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Abstract 

With the exception of some well-funded industries, legal documents remain difficult and 
expensive to use, and prone to ambiguities. Emerging blockchain technologies hold the 
promise of changing this, however the tools for coding these ‘smart contracts’ require 
programmers and are prone to fraud. To fully realise the benefits of smart contracts, 
widespread adoption is required, which depends on improving security and replacing 
programmers with tools that lawyers, business-people and the general public can use. Our 
objective is to investigate improved approaches to the creation, testing and deployment of 
smart contracts by demonstrating that pure declarative languages can be used, and that these 
facilitate achieving improved utility in smart contracts. Our investigation implemented a ‘Will 
and Testament’ as a smart contract on a custom simulator, and demonstrated improved utility 
by auto-generating a smart contract from a status-quo user interface with an untrained user. 
We found a number of small benefits to using a declarative language like simplification, ease 
of code auto-generation and ease of testing. We have identified an approach to smart contract 
creation supportive of adoption because conversion starts with current legal contacts, is 
tolerant of varying levels of automation, and allows human-in-the-loop interaction. Smart 
contracts are seen as game changing by many, and should issues with cost, usability and 
security be solved, the economic impact is likely to be large. 
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Terms and Abbreviations 

51% attack  blockchain attack where 51% of computing power is with attacker (bitcoin 2019) 
ABI   Application Binary Interface, an low level API for Ethereum smart contracts 
API   Application Programming Interface, a standardised way to interface to a program  
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GUI   Graphical User Interface 
imperative code  typical programming code with both logic and control statements (e.g. C++) 
NAF   Negation as Failure 
performance  legal contract ‘performance’ is the transfer of the thing of value for consideration 
PII   Personally Identifiable Information (NIST 2019) 
SCE   Smart Contract Editor 
SFLC   Standard Form Legal Contract, a standard contract template only requiring details   
SIE   Smart Instantiation Editor 
smart contract  a distributed application stored in a blockchain and automatically executed 
Solidity  a JavaScript like programming language used in Ethereum to write smart contracts 
utility   the usefulness of something, especially in a practical way (Cambridge Dictionary 2019)  
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 Introduction 

1.1 Study Context 

Imagine a world where most legal contracts are digital, and thus more useful and automatable. 
Recent blockchain technologies promise an immutable distributed platform, making the idea of 
legally enforceable digital contracts (“Smart Contracts”) that execute automatically over time seem 
more achievable (Szabo 1994; Wood 2017). Blockchains (Nakamoto 2008) are recent innovations 
in shared databases that promise immutability for data by chaining blocks of data together with 
addresses derived from hashing the content of each block. As this hashed address is also added to 
the next block, any change will cause a detectable break and any attempt to modify the next block 
results in cascading changes. This makes undetectable change difficult, and change detection easy. 
The first blockchain implemented bitcoin, but there is no reason to limit content to financial 
transactions (Wood 2017). 

‘Smart Contracts’ (hereafter smart contracts) replace financial transfers with code that when 
executed enforces predefined activities in response to external events. At face value, smart 
contracts provide considerable opportunity for increased automation; however, many problems 
require solving before this concept becomes practical. For example; the first generation of smart 
contracts proposed in 2014 (Buterin 2014) requires programmers to code smart contracts in a 
JavaScript-like language, an expensive overhead since end-users are lawyers, business-people and 
the general public. Smart contracts are more than the electronic agreements and automation used 
for decades by the financial services and e-commerce sectors (Glantz 2013). Smart contracts offer 
a way to deliver a generic low cost, trustworthy platform to the general public that enables and 
enforces legal agreements. As such, smart contracts dramatically expand the potential for use of 
digital agreements, and have gained attention from the legal community (Ryan 2018). 

All current methods of encoding legal documents are problematic when weighed against cost, 
usability and reliability. Paper contracts risk misplacement or modification, are often hard to 
understand, and suffer ‘difficult to detect’ ambiguities. Further, use of the legal system is 
notoriously expensive and time-consuming, favouring those with access to greater resources 
(Randall 2009); a disincentive to use. Current electronic contract implementations in areas like 
financial markets and e-commerce are invariably private systems, built at great expense by one or 
more of the parties involved, and not flexible enough to be applied to other business domains at 
reasonable cost. Further, not being architected from the start with security and resilience to attack 
in mind, these systems are as vulnerable as any traditional system deployed on private networks 
(Hernandez 2018). Finally, smart contracts as currently implemented in systems like Ethereum 
introduce their own unique problems. Smart contracts generally can’t be coded by end users 
(lawyers, business-people and the general public), are difficult to program, are vulnerable to hacks 
(Falkon 2017), compound the comprehensibility problem, do not address the ambiguity problem, 
and remain difficult to understand once deployed. The imperative language used (Solidity) has 
limited expressive power and requires many lines of code to express the logic of complex legal 
contracts, which is reflected in costs to create and debug contracts (Swamy 2018). 
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1.2 Study Objective 

This study investigates improved approaches to the creation, testing and ongoing life-cycle of 
smart contracts, with the goal of demonstrating that encoding of legal logic in a pure declarative 
language is possible and facilitates improved utility to Ethereum’s current implementation. 

Ethereum’s approach encodes legal logic in procedural ‘Solidity’ which is compiled to bytecode 
that executes on the Ethereum Virtual Machine (EVM) (Wood 2017). At the time of writing, the 
Ethereum blockchain environment is possibly the best benchmark for our project as other possibly 
more advanced environments provide little publicly available information. We make no attempt to 
address current problems faced by blockchains like security, privacy, processing and storage 
demands and optimal partitioning of content; nor do we investigate future potential as exemplified 
by the Decentralized Autonomous Organisation (Chohan 2017).  

We investigate possible solutions to the challenges listed in section 1.1 via a literature review and 
by experimenting with a custom blockchain simulator. Firstly, we design an approach to smart 
contract creation that has clear advantages over Solidity when evaluated subjectively from the 
perspective of the ultimate end-user (lawyers, business-people, general public). These  preliminary 
evaluation criteria cover aspects of utility for these end-users, being; 1) ease of use (desirable that 
smart contract creation not require training); 2) understandability (builds confidence the contract 
does what is intended); 3) ease of testing (helps identify and remove bugs); 4) free of security 
exploits and errors at deployment (self-evident); 5) scalability (can handle large complex contracts); 
6) affordability (costs should be minimised). Secondly, we investigate how using a declarative 
language facilitates implementing this approach by building a blockchain simulator and using it to 
investigate how best to implement a suitable legal document as a declarative smart contract. The 
hypothesis we investigate and verify is:  

“For the subset of legal documents amenable to implementation as smart contracts, coding with a 
declarative language is possible and facilitates achieving improved utility for those smart contracts.” 

To verify this hypothesis we seek: 1) to demonstrate that a legal document can be implemented 
with declarative code, and 2) evidence that using declarative code facilitates the implementation 
of a smart contract approach with improved utility over the Solidity approach. 

Because of the ubiquity of legal document and contract use in society, even partial realisation of 
the above aims will likely generate significant economic value (Forbes 2018; McKinsey 2018). 

1.3 Study Overview 

The rest of this thesis is structured as follows: 
Chapter 2 an overview of foundational concepts and technologies of declarative smart contracts. 

Chapter 3 describes current research into smart contracts and evaluates alternative approaches. 

Chapter 4 describes the method we use to investigate our hypothesis. 

Chapter 5 describes the design of our experimental environment and the legal document used. 

Chapter 6 details the blockchain simulator developed to investigate and verify our hypothesis.  

Chapter 7 presents and evaluates our results and findings. 

Chapter 8 discusses these results and findings and lists our insights into factors defining the 
boundaries of applicability for our approach and promising areas for future research. 
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 Background 

2.1 Introduction 

This section provides an overview of the foundational concepts and technologies assumed by our 
investigation and is provided only because smart contracts are a very recent development. 

2.2 Legal Contracts 

Legal contracts are the essential mechanism covering exchange of goods and services in our 
society. They have a long history in western society (Nicholas 1962), having their genesis in the first 
attempts to regulate behaviour in exchanges of any type. Reflecting this is the recognition by law 
of verbal agreements as having legal force if they can be proven to exist. This is easier to do than 
is generally believed, because even the purchase of fast food qualifies as a legal contract.  

For a legal contract to exist, four conditions must be satisfied (Treasury 2019). There must be: 
1. an ‘Offer’ of a good or service 

2. an ‘Acceptance’ of that good or service 

3. ‘Intention’ that the above agreement can be enforced by law 

4. ‘Consideration’ or reward given in exchange for the above good or service 

Clearly, this definition is applicable to a wide spectrum of exchanges, ranging from trivial to very 
complex, with their recording being driven by the tension between convenience and complexity. 
Because such exchanges can occur in both private and public settings, the mechanisms used can 
be extended to areas like process management within companies; for example, one department 
may agree a service level agreement with another that provides parts. Not all legal contracts are 
amenable to conversion to smart contracts; firstly, a contract must use a form of legal logic that is 
computable with current technologies; secondly, the ‘Offer’ must be tangible enough to benefit 
from some form of electronic process (see section 2.8). Further, some legal documents (Wills) do 
not involve ‘Acceptance’ or ‘Consideration’ but have features that can benefit from automation. 

The following is a list of types of legal reasoning surfaced to date in literature (Ellsworth 2005; 
Fruehwald 2011), and is somewhat self-explanatory as to why only deductive reasoning is easily 
handled by computer: 1) Deductive Reasoning – reasoning over facts with rules, easy to encode; 
2) Inductive Reasoning – reasoning from specific cases to formulate an applicable legal principle; 
3) Reasoning by Analogy – reasoning based on similarity to previously decided cases (precedent); 
4) Abductive Reasoning – seeking the simplest, most likely cause of known facts (hypothesis);           
5) Reasoning by Principle–uses policy, custom, principles (common values) to decide outcome. 
Current computing techniques have mixed success with the last 4 of these 5 types, and 
consequently are outside the scope of this study. Further, the literature reveals that ongoing 
research to understand and encode ‘legal reasoning’ encounters difficulties with areas like 
obligation and duty (deontic logic) (McNamara 2010), and where circumstances override some 
agreement (defeasible logic) (Koons 2017). 

Restricting application to legal documents that use purely deductive reasoning still greatly 
increases the types of legal document that can be automated with smart contract technologies, 
but a taxonomy may be useful when investigating the boundaries of applicability. 
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2.3 Distributed Shared Ledgers 

The common purpose behind ledgers is the desire for a trusted source of truth. The most familiar 
use of the term ledger is “the principal book in which commercial transactions of a company are 
recorded” (CED 2014). A variation is the shared ledger, typically used by a community as the source 
of truth to track of ownership of assets, an example being the Torrens Title Register of land 
ownership (NSW LRS 2019). Another variation is the distributed ledger, a type of shared ledger 
replicated and synchronised between members of a network (Walport 2016), first used in ancient 
Rome (Smith 1875), and by Yap islanders to track wealth (Fitzpatrick 2019). Finally, there is the 
distinction between un-permissioned ledgers and permissioned ledgers with one or more owners. 

The wave of innovation known as the third industrial or digital revolution has been applied to 
ledgers and has provided many improvements like automation, but failed to fully mitigate risks 
from fraud (Davis 2015). The advent of blockchain technologies provides a potentially immutable 
datastore and has captured the imagination of the business community, sparking a wave of 
initiatives like the Australian Securities Exchange’s Clearing House Electronic Subregister System 
(CHESS) replacement, a system that records shareholdings and manages settlements (ASX 2019).  

2.4 Blockchains 

Blockchain technology has roots in a string of innovations that used cryptography to create digital 
cash. These started with David Chaum’s secure ‘digital cash’ proposed in 1982 (Chaum 1982). 
Blockchain as an approach to data integrity was first described in January 1991 (Haber and 
Stornetta 1991). This paper proposed a way to make changes to document timestamps infeasible, 
without revealing content. The key ideas are: 

 keeping an electronic record (ledger) of documents, with links between documents 

 each link matches the previous document hash, so any change breaks this link 

 accessible copies of the ledger are distributed across a network 

 change is harder than detection, so theoretically defenders have the advantage and truth can be 
determined from the majority of ledgers  

In 1992 Hash Trees (Merkle Trees) were introduced to improve scalability by grouping documents 
into blocks, with individual document hashes stored in trees (Bayer 1992). Further work showed 
how to implement SUNDR, a trusted multi-user network file system on untrusted servers by 
focusing on detection of attacks (Mazières and Shasha 2002), providing the mechanism for 
blockchains to be implemented on the internet. 

These ideas were materialised between 2008 and 2015, spurred by a 2008 white paper (Nakamoto 
2008) describing a type of digital currency and funds transfer mechanism (Bitcoin) which operates 
independently of a central bank (live January 2009). An illustration of the momentum achieved by 
blockchains is the Australian government’s Australian National Blockchain initiative launched in 
Aug 2018, a partnership between two large legal firms, IBM and Data61 (Ryan 2018). 

2.5 Smart Contracts  

The content stored on blockchains need not be restricted to bitcoin or coin balance ledgers; the 
ledger concept can store any asset record, and even computer code. 

Nick Szabo, a legal scholar and computer scientist, proposed the concept of smart contracts in a 
1994 paper (Szabo 1994). Szabo’s concept of a smart contract intended to bring the experience of 
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contract law and practice to electronic commerce protocols. A paper by (Buterin 2014) provided 
the impetus for introducing an improved scripting language for Ethereum (live July 2015), arguing 
that improved scripting was ideal for implementing ‘distributed applications’ (DApps). The 
realization that DApps and Szabo’s smart contracts were essentially the same thing spurred 
industry interest, and the creation of the Enterprise Ethereum Alliance (EEA) 2017. 

Ethereum smart contracts are executable code meant to duplicate the intended tangible 
functionality of legal documents with the advantages of automated management and processing. 
To facilitate coding smart contracts in Ethereum, a Java-like imperative language called Solidity is 
provided. Solidity compiles to ‘Ethereum bytecode’ executed on the Ethereum Virtual Machine by 
miners financially incentivised to perform this function. These transactions can be ‘Ether’ transfers, 
smart contracts or transactions automatically generated by smart contracts (Wood 2017). 

2.6 Wallets 

Wallets allow blockchain users to store cryptocurrencies and interact with smart contracts. As this 
study proposes modifications to Ethereum, Ethereum wallets are described (Ethereum 2019). 
Wallets have evolved considerably so that a wide variety of forms and features are available; 
however, the most useful ideas for this study are ‘Hardware Wallets’ and ‘Hot/Cold Wallets’. A cold 
wallet is one not connected to the internet, so any attempted hack cannot complete. A hardware 
wallet is a USB stick type device that can be connected to a computer or phone to authorise 
interactions. When unattached a hardware wallet is cold, but when attached, a hardware wallet 
has the advantage of not exposing the owners private key to the internet. Ethereum’s smart wallets 
offer further security and recovery features over Ethereum wallets; examples being Gnosis Safe, 
Argent and Authereum (Ethereum SCW 2019).  

This study proposes further enhancements to Ethereum smart wallets beyond storage of 
cryptocurrencies. It considers personal information to have similar value to cryptocurrency and 
requiring the same level of security. A proposal to store personal information in a bitcoin like wallet 
was first mentioned by Jäger (Jäger 2013); however, rather than discussing the designs provided 
by Jäger and subsequent collaborators (Kramer 2015), an idealised design that suits our application 
is described. There is intuitive appeal to the idea of holding personal information offline and 
controlling how it is accessed. Connection to a wallet can be as simple as entering a private key 
written on paper into the appropriate interface; however, this is not practical for manipulating 
personal information and consequently we focus on hardware wallets for this purpose. Hardware 
wallets can hold information that supports automatic population of user screens, for example, a 
contract between natural persons refers to personal information such as name, date of birth and 
address, commonly called Personally Identifiable Information (PII) (NIST 2019). Hardware wallets 
have advantages for storing PII and authorising its use in smart contracts via private key.  

2.7 Ricardian Contracts  

Ricardian Contracts were developed in 1996 for a Bond Trading System by Ian Grigg of Systemics 
Inc. (Grigg 2004), a London Fintech company, with the motivation being to automate transfer of 
financial instruments and money between accounts in a high trust environment. 

A Ricardian Contract can be defined as a single document that is a) a contract offered by an issuer 
to holders, b) for a valuable right held by holders, and managed by the issuer, c) easily readable by 
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people (like a paper contract), d) readable by programs, e) digitally signed, f) carries keys and server 
information, and g) allied with a unique and secure identifier (Grigg 2004). 

Simply, a Ricardian Contract is a document that is both readable by people (formatted as a text 
file) and parsable by programs that can convert it into internal forms for execution. It includes a 
special section for each type of contract, such as bond, share, currency, and descriptions in 
program-parsable terms of usage of decimal points, titles, and symbols. 

Ricardian Contracts are designed to operate within a closed system and were originally 
implemented more than a decade before blockchain ideas surfaced. They inform smart contract 
development because; 1) they have already been implemented, and have achieved legal status in 
financial markets, 2) they illustrate what content a blockchain smart contract must store, and 
identify some principles. 

