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ABSTRACT

Compressed Sensing (CS) suggests that it is possible to enable sub-Nyquist

sampling, by merging sampling and compression into one single step. Hence,

CS will lead to a revolution in the sampling area. Moreover, CS will have great

impacts on information theory, coding and wireless communications.

In this thesis, we will study the basic sampling problem of analog sparse

signals and investigate the applications of CS into Cognitive Radio Networks

(CRNs) and Wireless Sensor Networks (WSNs). The main contributions of this

thesis are summarized as follows.

(1) Application of discrete CS into WSNs. Based on discrete CS and network

coding, we significantly improve the energy efficiency of WSN by simultaneously

reducing the number of required transmissions and receptions.

(2) Research on analog CS. Based on the non-modulated Slepian basis, we

simultaneously improve the recovery performance and reduce the recovery com-

putation complexity of analog CS. Based on the structure of the random cyclic

orthogonal matrix, we reduce the hardware complexity of analog CS by utilizing

the cyclic shifts of the Zadoff-Chu sequence.

(3) Application of analog CS into CRNs. By introducing analog CS and multi-

antenna technology, we improve the detection performance of wideband spectrum

sensing (WSS) in CRNs at the sub-Nyquist sampling rate.

(4) Research on denoising CS recovery algorithm. To improve the CS re-

covery performance in noisy environments, we propose a regularized subspace

pursuit (RSP) denoising CS recovery algorithm, which has the highest recovery

performance in comparison with existing CS recovery algorithms.





So far, the application of CS in channel estimation for LTE-A systems has

been discussed by 3GPP. It is believed that, in the future, more and more new

problems faced by wireless communications will be resolved with the help of CS.









ACKNOWLEDGMENTS

First and foremost, I would like to express my sincerest gratitude to my su-

pervisor, Prof. Eryk Dutkiewicz (Macquarie University, Australia), who has con-

stantly encouraged me to strive for excellence in my career. This work would not

have been completed without his remarkable insight, great knowledge, invaluable

guidance and generous financial support for international academic exchange.

I would also like to acknowledge my supervisors Prof. Xiaojing Huang (CSIRO

Computational Informatices, Australia), Prof. Y. Jay Guo (CSIRO Computation-

al Informatices, Australia), Dr. Gengfa Fang (Macquarie University, Australia),

Prof. Xiaofeng Tao (Beijing University of Posts and Telecommunications, Chi-

na), and Prof. Qimei Cui (Beijing University of Posts and Telecommunications,

China) for their support, advice and encouragement throughout this work.

Furthermore, I would like to thank my colleagues, friends and staff from Mac-

quarie University, CSIRO Computational Informatices, and Beijing University of

Posts and Telecommunications who helped me during my PhD studies.

Finally, I am forever indebted to my parents and brother for their infinite

support, encouragement and love.





Contents

Abstract iii

Acknowledgments ix

Table of Contents xi

List of Figures xvii

List of Tables xxi

List of Publications xxiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Energy consumption of the wireless communications in catastrophic

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Sampling problem of multi-band signals . . . . . . . . . . . . . . . 4

1.2.3 Contradiction of spectrum shortage and low spectrum utilization . . 4

1.2.4 Degradation of wireless system performance caused by noise . . . . 5

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 CS Based Energy-efficient DDS in WSNs . . . . . . . . . . . . . . . 5

1.3.2 Structured Matrix Based Analog CS . . . . . . . . . . . . . . . . . 6

xi



xii CONTENTS

1.3.3 Multi-antenna Based Compressed WSS for CRs . . . . . . . . . . . 6

1.3.4 Denoising CS Recovery Algorithm . . . . . . . . . . . . . . . . . . . 7

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 11

2.1 Discrete Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Sparse Representation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Property of Measurement Matrix . . . . . . . . . . . . . . . . . . . 12

2.1.3 Signal Recovery Algorithms in Noise-free Scenario . . . . . . . . . . 14

2.1.4 Signal Recovery Algorithms in Noisy Environments . . . . . . . . . 17

2.2 Analog Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 AIC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 MWC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Other Analog CS Methods . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Applications of Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Compressive Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Compressed Sensing for Wireless Communications . . . . . . . . . . 31

3 Compressed Network Coding for Distributed Data Storage in WSNs 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Signal Model and Network Deployment . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Network Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Proposed CNCDS Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Overall Description of CNCDS Scheme . . . . . . . . . . . . . . . . 38

3.3.2 Procedures of CNCDS Scheme . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Choice of Parameters Ns and P0 . . . . . . . . . . . . . . . . . . . . 41



CONTENTS xiii

3.3.4 Formulation of Measurement Matrix . . . . . . . . . . . . . . . . . 41

3.3.5 Property of Measurement Matrix . . . . . . . . . . . . . . . . . . . 44

3.3.6 Discussion of CNCDS Scheme under More Practical Conditions . . 47

3.4 Derivation of Expressions for Nttot and Nrtot . . . . . . . . . . . . . . . . . 48

3.4.1 Preliminary Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Lemma for Expressions for Nttot and Nrtot . . . . . . . . . . . . . . 49

3.4.3 Derivation of N II
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.4 Derivation of N q
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.5 Formal Expressions for Nttot and Nrtot . . . . . . . . . . . . . . . . 53

3.5 The Adaptive CNCDS Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Motivation of Adaptive CNDCS Scheme . . . . . . . . . . . . . . . 54

3.5.2 Description of Adaptive CNDCS Scheme . . . . . . . . . . . . . . . 55

3.5.3 Extended Research on Energy Efficiency of Wireless Network . . . . 56

3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Simulation Parameters and Performance Metrics . . . . . . . . . . . 57

3.6.2 Schemes Used for Comparison . . . . . . . . . . . . . . . . . . . . . 57

3.6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Structured Measurement Matrix Based Analog Compressed Sensing 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Non-Modulated Slepian Basis Based Analog Compressed Sensing . . . . . . 70

4.2.1 Brief Introduction to Slepian Basis . . . . . . . . . . . . . . . . . . 70

4.2.2 Analytical Derivation of MWC under Slepian Basis . . . . . . . . . 72

4.2.3 Recovery Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Random Circulant Orthogonal Matrix Based Analog CS . . . . . . . . . . 79



xiv CONTENTS

4.3.1 Description of RCOM-ACS Scheme . . . . . . . . . . . . . . . . . . 79

4.3.2 Measurement Matrix of RCOM-ACS Scheme . . . . . . . . . . . . . 81

4.3.3 Conditions for Successful Recovery . . . . . . . . . . . . . . . . . . 83

4.3.4 Extensions of RCOM-ACS Scheme . . . . . . . . . . . . . . . . . . 85

4.3.5 Fast Processing RCOM-ACS Scheme . . . . . . . . . . . . . . . . . 85

4.3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Compressed Wideband Spectrum Sensing for CRNs 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 DA Algorithm for Wideband Spectrum Sensing . . . . . . . . . . . . . . . 96

5.3.1 Description of DA algorithm . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Theoretical Analysis of DA algorithm . . . . . . . . . . . . . . . . . 97

5.3.3 Performance Evaluation of DA algorithm . . . . . . . . . . . . . . . 100

5.3.4 Extended Research on Spectrum Sensing and Data Transmission . . 101

5.4 CS Recovery Algorithms for Multi-antenna Signals . . . . . . . . . . . . . 103

5.4.1 CRL2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.2 CBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.3 Summary of CRL2 Algorithm and CBS Algorithm . . . . . . . . . . 106

5.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Denoising Regularized Subspace Pursuit CS Recovery Algorithm 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Proposed RSP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



CONTENTS xv

6.2.2 Psudocode of Proposed RSP Algorithm . . . . . . . . . . . . . . . . 118

6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.1 Simulation Parameters and Performance Metrics . . . . . . . . . . . 119

6.3.2 Illustration of Noise-folding Effect . . . . . . . . . . . . . . . . . . . 120

6.3.3 Simulation Results under Signal Model y=A(x + z) + w . . . . . . 121

6.3.4 Simulation Results under Signal Model y=Ax + w . . . . . . . . . 123

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions and Future Work 129

7.1 Innovations in the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.1 CNCDS Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.2 Research on Analog CS Based on Structured Matrix . . . . . . . . . 130

7.1.3 MCWSS Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1.4 CS Denoising Recovery Algorithm – Regularized Subspace Pursuit . 131

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 New DDS Scheme Based on Spatial and Temporary Correlation . . 132

7.2.2 Novel Analog CS Method with Low Time Delay and Low Hardware

Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.3 New WSS Scheme Based on CS Measurements . . . . . . . . . . . . 133

7.2.4 Theoretical Analysis of Denoising Recovery Algorithm . . . . . . . 133

A Derivations of Some Expressions in Chapter 3 135

A.1 Derivation of S̄2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2 Computation of S̄II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.3 Calculation of N q
r,1, N q

r,2, N q
r,3 and N q

r,4 . . . . . . . . . . . . . . . . . . . . 137

A.3.1 Calculation of N q
r,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.3.2 Calculation of N q
r,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



xvi CONTENTS

A.3.3 Calculation of N q
r,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.3.4 Calculation of N q
r,4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Derivation of S̄3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.5 Computation of S̄2l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Symbols 141

Abbreviations 143

Bibliography 149



List of Figures

Figure 1.1 Relations of the main chapters in this thesis. . . . . . . . . . . . . . 8

Figure 2.1 Block diagram of AIC [1]. . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.2 Illustration of the multi-band signal. . . . . . . . . . . . . . . . . . 24

Figure 2.3 Block diagram of MWC [2]. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.4 Block diagram of random filters, (a) using convolution, (b) using

FFT/IFFT. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.5 Aerial view of the single-pixel CS camera in the lab [4]. . . . . . . . 30

Figure 3.1 Illustration of the network deployment, where Ns = 30 nodes of the

total N = 100 nodes are randomly selected as source nodes. . . . . . . . . 37

Figure 3.2 Packet format of the ith node in CNCDS scheme. . . . . . . . . . . 39

Figure 3.3 (a) Source nodes broadcasting process in Stage II, (b) Intermediate

nodes forwarding process in Stage III. . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.4 (a) Illustration of the area (represented by oblique lines) in which

no nodes are located when calculating P2,1, with 0 <d(i,j) ≤ 2rt. (b) Illus-

tration of the area SII (represented by oblique lines) with d(ns,1, ns,2) <rt,

when calculating N II
r in Section 3.4.3. . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.5 (a) Illustration of area SIII, (b) Illustration of area Sc1 described in

Case One. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xvii



xviii LIST OF FIGURES

Figure 3.6 Illustration of area Sc2 in Case Two, and Sc2 is further divided

into two situations: (a) Sc2a with 0 <d(nq−1
t,1 ,n

q−1
t,2 ) <rt , (b) Sc2b with

rt<d(nq−1
t,1 ,n

q−1
t,2 ) < 2rt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.7 The recovery MSE vs. the number of nodes queried by the mobile

collector M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.8 The total number of receptions Nrtot vs. the number of nodes

queried by the mobile collector M . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.9 The total number of transmissions Nttot vs. the number of nodes

queried by the mobile collector M . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.10 Comparison between the theoretical values and simulation results

of the total number of transmissions Nttot vs. the number of nodes queried

by the mobile collector M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.11 Comparison between the theoretical values and simulation results

of the total number of receptions Nrtot vs. the number of nodes queried by

the mobile collector M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.1 Illustration of the recovered signal with the non-modulated Slepian

basis and the DFT basis, compared with the original signal. . . . . . . . . 77

Figure 4.2 Comparison of the recovery SNR under the Slepian basis and the

DFT basis versus the size of the Slepian basis in the noise-free environment. 78

Figure 4.3 Comparison of the recovery SNR under the Slepian basis and the

DFT basis versus the size of the Slepian basis with SNR=10dB. . . . . . . 78

Figure 4.4 Block diagram of RCOM-ACS scheme. . . . . . . . . . . . . . . . . 80

Figure 4.5 Block diagram of SRCOM-ACS scheme. . . . . . . . . . . . . . . . 86

Figure 4.6 Performance comparison among RCOM-ACS scheme, MWC and

the collapsing method with M-BP recovery algorithm. . . . . . . . . . . . . 89



LIST OF FIGURES xix

Figure 4.7 Performance comparison among RCOM-ACS scheme, MWC and

the collapsing method with M-OMP recovery algorithm. . . . . . . . . . . 90

Figure 5.1 System model of MCWSS scheme. . . . . . . . . . . . . . . . . . . . 95

Figure 5.2 Block diagram of DA algorithm. . . . . . . . . . . . . . . . . . . . . 96

Figure 5.3 Performance gain of DA algorithm compared with CFAR. . . . . . . 101

Figure 5.4 Detection probability of DA algorithm in multi-antenna scenario

with different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.5 False alarm probability of DA algorithm in multi-antenna scenario

with different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.6 Description of CRL2 algorithm. . . . . . . . . . . . . . . . . . . . . 104

Figure 5.7 Block diagram of CBS algorithm. . . . . . . . . . . . . . . . . . . . 106

Figure 5.8 Performance of three joint processing methods: L1 norm combining,

L2 norm combining, L∞ norm combining. . . . . . . . . . . . . . . . . . . . 108

Figure 5.9 Detection probability of CRL2 and CBS algorithm compared with

single antenna scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 5.10 False alarm probability of CRL2 and CBS algorithm compared

with single antenna scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 6.1 Illustration of the noise-folding effect, the successful recovery rate η

vs. the number of measurements M . . . . . . . . . . . . . . . . . . . . . . 120

Figure 6.2 Illustration of the noise-folding effect, the normalized reconstruction

error ε vs. the number of measurements M . . . . . . . . . . . . . . . . . . 121

Figure 6.3 Successful recovery rate η vs. the number of measurements M , when

y=A(x + z) + w, σ2=0.05 and SNR ≈ 10 lg1/(1+ 12.8
M

)dB. . . . . . . . . . . . 122

Figure 6.4 Normalized reconstruction error ε vs. the number of measurements

M , when y=A(x + z) + w, σ2=0.05 and SNR ≈ 10 lg1/(1+ 12.8
M

)dB. . . . . . 122



xx LIST OF FIGURES

Figure 6.5 Successful recovery rate η vs. SNR ≈ 10 lg1/(1+ 256
90
σ2), when y=A(x + z) + w

and M=90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 6.6 Normalized reconstruction error ε vs. SNR ≈ 10 lg1/(1+ 256
90
σ2), when

y=A(x + z) + w and M=90. . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 6.7 Successful recovery rate η vs. the number of measurements M , when

y=Ax + w and SNR=10dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 6.8 Normalized reconstruction error ε vs. the number of measurements

M , when y=Ax + w and SNR=10dB. . . . . . . . . . . . . . . . . . . . . 125

Figure 6.9 Successful recovery rate η vs. SNR, when y=Ax + w and M=90. . 126

Figure 6.10 Normalized reconstruction error ε vs. SNR, when y=Ax + w and

M=90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure A.1 (a) The critical situation when case one happens, (b) Illustration

of the area of S3 when calculating Nc1. . . . . . . . . . . . . . . . . . . . . 138



List of Tables

Table 2.1 Procedures of OMP Algorithm [5] . . . . . . . . . . . . . . . . . . . 16

Table 3.1 Pseudocode of CNCDS Scheme . . . . . . . . . . . . . . . . . . . . . 40

Table 4.1 Cost of Different Schemes . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 5.1 Procedures of CRL2 algorithm . . . . . . . . . . . . . . . . . . . . . 105

Table 5.2 Procedures of CBS Algorithm . . . . . . . . . . . . . . . . . . . . . . 107

Table 6.1 Psudocode of Proposed RSP Algorithm . . . . . . . . . . . . . . . . 118

xxi





List of Publications

The publications of the author during her PhD study are listed as follows.

• Journal Papers

1. Xianjun Yang, Xiaofeng Tao, Eryk Dutkiewicz, Xiaojing Huang, Y. Jay Guo,

Qimei Cui, “Energy-Efficient Distributed Data Storage for Wireless Sensor Networks

Based on Compressed Sensing and Network Coding,” IEEE Transactions on Wireless

Communications, Vol.12, 2013, pp.5087-5099. (corresponding to Chapter 3)

2. Qimei Cui, Xianjun Yang, Hamalainen Jyri, Xiaofeng Tao, Ping Zhang, “Optimal

Energy-efficient Relay Deployment for the Bidirectional Relay Transmission Schemes,”

IEEE Transactions on Vehicular Technology, 2013. (related to Chapter 3, Section 3.5.3)

3. Xianjun Yang, Xiaofeng Tao, Y. Jay Guo, Qimei Cui, Xiaojing Huang, “Subsam-

pled circulant matrix based analog compressed sensing,” IET Electronics Letters, 2012,

vol.48, pp. 767-768. (corresponding to Chapter 4)

4. Xianjun Yang, Xiaofeng Tao, Qimei Cui, Y. Jay Guo, “Interference-constrained

adaptive simultaneous spectrum sensing and data transmission scheme for unslotted cog-

nitive radio network,” EURASIP Journal on Wireless Communications and Networking

2012, 2012:102, pp. 1-12. (related to Chapter 5, Section 5.3.4)

• Conference papers

1. Xianjun Yang, Eryk Dutkiewicz, Qimei Cui, Xiaojing Huang, Xiaofeng Tao,

Gengfa Fang, “Analog Compressed Sensing for Multiband Signals with Non-Modulated

xxiii



xxiv Chapter 0. List of Publications

Slepian Basis,” IEEE International Conference on Communications (ICC), 2013, pp.

3534-3538. (corresponding to Chapter 4)

2. Xianjun Yang, Y. Jay Guo, Qimei Cui, Xiaofeng Tao, Xiaojing Huang, “Random

Circulant Orthogonal Matrix based Analog Compressed Sensing,” IEEE Global Com-

munications Conference (GlobeCom), 2012, pp. 3629-3633. (corresponding to Chapter

4)

3. Xianjun Yang, Eryk Dutkiewicz, Qimei Cui, Xiaofeng Tao, Y. Jay Guo, Xiao-

jing Huang, “Compressed Network Coding for Distributed Storage in Wireless Sensor

Networks,” International Symposium on Communications and Information Technologies

(ISCIT), 2012, pp. 816-821. (Won the ”Best Paper Award”, corresponding to Chapter 3)

4. Xianjun Yang, Qimei Cui, Rui Yang, Xiaofeng Tao, Xin Guo, “Multi-antenna

Compressed Wideband Spectrum Sensing for Cognitive Radio,” IEEE Wireless Commu-

nications and Networking Conference (WCNC), 2011, pp. 1903-1908. (corresponding to

Chapter 5)

5. Xianjun Yang, Qimei Cui, Eryk Dutkiewicz, Xiaojing Huang, Xiaofeng Tao,

“Anti-Noise-Folding Regularized Subspace Pursuit Recovery Algorithm for Noisy Sparse

Signals,” IEEE Wireless Communications and Networking Conference (WCNC), 2014,

pp. 287-292.(corresponding to Chapter 6)

6. Xuefei Zhang, Qimei Cui, Xianjun Yang, Xiaofeng Tao, “A Multistep Detection

Scheme Based on Iteration for Cooperative Spectrum Sensing in Cognitive Radio,” IEEE

Vehicular Technology Conference (VTC) Fall 2011, pp.1-5.

7. Xiangling Li, Qimei Cui, Xiaofeng Tao, Xianjun Yang, Waheed Ur Rehman, “Per-

formance Bounds of Compressed Sensing Recovery Algorithms for Sparse Noisy Signals,”

IEEE Wireless Communications and Networking Conference (WCNC), 2013, pp.2884-

2889.

• Patents



xxv

1. Xiaofeng Tao, Qimei Cui, Xianjun Yang, Xiaodong Xu, Ping Zhang, ”Analog

Compressed Sensing Sampling Method and System Based on Random Cyclic Matrices”,

Application No. 2012200795. (Australia Patent, corresponding to Chapter 4)

2. Qimei Cui, Xianjun Yang, Xiaofeng Tao, Rui Yang, Xuefei Zhang, ”Appara-

tus and method of Spectrum Sensing for Cognitive Radio, and program”Application No.

201010179307.4, Publication No. CN102255675A. (China Patent, corresponding to Chap-

ter 5)

3. Qimei Cui, Shiyuan Li, Xiaofeng Tao, Chao Wang, Xianjun Yang, ”Method

and device for user pairing for uplink multi-user MIMO under coordinated multiple point

transmission scenario”, EP 2288049(A2). (European Patent)



xxvi Chapter 0. List of Publications



Chapter 1

Introduction

In this chapter, the historic development and vision of compressed sensing is shown in

Section 1.1, the motivation of this thesis is addressed in Section 1.2, the contributions of

this thesis are summarized in Section 1.3, and the organization of this thesis is described

in Section 1.4.

1.1 Background

Compressed sensing (CS) was firstly proposed by David L. Donoho, Emmanuel J.

Candes, and Terence Tao in 2004, the related work [6] [7] was published in 2006 and won

the Information Theory Society Paper Award in 2008. The basic idea of CS theory is

that sparse signals or images can be successfully reconstructed from far fewer samples

or measurements than that required by the Shannon-Nyquist theorem. Therefore, until

now, CS [8] [9] is a very hot research topic in the signal processing society and has

been widely applied into many areas, such as compressive imaging [10] [11], medical

imaging [12] [13], geophysical data analysis [14] [15], sub-Nyquist sampling [16] [2], wireless

communications [17] [18] and so on.

In the early stage of CS theory, it was confined to discrete signals for simplicity, because

1
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this basic formulation already requires very sophisticated mathematical tools and rich

theories to analyze the recovery approaches and provide performance guarantees. The

applications of discrete CS mainly focus on image compression [11], magnetic resonance

imaging (MRI) [12], seismic data processing [15], distributed source coding in multi-signal

settings such as WSNs [19], designing fast error correcting codes [20] and so on.

Later on, CS is extended to analog domain in literatures [16] [2], aiming to reduce

the extremely high sampling rate required by the ultra-wideband signal sampling (up to

several GHz). The above methods provide guidance on how to design physical sampling

devices that can directly acquire discrete, low-rate incoherent measurements from the

incident analog signals. Specifically, analog-to-information conversion (AIC) [16] and

modulated wideband converter (MWC) [2] are two typical examples of such sampling

devices. The applications of analog CS mainly focus on wireless communications, such as

the wideband spectrum sensing for CR networks [21], the multi-band signal sampling for

LTE systems [22] and so on.

In the future, the basic theory of CS will be further studied and enriched. Specifically,

more practical methods of finding an optimal basis to express a sparse signal will be

established, more structures will be places into the measurement matrix to facilitate the

implementation, and the performance of CS recovery algorithms in noisy environment

will be improved significantly. More importantly, CS will be applied into wider areas,

including imaging, data analysis, signal sampling, wireless communications and etc., in a

more practical way.

1.2 Motivation

In the thesis, we focus on the research of CS and its applications in wireless commu-

nications. Besides the research of CS itself, this thesis is also motivated by utilizing the
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properties of CS to tackle the challenges faced by wireless communications.

Currently, the main challenges faced by wireless communications include high cost

and energy consumption of wireless systems, the sampling problem of wideband signals

with multiple discrete bands (multi-band signal), contradiction between spectrum short-

age and low spectrum utilization, uneven information density and “tidal effect”, data

collection and communication in catastrophic scenario, etc. To resolve these challenges,

many new technologies have been proposed, such as, compressed sensing (CS) [6], green

communications [23], cognitive radios (CRs) [24], wireless sensor networks (WSNs) [25],

millimeter-wave communication [26], small cell technology [27], multi-user information

theory [28], etc.

In this thesis, based on CS theory and combined with WSNs and CRs, we aim to

investigate and tackle the following four challenges.

1.2.1 Energy consumption of the wireless communications in

catastrophic scenarios

WSN is an efficient way to realize communications in catastrophic scenarios, since

it can be easily deployed at low cost and can enable self-organizing networks. In such

a hash environment, a WSN is vulnerable or inaccessible and the sensor nodes are also

unreliable. To guarantee reliable communication of WSNs in catastrophic environments,

distributed data storage (DDS) is proposed in [29] and [30]. Specifically, the sensed

data of DDS are stored with redundancy in the network, so that the mobile sink node

is able to reconstruct all the sensed data in the whole WSN by visiting only a small

number of the surviving nodes. Since the sensor node is battery-driven, energy efficiency

is one of the most important performance metrics for WSNs [31]. Therefore, reliable

and energy-efficient communications is indispensable for WSNs deployed in catastrophic

environments.
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1.2.2 Sampling problem of multi-band signals

With the rapid development of wireless communications, it is hard to find a continuous

wide band (e.g., 100MHz) in low frequencies (e.g., 400MHz-3GHz) now. To provide high

data rate communication, carrier aggregation (CA) [22] technology has been proposed in

Long Term Evolution-Advanced (LTE-Advanced) to combine several discontinuous bands.

To sample the CA signals, i.e., one kind of multi-band signals, we need several independent

radio front-ends (RFs) and analog-to-digital converters (ADCs) [32]. However, since the

cost of the RF part accounts for a very large part of the total wireless system cost, the

independent RF solution has a very high cost and energy consumption, and furthermore,

this solution also occupies a large space.

