Seismic surveys of the Amery Ice Shelf, East Antarctica: An investigation of meteoric and marine ice, the ocean cavity and the anisotropic crystalline structure of strained ice

Kathleen McMahon

BTech (Expl. Geoph.) (Hons), Macquarie University

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) by Research in Geophysics

Department of Earth and Planetary Sciences,

Faculty of Science,

Macquarie University

8th February 2012

Abstract

A multipurpose seismic study of the Amery Ice Shelf (AIS), East Antarctica, was undertaken between 2002/03 and 2005/06 with the aim of expanding glaciological knowledge of the structure of the AIS.

Seismic reflection surveys were carried out at localities G2A, AM01, AM04, and CT. CT is situated across the Lambert Glacier (LG)-Mawson Escarpment Ice Stream (MEIS) flow boundary. The results show ~722 m total ice at G2A, and a sharp 15 m decrease from 672 m to 657 m at the LG-MEIS ice boundary at CT. Strong reflections just under the ice base correspond to cooler water temperatures, mapping an 18-36 m layer of basal melt. A pycnocline is present in most seismic records, showing the boundary between Ice Shelf Water (ISW) and High Salinity Shelf Water. ISW thicknesses are 137-140 m at G2A and CT, and 75-95 m at AM01. At sites of marine ice accretion (AM01 and AM04) seismic data reveals the meteoric-marine ice boundary at 277 m and 394-401 m respectively. This matches depths measured by the Amery Ice Shelf Ocean Research (AMISOR) hot-water drilling project. Interestingly, the ice shelf base depth as measured by AMISOR produced no reflection in the seismic data at AM01 and AM04. A reflection from the hydraulic connection depth instead appears at 376 m at AM01 and 533-544 m at AM04. Seafloor depth below the surface is ~1317-1357 m around G2A, 975-992 m around AM04, 814-824 m at AM01 and 1120 m at the CT Line, although here the seismic data also shows a hill with its crest at 1083 m depth.

Perpendicular refraction surveys across major flow unit boundaries revealed negligible to weak azimuthal differences in P wave ice velocities, with no significant variation found within the upper ~100 m of ice shelf ice. The results showed a general range of 0.1-2.2 % variation, with only one site displaying a 4.3 % variation which may or may not indicate an anisotropic ice fabric.

Acknowledgements

I would like to express overwhelming thanks to my supervisor Dr Mark Lackie for his support and help to get this project and thesis from start to finish. There have been a few trials and tribulations along the way, but your support and friendship have made this achievement possible.

My thanks and appreciation to all the people that helped this project come to fruition and provided collaboration and invaluable assistance - Richard Coleman, Mark Lackie, Neal Young, Mike (Duk) Craven, Hugh Tassell, Ben Galton-Fenzi and Adam Treverrow; and to everyone who did the hard yards with me in the cold white expanse of the Amery Ice Shelf - my field hands Alan Elcheikh, Mike Woolridge, Jeremy Bassis, Richard Coleman, Mark Lackie, Chris "Google" Legge, Chris Jones, Dennis Darnell, Volker Janssen, Angus Munro, Anthony Hull, Marianne Okal, Jim Behrens, Heidi Caldon and Benoit Legresy; and also the AMISOR crew with whom we shared a camp, a blubber and a white Christmas - Russel, David Rasch, Shavawn Donoghue, Joel Pedro, Adam. Also my thanks to the Australian Antarctic Division for supporting this project and providing logistical support, and to all the people at Davis Station in the 2002/03, 2004/05 and 2005/06 summer seasons who shared the experience with me and helped out in many many ways to see that our project was a success - the leaders, the helicopter and CASA pilots, the chefs, all the FTOs who helped train us, and the doctors, mechanics, engineers, and comms/IT people that provided their expertise when things were a little bit broke (including the seismic equipment a few times), and to all the friends that took an interest.

To Tara Deen, who helped me out in the early days navigating Claritas, Rayinvr and all things seismic, your advice and assistance was invaluable. I would also like to thank the good people at Geoscience Australia, first for lending our project seismic equipment for our field work, and also for allowing me to come down and process my data at GA, helping me with any problems encountered and generally making me most welcome – Tim Barton, Leonie Jones, Hugh Tassell, Tania, and Smiley.

