

TOWARDS DECLARATIVE SMART

CONTRACTS

by

Kevin Purnell

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY
FOR THE DEGREE OF

MASTER OF RESEARCH
DEPARTMENT OF COMPUTING

OCTOBER 2019

Examiner’s Copy

ii

Declaration

I certify that the work in this thesis entitled TOWARDS DECLARATIVE SMART CONTRACTS has not
previously been submitted for a degree nor has it been submitted as part of the requirements
for a degree to any other university or institution other than Macquarie University. I also certify
that the thesis is an original piece of research and it has been written by me. Any help and
assistance that I have received in my research work and the preparation of the thesis itself have
been appropriately acknowledged. In addition, I certify that all information sources and
literature used are indicated in the thesis.

Kevin Purnell

iii

Acknowledgements

I would like to thank my supervisor, Dr. Rolf Schwitter, for initial direction and access to his prior
research, the many brainstorming discussions that helped clarify this problem and possible
solutions, and his guidance and encouragement during thesis preparation.

I also appreciate Macquarie University allowing me to return and complete an honors year
approved more than a decade ago which I had to turn down because of work pressures.

Further, I appreciate and thank the HDR coaches for guidance while writing this thesis.

Finally, I thank my partner Jill for her patience and support, and my dog Albert who kept
dragging me from my study for regular walkies.

iv

Abstract

With the exception of some well-funded industries, legal documents remain difficult and
expensive to use, and prone to ambiguities. Emerging blockchain technologies hold the
promise of changing this, however the tools for coding these ‘smart contracts’ require
programmers and are prone to fraud. To fully realise the benefits of smart contracts,
widespread adoption is required, which depends on improving security and replacing
programmers with tools that lawyers, business-people and the general public can use. Our
objective is to investigate improved approaches to the creation, testing and deployment of
smart contracts by demonstrating that pure declarative languages can be used, and that these
facilitate achieving improved utility in smart contracts. Our investigation implemented a ‘Will
and Testament’ as a smart contract on a custom simulator, and demonstrated improved utility
by auto-generating a smart contract from a status-quo user interface with an untrained user.
We found a number of small benefits to using a declarative language like simplification, ease
of code auto-generation and ease of testing. We have identified an approach to smart contract
creation supportive of adoption because conversion starts with current legal contacts, is
tolerant of varying levels of automation, and allows human-in-the-loop interaction. Smart
contracts are seen as game changing by many, and should issues with cost, usability and
security be solved, the economic impact is likely to be large.

.

v

Contents

Declaration ii

Acknowledgements iii

Abstract iv

Contents v

Terms and Abbreviations vii

 Introduction.. 1

1.1 Study Context ... 1
1.2 Study Objective .. 2
1.3 Study Overview .. 2

 Background... 3

2.1 Introduction ... 3
2.2 Legal Contracts ... 3
2.3 Distributed Shared Ledgers .. 4
2.4 Blockchains ... 4
2.5 Smart Contracts .. 4
2.6 Wallets ... 5
2.7 Ricardian Contracts .. 5
2.8 Traditional Electronic Contracts ... 6

 Literature Review ... 8

3.1 Overview .. 8
3.2 Different Programming Languages ... 8
3.3 Visual Approaches .. 10
3.4 Auto-generation Approaches ... 12
3.5 Formal Verification Approaches ... 13
3.6 Conclusion .. 14

 Method of Investigation ... 16

 Design ... 17

5.1 Introduction ... 17
5.2 User Scenario ... 18
5.3 Improving Utility ... 18
5.4 Translation to Executable Code .. 20
5.5 Designing a Simulator ... 21

 Implementation .. 24

6.1 Constructing the Simulator .. 24
6.2 Description of the Simulator .. 26
6.3 Description of Templates ... 28

vi

6.4 Low Complexity – ‘Will and Testament’ Contract .. 34
6.5 Comparison with a Solidity Implementation .. 39
6.6 Mid Complexity – ‘Real Estate Sale’ Contract ... 43
6.7 Complex – ‘CEO Employment’ Contract ... 45

 Results .. 47

7.1 Coding a Smart Contract with ASP is possible .. 47
7.2 Extensibility .. 47
7.3 Using ASP facilitates achieving improved utility in Smart Contracts 48
7.4 Summary .. 50

 Discussion ... 51

8.1 Key Findings.. 51
8.2 Limitations .. 51
8.3 Implications .. 51
8.4 Future Research ... 52
8.5 Conclusion .. 54

References ... 55

Appendix A – Simple ‘Will’ – Solidity vs ASP .. 62

Appendix B – ‘Will and Testament’ Template ... 63

Appendix C – Low Complexity – ‘Will and Testament’ .. 66

Appendix D – Mid Complexity – ‘Real Estate Sale’ .. 72

vii

Terms and Abbreviations

51% attack blockchain attack where 51% of computing power is with attacker (bitcoin 2019)
ABI Application Binary Interface, an low level API for Ethereum smart contracts
API Application Programming Interface, a standardised way to interface to a program
ASP Answer Set Programming, a successful declarative programming language
blockchain immutable datastore where address is hash of content, also stored on next block
declarative code programming code with only logic statements (e.g. ASP)
DApps Distributed Applications
DSL Distributed Shared Ledgers
DSLang Domain Specific Language, a small language written to address a specific need
Entity a legal person or organisation (the legal, not computing definition)
Ethereum the blockchain used as the foundation for this study
GUI Graphical User Interface
imperative code typical programming code with both logic and control statements (e.g. C++)
NAF Negation as Failure
performance legal contract ‘performance’ is the transfer of the thing of value for consideration
PII Personally Identifiable Information (NIST 2019)
SCE Smart Contract Editor
SFLC Standard Form Legal Contract, a standard contract template only requiring details
SIE Smart Instantiation Editor
smart contract a distributed application stored in a blockchain and automatically executed
Solidity a JavaScript like programming language used in Ethereum to write smart contracts
utility the usefulness of something, especially in a practical way (Cambridge Dictionary 2019)

Chapter 1 Introduction 1.1 Study Context

Kevin Purnell Page 1 of 72

 Introduction

1.1 Study Context

Imagine a world where most legal contracts are digital, and thus more useful and automatable.
Recent blockchain technologies promise an immutable distributed platform, making the idea of
legally enforceable digital contracts (“Smart Contracts”) that execute automatically over time seem
more achievable (Szabo 1994; Wood 2017). Blockchains (Nakamoto 2008) are recent innovations
in shared databases that promise immutability for data by chaining blocks of data together with
addresses derived from hashing the content of each block. As this hashed address is also added to
the next block, any change will cause a detectable break and any attempt to modify the next block
results in cascading changes. This makes undetectable change difficult, and change detection easy.
The first blockchain implemented bitcoin, but there is no reason to limit content to financial
transactions (Wood 2017).

‘Smart Contracts’ (hereafter smart contracts) replace financial transfers with code that when
executed enforces predefined activities in response to external events. At face value, smart
contracts provide considerable opportunity for increased automation; however, many problems
require solving before this concept becomes practical. For example; the first generation of smart
contracts proposed in 2014 (Buterin 2014) requires programmers to code smart contracts in a
JavaScript-like language, an expensive overhead since end-users are lawyers, business-people and
the general public. Smart contracts are more than the electronic agreements and automation used
for decades by the financial services and e-commerce sectors (Glantz 2013). Smart contracts offer
a way to deliver a generic low cost, trustworthy platform to the general public that enables and
enforces legal agreements. As such, smart contracts dramatically expand the potential for use of
digital agreements, and have gained attention from the legal community (Ryan 2018).

All current methods of encoding legal documents are problematic when weighed against cost,
usability and reliability. Paper contracts risk misplacement or modification, are often hard to
understand, and suffer ‘difficult to detect’ ambiguities. Further, use of the legal system is
notoriously expensive and time-consuming, favouring those with access to greater resources
(Randall 2009); a disincentive to use. Current electronic contract implementations in areas like
financial markets and e-commerce are invariably private systems, built at great expense by one or
more of the parties involved, and not flexible enough to be applied to other business domains at
reasonable cost. Further, not being architected from the start with security and resilience to attack
in mind, these systems are as vulnerable as any traditional system deployed on private networks
(Hernandez 2018). Finally, smart contracts as currently implemented in systems like Ethereum
introduce their own unique problems. Smart contracts generally can’t be coded by end users
(lawyers, business-people and the general public), are difficult to program, are vulnerable to hacks
(Falkon 2017), compound the comprehensibility problem, do not address the ambiguity problem,
and remain difficult to understand once deployed. The imperative language used (Solidity) has
limited expressive power and requires many lines of code to express the logic of complex legal
contracts, which is reflected in costs to create and debug contracts (Swamy 2018).

Chapter 1 Introduction 1.2 Study Objective

Kevin Purnell Page 2 of 72

1.2 Study Objective

This study investigates improved approaches to the creation, testing and ongoing life-cycle of
smart contracts, with the goal of demonstrating that encoding of legal logic in a pure declarative
language is possible and facilitates improved utility to Ethereum’s current implementation.

Ethereum’s approach encodes legal logic in procedural ‘Solidity’ which is compiled to bytecode
that executes on the Ethereum Virtual Machine (EVM) (Wood 2017). At the time of writing, the
Ethereum blockchain environment is possibly the best benchmark for our project as other possibly
more advanced environments provide little publicly available information. We make no attempt to
address current problems faced by blockchains like security, privacy, processing and storage
demands and optimal partitioning of content; nor do we investigate future potential as exemplified
by the Decentralized Autonomous Organisation (Chohan 2017).

We investigate possible solutions to the challenges listed in section 1.1 via a literature review and
by experimenting with a custom blockchain simulator. Firstly, we design an approach to smart
contract creation that has clear advantages over Solidity when evaluated subjectively from the
perspective of the ultimate end-user (lawyers, business-people, general public). These preliminary
evaluation criteria cover aspects of utility for these end-users, being; 1) ease of use (desirable that
smart contract creation not require training); 2) understandability (builds confidence the contract
does what is intended); 3) ease of testing (helps identify and remove bugs); 4) free of security
exploits and errors at deployment (self-evident); 5) scalability (can handle large complex contracts);
6) affordability (costs should be minimised). Secondly, we investigate how using a declarative
language facilitates implementing this approach by building a blockchain simulator and using it to
investigate how best to implement a suitable legal document as a declarative smart contract. The
hypothesis we investigate and verify is:

“For the subset of legal documents amenable to implementation as smart contracts, coding with a
declarative language is possible and facilitates achieving improved utility for those smart contracts.”

To verify this hypothesis we seek: 1) to demonstrate that a legal document can be implemented
with declarative code, and 2) evidence that using declarative code facilitates the implementation
of a smart contract approach with improved utility over the Solidity approach.

Because of the ubiquity of legal document and contract use in society, even partial realisation of
the above aims will likely generate significant economic value (Forbes 2018; McKinsey 2018).

1.3 Study Overview

The rest of this thesis is structured as follows:
Chapter 2 an overview of foundational concepts and technologies of declarative smart contracts.

Chapter 3 describes current research into smart contracts and evaluates alternative approaches.

Chapter 4 describes the method we use to investigate our hypothesis.

Chapter 5 describes the design of our experimental environment and the legal document used.

Chapter 6 details the blockchain simulator developed to investigate and verify our hypothesis.

Chapter 7 presents and evaluates our results and findings.

Chapter 8 discusses these results and findings and lists our insights into factors defining the
boundaries of applicability for our approach and promising areas for future research.

Chapter 2 Background 2.1 Introduction

Kevin Purnell Page 3 of 72

 Background

2.1 Introduction

This section provides an overview of the foundational concepts and technologies assumed by our
investigation and is provided only because smart contracts are a very recent development.

2.2 Legal Contracts

Legal contracts are the essential mechanism covering exchange of goods and services in our
society. They have a long history in western society (Nicholas 1962), having their genesis in the first
attempts to regulate behaviour in exchanges of any type. Reflecting this is the recognition by law
of verbal agreements as having legal force if they can be proven to exist. This is easier to do than
is generally believed, because even the purchase of fast food qualifies as a legal contract.

For a legal contract to exist, four conditions must be satisfied (Treasury 2019). There must be:
1. an ‘Offer’ of a good or service

2. an ‘Acceptance’ of that good or service

3. ‘Intention’ that the above agreement can be enforced by law

4. ‘Consideration’ or reward given in exchange for the above good or service

Clearly, this definition is applicable to a wide spectrum of exchanges, ranging from trivial to very
complex, with their recording being driven by the tension between convenience and complexity.
Because such exchanges can occur in both private and public settings, the mechanisms used can
be extended to areas like process management within companies; for example, one department
may agree a service level agreement with another that provides parts. Not all legal contracts are
amenable to conversion to smart contracts; firstly, a contract must use a form of legal logic that is
computable with current technologies; secondly, the ‘Offer’ must be tangible enough to benefit
from some form of electronic process (see section 2.8). Further, some legal documents (Wills) do
not involve ‘Acceptance’ or ‘Consideration’ but have features that can benefit from automation.

The following is a list of types of legal reasoning surfaced to date in literature (Ellsworth 2005;
Fruehwald 2011), and is somewhat self-explanatory as to why only deductive reasoning is easily
handled by computer: 1) Deductive Reasoning – reasoning over facts with rules, easy to encode;
2) Inductive Reasoning – reasoning from specific cases to formulate an applicable legal principle;
3) Reasoning by Analogy – reasoning based on similarity to previously decided cases (precedent);
4) Abductive Reasoning – seeking the simplest, most likely cause of known facts (hypothesis);
5) Reasoning by Principle–uses policy, custom, principles (common values) to decide outcome.
Current computing techniques have mixed success with the last 4 of these 5 types, and
consequently are outside the scope of this study. Further, the literature reveals that ongoing
research to understand and encode ‘legal reasoning’ encounters difficulties with areas like
obligation and duty (deontic logic) (McNamara 2010), and where circumstances override some
agreement (defeasible logic) (Koons 2017).

Restricting application to legal documents that use purely deductive reasoning still greatly
increases the types of legal document that can be automated with smart contract technologies,
but a taxonomy may be useful when investigating the boundaries of applicability.

Chapter 2 Background 2.3 Distributed Shared Ledgers

Kevin Purnell Page 4 of 72

2.3 Distributed Shared Ledgers

The common purpose behind ledgers is the desire for a trusted source of truth. The most familiar
use of the term ledger is “the principal book in which commercial transactions of a company are
recorded” (CED 2014). A variation is the shared ledger, typically used by a community as the source
of truth to track of ownership of assets, an example being the Torrens Title Register of land
ownership (NSW LRS 2019). Another variation is the distributed ledger, a type of shared ledger
replicated and synchronised between members of a network (Walport 2016), first used in ancient
Rome (Smith 1875), and by Yap islanders to track wealth (Fitzpatrick 2019). Finally, there is the
distinction between un-permissioned ledgers and permissioned ledgers with one or more owners.

The wave of innovation known as the third industrial or digital revolution has been applied to
ledgers and has provided many improvements like automation, but failed to fully mitigate risks
from fraud (Davis 2015). The advent of blockchain technologies provides a potentially immutable
datastore and has captured the imagination of the business community, sparking a wave of
initiatives like the Australian Securities Exchange’s Clearing House Electronic Subregister System
(CHESS) replacement, a system that records shareholdings and manages settlements (ASX 2019).

2.4 Blockchains

Blockchain technology has roots in a string of innovations that used cryptography to create digital
cash. These started with David Chaum’s secure ‘digital cash’ proposed in 1982 (Chaum 1982).
Blockchain as an approach to data integrity was first described in January 1991 (Haber and
Stornetta 1991). This paper proposed a way to make changes to document timestamps infeasible,
without revealing content. The key ideas are:

 keeping an electronic record (ledger) of documents, with links between documents

 each link matches the previous document hash, so any change breaks this link

 accessible copies of the ledger are distributed across a network

 change is harder than detection, so theoretically defenders have the advantage and truth can be
determined from the majority of ledgers

In 1992 Hash Trees (Merkle Trees) were introduced to improve scalability by grouping documents
into blocks, with individual document hashes stored in trees (Bayer 1992). Further work showed
how to implement SUNDR, a trusted multi-user network file system on untrusted servers by
focusing on detection of attacks (Mazières and Shasha 2002), providing the mechanism for
blockchains to be implemented on the internet.

These ideas were materialised between 2008 and 2015, spurred by a 2008 white paper (Nakamoto
2008) describing a type of digital currency and funds transfer mechanism (Bitcoin) which operates
independently of a central bank (live January 2009). An illustration of the momentum achieved by
blockchains is the Australian government’s Australian National Blockchain initiative launched in
Aug 2018, a partnership between two large legal firms, IBM and Data61 (Ryan 2018).

2.5 Smart Contracts

The content stored on blockchains need not be restricted to bitcoin or coin balance ledgers; the
ledger concept can store any asset record, and even computer code.

Nick Szabo, a legal scholar and computer scientist, proposed the concept of smart contracts in a
1994 paper (Szabo 1994). Szabo’s concept of a smart contract intended to bring the experience of

Chapter 2 Background 2.6 Wallets

Kevin Purnell Page 5 of 72

contract law and practice to electronic commerce protocols. A paper by (Buterin 2014) provided
the impetus for introducing an improved scripting language for Ethereum (live July 2015), arguing
that improved scripting was ideal for implementing ‘distributed applications’ (DApps). The
realization that DApps and Szabo’s smart contracts were essentially the same thing spurred
industry interest, and the creation of the Enterprise Ethereum Alliance (EEA) 2017.

Ethereum smart contracts are executable code meant to duplicate the intended tangible
functionality of legal documents with the advantages of automated management and processing.
To facilitate coding smart contracts in Ethereum, a Java-like imperative language called Solidity is
provided. Solidity compiles to ‘Ethereum bytecode’ executed on the Ethereum Virtual Machine by
miners financially incentivised to perform this function. These transactions can be ‘Ether’ transfers,
smart contracts or transactions automatically generated by smart contracts (Wood 2017).

2.6 Wallets

Wallets allow blockchain users to store cryptocurrencies and interact with smart contracts. As this
study proposes modifications to Ethereum, Ethereum wallets are described (Ethereum 2019).
Wallets have evolved considerably so that a wide variety of forms and features are available;
however, the most useful ideas for this study are ‘Hardware Wallets’ and ‘Hot/Cold Wallets’. A cold
wallet is one not connected to the internet, so any attempted hack cannot complete. A hardware
wallet is a USB stick type device that can be connected to a computer or phone to authorise
interactions. When unattached a hardware wallet is cold, but when attached, a hardware wallet
has the advantage of not exposing the owners private key to the internet. Ethereum’s smart wallets
offer further security and recovery features over Ethereum wallets; examples being Gnosis Safe,
Argent and Authereum (Ethereum SCW 2019).

This study proposes further enhancements to Ethereum smart wallets beyond storage of
cryptocurrencies. It considers personal information to have similar value to cryptocurrency and
requiring the same level of security. A proposal to store personal information in a bitcoin like wallet
was first mentioned by Jäger (Jäger 2013); however, rather than discussing the designs provided
by Jäger and subsequent collaborators (Kramer 2015), an idealised design that suits our application
is described. There is intuitive appeal to the idea of holding personal information offline and
controlling how it is accessed. Connection to a wallet can be as simple as entering a private key
written on paper into the appropriate interface; however, this is not practical for manipulating
personal information and consequently we focus on hardware wallets for this purpose. Hardware
wallets can hold information that supports automatic population of user screens, for example, a
contract between natural persons refers to personal information such as name, date of birth and
address, commonly called Personally Identifiable Information (PII) (NIST 2019). Hardware wallets
have advantages for storing PII and authorising its use in smart contracts via private key.

2.7 Ricardian Contracts

Ricardian Contracts were developed in 1996 for a Bond Trading System by Ian Grigg of Systemics
Inc. (Grigg 2004), a London Fintech company, with the motivation being to automate transfer of
financial instruments and money between accounts in a high trust environment.

A Ricardian Contract can be defined as a single document that is a) a contract offered by an issuer
to holders, b) for a valuable right held by holders, and managed by the issuer, c) easily readable by

Chapter 2 Background 2.8 Traditional Electronic Contracts

Kevin Purnell Page 6 of 72

people (like a paper contract), d) readable by programs, e) digitally signed, f) carries keys and server
information, and g) allied with a unique and secure identifier (Grigg 2004).

Simply, a Ricardian Contract is a document that is both readable by people (formatted as a text
file) and parsable by programs that can convert it into internal forms for execution. It includes a
special section for each type of contract, such as bond, share, currency, and descriptions in
program-parsable terms of usage of decimal points, titles, and symbols.

Ricardian Contracts are designed to operate within a closed system and were originally
implemented more than a decade before blockchain ideas surfaced. They inform smart contract
development because; 1) they have already been implemented, and have achieved legal status in
financial markets, 2) they illustrate what content a blockchain smart contract must store, and
identify some principles.