1.2.3 Contradiction of spectrum shortage and low spectrum u-

tilization

On one side, most of the available spectrum have been assigned to different wireless

communication systems. On the other side, many of the assigned spectrum bands are

not fully utilized [33]. To solve the above problem, the concept of CR [24] [34] has

been proposed to allow the unlicensed users accessing the temporarily unused licensed

spectrum. The first step of CR is to detect the unoccupied spectrum, i.e., to carry out

spectrum sensing [35]. Recently, wideband spectrum sensing (WSS) [36] has attracted a

lot of attentions due to its ability to provide more opportunities of spectrum access than

narrowband spectrum sensing (NSS). However, WSS faces more challenges than NSS. e.g.,

WSS requires an extremely high sampling rate (e.g., several GHz) and high computation

complexity.
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1.2.4 Degradation of wireless system performance caused by

noise

In wireless communication systems, the transmitters, receivers and channels are in-

evitably contaminated by noise. Unfortunately, noise degrades the performance of wireless

systems, especially when CS is applied in wireless systems, since the rectangular CS mea-

surement matrix amplifies the power of noise [37]. Thus, effective denoising CS recovery

algorithms are essential to make the applications of CS in wireless communication practi-

cal, especially when the sparse signal is contaminated by noise before CS measurements.

1.3 Contributions of the Thesis

The objectives of this thesis are to tackle the challenges stated in Section ?? based on

CS. The contributions of this thesis are stated as follows.

1.3.1 CS Based Energy-efficient DDS in WSNs

As mentioned in Section 1.2.1, DDS is an efficient communication method for WSNs in

catastrophic scenarios. Here, we aim to improve the energy efficiency of DDS. It is worth-

while to note that the energy costs for data transmission and data reception are nearly

the same in WSNs with short-range communications. Thus, we propose to improve the

energy efficiency of WSNs by simultaneously reducing the number of data transmissions

and receptions based on CS and network coding. Theoretical analysis proves that the

proposed scheme guarantees good CS recovery performance. Based on the random geo-

metric graphs (RGG) theory, we derive the expressions for the number of transmissions

and receptions. Furthermore, on the basis of the derived expressions, an adaptive scheme

is proposed to further improve the energy efficiency. Simulation results show that, com-

pared with existing schemes, our scheme has the highest energy efficiency at the lowest
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reconstruction error.

1.3.2 Structured Matrix Based Analog CS

We improve the recovery performance of analog CS from the angle of signal representa-

tion. Specifically, to avoid the frequency leakage effect of the Discrete Fourier Transform

(DFT) basis, we propose using the non-modulated Slepian basis to represent the modulat-

ed and bandlimited multi-band signals. Compared with the method using the modulated

Slepain basis to represent the whole multi-band signal, our method reduces the dimension

of the measurement matrix and thus reduces the computational complexity of recovery.

Furthermore, based on the random circulant orthogonal matrix, we reduce the hardware

complexity of analog CS by replacing the independent pseudo-random mixing functions

with the cyclic shifts of Zadoff-Chu (ZC) Sequence. We prove that the measurement ma-

trix of the proposed scheme satisfies the sufficient condition for successful CS recovery,

i.e., the Restricted Isometry Property (RIP), with very high probability.

1.3.3 Multi-antenna Based Compressed WSS for CRs

To improve the detection performance of compressed WSS in low signal-to-noise ratio

(SNR) scenarios, we propose a multi-antenna technology based compressed WSS scheme.

In the proposed scheme, we introduce multi-antenna technology to combat the influence

of noise and propose a joint recovery algorithm by utilizing the joint sparsity of multi-

antenna signals. To reduce the influence of noise uncertainty on detection performance,

we propose a low-complexity and high-performance detection algorithm, whose threshold

dynamically varies with the actual noise variance. Simulation results show that, our

proposed scheme has high detection performance at about 28% of the Nyquist sampling

rate in low SNR scenarios.
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1.3.4 Denoising CS Recovery Algorithm

We propose a novel denoising CS recovery algorithm for the scenario where both the

sparse signal and the CS measurements are contaminated by noise. In the proposed algo-

rithm, we reduce the noise-folding effect caused by the noise in sparse signals via adding a

pre-processing operation. To make the identified columns corresponding to the non-zero

elements approximately satisfy the restricted isometry property (RIP) condition, we reg-

ularize the chosen columns. To further reduce the effect of noise, we adopt the Minimum

Mean Square Estimation (MMSE) method to estimate the non-zero elements. Simulation

results show that, compared with existing CS recovery algorithms, our proposed algorithm

has the highest successful recovery rate and the lowest reconstruction error.

1.4 Organization of the Thesis

The relations between the main chapters of this thesis are shown in Figure 1.1. Specif-

ically, this organization of this thesis is stated as follows:

Chapter 1 is Introduction. Section 1.2 states the motivation of this thesis, i.e., the

main challenges we aim to tackle. Section 1.3 describes the main contributions of this

thesis. Section 1.4 introduces the organization of this thesis. Section ?? lists the papers

and patents published by the author.

Chapter 2 is Literature Review. Section 2.1 introduces the theory of discrete CS.

Section 2.2 presents the existing methods for analog CS. And Section 2.3 briefly introduces

the applications of CS in imaging and wireless communications.

Chapter 3 discusses the application of discrete CS into WSNs. Specifically, Section 3.3

proposes a compressed network coding based distributed data storage (CNCDS) scheme,

which improves the energy efficiency of WSNs by simultaneously reducing the number

of data transmissions and receptions. Based on the random geometric graph theory,
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Figure 1.1: Relations of the main chapters in this thesis.

Section 3.4 derives the expressions for the number of data transmissions and receptions.

Furthermore, based on the derived expressions, Section 3.5 proposes an adaptive CNCDS

scheme to further improve the energy efficiency of WSNs.

Chapter 4 studies the analog CS based on the structured matrix. Section 4.1 introduces

the related work on analog CS. Section 4.2 improves the recovery performance of analog CS

based on the non-modulated Slepian basis. Section 4.3 reduces the hardware complexity

of analog CS based on the random circulant orthogonal matrix.

Chapter 5 investigates the application of analog CS into WSS for cognitive radios.

To improve the detection performance in low SNR scenarios at lower sampling rates,

this chapter proposes a multi-antenna based compressed wideband spectrum sensing (M-

CWSS) scheme. Utilizing the joint sparsity of multi-antenna signals, Section 5.4.1 pro-

poses a joint recovery algorithm. Base on the sparsity of wideband signals, Section 5.3

proposes a low-complexity WSS algorithm and alleviates the the effect of noise uncertain-

ty.
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Chapter 6 proposes a novel denoising CS recovery algorithm to resolve the problem

met in Chapter 5, i.e., the problem that noise degrades the CS recovery performance.

Specifically, Section 6.2 proposes the regularized subspace pursuit algorithm for the sce-

nario where both the sparse signals and CS measurements are contaminated by noise.

Finally, Chapter 7 summarizes the research of this thesis and recommends related

future work.
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Chapter 2

Literature Review

Since the focus of this thesis is the research of CS and its application in wireless com-

munications, in this chapter, we will give a comprehensive literature reviews on discrete

CS, analog CS and the applications of CS are presented in Section 2.1, Section 2.2 and

Section 2.3, respectively.

2.1 Discrete Compressed Sensing

The basic idea of discrete CS is that if an N × 1 discrete signal x is K-sparse in an

orthogonal basis Ψ, i.e., x = Ψθ and the coefficient vector θ has only K nonzero elements,

where the indices of the nonzero elements are called the signal support of signal θ, then

x can be successfully reconstructed from an M × 1 measurement vector y, where

y = Φx = ΦΨθ = Aθ, (2.1)

in which Φ is an M ×N measurement matrix, which should satisfy the (RIP) [20] or the

mutual incoherence property (MIP) [38], and A = ΦΨ.

The CS theory is composed of three basic components, i.e., sparse representation of

signals, stable measurement matrices and robust recovery algorithms. In this thesis, we

assume that we know the signal is sparse in a certain basis as a prior information and

11
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mainly focus on the property of the measurement matrix and the recovery algorithms.

Next, the above three elements are introduced as follows.

2.1.1 Sparse Representation

As expressed in (2.1), the premise of the CS theory is that the signal is sparse/compressible

in some basis/dictionary. Thus, sparse representation [39] [40] is the basis of the CS theo-

ry. In the literature, sparse representation is also known as sparse decomposition [38] [41]

or sparse approximation [42]. Currently, existing lossy compression techniques rely on the

empirical observations, for example, JPEG is based on the fact that the digital images are

compressible in Discrete Cosine Transform (DCT) domain. The problem of finding the

sparsest representation/approximation in terms of the given basis/dictionary turns out

to be the general `0-problem of finding the sparsest solution of an under-determined sys-

tem. Unfortunately, the `0-problem is NP-hard, then greedy methods and `1-minimization

were subsequently introduced as tractable alternatives. The details of `0-problem, greedy

methods and `1-minimization will be elaborated in Section 2.1.3.

2.1.2 Property of Measurement Matrix

The two important and equivalent properties for the CS measurement matrix are

stated as follows.

Restricted Isometry Property

The restricted isometry constant [20] δK of an M × N matrix A is defined as the

smallest positive number such that the following condition

(1− δ
K

) ‖θ‖2
2 ≤ ‖Aθ‖

2
2 ≤ (1 + δ

K
) ‖θ‖2

2 (2.2)

holds for every K-sparse vector θ, where ‖θ‖2 =
√∑N

j=1(θj)2 is the `2 norm of vector

θ. If K + K ′ < N , the K,K ′-restricted orthogonality constant γ
K,K′

is defined as the
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smallest number that satisfies the following condition

|〈Aθ,Aθ′〉| ≤ γ
K,K′
‖θ‖2‖θ′‖2 (2.3)

for all the K-sparse vector θ and K ′-sparse vector θ′, where θ and θ′ have disjoint support.

The RIP [20] refers to the following statements, if

δK + γ
K,K

+ γ
K,2K

< 1, (2.4)

then the K-sparse solution to the following `1 minimization problem is unique

θ̂ = arg min
θ∈RN

‖θ‖1, s.t. y = Aθ. (2.5)

Besides, we have a similar condition in [43], which indicated that if

δ
3K

+ 3δ
4K
< 2, (2.6)

then the K-sparse signal can be successfully reconstructed from the problem in (2.5).

However, the calculation of the restricted isometry constant δ
K

is an Non-deterministic

Polynomia(NP)-hard problem, thus the MIP is proposed as follows.

Mutual Incoherence Property

The mutual incoherence [38] between the measurement matrix Φ and the basis Ψ is

defined as

µ(Φ,Ψ) = sup {|〈φi,ψj〉|} , (2.7)

where sup{x} denotes the supremum of x, φi and ψj are the ith and jth column of matrix

Φ and Ψ, respectively. The MIP refers to the following property, if

K <
1

2

(
1 +

1

µ

)
, (2.8)

then the K-sparse solution to the `1 minimization problem in (2.5) is unique.
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The connections between RIP and MIP

From (2.2), (2.3) and (2.7), we can conclude that [44]

µ = δ2 = γ1,1. (2.9)

Furthermore, [45] indicated that

δ
K
≤ (K − 1)µ and γ

K,K′
≤
√
KK ′µ. (2.10)

With the above relations, the results in RIP can also be stated in terms of MIP. However,

the current RIP conditions are not enough for achieving the sharp MIP condition (2.8) [45].

2.1.3 Signal Recovery Algorithms in Noise-free Scenario

The natural and optimal method to resolve problem (2.1) is the following `0 minimiza-

tion problem

θ̂ = arg min
θ∈RN

‖θ‖0, s.t. y = Aθ, (2.11)

where the `0 norm ‖θ‖0 counts the number of the nonzero elements in vector θ. However,

the `0 minimization problem is NP-hard, so many sub-optimal algorithms to solve problem

(2.1) are proposed. Generally speaking, the CS recovery algorithms can be classified into

the following two categories, i.e., the relaxed optimization algorithms and the greedy

algorithms, which are stated as follows, respectively.

Convex Relaxation Algorithms

To overcome the above obstacle in solving the `0 minimization problem, the `0 min-

imization problem is relaxed to the `1 minimization problem (2.5) [46], which is convex

and can be formulated as the following linear programming (LP) problem [6]

ẑ = arg min
z∈R2N

1Tz s.t. Bz = y, z ≥ 0, (2.12)
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where B = [A, −A], and ẑ is partitioned as ẑT = [uT , vT ], where uT ,vT ∈ RN
. Then,

the solution to problem (2.5) is θ̂ = u−v, which is near-optimal. The problem (2.12) has

been investigated under the name of basis pursuit (BP) [47] in the signal analysis area.

Nonconvex Local Optimization Algorithms

Based on the weighted norm minimization, the FOcal Underdetermined System Solver

(FOCUSS) algorithm [48] is proposed to combine the desirable characteristics of both

classical optimization and learning-based algorithms. The FOCUSS algorithm has two

integral parts: a low-resolution initial estimate of the real signal and the iteration process

that refines the initial estimate to the final localized solution. The iterations are based

on minimization of the weighted norm of the dependent variables, where the weights are

a function of the preceding iterative solutions.

A weighted minimum norm solution is defined as the solution minimizing a weighted

norm ‖W+θ‖2 =
√∑j=N

j=1,wj,j 6=0(
θj
wj,j

)2, where W is a diagonal matrix with the entries

wj,j in the diagonal, W+ is the Moore-Penrose pseudo-inverse of W. The definition of a

weighted minimum norm solution is

find θ = Wq

where q = arg min
q′∈RN

‖q′‖2, s.t. y = AWq′.
(2.13)

That is to say, θ = W(AW)+y. The choice of the weighted matrix W is based on the

generalized Affine Scaling Transformation (AST), which scales the entries of the current

solution by the solutions of the previous iterations.

Thus, the basic form of the FOCUSS algorithm is

Step 1: W[t] =
(
diag(θ[t−1])

)
,

Step 2: q[t] = (AW[t])+y,

Step 3: θ[t] = W[t]q[t].

(2.14)
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Table 2.1: Procedures of OMP Algorithm [5]

Input: A, y and K.

Initialization: Initialize the residual r0 = y, the signal support

set Λ0 = ∅, and the iteration counter t = 1.

Iterations:

FOR t = 1 to K

λt = arg max
j=1,...,N

|〈rt−1, aj〉|. % Finding the index λt

Λt = Λt−1 ∪ {λt}. % Augment the signal support set.

θ̂t =

 A+
Λt

y, on the support set Λt

0, elsewhere
. % Estimating the signal.

rt = y −Aθ̂t. % Updating the residual.

t = t+ 1.

END

Output: The estimated signal support ΛK and the estimated signal θ̂K .

where θ[t] is the estimated signal in the tth iteration, all the entries in the initial estimate

should be nonzero, and the initial estimate does not have to satisfy a given linear system

exactly.

Greedy Algorithms

Although the program (2.12) in the BP algorithm can be solved in polynomial time,

the commercial optimization software packets tend not to work very well for sparse signal

recovery, because the solution vector is sparse while the measurement matrix is dense.

Thus, it seems valuable to explore alternative approaches which are not based on opti-

mization. A representative alternative approach for BP is Orthogonal Matching Pursuit

(OMP) [5], whose procedures are stated in Table 2.1.

According to (2.1), the measurement vector y = Aθ is a linear combination of K
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columns from matrix A, since θ is K-sparse. Thus, the basic idea of OMP is to pick the

K columns participating in the measurement vector y in a greedy fashion. Specifically,

the OMP algorithm begins by initializing the estimated signal support set Λ0 as an empty

set ∅ and setting the residual r0 as y. At the tth iteration, OMP finds one single column

of matrix A that is most highly correlated with the residual in the (t−1)th iteration rt−1,

i.e., the index of this column λt is obtained by

λt= arg max
j=1,...,N

|〈rt−1,aj〉| , (2.15)

where aj is the jth column of matrix A. Then, the index λt is added to the support set

via Λt=Λt−1 ∪ {λt}. With the least-square (LS) estimation method, the estimated signal

θ̂t at the tth iteration is calculated by

θ̂t=


arg min

θ∈RN
‖y −AΛtθ‖2 = A+

Λt
y, on the support set Λt

0, elsewhere

, (2.16)

where A
Λt

is a submatrix of matrix A consisting of the columns indexed by Λt, A+
Λt

is the

Moore-Penrose pseudo-inverse of A
Λt

. The residual at the tth iteration is expressed as

rt=y−Aθ̂t. (2.17)

After K iterations, OMP stops and the reconstructed signal is θ̂K and the reconstructed

signal support is ΛK .

Furthermore, the Stagewise OMP (StOMP) [49] algorithm is proposed to speed up

the OMP algorithm by choosing the coordinates in the relevance vector AHrt−1 with

amplitudes exceeding a specially chosen threshold at the tth iteration, and after a fixed

number of iterations, the StOMP algorithm will stop.

2.1.4 Signal Recovery Algorithms in Noisy Environments

In the basic CS problem (2.1), we assume that the measurements are accurate. How-

ever, in any real application, the measured data will invariably be corrupted by at least
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a small amount of noise, since sensing devices do not have infinite precision. Thus, it is

imperative to develop stable CS recovery algorithms, where small perturbations in the

data should cause only small perturbations in the reconstruction.

The signal model with noisy measurements is

y = Aθ + w, (2.18)

where w is assumed to be a stochastic or deterministic unknown error term, e.g., the

Gaussian noise [50] [51], the impulsive noise in image recovery [52] [53], and the Poisson

noise in photon-limited imaging systems [54]. Since the focus of this thesis is the applica-

tion of CS in wireless communication, we will mainly focus on the scenario with Gaussian

noise. Next, we will introduce three recovery algorithms for Gaussian noise corrupted

measurements.

Regularization Algorithms

A natural approach to finding the sparsest signal satisfying (2.18) is to solve the

following `0 regularization problem

θ̂ = arg min
θ∈RN

{
‖y −Aθ‖2

2 +λ‖θ‖0

}
, (2.19)

where λ>0 is a regularization parameter. However, the `0 regularization problem is NP-

hard. To overcome this obstacle, problem (2.19) is relaxed to the following `p regulariza-

tion problem

θ̂ = arg min
θ∈RN

{
‖y−Aθ‖2

2 +λ‖θ‖pp
}
, (2.20)

where 0 <p ≤ 1 and the `p norm is defined as ‖θ‖p=
(∑N

i=1 |θi|
p
)1/p

. When p=1, problem

(2.20) is convex [55] and is called the `1 regularization or basis pursuit denoising (BPDN)

algorithm [46], which has good recovery performance. Besides, when p = 1 problem
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(2.20) can also be solved by the least absolute shrinkage and selection operator (LASSO)

technique [56] [57]. When 0<p<1, problem (2.20) is non-convex and difficult to solve, but

it has better recovery performance than `1 regularization. Recently, efficient algorithms

have been proposed to resolve the above non-convex problems. For example, [58] proposed

a fast iterative half thresholding algorithm for the `1/2 regularization problem.

Denoising Matching Pursuit Algorithms

The second kind of denoising recovery algorithms are designed based on OMP. For ex-

ample, regularized OMP (ROMP) [59] is proposed to incorporate the property of convex

relaxation by selecting only the comparable coordinates of the relevance vector AHrt−1.

Then, Compressive Sampling Matching Pursuit (CoSaMP) [60] is proposed to reduce the

effect of noise by retaining only the largest entries in the LS estimated signal. Subsequent-

ly, Subspace Pursuit (SP) [61] is proposed to achieve a similar reconstruction accuracy

as convex relaxation by obtaining a K-dimensional hyperplane closer to y after each it-

eration. Meanwhile, it has been proved that, if the minimum magnitude of the nonzero

elements in x satisfies a certain condition, OMP can exactly reconstruct the support of

the sparse signal from noisy measurements with high probability [62] [63].

Iterative Thresholding Algorithms

Another kind of recovery algorithm is the iterative thresholding algorithms, e.g., the

iterative hard thresholding (IHT) algorithm [64] and the iterative soft thresholding (IST)

algorithm [65].

The IHT algorithm solves the minimization problem (2.16) in the OMP algorithm

using the gradient method, i.e., at each iteration the estimated signal is updated by

θ[t+1] = Hs

(
θ[t] + AT (y −Aθ[t])

)
, (2.21)

where θ[t] is the estimated signal in the tth iteration with θ[0] = 0, Hs(x) is a non-linear
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operator that sets all but the largest (in magnitude) s elements of x to zero, and a possible

stopping criteria is ‖y−Aθ[t]‖2 ≤ ε, where ε is decided by the required estimation error.

The IST algorithm iteratively solves the `1 regularization problem in (2.20) when

p = 1, i.e., at each iteration the estimated signal is updated by

θ[t+1] = Sλ
(
θ[t] + AT (y −Aθ[t])

)
, (2.22)

where Sλ(x)j = Sλ(xj) is the soft thresholding function

Sλ(x) =


x− λ

2
, if x > λ

2

0, if |x| ≤ λ
2

x+ λ
2
, if x < λ

2

, (2.23)

and λ is the regularization parameter in (2.20).

2.2 Analog Compressed Sensing

Recently, the development of wideband communication technology has pushed the

Nyquist-rate ADC systems to their performance limits. However, in some application

scenarios, the signals of interest contain only a small number of significant frequencies

relative to the band limit. In other words, the analog signal is sparse in the frequency

domain, thus CS can be used to reduce the sampling rate. However, CS was initially

proposed for discrete signals, so it is necessary to extend the CS theory to the analog

domain.

So far, several analog CS methods have been proposed, where AIC [1] and MWC [2]

form the basis for the development of analog CS. The details about AIC, MWC and other

analog CS methods are stated as follows.
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Figure 2.1: Block diagram of AIC [1].

2.2.1 AIC Method

Signal Model

AIC is proposed for the following multi-tone signal

f(t) =
∑
ω∈Ω

aωe
−j2πωt, t ∈ [0, 1), (2.24)

where Ω is a set of K integer-valued frequencies that satisfies

Ω ⊂ {0,±1,±2, . . . ,±(W/2− 1),W/2}, (2.25)

where W/2 is a positive integer which exceeds the highest frequency of signal f(t), and

aω denotes the amplitude of signal. Here, the number of active tones K is assumed to be

much smaller than the bandwidth W . In other words, the signal f(t) is K-sparse in the

frequency domain.

System Description

Figure 2.1 shows the block diagram of AIC. Specifically, the input signal f(t) is firstly

modulated by multiplying with a high-rate pseudorandom sequence pc(t), which smears

the tones across the entire spectrum. Then, the mixed signal f(t) ·pc(t) is passed through

an integrator, which is a kind of low pass filter. Finally, the filtered signal is sampled with

an ADC at rate 1/R, where R = O(Klog(W/K)).
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Mathematical Analysis

The expression for the pseudorandom sequence pc(t) is

pc(t) = εn, t ∈
[
n

W
,
n+ 1

W

)
, n = 0, 1, . . . ,W − 1, (2.26)

where εn is a random number that takes values ±1 with equal probability. Then, the

expression for the output signal sequence ym = y[m] is

ym =

∫ (m+1)/R

m/R

f(t)pc(t)dt,m = 0, 1, . . . , R− 1. (2.27)

According to [1], the expression for ym in the frequency domain is

y = HDFs = As, (2.28)

where the R×W matrix H corresponds to the integrator, and the rth row of H contains

W/R consecutive entries starting from column rW/R+ 1, where r = 0, 1, . . . , R− 1. For

example, when R = 3 and W = 12, we have

H =


1 1 1 1

1 1 1 1

1 1 1 1

 . (2.29)

When R does not divide W , matrixH will have fractional elements in some of its columns.

An example with R = 3 and W = 7 is

H =


1 1 1/3

2/3 1 2/3

1/3 1 1

 . (2.30)
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The W ×W matrix D corresponds to the pseudorandom sequence and is expressed as

D =



ε0

ε1

. . .

εW−1


. (2.31)

The W ×W matrix F is a permuted discrete Fourier transform (DFT) matrix, i.e.,

F =
1√
W

[e−j2πnω/W ]n,ω, (2.32)

where n = 0, 1, . . . ,W − 1 and ω = 0,±1, . . . ,±(W/2 − 1),W/2. The W × 1 vector s is

the coefficient vector of f(t) in the DFT basis.

Recovery Algorithms for AIC

Finally, the signal f(t) or the coefficient vector s can be successfully recovered from

(2.28) via the traditional BP or OMP algorithm. Although the authors in [1] have pro-

posed a windowing technique to capture nonperiodic multi-tone signals, AIC is not effec-

tive to capture a wideband signal [66].

2.2.2 MWC Method

Since AIC is proposed for multi-tone signals, however, the model of multi-tone signal

is too ideal and far from practical wideband signals. Thus, authors in [2] proposed MWC

for the more practical multi-band signal.

