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Abstract

This thesis proposes novel methods to analyze risk and dependence across
a joint probability distribution. It is well known in finance and insurance
that risk and dependence are vastly different in the tails compared to the
rest of the distribution. Tails characterise events such as market crisis and
natural catastrophes, and contribute to a significant portion of overall risk
and dependence. However typical measures of risk and dependence capture
the overall result and mask variations across the probability distribution.

Random quantities are partitioned into infinitesimal layers capturing out-
comes of various magnitude and likelihood. Risk and dependence are then
measured across layers using established methods such as distortion and cor-
relation. Layers are standard constructs representing (re)insurance cover-
age, capital consumption and shortfall, derivative payouts, and tranches of
collateralised debt obligations. This thesis expresses layer endpoints using
percentiles or more commonly known as Values–at–Risk (VaRs), hence each
layer occupies a relative position in the probability distribution.

This thesis also extends distortion risk measurement by capturing upside
risk in addition to downside risk. In financial and insurance markets with
strong competition and limited availability of capital, an explicit view of
upside risk is required to reflect opportunity costs.

Developments in this thesis formalise existing, and reveal new, insights to
risk and diversification. For example the framework explains weak diversifi-
cation in financial and insurance markets despite moderate correlations over-
all. The framework also deals with problems such as setting capital buffers,
reinsurance purchase and assessing the credit quality of debt tranches. These
insights arise from a deeper understanding of how risk and dependence varies
across a probability distribution.

Proposed methods apply consistent concepts such as VaRs, distortion and
layers, and hence form a coherent analytical framework. These concepts are
well established and hence the resulting framework integrates and expands
current disparate approaches. The proposed framework is a complete tool to
quantitative risk management, by first analysing risk and dependence when
imperfectly dependent random quantities are aggregated, and then guiding
strategies to optimally manage and reduce risk.
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Chapter 1

Thesis contributions and the
literature

1.1 Overview of this thesis

This thesis presents papers discussing novel solutions to four critical prob-
lems in quantitative risk management. These problems relate to analyzing
risk, dependence and diversification in a joint probability distribution, and
forming balanced risk measures capturing both upside and downside.

Section 1.2 provides an overview of quantitative risk management. Sec-
tion 1.3 identifies the four problems addressed in this thesis. Section 1.4
introduces well known concepts of layers, Value–at–Risk and distortion risk
which are critical to remaining discussion in this chapter. Subsequent sec-
tions delve into each problem, explaining its role and importance in quanti-
tative risk management, summarising and critiquing current approaches, and
outlining proposed solutions.

Proposed solutions modify, enhance and combine established approaches
in the literature. Proposed solutions to the four problems also integrate to
form a coherent quantitative risk management framework.

Subsequent chapters of this thesis are structured as follows:

• Chapter 2 presents the paper “Layer dependence as a measure of local
dependence,” which measures local dependence across percentiles of a
joint probability distribution.

• Chapter 3 presents the paper “Mean and risk densities and their appli-
cations to risk management,” which analyzes how mean and risk varies
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across layers of a random loss.

• Chapter 4 presents the paper “Insights to systematic risk and diversifi-
cation across a joint probability distribution,” integrating layer depen-
dence and risk density curves to analyze systematic risk and diversifi-
cation when random, imperfectly dependent losses are aggregated.

• Chapter 5 presents the paper “The tradeoff insurance premium as a
two–sided generalisation of the distortion premium,” an extension of
distortion risk measurement which explicitly reflects upside risk in ad-
dition to downside risk and is related to cumulative prospect theory.

• Chapter 6 concludes this thesis by discussing how proposed approaches
form an integrated approach to quantitative risk management, and out-
lining future research areas.

1.2 Quantitative risk management

Risk generally refers to unpredictable outcomes having a positive or negative
impact1. Risk is inherent in financial and insurance markets. For example
banks are exposed to future uncertain movements in stock markets, interest
rates, credit defaults and the state of the economy. Insurers are impacted by
the same factors and insurance claims volatility particularly from man–made
and natural catastrophes.

Quantitative risk management quantifies and manages risk. McNeil et al.
(2005) discusses the history, issues and common techniques of quantitative
risk management. Risk quantification is not only driven by the probabilistic
behaviour of outcomes, but also risk perception. High risk aversion magnifies
risks, whereas risk neutrality dismisses risks. Quantitative risk management
typically focuses on adverse rather than favourable outcomes. For instance
banks and insurers calculate the risk of unexpected losses and hold capital
buffers accordingly. Other examples of focusing on adverse outcomes are
the purchase of reinsurance cover for catastrophe losses, using derivatives to
hedge portfolio losses, putting risk discounts on securities prices, and early
warning systems for adverse financial movements.

Quantitative risk management is increasingly important for financial and
insurance companies. For example Solvency II (Eling et al. 2007) imposes
formal risk management requirements on insurers, including the need to hold

1A formal definition of risk is discussed later in this thesis, using distortion.
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capital commensurate with market, credit, underwriting, catastrophe and op-
erational risks. Basel II (Engelmann and Rauhmeier 2006) and more recently
Basel III (King and Tarbert 2011) impose equally if not more stringent re-
quirements on banks. Major insurers and banks typically develop stochastic
models of their business and manage risks according to simulated results
(Kaufmann et al. 2001). Quantitative risk management is also an impor-
tant component of the broader Enterprise Risk Management (ERM) (Nocco
and Stulz 2006), where quantifiable and non-quantifiable risks are managed
holistically to take advantage of synergies and diversification.

Quantitative risk management is a broad area covering a wide range of
topics. This thesis focusses on measuring and analyzing risk and dependence.
Specific interest areas are outlined in the next section. Subsequent sections
discuss the importance of these interest areas, current approaches and their
limitations, and proposed solutions. The following is a brief description of
dependence and risk measurement:

• Risk measurement quantifies the magnitude and likelihood of adverse
outcomes. Quantified risks are critical inputs to risk management deci-
sions. For example banks hold capital buffers which increase with risks
of stock market downturns, credit defaults and other adverse financial
movements (King and Tarbert 2011). Reinsurance purchases by insur-
ers refer to the extent of catastrophe risk. Value–at–Risk is a common
risk measure but has shortcomings, and refined measures satisfying co-
herence properties have been proposed (McNeil et al. 2005).

• Dependence measurement captures the degree of association between
random outcomes, and is typically based on linear correlation (McNeil
et al. 2005). Dependence is a common feature of financial and insur-
ance markets. For example returns from various stocks are dependent,
particularly when in distress (Rodriguez 2007). Natural catastrophes
create significant losses across insurers and their portfolios such as prop-
erty, motor and liability.

Risk and dependence measurement become intimately connected when ran-
dom losses from different sources are aggregated. Imperfect dependence cre-
ates diversification benefits: a reduction in aggregate risk when favourable
outcomes in a group of losses offset adverse outcomes in other losses. On
the other hand strong dependence leads to catastrophic consequences when
loss outcomes are simultaneously adverse. Effective quantitative risk man-
agement exploits diversification. However diversification is often treated as
an anecdotal phenomenon and is insufficiently analysed in the literature.
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Risk and dependence are rarely static across a joint probability distribu-
tion, and change significantly in the tails capturing extreme outcomes such
as market crashes and catastrophes. Reflecting varying risk and dependence
behaviour is hence critical in quantitative risk management, but often insuf-
ficiently acknowledged in current approaches.

1.3 Specific areas addressed in this thesis

This thesis proposes novel solutions to the following four specific problems in
risk and dependence measurement. Remaining sections of this chapter delve
into each problem. The four problems are:

• Measuring local dependence between random losses. Of interest is de-
pendence at various parts of the joint distribution, rather than over-
all dependence. To illustrate the importance of measuring local de-
pendence, consider stock returns which are highly dependent when in
distress but less dependent otherwise under normal circumstances. Fo-
cussing on overall dependence understates tail dependence and leads
to insufficient capital buffers against market risk.

• Decomposing the mean and risk of a random loss and understanding
contributions by various parts of its probability distribution. For ex-
ample, significant portions of the mean and risk of a right skewed loss
distribution are concentrated in the upper tail. Understanding mean
and risk contributions yields targeted risk management strategies to
achieve an optimal mean–risk combination.

• Analyzing risk and diversification when imperfectly dependent losses
are aggregated. Aggregation reduces risk. For example the stock mar-
ket index is less volatile than its component stocks. Systematic risk
remains after diversification. Of interest are key sources of systematic
risk and diversification in the joint distribution so that, similar to the
previous problem, optimal strategies can be formulated.

• Reflecting upside in addition to downside when measuring risk. Despite
the widespread focus on downside risk in the literature, upside risk
is also important and neglecting it leads to opportunity losses. For
example, excessive focus on downside risk leads to an uncompetitive
insurance premium, whereas acknowledging and reflecting favourable
outcomes achieves a more balanced premium.
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For the first three problems described above, the literature extensively dis-
cusses measures of overall dependence, risk and diversification, but offers
less insights into how dependence, risk and diversification vary across the
probability distribution. For example linear correlation does not indicate
differing dependence between random losses at their 50th, 75th and 99th
percentiles. These insights are important because risk management strate-
gies usually target parts of loss distributions rather than their entirety. For
example, reinsurance covers losses above the excess. Capital protects against
losses below itself. Derivatives hedge movements in a defined region.

Problems discussed in this thesis, and their proposed solutions, are generic
and apply to any situation involving risk and dependence. Quantifiable risks
typically involve monetary quantities in insurance and finance, but can also
be extended to quantities such as the amount of rainfall, passenger volume
and population size. These non–monetary quantities are uncertain and in-
volve risk, and each depends on a number of other uncertain factors.

Marginal behaviour of random variables is assumed known. The modeling
of marginal behaviour is well covered in the literature. Parametric or non-
parametric distributions are typically first fitted to data, and tests are then
performed to assess the suitability of the fit. References include Feller (2008)
and Hogg and Klugman (2009). Extreme value theory (Kotz and Nadarajah
2000) addresses tail behaviour representing extreme outcomes.

A single period is assumed. Therefore the time series behaviour of ran-
dom variables, for example daily stock market returns over one year, are
ignored. Typical time series models in quantitative risk management, such
as Autogressive Moving Average (ARMA) and Generalised Autoregressive
Conditional Heteroskedasticity (GARCH) models, are discussed in McNeil
et al. (2005) and Lamoureux and Lastrapes (1990).

1.4 Established concepts used in this thesis

Common to proposed solutions in this thesis are concepts of layers, Values–
at–Risk and distortion risks. Hence proposed solutions naturally integrate to
form a coherent quantitative risk management framework. The final chapter
discusses the integration. This section introduces each concept, setting the
scene for the discussion of proposed solutions in subsequent sections.

Any loss can be decomposed into additive layers. The [a, b]–layer of a loss
is the excess over a, capped at b − a. In particular the [a,∞]–layer is the
unbounded excess above a, and the [0, b]–layer is the loss capped at b. Layers
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are standard insurance and financial constructs. For example insurance and
reinsurance cover a layer of the loss defined by an excess and limit. Capital
buffers divide losses into two layers: capital consumed and capital shortfall.
Derivatives and collaterised debt obligations also involve layers, sometimes
known as tranches with attachment and detachment points. Bailouts of a
distressed company cover a layer of losses suffered. High layers capture rare,
extreme outcomes and low layers characterise common, attritional outcomes.
Statistical properties of layers are discussed in Campana and Ferretti (2014),
Wang (1998), Wang (1995) and Miccolis (1977). Lee (1988) adopts a graph-
ical approach to explain key concepts and results. Insurance pricing of loss
layers is discussed in Evans (2001) and Salzmann (1963). Mandel et al.
(2012) and Duffie and Garleanu (2001) discuss tranches in collaterised debt
obligations and how they partially enhance the credit quality of the debt.

Values–at–Risk (VaRs) are percentiles of a loss distribution (McNeil et al.
2005). Writing loss outcomes as VaRs shows their relative position in the
probability distribution. For example the 50% VaR is the median or middle
outcome, whereas the 75% VaR is the 75th largest out of 100 outcomes.
VaRs adjust to the shape and scale of the loss distribution, and are hence
comparable across loss distributions. In contrast absolute dollar amounts
are not probabilistic and may be a commonly exceeded outcome in a loss
distribution but a rare, extreme outcome in another. Similar to layers, VaRs
are standard insurance and financial constructs. For example Solvency II
insurance regulation applies 90% and 99.5% VaRs (Eling et al. 2007) to
capital requirements. Banking regulations Basel II and more recently Basel
III also reference VaRs in risk measurement (Chernobai et al. 2008).

Lastly distortion risk (Wang 1996) is risk formed by the difference between
the average outcome under a distorted, conservative probability distribution
and the original, objective distribution2. Choo and De Jong (2009) shows
that distortion risks are proportional to loss volatility and risk aversion, and
are equivalent to loss aversion risks and spectral risks (Acerbi 2002), both de-
fined as weighted average of VaRs. Examples of distortion risks are discussed
in Wang (1995), Wang (2000) and Choo and De Jong (2009), and include
the proportional hazards risk, conditional–tail–expectation and expected–
maximal–loss. Distortion risks are coherent (Artzner et al. 1999): positively
homogenous, translation invariant, monotonic and subadditive.

2The original formulation only includes the distorted average and does not take the
difference with the original average.
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1.5 Local dependence and its measurement

1.5.1 Importance of local dependence

Dependence is inherent in financial, insurance, commodities and other mar-
kets. For example interest rates, unemployment, stock market returns and
credit defaults are interdependent and partially rely on the state of the econ-
omy. In addition these quantities are linked to corresponding quantities in
other geographies and countries. Insurance claims from motor, property and
liability classes are also interdependent, due to their reliance on common
economic and social factors, as well as weather patterns.

Measuring and subsequently modeling dependence is thus a critical part
of quantitative risk management. To illustrate the importance of dependence,
suppose a bank holds capital against the risk of stock market crashes and
credit defaults by borrowers. If these two risk factors are strongly dependent,
then large amounts of capital are required to cover market crashes and credit
defaults occurring simultaneously. On the other hand if dependence is weak,
then required capital is significantly lower since market crashes are unlikely
to coincide with credit defaults – a diversification benefit.

Dependence typically varies across the joint distribution, giving rise to
the need for local dependence measures. For example moderate returns from
various stocks may be weakly dependent but extreme returns are strongly
dependent (Rodriguez (2007) and Hartmann et al. (2004)). In insurance,
attritional losses from various lines are weakly dependent, however a catas-
trophic event creates equally extreme losses across all lines. Failure to ac-
knowledge varying dependence, and applying the average dependence across
the joint distribution, leads to for example underestimation of tail events
where extreme outcomes from various risk factors occur simultaneously. The
2008 global financial crisis (Kolb 2010) is a relevant case study.

1.5.2 Measures of overall and local dependence

Dependence measures lie between ±1, with −1 indicating perfect negative
dependence (countermonotonicity) and 1 indicating perfect positive depen-
dence, (comonotonicity) (Dhaene et al. 2002). Positive dependence implies
random variables tend to increase simultaneously, and vice versa for nega-
tive dependence. Dependence is measured either between random variables in
their original values or percentile rank transforms. The latter leads to “rank
dependence” which is calculated from the copula (Nelson 1999). The former
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is distorted by marginal distributions and only covers a subset of [−1, 1],
even with perfect dependence (McNeil et al. 2005). Rank dependence is free
of distortion by marginal distributions, and covers [−1, 1] completely.

Measures of overall dependence, including Pearson’s correlation, Spear-
man’s ρ and Kendall’s τ (McNeil et al. 2005), do not characterise the de-
pendence structure of the joint distribution. As explained in the previous
subsection, dependence typically varies across joint distributions of financial
and insurance quantities, and tail dependence is common. Failure to measure
and hence properly model the dependence structure results in ineffective risk
management, such as holding insufficient capital.

Local dependence measures address the drawback of overall dependence
measures, by measuring dependence at various points or parts of the joint
distribution. The set of local dependence values calculated across the entire
joint distribution characterises the dependence structure. Local dependence
measures are a summary of the joint distribution or copula, but are less sum-
marised than overall dependence measures. The following describes current
local dependence measures and their shortcomings:

• Tail concentration (Durante et al. (2014), Venter (2002)) is the con-
ditional probability of percentile ranks falling in identical tail regions,
and is calculated from the diagonal section of the copula (Fredricks
and Nelsen 1997). Varying the tail region yields dependence at various
parts of the joint distribution. Calculating the conditional probability
in extreme tails yields coefficients of tail dependence by Joe (1997).

Tail concentration, being a probability, excludes actual values of ran-
dom variables. As a result tail concentration does not always vary co-
herently across the joint distribution. In addition negative dependence
is not obviously shown from tail concentration values.

• Correlation curve (Bjerve and Doksum 1993) applies regression princi-
ples and measures dependence between a random variable and a neigh-
bourhood of another. The measurement combines conditional vari-
ances and changes in conditional expectations across neighbourhoods.
A larger change in conditional expectation or lower conditional variance
implies higher local dependence and vice versa.

Despite satisfying several coherence properties, correlation curve is diffi-
cult to calculate on data, due to the reliance on conditional expectation
and conditional variance in an infinitesimal neighbourhood. Calculated
values are volatile even for large samples.
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• Bairamov et al. (2003), Jones (1996) and Holland and Wang (1987) dis-
cuss bivariate local dependence measures. These capture dependence
between different neighbourhoods of two random variables. In contrast
tail concentration and correlation curves are univariate measures.

Bivariate local dependence measures maintain the dimension of the bi-
variate joint distribution, whereas univariate measures summarise and
extract dependence information. This thesis focuses on univariate local
dependence measures.

Apart from the shortcomings described above, current local dependence mea-
sures are generally disconnected from overall dependence measures such as
Spearman’s ρ and Kendall’s τ . As a result calculated local dependence values
may be consistently higher or lower than overall dependence. Layer depen-
dence, a local dependence measure proposed in this thesis, is consistent with
Spearman’s ρ. Layer dependence also satisfies several other practical prop-
erties. The next subsection discusses layer dependence.

Specifying local dependence values, that is the dependence structure, is
an intuitive approach to model copulas. For example Fredricks and Nelsen
(1997) and Durante et al. (2006) discuss copulas constructed from a given
diagonal section which is in turn implied from tail concentration values. How-
ever local dependence measurement needs to be appropriate in order to con-
struct a copula exhibiting the desired dependence structure.

1.5.3 Layer dependence as a local dependence measure

This thesis proposes a local dependence measure called “layer dependence.”
Layer dependence captures rank dependence and is hence calculated entirely
from the copula. As discussed in the previous subsection, rank dependence
is free from distortion by marginal distributions and is preferred over de-
pendence calculated between original values. Chapter 2 contains a paper
defining, illustrating and analyzing layer dependence.

Layer dependence accurately reflects local dependence, and satisfies im-
portant properties described below. For a copula exhibiting weak lower tail
dependence and strong upper tail dependence, layer dependence increases
from near 0 to near 1. Suppose observations are simulated from a copula and
plotted on the unit square. Then layer dependence is higher at any point
along the 45◦ line if observations are tightly clustered around the point, and
lower if observations are dispersed.
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The definition and concept of layer dependence are as follows. As the
name suggests, layer dependence involves layers discussed in §1.4 and is de-
fined from the covariance between the percentile rank of a random variable
and an infinitesimal layer of another. The covariance is scaled to yield a
value of one if random variables are comonotonic. An infinitesimal layer of a
random variable captures its movements at a point, hence layer dependence
is dependence between a random variable and local movements of another.

Layer dependence satisfies practical properties similar to Spearman’s ρ:
between −1 and 1, constant and equal to −1, 0 and 1 for countermonotonic,
independent and comonotonic random variables, sign switching when ranking
order reverses, and taking on higher values when dependence is stronger.

Layer dependence has a direct relationship with Spearman’s ρ: taking a
weighted average of layer dependence values across all layers is Spearman’s
ρ. This relationship is intuitive and appealing – averaging local dependence
yields overall dependence. Weights attached to layer dependence values are
quadratic, peaking at the median layer and approaching zero at the tails.
These weights imply Spearman’s ρ understates tail dependence, a critical
characteristic of insurance and financial quantities. More appropriate overall
dependence measures are formed by averaging layer dependence values using
weights reflecting the importance of dependence at various layers. These
alternate measures satisfy similar coherence properties as Spearman’s ρ if
weights are non-negative and integrate to 1.

Layer dependence values are broadly similar to correlation curve and tail
concentration values. However layer dependence enhances and outperforms
these measures in a number of ways. Layer dependence refines tail concentra-
tion by reflecting average dispersion between percentile ranks, and is hence
a better measure of local dependence. In addition negative dependence is in-
dicated by negative layer dependence values. Layer dependence calculations
on data only involve conditional tail expectations and are hence simpler and
more stable than correlation curves. Lastly layer dependence is coherent and
is directly connected to Spearman’s ρ as discussed above.

Layer dependence captures tail dependence consistently with coefficients
of tail dependence by Joe (1997). Layer dependence at extreme layers and
coefficients of tail dependence are both one when tail dependence is perfect.
Perfect tail dependence requires random variables to simultaneously attain
their maximum or minimum values.

Calculating layer dependence at the first instance from a parametric cop-
ula or data extracts essential and interpretable information: the dependence
structure. This is often more informative than positing a parametric copula,
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as the implication of its parametric form and parameters on the dependence
structure is indirect. Similar problems apply when data is scarce or volatile
and the dependence structure is masked. Computing layer dependence from
data facilitates the selection and fitting of an appropriate parametric copula.
Denuit et al. (2005), Genest and Rivest (1993) and Oakes (1989) discusses
the fitting of parametric copulas.

1.6 Mean and risk decomposition

1.6.1 Risk measurement and risk behaviour

A key exercise in quantitative risk management is calculating risk values of
random losses such as from insurance claims, credit defaults and stock market
downturns. Risk values, or risks, enable random losses to be assessed and
compared, and are key inputs to risk management decisions. For example
insurance risk drives premium loadings, reinsurance purchases and capital
buffers. Credit and market risks influence lending margins, capital buffers,
investment decisions and hedging positions for derivatives.

Risk measures assign risk values to random losses based on their prob-
ability distribution, and are also known as premium principles. This thesis
applies distortion risk measures described in §1.4. McNeil et al. (2005) and
Young (2004) discuss common, specific risk measures such as standard de-
viation, Esscher premium, Value–at–Risk and conditional–tail–expectation.
Risk typically increases with the volatility and skewness of the loss distri-
bution. Risk perception also influences risk: greater risk aversion leads to
greater risk and vice versa, whilst risk neutrality implies zero risk.

This thesis studies the risk behaviour of random losses: how risk varies
across the probability distribution. Similar to dependence discussed in §1.5,
random losses may have equal overall risk but different risk behaviour, and
hence require different risk management strategies. Any measure of overall
risk, regardless of its sensitivity to the loss distribution, does not completely
characterise the risk profile of a loss. A “risk density curve” is thus required
to capture risk across the loss distribution. For a skewed loss distribution,
risk density is low for moderate outcomes but high for extreme outcomes
such as catastrophic insurance losses or stock market crashes.

Analyzing risk behaviour is important to form optimal and targeted risk
management strategies. For example, excess–of–loss reinsurance is purchased
to cover losses above a threshold, and an optimal threshold balances risks of
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covered and retained losses and coverage cost. Setting an appropriate capital
buffer involves similar considerations. In finance, pricing collaterised debt
obligations and derivatives requires an understanding of the risk of payouts
in different tranches.

1.6.2 Risk measurement across loss layers

Risk behaviour is captured by measuring risk across layers of a random loss
using a consistent risk measure. As described in §1.4, layers are standard in-
surance and financial constructs. A loss is formed by additive layers with low
layers representing attritional, likely outcomes and high layers capturing ex-
treme, rare outcomes. As layers of the same underlying loss are comonotonic,
risks of individual layers add to overall risk if the risk measure is additive
over comonotonic random variables3.

The following summarises current literature on risk measurement across
loss layers. The literature in this area is arguably less established compared
to measures of overall risk. As explained in the previous subsection, ana-
lyzing risk behaviour is important to gain insights and form targeted risk
management strategies.

• Wang (1995) calls the survival function the premium layer density as
it computes the mean value or premium of infinitesimal layers. The
premium layer density is distorted to deliver risk-adjusted premiums of
layers. Integrating the distorted premium layer density forms overall
risk. Wang (1995) applies distorted premium layer densities to investi-
gate premiums when the limit of an insurance contract is increased.

• Ladoucette and Teugels (2006) analyzes risk measures including Value–
at–Risk, variance, and coefficient of variation across layers of an insur-
ance loss. The analysis is also extended to consider layers of a random
sum of insurance losses.

• Hürlimann (1998) uses a distortion risk measure involving a two-stage
loss transformation and the Hardy-Littlewood pricing principle. This
distortion risk measure is used to construct distribution-free layer pre-
miums satisfying several practical properties.

• Certain measures of overall risk focus on tail layers of a loss and hence
indicate risk behaviour. For example conditional–tail–expectation takes

3Distortion risk measures are additive over comonotonic random variables.
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the expected value of losses beyond a threshold. Adding the scaled vari-
ance of these losses yields modified–tail–variance (Furman and Zitikis
2008a). Varying the threshold indicates risks of various tail layers.

• Salzmann (1963) and Evans (2001) perform empirical studies of appro-
priate premiums rates across loss layers for property insurance. Finger
(1976) performs a similar study, assuming a lognormal loss distribution.

1.6.3 Mean and risk densities over VaR layers

Similar to Wang (1995), this thesis constructs mean and risk densities indi-
cating the mean and distortion risk of infinitesimal loss layers. A novel and
critical change to loss layers is applied: layer endpoints are expressed in VaR
rather than dollar terms. Hence mean and risk densities are defined over
the unit interval indicating the percentile rather than over the original loss
scale. As noted in §1.4, VaRs occupy relative positions in the probability
distribution and adjust to its shape and scale. The layer from the 50th VaR
to 75th VaR, for example, captures the top 50% of losses and the top 25%
of losses are capped at the 75th percentile. VaR layers are therefore com-
parable between loss distributions. In contrast original dollar layers may be
attritional or rare depending on the loss distribution.

