] via a colimit.

Example A.3.2. The same is true for an enriched coend. Let V be a locally small symmetric

monoidal closed category, and C a V-category. An enriched functor T : Cop b C Ñ V can

equivalently be seen as an endomodule on C, given by actions

CpC 1, C2q b T pC,C 1q
λC
1

CC2
ÝÝÝÑ T pC,C2q (A.3.4)

T pC 1, C2q b CpC,C 1q
ρC
1

CC2
ÝÝÝÑ T pC,C2q . (A.3.5)

It has a coend, defined as the quotient of the relation on tT pC,CquCPC formed by spans

T pC,Cq
ρC
1

CC˝σ
ÐÝÝÝÝ CpC,C 1q b T pC 1, Cq

λC
C1C1
ÝÝÝÑ T pC 1, C 1q (A.3.6)

for each pair of objects C,C 1. Note that this quotient is isomorphic to the one quotienting the

relation formed from

T pC,Cq
ρC
1

CC
ÐÝÝ T pC 1, Cq b CpC,C 1q

λC
C1C1

˝σ
ÝÝÝÝÝÑ T pC 1, C 1q (A.3.7)

since σ is an isomorphism of spans constituting the colimit diagrams.

Example A.3.3. Module composition cocone components form a regular epi family. Let

C,D, E be small V-enriched categories for a cocomplete monoidal category V, together with

a pair of modules C M
ÞÑ D N

ÞÑ E. Fix objects C P C, E P E, and consider the relation on

tMpD,Cq bNpE,DquDPD consisting of spans as in (A.3.8).

MpD1, Cq bDpD,D1q bNpE,Dq

MpD,Cq bNpE,Dq MpD1, Cq bNpE,D1q

ρ
pMq
CDD1

b 1 1b λ
pNq
DD1E (A.3.8)

Its quotient is precisely the definition of the composite module, with quotient maps

MpD,Cq bNpE,Dq
wCED
ÝÝÝÑ pN ˝D MqpE,Cq . (A.3.9)

In particular, when V is symmetric closed, this is isomorphic to the enriched coend
ż DPD

MpD,Cq bNpE,Dq . (A.3.10)
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Remark A.3.3. If J “ 1 the above definitions reduce to the definitions of (extremal, strong

or regular [18]) epimorphisms. Furthermore, if V has coproducts, the induced map
ř

iAi
w
ÝÑ B

is extremal/strong epi if and only if twiuiPI is a jointly extremal/strong epi family.

The regular case is examined in

Proposition A.3.1. In the category V with coproducts, a jointly regular epi family twiuiPI

induces a regular epi map
ř

iAi
w
ÝÑ B. The converse is true if for all parallel pairs x, y : D Ñ

ř

iAi the family

Fxy “ tp : P Ñ D|Di, j, pi : P Ñ Ai, pj : P Ñ Aj , such that (A.3.11)

x ˝ p “ θi ˝ pi and y ˝ p “ θi ˝ pju (A.3.12)

is jointly epi.

Proof. Considering the diagram

D Ai
ř

Ai

B

C

x θi
w

f

wi

fi

(A.3.13)

it is easy to see that

Kerpwq Ă Kerpfq ùñ Kertwiu Ă Kertfiu (A.3.14)

so given f satisfying Kerpwq Ă Kerpfq, and using that twiu is joint regular epi we get a unique

factorization of f through w, proving that w is regular epi.

Conversely, given a regular epi w, and f such that Kertwiu Ă Kertfiu, consider an ar-

bitrary element of Kerpwq, x, y : D Ñ
ř

iAi, that is w ˝ x “ w ˝ y, and an arrow p P Fxy.

Chasing diagrams gives

wi ˝ pi “ w ˝ θi ˝ pi (A.3.15)

“ w ˝ x ˝ p (A.3.16)

“ w ˝ y ˝ p (A.3.17)
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“ w ˝ θj ˝ pj (A.3.18)

“ wj ˝ pj (A.3.19)

so ppi, pjq P Kerptwiuq, and using the assumption for f , ppi, pjq P Kerptfiuq. So we have

fi ˝ pi “ fj ˝ pj (A.3.20)

f ˝ θi ˝ pi “ f ˝ θj ˝ pj (A.3.21)

f ˝ x ˝ p “ f ˝ y ˝ p . (A.3.22)

Using joint epiness of Fxy we conclude that px, yq P Kerpfq, and, because w is regular epi, f

factors uniquely through it.