Signal Model

As illustrated in Figure 2.2, the frequency support of a multi-band signal resides within

several continuous intervals spreading over a very wide spectrum. A simple example for
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Figure 2.2: Illustration of the multi-band signal.

continuous-time multi-band signal is

x(t) =
I∑
i=1

√
EiBsinc(B(t− τi)) cos(2πfi(t− τi)), (2.33)

where sinc(x) = sin(πx)/(πx), B is the bandwidth of each band in the multi-band signal,

I is the number of the bands in the multi-band signals, Ei are the energy coefficients, and

τi are the time offsets. Here, we assume that x(t) is bandlimited to F = [−1/2T, 1/2T ],

and the Fourier transform of x(t) is

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt. (2.34)

System description

Figure 2.3 shows the system structure of MWC, where the input signal x(t) enters m

channels simultaneously. In the ith channel, x(t) is multiplied by a mixing function pi(t),

which is Tp-periodic. Specifically, pi(t) is a piecewise constant function that alternates

between the levels ±1 for each of M equal time intervals. The expression for pi(t) is

pi(t) = αik, kTp/M ≤ t ≤ (k + 1)Tp/M, 0 ≤ k ≤M − 1, (2.35)

where αik ∈ {+1,−1}. After mixing, the signal spectrum is truncated by a low-pass filter

(LPF) with cutoff 1/(2Ts) and the filtered signal is sampled at rate 1/Ts.
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Figure 2.3: Block diagram of MWC [2].

Mathematical Analysis

Since pi(t) is Tp-periodic, it has a Fourier expansion

pi(t) =
∞∑

l=−∞

aile
j2πlt/Tp , (2.36)

where the coefficient ail is expressed as

ail =
1

Tp

∫ Tp

0

pi(t)e
−j2πlt/Tp . (2.37)

Then, the Fourier transform of the mixed signal x̃i(t) = x(t)pi(t) is

X̃i(f) =
∫∞
−∞ x(t)

(
∞∑

l=−∞
aile

j2πlt/Tp

)
e−j2πft

=
∞∑

l=−∞
ail
∫∞
−∞ x(t)e−j2π(f−l/Tp)tdt

=
∞∑

l=−∞
ailX(f − lfp)

, (2.38)

where fp = 1/Tp. Thus, X̃i(f) is a linear combination of fp-shifted copies of X(f).

The LPF is supposed to be ideal, thus the discrete-time Fourier transform (DTFT) of

the sample sequence yi[n] is expressed as

Yi(e
j2πfTs) =

L0∑
l=−L0

ailX(f − lfp), f ∈ Fs, (2.39)
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where Fs = [−fs/2, fs/2] and fs = 1/Ts, L0 is chosen as the smallest integer such that

the sum contains all the nonzero contributions of X(f) over Fs, i.e.,

−fs/2 + (L0 + 1)fp ≥ fnyq ⇒ L0 = dfnyq + fs
2fp

− 1e, (2.40)

where fnyq = 1/T .

Since equation (2.39) is the key to the recovery of signal x(t), expression (2.39) is

rewritten into the following matrix form for convenience

y(f) = Az(f), f ∈ Fs, (2.41)

where y(f) is a vector of length m with yi(f) = Yi(e
j2πfTs). The unknown vector z(f) =

[z1(f), . . . , zL(f)]T , where L = 2L0 + 1 and

zi(f) = X(f + (i− L0 − 1)fp), 1 ≤ i ≤ L, f ∈ Fs. (2.42)

The m× L matrix A contains the coefficients ail, i.e.,

Ail = ai,−l = a∗il. (2.43)

The coefficient ail is calculated as follows

ail = 1
Tp

∫ Tp/M
0

∑M−1
k=0 αike

−j 2π
Tp
l(t+k

Tp
M

)
dt

= 1
Tp

∑M−1
k=0 αike

−j 2π
M
lk
∫ Tp/M

0
e
−j 2π

Tp
lt
dt

. (2.44)

Denote dl as

dl =
1

Tp

∫ Tp/M

0

e
−j 2π

Tp
lt
dt =


1
M
, l = 0

1−θl
2jπl

, l 6= 0
(2.45)

where θ = e−j2π/M , thus we have

ail = dl

M−1∑
dl

αikθ
lk. (2.46)
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Let Fi be the ith column of the DFT matrix, as stated in (2.32). Let F′ = [FL0 , . . . ,F−L0 ],

i.e., F′ is a reordered column subset of the DFT matrix. Then, (2.41) can be written as

y(f) = SF′D′z(f), f ∈ Fs, (2.47)

where S is a m×M sign matrix, with Sik = αik, and D′ = diag(dL0 , . . . , d−L0).

Recovery Algorithm for MWC

Recovery of x(t) from the sequences yi[n] boils down to recovery of the sparsest z(f)

from (2.47) for every f ∈ Fs. However, since f ∈ Fs has infinite cardinality, resolving

z(f) from (2.47) is an infinite measurement vectors (IMV) problem, which requires an

independent treatment for infinitely many systems. To avoid this difficulty of IMV, au-

thors in [2] propose a continuous to finite (CTF) method to resolve (2.47). The CTF

method begins with the construction of a finite frame for y(Fs). Then, it finds the unique

sparsest solution to the multiple measurement vectors (MMV) system V = AU. The

main result is that the support of z(Fs), i.e., S = supp((z(Fs))) equals the support of

U, i.e., supp(U). In other words, the support recovery is accomplished by solving only a

finite-dimensional problem.

Specifically, the frame V can be obtained via firstly computing matrix Q

Q =

∫
f∈Fs

y(f)yH(f)df =
+∞∑

n=−∞

y[n]yT [n], (2.48)

then any matrix V satisfying Q = VVH is a frame for y(Fs). The signal support S of

z(Fs) can be recovered from the MMV problem V = AU. Once the signal support is

obtained, we have

zS[n] = A+
Sy[n], and zi[n] = 0, i 6∈ S. (2.49)

where z[n] = [z1[n], . . . , zL[n]]T and zi[n] is the inverse-DTFT of zi(f). In other words,

the sequences zi[n] are generated at the input rate fs. Therefore, the sequences zi[n] are
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first zero padded to the Nyquist rate, i.e.,

z̃i[ñ] =


zi[n], ñ = nL, n ∈ Z

0, otherwise
. (2.50)

Then, z̃i[ñ] is interpolated using an ideal digital filter with impulse hI [n], and then the

interpolates sequences are modulated in time and summed, i.e.,

x[n] = x(nT ) =
∑
i∈S

(z̃[n] ∗ hI [n])ej2πfpnT . (2.51)

Comparison between AIC and MWC

From Figure 2.3 and Figure 2.1, we can find that MWC seems to be a parallel version

of AIC, but their signal models and reconstruction algorithms strongly differ. Authors

in [66] pointed out that, both AIC and MWC are based on the general concept of random

filtering [3], but employ significantly different sampling functions. Specifically, the analog

filter in AIC is an ideal integrator with impulse response h(t) = rect(2Rt− 1), where

rect(x) =


1, for − 1 ≤ x ≤ 1

0, otherwise
. (2.52)

However, the analog filter in MWC is an ideal low pass filter with impulse response

h′(t) = 1
2Ts

sinc(t/2Ts).

2.2.3 Other Analog CS Methods

As mentioned in the comparison between AIC and MWC, both AIC and MWC are

based on the concept of random filtering [3], whose block diagram is shown in Figure 2.4.

Specifically, the signal s is captured by convolving it with a random-tap finite impulse

response (FIR) filter h, then the filtered signal is downsampled to obtain a compressed

representation y. However, AIC and MWC employ considerably different sampling func-

tions [66]. In addition, different aspects of AIC and MWC have also been investigated.
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Figure 2.4: Block diagram of random filters, (a) using convolution, (b) using FFT/IFFT.

[3]

For example, [67] proposes a segmented CS to reduce the hardware complexity of the

parallel version of AIC, while [68] [69] utilizes structured matrix to reduce the hardware

complexity of MWC, and [70] investigates the impact of using non-ideal element in MWC.

Based on Gabor frames, authors in [71] extend the MWC method to the multipulse

signals, which are sparse in the time domain. Furthermore, for the signals that are

not bandlimited but have a finite number of degrees of freedom per unit of time, e.g.,

streams of Diracs and nonuniform splines, authors in [72] stated that such signals can be

successfully sampled at the rate of innovation with an appropriate kernel.

2.3 Applications of Compressed Sensing

In this section, we will firstly introduce the initial application of CS in imaging, and

then we will mainly focus on the applications of CS in wireless communications.

2.3.1 Compressive Imaging

The basic idea behind image compression is that the image is firstly transformed

into an appropriate basis and then only the important expansion coefficients are coded.

However, this process has a drawback, i.e., most of the data we acquired are thrown away.
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Figure 2.5: Aerial view of the single-pixel CS camera in the lab [4].

Fortunately, CS provides a way to directly measure the part that will not end up being

thrown away.

Based on the CS theory, authors in [4] [10] achieved the sub-Nyquist image acquisition

by developing a single-pixel camera as shown in Figure 2.5. Specifically, the object is front

illuminated by an LED light, and then the light-field is focused by biconvex Lens 1 onto a

digital micromirror device (DMD) consisting of an array of N tiny mirrors. Each mirror

rotates about a hinge and can be positioned in one of two states, i.e., +12◦ (degrees) and

−12◦ from horizontal. Thus, light falling on the DMD may be reflected in two directions

depending on the orientation of the mirrors. After that, the reflected light is collected by

biconvex Lens 2 and focused onto a single photon detector.

Mathematically, the output voltage of the photo detector y[m] can be interpreted as the

inner product of the N -pixel image x corresponding to the N mirrors with a measurement

basis vector φm. That is to say,

y[m] = 〈x,φm〉, (2.53)
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where φm = 1{ρm=+12◦}, in which ρm denotes the positions of the N mirrors for the mth

measurement pattern, and 1 is the N × 1 indicator vector. Let M denote the number of

measurements, then we have

y = Φx, (2.54)

where y = [y[1], . . . , y[M ]]T and Φ = [φ1, . . . ,φM ]T . Then, the image x can be success-

fully recovered from (2.54) using the CS recovery algorithms.

2.3.2 Compressed Sensing for Wireless Communications

In this work, we mainly focus on the applications of CS in wireless communications,

such as in wireless sensor networks and cognitive radio networks.

Distributed Compressed Sensing for Wireless Sensor Networks

In WSNs, the energy and communication bandwidth are limited and the data in

neighboring sensors are often spatially and/or temporally correlated. Authors in [19]

developed the distributed compressed sensing (DCS) and reducd the number of required

measurements by exploiting the joint sparsity among different sensor data. Based on

CS, authors in [73] greatly reduce the number of wake-up sensors for the sparse event

detection problem in WSNs. Furthermore, exploiting the spatiotemporal correlation of

sensor readings, authors in [74] and [75] improve the energy efficiency of WSNs by reducing

the number of required transmissions based on the CS theory.

Compressed Sensing for Channel Estimation

To reduce the number of pilots and increase spectral efficiency, authors in [76] propose a

new channel estimation technique based on the CS theory, by exploiting the delay-Doppler

sparsity of the doubly selective wireless channels in multicarrier systems. Based on the



32 Chapter 2. Literature Review

CS theory, the authors in [77] show that a reduced number of random projections of the

received ultra-wideband (UWB) signal contains most of the relevant information, which

are not only useful for signal reconstruction but also useful for UWB channel parameter

estimation. Furthermore, extensive numerical results show that the proposed approach

in [77] outperforms the traditional detector using just 30% of the ADC resources.

Compressed Sensing for Wideband Spectrum Sensing in Cognitive Radio

Capitalizing on the sparsity of wideband signals in frequency domain, the authors of

[17] firstly introduce CS into cognitive radio networks to resolve the challenge of extremely

high sampling rate faced by wideband spectrum sensing. However, the method in [17] is

based on the discrete signals sampled at the Nyquist rate, which contradicts the initial

objective. Then, the authors in [21] point out the above problem and propose a parallel

structure to sample the analog signal at a sub-Nyquist rate.

In summary, this chapter briefly introduces the basic theory and applications of both

discrete CS and analog CS, which provide the preliminary knowledge for the following

chapters. Furthermore, to make the thesis more easy to follow, we will start with the

applications of discrete CS in WSNs in the next chapter.



Chapter 3

Compressed Network Coding for

Distributed Data Storage in WSNs

Since CS is originally proposed for discrete signals, we will firstly discuss the applica-

tions of discrete CS in wireless communications, especially in WSNs. In this Chapter, we

aim to improve the energy efficiency of WSNs deployed in catastrophic scenarios.

3.1 Introduction

WSNs [78] [25] [31] are widely deployed to detect events, monitor environmental con-

ditions, track multiple targets and achieve other application functionalities. One of the

great challenges faced by WSNs is how to collect data with high energy efficiency, espe-

cially in hostile, harsh and catastrophic environments, where the network is vulnerable

or inaccessible. In such scenarios, it is impossible to have static and powered sink nodes

which are responsible for collecting data from the distributed sensors. In addition, the

sensor nodes are also unreliable. To resolve this problem, DDS [29] [79] [80] (also termed

as data persistence in [30] [81] [82]) is proposed for reliable data communication even if

large numbers of sensor nodes fail to function. Specifically, the sensed data of the DDS are

33
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stored with redundancy in the network, so that the mobile sink node is able to reconstruct

all the sensed data of the whole WSN by visiting only a small number of the surviving

nodes.

In essence, the problem of DDS is equivalent to the reliable communication problem

in an erasure channel. Thus, erasure coding provides a potential way to resolve the DDS

problem. Specifically, an erasure code transforms a source message of m symbols into

a longer code with n symbols, and then the original symbols can be decoded from a

small subset of the n encoded symbols. For example, Fountain Codes (FC) [83] [84], one

class of the erasure codes, are adopted in a decentralized fashion in [29] [30] to encode

the sensor readings. Then, the sensed data can be reconstructed from any m(1 + ε) FC

encoded symbols, where ε > 0 is a small constant. In addition, Luby Transform (LT)

codes [82] [85], which is one class of the practical FC, are utilized in a distributed way to

improve the decoding performance of DSS [81].

This chapter focuses on the energy efficiency problem of DDS in WSNs. In terms of the

energy consumption for DDS, the data dissemination consisting of both data transmission

and data reception accounts for the largest part. It is worth mentioning that, for short-

range communication in WSNs, the energy costs for data transmission and data reception

are nearly the same [25] [86]. Therefore, one effective method to improve the energy

efficiency of DDS in WSNs is to reduce both the number of data transmissions and the

number of data receptions during the data dissemination process.

To date, there have been two potential solutions to reduce the number of transmissions.

First, compressive data persistence (CDP) [74] and CStorage [75] reduce the number of

required transmissions by exploiting the spatiotemporal correlation of sensor readings [18]

and utilizing the CS theory [6] [7] [9]. Second, Random Linear Network Coding (RLNC)

[87] is proved to be able to decrease the number of transmissions [88] [89]. In addition,

real network codes [90] and NetCompress [91] are specially proposed for WSNs. However,
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all the above schemes only focus on reducing the number of data transmissions Nttot,

without considering the number of data receptions Nrtot, which have almost the same

energy cost as data transmissions for short-range communications [25] [86].

To simultaneously reduce Nttot and Nrtot, this chapter proposes a CNCDS scheme.

We prove that the measurement matrix of the CNCDS scheme guarantees good CS recov-

ery performance. Based on RGG theory, we derive the expressions for Nttot and Nrtot to

verify the efficiency of the CNCDS scheme. Furthermore, based on the theoretical expres-

sions for Nttot and Nrtot, we propose an adaptive CNCDS scheme, where the forwarding

probability is adjusted according to the number of each node’s neighbors. Simulation re-

sults demonstrate that, compared with the conventional ICStorage scheme, the CNCDS

scheme decreases Nttot, Nrtot, and the CS recovery mean squared error (MSE) by up to

55%, 74%, and 76% respectively. In addition, the adaptive CNCDS scheme further re-

duces Nttot and Nrtot by up to 63% and 32% respectively in comparison with the CNCDS

scheme.

The rest of this chapter is organized as follows. Section 3.2 briefly introduces signal

model and network deployment. Section 3.3 presents the proposed CNCDS scheme, in-

cluding its packet format, procedures, and the property of its measurement matrix, then

the CNCDS scheme is discussed under more practical conditions. Section 3.4 derives the

expressions for the number of transmissions Nttot and the number of receptions Nrtot re-

spectively based on the RGG theory. Section 3.5 describes the adaptive CNCDS scheme.

Section 3.6 evaluates the performance of the CNCDS scheme and the adaptive CNCDS

scheme. Finally, Section 3.7 concludes this chapter.
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3.2 Signal Model and Network Deployment

This section describes the signal model for the sensed data and the network deployment

for WSNs.

3.2.1 Signal Model

Consider a WSN composed of N nodes and the sensed data are x = [x1, . . . ,xN ]T ,

with xi representing the reading of the ith sensor node. Since the sensed data x are often

spatially and/or temporally correlated, data x are compressible in an orthogonal basis

Ψ, e.g., DCT basis. The formulation of the M × N measurement matrix Φ and the

M × 1 measurement vector y will be stated in Section 3.3.4. Then, the signal model of

the CNCDS scheme is y = Φx = ΦΨθ, which coincides with that of CS.

To make the signal model more explicit, the definition of a compressible signal is

stated as follows. Signal x is referred to be compressible if its coefficient vector θ decays

according to a power law, i.e., the ith largest transform coefficient satisfies

|θ|(i) ≤ R× i−1/p, (3.1)

where 1 ≤ i ≤ N , R is the radius of the weak `p ball which consists of vector θ [7] [9],

and 0 < p < 1 represents the speed of decay: the smaller the p, the faster the decay.

Let θK denote the truncated version of the vector θ by taking the K largest transform

coefficients and setting the remaining coefficients to zero. The approximation error is

‖θ − θK‖2 ≤ ςp ×R× (K + 1)1/2−1/p, (3.2)

where ςp is a constant which only depends on p.



3.2 Signal Model and Network Deployment 37

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
general sensor node
selected source node

Figure 3.1: Illustration of the network deployment, where Ns = 30 nodes of the total

N = 100 nodes are randomly selected as source nodes.

3.2.2 Network Deployment

Consider a WSN with N nodes which are randomly and uniformly deployed over a

normalized field of size S = 1×1. Assume that all the N nodes have an identical transmis-

sion range rt, and two nodes can communicate with each other if their Euclidian distance

d is smaller than rt. To ensure network connectivity, rt should satisfy r2
t > S · ln(N)/(πN)

[26]. Based on the compressibility of the sensed data and the CS theory, only Ns nodes

are randomly selected as source nodes to reduce the number of data transmissions and

receptions. Figure 3.1 shows an example of the network deployment with N = 100 nodes

randomly distributed in an area of size S = 1 × 1, where Ns = 30 nodes are randomly

selected as source nodes (denoted by the red pentagrams, whereas, the blue circle denotes

the unselected sensor node).
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3.3 Proposed CNCDS Scheme

This section presents the proposed CNCDS scheme. Firstly, Section 3.3.1 generally de-

scribes the proposed CNCDS scheme, whose detailed procedures are presented in Section

3.3.2. Then, Section 3.3.3 discusses the choice of two parameters Ns and P0. Section 3.3.4

illustrates the forming process of the CNCDS scheme’s measurement matrix. Section 3.3.5

proves that the formed measurement matrix guarantees good CS recovery performance.

Finally, Section 3.3.6 discusses the CNCDS scheme under more practical situations.

3.3.1 Overall Description of CNCDS Scheme

In this chapter, we assume that the communication in the whole network is synchro-

nized and slotted. Firstly, at the beginning of the CNCDS scheme, i.e., the initialization

stage, each sensor node i multiplies its reading xi by a random coefficient ϕi,i, which

is chosen to be +1 or −1 randomly with equal probability. Then, node i forms its ini-

tial packet, denoted by a structure variable r(i), which is made up of the coefficient set

r(i).a1=[ϕi,i], the node ID set r(i).a2=[i] and the data multiplied with the coefficient

r(i).a3=ϕi,i × xi.

Then, the source node broadcasting stage is started, where each sensor node randomly

selects itself as a source node with probability P1 and then broadcasts their initial packets.

The value of P1 is discussed in Section 3.3.3. If the reception node i does not share any

node ID with the corresponding transmission node j, i.e.,

(r(i).a2) ∩ (r(j).a2) = ∅, (3.3)

then r(j) is merged into r(i) with r(i).a1 = [r(i).a1]∪ [r(j).a1], r(i).a2 = [r(i).a2] ∪

[r(j).a2] and r(i).a3 = r(i).a3+r(j).a3. Thus, we can use the packet format in Figure 3.2

to represent the packet of each node, which includes the header and the data. Specifically,

the header consists of a set of 1-bit coefficients ϕi,j and a set of the
⌈
logN2

⌉
-bit node IDs.
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Figure 3.2: Packet format of the ith node in CNCDS scheme.

The size of the data field is 32 bits or 64 bits depending on the precision requirement.

Thirdly, the reception nodes in the source broadcasting stage will forward the merged

packet to its neighbors with probability P0. Again, the node i that hears the transmitted

packet r(j) will examine the reception condition (3.3). If the condition (3.3) is satisfied,

then r(j) will be merged into r(i) as aforementioned. Otherwise, node i will not receive

r(j), i.e., r(j) will not be merged into r(i). Due to the small forwarding probability (P0 <

1) and the reception condition (3.3), the transmission will cease after the intermediate

reception nodes forward the received and merged packets for a few times.

After all the transmissions are finished, the mobile collector queries any M nodes

to obtain the measurement matrix Φ and the measurement vector y. Finally, the CS

recovery algorithm, such as the BP algorithm [7] [46] or OMP algorithm [5], can be used

to reconstruct all the sensor readings x from y = Φx.

3.3.2 Procedures of CNCDS Scheme

To make the procedures more clear, Table 3.1 illustrates the pseudocode of the C-

NCDS scheme, which is made up of three stages: the initialization stage, the source node

broadcasting stage and the intermediate node forwarding stage.
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Table 3.1: Pseudocode of CNCDS Scheme

STAGE I. Initialization.

for i = 1 to i = N

Set ϕi,i to be +1 or -1 randomly with equal probability;

r(i).a1 = [ϕi,i]; r(i).a2 = [i]; r(i).a3 = ϕi,i × xi;
end

STAGE II. Source Nodes Broadcasting.

Ns source nodes randomly choose themselves to broadcast their packets;

for j = 1 to j = Ns

for i = 1 to i = N

if (Node i hears r(j)) && ((r(i).a2) ∩ (r(j).a2) = ∅);

r(i).a1 = [r(i).a1 , r(j).a1]; r(i).a2 = [r(i).a2 , r(j).a2];

r(i).a3 = r(i).a3 + r(j).a3;

else continue;

end

end

end

STAGE III. Intermediate Nodes Forwarding.

The reception nodes in Stage II broadcast their packets with probability P0;

while There is a node j which forwards its packet r(j);

for i = 1 to i = N

if (Node i hears r(j)) && ((r(i).a2) ∩ (r(j).a2) = ∅);

r(i).a1 = [r(i).a1 , r(j).a1]; r(i).a2 = [r(i).a2 , r(j).a2];

r(i).a3 = r(i).a3 + r(j).a3;

else continue;

end

end

The reception nodes in the last forwarding choose themselves with

probability P0 to broadcast their received and merged packets;

end

The mobile collector queries any M nodes to obtain the measurement matrix

Φ and the measurement vector y.

Use the OMP algorithm to reconstruct all the sensor readings x from y = Φx

from the structure variable r.
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3.3.3 Choice of Parameters Ns and P0

Table 3.1 shows that the intermediate nodes in Stage III also have the opportunity

to broadcast their own packets. Thus, to disseminate all the information throughout

the network, less than N source nodes are needed, i.e., Ns < N . Meanwhile, Ns ≥ M

is a necessary condition for ensuring that the rank of the measurement matrix is M

[75], where M should satisfy M ≥ cK log(N/K) based on the CS theory [6]- [9], with

c being a small constant. Thus, we have Ns ≥ M ≥ cK log(N/K). In reality, to make

Ns ≥ M is satisfied with high probability, the probability that each node chooses itself

as a source node P1 should satisfy P1 ≥ P ∗1 , where P ∗1 equals to the value which makes

Pr{Ns ≥M} =
∑N

n=M Cn
NP

n
1 (1− P1)N−n ≥ 0.99.

The forwarding probability P0 is required to be greater than P ∗0 to ensure a high ratio

R(P0) of nodes receiving a particular transmission [75], where P ∗0 equals to the probability

that a giant component appears in a random network. A giant component is a connected

component containing a positive fraction of the entire graph’s vertices [92]. Furthermore,

it has been proved that a high R(P0), i.e., P0 > P ∗0 , is necessary to ensure that the rank

of the measurement matrix is M with high probability [75]. Thus, we assume P0 > P ∗0 is

satisfied throughout this chapter.

3.3.4 Formulation of Measurement Matrix

To illustrate the forming process of the measurement matrix, we consider a small

network with N = 7 nodes, as illustrated in Figure 3.3, where node 2 and node 7 are

chosen to be the source nodes.
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Figure 3.3: (a) Source nodes broadcasting process in Stage II, (b) Intermediate nodes

forwarding process in Stage III.

After the initialization stage, the total measurement matrix Φt for all N nodes is

ΦI
t =



ϕ1,1 0 0 0 0 0 0

0 ϕ2,2 0 0 0 0 0

0 0 ϕ3,3 0 0 0 0

0 0 0 ϕ4,4 0 0 0

0 0 0 0 ϕ5,5 0 0

0 0 0 0 0 ϕ6,6 0

0 0 0 0 0 0 ϕ7,7



. (3.4)

In stage II, as illustrated in Figure 3.3(a), node 7 broadcasts r(7) to node 1, node 3

and node 4. Similarly, node 2 broadcasts r(2) to node 3 and node 5. After Stage II is
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finished, the matrix Φt becomes

ΦII
t =



ϕ1,1 0 0 0 0 0 ϕ1,7

0 ϕ2,2 0 0 0 0 0

0 ϕ3,2 ϕ3,3 0 0 0 ϕ3,7

0 0 0 ϕ4,4 0 0 ϕ4,7

0 ϕ5,2 0 0 ϕ5,5 0 0

0 0 0 0 0 ϕ6,6 0

0 0 0 0 0 0 ϕ7,7



, (3.5)

where ϕi,j is the random coefficient of node i received from node j. Thus, we have

ϕ1,7 = ϕ3,7 = ϕ4,7 = ϕ7,7 and ϕ3,2 = ϕ5,2 = ϕ2,2.