Mean and risk densities are critical constructs in explaining the mean
and risk behaviour of a random loss. As layers of the same loss are comono-
tonic, and distortion risks are additive over comonotonic random variables,
integrating risk densities over any subset of the unit interval yields the risk
of a larger layer. In addition the entire area under the risk density is over-
all distortion risk. The same result applies to mean densities, although the
comonotonicity condition does not need to hold. Mean and risk densities are
analogous to probability densities, representing quantities over an infinitesi-
mal area, with integration yielding the same over a larger area.

Defining mean and risk densities over VaR layers delivers the following
properties and results. They also formalise current risk insights.

• Mean and risk densities across loss distributions are graphed over the
unit interval on the horizonal axis. Scale effects are isolated and cap-
tured by the vertical axis. In contrast scale effects are shown in hori-
zontal and vertical axes if layers are defined on the original loss scale.

• The relative risk of a VaR layer (the ratio between risk and mean densi-
ties) is monotonic increasing and does not involve the loss distribution.
Hence higher VaR layers are always riskier than lower VaR layers.
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• The mean density characterises local skewness or volatility compared
to an exponential distribution. As the mean density is flat for an expo-
nential distribution, an increasing mean density at any layer indicates
greater skewness comparatively.

• The overall distortion risk of a loss relative to its mean is an average of
risk ratios across layers weighted by the mean density. As risk ratios
are increasing and independent of the loss distribution, losses with high
tail volatility (increasing mean density) are relatively riskier.

• Mean and risk densities defined over VaR layers, when applied to risk
management problems such as capital setting, yield solutions expressed
as VaRs instead of dollars. This is consistent with the standard use of
VaRs in finance and insurance as described in §1.4.

Mean and risk densities provide solutions and insights to common risk man-
agement problems. These problems include assessing insurance coverage un-
der different excess and limits, setting optimal capital buffers to reflect risks
of capital shortfall and surplus, using reinsurance to alter a loss distribution,
and comparing the credit quality of various debt tranches. Although these
problems can be solved using current statistical approaches, mean and risk
densities provide more elegant solutions and deliver additional insights.

Mean and risk densities integrate layer dependence discussed in the previ-
ous section with the analysis of systematic risk and diversification discussed
in the next section. Hence defining mean and risk densities over VaR layers
forms an integrated analytical framework.

1.7 Systematic risk and diversification

1.7.1 Concepts of systematic risk and diversification

Risk reduces or diversifies when imperfectly dependent random variables are
aggregated. For example the return on a market index is less volatile than
returns of components forming the index. Average investment returns also
stabilise over time. Pooling insurance claims reduces their volatility to an
acceptable level. Diversification generally arises when adverse outcomes for
a random variable are offset by favourable outcomes in other random vari-
ables. Therefore diversification weakens when random variables become more
dependent and likely to be simultaneously adverse.
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Diversification implies the risk of any random loss is split into diversifi-
able and non-diversifiable. The latter is known as systematic risk in finance
(Luenberger 1998). Systematic risk contributes to aggregate risk, whereas
diversifiable risk is eliminated upon aggregation. Of interest is the extent
of diversification in each random loss with greater diversification reducing
aggregate risk. In insurance, systematic risks add up to aggregate risk and
are hence an allocation of aggregate risk to component random losses. Kalk-
brener (2005) and Denault (2001) propose axioms for a coherent allocation
including no undercut: the systematic risk of any component loss is less than
its standalone risk before aggregation.

Similar to risk and dependence discussed in the previous two sections,
systematic risk and diversification varies across the loss distribution. Devel-
opments in this thesis show that the extent of diversification at any part of
the distribution is inversely related to local dependence with the aggregate
random variable such as the index return or aggregate insurance loss. Current
literature, further discussed in the next subsection, makes this observation
usually in an intuitive manner rather than under a formal setting.

Developing insights to systematic risk and diversification yields risk man-
agement strategies aimed at reducing aggregate risk effectively, by targeting
areas of joint loss distributions with high systematic risk and low diversifica-
tion. For example, excess–of–loss reinsurance is purchased to only cover tails
of losses with high rather than low systematic risk. Or consider a company
comprising of business units. The systematic risk of a business unit drives
its risk-adjusted performance and remuneration. Hence it is critical for ev-
ery business unit to understand sources of its systematic risk and ways to
maximise diversification.

1.7.2 Current approaches to analyse systematic risk
and diversification

Approaches to derive systematic or allocated risks are well established in the
literature. An overview is shown below. Current approaches provide broad
insights into drivers of systematic risk, usually the dependence between com-
ponent random variables. This thesis provides further insights by analyzing
systematic risk and diversification across loss distributions.

The following is an overview of current approaches to derive systematic
or allocated risk and analyse diversification:

• In the capital asset pricing model (Luenberger (1998), Sharpe (1964)),
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the systematic risk of a security is proportional to correlation between
its return and the market return, whilst overall risk of the security is
the standard deviation of its return. Hence diversification reduces with
the dependence between security and market returns.

• Choo and De Jong (2010) provides similar insights to systematic risks
as the capital asset pricing model. By applying the Euler allocation
principle (Buch and Dorfleitner (2008), McNeil et al. (2005)) to ag-
gregate distortion risk, the systematic risk of a component loss is its
covariance with a function of the aggregate loss. Furman and Zitikis
(2008b) and Tsanakas and Christofides (2006) show similar results for
allocated and systematic risks.

• The Euler allocation principle satisfies coherence axioms described in
Denault (2001) and Kalkbrener (2005). These axioms include no un-
dercut (allocated risk is less than standalone risk), symmetry (equal
allocation to random variables with equal risk contribution) and risk-
less allocation (no allocation to risk-free random variables). Applying
game theory (Shapley 1974) yields consistent results. Other properties
and applications of Euler allocation are discussed in Tasche (2007).

• Sherris (2006) and Myers and Read Jr (2001) derive allocations based
on option values. Dhaene et al. (2012) proposes a general approach by
minimising differences between allocated risk and losses. Van Gulick
et al. (2012) argues against Euler allocation and performs an allocation
by minimising expected shortfall in various portfolios. Cummins (2000)
and Venter (2004) summarise and critique current allocations.

1.7.3 Proposed analytical framework for systematic risk
and diversification

This thesis constructs a framework to analyze systematic risk and diversifi-
cation across layers of component losses being aggregated. The framework
expands risk densities in §1.6 and forms links with layer dependence in §1.5.
Insights gained from the proposed framework are critical to managing and
reducing aggregate risk.

Cornerstone to the proposed framework are systematic risk densities in-
dicating systematic risks of infinitesimal VaR layers forming a component
loss. These risk densities are akin to those discussed in §1.6 and identify risk
contributions by various parts of the loss distribution. However systematic
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risk densities allow for diversification and exclude diversifiable risk. System-
atic risk is measured as per Choo and De Jong (2010) by applying Euler
allocation to aggregate risk measured using distortion. Thus the systematic
risk of a VaR layer is its covariance with a function of the aggregate loss.
Since covariances are additive, integrating the systematic risk density over
an interval yields systematic risks of a larger layer, and the entire area under
the density is the overall systematic risk of the component loss as per Choo
and De Jong (2010).

Calculating the ratio between systematic and standalone (i.e. before ag-
gregation) risk densities reveals the lack of diversification in each VaR layer
of component losses. Ratios close to 1 indicate minimal diversification at the
layer, whereas ratios close to 0 or even negative indicate strong diversifica-
tion at the layer. Ratios closely relate to layer dependence discussed in §1.5,
between component and aggregate losses. Hence local dependence between
component and aggregate losses drives the level of systematic risk and diver-
sification across the probability distribution. Strong local dependence at a
component loss layer increases its systematic risk and reduces diversification.
In particular strong tail dependence leads to weak diversification and high
systematic risk at high VaR layers, and complete dependence implies zero
diversification across all layers.

The negative relationship between local dependence and diversification
across layers explains large systematic risks in financial markets exhibited for
example during the 2008 global financial crisis (Kolb 2010). This is despite
relatively weak to moderate overall correlations observed over time. Strong
tail dependence in financial markets (Rodriguez (2007) and Hartmann et al.
(2004)), coupled with skewed return distributions and large tail risks before
diversification (Cont (2001), Hsieh (1988)), leads to significant amounts of
non-diversifiable or systematic risk. Strong diversification below the tails
does not significantly reduce overall risk as risks of return distributions are
concentrated in the tails where diversification is weak.

Systematic risk and diversification insights developed in this thesis are
critical to advanced risk management involving multiple random losses. By
plotting and comparing standalone and systematic densities of a component
loss, VaR layers with high and low diversification are identified and treated
appropriately. For example, reinsurance, hedging and other risk mitigation
actions target tails with large systematic risk and weak diversification. Tails
with low systematic risk and strong diversification are retained or even ex-
panded, even if they have large standalone risks. These strategies reduce
aggregate risk effectively.
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This thesis also allocates mean and risk densities of the aggregate loss to
component losses. The allocation is critical when risk management strate-
gies such as stop-loss reinsurance and aggregate hedging target aggregate
loss layers, and the cost and impact of these aggregate strategies are allo-
cated to component losses. Allocated mean and risk densities of a component
loss differ from its mean and systematic risk densities: the former refers to
aggregate loss layers, whilst the latter uses component loss layers. The allo-
cation applies conditional mean sharing where an aggregate loss is allocated
to component losses based on their conditional expectations (Denuit and
Dhaene 2012). Allocated mean and risk densities integrate to the mean and
systematic risk of component losses, hence the allocation is unbiased.

1.8 Forming balanced views of risk

1.8.1 Two–sided versus one–sided risk measurement

As highlighted in §1.6, risks of random insurance and financial quantities
form critical inputs to insurance premium loadings, lending margins, cap-
ital buffers, reinsurance purchases and derivative hedging positions. Risk
measures, or premium principles, are well established in the literature and
common examples are discussed in Young (2004) and McNeil et al. (2005).

Due to widely perceived negative consequences of uncertainty and volatil-
ity, risk measures are typically one–sided and quantify adverse rather than
favourable outcomes. Common one–sided risk measures are discussed in
the next subsection. On the other hand, two–sided risk measures capture
favourable in addition to adverse outcomes. The distinction between one–
sided and two–sided risk measures is well articulated in Dhaene et al. (2003):

Two-sided risk measure (TRM): A two-sided risk measure mea-
sures the “distance” between the risky situation and the corre-
sponding risk-free situation when both favorable and unfavorable
discrepancies are taken into account.

One-sided risk measure (ORM): A one-sided risk measure mea-
sures the distance between the risky situation and the correspond-
ing risk-free situation when only unfavorable discrepancies con-
tribute to the “risk.”

Balanced, two–sided risk measurement is crucial in modern financial and in-
surance markets where competition is intense and unnecessary conservatism
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results in opportunity costs. For example when setting capital buffers, ex-
cessive conservatism and focussing only on larger than expected losses leads
to high buffers and high holding costs, whereas taking a more balanced view
and acknowledging the possibility of favourable outcomes yields potentially
higher rates of returns. In insurance pricing, taking a one–sided negative view
of claim costs results in a high risk loading and an uncompetitive premium,
leading to loss of business to competitors with less pessimistic and more re-
alistic views of both favourable and unfavourable claims experience. The
importance of capturing upside risk, and strategies of doing so, are discussed
generally in Hillson (2003) and Hillson (2002).

1.8.2 Current risk measurement approaches

The following are commonly used risk measures or premium principles. They
are generally one–sided and focus on downside risk or adverse outcomes.

• Value–at–Risk (VaR) (Dowd and Blake 2006) is a high percentile in a
loss distribution. VaR is commonly used in insurance and finance. For
example Solvency II insurance regulations apply 90% and 99.5% VaRs
(Eling et al. 2007) in capital requirements. Banking regulations Basel
II and Basel III also reference VaRs (Chernobai et al. 2008).

• Conditional–tail–expectation (CTE) (Rockafellar and Uryasev 2002) is
the average loss beyond a specified VaR. CTE addresses shortcomings
of VaR, by reflecting the magnitude of outcomes above the VaR and
satisfying subadditivity (Dowd and Blake 2006). CTE is used in Swiss
solvency regulations (Embrechts and Hofert 2014).

• Distortion risk measures (Wang 1996) are expectations under increased
loss survival probabilities, implying adverse outcomes are more likely.
Distortion risk measures capture CTE, proportional hazard and other
risk measures. Choo and De Jong (2009) shows distortion risk mea-
sures are equivalent to loss aversion reserves and spectral risk measures
(Acerbi 2002), both being weighted averages of VaRs with higher VaRs
given greater weight. The weighted averaging concept is important as
it is the starting point to generate two–sided risk measures as discussed
in the next subsection.

• The zero utility premium (Gerber 1985) is the certainty equivalent of a
random loss using a risk averse utility function. The premium always
exceeds the expected loss. Using the exponential utility function yields
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the exponential premium, which is a weighted average of Esscher pre-
miums (Van Heerwaarden et al. 1989). Heilpern (2003) calculates zero
utility premiums using rank-dependent utility theory (Quiggin 1982),
whilst Kaluszka and Krzeszowiec (2011) proposes a similar approach
using cumulative prospect theory (Tversky and Kahneman 1992).

In the above examples there is always a one–sided focus on larger loss out-
comes, resulting in a positive risk loading above the mean. Although it can
be argued that this conservatism can be tempered with appropriate selection
of risk parameters4, there is no explicit allowance for upside risk or smaller
loss outcomes. This thesis proposes a risk measure which explicitly captures,
and controls, the relative importance of upside and downside risks.

1.8.3 Tradeoff premiums as two–sided risk measures

This thesis proposes “tradeoff premiums” which are two–sided extensions of
one–sided distortion risk measures. Upside and downside risks are explicitly
captured and a “loss appetite” controls their relative importance. Close links
are established with subjective probability in cumulative prospect theory.

Tradeoff premiums are weighted averages of loss outcomes expressed in
VaRs. Weights are U–shaped. For one–sided distortion risks, loss aversion
reserves or spectral risks discussed in the previous subsection, weights are
increasing to reflect the importance of larger loss outcomes. With tradeoff
premiums, weights decrease up to an exogenous “loss appetite,” and increase
thereafter. U–shaped weights stress the importance of larger and smaller
loss outcomes, respectively representing downside and upside risk. A low loss
appetite implies weights are mostly increasing and generates a conservative
premium dominated by downside risk. On the other hand a high loss appetite
creates mostly decreasing weights and an aggressive premium with greater
focus on upside and less on downside.

Cumulative prospect theory (Tversky and Kahneman 1992) supports a
U–shaped weight function: over–weighting extreme, unlikely outcomes and
under–weighting average, likely outcomes. Further S–shaped distortion op-
erators are implied from tradeoff premiums, consistent with probability ad-
justment functions described in cumulative prospect theory.

Manipulating tradeoff premiums yields weighted averages of a distortion
risk, capturing downside risk, and its “dual” (Wang 2000), capturing upside

4This for example can be the CTE or VaR at a lower threshold, or the zero utility
premium using a utility function with a lower risk aversion index.
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risk. This property emphasizes the two–sided nature of tradeoff premiums.
An example tradeoff premium is the two–sided VaR, a weighted average
of lower and upper VaRs. The two–sided CTE is a weighted average of
two CTEs separately capturing lower and upper tails. In all cases the loss
appetite specifies the weights placed on downside and upside risks.

Tradeoff premiums match the description of two–sided risk measures de-
scribed in Dhaene et al. (2003): the distance between risky and risk-free
positions where the risky position captures favourable and unfavourable out-
comes. Subtracting the mean loss (risk-free position) from the tradeoff pre-
mium (risky position) yields the combination of a loading and discount. The
loading and discount capture the volatility of losses above and below the
loss appetite respectively. Therefore the difference between the tradeoff pre-
mium and the mean loss depends on the relative volatility of the two tails
separated at the loss appetite. Higher upper tail volatility yields an overall
positive difference and vice versa.

Tradeoff premiums satisfy translation invariance, positive homogeneity
and monotonicity properties of coherent risk measures (Artzner et al. 1999).
In addition tradeoff premiums are additive for comonotonic random losses.
Only subadditivity is not generally satisfied: the tradeoff premium of a sum of
random losses may exceed the sum of individual tradeoff premiums. Tradeoff
premiums are not subadditive due to their two–sided nature. Downside and
upside risks have opposite impact on tradeoff premiums and both reduce or
“diversify” upon aggregation. For right skewed loss distributions or low loss
appetite, downside risk dominates upside risk, yielding subadditive tradeoff
premiums. Conversely left skewed loss distributions or high loss appetite give
rise to superadditivity.

1.9 Conclusion

This thesis proposes novel solutions to critical problems around measuring
risk and dependence behaviour in a joint probability distribution. These
problems arise from observations that risk and dependence typically vary
across the distribution and hence measures of overall risk and dependence,
often the focus in the literature, provide insufficient information. In addition
competition is creating greater focus on upside risk in addition to downside
risk, driving the need for two–sided risk measures.

Proposed solutions, although novel, apply established concepts such as
correlation, layers, VaR, distortion risk, and Euler allocation. These con-
cepts are applied consistently across proposed solutions, naturally leading to
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an integrated and coherent quantitative risk management framework. Com-
monalities between proposed solutions are:

• Loss outcomes are expressed in VaRs instead of absolute amounts, and
modelled based on their percentile ranks.

• Random losses are decomposed into VaR layers when constructing layer
dependence, mean and risk densities, as well as analyzing systematic
risk and diversification.

• Distortion risk is used to form risk densities, analyse systematic risk and
diversification, and measure upside and downside risks in the tradeoff
premium.

Proposed solutions are explained in the next four chapters. The final chapter
discusses the integration of proposed solutions, and outlines potential future
research areas.
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Chapter 2

Layer dependence

The following paper introduces, analyzes and illustrates layer dependence as
a measure of local dependence.
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Layer dependence as a measure of local dependence

Abstract

A new measure of local dependence called “layer dependence” is proposed and
analysed. Layer dependence measures the dependence between two random
variables at different percentiles in their joint distribution. Layer dependence
satisfies coherence properties similar to Spearman’s correlation, such as lying
between −1 and 1, with −1, 0 and 1 corresponding to countermonotonicity,
independence and comonotonicity, respectively. Spearman’s correlation is a
weighted average of layer dependence across all percentiles. Alternate overall
dependence measures are arrived by varying the weights. Layer dependence is
an important input to copula modeling by extracting the dependence structure
from past data and incorporating expert opinion if necessary.

Keywords: Local dependence; rank dependence; Spearman’s correlation;
layers; conditional tail expectation; concordance.

1. Local dependence and layer dependence

Dependence between two random variables generally varies with percentile.
For example extreme movements in stock markets are likely to be highly related
whereas minor fluctuations may be relatively independent. Catastrophes create
significant insurance losses for several classes of business at the same time, while
attritional losses are typically weakly dependent.

Local dependence measures aim to capture the dependence structure of a
bivariate distribution. This contrasts with measures of overall dependence such
as Pearson correlation, Spearman’s ρ and Kendall’s τ (Embrechts et al., 2002).
Local dependence measures include the univariate tail concentration (Venter,
2002), correlation curve (Bjerve and Doksum, 1993), and bivariate measures by
Bairamov et al. (2003), Jones (1996) and Holland and Wang (1987).

This paper introduces, illustrates and analyzes an alternate local dependence
measure called “layer dependence.” Layer dependence is the covariance between
a random variable and a single “layer” of another. Layer dependence is also the
“gap” between upper and lower conditional tail expectations. Layer dependence
is calculated from the copula underlying the joint distribution. Hence of interest
is rank dependence rather than dependence between random variables in their
original scale: the latter is often distorted by marginal distributions.
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Layer dependence satisfies “coherence” properties similar to Spearman’s ρ:
it is between −1 and 1, constant and equal to −1, 0 and 1 for countermonotonic,
independent and comonotonic random variables, sign switching when the rank-
ing order reverses, and taking on higher values when dependence is stronger.
Taking a weighted average of layer dependence values across the joint distribu-
tion yields Spearman’s ρ and alternate coherent measures of overall dependence.

Layer dependence provides a more appropriate and accurate measure of local
dependence compared to existing measures. Higher dispersion between scatter
points from the 45◦ line reduces layer dependence and vice versa. For a Gumbel
copula exhibiting upper tail dependence, layer dependence starts from a lower
value and increases to 1 while the opposite applies to a Clayton copula with
lower tail dependence.

Calculating layer dependence at the first instance extracts essential and in-
terpretable information – the dependence structure. This is often more infor-
mative than positing parametric copula, as the implication of its parametric
form and parameters on the dependence structure is indirect. Computed layer
dependence facilitates the selection and fitting of an appropriate copula.

Remaining sections are as follows. Section 2 discusses the concepts leading
to definition of layer dependence. Section 3 demonstrates how layer dependence
extracts the dependence structure from common copulas. Section 4 explains
the behaviour of layer dependence by decomposing it into a negative function
of discordance and dispersion. Section 5 describes coherence properties of layer
dependence. Links to existing tail dependence measures are highlighted in §6.
Further properties of layer dependence are described in §7. Section 8 forms
alternate coherent measures of overall dependence apart from Spearman’s ρ,
using weighted averages of layer dependence. Section 9 discusses how layer
dependence can be applied to copula modeling. Section 10 concludes.

2. Layer dependence – motivation and definition

A familiar construct in the study of bivariate dependence is Spearman’s
correlation (Embrechts et al., 2002) defined as the linear correlation between
ranks of two random variables. Rank dependence avoids distortion arising from
marginal distributions as with for example Pearson’s correlation (McNeil et al.,
2005) measuring the degree of linear relationship between random variables in
their original scale. Spearman’s correlation can also be applied to estimate
copula parameters using the method of moments (Kojadinovic and Yan (2010),
Bouyé et al. (2000)). However Spearman’s correlation suffers from shortcomings
and, as an aggregate measure, is inappropriate for assessing local dependence
when dependence varies across the joint distribution including the tails.

Another familiar construct, in reinsurance, is a loss layer (Wang, 1995). For
example the 95%–96% layer of a random continuous loss x is the portion of x
between its 95th and 96th percentile

min
{
(x − x0.95)

+, x0.96 − x0.95

}
,
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Figure 1: Illustration of α-layer of u, written as Iα(u)dα. The α-layer of u is only sensitive
to movements in u at α and ignores other movements.

where ()+ indicates the positive part of the expression inside the brackets and
subscripts indicate the percentile. Layers also arise in the context of derivative
payouts and debt tranches in collaterised debt obligations (Mandel et al., 2012).
With rank dependence, the 95%–96% layer reduces to

min
{
(u − u0.95)

+, u0.96 − u0.95

}
= min

{
(u − α)+, dα

}
, (1)

where u is the percentile rank of x and in this example α = 0.95 and dα = 0.01.
Note uα = α.

2.1. Percentile layer decomposition

The final expression in (1) can be written and approximated by, using the
familiar infinitesimal notation,

−d(u − α)+ ≈ Iα(u)dα , Iα(u) ≡
{

0 , u ≤ α ,
1 , u > α .

(2)

The left hand side expression in (2) is called the α–layer of u. The approxi-
mation becomes exact as dα → 0. The α–layer of u is an infinitesimally small
increment dα if u exceeds α and is zero otherwise. Hence the α–layer captures
the movement in u at α and ignores movements elsewhere. Figure 1 illustrates
the α–layer of u.

As often exploited in reinsurance, any non-negative random loss or variable
can be thought of as a sum of layers:

u =

∫ u

0

1dα =

∫ 1

0

Iα(u)dα . (3)

Hence u is formed from infinitely many α–layers, each capturing the movement
of u at a different α.

2.2. Constructing layer dependence

Spearman’s correlation is the correlation and also the standardized covari-
ance between two percentile rank random variables v and u:

ρ ≡ cor(u, v) =
cov(v, u)√

cov(v, v)cov(u, u)
=

cov(v, u)

cov(u, u)
= 12cov(v, u) , (4)
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where cor and cov indicate covariance and correlation, respectively. In this
paper assume the copula of u and v is exchangeable (Nelson, 1999).

Using the decomposition of u in (3),

cov(v, u) = cov

{
v,

∫ 1

0

Iα(u)dα

}
=

∫ 1

0

cov{v, Iα(u)}dα . (5)

Hence the covariance cov(v, u) can be thought of as the sum of infinitely many
covariances cov{v, Iα(u)} for 0 ≤ α ≤ 1. Each covariance in the sum measures
the dependence between v and the α–layer of u. In a reinsurance setting, this
covariance measures dependence between a particular layer of a loss (in per-
centile rank terms) and another factor. Alternatively the covariance captures
dependence between movements in u at α and v.

Similar to ρ, scaling the layer covariances cov{v, Iα(u)} with the same when
v = u leads to the definition of layer dependence

ℓα ≡ cov{v, Iα(u)}
cov{u, Iα(u)} , (6)

where the denominator

cov{u, Iα(u)} = E[{u − E(u)}Iα(u)] =

∫ 1

α

(
u − 1

2

)
dα =

α(1 − α)

2
. (7)

Combining (4), (5), (6) and (7) yields

ρ = 12

∫ 1

0

ℓαcov{u, Iα(u)}dα =

∫ 1

0

ℓα6α(1 − α)dα . (8)

Hence ρ is a weighted average of ℓα for 0 ≤ α ≤ 1 with weights wα = 6α(1−
α) integrating to 1, and ℓα decomposes ρ into local dependence values. Note
wα has minimum 0 at α = 0 and 1 and increases symmetrically to maximum at
α = 0.5. Hence Spearman’s correlation places little emphasis on the tails which
may be undesirable in finance or insurance where tail dependence is critical.
Modifying the weights wα leads to alternate measures of overall dependence
further discussed in §8.