2.8 Traditional Electronic Contracts 

Currently many legal documents are electronic but retain a paper based format (Thomson Reuters 
2020) with exceptions in a number of domains were the benefits from greater automation are 
overwhelming; for example, financial markets and e-commerce (B2* hereafter used to denote B2B, 
B2C, B2G etc. exchanges). These systems have been deployed for decades (Investopedia 2019); for 
example, online shopping. Reasons why other types of contracts have not been automated is worth 
analysis, with cost often dominating. Banks and businesses involved in B2* have the resources to 
create and maintain a central system providing functionality and security for users. Many ordinary 
legal contracts are between parties with few resources, while more complex contracts are often 
low volume and more easily handled in a paper based format. Compared to paper contracts, 
electronic contracts have  clear advantages in areas like retrieval and automation, but a major 
disadvantage has been amplification of risks from fraud. Blockchain technologies potentially 
provide solutions to all above barriers, because they; 1) deliver a potentially immutable electronic 
platform, 2) are distributed, so can provide a public resource free of distortion from any controlling 
party, 3) amplify the resources available for creation of central services in most legal domains. 

TABLE 1 – A SAMPLE OF LEGAL CONTRACT 'PERFORMANCE’ TYPES BY ‘DIFFICULTY TO IMPLEMENT’ 

 Difficulty Type of ‘Performance’ Example(s) 

1 simple Monetary Transfer Transfer $x from A to B at  1:00 EST, 11Aug2019  

2  Asset Transfer (via electronic ledger) Transfer ownership of asset X from A to B at 1:00 EST, 11Aug2019  

3  External Input (Event) a) A died at 2pm:EST, 12Aug2019 
b) I received my new dishwasher 11am Tuesday 20Aug2019  

4  Human in the Loop Only execute X if A and B agree 

5  Dispute Resolution If A and B do not agree, then C decides 

6  Physical Asset Transfer Change owner of Real Estate on the electronic ledger and perform a 
physical handover of keys etc. 

7  Meta-Clauses If any clause of this contract is held to be unenforceable, it will remain in 
effect to the extent that it is not invalid or unenforceable 

8 complex Complex Legal Concepts A will use reasonable endeavours to perform X 

 
At minimum these developments mean further penetration of electronic contracts into other legal 
domains but determined by factors that can be studied; like how difficult it is to automate the 
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‘performance’ of a contract (Australian Contract Law 2010) and what benefits then accrue. A brief 
survey provides a preliminary list of ‘performance’ types (Table 1). 

Transactions within financial markets typically involve money transfer, the transfer of financial 
assets via electronic ledger and recording currency and interest rate daily changes, types 1 to 3 in 
Table 1. The simplicity of ‘performance’ required by the contract allows this automation, and 
consequently these markets have achieved a very high level of automation, with automated 
accounting systems used since the 1970s, and automated trading systems since the mid-1980s and 
by 2008 performing more than 50% of trades on American exchanges (Glantz 2013). These systems 
currently use artificial intelligence techniques to automatically identify and trade opportunities. 

Blockchain initiatives have gathered a lot of momentum in financial markets and supply chain 
circles in the last few years in recognition of advantages like security over traditional systems. 
Professional service groups like Gartner, Accenture, McKinsey and R3 are popularising the trend 
(Panetta 2019), with Accenture estimating savings of 30% in Banking (Accenture 2017), McKinsey 
suggesting blockchains’ strategic value currently is cost reduction (McKinsey 2018), and Fintech 
companies like R3 (Fortune 2018) creating computing ecosystems for the creation and 
management of private blockchains, and facilitating consortiums of users who collaborate to 
create private blockchains that transact a specified range of financial instruments. 



Chapter 3  Literature Review 3.1 Overview 

Kevin Purnell  Page 8 of 72 

 

 Literature Review 

3.1 Overview 

Research into improving smart contracts began with the implementation of Ethereum in 2015 and 
has since intensified. Alternative research directions include different programming languages, 
visual approaches, automatic code generation, and attempts at formal verification. Each of these 
directions is reviewed and evaluated against criteria consistent with our objective of improving the 
utility of smart contracts from the perspective of the ultimate end-user.  

This review has two goals; 1) identifying the state-of-the-art regarding the use of pure declarative 
languages to code smart contracts, 2) identifying smart contract approaches that dramatically 
improve the utility of smart contracts relative to Solidity. The first search focuses on identifying 
research gaps and opportunities to investigate the use of pure declarative languages for smart 
contracts. The second search is used to inform the design of the blockchain simulator used to 
investigate how to implement these declarative smart contracts.  

An example of the clear improvement to utility over Solidity that we seek, is an approach that auto-
generates smart contract code from a status-quo user interface. The increased utility stems from 
the dramatic reduction in costs for end-users, gained by removing programmers.  

3.2 Different Programming Languages 

3.2.1 Current Research 

Ethereum’s language for coding smart contracts, Solidity, is rapidly evolving in response to 
perceived and actual weaknesses evidenced by considerable losses to hacks (Falkon 2017). Analysis 
suggests the famous DAO hack (on an organisation called ‘The DAO’) was possible because Solidity 
was inadequate for writing secure, bug free software (Sirer 2016). For example; the DAO hack was 
due to Solidity allowing implicit recursive calls, a feature avoided by secure language designers. 

An alternative approach could be to investigate language theory to identify languages or language 
paradigms better suited to smart contracts. Early on, Solidity was described as a JavaScript like 
language (Solidity. 2017), but later releases claim influence from C++ and Python (Solidity 2019). 
The C language is the outstanding example of language design impacting bug rates and security 
vulnerabilities in programs (Ray, et al. 2014), with another being complexity (Zatko 2011). Research 
has shown it is difficult to establish more precise relationships (Ray 2014; Berger 2019), but it still 
follows that advantages can be found in approaches that yield fewer lines of code for a given result, 
and that design for correctness and security (Prowell 2005; Bickford 2008) helps. Another useful 
approach is using pretested code libraries (OpenZeppelin 2019). 

Current popular programming languages like Python and functional programming also have 
associated smart contract research efforts. Vyper is a contract-oriented, pythonic programming 
language that like Solidity complies to a bytecode that targets the Ethereum Virtual Machine. It 
strives to be simple, secure and auditable, given most users have little prior programming 
experience (Vyper 2019); however, it still requires programming, and in this regard does not 
provide the dramatic improvements to utility over Solidity that we seek.  
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Idris is a pure functional language with dependent types first released in August 2017 by Edwin 
Brady (Idris 2019). It is based on Haskell and ML but can be used as a proof assistant like Coq (Inria 
2019). It complies to C and JavaScript upon which Solidity is based. Benefits of using Idris accrue 
from the safety created by its type system, and the reduced cost of formal verification afforded by 
being able to attempt formal proofs with the actual programming language. It is likely that Idris 
improves code reliability, however because programmers are still involved it does not provide the 
dramatic improvements to utility over Solidity that we seek.  

Another interesting approach is the development of Ergo, a domain specific language by the Accord 
Project; a collaborative initiative aimed at developing an ecosystem and tools specifically for smart 
legal contracts (Accord Project 2019). Ergo is aimed at capturing the execution logic of legal 
contracts, with the language being developed in Coq, an approach easing eventual formal 
verification. The documentation discusses legal-tech developers, so a reasonable conclusion is that 
objectives do not currently include allowing untrained people to write smart contracts. Domain 
specific language approaches hold the promise of producing a declarative language specifically 
designed for smart contracts. Activity in the financial domain is summarised in (DSLFIN 2019).  

Prestwich discusses features being added to Solidity, like ‘Function Modifiers’, the ‘Checks-Effects-
Interactions Pattern’, argues for declaring allowed states using Solidity’s ‘require’ function, and 
notes that best practices emerging in Solidity are declarative (Prestwich 2018). He even states; 

“Ideally, we should create a new declarative language to write these contracts.” 

Other activity in the declarative area is apparent, with a Stanford study proposing ‘Contract 
Definition Language’ (CDL) (Agarwal 2016) described as declarative, with CDL descriptions being 
“open logic programs”. On closer inspection the language has a Prolog-like syntax, with features 
very close to ‘Answer Set Programming’ (see section 6.1.2), like negation as failure and the ability 
to specify a state-transition system. A further similarity to our study is the ability to reason over 
types. Agarwal presents a proof-of-concept via two case studies that model U.S. Federal Statutes, 
which illustrate the techniques our study uses to model legal logic. We believe Agarwal’s paper 
reinforces our focus on declarative languages and note his paper acknowledges the synergistic 
potential of a user-centric front-end without investigating it. This paper surfaces the question of 
why invent a new declarative language when there exist languages with over two decades of 
development and testing behind them, like Answer Set Programming (ASP) . 

A recent paper explores links between legal and smart contracts and provides a comparative 
analysis of imperative and declarative languages for smart contracts, concluding that declarative 
languages “may simplify” blockchain smart contracts but may require imperative code to handle 
certain complex functions (G. F. Governatori 2018). Another recent paper explicitly investigates 
Answer Set Programming (ASP) as being a knowledge representation that also allows legal 
reasoning (Batsakis 2018), and compares it to other declarative languages for which solvers are 
available, such as TOAST (ARG-tech 2012) for structured argumentation with ASPIC+, and SPINdle 
(Data61, CSIRO 2013) for Defeasible Logic. This paper’s findings conclude that legal logic has to be 
manually encoded because there are no support tools, that SPINdle is the most expressive 
language for the problem domain but does not support ‘negation as failure’, while ASP may require 
workarounds for certain legal constructs relative to SPINdle. These last two papers inform about 
the domain in a theoretical exploration that is useful as a guide, especially the listing of declarative 
languages with usable solvers, and the value of tools to aid the coding of legal logic. 
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3.2.2 Research gaps 

The trend visible is towards declarative and domain specific approaches, some developed with 
meta-programming languages like Coq. We see an opportunity to develop the user-centric front-
end generating declarative code that Agrawal mentions, while recognising the potential of Ergo 
which appears to combine a number of threads (functional, declarative, formal verification). When 
compared against Solidity; 1) languages like Vyper don’t have obvious advantages, 2) functional 
languages like Idris could improve code quality but require higher skill levels from programmers, 
3) pretesting code is likely to improve code quality, 4,5) DSL and declarative languages promise 
further improvements over the advantages of functional languages.  

Note, this subjective evaluation is used to identify promising approaches to the creation, testing 
and deployment of smart contracts that we use later to design a simulator with improved utility 
over Solidity. It is not used to verify the hypothesis.  

TABLE 2 – DIFFERENT PROGRAMMING LANGUAGE APPROACHES TO IMPROVING SMART CONTRACT UTILITY CONTRASTED TO SOLIDITY 

 

 

3.3 Visual Approaches 

3.3.1 Current Research 

Thinking through the challenge of simplifying human input when creating smart contracts 
immediately brings to mind graphical interfaces. These were originally seen as a way of improving 
human-computer interaction and have succeeded by becoming the dominant user interface for 
personal computers and phones. Graphical interfaces were first imagined (Bush 1945), then 
prototyped (Sutherland 1963), (Engelbart 1968), (Xerox PARC 1973), and eventually 
commercialised by the Apple, Android, Windows and other Graphical User Interface (GUI) 
operating systems. 

The primary simplifying mechanism of these systems is metaphor, a technique that uses an 
abstract graphic to represent something in the real world (HSC CoWorks 2019). This approach 
allows novice users to navigate a GUI screen as if it is a physical office, and works well where 
physical equivalents exist, but legal contracts can involve abstract ideas; for example, an 
employment contract may require the employee’s best efforts to raise the employer’s profile with 
a certain demographic. The second problem is that screen space clearly limits the complexity that 
can be represented, and techniques like zoom, scroll and decomposition mitigate this only to a 
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limited degree. Metaphor however identifies one path forward, that of exploiting something 
already understood by the user. 

Ideas for simplifying smart contract creation started to surface soon after Ethereum debuted, with 
the observation that blockchain/smart contract projects were complicated (Buelau 2017), and that 
it was not realistic for end users (lawyers, business-people, public) to write code (Marks 2018). 
Marks makes a strong case for reducing construction to simply specifying transaction logic, and 
suggests that manipulating tokens on a screen can suffice to do this. Marks introduces 
EtherScripter, the Unreal Editor (a games industry approach), and Hyperledger Composer (since 
depreciated). Another initiative was the Confideal visual smart contract editor being developed to 
simplify smart contract creation though pre-coded templates (Buelau 2017; EconoTimes 2017) but 
this website has recently been depreciated (Confideal 2019). 

EtherScripter uses Blockly, a visual programming language generating JavaScript used to teach 
students how to code, and focused on assisting with correct syntax. The Unreal Editor, allows users 
to use the Blueprints Visual Scripting system to create smart contract processes (Epic Games 2019), 
and is capable of scripting the full smart contract lifecycle for a complex contract, but is visually 
daunting given the target of untrained users. Of these, the Hyperledger Composer approach of 
using minimalist icons related via arcs was the simplest and most intuitively appealing, but clearly 
lacking as it has been also depreciated (Hyperledger Composer 2019). The approach to visual smart 
contract creation used by its successor, ‘Hyperledger Framework’ is not visible (Hyperledger 2019). 

Kowalski is investigating what he describes as a logic based production system language that unifies 
both forward and backward inference methods into a single framework (Kowalski 2019). While this 
work envisages coding in a language that looks declarative1, its novel ideas surface in the testing 
area. The web site shows the results of executing an LPS program implemented in SWI Prolog2 and 
running on SWISH3 that displays:  

 “a Gantt chart showing a timeline of facts updated by external events and actions performed by 
   the system” (Kowalski 2019). 
 

A different graphic shows a graph visualising states and state transitions. Visualisations at smart 
contract creation are beyond the scope of this study but this informs future work (section 8.4) as 
visualising is a way to build understanding and confidence in the contract just created. Further, 
because the instantiation step has been completed, the unambiguous executable code produced 
can be more easily manipulated to display the contract one aspect at a time, as compared to 
visualisation during contract creation.  

Another recent approach is to digitalise current paper format legal documents. This can be done 
with mark-up and results in a template with variables that have to be instantiated just as paper has 
to be filled in by hand (OpenLaw 2019). OpenLaw is an initiative by law professor Aaron Wright and 
others dating from 2017; and is a confirmation that some in the legal profession are comfortable 
retaining the traditional sequential text format of legal contracts. This approach is built on top of 
Ethereum, consists of a core written in Scala, and autogenerates JavaScript from instantiated 

 
1 LPS is framed as a logic based production system language that aims to close the gap between logical and 
imperative computer languages. 
2 SWI-Prolog is a versatile implementation of the Prolog language available free at https://www.swi-prolog.org/ 
3 SWISH -SWI-Prolog for SHaring is a web front-end for Prolog. https://swish.swi-prolog.org/ 
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OpenLaw Markup Language used to render the contract on screen. It allows free form contracts 
built from modules. 

3.3.2 Research Gaps 

Of the visual approaches investigated, the OpenLaw approach appears the most practical, while 
earlier metaphor based approaches appear to have stumbled. That traditional sequential text is 
preferred in this instance invites an analysis of the benefits compared to other approaches. 
OpenLaw however target JavaScript, providing a research opportunity to investigate a pure 
declarative language as the target. 

TABLE 3 – VISUAL APPROACHES TO IMPROVING SMART CONTRACT UTILITY CONTRASTED TO ETHEREUM'S SOLIDITY 

 

 

 

3.4 Auto-generation Approaches 

3.4.1 Current Research 

From our experience auto-generation approaches can be partitioned into 1) translation of legal 
logic from the original paper legal contract, and 2) instantiating code templates. Translation of the 
original legal text is clearly more demanding than instantiation, but the cost invites an analysis of 
the economics as it is common practise for traditional Standard Form Legal Contracts (SFLC) to be 
developed and issued by a specialised central authority (JCT 2019).  

Attempting to translate documents written for a specific audience and industry may encounter 
difficulties due to the varying reasons particular sentences and words are included. These range 
from stating precedence, to emphasis, defining terms, and elaborating contract ‘performance’. 
Sometimes wording important to understanding the overall purpose of the contract is missing, 
implied by the cultural setting; while other text can be ambiguous, causing disputes. All these 
factors make machine translation from the original legal contract difficult, especially when 
compared to the low unit costs achievable by repeated reuse of manually translated templates. 

Choudhury et. al. investigate the auto-generation of smart contracts for Ethereum using ontologies 
and semantic rules (Choudhury 2018). This research uses Web Ontology Language (OWL) and 
Semantic Web Rule Language (SWRL), so can be seen as building on Semantic Web inspired 
initiatives (W3C 2019; Antoniou 2012). Once an ontology for the domain and rules are in-place, 
relevant text can be parsed for meaning. This step generates a JSON file which is then used to 
instantiate an Ethereum smart contract template. A proof-of-concept is achieved by translating 
eligibility criteria for clinical trials and car rentals. While promising, the method as described 
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requires an expert to generate a smart contract template, ontology and rules for every use case. 
Over a longer timescale, reuse is an objective; however, the authors envision using state-of-the-
art natural language processing techniques to generate the ontology and rules, so this approach 
has not yet been fully realised. As it currently stands, this approach requires considerable custom 
effort by contract type to achieve translation from the original legalese. While this approach is not 
yet practical, it does illuminate a pathway towards tools that translate from paper contracts. 

An augmenting approach is the combination of hand coded rules enhancing the performance of 
machine learning (Curtotti 2010) in the classification of components of text. 

3.4.2 Research Gaps 

The auto-generation approach from paper legal contracts discussed above is not yet practical and 
also beyond the scope of this study, however auto-generation of code at instantiation of   
templates seems both practical and promising (see Table 4). 