During stage III, as shown in Figure 3.3(b), node 4 is chosen (with probability P0) to

forward r(4) to its neighbors. Because node 4, node 3 and node 7 share the information

of node 7, the packet of node 4 cannot be merged into node 3 or node 7. Then, the matrix

Φt turns into

ΦIII
t =



ϕ1,1 0 0 0 0 0 ϕ1,7

0 ϕ2,2 0 0 0 0 0

0 ϕ3,2 ϕ3,3 0 0 0 ϕ3,7

0 0 0 ϕ4,4 0 0 ϕ4,7

0 ϕ5,2 0 0 ϕ5,5 0 0

0 0 0 ϕ6,4 0 ϕ6,6 ϕ6,7

0 0 0 0 0 0 ϕ7,7



, (3.6)

where ϕ6,4 = ϕ4,4, and ϕ6,7=ϕ4,7=ϕ7,7. If node 6 is not chosen to forward its packet, then

all the transmissions are finished.

If the mobile collector chooses node 2, node 5 and node 6 to collect data, then the
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measurement matrix Φ is composed of the 2nd, 5th and 6th row of Φt in (3.6), i.e.,

Φ =


0 ϕ2,2 0 0 0 0 0

0 ϕ5,2 0 0 ϕ5,5 0 0

0 0 0 ϕ6,4 0 ϕ6,6 ϕ6,7

 . (3.7)

Then, the corresponding measurement vector is expressed as y = [r(2).a3, r(5).a3, r(6).a3]T .

3.3.5 Property of Measurement Matrix

Verifying the RIP condition in (2.2) for an arbitrary matrix is NP-hard, however, the

recovery performance can be guaranteed as long as the rows of the sparse measurement

matrix are linearly independent [15].

Theorem 3.1. Assume that all the N sensor nodes of a randomly deployed WSN have

an identical transmission range rt, where r2
t > S · ln(N)/(πN) with S being the size of

the field in which the WSN is deployed. If the proposed CNCDS scheme is used to fulfill

the DDS function, where the number of source nodes Ns is greater than or equal to the

number of nodes visited by a mobile collector M , and the forwarding probability P0 is

greater than the probability P ∗0 that a giant component appears in the WSN, then any M

rows of the total measurement matrix Φt are linearly independent and the sensor readings

can be successfully recovered from the measurements obtained by the mobile collector with

high probability.

Proof. As expressed in (3.4), after Stage I is finished, the rank of matrix Φt is rank(Φt) =

N . During Stage II and Stage III, the value of rank(Φt) will decrease by one if one of the

following three situations happens.

The First Situation

Any row ϕk can be expressed as a linear combination of any other two or more rows.
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Note that, according to the design of the CNCDS scheme, the entries of Φt satisfy

ϕi,j = ϕj,j, (3.8)

for i, j = 1, . . . , N . Thus, ϕk can be linearly expressed by any other two or more rows

ϕk1 ,ϕkl , . . . ,ϕkq if and only if

Λk =
q
∪
i=1

Λki , q = 2, . . . , N − 1, (3.9)

where Λk = {j | ϕk,j 6= 0} and Λki = {j | ϕki,j 6= 0}. Based on the formulation of Φt,

(3.9) may be satisfied if node k receives packets from nodes k1, . . . , kq. However, due to

the reception condition (3.3) and the initialization stage, (3.9) can never be satisfied. As

a matter of fact, the relation between Λk and Λki satisfies

Λk = k ∪
(

q
∪
i=1

Λki

)
, (3.10)

if node k hears nodes k1, . . . , kq. From (3.9) and (3.10), we can conclude that no row can

be linearly expressed by other rows. In addition, the difference between (3.9) and (3.10)

also illustrates the importance of the initialization stage, i.e., multiplying the sensed data

xi with a random coefficient ϕi,i for all the sensor nodes.

The Second Situation

Any two rows ϕi and ϕj are linearly dependent.

As expressed in (3.8), ϕi and ϕj will be linearly dependent if and only if they are

precisely the same, which happens when the following two events happen simultaneously.

The first event is that node i and node j have exactly the same neighbors, which happens

with probability P2,1. As shown in Figure 3.4(a), the value of P2,1 equals to the probability

that all the neighbors of node i and node j are located at their intersection area S2 with

the Euclidian distance d(i,j) ≤ 2rt. Since the average area of S2 is S̄2 =
πr2
t

4
(see Section

A.1), P2,1 is calculated by

P2,1=

(
πr2

t

4

)Nπr2
t

×
(

1− (2πr2
t−

πr2
t

4
)

)N−Nπr2
t

. (3.11)
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Figure 3.4: (a) Illustration of the area (represented by oblique lines) in which no nodes

are located when calculating P2,1, with 0 <d(i,j) ≤ 2rt. (b) Illustration of the area SII

(represented by oblique lines) with d(ns,1, ns,2) <rt, when calculating N II
r in Section 3.4.3.

According to L' Hôspital's rule, as N approaches infinity, the limit of P2,1 is

lim
N→∞

P2,1 = lim
N→∞

(
lnN

4N

)lnN

×
(

1−7 lnN

4N

)N− lnN

=0. (3.12)

The second event is that exactly the same intermediate nodes are chosen to forward

the received packet, which happens with probability P2,2. Since P2,2 is a function of P0 and

is much smaller than one, the limit of the probability that the second situation happens

is

lim
N→∞

P2= lim
N→∞

P2,1 × P2,2=0. (3.13)

The Third Situation

Any three or more rows in Φt are linearly dependent. Similar to the second situation,

the limit of the probability that the third situation happens is zero.

In conclusion, with a very high probability, the rows of the measurement matrix Φ are

linearly independent and the sensor readings x can be successfully recovered from y = Φx

with the proposed CNCDS scheme.
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3.3.6 Discussion of CNCDS Scheme under More Practical Con-

ditions

So far we have assumed that the sensor node can decode the received packets from

several other transmit nodes in the same time slot. Now, let’s consider a more practical

situation where each sensor node can only decode one packet from another sensor node

in one time slot. That is to say, packet collision will happen if one node receives several

packets in the same time slot, and no packet can be decoded correctly in this situation.

In addition, the situations of shadow fading and unreliable nodes are also considered for

the CNCDS scheme.

The CNCDS Scheme Considering Packet Collisions

We propose to change the way of choosing source nodes in the CNCDS scheme to

alleviate packet collisions. This is based on the observation that selecting proper nodes

to broadcast messages can efficiently reduce packet collisions in WSNs [93]. Firstly, we

geographically partition the entire network region into many disjoint and equally sized

cellular zones. In each zone, the node that is the nearest to the center of the zone will be

selected as a manager of the zone. Then, we randomly select the source nodes from the

managers of the zones rather than from all of the sensor nodes.

When possible packet collisions happen during the intermediate node forwarding pro-

cess, we assume that the corresponding nodes cannot decode the received packets and no

retransmission will occur. This assumption is based on the fact that the failures in recep-

tions for the colliding nodes do not reduce the rank of the measurement matrix, which

decides the CS recovery performance. In addition, we will investigate the performance of

the CNCDS scheme with packet collisions in Section 3.6 via simulations.
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The CNCDS Scheme with Shadow Fading

In the disk radio model two nodes can communicate with each other if their distance

is smaller than a constant rt, because only path loss is considered. Now, we consider

the effect of shadow fading on the performance of the CNCDS scheme. Assume that a

node can decode the received packet if the received power exceeds a predefined threshold.

Thus, when both path loss and log-normal shadowing are considered, the transmission

range rsd becomes a random variable

rsd = rt × 100.1×ϑdB/γ, (3.14)

where ϑdB is a Gaussian-distributed random variable with zero mean and standard devi-

ation σdB in dB, γ is the path loss exponent. In other words, the radio shape becomes

irregular when considering shadow fading. The performance of the CNCDS scheme under

shadow fading will be investigated in Section 3.6 via simulations.

The CNCDS Scheme with Unreliable Nodes

Since the CNCDS scheme is designed for hostile or catastrophic scenarios, we consider

the impact of unreliable nodes on the CNCDS scheme in this section. Assume that the

sensor nodes become not functional with a fixed probability pur. Then, the performance

of the CNCDS scheme with unreliable nodes is evaluated in Section 3.6 via simulations.

3.4 Derivation of Expressions for Nttot and Nrtot

To theoretically verify the efficiency of the proposed CNCDS scheme in reducing the

total number of transmissions Nttot and receptions Nrtot, we derive the expressions for

Nttot and Nrtot. In order to simplify the derivation, here we focus on the ideal CNCDS

scheme, where we consider the disk radio model without packet collisions or unreliable

nodes. Nttot and Nrtot of the CNCDS scheme under more practical conditions will be
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investigated via simulations in Section 3.6. In addition, the expressions for Nttot and

Nrtot also provide theoretical guidance on how to further improve the proposed CNCDS

scheme.

3.4.1 Preliminary Knowledge

The network model in Section 3.2.2 indicates that the deployed WSN obeys the random

geometric graph (RGG) [94] model G(N, rt), where N denotes the number of the nodes

(vertices) which are randomly and uniformly distributed in a given area S=1 × 1. If

d(i, j) ≤ rt, then there exists an edge between node i and node j in G(N, rt). To avoid

the edge effect, which means that the nodes close to the boundary of S will cover a smaller

area than expected, the torus convention [95] is adopted in this chapter. Specifically, the

torus convention turns the network area into a torus such that the region covered by any

node is considered completely within the system. Thus, the link probability plink, i.e., the

probability of the occurrence of any link, is

plink=
πr2

t

S
=πr2

t . (3.15)

3.4.2 Lemma for Expressions for Nttot and Nrtot

Lemma 3.1. Consider a randomly and uniformly distributed WSN with N sensor nodes,

which have identical transmission range rt, where r2
t > S · ln(N)/(πN) and S= 1 × 1 is

the size of the field in which the WSN is deployed. The total number of transmissions

Nttot and receptions Nrtot during the data dissemination of the CNCDS scheme can be

calculated respectively by

Nttot=N
II
t +N III

t =Ns+

Nf∑
q=1

N q
t , (3.16)

Nrtot=N
II
r +N III

r =N II
r +

Nf∑
q=1

N q
r , (3.17)
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where N II
t and N III

t (N II
r and N III

r ) are the number of transmissions (receptions) in Stage

II and Stage III respectively, N q
t (N q

r ) is the number of transmissions (receptions) in the

qth forwarding of Stage III, Nf is the number of forwarding in Stage III. The relation

between N q
t and N q−1

r is N q
t =P0 ×N q−1

r , and specially we have N0
r=N II

r .

Remark: In stage II, only the selected Ns source nodes transmit packets, thus we

have N II
t =Ns. In the CNCDS scheme, the reception nodes of the (q−1)th forwarding in

Stage III will broadcast their received packets with probability P0 in the qth forwarding,

therefore, we have N q
t =P0 ×N q−1

r . The value of the total number of forwarding in Stage

III is Nf=q
∗−1, where q∗ is the value which makes N q∗

t = P0N
q∗−1
r < 1. Consequently,

we have N III
t =

Nf∑
q=1

N q
t and N III

r =
Nf∑
q=1

N q
r .

3.4.3 Derivation of N II
r

Proposition 3.1. The number of receptions in Stage II of the CNCDS scheme is

N II
r =Ns ×Nπr2

t−C2
Nsπr

2
t ×N(π−3

√
3

4
)r2
t . (3.18)

Proof. As shown in Table 3.1, the data dissemination process in Stage II indicates that

N II
r equals to the number of the neighbors of all the source nodes, Ns,nei, minus the number

of the nodes which do not receive (combine) the heard packet because the condition (3.3)

is not satisfied, Nnr,II, i.e.,

N II
r =Ns,nei−Nnr,II. (3.19)

The number of the neighbors of all the source nodes Ns,nei is

Ns,nei=Ns ×N × πr2
t , (3.20)

where N × πr2
t denotes the average number of the neighbors of each node.

Based on the reception condition (3.3), the nodes in area SII (as shown in Figure

3.4(b)) share the node ID of ns,2 if node ns,2 firstly broadcasts its packet to its neighbors.
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So, Nnr,II is the number of common neighbors of two separate source nodes ns,1 and ns,2

with d(ns,1, ns,2) <rt, i.e.,

Nnr,II=Ns,link ×N × S̄II, (3.21)

where S̄II denotes the expected area jointly covered by two source nodes ns,1 and ns,2 with

d(ns,1, ns,2) <rt, Ns,link is the number of source node pairs which satisfy d(ns,1, ns,2) <rt ,

i.e., the number of links among the Ns source nodes,

Ns,link=C
2
Ns × plink=C

2
Ns × πr

2
t . (3.22)

As calculated in Section A.2, the value of S̄II is S̄II= (π−3
√

3
4

)r2
t . Therefore, we have

Nnr,II=C
2
Ns × πr

2
t ×N × (π−3

√
3

4
)r2
t . (3.23)

Combining (3.19), (3.20) and (3.23), we obtain (3.18).

3.4.4 Derivation of N q
r

Proposition 3.2. In the CNCDS scheme, the number of receptions in the qth forwarding

of Stage III is expressed as

N q
r = N q

t ×N 3
√

3
4
r2
t−C2

Nq
t

(14π−15
√

3)
36

r2
t ×N

πr2
t

6

−N q
t

(π−3
√

3/4)r2
t

πr2
t

×N πr2
t

6

−N q
t

3
√

3r2
t /16

πr2
t
×N(π−15

√
3

16
)r2
t

. (3.24)

Proof. The calculation of N q
r is also based on the reception condition (3.3). As shown in

Figure 3.5(a), the reception nodes in the qth forwarding of Stage III are located in the

area SIII, which is covered by the selected forward node nqt in the qth forwarding but not

covered by the node nq−1
t which transmits packet to nqt . Let N q

r,1 denote the number of

the reception nodes in areas such as SIII.

Besides the above basic situation, there are two special cases which need to be con-

sidered:
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Figure 3.5: (a) Illustration of area SIII, (b) Illustration of area Sc1 described in Case

One.

Case One

As shown in Figure 3.5(b), two selected forward nodes nqt,1 and nqt,2 in the qth forwarding

are the receive nodes of the same forwarding node nq−1
t in the (q−1)th forwarding. In such

a case, the reception nodes in area Sc1 (as shown in Figure 3.5(b)) will be counted twice.

Suppose that the number of reception nodes in areas such as Sc1 is N q
r,2, which should be

subtracted from N q
r,1.

Case Two

Figure 3.6 illustrates the second case, where the selected forward node nqt in the qth

forwarding is located at the intersection of two forwarding nodes nq−1
t,1 and nq−1

t,2 in the

(q−1)th forwarding. Due to the existence of nq−1
t,2 , the nodes in area Sc2 (represented by

the solid oblique lines in Figure 3.6) will not receive the heard packets in accordance with

the reception condition (3.3). To facilitate the calculation of area Sc2, this case is further

divided into two situations: (a) 0 <d(nq−1
t,1 ,n

q−1
t,2 ) <rt and (b) rt<d(nq−1

t,1 ,n
q−1
t,2 ) < 2rt. Cor-

respondingly, as shown in Figure 3.6(a) and Figure 3.6(b), the area of each situation is

denoted by Sc2a and Sc2b respectively. Suppose that the numbers of the reception nodes

in areas Sc2a and Sc2b are respectively denoted by N q
r,3 and N q

r,4. Again, N q
r,3 and N q

r,4
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Figure 3.6: Illustration of area Sc2 in Case Two, and Sc2 is further divided into two

situations: (a) Sc2a with 0 <d(nq−1
t,1 ,n

q−1
t,2 ) <rt , (b) Sc2b with rt<d(nq−1

t,1 ,n
q−1
t,2 ) < 2rt.

should also be subtracted from N q
r,1.

In summary, the number of receptions in the qth forwarding N q
r can be expressed as

N q
r=N q

r,1−N
q
r,2−N

q
r,3−N

q
r,4. (3.25)

The values of N q
r,1, N q

r,2, N q
r,3 and N q

r,4 are calculated in Appendix A.3. Combining (3.25),

(A.12), (A.16), (A.19) and (A.23), we can obtain (3.24).

3.4.5 Formal Expressions for Nttot and Nrtot

Theorem 3.2. Assume that all the N sensor nodes of a randomly and uniformly distribut-

ed WSN have identical transmission range rt, where r2
t > S · ln(N)/(πN) and S= 1 × 1

is the size of the field in which the WSN is deployed. If the CNCDS scheme is used to

fulfill the DDS function, then the total number of transmissions Nttot and receptions Nrtot

during the whole data dissemination are expressed respectively as

Nttot=Ns+

Nf∑
q=1

N q
t , (3.26)
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, (3.27)

where N q
t =P0 ×N q−1

r , N0
r=N II

r , the expression for N q
r is shown in (3.23), and Nf=q

∗−1

where q∗ is the value which makes N q∗

t = P0N
q∗−1
r < 1 as defined in the remark in Lemma

3.1.

Proof. Obviously, (3.26) can be directly obtained from (3.16). Based on (3.17) in Lemma

3.1, (3.18) in Proposition 3.1 and (3.24) in Proposition 3.2, we have the expression (3.27).

3.5 The Adaptive CNCDS Scheme

Based on the expressions for Nttot and Nrtot, we propose an adaptive CNCDS scheme.

3.5.1 Motivation of Adaptive CNDCS Scheme

The forwarding probability P0 is a very important parameter in the design of the

CNCDS scheme. From the relation N q
t =P0 ×N q−1

r and the derived expressions for Nttot

and Nrtot in (3.26) and (3.27), we can conclude that Nttot and Nrtot increase with the

increasing P0. Therefore, one way to further reduce Nttot and Nrtot is to reduce the

forwarding probability. However, to ensure sufficient delivery of the information packets,

the value of P0 should be bigger than a well-chosen probability P ∗0 [75], which equals to

the probability that a giant component appears in the random network [96]. A giant

component in a random graph is defined as a connected component which contains a

positive fraction of the entire graph’s vertices.
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Nevertheless, the uniform forwarding probability P0 is not optimal for a randomly

distributed WSN. The reason is that the ability to disseminate a message varies from

node to node in a random WSN since each node has a different number of neighbors.

Thus, if we want to achieve an average efficiency in delivering a message, the nodes

which have a larger number of neighbors can adopt a smaller forwarding probability. On

the contrary, the nodes which have a smaller number of neighbors can adopt a bigger

forwarding probability. Motivated by this observation, we propose the following adaptive

CNCDS scheme based on the expressions for Nttot and Nrtot.

3.5.2 Description of Adaptive CNDCS Scheme

Here, we assume that a node nk can acquire the knowledge of the number of its

neighbors Nnei,k. For example, Nnei,k can be obtained by letting node nk send a reference

signal to its neighbors, and then the nodes receiving the reference signal respond with a

feedback to nk. Thus, we have Nnei,k equal to the number of the feedbacks nk received.

In the adaptive CNCDS scheme, the adaptive forwarding probability Padp,k of node nk is

set to be inversely proportional to the number of its neighbors Nnei,k, i.e.,

Padp,k=
P ∗0
Nnei,k

, k=1, . . . ,N. (3.28)

The procedures of the adaptive CNCDS scheme are very similar to those of the CNCDS

scheme which are described in Table 3.1. The only difference is that, in the adaptive

CNCDS scheme the reception nodes in Stage II and Stage III broadcast their received

packets with an adaptive forwarding probability Padp,k = P ∗0 /Nnei,k, while in the CNCDS

scheme the reception nodes broadcast their received and merged packets with a uniform

probability P0=P ∗0 .
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3.5.3 Extended Research on Energy Efficiency of Wireless Net-

work

The above proposed schemes are designed to improve the energy efficiency of WSNs,

however, the energy efficiency of cellular network has also attracted a lot of attentions.

Thus, we also investigate the energy efficiency of cellular network based on relay technolo-

gy. Specifically, we consider three basic bidirectional relay transmission schemes (i.e., the

4 time-slot (4TS), 3 time-slot (3TS) and 2 time-slot (2TS) scheme) from the angle of relay

deployment. Since a realistic power consumption model is very important in analyzing

energy efficiency, and power amplifier (PA) consumes up to 70% of the total power, we

consider a realistic non-ideal PA model.

The derived closed-form expressions for the optimal relay deployment and the sim-

ulation results reveal the following two important conclusions. First, in bad channel

conditions (heavy path loss), the RN should be deployed much farther from the BS than

that under good channel conditions (small path loss). In other words, in bad channel

conditions, it is possible to improve the energy efficiency while enlarging the cell cover-

age. However, it will be challenging to extend the cell coverage and enhance the energy

efficiency simultaneously under good channel conditions. Second, the relay node should

be deployed nearer to base station with the non-ideal PA than that with the ideal PA,

and the optimal energy efficiency with non-ideal PA is much higher than that with ideal

PA.

Further details can be found in one of my papers, which is published in IEEE Trans-

actions on Vehicular Technology, 2013.
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3.6 Performance Evaluation

3.6.1 Simulation Parameters and Performance Metrics

Monte Carlo simulations are performed with MATLAB to evaluate the performance

of the proposed schemes against the existing schemes, and each simulation is repeated

3000 times. Firstly, N = 1000 nodes are randomly deployed in a normalized S = 1 × 1

area, i.e., the coordinates (Xi, Yi) of node i for i = 1, . . . , N are two-dimensional standard

uniformly distributed variables. Secondly, we assume that the sensor reading vector x is

compressible on the DCT basis and its coefficients satisfy (3.1) with p = 7/8. Then, the

proposed CNCDS scheme is simulated according to the pseudocode in Table 3.1, where

the forwarding probability is set to P0 = 0.24 according to [15], the number of nodes

queried by the mobile collector M ranges from 70 to 150 to observe the variance of the

performance, and the probability that each node selects itself as a source node P1 ranges

from 0.09 to 0.18 corresponding to the values of M from 70 to 150.

The simulation parameters for more practical scenarios are stated as follows: the

standard deviation σdB of the log-normal shadow fading is σdB = 2dB, the path loss

exponent is γ = 2.2, and the probability that the sensor node becomes not functional is

pur = 0.15. Finally, to evaluate the energy efficiency and the recovery performance of the

proposed schemes, we choose the following three performance metrics: the total number of

transmissions Nttot, the total number of receptions Nrtot and the recovery Mean Squared

Error (MSE) between the CS recovered sensor readings x̂ and the original sensor readings

x.

3.6.2 Schemes Used for Comparison

To verify the efficiency of the proposed CNCDS and adaptive CNCDS schemes, we

compare them with the Improved CStorage (ICStorage) scheme and NoInitCNCDS scheme.
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The ICStorage scheme is an improved version of the CStorage scheme [75], which is a very

efficient DDS scheme employing CS theory. However, the CStorage scheme still has an ex-

tremely high number of transmissions, e.g., 1.545×106 for 104 sensor nodes [75]. Hence, to

make the comparisons more comparable, we compare our proposed schemes with the IC-

Storage scheme, where we improve the CStorgae scheme by letting the intermediate nodes

forward their own sensor readings rather than just the received source sensor readings as

in [75]. The NoInitCNCDS scheme is the CNCDS scheme without the initialization stage,

which means that the sensor readings are not multiplied with the random coefficient ϕi,i

before they are broadcasted. Here, the NoInitCNCDS scheme is used to illustrate the

importance of the initialization stage of the CNCDS scheme.

3.6.3 Simulation Results

The Recovery MSE

Figure 3.7 shows the recovery MSE of the proposed CNCDS scheme and the adaptive

CNCDS scheme in comparison with the ICStorage scheme and NoInitCNCDS scheme.

Firstly, the CNCDS and adaptive CNCDS schemes outperform the ICStorage scheme and

the NoInitCNCDS scheme. Specifically, the CNCDS and the adaptive CNCDS scheme

reduce the CS recovery MSE by up to 76% compared with the ICStorage scheme. On

the other hand, the NoInitCNCDS scheme increases the recovery MSE by up to 5.6 times

compared with ICStorage scheme.

These different recovery performances are caused by the differences in the rank or

incoherence of their measurement matrices. Compared with the ICStorage scheme, the

CNCDS scheme decreases the recovery MSE by using a more strict reception condition

(3.3), which can increase the incoherence of the measurement matrix. However, the

NoInitCNCDS scheme increases the recovery MSE due to the linear dependency in the

rows of its measurement matrix, which can be inferred from (3.9) and (3.10) in the proof
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Figure 3.7: The recovery MSE vs. the number of nodes queried by the mobile collector

M .

of Theorem 3.1. The adaptive CNCDS scheme has the same recovery MSE as the C-

NCDS scheme since the adaptive forwarding probability does not change the rank of the

measurement matrix.