Layer dependence summarises the dependence structure of a copula. Layer
dependence provides additional information compared to Spearman’s correla-
tion: how dependence varies across the joint distribution. As any summary
measure, layer dependence can mislead but is less misleading than ρ and other
measures of overall dependence. Layer dependence is a more meaningful char-
acterisation of a copula compared to the parameters of copula families such as
the Clayton or Gumbel (McNeil et al., 2005). Properties of and arguments for
using layer dependence are explored below.
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2.3. Key properties of layer dependence

In §3 and §4 it is illustrated and shown that ℓα = 1 occurs if and only if
Iα(u) and Iα(v) are both simultaneously 1 or 0: that is u and v are both either
greater than α or less than α. Additionally ℓα = 1 for c ≤ α ≤ d implies u = v
over c ≤ u, v ≤ d.

Layer dependence ℓα satisfies the following coherence properties for all 0 ≤
α ≤ 1. These properties are shared with Spearman’s correlation and are for-
malised in §5. Similar to correlation, 0 ≤ ℓα ≤ 1, and ℓα = −1, 0 and 1 if
u and v are countermonotonic, independent and comonotonic, respectively. In
addition ℓα increases with the correlation order of (u, v). Replacing u or v with
their complement leads to straightforward changes in layer dependence.

The following is an alternative expression for ℓα:

ℓα =
E(v|u > α) − E(v|u ≤ α)

E(u|u > α) − E(u|u ≤ α)
= 2 {E(v|u > α) − E(v|u ≤ α)} . (9)

Proofs are in an appendix. The middle expression in (9) is the expected change
in v relative to the expected change in u when u crosses α. The latter is 0.5 for
all α, yielding the final expression in (9). Hence large ℓα implies v is sensitive
to movements in u across α, indicating strong dependence between v and u at
α. When ℓα = 0, v is unchanged on average when u crosses α.

3. Illustration of layer dependence curves for various copulas

The nine panels in Figure 2 display (u, v) scatterplots of well known ex-
changeable copulas. Less standard copulas are also shown for illustration. All
copulas are calibrated to have equal Spearman’s correlation ρ = 0.6. Layer de-
pendence curves ℓα for all 0 ≤ α ≤ 1 are plotted against α on (u, v) scatterplots
to demonstrate the link between the scatter and ℓα.

The scatterplots in Figure 2 emphasize that copulas with the same over-
all dependence can exhibit a variety of local dependence structures and these
structures are captured by layer dependence curves. Given α, ℓα is larger if
scatter points are more clustered around (α, α) and vice versa. In particular ℓα

increases to one in the tails of copulas exhibiting strong tail dependence. Hence
ℓα tracks the clustering of scatter points across the 45◦ line. This is formalised
in §4.

4. Discordance and dispersion

Layer dependence is intimately connected to discordance and dispersion.
Again assuming the copula C of (u, v) is exchangeable then

ℓα = 1 − 2(1 + γα)δα , (10)
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Figure 2: Copulas all with the same ρ = 0.6 but different layer dependence curves ℓα over
0 ≤ α ≤ 1 (in red). The top 3 copulas display relatively strong tail dependence in both
lower and upper tail. The first two copulas in the middle three have relatively strong upper
tail dependence and while the third has a high degree of lower tail dependence. The bottom
three copulas have relatively high local dependence in the middle of the distribution and less
correlation in the tails. Overall the panels illustrate how a given overall level of ρ can mask a
range of dependence structures and that layer dependence is an appropriate tool for assessing
local dependence. The top left panel displays a Gaussian copula, followed by a Student’s
t copula on the right. The leftmost panel in the middle three is a Gumbel copula, and the
rightmost is a Clayton copula. The bottom left panel is a Frank copula. Remaining copulas are
constructed from a factor model and are included to illustrate how layer dependence captures
local dependence.
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Figure 3: The left and right panel show copulas where ℓ0.75 = 1 and ℓ0.75 = 0.86, respectively.
In the left panel, γ0.75 = −1 (no discordant points) and δ0.75 = 0 (zero dispersion). In the
right panel, γ0.75 = −0.65 (some discordant points) and δ0.75 = 0.21 (some dispersion between
discordant points).

where

γα ≡ cor{1 − Iα(u), Iα(v)} = cor{Iα(u), 1 − Iα(v)} =
α2 − C(α, α)

α(1 − α)
,

and
δα ≡ E {(|u − v|)|(u − α)(v − α) < 0} .

A proof of (10) is in the appendix. Equation (10), as shown below, explains the
behaviour of layer dependence curves in Figure 2 where ℓα for any α increases
as the scatter become more tightly concentrated around the point (α, α), that
is lower discordance and dispersion relative to the same point.

The correlation −1 ≤ γα ≤ 1 measures the tendency for (u, v) to be discor-
dant at α: either u or v is above α and the other is below α. The expectation
0 ≤ δα ≤ 1 measures the average dispersion between discordant u and v at α,
noting (u−α)(v −α) < 0 is equivalent to u > α and v ≤ α or u ≤ α and v > α.

Figure 3 illustrates (10) using two copulas specifically constructed such that,
for α = 0.75, ℓα = 1 for one and ℓα = 0.86 for the other. For the copula where
ℓα = 1, there is no discordance or dispersion at α. This observation is confirmed
by setting ℓα = 1 in (10) yielding γα = −1 or δα = 0. In this case u and v are
perfectly dependent at α, and are simultaneously below or above α. It is also
straightforward to extend this result such that if ℓα = 1 over c ≤ α ≤ d then
u = v over c ≤ u, v ≤ d. As ℓα decreases from 1, as for the second copula, the
extent of discordance γα and dispersion δα increases. Again this result can be
confirmed from (10) noting ℓα is negatively related to γα and δα.
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Applying (10) and generalising the illustration in Figure 3 explains the be-
haviour of layer dependence curves in Figure 2. Layer dependence ℓα is larger if
scatter points are more clustered around (α, α), that is, fewer discordant points
at α, and discordant points at α are closer to the 45◦ degree line. The former
indicates smaller γα and the latter indicates smaller δα. Opposite observations
apply for small ℓα.

5. Coherence properties of layer dependence

Layer dependence ℓα satisfies the following five “coherence” properties. These
properties are extensions of properties applying to Spearman’s correlation.

• Bounds: Layer dependence lies between −1 and 1: −1 ≤ ℓα ≤ 1 for all
α. Hence layer dependence is bounded in the same way as ρ.

• Perfect dependence: Constant layer dependence of −1 or 1 are equiva-
lent to countermonotonicity and comonotonicity, respectively. Thus ℓα =
−1 for all α if and only if v = 1 − u while ℓα = 1 for all α if and only if
v = u.

• Independence: If u and v are independent then ℓα = 0 for all α. The
converse is not true – zero layer dependence does not imply independence
as shown by the following counterexample. Assume v = u and v = 1 − u
with equal probability. Then E(v|u = α) = 0.5 for all 0 ≤ α ≤ 1 implying
E(v|u > α) = E(v|u ≤ α) = 0.5. Hence ℓα = 0 from (9). However u and
v are not independent.

• Symmetry: Replacing v with 1 − v yields layer dependence curve −ℓα.
Doing the same to u (the random variable decomposed into layers) yields
layer dependence curve −ℓ1−α hence a flip is performed about α = 0.5 in
addition to a sign change. Replacing both u and v with their complements
yields layer dependence curve ℓ1−α.

• Ordering: Higher correlation order (Dhaene et al., 2009) leads to higher
layer dependence. Specifically, consider bivariate uniform (u∗, v∗) exceed-
ing (u, v) in correlation order: C∗(a, b) ≥ C(a, b) for all 0 ≤ a, b ≤ 1, where
C∗ is the copula of (u∗, v∗). Then ℓ∗

α ≥ ℓα, 0 ≤ α ≤ 1 where ℓ∗
α denotes

the α–layer dependence of (u∗, v∗). Hence greater dependence leads to a
higher layer dependence curve.

Independence and symmetry properties follow from the definition of layer depen-
dence in (6). From (9), constant layer dependence of one implies E(v|u > α) =
(α+1)/2 and E(v|u = α) = α, for all 0 ≤ α ≤ 1, hence v = u. Similarly constant
layer dependence of minus one implies v = 1 − u. The ordering property holds
since higher correlation order implies larger covariances (Dhaene et al., 2009).
Prove the bounds property by combining ordering and perfect dependence prop-
erties, and noting countermonotonicity and comonotonicity represent minimum
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and maximum correlation order, respectively. Detailed proofs are shown in the
appendix.

Most of the layer dependence coherence properties can be expressed using
copulas shown in Table 1.

Copula Description LD
uv Independent u and v 0

min(u, v) Comonotonic u and v 1
max(u + v − 1, 0) Countermonotonic u and v −1
u − C(u, 1 − v) Replace v with 1 − v −ℓα

v − C(1 − u, v) Replace u with 1 − u −ℓ1−α

u + v − 1 + C(1 − u, 1 − v) Replace v and u with complements ℓ1−α

Table 1: Layer dependence (LD) for different copulas and transformations. Note the final
copula is the survival copula of C.

6. Connections to measures of tail dependence

Measures have been proposed to capture the degree of tail dependence. Tail
dependence is dependence between extreme values of random variables, in this
case values of u and v near 0 or 1. Strong tail dependence creates catastrophic
events such as multiple bank failures and market crashes. Layer dependence is
intimately connected to two existing tail dependence measures – coefficient of
tail dependence and tail concentration function. Sweeting and Fotiou (2013)
and Durante et al. (2014) further discuss tail dependence measures.

6.1. Coefficients of tail dependence

Joe (1997) defines coefficients of lower and upper tail dependence as

λL ≡ lim
α↓0

P(v ≤ α|u ≤ α) , λU ≡ lim
α↑1

P(v > α|u > α) .

Unit coefficients indicate perfect positive tail dependence, and occur if and only
if u converging to 0 or 1 implies the same for v. Coefficients of negative tail
dependence replace v ≤ α and v > α in the above expressions with v > 1−α and
v ≤ 1 − α, respectively. Sweeting and Fotiou (2013) discusses the drawback of
these coefficients and suggests a modification by weakening the limits, yielding
links to tail concentration functions discussed below.

From (9), ℓ0 = limα↓0 ℓα = 1 − 2E(v|u = 0) which equals 1 if and only if
E(v|u = 0) = 0, or v approaching 0 if the same happens to u. Hence ℓ0 = 1 is
equivalent to λL = 1. Similarly ℓ1 = 2E(v|u = 1) − 1 = 1 if and only if u = 1
implies v = 1, which is equivalent to λU = 1. Similar results apply to perfect
negative tail dependence.
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Hence layer dependence characterises perfect tail dependence in the same
way as the measures of Joe (1997): variables attaining their maximum or mini-
mum values simultaneously.

6.2. Tail concentration

Tail concentration (Venter, 2002) is a local dependence measure formed from
lower and upper conditional tail probabilities. Similar to layer dependence, tail
concentration functions describe the dependence structure of copulas and are
used to identify families of copulas. The following shows the connection between
layer dependence and tail concentration and shows layer dependence refines tail
concentration by incorporating additional information on dispersion defined in
§4.

The tail concentration at α is

τα ≡
{

P(v ≤ α|u ≤ α) = C(α,α)
α , α ≤ 0.5 ,

P(v > α|u > α) = 1−2α+C(α,α)
1−α , α > 0.5 .

A larger τα implies u and v are more likely to fall in the same tail – lower
tail if α ≤ 0.5 and upper tail if α > 0.5. Letting α → 0 and α → 1 yields
the coefficients of tail dependence λL and λU discussed above. Properties of tail
concentration and its applications to distinguish families of copulas are discussed
in Durante et al. (2014).

To show the connection between layer dependence and tail concentration,
first standardise τα by subtracting τ0

α, its value under independence, and divid-
ing by τ+

α − τ0
α where τ+

α is the value of τα if u = v, yielding:

τ∗
α =

τα − τ0
α

τ+
α − τ0

α

=
C(α, α) − α2

α(1 − α)
, τ0

α =

{
α , α ≤ 0.5

1 − α , α > 0.5
, τ+

α = 1 .

Then τ∗
α equals 1 or 0, if u = v or if u and v are independent, respectively.

Hence τ∗
α = −γα where γα measures discordance between u and v at α as

discussed in §4. Combining this result with (10) yields

ℓα = 1 − 2δα(1 − τ∗
α) = 1 − 2δα + 2δατ∗

α

where δα as defined in §4 measures average dispersion between discordant u and
v at α. Note ℓα is increasing in τ∗

α and τα. It is also straightforward to show that
ℓα = 1 is equivalent to τ∗

α = 1 which is in turn equivalent to τα = 1. Hence layer
dependence and tail concentration have equivalent characterisations of perfect
local dependence at any point. This extends the above result that perfect tail
dependence has identical implications on layer dependence and coefficients of
tail dependence by Joe (1997).

Hence tail concentration and layer dependence are closely connected. Tail
concentration (in its standardised form) is only one of two factors forming layer
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dependence. The other factor is the dispersion between discordant points, mea-
sured by δα. Using the right panel of Figure 3, τα or τ∗

α only reflects the number
of discordant points at α, whereas layer dependence combines this information
and average dispersion between discordant points. Hence layer dependence re-
fines tail concentration by standardising and including information on disper-
sion.

7. Further properties of layer dependence

This section lists and explores further properties and results of layer depen-
dence.

7.1. Copula integration

Layer dependence ℓα can be written as a standardised integral of the copula:

ℓα =

∫ 1

0
cov{Iα(u), Iβ(v)}dβ

α(1 − α)/2
=

2
∫ 1

0
C(α, β)dβ − α

α(1 − α)
. (11)

The result follows from (6) by decomposing v =
∫ 1

0
Iβ(v)dv similar to (3) and

noting cov{Iα(u), Iβ(v)} = C(α, β) − αβ.

Thus ℓα summarises a copula: reducing the dimension from two and one,
and scales the result to ensure it lies between ±1. This computation extracts
the dependence structure from the copula. In comparison, tail concentration
performs the dependence extraction by computing the diagonal section C(α, α).

7.2. Layer dependence preserves convex combination

Layer dependence is preserved under convex combinations of copulas. Sup-
pose (u∗, v∗) has α–layer dependence ℓ∗

α and copula C∗. Then a mixture b(u, v)+
(1 − b)(u∗, v∗) where b is Bernoulli with E(b) = π has copula πC + (1 − π)C∗

and layer dependence πℓα +(1−π)ℓ∗
α. Hence layer dependence preserves convex

combinations of copulas. The proof follows directly from (11).

It is also straightforward to show that layer dependence preserves multiple
and continuous convex combinations of copulas.

7.3. One-sided conditional tail expectations

Since E(v) = αE(v|u ≤ α) + (1 − α)E(v|u > α) it follows from (9) that

ℓα =
E(v|u > α) − E(v)

E(u|u > α) − E(u)
=

E(v|u ≤ α) − E(v)

E(u|u ≤ α) − E(u)
,

the gap between upper or lower conditional tail expectations of v and the uncon-
ditional expectation. Denominators are again scaling factors ensuring ℓα = 1 if
u and v are comonotonic and ℓα = −1 if countermonotonic.
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7.4. Layer dependence for a non-exchangeable copula

If the copula of u and v is not exchangeable, C(u, v) ̸= C(v, u), then layer
dependence changes when v is decomposed into layers rather than u:

cov{v, Iα(u)}
cov{u, Iα(u)} ̸= cov{u, Iα(v)}

cov{v, Iα(v)} ,

that is, the dependence between v and α–layer of u differs from the dependence
between u and α–layer of v. This is similar to regression where the regression of
y on x is not equivalent to the regression of x on y unless the joint distribution
is exchangeable.

8. Alternate measures of overall dependence

It may still be convenient to use an overall dependence measure such as
Spearman’s correlation. However as discussed in §2, Spearman’s correlation
downplays tail dependence and may be inappropriate when tail dependence is
critical. The following formulates alternative measures of overall dependence by
taking different weighted averages of layer dependence:

ρW ≡
∫ 1

0

wαℓαdα =

∫ 1

0

wα
cov{v, Iα(u)}
cov{u, Iα(u)}dα = cov{v, W (u)} ,

where

W (u) ≡
∫ 1

0

wαIα(u)

cov{u, Iα(u)}dα = 2

∫ u

0

wα

α(1 − α)
dα ,

∫ 1

0

wαdα = 1 .

The weighting function wα indicates the weight or importance of the α–layer of
u and its dependence with v.

Hence ρW is the covariance between v and a transformation of u. For Spear-
man’s correlation ρ, wα = 6α(1 − α) and W (u) = 12u. Even though the
expression for ρW is asymmetric in u and v, the result is identical when u and
v are switched if the copula C is exchangeable.

Since ρW averages ℓα using non-negative weights which integrate to 1, all
coherence properties of ℓα described in §5 apply to ρW . Specifically −1 ≤
ρW ≤ 1, with ρW = −1, 0 and 1, under countermonotonicity, independence
and comonotonicity, respectively. Further ρW switches its sign when u or v
are replaced by their complement. These properties mimic those of Spearman’s
correlation.

The following are examples of wα yielding alternate rank dependence mea-
sures ρW :
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• Suppose dependence at different percentiles are equally important. Then
wα = 1 yielding

ρ1 = 2cov

{
v, log

(
u

1 − u

)}
=

π

3
cor

{
v, log

(
u

1 − u

)}
,

a multiple of the correlation between v and the logit of u. The final ex-
pression follows by noting v and log{u/(1 − u)} have standard deviations
1/

√
12 and π/

√
3, respectively. If tail dependence is pronounced, ρ1 > ρ

since ρ1 weights tail dependence more heavily compared to ρ. An illustra-
tion ρ1 and other alternates to ρ is shown below.

• If wα = 3α2 then dependence at higher percentiles are considered more
important. This formulation is applicable when upper tail dependence is
critical, for example the simultaneous occurrence of large insurance losses
in different lines of business. Then

ρ2 = 6cov

{
v, log

(
e−u

1 − u

)}
=

√
3cor {v, − log(1 − u)} − ρ

2
,

noting − log(1 − u) has standard deviation 1. This dependence measure
combines ρ and the correlation between v and logarithmic transform of u.
If dependence is higher above the median then ρ2 > ρ.

• If dependence over percentiles below the median is more important then
for example wα = 3(1 − α)2 yielding

ρ3 = 6cov
{
v, log

(
ue−u

)}
=

√
3cor(v, log u) − ρ

2
,

similar to ρ2 with an opposite logarithmic transform on u.

• Suppose wα is derived from Vα, the inverse distribution of x with derivative
V ′

α:

wα =
cov{u, Iα(u)}V ′

α∫ 1

0
cov{u, Iα(u)}V ′

αdα
=

0.5α(1 − α)V ′
α

cov(u, Vu)
=

0.5α(1 − α)V ′
α

cov(u, x)
,

where
∫ 1

0
Iα(u)V ′

αdα =
∫ u

0
V ′

αdα = Vu and x = Vu. Using these weights
yields the Gini correlation (Schechtman and Yitzhaki, 1999)

ρ4 =
cov(v, Vu)

cov(u, Vu)
=

cov{G(y), x}
cov{F (x), x} ,

where F ≡ V − and G are distribution functions of observed random vari-
ables x and y with percentile ranks u and v, respectively. In this example
the weights wα depend on the marginal distribution of x. More skewness
in x leads to more steeply increasing V ′

α and wα hence greater emphasis
on upper tail dependence.
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Figure 4: The left panel shows the weight functions wα = 6α(1 − α) (black), wα = 1 (blue),
wα = 3α2 (green), wα = 3(1 − α)2 (yellow). The right panel shows a Clayton copula with
a red layer dependence curve and overall dependence ρ, ρ1, ρ2 and ρ3 indicated using the
same colors as corresponding weight functions in the left panel. Note the weight function
wα = 3(1 − α)2 delivers the highest overall dependence for the Clayton copula due to the
emphasis on lower tail dependence. The weight function wα = 3α2 delivers the lowest overall
dependence due to the emphasis on upper tail dependence.

Figure 4 illustrates the first three alternates to Spearman’s correlation listed
above using a Clayton copula shown in Figure 2. Note ρ, ρ1, ρ2 and ρ3 are all
weighted averages of ℓα. However their values differ depending on the weight
function used. As the Clayton copula exhibits strong lower tail dependence and
weak upper tail dependence, ℓα is decreasing in α. Hence ρ1 > ρ as ρ1 places
relatively higher weight on large values of ℓα in the lower tail. ρ3 is the largest
as it places the most weight on the lower tail, whereas ρ2 is the smallest as it
focusses on upper tail dependence. Hence ρ3 is a sensitive measure of lower tail
dependence and is appropriate when lower tail dependence is of main concern,
and vice versa for ρ2.

9. Discussion of copula fitting involving layer dependence

This section discusses how layer dependence can be applied to select and fit
copulas using past data and expert judgement.

The literature discusses copula fitting extensively. A common approach is to
first select parametric copula and marginal distributions, then estimate param-
eters by maximising joint likelihood (Denuit et al., 2005). A semi-parametric
approach replaces marginal distributions in joint likelihood with empirical ranks
(Oakes, 1989). The method of moments involves setting up equations to match
statistics computed from data and the parametric model (Kojadinovic and Yan,
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2010). Kojadinovic and Yan (2010) also compares common copula fitting meth-
ods. The choice of parametric copula may be restricted to a specific class of
copulas, such as Archimedean copulas (McNeil et al., 2005). Genest and Rivest
(1993) suggests an approach to select the generator function of Archimedean
copulas. Alternatively a visual assessment of data may suggest an appropriate
parametric copula with similar dependence structure, for example the Gumbel
or Clayton copulas if tail dependence is strong. At the other extreme is to use the
empirical copula, if the volume of past data is sufficiently large. Czado (2010)
discusses a semi-parametric approach to model multivariate copulas, based on
vine copulas.

Layer dependence can be applied to the copula modeling process in several
ways:

• Layer dependence is first computed from data at intervals of say 0.01,
that is ℓ0.01, ℓ0.02, . . .. The selected granularity depends on the volume
of data. Layer dependence values may be smoothed parametrically or
non-parametrically to reveal the dependence structure of the data.

• There may be an intermediate step where the computed layer dependence
curve is adjusted to incorporate expert opinion. For example one may wish
to increase layer dependence in the upper tail in anticipation of stronger
upper tail dependence than observed historically.

• A parametric copula may then be selected by matching the shape of its
layer dependence curve to the data. Shapes of layer dependence curves
of typical copulas are shown in Figure 2. Parameters can be fitted using
either maximum likelihood or method of moments.

• A mixture of parametric copulas, for example where the parameters follow
a probability distribution, may be applied such that the layer dependence
curve perfectly matches the data. The difficulty is closed form expressions
may be unavailable.

Applying layer dependence in copula fitting refines existing approaches in several
ways. Firstly layer dependence guides the selection of a copula family so that
the dependence structure of past data is mirrored closely. In addition layer
dependence is a convenient medium for incorporating expert opinion on the
dependence structure. Further layer dependence is robust to data inadequacies
as it summarises data into conditional tail mean values and smoothing is applied.

10. Conclusion

Layer dependence captures dependence structures in bivariate copulas, and
shares the same practical properties as Spearman’s correlation. Layer depen-
dence is connected to, and refines, current approaches to measure tail depen-
dence. Taking weighted averages of layer dependence curves yields Spearman’s
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correlation and alternate measures of overall dependence which emphasize dif-
ferent areas of the dependence structure.

Using layer dependence in copula fitting enhances the process by capturing
and reflecting the dependence structures in past data, whilst flexibly accommo-
dating expert opinion.
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11. Appendix

11.1. Proof of equation (9)

Since E(v) = αE(v|u ≤ α)+(1−α)E(v|u > α), the numerator of the middle
expression is (9) is

E(v|u > α) − E(v|u ≤ α) = E(v|u > α) − E(v) − (1 − α)E(v|u > α)

α

=
E(v|u > α) − E(v)

α
=

E{vIα(u)} − E(v)E{Iα(u)}
α(1 − α)

=
cov{v, Iα(u)}

α(1 − α)
,

and similarly the denominator is

E(u|u > α) − E(u|u ≤ α) =
cov{u, Iα(u)}

α(1 − α)
= 0.5 ,

noting cov{u, Iα(u)} = 0.5α(1 − α) in (7). Combining these two results yields
the first and third expressions of (9). This completes the proof.

11.2. Proof of equation (10)

Firstly the measure of discordance can be expressed as

γα = −cov{1 − Iα(u), 1 − Iα(v)}
cov{Iα(u), Iα(u)} =

α2 − C(α, α)

α(1 − α)
,

and the measure of dispersion is (assuming the copula of (u, v) is exchangeable),

δα = 2E {(u − v)Iv(u)|(u − α)(v − α) < 0}

=
2E[(u − v)Iv(u)Iα(u){1 − Iα(v)}]

2E[Iα(u){1 − Iα(v)}]
=

E[(u − v)Iα(u){1 − Iα(v)}]

α − C(α, α)

=
E{(u − v)Iα(u)} − E{(u − v)Iα(u)Iα(v)}

α − C(α, α)
=

E{(u − v)Iα(u)}
α − C(α, α)

.

Substituting the above expressions for γα and δα into the right hand side of (10)
yields the expression for ℓα in (9), completing the proof.

11.3. Proof of coherence properties in section 5

Independence property

If u and v are independent, then layer dependence is

ℓα =
cov{v, Iα(u)}
cov{u, Iα(u)} = 0 , 0 ≤ α ≤ 1

since the numerator is zero.
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Perfect dependence property

If u and v are comonotonic or v = u, then layer dependence

ℓα =
cov{v, Iα(u)}
cov{u, Iα(u)} =

cov{u, Iα(u)}
cov{u, Iα(u)} = 1 , 0 ≤ α ≤ 1 .