3.5 Formal Verification Approaches 

3.5.1 Current Research 

Formal Verification is defined as ‘proof using formal mathematical methods that a program 
behaves consistently with its specification’ (derived from Berztiss 1988). Formal verification holds 
the promise of not only improving smart contract reliability but actually proving the absence of 
exploitable flaws, unfortunately at a prohibitive cost. This promise means this technique cannot be 
ignored. That said, all formal verification approaches surfaced by this study, while having potential 
to improve the reliability problem, suffer by magnifying the usability problem. 

As discussed under section 3.2, the cost of formal verification with Idris is much reduced because 
formal proofs can be attempted within the actual programming language, however it is likely that 
Idris improves reliability at the expense of usability, given its conceptually difficult nature. Another 
approach is with Scilla or Smart Contract Intermediate-Level LAnguage (scilla-doc 2019), an 
intermediate level language being developed within the Coq Proof assistant (Inria 2019). Scilla is 
designed to be a target for Solidity with the intention of a more rigorous automata-based model 
of execution that can be proven via Coq. As for Idris, this approach ignores the fact that most users 
have little prior experience with programming. 

A paper by Zheng reports on the development and verification of a novel formal symbolic process 
virtual machine (FSPVM-E) for verifying the reliability and security of Ethereum smart contracts, 
completely in the Coq proof assistant (Yang and Lei 2018). This virtual machine simultaneously 
executes Ethereum smart contracts to verify their reliability and security properties at the time of 
execution, and so appears to address reliability issues, but not usability or cost issues. An advantage 
of Zheng’s approach is that it informs a way to achieve on screen formal verification at contract 
creation similar to Rodin (Event-B.org 2018).  

Other initiatives involve proving Ethereum smart contract bytecode in Isabelle/HOL (Amani 2018), 
and formal verification for ASP programs (Aguado 2015; Harrison 2015). 

3.5.2 Research Gaps 

Formal verification of code is a complex topic outside the scope of this study, recognised as being 
difficult and expensive for procedural languages, but holding the promise of proving the absence 
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of exploitable flaws and bugs in smart contracts. We believe however that declarative languages 
with their formal mathematical foundations and modelling abilities are likely to have lower formal 
verification costs, making further investigation worthwhile (section 8.4).  

3.6 Conclusion 

This review has identified significant research activity in the area of using domain specific and 
declarative languages for smart contracts, however much of the activity focuses on designing a 
language rather than testing the suitability of an existing language. Two theoretical papers 
investigate existing declarative languages and investigate possible advantages, however no 
evidence of an actual implementation using an existing declarative language has surfaced, opening 
a research opportunity. Table 4 summarises and highlights current research approaches that 
improve the utility of smart contracts for the ultimate end-user.  

TABLE 4 – ALL ALTERNATIVE APPROACHES TO IMPROVING SMART CONTRACT UTILITY CONTRASTED TO ETHEREUM'S SOLIDITY 

 

 
 

The outstanding approach for improving smart contract utility is approach 7 which auto-generates 
JavaScript smart contract code from a status-quo user interface. This approach provides the clear 
improvement to smart contract utility over Solidity that we are seek for the design of our simulator. 
Improved utility for lawyers, business-people and the general public is gained from being able to 
create smart contracts at a much lower cost because programmers are not needed.  

In contrast to the auto-generated JavaScript used by approach 7, we choose to auto-generate an 
existing pure declarative language (ASP) to encode legal logic, in line with our hypothesis. We also 
note that Table 4 indicates some advantages for DSL and declarative language approaches when 
contrasted to Solidity. The combination of approach 7 with the auto-generation of an existing pure 
declarative language is to our knowledge, unique. 
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In summary; 1) we identify an approach to smart contract creation, testing and ongoing life-cycle 
that clearly has greater utility to the ultimate end-user than the Solidity approach, 2) we implement 
this approach as an experimental simulator within the timeframe allowed this project, 3) we use 
this simulator to experiment with ways of implementing declarative smart contracts. The 
hypothesis we investigate and verify is: 

“For the subset of legal documents amenable to implementation as smart contracts, coding with a 
declarative language is possible and facilitates achieving improved utility for those smart contracts.” 

To verify this hypothesis we seek: 1) to demonstrate that a legal document can be implemented 
with declarative code, and 2) evidence that using declarative code facilitates the implementation 
of a smart contract approach with improved utility over the Solidity approach. The evidence sought 
ranges from easier auto-encoding and code manipulation to easier testing. 
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 Method of Investigation 

Our methodology verifies the hypothesis with a proof-of-concept following an experimental phase 
that investigated how best to implement smart contracts with a pure declarative language. This 
experimental phase was undertaken on a block chain simulator built earlier as part of the 
experimental setup. The simulator reproduces a code generating user interface identified in the 
literature review that dramatically improves the utility of smart contracts for the ultimate end-
users because it eliminates the need for programmers. As implementation requires construction 
of a code auto-generation mechanism, this construction can serve as a point of comparison with 
Solidity. Other points of comparison are ease of testing and ease with which smart contract code 
can be programmatically read and manipulated after creation, an important feature required when 
recording smart contract state changes as subsequent blockchain transactions.  

The proof-of-concept seeks to verify the two unproven concepts embedded in the hypothesis;         
1) that it is possible to encode smart contracts with an existing pure declarative language (ASP),     
2) that using a declarative language facilitates delivering improved utility to the end-user relative 
to Ethereum’s current approach (Solidity).  

Our investigation involves 3 steps: 1) identify approaches from research that dramatically improve 
the utility of smart contracts for the ultimate end-user over Solidity, 2) use this information to 
design and implement an experimental blockchain simulator with improved smart contract utility, 
allowing investigation of how best to implement smart contracts with a pure declarative language, 
3) identify and demonstrate the advantages of using a pure declarative language to code smart 
contracts, by converting a suitable legal document to a smart contract using this simulator. Step 2 
necessarily involves iterative prototyping as a technique for overcoming problems and refining 
ideas, and provides the freedom to experiment with any part of the design in order to address 
hurdles, a technique used in user interface research (Bäumer, et al. 1996). 

It is intended that evidence surfaced from step 3 verifies the hypothesis stated in section 1.2 and 
repeated in section 3.6. Demonstration of a legal document implemented as a declarative smart 
contract via a suite of test cases (see Appendix C) serves as proof-of-concept for the first unproven 
concept in the hypothesis. The second unproven concept in the hypothesis is investigated by 
comparison of our ASP implementation with the likely procedural language implementation. 
Finally, some extensions to more complex legal contract types are investigated in-order to identify 
the factors that limit applicability. Legal contracts that cannot be, or are not economic to 
implement, define boundaries. 
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 Design  

5.1 Introduction 

The areas holding promise for improving the utility of smart contracts emerging from the literature  
are; 1) digitizing current legal documents with mark-up, 2) declarative and domain specific 
languages, 3) visualisation of testing and, 4) formal verification. In this study we use 1) to 
investigate 2) by creating a smart contract on a purpose built simulator from an example Australian 
legal contract (‘Will and Testament’) available online (LawDepot 2019). A ‘Will’ was chosen because 
it uses deductive logic, is not too complex and involves a human-in-the-loop (executor). 

 
Figure 1 - Opening clauses of the ‘Will and Testament’ example used for illustration (full listing in Appendix B) 

This ‘Will and Testament’ divides the whole estate according specified percentages, but disqualifies 
on early death or contest, and has a wipeout (all beneficiaries are dead or disqualified) clause that 
distributes to a different group of people. We believe the complexity of logic is adequate to serve 
as an example and demonstrate proof-of-concept. Elaborations like bequeathing different assets 
to different beneficiaries (e.g. jewellery distributed to females) give no advantage in this instance. 

We use a purpose built standalone simulator because the Ethereum test environments (Kovan, 
Ropsten, Rinkeby) would require inclusion of a declarative language grounder and solver to the 
underlying Ethereum Virtual Machine.  
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5.2 User Scenario 

For orientation it is useful to envisage an ideal use case which can then serve as a benchmark for 
current research and a target for any envisioned system. Consider a situation a few years into the 
future where John decides to write a Will and Testament. John’s university friend, now a lawyer, 
has previously discussed the revolution occurring in legal services around smart contracts. John 
rings him and agrees to try the new method. John downloads the app (LegalAgreements) from a 
law society website and sets up a contract writing session as session owner and testator. This 
involves sending a session link to beneficiaries and other members of his family, the chosen 
executor (lawyer friend) and witnesses. This session link functions differently depending on the 
role of the recipient. Beneficiaries and other family members simply authorise access to their wallet 
and PII by physically attaching their hardware wallets (section 2.6). 

Roles such as the executor and witnesses attend an on-line session that allows them to interact 
with voice, text and video communication via a Discord-like interface (Discord Inc. 2019) (section 
8.4), while providing a common real-time view of the contract being written. John works through 
the form allocating roles and selecting assets via touch from information retrieved from wallets 
and blockchain hosted shared ledgers. Recently converted shared ledgers such as the NSW Torrens 
Title Register (NSW LRS 2019) and Motor Vehicle Registry (NSW RMS 2019) greatly enhanced the 
LegalAgreements app by supplying the full description of these assets without data entry. John 
adds valuable jewellery and furniture manually, before specifying the percentage distribution to 
each beneficiary. Finally, after a brief discussion, the witnesses agree to sign the ‘Will and 
Testament’ with their private keys. The computer code generated is then packaged and deployed 
to a blockchain where it sits waiting for events that trigger its actions until it is either fully executed, 
or cancelled by John. The entire session has spanned about 10 minutes. 

The following week, John decides that he would like a hardcopy of the Will which the system 
generates by reverse engineering the smart contract declarative code, discovering instantiations 
by comparing code against templates, and using these instantiations to populate the text template. 

5.3 Improving Utility 

Standard Form Legal Contracts (SFLCs) consist of a template created and published by some 
recognised authority (JCT 2019), with the actual contract created by filling out details in ink 
(instantiation). This two-step process can be applied to electronic contracts, and as most people 
have seen paper SFLCs and been challenged by them, this familiarity can be exploited. 

Digitising a SFLC opens up automated assistance that can further simplify use and display; for 
example, many forms leave 2-3 lines for address whereas an electronic version would indicate this 
with one special word at the instantiation point, reducing the length of the document and its visual 
complexity. These special words could embed tab stops, allowing users to tab from instantiation 
point to instantiation point, jumping the text in between and again reducing visual complexity. 

It is possible to use this digital SFLC as a status-quo user interface to generate smart contract code. 
To understand how, we take inspiration from Ricardian Contracts (section 2.7), and propose that a 
pair of templates are now created by the central authority; 1) an electronic equivalent of the paper 
standard form, and 2) its legal logic as computer code, as shown in Figure 2.  
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Figure 2 - Traditional Approach vs Proposed Approach to writing Legal Contracts 

These two templates are output from a manual first translation step. A second translation step 
(instantiation) is required when the smart contract is created, and we propose that a smart 
contract editor be constructed to aid this. Our insight is that information provided by users when 
instantiating the digital SFLC template can also instantiate computer code templates. Figure 2 
shows the traditional process for writing legal contracts on the left side, and the proposed 
approach on the right side. The proposed approach uses both text and code versions of the 
contract as pioneered by the Ricardian Contract, but exploits instantiation of the text template to 
instantiate the code template.  

Another simplification can be gained from storing PII in wallets (section 2.6), so once a person is 
identified, their address is also known and instantiated automatically. This technique and a similar 
mechanism that retrieves data from DSLs could reduce instantiations by more than half, with most 
instantiations now simply a screen tap or mouse click, rather than text input. These simple 
examples belie the potential for other simplifications and a dynamic help feature (Agarwal 2016). 

A further significant but possibly overlooked advantage is that traditional paper format handles 
contracts of arbitrary complexity. Using sequential text to express complex ideas appears culturally 
embedded (e.g. doctoral dissertations, complex contracts, conference papers etc.), is hard to 
duplicate with other approaches, and not a feature of most other smart contract research.  

Translating a SFLC to an electronic equivalent is straight forward; at minimum simply adding mark-
up to existing text at instantiation points. This study requires only a small subset of available mark-
ups (presentation, processing, internal referencing), however there is great scope for more 
sophisticated mark-ups as mark-up capabilities are extended. This consistent trend started with 
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the first mark-up language (Goldfarb 1992), the first hypertext mark-up language (Berners-Lee 
1989), and increasingly more powerful constructs like the powerful referencing construct XLink 
(W3C. 2010), OWL (Web Ontology Language), SWRL (Semantic Web Rule Language) and RDF 
(Resource Description Framework), all Semantic Web initiatives (Arroyo, et al. 2004).  

After reviewing Chouldhury’s proposal to auto-generate smart contracts (Choudhury 2018) we 
recognise that a mark-up approach using Semantic Web technologies is eventually likely to yield a 
result where legal documents embed machine solvable logic. The OpenLaw approach allowing 
construction of free form contracts with mark-up is also informative (OpenLaw 2019).  

In contrast to these last two proposals, there is a benefit to using a central authority to publish 
smart contract templates because it matches current practise in some segments; for example, JCT 
is a collaboration of organisations in the UK construction industry that produce standard contract 
forms (JCT 2019); and is practical because initial costs can be spread over repeated template usage 
over time, greatly reducing cost per contract thus making smart contracts much more useful to the 
end-user. It is envisioned these templates reside in a blockchain hosted DSL and served on request.  

5.4 Translation to Executable Code 

A typical legal contract such as a ‘Will and Testament’ (see Figure 1) contains wording with a variety 
of purposes, the most important for the purpose of automation are clauses defining ‘performance’ 
(Australian Contract Law 2010); that is, the actions agreed in exchange for consideration (section 
2.2). The purpose of other text ranges from emphasis, to listing precedence, and defining terms. 
Sometimes wording important to understanding the overall purpose of the contract is missing, 
implied by the cultural setting; while other text can be ambiguous, often the cause of legal disputes, 
complexities that make reliable machine translation of contracts difficult (Choudhury 2018).  

Using templates manually translated by some central authority (JCT 2019) avoids this difficult 
machine translation, however the text template and accompanying computer code still have to be 
instantiated. We aim to auto-generate this code as no programming language is likely to be simple 
enough for untrained users due to a tension between simplicity and expressive power (Kuhn 2014). 
Instead the semantic gap has to be bridged by other techniques like decomposition and 
simplification. We note in section 5.3 that use of a familiar SFLC format simplifies our interface, 
and also that use of a declarative language simplifies auto-generation of code. Splitting translation 
into two steps also simplifies, as only instantiations are now required at contract creation. Further, 
it is possible to group declarative code into three types; facts, logic program and events, and we 
believe it is possible to code so that only the auto-generation of facts is required at smart contract 
creation. Further simplification can be achieved by using Smart Instantiation Editors (SIE) and meta-
templates. SIEs understand what type of data is required at an instantiation point and where to 
source it, greatly simplifying the user experience, while meta-templates (instantiated for type 
before use) can simplify the number of templates required (section 6.3.4). 

On reflection, our underlying approach appears to reframe the creation of smart contracts as a 
translation from traditional legal contracts to computer code, seeking ways to simplify each step. 
Using a declarative language simplifies the computer code required, simplifying auto-generation, 
which is further simplified by splitting translation into two steps, and splitting declarative code into 
facts, logic and events; and as a result only facts need be auto-generated at smart contract 
creation, which is simplified further by using meta-templates.  
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5.5 Designing a Simulator  

5.5.1 Introduction 

The objective of a simulator is to provide a platform that allows investigation of the hypothesis. 

5.5.2 Assumptions 

As this study investigates future technology, it is reasonable to make the simplifying assumptions. 
These are; 1) Personally Identifiable Information (PII) data is available from wallets, 2) public shared 
ledgers like the Torrens Title register (NSW LRS 2019) are implemented as blockchain distributed 
shared ledgers (DSLs) with owners permissioned for read access.  

5.5.3 Architecture 

The proposed process for writing a smart contract is: 
 users access published templates for the type of legal contract required (see Figure 3) 

 users are then presented with that legal contract’s template in familiar format on screen 

 the system aids users to fill out this document in a fluid intuitive way by exploiting available 
information like PII data from wallets and asset information from DSLs 

 this data instantiates both text and code templates via paired instantiation place holders 

This approach allows splitting translation of legal logic into two steps; step 1 translates the legal 
logic of the contract type, step 2 translates the details of the actual contract, essentially 
instantiation. These steps are identical to the traditional process.  

Figure 3 illustrates how users access published templates by supplying a contract key and version 
via a request to the smart contract template DSL. These templates are the output of translation 
step 1. Translation step 2 (instantiation) is performed by users with a ‘Smart Contract Editor’ 
(hereafter SCE), shown in Figure 3 as extracting PII and other data from wallets and shared ledgers 
permissioned by the contract writing session to ease data collection. This instantiation step 
concurrently generates the smart contract in text and code, with code denoted in Figure 3 as facts. 
The other component of smart contract code, denoted as a logic program is copied as is from the 
supplied code template. Logic is invariant for all contracts of a certain type, and is coded, published 
and maintained by a central authority. 
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Figure 3 - High level view showing data sources and flows for smart contract creation 

The published templates are supplied in a structure consisting of two groups; templates for text 
and templates for code. Figure 4 shows how the SCE uses supplied text templates to construct an 
digital equivalent of the paper SFLC on screen. This digital equivalent aids users in its instantiation, 
and each instantiation automatically generates code (facts) from supplied code templates. 