It is worthwhile to note that the CNCDS scheme considering packet collisions, shadow

fading and unreliable nodes has almost the same recovery performance as the ideal CNCDS

scheme. The reason is that the smaller transmission range due to shadow shading, the

failures in receptions resulting from packet collisions, and unreliable nodes do not decrease

the rank of the measurement matrix Φ. Specifically, based on the formulation process of

the measurement matrix and the proof of Theorem 3.1, no additional elements are added

to the measurement matrix Φ to make the rows of Φ linearly dependent.
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Total Number of Receptions Nrtot

Comparing Figure 3.8 with Figure 3.9, we find that the total number of receptions

Nrtot is much larger than the total number of transmissionsNrtot. Since the data reception

has almost the same energy cost as data transmission in WSNs, it is very important to

reduce the number of receptions to improve the energy efficiency. The simulation results

in Figure 3.8 show that, the NoInitCNCDS scheme, the CNCDS scheme and the adaptive

CNCDS scheme reduce Nrtot by up to 72%, 74% and 82% respectively in comparison

with the ICStorage scheme. The decrease of Nrtot for the NoInitCNCDS scheme and

the CNCDS scheme results from the reception condition (3.3). Compared with CNCDS

scheme, the adaptive CNCDS scheme reduced Nrtot by up to 32% due to the adaptive

forwarding probability.

The CNCDS scheme considering packet collisions has smaller Nrtot than the ideal

CNCDS scheme. This is because we only count the successful receptions in the CNCDS

scheme with packet collisions, whereas the actual number of receptions including the

failed ones is the same as the ideal CNCDS scheme. The CNCDS scheme with shadowing

fading and unreliable nodes also has smaller Nrtot than the ideal CNCDS scheme due

to the smaller transmission range and the failures in receptions of the unreliable nodes

respectively.

Total Number of Transmissions Nttot

Figure 3.8 shows that the adaptive CNCDS scheme requires the smallest number of

transmissions, whereas the ICStorage scheme requires the largest number of transmission-

s. Specifically, the NoInitCNCDS scheme, the CNCDS scheme and the adaptive CNCDS

scheme decrease Nttot by up to 53%, 55% and 84% respectively in comparison with the

ICStorage scheme. These sharp decreases in Nttot of the CNCDS scheme and the NoInitC-

NCDS scheme are due to the application of network coding and the reception condition
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Figure 3.8: The total number of receptions Nrtot vs. the number of nodes queried by

the mobile collector M .

(3.3). Due to the initialization stage of the CNCDS scheme, the CNCDS scheme needs

fewer transmissions than the NoInitCNCDS scheme. Compared with the CNCDS scheme,

the adaptive CNCDS scheme further reduces Nttot by up to 63% because of the adaptive

forwarding probability. The CNCDS scheme considering packet collisions, fading chan-

nel and unreliable nodes has smaller Nttot than the ideal CNCDS scheme because of the

smaller Nrtot and the probabilistic broadcasting mechanism.

Cost of the Proposed CNCDS Scheme

In this section, we analyze the cost of the CNCDS scheme in terms of its overhead.

As stated in Section 3.6.1 with N = 1000, the packet of each node i contains a set of

1-bit coefficients r(i).a1, a set of 10-bit node IDs r(i).a2 and the RLNC coded 64-bit

data r(i).a3. Simulation results show that the mean cardinality of r(i).a1 or r(i).a2 for



62 Chapter 3. Compressed Network Coding for Distributed Data Storage in WSNs

70 80 90 100 110 120 130 140 150

100

200

300

400

500

600

700

800

900

1000

1100

M

N
t to

t

 

 
ICStorage
NoInitCNCDS
Proposed CNCDS
Adaptive CNCDS
CNCDS considering collision
CNCDS with shadow fading
CNCDS with unreliable nodes

Figure 3.9: The total number of transmissions Nttot vs. the number of nodes queried

by the mobile collector M .

i = 1, . . . , N is 2.5 with variance 2.3, where the cardinality is defined as the number of

elements in a set. In other words, most of the nodes’ packets contain one 1-bit coefficient

set r(i).a1 and one 10-bit node ID set r(i).a2 with cardinality ranging from 1 to 6. The

average overhead is 2.5 × 1 + 2.5 × 10 = 27.5 bits for each RLNC coded 64-bit data,

which carries 64 × 2.5 = 160 bits of data on average. Thus, considering the equivalent

transmission ability, the overhead of the proposed CNCDS scheme is low.

In summary, with the same CS recovery performance as that of the CNCDS scheme,

the adaptive CNCDS scheme is capable of further reducing Nttot and Nrtot by up to

63% and 32% respectively. Compared with ICStorage, both CNCDS and the adaptive

CNCDS can simultaneously reduce Nttot, Nrtot and the CS recovery MSE. In addition,

when considering packet collisions, fading channel and unreliable nodes, the CNCDS

scheme is robust and can grantee the CS recovery performance due to the sparse property
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Figure 3.10: Comparison between the theoretical values and simulation results of the

total number of transmissions Nttot vs. the number of nodes queried by the mobile
collector M .

of the measurement matrix. Furthermore, the overhead of CNCDS is low in consideration

of its equivalent transmission ability.

Comparisons between Theoretical Analysis and Simulation Results

Figure 3.10 and Figure 3.11 compare the theoretical values of Nttot and Nrtot of the

proposed CNCDS scheme with its simulation results. Firstly, it can be concluded that the

theoretical analysis results coincide with the simulation results, which validates the effi-

ciency of the CNCDS scheme and the correctness of the expressions for Nttot and Nrtot in

(3.26) and (3.27). The small difference between the theoretical values and the simulation

results is caused by the approximations of S̄c1 and S̄c2a in the theoretical analysis. Specif-

ically, since the closed-form expressions for S̄c1 and S̄c2a are too complicated to obtain,

the average values are approximated by the corresponding maximum values.
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3.7 Summary

Exploiting the correlation of the sensor readings in WSNs, this chapter proposes the

CNCDS scheme based on the compressed sensing theory and network coding technology.

The proposed CNCDS scheme achieves high energy efficiency by reducing the total number

of transmissions Nttot and receptions Nrtot respectively. Theoretical analysis proves that

the CNCDS scheme guarantees good recovery performance. Based on the random graph

theory, we derive the expression for Nttot and Nrtot to verify the correctness and efficiency

of the CNCDS scheme. Furthermore, based on the expressions for Nttot and Nrtot, an

adaptive CNCDS scheme is proposed. Simulation results show that, the proposed CNCDS

scheme reduces Nttot, Nrtot and the CS recovery MSE by up to 55%, 74% and 76%

respectively in comparison with the conventional ICStorage scheme. In addition, the
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adaptive CNCDS scheme can further reduce Nttot and Nrtot by up to 63% and 32%

respectively compared with the CNCDS scheme.

After the study on applications of discrete CS in WSNs in this chapter, we will inves-

tigate the extension of discrete CS into the analog domain in the next chapter.
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Chapter 4

Structured Measurement Matrix

Based Analog Compressed Sensing

As described in Chapter 3, discrete CS is able to resolve some challenges faced by

wireless communications. Meanwhile, as one motivation behind CS is to realize the sub-

Nyquist sampling of analog signals, CS has been extended to the analog domain, i.e.,

analog CS. The objective of this chapter is to improve the recovery performance and

decrease the hardware complexity of analog CS based on a structured matrix.

4.1 Introduction

At the early stage of CS, most of the related work restricted their attentions to discrete

signals due to the simplicity in theoretical analysis and providing performance guarantees

[9]. Motivated by the desire to acquire extremely wideband analog signals at the sub-

Nyquist sampling rate, CS has been pushed forward to the analog domain. The first

challenge faced by analog CS is to find a suitable basis for the analog sparse signal.

Another challenge is that the random measurement matrix is not easy to implement with

hardware. However, if we can use a structured matrix to replace the random one, then

67
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we can simplify the hardware implementation of analog CS. Thus, in this chapter, we

will investigate analog CS from the angles of sparse signal representation and hardware

implementation of the measurement matrix.

Most of existing research on analog CS is based on the DFT basis. Most recently,

M.A. Davenport et al investigated analog CS in [97] using Discrete Prolate Spheroidal

Sequences (DPSSs) [98], which is also termed as the Slepian basis. One of the important

conclusions in [97] is that AIC can also be used to capture the multiband signal under

the Slepian basis, while [66] states that AIC can only be used to sample the multi-tone

signals under the DFT basis. In addition, the Slepian basis can substantially improve the

recovery performance of analog CS compared with the DFT basis. However, modulating

and merging the Slepian basis [97] produces a large-scale dictionary and a corresponding

large-scale measurement matrix, which results in a very high computational load in the

recovery stage. Thus, one objective of this chapter is to reduce the recovery computational

complexity while improving the recovery performance.

As stated in Section 2.2.2, the low computation load and simple hardware structure

make MWC a very attractive analog CS technique. However, when the multi-band signal

is not very sparse, MWC still requires a large number of parallel channels, with each

channel consisting of a mixing function pi(t), a LPF and an ADC. Two methods have

been proposed to reduce the number of parallel channels. One is the collapsing method [2]

proposed for MWC, the other is the segmented technique [67] proposed for the parallel

structure of AIC [9]. Unfortunately, both of these two methods reduce the hardware

complexity at the cost of a much higher sampling rate at each channel and increased digital

processing. Therefore, the second objective of this chapter is to reduce the hardware

complexity of MWC without increasing the sampling rate at each channel.

The main contributions of this chapter are stated as follows:

(1) To reduce the computational complexity, rather than using the modulated Slepi-
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an basis to represent the whole original multiband signal, this chapter proposes to use

the non-modulated Slepian basis to represent the modulated and band-limited multiband

signal. Based on the analytical derivation under the non-modulated Slepian basis, we

conclude that the direct recovery (DR) algorithm based on Moore-Penrose pseudo-inverse

cannot benefit from the Slepian basis. Thus, an interpolation recovery (IR) algorithm

is further proposed to take full advantage of the Slepian basis by interpolating the CS

recovered low-rate sequence into the Nyquist rate with the Slepian function. Simula-

tion results demonstrate that, the non-modulated Slepian basis combined with the IR

algorithm improves the recovery SNR by up to 35dB with a low recovery computational

load.

(2) To reduce the hardware complexity without increasing the sampling rate of each

channel, this chapter proposes the Random Circulant Orthogonal Matrix based Analog

Compressed Sensing (RCOM-ACS) scheme, which reduces the number of physical parallel

channels from m to 1. By replacing the independent mixing functions with random cyclic

shifts of the Zadoff-Chu sequence, the RCOM-ACS scheme reuses the LPF and ADC,

which have the same parameters at different channels of MWC. Theoretical analysis proves

that the measurement matrix of the RCOM-ACS scheme satisfies the RIP condition,

which is a standard tool for studying the effectiveness of the measurement matrix in CS.

Simulation results show that the RCOM-ACS scheme has the best recovery performance

compared with MWC and the collapsing method.

This chapter is organized as follows. Section 4.2 presents the analog CS method based

on the non-modulated Slepian basis. Section 4.3 describes the proposed RCOM-ACS

scheme. Finally, Section 4.4 concludes this chapter.
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4.2 Non-Modulated Slepian Basis Based Analog Com-

pressed Sensing

This section is organized as follows. Section 4.2.1 briefly introduces the CS theory and

the Slepian basis. Section 4.2.2 presents the analytical derivation with the non-modulated

Slepian basis. Section 4.2.3 investigates the recovery algorithm. Section 4.2.4 evaluates

the recovery performance.

4.2.1 Brief Introduction to Slepian Basis

This section briefly introduces the Slepian basis, which includes both the Prolate

Spheroidal Wave Functions (PSWFs) and DPSSs.

PSWFs

PSWF [99] answers the question of how nearly time-limited a band-limited signal can

be. Given any time interval T>0 and any bandwidth B>0, the PSWFs are the real

functions ψ0(t),ψ1(t),ψ2(t), · · · with the following properties:

i. For all values of t, ψi(t) is the real solution to

λiψi(t) =

∫ T

0

sin 2πB(t− s)
π(t− s)

ψi(s)ds, i = 0, 1, 2, · · ·, (4.1)

with λi being the ordered real positive eigenvalues of (4.1), i.e., λ0>λ1> · · · . The first

2TB eigenvalues are extremely close to one, while the others fall off to zero rapidly. The

parameter 2TB is termed as the time bandwidth product.

ii. In the real line, ψi(t) is band-limited in FB= [−B,B] and orthonormal, i.e.,

∫ ∞
−∞

ψi(t)ψj(t)dt =


0, i 6= j

1, i = j

i, j = 0, 1, 2, · · · . (4.2)
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iii. In the time interval 0 ≤ t ≤ T , the ψi(t) are orthogonal, i.e.,∫ T

0

ψi(t)ψj(t)dt =


0, i 6= j

λi, i = j

i, j = 0, 1, 2, · · · . (4.3)

From the above property ii and property iii, we can conclude that the PSWFs are

doubly orthogonal and form the Slepian basis. Thus, a band-limited signal f(t) can be

approximated by

f(t) =
J−1∑
j=0

βjψj(t), (4.4)

with βj = 1
λj

∫ T
0
f(t)ψj(t)dt and J ≥ 2TB.

DPSSs

DPSS [98] is the discrete case of PSWF. For each k=0,1, . . . ,N−1, DPSSs are the real

solutions of
N−1∑
n′=0

sin 2πW (n− n′)
π(n− n′)

vk[n
′] = λkvk[n], (4.5)

for n = 0,±1,±2, . . ., where 0 < W < 1/2 is the normalized bandwidth. The DPSSs are

normalized so that
N−1∑
j=0

v2
k[j] = 1. (4.6)

Similar to PSWFs, the DPSSs are doubly orthogonal:
N−1∑
n=0

vi[n]vj[n] = λi

∞∑
n=−∞

vi[n]vj[n] = δij, (4.7)

for i, j = 0, 1, . . . , N − 1.

Then, using the Slepian basis in the discrete form, a band-limited sequence hn for

n = 0, 1, 2, . . . can be approximated as

hn =
J−1∑
j=0

γjvj[n], (4.8)

with γj=
N−1∑
n=0

hnvj[n] and J ≥ 2NW .
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4.2.2 Analytical Derivation of MWC under Slepian Basis

This section analyzes the MWC with the non-modulated Slepian basis and derives its

system expression in matrix form.

Signal Model and System Description

Let x(t) be a continuous-time signal which is band-limited to F = [−fnyq/2, fnyq/2],

where fnyq is the Nyquist sampling rate of x(t). In the observation time [0, T ], x(t) is

multiband if its Fourier transform X(f) contains a union of K disjoint bands in F , where

the bandwidth of each band does not exceed 2B.

As described in Section 2.2.2, the expression for the mixing function can be described

as

pi(t) =

L0∑
l=−L0

aile
j2π l

Tp
t
, (4.9)

with ail is calculated by (2.37) and L0 = d(fnyq + fs)/2fpe − 1 and L=2L0+1. The

necessary condition for successful recovery is fs ≥ fp, M ≥ L and m ≥ 2K, and the

simplest choice is M=L and fs=fp ' 2B [2], which are also the settings in this chapter.

Derivation with Non-modulated Slepian Basis

From Figure 2.3, it can be concluded that yi(t) is actually a time-limited and band-

limited version of x̃i(t). Define the time-limit operator as

D{x(t)} =


x(t), 0 ≤ t ≤ T

0, others

, (4.10)

and the band-limit operator is

B{x(t)} =

∫ fs/2

−fs/2
X(f)ej2πftdf. (4.11)
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Thus, yi(t) can be expressed as

yi(t)=BD{x̃i(t)} =BD{x(t)pi(t)}. (4.12)

Based on the Fourier expansion and approximation of pi(t) in (4.9), we rewrite (4.12) as

yi(t) =
L0∑

l=−L0

ail · BD{x(t)ej2πlfpt}

=
L0∑

l=−L0

ail
∫ T

0
x(s)ej2πlfps

∫ fs/2
−fs/2 e

j2πf(t−s)dfds

=
L0∑

l=−L0

ail
∫ T

0
sinπfs(t−s)
π(t−s) x(s)ej2πlfpsds

. (4.13)

Then, based on (4.1), the band-limited yi(t) can be expressed by as

yi(t) =

L0∑
l=−L0

ail

J−1∑
j=0

cljψj(t), (4.14)

with J ≥ 2TB= 2NsTsfs/2=Ns, and the coefficient clj is

clj =
1

λj

∫ T

0

x(t)ej2πlfptψj(t)dt. (4.15)

Therefore, the expression of the sampled sequence yi[n] is

yi[n] = yi[nTs] =

L0∑
l=−L0

J−1∑
j=0

ailcljψj[nTs]. (4.16)

The matrix expression of the output yi[n] for n=1, . . . Ns and i=1, . . . ,m is

Y = ACΨ, (4.17)

where Y is a m × Ns matrix with yin=yi[nTs], A is a m × L with elements ail, C is a

L × J matrix with elements clj, and Ψ is a J × Ns non-modulated Slepian basis, whose

element in the jth row and nth column is ψjn=ψj[nTs].

4.2.3 Recovery Algorithm

This section investigates how to reconstruct x(t) from the measurements yi[n] with

n=1, . . . N and i=1, . . . ,m.
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Problem Formulation

Since fs=fp, x(t) in the observation time interval [0, T ] can be expressed as

x(t)=
L0∑

l=−L0

e−j2πlfpt · BD{x(t)ej2πlfpt}

=
L0∑

l=−L0

e−j2πlfpt ·
J−1∑
j=0

cljψj(t)

. (4.18)

The digital sequence x[nTnyq] at the Nyquist rate is

x[nTnyq] =

L0∑
l=−L0

e−j2πlfpnTnyq ·
J−1∑
j=0

cljψj[nTnyq], n = 0, 1, . . . , Nnyq. (4.19)

Then, the matrix form of the above equation (4.19) is

x=diag(ECV), (4.20)

where function diag(·) returns the main diagonal of the input matrix, x is the Nnyq × 1

vector with xn = x[nTnyq], matrix E is a Nnyq × L with elements e−j2πlnfp/fnyq , matrix C

is a L× J matrix which is the same as that defined in (4.17), and matrix V is a J ×Nnyq

matrix with vjn=ψj[nTnyq].

DR Algorithm

1) Algorithm Description: Since x(t) is a multiband signal and is K-block-sparse in

F , it can be concluded from (4.14) that only O(K) rows of the L × Ns matrix CΨ are

non-zero or have large amplitudes. Thus, problem (4.17) satisfies the MMV [100] model

and the M-OMP algorithm [100] can be used to recover the positions of the non-zeros

rows (support S) of CΨ.

Once we get the support S, the estimation of the signal at the non-zero rows is

X̂s=A+
s Y, where As contains the columns of A indexed by S, and A+

s is the Moore-

Penrose pseudo-inverse of As. Then, the estimate of the coefficient matrix C at the non-

zero rows is Ĉs=A+
s YΨ+. According to (4.20), the estimation of the digital sequence x
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with DR algorithm is

x̂=diag(EsĈsV) =diag(EsA
+
s YΨ+V), (4.21)

where Es contains the rows of E indexed by support S.

2) Performance Analysis: According to the analysis in [97], to acquire the extremely

good recovery performance, the number J of the DPSS vectors in the J × Ns Slepian

basis Ψ should be larger than 2TB. That is to say, to gain any benefit from the Slepian

basis, J > 2TB = Ns should be chosen. However, since the estimation of x in the DR

algorithm is based on the calculation of Ψ+, for which, if J>Ns, Ψ is not a full row rank

matrix anymore and ΨΨ+ 6= I. Then, the estimation

Ĉs=A+
s YΨ+=A+

s ACΨΨ+=CsΨΨ+ 6= Cs (4.22)

will lead to a large deviation. Furthermore, according to (3.26) and the matrix theory,

the estimation error of x̂=diag(EsĈsV) will get larger as J increases.

Proposed Algorithm

To solve the problem confronted in the DR algorithm, we propose the following IR

algorithm to improve the recovery performance. Note that, both the basis matrix V and

Ψ are the sampled data of the PSWFs with the same time bandwidth products, which

are calculated by

2NnyqW= 2× T

Tnyq
× B

fnyq
=2TB. (4.23)

Since matrix A satisfies the RIP condition [20], As is a full row rank matrix and the

estimation of Xs is

X̂s=A+
s Y=A+

s AsCsΨ=CsΨ, (4.24)
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we can interpolate X̂s=CsΨ with the Slepian basis to obtain the estimation Θ̂s of CsV.

Then, the estimation of x is

x̂=diag(EsΘ̂s). (4.25)

4.2.4 Performance Evaluation

This section evaluates the recovery performance of MWC under the non-modulated

Slepian basis with the DR recovery algorithm and the IR recovery algorithm respectively.

Simulation Parameters

Consider the following multiband signal x(t)

x(t) =
∑K/2

i=1
sinc(2B(t− τi)) cos(2πfi(t− τi)), (4.26)

where K = 4, B = 25MHz and fnyq=10GHz, τi is the time offset and fi is the carrier

frequency. The system parameters are set as follows: the the number of the parallel

channels is m=30, fs=fp=50MHz, and M = L = 195. The number of samples at each

channel is set to be Ns = 91, and then we have Nnyq = Ns×M = 17745. The performance

metric is the recovery SNR which is defined as

SNRrec=20log10

(
‖x‖2

‖x− x̂‖2

)
dB. (4.27)

Simulation Results

Firstly, Figure 4.1 illustrates the difference between the original signal and the best

recovered signal with different basis and recovery algorithms in the noise-free environment.

As shown in Figure 4.1, for the non-modulated Slepian basis, the IR algorithm can almost

exactly reconstruct the original signal, while the DR algorithm has small recovery errors in

both the main peaks and the side-lobes. For the DFT basis, although it does successfully



4.2 Non-Modulated Slepian Basis Based Analog Compressed Sensing 77

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-200

-150

-100

-50

0

50

100

150

Normalized frequency

S
pe

ct
ru

m
 A

m
pl

itu
de

Original
DFT basis
DR algorithm with Slepian basis
IR algorithm with Slepian basis

(d
B)

Figure 4.1: Illustration of the recovered signal with the non-modulated Slepian basis

and the DFT basis, compared with the original signal.

capture the main peaks of each band, it misses all of the side-lobes of each band and has

a number of spurious artifacts in regions where there is no significant frequency content

in the original signal.

Figure 4.2 shows the recovery SNR of different recovery algorithms with different sizes

of the Slepian basis in the noise free environment. The time bandwidth product of the

non-modulated Slepian basis is 2NnyqW = 91. Firstly, it can be seen from Figure 4.2 that,

the recovery SNR of the IR algorithm increases when the size of the Slepian basis J slightly

exceeds the time-bandwidth product 2NnyqW , and then the recovery SNR decreases a little

with the increase of J . Secondly, the recovery SNR with the DR algorithm decreases as

J increases, which coincides with the analysis in Section 4.2.3. Obviously, the recovery

SNR of the estimation with DFT basis remains constant as J increases.

Figure 4.3 shows the recovery SNR with different basis and recovery algorithms when

SNR=10dB. By comparing Figure 4.3 with Figure 4.2, we can see that the recovery SNR

of different basis and different algorithms deteriorates when noise is present. In the noisy
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Figure 4.2: Comparison of the recovery SNR under the Slepian basis and the DFT basis

versus the size of the Slepian basis in the noise-free environment.
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Figure 4.3: Comparison of the recovery SNR under the Slepian basis and the DFT basis

versus the size of the Slepian basis with SNR=10dB.

environment, compared with the DFT basis, the non-modulated Slepian basis improves

the recovery SNR by 13 dB, while it improves the recovery SNR by up to 35dB in the
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noise-free environment.

Finally, we compare the size and complexity of the non-modulated Slepian basis in this

chapter with the MM-Slepian dictionary in [97]. The size of the non-modulated Slepian

basis Φ in this chapter is J × Ns = 96 × 91, and the size of the measurement matrix

A is m ×M = 30 × 195. However, under the same simulation parameters, the size of

the MM-Slepian dictionary and the corresponding measurement matrix in [97] should be

respectively Nnyq × Nnyq = 17745 × 17745 and Nnyq
s
× Nnyq = 17745

s
× 17745, where s is

the sub-sampling factor. According to the analysis of BP and OMP recovery algorithm

in [6] and [5], this significant dimension reduction will lead to a very remarkable decrease

of the computational load in the recovery stage.

4.3 Random Circulant Orthogonal Matrix Based Ana-

log CS

This section is organized as follows. Section 4.3.1 describes the RCOM-ACS scheme.

Section 4.3.2 formulates the measurement matrix of RCOM-ACS scheme. Section 4.3.3

proves that the measurement matrix of the RCOM-ACS scheme satisfies the RIP con-

dition. Section 4.3.5 presents the short processing time RCOM-ACS (SRCOM-ACS)

scheme. Then, the performances of the proposed schemes are evaluated in Section 4.3.6.

4.3.1 Description of RCOM-ACS Scheme

This section presents the system model of the RCOM-ACS scheme and its mathemat-

ical formulation.
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Figure 4.4: Block diagram of RCOM-ACS scheme.

System Model

Consider a multiband signal x(t), whose frequency supports reside in a union of r

disjoint bands which are spread over a very wide spectrum F = [−fnyq/2, fnyq/2], with

the bandwidth of each band not exceeding W .