In addition ℓα = 1 implies from (9) E(v|u > α) − E(v|u ≤ α) = 0.5 for all α.
Substituting E(v|u ≤ α) = {E(v) − (1 − α)E(v|u > α)}/α yields E(v|u > α) =
0.5(α + 1). Hence the conditional expectation

E(v|u = α) = − d

dα
{(1 − α)E(v|u > α)} = α , 0 ≤ α ≤ 1 ,

implying v = u, completing the proof. A similar proof holds for countermono-
tonicity where v = 1 − u.

Symmetry

Replacing v with 1 − v yields layer dependence

cov{1 − v, Iα(u)}
cov{u, Iα(u)} = − cov{v, Iα(u)}

cov{u, Iα(u)} = −ℓα ,

whilst replacing u with 1 − u yields

cov{v, Iα(1 − u)}
cov{1 − u, Iα(1 − u)} = − cov{v, 1 − I1−α(u)}

cov{u, 1 − I1−α(u)} = − cov{v, I1−α(u)}
cov{u, I1−α(u)} = −ℓ1−α .

Using a similar proof, replacing v and u with 1−v and 1−u, respectively, yields
layer dependence ℓ1−α.

Correlation order

If (u∗, v∗) exceeds (u, v) in correlation order, then

cov{f(u∗), g(v∗)} ≥ cov{f(u), g(v)}

for any non-decreasing functions f and g (Dhaene et al., 2009). Therefore the
numerator of layer dependence in (6) cov{v∗, Iα(u∗)} ≥ cov{v, Iα(u)} since
Iα(u) is increasing in u, and the denominators are the same. Thus (u∗, v∗) has
higher layer dependence than (u, v).

Bounds

Since layer dependence preserves correlation order, ℓα ≤ 1 since ℓα = 1 if
and only if u and v are comonotonic and comonotonicity represents maximum
correlation order (Dhaene et al., 2009). Similarly ℓα ≥ −1 noting countermono-
tonicity represents minimum correlation order and leads to ℓα = −1.
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Chapter 3

Mean and risk densities

The following paper introduces, analyzes and illustrates mean and risk den-
sities which capture mean and risk behaviour across layers of a loss.
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Mean and risk densities and their applications to risk
management

Abstract

This paper proposes a framework to analyze mean and distortion risk across
layers forming a random loss. Layers are standard insurance and financial con-
structs representing insurance coverage, capital shortfall, derivative payouts and
debt tranches. Layers are expressed using percentiles or Values–at–Risk which
adjust to the shape and scale of the probability distribution. The proposed
framework yields insights and solutions to common risk management problems
which are difficult or awkward to solve using standard statistical methods.

Keywords: Layers; density; distortion; Value–at–Risk; reinsurance; tranches.

1. Introduction to layers and this paper

This section first summarises the well established concept of layers and their
practical applications. Key contributions of this paper are then highlighted and
are developed in subsequent sections.

The layer [a, b] of a random loss x ≥ 0 is defined as the excess of x over a
with the excess capped at b − a:

min{max(x − a, 0), b − a} = Lb(x) − La(x), Lk(x) ≡ min(x, k) ,

where Lk(x) is x capped at k. Of interest in this paper are layers over various
k for a single random variable x, thus drop x from the notation and write the
layer [a, b] of x as Lb − La. However keep in mind that layers are functions of x
and are hence random variables.

Layers are standard insurance and financial constructs. For example insur-
ance and reinsurance with excess a and limit b cover the layer [a, b] of loss x. A
capital buffer k divide a loss into two layers: capital consumed [0, k] and capital
shortfall [k, ∞]. Derivatives and collaterised debt obligations also involve layers,
sometimes known as tranches. For example the payout on a call option on x
with exercise price k is the layer [k,∞], whereas the payout on a put option
is k minus the [0, k] layer. A debt may be split into tranches [a, b] where a is
the attachment point and b is the detachment point. High layers capture rare,
extreme outcomes and low layers characterise common, attritional outcomes.
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Statistical properties of layers are discussed in Campana and Ferretti (2014),
Wang (1998), Wang (1995) and Miccolis (1977). Lee (1988) adopts a graphical
approach to explain key concepts and results. The insurance pricing of loss
layers is discussed in Evans (2001) and Salzmann (1963). Mandel et al. (2012)
and Duffie and Garleanu (2001) discuss tranches in collaterised debt obligations
and how they partially enhance the credit quality of the debt.

The following result is central to this paper:

x = L∞ − L0 =

∫ ∞

0

dLk =

∫ ∞

0

L′
kdk =

∫ ∞

0

Ik(x)dk , (1)

where L′
k is the derivative of Lk with respect to k and is equal to

Ik(x) ≡
{

0 , x ≤ k ,
1 , x > k ,

an indicator for x > k.

In (1), x is composed of infinitesimally small layers dLk, called the k–layer
of x. The k–layer of x is equal to Ik(x)dk, an increment dk if x exceeds k. Each
k–layer is a random variable and is comonotonic with all other layers since dLk

is non-decreasing in x. The layer decomposition of x in (1) is key to analyzing
sources of mean and risk in a loss as shown subsequently in this paper.

Integrating k–layers of x over a to b reproduces the [a, b] layer:

∫ b

a

dLk = Lb − La = min(x, b) − min(x, a) = min{max(x − a, 0), b − a} .

Assuming x has distribution function F , the mean of layer dLk is

E(dLk) = E {Ik(x)dk} = {1 − F (k)}dk

where E is the expectation. Wang (1996) calls 1 − F the layer premium density
of x as it indicates the mean value or insurance premium of each layer and it
integrates to the overall premium:

∫∞
0

{1 − F (k)}dk = E(x). Wang (1996) also
distorts 1 − F to deliver risk-adjusted premiums.

This paper modifies and extends results in Wang (1996) by defining “VaR
layers”: layers expressed on the percentile or Value–at–Risk (VaR) scale. VaRs
adjust to the shape and scale of the loss distribution, and are hence comparable
across loss distributions. VaRs are standard insurance and financial constructs.
For example Solvency II insurance regulation applies 90% and 99.5% VaRs (El-
ing et al., 2007) to capital requirements. Banking regulations Basel II and Basel
III also reference VaRs in risk measurement (Chernobai et al., 2008).

A framework is constructed to analyse mean and distortion risk across VaR
layers forming a random loss. The framework yields insights and solutions to
risk management problems such as setting optimal capital buffers, analyzing
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the credit quality of debt tranches, and applying reinsurance to transform the
loss distribution. These problems are typically difficult or awkward to express
and solve using standard statistical approaches. In addition optimal quantities
derived from the framework, such as capital buffers, are expressed in VaRs which
are standard references in finance and insurance as mentioned above.

Remaining sections of this paper are structured as follows. VaR layers are
first defined in section 2. Sections 3 to 5 formalise, analyze and illustrate layer
means or “mean densities.” Risk densities are covered in sections 6 to 9. Section
10 shows how mean and risk densities are calculated from data and illustrates
using historical stock returns. Remaining sections apply mean and risk densities
to insurance pricing, collaterised debt obligations, capital setting and reinsur-
ance loss transformation.

2. Decomposing a loss into VaR layers

Consider a continuous random loss x ≥ 0 with distribution function F and
inverse distribution function F−. For any constant 0 ≤ α ≤ 1, the α–VaR or
VaRα of x is Vα ≡ F−(α). Substitute k = Vα into the first expression for x in
(1) to yield a modified decomposition

x = L∗
1 − L∗

0 =

∫ 1

0

dL∗
α =

∫ 1

0

(L∗
α)′dα =

∫ 1

0

IVα
(x)V ′

αdα ,

where V ′
α is the derivative of Vα with respect to α and L∗

α ≡ LVα = min(x, Vα)
is the capped loss with the cap expressed in VaRs instead of dollars. VaRs are
used for the rest of this paper, hence drop the superscript ∗ in the notation. In
addition define u ≡ F (x) as the percentile rank of x and hence IVα(x) = Iα(u).

Therefore rewrite the above result using the simplified notation

x = L1 − L0 =

∫ 1

0

dLα =

∫ 1

0

L′
αdα =

∫ 1

0

Iα(u)V ′
αdα , (2)

where Lα is now defined as min(x, Vα) for the rest of this paper.

Similar to (1), (2) decomposes x into infinitesimally small VaR layers. The
Vα–layer of x is dLα = Iα(u)V ′

αdα, an increment V ′
αdα if x > Vα or u > α. The

increment is proportional to V ′
α called the Vα–spacing, analogous to spacings

between order statistics (Shaked and Shanthikumar, 2007). VaR spacings vary
across a loss distribution with larger spacings indicating areas of greater skew-
ness. Increasing the scale of a loss distribution increases VaR spacings by the
same scale. The Vα–spacing can be written as

V ′
α =

d

dα
F−(α) =

1

f(Vα)
, f ≡ F ′

where f is the loss density. Hence Vα–spacing is increasing in the upper tail of
a right skewed distribution where the density gradually tails off to 0.
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Similar to §1, integrating Vα–layers forms a larger VaR–layer:

∫ β

α

dLπ = Lβ − Lα = min(Vβ , x) − min(Vα, x) = min{max(x − Vα, 0), Vβ − Vα}

the excess of x over Vα with the excess capped at Vβ−Vα. The VaR–layer [Vα, Vβ ]
is positive when u > α, with probability 1−α, and reaches its maximum Vβ −Vα

when u ≥ β, with probability 1 − β.

Hence a VaR–layer captures a portion of losses identified from their relative
position in the probability distribution. For example the VaR–layer [V0.5, V0.75]
captures the top 50% of losses, and the top 25% of losses are capped at the
75th percentile. Endpoints of VaR layers adjust to the shape and scale of the
loss distribution. Increasing the scale of the loss distribution increases layer
endpoints by the same scale, and similarly when skewness increases. VaR layers
are therefore comparable between loss distributions with different scale or shape.
In contrast layers determined in dollar terms as in §1 may be attritional or
extreme layers depending on the loss distribution.

3. Mean density: expected values of VaR layers

Following Wang (1996), define the mean density of x as the relative mean
value of the Vα–layer, yielding

mα ≡ E(L′
α) = E {Iα(u)V ′

α} = (1 − α)V ′
α , (3)

for 0 ≤ α ≤ 1. The mean density mα is the product of 1 − α, the probability of
x reaching Vα, and the Vα–spacing V ′

α, the width of the Vα–layer of x.

The behaviour of mα with α depends on relative movements in 1 − α and
V ′

α, and characterises the loss distribution as illustrated in §4. As α increases,
1 − α decreases due to a reduced likelihood of x reaching larger VaRs. On the
other hand for a right skewed loss distribution where the probability density is
decreasing, V ′

α = 1/f(Vα) increases with α.

The term “density” is used to refer to mα due to analogous properties shared
with probability densities. Using (2),

∫ 1

0

mαdα = E

(∫ 1

0

dLα

)
= E(x) ,

thus the total area under the mean density is the overall mean loss. The mean
density hence spreads the overall mean across layers forming the loss, and iden-
tifies layers with high mean contribution. Integrating the mean density over the
interval [α, β] yields the mean of the [Vα, Vβ ] VaR–layer:

∫ β

α

mπdπ = E

(∫ β

α

dLπ

)
= E(Lβ − Lα) . (4)

51



Analogously, integrating a probability density over its entire support yields total
probability 1, whilst integrating over other intervals yields the probability over
the same interval.

Mean values of VaR–layers represent, for example, the pure premium under
an excess-of-loss reinsurance arrangement, expected capital shortfall or con-
sumed, and expected derivative payouts. Section 6 defines risk values of VaR–
layers. Combining mean and risk values of VaR–layers yields insights to common
risk management problems discussed further in §11.

4. Example mean densities

The following are mean densities for common probability distributions. In
all cases b > 0 is a scale parameter.

• The uniform distribution over [0, b] yields

Vα = bα, V ′
α = b, mα = (1 − α)b ,

hence the mean density linearly decreases to zero. The mean density is
decreasing since uniform VaR–spacings are offset by the lower likelihood
of losses reaching higher VaRs. The mean density is also proportional to
scale b, and this is the case for all mean densities described below.

• The exponential distribution with mean b yields

F (x) = 1 − e−x/b, Vα = −b ln(1 − α), V ′
α =

b

1 − α
, mα = b ,

and the mean density is constant since increasing VaR–spacings exactly
offset decreasing probabilities of losses reaching larger VaRs. Hence VaR
layers of an exponential distribution have uniform contribution to the
overall mean.

• The Pareto distribution with shape parameter c > 1 yields

F (x) = 1 −
(

b

b + x

)c

, Vα = b
{

(1 − α)−1/c − 1
}

,

V ′
α =

b

c(1 − α)1/c+1
, mα =

b

c(1 − α)1/c
.

The mean density increases to infinity as α → 1: increasing VaR spacings
more than offset decreasing probabilities of reaching larger VaRs. Mean
contributions are concentrated in high VaR layers of a Pareto distribution.
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• For the Weibull distribution with shape parameter k > 0,

F (x) = 1 − e−(x/b)k

, Vα = b {− ln(1 − α)}1/k
,

V ′
α =

b {− ln(1 − α)}1/(k−1)

k(1 − α)
, mα =

b {− ln(1 − α)}1/(k−1)

k
.

Setting k = 1 yields the exponential distribution and mα = b. Reducing
k increases skewness and yields increasing mα. Vice versa if k > 1.

Figure 1 plots mean densities for the above loss distributions with parameters
selected to satisfy E(x) = 1. Hence mean densities in Figure 1 all integrate to
one, and their shape indicates relative contributions from different layers of the
loss. As described above, the exponential distribution has a flat mean density
and the overall mean value is spread uniformly across VaR layers. For the
Pareto distribution, the bulk of the overall mean value is contributed by high
VaR layers as reflected by an increasing mean density. The opposite applies to
the uniform distribution and the Weibull distribution (k > 1 in this case).

The constant mean density for the exponential distribution provides a bench-
mark for assessing skewness at various parts of a loss distribution. A decreasing
mean density (for example uniform distribution and Weibull distribution for
k > 1) implies VaR–spacings increase at a lower rate compared to the exponen-
tial, and hence lower skewness comparatively. Vice versa for an increasing mean
density (for example Pareto distribution and Weibull distribution for k < 1).
The derivative of mα with respect to α is

m′
α = (1 − α)V ′′

α − V ′
α .

Hence the mean density is increasing at α if and only if (1 − α)V ′′
α /V ′

α > 1.
Rewriting this inequality in terms of the loss density f yields the condition

(1 − α)V ′′
α

V ′
α

= − (1 − α)f ′(Vα)

{f(Vα)}2
> 1, V ′′

α = − f ′(Vα)

{f(Vα)}3
.

The probability distribution of x has greater skewness than the exponential over
layers where the above inequality holds, and vice versa.

5. Properties of mean densities

5.1. Monotonic loss transformations

Straightforward changes apply to the mean density when a monotonic trans-
formation is applied to the loss. Consider the transformation y = g(x) where
g > 0 is an increasing function. Then y has VaRα Vα(y) = g{Vα(x)} and the
mean density of y at the VaRα layer is

mα(y) = (1 − α)V ′
α(y) = (1 − α)g′{Vα(x)}V ′

α(x) = mα(x)g′{Vα(x)} ,
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Figure 1: Mean densities for uniform (b = 2), exponential (b = 1), Pareto (b = 0.5, c = 1.5)
and Weibull (b = 1.13, k = 2) distributions. All distributions have mean 1 hence the area
underneath each curve is 1.
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where Vα(x) and mα(x) are respectively the VaRα and mean density of x. Hence
the mean density of y is the mean density of x multiplied by the derivative
g′{Vα(x)}. In particular if y = cx where c is constant then mα(y) = cmα(x).
This result implies mean densities are proportional to the scale of the loss dis-
tribution, as demonstrated by the examples in §4.

It is also straightforward to show that if y = g(x) is a decreasing transfor-
mation then Vα(y) = g{V1−α(x)} and mα(y) = m1−α(x)g′{V1−α(x)}. Hence in
this case the mean density of x at the V1−α–layer is referenced.

5.2. Unique characterisation of the loss distribution

Assuming V0 = 0, the mean density uniquely characterises the loss distribu-
tion. Re-arranging (3) and integrating yields

F−(α) = Vα =

∫ α

0

mπ

1 − π
dπ .

VaRα is a weighted cumulative of the mean density up to the VaRα layer. Larger
mean density values lead to greater VaRs.

5.3. Connection to hazard function

Substituting V ′
α = 1/f(Vα) to (3) yields

mα =
1 − α

f(Vα)
=

{
f(Vα)

1 − F (Vα)

}−1

, F (Vα) = α .

Therefore the mean density at the Vα–layer of x is the reciprocal of the hazard
function (Hogg and Klugman, 2009) at x = Vα. The hazard at Vα indicates
the instantaneous probability of x = Vα given it reaches Vα. The above result
implies a lower hazard at Vα leads to a higher mean value of the Vα–layer.

6. Risk density: distortion risks of VaR layers

This section defines risk densities which indicate the distortion risk of VaR
layers. Similar to mean densities, risk densities identify contributions by vari-
ous VaR layers to overall risk. Risks are important inputs to decisions involving
volatility. For example premium loadings, capital buffers and expected invest-
ment returns are driven by risk values. Mean values are insufficient decision
making inputs as they do not capture the spread of outcomes.

Wang (1996) defines distortion risk based on the mean value under a dis-
torted distribution function Φ ◦ F where Φ is an increasing, convex distortion
operator satisfying Φ(0) = 0 and Φ(1) = 1. The distortion risk of x is hence

r ≡ E(x) − E(x) =

∫ ∞

0

[1 − Φ{F (x)}] dx −
∫ ∞

0

{1 − F (x)}dx ,
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where E calculates expectations under the distorted distribution Φ ◦ F . Choo
and De Jong (2009) shows the equivalence between distortion risks, loss aversion
premiums and spectral risks (Acerbi, 2002). Examples of distortion risks using
various Φ are discussed in Wang (1995), Wang (2000) and Choo and De Jong
(2009), and include the proportional hazards risk, conditional–tail–expectation
and expected–maximal–loss. Distortion risks are coherent (Artzner et al., 1999):
positively homogenous, translation invariant, monotonic and subadditive.

The risk density of x indicates the distortion risk of the Vα–layer of x and
applying similar calculations as above yields

rα ≡ E(L′
α) − E(L′

α) = {1 − Φ(α)}V ′
α − (1 − α)V ′

α = {α − Φ(α)}V ′
α . (5)

This result follows since E{Iα(u)} is the distorted probability of u > α which
is 1 − Φ(α), whereas the original probability is 1 − α. Note rα ≥ 0 for all α
since Φ is convex implying Φ(α) ≤ α. In addition once the distribution of x is
established, Vα and hence V ′

α, defining the α–VaR layer and spacing of x, are
unaffected by distortion for all 0 ≤ α ≤ 1.

The risk density rα in (5) is composed of two factors. The difference α−Φ(α)
represents the extent of distortion at Vα, with α = Φ(α) indicating zero distor-
tion and rα = 0. The other factor is layer width or Vα–spacing V ′

α. Increasing
either factor increases rα.

Similar to mean densities, integrating risk densities yields the risk of larger
VaR layers. Integrating rα over all α yields the overall distorted risk of x:

∫ 1

0

rαdα =

∫ 1

0

{E(L′
α) − E(L′

α)}dα = E(x) − E(x) = r .

Alternatively, Vα–layers over all 0 ≤ α ≤ 1 are comonotonic, and distortion risks
of comonotonic random variables are additive (Wang et al., 1997). Integrating
rα over [α, β] yields the distorted risk of VaR–layer [Vα, Vβ ] of x:

∫ β

α

rπdπ = E (Lα − Lβ) − E (Lα − Lβ) .

Again an analogous property applies to probability densities.

7. VaR risk ratios

The risk ratio at the Vα–layer is the ratio between risk and mean densities:

r∗
α ≡ rα

mα
=

{α − Φ(α)}V ′
α

(1 − α)V ′
α

=
α − Φ(α)

1 − α
, (6)

noting V ′
α appears in both numerator and denominator and hence cancels after

division. Risk ratios indicate the risk of a VaR–layer relative to its mean. Risk
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ratios only depend on the distortion operator Φ and are independent of the loss
distribution. Risk ratios are also larger at higher layers, since

dr∗
α

dα
=

1 − Φ(α) − (1 − α)Φ′(α)

(1 − α)2
≥ 0 .

The inequality holds since

1 − Φ(α) =

∫ 1

α

Φ′(u)du ≥
∫ 1

α

Φ′(α)du = (1 − α)Φ′(α) ,

noting Φ is convex hence Φ′ is increasing. Thus higher VaR–layers are always
relatively riskier than lower VaR–layers as a proportion of their mean value.
Risk ratios at the lowest and highest VaR–layers are r∗

0 = 0 and r∗
1 = Φ′(1) − 1

respectively, where the latter is derived using the L’Hôpital’s rule.

The overall risk ratio of x can be written in terms of r∗
α as

r

E(x)
=

∫ 1

0
rπdπ

∫ 1

0
mπdπ

=

∫ 1

0
r∗
πmπdπ

∫ 1

0
mπdπ

.

Therefore the overall risk ratio is a weighted average of individual risk ratios.
Weights are given by mean density values. As r∗

α is increasing in α and indepen-
dent of the loss distribution as mentioned above, the overall risk ratio is high
if the mean density is high at higher layers resulting in higher risk ratios being
weighted more heavily. Hence skewed loss distributions are relatively riskier,
consistent with intuition. Using the example mean densities in §4, the Pareto
has a higher overall risk ratio than the uniform, exponential and Weibull due to
an increasing mean density. Examples are further discussed in the next section.

8. Example risk ratios and risk densities

The following are risk ratios based on distortion operators discussed in Wang
(1995) and Choo and De Jong (2009). As highlighted in the previous section,
risk ratios only depend on the distortion operator. Multiplying risk ratios with
the mean density yields the risk density.

• Assume Φ(α) = Ic(α)(α − c)/(1 − c) where 0 ≤ c ≤ 1 is a parameter. The
overall distortion risk of x involves the conditional–tail–expectation and
is given by E(x|x > Vc) − E(x), the expected value of losses above Vc in
excess of the overall mean loss. The risk ratio using (6) is

r∗
α = {1 − Ic(α)} α

1 − α
+ Ic(α)

c

1 − c
.

Risk ratios increase from 0 at the lowest layer and reaches c/(1− c) at the
Vc–layer, and remains constant at c/(1 − c) for higher layers. Note larger
c yields higher r∗

α for all 0 ≤ α ≤ 1, hence c indicates overall risk aversion.
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• Assume the power distortion operator Φ(α) = αn where n ≥ 1. If n is an
integer, the distortion risk is E{max(x1, . . . , xn)}−E(x) or the expected–
maximal–loss in excess of the mean loss, where x1, . . . xn are independent
copies of x. The risk ratio in this case is

r∗
α =

α − αn

1 − α
=

n−1∑

i=1

αi ,

where the final expression assumes integer n, and is a polynomial of degree
n − 1 with unit coefficients. Larger n yields higher risk ratios for all α,
hence n indicates risk aversion.

• Assume the proportional hazards transform, Φ(α) = 1 − (1 − α)1/γ where
γ ≥ 1. The distortion risk is

∫∞
0

{S(x)}1/γdx −
∫∞
0

S(x)dx where S is the
survival function, that is S ≡ 1 − F . The risk ratio is

r∗
α =

α − {1 − (1 − α)1/γ}
1 − α

= (1 − α)1/γ−1 − 1 ,

and increases to ∞ as α approaches 1. Higher γ increases risk ratios across
all layers and indicates overall risk aversion.

The four panels in Figure 2 graph mean densities shown in Figure 1 and risk
densities using a power distortion operator Φ(α) = α3. The risk ratio is r∗

α =
α(1+α). For the uniform loss distribution, risk is highest around median VaR–
layers since increasing risk ratios are applied to a decreasing mean density. Risk
densities are increasing for exponential, Pareto and Weibull loss distributions.
Pareto has the highest overall risk (the area under the risk density), since higher
risk ratios are applied to higher mean densities at higher VaR layers.

9. Properties of risk densities and risk ratios

9.1. Unique characterisation of distortion operator

Risk ratios r∗
α over 0 ≤ α ≤ 1 uniquely characterise the distortion operator

Φ. Given r∗
α, rearranging (6) yields the distortion operator

Φ(α) = α − (1 − α)r∗
α .

Thus an alternative formulation of Φ is to first specify risk ratios across all VaR–
layers and then set Φ using the above result. The condition Φ(0) = 0 requires
r∗
0 = 0 and Φ(1) = 1 is satisfied generally. Increasing and convex Φ respectively

require 1 + r∗
α − (1 − α)(r∗

α)′ ≥ 0 and 2(r∗
α)′ − (1 − α)(r∗

α)′′ ≥ 0.
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Figure 2: Mean densities (blue area) and risk densities (red area) for the 4 loss distributions
in Figure 1. The distortion operator is Φ(α) = α3 and the risk ratio is r∗

α = α(1 + α)
across all loss distributions. Note how risks are concentrated in different layers for different
loss distributions. For the Pareto, risk is concentrated in the highest layers whereas risk is
concentrated in middle layers for the uniform.
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9.2. Monotonic loss transformations

Similar to mean densities, straightforward changes apply to risk densities
under monotonic loss transformations. Again assume y = g(x) is an increasing
transformation. The risk density of y is

rα(y) = mα(y)r∗
α = mα(x)g′{Vα}r∗

α = rα(x)g′{Vα(x)}

where rα(x) is the risk density of x and noting risk ratios r∗
α are independent of

the loss distribution and hence unchanged. Therefore mean and risk densities
change identically under increasing transforms. In addition risk densities are
proportional to the scale of the loss distribution, similar to mean densities.