2.8 Traditional Electronic Contracts

Currently many legal documents are electronic but retain a paper based format (Thomson Reuters
2020) with exceptions in a number of domains were the benefits from greater automation are
overwhelming; for example, financial markets and e-commerce (B2* hereafter used to denote B2B,
B2C, B2G etc. exchanges). These systems have been deployed for decades (Investopedia 2019); for
example, online shopping. Reasons why other types of contracts have not been automated is worth
analysis, with cost often dominating. Banks and businesses involved in B2* have the resources to
create and maintain a central system providing functionality and security for users. Many ordinary
legal contracts are between parties with few resources, while more complex contracts are often
low volume and more easily handled in a paper based format. Compared to paper contracts,
electronic contracts have clear advantages in areas like retrieval and automation, but a major
disadvantage has been amplification of risks from fraud. Blockchain technologies potentially
provide solutions to all above barriers, because they; 1) deliver a potentially immutable electronic
platform, 2) are distributed, so can provide a public resource free of distortion from any controlling
party, 3) amplify the resources available for creation of central services in most legal domains.

TABLE 1 – A SAMPLE OF LEGAL CONTRACT 'PERFORMANCE’ TYPES BY ‘DIFFICULTY TO IMPLEMENT’

 Difficulty Type of ‘Performance’ Example(s)

1 simple Monetary Transfer Transfer $x from A to B at 1:00 EST, 11Aug2019

2 Asset Transfer (via electronic ledger) Transfer ownership of asset X from A to B at 1:00 EST, 11Aug2019

3 External Input (Event) a) A died at 2pm:EST, 12Aug2019
b) I received my new dishwasher 11am Tuesday 20Aug2019

4 Human in the Loop Only execute X if A and B agree

5 Dispute Resolution If A and B do not agree, then C decides

6 Physical Asset Transfer Change owner of Real Estate on the electronic ledger and perform a
physical handover of keys etc.

7 Meta-Clauses If any clause of this contract is held to be unenforceable, it will remain in
effect to the extent that it is not invalid or unenforceable

8 complex Complex Legal Concepts A will use reasonable endeavours to perform X

At minimum these developments mean further penetration of electronic contracts into other legal
domains but determined by factors that can be studied; like how difficult it is to automate the

Chapter 2 Background 2.8 Traditional Electronic Contracts

Kevin Purnell Page 7 of 72

‘performance’ of a contract (Australian Contract Law 2010) and what benefits then accrue. A brief
survey provides a preliminary list of ‘performance’ types (Table 1).

Transactions within financial markets typically involve money transfer, the transfer of financial
assets via electronic ledger and recording currency and interest rate daily changes, types 1 to 3 in
Table 1. The simplicity of ‘performance’ required by the contract allows this automation, and
consequently these markets have achieved a very high level of automation, with automated
accounting systems used since the 1970s, and automated trading systems since the mid-1980s and
by 2008 performing more than 50% of trades on American exchanges (Glantz 2013). These systems
currently use artificial intelligence techniques to automatically identify and trade opportunities.

Blockchain initiatives have gathered a lot of momentum in financial markets and supply chain
circles in the last few years in recognition of advantages like security over traditional systems.
Professional service groups like Gartner, Accenture, McKinsey and R3 are popularising the trend
(Panetta 2019), with Accenture estimating savings of 30% in Banking (Accenture 2017), McKinsey
suggesting blockchains’ strategic value currently is cost reduction (McKinsey 2018), and Fintech
companies like R3 (Fortune 2018) creating computing ecosystems for the creation and
management of private blockchains, and facilitating consortiums of users who collaborate to
create private blockchains that transact a specified range of financial instruments.

Chapter 3 Literature Review 3.1 Overview

Kevin Purnell Page 8 of 72

 Literature Review

3.1 Overview

Research into improving smart contracts began with the implementation of Ethereum in 2015 and
has since intensified. Alternative research directions include different programming languages,
visual approaches, automatic code generation, and attempts at formal verification. Each of these
directions is reviewed and evaluated against criteria consistent with our objective of improving the
utility of smart contracts from the perspective of the ultimate end-user.

This review has two goals; 1) identifying the state-of-the-art regarding the use of pure declarative
languages to code smart contracts, 2) identifying smart contract approaches that dramatically
improve the utility of smart contracts relative to Solidity. The first search focuses on identifying
research gaps and opportunities to investigate the use of pure declarative languages for smart
contracts. The second search is used to inform the design of the blockchain simulator used to
investigate how to implement these declarative smart contracts.

An example of the clear improvement to utility over Solidity that we seek, is an approach that auto-
generates smart contract code from a status-quo user interface. The increased utility stems from
the dramatic reduction in costs for end-users, gained by removing programmers.

3.2 Different Programming Languages

3.2.1 Current Research

Ethereum’s language for coding smart contracts, Solidity, is rapidly evolving in response to
perceived and actual weaknesses evidenced by considerable losses to hacks (Falkon 2017). Analysis
suggests the famous DAO hack (on an organisation called ‘The DAO’) was possible because Solidity
was inadequate for writing secure, bug free software (Sirer 2016). For example; the DAO hack was
due to Solidity allowing implicit recursive calls, a feature avoided by secure language designers.

An alternative approach could be to investigate language theory to identify languages or language
paradigms better suited to smart contracts. Early on, Solidity was described as a JavaScript like
language (Solidity. 2017), but later releases claim influence from C++ and Python (Solidity 2019).
The C language is the outstanding example of language design impacting bug rates and security
vulnerabilities in programs (Ray, et al. 2014), with another being complexity (Zatko 2011). Research
has shown it is difficult to establish more precise relationships (Ray 2014; Berger 2019), but it still
follows that advantages can be found in approaches that yield fewer lines of code for a given result,
and that design for correctness and security (Prowell 2005; Bickford 2008) helps. Another useful
approach is using pretested code libraries (OpenZeppelin 2019).

Current popular programming languages like Python and functional programming also have
associated smart contract research efforts. Vyper is a contract-oriented, pythonic programming
language that like Solidity complies to a bytecode that targets the Ethereum Virtual Machine. It
strives to be simple, secure and auditable, given most users have little prior programming
experience (Vyper 2019); however, it still requires programming, and in this regard does not
provide the dramatic improvements to utility over Solidity that we seek.

Chapter 3 Literature Review 3.2 Different Programming Languages

Kevin Purnell Page 9 of 72

Idris is a pure functional language with dependent types first released in August 2017 by Edwin
Brady (Idris 2019). It is based on Haskell and ML but can be used as a proof assistant like Coq (Inria
2019). It complies to C and JavaScript upon which Solidity is based. Benefits of using Idris accrue
from the safety created by its type system, and the reduced cost of formal verification afforded by
being able to attempt formal proofs with the actual programming language. It is likely that Idris
improves code reliability, however because programmers are still involved it does not provide the
dramatic improvements to utility over Solidity that we seek.

Another interesting approach is the development of Ergo, a domain specific language by the Accord
Project; a collaborative initiative aimed at developing an ecosystem and tools specifically for smart
legal contracts (Accord Project 2019). Ergo is aimed at capturing the execution logic of legal
contracts, with the language being developed in Coq, an approach easing eventual formal
verification. The documentation discusses legal-tech developers, so a reasonable conclusion is that
objectives do not currently include allowing untrained people to write smart contracts. Domain
specific language approaches hold the promise of producing a declarative language specifically
designed for smart contracts. Activity in the financial domain is summarised in (DSLFIN 2019).

Prestwich discusses features being added to Solidity, like ‘Function Modifiers’, the ‘Checks-Effects-
Interactions Pattern’, argues for declaring allowed states using Solidity’s ‘require’ function, and
notes that best practices emerging in Solidity are declarative (Prestwich 2018). He even states;

“Ideally, we should create a new declarative language to write these contracts.”

Other activity in the declarative area is apparent, with a Stanford study proposing ‘Contract
Definition Language’ (CDL) (Agarwal 2016) described as declarative, with CDL descriptions being
“open logic programs”. On closer inspection the language has a Prolog-like syntax, with features
very close to ‘Answer Set Programming’ (see section 6.1.2), like negation as failure and the ability
to specify a state-transition system. A further similarity to our study is the ability to reason over
types. Agarwal presents a proof-of-concept via two case studies that model U.S. Federal Statutes,
which illustrate the techniques our study uses to model legal logic. We believe Agarwal’s paper
reinforces our focus on declarative languages and note his paper acknowledges the synergistic
potential of a user-centric front-end without investigating it. This paper surfaces the question of
why invent a new declarative language when there exist languages with over two decades of
development and testing behind them, like Answer Set Programming (ASP) .

A recent paper explores links between legal and smart contracts and provides a comparative
analysis of imperative and declarative languages for smart contracts, concluding that declarative
languages “may simplify” blockchain smart contracts but may require imperative code to handle
certain complex functions (G. F. Governatori 2018). Another recent paper explicitly investigates
Answer Set Programming (ASP) as being a knowledge representation that also allows legal
reasoning (Batsakis 2018), and compares it to other declarative languages for which solvers are
available, such as TOAST (ARG-tech 2012) for structured argumentation with ASPIC+, and SPINdle
(Data61, CSIRO 2013) for Defeasible Logic. This paper’s findings conclude that legal logic has to be
manually encoded because there are no support tools, that SPINdle is the most expressive
language for the problem domain but does not support ‘negation as failure’, while ASP may require
workarounds for certain legal constructs relative to SPINdle. These last two papers inform about
the domain in a theoretical exploration that is useful as a guide, especially the listing of declarative
languages with usable solvers, and the value of tools to aid the coding of legal logic.

Chapter 3 Literature Review 3.3 Visual Approaches

Kevin Purnell Page 10 of 72

3.2.2 Research gaps

The trend visible is towards declarative and domain specific approaches, some developed with
meta-programming languages like Coq. We see an opportunity to develop the user-centric front-
end generating declarative code that Agrawal mentions, while recognising the potential of Ergo
which appears to combine a number of threads (functional, declarative, formal verification). When
compared against Solidity; 1) languages like Vyper don’t have obvious advantages, 2) functional
languages like Idris could improve code quality but require higher skill levels from programmers,
3) pretesting code is likely to improve code quality, 4,5) DSL and declarative languages promise
further improvements over the advantages of functional languages.

Note, this subjective evaluation is used to identify promising approaches to the creation, testing
and deployment of smart contracts that we use later to design a simulator with improved utility
over Solidity. It is not used to verify the hypothesis.

TABLE 2 – DIFFERENT PROGRAMMING LANGUAGE APPROACHES TO IMPROVING SMART CONTRACT UTILITY CONTRASTED TO SOLIDITY

3.3 Visual Approaches

3.3.1 Current Research

Thinking through the challenge of simplifying human input when creating smart contracts
immediately brings to mind graphical interfaces. These were originally seen as a way of improving
human-computer interaction and have succeeded by becoming the dominant user interface for
personal computers and phones. Graphical interfaces were first imagined (Bush 1945), then
prototyped (Sutherland 1963), (Engelbart 1968), (Xerox PARC 1973), and eventually
commercialised by the Apple, Android, Windows and other Graphical User Interface (GUI)
operating systems.

The primary simplifying mechanism of these systems is metaphor, a technique that uses an
abstract graphic to represent something in the real world (HSC CoWorks 2019). This approach
allows novice users to navigate a GUI screen as if it is a physical office, and works well where
physical equivalents exist, but legal contracts can involve abstract ideas; for example, an
employment contract may require the employee’s best efforts to raise the employer’s profile with
a certain demographic. The second problem is that screen space clearly limits the complexity that
can be represented, and techniques like zoom, scroll and decomposition mitigate this only to a

Chapter 3 Literature Review 3.3 Visual Approaches

Kevin Purnell Page 11 of 72

limited degree. Metaphor however identifies one path forward, that of exploiting something
already understood by the user.

Ideas for simplifying smart contract creation started to surface soon after Ethereum debuted, with
the observation that blockchain/smart contract projects were complicated (Buelau 2017), and that
it was not realistic for end users (lawyers, business-people, public) to write code (Marks 2018).
Marks makes a strong case for reducing construction to simply specifying transaction logic, and
suggests that manipulating tokens on a screen can suffice to do this. Marks introduces
EtherScripter, the Unreal Editor (a games industry approach), and Hyperledger Composer (since
depreciated). Another initiative was the Confideal visual smart contract editor being developed to
simplify smart contract creation though pre-coded templates (Buelau 2017; EconoTimes 2017) but
this website has recently been depreciated (Confideal 2019).

EtherScripter uses Blockly, a visual programming language generating JavaScript used to teach
students how to code, and focused on assisting with correct syntax. The Unreal Editor, allows users
to use the Blueprints Visual Scripting system to create smart contract processes (Epic Games 2019),
and is capable of scripting the full smart contract lifecycle for a complex contract, but is visually
daunting given the target of untrained users. Of these, the Hyperledger Composer approach of
using minimalist icons related via arcs was the simplest and most intuitively appealing, but clearly
lacking as it has been also depreciated (Hyperledger Composer 2019). The approach to visual smart
contract creation used by its successor, ‘Hyperledger Framework’ is not visible (Hyperledger 2019).

Kowalski is investigating what he describes as a logic based production system language that unifies
both forward and backward inference methods into a single framework (Kowalski 2019). While this
work envisages coding in a language that looks declarative1, its novel ideas surface in the testing
area. The web site shows the results of executing an LPS program implemented in SWI Prolog2 and
running on SWISH3 that displays:

 “a Gantt chart showing a timeline of facts updated by external events and actions performed by
 the system” (Kowalski 2019).

A different graphic shows a graph visualising states and state transitions. Visualisations at smart
contract creation are beyond the scope of this study but this informs future work (section 8.4) as
visualising is a way to build understanding and confidence in the contract just created. Further,
because the instantiation step has been completed, the unambiguous executable code produced
can be more easily manipulated to display the contract one aspect at a time, as compared to
visualisation during contract creation.

Another recent approach is to digitalise current paper format legal documents. This can be done
with mark-up and results in a template with variables that have to be instantiated just as paper has
to be filled in by hand (OpenLaw 2019). OpenLaw is an initiative by law professor Aaron Wright and
others dating from 2017; and is a confirmation that some in the legal profession are comfortable
retaining the traditional sequential text format of legal contracts. This approach is built on top of
Ethereum, consists of a core written in Scala, and autogenerates JavaScript from instantiated

1 LPS is framed as a logic based production system language that aims to close the gap between logical and
imperative computer languages.
2 SWI-Prolog is a versatile implementation of the Prolog language available free at https://www.swi-prolog.org/
3 SWISH -SWI-Prolog for SHaring is a web front-end for Prolog. https://swish.swi-prolog.org/

Chapter 3 Literature Review 1.1

Kevin Purnell Page 12 of 72

OpenLaw Markup Language used to render the contract on screen. It allows free form contracts
built from modules.

3.3.2 Research Gaps

Of the visual approaches investigated, the OpenLaw approach appears the most practical, while
earlier metaphor based approaches appear to have stumbled. That traditional sequential text is
preferred in this instance invites an analysis of the benefits compared to other approaches.
OpenLaw however target JavaScript, providing a research opportunity to investigate a pure
declarative language as the target.

TABLE 3 – VISUAL APPROACHES TO IMPROVING SMART CONTRACT UTILITY CONTRASTED TO ETHEREUM'S SOLIDITY

3.4 Auto-generation Approaches

3.4.1 Current Research

From our experience auto-generation approaches can be partitioned into 1) translation of legal
logic from the original paper legal contract, and 2) instantiating code templates. Translation of the
original legal text is clearly more demanding than instantiation, but the cost invites an analysis of
the economics as it is common practise for traditional Standard Form Legal Contracts (SFLC) to be
developed and issued by a specialised central authority (JCT 2019).

Attempting to translate documents written for a specific audience and industry may encounter
difficulties due to the varying reasons particular sentences and words are included. These range
from stating precedence, to emphasis, defining terms, and elaborating contract ‘performance’.
Sometimes wording important to understanding the overall purpose of the contract is missing,
implied by the cultural setting; while other text can be ambiguous, causing disputes. All these
factors make machine translation from the original legal contract difficult, especially when
compared to the low unit costs achievable by repeated reuse of manually translated templates.

Choudhury et. al. investigate the auto-generation of smart contracts for Ethereum using ontologies
and semantic rules (Choudhury 2018). This research uses Web Ontology Language (OWL) and
Semantic Web Rule Language (SWRL), so can be seen as building on Semantic Web inspired
initiatives (W3C 2019; Antoniou 2012). Once an ontology for the domain and rules are in-place,
relevant text can be parsed for meaning. This step generates a JSON file which is then used to
instantiate an Ethereum smart contract template. A proof-of-concept is achieved by translating
eligibility criteria for clinical trials and car rentals. While promising, the method as described

Chapter 3 Literature Review 3.5 Formal Verification Approaches

Kevin Purnell Page 13 of 72

requires an expert to generate a smart contract template, ontology and rules for every use case.
Over a longer timescale, reuse is an objective; however, the authors envision using state-of-the-
art natural language processing techniques to generate the ontology and rules, so this approach
has not yet been fully realised. As it currently stands, this approach requires considerable custom
effort by contract type to achieve translation from the original legalese. While this approach is not
yet practical, it does illuminate a pathway towards tools that translate from paper contracts.

An augmenting approach is the combination of hand coded rules enhancing the performance of
machine learning (Curtotti 2010) in the classification of components of text.

3.4.2 Research Gaps

The auto-generation approach from paper legal contracts discussed above is not yet practical and
also beyond the scope of this study, however auto-generation of code at instantiation of
templates seems both practical and promising (see Table 4).

3.5 Formal Verification Approaches

3.5.1 Current Research

Formal Verification is defined as ‘proof using formal mathematical methods that a program
behaves consistently with its specification’ (derived from Berztiss 1988). Formal verification holds
the promise of not only improving smart contract reliability but actually proving the absence of
exploitable flaws, unfortunately at a prohibitive cost. This promise means this technique cannot be
ignored. That said, all formal verification approaches surfaced by this study, while having potential
to improve the reliability problem, suffer by magnifying the usability problem.

As discussed under section 3.2, the cost of formal verification with Idris is much reduced because
formal proofs can be attempted within the actual programming language, however it is likely that
Idris improves reliability at the expense of usability, given its conceptually difficult nature. Another
approach is with Scilla or Smart Contract Intermediate-Level LAnguage (scilla-doc 2019), an
intermediate level language being developed within the Coq Proof assistant (Inria 2019). Scilla is
designed to be a target for Solidity with the intention of a more rigorous automata-based model
of execution that can be proven via Coq. As for Idris, this approach ignores the fact that most users
have little prior experience with programming.

A paper by Zheng reports on the development and verification of a novel formal symbolic process
virtual machine (FSPVM-E) for verifying the reliability and security of Ethereum smart contracts,
completely in the Coq proof assistant (Yang and Lei 2018). This virtual machine simultaneously
executes Ethereum smart contracts to verify their reliability and security properties at the time of
execution, and so appears to address reliability issues, but not usability or cost issues. An advantage
of Zheng’s approach is that it informs a way to achieve on screen formal verification at contract
creation similar to Rodin (Event-B.org 2018).

Other initiatives involve proving Ethereum smart contract bytecode in Isabelle/HOL (Amani 2018),
and formal verification for ASP programs (Aguado 2015; Harrison 2015).

3.5.2 Research Gaps

Formal verification of code is a complex topic outside the scope of this study, recognised as being
difficult and expensive for procedural languages, but holding the promise of proving the absence

Chapter 3 Literature Review 3.6 Conclusion

Kevin Purnell Page 14 of 72

of exploitable flaws and bugs in smart contracts. We believe however that declarative languages
with their formal mathematical foundations and modelling abilities are likely to have lower formal
verification costs, making further investigation worthwhile (section 8.4).

3.6 Conclusion

This review has identified significant research activity in the area of using domain specific and
declarative languages for smart contracts, however much of the activity focuses on designing a
language rather than testing the suitability of an existing language. Two theoretical papers
investigate existing declarative languages and investigate possible advantages, however no
evidence of an actual implementation using an existing declarative language has surfaced, opening
a research opportunity. Table 4 summarises and highlights current research approaches that
improve the utility of smart contracts for the ultimate end-user.

TABLE 4 – ALL ALTERNATIVE APPROACHES TO IMPROVING SMART CONTRACT UTILITY CONTRASTED TO ETHEREUM'S SOLIDITY

The outstanding approach for improving smart contract utility is approach 7 which auto-generates
JavaScript smart contract code from a status-quo user interface. This approach provides the clear
improvement to smart contract utility over Solidity that we are seek for the design of our simulator.
Improved utility for lawyers, business-people and the general public is gained from being able to
create smart contracts at a much lower cost because programmers are not needed.