Figure 4.4 illustrates the work process of the RCOM-ACS scheme. Firstly, at the

ith time slice, the delayed input signal x(t) is multiplied by mixing function pizc(t) with

the aid of a time switch, which is turned on for ton time and turned off for toff time

alternately, where ton is equal to the time taken by the multiplication of x(t) and pizc(t),

toff equals the processing time of the LPF and ADC. Secondly, the mixed signal x̃i(t) is

filtered by the LPF with cutoff frequency 1/2Ts. Finally, the filtered signal is sampled at

rate fs = 1/Ts and the sampled data are yi[n] with i = 1, . . . ,m.

To be specific, the input signal is delayed for (i− 1)(ton + toff ) time to make sure that

the mixing function pizc(t) is multiplied with the same signal x(t), where i = 1, ...,m. The

mixing function pizc(t) is the ith cyclic shift of the Tp-periodic Zadoff-Chu sequence pzc(t),

where the number of shifts ωi is generated by the random integer generator.
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Mathematic Formulation of the RCOM-ACS Scheme

The expression of the Zadoff-Chu sequence pzc(t) is

pzc(t) = βk = e−j
π
M
uk(k+1), k

Tp
M
≤ t ≤ (k + 1)

Tp
M
, (4.28)

where 0 ≤ k ≤M −1, u is an integer and denotes the root of pzc(t), M is a prime number

and represents the length of pzc(t), the expression of pizc(t) is

pizc(t) = αik, k
Tp
M
≤ t ≤ (k + 1)

Tp
M
, (4.29)

where 1 ≤ i ≤ m, αi = [αi0, ..., αi(M−1)]
T is the ωi-cyclic shift of β = [β0, ..., βM−1]T , and

ωi obeys the discrete uniform distribution on {0, ...,M − 1}.

Since pizc(t) is Tp-periodic, it has a Fourier expansion pizc(t) =
∑∞

l=−∞ cile
j2πlt/Tp . Then,

the Fourier transform of x̃i(t) = x(t)pizc(t) is

X̃i(f) =
∑∞

l=−∞
cilX(f − lfp), (4.30)

where fp = 1/Tp, X(f) is the Fourier transform of x(t). Thus, the output of LPF in

frequency domain is

Yi(e
j2πfTs) =

∑L0

l=−L0

cilX(f − lfp) , f ∈ Fs, (4.31)

where Fs = [−fs/2, fs/2], Yi(e
j2πfTs) is the discrete-time Fourier transform (DTFT) of

yi[n], L0 is chosen as an integer satisfying L0 ≥ d(fnyq + fs)/2fpe − 1 so that (4.31)

contains all nonzero contributions of X(f) over Fs.

4.3.2 Measurement Matrix of RCOM-ACS Scheme

To derive the expression of the measurement matrix of the RCOM-ACS scheme, we

rewrite (4.31) as

y(f) = Az(f), f ∈ Fs, (4.32)



82 Chapter 4. Structured Measurement Matrix Based Analog Compressed Sensing

where A is the m × L measurement matrix with Ail = ci,−l = c∗il and L = 2L0 + 1,

y(f) = [y1(f), . . . , ym(f)]T with yi(f) = Yi(e
j2πfTs), f ∈ Fs, z(f) = [z1(f), . . . , zL(f)]T

with zl(f) = X(f + (l − L0 − 1)fp), f ∈ Fs.

To investigate whether the measurement matrix A satisfies the RIP condition, matrix

A is further decomposed into a combination of structured matrices as follows.

Proposition 4.1. The measurement matrix A of RCOM-ACS scheme can be decomposed

into

A = RΩBGD, (4.33)

where RΩ is an m×M random selector, B is a M ×M circulant orthogonal matrix, G is

a M ×L reordered column subset of a M ×M Discrete Fourier Transform (DFT) matrix,

D is a L× L diagonal matrix with non-zero element in diagonal.

Proof. The (i, l)th entry of the m × L matrix A is Ail = ci,−l = c∗il, where i = 1, . . . ,m,

l = 1, . . . , L and cil is the Fourier coefficient of the Tp-periodic function pizc(t):

cil =
1

Tp

M−1∑
k=0

αike
−j 2π

M
lk

∫ Tp
M

0

e
−j 2π

Tp
lt
dt. (4.34)

The integral can be calculated as follows:

dl =
1

Tp

∫ Tp
M

0

e
−j 2π

Tp
lt
dt =

 1/M l = 0

(1− θl)/(2jπl) l 6= 0
, (4.35)

where θ = e−j2π/M , then we have

cil = dl
∑M−1

k=0
αikθ

lk. (4.36)

For i = 1, ...,m and k = 0, ...,M−1, αik forms a m×M matrix S with Sik = αik. Since

αi = [αi0, ..., αi(M−1)]
T is the ωi-cyclic shift of β = [β0, ..., βM−1]T , matrix S is actually a

row sub-matrix of the circulant matrix B indexed by the set Ω = {ω1, ..., ωm}, where B
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is

B =



β0 β1 · · · βM−1

βM−1 β0 · · · βM−2

...
...

...
...

β1 β2 · · · β0


. (4.37)

Define RΩ ∈ Rm×M as an operator restricting a vector to the entries listed in Ω, we

have S = RΩB. Let gi = [θ0·i, ..., θ(M−1)·i]T and G = [gL0 , ...,g−L0 ], it is required that

M ≥ L to make sure that G contains no identical columns. For simplicity, we assume

M = L in this chapter since G is unitary when M = L. Then, according to (4.36), we

have A = RΩBGD, where D = diag(dL0 , ..., d−L0).

4.3.3 Conditions for Successful Recovery

As stated in Section 2.1.2, the RIP condition is the necessary condition for the success-

ful recovery of the sparse signal. In analog CS, besides the RIP condition, the parameters

of the devices, i.e., the cutoff frequency of LPFs and the sampling rate of the low-rate

ADCs, should also meet some conditions. Thus, we firstly specify the conditions for suc-

cessful recovery of the RCOM-ACS scheme, and then we extend the RCOM-ACS scheme

to a more general form while guaranteeing its recovery performance.

Conditions for Successful Recovery of RCOM-ACS Scheme

The conditions for successful recovery in the RCOM-ACS scheme are stated as follows.

Theorem 4.1. For any ε > 1 and r > 2, when M is prime and equal to L, if fs ≥ fp > W

and the number of rows in matrix A satisfies

m ≥ (Cεr logM) log(Cεr logM)log2r, (4.38)

then the measurement matrix A = RΩBGD satisfies the RIP condition (2.6) with prob-

ability at least 1− 5e−cε, and z(f) is the unique r-sparse solution to (4.32), where C and

c are some absolute constants.
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Proof. The proof of Theorem 4.1 is divided into the following two parts:

1) Conditions for Device Parameters:

The choice of fp > W ensures that every band contributes only a single non-zero value

to z(f). In other words, the choice of fp > W guarantees that z(f) is r-sparse in f ∈ Fs.

If fs < fp, then the sum in (4.31) lacks contribution from X(f) for some f ∈ F . Thus,

fs ≥ fp is necessary.

2) RIP condition for RCOM-ACS scheme:

Since the diagonal matrix D has nonzero diagonals, the support of Du is equal to that

of u for any vector u. Therefore, we just need to verify that RΩBG satisfies the RIP

condition.

The restricted isometry inequality (2.2) indicates that the singular values of AT lie

between
√

1− δr and
√

1 + δr. Notice that, for any m×M matrix P, its singular values

remain unchanged when multiplying P by a unitary matrix U. Therefore, PU will satisfy

the RIP condition if P does. Since M = L, matrix G is unitary. Because M is prime,

the circularly shifted versions of Zadoff-Chu sequence are orthogonal to each other, i.e.,

matrix B is unitary.

Then, A = RΩBGD will satisfy the RIP condition if RΩ does. According to [43] (The-

orem 3.3), for any ε > 1 and r > 2, if the cardinality of a random subset Ω, i.e., the num-

ber of rows in random selector matrix RΩ, satisfies m ≥ (Cεr logM) log(Cεr logM)log2r,

then RΩ will satisfy the RIP condition (2.6) with probability at least 1− 5e−cε, where C

and c are some absolute constants.

Therefore, if M is prime and M = L, fs ≥ fp > W , m satisfies (4.38), then the

measurement matrix A satisfies the RIP condition and z(f) is the unique r-sparse solution

of (4.32).

Remark:

(1) The polynomial probability of success 1 − M−O(1) can be obtained by letting

ε = O(logM), the required number of measurements is m = O(rlog2M log3r).

(2) The RCOM-ACS scheme accelerates the recovery algorithms compared with MWC,
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because the measurement matrix A = RΩBGD admits the fast matrix-vector multipli-

cation due to the existence of circulant matrix B.

4.3.4 Extensions of RCOM-ACS Scheme

Besides the Zadoff-Chu sequence, this chapter extends the RCOM-ACS scheme by

allowing the mixing function to be any other sequence whose Fourier transform has the

unit magnitude. The mathematic formulation and the proof of this conclusion are stated

as follows.

Lemma 4.1. Suppose h is an M × 1 sequence vector, h(t) is the corresponding piecewise

constant function. Let Λ = diag(FMh), where FM is the DFT matrix with FM(i, k) =

1/
√
M × e−j2π(i−1)(k−1)/M . If Λ∗Λ = I, then h(t) can be used as the mixing function

of RCOM-ACS scheme, and the measurement matrix generated by h satisfies the RIP

condition.

Proof. The circulant matrix H generated by circularly shifting h can be diagonalized by

the DFT matrix FM , i.e., H = F∗MΛFM . If Λ∗Λ = I, then

H∗H = FMΛ∗F∗MFMΛF∗M = I. (4.39)

That is to say, the circulant matrix H is unitary. According to Theorem 4.1, if m satisfies

(4.38), then the measurement matrix A = RΩHGD satisfies the RIP condition and z(f)

is the unique solution to y(f) = RΩHGDz(f), with h(t) being the mixing function of

RCOM-ACS scheme.

4.3.5 Fast Processing RCOM-ACS Scheme

Although the RCOM-ACS scheme reduces the number of physical parallel channels

from m to 1, it does increase the processing time. To make a good tradeoff between

hardware complexity and processing time, a SRCOM-ACS scheme is proposed.
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Figure 4.5: Block diagram of SRCOM-ACS scheme.

Description of SRCOM-ACS scheme

Figure 4.5 illustrates the SRCOM-ACS scheme, which uses Q physical parallel chan-

nels, with each physical channel equivalent to m/Q channels of MWC, assuming m/Q is

an integer. For q = 1, . . . , Q and i
′

= 1, . . . ,m/Q, the mixing functions pq,i
′

zc (t) are the

ωq,i′ -cyclic shifts of the same Zadoff-Chu sequence pzc(t), the numbers ωq,i′ are generated

by the same random integer generator and input into each channel by a serial-parallel

converter.

The operational process of the SRCOM-ACS scheme is similar to that of RCOM-ACS

scheme. Firstly, at the i
′th cyclic shift of the qth channel, the input signal is delayed for

(i
′ − 1)(ton + toff ) time. Secondly, the delayed input signal x(t) is multiplied by mixing

function pq,i
′

zc (t) with the aid of a time switch. Thirdly, the mixed signal x̃q,i′ (t) is filtered

by the LPF with cutoff frequency 1/2Ts. Finally, the filtered signal is sampled at rate
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fs = 1/Ts and the sampled data are yq,i′ [n].

Discussion of SRCOM-ACS Scheme

This subsection discusses the choice of the mixing function and the RIP condition for

the SRCOM-ACS scheme.

1) Choice of the Mixing Function. The cross correlation between two prime-length

(M) Zadoff-Chu sequences, i.e., different u, is constant 1/
√
M . Therefore, the circulant

matrix generated by two or more prime length Zadoff-Chu sequences is not orthogonal

and will not meet the RIP condition according to Theorem 4.1. Therefore, as shown

in Figure 4.5, the same Zadoff-Chu sequence is adopted in the SRCOM-ACS scheme to

produce the mixing functions for the Q parallel channels.

2) RIP condition for SRCOM-ACS Scheme. Since the SRCOM-ACS scheme generates

the mixing functions by randomly and circularly shifting the same Zadoff-Chu sequence, it

has the same mathematical formulation and measurement matrix as those of the RCOM-

ACS scheme. Consequently, the measurement matrix of the SRCOM-ACS scheme satisfies

the RIP condition and the performance of the SRCOM-ACS is the same as that of the

RCOM-ACS scheme.

4.3.6 Performance Evaluation

The performances of the proposed schemes are evaluated against MWC and the col-

lapsing method. The performance metric is the empirical recovery rate, which is defined

as the percentage of correct support recovery.
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Table 4.1: Cost of Different Schemes

Scheme Number m′ Processing time Sampling rate

MWC m t0 51.3MHz

Collapsing m/5 t0 + ts + to 256.4MHz

RCOM-ACS 1 mt0 51.3MHz

SRCOM-ACS Q (m/Q) t0 51.3MHz

Simulation Parameters and Recovery Algorithms

The schemes are tested on the noisy signal x(t) +w(t), where w(t) is zero-mean white

Gaussian noise and the expression of x(t) is

x(t) =
∑r/2

i=1
sinc(W (t− τi)) cos(2πfi(t− τi)), (4.40)

in which r = 6, τi is the time offset, W = 50MHz, fi is chosen uniformly and randomly

in F = [−5GHz, 5GHz], the signal-to-noise ratio (SNR) is 10dB.

The problem (4.32) to be solved in the RCOM-ACS scheme is actually an IMV problem

[101], because f is continuous and Fs has infinite cardinality. To reconstruct z(f) from

(4.32), we use the method in [2] and [101] to firstly convert the IMV problem (4.32)

into a MMV [100] problem. Then, MMV-Basis Pursuit (M-BP) [102] recovery algorithm

and MMV-Orthogonal Matching Pursuit (M-OMP) [102] recovery algorithm are used to

reconstruct x(t) respectively.

Simulation Results

The costs of different schemes are shown in Table 4.1, where t0 denotes the processing

time of MWC, ts and to represent the additional signal processing time and observation

time for the collapsing method respectively. The number of actual physical parallel chan-

nels m′ of MWC, the collapsing method, the RCOM-ACS and SRCOM-ACS scheme are
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Figure 4.6: Performance comparison among RCOM-ACS scheme, MWC and the col-

lapsing method with M-BP recovery algorithm.

m, m/5, 1 and Q respectively, where m is the number of equivalent parallel channels for

the different schemes. Therefore, MWC has the highest hardware complexity and RCOM-

ACS has the lowest hardware complexity. Conversely, MWC has the shortest processing

time, while the RCOM-ACS scheme and the collapsing method have a much longer pro-

cessing time. What’s more, the collapsing method has the highest sampling rate at each

parallel channel, while RCOM-ACS amd SRCOM-ACS scheme have the same sampling

rate as that of MWC.

Figure 4.6 and Figure 4.7 report the percentage of correct recovery for various numbers

m with the M-BP recovery algorithm and the M-OMP recovery algorithm, respectively.

It is evident that, with both of the two recovery algorithms, the RCOM-ACS scheme has

the best recovery performance compared with MWC and the collapsing method, while the

collapsing method degrades the recovery performance compared with MWC. Specifically,

the RCOM-ACS scheme outperforms the collapsing method for each m and has better

recovery performance than MWC especially when m is small. For the RCOM-ACS and
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Figure 4.7: Performance comparison among RCOM-ACS scheme, MWC and the col-

lapsing method with M-OMP recovery algorithm.

MWC schemes, the M-OMP recovery algorithm outperforms the M-BP recovery algorithm

when m is small, whilst M-BP recovery algorithm has better performance than M-OMP

when m is large. For the collapsing method, the M-OMP recovery algorithm outperforms

the M-BP recovery algorithm for each m. As stated in section 4.3.5, the SRCOM-ACS

scheme has the same recovery performance as that of the RCOM-ACS scheme and strikes

a good balance between processing time and hardware complexity.

4.4 Summary

Based on the structured matrix, this chapter improves the recovery performance and

reduces the hardware complexity of analog CS.

Firstly, to improve the recovery performance while keeping low computational com-

plexity, this chapter proposes to use the non-modulated Slepian basis to represent the

modulated and bandlimited version of the multiband signal based on MWC rather than
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using the MM-Slepian dictionary to represent the whole original multiband signal. Fur-

thermore, based on the derivation of MWC under the non-modulated Slepian basis, we

propose an IR recovery algorithm to take full advantage of the Slepian basis. Simula-

tion results verify that, compared with the DFT basis, the non-modulated Slepian basis

combined with the IR algorithm improves the recovery SNR by up to 35 dB with a low

recovery computational load in the noise-free environment.

Secondly, to reduce the hardware complexity of analog CS, this chapter proposed the

RCOM-ACS scheme, which reduces the number of parallel channels in MWC from m to 1

at the expense of a longer processing time. It is proved that if m = O(rlog2M log3r), then

the m ×M measurement matrix A = RΩBGD of the RCOM-ACS scheme satisfies the

RIP condition with probability 1−M−O(1). Simulation results show that the RCOM-ACS

scheme has the best recovery performance compared with the MWC scheme and the col-

lapsing method. Furthermore, to balance the processing time with hardware complexity,

a SRCOM-ACS scheme is proposed, which has the same recovery performance as that of

the RCOM-ACS scheme.

After the study of analog CS in this chapter, we will discuss the application of analog

CS in wireless networks of analog CS in the next chapter.
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Chapter 5

Compressed Wideband Spectrum

Sensing for CRNs

After the research on analog CS in Chapter 4, in this chapter we will investigate the

application of analog CS in CRs, especially in WSS.

5.1 Introduction

In the early stage of wireless communications, the wireless spectrum were uniformly

assigned and managed by governments. With the rapid development of wireless com-

munications, the limited spectrum can not meet the wide bandwidth and high data rate

requirements. However, according to the report from the Federal Communications Com-

mission (FCC) [33] in 2002, only some frequency bands are heavily used, while the other

frequency bands are largely unoccupied most of the time or only partially occupied. In

other words, spectrum access is a more significant problem than physical scarcity of spec-

trum. Therefore, CR [34] [24] is proposed to allow the unlicensed (secondary) users to

opportunistically access the temporarily unused spectrum. So, the first step for CR is to

detect spectrum holes, i.e., spectrum sensing.

93
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Generally speaking, spectrum sensing techniques can be classified as the following three

kinds: energy detection [103], coherent detection [104] and characteristic detection [105].

The above three kinds of methods are designed for narrow-band signals. Recently, WSS

has attracted great attention for its advantages and challenges. Owing to the spectrum

awareness over a wide frequency band, WSS provides more efficient spectrum access in

CR networks than narrow band detection [24].

Unfortunately, WSS is currently prevented from being put in practice mainly due to

the following challenges. Firstly, WSS requires an extremely high sampling rate ADC

(analog-to-digital converter), which is very expensive or even infeasible [106]. Secondly,

for spectrum detection, there is an SNR wall below which detection becomes impossi-

ble [107]. Thirdly, WSS also suffers from noise uncertainty when estimating the noise’s

variance [107]. Besides, the existing WSS algorithms are too complex to satisfy the tim-

ing requirement of rapid detection. For example, WSS is implemented by a complex

optimization algorithm in [108] and by a wavelet transform in [109].

Compressed WSS given in [17] has resolved the challenge of extremely high sampling

rate by taking advantage of the CS theory and the sparsity of the wideband signal in

the frequency domain. However, the method in [17] is actually based on discrete CS,

which can not reduce the sampling rate of analog wideband signals. Then, [21] proposed

a parallel structure to enable the sub-Nyquist sampling. Nevertheless, compressed WSS

so far has not solved the other three challenges confronted by WSS.

To solve the above challenges, we propose a novel WSS scheme, namely MCWSS

scheme. The main contributions of this chapter are stated as follows: Firstly, we propose a

novel CRL2 (combining relevance via L2 norm) algorithm to jointly recover multi-antenna

signals making use of their common sparsity. Then, a CBS (combining before sampling)

algorithm is designed to increase the signal’s SNR and to improve the recovery perfor-

mance. For the detection step, we propose a novel and low-complexity divided-averaged
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Figure 5.1: System model of MCWSS scheme.

(DA) algorithm, which has good performance and does not need to estimate the noise

variance. Hence, the DA algorithm also overcomes the noise uncertainty problem. Simu-

lation results show that, our proposed scheme can improve the detection performance at

about 28% of Nyquist sampling rate.

The rest of this chapter is organized as follows. Section 5.2 describes the system

model of the MCWSS scheme. Section 5.3 presents the DA algorithm, and gives the

theory derivations in both the single antenna scenario and the multi-antenna scenario.

Section 5.4 details the proposed CS recovery algorithms for multi-antenna signals, i.e.,

the CRL2 algorithm and CBS algorithm. Section 5.5 and Section 5.6 demonstrate the

simulation results and give conclusions, respectively.

5.2 System Model

The system model of MCWSS is illustrated in Figure 5.1. The received wideband

multi-antenna signals yi(t), i = 1, ..., Nr (where Nr is the number of CR user receive

antennas) are firstly sampled by analog CS, the output of analog CS is the sub-Nyquist

sampled data zi(k); then zi(k) is recovered into Nyquist rate data Yi(k) with a CS recovery

algorithm; ultimately, wideband detection is carried out to detect the presence of the

primary user’s signal.
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Figure 5.2: Block diagram of DA algorithm.

5.3 DA Algorithm for Wideband Spectrum Sensing

To make the WSS algorithm easy to implement, we devise a novel DA algorithm,

which has good performance with low complexity.

5.3.1 Description of DA algorithm

The procedures of the DA algorithm are illustrated in Figure 5.2. Firstly, the received

signal y(t) is filtered, sampled, and then transformed into Y (k), k = 1, ..., N
FFT

with a

N
FFT

-point fast Fourier transform (FFT). Secondly, Y (k), k = 1, ..., N
FFT

is divided into

J non-overlapping sub-bands. Thirdly, the jth sub-band’s energy Vj is calculated and

compared with a threshold VT to decide whether the jth sub-band is occupied or not for

j = 1, ..., J .

Obviously, the key problem of the DA algorithm is how to set the threshold. According

to the FCC’s report [33], only a few sub-bands of the wideband signal are occupied. The

average power of the wideband signal is small and can be approximated to the noise

variance. Therefore, we set the average power of the wideband signal as the threshold,

which can dynamically change with the actual noise variance. In other words, the DA

algorithm bypasses the need for estimation of noise variance and overcomes the noise

uncertainty.
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5.3.2 Theoretical Analysis of DA algorithm

Single antenna scenario

The detection problem can be formulated into a binary hypothesis problem

Y (k) =


w(k) H0

s(k) + w(k) H1

, (5.1)

where s(k), w(k) and Y (k) represent the kth element of the sampled and FFT trans-

formed primary user’s signal, additive Gaussian noise (AWGN), and the received signal

respectively. The noise w(k) obeys a complex Gaussian distribution with zero mean and

variance σ2
w, while s(k) is assumed to be deterministic.

The test statistic (the energy of the jth sub-band) is

Vj =
1

M

jM∑
k=1+(j−1)M

|Y (k)|2 ∼


χ2

2M H0

χ2
2M,λ H1

, (5.2)

where M is the number of points in the jth sub-band. Under hypothesis H0, Vj follows

a chi-square (χ2) distribution with 2M degrees of freedom; under hypothesis H1, Vj

obeys a non-central chi-square distribution with 2M degrees of freedom and a non-central

parameter λ = 2Mγ/µ, where γ denotes the SNR of the wideband signal, µ denotes the

sparsity of the wideband signal and is usually much less than one. Under hypothesis H1,

the SNR of each sub-band is γ/µ, which is much higher than γ. The SNR improvement

can be seen as the processing gain of the DA algorithm. The expression of threshold VT

is

VT =
1

N
FFT

N
FFT∑
k=1

|Y (k)|2 ≈ P̄s + σ2
w, (5.3)

where P̄s denotes the average power of the wideband signal. The detection probability

Pd = p(H1|H1) and false alarm probability Pfa = p(H1|H0) are respectively

Pd = 1− F2M,λ(2M(1 + γ)), (5.4)
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Pfa = 1− F2M(2M(1 + γ)), (5.5)

where F2M,λ(·) denotes the cumulative distributed function (CDF) of non-central chi-

square distribution χ2
2M,λ, F2M(·) denotes the CDF of chi-square distribution χ2

2M .

Multi-antenna scenario

Since multi-antenna spectrum detection is one of our study objects, the performance

of the DA algorithm in multi-antenna scenario is investigated. The signal model of multi-

antenna spectrum detection is

Yi(k) =


wi(k) H0

s(k) + wi(k) H1

for i = 1, . . . Nr, (5.6)

where Yi(k) is the kth element of the received signal on the ith antenna, wi(k), i = 1 . . . Nr

is the kth element of the independent and identically distributed (i.i.d.) Gaussian noise.

For multi-antenna spectrum detection, we consider two kinds of methods: one is com-

bining the multi-antenna signals before detection, which is named as the pre-combining

method; the other is combining the detection results, termed the post-combining method.

Two pre-combining methods and one post-combining method are investigated sequentially

in what follows.

a)Equal gain combining (EGC): The EGC combined signal is Y
′
(k) =

∑Nr
i=1 Yi(k)/Nr.