 
Figure 4 - How users instantiate declarative code 

Splitting smart contract declarative code into facts and logic program has advantages. Translation 
step 1 that produces the logic program only has to be performed once when the contract type is 
initially created and published, mirroring the current practise of publishing SFLC templates. This 
makes centralisation of this difficult and expensive step practical, leaving only the much simpler 
step 2, or instantiation step at contract creation time.  
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5.5.4 Smart Contract Lifecycle 

Legal contracts have lifecycles punctuated by events that drive activities (‘performance’). In an 
analogous way, a smart contract must be able to sense external changes that affect its state and 
trigger ‘performance’ as specified. Our approach achieves this with events, declarative code that 
communicates external events to a smart contract, added as a transaction to the blockchain at a 
subsequent date (see Figure 5). Events are simply facts that occur after smart contract creation. 

Because smart contracts cannot be changed once deployed to a blockchain, the only way state can 
be changed is via new transactions. Our design requires that the original smart contract and all 
subsequent transactions related to that smart contract be aggregated before execution. This is 
possible because of three features of our declarative language; 1) elaboration tolerance (McCarthy 
1988), 2) ‘Negation as Failure’ (NAF) which allows code to function without atoms that are only 
created on detection of a specific pattern, 3) the way we model objects and situations one-to-one 
with atoms, allowing our declarative code to be split into three parts. 

 
Figure 5 – Lifecycle of the ‘Will and Testament’ smart contract 

5.5.5 Differences to Ethereum Smart Contracts 

There are a number of differences between Ethereum and the approach described in this paper. 
Firstly we propose changing the transaction content deployed to the blockchain from bytecode to  
declarative code, adding a declarative code solver to the Ethereum Virtual Machine. Secondly, the 
wallet concept is modified to hold detailed information about the wallet owner (see 2.6 Wallets). 
Thirdly, there is transparent access to blockchain shared ledgers for owners of those assets, a 
feature implemented in some emerging blockchains, but requiring explicit mention for this study. 
Finally, this study proposes ‘Human-In-The-Loop’ processes, because many legal contracts require 
human intervention at some point; for example, “Will and Testament” requires an executor. These 
changes broaden the applicability of smart contracts relative to those built into Ethereum. 
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 Implementation 

6.1 Constructing the Simulator 

6.1.1 Development Platform 

This study constructs, then uses a blockchain simulator with a smart contract editor (hereafter 
simulator) to explore and test ideas for improving the usability and reliability of smart contracts. 
The simulator then serves as a proof-of-concept as we demonstrate how to take a legal contract 
from paper format, though each translation step to automated execution of a full contract life cycle 
via test cases. Screens and process designs around creation and testing of smart contracts are close 
to a possible live implementation, while blockchain features are not discussed and are no longer 
seen as relevant to the study objective. 

The simulator development platform choice was driven by the short time frame allowed this study 
which mandated use of a familiar toolset, and the nature of this user interface which allows 
investigation and demonstration in a standalone environment. The simulator is constructed in 64-
bit Python v3.6.8 using the PyQt5 v5.9.2 GUI library on a Dell XPS-15 (Intel i7-6700HQ, 16GB RAM, 
Windows 10 64-bit), using the Spyder IDE v3.3.3. Software used includes HTML as the mark-up 
language (restricted by PyQt5 (Qt 2017)), and ASP as the declarative language, using Potassco’s 
clingo version 4.5.4 (64-bit). 

6.1.2 Answer Set Programming (ASP)  

Answer Set Programming (ASP) is a form of declarative programming able to encode knowledge 
and oriented toward (primarily NP-Hard) search and optimization problems (Lifschitz 2008). 

ASP has emerged since 1999 from a number of lines of research, including logic programming 
(Prolog), knowledge representation and constraint satisfaction (Lifschitz 2008). It combines an 
expressive language, a model-based problem specification methodology, and efficient solving 
tools. This study uses ASP-Core-2 standard language syntax (Calimeri 2015). 

Brewka et.al. note that close connection to nonmonotonic logics provides ASP with the power to 
model default negation, deal with incomplete information, encode domain and problem-specific 
knowledge, defaults, and preferences in an intuitive and natural way (Brewka 2011). ASP also has 
the important attribute of ‘elaboration tolerance’ (McCarthy 1988), defined as “the ability of a 
computer program’s representation of a problem to accept changes in problem specifications 
without need to rewrite an entire program” (Lierler 2017). 

Processing ASP typically requires two steps; 1) grounding 2) solving. Grounding involves replacing 
variables with instances, converting a predicate program (1st order logic) into an equivalent 
propositional program. Solving involves using methods from satisfiability solving (SAT), Fixed Point 
Mathematics, and Satisfiability Modulo Theories (SMT) to solve the propositional program 
(Lifschitz 2008). Solvers return Answer Sets that represent solutions.  

The language can be summarised as consisting of three types of clauses; facts, rules and 
constraints. Facts create the solution space, rules encode the general problem and generate 
solutions, and constraints filter out unwanted solutions leaving only the answer. 
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Examples: 
Facts: 

team(1). means team 1 exists, where ID “1” denotes team 1 
 

Rules: 
pair(T1,T2) :- team(T1),team(T2),T1<T2. if T1 = {1,2,3} and T2 = {2,4,6}  then  
  pair(T1,T2) = { (1,2),(1,4),(1,6),(2,4),(2,6),(3,4),(3,6) } 

 

Constraints: 
:- pair(T1,T2),T1<2. delete answers where T1 has a value less than 2. This removes 
  (1,2), (1,4), (1,6). Answer is { (2,4), (2,6), (3,4), (3,6) } 

 
 

where  “:-” means IF,  “;” means OR (not shown),  “,” means AND 

A simplified language syntax is: 
Term = either a  constant  string starting with lowercase 
      | “quoted string” 
      | integer 
   | variable string starting with upper case 
   | arithmetic term −(t) or (t ⋄ u) where ⋄ ∈ { +, −, ∗, / } 
   | functional term f ( t1, ..., tn ) 
    

Atom = a predicate with arity n that has form p( t1, ..., tn )  
 

Literal = an Atom  or its negation 
 

Clause= a finite set of Atoms an of form a1; …; aj  :- a1, ..., am, not a1, ..., not an. 
    with two parts and three types Head exists if Body evaluates to true 
 

  Facts:   Head 
  Rules:   Head :- Body 
  Constraints:   :- Body 
 

ASP Program = a finite set of Clauses 
  

ASP also allows two forms of negation: 
1. Weak negation not a true if a = false or doesn’t exist (assumed false). 

2. Strong negation   -a true if a = false and vice versa. 

 Note: Weak negation is also called ‘negation as failure’ (NAF).  
 

Aggregation can be achieved with aggregate functions #sum and #count, while many of the other 
features available are not listed because they are not used by this study.  

6.1.3 Hypertext Mark-up Language (HTML)         

The mark-up language used for this study is dictated by the GUI tool used (section 6.1.1). Only a 
subset of the mark-up functionality provided by HTML is used (presentation and description), with 
added extensions embedding attributes with each instantiation placeholder (IPH) and providing 
more control over display scrolling, and internal referencing. The attribute extensions provide 
variable identifier, type, action, and cardinality information that specifies how routines should 
process each IPH. 
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6.2 Description of the Simulator 

Figure 6 is a screen shot of our simulator’s SCE; showing the legal document (left) and tools (right).  

 

Figure 6 - Simulator's smart contract editor 
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The simulator’s main component is a smart contract editor (Figure 6) split between legal contracts 
displayed in a familiar format on the left side, and tools that are used to auto-generate, check and 
test declarative code on the right side. This screen represents the primary mechanism by which 
specific legal contracts are translated into computer code. 

6.2.1 Left side of the Smart Contract Editor 

Figure 7 shows our example legal contract displayed from HTML. This contract is navigated by tab 
key which moves the highlight from instantiation place holder (IPH) to IPH. The embedded IPH 
contains attributes specifying which Smart Instantiation Editor (SIE) to use to capture input.  

 

Figure 7 - Left side of the Smart Contract Editor displaying the start of ‘Will and Testament’ from HTML 

The entire instantiated ‘Will and Testament’ as displayed by our SCE is listed in Appendix C. 

6.2.2 Right side of the Smart Contract Editor 

The right side of the smart contract editor is comprised of four components; 1) a smart 
instantiation editor (SIE) which changes depending which variable is being instantiated, 2) a 
summary tool which groups information by entity, 3) a display that shows auto-generated code, 
and accepts input of events, allowing the system to run test cases, 4) a display showing results. 

Component 1 operates by reacting to the type of the highlighted identifier ‘testator’ (Figure 7). 
Testator is of type ‘entity’ specifying that the ‘entity’ SIE be used as shown in  Figure 8. 

 

 Figure 8 – Component 1 (top right side) - Smart Instantiation Editor for type ‘entity’ 

All entities known to the session are displayed here, retrieved as PII from wallets invited to 
participate in the contract writing session. The entry selected by mouse click or touch is 
instantiated as testator. Note, if no wallet exists, one can be created in session by typing in name, 
address, etc. 



Chapter 6  Implementation 1.1  

Kevin Purnell  Page 28 of 72 

Component 2 summarises instantiated data by group, and is displaying testator. 

 
 Figure 9 - Component 2 - Entity Summary Tool 

 

Component 3 shows declarative code generated automatically by the instantiation step in real-
time. This component also allows manual entry of events, enabling code testing on screen. 
 

 
 Figure 10 – Component 3 - Auto-generated Declarative Code Display 

 

Component 4 displays the results (answer sets) of executing declarative code generated to this 
point. Three code components are aggregated at this step, automatically instantiated facts as 
shown in component 3, logic program (listed in Appendix C), and events manually input into 
component 3. A complete worked example is given in Appendix C. 

 
 Figure 11 - Component 4 (bottom right side) – Testing Tool 

6.3 Description of Templates 

The left side and right side of the smart contract editor are driven by templates served from a smart 
contract template DSL (Figure 12) in response to a request providing a contract key and version. 
This DSL is permissioned and managed by an authority whose role is to devise and publish error 
free templates (section 5.5.2). The triple received from this shared ledger is:     

 (Key = ContractID + Version,  Text Template Group,  Code Template Group). 
 

 
Figure 12 -Templates received from the ‘smart contract template’ shared ledger 

6.3.1 Text Template Group 

This group consists of the Contract template, and keyed Option clause templates (any number).  

Contract Template 

This template contains the marked-up text displayed on the left side of the smart contract editor 
as a legal contract. This text has instantiation placeholders (IPH) of form ____identifier____, some 
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of which stand alone, while others have embedded attributes (active IPHs). Active IPHs contain a 
Uniform Resource Locator (URL) (highlighted below), which contains a domain name customised 
to hold variable identifiers and attributes. The first active IPH in ‘Will and Testament’ (Figure 7) is: 
<center><b>LAST WILL AND TESTAMENT OF <a name="next" href="http://_u_.iph_testator.es1">____testator____</a> 
 

Key components of an active IPH are: 
1. name="next"  marks a scroll-to position 

2. _u_.iph_testator.es1  domain name customised for this study 

3. ____testator____  displayed text and instantiation variable identifier 
 

When an active IPH gains focus, a customised attribute mark-up language (see below) located in 
the domain name is read to determine how to treat this IPH and its instantiation variable. 

Option Templates 

Options are features allowing a legal contract to have different wording depending on 
requirements, and appear on screen as “[  ]” sequences with descriptive text following. A template 
set can have any number of indexed option clauses. The second IPH group in Figure 7 requests a 
choice between two options, coded in HTML as: 
href="http://___.iph_option01.or_">[_]< I have no live children. 
href="http://___.iph_option02.or_">[_]< I have living children. 
 

Selecting the first rewrites this text with the text snippet at index 01, which does not contain 
another IPH; while selecting the second rewrites with the text snippet at index 02, which contains 
an active IPH that requests the names of all children to be identified. 

Instantiation Placeholders (IPH) 

Having IPHs with form ____identifier____, allows both active and non-active IPHs to be 
instantiated, often in the same step; for example, the top of Figure 7 has one active IPH and two 
non-active IPHs. Instantiation of ____testator____ results in all IPH containing “testator” being 
instantiated, achieved by exploiting the fact that ‘entities’ have attributes as follows: 

 name John Wallace 
 sex male 
 DOB 20088     days since 01Jan1900 
 address Lot 49, Cowpasture Road, Mulgoa, 2745, NSW 
 wallet h6sf250dhv3y78gasmla   20-digit wallet hash address 
 balance $1,000,000   balance of entity’s wallet 
 

This allows the following IPHs to be auto-generated and instantiated: 
 

____testatorname____ note: ____testator____ and ____testatorname____ 
____testatorsex____       mean the same and both instantiate correctly 
____testatorDOB____ 
____testatoraddress____ 
____testatorwallet____ 
____testatorbalance____ 

 

This method allows the use of one mouse click to instantiate a large number of fields in a contract. 

Custom Attribute Mark-up Language 

The customised domain name holds a variable identifier with attached attributes (prefix and suffix): 
       _u_. iph_testator .es1  domain name customised for this study. 
      |   |              |   | 

formatting   identifier   processing 
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formatting= _u_ 
              123 position 1 scroll after 'tab' key ('_'=none, 't'=scroll on 'tab' key) 
              position 2 text formatting  ('_'=none, ‘c’=capitalise, 'u'=all upper case) 
              position 3 scroll after process ('_'=none, 'a'=scroll after update) 
                                                     

identifier  = iph_testator 
  instantiation place holder with the identifier of the variable to be instantiated. 
 

processing= es1 
             123 position 1 type  ('o'=option, 'e'=entity, 'a'=asset, 'm'=memory, 
     'l'=list) 
              position 2 action  (‘c’=copy, 'r'=rewrite, 's'=select, '%'=associate) 
              position 3 repetition  ('_'=none, '1'=once, 'n'=repeat, 'a'=all) 
 

Figure 13 - Encoding used for attributes held within customised domain names 

Customised domain name  _u_.iph_testator.es1  specifies that testator is type ‘entity’, must be 
selected from a list once only, and formatted in upper case. This causes the ‘entity’ SIE (Figure 8) 
to display once. After selection (tap, click or entered if not in the list), the data is used to instantiate 
both HTML and ASP templates, then redisplay the HTML with instantiated fields highlighted in 
green allowing the user immediate feedback on the last action. 

An ASP Fact template will be instantiated concurrently to encode an ASP fact as follows: 
entity(testator, ”John Wallace”, 20088, ”h6sf250dhv3y78gasmla”, 1000000). 

6.3.2 Code Template Group 

Consists of three components; fact templates, logic program, and event templates. Only fact and 
event templates get instantiated, while the logic program is static for all legal contracts of type. 

Fact Templates 

The smart contract template shared ledger provides four fact templates for ‘Will and Testament’: 
entity(iph_type, iph_entityname, iph_entityDOB, iph_entitywallet, iph_entitybalance). 
asset(iph_type, iph_assetname, iph_assetdescription, iph_assetaddress). 
inherits(iph_beneficiaryname, iph_percentage). 
creation(iph_location, iph_date). 

 
 

For example; attributes specify that testator’s type is ‘entity’, so the  entity/5  ASP template is used 
to auto-generate the ASP fact (see  Figure 10) that instantiates the testator. One IPH in this 
template, iph_type, holds special meaning indicating a meta-template; that is, the template must be 
instantiated for type before becoming a usable template. This is achieved by rewriting “entity” as 
“testator” and setting iph_type to “testator” giving: 

entity(testator, iph_testatorname, iph_testatorDOB, iph_testatorwallet, iph_testatorbalance) 
 

The second instantiation replaces the now recognisable IPHs with data, generating the ASP fact: 
entity(testator, “John Wallace”, 20088, “h6sf250dhv3y78gasmla”, 1000000). 
 

Derivative IPHs (i.e. iph_testatorDOB) are also instantiated, achieved by autogenerating derivative 
IPHs then instantiating them, similar to the IPHs for HTML: 
 

iph_testatorname, iph_testatorsex, iph_testatorDOB, iph_testatoraddress, iph_testatorwallet, 
iph_testatorbalance 

Logic Program 

This is ASP code that translates the legal logic of the underlying legal contract. This translation is 
done by hand by an authorised centralised resource at contract type development, then published 
to the smart contract template DSL. This code is identical for all smart contracts of a given type. 
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executable(Testator, DOD, Wallet, Residue, ExecuteDate, Executor,Costs) :- %14 
 witnessed, 
 death(Testator, DOD),  
 execute_will(Testator, Debt, Fees, ExecuteDate, Executor), 
 Residue = Estate-Costs,  
 Costs = Debt+Fees,  
 entity(testator, Testator, _, Wallet, Estate), 
 entity(executor, Executor, _, _, _). 

Figure 14 - An example ASP clause from the ASP logic code for ‘Will and Testament’ 

Figure 14 shows one clause of many that specify contract logic for ‘Will and Testament’. This clause 
specifies that atom  executable/7  is created when all literals in the body evaluate to true, as follows: 

witnessed created if 2 witnesses have electronically signed  
death(Testator, DOD) event, notifies death of the Testator 
execute_will(Testator, Debt, Fees,  event, execute command (Executor creates) 
 ExecuteDate, Executor) 

Residue = Estate-Costs internal, calculates Residue as Estate - Costs 
Costs = Debt+Fees internal, calculates Costs as Debt + Fees 
entity(testator,Testator,_,Wallet,Estate) fact, provides the Testators details 
entity(executor, Executor, _, _, _) fact, provides the Executors details 

 

where 
witnessed :-  %1 
 entity(witness1, Witness1, _, _, _),  
 entity(witness2, Witness2, _, _, _),  
 Witness1 != Witness2.  