Similarly if g is decreasing then the risk density of y is r1−α(x)g′{V1−α(x)}.

10. Empirical calculations of mean and risk densities

It is common for insurance and financial companies to collect data or sim-
ulate future outcomes to make risk management decisions. Given an ordered
sample of losses ℓ1, . . . , ℓn, calculate mean and risk densities as follows:

• Set empirical VaRs equal to ordered observations: V̂i/n = ℓi. The Vi/n–
layer is Iℓi(x)(ℓi+1 − ℓi) where x is a random observation.

• The empirical mean density is m̂i/n = (1 − i/n)V̂ ′
i/n, for i = 0, . . . , n − 1

where the empirical derivative V̂ ′
i/n = n(V̂(i+1)/n − V̂i/n) and V̂0 = 0.

• Risk ratios are computed using the specified distortion operator: r∗
i/n =

{i/n−Φ(i/n)}/(1− i/n). The empirical risk density is r̂i/n = m̂i/n ∗ r∗
i/n.

• If necessary, apply parametric or non-parametric smoothing to empirical
mean and risk densities to reveal underlying patterns.

As n → ∞, empirical VaRs approach true VaRs and the above algorithm con-
verges: m̂i/n → mα and r̂i/n → rα where α = i/n.

Overall mean and risk are the respective sums (rather than integrals)

n−1∑

i=0

mi/n

n
,

n−1∑

i=0

ri/n

n
.

Taking sums over other subsets yield mean and risk over corresponding VaR–
layers. In addition manipulating the first summation above yields the arithmetic
mean

∑n
i=1 ℓi/n of the loss sample.

The following calculates mean and risk densities from NASDAQ, S&P and
FTSE daily returns between 1985 and 2015 assuming a stationary distribution.
Form a hypothetical portfolio of $100 in each market index. Focus on daily
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investment losses rather than gains, hence switch the signs of historical returns
and gains are treated as negative losses. In addition apply the distortion oper-
ator Φ(α) = Ic(α)(α − c)/(1 − c) where c = 0.75, implying overall risk is the
difference between expected losses above VaR0.75 and the overall mean. Note
the condition x ≥ 0 is relaxed in this illustration, as the interest is in the shape
of mean and risk densities rather than their actual values.

Figure 3 illustrates results. Empirical densities and VaRs of daily investment
losses are shown in addition to empirical mean and risk densities. The following
are key observations:

• NASDAQ has more skewed losses and gains than S&P and FTSE, and
in particular larger VaR–spacings. As a result NASDAQ has larger mean
and risk densities, and larger mean loss and risk overall. S&P and FTSE
behave similarly particularly in the tails.

• Empirical mean densities are large at low VaR–layers, then decrease rapidly
at higher VaR–layers. High mean density values at low layers are formed
by large VaR–spacings in left tails of loss distributions, and high proba-
bilities of exceeding low VaRs.

• Relatively stable mean densities at higher VaR–layers indicate upper tails
of loss distributions have similar shape as the exponential distribution.

• Empirical risk densities paint a different picture from mean densities: risk
is mainly contributed by higher layers, unlike for the mean. This obser-
vation is consistent with common knowledge that extreme market losses,
whilst rare, contribute significantly to portfolio volatility.

11. Applications of mean and risk densities

Remaining sections apply mean and risk densities to common risk manage-
ment problems involving reinsurance, capital buffers and debt tranching. Cur-
rent statistical tools provide identical solutions in some cases. However mean
and risk densities offer a more elegant solution and yield additional insights.

12. Pricing and insuring loss layers

Suppose the [Vα, Vβ ] VaR–layer of loss x is insured or reinsured. Hence Va

is the excess and Vb is the limit of the coverage. The premium is

P =

∫ β

α

(mπ + rπ)dπ =

∫ β

α

{1 − π + π − Φ(π)}V ′
πdπ =

∫ β

α

{1 − Φ(π)}V ′
πdπ

= {1 − Φ(β)}Vβ − {1 − Φ(α)}Vα +

∫ β

α

VπΦ′(π)dπ ,
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Figure 3: Top left and right panels plot empirical loss densities and distributions, respectively.
Bottom left and right panels plot smoothed empirical mean and risk densities, respectively.
Red, blue and green represent NASDAQ, S&P and FTSE, respectively.
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where
∫ β

α
mπdπ is the pure premium and

∫ β

α
rπdπ is the risk loading forming

the overall premium P . Both components increase as coverage widens: lower α
or higher β. Changes to overall premium due to changes in the excess or limit
are the partial derivatives

∂P

∂α
= −(mα + rα),

∂P

∂β
= mβ + rβ .

The previous illustration in Figure 2 shows the pure premium and risk loading
for various α and β assuming uniform, exponential, Pareto and Weibull loss
distributions and the distortion operator Φ(α) = Ic(α)(α − c)/(1 − c). The
overall premium is the total area over [α, β]. For example, for an exponential
loss distribution, the pure premium increases at the same rate as the excess and
limit are changed. However the risk loading increases at an increasing rate when
the limit increases, and forms a larger component of the overall premium when
high VaR–layers are insured.

Intuitively, the purchaser of insurance or reinsurance would select an excess
and limit covering the bulk of the area under mean and risk densities. This
implies higher excesses and limits for exponential and Pareto loss distributions.
On the other hand, lower excesses and limits would suffice for uniform (and
potentially Weibull) loss distributions, as higher layers have lower mean and
risk contributions. The optimal excess and limit depends on the interaction
between several factors including the premium cost, the purchaser’s budget and
utility function.

13. Credit quality of debt tranches

Consider a debt with fixed principal p and random default loss 0 ≤ x ≤ p.
The credit rating of the debt is typically based on the following quantities:

PD = P(x > 0), PEL =
E(x)

p
, RR =

r

E(x)

where PD is the default probability, PEL is the expected default loss as a pro-
portion of principal and RR is the risk of the default loss relative to its mean
value. A high credit rating may be issued for example if a combination of PD,
PEL and RR falls below specified limits (Das and Stein, 2011).

Suppose the debt is split into tranches. The default loss on the tranche from
Vα to Vβ is max{min(x−Vα, 0), Vβ −Vα} and is hence the VaR–layer [Vα, Vβ ] of
x. The principal of this tranche is layer width Vβ − Vα. In addition Vα and Vβ

are called the attachment and detachment points of the tranche, respectively.
There is a default loss if x > Vα, and a complete loss of principal if x ≥ Vβ .

Splitting a debt into tranches is used in securitisation to enhance the credit
quality of portions of the debt (Mandel et al., 2012). Debt tranches are com-
mon in collaterised debt obligations (Duffie and Garleanu, 2001). Lower, junior
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tranches are more likely to suffer a default loss and are assigned a lower credit
rating. Higher, senior tranches only suffer default losses after losses have passed
through junior tranches and hence typically receive a higher credit rating.

Corresponding credit rating statistics for the tranche or layer [Vα, Vβ ], using
mean and risk densities defined in (3) and (5), are

PD = P(x > Vα) = 1 − α, PEL =

∫ β

α
mπdπ

Vβ − Vα
=

∫ β

α
(1 − π)V ′

πdπ
∫ β

α
V ′

πdπ
,

RR =

∫ β

α
rπdπ

∫ β

α
mπdπ

=

∫ β

α
r∗
πmπdπ

∫ β

α
mπdπ

,

where as before V ′
π is the derivative of Vπ with respect to π and r∗

π = rπ/mπ

is the risk ratio of the Vπ–layer of x. Hence PEL is a weighted average of
default probabilities 1 − π from π = α to β, where weights are VaR derivatives
or spacings. Setting β → α leads to PEL→ 1 − α which is the PD. RR is a
weighted average of risk ratios from α to β. Note PEL in this case is also the
rate–on–line in excess–of–loss reinsurance ignoring the risk loading.

Both PD and PEL on tranche [Vα, Vβ ] decrease as α or β increases. Hence the
probability and expected proportion of default are smaller for higher tranches,
consistent with common knowledge. However RR increases since r∗

π is increasing
in π. Hence the default loss becomes riskier in higher tranches, even though a
default loss is less likely and on average smaller. In addition, as default losses
on tranches are comonotonic, there is no diversification benefit from holding
multiple tranches originating from the same loss. This lack of diversification is
a reason for catastrophic financial losses during the 2008 crisis (Kolb, 2010).

14. Setting capital buffers

Suppose capital Vc is held to cover loss x. There is a shortfall if x > Vc and
surplus if x ≤ Vc. The capital shortfall is the VaR–layer [Vc, V1] of x and capital
consumed is the VaR–layer [0, Vc]. The following derives c or Vc in two different
ways, using mean and risk densities.

14.1. Limiting expected shortfall

Suppose capital Vc is held to restrict expected shortfall to a proportion s of
overall expected loss where s is small, say 1%. Hence c is solved from

E(L1 − Lc)

E(L1 − L0)
=

∫ 1

c
mαdα

∫ 1

0
mαdα

= s . (7)

An equivalent standard statistical expression is

E{max(x − Vc, 0)}
E(x)

= s .
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Figure 4: The left panel graphs the mean density and highlights capital satisfying a target
expected shortfall as a proportion of the overall expected loss (red area). The right panel
illustrates an analogous approach using the probability density, where the resulting capital is
the familiar VaR and achieves a fixed shortfall probability (red area).

Equation (7) implies c is selected so that the relative area under the upper tail
of mean density mα is s. Figure 4 provides an illustration using a Weibull loss
distribution. Smaller s requires higher c and Vc.

A similar, common approach is to set capital to restrict the probability of
shortfall, as opposed to expected shortfall, to say again s. Under this approach,
capital is selected such that the upper tail area under the probability density
(rather than the mean density) is s. It is straightforward to show that required
capital is V1−s. This approach is also illustrated in Figure 4. Insurance and
banking regulations typically set capital at V1−s with pre-determined s (Eling
et al. (2007), Chernobai et al. (2008)).

Setting capital based on expected shortfall is more appropriate than using
shortfall probability as the former reflects the shape of the loss distribution. This
is demonstrated by the following examples. For an exponential loss distribution,
the mean density is flat (see §4) and (7) reads 1−c = s therefore capital is V1−s.
For example if expected shortfall is 1% of overall mean loss then capital is V0.99.
Setting shortfall probability at s also yields capital V1−s, hence both approaches
are the same for exponential loss distributions. For a Pareto loss distribution
with shape parameter γ, solving (7) yields

∫ 1

c

1

(1 − α)1/γ
dα = s

∫ 1

0

1

(1 − α)1/γ
dα, c = 1 − sγ/(γ−1) ≥ 1 − s .

In this case capital Vc ≥ V1−s. Therefore referring to expected shortfall rather
than shortfall probability increases capital. The reason is the Pareto distribu-
tion has a thicker upper tail than the exponential, hence increasing expected
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shortfall. Reducing the skewness of the Pareto by increasing γ reduces Vc. For

any increasing mean density,
∫ 1

1−s
mαdα > s

∫ 1

0
mαdα thus c > 1 − s, and vice

versa for a decreasing mean density. Hence when capital is set based on expected
shortfall, the capital VaR threshold varies with the shape of the loss distribu-
tion. Higher skewness requires a higher VaR threshold and reduces shortfall
probability. On the other hand a higher shortfall probability is appropriate for
a less skewed loss distribution.

Extend (7) by replacing expectations with risk-adjusted expectations. Then
c is solved from

E(L1 − Lc)

E(L1 − L0)
=

∫ 1

c
(mα + rα)dα

∫ 1

0
(mα + rα)dα

=

∫ 1

c
mα(1 + r∗

α)dα
∫ 1

0
mα(1 + r∗

α)dα
= s . (8)

Since r∗
α is increasing in α, mα(1 + r∗

α) increases at a relatively faster rate than
mα. For example refer to the exponential loss distribution in Figure 1. The
mean density is flat but increasing after risk adjustment. Hence c from (8)
exceeds c from (7), using the above argument. Risk-adjusted expected shortfall
increases relative to overall risk-adjusted expected loss, resulting in higher c.

The scale of the loss distribution does not affect c in (7) and (8), since scale
factors are present in numerator and denominator. Scale is reflected when Vc

is computed from c. Also note that a consequence of expressing loss layers as
VaR layers is that derived quantities are in VaR terms rather than in dollars.
This argues for VaR layers given the prevalence of VaR references in practice.

14.2. Balancing expected shortfall and surplus

The following derives capital by considering expected capital surplus in ad-
dition to shortfall. Considering capital surplus recognises opportunity costs of
holding capital. All else equal, a higher opportunity cost reduces capital held.

Suppose an opportunity cost i is attached to every dollar of capital surplus.
For example i may be the expected return on alternative investments. Per
dollar cost of capital shortfall is j, for example the borrowing cost when in
distress. Given capital Vc, the expected total cost of capital shortfall and surplus
expressed in VaR–layers and the mean density is

Γ = iE (Vc − Lc) + jE(L1 − Lc) = i

(
Vc −

∫ c

0

mαdα

)
+ j

∫ 1

c

mαdα

= iE{max(Vc − x, 0)} + jE{max(x − Vc, 0)} ,

where the final expression uses standard statistical notation and is shown for
comparison. Setting the derivative of Γ with respect to c to 0 yields

i(V ′
c − mc) − jmc = 0, ic − j(1 − c) = 0, c =

j

i + j
.
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The middle expression is derived from the first by dividing by Vc. Substituting
c = j/(i + j) into the second derivative of Γ confirms a minimum.

Therefore the capital VaR threshold in this setup is the unit shortfall cost j
relative to the total unit cost i + j. If i = j then c = 0.5 and capital is held at
the median. Higher j relative to i increases c and Vc. In addition any capital Vc

implies relative shortfall cost j/i = c/(1− c). For example, capital V0.99 implies
j/i = 99, thus the unit cost of shortfall is implicitly 99 times the unit cost of
surplus. Higher c implies higher j relative to i.

Again introducing risk-adjustment yields a revised expected total cost

Γ = i

{
Vc −

∫ c

0

(mα + rα)dα

}
+ j

∫ 1

c

(mα + rα)dα .

Setting the derivative V ′
c [iΦ(c) + j{1 − Φ(c)}] = 0 yields c as the solution to

Φ(c) =
j

i + j
.

The solution c > j/(i+ j) since Φ is convex or Φ(c) ≤ c. Risk adjustment hence
increases capital since expected shortfall and its cost are magnified relative to
surplus. In addition c increases as distortion increases, and reduces to j/(i + j)
when there is no distortion. For example the distortion operator Φ(c) = cn

where n ≥ 1 yields c = {j/(i + j)}1/n which is increasing in n and approaches
1 as n → ∞.

The capital VaR threshold c derived by minimising expected cost of shortfall
and surplus is independent of the loss distribution. In contrast the first approach
where expected shortfall is set as a proportion of expected loss yields a value of
c varying with the shape of the loss distribution. In both cases derived capital
is expressed directly in VaR terms instead of dollars.

15. Loss transformation using reinsurance

The following illustrates how reinsurance transforms the probability, mean
and risk profiles of a random loss. Reinsurance can also be structured to deliver
a desired probability, mean or risk profile.

Suppose an insurer faces loss x, and enters into a reinsurance arrangement
where a portion 0 ≤ tα ≤ 1 of every Vα–layer is reinsured and the remaining
portion 1 − tα is retained. Hence Vα–layer and its mean and risk all reduce by
tα. The retained loss is formed by combining retained VaR–layers

x̃ ≡
∫ 1

0

(1 − tα)dLα =

∫ 1

0

(1 − tα)Iα(u)V ′
αdα (9)

and the corresponding mean and risk densities are, respectively,

m̃α ≡ (1 − tα)mα, r̃α ≡ (1 − tα)rα . (10)
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Risk ratios are unchanged after reinsurance: r̃α/m̃α = rα/mα. The loss distri-
bution is altered by reinsurance and is further discussed below.

The set of values of tα over 0 ≤ α ≤ 1 defines the “reinsurance structure.”
Typical reinsurance structures are “quota share”: tα = t and “excess–of–loss”:
tα = Id(α). Quota share covers a constant proportion t of all layers. Excess–of–
loss covers all VaR–layers above d. A combination of quota share and excess–
of–loss reinsurance can also be applied to deliver a desired loss distribution as
shown in the example at the end of this section.

The overall risk ratio after reinsurance is
∫ 1

0
r̃αdα

∫ 1

0
m̃αdα

=

∫ 1

0
(1 − tα)mαr∗

αdα
∫ 1

0
(1 − tα)mαdα

, r∗
α =

rα

mα
.

Compare the overall risk ratio after reinsurance with the same prior to reinsur-
ance in (6). To reduce the overall risk ratio, reinsure high VaR layers with high
r∗
α, particularly if mα is high. This observation implies excess–of–loss is more

risk effective than quota share. Quota share maintains the overall risk ratio
since tα = t for all α, whereas the overall risk ratio with excess–of–loss is

∫ d

0
rαdα

∫ d

0
mαdα

=

∫ d

0
mαr∗

αdα
∫ d

0
mαdα

,

a weighted average of risk ratios up to the Vd–layer.

The VaRα–spacing after reinsurance is Ṽ ′
α ≡ (1− tα)V ′

α. Therefore integrate
this expression to construct the VaRα of the retained loss:

Ṽα =

∫ α

0

(1 − ts)V
′
sds = (1 − tα)Vα +

∫ α

0

Vst
′
sds ,

where the second expression follows from integration by parts. For quota share,
t′α = 0 therefore Ṽα = (1 − t)Vα. Losses reduce by a portion t. For excess–of–
loss, t′α = (α = d), the Dirac delta function, and Ṽα = {1− Id(α)}Vα + Id(α)Vd.
Hence all losses below Vd are retained and losses above Vd are capped at Vd,
implying the retained loss is the VaR–layer [0, Vd] of x.

The following forms a reinsurance structure to deliver a desired probability,
mean or risk profile of the retained loss. If the desired mean density is m̃α then
from (10) the reinsurance structure is tα = 1 − m̃α/mα. Similarly for a desired
risk density. If the desired loss distribution has VaRα Ṽα then tα = 1 − Ṽ ′

α/V ′
α.

In all cases the reinsurance structure computes the ratio between desired and
original quantities.

Consider a Pareto loss distribution with shape parameter γ > 1 and scale
parameter b > 0. A reinsurance structure is required to transform the loss
distribution into an exponential with scale b̃ > 0. The reinsurance structure is

tα = 1 − Ṽ ′
α/V ′

α = 1 − b̃(1 − α)−1

bγ−1(1 − α)−(1/γ+1)
= 1 − b̃b−1γ(1 − α)1/γ .
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The reinsured portion is 1 − b̃b−1γ at the zero VaR layer, and increases mono-
tonically to 1 at the highest VaR layer. This result is intuitive since the Pareto
is thicker tailed than the exponential. Hence in order to transform the loss from
Pareto to exponential, minimum reinsurance is required for small losses, and
larger losses are increasingly reinsured. Note b̃ ≤ b/γ since 0 ≤ tα ≤ 1 for all α.

16. Conclusion

This paper develops a framework to analyze mean and risk contributions by
VaR–layers of a loss. Expressing layers using VaRs establishes connections with
the standard use of VaRs in insurance and finance.

Applying mean and risk densities yields insights to common risk management
problems involving capital, reinsurance and derivatives.
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Chapter 4

Analyzing systematic risk and
diversification

The following paper applies risk densities to analyze systematic risk and
diversification when imperfectly dependent losses are aggregated.
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Insights to systematic risk and diversification across a
joint probability distribution

Abstract

This paper analyses and develops insights to systematic risk and diversification
when random, imperfectly dependent, losses are aggregated. Systematic risk
and diversification are shown to vary across layers of component losses accord-
ing to local dependence and volatility structures. Systematic risk is high and
diversification is weak overall if high risk layers are heavily dependent on the
aggregate loss. This result explains weak diversification observed in financial
markets despite weak to moderate correlations overall. A coherent risk setup is
assumed in this paper, where risks are measured using distortion and allocated
using the Euler principle.

Keywords: Distortion risk; spectral risk; Euler allocation; systematic risk;
diversification; layer; Value–at–Risk.

1. Introduction to systematic risk and diversification

Suppose x is one of several continuous, non-negative and random component
losses aggregating to x+. For example x may be the loss from an insurance class
and x+ is the loss aggregated across all classes. Or x may be the credit loss
on a portfolio of loans and x+ is the aggregate credit loss across all portfolios.
Component losses are imperfectly dependent leading to risk diversification as
formalised below.

This paper applies the following risk setup. Suppose ϕ ≥ 0 is an increasing
risk aversion function integrating to 1. Standalone risk of x, systematic risk of
x and aggregate risk of x+ are respectively

r = cov{x, ϕ(u)}, r = cov{x, ϕ(u+)}, r+ = cov{x+, ϕ(u+)} , (1)

where cov denotes covariance and u and u+ are percentile ranks of x and x+.
If F and F+ are distribution functions of x and x+ then u ≡ F (x) and u+ ≡
F+(x+). Standalone and systematic risks of other component losses forming x+

are calculated using similar covariance expressions.

The risk setup (1) is well established in the literature. Choo and De Jong
(2009) refers to r and r+ as loss aversion risks of x and x+ and establishes their
equivalence with distortion risks (Wang, 1996) and spectral risks (Acerbi, 2002).
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Examples of ϕ leading to different risk measures are discussed in Choo and
De Jong (2009). In addition r is an allocation of r+ to x by applying the Euler
principle (McNeil et al., 2005) or game theory (Tasche, 2007). The allocation is
extensively discussed in Choo and De Jong (2010), Buch and Dorfleitner (2008)
and Tsanakas and Christofides (2006).

The risk setup (1) is coherent in the sense of Artzner et al. (1999), Denault
(2001) and Kalkbrener (2005): positively homogenous, translation invariant,
monotonic and subadditive. Further the allocation is complete: adding r across
component losses yields r+, and there is no undercut: r ≤ r no matter how x is
carved out from x+.

The term ”systematic risk” is consistent with the capital asset pricing model
in finance (Luenberger, 1998), where the volatility or risk of an asset return is
divided into diversifiable and non-diversifiable or systematic risk. Systematic
risk increases with the correlation between asset and market returns, and is a
key driver of risk premiums: expected asset returns above market return.

This paper compares r, the risk of x before aggregation, with r, the risk of
x after aggregation. Since x and u+ are imperfectly dependent, r ≤ r and the
difference r − r is a diversification benefit. Diversification benefits are critical
in risk management by enabling risks to be managed viably and efficiently as a
group, a classic case being insurance. The systematic risk ratio is

θ ≡ r

r
=

cov{x, ϕ(u+)}
cov{x, ϕ(u)} =

cor{x, ϕ(u+)}
cor{x, ϕ(u)} ≤ 1 , (2)

where cor represents correlation. A lower systematic risk ratio indicates greater
diversification. The final expression holds since u and u+ are both uniform hence
ϕ(u) and ϕ(u+) have equal standard deviations. Stronger dependence between
x and x+ leads to weaker diversification due to higher numerators in (2) hence
larger θ. Conversely weaker dependence leads to stronger diversification.

In this paper, systematic risk and diversification benefit are shown to vary
across the distribution of x based on the local dependence structure underlying x
and x+. This result is important when formulating risk management strategies
to maximise diversification, as demonstrated by a case study using historical
stock returns. The analysis focusses on x, however equivalent results apply to
other component losses forming x+.

The remaining paper is structured as follows. Section 2 gives an overview
of mean and risk densities and Value–at–Risk (VaR) loss layers established in
the second paper of this thesis (chapter 3). Section 3 defines systematic risk
densities analogous to standalone risk densities, and establishes links to local
dependence structures underlying component and aggregate losses. Section 4
uses systematic risk densities to explore drivers of systematic risk and diver-
sification such as in financial markets. A theoretical example of the proposed
analytical framework is shown in §5. Section 6 attributes aggregate mean and
risk densities to component losses. The attribution is important when risk man-
agement strategies target the aggregate loss. Section 7 examines the case where
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component losses are comonotonic, a benchmark for measuring diversification.
Section 8 concludes with an illustration of the framework using historical stock
returns.

2. Overview of VaR layers, mean and risk densities

This section outlines VaR layers, mean and risk densities developed in chap-
ter 3 of this thesis. Mean and risk densities track the mean and standalone
risk of a loss across its VaR layers. Risk densities are critical to the analysis of
systematic risk and diversification as shown in subsequent sections.

The α–Value–at–Risk (VaRα) of a continuous random loss x ≥ 0 with dis-
tribution function F is the percentile Vα ≡ F−(α), where F− is the inverse
distribution function of x. In addition define Lα ≡ min(x, Vα), the loss capped
at its VaRα. Consider the following two expressions:

Lβ − Lα = min{max(x − Vα, 0), Vβ − Vα}, x = L1 − L0 =

∫ 1

0

dLα .

The first expression above is the VaR layer [Vα, Vβ ] of x: the excess of x over Vα

with the excess capped at Vβ − Vα. The second expression decomposes x into
infinitesimal VaR layers dLα over 0 ≤ α ≤ 1. The infinitesimal Vα–layer of x is

dLα = L′
αdα = Iα(u)V ′

αdα ,

where L′
α and V ′

α are derivatives of Lα and Vα with respect to α, and Iα(u) is
an indicator equal to 1 if u > α or equivalently x > Vα, and 0 otherwise. Hence
the Vα–layer of x is an increment proportional to V ′

α if x > Vα and 0 otherwise.

Layers are standard insurance and financial constructs, and are also called
tranches in finance. VaR layers self-adjust to the shape and scale of the loss
distribution and are hence comparable across loss distributions. Refer to chapter
3 for further discussion of layers and reasons for defining layers using VaRs.