The detection probability Pd,EGC and false alarm probability Pfa,EGC with EGC method

are

Pd,EGC = 1− F2M,λ′ (2M(1 +Nrγ)), (5.7)

Pfa,EGC = 1− F2M(2M(1 +Nrγ)), (5.8)
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where λ
′

= 2MNrγ/µ, and γ is the SNR of each antenna’s signal. Compared with the

single antenna scenario, EGC increases the signals’ SNR from γ to Nrγ.

b) Square law combining (SLC): The SLC combined signal is Y
′′
(k) =

∑Nr
i=1 |Yi(k)|2/Nr.

The detection probability Pd,SLC and false alarm probability Pfa,SLC with the SLC method

are

Pd,SLC = 1− F2MNr,λ
′′ (2MNr(1 + γ)), (5.9)

Pfa,SLC = 1− F2MNr(2MNr(1 + γ)), (5.10)

where λ
′′

= 2MNrγ/µ. Compared with the single antenna scenario, the SLC method

increases the degrees of freedom from 2M to Nr × 2M . Since 2M × J = N
FFT

, SLC is

equivalent to increasing the number of FFT points.

c) “K out of N”: “K out of N” principle means that if K antennas out of Nr antennas

detect the primary user, then we decide the primary user is present. The detection

probability Pd,K/N and the false alarm probability Pfa,K/N with the “K out of N” method

are

Pd,K/N =
∑Nr

k=K
Ck

Nr (Pd)
k (1− Pd)Nr−k, (5.11)

Pfa,K/N =
∑Nr

k=K
Ck

Nr (Pfa)
k (1− Pfa)Nr−k, (5.12)

where Pd and Pfa are the detection probability and false alarm probability of a single

antenna respectively. Since (5.11) and (5.12) have the same expression, Pd,K/N follows

the same trend as Pfa,K/N .
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5.3.3 Performance Evaluation of DA algorithm

This subsection firstly demonstrates the performance gain of the DA algorithm com-

pared with narrow band detection, e.g., the constant false alarm rate (CFAR) method

presented in [103]. Then the performance of the DA algorithm in the multi-antenna

scenario is evaluated.

The detection probability Pd,CFAR of the CFAR method is

Pd,CFAR = Q((Q−1(Pfa,c)− γ
′√
M ′/2)/(1 + γ

′
)), (5.13)

where Pfa,c is the prescribed constant false alarm probability, γ
′

is the SNR of the narrow

band signal, M
′

is the number of the sampling points. The theoretical values of the DA

algorithm and the CFAR method are shown in Figure 5.3, from which we can conclude

that the CFAR method can not achieve high detection probability and low false alar-

m probability simultaneously. The red lines and blue lines in Figure 5.3 illustrate the

performance gain of the DA algorithm.

Theoretical values of the EGC, SLC and “K out of N” method for the DA algorithm

in the multi-antenna scenario are shown by the solid lines in Figure 5.4 and Figure 5.5.

From Figure 5.4 and 5.5, we can conclude that the pre-combining methods (EGC and

SLC) increase pd while decreasing pfa, while the post-combining method (“K out of N”)

either increases (e.g. “2 out of 4”) both pd and pfa at the same time, or decreases (e.g.

“3 out of 4”) both pd and pfa simultaneously. Therefore, in Figure 5.4 and 5.5, there are

intersections between the lines of the “K out of N” method and the lines of the other

methods. In conclusion, the EGC method is the best method to process multi-antenna

signals, the pre-combining method is better than the post-combining method in the multi-

antenna scenario.
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Figure 5.3: Performance gain of DA algorithm compared with CFAR.

5.3.4 Extended Research on Spectrum Sensing and Data Trans-

mission

From the theoretical analysis in Section 5.3.2 and the numerical simulation in Section

5.3.3, we can conclude that the larger the number of sampling points, i.e., the longer

spectrum sensing time, the better the detection performance. However, the longer the

spectrum sensing time, the smaller throughput of CR system. In other words, this is

a contradiction in CRs, i.e., to simultaneously minimize the interference caused to the

primary (licensed) system, and maximize the throughput of the secondary (unlicensed)

system.

To resolve the above challenge, we propose an interference-constrained adaptive si-

multaneous spectrum sensing and data transmission (ICASST) scheme. In the ICASST

scheme, taking advantage of the statistic information of PUs activities, the operation
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Figure 5.4: Detection probability of DA algorithm in multi-antenna scenario with dif-

ferent methods.

of spectrum sensing is moved to SU receiver from SU transmitter to increase the data

transmission time and hence improve the throughput of SU; the data transmission time

is adaptively adjusted to avoid the interference peculiar to unslotted CR network. Simu-

lation results validate the efficiency of ICASST scheme, which significantly increases the

throughput of secondary system and decreases the interference to PU simultaneously.

More details about the proposed scheme can be found in one of my papers, which is

published in EURASIP Journal on Wireless Communications and Networking, 2012.
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Figure 5.5: False alarm probability of DA algorithm in multi-antenna scenario with

different methods.

5.4 CS Recovery Algorithms for Multi-antenna Sig-

nals

Since CS is initially designed for single antenna signals, how to recover the analog CS

sampled multi-antenna signals is a new problem. Hence, this chapter designs two new

CS recovery algorithms, i.e., CRL2 algorithm and CBS algorithm, which are described in

details as follows.

5.4.1 CRL2 Algorithm

The function of the CRL2 algorithm in the MCWSS scheme is illustrated in Figure 5.6,

where the CRL2 algorithm jointly processes the analog CS sampled multi-antenna signals

and obtains the recovered multi-antenna signals simultaneously. Considering the multi-
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Figure 5.6: Description of CRL2 algorithm.

antenna signals are jointly sparse, the CRL2 algorithm firstly combines the multi-antenna

signals’ relevances with the L2 norm to reduce the effect of noise, then it searches for the

entry with the maximal relevance to identify the positions of the non-zero elements. The

signal model and the principle are stated as follows.

The signal model is zi = Aθ + wi for i = 1, ..., Nr. [a1...al...an] are the columns of

matrix A with each column of unit norm; θ is the sparse vector with only a few non-zero

elements; zi is a linear combination of al. The correlation coefficient vector between zi

and al for l = 1, ..., n is ρi = AHzi. Λ = [ρ1...ρi...ρNr ] is the n×Nr correlation matrix.

Then the recovery problem turns into how to combine the correlation matrix Λ into a

n× 1 vector ρ
′
. Three commonly used methods are considered in the chapter: L1 norm,

L2 norm, and L∞ norm. Specifically, L1 norm combining is ρ
′

l =
∑Nr

i=1 |ρi,l|, where ρ
′

l and

ρi,l are the element of ρ
′

and ρi respectively; L2 norm combining is ρ
′

l =
∑Nr

i=1 |ρi,l|
2; and

L∞ norm combining is ρ
′

l = arg max
i=1,...,Nr

|ρi,l|.

Since the relevance between noise and the measurement vector is smaller than that

of signal, the method which can suppress the smaller element is the best. L1 norm gives

every element the same weight; L∞ norm only selects the biggest component without

restraining the smaller one; L2 norm gives a greater weight to larger members and gives a

smaller weight to smaller element. Thus, the CRL2 algorithm chooses L2 norm to suppress
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Table 5.1: Procedures of CRL2 algorithm

Input: A, zi, i = 1, ..., Nr, the number of non-zero elements d.

Output: Estimates θ̂i, i = 1, ..., Nr of the signal θ.

Procedures:

1. Initialize the residual r0,i = zi, the index set I0 = ∅, the iteration

counter t = 1, and chosen columns of matrix A0 = ∅.

2. Calculate the relevance ρi = AHrt−1,i for i = 1, ..., Nr.

3. Combine relevance with L2 norm ρ
′

l =
∑Nr

i=1 |ρi,l|
2

for l = 1, ..., n.

4. Find the index λt of the maximal element of ρ
′

by λt = arg max
l=1...n

ρ
′

l.

5. Augment the index set It = It−1 ∪ {λt}, and the matrix of chosen

columns At = [At−1aλt ], where aλt is the λtht column of A.

6. Update the residual by rt,i = zi −At(A
H
t At)

−1AH
t zi

for i = 1, ..., Nr.

7. Increment t, and return to step 2 if t < 2d.

8. The estimates θ̂i have nonzero elements at the indices listed in I2d,

the value of θ̂i in component λt is equal to the tth component of

(AH
2dA2d)

−1AH
2dzi.

the noise. The procedures of the CRL2 algorithm are shown in Table 5.1.

5.4.2 CBS Algorithm

Although the CRL2 algorithm suppresses the noise by jointly processing the multi-

antenna signals, the SNR does not increase directly, so the performance gain is limited.

Considering EGC combining of the multi-antenna signals can increase the signal’s SNR,
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Figure 5.7: Block diagram of CBS algorithm.

we propose to combine the analog signals before analog CS, which is named as the CBS

(combining before sampling) algorithm. The block diagram of the CBS algorithm is shown

in Figure 5.7, where we can see that the multi-antenna signals are firstly combined before

analog CS, and then are sampled by analog CS, at last the sampled signals are recovered

and detected. To make the CBS algorithm clear, the detailed procedures is shown in

Table 5.2.

5.4.3 Summary of CRL2 Algorithm and CBS Algorithm

In this subsection, the CRL2 algorithm and the CBS algorithm are compared from the

angle of the denoising effect. The CRL2 algorithm suppresses the noise by restraining the

smaller relevance in the recovery process. The CBS algorithm increases the signal’s SNR

by combining the multi-antenna signals before analog CS. Hence, it can be speculated

that the CBS algorithm outperforms the CRL2 algorithm. However, compared with the

CRL2 algorithm, the CBS algorithm needs an additional analog device to combine the

analog signals. In summary, one can choose CBS algorithm to get better performance if

the analog combining operation is available, otherwise, CRL2 algorithm is used to recover

the multi-antenna signals.
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Table 5.2: Procedures of CBS Algorithm

Input: The received analog signal from the jth antenna yj(t), the

sparsity of the signal d.

Output: Estimate of the combined signal θ̂.

Procedures:

1. Combine the multi-antenna signals with EGC method into one signal

by y(t) =
∑Nr

j=1 yj(t)/Nr.

2. Sample the combined signal y(t) with MWC method and get z(n).

3. Get the signal model of recovery z = Aθ.

4. Initialize the residual r0 = z, the index set I0 = ∅, the iteration

counter t = 1, and chosen columns of matrix A0 = ∅.

5. Find the index by λt = arg max
l=1,...,n

|〈rt−1, al〉|.

6. Augment the index set It = It−1 ∪ {λt}, and the matrix of chosen

columns At = [At−1 aλt ], where aλt is the λtht column of A.

7. Update the residual by rt = z−At(A
H
t At)

−1AH
t z.

8. Increment t, and return to step 2 if t < 2d.

9. The estimate θ̂ has nonzero elements at the indices listed in I2d, the

values of θ̂ in component λt is equal to the tth component of

(AH
2dA2d)

−1AH
2dz.

5.5 Numerical Results

In this section, three main simulations are performed to evaluate the MCWSS scheme.

The first simulation is performed to validate the theoretical derivation of the DA algorithm

and the analysis results in the multi-antenna scenario. The relative simulation results are

shown by the dotted lines in Figure 5.4 and Figure 5.5. The second simulation is performed
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Figure 5.8: Performance of three joint processing methods: L1 norm combining, L2

norm combining, L∞ norm combining.

to verify the CRL2 algorithm, the relative simulation results are plotted in Figure 5.8.

The third simulation is carried out to evaluate the performance of the CBS algorithm

compared with the CRL2 algorithm and the single antenna scenario, the simulation results

are demonstrated in Figure 5.9 and Figure 5.10.

We consider a wideband signal that is divided into J = 400 non-overlapping equal-

bandwidth sub-bands, with each sub-band containing M = 82 points. Suppose that

the primary users randomly occupy some of the sub-bands, with an average spectrum

occupancy ratio of 10%, that is to say, the sparsity of the wideband signal is µ = 0.1.

The wideband signal passes through the AWGN channel, and the CR user has Nr = 4

antennas in the multi-antenna scenario.

From Figure 5.4 and Figure 5.5, we can see that all the simulation results coincide with

the theoretical values. Therefore, the theory derivations of the DA algorithm for both
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the single antenna and the multi-antenna scenario are correct. The conclusion that the

pre-combining method is better than the post-combining method for the multi-antenna

scenario is validated.

Since the detection performance is our focus, we use pd and pfa as the performance

metric in verifying the CRL2 algorithm. In the simulation, the DA algorithm is used

to detect the wideband signal. The simulation results of L1 norm combining, L2 norm

combining and L∞ norm combining are shown in Figure 5.8. It can be concluded from

Figure 5.8 that L2 norm combining is the best method to combine the relevance of different

antenna’s signals, that is to say, the CRL2 algorithm is efficient.

When simulating the CBS algorithm, pd and pfa are also used as the performance

metric. From Figure 5.9 and Figure 5.10, we can see that the CRL2 algorithm performs

better than the single antenna scenario; the CBS algorithm performs much better than

the CRL2 algorithm, and even the CBS algorithm with two antennas is better than the

CRL2 algorithm with four antennas. This is because that the CBS algorithm can increase

the SNR of signal while the CRL2 algorithm can not. In other words, the MCWSS can

achieve excellent performance with the CBS algorithm and DA algorithm at a very low

sampling rate, which can be reduced to about 28% of the Nyquist sampling rate.

It is worthwhile to note that, the introduction of analog CS degrades the performance

of WSS, which can be concluded by comparing Figure 5.9 and Figure 5.10 with Figure 5.4

and Figure 5.5. The above performance degradation is caused by the noise in the sparse

wideband signals. Thus, to make the application of CS into wireless communications more

practical, the performance of the CS recovery algorithm must be improved.
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Figure 5.9: Detection probability of CRL2 and CBS algorithm compared with single
antenna scenario.

5.6 Summary

This chapter proposes a new WSS scheme (MCWSS scheme) to reduce the extremely

high sampling rate problem and improve the detection performance in low SNR. We

perform a thorough and complete work in the MCWSS scheme. Firstly, a new wideband

detection algorithm, i.e., the DA algorithm, is devised to overcome the noise uncertainty

with low complexity. The theoretical derivation and simulation results show the efficiency

of the DA algorithm. Since previous studies on CS only focus on the single antenna

scenario, two novel CS recovery algorithms, namely the CRL2 algorithm and the CBS

algorithm are designed for multi-antenna signals for different situations. In conclusion,

the MCWSS scheme can achieve good detection performance with the proposed recovery

and detection algorithms at a low sampling rate.

In this chapter, we found that the CS recovery performance is sensitive to noise, so we
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Figure 5.10: False alarm probability of CRL2 and CBS algorithm compared with single
antenna scenario.

will try to improve the CS recovery performance for noisy scenario in the next chapter.
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Chapter 6

Denoising Regularized Subspace

Pursuit CS Recovery Algorithm

As analyzed in Section 5.5, the CS recovery performance is sensitive to noise. However,

noise is inevitable in wireless communication systems. To make the application of CS more

practical, this chapter will investigate effective denoising CS recovery performance.

6.1 Introduction

The most common situation considered in a denoising CS recovery algorithm is that

only the CS measurements are contaminated by noise, i.e.,

y=Ax+w, (6.1)

where x is an N × 1 unknown K-sparse signal, i.e., only K elements of x are nonzero,

where the indices of the K elements are termed the signal support Λ of x, A is an M ×N

Gaussian or Bernoulli distributed measurement matrix, which satisfies the RIP [20], y is

an M ×1 measurement vector, and w is an M ×1 Gaussian white noise vector with mean

0 and variance σ2.

113
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However, in many practical scenarios, e.g., the application of CS in the design of

sub-Nyquist sampling devices [1] [2], the sparse signal is contaminated by noise prior to

measurement. Thus, in this chapter, we will consider the following more general signal

model

y=A(x + z)+w = Ax + v, (6.2)

where v = Az + w, and z is an N × 1 Gaussian white noise vector, where each element

has mean 0 and variance σ2
z , and we assume that σ2

w = σ2
z = σ2 for simplicity. It is

worth mentioning that the pre-measurement noise z results in much larger noise power

in the compressive measurements y than that in the original noisy sparse signal, which

is called the noise-folding effect [37]. The reason for the noise-folding effect is that the

measurement matrix A combines all the noise elements in z, even those corresponding to

the zero elements in x.

Reliable and stable CS recovery algorithms are one of the key components of the CS

theory and are very important for the application of CS in noisy scenarios. Thus, in this

chapter, we aim to develop an efficient CS denoising algorithm to reconstruct the noise-

contaminated sparse signals from noisy compressive measurements with a high successful

recovery rate. Since greedy algorithms are much faster and easier to implement than

regularization methods, this paper focuses on the improvements of greedy algorithms in

noisy environments. As stated in Section 2.1.4, the existing denoising greedy algorithms

improve OMP either from the angle of finding indices of nonzero elements, e.g., ROMP,

or the angle of signal estimation, e.g., CoSaMP and SP. However, none of them improves

OMP from both angles.

Thus, this chapter proposes a RSP algorithm to improve OMP from both aspects

mentioned above simultaneously. Firstly, the proposed RSP algorithm alleviates the noise-

folding effect by introducing a data pre-processing operation. Secondly, the signal support

Λ is identified by regularizing the chosen columns of A, and then the chosen indices are
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updated by retaining only the largest entries of the estimated signal. Thirdly, instead of

using the LS method, Minimum Mean Square Error (MMSE) estimation is adopted to

further reduce the effect of noise.

Simulation results show that, compared with the existing OMP, ROMP, CoSaMP

and SP algorithms, the proposed RSP algorithm has the highest successful recovery rate

and the smallest reconstruction error when the noise variance is high and the number of

measurements is not large enough. For example, compared with the OMP algorithm, the

proposed RSP algorithm increases the successful recovery rate (reduces the normalized

reconstruction error) by up to 50% and 86% (35% and 65%) in high noise level scenarios

and inadequate measurements scenarios, respectively.

The rest of this chapter is organized as follows. Section 6.2 describes the proposed RSP

algorithm. Section 6.3 evaluates the recovery performance of RSP in comparison with the

existing OMP, ROMP, CoSaMP and SP algorithms. Finally, Section 6.4 concludes this

chapter.

6.2 Proposed RSP Algorithm

Based on the traditional OMP algorithm and motivated by the ROMP and SP algo-

rithms, we propose the RSP algorithm to combat the effects of both the pre-measurement

noise z and the measurement noise w.

6.2.1 Basic Idea

Five key parts of the RSP algorithm are stated as follows.
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Pre-processing Operation

The covariance matrix of the equivalent noise vector v in (6.2) is expressed as

Q = σ2(I + AAT ). (6.3)

Thus, the equivalent noise v is not white any more unless the matrix AAT is proportional

to the identity matrix I. One example of the above exception is that matrix A is a

concatenation of p = N
M

orthonormal matrices, i.e., A = [A(1), . . . ,A(p)], where the

dimension of A(k) is M ×M . Then, we have AAT = pI, and Q = (1 + N
M

)σ2I. This is a

special case of the noise-folding effect, where the variance of the equivalent additive white

noise is increased N
M

times.

In the proposed RSP algorithm, to better reconstruct the sparse signal, the noise v is

whitened by multiplying Q−1/2 at both sides of (6.2), then we obtain

ỹ = Bx + v′, (6.4)

where ỹ = Q−1/2y, B = Q−1/2A and v′ = Q−1/2v. Now, the new equivalent noise v′ is

white and has variance σ2.

Scaled Relevance Vector

Let bj denote the jth column of the new measurement matrix B, and ‖bj‖2 represent

the `2 norm of bj. To make sure that the differences among ‖bj‖2 do not affect the

precision in finding the index with the biggest relevance from the relevance vector BHrt−1,

we propose to adopt the scaled relevance vector ut, which is expressed as

ut = CHrt, (6.5)

where C = B/
√
diag (BHB).
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Identifying the Indices by Regularization

According to the RIP property [4], every K columns of matrix B constitute an ap-

proximate orthonormal matrix. At the tth iteration, to make the identified columns of B

behave like an orthonormal matrix, the identified columns are regularized via choosing a

subset J0 of the K largest indices in ut by letting

J0= {j | ut (j) ≥ ut,max/2} , (6.6)

where ut(j) is the jth element of ut, and ut,max= max
j

[ut(j)] is the maximum element of

ut. Then, the set J0 is augmented to the identified indices in the previous iteration by

letting Λt=Λt−1 ∪ {J0}.

Estimating the Signal with MMSE

Since the LS method used in the existing greedy algorithms amplifies the noise, we

utilize the denoising MMSE method to estimate the signal xΛt from the following problem

ỹ=BΛtxΛt+v′, (6.7)

where xΛt contains the elements of x indexed by Λt. As we know, the MMSE method

requires to know the power of xΛt , which varies with the change of Λt. Thus, we propose

to estimate the power of xΛt with the LS method, i.e.,

P=
(
B†Λtỹ

)H (
B†Λtỹ

)
/ |Λt| , (6.8)

where |Λt| is the cardinality of set Λt and counts the number of its elements. Then, the

MMSE estimated signal is

x̂Λt=

(
BH

ΛtBΛt+
σ2

P
I

)−1

BH
Λtỹ. (6.9)
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Updating the Indices

If there are more than K elements in the identified indices set Λt, we propose to update

Λt by only retaining the K largest entries in the magnitude of x̂Λt .

Finally, the iterations will stop if the number of iterations is larger than K, or if the

norm of the residual in this iteration is larger than that in the last one, i.e., ‖rt‖2 ≥ ‖rt−1‖2.

6.2.2 Psudocode of Proposed RSP Algorithm

Table 6.1 shows the procedures of the RSP algorithm.

Table 6.1: Psudocode of Proposed RSP Algorithm

INPUT: A, y, K, σ2.

DATA PRE-PROCESSING OPERATION:

Q = σ2(I + AAT ); ỹ = Q−1/2y; B = Q−1/2A;

INITIALIZATION:

1) Set the index set Λ0=∅, the residual r0=ỹ, the iteration count t=1.

3) Initialize the norm of the residual: nr(0)=∞ and nr(1)=
√

rH0 r0.

ITERATIONS:

WHILE (t ≤ K) & (nr(t) < nr(t− 1))

ut = CHrt, where C = B/
√
diag (BHB); % Calculate the scaled relevance vector.[

ut,s , J
]

= sort (|ut| , ‘descend’); k=1; % Identify the indices by regularization.

WHILE (k ≤ K) & (|ut,s (k)| ≥ |ut,s (1)| /2); k=k+1; END WHILE

J0=J (1 : k − 1); % Obtaining the first k − 1 elements of J .

Λt=Λt−1 ∪ J0; % Estimate the signal with MMSE method.

P=
(
B†Λtỹ

)H (
B†Λtỹ

)
/ |Λt|; x̂Λt=

(
BH

Λt
BΛt+

σ2

P
I
)−1

BH
Λt

ỹ; rt=ỹ−BΛtx̂Λt ;

% Update the indices by retaining only the K largest elements.
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IF |Λt|>K

x̂t=


x̂Λt , on the support set Λt

0, elsewhere

;

[x̂s , Js] =sort (|x̂t| , ‘descend’); Λt=Js(1 : K);

% Estimate the signal with the updated indices.

P=
(
B†Λtỹ

)H (
B†Λtỹ

)
/ |Λt|; x̂Λt=

(
BH

Λt
BΛt+

σ2

P
I
)−1

BH
Λt

ỹ; rt=ỹ−BΛtx̂Λt ;

ELSE Continue;

END IF nr(t+ 1)=
√

rHt rt; t=t+1;

END WHILE

OUTPUT:

The estimated signal x̂=x̂t=


x̂Λt , on the support set Λt

0, elsewhere

, and the reconstructed

signal support Λ̂=Λt.

6.3 Performance Evaluation

6.3.1 Simulation Parameters and Performance Metrics

In the simulations, we assume that x is a 10-sparse 256 × 1 signal. The amplitudes

of the nonzero elements in x are uniformly distributed random variables in interval [c, d],

with c=0.4 and d=1. Then, the power of x is normalized. The elements aij of the M ×N

measurement matrix A are i.i.d. Gaussian variables with aij ∼ N (0, 1/M). Therefore,

each column of A has unit norm on average.

All the simulations are performed with MATLAB and each simulation result is ob-

tained via 2 × 104 random tests. The performance of the proposed RSP algorithm

is evaluated by comparing it with the exiting OMP, ROMP, CoSaMP and SP algo-
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Figure 6.1: Illustration of the noise-folding effect, the successful recovery rate η vs. the

number of measurements M .

rithms. The codes for OMP, ROMP, CoSaMP and SP are downloaded from the web-

sites [110], [111], [112] and [113], respectively. The following two performance metrics are

adopted: the first one is the successful recovery rate defined by η=|Λ̂ ∩ Λ|/|Λ| where Λ̂

is the estimated signal support, the second performance metric is the normalized recon-

struction error ε=‖x−x̂‖2/‖x‖2.

6.3.2 Illustration of Noise-folding Effect

In this section, the noise-folding effect is demonstrated by comparing the recovery

performance of the following two scenarios, i.e., y = A(x + z) and y = Ax + w, where

σ2
z = σ2

w = 0.05. Thus, we have SNR = 13dB for y = Ax + w, and SNR ≈ 10 lg
M

12.8 dB for

y = A(x + z). Figure 6.1 and Figure 6.2 show that, due to the noise-folding effect, the

recovery performance of y = A(x + z) is degraded compared with that of y = Ax + w.

