
CHAPTER 7 


DISCUSSION OF RESULTS 


This chapter will provide an in-depth discussion of the results reported in Chapter 6. The 
qualitative and quantitative analyses are discussed in terms of what they indicate about the 
key aspects of children's development of structure of the numeration system. The results are 
then discussed in relation to other studies on numeration and place value. 

This chapter is organised in two main sections as shown below. 

7.1. A discussion of key aspects of the children's development of structure of the 
numeration system: 

(i) Recognition of place value structure; 

(ii) Arithmetic calculations drawing on place value knowledge; 
(iii) Significance of recursive groups by tens, and 

(iii) Understanding of the meaning of multiplication. 

7.2. A discussion of results in relation to other studies organised under the six task 
categories: 

(i) Counting; 
(ii) Number sense; 

(iii) Grouping; 
(iv) Notation and place value; 
(v) Regrouping and mental computation, and 

(vi) Structure. 

7.1	 CHILDREN'S DEVELOPMENT OF STRUCTURE OF THE 
NUMERATION SYSTEM 

Following the reporting of the results for each task in Chapter 6 it was considered 

appropriate to cluster some particular tasks and to synthesise the results for what they say 

about key aspects of the children's understanding of structure of numeration. This section 

will compare and discuss the recognition of place value structure, the way arithmetic 

calculations draw on place value knowledge, the significance of recursive groups of tens and 

understanding the meaning of multiplication. 

7.1.1 Recognition of Place Value Structure 

The first aspect will review key results pertaining to place value. Figure 7.1 shows 
children's performance on the various tasks which tested their recognition of place value 
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structure. These tasks simply asked children to recognise or represent a number or to use 

place value structure in counting. No calculation was involved. 

Representation of 52 
[Grouping Task 12] 

— — — Value of 10 hundreds 
[Structure Task 11] 

. . . .  . .Numberrepresentation of 
41753 [Structure Task 12] 

— - — - Counting using groups of 10 
[Structure Task 15] 

— - - — Counting using groups of 
10*10 [Structure Task 15] 

Prompted to use grouping of 
100 [Structure Task 16] 

Figure 7.1: Percentage of sample correctly performing place value recognition tasks 

By the end of Grade 2, most children could represent the 52 shells using the pregrouped 

material [Grouping Task 12]. Surprisingly a large number of children (increasing from 50% 

at Grade 3 to 68% at Grade 6) recognised that a box of lollies (containing 10 bags of 10 rolls 

of 10 lollies) held 1000 lollies [Structure Task 11]. The number of children who could 

recognise the number of lollies in a collection when they were also packed in cases of 10 

boxes [Structure Task 12], grew steadily from none in Grade 3 to 58% in Grade 6. These 

findings are consistent with the results of Place Value Task 14, in which children were asked 

to identify the value of individual digits in given numbers. Children showed a high level of 

competency up to the thousands place (68%, 94%, 100% and 100% in Grades 3 to 6 

respectively), but at Grade 6 there were still 42% who could not identify the ten thousands 

place. It would appear that most children master place value in numbers with up to 4 digits 

by Grade 3, but progress after that is much slower. 

Performance on Structure Tasks 15 and 16 suggests a modification to the above conclusion. 

Given a picture of 144 marks grouped in tens (circled in black) with ten groups of ten circled 

in red, the number of children in Grades 2 and 3 who used the tens grouping to count the 

marks [Structure Task 15] was considerably fewer than the number who used the tens 

grouping in Grouping Task 12; Structure Task 15 did not become nearly as easy as 

Grouping Task 12 until Grade 4. The number of children who recognised and used the fact 

that the red circle enclosed 100 marks [also part of Structure Task 15] was much smaller, 

and consistently smaller than the number of students who recognised the structure of 1000 

[Structure Task 11]. When prompted to consider the red circle [Structure Task 16] the 

number of children who used the enclosure of 100 marks was consistently below the number 

of those who used tens groupings in Grouping Task 12 or Structure Task 15. 
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(Unfortunately, there was no task in which students were simply asked to represent a three-
digit number; but such a task would probably be easier than Structure Task 11). One 
explanation for these discrepancies is that students have learned to interpret certain concrete 
materials (bags, blocks, bundles, etc.) representing the number system but have not reached 
the general level of understanding needed to interpret unfamiliar groupings (circled marks) in 
the same way. 

