CHILDREN'S UNDERSTANDING OF THE NUMBER SYSTEM

Noel Douglas Thomas
B.Sc. M.Sc. (U.N.S.W), Dip.Ed.(U.N.S.W.)

A thesis submitted to the School of Education, Macquarie University, in partial fulfilment of requirements for the degree of Doctor of Philosophy

February, 1998

MACQUARIE UNIVERSITY

HIGHER DEGREE THESIS
 AUTHOR'S CONSENT
 (DOCTORAL)

This is to certify that I , NoEl DOUGLAS THOMAS
being a candidate for the degree of Doctor of \qquad am aware of the policy of the University relating to the retention and use of higher degree theses as contained in the University's Doctoral Rules generally, and in particular Rule 7(7).

In the light of this policy and the policy of the above Rules, I agree to allow a copy of my thesis to be deposited in the University Library for consultation, loan and photocopying forthwith.

Signature of Witness

Signature of Candidate
\qquad north day of Februcny 1998

The Academic Senate on 9 June 1998 /r resolved that the candidate had satisfied requirements for admission to the degree of Pho. This thesis represents a major part of the prescribed program of study.

DEDICATION

To my wife Patricia Anne (Dangar) Thomas for her love, support, and confidence in me throughout my professional career.

ACKNOWLEDGEMENTS

I would like to give my very special thanks to the many people who provided encouragement and help during the development of the research project and the writing of this thesis.

Dr Joanne Mulligan, supervisor and mentor, is given special thanks for her time, commitment and expertise. I found collaborating with Joanne both intellectually challenging and rigorous. Joanne's energy, enthusiasm and commitment to researching children's understanding of mathematics is an inspiration to my continuing interest in analysing and interpreting children's representations and ways of thinking about number. Joanne's interest and insights in this research study were extraordinarily helpful, as were her thoughtful, analytic and encouraging comments and questions.

Special thanks go to Professor Gerald Goldin (Rutgers University) for the collaboration in researching children's representations. From the time of our first discussions and exchange of ideas at the MERGA conference in Brisbane in 1993, I realised the value of his model of problem-solving competency structures for analysing the research data from children's visualisations of the number system. Gerry's support for my research has been of immense encouragement and help to completing this thesis.

Associate Professor Judith Parker, Head of the School of Teacher Education, Charles Sturt University, is thanked for providing structural and moral support without which this thesis would not have been completed.

Associate Professor Michael Mitchelmore is thanked for reading the thesis, making helpful suggestions and providing encouragement and Magdalena Mok is thanked for her advice on the statistical analysis of the data.

Special thanks go to my colleague, Paul Donaldson for his encouragement and commitment given to supporting my research, and the time spent proof reading and checking the manuscript.

I thank all my colleagues at both Macquarie University and Charles Sturt University for encouragement and support and my family for their support, patience and understanding.

Finally, this research would not have been possible without the assistance of the principals, teachers and children in the cooperating schools.

CERTIFICATE

I hereby certify that this work has not been submitted for a higher degree to any other university or institution.

TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGEMENTS iii
CERTIFICATE iv
TABLE OF CONTENTS v
LIST OF FIGURES x
LIST OF TABLES xvii
SUMMARY xX
CHAPTER 1: BACKGROUND TO THE STUDY 1
1.1 BACKGROUND TO THE PROBLEM 2
1.2 ACCOUNTING FOR CHILDREN'S DIFFICULTIES IN UNDERSTANDING NUMERATION AND PLACE VALUE. 3
1.3 STATEMENT OF THE PROBLEM 5
1.3.1 Research on numeration and place value
1.3.2 Classroom-based studies
1.3.3 New directions for research on numeration
1.4 PURPOSE OF THE STUDY 8
1.5 RESEARCH QUESTIONS. 9
CHAPTER 2: THEORETICAL PERSPECTIVES: RESEARCH IN NUMERATION 11
2.1 THEORETICAL PERSPECTIVES 11
2.2 DEVELOPMENTAL APPROACHES 12
2.2.1 Developmental framework of Resnick
2.2.2 A descriptive framework proposed by Denvir and Brown
2.2.3 Developmental stages of Ross
2.2.4 Steffe's counting stages
2.2.5 Developmental approach of Kamii
2.2.6 Developmental sequence for the notation system, DeBlois
2.2.7 Developmental framework of Jones et al.
2.2.8 A developmental sequence of conceptual structures for two-digit numbers (Fuson)
2.3 CONSTRUCTIVIST APPROACHES 21
2.4 COGNITIVE PROCESSING APPROACHES 26
2.4.1 Cognition and learning
2.4.2 Conceptual and procedural knowledge
2.5 A REPRESENTATIONAL VIEW OF NUMERATION. 29
2.6 SUMMARY 32
CHAPTER 3: REVIEW OF THE LITERATURE. 33
3.1 THE HINDU-ARABIC NUMERATION SYSTEM. 34
3.1.1 Numeration as a multiunit system
3.1.2 Numeration as a spoken language
3.1.3 Linguistic differences in numeration and other languages
3.2 CHILDREN'S CONCEPTUAL DEVELOPMENT OF NUMERATION. 39
3.2.1 Research on the role of counting in developing numeration
3.2.2 Research on children's construction of multiunit conceptual structures
3.2.3 Research on children's construction of place value
3.2.4 Evidence from studies of student achievement
3.3 CHILDREN'S REPRESENTATIONS OF THE NUMERATION SYSTEM.. 63
3.3.1 Representational systems
3.3.2 The use of concrete materials in representing the numeration system
3.4 CLASSROOM-BASE STUDIES ON TEACHING AND LEARNING NUMERATION 72
3.4.1 Background
3.4.2 Teaching approaches
3.4.3 Invented systems for algorithms
3.4.4 Projects on multiunit structures
3.5 SUMMARY 85
CHAPTER 4: THE PILOT STUDY. 87
4.1 METHODOLOGY 88
4.1.1 Interview tasks
4.1.2 Counting tasks
4.1.3 Grouping tasks
4.1.4 Regrouping tasks
4.1.5 Structure tasks
4.1.6 Interview procedures
4.1.7 Analysis of data
4.2 RESULTS 97
4.2.1 Performance and strategy use: Counting
4.2.2 Performance and strategy use: Grouping
4.2.3 Performance and strategy use: Regrouping
4.2.4 Performance and strategy use: Structure
4.3 DISCUSSION OF RESULTS 107
4.4 LIMITATIONS AND CONCLUSIONS 110
CHAPTER 5: METHODOLOGY 113
5.1 INTRODUCTION 113
5.2 DESIGN OF CROSS-SECTIONAL STUDY 115
5.2.1 Sample
5.2.2 Classroom instruction
5.2.3 Interview tasks
5.3 CLINICAL INTERVIEW PROCEDURES 127