To Brad Bailey, good friend and office-buddy for the main part of our PhDs at Macquarie University - I'm glad we started this thing together! Thanks to the friends along the way, and to Cara Danis, Elyse Schinella, Sarge Bray, Mel Murphy and Ellen who've made the last year in the Geophysics Lab a really good one.

Hello to all my other Macquarie University friends and colleagues – including but not limited to Briony Mamo, Luke Strotz, James Valentine, Tim Topper, Luke Milan, Sarge Bray, Ryan Portner, Guy Morrow, Jo Wisniewski, Chico, Alana Mackay and many others – for their friendship and company throughout my time at Mac Uni, for keeping darts alive as a competitive sport, and for being part of the most awesome soccer team ever to compete in the staff comp! Thanks to all the other Department of Earth and Planetary Sciences people who have assisted throughout the last few years.

Thanks to my Mum and Dad, for letting me take over the living rooms in Crookwell and at home while I wrote this thesis. I know I monopolised the area for a good many months, but you can have it back now. A huge thanks to all of my family for their support and encouragement throughout my PhD (thanks for proof reading my thesis in a hurry Chris and Maurs!). There are too many things I need to thank them for to be able to mention it all here, but I appreciated it all.

I also long ago made a promise I would mention my high school buddies Sharon, Bern and Ellen, and the rest of the girls that were part of Mr Mac's senior geology class. A great bunch of people to begin the journey down that rocky road to geology and geophysics...

Last but absolutely not least, to my wonderful partner Lee Tasker, your love, support, encouragement, understanding and generosity during the last stages of completing this thesis (including heading off to the Rugby World Cup in NZ so I could have the place to myself and get the thesis finished!) have been phenomenal and a blessing. And thanks for helping me with the tweaks. I could not have asked for a better partner in life, nor believe so many rubber ducks could exist! ;)

Declaration

This thesis contains a reviewed interpretation and discussion of processed data that was the basis of my own Honours thesis undertaken at Macquarie University in 2003, entitled "Seismic Reflection Studies of the Amery Ice Shelf, East Antarctica", published in August 2006 as:

McMahon & Lackie (2006), Seismic reflection studies of the Amery Ice Shelf, East Antarctica: Delineating meteoric and marine ice, *Geophysical Journal International* **166**: 757-766.

Other than the above stipulated cases, this thesis entitled "Seismic surveys of the Amery Ice Shelf, East Antarctica: An investigation of meteoric and marine ice, the ocean cavity and the anisotropic crystalline structure of strained ice" contains no material which has previously been submitted or accepted for a higher degree, as part of the requirements for a degree, or for a diploma to Macquarie University or to any other institution. To the best of my knowledge, this thesis contains no material previously published or written by another person except where due acknowledgement has been made in the text. Further, I certify that this thesis is an original piece of research written by myself, and any help I have received for this research and in preparing this thesis has been appropriately acknowledged.

Kathleen L. McMahon 08/02/2012

Contents

Abstract	i
Acknowledgements	ii
Declaration	iv
Contents	v
List of Figures	ix
List of Tables	xiv
List of Equations	XV
Chapter 1 Thesis introduction and aims	1
1.1 The Amery Ice Shelf	1
1.2 The seismic technique	3
1.3 Why study the AIS with the seismic technique?	4
1.4 Thesis aims and structure	6
Chapter 2 The Amery Ice Shelf	8
2.1 The Amery Ice Shelf, East Antarctica: introduction and location	8
2.1.1 Ice sheets, ice shelves and sea ice: definitions	11
2.1.2 Previous work on the AIS	13
2.2 The AMISOR project	14
2.2.1 AMISOR equipment	15
2.2.2 The AMISOR drill sites	16
2.3 Structure and dynamics of the Amery Ice Shelf System	17
2.3.1 Ice dynamics: merging glaciers, foliation and fracturing	17
2.3.2 Surface velocity	21
2.3.3 Mass balance	24
2.4 Geology of the AIS region	27
2.5 Ice thickness and ice properties	30
2.5.1 Ice cover in the Amery Ice Shelf- Lambert Glacier system	31
2.5.2 Ice draft of the Amery Ice Shelf	33
2.5.3 Marine ice thickness	34
2.5.4 Strain, stress and anisotropy	36