Remark A.3.4. As in the single epi case, any jointly regular epi family is automatically

jointly strong epi. The converse is true when V is familialy regular, a proof of a stronger

statement is given in [32].

Example A.3.4. In a preordered set V, any family tAi
wi
ÝÑ BuiPI is jointly epi.

Example A.3.5. In a poset V with arbitrary joins, a family tAi
wi
ÝÑ BuiPI is jointly ex-

tremal/strong/regular if and only if B “
Ž

iAi.



102 Appendix A. Appendices



Bibliography

[1] Abramsky, S., and Coecke, B. A categorical semantics of quantum protocols.

arXiv:quant-ph/0402130v5.

[2] Baez, J. C. Quantum quandaries: a category-theoretic perspective. arXiv:quant-

ph/0404040v2.

[3] Beck, J. Distributive laws. In Seminar on Triples and Categorical Homology Theory:

ETH 1966/67, B. Eckmann, Ed., vol. 80 of Lecture Notes in Mathematics. Springer Berlin

Heidelberg, 1969, pp. 119–140.

[4] Bénabou, J. Introduction to bicategories. In Reports of the Midwest Category Seminar,

vol. 47 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1967, pp. 1–77.

[5] Betti, R., Carboni, A., Street, R., and Walters, R. Variation through enrich-

ment. Journal of Pure and Applied Algebra 29, 2 (1983), 109–127.

[6] Böhm, G. Hopf polyads, hopf categories and hopf group monoids viewed as hopf monads.

2016, arXiv:1611.05157v2.

[7] Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. Space-time as a causal set.

Phys. Rev. Lett. 59 (1987), 521–524.

[8] Bruguiéres, A., Lack, S., and Virelizier, A. Hopf monads on monoidal categories.

Advances in Mathematics 227, 2 (2011), 745–800.

[9] Cheng, E., and Gurski, N. Iterated icons. 2013, arXiv:1308.6495v1.

103



104 Bibliography

[10] Chikhladze, D., Lack, S., and Street, R. Hopf monoidal comonads. Theory Appl.

Categ. 24 (2010), No. 19, 554–563.

[11] Day, B., and Street, R. Lax monoids, pseudo-operads, and convolution. Contempor-

ary Mathematics 318 (2003), 75–96.

[12] Dowker, F. Introduction to causal sets and their phenomenology. General Relativity

and Gravitation 45, 9 (2013), 1651–1667.

[13] Garner, R. Diagrammatic characterisation of enriched absolute colimits. 2014,

arXiv:1410.0071v1.

[14] Garner, R., and Shulman, M. Enriched categories as a free cocompletion. Advances

in Mathematics 289, Supplement C (2016), 1 – 94.

[15] Gray, J. W. Properties of fun(a,b) and pseud(a,b). In Formal Category Theory: Ad-

jointness for 2-Categories, vol. 391 of Lecture Notes in Mathematics. Springer Berlin

Heidelberg, 1974, pp. 55–100.

[16] Joyal, A., and Street, R. An introduction to tannaka duality and quantum groups.

In Category Theory: Proceedings of the International Conference held in Como, Italy,

July 22–28, 1990, A. Carboni, M. C. Pedicchio, and G. Rosolini, Eds., vol. 1488 of

Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1991, pp. 413–492.

[17] Joyal, A., and Street, R. Braided tensor categories. Adv. Math. 102, 1 (1993),

20–78.

[18] Kelly, G. M. Monomorphisms, epimorphisms, and pull-backs. Journal of the Australian

Mathematical Society 9, 1-2 (1969), 124.

[19] Kelly, G. M. Basic concepts of enriched category theory, vol. 64 of London Mathematical

Society Lecture Note Series. Cambridge University Press, Cambridge-New York, 1982.

[20] Kelly, M., Labella, A., Schmitt, V., and Street, R. Categories enriched on two

sides. Journal of Pure and Applied Algebra 168, 1 (2002), 53–98.