 

The reason why the logic program can be reused across all contracts of the same type is because 
all literals derive from either facts or events. Code behaviour varies depending on facts at creation 
and events deployed as transactions to the blockchain in the following period. 

Event Templates 

Templates in the ‘event’ group are used to record events subsequent to contract writing. When 
added to the blockchain, event transactions hold the address of the original smart contract, so 
when mined, code in the smart contract and all its associated events can be aggregated before 
execution. This mechanism allows state changes to the system over time. 

The following 3 event templates are provided for ‘Will and Testament’, and represent the limited 
number of event types that can influence distribution.  

death(iph_entityname, iph_date). 
contests(iph_entityname, iph_date). 
executewill(iph_testatorname, iph_debt, iph_fees, iph_date, iph_executorname). 

 

This simplification is achieved by use of a meta-variable identifier ‘entity’ in the IPH. While there 
may be many different parties to a ‘Will’, they are all of type ‘entity’, and so death for any one of 
them can be represented by one atom death/2. Events can be added automatically by other smart 
contracts or by an authorised person (in this example, the executor) in the same way, but both 
need information about the current state of the system. This is achieved by reading the contract 
and subsequent events; for example, if a death is to be recorded, reading the  entity/5  atoms in 
the original smart contract and  death/2  atoms in subsequent events provides the list of candidates. 

The meta-variable identifier ‘entity’ contained in a  death/2  IPH identifies which atom to inspect. 

Our design requires an executor to authorise distribution by deploying an  executewill/5  atom. 
executewill(“john wallace”, 1249, 1000, 43680, ”james stewart”). 
death(“john wallace”, 43646). 

 
4 These line numbers match clauses of the logic program listed in Appendix C.  
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The two events above in one transaction, triggers estate distribution when mined (section 6.4.3). 

6.3.3 Variable Binding 

The template designed for humans is provided in HTML, and that for the computer in ASP, with 
bindings between the two achieved via an IPH of form “____identifier____” for HTML and 
“iph_identifier” for ASP. These two forms are held together in active IPHs, for example: 
 <a name="next" href="http://_u_.iph_testator.es1">____testator____</a> 
 

The instantiation process uses these two IPHs to instantiate both HTML and ASP concurrently, with 
the following table showing variables, their type and associated IPHs for ‘Will and Testament’. 

TABLE 5 - VARIABLE TYPES WITH CORRESPONDING IPHS 

variable identifier type HTML IPH ASP IPH notes 

testator entity ____testator*____ iph_testator* substitute attribute name for * 
option99 option ____option99____ iph_option99 99 has range 01..99 
executor entity ____executor*____ iph_executor* substitute attribute name for * 
beneficiary entity ____beneficiary*____ iph_beneficiary* substitute attribute name for * 
percentage association ____percentage____ iph_percentage associate input with a set in memory 
parent entity ____parent*____ iph_parent* substitute attribute name for * 
sibling entity ____sibling*____ iph_sibling* substitute attribute name for * 
witness entity ____witness99*____ iph_witness99* 99 has range 01..02 
location text ____location____ iph_location  
today date ____today____ iph_today  

6.3.4 Smart Instantiation Editors (SIEs) 

Types are the way that functionality is introduced to the smart contract editor, with 
implementation involving code and creation of a SIE.  
The majority of input required by most legal contracts is associated with only a few types: 

 asset  complex type with attributes, with data typically sourced from DSLs  
 association  load input against elements of a set held in memory 
 entity  complex type with attributes, with data typically sourced from PII held in wallets 
 list  type specifying input from a desktop .csv file with name “identifier.csv” 
 option  clause identifier used to allow selection of alternate legal clauses 
 text   simple type string of text  
 date   simple type  days since 1/1/1900 
 

Simple types are instantiated automatically; for example, timestamping the ‘Will and Testament’:  
creation(“Sydney, Australia”, 43616). 

 

Complex types require an SIE and specialised code, but creation is simplified by exploiting variable 
type attributes to define columns, and number of records (to a limit) for row count. It is possible 
some SIEs require structures other than tables, but these have not been identified in this study. 

TABLE 6 - RELATIONSHIP BETWEEN VARIABLE TYPE AND SIE 

variable type SIE description and default data 

asset auto-generated table of assets sourced from owned assets listed in DSLs 

association auto-generated table that allows input against elements of a set stored in memory 

entity auto-generated table of entities sourced from authorised wallets 

list SIE not generally needed. If required, a table of data sourced from the desktop .csv file 

option simple rewrite system using keyed template HTML, with no SIE 
 
 

The following are examples of SIEs for each variable type: 
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SIE for Asset 

 
 

SIE for Association 

 
 

SIE for Entity 

 
Figure 15 - Examples of Smart Instantiation Editors of different types 

6.3.5 Meta-Type, Meta-Templates and Meta-Variable Identifiers  

The two ASP fact templates shown below have an IPH  iph_type  indicating a meta-template; that is, 
a template requiring instantiation for type before it can be used as a template.  

entity(iph_type, iph_entityname, iph_entityDOB, iph_entitywallet, iph_entitybalance). 
asset (iph_type, iph_assetdescription, iph_assetid, iph_assetvalue, iph_assetvaluationdate, 
   iph_assetaddress). 
 

Note that the atom name is the meta-type. When a meta-type is specified in mark-up, the system 
first instantiates the associated meta-template to provide a template; for example if the active IPH 
specifies testator is an ‘entity’, the  entity/5  meta-template is instantiated to provide the template 
for testator, as follows: 

entity(testator, iph_testatorname, iph_testatorDOB, iph_testatorwallet, iph_testatorbalance). 
 

This approach reduces coding complexity for contract creation and for recording subsequent 
events; for example, to process the event template for death, 

death(iph_entityname, iph_date) 
 

the system identifies meta-variable identifiers by detecting the pattern ‘entity’ (the name of a atom 
known to this contract) in the IPH. The system can then read all entity facts from the original 
contract, automatically producing a set of entities that can be instantiated in this IPH.  This 
approach greatly reduces complexity; for example, one meta-template replaces seven possible 
templates (testator, executor, beneficiaries, children, parents, siblings, witnesses). 
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6.4 Low Complexity – ‘Will and Testament’ Contract 

This section demonstrates application to a low complexity real-life example of an Australian legal 
contract; a ‘Will and Testament’ available online at (LawDepot 2019) 

6.4.1 Analysis 

 
Figure 16 - Analysis of the legal logic in "Will and Testament" 
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6.4.2 ASP Code for Will and Testament 

Encoding Legal Clauses 

The ASP encoding for each of the numbered legal clauses in Figure 16 is described below, and 
identified as fact, logic program or event. Note, not all legal clauses require translation. 

1. Who is testator? fact. ASP encoded from instantiating  entity/5  at contract creation: 
entity(testator, john_wallace, 20088, walletaddress, 1000000). 
 

2. Who is executor? fact. ASP encoded from instantiating  entity/5  at contract creation: 
entity(executor, james_stewart, 18218, walletaddress, 350). 
 

3. To benefit, death... logic program. ASP encoded by hand at type creation: 
executable(Testator, DOD, Wallet, Residue, ExecuteDate, Executor, Costs) :- %1 
 witnessed, 
 death(Testator, DOD),  
 execute_will(Testator, Debt, Fees, ExecuteDate, Executor), 
 Residue = Estate-Costs,  
 Costs = Debt+Fees,  
 entity(testator, Testator, _, Wallet, Estate), 
 entity(executor, Executor, _, _, _). 

 

disqualifying_death(Entity, DaysAfter) :-  %1 
 DaysAfter = Date-DOD,  
 DaysAfter < 30,  
 death(Entity, Date),  
 executable(Testator, DOD, _, _, _, _, _). 

 

qualifying_beneficiary(Entity, Wallet) :-  %1 
 entity(beneficiary, Entity, _, Wallet, _),  
 not disqualifying_death(Entity, _),  
 not contests(Entity, _). 

 

 Clause 1 tests if conditions are right to execute the Will, while 1 determines if death was 
 within 30 days of testator, and 1 determines disqualification by death or contesting. 

 

4. % to each child. ... facts, logic program and events: 
 facts. ASP encoded by instantiating entity/5 and inherits/2 at contract creation: 
 

entity(beneficiary, fred_wallace, 29041, walletaddress, 5). 
entity(beneficiary, bec_smith, 29432, walletaddress, 8). 
entity(beneficiary, sam_wallace, 29969, walletaddress, 15). 
entity(beneficiary, jim_wallace, 30376, walletaddress, 140). 
entity(beneficiary, may_fredricks, 31310, walletaddress, 24). 
inherits(fred_wallace, 10). %Fred gets 10% of the estate 
inherits(bec_smith, 20). %Bec gets 20% of the estate 
inherits(sam_wallace, 10). %Sam gets 10% of the estate 
inherits(jim_wallace, 20). %Jim gets 20% of the estate 
inherits(may_fredricks, 40). %May gets 40% of the estate 
 

 logic program. ASP encoded by hand at type creation: 
 

 Algorithm: To calculate the % of estate to pay to each qualifying beneficiary, disqualified 
 beneficiaries must be adjusted for. The adjustment ratio = sum(orig%)/sum(qual%).  

TABLE 7 - CALCULATING THE ADJUSTMENT RATIO 

beneficiary orig% qual%  new%  
fred_wallace 10    fred dies early 
bec_smith 20 20  25  
sam_wallace 10    sam dies early 
jim_wallace 20 20  25  
may_fredricks 40 40  50  
Totals 100 80 Ratio = 1.25 100  
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 This is achieved with the following code: 
 

orig_percent(Entity, Percent) :-  %2 
 entity(beneficiary, Entity, _, _, _),  
 inherits(Entity, Percent). 

 

qual_percent(Entity, Percent) :-  %2 
 entity(beneficiary, Entity, _, _, _),  
 inherits(Entity, Percent),  
 qualifying_beneficiary(Entity, _). 

 

sum(original, Sum) :-  %2 
 Sum = #sum{ Percent, Entity : orig_percent(Entity, Percent) }. 

 

sum(qualifys,Sum) :-  %2 
 Sum = #sum{ Percent, Entity : qual_percent(Entity, Percent) }. 

 

adjust(Ratio) :-  %2 
 not wipeout,  
 Ratio = (OrigSum*1000/QualSum),  
 sum(original, OrigSum),  
 sum(qualifys, QualSum). 

 

 Note: The *1000 keeps the calculation in integer space (standard ASP only deals with integers). 
 

 events. ASP encoded by instantiating of death/2 at some time after contract creation: 
 

death(fred_wallace, 43675) %death of Fred on date 
death(sam_wallace, 43675) %death of Sam on date 

 

5. If all beneficiaries ... facts, logic program and events: 
 facts. ASP encoded by instantiating  entity/5  and  inherits/2  at contract creation: 
 

entity(parent, tom_wallace, 12965, walletaddress, 200). 
entity(parent, aida_wallace, 13378, walletaddress, 200). 
entity(sibling, anne_patrick, 19378, walletaddress, 9000). 
entity(sibling, ines_brown, 20255, walletaddress, 5000). 
entity(sibling, steve_wallace, 21459, walletaddress, 6000). 

 

 logic program. ASP encoded by hand at type creation: 
 

 A situation where all specified beneficiaries have died before the 30-day limit after the 
 Testator’s death is referred to as a “wipeout”. In this instance, the Will specifies equal 
 distribution to the Testator’s surviving parents and siblings. The wipeout condition is detected 
 by the absence of the atom qualifying_beneficiary/2 in clause 1. The two lines of 
 code ensure the existence of either ‘wipeout’ or ‘-wipeout’ but not both. 
 

-wipeout :-  %1 
 qualifying_beneficiary(Entity, Wallet). 

 

wipeout :-  %1 
 not -wipeout.    

 

 Distribution on wipeout is “equal portions”, achieved with the following code: 
 

qualifies_on_wipeout(Entity, Wallet) :-  %3 
 wipeout,  
 entity(parent, Entity,_, Wallet, _),  
 not disqualifying_death(Entity, _),  
 not contests(Entity, _). 

 

qualifies_on_wipeout(Entity, Wallet) :-  %3 
 wipeout,  
 entity(sibling, Entity, _, Wallet, _),  
 not disqualifying_death(Entity, _),  
 not contests(Entity, _). 

 

wipeout_count(Count) :-  %3 
 Count = #count{ Entity, Wallet : qualifies_on_wipeout(Entity, Wallet) }. 

 

 This code creates a set of parents and siblings which qualify, counts them then distributes 
 Residue/Count to each. 
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 events. ASP encoded by instantiating of  death/2  at some time after contract creation: 
 

death(fred_wallace, 43675) %death of Fred on date 
death(bec_smith, 43675) %event, death of Bec on date 
death(sam_wallace, 43675) %event, death of Sam on date 
death(jim_wallace, 43675) %event, death of Jim on date 
death(may_fredricks, 43675) %event, death of May on date 
 

6. Any contester is ... logic program and events: 
 logic program. ASP encoded by hand at type creation: 
 

 Dealing with contesters is achieved by simply including detection of a  contests/2  atom for a 
 beneficiary when constructing the set of qualifying beneficiaries.  
 

qualifying_beneficiary(Entity, Wallet) :-  %1 
 entity(beneficiary,Entity, _, Wallet, _), 
 not disqualifying_death(Entity, _),  
 not contests(Entity, _). 
 

 events. ASP encoded by instantiating of  contests/2  at some time after contract creation: 
 

contests(sam_wallace, 43625). %Sam contests the will, so is disqualified 
 

7. date and place ... facts: 
 facts. ASP encoded by instantiating entity/5 for the two witnesses at contract creation: 
 

created(sydney, 43620). %location and date (days since 1/1/1900) 
 

8. two witnesses ... facts and logic program: 
 facts. ASP encoded by instantiating entity/5 for the two witnesses at contract creation: 
 

entity(witness1, brian_bellhaus, 22692, walletaddress, 800). 
entity(witness2, margaret_talbot, 24042, walletaddress, 16). 
 

 logic program. ASP encoded by hand at type creation: 
 

 All entities involved have to authorise visibility to the contract writing session by signing in with 
 a private key, a step with the same validation strength as a signature. This allows a mechanism 
 whereby the contract only executes if there are two different entities assigned as witnesses. 
 

witnessed() :-  %1 
 entity(witness1, Witness1, _, _, _), 
 entity(witness2, Witness2, _, _, _),  
 Witness1 != Witness2. 

 

Encoding Distribution 

Once the above logic is in place, the three encodings of the distribution atom,  transfer/5  can be 
driven. The three encodings cover the three different types of distribution; 1) normal payout to 
beneficiaries, 2) payout in case of wipeout, and 3) payout of debt and fees. 

Normal payout 
transfer(Testator, SourceWallet, InheritAmt, Beneficiary, Wallet) :- %2 
 not wipeout,  
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs), 
 qualifying_beneficiary(Beneficiary, Wallet),  
 InheritAmt = ((Residue * Percent/100) * Ratio)/1000, 
 inherits(Beneficiary, Percent), 
 adjust(Ratio). 

Wipeout payout 
transfer(Testator, SourceWallet, InheritAmt, Entity, Wallet) :- %3 
 wipeout,  
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs), 
 qualifies_on_wipeout(Entity, Wallet),  
 InheritAmt=Residue/Count,  
 wipeout_count(Count). 

Debt and Fees payout 
transfer(Testator, SourceWallet, Costs, Executor, Wallet) :- %4 
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 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs), 
 entity(executor, Executor, _, Wallet, _). 

 

The answer set produced by the above code in response to events, is a list of transfers: 
transfer(john_wallace, walletaddress, 99775, fred_wallace, walletaddress) 
transfer(john_wallace, walletaddress, 199550, bec_smith, walletaddress) 
transfer(john_wallace, walletaddress, 99775, sam_wallace, walletaddress) 
transfer(john_wallace, walletaddress, 199550, jim_wallace, walletaddress) 
transfer(john_wallace, walletaddress, 2249, james_stewart, walletaddress) 

 

These transfers are translated by an interface into instructions that can be executed by Ethereum 
to perform actual funds transfer. A further feature allows e-mails to be generated. 

message_to_human(james_stewart, john_wallace, "insert messages to the Executor here...") 
  

This atom holds the promise of sending specified clauses from the legal document to specific 
entities in response to specific events, possibly a benefit if long time periods have elapsed between 
contract creation and a triggering event. For example; on the death of the Testator the system 
could send clause 6 (Powers of My Executor) of the ‘Will and Testament’ to the Executor. A full 
code listing is provided in Appendix C – Low Complexity – ‘Will and Testament’. 

6.4.3 Test Cases 

Testing this code is greatly simplified relative to Solidity because the only consideration is the logic 
expressed. Further, the combinations of facts and events are of a manageable size because only 6 
atoms (effectively 5) are involved, so an exhaustive testing strategy is practicable. 

TABLE 8 – SAMPLE TEST CASES FOR THE "WILL AND TESTAMENT" SMART CONTRACT EXAMPLE 

Case   Description 

0 Testator writes a Will on 2Jun2019 (43616 days from 1/1/1900). No activity generated.  

1 Death of Testator recorded on 2Jul2019 (43646 days from 1/1/1900). 
No activity generated because Executor has not authorised execution of Will. 