In contrast to the auto-generated JavaScript used by approach 7, we choose to auto-generate an
existing pure declarative language (ASP) to encode legal logic, in line with our hypothesis. We also
note that Table 4 indicates some advantages for DSL and declarative language approaches when
contrasted to Solidity. The combination of approach 7 with the auto-generation of an existing pure
declarative language is to our knowledge, unique.

Chapter 3 Literature Review 3.6 Conclusion

Kevin Purnell Page 15 of 72

In summary; 1) we identify an approach to smart contract creation, testing and ongoing life-cycle
that clearly has greater utility to the ultimate end-user than the Solidity approach, 2) we implement
this approach as an experimental simulator within the timeframe allowed this project, 3) we use
this simulator to experiment with ways of implementing declarative smart contracts. The
hypothesis we investigate and verify is:

“For the subset of legal documents amenable to implementation as smart contracts, coding with a
declarative language is possible and facilitates achieving improved utility for those smart contracts.”

To verify this hypothesis we seek: 1) to demonstrate that a legal document can be implemented
with declarative code, and 2) evidence that using declarative code facilitates the implementation
of a smart contract approach with improved utility over the Solidity approach. The evidence sought
ranges from easier auto-encoding and code manipulation to easier testing.

Chapter 4 Method of Investigation 3.6 Conclusion

Kevin Purnell Page 16 of 72

 Method of Investigation

Our methodology verifies the hypothesis with a proof-of-concept following an experimental phase
that investigated how best to implement smart contracts with a pure declarative language. This
experimental phase was undertaken on a block chain simulator built earlier as part of the
experimental setup. The simulator reproduces a code generating user interface identified in the
literature review that dramatically improves the utility of smart contracts for the ultimate end-
users because it eliminates the need for programmers. As implementation requires construction
of a code auto-generation mechanism, this construction can serve as a point of comparison with
Solidity. Other points of comparison are ease of testing and ease with which smart contract code
can be programmatically read and manipulated after creation, an important feature required when
recording smart contract state changes as subsequent blockchain transactions.

The proof-of-concept seeks to verify the two unproven concepts embedded in the hypothesis;
1) that it is possible to encode smart contracts with an existing pure declarative language (ASP),
2) that using a declarative language facilitates delivering improved utility to the end-user relative
to Ethereum’s current approach (Solidity).

Our investigation involves 3 steps: 1) identify approaches from research that dramatically improve
the utility of smart contracts for the ultimate end-user over Solidity, 2) use this information to
design and implement an experimental blockchain simulator with improved smart contract utility,
allowing investigation of how best to implement smart contracts with a pure declarative language,
3) identify and demonstrate the advantages of using a pure declarative language to code smart
contracts, by converting a suitable legal document to a smart contract using this simulator. Step 2
necessarily involves iterative prototyping as a technique for overcoming problems and refining
ideas, and provides the freedom to experiment with any part of the design in order to address
hurdles, a technique used in user interface research (Bäumer, et al. 1996).

It is intended that evidence surfaced from step 3 verifies the hypothesis stated in section 1.2 and
repeated in section 3.6. Demonstration of a legal document implemented as a declarative smart
contract via a suite of test cases (see Appendix C) serves as proof-of-concept for the first unproven
concept in the hypothesis. The second unproven concept in the hypothesis is investigated by
comparison of our ASP implementation with the likely procedural language implementation.
Finally, some extensions to more complex legal contract types are investigated in-order to identify
the factors that limit applicability. Legal contracts that cannot be, or are not economic to
implement, define boundaries.

Chapter 5 Design 5.1 Introduction

Kevin Purnell Page 17 of 72

 Design

5.1 Introduction

The areas holding promise for improving the utility of smart contracts emerging from the literature
are; 1) digitizing current legal documents with mark-up, 2) declarative and domain specific
languages, 3) visualisation of testing and, 4) formal verification. In this study we use 1) to
investigate 2) by creating a smart contract on a purpose built simulator from an example Australian
legal contract (‘Will and Testament’) available online (LawDepot 2019). A ‘Will’ was chosen because
it uses deductive logic, is not too complex and involves a human-in-the-loop (executor).

Figure 1 - Opening clauses of the ‘Will and Testament’ example used for illustration (full listing in Appendix B)

This ‘Will and Testament’ divides the whole estate according specified percentages, but disqualifies
on early death or contest, and has a wipeout (all beneficiaries are dead or disqualified) clause that
distributes to a different group of people. We believe the complexity of logic is adequate to serve
as an example and demonstrate proof-of-concept. Elaborations like bequeathing different assets
to different beneficiaries (e.g. jewellery distributed to females) give no advantage in this instance.

We use a purpose built standalone simulator because the Ethereum test environments (Kovan,
Ropsten, Rinkeby) would require inclusion of a declarative language grounder and solver to the
underlying Ethereum Virtual Machine.

Chapter 5 Design 5.2 User Scenario

Kevin Purnell Page 18 of 72

5.2 User Scenario

For orientation it is useful to envisage an ideal use case which can then serve as a benchmark for
current research and a target for any envisioned system. Consider a situation a few years into the
future where John decides to write a Will and Testament. John’s university friend, now a lawyer,
has previously discussed the revolution occurring in legal services around smart contracts. John
rings him and agrees to try the new method. John downloads the app (LegalAgreements) from a
law society website and sets up a contract writing session as session owner and testator. This
involves sending a session link to beneficiaries and other members of his family, the chosen
executor (lawyer friend) and witnesses. This session link functions differently depending on the
role of the recipient. Beneficiaries and other family members simply authorise access to their wallet
and PII by physically attaching their hardware wallets (section 2.6).

Roles such as the executor and witnesses attend an on-line session that allows them to interact
with voice, text and video communication via a Discord-like interface (Discord Inc. 2019) (section
8.4), while providing a common real-time view of the contract being written. John works through
the form allocating roles and selecting assets via touch from information retrieved from wallets
and blockchain hosted shared ledgers. Recently converted shared ledgers such as the NSW Torrens
Title Register (NSW LRS 2019) and Motor Vehicle Registry (NSW RMS 2019) greatly enhanced the
LegalAgreements app by supplying the full description of these assets without data entry. John
adds valuable jewellery and furniture manually, before specifying the percentage distribution to
each beneficiary. Finally, after a brief discussion, the witnesses agree to sign the ‘Will and
Testament’ with their private keys. The computer code generated is then packaged and deployed
to a blockchain where it sits waiting for events that trigger its actions until it is either fully executed,
or cancelled by John. The entire session has spanned about 10 minutes.

The following week, John decides that he would like a hardcopy of the Will which the system
generates by reverse engineering the smart contract declarative code, discovering instantiations
by comparing code against templates, and using these instantiations to populate the text template.

5.3 Improving Utility

Standard Form Legal Contracts (SFLCs) consist of a template created and published by some
recognised authority (JCT 2019), with the actual contract created by filling out details in ink
(instantiation). This two-step process can be applied to electronic contracts, and as most people
have seen paper SFLCs and been challenged by them, this familiarity can be exploited.

Digitising a SFLC opens up automated assistance that can further simplify use and display; for
example, many forms leave 2-3 lines for address whereas an electronic version would indicate this
with one special word at the instantiation point, reducing the length of the document and its visual
complexity. These special words could embed tab stops, allowing users to tab from instantiation
point to instantiation point, jumping the text in between and again reducing visual complexity.

It is possible to use this digital SFLC as a status-quo user interface to generate smart contract code.
To understand how, we take inspiration from Ricardian Contracts (section 2.7), and propose that a
pair of templates are now created by the central authority; 1) an electronic equivalent of the paper
standard form, and 2) its legal logic as computer code, as shown in Figure 2.

Chapter 5 Design 5.3 Improving Utility

Kevin Purnell Page 19 of 72

Figure 2 - Traditional Approach vs Proposed Approach to writing Legal Contracts

These two templates are output from a manual first translation step. A second translation step
(instantiation) is required when the smart contract is created, and we propose that a smart
contract editor be constructed to aid this. Our insight is that information provided by users when
instantiating the digital SFLC template can also instantiate computer code templates. Figure 2
shows the traditional process for writing legal contracts on the left side, and the proposed
approach on the right side. The proposed approach uses both text and code versions of the
contract as pioneered by the Ricardian Contract, but exploits instantiation of the text template to
instantiate the code template.

Another simplification can be gained from storing PII in wallets (section 2.6), so once a person is
identified, their address is also known and instantiated automatically. This technique and a similar
mechanism that retrieves data from DSLs could reduce instantiations by more than half, with most
instantiations now simply a screen tap or mouse click, rather than text input. These simple
examples belie the potential for other simplifications and a dynamic help feature (Agarwal 2016).

A further significant but possibly overlooked advantage is that traditional paper format handles
contracts of arbitrary complexity. Using sequential text to express complex ideas appears culturally
embedded (e.g. doctoral dissertations, complex contracts, conference papers etc.), is hard to
duplicate with other approaches, and not a feature of most other smart contract research.

Translating a SFLC to an electronic equivalent is straight forward; at minimum simply adding mark-
up to existing text at instantiation points. This study requires only a small subset of available mark-
ups (presentation, processing, internal referencing), however there is great scope for more
sophisticated mark-ups as mark-up capabilities are extended. This consistent trend started with

Chapter 5 Design 1.1

Kevin Purnell Page 20 of 72

the first mark-up language (Goldfarb 1992), the first hypertext mark-up language (Berners-Lee
1989), and increasingly more powerful constructs like the powerful referencing construct XLink
(W3C. 2010), OWL (Web Ontology Language), SWRL (Semantic Web Rule Language) and RDF
(Resource Description Framework), all Semantic Web initiatives (Arroyo, et al. 2004).

After reviewing Chouldhury’s proposal to auto-generate smart contracts (Choudhury 2018) we
recognise that a mark-up approach using Semantic Web technologies is eventually likely to yield a
result where legal documents embed machine solvable logic. The OpenLaw approach allowing
construction of free form contracts with mark-up is also informative (OpenLaw 2019).

In contrast to these last two proposals, there is a benefit to using a central authority to publish
smart contract templates because it matches current practise in some segments; for example, JCT
is a collaboration of organisations in the UK construction industry that produce standard contract
forms (JCT 2019); and is practical because initial costs can be spread over repeated template usage
over time, greatly reducing cost per contract thus making smart contracts much more useful to the
end-user. It is envisioned these templates reside in a blockchain hosted DSL and served on request.

5.4 Translation to Executable Code

A typical legal contract such as a ‘Will and Testament’ (see Figure 1) contains wording with a variety
of purposes, the most important for the purpose of automation are clauses defining ‘performance’
(Australian Contract Law 2010); that is, the actions agreed in exchange for consideration (section
2.2). The purpose of other text ranges from emphasis, to listing precedence, and defining terms.
Sometimes wording important to understanding the overall purpose of the contract is missing,
implied by the cultural setting; while other text can be ambiguous, often the cause of legal disputes,
complexities that make reliable machine translation of contracts difficult (Choudhury 2018).

Using templates manually translated by some central authority (JCT 2019) avoids this difficult
machine translation, however the text template and accompanying computer code still have to be
instantiated. We aim to auto-generate this code as no programming language is likely to be simple
enough for untrained users due to a tension between simplicity and expressive power (Kuhn 2014).
Instead the semantic gap has to be bridged by other techniques like decomposition and
simplification. We note in section 5.3 that use of a familiar SFLC format simplifies our interface,
and also that use of a declarative language simplifies auto-generation of code. Splitting translation
into two steps also simplifies, as only instantiations are now required at contract creation. Further,
it is possible to group declarative code into three types; facts, logic program and events, and we
believe it is possible to code so that only the auto-generation of facts is required at smart contract
creation. Further simplification can be achieved by using Smart Instantiation Editors (SIE) and meta-
templates. SIEs understand what type of data is required at an instantiation point and where to
source it, greatly simplifying the user experience, while meta-templates (instantiated for type
before use) can simplify the number of templates required (section 6.3.4).

On reflection, our underlying approach appears to reframe the creation of smart contracts as a
translation from traditional legal contracts to computer code, seeking ways to simplify each step.
Using a declarative language simplifies the computer code required, simplifying auto-generation,
which is further simplified by splitting translation into two steps, and splitting declarative code into
facts, logic and events; and as a result only facts need be auto-generated at smart contract
creation, which is simplified further by using meta-templates.

Chapter 5 Design 1.1

Kevin Purnell Page 21 of 72

5.5 Designing a Simulator

5.5.1 Introduction

The objective of a simulator is to provide a platform that allows investigation of the hypothesis.

5.5.2 Assumptions

As this study investigates future technology, it is reasonable to make the simplifying assumptions.
These are; 1) Personally Identifiable Information (PII) data is available from wallets, 2) public shared
ledgers like the Torrens Title register (NSW LRS 2019) are implemented as blockchain distributed
shared ledgers (DSLs) with owners permissioned for read access.

5.5.3 Architecture

The proposed process for writing a smart contract is:
 users access published templates for the type of legal contract required (see Figure 3)

 users are then presented with that legal contract’s template in familiar format on screen

 the system aids users to fill out this document in a fluid intuitive way by exploiting available
information like PII data from wallets and asset information from DSLs

 this data instantiates both text and code templates via paired instantiation place holders

This approach allows splitting translation of legal logic into two steps; step 1 translates the legal
logic of the contract type, step 2 translates the details of the actual contract, essentially
instantiation. These steps are identical to the traditional process.

Figure 3 illustrates how users access published templates by supplying a contract key and version
via a request to the smart contract template DSL. These templates are the output of translation
step 1. Translation step 2 (instantiation) is performed by users with a ‘Smart Contract Editor’
(hereafter SCE), shown in Figure 3 as extracting PII and other data from wallets and shared ledgers
permissioned by the contract writing session to ease data collection. This instantiation step
concurrently generates the smart contract in text and code, with code denoted in Figure 3 as facts.
The other component of smart contract code, denoted as a logic program is copied as is from the
supplied code template. Logic is invariant for all contracts of a certain type, and is coded, published
and maintained by a central authority.

Chapter 5 Design 5.5 Designing a Simulator

Kevin Purnell Page 22 of 72

Figure 3 - High level view showing data sources and flows for smart contract creation

The published templates are supplied in a structure consisting of two groups; templates for text
and templates for code. Figure 4 shows how the SCE uses supplied text templates to construct an
digital equivalent of the paper SFLC on screen. This digital equivalent aids users in its instantiation,
and each instantiation automatically generates code (facts) from supplied code templates.

Figure 4 - How users instantiate declarative code

Splitting smart contract declarative code into facts and logic program has advantages. Translation
step 1 that produces the logic program only has to be performed once when the contract type is
initially created and published, mirroring the current practise of publishing SFLC templates. This
makes centralisation of this difficult and expensive step practical, leaving only the much simpler
step 2, or instantiation step at contract creation time.

Chapter 5 Design 5.5 Designing a Simulator

Kevin Purnell Page 23 of 72

5.5.4 Smart Contract Lifecycle

Legal contracts have lifecycles punctuated by events that drive activities (‘performance’). In an
analogous way, a smart contract must be able to sense external changes that affect its state and
trigger ‘performance’ as specified. Our approach achieves this with events, declarative code that
communicates external events to a smart contract, added as a transaction to the blockchain at a
subsequent date (see Figure 5). Events are simply facts that occur after smart contract creation.

Because smart contracts cannot be changed once deployed to a blockchain, the only way state can
be changed is via new transactions. Our design requires that the original smart contract and all
subsequent transactions related to that smart contract be aggregated before execution. This is
possible because of three features of our declarative language; 1) elaboration tolerance (McCarthy
1988), 2) ‘Negation as Failure’ (NAF) which allows code to function without atoms that are only
created on detection of a specific pattern, 3) the way we model objects and situations one-to-one
with atoms, allowing our declarative code to be split into three parts.

Figure 5 – Lifecycle of the ‘Will and Testament’ smart contract

5.5.5 Differences to Ethereum Smart Contracts

There are a number of differences between Ethereum and the approach described in this paper.
Firstly we propose changing the transaction content deployed to the blockchain from bytecode to
declarative code, adding a declarative code solver to the Ethereum Virtual Machine. Secondly, the
wallet concept is modified to hold detailed information about the wallet owner (see 2.6 Wallets).
Thirdly, there is transparent access to blockchain shared ledgers for owners of those assets, a
feature implemented in some emerging blockchains, but requiring explicit mention for this study.
Finally, this study proposes ‘Human-In-The-Loop’ processes, because many legal contracts require
human intervention at some point; for example, “Will and Testament” requires an executor. These
changes broaden the applicability of smart contracts relative to those built into Ethereum.

Chapter 6 Implementation 6.1 Constructing the Simulator

Kevin Purnell Page 24 of 72

 Implementation

6.1 Constructing the Simulator

6.1.1 Development Platform

This study constructs, then uses a blockchain simulator with a smart contract editor (hereafter
simulator) to explore and test ideas for improving the usability and reliability of smart contracts.
The simulator then serves as a proof-of-concept as we demonstrate how to take a legal contract
from paper format, though each translation step to automated execution of a full contract life cycle
via test cases. Screens and process designs around creation and testing of smart contracts are close
to a possible live implementation, while blockchain features are not discussed and are no longer
seen as relevant to the study objective.

The simulator development platform choice was driven by the short time frame allowed this study
which mandated use of a familiar toolset, and the nature of this user interface which allows
investigation and demonstration in a standalone environment. The simulator is constructed in 64-
bit Python v3.6.8 using the PyQt5 v5.9.2 GUI library on a Dell XPS-15 (Intel i7-6700HQ, 16GB RAM,
Windows 10 64-bit), using the Spyder IDE v3.3.3. Software used includes HTML as the mark-up
language (restricted by PyQt5 (Qt 2017)), and ASP as the declarative language, using Potassco’s
clingo version 4.5.4 (64-bit).

6.1.2 Answer Set Programming (ASP)

Answer Set Programming (ASP) is a form of declarative programming able to encode knowledge
and oriented toward (primarily NP-Hard) search and optimization problems (Lifschitz 2008).

ASP has emerged since 1999 from a number of lines of research, including logic programming
(Prolog), knowledge representation and constraint satisfaction (Lifschitz 2008). It combines an
expressive language, a model-based problem specification methodology, and efficient solving
tools. This study uses ASP-Core-2 standard language syntax (Calimeri 2015).

Brewka et.al. note that close connection to nonmonotonic logics provides ASP with the power to
model default negation, deal with incomplete information, encode domain and problem-specific
knowledge, defaults, and preferences in an intuitive and natural way (Brewka 2011). ASP also has
the important attribute of ‘elaboration tolerance’ (McCarthy 1988), defined as “the ability of a
computer program’s representation of a problem to accept changes in problem specifications
without need to rewrite an entire program” (Lierler 2017).

Processing ASP typically requires two steps; 1) grounding 2) solving. Grounding involves replacing
variables with instances, converting a predicate program (1st order logic) into an equivalent
propositional program. Solving involves using methods from satisfiability solving (SAT), Fixed Point
Mathematics, and Satisfiability Modulo Theories (SMT) to solve the propositional program
(Lifschitz 2008). Solvers return Answer Sets that represent solutions.

The language can be summarised as consisting of three types of clauses; facts, rules and
constraints. Facts create the solution space, rules encode the general problem and generate
solutions, and constraints filter out unwanted solutions leaving only the answer.

Chapter 6 Implementation 6.1 Constructing the Simulator

Kevin Purnell Page 25 of 72

Examples:
Facts:

team(1). means team 1 exists, where ID “1” denotes team 1

Rules:
pair(T1,T2) :- team(T1),team(T2),T1<T2. if T1 = {1,2,3} and T2 = {2,4,6} then
 pair(T1,T2) = { (1,2),(1,4),(1,6),(2,4),(2,6),(3,4),(3,6) }

Constraints:
:- pair(T1,T2),T1<2. delete answers where T1 has a value less than 2. This removes
 (1,2), (1,4), (1,6). Answer is { (2,4), (2,6), (3,4), (3,6) }

where “:-” means IF, “;” means OR (not shown), “,” means AND

A simplified language syntax is:
Term = either a constant string starting with lowercase
 | “quoted string”
 | integer
 | variable string starting with upper case
 | arithmetic term −(t) or (t ⋄ u) where ⋄ ∈ { +, −, ∗, / }
 | functional term f (t1, ..., tn)

Atom = a predicate with arity n that has form p(t1, ..., tn)

Literal = an Atom or its negation

Clause= a finite set of Atoms an of form a1; …; aj :- a1, ..., am, not a1, ..., not an.
 with two parts and three types Head exists if Body evaluates to true

 Facts: Head
 Rules: Head :- Body
 Constraints: :- Body

ASP Program = a finite set of Clauses

ASP also allows two forms of negation:
1. Weak negation not a true if a = false or doesn’t exist (assumed false).