5.4 ANALYSIS OF DATA 128
5.4.1 Item response analysis
5.4.2 Analysis of results: performance and strategies
5.4.3 Additional analysis of visualisation task
5.5 SUMMARY 132
CHAPTER 6: AN OVERVIEW OF RESULTS: PERFORMANCE AND STRATEGY USE 135
6.1 AN OVERVIEW OF RESULTS 136
6.1.1 Student-Problem (S-P) curve analysis
6.1.2 Item response analysis - Rasch model
6.2 PERFORMANCE AND STRATEGY USE 141
6.2.1 Counting tasks
6.2.2 Number sense tasks
6.2.3 Grouping tasks
6.2.4 Regrouping tasks
6.2.5 Place value tasks
6.2.6 Structure tasks
6.3 SUMMARY OF PERFORMANCE AND STRATEGY USE. 185
CHAPTER 7: DISCUSSION OF RESULTS 187
7.1 CHILDREN'S DEVELOPMENT OF STRUCTURE OF THE NUMERATION SYSTEM 187
7.1.1 Recognition of place value structure
7.1.2 Arithmetic calculations drawing on place value knowledge
7.1.3 Significance of recursive grouping by tens
7.1.4 Understanding the meaning of multiplication
7.2 A DISCUSSION OF RESULTS IN RELATION TO OTHER STUDIES 192
7.2.1 Counting tasks
7.2.2 Number sense tasks
7.2.3 Grouping tasks
7.2.4 Notational and place value tasks
7.2.5 Regrouping and mental computation tasks
7.2.6 Structure tasks
7.3 SUMMARY 201
CHAPTER 8: CHILDREN'S REPRESENTATION AND STRUCTURAL DEVELOPMENT OF THE COUNTING SEQUENCE 1-100 203
8.1 BACKGROUND 203
8.2 EXPLORATORY STUDY 205
8.3 ANALYSIS OF CHILDREN'S REPRESENTATIONS OF THE NUMBER SEQUENCE 1-100 207
8.4 METHOD 209
8.4.1 Sample
8.4.2 The visualisation task
8.4.3 Procedure
8.5 ANALYSIS OF CHILDREN'S REPRESENTATIONS 210
8.6 DESCRIPTION OF EXTERNAL REPRESENTATIONS OF THE NUMBER SEQUENCE 211
8.6.1 Types of external representations
8.6.2 Structural development of the number system
8.6.3 Static or dynamic nature of the image
8.6.4 Summary
8.7 DYNAMIC IMAGERY IN CHILDREN'S REPRESENTATIONS OF NUMBER 217
8.7.1 Linear structure
8.7.2 Emerging structure
8.7.3 Array structure
8.7.4 No structure
8.7.5 Discussion
8.8 ILLUSTRATIVE EVIDENCE FOR COGNITIVE STRUCTURAL DEVELOPMENT 225
8.8.1 Evidence of inventive-semiotic stage
8.8.2 Evidence of structural development stage
8.8.3 Evidence of autonomous stage
8.8.4 Discussion
8.9 IMAGERY AND THE LEARNING PROCESS 231
8.10 SUMMARY 231
CHAPTER 9: CONCLUSIONS AND IMPLICATIONS 235
9.1 CONCLUSIONS 236
9.1.1 Children's understanding of the system of numeration
9.1.2 Children's internal and external representations of number
9.1.3 A model for understanding the numeration system
9.2 LIMITATIONS OF THE CROSS-SECTIONAL STUDY 241
9.3 IMPLICATIONS FOR FUTURE RESEARCH 242
9.4 IMPLICATIONS FOR TEACHING AND CURRICULUM 243
9.4.1 Implications for teaching and curricula
9.4.2 Implications for assessment
9.5 SUMMARY 248
REFERENCES 249
APPENDICES
APPENDIX A Pilot Study Interview Protocols 287
APPENDIX B Main Study Results 295
APPENDIX C Operational Definitions 317
APPENDIX D Letters to Teachers, Principals and Parents 319