2.5.5 Ice fabric	38
2.4.5 Melting and freezing: mass gain or loss from the AIS	41
2.6 The Ocean Cavity	44
2.6.1 Bedrock bathymetry beneath the Lambert Glacier-Amery Ice Shelf	
system and Prydz Bay	44
2.6.2 The Amery Ice Shelf ocean cavity	46
2.7 Ocean Circulation and Sediment Deposition	49
2.7.1 Prydz Bay	49
2.7.2 Sediments beneath the Amery Ice Shelf	52

Chapter 3 Methodology	53
3.1 Reflection CDP profile surveys	53
3.1.1 G2A – 2002/03 and 2005/06	53
3.1.2 AM04	57
3.1.3 AM01	58
3.1.4 Camp Tropical – CT Line	58
3.2 Refraction surveys for measuring anisotropy	63
3.3 Regional surveys – refraction and reflection	68
3.4 Seismic source	70

Chapter 4 G2A: A three year case study	72
4.1 G2A0203 Line	74
4.1.1 Claritas processed data	74
4.1.2 Disco Focus reprocessed data	77
4.2 G2A0506 Line	81
4.2.1 Processing sequence	86
4.2.2 Results	87
4.3 Discussion	87
4.3.1 Comparing seismic data and AMISOR depths	88
4.3.2 Seismic results with CTD data	93
4.3.3 Refection coefficient	94
4.3.4 Basal accumulation and melt rate	101
4.4 Conclusions	102

Chapter 5 AM01, AM03 and AM04: Seismics vs AMISOR CTD data	105
5.1 The survey sites	105
5.1.1 AM01	105
5.1.2 AM04	106
5.1.3 AM03	107
5.2 Processing & result	107
5.2.1 Processing sequence	107
5.2.2 Seismic CDP profiles	109
5.2.3 AMISOR CTD data	122
5.3 Discussion	127
Chapter 6 Pycnoclines in the water column beneath the AIS	132
6.1 A brief introduction to the study of oceanography for Prydz Bay and the AIS	132
6.1.1 Oceanographic terms	132
6.1.2 Ocean water bodies in polar regions	134
6.2 Case study: Camp Tropical	137
6.2.1 Processing and results	137
6.2.2 Interpretation	145
6.2.3 Seismics and pycnoclines	150
6.3 CTD and reflection coefficient data analysis	151
6.4 Discussion and implications	156
Chapter 7 Azimuthal anisotropy in strained ice of the AIS	158
7.1 Introduction	158
7.2 What is anisotropy?	160
7.3 Stress and strain rate in glaciers	161
7.3.1 Ice crystal fabric, strain, anisotropy	162
7.3.2 Distribution of ice stress and strain rates	164
7.4 Strain rates of the AIS	168
7.5 Seismic body waves and anisotropy	170
7.5.1 Relating seismic P waves to crystal orientations	172
7.5.2 The P wave velocity variation in anisotropic ice	173
7.6 Amery Ice Shelf seismic anisotropy data	174

7.6.1 Data processing	174
7.6.2 SeisImager discrete layer models	176
7.6.3 Ray inverse trace models – velocity gradient applies	177
7.6.4 Results	178
7.7 Discussion	184
Chapter 8 Concluding Remarks	188
8.1 Key findings	188
8.2 Recommendations	190
References	194
Appendix	204
Appendix A McMahon & Lackie (2006)	204
Appendix B Website for CTD calculations	215
Appendix C SeisImager discrete layer models and Rayinv velocity gradient	
models	217