The risk density indicates the standalone risk of infinitesimal VaR layers of
x, and based on (1) is the covariance

rα = cov{L′
α, ϕ(u)} = cov{Iα(u)V ′

α, ϕ(u)} = {α − Φ(α)}V ′
α ,

where

Φ(α) ≡
∫ α

0

ϕ(u)du

cumulates ϕ. Integrating rα yields standalone risks of larger layers:

∫ β

α

rπdπ = cov

{∫ β

α

L′
πdπ, ϕ(u)

}
= cov{Lβ − Lα, ϕ(u)} ,

and the entire area under rα is the overall standalone risk of x:
∫ 1

0
rαdα = r.
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The mean density indicates the mean of infinitesimal VaR layers and is

mα = E(L′
α) = E{Iα(u)V ′

α} = (1 − α)V ′
α .

Similar to rα, integrating mα yields the mean of larger layers. Hence mean
and risk densities are akin to probability densities: integrating yields quantities
over larger regions. Refer to chapter 3 for further properties, illustrations and
applications of mean and risk densities.

3. Systematic risk densities and links to local dependence

Systematic risk densities are akin to standalone risk densities in §2, and
describe systematic risks of infinitemisal VaR layers forming a random loss.
Comparing systematic and standalone risk densities reveals the extent of diver-
sification at various layers of the loss distribution. The comparison also leads
to the dependence structure involving component and aggregate losses.

The systematic risk density of x according to (1) is the covariance

rα ≡ cov{L′
α, ϕ(u+)} = cov{Iα(u), ϕ(u+)}V ′

α .

Similar to rα, integrating rα yields systematic risks of larger layers and the
overall systematic risk of x:

∫ β

α

rπdπ = cov {Lβ − Lα, ϕ(u+)} ,

∫ 1

0

rαdα = cov {L1, ϕ(u+)} = r .

The ratio between systematic and standalone risk densities is the proportion of
remaining risk in each VaR layer after diversification, and is given by

θα ≡ rα

rα
=

cov{Iα(u)V ′
α, ϕ(u+)}

cov{Iα(u)V ′
α, ϕ(u)} =

cov{Iα(u), ϕ(u+)}
cov{Iα(u), ϕ(u)} , (3)

where the last expression follows since the constant V ′
α in rα and rα cancel with

division. If x and x+ are comonotonic or u = u+ then θα = 1 for all 0 ≤ α ≤ 1.
Otherwise θα < 1.

For any α, large θα implies weak diversification at Vα–layer of x since rα is
close to rα and the diversification benefit rα − rα is small relative to rα. Vice
versa diversification at Vα–layer is strong if θα is small or even negative. An
analysis of θα against α hence reveals layers with weak diversification, which can
be mitigated using reinsurance or hedging, and layers with strong diversification
which should be preserved since they reduce overall risk. In addition θα varies
over α in line with local dependence between x and x+. The notion is explored
in the rest of this section.

The systematic risk ratio θα is calculated entirely from the joint distribution
of (u, u+) or equivalently the copula C of (x, x+). Marginal distributions are
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not directly involved in θα, although the marginal distribution of x affects C1.
The denominator of the last term in (3) is α − Φ(α) and the numerator is

∫ 1

0

cov{Iα(u), Iβ(u+)dϕ(β) =

∫ 1

0

{C(α, β) − αβ}ϕ′(β)dβ ,

a partial integration of the copula C weighted by the derivative ϕ′.

The set of θα values over 0 ≤ α ≤ 1 reflects and characterises the dependence
structure of (x, x+). Given α, θα is the local dependence between Vα–layer of
x and a function of the aggregate loss. Of interest is rank dependence since
θα is defined in terms of percentile ranks u and u+. If (x, x+) exhibits strong
upper tail dependence and weak lower tail dependence, then θα starts small at
α = 0 and increases to one as α approaches one. An illustration of θα given a
particular ϕ is shown in §5.

Systematic risk ratios have similar properties as linear and Spearman’s cor-
relation which are measures of overall dependence. For all 0 ≤ α ≤ 1, θα ≤ 1,
θα = 1 if u = u+ and θα = 0 if u and u+ are independent. Negative dependence
yields θα ≤ 0, and u+ = 1 − u leads to θα = −1 if ϕ(u) is symmetric about
u = 0.5 such that ϕ(u − 0.5) = ϕ(0.5 − u). In addition stronger correlation
order (Dhaene et al., 2009) between x and x+ increases θα for all α. Proofs are
straightforward from (3).

Systematic risk ratios are similar to layer dependence (discussed in chapter
2 of this thesis) which measures local dependence between arbitrary uniform
random variables u and v:

ℓα ≡ cov{Iα(u), v}
cov{Iα(u), u} .

Layer dependence ℓα assumes a linear ϕ in systematic risk ratio θα.

4. Explaining and exploring systematic risk and diversification

High overall systematic risk ratio in (2), or low overall diversification, arises
when strong local dependence coincides with high local skewness or volatility,
such as in financial markets. High systematic risk or low diversification overall
may arise even when overall correlation is weak to moderate. These intuitive
concepts are formalised and explored below.

Noting rα = θαrα from (3), overall systematic risk and risk ratio of x defined
in (1) and (2) are respectively written as

r =

∫ 1

0

rαθαdα, θ =
r

r
=

∫ 1

0
rαθαdα

∫ 1

0
rαdα

. (4)

1For example suppose x dominates other losses forming x+. Then x and x+ are strongly
dependent compared to the case where x is dominated by other losses.
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Similar expressions apply when considering sytematic risk over [Vα, Vβ ] VaR–
layer of x: change integration limits in (4) from [0, 1] to [α, β].

From (4), the overall systematic risk ratio of x is a “risk weighted” average
of individual systematic risk ratios across its VaR layers. As mentioned in the
previous section, individual systematic risk ratios characterise the dependence
structure of (x, x+). Risk weights are formed by the standalone risk density rα =
{α−Φ(α)}V ′

α, and are large for a loss distribution if V ′
α is large. The derivative

V ′
α measures local volatility since it is the relative gap between successive VaRs.

Suppose a sample of infinite size is drawn from the loss distribution and hence
ordered observations are close to VaRs. Large V ′

α implies observations around
Vα are highly spread out, or volatile locally.

The result in (4) explains high systematic risk ratios and low diversification
observed in financial markets, for example during the 2008 global financial crisis
(Kolb, 2010), despite moderate correlations across time. From (4), large θ
arises when strong local dependence θα coincides with large risk weights or
local volatility reflected in rα. Financial returns are heavy tailed (Cont (2001),
Hsieh (1988)) and exhibit strong tail dependence (Rodriguez (2007), Hartmann
et al. (2004)). The former implies large rα and the latter implies large θα, both
over large α. These two implications combine to create large θ, even though θα

may be small across most other smaller values of α. Hence risk weighting of
individual systematic risk ratios leads to diversification being heavily influenced
by local dependence in volatile or risky layers.

Conversely diversification is strong when risks of x are concentrated in layers
which are weakly dependent on the aggregate loss. Large r does not necessarily
imply x is undesirable if other component losses are structured to yield low θ
and r. For example suppose x is heavy-tailed, such as Pareto, yielding a large
standalone risk concentrated in high layers. Constructing other component
losses so that they have favourable values when x is large leads to high layers of
x being weakly dependent on the aggregate loss. As a result most of the risk of
x is diversified upon aggregation, and x becomes acceptable or even desirable if
it attracts a large risk premium based on its standalone risk.

5. Theoretical example using the conditional–tail–expectation

Assume a stepped risk aversion function ϕ(u) = It(u)/(1−t) where 0 ≤ t ≤ 1
is a parameter. Then according to Choo and De Jong (2009) and Choo and
De Jong (2010),

r = E(x|u > t) − E(x), r = E(x|u+ > t) − E(x), θ =
E(x|u+ > t) − E(x)

E(x|u > t) − E(x)
.

Risk in this case is the gap between the conditional–tail–expectation (Rock-
afellar and Uryasev, 2002) of x and its unconditional expectation. Standalone
risk considers the tail event u > t of x whereas systematic risk considers the
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aggregate tail event u+ > t. The overall systematic risk ratio θ of x captures
the relative impact of the two tail events.

The systematic risk ratio at Vα–layer using (3) is

θα =
cov{Iα(u), It(u+)/(1 − t)}
cov{Iα(u), It(u)/(1 − t)} =

cov{Iα(u), It(u+)}
cov{Iα(u), It(u)}

=
P(u > α, u+ > t) − P(u > α)P(u+ > t)

P{u > max(α, t)} − P(u > α)P(u > t)
=

P(u > α|u+ > t) − P(u > α)

P(u > α|u > t) − P(u > α)
,

where P calculates probability. Given α, θα increases with the probability of
u > α jointly with, or conditional on, u+ > t. Other above probabilities are
marginal probabilities, and are scaling factors such that θα = 1 when u = u+

and θα = 0 when u and u+ are independent. In addition results are unchanged
when inequalities are reversed. Therefore individual systematic risk ratios in
this example reflect the likelihood of joint tail events in x and x+.

For any α, θα = 1 implies P(u > α|u+ > t) = P(u > α|u > t) = min{1, (1 −
α)/(1 − t)}, whilst θα = 0 implies P(u > α|u+ > t) = P(u > α) = 1 − α.
The former is the maximum conditional tail probability and the latter is the
unconditional tail probability assuming independence locally.

An alternative expression for θα in terms of the copula C of (x, x+) in this
example is

θα =
C(α, t) − αt

min(α, t) − αt
.

Suppose θα is specified for all 0 ≤ α ≤ 1 and for all thresholds 0 ≤ t ≤ 1. Then
C is completely specified. Hence the set of individual systematic risk ratios over
all parameters completely characterises the dependence structure of (x, x+).

The panels in Figure 1 plot θα against α for t = 0.5, 0.75 and 0.9, assuming
Gumbel and Clayton copulas for (u, u+). Apart from a kink at α = t, θα traces
local dependence between u and u+, indicated by the extent of clustering along
the 45◦ line. For the Gumbel copula, systematic risk ratios are higher at both
tails due to tail dependence, and lower in the middle. For the Clayton copula,
systematic risk ratios are higher at the left tail and lower at the right tail,
characterising lower tail dependence.

6. Sub-aggregate mean and risk densities

Write the mean and risk densities of aggregate loss x+ as respectively

mβ,+ = (1 − β)V ′
β,+, rβ,+ = {β − Φ(β)}V ′

β,+

where Vβ,+ is the VaRβ of x+ and V ′
β,+ is the derivative of Vβ,+ with respect to

β. Aggregate risk reflects diversification and is therefore composed entirely of
systematic risks of component losses forming x+. In addition the VaRβ–layer
of x+ is Iβ(u+)V ′

β,+dβ where u+ is the percentile rank of x+.
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Figure 1: Left and right panels plot θα against α for Gumbel and Clayton copulas respectively.
θα is computed assuming a risk aversion function ϕ(u) = (u > t)/(1− t) for t = 0.5 (red), 0.75
(blue) and 0.9 (green). The calculation is performed over 100 intervals of α forming [0, 1].
Note how θα tracks local dependence (clustering along the 45◦ line) in both copulas, apart
from the kinks at α = t.

The following allocates aggregate mean and risk densities and aggregate
VaR layers to component losses including x. The allocation is critical when risk
management strategies are applied to layers of x+, and the impact and cost of
the strategies are attributed to component losses. Example of such strategies
are stop–loss reinsurance and aggregate hedging of a portfolio of losses. The
proposed allocation shown below is unbiased and aligns with the overall mean
and systematic risk of component losses. The approach relies on conditional
mean sharing by Denuit and Dhaene (2012).

The aggregate loss is x+ =
∑

i xi where xi represents a component loss such
as x. Using iterated expectations, write x+ as

x+ =
∑

i

gi(x+), gi(x+) ≡ E(xi|x+) ,

where gi calculates the mean value of xi conditional on x+. Denuit and Dhaene
(2012) allocates gi(x+) to xi, called conditional mean sharing. The allocation
is unbiased since E{gi(x+)} = E{E(xi|x+)} = E(xi). Substituting x+ = Vβ,+

into the above result and taking derivatives with respect to β yields

V ′
β,+ =

∑

i

{gi(Vβ,+)}′
= V ′

β,+

∑

i

g′
i(Vβ,+),

∑

i

g′
i(Vβ,+) = 1 . (5)

(5) allocates a fraction g′
i(Vβ,+) of V ′

β,+ to xi, and fractions sum to one across
i. Apply this fractional allocation to aggregate VaR layers and aggregate mean
and risk densities, since all are proportional to V ′

β,+. Hence the allocated or

80



“sub-aggregate” mean and risk densities of x are respectively

ṁβ,+ ≡ mβ,+g′(Vβ,+), ṙβ,+ ≡ rβ,+g′(Vβ,+) ,

where g(x+) = E(x|x+). Identical densities are obtained by performing ground-
up calculations on g(x+) assuming g is increasing and VaRβ of g(x+) is g(Vβ,+).
Given β, ṁβ,+ and ṙβ,+ are portions of the mean and risk of VaRβ–layer of x+

attributable to x.

Sub-aggregate mean and risk densities of x are aligned with the overall mean
and systematic risk of x. Integrating ṁβ,+ over all β yields

∫ 1

0

ṁβ,+dβ =

∫ 1

0

(1 − β){g(Vβ,+)}′dβ = E{g(x+)} = E(x) ,

and similarly

∫ 1

0

ṙβ,+dβ =

∫ 1

0

cov{Iβ(u+), ϕ(u+)}{g(Vβ,+)}′dβ

= cov{g(x+), ϕ(u+)} = cov{x, ϕ(u+)} = r .

Integrating ṁβ,+ and ṙβ,+ over a subset of the unit interval yields an allocation
of the mean and risk of the corresponding VaR layer of x+ to x.

Sub-aggregate mean and risk densities are different from mean and system-
atic risk densities: ṁβ,+ ̸= mα and ṙβ ̸= rα for α = β, although they integrate
to the same result. The former relates to VaR layers of x+ whereas the latter
relates to VaR layers of x. However equality applies when component losses are
comonotonic. This special case is discussed in the next section.

7. Comonotonicity as a diversification benchmark

Comonotonic x and x+ implies u = u+: x and x+ are always at equal
percentiles, and E(x|x+) = x: x+ pinpoints the value of x. Dhaene et al. (2002)
and Wang and Dhaene (1998) further discuss the concept of comonotonicity.
Comonotonicity yields maximum systematic risk across all layers and is hence
a benchmark for assessing diversification as shown below.

Comonotonicity between x and x+ implies:

• Systematic and standalone risk densities of x are equal, and there is no
diversification at any VaR layer of x. Since u = u+,

rα = cov{Iα(u), ϕ(u+)}V ′
α = cov{Iα(u), ϕ(u)}V ′

α = rα ,

implying θα = 1. In addition r = r and θ = 1. This result is discussed in
section 3. Hence rα is maximised across all α under comonotonicity.
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• Sub-aggregate densities are also equal to standalone densities. Since x =
E(x|x+) = g(x+), Vβ = g(Vβ,+), hence V ′

β = {g(Vβ,+)}′ and

ṁβ,+ = mβ , ṙβ,+ = rβ .

Since comonotonic x+ and x reach their VaRβ–layers simultaneously, the
attributed mean and risk of the VaRβ–layer of x+ to x is the mean and
risk (systematic or standalone) of the VaRβ–layer of x.

The standalone risk density of x thus indicates maximum systematic risk across
all layers, and comparing it with systematic and sub-aggregate risk densities of
x reveals the extent of diversification in each layer. Section 3 already compares
rα with rα and the ratio characterises the dependence structure of (x, x+). The
following shows a similar interpretation when ṙβ,+ is compared with rβ . Define
the ratio

γβ ≡ ṙβ,+

rβ
=

{β − Φ(β)}{g(Vβ,+)}′

{β − Φ(β)}V ′
β

=
{g(Vβ,+)}′

V ′
β

=
g′(Vβ,+)V ′

β,+

V ′
β

=

d
dβ E(x|u+ = β)

d
dβ E(x|u = β)

=
cov

{
x, d

dβ δβ(u+)
}

cov
{

x, d
dβ δβ(u)

} . (6)

where δβ(u) is the Dirac delta function which approaches ∞ when u = β and
is 0 otherwise. Similar to θα, γβ = 1 if u = u+ and γβ = 0 if u and u+ are
independent. Unlike θα, γβ is computed entirely from the joint distribution of
(x, x+) and does not involve the risk aversion function ϕ. In addition γβ may
exceed one since the numerator in its definition relates to the VaRβ–layer of x+

whereas the denominator relates to the VaRβ–layer of x and there is no strict
inequality between numerator and denominator.

As per θα, γβ measures local dependence between x and x+ but in a differ-
ent manner. The second last expression in (6) measures the sensitivity of the
conditional expectation of x to changes in x+ at VaRβ , relative to the same
calculation when u = u+. The last expression in (6) computes the covariance
between x and a function of u+, again relative to the comonotonic case.

Figure 2 plots γβ against β using copulas in Figure 1. Assume exponential
and normal distributions for x. Note γβ is independent of location and scale
of x. Calculations show γβ > 1 over some values of β hence γβ is scaled by its
maximum value over β so that resulting values do not exceed 1. Similar to θα, γβ

traces the local dependence structure of (x, x+): the dispersion between scatter
points along the 45◦ line. However calculated values of γβ are more volatile than
θα as the former involve conditional expectations over narrow windows whereas
the latter use conditional tail expectations.

8. Case study using historical stock returns

This section applies the proposed systematic risk and diversification analyt-
ical framework to daily NASDAQ, S&P and FTSE returns between 1985 and
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Figure 2: Left and right panels plot γβ/ maxβ(γβ) against β for Gumbel and Clayton copulas
respectively. γβ is computed assuming x is exponential (red) and normal (blue). The cal-
culation is performed over 20 intervals of β forming [0, 1] to produce smoother curves. Note
how the curves trace the dependence structure of (u, u+) represented by the scatter of points
along the 45◦ line.

2015. Form a hypothetical portfolio of $100 in each market index, and assume
the empirical joint probability distribution. To be consistent with the proposed
framework, focus on investment losses rather than gains. Hence switch the signs
of investment returns, with gains being negative losses. Use the risk aversion
function ϕ(α) = 4I0.75(α), hence risk is the mean loss above VaR0.75 compared
to the overall mean.

Top four panels in Figure 3 display empirical marginal probability distribu-
tions and copulas of hypothetical index losses. NASDAQ lossess are the most
skewed, while S&P losses are the most peaked. In addition NASDAQ and S&P
losses are highly dependent, and both are less dependent overall on FTSE losses
(presumably due to different geographical location). All three market indices
exhibit significant upper and lower tail dependence: extreme losses and gains
are highly dependent across markets.

Bottom two panels in Figure 3 graph standalone and systematic risk densities
for each market index, calculated from the empirical joint probability distribu-
tion. Density values are smoothed to reduce volatility across VaR layers. Before
aggregation, NASDAQ has the highest risk density due to greater skewness of
its probability distribution. S&P and FTSE have similar risk densities, although
S&P has a slightly lower density in middle VaR layers due to greater peakedness
of its probability density. All three risk densities are reduced after diversifica-
tion, most notably FTSE. Subsequent figures compare and analyse standalone
and systematic risk densities.

Figure 4 compares standalone and systematic risk densities for each market
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index. Systematic risk ratios, and copulas between index and aggregate losses,
are also shown. Note from §3 that systematic risk ratios are computed entirely
from the copulas and summarise the dependence structure. Also note the kink
in systematic risk ratios at VaR0.75–layers due to the selection of the risk aver-
sion function. FTSE has lower systematic risk ratios than NASDAQ and S&P
across all VaR layers due to its weaker dependence with the aggregate loss.
Hence FTSE experiences stronger diversification. All three market indices have
systematic risk ratios close to 1 in extreme VaR layers, due to tail dependence.
Therefore there is minimal risk diversification in extreme VaR layers of all three
indices.

Table 1 shows overall risks for each market index, before and after diversi-
fication. Overall systematic risk ratios are also shown. As expected NASDAQ
has the highest standalone and systematic risk. S&P and FTSE have similar
standalone risks, although FTSE has higher diversification and therefore lower
systematic risk. NASDAQ and S&P have similar overall systematic risk ratios.

Portfolio r r θ
NASDAQ $2.00 $1.86 0.93
S&P $1.32 $1.22 0.92
FTSE $1.31 $0.87 0.66
Overall $4.63 $3.95 0.85

Table 1: Overall standalone risk, systematic risk and risk ratio for each market index.

Figure 5 shows mean and risk densities of the aggregate portfolio loss and its
breakdown into sub-aggregate densities. NASDAQ generally has a higher sub-
aggregate mean and risk density, notably in high VaR layers of the aggregate
loss, due to its higher skewness and systematic risk contribution. Note from §6
that sub-aggregate mean and risk densities integrate to the overall mean and
systematic risk of each market index.

Figures 3, 4 and 5 guide the formulation of effective risk management strate-
gies. For example standalone and systematic risks are concentrated in high VaR
layers and can be significantly reduced with put options. In addition, from Fig-
ure 4, dependence is strong at high VaR layers and weaker at lower VaR layers,
hence diversification is improved when high VaR layers are eliminated. Consider
two scenarios: put options on each market index and an aggregate put option
on the portfolio. Assume an exercise price of VaR0.95 of the loss referenced in
the put option. Risks after put options are areas under risk densities up to
the exercise price. Summary results of the first scenario are shown in table 2
in a similar format as table 1. Under the second scenario, aggregate risk af-
ter diversification is 3.55 hence the first scenario is more risk-effective without
considering option prices.
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Figure 3: Top left panel plots empirical probability densities. Next 3 top panels plot empirical
copulas (u1:NASDAQ, u2: S&P, u3: FTSE). Bottom left and right panels plot calculated stan-
dalone and systematic risk densities, respectively. Red, blue and green represent NASDAQ,
S&P and FTSE, respectively.
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Figure 4: Left panels plot historical (ui, u+) and, in red, (α, θα). Right panels plot calculated
(α, rα) in red and (α, rα) in blue. Note θα = rα/rα. Top, middle and bottom panels are for
NASDAQ, S&P and FTSE, respectively.
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Figure 5: Left panel shows aggregate mean density and its breakdown into sub-aggregate
mean densities. Right panel shows the same, for risk densities. Red, blue and green represent
NASDAQ, S&P and FTSE, respectively.

Portfolio r r θ
NASDAQ $1.81 $1.67 0.92
S&P $1.17 $1.07 0.91
FTSE $1.17 $0.75 0.64
Overall $4.15 $3.49 0.84

Table 2: Overall standalone risk, systematic risk and risk ratio for each market index, after
purchasing put options at exercise price V0.95 for each index.
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Chapter 5

Tradeoff premiums

The following paper introduces the tradeoff premium which extends distor-
tion risk measures by considering upside risk in addition to downside risk.
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The tradeoff insurance premium as a two–sided
generalisation of the distortion premium

Abstract

This paper introduces and analyzes the “tradeoff premium,” generalising the loss
aversion reserve, distortion premium, spectral risk, and their duals. The trade-
off premium is a weighted average loss where weights increase as loss outcomes
deviate from a subjective “loss appetite,” rather than from zero. The U–shaped
weights replicate subjective probability adjustment in cumulative prospect the-
ory, and minimise pricing error in a competitive market where overpricing and
underpricing are both undesired.

Keywords: Weighted premium; loss aversion reserve; distortion premium;
spectral risk; two–sided; loss appetite.

1. Introduction and overview

Premium principles, or risk measures, map a loss distribution to a real num-
ber. The mapping is used to calculate insurance premiums or manage risk.
An example premium principle is the loss aversion reserve (Choo and De Jong,
2009), a weighted average loss where weights are a non-decreasing function of the
loss percentile rank. Loss aversion reserves are equivalent to distortion premiums
(Wang, 1996) and spectral risks (Acerbi, 2002). Generalised premium principles
based on weighted average losses are discussed in Furman and Zitikis (2008).
Gerber (1985) discusses an alternative premium based on the certainty equiv-
alent loss under utility theory, the exponential premium (Deprez and Gerber,
1985) being a specific example. Other common premiums or risks are discussed
in McNeil et al. (2005) and Young (2004), including Value–at–Risk, conditional–
tail–expectation and the standard deviation premium. Artzner et al. (1999) dis-
cusses “coherence” properties of a premium principle or risk measure, namely
translation invariance, positive homogeneity, monotonicity, and subadditivity.

Existing premium principles and risk measures are mostly “one–sided”, fo-
cussing on large loss outcomes and adding a positive loading to the expected
loss. In pricing, a positive loading avoids inevitable ruin in the long run. In risk
management, a positive loading captures worse than expected losses, which are
the main concern. For example, the loss aversion reserve (or distortion premium
and spectral risk) magnifies higher loss percentiles. The standard deviation pre-
mium sets the loading as a positive multiple of standard deviation. Assuming
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a concave utility function, representing risk aversion, the certainty equivalent
premium exceeds the expected loss. The Dutch premium (Van Heerwaarden
and Kaas, 1992) also assumes a positive loading above the expected loss, based
on a multiple of the expected excess loss.

A “two–sided” premium reflecting the importance of smaller loss outcomes,
and potentially having a negative loading, is required for business reasons. In a
competitive market, a negative loading may apply in the short term to increase
business volume or to avoid loss of business, the latter if other market players
are also applying negative loadings. Hence conflicting considerations exist – a
positive loading is financially sustainable in the long term, however competitive
pressure may force a negative loading to ensure short term survival. A negative
loading may sustain for a longer term if the financial loss is offset by profit from
other products with positive loading.

The tradeoff premium (ToP) is a novel premium principle addressing “two–
sided” concerns highlighted in the previous paragraph. The ToP is a weighted
average loss, with U–shaped weights increasing as loss outcomes deviate from
a subjective “loss appetite.” U–shaped weights reflect the importance of both
small and large loss outcomes, and are consistent with cumulative prospect
theory (Tversky and Kahneman, 1992) where extreme outcomes (both positive
and negative) are magnified and moderate outcomes are diminished.