LIST OF FIGURES

CHAPTER 2
Figure 2.1 Descriptive Framework for Understanding Number - Place Value Strand (adapted from Denvir \& Brown, 1986a, p. 33) 15
Figure 2.2 The construction of the system of tens on the system of ones (Kamii, 1986, p.79) 18
Figure 2.3 Concept of place value (Thompson, 1982a, p. 99) 21
Figure 2.4 Relational network for the concept of ten (Thompson, 1982a, p. 95) 22
Figure 25 General relations between number and numerical representation (Kamii, 1982, p. 95) 23
Figure 2.6 Numeration as a network of relationships between various representations of number (Bednarz \& Janvier, 1982, p. 35) 30
CHAPTER 3
Figure 3.1 Periods of 'ones, tens and hundreds' in number naming scheme. 36
CHAPTER 4
Figure 4.I Anthony 105
Figure 4.2 James 105
Figure 4.3 Gary 105
Figure 4.4 Hayley 105
Figure 4.5 Melissa 105
Figure 4.6 Oliver 105
Figure 4.7 Michael 106
Figure 4.8 Amber 106
Figure 4.9 Becky 106
Figure 4.10 Alex 106
Figure 4.11 Oliver 106
Figure 4.12 Rebecca. 106
Figure 4.13 Grant 107
CHAPTER 6
Figure 6.1 Solution strategies for Counting Task 1, Addition: Percentage of sample giving correct responses, by strategy use 142
Figure 6.2 Solution strategies for Counting Task 2, Missing Addend: Percentage of sample giving correct responses, by strategy use 142
Figure 6.3 Performance on Counting Tasks 4 and 5, skip counting: Percentage of sample giving correct responses, using skip counting. 143
Figure 6.4 Solution strategies for Counting Task 5, counting in threes: Percentage of sample giving correct responses, by strategy use 143
Figure 6.5 Performance on Counting Tasks 5 to 8, Double counting: Percentage of sample using double counting 144
Figure 6.6 Performance on Counting Tasks 6 to 8, Multiple counting: Percentage of sample using multiplication or division to determine the quotient for each task 145
Figure 6.7 Performance on Number Sense Tasks 1 to 5: Percentage of sample partitioning tens and hundreds, on separate tasks 146
Figure 6.8 Incorrect solution strategies for Number Sense Task 2, partition \$1: Percentage of sample giving incorrect responses, by strategy use 147
Figure 6.9 Performance on Number Sense Tasks 6, 7, 8 and 9: Percentage of sample giving correct responses, showing number sense 147
Figure 6.10 Performance on Number Sense Tasks 10, 11 and 12: Percentage of sample giving correct responses, on mental addition and compensation tasks 148
Figure 6.11 Solution strategies for Grouping Tasks 1 and 3, Partition: Percentage of sample giving correct responses, by strategy use 150
Figure 6.12 Solution strategies for Grouping Task 4, Partition: Percentage of sample giving correct responses, by strategy use 150
Figure 6.13 Solution strategies for Grouping Task 6, Quotition: Percentage of sample using correct responses by strategy use 151
Figure 6.14 A solution strategy used on Grouping Tasks 3, 4 and 6:
Percentage of sample, giving responses showing a strategy relating to known multiplication or division facts 152
Figure 6.15 Solution strategies for Grouping Task 7: Percentage of sample giving responses where children dealt with one unit or two units simultaneously 153
Figure 6.16 Performance on Grouping Tasks 5, 8, 9, 10 and 12: Percentage of sample, using groupings of 3 and 10 154
Figure 6.17 Performance on Grouping Tasks 11, 13 and 14: Percentage of sample giving responses, suggesting ten as a grouping number and using ten as an abstract composite unit 155
Figure 6.18 Solution strategies for Grouping Task 13, quantifying Dienes blocks: Percentage of sample giving correct responses, by strategy use 155
Figure 6.19 Solution strategies for Grouping Task 14: Percentage of sample giving correct responses, by strategy use 156
Figure 6.20 Solution strategies for Grouping Task 15: Percentage of sample giving correct responses, by strategy use 157
Figure 6.21 Solution strategies for Regrouping Task 1, Addition: Percentage of sample giving correct responses, by strategy use 158