7.1.2 Arithmetic calculations drawing on place value knowledge 

Figure 12 reports the performance of three calculation tasks where students could or must 
have used their knowledge of place value. 

iw  

9 0 -  Find 9 more than grouped 52 

80 [Regrouping Task 2] 

7 0 -  Find 9 more than 52 - holistic 

6 0 -  strategy [Regrouping Task 2] 

50 •• Find 98 more than 245 
4 0 .  . [Regrouping Task 7] 
3 0 .   Find 98 more than 245 
20 •• 
1 0 - - 
04— -I—-' 

holistic strategy [Regrouping 
Task 7] 

1 Take 1498 from 10,000 loOies 
[Structure Task 13] 

Figure 72: Percentage of sample correctly performing place value calculation tasks 

By Grade 3 over 90% of the children were successful in adding 9 to the grouped collection 

of 52 shells [Regrouping Tasks 2]. However, up to Grade 4 the majority counted on 9 in 

ones and even in Grade 5 only 67% added 10 and subtracted 1 or otherwise made use of the 

base ten structure. 

Many strategies were used for adding 98 to 245 in Regrouping Task 7, but most children 
counted on in tens and then ones (counting strategy) or separated one or both numbers into 
places values and added each part separately (separation and aggregation strategies). The 
number of children who took advantage of the base ten structure to find more efficient 
methods (holistic strategies) increased from 11% in Grade 3 to 32% in Grade 6. These 
children (especially those in Grade 3, who had no instruction in subtracting three-digit 
numbers) were probably using methods they had invented themselves. 

Overall, very few children (none in Grades 3 to 5) were able to calculate the subtraction 

10000 - 1498 [Structure Task 13], although many more had apparently been able to 

recognise the value of a five-digit numeral [Structure Task 12]. 
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These results suggest that most students learn to follow various procedures which are based 

on the place value system, but have not understood the system deeply enough to invent 

alternative methods when appropriate or to deal with larger numbers outside their common 

experience. 

7.13 Significance of recursive grouping by tens 

Several tasks sought to find if children would spontaneously group by tens recursively in 

order to "make counting easier". These tasks (Structure Tasks 10,11 and 14) are to be 

distinguished from the tasks discussed so far, where a grouping by tens was given by the 

interviewer. The results are shown in Figure 7.3. It will be noted that the second part of 

Structure Task 14 was only asked of children in Grades 4 -6. 

Shells bagged in 10's [Grouping 
Task 11] 

Group 10 bags to form a box 
and 10 boxes to form a case 
[Structure Task 10] 

Suggest grouping marks in 10's 
[Structure Task 14] 

— - — - Suggest grouping marks in 
10* 10's [Structure Task 14] 

Grade Level 

Figure 73: Percentage of sample suggesting grouping by tens in various tasks 

The number of children suggesting grouping by tens for counting shells [Grouping Task 

11], or counting marks [Structure Task 14], show a gradual increase from about 20% in 

Grade 1 to about 60% in Grade 6. A range of grouping numbers were considered 

appropriate. Most of those who suggested grouping by tens could not offer a reason for 

their choice. A notable exception was given by Andrew, who responded: 

Andrew (Grade 1): About ten in each ... then we only have to put 10 tens to make 100. 

Given the use in schools of a variety of concrete materials to model the place value system 

all of which are, of course, based on grouping in tens - this is indeed a surprising result. It 

suggests that many children are not aware, even at the most basic level, of the purpose or 

usefulness of our place value system. 

The number of children suggesting recursive grouping by tens for packing lollies [Structure 

Task 10] or counting marks [Structure Task 14] was even smaller. It is again surprising that 

so few children are aware of this fundamental characteristic of our numeration system. 
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Results from Structure Tasks 1 and 6 would also seem to confirm that many children are 
unable to use the structure of the numeration system effectively. By Grade 2, most 
children's drawings of the numbers 1-100 [Structure Task 1] presented either a linear or 
array structure, but there was little change in the mix of visualisations from then until Grade 
6. Only 32% of the drawings in Grades 2 to 6 showed an array structure. In Structure Task 
6, children were asked to use a hundred square tofind the number to be added to 84 to make 
100. The number of children who were able tofind the answer without counting on in ones 
increased from 32% in Grade 3 to 79% in Grade 6. 