The ToP is shown to reduce with loss appetite, with zero loss appetite yield-
ing the loss aversion reserve (equivalently distortion premium or spectral risk).
A maximum loss appetite implies monotonic decreasing weights, and yields a
negative loading. In addition the resulting ToP is shown to be the dual (Wang,
2000) of the distortion premium with zero loss appetite.

Examples in this paper express the ToP as a two–sided generalisation of one–
sided premiums or risks, including Value–at–Risk, conditional–tail–expectation
and expected–maximal–loss (Choo and De Jong, 2009). The two–sided gener-
alisation reflects the undesirability of both small and large loss outcomes, with
the loss appetite controlling their relative representation in the ToP.

The equilibrium ToP corresponds to the loss appetite. Hence at equilibrium,
the appetite for loss is equal to the premium collected. Undesired deviations
of loss outcomes from the loss appetite represent premium surplus or shortfall.
The equilibrium ToP is shown to be a tail–magnified measure of central ten-
dency, refining the mean and median measures. Hence for a right skewed loss
distribution, the equilibrium ToP exceeds the expected loss, and vice versa for
a left skewed loss distribution.

The remaining paper is structured as follows. Section 2 defines, illustrates
and justifies the ToP. Section 3 discusses properties of the ToP, in particular
coherence. The ToP does not satisfy the subadditivity property of coherence,
due to its two–sided nature. Section 4 discusses the equilibrium ToP. Section 5
identifies links between the ToP and existing literature. Section 6 decomposes
the ToP into the expected loss, and a discount and loading respectively reflecting
loss volatility below and above the loss appetite. Section 7 provides a numerical
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example of the ToP using a gamma loss distribution and power aversion pattern.
Section 8 concludes.

2. The tradeoff premium

The tradeoff premium (ToP) is a weighted premium (Furman and Zitikis,
2008). ToP generalises loss aversion reserves (Choo and De Jong, 2009), dis-
tortion premiums (Wang, 1996) and spectral risks (Acerbi, 2002) by assigning
higher penalty weights to loss outcomes further from a “loss appetite” rather
than to larger loss outcomes. Penalty weights forming the ToP are aligned with
cumulative prospect theory (Tversky and Kahneman, 1992), where extreme out-
comes, relative to a reference point, are magnified and moderate outcomes are
diminished. The ToP also minimises pricing error in a competitive market.

To explain the ToP, first consider the loss aversion reserve of a random loss
x ≥ 0 with distribution function F and percentile rank u ≡ F (x). Then u is
uniformly distributed on the unit interval and indicates “loss severity,” with
0 being least severe and 1 being most severe. Given an increasing aversion
function ϕ ≥ 0 integrating to one, the loss aversion reserve of x is

E{xϕ(u)} =

∫ ∞

0

[1 − Φ{F (x)}] dx =

∫ 1

0

Vuϕ(u)du , (1)

Φ(u) ≡
∫ u

0

ϕ(v)dv , Vu ≡ F−(u) ,

where E computes expectation and Vu is the Value–at–Risk or VaR (McNeil
et al., 2005) with sufficiency probability u. The second and third expressions in
(1) are the distortion premium and spectral risk of x, respectively.

The loss aversion reserve (1) is a weighted average loss with higher weight on
larger severities. Weights are on average one: E{ϕ(u)} = 1, since ϕ integrates
to one. The distortion premium is the expected loss computed using a distorted
distribution Φ ◦ F dominating F , noting Φ is convex. The spectral risk is a
weighted average of VaRs where higher VaRs are weighted more heavily. Hence
loss aversion reserves, distortion premiums and spectral risks are “one–sided”,
concerned only with larger severities. Concern is characterised by ϕ reweighing
initially equally weighted VaRs or severities. Equal weighting ϕ = 1 leads to the
original expected loss E(x). Choo and De Jong (2009) shows the equivalence
between loss aversion reserves, distortion premiums and spectral risks.

“Loss appetite” is central to the ToP. To introduce the concept of loss ap-
petite, loss aversion reserves assume zero loss appetite. Then larger losses are
always feared more and penalised more heavily. However a positive loss appetite
may be relevant or even optimal in a business setting. In a competitive market,
premiums may be deliberately reduced to win or prevent loss of market share.
Premium reduction is achieved with a positive loss appetite. Penalty weights
decrease up to the loss appetite, and increase thereafter. Maximum loss appetite
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occurs if penalty weights always decrease with severity and contrasts with zero
loss appetite where penalty weights always increase with severity. The aversion
function redistributes weights, in regions below and above loss appetite.

To achieve the above redistribution of penalty weights first define “satiation
error” based on loss severity u:

ψℓ(u) ≡ (u ≤ ℓ)
ℓ− u

ℓ
+ (u > ℓ)

u− ℓ

1 − ℓ
, 0 ≤ ℓ ≤ 1 ,

where the above bracketed inequalities are indicators. Here ℓ is a subjectively
specified loss appetite on the percentile rank scale, with ℓ = 0 indicating no
appetite for losses and ℓ = 1 indicating a complete appetite for losses. The
deviation u− ℓ is standardised so that ψℓ(0) = ψℓ(1) = 1 for all 0 < ℓ < 1 with
linear behaviour over the segments [0, ℓ] and [ℓ, 1].

Similar to loss severity u, satiation error ψℓ(u) is uniformly distributed over
the unit interval. Satiation error is also uniform over u ≤ ℓ and over u > ℓ.
Zero loss appetite, ℓ = 0, reduces satiation error to loss severity: ψ0(u) = u.
Maximum loss appetite, ℓ = 1 yields satiation error ψ1(u) = 1 − u. The role
and selection of the loss appetite parameter ℓ is further discussed below.

The ToP is defined analogous to (1) by imposing an aversion function ϕ on
satiation error ψℓ(u), yielding

Tℓ ≡ E{xϕℓ(u)} =

∫ ∞

0

[1 − Φℓ{F (x)}] dx =

∫ 1

0

Vuϕℓ(u)du , (2)

where

ϕℓ ≡ ϕ ◦ ψℓ , Φℓ(u) ≡
∫ u

0

ϕℓ(v)dv .

Note T0 reduces to the expression in (1) since ϕ0(u) = ϕ(u). Conversely maxi-
mum loss appetite ℓ = 1 yields satiation error ϕ1(u) = ϕ(1 − u). The resulting
ToP, T1, is the “dual” of the original distortion premium (Wang, 2000):

∫ ∞

0

[1 − Φ∗{F (x)}] dx , Φ∗(u) ≡ 1 − Φ(1 − u) .

The ToP is a “two–sided” generalisation of the loss aversion reserve, noting
weights ϕℓ(u) = ϕ{ψℓ(u)} increase as loss severity u deviates from loss appetite
ℓ, rather than from zero. Overall weights below and above the loss appetite are

∫ ℓ

0

ϕℓ(u)du = ℓ ,

∫ 1

ℓ

ϕℓ(u)du = 1 − ℓ ,

respectively, noting satiation error ψℓ(u) is uniform over both u ≤ ℓ and u > ℓ.
Hence piecewise uniformity of ψℓ(u) preserves the overall weight placed on sever-
ities below and above the loss appetite ℓ. The loss appetite ℓ serves to redis-
tribute severity weights, using the aversion function ϕ. An example illustrating
the ToP is shown in the following subsection. Subsequent subsections further
justify the formulation of the ToP based on cumulative prospect theory and
minimisation of pricing error in a competitive market.
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2.1. Minmax ToP example

The following example illustrates Tℓ given power aversion function ϕ(u) =
nun−1 with n ≥ 1. In this case

Tℓ = ℓE

{
min

i=1,...,n
(xi)

∣∣∣∣ max
i=1,...,n

(xi) ≤ Vℓ

}
+(1−ℓ)E

{
max

i=1,...,n
(xi)

∣∣∣∣ min
i=1,...,n

(xi) > Vℓ

}

where the xi are n independent copies of x. With minimum and maximum loss
appetite, or ℓ = 0, 1, the ToPs are respectively

T0 = E

{
max

i=1,...,n
(xi)

}
, T1 = E

{
min

i=1,...,n
(xi)

}
.

Further for 0 ≤ ℓ ≤ 1, T1 ≤ Tℓ ≤ T0. If n = 1 then ϕ(u) = 1 and the ToP is, for
all ℓ,

Tℓ = ℓE(x|x ≤ Vℓ) + (1 − ℓ)E(x|x > Vℓ) = E(x) .

The following key properties of the ToP are inferred from the above example,
and are formalised in subsequent sections:

• The ToP is formed by combining “aversion adjusted” conditional expected
losses below and above the loss appetite. The expected loss below the loss
appetite is reduced by assuming the expected minimum. The expected
loss above the loss appetite is raised by assuming the expected maximum.
Without aversion adjustment (n = 1) the ToP is the expected loss.

• Loss appetite 0 ≤ ℓ ≤ 1 controls the size of the ToP. Tℓ is at maximum
if ℓ = 0, that is if there is no appetite for loss. Increasing loss appetite
reduces the ToP. A proof is shown in §3.

• Relative left and right tail skewness about ℓ also affect the ToP, given the
loss appetite. Increasing the skewness of the right tail while keeping E(x)
constant increases the expected maximum of losses above loss appetite,
resulting in a higher ToP.

• Increasing loss aversion by increasing n in ϕ(u) = nun−1 accentuates the
impact of relative tail skewness on the ToP. Consider the case where the
right tail above Vℓ is more skewed than the left tail below Vℓ. Increasing
n has a greater impact on the expected maximum of losses above the loss
appetite than the expected minimum of losses below the loss appetite,
thus increasing the ToP overall. With neutrality n = 1 or ϕ = 1, relative
tail skewness is ignored and the ToP is always the expected loss E(x). In
addition changing ℓ alters relative tail skewness and hence the impact of
increasing n will differ according to ℓ.

• The same aversion attitude applies to losses below and above the loss
appetite. In this example aversion adjustment focusses on the expected
maximum or minimum over n copies.
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Figure 1: Plots of ϕℓ(u) (left panel) and Φℓ(u) (right panel) against u assuming ϕ(v) = 5v4

and ℓ = 0.25, 0.5 and 0.75.

2.2. ToP and cumulative prospect theory

In cumulative prospect theory, extreme outcomes are over–weighted while
average outcomes are under–weighted. This psychological phenomenon is rep-
resented by a U–shaped weight function on probabilities, and a S–shaped trans-
formation of cumulative probabilities. The ToP effects a similar modification.
The weight function ϕℓ in the first expression of the ToP in (2) is U–shaped:
decreasing below ℓ and increasing above ℓ. In the second expression, the trans-
formation Φℓ applied to the distribution F is S–shaped: concave below ℓ and
convex above ℓ. Left and right panels in Figure 1 illustrate the U–shaped ϕℓ

and S–shaped Φℓ, respectively, assuming ϕ(v) = 5v4, for various values of ℓ.

2.3. ToP and the minimisation of pricing error

In a competitive market, overpricing leads to loss of business. Hence smaller
loss outcomes are feared. Larger loss outcomes are also feared, due to under-
pricing and financial loss. Loss appetite ℓ and the associated VaR Vℓ sets the
boundary between perceived “small” and “large” losses. A lower loss appetite
ℓ yields a higher proportion of “large” losses and vice versa. U–shaped penalty
weights ϕℓ(u) models the undesirability of various severities.

Given premium π, then

E
{
(π − Vu)2ϕℓ(u)

}
=

∫ 1

0

(π − Vu)2dΦℓ(u) , (3)

is the overall pricing error. Squared pricing errors (π−Vu)2 are weighed accord-
ing to the aversion function ϕℓ, given loss appetite ℓ. Large pricing errors, those
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associated with smaller or larger severities u, are featured more prominently in
the overall pricing error via larger squared differences and penalty weights. The
ToP, Tℓ, is that premium π minimising overall pricing error in (3).

2.4. Role and selection of loss appetite

The loss appetite parameter ℓ is central to the ToP and distinguishes it from
one–sided premium principles. As mentioned just after (2), zero loss appetite
ℓ = 0 yields the usual distorted premium, whereas the dual is obtained with
ℓ = 1, the maximum loss appetite.

Loss appetite ℓ is subjectively selected within the unit interval. The chosen ℓ
is a neutrality, “preference” or “comfort” point with no aversion: ϕℓ(ℓ) = 0 and
no distribution adjustment: Φℓ(ℓ) = ℓ. Aversion increases as |u− ℓ| increases.

Loss appetite ℓ balances the fear of “small” severities, suggesting overpricing
and possible loss of business, relative to the fear of “large” severities, indicating
underpricing and an overall loss. A low loss appetite, ℓ ≈ 0, indicates little fear
of overpricing and loss of business, and large fear of underpricing and overall loss
and vice versa. In the above example, the loss appetite is the weight attached to
aversion adjusted expected losses below the loss appetite, while the complement
is the weight attached to the corresponding expectation of losses above the loss
appetite.

An equilibrium occurs if F (Tℓ) = ℓ, that is if Tℓ = Vℓ, the VaR at ℓ. In
this case the loss appetite ℓ equals the probability of an adequate premium. In
addition, since the equilibrium ToP is equal to the loss appetite, satiation error
ϕℓ(u), measuring deviations between loss outcomes and the loss appetite on the
percentile rank scale, also indicates the extent of premium surplus or shortfall.
Equilibrium ToPs are further discussed in §4.

2.5. Aversion symmetry about the loss appetite

The ToP assumes symmetric aversion to loss severities about the loss ap-
petite. From the above example, the aversion adjustment applies the expected
maximum or minimum over n copies for severities below and above the loss
appetite. The symmetry is the result of two factors in the setup of the ToP:
satiation error ψℓ(u) varies uniformly over the unit interval for severities both
below and above the loss appetite ℓ, and a single aversion function ϕ is applied
to satiation error in the formulation of penalty weights.

Hence a single aversion attitude applies to losses below and above the loss
appetite. There is no bias when performing “aversion adjustment” to left and
right tails. This unbiasedness is different from, and should not be confused with,
the relative fear towards left and right tails, controlled by loss appetite.
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3. Features of the ToP

3.1. Relationship with loss appetite

As noted above Tℓ is monotonic decreasing in ℓ: if ℓ ≤ ℓ∗ then Tℓ ≥ Tℓ∗ .
The proof follows by noting Φℓ is increasing in ℓ, or Φℓ(u) ≤ Φℓ∗(u) for all u if
ℓ ≤ ℓ∗. Thus the distorted distribution Φℓ ◦ F is also increasing in ℓ, implying
the ToP is decreasing in ℓ, based on the second expression in (2).

Thus higher loss appetite reduces Tℓ. Zero loss appetite ℓ = 0 and maximum
loss appetite ℓ = 1 yield maximum and minimum ToPs, respectively. Higher
loss appetite indicates higher tolerance of larger loss outcomes, hence a greater
willingness to charge lower premiums.

3.2. Relation to the standard deviation premium

If µx and σx are the mean and standard deviation of x respectively and σϕ

is standard deviation of ϕ(v) where v is uniform, then express the ToP as

Tℓ = µx + cov{x, ϕℓ(u)} = µx + σx × [σϕcor{x, ϕℓ(u)}] , (4)

where cov and cor denotes the covariance and correlation, respectively. The
first equality holds since E{ϕℓ(u)} = E{ϕ(u)} = 1. Thus Tℓ can be thought of
as a standard deviation premium (Young, 2004): the mean µx plus a multiple
of the standard deviation σx of the loss. The multiple σϕcor{x, ϕℓ(u)} can be
positive or negative and depends on two factors:

• The aversion standard deviation σϕ, representing the overall aversion to
satiation error. High σϕ implies aversion increases dramatically when
satiation error increases, while neutrality to satiation error implies ϕ = 1
and hence σϕ = 0. The value of σϕ does not depend on loss appetite ℓ.

• The loss appetite ℓ, controlling the correlation term. Zero loss appetite
ℓ = 0 maximises the multiple, while increasing loss appetite reduces the
multiple. Maximum loss appetite ℓ = 1 yields a negative standard devia-
tion multiple, since ϕ1(u) = ϕ(1−u) is negatively correlated with x. Note
ℓ affects Tℓ only through the standard deviation multiple.

3.3. Linearity

The standard deviation multiple σϕcor{x, ϕℓ(u)} in (4) is invariant to loca-
tion and scale changes in x. Hence the ToP is linear in the loss random variable:

Tℓ(α+ βx) = α+ βTℓ(x) , 0 ≤ ℓ ≤ 1 ,

where α and β ≥ 0 are constants and Tℓ(x) is the ToP of random loss x. The
linearity property corresponds to translation invariance and positive homogene-
ity properties of coherent risk measures (Artzner et al., 1999). Other properties
of coherent risk measures are discussed below.
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3.4. Stochastic dominance and monotonicity

Suppose loss y stochastically dominates x in first order, or the distribution
function of y is less than x at all points. Then Tℓ(y) > Tℓ(x) for any loss
appetite ℓ. Hence “larger” loss random variables have higher ToPs, given the
same loss appetite. The proof follows from the second expression for the ToP
in (2), noting Φℓ is the same for both x and y.

The ToP also preserves statewise dominance, the monotonicity property of
coherent risk measures. When loss y exceeds x over all states, y also stochasti-
cally dominates x in first order, thus y has a larger ToP compared to x.

3.5. Non–subadditivity

Unlike coherent risk measures, the ToP is not always sub–additive: the ToP
of a sum of losses may exceed the sum of ToPs for each individual loss.

Non–subadditivity follows from the “two–sidedness” of the ToP. One-sided
loss aversion reserves, distortion premiums and spectral risks are sub–additive
since undesired large severities are “diversified” upon aggregation, resulting in
a reduced overall reserve, premium or risk:

T0

(∑

i

xi

)
≤
∑

i

T0(xi) ,

where xi are possibly dependent losses. Proofs are given in Wang (1996) and
Choo and De Jong (2009). In contrast the dual is super–additive: the premium
increases upon aggregation since undesired smaller severities are diversified:

T1

(∑

i

xi

)
≥
∑

i

T1(xi) .

For the ToP where 0 ≤ ℓ ≤ 1, both small and large severities are undesired,
and are simultaneously diversified upon aggregation. The overall impact on the
ToP depends on the loss appetite ℓ: low ℓ implies large severities have domi-
nant concern, resulting in subadditivity. Conversely high ℓ indicates dominant
concern on small severities, yielding a super–additive ToP.

3.6. Additivity for comonotonic losses

Suppose x and y are comonotonic losses (Dhaene et al., 2002) such that x,
y and x+ y have equal percentile rank in any state. Then

Tℓ(x+ y) = Tℓ(x) + Tℓ(y) , 0 ≤ ℓ ≤ 1 ,

since the aversion weights ϕℓ(u) are equal for x, y and x+y under comonotonic-
ity, and applying the first expression in (2).
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3.7. No unfair premium

The ToP lies with the range of the loss for any loss appetite ℓ:

min(x) ≤ Tℓ ≤ max(x) ,

noting the ToP is a weighted average loss with non-negative weights ϕℓ(u).

3.8. Relation to integral operators

Multiplying the last expression for the ToP in (2) by ϕ−
ℓ (v), defined below,

and integrating with respect to ℓ over the unit interval yields

∫ 1

0

Tℓϕ
−
ℓ (v)dℓ =

∫ 1

0

Vu

{∫ 1

0

ϕℓ(u)ϕ
−
ℓ (v)dℓ

}
du = Vv ,

where the final equality holds if the above expression in curly brackets is the
Dirac–delta function (u = v). Hence ϕ−

ℓ (v) is obtained by solving

∫ 1

0

ϕℓ(u)ϕ
−
ℓ (v)dℓ = (u = v) . (5)

In the above setup ϕℓ(u) is an integral operator yielding ToP at any loss appetite
ℓ based on all VaRs Vu. In addition ϕ−

ℓ (v) is the corresponding inverse integral
operator yielding any VaR Vv, given ToPs at all loss appetites ℓ. Both ϕℓ(u)
and ϕ−

ℓ (v) only depend on the aversion function ϕ. A closed form expression for
ϕ−

ℓ (v) does not exist. However integrating (5) with respect to u over the unit
interval yields ∫ 1

0

ϕ−
ℓ (v)dℓ =

∫ 1

0

(u = v)du = 1 ,

noting ϕℓ(u) integrates to one. Hence the inverse weights ϕ−
ℓ (v) placed on ToPs,

over all loss appetites ℓ, integrate to one. A similar property applies to original
weights ϕℓ(u).

4. Equilibrium tradeoff premium

An equilibrium occurs if F (Tℓ) = ℓ or Tℓ = Vℓ: that is if the ToP Tℓ is the
ℓ–VaR corresponding to loss appetite ℓ. Hence at equilibrium the probability of
premium sufficiency equals the loss appetite. A unique solution ℓ∗ to Tℓ = Vℓ

exists since Tℓ is decreasing in ℓ and Vℓ is increasing in ℓ, and Vℓ covers a larger
range of values over 0 ≤ ℓ ≤ 1 compared to Tℓ.

The equilibrium condition suggests the iterative scheme

T∗ = lim
n→∞

Tℓn , ℓn+1 = F (Tℓn) , n = 0, 1, . . . , (6)
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where ℓ0 is an initial loss appetite and T∗ ≡ Tℓ∗ denotes the equilibrium ToP.
In addition define V∗ ≡ Vℓ∗ = T∗ as the VaR corresponding to the equilibrium
loss appetite ℓ∗.

The iteration (6) has a practical interpretation. Suppose ℓ < ℓ∗ implying
Tℓ > T∗ = V∗ > Vℓ where the first inequality applies since Tℓ is decreasing in
ℓ. Then the VaR at loss appetite ℓ falls below the ToP, that is the amount
the insurer is willing to lose is less than the premium collected. This “disequi-
librium” creates a tendency to increase loss appetite or reduce premium. An
analogous argument applies if ℓ is above ℓ∗. Inconsistency between the updated
loss appetite and ToP results in further calculation, until convergence.

The equilibrium ToP is further discussed in the following subsections. A
numerical example is given in §7.

4.1. Special equilibrium cases

A special case of equilibrium ToP occurs with neutrality to satiation error,
ϕ = 1. In this case Tℓ = µx, the mean loss, for all ℓ, and hence T∗ = µx. The
equilibrium loss appetite is ℓ∗ = F (µx).

The equilibrium ToP is also equal to the mean loss if the loss distribution is
symmetric, and ℓ∗ = F (µx) = 0.5. This result is established by noting satiation
error ψ0.5(u) and hence aversion weights ϕ0.5(u) are always symmetric about
u = 0.5. In addition loss percentiles Vu are also symmetric about u = 0.5 for
a symmetric distribution, therefore the ToP at ℓ = 0.5 achieves equilibrium:
T0.5 = E{Vuϕ0.5(u)} = V0.5 = µx, completing the proof.

4.2. Central tendency and impact of skewed loss distributions

The equilibrium ToP is a measure of central tendency akin to the mean and
median. The equilibrium ToP magnifies both tails of the loss distribution, and
thus includes a positive loading over the mean loss for a right skewed distribution
and vice versa for a left skewed distribution.

Re-arranging the equilibrium condition T∗ = V∗ and replacing Tℓ with the
definition in (2) yields

E
{
|V∗ − x|+ϕ∗(u)

}
= E

{
|x− V∗|+ϕ∗(u)

}
, ϕ∗ ≡ ϕℓ∗ , (7)

and |x|+ indicates the “positive part of x.” Hence the equilibrium ToP equalises
expected premium surplus |T∗ − x|+ and premium shortfall |x − T∗|+. The
aversion adjustment ϕ∗ magnifies larger surpluses or shortfalls except in the
case of neutrality ϕ ≡ 1.

The equilibrium condition in (7) is analogous to the well known equilibrium
conditions for the mean and median:

E
(
|µx − x|+

)
= E

(
|x− µx|+

)
, P (x ≤ mx) = P (x > mx) .
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where mx is the median of x and P calculates probability using F . The mean
loss equalises expected surplus and shortfall without aversion adjustment, that
is assuming neutrality towards pricing error. The median loss equalises proba-
bilities of surplus and shortfall ignoring their magnitude.

Hence T∗ is a measure of central tendency similar to the mean and median.
The equilibrium ToP generalises the mean by including an aversion adjustment
weighing larger deviations more heavily: both tails of the loss distribution are
amplified. The result of amplification is discussed below. For example if the
aversion function is ϕ(v) = nvn−1 then weights increase as a power of the
deviation from T∗.

Amplifying both tails of the loss distribution creates a “loading” and “dis-
count” over the mean loss for a right and left skewed distribution, respectively.
Hence for a right skewed distribution, T∗ > µx and vice versa. The proof follows
by noting, for a right skewed distribution, substituting V∗ = µx and ℓ∗ = F (µx)
into (7) creates disequilibrium:

E
{
|µx − x|+ϕF (µx)(u)

}
< E

{
|x− µx|+ϕF (µx)(u)

}
,

noting the impact of tail amplification is larger for the right tail compared to
the left tail. Since the left hand side of (7) is increasing in ℓ∗ while the right
hand side is decreasing in ℓ∗, V∗ must increase from its current value µx to
achieve equilibrium. Hence at equilibrium T∗ = V∗ > µx, completing the proof.
A similar proof applies for a left skewed loss distribution.

4.3. Existence and persistence of disequilibrium

As mentioned above, disequilibrium arises if the ToP differs from the loss
appetite: Tℓ ̸= Vℓ. Disequilibrium may exist, and persist, due to conscious
decision. Suppose ℓ < ℓ∗ resulting in Tℓ > Vℓ, or loss appetite is less than
the ToP. Disequilibrium persists if a decision is made to set loss appetite less
than the ToP, for example when underpricing and financial loss is of utmost
concern. A change in loss appetite only occurs when new factors create pressure
on disequilibrium to be reduced or eliminated, such as fear of overpricing and
loss of future business. In this case the loss appetite increases, resulting in a
lower ToP. The adjustment ceases when equilibrium is achieved: Tℓ = Vℓ.