Figure 6.22 Solution strategies for Regrouping Task 2, Addition: Percentage of sample giving correct responses, by strategy use 158
Figure 6.23 Solution strategies for Regrouping Task 3, Addition: Percentage of sample giving correct responses, by strategy use 159
Figure 6.24 Solution strategies for Regrouping Task 4, Addition: Percentage of sample giving correct responses, by strategy use 160
Figure 6.25 Solution strategies for Regrouping Task 5, Missing addend: Percentage of sample giving correct responses, by strategy use 161
Figure 6.26 Solution strategies for Regrouping Task 6, Addition algorithm: Percentage of sample giving correct responses, by strategy use 162
Figure 6.27 Solution strategies for Regrouping Task 7, Addition: Percentage of sample giving correct responses, by strategy use 163
Figure 6.28 Solution strategies for Regrouping Task 7, Addition: Percentage of sample giving incorrect responses, by strategy use 164
Figure 6.29 Solution strategies for Regrouping Tasks 8 and 12, Addition: Percentage of sample giving incorrect and correct responses, by strategy use 164
Figure 6.30 Solution strategies for Regrouping Task 10, Missing addend: Percentage of sample giving correct responses, by strategy use 165
Figure 6.31 Solution strategies for Regrouping Task 11, Missing addend: Percentage of sample giving correct responses, by strategy use 166
Figure 6.32 Solution strategies for Place Value Task 1, Digit correspondence: Percentage of sample giving correct and incorrect responses by strategy use 168
Figure 6.33 Performance on Place Value Tasks 2 and 3, Zero: Percentage of sample giving correct interpretations of numeral ' 01 ' and digit ' 0 ' 169
Figure 6.34 Performance on Place Value Tasks 4 to 9, Numerals: Percentage of sample giving correct responses 170
Figure 6.35 Solution strategies for Place Value Task 10, Total value: Percentage of sample giving correct and incorrect strategies 170
Figure 6.36 Solution strategies for Place Value Task 13, Digit correspondence: Percentage of sample giving correct and incorrect responses by strategy use 171
Figure 6.37 Performance on Place Value Task 14: Percentage of sample recognising place value of digits in a numeral 171
Figure 6.38 Solution strategies for Place Value Task 15, Renaming: Percentage of sample giving correct and incorrect interpretations of the place value chart 171
Figure 6.39 Solution strategies for Place Value Task 16, Total value: Percentage of sample giving correct and incorrect strategies 173
Figure 6.40 Solution strategies for Structure Task 1, Visualisation: Percentage of sample giving responses showing structure in the visualisation of numbers 1 to 100 174
Figure 6.41 Solution strategies for Structure Task 18, Visualisation: Percentage of responses showing structure in the visualisation of the number sequence 1 to 1000 task 175
Figure 6.42 Solution strategies for Structure Task 2 and performance on Task 3, Quantify and addition: Percentage of sample that quantified lollies by strategies used and added ten without counting 175
Figure 6.43 Solution strategies for Structure Task 6, Missing addend: Percentage of sample giving correct and incorrect responses by strategies used for addition on the hundred square 176
Figure 6.44 Solution strategies for Structure Tasks 7 and 8, Addition and subtraction: Percentage of sample giving correct responses by strategies used for addition and subtraction of ten on the hundred square 177
Figure 6.45 Solution strategies for Structure Task 9, Addition: Percentage of correct responses by strategies used for addition of 9 on the hundred square 177
Figure 6.46 Performance on Structure Tasks 10, 11 and 13, and solution strategies for Task 12, Grouping of groupings: Percentage of sample giving responses correct on Lolly Factory tasks 178
Figure 6.47 Performance on Structure Tasks 14 to 16, Groupings: Percentage of sample suggesting and recognising someone else's groupings of ten as a grouping number and as a grouping of groupings number 179