If the array structure of the numbers 1-100 is poorly known, it is not surprising that students 
have difficulty with larger numbers where grouping by tens is recursively repeated. 

7.1.4 Understanding the meaning of multiplication 

The action of grouping by tens, so basic to the place value system, is closely associated with 
the operation of multiplication. Recursive grouping by tens is linked with repeated 
multiplication and/or the exponential function. Three tasks (Grouping Task 7 and Structure 
Tasks 11 and 22) related to students' understanding of multiplication. The results are shown 
in Figure 7.4. Note that Structure Tasks 11 and 22 were only asked of children in Grades 3 
to 6. 

Trades 2 for 1 in order to 
collect like units 
[Grouping Task 7] 

Number of lollies in unit 
of 10*10*10 [Structure 
Task 11] 

Number of dots in 
(10*10)*(10*10) array 
[Structure Task 22] 

Figure 7.4: Percentage of sample correctly performing multiplication tasks 

The performance of children on Grouping Task 7 (calculating the result of trading two 

stickers for one) increased steadily from Grades 1 to 5. This task involved a multiplicative 

notion of ratio (Mulligan & Mitchelmore, 1996b). This task is similar to that of relating the 

values of successive places in a numeral, and the shape of the curve showing the profile of 

success on this task (see Figure 7.4) resembles that of several of the place value tasks shown 

in Figures 7.1 - 7.3. 

The task of calculating the number of lollies in 10 bags of 10 rolls of 10 lollies [Structure 

Task 11] has already been mentioned (see Figure 7.1): there is relatively little improvement 

between Grade 3 and Grade 6. Structure Task 22 involved a further recursion: the pattern 
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could be regarded as made up of 10 rows of 10 groups of 10 rows of 10 dots. Successful 
students invented several different strategies. For example, after they had determined that 
there were 100 dots in each square, some counting by 100s, 100 times; some counted by 
100s to find that there were 1000 in the first row of squares and then counted in 1000s, 10 
times; and some determined that there were 100 squares and multiplied 100 by 100. Most of 
the children in Grades 4 to 6 (89%, 89% and 100% respectively) recognised the pattern of 
100s, but many (72%, 61% and 37%) could not complete the calculation, that is, they were 
unable to cope with the recursion. In these three grades, only about one third of the 
successful students used the most sophisticated strategy of multiplying 100 by 100. 

Performance on Structure Task 22 vividly indicates that many children experience difficulties 
relating recursive grouping to multiplication. It may be conjectured that children have little 
experience with arrays or with multiplication. It is no wonder that they also have increasing 
difficulties coping with the place value system as the numbers become exponentially larger. 

The key aspects of children's development of structure in the number system are the 
recognition and use of: place value structure, recursive grouping by tens, and multiplicative 
structure. Results discussed here have shown that by Grade 6 children have a good 
knowledge of place value up to the thousands place provided familiar representations are 
used. Groupings of ten are not understood as part of a recursive system and place value 
beyond the thousand's place is not used by many Grade 6 children. The number system is 
not well enough understood by children in order for them to use the structure in mental 
computation nor to invent their own alternative methods for calculating with larger numbers. 
Many Grade 6 children do not identify multiplication as a strategy for quantifying an array of 
objects. This lack of recognition of structure means that children have increasing difficulties 
coping with numbers as they become larger. 

72 A DISCUSSION OF RESULTS IN RELATION TO OTHER STUDIES 

The key aspects of children's development of structure of the numeration system are now 

discussed in relation to other studies. The discussion will be organised according to the 

categories of tasks that were used: counting; number sense; grouping; notation and place 

value; regrouping and mental computation, and structure. 