List of Figures

Chapter 1 Thesis Introduction and Aims	1
1.1 A location map of the Amery Ice Shelf	2
	0
Chapter 2 The Amery Ice Shelf: A brief guide to everything	8
2.1 Map of Antarctica showing the location of the Amery Ice Shelf	9
2.2 Delineation of Antarctica's 23 drainage basins	10
2.3 The Amery Ice Shelf System catchment area (AVHRR image)	10
2.4 Schematic diagram of AIS interacting with ocean and atmosphere	12
2.5 Diagram of AMISOR's hot water drill equipment	16
2.6 Satellite image of AIS showing flowlines, flow units and crevassing	19
2.7 1968 AIS Project traverse routes and ice vectors	22
2.8 AIS-LGB velocity vector map (AVHRR image)	23
2.9 Smoothed ice velocity distribution on the AIS	23
2.10 Mass balance flux of East Antarctica	27
2.11 Generalised geologic map of PCM-AIS	28
2.12 Structural interpretation map of PCM-AIS	29
2.13 Relative Antarctic ice thickness image (AVHRR image)	30
2.14 Perspective view of the AIS	31
2.15 AIS-LGB ice coverage, ice thickness and elevation	32
2.16 Ice draft of the AIS	33
2.17 Marine ice distribution below the AIS	35
2.18 Diagram of crystal c-axis deformation	37
2.19 Diagram of anisotropic alignment of c-axis fabric	37
2.20 AIS vertical and shear strain rate maps	38
2.21 Marine ice sample with brine inclusions: AM04	39
2.22 Growth of saline ice crystals: lab experiment	40
2.23 Schematic AIS section with mass gain and loss rates	42
2.24 Schematic profile AM04-AM01 with layer thicknesses	43
2.25 Bathymetry image of AIS and Prydz Bay with measured bathymetry location	ons 45
2.26 AIS ocean cavity models: profiles through the AIS	47
2.27 AIS image of bathymetry difference between Fig 2.26 models	48

2.28 AIS water column thickness image	49
2.29 Location of 23 surface sediment grabs at the AIS shelf front	51
2.30 Visual AM02 core log and down core profiles	52

Chapter 3 Methodology	53
3.1 Satellite image with flow units and all seismic sites marked	54
3.2 G2A 2005/06 (AM03) survey geometry	59
3.3 AM04 survey geometry	60
3.4 AM01 survey geometry	61
3.5 Location and position of Camp Tropical line	62
3.6 CT line survey geometry	64
3.7 Survey plan for anisotropy sets of surveys	65
3.8 Strain map overlying satellite AIS image with anisotropy survey sites marked	65
3.9 Trial anisotropy survey geometry: LME-2E	69
3.10 Subsequent anisotropy survey geometry	70
3.11 Typical regional refraction survey geometry	71

Chapter 4 G2A: A three year case study	72
4.1 Location map of G2A survey lines and local sites	73
4.2 G2A0203 CDP profile (Claritas)	76
4.3 G2A0203 CDP profile (Disco Focus)	79
4.4 Seismic data display of G2A0506 reflection	81
4.5 Raw seismic records of two G2A0506 shots	83
4.6 Refracted arrivals and groundroll in raw data	84
4.7 Refracted arrivals and groundroll at increased gain	85
4.8 Frequency spectrum of two G2A0506 raw seismic records	86
4.9 G2A0506 CDP profile	89
4.10 AM03 CTD cast - salinity	95
4.11 AM03 CTD cast - temperature	96
4.12 AM03 water column densities	97
4.13 AM03 water column P wave velocities	97
4.14 AM03 water column reflection coefficients	100
4.15 Schematic diagram of AIS rates of melt/accumulation	102

Chapter 5 AM01, AM03 and AM04: Seismics vs AMISOR CTD data	105
5.1 Location map of AM01 survey sites	106
5.2 Location map of AM04 survey sites	107
5.3 AM01 CDP profile	111
5.4 AM03EW CDP profile	113
5.5 AM03NS CDP profile	115
5.6 AM03NS CDP profile with interpretation overlain	117
5.7 AM01 CTD cast - conductivity	122
5.8 AM01 CTD cast - temperature	123
5.9 AM04 CTD cast - conductivity	123
5.10 AM04 CTD cast - temperature	124
5.11 Correlation AM01 seismic profile to CTD data	125
5.12 Correlation AM04NS seismic profile to CTD data	126
5.13 Marine ice distribution with ocean circulation	128
5.14 Video images of AM01 meteoric-marine ice transition	130
5.15 Video image of marine ice fabric	131