Figure 6.48 Performance on Structure Tasks 4, 5 and 17, Non-proportional representations: Percentage of Grade 6 children giving correct responses 180
Figure 6.49 Performance on Structure Tasks, 19 and 20, Grouping of groupings: Percentage of sample giving correct responses 181
Figure 6.50 Solution strategies for Structure Task 21, Subtraction: Percentage of sample giving correct response by strategy use 182
Figure 6.51 Drawing used by Anna to solve Task 21 182
Figure 6.52 Solution strategies for Structure Task 22, Array: Percentage of correct responses by strategies used for quantifying the number of dots in an array of 10000 dots 183
Figure 6.53 Performance on Structure Tasks 23 to 26: Percentage of correct responses on renaming values tasks 184
CHAPTER 7
Figure 7.1 Percentage of sample correctly performing place value recognition tasks. 188
Figure 7.2 Percentage of sample correctly performing place value calculation tasks 189
Figure 7.3 Percentage of sample suggesting grouping by tens in various tasks 190
Figure 7.4 Percentage of sample correctly performing multiplication tasks 191
Figure 7.5 Stages of early arithmetical learning: Percentage of sample at each grade achieving the counting stages. 194
Figure 7.6 Comparison of performance: Percentage of sample correctly interpreting digits or numerals on Place Value Tasks 2, 3, 10,
15 and 16 199
CHAPTER 8
Figure 8.1 Emilie (Grade 2) 205
Figure 8.2 Evan (Grade 2) 206
Figure 8.3 Victoria (Grade 2) 206
Figure 8.4 Anthony (Grade 1) 212
Figure 8.5 Andrew (Grade 1) 212
Figure 8.6 Candice (Grade 3) 212
Figure 8.7 Timothy (Grade 4) 212
Figure 8.8 Warren (Grade 2) 213
Figure 8.9 Joshua (Grade 2) 213
Figure 8.10 Cassie (Grade 4) 213
Figure 8.11 Kimberley (Grade 2) 213
Figure 8.12 Mellissa (Grade 2) 214
Figure 8.13 Robert (Grade 2) 214
Figure 8.14 Adrian (Grade 3) 215
Figure 8.15 Caedyn (Grade 4) 215
Figure 8.16 Caedyn (prompted response) 215
Figure 8.17 Nik (Grade 4) 216
Figure 8.18 Jane (Grade 1) 216
Figure 8.19 David (Grade 4) 216
Figure 8.20 Clint (Grade 5) 218
Figure 8.21 Clint (prompted response) 218
Figure 8.22 David (Grade 6) 218
Figure 8.23 Rosalie (Grade 6) 218
Figure 8.24 Colin (Grade 5) 219
Figure 8.25 Colin (prompted response) 219
Figure 8.26 Christopher (Grade 5) 219
Figure 8.27 Tessa (Grade 5) 219
Figure 8.28 Tim (Grade 6) 220
Figure 8.29 Michelle (Grade 6) 220
Figure 8.30 Leah (Grade 6) 221
Figure 8.31 Renee (Grade 5) 221
Figure 8.32 Ben (Grade 5) 221
Figure 8.33 Edward (Grade 6) 222
Figure 8.34 Dario (Grade 6) 222
Figure 8.35 Michael (Grade 5) 223
Figure 8.36 Joel (Grade 5). 223
Figure 8.37 Michael (prompted response) 223
Figure 8.38 Joel (prompted response) 223
Figure 8.39 Keryn (Grade 5) 224
Figure 8.40 Keryn (prompted response) 224
Figure 8.41 Andre (Grade 3): Evidence for the Inventive Semiotic Stage of Construction 226
Figure 8.42 Magnus (Grade 3): Evidence for the Inventive Semiotic Stage of Construction 226
Figure 8.43 Naomi (Grade 3): Evidence for the Structural Development Stage of Construction 227
Figure 8.44 Summer (Grade 3): Evidence for the Structural Development Stage of Construction 227
Figure 8.45 Cassie (Grade 4): Evidence for Advanced Stage of Structural Development 228
Figure 8.46 Edward (Grade 6): Evidence for Advanced Stage of Structural Development 229
Figure 8.47 Edward (prompted response): Evidence for Advanced Stage of Structural Development 229
Figure 8.48 Edward's explanation of mental subtraction 230
APPENDIX A
Figure A. 1 Rolls and lollies for Task 13 292
Figure A. 27 and 9 pattern boards for Task 21 292
Figure A. 3 Array of ten by six planes for Task 25 293
Figure A. 4 Picture of 143 marks with groupings shown for Task 34 (Bednaz \& Janvier, 1988, p. 310) 293
Figure A. 5 Label with expiry date for Task 35 293
Figure A. 6 Array of 10000 dots for Task 41 294
Figure A. 7 Hundred Square for Task 42 294