The fundamental basis of numeration is the notion of treating a group as a unit (Cobb & 

Wheatley, 1988; Fuson, 1988; Steffe & Cobb, 1988). Hiebert and Wearne (1992) described 

children's understanding of numeration as "building connections between key ideas of place 

value such as quantifying sets of objects by grouping by 10 and treating the groups as 

units... and using the structure of the written notation to capture the information about 

groupings" (p. 99). Understanding of place value can be difficult and slow to develop for 
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children (Kamii & DeClark, 1985; Ross, 1989b). Boulton-Lewis (1993b) showed that 
children's levels of counting were significantly related to their knowledge of, and ability to 
explain, place value in the first three years of school. Other studies have focussed on 
structural aspects of numeration, identifying the child's ability to group and regroup 
composite units of ten and to relate this to a general structure of the base ten system (Cobb & 
Wheatley, 1988; Kamii, 1989). Jones et al. (1996) developed a framework for multidigit 
number sense which provides indicators that can be used to characterise children's thinking 
and to monitor their understanding with respect to clearly enunciated expectations. 

Researchers have reported on the intuitive capacity of young children in the pre-school and 
early school years to construct meanings for numbers (Hughes, 1986; Kamii & DeClark, 
1985; Ross, 1989a, b; Steffe, 1991a). As children's mathematics continues to develop 
through the primary school, they should acquire the mental images and connections that 
enable them to work with larger numbers and more complex mathematical operations in a 
meaningful way. However, research evidence has shown that these connections and 
understanding of procedures are often lacking in children's algorithms (Cobb & Wheatley, 
1988; Fuson, 1990a, b; Kamii, 1986) and it is thought that this reflects a lack of 
understanding of the number system. Children appear not to transfer their initial 
understandings of the number system to operations with numbers and other aspects of 
mathematics. 

There is extensive evidence (Fuson, 1986, 1992a, b; Fuson & Briars, 1990; Wearne & 

Hiebert, 1988) that many children do not make the connection between the partitioning of a 

number into tens and ones and the decomposition of numbers in written algorithms. Using 

multidigit numbers meaningfully requires understanding of how to compose and decompose 

these multidigit numbers into multiunit structures in which numbers are thought of as 

collections of objects or collections of collections of objects. It is suggested (Fuson, 1990b) 

that emphasis on two-digit number operations without trading, or delaying opportunities for 

interaction with numbers in the hundreds and thousands, encourages children to form 

misconceptions about the number system. The problem appears to be that many children 

base their number operations on the idea that numbers can only be added or subtracted, 

rather than an understanding of the number system based on multiplication. 

7.2.1 Counting tasks 

The results of the present study can be compared initially with those of Steffe and Wright. 

The children's responses from the first three counting tasks reported in Chapter 6 are 

analysed according to the stages of early arimmetical learning (Steffe, 1992; Steffe & Cobb, 

1988; Steffe, von Glasersfeld, Richards & Cobb, 1983; Wright, 1991b, 1994a, 1996). For 

the purposes of this study the two stages of tacitly- and explicidy-nested number sequences 
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are combined as the advanced number sequence (Wright, 1996). Explanations of the stages 
are set out in Table 7.1. 

Table 7.1: Stages of Early Arithmetic Learning 
Arithmetical stages 	 Explanations 
1. Perceptual counting 	 Children are limited to counting items they can perceive. 
2.	 Figurative counting Children count figural, motor or verbal unit items. They typically count 

from one in problem orientated contexts. 
3. Initial number 	 Children count abstract unit items and are said to have constructed 

sequence 	 numerical concepts. They typically count -on or down from a given 

number in problem orientated contexts. 


4. Advanced number 	 Children can conceptualise the numerosity of the whole and at least one 
sequence 	 part in a subtractive problem. They typically can choose the most 


appropriate subtractive strategy of counting-down-from or counting-

down-to in problem orientated contexts. They also use holistic 

strategies such as compensation, relating to a known result, and 

bridging tens. 