2 Executor approves distribution on 5Aug2019. All 5 children are alive, so distribution is: 
Fred 10%, Bec 20%, Sam 10%, Jim 20%, May 40%. 
Note: Debts ($1,249) and fees ($1,000) reduce the residue to $997,751. 
  

3 Sam contests the Will which is recorded by the Executor. Consequently, Sam is cut out of the Will (clause 11), and his share 
reallocated to the other children. 

4 Children and Mother wiped out in plane crash on way to funeral 29 days after the Testator’s death, so no longer qualify as 
beneficiaries. The Residue will be shared between Parents (Tom) and Siblings (Anne, Ines, Steve). 

5 Child Fred Wallace was not on the plane, but dies in a car accident 2 days later (31 days), so still qualifies as a beneficiary 
(clause 7). 
The Will rules say Fred's Estate gets the entire Residue. 
Notes: 
43646 = 02Jul2019   death of Testator 
43675 = 31Jul2019   29 days wipeout of Mother and 4 of 5 children 
43677 = 02Aug2019  31 days death of last child 
43680 = 05Aug2019  34 days Will is executed 

 

Code is tested with test cases by entering event ASP clauses manually into SCE component 3 (see 
section 6.2.2). The event ASP clauses used in the above test cases are provided in Appendix C along 
with the answer sets obtained. Appendix C also lists a comprehensive set of test cases, derived by 
reducing an exhaustive decision table.  

Figure 17 shows components 3 and 4 on the right side of the simulator, after test case 3 events 
have been entered manually into component 3, then executed by clicking the ‘Test’ button. 
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Figure 17 - Result of test case 3 displayed by the smart contract editor 

6.4.4 Observations 

A review of the logic and performance clauses in this contract reveal all logic to be deductive and 
performance to be straightforward. The overall purpose is to distribute an estate at death. 

TABLE 9 – AUTOMATABILITY FRAMEWORK APPLIED TO A ‘WILL AND TESTAMENT’ LEGAL CONTRACT 

contract legal reasoning performance consideration automatability 
Legal Will and Testament deductive money transfer, e-ledger asset transfer, 

physical transfer, Human-in-the-Loop 
money moderate 

 
 

We note that some legal contract text is irrelevant to encoding legal logic; for example, under 
executor (see Appendix B or C), a disambiguation is provided in clause 4 explaining the term “my 
Executor” can refer to singular or plural, male or female; a distinction not made in the encoding. 

Some conditions are best coded grouped with other logic; for example, clause 6 (contester) is best 
encoded together with other code determining if a beneficiary still qualifies. While undecided and 
requiring more investigation, this issue tends to support the Ricardian approach of having both text 
and a code, rather than including declarative code as mark-up within the text document. 

6.5 Comparison with a Solidity Implementation 

We compare our ASP implementation with a probable Solidity implementation over five 
programming activities; 1) coding the smart contract type (logic program), 2) testing this smart 
contract type, 3) auto-generating the instantiation at contract creation, 3) testing the created 
smart contract, 5) programmatically interacting with the smart contract after deployment. 

6.5.1 Coding the Smart Contract Type 

Solidity 

Coding a smart contract with Ethereum requires building a number of components; 1) coding of 
the web3.js API using JavaScript specifying the RPC providers and proving access to the smart 
contract’s functions via object web3.eth.Contract, 2) coding of the application binary interface 
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(ABI), an object that contains a detailed description of smart contract functions, methods and their 
arguments, that allows them to be called in bytecode (IBM 2020), 3) code for loading instantiation 
data, 4) the smart contract in Solidity, then compiled into bytecode, 5) callback and fallback 
functions, 6) event watching code. It is estimated that more than 100 lines of Solidity would be 
required to code the ‘Will and Testament’ example used in this chapter. As this task is to code a 
contract type not the actual smart contract, some further complexity is expected from packaging 
and delivering this template code to the node where the actual smart contract is assembled.  

ASP 

Our approach using ASP also requires the web3.js API which embeds it into the Ethereum 
environment, however it now simply supplies the smart contract code held as a payload on the 
blockchain, to an ASP solver (clingo) and translates and executes actions coded in the resulting 
answer set, removing the need for the ABI. Any custom code required for executing actions 
required by a Solidity implementation will also be required by the ASP implementation. Callback 
functions and event watching code are also still required. 

The ‘Will and Testament’ was coded in 20 lines of ASP code (see Appendix C -  Logic Program). 
Program execution involves  supplying this code to an ASP solver built into Ethereum. 

ASP Advantages 

Elimination of the ABI, data upload methods and interaction functions are clear advantages to ASP: 

1. ASP does not need an ABI because contract state change is generated by adding lines of code in 
the form of transactions to the blockchain. This is possible because ASP code is order independent; 
that is, lines of code can be added in any order without affecting the computation. Further, 
requests for contract state information is achieved by running queries over the code. 

2. Instantiation with ASP is achieved by auto-generating ASP code, eliminating the need for methods 
that load instantiation data. 

3. ASP does not require the custom coding of interaction functions, interaction is achieved with ASP 
code in the form of events and queries.  

4. It is easier to read business logic from ASP, and consequently easier to programmatically read. 

5. ASP allows the program specification to be changed programmatically by loading more code as a 
transaction after deployment, a feature not available with Solidity. This feature of ASP is known as 
elaboration tolerance (McCarthy 1988) and should ease ongoing maintenance costs. 

6. Testing effort for ASP is reduced relative to a procedural language, primarily because control code 
is not tested, however a further effect is visible from the reduction in lines of code.    

7. ASP takes less lines of code and less blockchain space – Appendix A shows a Solidity program with 
its roughly equivalent ASP program at approximately a quarter the size. Further, Solidity is 
compiled into bytecode which multiples its size a number of times. It is possible that ASP uses as 
little as one tenth the space on blockchain compared to Ethereum bytecode. 

6.5.2 Testing the Smart Contract Type 

Solidity 

Because both logic and control code needs to be tested, the Solidity test suite is by definition larger 
than the ASP test suite.  

ASP 

An exhaustive test suite is given in section 6.4.3 and Appendix C. 
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ASP Advantages 

Demonstrably simpler to test (see the Comprehensive Test Case Suite in Appendix C), because 
control code does not need to be tested. A further consideration is that null cases do not need to 
be tested because the logic program template is supplied with dummy variables (instantiation 
place holders), which to not affect results because they are never resolved by the solver. 

6.5.3 Auto-generating the Instantiation at Contract Creation 

Solidity 

The approach most likely to be used is the auto-generation of data which is then uploaded to the 
smart contract via custom coded methods using some data interchange format like JSON.  

ASP 

Only ASP code in the form of a head without a body (fact) is required to be auto-generated. This 
format is very concise, approaching a minimum solution, and easy to pattern with a template.   

ASP Advantages 

ASP avoids the need to code data upload methods.  

6.5.4 Testing the created Smart Contract 

Solidity 

A Solidity implementation that achieves contract creation with untrained users by using templates 
and code auto-generation, is likely to require some testing before the smart contract is deployed. 
The best approach may be to download a tested bytecode program that implements the contract 
type, then upload data to it prior to its deployment on the blockchain. Even with this approach, 
prudence suggests some testing, a hurdle when unskilled users are used. Possible solutions have 
drawbacks; 1) formally verifying the contract type bytecode is expensive, 2) reducing the scope 
and complexity of the contract type would multiply the number of contract types required. Our 
ASP implementation does not suffer these drawbacks.     

ASP 

The exhaustive test suite (see section 6.4.3, Appendix C) shows that it is possible for comprehensive 
testing by the central authority to remove all errors in the templates used for smart contract 
creation. This enables the testing task to be modified into a simulation that shows users the 
outcomes of a range of different event scenarios, a task more focused on user understanding. 
While it may be possible to provide the same feature with a procedural language, the reality is that 
with current technologies finding and removing bugs is the necessary focus.  

ASP Advantages 

The area where ASP appears to have its greatest advantage over Solidity, because ASP makes it 
practical to fully test the smart contract type supplied as a template thus facilitating the 
achievement of a system that can be used by untrained users. Avoiding testing at this stage with 
Solidity is more difficult and likely to suffer drawbacks relative to an ASP implementation.  
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6.5.5 Programmatically interacting with the Smart Contract after Deployment 

Solidity 

Solidity requires that an ABI, and interaction functions be coded with the smart contract to allow 
smart contract functions to be called. This functionality cannot be changed once deployed. 

ASP 

ASP does not require an ABI as state changes are made by adding transactions, or interaction 
functions. Adding transactions allows state changing events to be recorded, and also allows 
changes to program specification to be loaded, a feature of ASP called elaboration tolerance 
(McCarthy 1988). Queries on the state of the smart contract are in the form of queries on the 
aggregated code. 

ASP Advantages 

Removing the ABI and avoiding coding of interaction and query functions saves programming effort 
and reduces complexity, reducing the possibility of undetected security gaps. Being able to change 
the specification of the code by adding logic code, affords greater flexibility in the ongoing 
management of smart contracts. Queries on the state of the smart contract are in the form of 
queries on the aggregated code. 
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6.6 Mid Complexity – ‘Real Estate Sale’ Contract 

This section applies our approach to a representative Australian real estate sale contract available 
online (FindLegalForms 2019). We estimate this contract represents a mid-point in contract 
complexity with a length of 21 pages. 

 
Figure 18 - First page of a Real Estate Sale Legal Contract displayed by the simulator 

This contract manages the process of sale of real estate between two parties, providing details of 
the two parties, the property, price, inclusions and exclusions, and target dates. The method of 
payment also specifies the process including deposits (a performance on the buyer) and credit 



Chapter 6  Implementation 6.6 Mid Complexity – ‘Real Estate Sale’ Contract 

Kevin Purnell  Page 44 of 72 

checks (a performance by the seller), a pattern repeated for a most other deliverables required to 
validate the contract, from inspection reports and surveys (buyer orders while seller ensures 
compliance), to inspection of property and equipment, specification about leaving on and paying 
for utilities, keeping insurances current and warranties (seller performance), which of the parties 
pays for costs like transfer taxes, stamp duties, repairs, administrative costs, dispute resolution 
procedure, and even adjustments after closing date due to undetermined tax rates etc. This detail 
appears to offer opportunities for software that assists managing details, like check-lists, schedule 
management, automatic management of fees and penalties for missing deadlines etc.    

A review of the logic and performance clauses in this contract reveal all logic to be deductive with 
performance required of both parties. Overall purpose is transfer of ownership for a consideration. 

TABLE 10 - AUTOMATABILITY FRAMEWORK APPLIED TO REAL ESTATE SALE CONTRACT 

contract legal reasoning performance consideration automatability 
Real Estate Sale deductive money transfer, e-ledger asset transfer, 

physical transfer, Human-in-the-Loop 
money moderate 

 
 

The preliminary evaluation framework we previously developed indicates this contract can be 
made into a smart contract with our approach, and marking up the original paper contract took 
only a few hours with a normal text editor. However in contrast to the ‘Will and Testament’ 
example, automation of management processes seems to provide the strongest benefit. 

For example, on the third page a list of possible inspections, reviews, surveys, approvals and other 
conditions is listed that require satisfactory completion for the sale contract to hold. 

 
Figure 19 - Possible automated management of contract contingencies 

The smart contract could be programmed so that it only executes if the selected contingencies are 
satisfactorily completed. Consider item 1 in Figure 19; it is possible to imagine a system were the 
contractors system signals completion of the inspection to the buyer who after review, signals 
acceptance to this smart contract. 

In summary, this mid complexity legal contract is amenable to conversion to a smart contract via 
our approach and provides a number of automation opportunities. A list of the variables in this 
contract is provided in Appendix D, highlighting that many other opportunities for automation exist 
for this contract. 
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6.7 Complex – ‘CEO Employment’ Contract 

This section investigates application of our approach to a representative Australian CEO 
employment contract available online at (City of Melbourne 2018). We estimate this contract is 
likely less complex (at 9 pages) than a typical CEO employment contract which could include details 
of share and option holdings and performance incentives. Nonetheless, this contract illustrates use 
of legal logic other than the deductive logic used by our other examples. A quick inspection of the 
‘Position Role and Responsibilities’ section reveals the challenge. 

 
Figure 20 - CEO Employment Contract showing some ‘Performance’ clauses displayed by the simulator 
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Clause 3.1. requires that in exchange for Salary and Bonuses, the Chief Executive Officer will: 

“faithfully and diligently serve the interests of Council and be accountable to Council” 

To interpret this, we use cultural knowledge to recognise that the CEO must develop a reputation 
with a majority of senior staff and board members, that he/she is faithfully and diligently serving 
the interests of Council. The logic used is ‘reasoning by principle’; that is, using cultural norms to 
determine what behaviour qualifies as “faithfully and diligently serve”. 

Clearly no algorithm can determine conformance to ‘faithfully and diligently’, however this could 
be overcome via a ‘Human-In-The-Loop’ feature that allows a human to enter a rating or even 
enter data into a tool that produces a rating; for example, 360 degree employee evaluations 
(Cognology 2019). 

TABLE 11 – AUTOMATABILITY FRAMEWORK APPLIED TO A CEO EMPLOYMENT CONTRACT 

contract legal reasoning performance consideration automatability 
CEO Employment Contract deductive, 

analogy, 
principle, 
... 

1. faithfully and diligently serve the ... 
2. satisfactorily carry out the ... 
3. take all reasonable steps to meet ... 
4. diligently exercise delegations as ... 
5. promote the best interests of the ... 
... 

salary & 
bonuses 

difficult, 
not cost 
effective 

 
 

But 3.1.1. is one of many such clauses and producing a tool for every clause is impractical. 
Practicality is also determined by volume, and in this case the employer can be identified as a large 
city council, meaning the contract is likely to apply to only a few dozen municipalities at most, 
making automation uneconomic, and defining a boundary. 

Automatability though is not the only benefit; for example Figure 20 above displays the first page 
of the ‘CEO Employment Contract’ in our simulator. This is because it is straight-forward to digitize 
existing paper legal contracts by adding mark-up, the starting point for our method. Given the low 
cost of marking up existing documents, there may some benefit from the simpler display, simpler 
user interaction, and improved storage and retrieval aspects of our approach, and this could be 
established by future work. As regarding our core focus, that of identifying ways of improving 
usability and reliability of smart contracts via use of declarative code, legal contracts of this type 
fall beyond the boundary of what we consider a practical application.   
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 Results 

7.1 Coding a Smart Contract with ASP is possible 

This study implements a non-trivial legal document (low complexity ‘Will and Testament’) using an 
existing pure declarative language (ASP), with a demonstration of functionality provided by a 
comprehensive test case suite (see Appendix C) serving as  proof-of-concept. Key test cases are 
used as examples (see Section 6.4.3) and fully expanded in Appendix C, because a full listing of all 
the test files and results (answer sets) is impractical. Testing can be performed with both the 
simulator (see Section 6.4.3), and a CLI environment also illustrated in Appendix C.   

We are not aware of any work that implements smart contracts with the ASP language. We are 
also not aware of any work that uses marked-up status-quo format legal documents in a user 
interface that auto-generates smart contracts with ASP code. 

7.2 Extensibility 

We applied our approach to three real-life Australian legal documents of different types and 
increasing complexity, and determined that two of these documents were amenable to full 
translation, while the third contained logic and performance clauses that are beyond the 
techniques that we use. Of the two amenable contracts, we fully translated the simpler of the two 
(‘Will and Testament’), and fully marked-up and analysed the more complex (‘Real Estate Sale’ 
contract) to understand how to code the logic program and determine any benefits. 

While attempting to understand what is automatable, we identified dependence on type of legal 
reasoning (see section 2.2) and type of ‘performance’ (see Table 1, p6), as shown in our preliminary 
Table 12. While this list may not be exhaustive, the implication is that any legal document that only 
uses deductive reasoning, has tangible performance and a positive cost/benefit evaluation, is 
convertible to a smart contract using our method. 

TABLE 12 - LEGAL CONTRACT AUTOMATABILITY BY CONTRACT TYPE, ‘LEGAL REASONING’ AND ‘PERFORMANCE’ REQUIRED  

contract type legal reasoning performance required consideration automatability 

Financial Contracts deductive money transfer, e-ledger asset transfer, 
rates input 

money
  

easy 

B2C e-Commerce Contracts deductive e-ledger asset transfer, RFID input, 
physical transfer, Human-in-the-Loop 

money moderate 

Legal Will and Testament deductive money transfer, e-ledger asset transfer, 
physical transfer, Human-in-the-Loop 

money moderate 

Real Estate Sale deductive money transfer, e-ledger asset transfer, 
physical transfer, Human-in-the-Loop 

money moderate 

CEO Employment Contract deductive, 
analogy, 
principle, 
etc ... 

1. faithfully and diligently serve the ... 
2. satisfactorily carry out the ... 
3. take all reasonable steps to meet ... 
4. diligently exercise delegations as ... 
5. promote the best interests of the ... 
... 

salary & 
bonuses 

difficult, 
possibly not 
cost effective 

 
 

A further implication is that any part of a legal document that uses deductive reasoning and has 
tangible performance, is automatable, opening up the possibility of holding all legal documents in 
marked-up format with partial automation implemented where possible.  
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We found that the level of automation and advantages delivered differs by legal document; for 
example, the key advantage of automating ‘Will and Testament’ is the ability to specify at one time 
and place all the conditions and calculations required to carry out that ‘Will and Testament’ and 
then have those specifications executed automatically over time. In contrast, the key advantage of 
automating ‘Real Estate Sale’ is the assistance the logic program affords in managing the somewhat 
complex sale process; for example, managing the many reports and inspections required and fees 
to be paid. We also converted a third contract (a ‘CEO Employment’ contract), and discovered that 
while very little automation was possible because of the complex legal logic and nature of contract 
performance required; the ease of text mark-up, improvements to usability, explainability and 
storage and retrieval provided sufficient benefits for applicability to be reconsidered.  