Specifically, Figure 6.1 indicates that the successful recovery rate of y = A(x + z) is de-

creased by up to 17% in comparison with that of y = Ax + w. Besides, Figure 6.2 illus-
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Figure 6.2: Illustration of the noise-folding effect, the normalized reconstruction error ε

vs. the number of measurements M .

trates that the reconstruction error of y = A(x + z) is increased by up to 48% compared

with that of y = Ax + w.

6.3.3 Simulation Results under Signal Model y=A(x + z) + w

In this section, we evaluate the proposed RSP algorithm under signal model y=A(x + z) + w.

The performance of the RSP algorithm and the existing four schemes are evaluated against

the number of measurementsM and SNR, which is approximated as SNR ≈ 10 lg1/(1+ N
M
σ2).

The recovery performance vs. M

Figure 6.3 illustrates that, in comparison with the OMP, ROMP, CoSaMP and SP

algorithms, the proposed RSP algorithm has the highest successful recovery rate η with

the number of measurements M increasing from 40 to 100, when σ2 = 0.05 and SNR ≈

10 lg1/(1+ 12.8
M

)dB. Specifically, RSP increases η by up to 86%, 27%, 48% and 40% compared

with OMP, ROMP, CoSaMP and SP algorithm, respectively. Figure 6.4 shows that,
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Figure 6.3: Successful recovery rate η vs. the number of measurements M , when

y=A(x + z) + w, σ2=0.05 and SNR ≈ 10 lg1/(1+ 12.8
M

)dB.
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Figure 6.4: Normalized reconstruction error ε vs. the number of measurements M ,

when y=A(x + z) + w, σ2=0.05 and SNR ≈ 10 lg1/(1+ 12.8
M

)dB.

compared with the existing four algorithms, the proposed RSP algorithm has the smallest

normalized reconstruction error ε with the increase of M . Specifically, the RSP algorithm
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decreases ε by up to 65%, 71%, 47%, and 46% compared with the OMP, ROMP, CoSaMP

and SP, respectively.

Besides, Figure 6.3 and Figure 6.4 demonstrate that, compared with the OMP algo-

rithm, ROMP can improve the recovery performance when M is relatively small, but it

deteriorates the recovery performance when M is larger, which is not desired. The reason

for this phenomenon is that ROMP identifies 2K nonzero elements including at most K

correct indices and at least K wrong indices, where the wrong indices deteriorate the

recovery performance especially when M is large.

The recovery performance vs. SNR

Figure 6.5 indicates that, the proposed RSP algorithm has the highest recovery rate

η in comparison with the existing four algorithms. Specifically, with the increase of SNR,

the proposed RSP algorithm increases η by up to 50%, 4%, 36% and 34% compared

with OMP, ROMP, CoSaMP and SP algorithms, respectively. Figure 6.6 shows that

the proposed RSP algorithm has the smallest reconstruction error ε. Specifically, RSP

decreases ε by up to 35%, 70%, 30% and 24% with the increase of SNR compared with

the OMP, ROMP, CoSaMP and SP, respectively.

6.3.4 Simulation Results under Signal Model y=Ax + w

In this section, we investigate the performance of the proposed RSP algorithm under

signal model y=Ax + w, where SNR is defined as SNR = 10 lg1/σ2

.

The recovery performance vs. M

Figure 6.7 illustrates that, under signal model y=Ax + w, the proposed ROMP algo-

rithm has the highest successful recovery rate η. Specifically, RSP increases η by up to

85%, 30%, 39% and 37% compared with the OMP, ROMP, CoSaMP and SP algorithm,
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Figure 6.5: Successful recovery rate η vs. SNR ≈ 10 lg1/(1+ 256
90
σ2), when y=A(x + z) + w

and M=90.
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Figure 6.6: Normalized reconstruction error ε vs. SNR ≈ 10 lg1/(1+ 256
90
σ2), when

y=A(x + z) + w and M=90.

respectively. Figure 6.8 shows that, the proposed RSP algorithm has the smallest nor-

malized reconstruction error ε. Specifically, the RSP algorithm decreases ε by up to 75%,
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Figure 6.7: Successful recovery rate η vs. the number of measurements M , when

y=Ax + w and SNR=10dB.
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Figure 6.8: Normalized reconstruction error ε vs. the number of measurements M ,

when y=Ax + w and SNR=10dB.

81%, 51%, and 50% compared with the OMP, ROMP, CoSaMP and SP, respectively.
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Figure 6.9: Successful recovery rate η vs. SNR, when y=Ax + w and M=90.
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Figure 6.10: Normalized reconstruction error ε vs. SNR, when y=Ax + w and M=90.

The recovery performance vs. SNR

Figure 6.9 indicates that, the proposed RSP algorithm has the highest recovery rate

η when 0dB<SNR<10dB, and has the second highest η when -10dB<SNR<0dB. Specif-
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ically, with the increase of SNR, the proposed RSP algorithm increases η by up to 57%,

47% and 50% compared with the OMP, CoSaMP and SP algorithms, respectively. Fig-

ure 6.10 shows that the proposed RSP algorithm has the smallest reconstruction error ε.

Specifically, RSP decreases ε by up to 30%, 74%, 26% and 29% with the increase of SNR

compared with the OMP, ROMP, CoSaMP and SP, respectively. It is worthy to note

that, although the successful recovery rate η of RSP is smaller (up to 6%) than ROMP

when -10dB<SNR<0dB, it has smaller (up to 74%) reconstruction error ε than ROMP.

In summary, under signal model y=A(x + z) + w, the proposed RSP algorithm can

simultaneously improve the successful recovery rate η and decrease the reconstruction

error ε for all values of M and σ2. Under signal model y=Ax + w, the proposed RSP

algorithm has the lowest reconstruction error and the second highest successful recovery

rate. The basic idea of the proposed RSP algorithm is to improve the way of identifying

the indices of the nonzero elements and the method of estimating the signal with not

more than K nonzero elements, simultaneously.

6.4 Summary

To enhance the performance of CS recovery algorithms in the scenarios where both

the original sparse signal and the CS measurement vector are contaminated by noise,

this chapter proposed a RSP algorithm by simultaneously improving the way of identi-

fying the signal support and the method of estimating signals with the updated signal

support. Meanwhile, by introducing a data pre-processing operation, the proposed R-

SP algorithm reduces the noise-folding effect. Simulation results show that, under signal

model y=A(x + z) + w, the proposed RSP algorithm has the highest successful recovery

rate and the lowest reconstruction error in comparison with the existing OMP, ROMP,

CoSaMP and SP algorithms. Under signal model y=Ax + w, the proposed RSP al-
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gorithm has the lowest reconstruction error and the second highest successful recovery

rate, which is lower (up to 6%) than ROMP. However, RSP has smaller (up to 74%)

reconstruction error ε than ROMP.
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Conclusions and Future Work

This thesis focuses on the application of discrete CS in improving the energy efficiency

of WSNs, the research on analog CS based on a structured matrix, the application of

analog CS in wideband spectrum sensing for CRs, and the design of a denoising CS

recovery algorithm. In this chapter, we will summarize the innovations of this thesis in

Section 7.1, then we will point out the directions for future work in Section 7.2.

7.1 Innovations in the Thesis

The main innovations of this thesis are presented as follows.

7.1.1 CNCDS Scheme

Utilizing the correlations of wireless sensor data, we propose a CNCDS scheme based

on the CS theory and network coding technology. The objective of the CNCDS scheme

is to improve the energy efficiency of WSNs deployed in catastrophic scenarios by si-

multaneously reducing the number of required transmissions and receptions. Theoretical

analysis proves that the measurement matrix of the CNCDS scheme guarantees success-

ful recovery of the sensed data. To verify the efficiency of the CNCDS scheme, we derive

129
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the expressions for the total number of data transmissions and receptions based on the

random geometric graph theory. Furthermore, based on the derived expressions, we pro-

pose an adaptive CNCDS scheme, which further improves the energy efficiency of WSNs.

Simulation results show that, the proposed adaptive CNCDS scheme has the highest en-

ergy efficiency with the lowest reconstruction error. The related research work won the

“Best Paper Award” of ISCIT 2012 and is published in IEEE Transactions on Wireless

Communications, 2013.

7.1.2 Research on Analog CS Based on Structured Matrix

The main innovations and achievements in this topic are stated as follows.

(1) Using non-modulated Slepian basis to represent the modulated and bandlimited

multi-band signal, we significantly reduce the dimensions of the signal basis and mea-

surement matrix, and thus reduce the computational recovery complexity. To obtain

the performance gain of the Slepian basis, we further propose an interpolation recovery

algorithm. Simulation results show that, compared with the DFT basis, our proposed

algorithm can improve the recovery SNR up to 35dB at a low computational load. The

related research work is published in IEEE ICC, 2013.

(2) Based on the random circulant orthogonal matrix, we propose using the cyclic shifts

of the ZC sequence to replace the independent pseudorandom sequences. As a result, we

reduce the number of physical parallel channels from m to 1, where m ranges from several

dozens to several hundreds. Theoretical analysis proves that the measurement matrix of

the proposed scheme satisfies the RIP condition. The related research work is published

on IET Electronics Letter 2012, and IEEE GLOBECOM 2012.
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7.1.3 MCWSS Scheme

Since analog CS enables Sub-Nyquist rate sampling for sparse signals, it resolves the

extremely high sampling rate challenge confronted by WSS in CRs. However, CS may

compromise the detection performance of WSS, because CS is sensitive to noise. Here, we

propose utilizing multi-antenna technology to improve the detection performance. Fur-

thermore, we design a joint recovery algorithm for multi-antenna signals by utilizing their

joint sparsity. To alleviate the effect of noise uncertainty, we propose a low-complexity

and high-performance WSS algorithm. Simulation results show that, the proposed M-

CWSS scheme has high detection performance at about 28% of Nyquist sampling rate.

The related research work is published in IEEE WCNC, 2011.

In addition, there is one contradiction in CRs, i.e., to simultaneously minimize the

interference caused to the primary (licensed) system, and maximize the throughput of the

secondary (unlicensed) system. To resolve the above challenge, we propose an interference-

constrained adaptive simultaneous spectrum sensing and data transmission scheme, which

is published in EURASIP Journal on Wireless Communications and Networking, 2012.

7.1.4 CS Denoising Recovery Algorithm – Regularized Subspace

Pursuit

To improve the recovery performance of CS in noisy environments, we propose a novel

CS denoising recovery algorithm, i.e., the RSP algorithm. The RSP algorithm is designed

for the scenario, where both the sparse signals and measurements are contaminated by

noise. By adding a pre-processing operation and using the MMSE method to estimate the

sparse signal, we alleviate the noise folding effect caused by the noise in sparse signals.

Via regularizing the chosen columns in the iteration, we make the chosen columns approx-

imately satisfy the RIP condition. Simulation results show that, compared with existing
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CS denoising recovery algorithms, the proposed RSP algorithm has the best recovery

performance. The relative research work is published in IEEE WCNC, 2014.

7.2 Future Work

Due to the limited time and energy of the author, this thesis still leaves some valuable

research topics for future work. Some of the important and interesting research directions

are pointed out as follows.

7.2.1 New DDS Scheme Based on Spatial and Temporary Cor-

relation

The CNCDS scheme proposed in Chapter 3 has the highest energy efficiency at the

lowest reconstruction error. However, the CNCDS scheme is only based on the spatial

correlation of WSNs. In the future, we can further improve the energy efficiency of WSNs

by utilizing the spatial and temporary correlation, and even the frequency correlation for

OFDM based WSNs.

7.2.2 Novel Analog CS Method with Low Time Delay and Low

Hardware Complexity

The RCOM-ACS scheme proposed in Chapter 4 reduces the hardware complexity of

analog CS, but at the cost of a longer processing time. Although Section 4.3.5 has made

a tradeoff between the hardware complexity and processing delay by proposing a fast

RCOM-ACS scheme, in future, we can design a new analog CS method with a low time

delay and low hardware complexity by designing a new measurement matrix.
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7.2.3 New WSS Scheme Based on CS Measurements

The MCWSS scheme proposed in Chapter 5 has high detection performance with a low

sampling rate. In the MCWSS scheme, CS measurements have to be be firstly recovered

before spectrum sensing, which increases the computational complexity of the MCWSS

scheme. In future, we can merge the recovery and detection into one process, i.e., design

a new detection algorithm directly based on the CS measurements rather than the CS

recovered data.

7.2.4 Theoretical Analysis of Denoising Recovery Algorithm

Simulation results in Chapter 6 show that the proposed RSP algorithm has the best

recovery performance compared with the existing CS denoising schemes. In future, we

can theoretically prove the efficiency and reliability of RSP by analyzing its convergence

and the limit of its reconstruction error.
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Appendix A

Derivations of Some Expressions in

Chapter 3

A.1 Derivation of S̄2

As shown in Figure 3.4(a), node i and node j are located at O and O′ respectively,

A and B are the two distinct intersecting points of these two circles with d(i,j) <2rt. S̄2

is the expected area of the lens-shaped region jointly covered by node i and node j. The

area of S2/2 equals to the area of sector OAB minus the area of triangle OAB. Thus, we

have

S2 = 2

{
r2
t

2
× 2 arccos

(
d

2rt

)
−1

2
× d

2
× 2
√
r2
t−d2

4

}
= 2r2

t arccos
(

d
2rt

)
−d

2

√
4r2

t−d2

. (A.1)

Since the nodes are uniformly distributed, Pr(d ≤ x) equals to the area of the circle

having radius x and being centered at O over the area of the circle having radius 2rt and

being centered at O [93]. Thus, we have

F1(x)= Pr(d ≤ x)=
πx2

4πr2
t

=
x2

4r2
t

. (A.2)

Then, the probability density function (PDF) is f1(x)= x
2r2
t
, and the average area of the
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intersection is calculated by

S̄2 =
∫ 2rt

0
(2r2

t arccos ( x
2rt

)−x
2

√
4r2

t−x2)× x
2r2
t
dx

=
∫ 2rt

0
x arccos ( x

2rt
)dx− 1

4r2
t

∫ 2rt
0

x2
√

4r2
t−x2dx

, (A.3)

where the above two integrals are calculated as∫ 2rt
0

x arccos ( x
2rt

)dx

=

[
(x
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2
−r2

t )arccos( x
2rt

)−x
√
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, (A.4)
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∫ 2π

0
x2
√

4r2
t−x2dx
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πr2
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. (A.5)

Combining (A.3), (A.4) and (A.5), we get

S̄2=
πr2

t

2
−πr

2
t

4
=
πr2

t

4
. (A.6)

A.2 Computation of S̄II

The computation of S̄II is very similar to that of S̄2. The only difference is d(ns,1,ns,2) <rt

rather than d(i,j) <2rt, as illustrated in Figure 3.4(b). Similarly, we can get

F2(x)= Pr(d ≤ x)=
πx2

πr2
t

=
x2

r2
t

. (A.7)

The corresponding PDF is f2(x) =2x
r2
t
, and S̄II is computed by

S̄II=

∫ rt

0

(2r2
t arccos (

x

2rt
)−x

2

√
4r2

t−x2)× 2x

r2
t

dx. (A.8)

Similar to the calculation of (A.4) and (A.5), we get

S̄II= (π−3
√

3

4
)r2
t . (A.9)
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A.3 Calculation of N q
r,1, N

q
r,2, N

q
r,3 and N q

r,4

A.3.1 Calculation of N q
r,1

The value of N q
r,1 is the number of reception nodes in the area SIII (as shown in Figure

3.5(a)) in the qth forwarding. Thus we have

N q
r,1=N q

t ×N × S̄III. (A.10)

Since the distance between the selected forward node nqt and the node nq−1
t which transmit

packet to nqt is smaller than rt, the value of S̄III is

S̄III=πr
2
t−S̄2s=πr

2
t−(π−3

√
3

4
)r2
t=

3
√

3

4
r2
t , (A.11)

where S̄2s is the expected area jointly covered by two nodes with their distance less than

rt, i.e., S̄2s=S̄II. Then, we have

N q
r,1=N q

t ×N ×
3
√

3

4
r2
t . (A.12)

A.3.2 Calculation of N q
r,2

Like the calculation of Nnr,II in (3.21), the value of N q
r,2 is

N q
r,2=Nc1 ×N × S̄c1, (A.13)

where Nc1 is the number of times that case one happens, and S̄c1 is the expected value of

area Sc1, which is represented by the oblique lines in Figure 3.5(b).

Firstly, Nc1 is calculated as follows. Figure A.1(a) describes the critical situation where

Sc1=0 and d(nqt,1,n
q
t,2) =

√
3rt. That is to say, case one will happen if the following two

events happen simultaneously: (1) d(nqt,1,n
q
t,2) <

√
3rt, (2) nqt,1 and nqt,2 are located in the

area S3, which is represented by the solid oblique lines in Figure A.1(b). As presented in

Section A.4, the expected value of S3 is

S̄3=
5

36
(4π−3

√
3)r2

t−
π

6
r2
t=

(14π−15
√

3)

36
r2
t . (A.14)
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Figure A.1: (a) The critical situation when case one happens, (b) Illustration of the

area of S3 when calculating Nc1.

Thus, we have

Nc1=C2
Nq
t
S̄3=C2

Nq
t
× (14π−15

√
3)

36
r2
t . (A.15)

Then, the value of S̄c1 is approximated as follows. Since it is too complicated to get

the closed form expression for S̄c1, we use the method in [31] to approximate S̄c1, i.e.,

S̄c1 ' Sc1,max=πr2
t /6. Finally, we have the expression for N q

r,2, i.e.,

N q
r,2=C2

Nq
t
× (14π−15

√
3)

36
r2
t ×N ×

π

6
r2
t . (A.16)

A.3.3 Calculation of N q
r,3

As illustrated in Figure 3.6 (a), the value of N q
r,3 should be calculated by

N q
r,3=N q

t × pc2a ×N × S̄c2a, (A.17)

where pc2a is the probability that the first situation of case two happens, i.e., the prob-

ability that the selected forward node nqt is located in the area jointly covered by node

nq−1
t,1 and node nq−1

t,2 with 0 <d(nq−1
t,1 ,n

q−1
t,2 ) <rt. Thus, the expression for pc2a is

pc2a=
S̄2s

πr2
t

=
(π−3

√
3/4)r2

t

πr2
t

. (A.18)
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Again, similar to [114], we approximate S̄c2a as S̄c2a=πr
2
t /6. Thus, the expression for N q

r,3

is

N q
r,3=N q

t ×
(π−3

√
3/4)r2

t

πr2
t

×N × πr2
t

6
. (A.19)

A.3.4 Calculation of N q
r,4

Similar to the calculation of N q
r,3, the value of N q

r,4 is

N q
r,4=N q

t × pc2b ×N × S̄c2b, (A.20)

where pc2b is the probability that the second situation of case two happens, i.e., the

probability that the selected forward node nqt is located in the area jointly covered by

node nq−1
t,1 and node nq−1

t,2 with rt<d(nq−1
t,1 ,n

q−1
t,2 ) < 2rt. Then, the expression for pc2b is

pc2b=
S̄2l

πr2
t

=
3
√

3/16r2
t

πr2
t

, (A.21)

and the calculation of S̄2l is presented in Section A.5. As shown in Figure 3.6 (b), the size

of S̄c2b equals to the area S̄2s jointly covered by node nq−1
t,1 and node nqt minus the area S̄2l

jointly covered by node nq−1
t,1 and node nq−1

t,2 , i.e., S̄c2b=S̄2s−S̄2l. Since 0 <d(nqt ,n
q−1
t,2 ) <rt

and rt<d(nq−1
t,1 ,n

q−1
t,2 ) < 2rt, we have

S̄c2b=S̄2s−S̄2l= (π−3
√

3

4
)r2
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3
√

3

16
r2
t= (π−15

√
3

16
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t . (A.22)

Thus, the expression for N q
r,4 is

N q
r,4=N q

t ×
3
√

3r2
t /16

πr2
t

×N × (π−15
√

3

16
)r2
t . (A.23)

A.4 Derivation of S̄3

As demonstrated in Figure A.1(b), the value of S3 equals to the area Sjc which is

jointly covered by nqt,1 and nqt,2 minus the area Sc1 represented by the dotted oblique lines,

i.e., S3=Sjc−Sc1. According to the linearity of expectation, we have S̄3=S̄jc−S̄c1.
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Again, the calculation of S̄jc is similar to that of S̄2. Since the distance between nqt,1

and nqt,2 is smaller than
√

3rt, we have

F3(x)= Pr(d ≤ x)=
πx2

3πr2
t

=
x2

3r2
t

. (A.24)

So, the PDF is f3(x) = 2x
3r2
t
, and the calculation of S̄jc is

S̄jc=

∫ √3rt

0

(2r2
t arccos (

x

2rt
)−x

2

√
4r2

t−x2)× 2x

3r2
t

dx. (A.25)

Following a similar calculation as in (A.4) and (A.5), we get

S̄jc=
5

36
(4π−3

√
3)r2

t . (A.26)

Similar to that in Section A.3, the value of S̄c1 is approximated as S̄c1=
πr2
t

6
. Thus, we

have

S̄3=S̄jc−S̄c1=
(14π−15

√
3)

36
r2
t . (A.27)

A.5 Computation of S̄2l

Figure 3.6(b) shows that S2l is the area denoted by the dash oblique lines and rt<d(nq−1
t,1 ,n

q−1
t,2 ) < 2rt.

Very similar to the calculation of S̄2 in Section A.1, S̄2l is calculated by

S̄2l=

∫ 2rt

rt

(2r2
t arccos (

x

2rt
)−x

2

√
4r2

t−x2)× x

2r2
t

dx. (A.28)

Following a similar calculation as in (A.4) and (A.5), we get S̄2l=
3
√

3
16
r2
t .



Symbols

RN
N-dimensional real-number field

x vector

xT transpose of vector

xH conjugate transpose of vector

‖x‖2 `2 norm of vector

‖x‖1 `1 norm of vector

‖x‖∞ `∞ norm of vector

‖x‖0 `0 norm of vector

〈x,y〉 relevance between x and y

A matrix

AT transpose of matrix

AH conjugate transpose of matrix

A+ pseudoinverse of matrix

IN identity matrix of dimension N ×N

F range of bandwidth

B{·} bandlimited operator

D{·} timelimited operator

Pr(x < d) probability that event x < d occurs

sup
x
{f(x)} supremum of function f(x)
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|a| absolute value of number a



Abbreviations

1G 1st Generation mobile communication system

4G 4th Generation mobile communication system

5G 5th Generation mobile communication system

ADC Analog-to-Digital Conversion

AIC Analog-to-Information Conversion

AST Affine Scaling Transformation

AWGN additive Gaussian noise

BP Basis Pursuit

BPDN BP Denoising

CA Carrier Aggregation

CBS Combining Before Sampling

CDF Cumulative Distributed Function

CDP Compressive Data Persistence

CFAR Constant False Alarm Rate
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CNCDS Compressed Network Coding based Distributed data Storage

CoSaMP Compressive Sampling MP

CR Cognitive Radio

CS Compressed Sensing

CRL2 Combining Relevance via `2 norm

CTF Continuous To Finite

DA Divided-averaged

DCS Distributed Compressed Sensing

DCT Discrete Cosine Transform

DDS Distributed Data Storage

DFT Discrete Fourier Transform

DMD Digital Micromirror Device

DP Data Persistence

DPSSs Discrete Prolate Spheroidal Sequences

DTFT Discrete Time Fourier Transform

EGC Equal Gain Combining

FCC Federal Communications Commission

FOCUSS FOcal Underdetermined System Solver
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ICASST interference-constrained adaptive simultaneous spectrum sensing and data trans-

mission

ICStorage Improved CStorage

IDTFT Inverse-Discrete Time Fourier Transform

IHT Iterative Hard Thresholding

IMV Infinite Measurement Vector

IR Interpolation Recovery

IST Iterative Soft Thresholding

LASSO Least Absolute Shrinkage and Selection Operator

LPF Low Pass Filter

LS Least-Square

LTE-Advanced Long Term Evolution-Advanced

M-BP MMV-BP

M-OMP MMV-OMP

MCWSS Multi-antenna based Compressed Wideband Spectrum Sensing

MIP Mutual Incoherence Property

MMSE Minimum Mean Square Estimation

MMV Multiple Measurement Vector

MSE Mean Squared Error
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MWC Modulated Wideband Converter

NoInitCNCDS No Initialization stage CNCDS

NP Non-deterministic Polynomia

NSS Narrowband Spectrum Sensing

OMP Orthogonal Matching Pursuit

PA Power Amplifier

PDF probability density function

PSWFs Prolate Spheroidal Wave Function

RCOM-ACS Random Circulant Orthogonal Matrix based Analog Compressed Sensing

RF Radio Front-ends

RGG Random Geometric Graph

RIP Restricted Isometry Property

ROMP Regularized OMP

RSP Regularized Subspace Pursuit

SLC Square Law Combining

SNR Signal to Noise Ratio

SP Subspace Pursuit

SRCOM-ACS Short processing time RCOM-ACS

StOMP Stagewise OMP
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UWB Ultra-WideBand

WSN Wireless Sensor Network

WSS Wideband Spectrum Sensing

ZC Zadoff-Chu
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