2. Strong negation -a true if a = false and vice versa.

 Note: Weak negation is also called ‘negation as failure’ (NAF).

Aggregation can be achieved with aggregate functions #sum and #count, while many of the other
features available are not listed because they are not used by this study.

6.1.3 Hypertext Mark-up Language (HTML)

The mark-up language used for this study is dictated by the GUI tool used (section 6.1.1). Only a
subset of the mark-up functionality provided by HTML is used (presentation and description), with
added extensions embedding attributes with each instantiation placeholder (IPH) and providing
more control over display scrolling, and internal referencing. The attribute extensions provide
variable identifier, type, action, and cardinality information that specifies how routines should
process each IPH.

Chapter 6 Implementation 6.2 Description of the Simulator

Kevin Purnell Page 26 of 72

6.2 Description of the Simulator

Figure 6 is a screen shot of our simulator’s SCE; showing the legal document (left) and tools (right).

Figure 6 - Simulator's smart contract editor

Chapter 6 Implementation 6.2 Description of the Simulator

Kevin Purnell Page 27 of 72

The simulator’s main component is a smart contract editor (Figure 6) split between legal contracts
displayed in a familiar format on the left side, and tools that are used to auto-generate, check and
test declarative code on the right side. This screen represents the primary mechanism by which
specific legal contracts are translated into computer code.

6.2.1 Left side of the Smart Contract Editor

Figure 7 shows our example legal contract displayed from HTML. This contract is navigated by tab
key which moves the highlight from instantiation place holder (IPH) to IPH. The embedded IPH
contains attributes specifying which Smart Instantiation Editor (SIE) to use to capture input.

Figure 7 - Left side of the Smart Contract Editor displaying the start of ‘Will and Testament’ from HTML

The entire instantiated ‘Will and Testament’ as displayed by our SCE is listed in Appendix C.

6.2.2 Right side of the Smart Contract Editor

The right side of the smart contract editor is comprised of four components; 1) a smart
instantiation editor (SIE) which changes depending which variable is being instantiated, 2) a
summary tool which groups information by entity, 3) a display that shows auto-generated code,
and accepts input of events, allowing the system to run test cases, 4) a display showing results.

Component 1 operates by reacting to the type of the highlighted identifier ‘testator’ (Figure 7).
Testator is of type ‘entity’ specifying that the ‘entity’ SIE be used as shown in Figure 8.

 Figure 8 – Component 1 (top right side) - Smart Instantiation Editor for type ‘entity’

All entities known to the session are displayed here, retrieved as PII from wallets invited to
participate in the contract writing session. The entry selected by mouse click or touch is
instantiated as testator. Note, if no wallet exists, one can be created in session by typing in name,
address, etc.

Chapter 6 Implementation 1.1

Kevin Purnell Page 28 of 72

Component 2 summarises instantiated data by group, and is displaying testator.

 Figure 9 - Component 2 - Entity Summary Tool

Component 3 shows declarative code generated automatically by the instantiation step in real-
time. This component also allows manual entry of events, enabling code testing on screen.

 Figure 10 – Component 3 - Auto-generated Declarative Code Display

Component 4 displays the results (answer sets) of executing declarative code generated to this
point. Three code components are aggregated at this step, automatically instantiated facts as
shown in component 3, logic program (listed in Appendix C), and events manually input into
component 3. A complete worked example is given in Appendix C.

 Figure 11 - Component 4 (bottom right side) – Testing Tool

6.3 Description of Templates

The left side and right side of the smart contract editor are driven by templates served from a smart
contract template DSL (Figure 12) in response to a request providing a contract key and version.
This DSL is permissioned and managed by an authority whose role is to devise and publish error
free templates (section 5.5.2). The triple received from this shared ledger is:

 (Key = ContractID + Version, Text Template Group, Code Template Group).

Figure 12 -Templates received from the ‘smart contract template’ shared ledger

6.3.1 Text Template Group

This group consists of the Contract template, and keyed Option clause templates (any number).

Contract Template

This template contains the marked-up text displayed on the left side of the smart contract editor
as a legal contract. This text has instantiation placeholders (IPH) of form ____identifier____, some

Chapter 6 Implementation 6.3 Description of Templates

Kevin Purnell Page 29 of 72

of which stand alone, while others have embedded attributes (active IPHs). Active IPHs contain a
Uniform Resource Locator (URL) (highlighted below), which contains a domain name customised
to hold variable identifiers and attributes. The first active IPH in ‘Will and Testament’ (Figure 7) is:
<center>LAST WILL AND TESTAMENT OF ____testator____

Key components of an active IPH are:
1. name="next" marks a scroll-to position

2. _u_.iph_testator.es1 domain name customised for this study

3. ____testator____ displayed text and instantiation variable identifier

When an active IPH gains focus, a customised attribute mark-up language (see below) located in
the domain name is read to determine how to treat this IPH and its instantiation variable.

Option Templates

Options are features allowing a legal contract to have different wording depending on
requirements, and appear on screen as “[]” sequences with descriptive text following. A template
set can have any number of indexed option clauses. The second IPH group in Figure 7 requests a
choice between two options, coded in HTML as:
href="http://___.iph_option01.or_">[_]< I have no live children.
href="http://___.iph_option02.or_">[_]< I have living children.

Selecting the first rewrites this text with the text snippet at index 01, which does not contain
another IPH; while selecting the second rewrites with the text snippet at index 02, which contains
an active IPH that requests the names of all children to be identified.

Instantiation Placeholders (IPH)

Having IPHs with form ____identifier____, allows both active and non-active IPHs to be
instantiated, often in the same step; for example, the top of Figure 7 has one active IPH and two
non-active IPHs. Instantiation of ____testator____ results in all IPH containing “testator” being
instantiated, achieved by exploiting the fact that ‘entities’ have attributes as follows:

 name John Wallace
 sex male
 DOB 20088 days since 01Jan1900
 address Lot 49, Cowpasture Road, Mulgoa, 2745, NSW
 wallet h6sf250dhv3y78gasmla 20-digit wallet hash address
 balance $1,000,000 balance of entity’s wallet

This allows the following IPHs to be auto-generated and instantiated:

____testatorname____ note: ____testator____ and ____testatorname____
____testatorsex____ mean the same and both instantiate correctly
____testatorDOB____
____testatoraddress____
____testatorwallet____
____testatorbalance____

This method allows the use of one mouse click to instantiate a large number of fields in a contract.

Custom Attribute Mark-up Language

The customised domain name holds a variable identifier with attached attributes (prefix and suffix):
 u. iph_testator .es1 domain name customised for this study.
 | | | |

formatting identifier processing

Chapter 6 Implementation 6.3 Description of Templates

Kevin Purnell Page 30 of 72

formatting= _u_
 123 position 1 scroll after 'tab' key ('_'=none, 't'=scroll on 'tab' key)
 position 2 text formatting ('_'=none, ‘c’=capitalise, 'u'=all upper case)
 position 3 scroll after process ('_'=none, 'a'=scroll after update)

identifier = iph_testator
 instantiation place holder with the identifier of the variable to be instantiated.

processing= es1
 123 position 1 type ('o'=option, 'e'=entity, 'a'=asset, 'm'=memory,
 'l'=list)
 position 2 action (‘c’=copy, 'r'=rewrite, 's'=select, '%'=associate)
 position 3 repetition ('_'=none, '1'=once, 'n'=repeat, 'a'=all)

Figure 13 - Encoding used for attributes held within customised domain names

Customised domain name _u_.iph_testator.es1 specifies that testator is type ‘entity’, must be
selected from a list once only, and formatted in upper case. This causes the ‘entity’ SIE (Figure 8)
to display once. After selection (tap, click or entered if not in the list), the data is used to instantiate
both HTML and ASP templates, then redisplay the HTML with instantiated fields highlighted in
green allowing the user immediate feedback on the last action.

An ASP Fact template will be instantiated concurrently to encode an ASP fact as follows:
entity(testator, ”John Wallace”, 20088, ”h6sf250dhv3y78gasmla”, 1000000).

6.3.2 Code Template Group

Consists of three components; fact templates, logic program, and event templates. Only fact and
event templates get instantiated, while the logic program is static for all legal contracts of type.

Fact Templates

The smart contract template shared ledger provides four fact templates for ‘Will and Testament’:
entity(iph_type, iph_entityname, iph_entityDOB, iph_entitywallet, iph_entitybalance).
asset(iph_type, iph_assetname, iph_assetdescription, iph_assetaddress).
inherits(iph_beneficiaryname, iph_percentage).
creation(iph_location, iph_date).

For example; attributes specify that testator’s type is ‘entity’, so the entity/5 ASP template is used
to auto-generate the ASP fact (see Figure 10) that instantiates the testator. One IPH in this
template, iph_type, holds special meaning indicating a meta-template; that is, the template must be
instantiated for type before becoming a usable template. This is achieved by rewriting “entity” as
“testator” and setting iph_type to “testator” giving:

entity(testator, iph_testatorname, iph_testatorDOB, iph_testatorwallet, iph_testatorbalance)

The second instantiation replaces the now recognisable IPHs with data, generating the ASP fact:
entity(testator, “John Wallace”, 20088, “h6sf250dhv3y78gasmla”, 1000000).

Derivative IPHs (i.e. iph_testatorDOB) are also instantiated, achieved by autogenerating derivative
IPHs then instantiating them, similar to the IPHs for HTML:

iph_testatorname, iph_testatorsex, iph_testatorDOB, iph_testatoraddress, iph_testatorwallet,
iph_testatorbalance

Logic Program

This is ASP code that translates the legal logic of the underlying legal contract. This translation is
done by hand by an authorised centralised resource at contract type development, then published
to the smart contract template DSL. This code is identical for all smart contracts of a given type.

Chapter 6 Implementation 6.3 Description of Templates

Kevin Purnell Page 31 of 72

executable(Testator, DOD, Wallet, Residue, ExecuteDate, Executor,Costs) :- %14
 witnessed,
 death(Testator, DOD),
 execute_will(Testator, Debt, Fees, ExecuteDate, Executor),
 Residue = Estate-Costs,
 Costs = Debt+Fees,
 entity(testator, Testator, _, Wallet, Estate),
 entity(executor, Executor, _, _, _).

Figure 14 - An example ASP clause from the ASP logic code for ‘Will and Testament’

Figure 14 shows one clause of many that specify contract logic for ‘Will and Testament’. This clause
specifies that atom executable/7 is created when all literals in the body evaluate to true, as follows:

witnessed created if 2 witnesses have electronically signed
death(Testator, DOD) event, notifies death of the Testator
execute_will(Testator, Debt, Fees, event, execute command (Executor creates)
 ExecuteDate, Executor)

Residue = Estate-Costs internal, calculates Residue as Estate - Costs
Costs = Debt+Fees internal, calculates Costs as Debt + Fees
entity(testator,Testator,_,Wallet,Estate) fact, provides the Testators details
entity(executor, Executor, _, _, _) fact, provides the Executors details

where
witnessed :- %1
 entity(witness1, Witness1, _, _, _),
 entity(witness2, Witness2, _, _, _),
 Witness1 != Witness2.

The reason why the logic program can be reused across all contracts of the same type is because
all literals derive from either facts or events. Code behaviour varies depending on facts at creation
and events deployed as transactions to the blockchain in the following period.

Event Templates

Templates in the ‘event’ group are used to record events subsequent to contract writing. When
added to the blockchain, event transactions hold the address of the original smart contract, so
when mined, code in the smart contract and all its associated events can be aggregated before
execution. This mechanism allows state changes to the system over time.

The following 3 event templates are provided for ‘Will and Testament’, and represent the limited
number of event types that can influence distribution.

death(iph_entityname, iph_date).
contests(iph_entityname, iph_date).
executewill(iph_testatorname, iph_debt, iph_fees, iph_date, iph_executorname).

This simplification is achieved by use of a meta-variable identifier ‘entity’ in the IPH. While there
may be many different parties to a ‘Will’, they are all of type ‘entity’, and so death for any one of
them can be represented by one atom death/2. Events can be added automatically by other smart
contracts or by an authorised person (in this example, the executor) in the same way, but both
need information about the current state of the system. This is achieved by reading the contract
and subsequent events; for example, if a death is to be recorded, reading the entity/5 atoms in
the original smart contract and death/2 atoms in subsequent events provides the list of candidates.

The meta-variable identifier ‘entity’ contained in a death/2 IPH identifies which atom to inspect.

Our design requires an executor to authorise distribution by deploying an executewill/5 atom.
executewill(“john wallace”, 1249, 1000, 43680, ”james stewart”).
death(“john wallace”, 43646).

4 These line numbers match clauses of the logic program listed in Appendix C.

Chapter 6 Implementation 6.3 Description of Templates

Kevin Purnell Page 32 of 72

The two events above in one transaction, triggers estate distribution when mined (section 6.4.3).

6.3.3 Variable Binding

The template designed for humans is provided in HTML, and that for the computer in ASP, with
bindings between the two achieved via an IPH of form “____identifier____” for HTML and
“iph_identifier” for ASP. These two forms are held together in active IPHs, for example:
 ____testator____

The instantiation process uses these two IPHs to instantiate both HTML and ASP concurrently, with
the following table showing variables, their type and associated IPHs for ‘Will and Testament’.

TABLE 5 - VARIABLE TYPES WITH CORRESPONDING IPHS

variable identifier type HTML IPH ASP IPH notes

testator entity ____testator*____ iph_testator* substitute attribute name for *
option99 option ____option99____ iph_option99 99 has range 01..99
executor entity ____executor*____ iph_executor* substitute attribute name for *
beneficiary entity ____beneficiary*____ iph_beneficiary* substitute attribute name for *
percentage association ____percentage____ iph_percentage associate input with a set in memory
parent entity ____parent*____ iph_parent* substitute attribute name for *
sibling entity ____sibling*____ iph_sibling* substitute attribute name for *
witness entity ____witness99*____ iph_witness99* 99 has range 01..02
location text ____location____ iph_location
today date ____today____ iph_today

6.3.4 Smart Instantiation Editors (SIEs)

Types are the way that functionality is introduced to the smart contract editor, with
implementation involving code and creation of a SIE.
The majority of input required by most legal contracts is associated with only a few types:

 asset complex type with attributes, with data typically sourced from DSLs
 association load input against elements of a set held in memory
 entity complex type with attributes, with data typically sourced from PII held in wallets
 list type specifying input from a desktop .csv file with name “identifier.csv”
 option clause identifier used to allow selection of alternate legal clauses
 text simple type string of text
 date simple type days since 1/1/1900

Simple types are instantiated automatically; for example, timestamping the ‘Will and Testament’:
creation(“Sydney, Australia”, 43616).

Complex types require an SIE and specialised code, but creation is simplified by exploiting variable
type attributes to define columns, and number of records (to a limit) for row count. It is possible
some SIEs require structures other than tables, but these have not been identified in this study.

TABLE 6 - RELATIONSHIP BETWEEN VARIABLE TYPE AND SIE

variable type SIE description and default data

asset auto-generated table of assets sourced from owned assets listed in DSLs

association auto-generated table that allows input against elements of a set stored in memory

entity auto-generated table of entities sourced from authorised wallets

list SIE not generally needed. If required, a table of data sourced from the desktop .csv file

option simple rewrite system using keyed template HTML, with no SIE

The following are examples of SIEs for each variable type:

Chapter 6 Implementation 6.3 Description of Templates

Kevin Purnell Page 33 of 72

SIE for Asset

SIE for Association

SIE for Entity

Figure 15 - Examples of Smart Instantiation Editors of different types

6.3.5 Meta-Type, Meta-Templates and Meta-Variable Identifiers

The two ASP fact templates shown below have an IPH iph_type indicating a meta-template; that is,
a template requiring instantiation for type before it can be used as a template.

entity(iph_type, iph_entityname, iph_entityDOB, iph_entitywallet, iph_entitybalance).
asset (iph_type, iph_assetdescription, iph_assetid, iph_assetvalue, iph_assetvaluationdate,
 iph_assetaddress).

Note that the atom name is the meta-type. When a meta-type is specified in mark-up, the system
first instantiates the associated meta-template to provide a template; for example if the active IPH
specifies testator is an ‘entity’, the entity/5 meta-template is instantiated to provide the template
for testator, as follows:

entity(testator, iph_testatorname, iph_testatorDOB, iph_testatorwallet, iph_testatorbalance).

This approach reduces coding complexity for contract creation and for recording subsequent
events; for example, to process the event template for death,

death(iph_entityname, iph_date)

the system identifies meta-variable identifiers by detecting the pattern ‘entity’ (the name of a atom
known to this contract) in the IPH. The system can then read all entity facts from the original
contract, automatically producing a set of entities that can be instantiated in this IPH. This
approach greatly reduces complexity; for example, one meta-template replaces seven possible
templates (testator, executor, beneficiaries, children, parents, siblings, witnesses).

Chapter 6 Implementation 6.4 Low Complexity – ‘Will and Testament’ Contract

Kevin Purnell Page 34 of 72

6.4 Low Complexity – ‘Will and Testament’ Contract

This section demonstrates application to a low complexity real-life example of an Australian legal
contract; a ‘Will and Testament’ available online at (LawDepot 2019)

6.4.1 Analysis

Figure 16 - Analysis of the legal logic in "Will and Testament"

Chapter 6 Implementation 6.4 Low Complexity – ‘Will and Testament’ Contract

Kevin Purnell Page 35 of 72

6.4.2 ASP Code for Will and Testament

Encoding Legal Clauses

The ASP encoding for each of the numbered legal clauses in Figure 16 is described below, and
identified as fact, logic program or event. Note, not all legal clauses require translation.

1. Who is testator? fact. ASP encoded from instantiating entity/5 at contract creation:
entity(testator, john_wallace, 20088, walletaddress, 1000000).

2. Who is executor? fact. ASP encoded from instantiating entity/5 at contract creation:
entity(executor, james_stewart, 18218, walletaddress, 350).

3. To benefit, death... logic program. ASP encoded by hand at type creation:
executable(Testator, DOD, Wallet, Residue, ExecuteDate, Executor, Costs) :- %1
 witnessed,
 death(Testator, DOD),
 execute_will(Testator, Debt, Fees, ExecuteDate, Executor),
 Residue = Estate-Costs,
 Costs = Debt+Fees,
 entity(testator, Testator, _, Wallet, Estate),
 entity(executor, Executor, _, _, _).

disqualifying_death(Entity, DaysAfter) :- %1
 DaysAfter = Date-DOD,
 DaysAfter < 30,
 death(Entity, Date),
 executable(Testator, DOD, _, _, _, _, _).

qualifying_beneficiary(Entity, Wallet) :- %1
 entity(beneficiary, Entity, _, Wallet, _),
 not disqualifying_death(Entity, _),
 not contests(Entity, _).

 Clause 1 tests if conditions are right to execute the Will, while 1 determines if death was
 within 30 days of testator, and 1 determines disqualification by death or contesting.

4. % to each child. ... facts, logic program and events:
 facts. ASP encoded by instantiating entity/5 and inherits/2 at contract creation:

entity(beneficiary, fred_wallace, 29041, walletaddress, 5).
entity(beneficiary, bec_smith, 29432, walletaddress, 8).
entity(beneficiary, sam_wallace, 29969, walletaddress, 15).
entity(beneficiary, jim_wallace, 30376, walletaddress, 140).
entity(beneficiary, may_fredricks, 31310, walletaddress, 24).
inherits(fred_wallace, 10). %Fred gets 10% of the estate
inherits(bec_smith, 20). %Bec gets 20% of the estate
inherits(sam_wallace, 10). %Sam gets 10% of the estate
inherits(jim_wallace, 20). %Jim gets 20% of the estate
inherits(may_fredricks, 40). %May gets 40% of the estate

 logic program. ASP encoded by hand at type creation:

 Algorithm: To calculate the % of estate to pay to each qualifying beneficiary, disqualified
 beneficiaries must be adjusted for. The adjustment ratio = sum(orig%)/sum(qual%).

TABLE 7 - CALCULATING THE ADJUSTMENT RATIO

beneficiary orig% qual% new%
fred_wallace 10 fred dies early
bec_smith 20 20 25
sam_wallace 10 sam dies early
jim_wallace 20 20 25
may_fredricks 40 40 50
Totals 100 80 Ratio = 1.25 100

Chapter 6 Implementation 6.4 Low Complexity – ‘Will and Testament’ Contract

Kevin Purnell Page 36 of 72

 This is achieved with the following code:

orig_percent(Entity, Percent) :- %2
 entity(beneficiary, Entity, _, _, _),
 inherits(Entity, Percent).

qual_percent(Entity, Percent) :- %2
 entity(beneficiary, Entity, _, _, _),
 inherits(Entity, Percent),
 qualifying_beneficiary(Entity, _).

sum(original, Sum) :- %2
 Sum = #sum{ Percent, Entity : orig_percent(Entity, Percent) }.

sum(qualifys,Sum) :- %2
 Sum = #sum{ Percent, Entity : qual_percent(Entity, Percent) }.

adjust(Ratio) :- %2
 not wipeout,
 Ratio = (OrigSum*1000/QualSum),
 sum(original, OrigSum),
 sum(qualifys, QualSum).