LIST OF TABLES

CHAPTER 2
Table 2.1 Steffe's Counting stages 17
Table 2.2 Conceptual structures for multiunit numbers (Fuson, 1990b, p. 348) 25
CHAPTER 3
Table 3.1 Digit-correspondence tasks (Ross, 1989a) 57
Table 3.2 Ross model for the development of understanding of two-digit numbers 58
Table 3.3 CSMS numeration / place value questions 60
Table 3.4 Aspects of numeration assessed by Denvir and Brown (1986a) 61
CHAPTER 4
Table 4.1 Counting tasks 90
Table 4.2 Grouping tasks related to multiplication and division 91
Table 4.3 Grouping tasks related to ten as a unit 92
Table 4.4 Regrouping tasks 93
Table 4.5 Structure tasks related to groupings 94
Table 4.6 Structure tasks related to writing and interpretation of numerals 96
Table 4.7 Solution strategies for Counting Tasks 2 and 3 and performance on tasks $5,7 \mathrm{~b}$ and 15 : Number of correct responses by strategy use for Grades K-4 98
Table $4.8 \quad$ Solution strategies for Counting Tasks 2 and 3: Number of responses according to counting stages for Grades K-4. 99
Table 4.9 Solution strategies for Grouping Tasks: Number of correct responses for Grades K-4. 100
Table 4.10 Solution strategies for Regrouping Tasks: Number of correct responses for Grades K-4. 101
Table 4.11 Solution strategies for Notation Tasks: Number of correct responses for Grades K-4, Symbolic Representation and Place Value 102
Table 4.12 Solution strategies for Structure Tasks: Number of correct responses for Grades K-4 103
Table 4.13 Solution strategies for Visualisation Task: Number of correct responses for Grades K-4, Visualisation of the number sequence 1-100 104
CHAPTER 5
Table 5.1: Distribution of children in the sample 117
Table 5.2: Counting Tasks 118
Table 5.3: Number sense tasks 119
Table 5.4: Grouping tasks. 120
Table 5.5: Regrouping tasks 122
Table 5.6: Place value tasks 123
Table 5.7: Structure tasks 1 to 13 124
Table 5.8: Structure tasks 14 to 26 126
Table 5.9: Counting Strategies for Mental Calculations. 130
Table 5.10: Classification of Representations by Mode, Structure and Nature of Image 132
CHAPTER 6
Table 6.1 Student-Response Chart 137
Table 6.2 Individual Task Item-Fit Chart. 140
CHAPTER 7
Table 7.1 Stages of Early Arithmetic Learning 194
APPENDIX B
Table B.I Task C1 Response Categories by Grade Level 295
Table B. 2 Task C2 Response Categories by Grade Level 295
Table B. 3 Task C3 Response Categories by Grade Level 295
Table B. 4 Task N1 Response Categories by Grade Level 296
Table B.5 Task Response Categories by Grade Level for G1 and G2. 296
Table B. 6 Task G3 Response Categories by Grade Level 296
Table B. 7 Task P1 Response Categories by Grade Level 297
Table B. 8 Task G4 Response Categories by Grade Level 297
Table B. 9 Task C4 Response Categories by Grade Level. 297
Table B. 10 Task Response Categories by Grade Level for G5 and C5 298
Table B. 11 Task G6 Response Categories by Grade Level. 298
Table B. 12 Task G7 Response Categories by Grade Level 298
Table B. 13 Task Response Categories by Grade Level for P2 and P3 299
Table B. 14 Task S1 Response Categories by Grade Level 299
Table B.15 Task Response Categories by Grade Level for G8 and G9 300
Table B. 16 Task R1 Response Categories by Grade Level 300
Table B. 17 Task G10 Response Categories by Grade Level. 300
Table B. 18 Task Response Categories by Grade Level for G11, G12 and R2. 301
Table B. 19 Task Response Categories by Grade Level for C6, C7 and C8 301
Table B. 20 Task Response Categories by Grade Level for N2 and N3 301
Table B. 21 Task Response Categories by Grade Level for N4 and N5 302
Table B. 22 Task G13 Response Categories by Grade Level 302
Table B. 23 Task Response Categories by Grade Level for R3 and N6. 302
Table B. 24 Task R4 Response Categories by Grade Level 303
Table B. 25 Task R5 Response Categories by Grade Level 303
Table B. 26 Task Response Categories by Grade Level for N7 and R6. 304
Table B. 27 Task Response Categories by Grade Level for P4, P5, P6, P7, P8, and P9 304
Table B. 28 Task P10 Response Categories by Grade Level 304
Table B. 29 Task G14 Response Categories by Grade Level 304
Table B. 30 Task S2 Response Categories by Grade Level 305
Table B. 31 Task Response Categories by Grade Level for S3 and R8. 305
Table B. 32 Task Response Categories by Grade Level for S4 and S5. 306
Table B. 33 Task Response Categories by Grade Level for P11, P12 and R8. 306
Table B.34 Task Response Categories by Grade Level for S6, N8 and N9. 306
Table B. 35 Task G15 Response Categories by Grade Level. 307
Table B. 36 Task R9 Response Categories by Grade Level 307
Table B. 37 Task P13 Response Categories by Grade Level. 307
Table B. 38 Task Response Categories by Grade Level for S7, S8 and S9. 308
Table B. 39 Task Response Categories by Grade Level for S10, S11, S12 and S13 308
Table B. 40 Task R10 Response Categories by Grade Level. 309
Table B.41 Task R11 Response Categories by Grade Level. 309
Table B. 42 Task Response Categories by Grade Level for S14, S15 and S16. 310
Table B. 43 Task Response Categories by Grade Level for N10, N11 and N12. 310
Table B. 44 Task Response Categories by Grade Level for P14 and P15. 311
Table B. 45 Task Response Categories by Grade Level for R12 and S17 311
Table B. 46 Task P16 Response Categories by Grade Level 312
Table B.47 Task S18 Response Categories by Grade Level 312
Table B. 48 Task Response Categories by Grade Level for S19 and S20. 313
Table B. 49 Task S21 Response Categories by Grade Level 313
Table B. 50 Task S22 Response Categories by Grade Level 314
Table B.51 Task Response Categories by Grade Level for S23, S24, S25 and S26 315