7.3 Using ASP facilitates achieving improved utility in Smart Contracts 

In section 6.5 we compare our ASP implementation with a probable Solidity implementation over 
five programming activities; 1) coding the smart contract type (logic program), 2) testing this smart 
contract type, 3) auto-generating the instantiation at contract creation, 3) testing the created 
smart contract, 5) programmatically interacting with the smart contract after deployment and 
identified the following advantages: 

7.3.1 Coding the Smart Contract Type 

Elimination of the ABI, data upload methods and interaction functions are clear advantages to ASP: 

1. ASP does not need an ABI because contract state change is generated by adding lines of code in 
the form of transactions to the blockchain. This is possible because ASP code is order independent; 
that is, lines of code can be added in any order without affecting the computation. Further, 
requests for contract state information is achieved by running queries over the code. 

2. Instantiation with ASP is achieved by auto-generating ASP code, eliminating the need for methods 
that load instantiation data. 

3. ASP does not require the custom coding of interaction functions, interaction is achieved with ASP 
code in the form of events and queries.  

4. It is easier to read business logic from ASP, and consequently easier to programmatically read. 

5. ASP allows the program specification to be changed programmatically by loading more code as a 
transaction after deployment, a feature not available with Solidity. This feature of ASP is known as 
elaboration tolerance (McCarthy 1988) and should ease ongoing maintenance costs. 

6. Testing effort for ASP is reduced relative to a procedural language, primarily because control code 
is not tested, however a further effect is visible from the reduction in lines of code.    

7. ASP takes less lines of code and less blockchain space – Appendix A shows a Solidity program with 
its roughly equivalent ASP program at approximately a quarter the size. Further, Solidity is 
compiled into bytecode which multiples its size a number of times. It is possible that ASP uses as 
little as one tenth the space on blockchain compared to Ethereum bytecode. 

7.3.2 Testing the Smart Contract Type 

Demonstrably simpler to test (see the Comprehensive Test Case Suite in Appendix C), because 
control code does not need to be tested. A further consideration is that null cases do not need to 
be tested because the logic program template is supplied with dummy variables (instantiation 
place holders), which to not affect results because they are never resolved by the solver. 
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7.3.3 Auto-generating the Instantiation at Contract Creation 

ASP avoids the need to code data upload methods.  

7.3.4 Testing the created Smart Contract 

The area where ASP appears to have its greatest advantage over Solidity, because ASP makes it 
practical to fully test the smart contract type supplied as a template thus facilitating the 
achievement of a system that can be used by untrained users. Avoiding testing at this stage with 
Solidity is more difficult and likely to suffer drawbacks relative to an ASP implementation. 

An ASP implementation enables an evolution of the testing task into a simulation that shows users 
the outcomes of the range of different event scenarios allowed, a task more focused on user 
understanding. While it may be possible to provide the same feature with a procedural language, 
the reality is that with current technologies finding and removing bugs is the necessary focus. 

7.3.5 Programmatically interacting with the Smart Contract after Deployment 

Removing the ABI and avoiding coding of interaction and query functions saves programming effort 
and reduces complexity, reducing the possibility of undetected security gaps. Being able to change 
the specification of the code by adding logic code, affords greater flexibility in the ongoing 
management of smart contracts. Queries on the state of the smart contract are in the form of 
queries on the aggregated code.  

7.3.6 Other Advantages 

Higher Level of Abstraction 

ASP statements manipulate sets and relationships between them, over which it can also reason. 
This is clearly a much higher level of abstraction than Solidity, but is coding scheme is also closer 
to natural language, making the code easier to read.  

Simpler more Intuitive Syntax 

Only two of the three types of ASP statement are used, and these encode both logic and data. 
Solidity uses many different types of statement including control statements like “if” and “for” 
statements, and different object types, including data stores, to achieve the same result.  

Other Advantages 

ASP’s close connection to non-monotonic logics that provides ASP with the power to model default 
negation, deal with incomplete information, and encode domain knowledge, defaults, and 
preferences in an intuitive and natural way. ASP is elaboration-tolerant, meaning that the language 
accepts changes in a problem specification without the need to rewrite the entire program, 
implements weak and strong negation in order to deal with a local form of the closed world 
assumption, and is order independent. These features provide the flexibility needed to implement 
our approach, allowing us to model legal logic in an intuitive way and split code into facts, logic program and 
events. Splitting into facts and logic program makes it possible to auto-generate just facts at 
instantiation simplifying code auto-generation. Further, NAF allows events to change the state of 
the program, simplifying this non-monotonic aspect. For legal documents of a given type, the logic 
program is the same with only the assertional knowledge (facts) differing. This allows translation of 
legal documents to be split into two stages. 
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A further simplification is possible because auto-generating ASP with a template system appears 
to be quite flexible regarding the representation of type hierarchies. For example, ‘Will and 
Testament’ has seven types; testator, executor, beneficiary, parent, sibling, child, and witness; that 
are of a common meta-type ‘legal person’ (we use the term ‘entity’). This hierarchy allows 
replacement of seven template atoms with one meta-template atom  entity/5  modelling the meta-
type ‘entity’. This idea allows a reduction of atoms that introduce variables into the system to only 
6 types, making exhaustive testing possible in this instance, and leading us to conclude that 
effective testing in general is much more achievable. Our simulator implemented two meta-types; 
1) entity/5, 2) asset/4. for ‘Will and Testament’ and we found this to be sufficient to also cover ‘Real 
Estate Sale’, suggesting complex types maybe similar between legal domains. On reflection, legal 
contracts create relationships between entities, strongly implying ‘entity’ is the main meta-type.  

We also found that modelling atom names after objects and concepts in the real world provides 
further synergies; for example, when an external event occurs, the values of variables allowed in 
the auto-generation can be discovered by inspecting facts coded in the original contract, guided 
by the IPH in atom  death/2  (iph_entity), the system knows to query the  entity/5  atom for the 
entities allowed. This is particularly helpful for generating guidance when the executor records a 
death event, but is also useful for auto-generation. Advantages like this illustrates that ASP allows 
an approach to modelling the external world that is intuitive and natural (Brewka 2011). We extend 
this idea to internal atoms; for example, if the smart contract has been witnessed, a  witness/0  atom 
is created. If there is a wipeout, a  wipeout/2  atom is created. 

The ‘option’ type we use supports assembly of custom smart contracts from building blocks by 
selecting clauses from libraries (text and code pairs). This idea warrants further research. 

Finally, we found our human-in-the loop mechanism provides a way to deal with more difficult 
logic and performance by allowing handoff to humans. It seems feasible that an assistant could be 
built that helps humans manage these aspects of a contract, including sending relevant legal 
clauses from the contract to humans via SMS or e-mail after certain events occur. 

7.4 Summary 

We have demonstrated that; 1) a non-trivial legal document can be implemented with an existing 
pure declarative language (ASP), and 2) have provided evidence that using declarative code 
facilitates the implementation of a smart contract approach with improved utility over the Solidity. 
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 Discussion 

8.1 Key Findings 

Our study demonstrates that it is possible to convert legal documents that use deductive logic and 
have tangible ‘performance’ to smart contracts programmed in ASP, verifying the first unproven 
concept in our hypothesis. Evidence is provided in the form of rules and worked examples, that 
show that our approach is extendable to legal documents that use deductive logic and have 
tangible ‘performance’, were this is cost effective. 

Our second key finding is that there are some advantages to coding in a declarative language like 
ASP. Possibly all advantages can be overcome, but at a cost; for example, it is practical to fully test 
an ASP ‘smart contract type’ logic program at the central issuing authority, allowing untrained users 
to create smart contracts without much risk. Following this same approach is risky for Solidity 
because the smart contract has to be compiled after it is assembled and instantiated, and our 
approach places an untrained user in control at this point. Together with the other findings listed 
in section 7.3, verifies the second unproven concept in our hypothesis, that using a declarative 
language (ASP) facilitates the realisation of improved utility in smart contracts. 

8.2 Limitations 

The two key limitations on this study were limited timeframe allowed a Master of Research Thesis 
(9 months), and the fact that a lot of research in this field is done by private companies, and not 
visible online or via academic channels. The limited time frame forced many compromises, 
including choice of development environment, the depth to which certain areas are explored, and 
restricted our investigation to only three Australian legal contracts, with in-depth investigation into 
only one; the ‘Will and Testament’. Ideally, a more evenly distributed set of legal documents from 
across the legal spectrum should be evaluated to better understand advantages, limitations, 
deficiencies and boundaries of applicability. This selection would be greatly aided by the availability 
of exhaustive taxonomies of legal contract types, legal logic and performance clause types. Finally, 
our development of evaluation tools was preliminary, limited to a subjective comparison method 
rather than a more rigorous statistically based method. 

8.3 Implications 

Smart contracts are seen as game changing by many groups, and should current issues with cost, 
usability and security be solved, the economic impact is likely to be large. Professional service 
groups are suggesting significant cost savings (Accenture 2017; McKinsey 2018).  

This study has identified an approach to smart contract creation and use that is generally 
applicable, tolerant of varying levels of automation and human-in-the-loop interaction, and that 
facilitates achieving higher levels of utility in the smart contracts created, along with lower costs. 

Our approach is highly supportive of adoption because most, if not all currently used legal contract 
templates are held on computer and many are already marked-up. Further, building a customised 
mark-up tool to assist conversions is straight-forward. This study then, has the potential to have an 
impact on research into and adoption of smart contracts.  
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8.4 Future Research 

Visualisation of Testing and Formal Verification 

This study has demonstrated improved ease of use and to a lesser degree improved testing 
effectiveness. Ideally, closing the remaining gaps of improved understandability and providing a 
complete solution to reliability should be the targets of future work. Our intuitions are that 
visualising the testing task can address understandability, while formally validating all code 
deployed to the blockchain fully addresses reliability. 

TABLE 13 – POTENTIAL ADVANTAGES OF PROPOSED FUTURE WORK RELATIVE TO ETHEREUM'S CURRENT SMART CONTRACTS 

 

 
 

 

 
 
 

ASP’s mathematically sound foundations gives confidence both visualisation and formal 
verification can be achieved. Research supporting this view centres around domain specific 
languages developed with meta programming languages with proof assistant features (Coq), such 
as Ergo. Given ASP’s more than two decades of development and testing; the question is, what are 
ASPs strengths relative to languages like Ergo, or will developing domain specific languages look 
more and more like ASP.  

Formal Verification is seen as the gold standard of proof that a software program performs as 
required without coding errors or vulnerabilities, and is seen as necessary for high value, high risk 
systems like spacecraft, and increasingly for smart contracts if costs can be reduced to an 
acceptable level. The definition of formal verification is that the executable program behaves 
identically to its specification, proved using formal methods from mathematics (Berztiss 1988). An 
ASP program is already a specification, so a naive perspective is that formal verification of ASP 
requires two proofs; 1) that the grounder and solver are bug free, 2) that the ASP code is equivalent 
to the ‘Answer Sets’ produced. 

Visualisation requires techniques that convert rigorously defined encodings into the equivalent 
visual representation. This implies equivalence of different methods of encoding meaning 
(semantics); for example, 1) mathematical notation, 2) programming notation, 3) visual notation, 
can all mean the same thing. As humans process visual information many times faster than speech 
or writing, exploiting visualisation represents an opportunity to improve both the understandability 
of logic and aid the identification of errors (Tableau 2019).   

Markup Languages 

This study requires only a small subset of mark-ups available (presentation, processing, internal 
referencing), and there is scope for exploiting increasingly more powerful constructs like the 
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powerful referencing construct XLink (W3C. 2010), OWL (Web Ontology Language), SWRL 
(Semantic Web Rule Language) and RDF (Resource Description Framework), all Semantic Web 
initiatives (Arroyo, et al. 2004). We also note mark-up’s similarity to Knuth’s attribute grammar 
(Knuth 1967). Embedding machine executable mark-up is another promising direction, however 
initial investigation suggests that this is problematic; for example, in the ‘Will and Testament’ two 
events can occur that disqualify a beneficiary; 1) death before or within 30 days of the testator, 2) 
contesting the Will. These clauses are listed apart, yet are best coded together to generate a 
‘disqualified’ atom. However we see significant potential for mark-up in areas like 
understandability and of screen assistant behaviours. 

Extensions to ASP 

Simple extensions to standard clingo are required to allow working with large amounts of currency 
and real numbers. These extensions would greatly increase the utility of ASP when used for smart 
contracts, especially financial smart contracts. A simple method for handling currency would be to 
hold currency in “quoted strings”, performing mathematical operations in Python functions. For 
real numbers two “quoted strings” are required, one for significand and the other for exponent. 
Further research is required to determine if the above ideas have significant performance 
downsides, or whether applicable extensions already exist. 

Other Declarative Languages 

ASP is only one of many declarative languages that can be used to encode legal logic, some of 
which have more advanced features than ASP. It is intended that other declarative language solvers 
such as TOAST (ARG-tech 2012) for structured argumentation with ASPIC+, and SPINdle (Data61, 
CSIRO 2013) for Defeasible Logic etc. be investigated in future work. 

Web Smart Contract Editor Application 

Our simulator was built with technologies familiar to the author because of study time constraints 
and because standalone sufficed. A more advanced implementation would require investigation of 
the best current technologies like React, Angular and KnockoutJS. A commercial implementation 
of the smart contract editor (hereafter ContractWriter) is envisioned to be a collaborative 
distributed web app built using current technologies and having many of the features present in 
Discord (Discord Inc. 2019) like VoIP voice, text chat and video in addition to a shared real-time 
view of the current smart contract session. Like Discord, ContractWriter would allow people to be 
be invited to join a ContractWriter session via a link sent by SMS, e-mail or messenger service, with 
digital signing (witnesses) and access to PII via private key. 

Instantiation Place Holders 

In this study different IPHs are used for HTML (“____identifier____”) and ASP (“iph_identifier”). 
Interestingly, ASP treats “____identifier____” as a constant, meaning that it is possible to use this 
form of IPH in both text and ASP code templates. This was avoided in this study because of concerns 
that “____identifier____” does not comply to the ASP-Core-2 standard. If compliance is proven, 
some simplification of the smart contract editor would result. 

Business and Legal Domain 

Because of the economic and other benefits of converting traditional legal contracts to smart 
contracts, a detailed understanding of the factors that make conversion economic would be useful. 
Some factors have been identified; 1) the type of ‘legal reasoning’ used, and 2) the type of 
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‘performance’ required (as per Table 1, p6), are useful indications of the automatability of a 
contract. Other factors like the complexity of attached schedules, and the interactions with other 
systems need to be evaluated; for example, how does automated conveyancing (PEXA 2019) 
impact real estate contracts. Ideally taxonomies (Snowden 2011) of legal contracts, types of 
performance and legal reasoning are required, along with any other aspects not yet identified. 
Some work in these areas is currently visible. (Ryan 2018; Tönnissen 2018). 

Blockchain Space Savings 

Because our declarative code is split into facts (with variables) and logic program (invariant), 
blockchain space saving opportunities arise. Only only facts and a key (to access the template DSL) 
are required to completely reconstruct both the full text and code of a smart contract. We have 
evaluated enough implementation options to recognise that there is a space vs compute time 
spectrum worth further investigation. 

8.5 Conclusion 

Blockchain technologies promise improvements to legal contracts, yet coding requires 
programmers and risks fraud, and widespread adoption depends on improving security and 
removing programmers. We found that using a declarative language facilitated achieving improved 
utility by implementing a ‘Will and Testament’ as a smart contract on a custom simulator. This 
simulator auto-generated a smart contract from a status-quo user interface with an untrained user. 
During this exercise we found a number of small benefits to using a declarative language like 
simplification, ease of code auto-generation and ease of testing. Our solution supports adoption 
because it starts with a legal contact, is tolerant of varying levels of automation, and allows human-
in-the-loop interaction. Smart contracts are seen as game changing, and should issues with cost, 
utility and security be solved, the economic impact is likely to be large. 
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Appendix A – Simple ‘Will’ – Solidity vs ASP 

Annotated smart contract in Solidity for a ‘Will and Testament’ (Rice 2018) since depreciated. 
 

Solidity Code Explanation 
 

pragma solidity ̂ 0.5.1; 
 
 

contract Will { 
 

 //declarations 
 address owner; 
 address trustee; 
 uint fortune; 
 bool isDeceased; 
 address payable[9] wallets; 
 uint nextWallet = 0; 
 mapping(address => uint) inheritance; 
  

 //constructor 
 constructor(address _trustee) public payable { 
  owner = msg.sender; 
  fortune = msg.value; 
  trustee = _trustee; 
  isDeceased = false; 
 } 
 

 //function modifiers 
 modifier onlyOwner  {require(msg.sender == owner);  _;} 
 modifier onlyTrustee{require(msg.sender == trustee);_;} 
 modifier deceased   {require(isDeceased == true);   _;} 
 

 //setter 
 function setInheritance(address payable _wallet, 
   uint _inheritance) public onlyOwner { 
  wallets[nextWallet] = _wallet; 
  inheritance[_wallet] = _inheritance; } 
 

 //functions 
 function payout() private deceased { 
  for (uint i=0; i<wallets.length; i++) { 
   wallets[i].transfer(inheritance[wallets[i]]);}} 
 

 function recordDeceased() public onlyTrustee { 
  isDeceased = true; 
  payout(); } 
} 

 

Compiler directive with version number. 
Latest stable version Feb 2019 is ̂ 0.5.4. 
 