5. Connection to literature

As mentioned in §2, the ToP is a weighted premium (Furman and Zitikis,
2008) and reduces to loss aversion reserves (Choo and De Jong, 2009), distortion
premiums (Wang, 1996) and spectral risks (Acerbi, 2002) when loss appetite is
zero. The weights forming the ToP are consistent with cumulative prospect
theory (Tversky and Kahneman, 1992). Lastly the ToP is a standard deviation
premium (Young, 2004), where the standard deviation multiple depends on loss
appetite and aversion to pricing error.
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The ToP also generalises the zero utility premium (Heilpern, 2003) using
rank-dependent utility theory (Quiggin, 1982) and assuming a linear utility
function. This connection is established by writing Tℓ as

Eℓ {U(Tℓ − x)} = 0 , U(w) = a+ bw ,

where Eℓ calculates expectations with respect to Φℓ ◦ F , the modified distribu-
tion of the loss x, and U is an utility function. Rank-dependent utility theory
assumes ℓ = 0, or zero loss appetite. In contrast the ToP allows for subjective
selection of loss appetite, based on the relative concern of over and underpricing.

Kaluszka and Krzeszowiec (2011) applies cumulative prospect theory to the
generalised zero utility premium mentioned above, and sets the premium as
the loss appetite. The resulting premium corresponds to the equilibrium ToP
discussed in §4, again assuming a linear utility function. The ToP considers
disequilibrium cases where loss appetite is deliberately set to be different from
the calculated premium.

Van der Hoek and Sherris (2001) use differential probability adjustment to
outcomes above and below a “reference point,” by using two different distortion
operators. The resulting generalized distortion premium is applied to asset
allocation. However both distortion operators applied by Van der Hoek and
Sherris (2001) are convex, implying monotonic increasing concern on larger loss
outcomes, or a zero loss appetite, similar to rank dependent utility. On the
other hand the ToP combines convex and concave distortions yielding a S–
shaped transformation of cumulative probabilities. In addition Van der Hoek
and Sherris (2001) expresses the reference point in absolute terms, whereas the
ToP specifies the loss appetite (the reference point) as a percentile rank.

6. Decomposing the ToP

The ToP is composed of two premiums separately addressing over and un-
derpricing given loss appetite. The premium for losses below the loss appetite
places higher weight on smaller severities, and vice versa for the premium re-
lating to losses above the loss appetite. Further manipulation of the ToP yields
a discount and markup applied to the expected loss, proportional to left and
right tail volatilities, respectively.

Write Tℓ(x|A) as the ToP for loss x conditional on event A and given loss
appetite ℓ. Note the percentile rank, or severity, of conditional losses below and
above the loss appetite are 1−ψℓ(u) and ψℓ(u), respectively. Applying iterated
expectations to the ToP yields

Tℓ = E{xϕℓ(u)} = ℓT1 (x|x ≤ Vℓ) + (1 − ℓ)T0 (x|x > Vℓ) . (8)

Recall T0 is the one–sided ToP focussed totally on larger severities, while T1 is
solely concerned on smaller severities.
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The decomposition (8) emphasizes features of the ToP explained in §2. There
is aversion to smaller severities below the loss appetite ℓ and larger severities
above the loss appetite. Severities above the loss appetite are priced using the
loss aversion reserve, distortion premium or spectral risk, whilst severities below
the loss appetite are priced using the corresponding dual. The loss appetite ℓ
determines what constitutes “small” and “large” severities. A low loss appetite
indicates most severities are considered “large” with higher concern on larger
severities resulting in a higher ToP, and vice versa for a high loss appetite.
Weights attached to the two premiums are the probabilities of losses falling
below and above the loss appetite.

The decomposition of the ToP in (8) generalises the example in §2 using
the power aversion function ϕ(v) = nvn−1, where T1 is the expected minimum
loss and T0 is the expected maximum loss, both over n copies. Other examples
using other aversion functions are given and discussed below.

Further rewrite the ToP as follows. Let σ−
x and σ+

x denote the standard
deviation of losses below and above the loss appetite, respectively. In addi-
tion apply the decomposition of the ToP in (4) into standard deviation and
correlation terms. Then the ToP, by rewriting (8), is

Tℓ = µx + σϕ

{
−ℓσ̃−

x + (1 − ℓ)σ̃+
x

}
, (9)

where

σ̃−
x ≡ σ−

x cor {−x, ϕℓ(u)|x ≤ Vℓ} , σ̃+
x ≡ σ+

x cor {x, ϕℓ(u)|x > Vℓ} ,

are the “aversion adjusted” loss volatility in the left and right tails, respectively.
Aversion adjusted volatilities are formed by multiplying loss standard deviations
with correlations or “correction factors” between 0 and 1, the latter measuring
similarity between movements in loss outcomes and aversion. Choo and De Jong
(2009) further discusses correction factors.

Based on (9) the ToP comprises of the expected loss µx, a discount ℓσϕσ̃
−
x

and a markup (1−ℓ)σϕσ̃
+
x . The discount reflects concern towards smaller sever-

ities below the loss appetite whereas the markup reflects concern towards larger
severities above the loss appetite. The discount and markup are proportional to
the overall aversion to mispricing σϕ, and loss volatility in the respective tail.

The ToP exceeds the expected loss if and only if (1 − ℓ)σ̃+
x > ℓσ̃−

x , or the
expected loss volatility in the right tail exceeds the expected loss volatility in
the left tail. This occurs if the right tail is more skewed, resulting in high σ+

x , or
the loss appetite is low resulting in high 1−ℓ. The overall aversion σϕ scales the
impact of relative tail size and choice of loss appetite on the ToP. High aversion
magnifies the impact, whereas neutrality ϕ = 1 or σϕ = 0 eliminates the impact
with Tℓ = µx regardless of relative tail size or loss appetite.

6.1. Examples of decomposing the ToPs

The following illustrates the decomposition of the ToP in (8) by applying
three aversion functions described in Choo and De Jong (2009). These aversion
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functions yield well known examples of loss aversion reserves, distortion premi-
ums or spectral risks. The corresponding ToP is a “two–sided” generalisation
of existing examples, with emphasis on both smaller and larger losses relative
to the loss appetite.

• Suppose ϕ(v) = (v = α), a Dirac delta function where 0 ≤ α ≤ 1. Aversion
exists to a single satiation error α, and other errors are ignored. The ToP
in this case is

Tℓ = ℓV(1−α)ℓ + (1 − ℓ)V1−(1−α)(1−ℓ) ,

a weighted average of lower and upper VaRs. The corresponding loss
aversion reserve or distortion premium, and the dual, are Vα and V1−α

respectively, the upper and lower VaRs. VaR is an extreme percentile in
either tail, whereas the ToP in this case combines extreme percentiles in
both tails to reflect concerns towards smaller and larger severities. Hence
call this ToP the “two–sided VaR.”

In this example ϕ is not increasing, but it nevertheless highlights the two–
sided feature of ToPs. In addition T0 and T1 are not subadditive and
superadditive, respectively – for example see Denuit et al. (2005).

• Suppose ϕ(v) = (v > α)/(1 − α) for 0 ≤ α ≤ 1, the step function equal to
1/(1 − α) if v > α and 0 otherwise. Satiation errors below α are ignored
while larger errors above α are magnified by the factor 1/(1 − α). The
resulting ToP is a weighted average of small and large losses:

Tℓ = ℓE
{
x|x ≤ V(1−α)ℓ

}
+ (1 − ℓ)E

{
x|x > V1−(1−α)(1−ℓ)

}
,

and is called the “two–sided conditional–tail–expectation.” The one–sided
loss aversion reserve or distortion premium and the dual are, respectively

T0 = E(x|x > Vℓ) , T1 = E(x|x ≤ V1−a) ,

known as the “conditional–tail–expectation” (McNeil et al., 2005). Whilst
the conditional–tail–expectation takes the average of extreme losses in one
or other tail, the ToP averages extreme losses in both tails.

• The power aversion function ϕ(v) = nvn−1 is discussed in §2. The ToP as
shown in §2 is

ℓE

{
min

i=1,...,n
(xi)

∣∣∣∣ max
i=1,...,n

(xi) ≤ Vℓ

}

+(1 − ℓ)E

{
max

i=1,...,n
(xi)

∣∣∣∣ min
i=1,...,n

(xi) > Vℓ

}
≡ Tℓ,n ,

or the “two–sided expected–maximal–loss,” noting the one–sided equiva-
lents are the expected maximal or minimal loss.
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Construct another aversion function weighting positive integer values of
n in nvn−1, using the Poisson distribution with mean λ and truncating
away zero. The resulting aversion function is

ϕ(v) =
∞∑

n=1

{
nvn−1pn

}
=

eλv

E(eλv)
, pn ≡ e−λλn

n!(1 − e−λ)
, n ≥ 1 .

Therefore the aversion function is exponentially increasing at rate λ. The
expected value of the parameter n is

∞∑

n=1

npn =
λ

1 − e−λ
≈ λ

where the approximation assumes sufficiently large λ. Hence rather than
fixing the parameter n in the power aversion function, a mean value is
selected and the actual value varies according to a truncated Poisson dis-
tribution. Using the resulting exponential aversion function, one–sided
ToPs assuming zero and maximum loss appetite are, respectively,

T0 =
E(xeλu)

E(eλu)
, T1 =

E{xeλ(1−u)}
E(eλu)

,

which are percentile rank versions of Esscher premiums (Van Heerwaarden
et al., 1989): E(xeλx)/E(eλx). In addition the ToP for 0 < ℓ < 1 is

Tℓ =
ℓE
{
xeλ( ℓ−u

ℓ )
∣∣∣x ≤ Vℓ

}
+ (1 − ℓ)E

{
xeλ(u−ℓ

1−ℓ )
∣∣∣x > Vℓ

}

E(eλu)

=
∞∑

n=1

Tℓ,npn = ℓ
∞∑

n=1

[
nvn−1 × E

{
min

i=1,...,n
(xi)

∣∣∣∣xi ≤ Vℓ

}]

+(1 − ℓ)

∞∑

n=1

[
nvn−1 × E

{
max

i=1,...,n
(xi)

∣∣∣∣xi > Vℓ

}]
.

where the last two expressions above are weighted averages of two–sided
expected–maximal–losses using identical Poisson weights as those applied
in generating the aversion function. Aversion weights ϕℓ(u) are decreasing
exponentially up to u = ℓ, and increasing exponentially thereafter.

Choo and De Jong (2009) constructs other aversion functions based on weighted
averages wϕ1 + (1 − w)ϕ2 and compositions (Φ1 ◦ Φ2)

′, where ϕ1 and ϕ2 are
aversion functions and Φ1 and Φ2 are corresponding distortion operators such
that Φ′

1 = ϕ1 and Φ′
2 = ϕ2.
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7. Numerical examples

This section illustrates key properties of the ToP and its equilibrium value,
assuming a gamma loss distribution and power aversion function. Premiums
are standardised to eliminate location and scale effects. The standardised ToP
and its equilibrium value are, respectively,

T ∗
ℓ ≡ Tℓ − µx

σx
= σϕcor{x, ϕℓ(u)} , T ∗

∗ ≡ T∗ − µx

σx
,

equal to the standard deviation multiple of the premium above the mean loss.
Calculations in this section show that the ToP and its equilibrium value increase
with right skewness of the loss distribution, consistent with results noted in §4
and §6. In addition a higher overall aversion to satiation error increases the
ToP when loss appetite is low and the dominant concern is on underpricing and
large loss severities. Vice versa when loss appetite is high.

Assume a gamma loss distribution with density

f(x) ∝ xα−1 exp(−x/β) , x ≥ 0 , α, β > 0

and a power aversion function

ϕ(v) = nvn−1 , 0 ≤ v ≤ 1 , n ≥ 1 .

For the gamma loss distribution, increasing the shape parameter α reduces right
skewness, with α → ∞ yielding normality. In addition β is a scale parameter.
Assume α = 2 and β = 1 as a base case. The mean and standard deviation of x
are µx = αβ = 2 and σx =

√
αβ =

√
2, respectively. Similar to the illustration

in §2, assume n = 5 for the aversion function, hence the overall aversion to
pricing error is σϕ = (n − 1)/

√
2n− 1 = 4/3. An illustration of the aversion

or penalty weights is shown in the top left panel of Figure 2. Parameter values
for the loss distribution and aversion function are subsequently varied from the
base case to assess their impact on the ToP and its equilibrium value.

The solid line in the top right panel in Figure 2 graphs standardised ToP T ∗
ℓ

against loss appetite ℓ. As noted in §3, T ∗
ℓ is decreasing in ℓ. The maximum

T ∗
ℓ is 1.3 at ℓ = 0, corresponding to the expected maximum loss over 5 copies.

The minimum T ∗
ℓ is −0.8 at ℓ = 1, corresponding to the expected minimum.

In addition T ∗
ℓ > 0 or equivalently Tℓ > µx, a positive premium loading, for

ℓ ≤ 0.75, and Tℓ < µx for ℓ > 0.75. The ToP exceeds the mean loss over most
loss appetites in this case since the gamma loss distribution is right skewed,
hence positive deviations from loss appetite have a greater impact on the ToP
compared to negative deviations.

The standardised equilibrium ToP T ∗
∗ is also shown in the top right panel

as the intersection between T ∗
ℓ and standardised VaR (Vℓ − µx)/σ, the latter

indicated by the dotted line. Note T ∗
∗ > 0, hence the equilibrium ToP exceeds
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the mean loss. As noted in §4, a right skewed loss distribution yields an equi-
librium ToP exceeding the mean loss, since aversion adjustment has a greater
impact on the right tail compared to the left tail.

The bottom left panel in Figure 2 demonstrates that reducing the right skew-
ness of the loss distribution, from increasing the parameter α, reduces the ToP
and its equilibrium value. As noted from (9) in §6, reducing right skewness de-
creases the loading compared to the discount, relative to the mean loss, yielding
a smaller ToP. A similar discussion in §4 applies to the equilibrium ToP.

The bottom right panel in Figure 2 shows the impact of increasing overall
aversion to satiation error, by increasing n. Increasing n places higher weight on
extreme loss outcomes (both large and small), and yields a higher equilibrium
ToP for a right skewed loss distribution (see §4). On the other hand the ToP
only increases with n when the loss appetite is small to moderate, where large
loss outcomes have dominant importance compared to small loss outcomes. For
a high loss appetite, higher n reduces the ToP as the focus shifts to smaller loss
outcomes.

8. Conclusion

The ToP generalises loss aversion reserves, distortion premiums and spectral
risks by imposing increasing concern on both smaller and larger loss severities.
The formulation is consistent with cumulative prospect theory and the minimi-
sation of pricing error in a competitive market. The loss appetite controls the
relative emphasis on small and large severities. Zero loss appetite yields the
loss aversion reserve (distortion premium or spectral risk), with sole concern on
large severities, while maximum loss appetite yields the dual.

Examples of the ToP using various aversion functions yield two–sided ex-
tensions of the well known VaR, conditional–tail–expectation and expected–
maximal–loss.
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Figure 2: The top left panel plots penalty weights ϕℓ(u) against u for various loss appetites ℓ.
The top right panel plots standardised ToP T ∗

ℓ and standardised VaR (Vℓ − µx)/σx against
loss appetite ℓ. The bottom left and right panels plot T ∗

ℓ against ℓ for varying α and n,
respectively. Equilibrium ToPs in the bottom panels are indicated by asterisks.

108



References

Acerbi, C. (2002). Spectral measures of risk: a coherent representation of sub-
jective risk aversion. Journal of Banking & Finance 26 (7), 1505–1518.

Artzner, P., F. Delbaen, J. Eber, and D. Heath (1999). COHERENT MEA-
SURES OF RISK. Mathematical Finance 9 (3), 203–228.

Choo, W. and P. De Jong (2009). Loss reserving using loss aversion functions.
Insurance: Mathematics and Economics 45 (2), 271–277.

Denuit, M., J. Dhaene, M. Goovaerts, and R. Kaas (2005). Actuarial theory for
dependent risks: Measures, orders and models. John Wiley&Sons.

Deprez, O. and H. Gerber (1985). On convex principles of premium calculation*
1. Insurance: Mathematics and Economics 4 (3), 179–189.

Dhaene, J., M. Denuit, M. Goovaerts, R. Kaas, and D. Vyncke (2002). The
concept of comonotonicity in actuarial science and finance: theory. Insurance:
Mathematics and Economics 31 (1), 3–33.

Furman, E. and R. Zitikis (2008). Weighted premium calculation principles.
Insurance: Mathematics and Economics 42 (1), 459–465.

Gerber, H. (1985). On additive principles of zero utility. Insurance: Mathematics
and Economics 4 (4), 249–251.

Heilpern, S. (2003). A rank-dependent generalization of zero utility principle.
Insurance: Mathematics and Economics 33 (1), 67–73.

Kaluszka, M. and M. Krzeszowiec (2011). Pricing insurance contracts under
cumulative prospect theory. Insurance: Mathematics and Economics.

McNeil, A., R. Frey, and P. Embrechts (2005). Quantitative risk management.
Princeton University Press.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behav-
ior & Organization 3 (4), 323–343.

Tversky, A. and D. Kahneman (1992). Advances in prospect theory: Cumulative
representation of uncertainty. Journal of Risk and Uncertainty 5 (4), 297–323.

Van der Hoek, J. and M. Sherris (2001). A class of non-expected utility risk
measures and implications for asset allocations. Insurance: Mathematics and
Economics 28 (1), 69–82.

Van Heerwaarden, A. and R. Kaas (1992). The dutch premium principle. In-
surance: Mathematics and Economics 11 (2), 129–133.

Van Heerwaarden, A., R. Kaas, and M. Goovaerts (1989). Properties of the
esscher premium calculation principle. Insurance: Mathematics and Eco-
nomics 8 (4), 261–267.

109



Wang, S. (1996). Premium Calculation by Transforming the Premium Layer
Density. ASTIN Bulletin 26 (1), 71–92.

Wang, S. (2000). A class of distortion operators for pricing financial and insur-
ance risks. Journal of Risk and Insurance 67 (1), 15–36.

Young, V. (2004). Premium principles. Encyclopedia of Actuarial Science.

110



Chapter 6

Integrating proposed tools and
future research areas

6.1 Introduction

As mentioned and briefly discussed in chapter 1, proposed tools in this thesis
employ consistent concepts such as VaRs, layers and distortion risks and
hence combine to form a coherent quantitative risk management framework.
This integration is detailed in this chapter. Future research areas to expand
proposed tools are also outlined and discussed.

6.2 Integrated quantitative risk management

Consider an organisation facing multiple, dependent random losses. For ex-
ample a bank may suffer credit default losses from different portfolios which
may be correlated particularly during a severe economic downturn. An in-
surer may be exposed to losses from multiple lines of business such as motor
and property which are typically unrelated except when a natural catastrophe
strikes. Insurance and financial companies are typically of interest, although
the same discussion applies to any scenario involving risk and dependence.

Suppose the organisation aims to analyze risks arising from its losses, and
manage the risks by holding capital buffers, purchasing reinsurance, hedging,
exiting or expanding specific portfolios, and setting tolerance limits. Pro-
posed tools in this thesis combine to form a consistent, holistic and coherent
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analytical and management framework as outlined in the following subsec-
tions. Assume either sufficient data is available or probability distributions
are known. Consider a single time period such as a month or a year.

6.2.1 Calculating individual and aggregate risks

Risks values are first attached to individual and aggregate losses. Risks are
calculated using distortion: the increase in expected value by moving from
the original to distorted probability distribution. Distortion is an established
coherent risk measurement approach as mentioned in chapter 1.

Risk values provide an initial, overall indication of the riskiness and di-
versification1 in the portfolio. Calculated risks and diversification are subse-
quently analyzed and managed using proposed tools described below.

6.2.2 Analyzing risk behaviour across layers

Once individual risks are calculated, they are decomposed and spread across
layers of underlying losses using risk densities proposed in chapter 3. Risk
densities indicate risk contributions of each layer and are hence useful when
analyzing large individual risks. For example large individual risks may arise
from extreme, rare layers or low, attritional layers. Layers are expressed in
VaRs, providing a “common language” across individual loss distributions
with different shape and scale. Note the analysis still assumes individual
losses are “standalone” and ignores diversification effects from aggregation.

Mean densities in chapter 3 complement risk densities by indicating con-
tributions of loss layers to mean values. Risk ratios, the ratio between risk
and mean densities, indicate the risk of each loss layer relative to its mean.

6.2.3 Analyzing diversification and dependence

Analyzing diversification is important to understand the risk reduction when
individual losses are aggregated. Chapter 4 constructs systematic risk den-
sities akin to standalone risk densities, indicating post-diversification or sys-
tematic risks of layers forming individual losses. Comparing systematic with
standalone risk densities reveals the extent of risk diversification in each
layer and its contribution to overall diversification. Diversification is hence

1The difference between the sum of individual risks and aggregate risk.
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decomposed in two stages: first across individual losses, then across layers of
individual losses.

Chapter 4 also shows that local dependence between individual and ag-
gregate losses drives the risk diversification in each layer, and the local de-
pendence relates to layer dependence set up in chapter 2. Hence analyzing
risk diversification is akin to analyzing dependence structures. Strong diver-
sification arises when risky layers of individual losses are weakly dependent
with the aggregate loss.

6.2.4 Formulating risk management actions

The above analysis of risk and diversification behaviour leads to actions to
minimise risk or maximise diversification. For example, loss layers with large
systematic risk are reinsured or hedged. These layers have large standalone
risks and strong dependence with the aggregate loss, and can be identified
from risk densities and layer dependence curves. Loss layers with large stan-
dalone risk but weak dependence with the aggregate loss have small contri-
butions to aggregate risk, and hence may be retained or even expanded.

Chapter 4 also discusses how the framework of mean and risk densities is
used to analyse the credit rating of debt tranches, transform loss distributions
using proportional and excess–of–loss reinsurance, and set capital buffers
under various guiding principles. Derived actions are framed in VaRs since
mean and risk densities are defined over VaR layers. VaR based actions
adjust to the shape and scale of probability distributions, and are aligned to
the widespread use of VaRs in finance and insurance.

6.2.5 Reflecting upside risk

Finally, upside risk may be important due to competition, opportunity costs
of conservatism, or limited capital available. Tradeoff premiums defined in
chapter 5 extend distortion risk measurement by explicitly allowing for both
upside and downside risks defined relative to a selected loss appetite. Loss
appetites are defined in VaR terms, consistent with other proposed methods
in this thesis.

Revising risk densities in chapters 3 and 4 using two–sided distortion risk
measurement, i.e. tradeoff premiums, leads to an extended quantitative risk
management framework where upside risks are managed in conjunction with
downside risks. This development is not considered in this thesis and is a
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future research area. Other future research areas are described in the next
section.

6.3 Areas of future research

The following outlines potential areas of future research to extend proposed
methods in this thesis.

6.3.1 Time series extension

It is common to model risk and dependence over multiple time periods. One
such model is the Generalised Autoregressive Conditional Heteroskedastic-
ity model with Dynamic Conditional Correlation, or GARCH–DCC (Engle
(2002), Engle (2001)). This multivariate time series model captures cyclical
volatility and dependence. A period of high volatility and dependence may
characterise for example turmoil in global stock markets during 2008.

The proposed quantitative risk management framework in this thesis can
be extended and applied across multiple time periods. Risk densities and
layer dependence curves reveal risk, volatility and dependence behaviour at
various points in time. Certain loss layers may be systematically risky in
periods of stability, and new loss layers may emerge as being systematically
most risky during turmoil. Optimal risk management actions will hence vary,
depending on the phase of volatility and dependence cycles.

6.3.2 Layer dependence in the multivariate case

Layer dependence defined in this thesis is a univariate function summarising
the dependence structure of a bivariate copula, measuring dependence be-
tween a random variable and layers of another. A natural extension is hence
layer dependence for multivariate copulas.

Extended layer dependence may be multi-dimensional functions with one
less dimension than the multivariate copula. Alternatively several univariate
layer dependence curves may combine to characterise the dependence struc-
ture of the copula. Depending on the setup of extended layer dependence,
one or more random variables may be decomposed into layers.
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6.3.3 Fitting a copula to given layer dependence curves

One may specify layer dependence using past data and expert opinion. The
next step, which is not covered in this thesis, is to fit a copula to the given
dependence structure in order to compute the aggregate probability distri-
bution and risk, for example. As mentioned in chapter 2, layer dependence
curves do not imply unique copulas since the former represents summarised
information whilst the latter contains complete information.

A general fitting approach is to first construct a copula with controllable
and flexible layer dependence. Parameters of this copula are then selected
to satisfy the specified layer dependence curve. The copula may be a mix-
ture of “basic” copulas as building blocks. Alternatively consider the copula
generated by the single factor model (Krupskii and Joe 2013)

x = f + ε1 , y = f + ε2

where f , ε1 and ε2 are independent random variables. The common factor f
generates and controls dependence between x and y. For example if f has a
highly right skewed probability distribution then large values of x and y are
dominated by f instead of ε1 and ε2, implying strong layer dependence in
the upper tail. The probability distribution of f can be iteratively solved to
achieve the given layer dependence curve, whilst ε1 and ε2 can be standard
Gaussian for example.

6.3.4 Two–sided risk densities

The previous section suggests extending the proposed quantitative risk man-
agement framework to consider upside in addition to downside risks, using
tradeoff premiums. A specific extension relates to risk densities, which cur-
rently only capture downside risk. As tradeoff premiums are additive over
comonotonic random variables, one can calculate the tradeoff premium for
each VaR layer of a random loss which then add to the overall tradeoff pre-
mium. The resulting “tradeoff premium density” is a two–sided risk density.

The extension applies to both standalone and systematic risk densities.
Varying the loss appetite shifts the relative focus on upside and downside
risks, and a zero loss appetite leads to original one–sided risk densities.
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