 Note: The *1000 keeps the calculation in integer space (standard ASP only deals with integers).

 events. ASP encoded by instantiating of death/2 at some time after contract creation:

death(fred_wallace, 43675) %death of Fred on date
death(sam_wallace, 43675) %death of Sam on date

5. If all beneficiaries ... facts, logic program and events:
 facts. ASP encoded by instantiating entity/5 and inherits/2 at contract creation:

entity(parent, tom_wallace, 12965, walletaddress, 200).
entity(parent, aida_wallace, 13378, walletaddress, 200).
entity(sibling, anne_patrick, 19378, walletaddress, 9000).
entity(sibling, ines_brown, 20255, walletaddress, 5000).
entity(sibling, steve_wallace, 21459, walletaddress, 6000).

 logic program. ASP encoded by hand at type creation:

 A situation where all specified beneficiaries have died before the 30-day limit after the
 Testator’s death is referred to as a “wipeout”. In this instance, the Will specifies equal
 distribution to the Testator’s surviving parents and siblings. The wipeout condition is detected
 by the absence of the atom qualifying_beneficiary/2 in clause 1. The two lines of
 code ensure the existence of either ‘wipeout’ or ‘-wipeout’ but not both.

-wipeout :- %1
 qualifying_beneficiary(Entity, Wallet).

wipeout :- %1
 not -wipeout.

 Distribution on wipeout is “equal portions”, achieved with the following code:

qualifies_on_wipeout(Entity, Wallet) :- %3
 wipeout,
 entity(parent, Entity,_, Wallet, _),
 not disqualifying_death(Entity, _),
 not contests(Entity, _).

qualifies_on_wipeout(Entity, Wallet) :- %3
 wipeout,
 entity(sibling, Entity, _, Wallet, _),
 not disqualifying_death(Entity, _),
 not contests(Entity, _).

wipeout_count(Count) :- %3
 Count = #count{ Entity, Wallet : qualifies_on_wipeout(Entity, Wallet) }.

 This code creates a set of parents and siblings which qualify, counts them then distributes
 Residue/Count to each.

Chapter 6 Implementation 6.4 Low Complexity – ‘Will and Testament’ Contract

Kevin Purnell Page 37 of 72

 events. ASP encoded by instantiating of death/2 at some time after contract creation:

death(fred_wallace, 43675) %death of Fred on date
death(bec_smith, 43675) %event, death of Bec on date
death(sam_wallace, 43675) %event, death of Sam on date
death(jim_wallace, 43675) %event, death of Jim on date
death(may_fredricks, 43675) %event, death of May on date

6. Any contester is ... logic program and events:
 logic program. ASP encoded by hand at type creation:

 Dealing with contesters is achieved by simply including detection of a contests/2 atom for a
 beneficiary when constructing the set of qualifying beneficiaries.

qualifying_beneficiary(Entity, Wallet) :- %1
 entity(beneficiary,Entity, _, Wallet, _),
 not disqualifying_death(Entity, _),
 not contests(Entity, _).

 events. ASP encoded by instantiating of contests/2 at some time after contract creation:

contests(sam_wallace, 43625). %Sam contests the will, so is disqualified

7. date and place ... facts:
 facts. ASP encoded by instantiating entity/5 for the two witnesses at contract creation:

created(sydney, 43620). %location and date (days since 1/1/1900)

8. two witnesses ... facts and logic program:
 facts. ASP encoded by instantiating entity/5 for the two witnesses at contract creation:

entity(witness1, brian_bellhaus, 22692, walletaddress, 800).
entity(witness2, margaret_talbot, 24042, walletaddress, 16).

 logic program. ASP encoded by hand at type creation:

 All entities involved have to authorise visibility to the contract writing session by signing in with
 a private key, a step with the same validation strength as a signature. This allows a mechanism
 whereby the contract only executes if there are two different entities assigned as witnesses.

witnessed() :- %1
 entity(witness1, Witness1, _, _, _),
 entity(witness2, Witness2, _, _, _),
 Witness1 != Witness2.

Encoding Distribution

Once the above logic is in place, the three encodings of the distribution atom, transfer/5 can be
driven. The three encodings cover the three different types of distribution; 1) normal payout to
beneficiaries, 2) payout in case of wipeout, and 3) payout of debt and fees.

Normal payout
transfer(Testator, SourceWallet, InheritAmt, Beneficiary, Wallet) :- %2
 not wipeout,
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs),
 qualifying_beneficiary(Beneficiary, Wallet),
 InheritAmt = ((Residue * Percent/100) * Ratio)/1000,
 inherits(Beneficiary, Percent),
 adjust(Ratio).

Wipeout payout
transfer(Testator, SourceWallet, InheritAmt, Entity, Wallet) :- %3
 wipeout,
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs),
 qualifies_on_wipeout(Entity, Wallet),
 InheritAmt=Residue/Count,
 wipeout_count(Count).

Debt and Fees payout
transfer(Testator, SourceWallet, Costs, Executor, Wallet) :- %4

Chapter 6 Implementation 6.4 Low Complexity – ‘Will and Testament’ Contract

Kevin Purnell Page 38 of 72

 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs),
 entity(executor, Executor, _, Wallet, _).

The answer set produced by the above code in response to events, is a list of transfers:
transfer(john_wallace, walletaddress, 99775, fred_wallace, walletaddress)
transfer(john_wallace, walletaddress, 199550, bec_smith, walletaddress)
transfer(john_wallace, walletaddress, 99775, sam_wallace, walletaddress)
transfer(john_wallace, walletaddress, 199550, jim_wallace, walletaddress)
transfer(john_wallace, walletaddress, 2249, james_stewart, walletaddress)

These transfers are translated by an interface into instructions that can be executed by Ethereum
to perform actual funds transfer. A further feature allows e-mails to be generated.

message_to_human(james_stewart, john_wallace, "insert messages to the Executor here...")

This atom holds the promise of sending specified clauses from the legal document to specific
entities in response to specific events, possibly a benefit if long time periods have elapsed between
contract creation and a triggering event. For example; on the death of the Testator the system
could send clause 6 (Powers of My Executor) of the ‘Will and Testament’ to the Executor. A full
code listing is provided in Appendix C – Low Complexity – ‘Will and Testament’.

6.4.3 Test Cases

Testing this code is greatly simplified relative to Solidity because the only consideration is the logic
expressed. Further, the combinations of facts and events are of a manageable size because only 6
atoms (effectively 5) are involved, so an exhaustive testing strategy is practicable.

TABLE 8 – SAMPLE TEST CASES FOR THE "WILL AND TESTAMENT" SMART CONTRACT EXAMPLE

Case Description

0 Testator writes a Will on 2Jun2019 (43616 days from 1/1/1900). No activity generated.

1 Death of Testator recorded on 2Jul2019 (43646 days from 1/1/1900).
No activity generated because Executor has not authorised execution of Will.

2 Executor approves distribution on 5Aug2019. All 5 children are alive, so distribution is:
Fred 10%, Bec 20%, Sam 10%, Jim 20%, May 40%.
Note: Debts ($1,249) and fees ($1,000) reduce the residue to $997,751.

3 Sam contests the Will which is recorded by the Executor. Consequently, Sam is cut out of the Will (clause 11), and his share
reallocated to the other children.

4 Children and Mother wiped out in plane crash on way to funeral 29 days after the Testator’s death, so no longer qualify as
beneficiaries. The Residue will be shared between Parents (Tom) and Siblings (Anne, Ines, Steve).

5 Child Fred Wallace was not on the plane, but dies in a car accident 2 days later (31 days), so still qualifies as a beneficiary
(clause 7).
The Will rules say Fred's Estate gets the entire Residue.
Notes:
43646 = 02Jul2019 death of Testator
43675 = 31Jul2019 29 days wipeout of Mother and 4 of 5 children
43677 = 02Aug2019 31 days death of last child
43680 = 05Aug2019 34 days Will is executed

Code is tested with test cases by entering event ASP clauses manually into SCE component 3 (see
section 6.2.2). The event ASP clauses used in the above test cases are provided in Appendix C along
with the answer sets obtained. Appendix C also lists a comprehensive set of test cases, derived by
reducing an exhaustive decision table.

Figure 17 shows components 3 and 4 on the right side of the simulator, after test case 3 events
have been entered manually into component 3, then executed by clicking the ‘Test’ button.

Chapter 6 Implementation 1.1

Kevin Purnell Page 39 of 72

Figure 17 - Result of test case 3 displayed by the smart contract editor

6.4.4 Observations

A review of the logic and performance clauses in this contract reveal all logic to be deductive and
performance to be straightforward. The overall purpose is to distribute an estate at death.

TABLE 9 – AUTOMATABILITY FRAMEWORK APPLIED TO A ‘WILL AND TESTAMENT’ LEGAL CONTRACT

contract legal reasoning performance consideration automatability
Legal Will and Testament deductive money transfer, e-ledger asset transfer,

physical transfer, Human-in-the-Loop
money moderate

We note that some legal contract text is irrelevant to encoding legal logic; for example, under
executor (see Appendix B or C), a disambiguation is provided in clause 4 explaining the term “my
Executor” can refer to singular or plural, male or female; a distinction not made in the encoding.

Some conditions are best coded grouped with other logic; for example, clause 6 (contester) is best
encoded together with other code determining if a beneficiary still qualifies. While undecided and
requiring more investigation, this issue tends to support the Ricardian approach of having both text
and a code, rather than including declarative code as mark-up within the text document.

6.5 Comparison with a Solidity Implementation

We compare our ASP implementation with a probable Solidity implementation over five
programming activities; 1) coding the smart contract type (logic program), 2) testing this smart
contract type, 3) auto-generating the instantiation at contract creation, 3) testing the created
smart contract, 5) programmatically interacting with the smart contract after deployment.

6.5.1 Coding the Smart Contract Type

Solidity

Coding a smart contract with Ethereum requires building a number of components; 1) coding of
the web3.js API using JavaScript specifying the RPC providers and proving access to the smart
contract’s functions via object web3.eth.Contract, 2) coding of the application binary interface

Chapter 6 Implementation 6.5 Comparison with a Solidity Implementation

Kevin Purnell Page 40 of 72

(ABI), an object that contains a detailed description of smart contract functions, methods and their
arguments, that allows them to be called in bytecode (IBM 2020), 3) code for loading instantiation
data, 4) the smart contract in Solidity, then compiled into bytecode, 5) callback and fallback
functions, 6) event watching code. It is estimated that more than 100 lines of Solidity would be
required to code the ‘Will and Testament’ example used in this chapter. As this task is to code a
contract type not the actual smart contract, some further complexity is expected from packaging
and delivering this template code to the node where the actual smart contract is assembled.

ASP

Our approach using ASP also requires the web3.js API which embeds it into the Ethereum
environment, however it now simply supplies the smart contract code held as a payload on the
blockchain, to an ASP solver (clingo) and translates and executes actions coded in the resulting
answer set, removing the need for the ABI. Any custom code required for executing actions
required by a Solidity implementation will also be required by the ASP implementation. Callback
functions and event watching code are also still required.

The ‘Will and Testament’ was coded in 20 lines of ASP code (see Appendix C - Logic Program).
Program execution involves supplying this code to an ASP solver built into Ethereum.

ASP Advantages

Elimination of the ABI, data upload methods and interaction functions are clear advantages to ASP:

1. ASP does not need an ABI because contract state change is generated by adding lines of code in
the form of transactions to the blockchain. This is possible because ASP code is order independent;
that is, lines of code can be added in any order without affecting the computation. Further,
requests for contract state information is achieved by running queries over the code.

2. Instantiation with ASP is achieved by auto-generating ASP code, eliminating the need for methods
that load instantiation data.

3. ASP does not require the custom coding of interaction functions, interaction is achieved with ASP
code in the form of events and queries.

4. It is easier to read business logic from ASP, and consequently easier to programmatically read.

5. ASP allows the program specification to be changed programmatically by loading more code as a
transaction after deployment, a feature not available with Solidity. This feature of ASP is known as
elaboration tolerance (McCarthy 1988) and should ease ongoing maintenance costs.

6. Testing effort for ASP is reduced relative to a procedural language, primarily because control code
is not tested, however a further effect is visible from the reduction in lines of code.

7. ASP takes less lines of code and less blockchain space – Appendix A shows a Solidity program with
its roughly equivalent ASP program at approximately a quarter the size. Further, Solidity is
compiled into bytecode which multiples its size a number of times. It is possible that ASP uses as
little as one tenth the space on blockchain compared to Ethereum bytecode.

6.5.2 Testing the Smart Contract Type

Solidity

Because both logic and control code needs to be tested, the Solidity test suite is by definition larger
than the ASP test suite.

ASP

An exhaustive test suite is given in section 6.4.3 and Appendix C.

Chapter 6 Implementation 6.5 Comparison with a Solidity Implementation

Kevin Purnell Page 41 of 72

ASP Advantages

Demonstrably simpler to test (see the Comprehensive Test Case Suite in Appendix C), because
control code does not need to be tested. A further consideration is that null cases do not need to
be tested because the logic program template is supplied with dummy variables (instantiation
place holders), which to not affect results because they are never resolved by the solver.

6.5.3 Auto-generating the Instantiation at Contract Creation

Solidity

The approach most likely to be used is the auto-generation of data which is then uploaded to the
smart contract via custom coded methods using some data interchange format like JSON.

ASP

Only ASP code in the form of a head without a body (fact) is required to be auto-generated. This
format is very concise, approaching a minimum solution, and easy to pattern with a template.

ASP Advantages

ASP avoids the need to code data upload methods.

6.5.4 Testing the created Smart Contract

Solidity

A Solidity implementation that achieves contract creation with untrained users by using templates
and code auto-generation, is likely to require some testing before the smart contract is deployed.
The best approach may be to download a tested bytecode program that implements the contract
type, then upload data to it prior to its deployment on the blockchain. Even with this approach,
prudence suggests some testing, a hurdle when unskilled users are used. Possible solutions have
drawbacks; 1) formally verifying the contract type bytecode is expensive, 2) reducing the scope
and complexity of the contract type would multiply the number of contract types required. Our
ASP implementation does not suffer these drawbacks.

ASP

The exhaustive test suite (see section 6.4.3, Appendix C) shows that it is possible for comprehensive
testing by the central authority to remove all errors in the templates used for smart contract
creation. This enables the testing task to be modified into a simulation that shows users the
outcomes of a range of different event scenarios, a task more focused on user understanding.
While it may be possible to provide the same feature with a procedural language, the reality is that
with current technologies finding and removing bugs is the necessary focus.

ASP Advantages

The area where ASP appears to have its greatest advantage over Solidity, because ASP makes it
practical to fully test the smart contract type supplied as a template thus facilitating the
achievement of a system that can be used by untrained users. Avoiding testing at this stage with
Solidity is more difficult and likely to suffer drawbacks relative to an ASP implementation.

Chapter 6 Implementation 6.5 Comparison with a Solidity Implementation

Kevin Purnell Page 42 of 72

6.5.5 Programmatically interacting with the Smart Contract after Deployment

Solidity

Solidity requires that an ABI, and interaction functions be coded with the smart contract to allow
smart contract functions to be called. This functionality cannot be changed once deployed.

ASP

ASP does not require an ABI as state changes are made by adding transactions, or interaction
functions. Adding transactions allows state changing events to be recorded, and also allows
changes to program specification to be loaded, a feature of ASP called elaboration tolerance
(McCarthy 1988). Queries on the state of the smart contract are in the form of queries on the
aggregated code.

ASP Advantages

Removing the ABI and avoiding coding of interaction and query functions saves programming effort
and reduces complexity, reducing the possibility of undetected security gaps. Being able to change
the specification of the code by adding logic code, affords greater flexibility in the ongoing
management of smart contracts. Queries on the state of the smart contract are in the form of
queries on the aggregated code.

Chapter 6 Implementation 6.6 Mid Complexity – ‘Real Estate Sale’ Contract

Kevin Purnell Page 43 of 72

6.6 Mid Complexity – ‘Real Estate Sale’ Contract

This section applies our approach to a representative Australian real estate sale contract available
online (FindLegalForms 2019). We estimate this contract represents a mid-point in contract
complexity with a length of 21 pages.

Figure 18 - First page of a Real Estate Sale Legal Contract displayed by the simulator

This contract manages the process of sale of real estate between two parties, providing details of
the two parties, the property, price, inclusions and exclusions, and target dates. The method of
payment also specifies the process including deposits (a performance on the buyer) and credit

Chapter 6 Implementation 6.6 Mid Complexity – ‘Real Estate Sale’ Contract

Kevin Purnell Page 44 of 72

checks (a performance by the seller), a pattern repeated for a most other deliverables required to
validate the contract, from inspection reports and surveys (buyer orders while seller ensures
compliance), to inspection of property and equipment, specification about leaving on and paying
for utilities, keeping insurances current and warranties (seller performance), which of the parties
pays for costs like transfer taxes, stamp duties, repairs, administrative costs, dispute resolution
procedure, and even adjustments after closing date due to undetermined tax rates etc. This detail
appears to offer opportunities for software that assists managing details, like check-lists, schedule
management, automatic management of fees and penalties for missing deadlines etc.

A review of the logic and performance clauses in this contract reveal all logic to be deductive with
performance required of both parties. Overall purpose is transfer of ownership for a consideration.

TABLE 10 - AUTOMATABILITY FRAMEWORK APPLIED TO REAL ESTATE SALE CONTRACT

contract legal reasoning performance consideration automatability
Real Estate Sale deductive money transfer, e-ledger asset transfer,

physical transfer, Human-in-the-Loop
money moderate

The preliminary evaluation framework we previously developed indicates this contract can be
made into a smart contract with our approach, and marking up the original paper contract took
only a few hours with a normal text editor. However in contrast to the ‘Will and Testament’
example, automation of management processes seems to provide the strongest benefit.

For example, on the third page a list of possible inspections, reviews, surveys, approvals and other
conditions is listed that require satisfactory completion for the sale contract to hold.

Figure 19 - Possible automated management of contract contingencies

The smart contract could be programmed so that it only executes if the selected contingencies are
satisfactorily completed. Consider item 1 in Figure 19; it is possible to imagine a system were the
contractors system signals completion of the inspection to the buyer who after review, signals
acceptance to this smart contract.

In summary, this mid complexity legal contract is amenable to conversion to a smart contract via
our approach and provides a number of automation opportunities. A list of the variables in this
contract is provided in Appendix D, highlighting that many other opportunities for automation exist
for this contract.

Chapter 6 Implementation 6.7 Complex – ‘CEO Employment’ Contract

Kevin Purnell Page 45 of 72

6.7 Complex – ‘CEO Employment’ Contract

This section investigates application of our approach to a representative Australian CEO
employment contract available online at (City of Melbourne 2018). We estimate this contract is
likely less complex (at 9 pages) than a typical CEO employment contract which could include details
of share and option holdings and performance incentives. Nonetheless, this contract illustrates use
of legal logic other than the deductive logic used by our other examples. A quick inspection of the
‘Position Role and Responsibilities’ section reveals the challenge.

Figure 20 - CEO Employment Contract showing some ‘Performance’ clauses displayed by the simulator

Chapter 6 Implementation 6.7 Complex – ‘CEO Employment’ Contract

Kevin Purnell Page 46 of 72

Clause 3.1. requires that in exchange for Salary and Bonuses, the Chief Executive Officer will:

“faithfully and diligently serve the interests of Council and be accountable to Council”

To interpret this, we use cultural knowledge to recognise that the CEO must develop a reputation
with a majority of senior staff and board members, that he/she is faithfully and diligently serving
the interests of Council. The logic used is ‘reasoning by principle’; that is, using cultural norms to
determine what behaviour qualifies as “faithfully and diligently serve”.

Clearly no algorithm can determine conformance to ‘faithfully and diligently’, however this could
be overcome via a ‘Human-In-The-Loop’ feature that allows a human to enter a rating or even
enter data into a tool that produces a rating; for example, 360 degree employee evaluations
(Cognology 2019).

TABLE 11 – AUTOMATABILITY FRAMEWORK APPLIED TO A CEO EMPLOYMENT CONTRACT

contract legal reasoning performance consideration automatability
CEO Employment Contract deductive,

analogy,
principle,
...

1. faithfully and diligently serve the ...
2. satisfactorily carry out the ...
3. take all reasonable steps to meet ...
4. diligently exercise delegations as ...
5. promote the best interests of the ...
...

salary &
bonuses

difficult,
not cost
effective

But 3.1.1. is one of many such clauses and producing a tool for every clause is impractical.
Practicality is also determined by volume, and in this case the employer can be identified as a large
city council, meaning the contract is likely to apply to only a few dozen municipalities at most,
making automation uneconomic, and defining a boundary.