100-I 
O Stage 1 - Perceptual 

80 *£ counting 

60- s? •	 Stage 2 - Figurative 
counting 40 m L


:•:•:20- • Stage 3 - Initial number 
sequence FLL B_ _ , I ;  : " M H I Hi, •	 Stage 4 - Advanced 
number sequence 

Grade Level 

K 1 2 

Figure 75: Stages of early arithmetical learning: Percentage of sample at each grade 

achieving the counting stages 

It would be expected that the use of the advanced number sequence (stage 4) would soon 
become dominant in the higher grades (Figure 7.5). Wright's 1992 study (1994a) showed a 
strong growth in the attainment of higher stages by Kindergarten children involved in a year
long teaching experiment. The progress notably exceeded that of an earlier 1990 study 
where the children followed a regular instructional program. Interestingly, counting stages 
reached by children in the 1992 study after specially designed instruction showed 50% 
reaching the figurative counting stage, 35% reaching the advanced counting stage but only 
6% reaching the initial number sequence stage. Wright (19%, p. 50) also reports relatively 
large gains were made by the children who were initially the most advanced. In the present 
cross-sectional study the percentage of children at the initial number sequence stage 
progressed from 6% at Kindergarten, 46% at Grade 1 to 61% at Grade 2. A strong reliance 
upon counting-on skills seems to have developed with children in the cross-sectional sample. 
However the children in Wright's teaching experiment who underwent accelerated learning 
as a result of instruction were more advanced and used more sophisticated counting 
strategies. 
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The basis for Steffe's investigations (Steffe, 1992; Steffe & Cobb, 1988; Steffe, von 
Glasersfeld, Richards & Cobb, 1983; Wright, 1991b, 1994a, 1996) is the counting scheme, 
which is not limited to counting by ones but can be elaborated to include composite units. 
Counting multiples of a given number also involves the construction of these composite 
units. Many children apparently develop the skills for counting by twos and fives in Grades 
1 and 2 but this present study has shown that 94% of the Grade 2 children did not count by 
threes unless they used rhythmic counting (e.g. "one, two, three, ... four, five, six, ... " 
etc). Less than a third of Grade 2 children used their rhythmic counting skills to find the 
total number of objects in the collection. Double counting in conjunction with rhythmic 
counting probably involves a processing load that is too high for most children to cope with. 
In this study, a progression was shown from rhythmic counting the groups, without any 
means to keep track of the count of threes (at the end of Grade 1), to double counting (using 
fingers or at an abstract level) at the end of Grade 4. When the children completed the task at 
an abstract level, they either kept track silently or said they knew when to stop because "it 
has to be eighteen". There was shown to be very little difference in performance for 
rhythmic and double counting across Grades 4,5 and 6. 

7.2.2 Number sense tasks 

An ability to recognise the part-whole relationships of numbers 5 and 10 enables these 
numbers to be benchmark numbers (Bobis, 1996) for developing flexible and creative 
strategies for calculating with number. The high performance levels of Grade 2 and 3 
children in the novel situation of reacting to the incorrect written algorithm (Task 7), 
contrasted with their relatively low performance when using the part-whole relationships 
with ten and one hundred (Tasks 2,3,6, and 8). 

It appears from the present study that most Grade 1 and 2 children (96% and 78% 
respectively) are reliant on unitary counting strategies to add small numbers. These children 
did not recognise how they could use the ten frames to combine the two collections of dots; 
they appeared not to see the relationships between the numbers as represented by the 
collections of dots and the 'ten spaces' of the ten frames. By contrast, in an intervention 
study Bobis (1996) reported that after a year of instruction all of the children in two 
kindergarten classes were able to represent numbers from 0 to 10 using the ten frame and to 
give explanations that revealed an understanding of part-whole relationships. 

7.2.3 Grouping tasks 

A fundamental idea in understanding numeration is the ability to think in groups. The 

flexibility in dealing with quantities is needed when children construct ten as a structure 

composed of ones. Using ten as an iterable unit (Steffe & Cobb, 1988) means that one can 
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solve tasks by counting by tens and ones abstractly, that composite units of ten are 

constructed or deconstructed as required in mental calculation. The idea of units and 

multiunits (or units of more than one) plays an important role in the structure of the 

numeration system. The way children deal with the units of one and ten influences their 

understanding of larger numbers (Cobb & Wheatley, 1988; Steffe & Cobb, 1988). A child 

who uses ten as a singleton unit might be able to recite the decade numbers (skip count in 

tens) but makes no sense of the increments of ten. The unit of one and the unit of ten may 

co-exist but they are not coordinated. Children who coordinate the units and multiunits can 

use these units in mental strategies for operations on larger numbers. 

