MACQUARIE UNIVERSITY

HIGHER DEGREE THESIS (PhD) AUTHOR'S CONSENT

This is to certify that I. G. M. M-GRATH being a candidate for the degree of Doctor of Philosophy am aware of the policy of the University relating to the retention and use of higher degree theses as contained in the University's PhD Regulations generally, and in particular, Regulation 21(2).

In the light of this policy and the provisions of the above Regulations, I agree to allow a copy of my thesis to be deposited in the University Library for consultation, loan and photocopying forthwith.

Signature of Witness

J.m.m Signature of Candidate

Dated this ... 2 1. ... day of September 1992

The Academic Senate on resolved that the candidate 6 July 1993 had satisfied requirements for admission to this degree. This thesis represents a major part of the prescribed program of study.

Thesis T 58 . m 26 2034314 Y Apr. 2 ā. Rinkal Sach 1.11110.00 1.100 100 100 1.1

MIGRATING INFORMATION SYSTEMS THROUGH THE ANALYSIS OF POWER, ITS DETERMINANTS AND DISTRIBUTION

by

G.M. McGrath

A thesis presented to Macquarie University for the degree of

Doctor of Philosophy

in the School of Mathematics, Physics, Computing and Electronics

May, 1993.

-

ACKNOWLEDGEMENTS

This research was supported by an Australian Postgraduate Research Award and a Macquarie University/CSIRO IT Scholarship. I gratefully acknowledge this support. In addition, I wish to express my thanks to:

My supervisors, Kit Dampney and Elizabeth More for their guidance and valuable suggestions during my research and for their detailed and constructive criticisms of earlier drafts of this thesis.

My wife, Lesley, for her unstituting support and for her, typically, down-to-earth and practical insights based on her own extensive management experience.

June Crawford and Ross Jeffrey, for their significant contributions to my research design and my data analysis approach.

Doug Kohlhoff, for providing me with the opportunity to test my hypotheses in the field.

My experimental subjects, for giving up their valuable time and for much constructive comment.

Macquarie University Computing Discipline academics for providing valuable feedback to my Postgraduate Seminar presentations.

Compaq Computer, for their generous loan of the portable PC essential for my experimental work.

TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION	
1.1 Research Motivation	1
1.2 Statement of the Thesis	2
1.3 Philosophical Framework	4
1.3.1 The Nature of this Research	4
1.3.2 Research Strategy Selection	5
1.4 Thesis Outline	7
2. <u>CONCEPTUAL FRAMEWOR</u> K	
2.1 Overview	8
2.2 Strategic Information Systems Planning	8
2.3 The Power Model of Organisation Decision Making	10
2.3.1 Concepts of Power	10
2.3.2 Rational Choice Models	15
2.3.3 Power Based Models	17
2.3.4 Decisions and Change	19
2.4 Related Work:Automated Models of Decision Making	23
2.5 Data-Centred Information Management	25
2.6 Summary	27
3. MP/L1: A MODEL OF POWER IN FIRST-ORDER LOG	IC
3.1 Overview	30
3.2 Representation Formalisms and Notation for Conceptual Modelling	30
3.3 MP/L1: Domain of Application	33
3.4 Specification of MP/L1	36

3.4 Specification of MP/L1

3.4.1 Specification Structure and Scope	36
3.4.2 Organisation Parties	36
3.4.3 Enterprise Functions and Processes	36
3.4.4 Power Sources	43
3.4.5 Implementation Activities and Threats	46
3.4.6 Conflict	47
3.4.7 Tactics	48
3.5 Automated Implementation of MP/L1	48
A DESPARCH DESIGN	
A 3 Overview	51
4.1 Overview A 2 Recearch Stratomy Considerations	51
4.2 Research Strategy considerations	51
and Null Hypotheses	24
4.3.1 Research Hypotheses	54
4.3.2 Definitions of Key Terms	57
4.3.3 Null Hypotheses	58
4.4 Case Study	59
4.4.1 Case Study Aims	59
4.4.2 Case Study Data Collection	59
4.4.3 Case Study Data Analysis	61
4.5 Laboratory Experiment	62
4.5.1 Selection of Subjects	62
4.5.2 Test Administration	63
4.5.3 Data Collection and Instrumentation	65
4.5.4 Data Analysis	65
4.5.5 Validity Considerations	66
4.6 Field Test	67
4.6.1 Site Selection	67
4.6.2 Field Test Data Collection	68
4.6.3 Field Test Data Analysis	71

5. CASE STUDY

5.1 Introduction	72
5.2 Gigante: The Organisation	75
5.3 Gigante's IS Environment: Pre-SISP	77
5.3.1 Gigante Australia Information Syst	ems 78
5.3.2 Gigante Australia Computer Network	78
5.3.3 Systems	78
5.3.4 System Approvals	79
5.3.5 Funding	80
5.3.6 Other Involved Parties	80
5.4 Gigante SISP Study	80
5.5 SISP Implementation Projects	82
5.5.1 DBMS Standardisation	82
5.5.2 Applications Architecture Specific	ation 83
5.5.3 Corporate Data Model Development	83
5.5.4 All Products Provisioning System	84
5.5.5 Integrated Management Information	System 85
5.6 SISP Implementation: Resistance	85
5.6.1 EGN GAIS	86
5.6.2 GM National Applications Developme	nt 86
5.6.3 National Applications Development Project Managers	87
5.6.4 Contractors	87
5.6.5 Customer National Support Systems	88
5.6.6 Business Management Systems	89
5.6.7 The Divisions	90
5.6.7.1 Gigante Business Services	90
5.6.7.2 Corporate Customer Division	ı 90
5.6.7.3 Gigante Residential Divisio)n 91