Automatability though is not the only benefit; for example Figure 20 above displays the first page
of the ‘CEO Employment Contract’ in our simulator. This is because it is straight-forward to digitize
existing paper legal contracts by adding mark-up, the starting point for our method. Given the low
cost of marking up existing documents, there may some benefit from the simpler display, simpler
user interaction, and improved storage and retrieval aspects of our approach, and this could be
established by future work. As regarding our core focus, that of identifying ways of improving
usability and reliability of smart contracts via use of declarative code, legal contracts of this type
fall beyond the boundary of what we consider a practical application.

Chapter 7 Results 7.1 Coding a Smart Contract with ASP is possible

Kevin Purnell Page 47 of 72

 Results

7.1 Coding a Smart Contract with ASP is possible

This study implements a non-trivial legal document (low complexity ‘Will and Testament’) using an
existing pure declarative language (ASP), with a demonstration of functionality provided by a
comprehensive test case suite (see Appendix C) serving as proof-of-concept. Key test cases are
used as examples (see Section 6.4.3) and fully expanded in Appendix C, because a full listing of all
the test files and results (answer sets) is impractical. Testing can be performed with both the
simulator (see Section 6.4.3), and a CLI environment also illustrated in Appendix C.

We are not aware of any work that implements smart contracts with the ASP language. We are
also not aware of any work that uses marked-up status-quo format legal documents in a user
interface that auto-generates smart contracts with ASP code.

7.2 Extensibility

We applied our approach to three real-life Australian legal documents of different types and
increasing complexity, and determined that two of these documents were amenable to full
translation, while the third contained logic and performance clauses that are beyond the
techniques that we use. Of the two amenable contracts, we fully translated the simpler of the two
(‘Will and Testament’), and fully marked-up and analysed the more complex (‘Real Estate Sale’
contract) to understand how to code the logic program and determine any benefits.

While attempting to understand what is automatable, we identified dependence on type of legal
reasoning (see section 2.2) and type of ‘performance’ (see Table 1, p6), as shown in our preliminary
Table 12. While this list may not be exhaustive, the implication is that any legal document that only
uses deductive reasoning, has tangible performance and a positive cost/benefit evaluation, is
convertible to a smart contract using our method.

TABLE 12 - LEGAL CONTRACT AUTOMATABILITY BY CONTRACT TYPE, ‘LEGAL REASONING’ AND ‘PERFORMANCE’ REQUIRED

contract type legal reasoning performance required consideration automatability

Financial Contracts deductive money transfer, e-ledger asset transfer,
rates input

money

easy

B2C e-Commerce Contracts deductive e-ledger asset transfer, RFID input,
physical transfer, Human-in-the-Loop

money moderate

Legal Will and Testament deductive money transfer, e-ledger asset transfer,
physical transfer, Human-in-the-Loop

money moderate

Real Estate Sale deductive money transfer, e-ledger asset transfer,
physical transfer, Human-in-the-Loop

money moderate

CEO Employment Contract deductive,
analogy,
principle,
etc ...

1. faithfully and diligently serve the ...
2. satisfactorily carry out the ...
3. take all reasonable steps to meet ...
4. diligently exercise delegations as ...
5. promote the best interests of the ...
...

salary &
bonuses

difficult,
possibly not
cost effective

A further implication is that any part of a legal document that uses deductive reasoning and has
tangible performance, is automatable, opening up the possibility of holding all legal documents in
marked-up format with partial automation implemented where possible.

Chapter 7 Results 1.1

Kevin Purnell Page 48 of 72

We found that the level of automation and advantages delivered differs by legal document; for
example, the key advantage of automating ‘Will and Testament’ is the ability to specify at one time
and place all the conditions and calculations required to carry out that ‘Will and Testament’ and
then have those specifications executed automatically over time. In contrast, the key advantage of
automating ‘Real Estate Sale’ is the assistance the logic program affords in managing the somewhat
complex sale process; for example, managing the many reports and inspections required and fees
to be paid. We also converted a third contract (a ‘CEO Employment’ contract), and discovered that
while very little automation was possible because of the complex legal logic and nature of contract
performance required; the ease of text mark-up, improvements to usability, explainability and
storage and retrieval provided sufficient benefits for applicability to be reconsidered.

7.3 Using ASP facilitates achieving improved utility in Smart Contracts

In section 6.5 we compare our ASP implementation with a probable Solidity implementation over
five programming activities; 1) coding the smart contract type (logic program), 2) testing this smart
contract type, 3) auto-generating the instantiation at contract creation, 3) testing the created
smart contract, 5) programmatically interacting with the smart contract after deployment and
identified the following advantages:

7.3.1 Coding the Smart Contract Type

Elimination of the ABI, data upload methods and interaction functions are clear advantages to ASP:

1. ASP does not need an ABI because contract state change is generated by adding lines of code in
the form of transactions to the blockchain. This is possible because ASP code is order independent;
that is, lines of code can be added in any order without affecting the computation. Further,
requests for contract state information is achieved by running queries over the code.

2. Instantiation with ASP is achieved by auto-generating ASP code, eliminating the need for methods
that load instantiation data.

3. ASP does not require the custom coding of interaction functions, interaction is achieved with ASP
code in the form of events and queries.

4. It is easier to read business logic from ASP, and consequently easier to programmatically read.

5. ASP allows the program specification to be changed programmatically by loading more code as a
transaction after deployment, a feature not available with Solidity. This feature of ASP is known as
elaboration tolerance (McCarthy 1988) and should ease ongoing maintenance costs.

6. Testing effort for ASP is reduced relative to a procedural language, primarily because control code
is not tested, however a further effect is visible from the reduction in lines of code.

7. ASP takes less lines of code and less blockchain space – Appendix A shows a Solidity program with
its roughly equivalent ASP program at approximately a quarter the size. Further, Solidity is
compiled into bytecode which multiples its size a number of times. It is possible that ASP uses as
little as one tenth the space on blockchain compared to Ethereum bytecode.

7.3.2 Testing the Smart Contract Type

Demonstrably simpler to test (see the Comprehensive Test Case Suite in Appendix C), because
control code does not need to be tested. A further consideration is that null cases do not need to
be tested because the logic program template is supplied with dummy variables (instantiation
place holders), which to not affect results because they are never resolved by the solver.

Chapter 7 Results 7.3 Using ASP facilitates achieving improved utility in Smart Contracts

Kevin Purnell Page 49 of 72

7.3.3 Auto-generating the Instantiation at Contract Creation

ASP avoids the need to code data upload methods.

7.3.4 Testing the created Smart Contract

The area where ASP appears to have its greatest advantage over Solidity, because ASP makes it
practical to fully test the smart contract type supplied as a template thus facilitating the
achievement of a system that can be used by untrained users. Avoiding testing at this stage with
Solidity is more difficult and likely to suffer drawbacks relative to an ASP implementation.

An ASP implementation enables an evolution of the testing task into a simulation that shows users
the outcomes of the range of different event scenarios allowed, a task more focused on user
understanding. While it may be possible to provide the same feature with a procedural language,
the reality is that with current technologies finding and removing bugs is the necessary focus.

7.3.5 Programmatically interacting with the Smart Contract after Deployment

Removing the ABI and avoiding coding of interaction and query functions saves programming effort
and reduces complexity, reducing the possibility of undetected security gaps. Being able to change
the specification of the code by adding logic code, affords greater flexibility in the ongoing
management of smart contracts. Queries on the state of the smart contract are in the form of
queries on the aggregated code.

7.3.6 Other Advantages

Higher Level of Abstraction

ASP statements manipulate sets and relationships between them, over which it can also reason.
This is clearly a much higher level of abstraction than Solidity, but is coding scheme is also closer
to natural language, making the code easier to read.

Simpler more Intuitive Syntax

Only two of the three types of ASP statement are used, and these encode both logic and data.
Solidity uses many different types of statement including control statements like “if” and “for”
statements, and different object types, including data stores, to achieve the same result.

Other Advantages

ASP’s close connection to non-monotonic logics that provides ASP with the power to model default
negation, deal with incomplete information, and encode domain knowledge, defaults, and
preferences in an intuitive and natural way. ASP is elaboration-tolerant, meaning that the language
accepts changes in a problem specification without the need to rewrite the entire program,
implements weak and strong negation in order to deal with a local form of the closed world
assumption, and is order independent. These features provide the flexibility needed to implement
our approach, allowing us to model legal logic in an intuitive way and split code into facts, logic program and
events. Splitting into facts and logic program makes it possible to auto-generate just facts at
instantiation simplifying code auto-generation. Further, NAF allows events to change the state of
the program, simplifying this non-monotonic aspect. For legal documents of a given type, the logic
program is the same with only the assertional knowledge (facts) differing. This allows translation of
legal documents to be split into two stages.

Chapter 7 Results 7.4 Summary

Kevin Purnell Page 50 of 72

A further simplification is possible because auto-generating ASP with a template system appears
to be quite flexible regarding the representation of type hierarchies. For example, ‘Will and
Testament’ has seven types; testator, executor, beneficiary, parent, sibling, child, and witness; that
are of a common meta-type ‘legal person’ (we use the term ‘entity’). This hierarchy allows
replacement of seven template atoms with one meta-template atom entity/5 modelling the meta-
type ‘entity’. This idea allows a reduction of atoms that introduce variables into the system to only
6 types, making exhaustive testing possible in this instance, and leading us to conclude that
effective testing in general is much more achievable. Our simulator implemented two meta-types;
1) entity/5, 2) asset/4. for ‘Will and Testament’ and we found this to be sufficient to also cover ‘Real
Estate Sale’, suggesting complex types maybe similar between legal domains. On reflection, legal
contracts create relationships between entities, strongly implying ‘entity’ is the main meta-type.

We also found that modelling atom names after objects and concepts in the real world provides
further synergies; for example, when an external event occurs, the values of variables allowed in
the auto-generation can be discovered by inspecting facts coded in the original contract, guided
by the IPH in atom death/2 (iph_entity), the system knows to query the entity/5 atom for the
entities allowed. This is particularly helpful for generating guidance when the executor records a
death event, but is also useful for auto-generation. Advantages like this illustrates that ASP allows
an approach to modelling the external world that is intuitive and natural (Brewka 2011). We extend
this idea to internal atoms; for example, if the smart contract has been witnessed, a witness/0 atom
is created. If there is a wipeout, a wipeout/2 atom is created.

The ‘option’ type we use supports assembly of custom smart contracts from building blocks by
selecting clauses from libraries (text and code pairs). This idea warrants further research.

Finally, we found our human-in-the loop mechanism provides a way to deal with more difficult
logic and performance by allowing handoff to humans. It seems feasible that an assistant could be
built that helps humans manage these aspects of a contract, including sending relevant legal
clauses from the contract to humans via SMS or e-mail after certain events occur.

7.4 Summary

We have demonstrated that; 1) a non-trivial legal document can be implemented with an existing
pure declarative language (ASP), and 2) have provided evidence that using declarative code
facilitates the implementation of a smart contract approach with improved utility over the Solidity.

Chapter 8 Discussion 8.1 Key Findings

Kevin Purnell Page 51 of 72

 Discussion

8.1 Key Findings

Our study demonstrates that it is possible to convert legal documents that use deductive logic and
have tangible ‘performance’ to smart contracts programmed in ASP, verifying the first unproven
concept in our hypothesis. Evidence is provided in the form of rules and worked examples, that
show that our approach is extendable to legal documents that use deductive logic and have
tangible ‘performance’, were this is cost effective.

Our second key finding is that there are some advantages to coding in a declarative language like
ASP. Possibly all advantages can be overcome, but at a cost; for example, it is practical to fully test
an ASP ‘smart contract type’ logic program at the central issuing authority, allowing untrained users
to create smart contracts without much risk. Following this same approach is risky for Solidity
because the smart contract has to be compiled after it is assembled and instantiated, and our
approach places an untrained user in control at this point. Together with the other findings listed
in section 7.3, verifies the second unproven concept in our hypothesis, that using a declarative
language (ASP) facilitates the realisation of improved utility in smart contracts.

8.2 Limitations

The two key limitations on this study were limited timeframe allowed a Master of Research Thesis
(9 months), and the fact that a lot of research in this field is done by private companies, and not
visible online or via academic channels. The limited time frame forced many compromises,
including choice of development environment, the depth to which certain areas are explored, and
restricted our investigation to only three Australian legal contracts, with in-depth investigation into
only one; the ‘Will and Testament’. Ideally, a more evenly distributed set of legal documents from
across the legal spectrum should be evaluated to better understand advantages, limitations,
deficiencies and boundaries of applicability. This selection would be greatly aided by the availability
of exhaustive taxonomies of legal contract types, legal logic and performance clause types. Finally,
our development of evaluation tools was preliminary, limited to a subjective comparison method
rather than a more rigorous statistically based method.

8.3 Implications

Smart contracts are seen as game changing by many groups, and should current issues with cost,
usability and security be solved, the economic impact is likely to be large. Professional service
groups are suggesting significant cost savings (Accenture 2017; McKinsey 2018).

This study has identified an approach to smart contract creation and use that is generally
applicable, tolerant of varying levels of automation and human-in-the-loop interaction, and that
facilitates achieving higher levels of utility in the smart contracts created, along with lower costs.

Our approach is highly supportive of adoption because most, if not all currently used legal contract
templates are held on computer and many are already marked-up. Further, building a customised
mark-up tool to assist conversions is straight-forward. This study then, has the potential to have an
impact on research into and adoption of smart contracts.

Chapter 8 Discussion 8.4 Future Research

Kevin Purnell Page 52 of 72

8.4 Future Research

Visualisation of Testing and Formal Verification

This study has demonstrated improved ease of use and to a lesser degree improved testing
effectiveness. Ideally, closing the remaining gaps of improved understandability and providing a
complete solution to reliability should be the targets of future work. Our intuitions are that
visualising the testing task can address understandability, while formally validating all code
deployed to the blockchain fully addresses reliability.

TABLE 13 – POTENTIAL ADVANTAGES OF PROPOSED FUTURE WORK RELATIVE TO ETHEREUM'S CURRENT SMART CONTRACTS

ASP’s mathematically sound foundations gives confidence both visualisation and formal
verification can be achieved. Research supporting this view centres around domain specific
languages developed with meta programming languages with proof assistant features (Coq), such
as Ergo. Given ASP’s more than two decades of development and testing; the question is, what are
ASPs strengths relative to languages like Ergo, or will developing domain specific languages look
more and more like ASP.

Formal Verification is seen as the gold standard of proof that a software program performs as
required without coding errors or vulnerabilities, and is seen as necessary for high value, high risk
systems like spacecraft, and increasingly for smart contracts if costs can be reduced to an
acceptable level. The definition of formal verification is that the executable program behaves
identically to its specification, proved using formal methods from mathematics (Berztiss 1988). An
ASP program is already a specification, so a naive perspective is that formal verification of ASP
requires two proofs; 1) that the grounder and solver are bug free, 2) that the ASP code is equivalent
to the ‘Answer Sets’ produced.

Visualisation requires techniques that convert rigorously defined encodings into the equivalent
visual representation. This implies equivalence of different methods of encoding meaning
(semantics); for example, 1) mathematical notation, 2) programming notation, 3) visual notation,
can all mean the same thing. As humans process visual information many times faster than speech
or writing, exploiting visualisation represents an opportunity to improve both the understandability
of logic and aid the identification of errors (Tableau 2019).

Markup Languages

This study requires only a small subset of mark-ups available (presentation, processing, internal
referencing), and there is scope for exploiting increasingly more powerful constructs like the

Chapter 8 Discussion 8.4 Future Research

Kevin Purnell Page 53 of 72

powerful referencing construct XLink (W3C. 2010), OWL (Web Ontology Language), SWRL
(Semantic Web Rule Language) and RDF (Resource Description Framework), all Semantic Web
initiatives (Arroyo, et al. 2004). We also note mark-up’s similarity to Knuth’s attribute grammar
(Knuth 1967). Embedding machine executable mark-up is another promising direction, however
initial investigation suggests that this is problematic; for example, in the ‘Will and Testament’ two
events can occur that disqualify a beneficiary; 1) death before or within 30 days of the testator, 2)
contesting the Will. These clauses are listed apart, yet are best coded together to generate a
‘disqualified’ atom. However we see significant potential for mark-up in areas like
understandability and of screen assistant behaviours.

Extensions to ASP

Simple extensions to standard clingo are required to allow working with large amounts of currency
and real numbers. These extensions would greatly increase the utility of ASP when used for smart
contracts, especially financial smart contracts. A simple method for handling currency would be to
hold currency in “quoted strings”, performing mathematical operations in Python functions. For
real numbers two “quoted strings” are required, one for significand and the other for exponent.
Further research is required to determine if the above ideas have significant performance
downsides, or whether applicable extensions already exist.

Other Declarative Languages

ASP is only one of many declarative languages that can be used to encode legal logic, some of
which have more advanced features than ASP. It is intended that other declarative language solvers
such as TOAST (ARG-tech 2012) for structured argumentation with ASPIC+, and SPINdle (Data61,
CSIRO 2013) for Defeasible Logic etc. be investigated in future work.

Web Smart Contract Editor Application

Our simulator was built with technologies familiar to the author because of study time constraints
and because standalone sufficed. A more advanced implementation would require investigation of
the best current technologies like React, Angular and KnockoutJS. A commercial implementation
of the smart contract editor (hereafter ContractWriter) is envisioned to be a collaborative
distributed web app built using current technologies and having many of the features present in
Discord (Discord Inc. 2019) like VoIP voice, text chat and video in addition to a shared real-time
view of the current smart contract session. Like Discord, ContractWriter would allow people to be
be invited to join a ContractWriter session via a link sent by SMS, e-mail or messenger service, with
digital signing (witnesses) and access to PII via private key.

Instantiation Place Holders

In this study different IPHs are used for HTML (“____identifier____”) and ASP (“iph_identifier”).
Interestingly, ASP treats “____identifier____” as a constant, meaning that it is possible to use this
form of IPH in both text and ASP code templates. This was avoided in this study because of concerns
that “____identifier____” does not comply to the ASP-Core-2 standard. If compliance is proven,
some simplification of the smart contract editor would result.

Business and Legal Domain

Because of the economic and other benefits of converting traditional legal contracts to smart
contracts, a detailed understanding of the factors that make conversion economic would be useful.
Some factors have been identified; 1) the type of ‘legal reasoning’ used, and 2) the type of

Chapter 8 Discussion 8.5 Conclusion

Kevin Purnell Page 54 of 72

‘performance’ required (as per Table 1, p6), are useful indications of the automatability of a
contract. Other factors like the complexity of attached schedules, and the interactions with other
systems need to be evaluated; for example, how does automated conveyancing (PEXA 2019)
impact real estate contracts. Ideally taxonomies (Snowden 2011) of legal contracts, types of
performance and legal reasoning are required, along with any other aspects not yet identified.
Some work in these areas is currently visible. (Ryan 2018; Tönnissen 2018).

Blockchain Space Savings

Because our declarative code is split into facts (with variables) and logic program (invariant),
blockchain space saving opportunities arise. Only only facts and a key (to access the template DSL)
are required to completely reconstruct both the full text and code of a smart contract. We have
evaluated enough implementation options to recognise that there is a space vs compute time
spectrum worth further investigation.

8.5 Conclusion

Blockchain technologies promise improvements to legal contracts, yet coding requires
programmers and risks fraud, and widespread adoption depends on improving security and
removing programmers. We found that using a declarative language facilitated achieving improved
utility by implementing a ‘Will and Testament’ as a smart contract on a custom simulator. This
simulator auto-generated a smart contract from a status-quo user interface with an untrained user.
During this exercise we found a number of small benefits to using a declarative language like
simplification, ease of code auto-generation and ease of testing. Our solution supports adoption
because it starts with a legal contact, is tolerant of varying levels of automation, and allows human-
in-the-loop interaction. Smart contracts are seen as game changing, and should issues with cost,
utility and security be solved, the economic impact is likely to be large.

Reference List and Appendices

Kevin Purnell Page 55 of 72

References

Accenture. 2017. “Blockchain Technology Could Reduce Investment Banks’ Infrastructure Costs by 30 Percent,
According to Accenture Report.” Accenture. 17 Jan. Accessed Sep 11, 2019.
https://newsroom.accenture.com/news/blockchain-technology-could-reduce-investment-banks-
infrastructure-costs-by-30-percent-according-to-accenture-report.htm.

Accord Project. 2019. Introduction to Ergo. 11 Sep. Accessed Sep 11, 2019.
https://docs.accordproject.org/docs/0.3.9/ergo.html.