In a teaching experiment, Davydov (1982) showed that some first grade children were 

successful with a similar problem to the sticker problem (Grouping Task 7) but using 

containers of water that were either full or half full. Davydov's contention is that in this task 

children will only realise that the unit of measure is arbitrary and can be exchanged if they 

have a clear understanding of the abstract properties of quantity. It is suggested that 

children's difficulties with the operations on numbers can be explained by the assumption 

that all quantities are represented by units of one (a quantity of singleton units). The 

strategies of bridging ten, or adding ten and taking away one, rely on an ability to partition 

nine or ten in ways which make the combining sensible in terms of the numeration system 

and so children simultaneously construct these numbers as composite and singleton units. It 

is inferred that ten has been used as an iterable unit (Steffe & Cobb, 1988; Cobb & 

Wheatley, 1988) because the unit of ten, as well as the unit of one, are taken for granted 

without the need to count. 

It appears from the present study that the children are familiar with the use of grouping 

materials to represent number but many rely on unitary counting and do not have the 

partitioning skills to be flexible in their manipulation of number. Similar to the results in this 

present study, Ross (1986) reported children at Grades 2, 3 and 4 having difficulty with 

showing a non-canonical representation using Dienes blocks. Although this sample of 

children was more adept with using the pregrouped material to represent a 2-digit number 

than those children in the Ross sample, they had greater difficulty functioning 

simultaneously with the system of ones and the system of tens. This was shown by the poor 

performance in finding non-standard representations. 

For the uncovering tens and ones task (Grouping Task 13) in the present study the 

percentage of children who successfully counted-on by tens and ones as appropriate steadily 

increased through the Grades 1 to 4 (9%, 39%, 53% and 89% respectively). Labinowicz 

(1985) reported in a related task (where there was only a ten or group of ones uncovered at 

any one time) that 12 out of 29 Grade 3 children (41%) had successfully counted using the 

different units as needed when using Dienes' blocks. Some of these children had been given 
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a prompt to remind them that a 'long' was a 'ten' group. As with the Labinowicz study, 
children in the present study showed a range of unsuccessful strategies. Many children 
attempted to count all by ones or count-on from ten by ones (64% of Grade 1 children), and 
sometimes by counting the number of single units in a 'long' unsuccessfully. Only one child 
miscounted ones as tens. The majority of Grade 1 children could only count-on successfully 
by ones. Labinowicz (1985) stated that "they are likely to deal only with the face value of 
digits in different columns and to find answers by following a procedural rule for 
computation" (p. 269). Cobb and Wheatley (1988) reported that on the same uncovering 
task with a group of 14 Grade 2 children, five of the 14 children (36%) counted the tens and 
ones separately (ten as an abstract singleton unit) whereas only 3 children in the present 
study (21%) coordinated counting by tens and ones (ten as an abstract composite unit). This 
compares with 33% and 39% in this present study. In a similar task in the Labinowicz 
(1985) study, only five Grade 3 children (17%) were successful without reverting to count 
smaller units. A majority of children in the grades below Grade 4 could not coordinate the 
counting of hundreds, tens and ones and so could not deal with the multiple meanings of a 
hundred and ten. Labinowicz (1985) would predict that these children had a difficulty with 
using three-digit place value notation. 

7.2.4 Notation and place value tasks 

As the traditional teaching of numeration in Grades 1 to 3 focusses on the ability to read and 
write numbers and to point out place values of digits in any number up to one thousand, it is 
not unexpected that the children would show a high level of competency with recognising 
place values from ones to thousands. Clearly the children were much less competent when 
identifying place value of digits outside this range. Teaching practice in each of the schools 
in this study emphasised the use of Base 10 Material (Dienes blocks) which has four 
different sized blocks that are almost exclusively used to represent ones, tens, hundreds and 
thousands. Strong emphasis is put on handling the material and the transition from the 
material to conventional notation. When children are judged sufficienfly advanced in their 
learning of numeration, instruction focusses on computation and operations using concrete 
Base 10 material, pictures of these materials and the conventional algorithms. However, 
despite the use of these materials, many children in this present study did not develop even a 
basic knowledge of the numeration system outside the ones to thousands range by the end of 
Grade 6. It is possible that the emphasis on Dienes blocks as classroom materials and the 
limited interpretation of the component pieces in the instruction process influenced adversely 
the development of structure of the numeration system beyond the thousands place. 