5.6.7.4 Country Division	92
5.6.8 Vendors	92
5.7 Management of the SISP Change Process	93
5.7.1 Conflict Prediction	93
5.7.2 Business and IS Strategy Alignment	94
5.7.3 Structural Difficulties	95
5.7.4 Uncertain Authority	96
5.7.5 Short-Term Results	96
5.7.6 A Compelling Deadline	97
5.7.7 Setting the Agenda	97
5.8 Interlude: A Rational Choice Perspective	98
5.9 The Case Study as Research Platform	99
6. <u>FIELD TEST</u>	
6.1 Introduction	102
6.2 SWU: The Organisation	104
6.3 SWU's IS Environment: Pre-SISP	105
6.3.1 Processing Architecture	105
6.3.2 Systems	106
6.3.3 Approvals and Funding	106
6.4 SWU SISP Study	106
6.5 SISP Implementation: Projects	109
6.6 SISP Implementation: Resistance	111
6.6.1 Computer Centre Managers	111
6.6.2 Analyst/Programmers	112
6.6.3 CEOS	112
6.6.4 Senior Management	113
6.6.5 Functional Areas	114
6.6.6 Academics	114
6.7 SISP Implementation: Application of MP/L1	115

6.7.1 Domain Modelling	116
6.7.2 Conflict Prediction	118
6.8 A Rational Choice Perspective	119
6.9 Management of the SISP Change Process	119
7. DATA ANALYSIS	
7.1 Overview	122
7.2 Results	122
7.2.1 Experiment Results	122
7.2.2 Field Test Results	127
7.3 Hypotheses Evaluation	128
7.3.1 Hypothesis H1 Evaluation	128
7.3.2 Hypothesis H2 Evaluation	128
7.3.3 Hypothesis H3 Evaluation	130
7.4 Summary	131
8. CONCLUSION	
8.1 Overview	133
8.2 Recapitulation and Discussion	133
8.3 Limitations andDirections for Further Research	135
REFERENCES	139
Appendix 1: MP/L1 Links	149
Appendix 2: Experiment Documentation	152
Appendix 3: Gigante Case Study Data Base Listing	166
Appendix 4: SWU Field Test Data Base Listing	191
Appendix 5: Conflict Prediction Session Results	206

LIST OF ILLUSTRATIONS

Figure	l: Example of an E-R Diagram	32
Figure	2: MP/L1 Model - E-R Form	34
Figure	2a: Key Dependencies Derived from the Loops in Figure 2	35
Figure	3: MP/L1 Network of Power Sources and Functions	37
Figure	4: Research Design	52
Figure	5: Cigante Case Study Data Base Model	60
Figure	6: Experiment Design	64
Figure	7: Field Test Data Collection Phases	69
Figure	8: Gigante SISP - Significant Events	75
Figure	9: Gigante Organisation Structure (Oct.1988 - end 1990)	77
Figure	10: SWU Organisation Structure (1990 - present)	105
Figure	11: Experiment Conflict Prediction Scores	124
Figure	12: Experimental Group and Field Test Conflict Prediction Scores	128

ABSTRACT

A Strategic Information Systems Planning (SISP) study is often undertaken as the first major step when an organisation attempts to revamp its information systems in response to internal or external pressures. The evidence from Australia and overseas is that the SISP implementation success rate has been poor. The motivation and starting premise for this thesis is that a major contributor to these failures was the inadequate attention given to internal politically motivated resistance. The significance of political activity is well documented: for example, in the power model literature which explores the pervasiveness of power and conflict in the organisation.

The determination of *political feasibility* is defined as the process of identifying and understanding such resistance. This means that SISP implementation problems relating to people and the organisation are understood and properly recognised. Political feasibility augments technical and economic feasibility.

The thesis breaks new ground in the following areas:

- First, it broadens the base for information systems planning beyond technical and economic feasibilities to include a more structured and methodical treatment of political feasibility;
- Second; it applies formal conceptual modelling and expert systems technology to the new domain of organisational power and politics; and
- Finally, it empirically investigates (by experiment and case study) the effectiveness of the power source distribution model MP/1.1 (Model of Power in first-order Logic) in predicting conflict resulting from SISP outputs.

The MP/L1 model was developed from the literature and an exploratory case study of a SISP implementation at "Gigante Corporation". Technically, the model is represented as first-order logic rules around core data structures, represented in entity-relationship form, and has been implemented as an advisory expert system in the programming language Prolog.

Thesis validation involved testing the effectiveness of MP/L1 as a conflict prediction tool. This was undertaken in two stages: first, by laboratory experiment; and, second, by a field test in order to assess the external validity of the experimental findings. The

major conclusion drawn was that, subject to some qualifications, MP/L1 could indeed be used to good effect in SISP work as a conflict prediction tool.

CERTIFICATION

I hereby declare that this work has not been submitted for a higher degree at any other university or institution.

ly. m. melynach. G.M. McGrath

G.M. McGrat 7 May 1993