SUMMARY

The development of numeration and place value knowledge is fundamental to an understanding of mathematical concepts and processes. This study investigates the aspects of developing number knowledge which contribute to the apparent failure of children to make sense of numeration as a system. The strategies that children use in solving numeration tasks involving key elements of counting, grouping, and structuring place value are explored. It is questioned how critical aspects of counting and grouping are related to understanding the base ten structure of the numeration system. The study also describes how children's representations of the counting sequence 1-100 reflect their developing structure of the numeration system.

A broad cross-sectional study of 126 children from Kindergarten to Grade 6 was designed to assess children's acquisition of key elements of counting, grouping/partitioning, regrouping, place value, number sense and structure. Quantitative and qualitative analyses of performance and strategy use were conducted to highlight which aspects were critical in developing numeration knowledge. Further investigation of children's representations of the counting sequence $1-100$ is reported and exemplified by a range of pictorial representations drawn from the cross-sectional study and a follow up study of children from Grades 4 to 6.

This study shows that children do not develop sufficient understanding of numeration as a system; what is needed is for children to make the connections between the many different representations for multiunit numbers being used. Key components of counting, partitioning, grouping and number relations, and the visualisation of structure need to be considered more critically. Strategies that children use to solve numeration tasks are too often based on unitary counting and very few Grade 6 children are able to use the holistic strategies that derive from the structure of the number system. Children's representations of counting frequently reflects a lack of structure, grouping is not sufficiently linked to the formation of multiunits, and additive rather than multiplicative relations dominate the interpretation of multidigit numbers. By the end of primary school, most children have not generalised the way the number system is structured. Furthermore, this study highlights that very little progress in understanding the structure of the number system is made during the last three years of their primary school grades.

The analysis of children's visualisations of the counting sequence 1-100 reflect to some extent their developing structure of the numeration system. Examples of imagery provided in this study have given 'snapshots' of the developmental stages that it is suggested children may progress through. It is demonstrated how the process of visualisation can assist in the assessment of children's developing relational understanding of the number.

This study contributes to the developing body of knowledge on children's development of number concepts and relationships. In particular, the study highlights that the teaching of numeration as compartmentalised knowledge restricts the construction of relationships. The teaching of numeration requires a more holistic perspective of what children need to develop in their learning of number. Curriculum and teaching need to reflect the goal of achieving understanding of the structure of the number system through key processes of: counting, grouping, partitioning and regrouping and the formation of multiunit values. Children must be helped to build connections between their intuitive knowledge, various models that might be used and the formal rules of numeration. Children need to build their own mental models as a means of constructing meaning for the number system.