Agarwal, Sudhir, Kevin Xu & John Moghtader. 2016. “Towards Machine-Understandable Contracts.” Workshop at the
22nd European Conference on Artificial Intelligence. The Hague, The Netherlands: Artificial Intelligence for
Justice (AI4J). 1-8.

Aguado, Felicidad, Pablo Ascariz, Pedro Cabalar, Gilberto Perez, Concepcion Vidal. 2015. “Formal Verification for ASP: a
Case Study using the PVS Theorem Prover.” Proceedings of the 15th International Conference on
Computational and Mathematical Methods in Science and Engineering, CMMSE 2015 . Rota, Spain: CMMSE.

Amani, Sidney, Myriam Begal, Maksym Bortin, Mark Staples. 2018. “Towards verifying ethereum smart contract
bytecode in Isabelle/HOL.” Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP 2018). Los Angeles, USA: ACM. 66-77.

Antoniou, Grigoris, Paul Groth, Frank van Harmelen, and Rinke Hoekstra. 2012. A Semantic Web Primer. Cambridge,
Massachusetts: The MIT Press.

ARG-tech. 2012. TOAST: An ASPIC+ implementation. 20 June. Accessed June 10, 2019. http://www.arg-
tech.org/index.php/toast-an-aspic-implementation/.

Arroyo, Sinuhé, Ying Ding, Rubén Lara, Michael Stollberg, and Dieter Fensel. 2004. “SEMANTIC WEB LANGUAGES -
STRENGTHS AND WEAKNESS.” International Conference in Applied Computing. Lisbon, Portugal: International
Conference in Applied Computing (IADIS04). 23-26.

ASX. 2019. CHESS Replacement. 4 Oct. Accessed Oct 4, 2019. https://www.asx.com.au/services/chess-
replacement.htm.

Australian Contract Law. 2010. “Performance and termination.” Australian Contract Law. Accessed Sep 11, 2019.
https://www.australiancontractlaw.com/law/termination.html.

Batsakis, Sotiris, George Baryannis, Guido Governatori, Ilias Tachmazidis. 2018. “Legal Representation and Reasoning in
Practice: A Critical Comparison.” Legal Knowledge and Information - JURIX 2018. Het Kasteel, Groningen,
Netherlands: IOS Press. 31-40.

Bäumer, Dirk, Walter R. Bischofberger, Horst Lichter, and Heinz Züllighoven. 1996. “User Interface Prototyping -
Concepts, Tools, and Experience.” Proceedings - International Conference on Software Engineering. Institute of
Electrical and Electronics Engineers. 532-541.

Bayer, Dave, Stuart Haber, and W. Scott Stornetta. 1992. “Improving the Efficiency and Reliability of Digital Time-
Stamping.” Sequences II: Methods in Communication, Security & Computer Science. New York: Springer. 329-
334.

Berger, Emery. 2019. “On the Impact of Programming Languages on Code Quality.” Computing Research Repository
(CoRR).

Berners-Lee, Tim. 1989. "Information Management: A Proposal.". Memo, Geneva: CERN.

Berztiss, Alfs, Mark Ardis. 1988. “Formal Verification of Programs.” In SEI Curriculum, by Carnegie Mellon University
Software Engineering Institute. Pittsburgh,USA: Carnegie Mellon University Software Engineering Institute .

Reference List and Appendices

Kevin Purnell Page 56 of 72

Bickford, Mark, Constable, Robert. 2008. “Formal Foundations of Computer Security.” Science for Peace and Security
Series D: Information and Communication Security Vol.14. Brussels, Belgium: Nato. 29-52.

bitcoin. 2019. “51% Attack, Majority Hash Rate Attack.” bitcoin. 11 Sep. Accessed Sep 11, 2019.
https://bitcoin.org/en/glossary/51-percent-attack.

Brewka. 2011. “Answer Set Programming at a Glance.” Communications of the ACM 54 (12): 93-103.

Buelau, Alex. 2017. “Confideal – The Visual Smart Contract Editor.” CoinSchedule. 29 Oct. Accessed Sep 11, 2019.
https://www.coinschedule.com/blog/confideal-visual-smart-contract-editor/.

Bush, Vannevar. 1945. “As We May Think.” The Atlantic 10.

Buterin, Vitalik. 2014. “Ethereum White Paper.” We Use Coins. Accessed June 10, 2019.
https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-
a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf.

Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski, Thomas Krennwallner, Nicola Leone,
Francesco Ricca, Torsten Schaub. 2015. ASP-Core-2 Input Language Format. Technical Report, ASP
Standardization Working Group.

Cambridge Dictionary. 2019. Cambridge Dictionary. 31 12. Accessed 12 31, 2019.
https://dictionary.cambridge.org/dictionary/english/utility.

CED. 2014. Collins English Dictionary – Complete and Unabridged. London: HarperCollins.

Chaum, David. 1982. “Blind Signatures for Untraceable Payments.” Advances in Cryptology. Boston: Springer. 199-203.

Chohan, Usman. 2017. “The Decentralized Autonomous Organization and Governance Issues.” Social Science Research
Network. 4 Dec. Accessed Sep 11, 2019. https://ssrn.com/abstract=3082055.

Choudhury, Olivia, Nolan Rudolph, Issa Sylla, Noor Fairoza, Amar Das. 2018. “Auto-Generation of Smart Contracts from
Domain-Specific Ontologies and Semantic Rules.” 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData) (IEEE) 963-970.

City of Melbourne. 2018. “Chief Executive Officer's Employment Contract.” City of Melbourne. 30 Nov. Accessed Sep
11, 2019. https://www.melbourne.vic.gov.au/about-council/governance-transparency/council-
information/registers-inspection/Pages/default.aspx.

Cognology. 2019. 360 Degree Feedback System. 11 Sep. Accessed Sep 11, 2019.
https://www.cognology.com.au/products/360_degree_feedback/?gclid=EAIaIQobChMI4qiYv8mg5QIVQiUrCh
2rXwS0EAAYAyAAEgIx3_D_BwE.

Confideal. 2019. Trusting people is easy again. 11 Sep. Accessed Sep 11, 2019. https://confideal.io/.

CSIRO. 2018. “Smart legal contracts for Australian businesses.” CSIRO News. 29 Aug. Accessed Aug 29, 2019.
https://www.csiro.au/en/News/News-releases/2018/New-blockchain-based-smart-legal-contracts.

Curtotti, Michael, Eric McCreath. 2010. “Corpus Based Classification of Text in Australian Contracts.” Proceedings of
Australasian Language Technology Association Workshop. Melbourne, Australia: Australasian Language
Technology Association Workshop. 18-26.

Data61, CSIRO. 2013. SPINdle. 30 May. Accessed June 10, 2019. http://spindle.data61.csiro.au/spindle/index.html.

Davis, Amanda. 2015. “A History of Hacking.” The Institute. IEEE. March 2015. 6 Mar. Accessed Sep 11, 2019.
http://theinstitute.ieee.org/technology-topics/cybersecurity/a-history-of-hacking.

Discord Inc. 2019. Discord App. 11 Sep. Accessed Sep 11, 2019. https://discordapp.com/.

DSLFIN. 2019. “Financial Domain-Specific Language Listing.” DSLFIN Workshop on Domain-Specific Languages for
Financial Systems. 11 Sep. Accessed Sep 11 , 2019. https://dslfin.org/resources.html.

Reference List and Appendices

Kevin Purnell Page 57 of 72

EconoTimes. 2017. “Smart Contracts Have Massive Potential to Take Trigger Massive Adoption of Blockchain.”
EconoTimes. 3 Nov. Accessed Sep 11, 2019. https://www.econotimes.com/Smart-Contracts-Have-Massive-
Potential-to-Take-Trigger-Massive-Adoption-of-Blockchain-987848.

Ellsworth, Phoebe. 2005. “Legal Reasoning.” In The Cambridge Handbook of Thinking and Reasoning, by Holyoak and
Morrison, 685-704. New York: Cambridge Univ. Press.

Engelbart, Douglas. 1968. oN-Line System. Menlo Park, 9 Dec.

Epic Games. 2019. “Blueprints Visual Scripting.” Unreal Engine. 11 Sep. Accessed Sep 11, 2019.
https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html.

Ethereum. 2019. Intro to Ethereum Wallets. 11 Sep. Accessed Sep 11, 2019. https://docs.ethhub.io/using-
ethereum/wallets/intro-to-ethereum-wallets/.

Ethereum SCW. 2019. Smart Contract Wallets. 11 Sep. Accessed Sep 11, 2019. https://docs.ethhub.io/using-
ethereum/wallets/smart-contract-wallets/.

Event-B.org. 2018. Event-B and Rodin Documentation Wiki. 18 Mar. Accessed Sep 11, 2019. http://www.event-b.org/.

Falkon, Samuel. 2017. “The Story of the DAO — Its History and Consequences.” medium.com. 24 December. Accessed
June 10, 2019. https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee.

FindLegalForms. 2019. “Real Estate Contract for Sale - Cash or Seller Financing (Australia).” FindLegalForms.com. 11
Sep. Accessed Sep 11, 2019. https://au.findlegalforms.com/product/real-estate-contract-for-sale-cash-or-
seller-financing-australia/.

Fitzpatrick, Scott. 2019. “Banking on Stone Money: Ancient Antecedents to Bitcoin.” Economic Anthropology 1-13.

Forbes. 2018. “How Smart Contracts Could Change The Way You Do Business.” Forbes. 16 May. Accessed Sep 11, 2019.
https://www.forbes.com/sites/forbescoachescouncil/2018/05/16/how-smart-contracts-could-change-the-
way-you-do-business/#136e291a1288.

Fortune. 2018. “Blockchain Firm R3 Is Running Out of Money, Sources Say.” Fortune. 7 June. Accessed Sep 11, 2019.
https://fortune.com/2018/06/07/blockchain-firm-r3-is-running-out-of-money-sources-say/.

Fruehwald, Edwin. 2011. “Tip of the Week: Five Methods of Legal Reasoning.” The Law Professor Blogs Network. 3 Aug.
Accessed Aug 29, 2019. https://lawprofessors.typepad.com/legal_skills/2011/08/tip-of-the-week-five-
methods-of-legal-reasoning.html.

Glantz, Kissell. 2013. Multi-Asset Risk Modeling. Cambridge, Massachusetts: Academic Press.

Goldfarb, Charles. 1992. “Appendix A, A brief history of the development of SGML .” In SGML Handbook, by Charles
Goldfarb, 663. Oxford, UK: Clarendon Press.

Governatori, Guido, Antonino Rotolo, and Erica Calardo. 2012. “Possible World Semantics for Defeasible Deontic
Logic.” Deontic Logic in Computer Science. Springer. 46-60.

Governatori, Guido, Florian Idelberger, Zoran Milosevic, Regis Riveret, Giovanni Sartor, Xiwei Xu. 2018. “On legal
contracts, imperative and declarative smart contracts, and blockchain system.” Artificial Intelligence and Law
377–409.

Grigg, Ian. 2004. “The Ricardian Contract.” Proceedings of the First IEEE International Workshop on Electronic
Contracting. Washington, DC, USA: IEEE Computer Society Washington, DC, USA. 25-31.

Haber, Stuart, and W. Scott Stornetta. 1991. “How to time-stamp a digital document.” Journal of Cryptology 99-111.

Harrison, Amelia. 2015. “Formal Methods for Answer Set Programming.” Proceedings of the Technical Communications
of the 31st International Conference on Logic Programming {(ICLP} 2015). Cork, Ireland: dblp computer science
bibliography. 1-8.

Reference List and Appendices

Kevin Purnell Page 58 of 72

Hernandez, Alejandro. 2018. Are You Trading Stocks Securely? Exposing Security Flaws in Trading Technologies. White
Paper, Seattle: IOActive.

HSC CoWorks. 2019. “HSC ENGLISH LANGUAGE TECHNIQUES.” HSC CoWorks. 11 Sep. Accessed Sep 11, 2019.
https://hsccoworks.com.au/hscenglishlanguagetechniques/.

Hyperledger Composer. 2019. “Welcome to Hyperledger Composer.” github Hyperledger Composer. 11 Mar. Accessed
Mar 11, 2019. https://hyperledger.github.io/composer/v0.19/introduction/introduction.html.

Hyperledger. 2019. Hyperledger Fabric. 11 Sep. Accessed Sep 11, 2019. https://www.hyperledger.org/projects/fabric.

IBM. 2020. Working with web3js API and JSON to Build Ethereum Blockchain Applications. 2 Jan. Accessed Jan 2020,
2020. https://developer.ibm.com/recipes/tutorials/working-with-web3js-api-and-json-to-build-ethereum-
blockchain-applications/.

Idelberger, Florian, Guido Governatori, Regis Riveret, and Giovanni Sartor. 2016. “Evaluation of Logic-Based Smart
Contracts for Blockchain Systems.” doi:10.1007/978-3-319-42019-6_11.

Idris. 2019. Idris, A Language with Dependent Types. 11 Sep. Accessed Sep 11, 2019. https://www.idris-lang.org/.

Inria. 2019. The Coq Proof Assistant. 11 Sep. Accessed Sep 11, 2019. https://coq.inria.fr/.

Investopedia. 2019. Business-to-Consumer (B2C). 20 May. Accessed Sep 11, 2019.
https://www.investopedia.com/terms/b/btoc.asp.

Jäger, Oliver. 2013. “Technologien für das Privacy Wallet.” paper, Trier.

JCT. 2019. About JCT. 11 Sep. Accessed Sep 11, 2019. https://corporate.jctltd.co.uk/about-us/.

Knuth. 1967. “Semantics of Context-Free Languages.” Mathematical Systems Theory 127-145.

Koons, Robert. 2017. “Defeasible Reasoning.” Accessed Sep 11, 2019. https://plato.stanford.edu/entries/reasoning-
defeasible/.

Kowalski, Robert. 2019. “Logic Production Systems.” Imperial College London - Department of Computing. 11 Sep.
Accessed Sep 11, 2019. http://lps.doc.ic.ac.uk/.

Kramer, Frank. 2015. “Privacy Enhancing Technology through a Privacy Wallet.” International / European-Japanese
Conference on Information Modelling and Knowledge Bases (EJC). Maribor, Slovenia: EJC. 137-156.

Kuhn, Tobias. 2014. “A Survey and Classification of Controlled Natural Languages.” Computational Linguistics, Vol. 40,
No. 1 121-170.

LawDepot. 2019. “Free Last Will and Testament.” LawDepot. 15 Feb. Accessed Feb 15, 2019.
https://www.lawdepot.com/contracts/last-will-and-testament-au.

Lierler, Yuliya. 2017. “What is answer set programming to propositional satisfiability.” Constraints 307-337.

Lifschitz, Vladimir. 2008. “What is answer set programming?” AAAI'08 Proceedings of the 23rd national conference on
Artificial intelligence - Volume 3. Chicago: AAAI Press. pp.1594-1597.

Lloyd, John. 1994. “Practical Advantages of Declarative Programming.” Conference Proceedings: Joint Conference on
Declarative Programming. Peñiscola, Spain. 3 - 17.

Marks, Eric. 2018. “The Case for Graphical Smart Contract Editors.” Medium. 30 Apr. Accessed Sep 11, 2019.
https://medium.com/pennblockchain/the-case-for-graphical-smart-contract-editors-8e721cdcde93.

Mazières, David, and Dennis Shasha. 2002. “Building Secure File Systems out of Byzantine Storage.” Proceedings of the
Twenty-first Annual Symposium on Principles of Distributed Computing. Monterey, California: ACM. 108-117.

McCarthy, John. 1988. “Mathematical logic in artificial intelligence.” Daedalus (Common Sense) 297-311.

Reference List and Appendices

Kevin Purnell Page 59 of 72

McKinsey. 2018. “Blockchain beyond the hype: What is the strategic business value?” McKinsey Digital. June. Accessed
Sep 11, 2019. https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/blockchain-
beyond-the-hype-what-is-the-strategic-business-value.

McNamara, Paul. 2010. “Challenges in Defining Deontic Logic.” Stanford Encyclopedia of Philosophy. Accessed Sep 11,
2019. https://stanford.library.sydney.edu.au/entries/logic-deontic/challenges.html.

Nakamoto, Satoshi. 2008. “Bitcoin: A Peer-to-Peer Electronic Cash Syste.” bitcoin. 31 October. Accessed Sep 2019, 11.
https://bitcoin.org/bitcoin.pdf.

Nicholas, Barry. 1962. An Introduction to Roman Law. Oxford: Clarendon Press.

NIST. 2019. National Institute of Standards and Technology - Information Technology Laboratory - Computer Security
Resource Center. 11 Sep. Accessed Sep 11, 2019. https://csrc.nist.gov/glossary/term/personally-identifiable-
information.

Northchain. 2019. OLE Blockchain technology. 11 Sep. Accessed Sep 11, 2019. https://www.northchain.tech/en/how-
ole-works/.

NSW LRS. 2019. Torrens Title Register. 31 May. Accessed Sep 08, 2019. https://www.nswlrs.com.au/Public-
Register/Torrens-Title-Register.

NSW RMS. 2019. Registration. 11 Sep. Accessed Sep 11, 2019.
https://www.rms.nsw.gov.au/roads/registration/index.html.

OpenLaw. 2019. “About.” OpenLaw Docs. 11 Sep. Accessed Sep 11, 2019. https://app.openlaw.io/about.

OpenZeppelin. 2019. “Build Secure Smart Contracts in Solidity.” OpenZeppelin - Contracts. 11 Sep. Accessed Sep 11,
2019. https://openzeppelin.com/contracts/.

Panetta, Kasey. 2019. “The CIO's Guide to Blockchain.” Smarter With Gartner. 23 Sep. Accessed Sep 25, 2019.
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-blockchain/.

PEXA. 2019. About PEXA. 11 Sep. Accessed Sep 11, 2019. https://www.pexa.com.au/company.

Potassco. 2019. Getting Started. 11 Sep. Accessed Sep 11, 2019. https://potassco.org/.

Prestwich, James. 2018. Declarative Smart Contracts. 2 Sep. Accessed Sep 11, 2019. https://prestwi.ch/declarative-
smart-contracts-2/.

Prowell, Stacy. 2005. “CORRECT-BY-DESIGN SOFTWARE IS FUNDAMENTAL TO HIGH-CONFIDENCE DEVICES.” High
Confidence Medical Device Software and Systems (HCMDSS) Workshop . Philadelphia, USA: Computer and
Information Science, University of Pennsylvania.

Qt. 2017. “Supported HTML Subset.” Qt v5.9 Documentation. 31 May. Accessed Mar 9, 2019. https://doc.qt.io/qt-
5.9/richtext-html-subset.html.

Randall, Vernellia. 2009. “Race and Wealth Disparity: The Role of Law and the Legal System.” Law - Fall 2009 Racism,
Health Disparities, and the Law. Accessed Sep 11, 2019.
academic.udayton.edu/health/syllabi/disparities/07WealthInequality/wealth02.htm.

Ray, Baishakhi, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. “A large scale study of programming
languages and code quality in github.” SIGSOFT FSE. Hong Kong: ACM Digital Library. 155-165.

Rice, Michael. 2018. “solidity-legal-contracts/contracts/Will.sol.” github. Accessed Mar 11, 2019.
https://github.com/mrice/solidity-legal-contracts/blob/master/contracts/Will.sol.

Ryan, Philippa. 2018. “Herbert Smith Freehills, King & Wood Mallesons back Australian National Blockchain.” Australian
Financial Review. 6 Sep. Accessed Aug 29, 2019. https://www.afr.com/companies/professional-
services/herbert-smith-freehills-king--wood-mallesons-back-australian-national-blockchain-20180905-h14yg3.

Reference List and Appendices

Kevin Purnell Page 60 of 72

Ryan., Philippa. 2018. “A proposed new Taxonomy for Autonomous Smart Contracts.” LinkedIn. 12 Aug. Accessed Sep
11, 2019. https://www.linkedin.com/pulse/proposed-new-taxonomy-autonomous-smart-contracts-dr-
philippa-ryan/.

Schwitter. 2018. “Specifying and Verbalising Answer Set Programs in Controlled Natural Language.” (EasyChair).

scilla-doc. 2019. Scilla. 11 Sep. Accessed Sep 11, 2019. https://scilla.readthedocs.io/en/latest/.

Sirer, Emin Gun. 2016. Thoughts on the DAO Hack. 17 Jun. Accessed Sep 11, 2019.
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/.

Smith, William. 1875. A Dictionary of Greek and Roman Antiquities . London: John Murray.

Snowden, Dave. 2011. “Typology or Taxonomy?” Cognitive Edge. 22 Oct. Accessed Sep 11, 2019. http://cognitive-
edge.com/blog/typology-or-taxonomy/.

Solidity. 2019. Read The Docs v0.5.12. 1 Oct. Accessed Oct 3, 2019. https://solidity.readthedocs.io/en/v0.5.12/.