Declares a ‘Contract’ (like a class in java). 
 

 
special type (Ethereum wallet address)... for ‘Owner’. 
for ‘Trustee’. 
unsigned integer (i.e.whole dollars)... the ‘Fortune’. 
boolean. 
array of addresses modified to allow payments. 
unsigned integer (i.e. whole dollars). 
map – ‘inheritance’ holds a uint for every address. 
 

Constructor creates object at ‘Contract’ deployment. 
public & payable modifiers mean ‘can pay Ether’. 
Owner’s ‘Ethereum wallet address’  
Amount the owner is distributing 
owner specifies a trustee when calling this code 
(msg.sender and msg.value are global built-ins) 
 
 

Modifiers are used like access modifiers. 
An ‘if’ is pasted at the start of function code. 
_; means the code of the modified function. 
 
 

 
setInheritance can only be called by the ‘Owner’. 
 
Loads ‘Ethereum wallet address’ of each ‘Inheritor’. 
Loads the inheritance $ against the ‘wallet address’. 
 

 
Locked unless ’isDeceased’ is set to true. 
Traverses the ‘wallets’ array and moves the allocated 
inheritance to ‘Ethereum wallet address’ of that child 
 

recordDeceased can only be called by the ‘Trustee’. 
 
It executes the ‘Will’ by distributing the ‘Fortune’. 

Figure 21 - A simple smart contract written in Solidity and annotated 

ASP logic program equivalent for the above ‘Will and Testament’ (uses percentages) is: 
transfer(TestatorWallet, InheritAmount, Wallet) :-  
 deceased, 
 InheritAmount = Amount*Percent/100, 
 inherits(Child, Percent), 
 estate(Amount, TestatorWallet),  
 id(Child, Wallet). 

 

#show transfer/3. 
 

Facts needed to instantiate this code (not shown for Solidity) are: 
estate(1000000, “89gbmbmscss”). 
id(mary,”bkbkkbjk3”). id(fred,”i78tgqebgk”). id(bec,”b979beqjs”)   
inherits(mary, 40). inherits(fred, 20). inherits(bec, 40). 

 

The event needed to trigger payout is: 
deceased :- #true. 
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Appendix B – ‘Will and Testament’ Template 

LAST WILL AND TESTAMENT OF ___________ 

 

I, _____________ , presently of __________, hereby revoke all former testamentary dispositions made by 
me and declare this to be my last Will. 

 

PRELIMINARY DECLARATIONS 

Prior Wills and Codicils 

1. I revoke all prior Wills and Codicils. 

Marital Status 

2. I am married to __________. 

Children 

3. My living children are _____________. 

 

EXECUTOR 

Executor 

4. The expression ‘my Executor’ used throughout this Will includes either the singular or plural number, 
or the masculine or feminine gender as appropriate wherever the fact or context so requires. The term 
'executor' in this Will is synonymous with and includes the term 'executrix'. 

Appointment 

5. I appoint _____________ of ___________, New South Wales as the sole Executor of this Will. 

Powers Of My Executor 

6. I give and appoint to my Executor the following duties and powers with respect to my estate: 

a. To pay my legally enforceable debts, funeral expenses and all expenses in connection with the 
administration of my estate and the trusts created by my Will as soon as convenient after my 
death, except for any debt secured by real and/or personal property which is to be assumed by 
the recipient of such property. 

b. To take all legal actions to have the probate of my Will completed as quickly and simply as 
possible, and as free as possible from any court supervision. 

c. To retain, exchange or dispose of any personal property without liability for loss or depreciation. 

d. To purchase, maintain, convert and liquidate investments or securities, and to exercise voting 
rights in connection with any shareholding, or exercise any option concerning investments or 
securities. 

e. To open or close bank accounts. 
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f. To maintain, continue, dissolve, change or sell any business which is part of my estate, or to 
purchase any business if deemed necessary or beneficial to my estate by my Executor. 

g. To sell, mortgage, exchange, lease or otherwise dispose or deal with any real property in my 
estate and to pay, alter, improve, add to or remove any buildings thereon and generally to 
manage such real property. 

h. To maintain, settle, abandon, make a claim against or defend, or otherwise deal with any claims 
or actions against my estate. 

i. To employ any solicitor, accountant or other professional. 

j. Except as otherwise provided, to act as my Trustee by holding in trust the share of any minor 
beneficiary, and to keep such share invested, pay the income or capital or as much of either or 
both as my Executor considers advisable for the maintenance, education, advancement or benefit 
of such minor beneficiary and to pay or transfer the capital of such share or the amount 
remaining to such beneficiary when he or she reaches the age of majority or, during the minority 
of such beneficiary, to pay or transfer such share to any parent or guardian of such beneficiary 
subject to like conditions and the receipt of any such parent or guardian discharges my Executor. 

The above authority and powers granted to my Executor are in addition to any powers and elective rights 
conferred by statute or common law or by other provision of this Will and may be exercised as often as 
required, and without application to or approval by any court. 

 

DISPOSITION OF ESTATE 

Distribution of Residue 

7. To receive any gift or property under this Will a beneficiary must survive me for thirty (30) days. 
Beneficiaries of my estate residue will receive and share all of my property and assets not specifically 
bequeathed or otherwise required for the payment of any debts owed, including but not limited to, 
expenses associated with the probate of my Will, the payment of taxes, funeral expenses or any other 
expense resulting from the administration of my Will. The entire estate residue is to be divided 
between my designated beneficiaries with the beneficiaries receiving a share of the entire estate 
residue. All property given under this Will is subject to any encumbrances or liens attached to the 
property. 

8. I direct my Executor to distribute the residue of my estate as follows (“Share Allocations”): 

a. All of the residue of my estate to _________ of ____________, ____________, for their own 
use absolutely. 

Wipeout Provision 

9. I HEREBY DIRECT that the residue of my estate or the amount remaining be divided into one 
hundred (100) equal shares and to pay and transfer such shares as follows: 

a. 100 shares to be divided equally between my parents and siblings, or survivors thereof, for their 
own use absolutely, if all or any of them are then alive. 

Individuals Omitted from Bequests 

10. If I have omitted to leave property in this Will to one or more of my heirs as named above or have 
provided them with zero shares of a bequest, the failure to do so is intentional. 

 
GENERAL PROVISIONS 
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No Contest Provision 

11. If any beneficiary under this Will contests in any court any of the provisions of this Will, then each 
and all such persons shall not be entitled to any devises, legacies, bequests, or benefits under this Will 
or any codicil hereto, and such interest or share in my estate shall be disposed of as if that contesting 
beneficiary had not survived me. 

Severability 

12. If any provisions of this Will are deemed unenforceable, the remaining provisions will remain in full 
force and effect. 

Signature 

13. I, ______________, the within named Testator, have to this my last Will contained on this and the 
preceding pages, set my hand at the City of _______________, in the Commonwealth of Australia, 
this 1st day of April, 2019 I declare that this instrument is my last Will, that I am of the legal age in 
this jurisdiction to make a Will, that I am under no constraint or undue influence, and that I sign this 
Will freely and voluntarily. 

_____________________ 

 

WITNESSES 

This instrument was signed on the above written date by ___________________, and in our presence the 
Testator declared this instrument to be their last Will. At the Testator’s request and in the presence of the 
Testator, we subscribe our names as witnesses hereto. 

Each of us observed the signing of this Will by ____________________ and by each other subscribing we 
witness and affirm that each signature is the true signature of the person whose name was signed. Each of 
us is now the age of majority, a competent witness and resides at the address set forth after their name. 

To the best of our knowledge, the Testator is the age of majority or otherwise legally empowered to make 
a Will, is mentally competent and under no constraint or undue influence. 

We declare under penalty of perjury under the laws of the Commonwealth of Australia that the foregoing 
is true and correct this 1st day of April 2019, at ______________, New South Wales. 

 
Signed by _________________ in our presence and then by us in their presence. 

 Signature ______________________ Signature ______________________ 

 Name ______________________ Name ______________________ 

 Address ______________________ Address ______________________ 

 City/Town ______________________ City/Town ______________________ 

 Postcode ______________________ Postcode ______________________ 
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Appendix C – Low Complexity – ‘Will and Testament’ 

Analysis 
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ASP Code – Logic Program 

ASP ‘logic program’ for contract type ‘Will and Testament’: (load to Will_v01_contract.lp file) 
 

% Define Intermediate Concepts ================================================================ %Group 1 
witnessed() :-  %1 
 entity(witness1, Witness1, _, _, _), 
 entity(witness2, Witness2, _, _, _),  
 Witness1 != Witness2. 

 

executable(Testator, DOD, Wallet, Residue, ExecuteDate, Executor, Costs) :- %1 
 witnessed, 
 death(Testator, DOD),  
 execute_will(Testator, Debt, Fees, ExecuteDate, Executor), 
 Residue = Estate-Costs,  
 Costs = Debt+Fees,  
 entity(testator, Testator, _, Wallet, Estate), 
 entity(executor, Executor, _, _, _). 

 

disqualifying_death(Entity, DaysAfter) :-  %1 
 DaysAfter = Date-DOD,  
 DaysAfter < 30,  
 death(Entity, Date),  
 executable(Testator, DOD, _, _, _, _, _). 

 

qualifying_beneficiary(Entity, Wallet) :-  %1 
 entity(beneficiary, Entity, _, Wallet, _),  
 not disqualifying_death(Entity, _),  
 not contests(Entity, _), 
 inherits(Entity,Percent), 
 Percent > 0. 

 

-wipeout :-  %1 
 qualifying_beneficiary(Entity, Wallet). 

 

wipeout :-  %1 
 not -wipeout.    

 
 

% Distribution to Beneficiaries adjusted for deaths =========================================== %Group 2 
orig_percent(Entity, Percent) :-  %2 
 entity(beneficiary, Entity, _, _, _),  
 inherits(Entity, Percent). 

 

qual_percent(Entity, Percent) :-  %2 
 entity(beneficiary, Entity, _, _, _),  
 inherits(Entity, Percent),  
 qualifying_beneficiary(Entity, _). 

 

sum(original, Sum) :-  %2 
 Sum = #sum{ Percent, Entity : orig_percent(Entity, Percent) }. 

 

sum(qualifys, Sum) :-  %2 
 Sum = #sum{ Percent, Entity : qual_percent(Entity, Percent) }. 

 

adjust(Ratio) :-  %2 
 not wipeout,  
 Ratio = (OrigSum*1000/QualSum),  
 sum(original, OrigSum),  
 sum(qualifys, QualSum). 
 
transfer(Testator, SourceWallet, InheritAmt, Beneficiary, Wallet) :- %2 
 not wipeout,  
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs), 
 qualifying_beneficiary(Beneficiary, Wallet),  
 InheritAmt = ((Residue * Percent/100) * Ratio)/1000, 
 inherits(Beneficiary, Percent), 
 adjust(Ratio). 

 
 

% Distribution if Wipeout (all Beneficiaries dead) ============================================ %Group 3 
qualifies_on_wipeout(Entity, Wallet) :-  %3 
 wipeout,  
 entity(parent, Entity, _, Wallet, _),  
 not disqualifying_death(Entity, _),  
 not contests(Entity, _). 

 

qualifies_on_wipeout(Entity, Wallet) :-  %3 
 wipeout,  
 entity(sibling, Entity, _, Wallet, _),  
 not disqualifying_death(Entity, _),  
 not contests(Entity, _). 
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wipeout_count(Count) :-  %3 
 Count = #count{ Entity, Wallet : qualifies_on_wipeout(Entity, Wallet) }. 

 

transfer(Testator, SourceWallet, InheritAmt, Entity, Wallet) :- %3 
 wipeout,  
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs), 
 qualifies_on_wipeout(Entity, Wallet),  
 InheritAmt=Residue/Count,  
 wipeout_count(Count). 

 
 

% Distribution of Fees and Debt =============================================================== %Group 4 
transfer(Testator, SourceWallet, Costs, Executor, Wallet) :- %4 
 executable(Testator, DOD, SourceWallet, Residue, ExecuteDate, Executor, Costs), 
 entity(executor, Executor, _, Wallet, _). 

 
 

% Outputs ===================================================================================== %Group 5 
message_to_human(Executor, Testator, "insert messages to the executor here...") :- %5 
 transfer(Testator, _, _, Executor, _), 
 entity(executor, Executor, _, _, _). 

 

#show message_to_human/3.  %5 
#show transfer/5.  %5 

ASP Code – Facts 

ASP ‘fact’ templates supplied by a central authority 
 

entity(iph_type, iph_entity, iph_entityDOB, iph_entitywallet, iph_entitybalance) 
inherits(iph_beneficiary, iph_percentage). 
creation(iph_location, iph_date). 
 

These templates are instantiated to produce facts: (load to Will_v01_facts.lp file) 
creation(sydney, 43616). 
entity(testator, "john wallace", 20088, "johnwalletaddress", 1000000). 
entity(executor, "james stewart", 18218, "jameswalletaddress", 350). 
entity(beneficiary, "fred wallace", 29041, "fredwalletaddress", 5). 
entity(beneficiary, "bec smith", 29432, "becwalletaddress", 8). 
entity(beneficiary, "sam wallace", 29969, "samwalletaddress", 15). 
entity(beneficiary, "jim wallace", 30376, "jimwalletaddress", 140). 
entity(beneficiary, "may fredricks", 31310, "maywalletaddress", 24). 
inherits("fred wallace", 10). 
inherits("bec smith", 20). 
inherits("sam wallace", 10). 
inherits("jim wallace", 20). 
inherits("may fredricks", 40). 
entity(parent, "tom wallace", 12965, "tomwalletaddress", 200). 
entity(parent, "aida wallace", 13378, "aidawalletaddress", 200). 
entity(sibling, "anne patrick", 19378, "annewalletaddress", 9000). 
entity(sibling, "ines brown", 20255, "ineswalletaddress", 5000). 
entity(sibling, "steve wallace", 21459, "stevewalletaddress", 6000). 
entity(witness1, "brian bellhaus", 22692, "brianwalletaddress", 800). 
entity(witness2, "margaret talbot", 24042, "margaretwalletaddress", 16). 
 

ASP Code – Events 

ASP ‘event’ templates supplied by a central authority 
 

death(iph_entity, iph_date). 
contests(iph_entity, iph_date). 
executewill(iph_testator, iph_debt, iph_fees, iph_date, iph_executor). 
 

These templates are instantiated produce events: (load to Will_v01_events_43680.lp file) 
death("john wallace", 43646). The Testator, ‘John Wallace’ died 8Jun2019  
contests("sam wallace", 43660). John’s son Sam has contested the Will 
execute_will("john wallace", 1249, 1000, 43680, "james stewart"). 
  The Executor pays out John’s Credit Card debt of $1,249. 
  The fees for winding up the estate are $1,000. 
  The Executor, ‘James Stewart’ decides the Will can be executed. 

This example is test case 3. 
 

ASP Execution Command 
 

clingo Will_v01_facts.lp Will_v01_contract.lp Will_v01_events_43680.lp 
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Sample Test Cases showing ASP Event code and test Results as Answer Sets 
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Comprehensive Test Case Suite 

A comprehensive set of test cases for the ‘Will and Testament’ smart contract reduced from an 
exhaustive decision table. Each case has a file (see bottom), tested at a CLI interface (see bottom). 
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Appendix D – Mid Complexity – ‘Real Estate Sale’ 

Analysis – Instantiation Variables required 

Complex types 
 entity ( ____seller____, ____buyer____, ____earnestmoneyholder____,  
    ____nominatedmediator____, ____nominatedarbitrator____ ) 
 asset ( ____property____ ) 
 list ( ____propertylegaldescription____, ____included____, ____excluded____, 
    ____exceptions____, ____closingconstraints____, ____buyersclosingobligations____, 
    ____costspayerlist____, ____additionalagreements____ ) 

Simple types 
 ____earnestmoneydeposit____ 
 ____sellerloan____ 
 ____sellerinterestrate____ 
 ____sellerloanrepayfrequency____ 
 ____sellerloanrepaystart____ 
 ____cashatclosing____   
 ____price____ 
 ____creditcheckdate____ 
 ____notifydate____ 
 ____responsedays____ 
 ____demandreturndays____ 
 ____loancomitmentbydays____ 
 ____maxloaninterestrate____ 
 ____minloanyears____ 
 ____minloanamount____ 
 ____reportnames____ 
 ____deadlinedate____ 
 ____repairpercentage____ 
 ____repaircredit____ 
 ____utilitiesstatus____ 
 ____utilitiespayer____ 
 ____casultymaxpercent____ 
 ____warrantypayer____ 
 ____warrantymaxdeductible____ 
 ____warrantymaxcost____ 
 ____titleinsurancepayer____ 
 ____maxmortgagetermschange____ 
 ____surveyrequired____ 
 ____taxprorationrequired____ 
 ____closingdate____ 
 ____closingdeliverable____ 
 ____disputeprocedure____ 
 ____expirationdate____ 
 ____expirationtime____ 
 ____buyercanassign____ 
 ____earnestmoneysignature____ 
 

 