Bibliography 105

[21] Lack, S. Icons. Applied Categorical Structures 18, 3 (2010), 289–307.

[22] Lack, S., and Street, R. The formal theory of monads II. Journal of Pure and

Applied Algebra 175, 1 (2002), 243–265.

[23] Lawvere, F. W. Ordinal sums and equational doctrines. In Seminar on Triples and

Categorical Homology Theory: ETH 1966/67, B. Eckmann, Ed., vol. 80 of Lecture Notes

in Mathematics. Springer Berlin Heidelberg, 1969, pp. 141–155.

[24] Lawvere, F. W. Metric spaces, generalized logic, and closed categories. Rendiconti del

Seminario Matematico e Fisico di Milano 43, 1 (1973), 135–166.

[25] Mac Lane, S. Categories for the Working Mathematician. Graduate Texts in Mathem-

atics. Springer New York, 1998.

[26] Majid, S. Foundations of Quantum Group Theory. Cambridge University Press, 2006.

[27] Paré, R. On absolute colimits. Journal of Algebra 19, 1 (1971), 80 – 95.

[28] Pareigis, B. A non-commutative non-cocommutative Hopf algebra in “nature”. Journal

of Algebra 70, 2 (1981), 356–374.

[29] Street, R. The formal theory of monads. Journal of Pure and Applied Algebra 2, 2

(1972), 149–168.

[30] Street, R. Limits indexed by category-valued 2-functors. Journal of Pure and Applied

Algebra 8, 2 (1976), 149–181.

[31] Street, R. Absolute colimits in enriched categories. Cahiers Topologie Géom. Différen-

tielle 24, 4 (1983), 377–379.

[32] Street, R. The Family Approach to Total Cocompleteness and Toposes. Transactions

of the American Mathematical Society 284, 1 (1984), 355–369.

[33] Street, R. Powerful functors. [Online; accessed 17-October-2017], http://www.math.

mq.edu.au/~street/Pow.fun.pdf, 2001.

http://www.math.mq.edu.au/~street/Pow.fun.pdf
http://www.math.mq.edu.au/~street/Pow.fun.pdf


106 Bibliography

[34] Street, R. Enriched categories and cohomology with author commentary. Reprints in

Theory and Applications of Categories, 14 (2005), 1–18.

[35] Street, R. Quantum Groups: A Path to Current Algebra. Australian Mathematical

Society Lecture Series 19. Cambridge University Press, 2007.

[36] Street, R. Free mixed distributive law, (The Australian Category Seminar, 1 July

2015).

[37] Wood, R. J. Abstract proarrows. I. Cahiers Topologie Géom. Différentielle 23, 3 (1982),

279–290.

[38] Wood, R. J. Proarrows. II. Cahiers Topologie Géom. Différentielle Catég. 26, 2 (1985),

135–168.


	Summary
	Acknowledgements
	Introduction and overview
	Strictification tensor product of 2-categories
	Introduction
	Connection with lax Gray tensor product
	Bénabou construction of the 2-category of paths
	Lax Gray tensor product

	Tensor product via computads
	Unpacking
	Symmetries
	Reviewing computads
	The tensor product computad
	Dual strictifications
	The n-fold product

	Simplicial approach
	As a limit
	Isomorphism between two constructions
	Mixed tensor product

	Properties and an example
	Parametrizing parametrization of categories


	Cauchy completeness and causal spaces
	Introduction
	Metric spaces as enriched categories
	Causal spaces as enriched categories
	Enrichment in [-,]
	R-Cat
	Modules, black holes and wormholes
	Cauchy completeness

	Cauchy completeness via idempotent splitting

	Comonadic base change
	Introduction
	(Differential) graded abelian groups
	GAb

	Semidirect product
	Birings
	Grading Hopf ring
	Differential Hopf ring

	Comonadic base change via 2-sided enrichment
	2-sided enrichment
	Comonads in Caten
	Hopf comonads


	Conclusion and outlook
	Appendices
	Simplices, intervals and shuffles
	Intervals - free monoid
	Shuffles - free distributive law
	Mixed shuffle morphisms - free mixed distributive law

	Cauchy completeness
	Familial epiness