Solidity. 2017. Read The Docs. 6 July. Accessed Sep 11, 2019. https://solidity.readthedocs.io/en/v0.4.13/.

Stanford Law School. 2019. Developing a Legal Specification Protocol: Technological Considerations and Requirements.
14 Feb. Accessed Sep 11, 2019. https://law.stanford.edu/publications/developing-a-legal-specification-
protocol-technological-considerations-and-requirements/.

Sutherland, Ivan. 1963. Sketchpad. PhD Thesis, Boston: Massachusetts Institute of Technology.

Swamy, Aalok. 2018. “Pros and Cons of Solidity.” sixpl. 18 May. Accessed Sep 11, 2019. https://sixpl.com/pros-and-
cons-of-solidity/.

Szabo, Nick. 1994. “Smart Contracts.” Nick Szabo's Essays, Papers, and Concise Tutorials. Accessed June 10, 2019.
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/sza
bo.best.vwh.net/smart.contracts.html.

Tableau. 2019. Tableau Mission: Principles of visual understanding. 11 Sep. Accessed Sep 11, 2019.
https://www.tableau.com/about/mission#understanding.

Thomson Reuters. 2020. Document automation - Contract Express. 02 Jan. Accessed Jan 02, 2020.
https://legal.thomsonreuters.com/en/products/contract-express.

Tönnissen, Stefan, Teuteberg, Frank. 2018. TOWARDS A TAXONOMY FOR SMART CONTRACTS. Research Paper,
Osnabrück, Germany: Osnabrück University.

Treasury. 2019. “WORKING WITH CONTRACTS Practical assistance for small business managers.” Australian
Government, The Treasury. 11 Sep. Accessed Sep 11, 2019. https://treasury.gov.au/sites/default/files/2019-
03/WorkingWithContractsGuide.pdf.

Voshmgir, Shermin. 2019. Blockchainhub - Blockchain Oracles. 1 Jul. Accessed Jan 2, 2020.
https://blockchainhub.net/blockchain-oracles/.

Vyper. 2019. Vyper. 11 Sep. Accessed Sep 11, 2019. https://vyper.readthedocs.io/en/v0.1.0-beta.13/.

W3C. 2019. Semantic Web. 11 Sep. Accessed Sep 11, 2019. https://www.w3.org/standards/semanticweb/.

W3C. 2010. XML Linking Language (XLink) Version 1.1. 06 May. Accessed Sep 11, 2019.
https://www.w3.org/TR/xlink11/.

Walport, Mark. 2016. Distributed Ledger Technology: beyond block chain. Government Report, London: UK
Government, Office for Science.

Wood, Gavin. 2017. “Ethereum: A secure decentralised generalised transaction ledger EIP-150 REVISION.” Yellow
Paper.

Xerox PARC. 1973. Xerox Alto. Palo Alto, 1 Mar.

Reference List and Appendices

Kevin Purnell Page 61 of 72

Yang, Zheng, and Hang Lei. 2018. “Formal Process Virtual Machine for Smart Contracts Verification.” International
Journal of Performability Engineering 1726-1734.

Zatko, Peiter. 2011. “How a Hacker Has Helped Influence Government and Vice Versa.” Black Hat 2011. Las Vegas.

Reference List and Appendices

Kevin Purnell Page 62 of 72

Appendix A – Simple ‘Will’ – Solidity vs ASP

Annotated smart contract in Solidity for a ‘Will and Testament’ (Rice 2018) since depreciated.

Solidity Code Explanation

pragma solidity ̂ 0.5.1;

contract Will {

 //declarations
 address owner;
 address trustee;
 uint fortune;
 bool isDeceased;
 address payable[9] wallets;
 uint nextWallet = 0;
 mapping(address => uint) inheritance;

 //constructor
 constructor(address _trustee) public payable {
 owner = msg.sender;
 fortune = msg.value;
 trustee = _trustee;
 isDeceased = false;
 }

 //function modifiers
 modifier onlyOwner {require(msg.sender == owner); _;}
 modifier onlyTrustee{require(msg.sender == trustee);_;}
 modifier deceased {require(isDeceased == true); _;}

 //setter
 function setInheritance(address payable _wallet,
 uint _inheritance) public onlyOwner {
 wallets[nextWallet] = _wallet;
 inheritance[_wallet] = _inheritance; }

 //functions
 function payout() private deceased {
 for (uint i=0; i<wallets.length; i++) {
 wallets[i].transfer(inheritance[wallets[i]]);}}

 function recordDeceased() public onlyTrustee {
 isDeceased = true;
 payout(); }
}

Compiler directive with version number.
Latest stable version Feb 2019 is ̂ 0.5.4.

Declares a ‘Contract’ (like a class in java).

special type (Ethereum wallet address)... for ‘Owner’.
for ‘Trustee’.
unsigned integer (i.e.whole dollars)... the ‘Fortune’.
boolean.
array of addresses modified to allow payments.
unsigned integer (i.e. whole dollars).
map – ‘inheritance’ holds a uint for every address.

Constructor creates object at ‘Contract’ deployment.
public & payable modifiers mean ‘can pay Ether’.
Owner’s ‘Ethereum wallet address’
Amount the owner is distributing
owner specifies a trustee when calling this code
(msg.sender and msg.value are global built-ins)

Modifiers are used like access modifiers.
An ‘if’ is pasted at the start of function code.
_; means the code of the modified function.

setInheritance can only be called by the ‘Owner’.

Loads ‘Ethereum wallet address’ of each ‘Inheritor’.
Loads the inheritance $ against the ‘wallet address’.

Locked unless ’isDeceased’ is set to true.
Traverses the ‘wallets’ array and moves the allocated
inheritance to ‘Ethereum wallet address’ of that child

recordDeceased can only be called by the ‘Trustee’.

It executes the ‘Will’ by distributing the ‘Fortune’.

Figure 21 - A simple smart contract written in Solidity and annotated

ASP logic program equivalent for the above ‘Will and Testament’ (uses percentages) is:
transfer(TestatorWallet, InheritAmount, Wallet) :-
 deceased,
 InheritAmount = Amount*Percent/100,
 inherits(Child, Percent),
 estate(Amount, TestatorWallet),
 id(Child, Wallet).

#show transfer/3.

Facts needed to instantiate this code (not shown for Solidity) are:
estate(1000000, “89gbmbmscss”).
id(mary,”bkbkkbjk3”). id(fred,”i78tgqebgk”). id(bec,”b979beqjs”)
inherits(mary, 40). inherits(fred, 20). inherits(bec, 40).

The event needed to trigger payout is:
deceased :- #true.

Reference List and Appendices

Kevin Purnell Page 63 of 72

Appendix B – ‘Will and Testament’ Template

LAST WILL AND TESTAMENT OF ___________

I, _____________ , presently of __________, hereby revoke all former testamentary dispositions made by
me and declare this to be my last Will.

PRELIMINARY DECLARATIONS

Prior Wills and Codicils

1. I revoke all prior Wills and Codicils.

Marital Status

2. I am married to __________.

Children

3. My living children are _____________.

EXECUTOR

Executor

4. The expression ‘my Executor’ used throughout this Will includes either the singular or plural number,
or the masculine or feminine gender as appropriate wherever the fact or context so requires. The term
'executor' in this Will is synonymous with and includes the term 'executrix'.

Appointment

5. I appoint _____________ of ___________, New South Wales as the sole Executor of this Will.

Powers Of My Executor

6. I give and appoint to my Executor the following duties and powers with respect to my estate:

a. To pay my legally enforceable debts, funeral expenses and all expenses in connection with the
administration of my estate and the trusts created by my Will as soon as convenient after my
death, except for any debt secured by real and/or personal property which is to be assumed by
the recipient of such property.

b. To take all legal actions to have the probate of my Will completed as quickly and simply as
possible, and as free as possible from any court supervision.

c. To retain, exchange or dispose of any personal property without liability for loss or depreciation.

d. To purchase, maintain, convert and liquidate investments or securities, and to exercise voting
rights in connection with any shareholding, or exercise any option concerning investments or
securities.

e. To open or close bank accounts.

Reference List and Appendices

Kevin Purnell Page 64 of 72

f. To maintain, continue, dissolve, change or sell any business which is part of my estate, or to
purchase any business if deemed necessary or beneficial to my estate by my Executor.

g. To sell, mortgage, exchange, lease or otherwise dispose or deal with any real property in my
estate and to pay, alter, improve, add to or remove any buildings thereon and generally to
manage such real property.

h. To maintain, settle, abandon, make a claim against or defend, or otherwise deal with any claims
or actions against my estate.

i. To employ any solicitor, accountant or other professional.

j. Except as otherwise provided, to act as my Trustee by holding in trust the share of any minor
beneficiary, and to keep such share invested, pay the income or capital or as much of either or
both as my Executor considers advisable for the maintenance, education, advancement or benefit
of such minor beneficiary and to pay or transfer the capital of such share or the amount
remaining to such beneficiary when he or she reaches the age of majority or, during the minority
of such beneficiary, to pay or transfer such share to any parent or guardian of such beneficiary
subject to like conditions and the receipt of any such parent or guardian discharges my Executor.

The above authority and powers granted to my Executor are in addition to any powers and elective rights
conferred by statute or common law or by other provision of this Will and may be exercised as often as
required, and without application to or approval by any court.

DISPOSITION OF ESTATE

Distribution of Residue

7. To receive any gift or property under this Will a beneficiary must survive me for thirty (30) days.
Beneficiaries of my estate residue will receive and share all of my property and assets not specifically
bequeathed or otherwise required for the payment of any debts owed, including but not limited to,
expenses associated with the probate of my Will, the payment of taxes, funeral expenses or any other
expense resulting from the administration of my Will. The entire estate residue is to be divided
between my designated beneficiaries with the beneficiaries receiving a share of the entire estate
residue. All property given under this Will is subject to any encumbrances or liens attached to the
property.

8. I direct my Executor to distribute the residue of my estate as follows (“Share Allocations”):

a. All of the residue of my estate to _________ of ____________, ____________, for their own
use absolutely.

Wipeout Provision

9. I HEREBY DIRECT that the residue of my estate or the amount remaining be divided into one
hundred (100) equal shares and to pay and transfer such shares as follows:

a. 100 shares to be divided equally between my parents and siblings, or survivors thereof, for their
own use absolutely, if all or any of them are then alive.

Individuals Omitted from Bequests

10. If I have omitted to leave property in this Will to one or more of my heirs as named above or have
provided them with zero shares of a bequest, the failure to do so is intentional.

GENERAL PROVISIONS

Reference List and Appendices

Kevin Purnell Page 65 of 72

No Contest Provision

11. If any beneficiary under this Will contests in any court any of the provisions of this Will, then each
and all such persons shall not be entitled to any devises, legacies, bequests, or benefits under this Will
or any codicil hereto, and such interest or share in my estate shall be disposed of as if that contesting
beneficiary had not survived me.

Severability

12. If any provisions of this Will are deemed unenforceable, the remaining provisions will remain in full
force and effect.

Signature

13. I, ______________, the within named Testator, have to this my last Will contained on this and the
preceding pages, set my hand at the City of _______________, in the Commonwealth of Australia,
this 1st day of April, 2019 I declare that this instrument is my last Will, that I am of the legal age in
this jurisdiction to make a Will, that I am under no constraint or undue influence, and that I sign this
Will freely and voluntarily.

WITNESSES

This instrument was signed on the above written date by ___________________, and in our presence the
Testator declared this instrument to be their last Will. At the Testator’s request and in the presence of the
Testator, we subscribe our names as witnesses hereto.

Each of us observed the signing of this Will by ____________________ and by each other subscribing we
witness and affirm that each signature is the true signature of the person whose name was signed. Each of
us is now the age of majority, a competent witness and resides at the address set forth after their name.

To the best of our knowledge, the Testator is the age of majority or otherwise legally empowered to make
a Will, is mentally competent and under no constraint or undue influence.

We declare under penalty of perjury under the laws of the Commonwealth of Australia that the foregoing
is true and correct this 1st day of April 2019, at ______________, New South Wales.

Signed by _________________ in our presence and then by us in their presence.

 Signature ______________________ Signature ______________________

 Name ______________________ Name ______________________

 Address ______________________ Address ______________________

 City/Town ______________________ City/Town ______________________

 Postcode ______________________ Postcode ______________________

Reference List and Appendices

Kevin Purnell Page 66 of 72

Appendix C – Low Complexity – ‘Will and Testament’

Analysis

Reference List and Appendices

Kevin Purnell Page 67 of 72

Reference List and Appendices

Kevin Purnell Page 68 of 72

ASP Code – Logic Program

ASP ‘logic program’ for contract type ‘Will and Testament’: (load to Will_v01_contract.lp file)

% Define Intermediate Concepts == %Group 1
witnessed() :- %1
 entity(witness1, Witness1, _, _, _),
 entity(witness2, Witness2, _, _, _),
 Witness1 != Witness2.

executable(Testator, DOD, Wallet, Residue, ExecuteDate, Executor, Costs) :- %1
 witnessed,
 death(Testator, DOD),
 execute_will(Testator, Debt, Fees, ExecuteDate, Executor),
 Residue = Estate-Costs,
 Costs = Debt+Fees,
 entity(testator, Testator, _, Wallet, Estate),
 entity(executor, Executor, _, _, _).

disqualifying_death(Entity, DaysAfter) :- %1
 DaysAfter = Date-DOD,
 DaysAfter < 30,
 death(Entity, Date),
 executable(Testator, DOD, _, _, _, _, _).

qualifying_beneficiary(Entity, Wallet) :- %1
 entity(beneficiary, Entity, _, Wallet, _),
 not disqualifying_death(Entity, _),
 not contests(Entity, _),
 inherits(Entity,Percent),
 Percent > 0.

-wipeout :- %1
 qualifying_beneficiary(Entity, Wallet).

wipeout :- %1
 not -wipeout.

% Distribution to Beneficiaries adjusted for deaths === %Group 2
orig_percent(Entity, Percent) :- %2
 entity(beneficiary, Entity, _, _, _),
 inherits(Entity, Percent).

qual_percent(Entity, Percent) :- %2
 entity(beneficiary, Entity, _, _, _),
 inherits(Entity, Percent),
 qualifying_beneficiary(Entity, _).

sum(original, Sum) :- %2
 Sum = #sum{ Percent, Entity : orig_percent(Entity, Percent) }.

sum(qualifys, Sum) :- %2
 Sum = #sum{ Percent, Entity : qual_percent(Entity, Percent) }.

adjust(Ratio) :- %2
 not wipeout,
 Ratio = (OrigSum*1000/QualSum),
 sum(original, OrigSum),
 sum(qualifys, QualSum).

transfer(Testator, SourceWallet, InheritAmt, Beneficiary, Wallet) :- %2
 not wipeout,
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs),
 qualifying_beneficiary(Beneficiary, Wallet),
 InheritAmt = ((Residue * Percent/100) * Ratio)/1000,
 inherits(Beneficiary, Percent),
 adjust(Ratio).

% Distribution if Wipeout (all Beneficiaries dead) == %Group 3
qualifies_on_wipeout(Entity, Wallet) :- %3
 wipeout,
 entity(parent, Entity, _, Wallet, _),
 not disqualifying_death(Entity, _),
 not contests(Entity, _).

qualifies_on_wipeout(Entity, Wallet) :- %3
 wipeout,
 entity(sibling, Entity, _, Wallet, _),
 not disqualifying_death(Entity, _),
 not contests(Entity, _).

Reference List and Appendices

Kevin Purnell Page 69 of 72

wipeout_count(Count) :- %3
 Count = #count{ Entity, Wallet : qualifies_on_wipeout(Entity, Wallet) }.

transfer(Testator, SourceWallet, InheritAmt, Entity, Wallet) :- %3
 wipeout,
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs),
 qualifies_on_wipeout(Entity, Wallet),
 InheritAmt=Residue/Count,
 wipeout_count(Count).

% Distribution of Fees and Debt === %Group 4
transfer(Testator, SourceWallet, Costs, Executor, Wallet) :- %4
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs),
 entity(executor, Executor, _, Wallet, _).

% Outputs === %Group 5
message_to_human(Executor, Testator, "insert messages to the executor here...") :- %5
 transfer(Testator, _, _, Executor, _),
 entity(executor, Executor, _, _, _).

#show message_to_human/3. %5
#show transfer/5. %5

ASP Code – Facts

ASP ‘fact’ templates supplied by a central authority

entity(iph_type, iph_entity, iph_entityDOB, iph_entitywallet, iph_entitybalance)
inherits(iph_beneficiary, iph_percentage).
creation(iph_location, iph_date).

These templates are instantiated to produce facts: (load to Will_v01_facts.lp file)
creation(sydney, 43616).
entity(testator, "john wallace", 20088, "johnwalletaddress", 1000000).
entity(executor, "james stewart", 18218, "jameswalletaddress", 350).
entity(beneficiary, "fred wallace", 29041, "fredwalletaddress", 5).
entity(beneficiary, "bec smith", 29432, "becwalletaddress", 8).
entity(beneficiary, "sam wallace", 29969, "samwalletaddress", 15).
entity(beneficiary, "jim wallace", 30376, "jimwalletaddress", 140).
entity(beneficiary, "may fredricks", 31310, "maywalletaddress", 24).
inherits("fred wallace", 10).
inherits("bec smith", 20).
inherits("sam wallace", 10).
inherits("jim wallace", 20).
inherits("may fredricks", 40).
entity(parent, "tom wallace", 12965, "tomwalletaddress", 200).
entity(parent, "aida wallace", 13378, "aidawalletaddress", 200).
entity(sibling, "anne patrick", 19378, "annewalletaddress", 9000).
entity(sibling, "ines brown", 20255, "ineswalletaddress", 5000).
entity(sibling, "steve wallace", 21459, "stevewalletaddress", 6000).
entity(witness1, "brian bellhaus", 22692, "brianwalletaddress", 800).
entity(witness2, "margaret talbot", 24042, "margaretwalletaddress", 16).

ASP Code – Events

ASP ‘event’ templates supplied by a central authority

death(iph_entity, iph_date).
contests(iph_entity, iph_date).
executewill(iph_testator, iph_debt, iph_fees, iph_date, iph_executor).

These templates are instantiated produce events: (load to Will_v01_events_43680.lp file)
death("john wallace", 43646). The Testator, ‘John Wallace’ died 8Jun2019
contests("sam wallace", 43660). John’s son Sam has contested the Will
execute_will("john wallace", 1249, 1000, 43680, "james stewart").
 The Executor pays out John’s Credit Card debt of $1,249.
 The fees for winding up the estate are $1,000.
 The Executor, ‘James Stewart’ decides the Will can be executed.

This example is test case 3.

ASP Execution Command

clingo Will_v01_facts.lp Will_v01_contract.lp Will_v01_events_43680.lp

Reference List and Appendices

Kevin Purnell Page 70 of 72

Sample Test Cases showing ASP Event code and test Results as Answer Sets

Reference List and Appendices

Kevin Purnell Page 71 of 72

Comprehensive Test Case Suite

A comprehensive set of test cases for the ‘Will and Testament’ smart contract reduced from an
exhaustive decision table. Each case has a file (see bottom), tested at a CLI interface (see bottom).

Reference List and Appendices

Kevin Purnell Page 72 of 72

Appendix D – Mid Complexity – ‘Real Estate Sale’

Analysis – Instantiation Variables required

Complex types
 entity (____seller____, ____buyer____, ____earnestmoneyholder____,
 ____nominatedmediator____, ____nominatedarbitrator____)
 asset (____property____)
 list (____propertylegaldescription____, ____included____, ____excluded____,
 ____exceptions____, ____closingconstraints____, ____buyersclosingobligations____,
 ____costspayerlist____, ____additionalagreements____)

Simple types
 ____earnestmoneydeposit____
 ____sellerloan____
 ____sellerinterestrate____
 ____sellerloanrepayfrequency____
 ____sellerloanrepaystart____
 ____cashatclosing____
 ____price____
 ____creditcheckdate____
 ____notifydate____
 ____responsedays____
 ____demandreturndays____
 ____loancomitmentbydays____
 ____maxloaninterestrate____
 ____minloanyears____
 ____minloanamount____
 ____reportnames____
 ____deadlinedate____
 ____repairpercentage____
 ____repaircredit____
 ____utilitiesstatus____
 ____utilitiespayer____
 ____casultymaxpercent____
 ____warrantypayer____
 ____warrantymaxdeductible____
 ____warrantymaxcost____
 ____titleinsurancepayer____
 ____maxmortgagetermschange____
 ____surveyrequired____
 ____taxprorationrequired____
 ____closingdate____
 ____closingdeliverable____
 ____disputeprocedure____
 ____expirationdate____
 ____expirationtime____
 ____buyercanassign____
 ____earnestmoneysignature____