Chapter 6 Pycnoclines in the water column beneath the AIS	132
6.1 Isopycnals of the world's oceans	135
6.2 Location of CT Line and nearby sites	138
6.3 Location of CT Line and ice flow boundary	138
6.4 Seismic profile: CT Line	139
6.5 Plot of AM03 CTD temperature	153
6.6 Plot of AM03 CTD salinity	153
6.7 Synthetic seismogram of 0.2 ms ⁻¹ change over 5 m	155
6.8 Synthetic seismogram of 0.2 ms ⁻¹ and 10.1 ms ⁻¹ change over 5 m	156

Chapter 7 Azimuthal anisotropy in strained ice of the AIS	158
7.1 Pattern of rate of strain across the Saskatchewan Glacier	162
7.2 Crystal orientation fabrics and P wave velocities for AM04 marine ice	164
7.3 Variable stress and strain rates in ice sheets	166
7.4 Schematic illustration: c-axis fabric in relation to compression	167
7.5 Idealised cross-section of Ice Stream B with marginal shear zones	167
7.6 Spatial distribution of transverse shear strain rate of the AIS	169

7.7 Propagation of P and S waves compared to c-axis orientation	171
7.8 Shear wave splitting in an azimuthal anisotropic medium	172
7.9 Correlation of ice fabrics and P wave velocity	173
7.10 P wave velocity curve with polycrystalline averages	174
7.11 Map of survey locations	175
7.12 Raw seismic record	176
7.13 Layer assignation	177
7.14 LME-2 NS refraction layer models	179
7.15 LME-2 EW refraction layer models	180
7.16 LME-2 NS ray inverse model	181
7.17 LME-2 EW ray inverse model	181
7.18 P wave velocity differences plotted on location map	186

Appendix C	217
C1 Layer model LME-3 NS	217
C2 Layer model LME-3 EW	218
C3 Layer model LME-1 NS	219
C4 Layer model LME-1 EW	220
C5 Layer model ML NS	221
C6 Layer model ML EW	222
C7 Ray inverse trace model LME-2C NS	223
C8 Ray inverse trace model LME-2C EW	223
C9 Ray inverse trace model LME-2EE NS	224
C10 Ray inverse trace model LME-2EE EW	224
C11 Ray inverse trace model LME-1W NS	225
C12 Ray inverse trace model LME-1W EW	225
C13 Ray inverse trace model LME-1C NS	226
C14 Ray inverse trace model LME-1C EW	226
C15 Ray inverse trace model LME-1E NS	227
C16 Ray inverse trace model LME-1E EW	227
C17 Ray inverse trace model LME-3W NS	228
C18 Ray inverse trace model LME-3W EW	228
C19 Ray inverse trace model LME-3C NS	229
C20 Ray inverse trace model LME-3C EW	229

C21 Ray inverse trace model LME-3E NS	230
C22 Ray inverse trace model LME-3E EW	230
C23 Ray inverse trace model ML-CE NS	231
C24 Ray inverse trace model ML-CE EW	231

List of Tables

2.1 AMISOR borehole ice thicknesses and depth	17
2.2 Calculated accumulation and outflow fluxes of 1968 traverse data	25
3.1 Acquisition values and line orientations for all seismic surveys	55
3.2 List of all location names for 2004/05 anisotropy surveys	67
3.3 Station location numbering protocol for anisotropy surveys	67
4.1 G2A ice and seafloor depth calculations	91
4.2 G2A ice and pycnocline depth calculations	92
4.3 Ice, pycnocline and seafloor depths	98
5.1 AM01 and AM04 Table of ice and seafloor depths	120
5.2 Errors for AM01 and AM04 depths	121
6.1 CT Line seismic depths	143
6.2 Water body thicknesses	144
7.1 Summary of P wave velocities for all modelled refraction layers	182-183

List of Equations

4.1 Acoustic Impedance	94
4.2 Reflection Coefficient	99
4.3 Transmission Coefficient	99
4.4 Reflection energy	99
6.1 Ice thickness	146
6.2 Floating ice surface elevation	146