In order to investigate children's understanding of place value, Ross (1986,1989b) probed 
the meanings children attribute to two-digit numerals through a series of digit-
correspondence tasks. It will be recalled from Chapter 3 that an earlier study of 60 second 
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through fifth grade children (Ross, 1986), 26 (43%) children were successful in giving the 
meanings of the digits in the number 25 when they were shown a collection of 25 sticks (not 
grouped in any way). The children who were successful described in a variety of ways that 
the 5 represented five of the sticks and the 2 represented the other twenty. Another twelve 
children thought that the individual digits had nothing to do with how many sticks were in 
the collection, fourteen described invented numerical meanings and eight thought that the 
digits were represented by the quantities of their face values. It was found that when the task 
was altered by representing the number 52 with a standard place value partitioning of base-
ten blocks (5 longs and 2 shorts) many more of the children (44 out of the 60) were 
successful. When 52 was represented using 4 longs and 12 shorts in a further task, the 
number of successful children dropped to 20. Similar results were found in two tasks where 
48 beans were partitioned in standard and non-standard partitionings. 

A follow-up study (Ross, 1989a, b) was designed to examine whether some children did in 
fact use the face value interpretation to assign meaning to individual digits. In this task 30 
Grade 3 children each grouped a collection of 26 objects into fours giving 6 groups of four 
and 2 left over and then were asked to give the meanings of the individual digits in terms of 
the material in front of them. Nearly half of the Grade 3 children related the digits to the 
matching prominent groupings and so incorrectly responded that the 2 in 26 stood for two of 
the objects and the 6 represented the six groups. 

This present study (Place Value Task 1) found that only 24 out of the 95 (25%) Kindergarten 
to Grade 4 children correctly gave total value quantities to each of the digits when asked the 
same digit correspondence task (non-standard groupings in 26). Only four children (4%) 
used the face value response of relating digits to the numerically related observable 
groupings but a further 55 children (58%) used another face value response where the 
meaning of each digit was given by the quantity of the face value of that digit (2 shells and 6 
shells) and the remaining objects did not account for any meaning. 

Although there were some differences in the way children responded to digit correspondence 
task over the three studies, it appears that it is not until Grade 4 at the earliest, that a majority 
of children have a clear understanding of the meaning of individual digits in two digit 
numerals. This must have implications for the development of understanding of the more 
complex larger numbers and for the ability to undertake mental computations or understand 
written algorithms. 

Many young children have difficulty with writing the numerals of numbers with zeros and in 
particular, interpreting the role of zero as a place holder. The present study resulted in 64% 
of Grades 1 through 4 children identifying '01' as one orfirst (Place Value Task 2) but only 
22% could give the meaning of zero as no tens. This compared with 74% of Grades 1 
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through 4 children in the Sierink and Watson study (1990) who identified '01' as one. 
However the Sierink and Watson study did not ask children for an explanation of the 
meaning of zero in the given label. Grades 1 and 2 children in the present study (73% and 
50% respectively) were much more likely to interpret '01' as ten or were unsure, than in the 
Sierink and Watson study (43% and 23% respectively). 

Meaning of '01' (Task 2) 

Meaning of 0 in tens place 
(Task 3) 

Remove 400 from calculator 
display (Task 10) 

Rename to give 23 (Task 15) 

Remove 80 000 from calculator 
display (Task 16) 

04
K
 1

 1 2
 1 1

 3
 1 

4
1

 5
 1 

6 

Grade Level 

Figure 7.6: Comparison of performance: Percentage of sample correctly interpreting digits or 

numerals on Place Value Tasks 2,3,10,15 and 16 

Figure 7.6 compares the performance of children on five digit and numeral interpretation 

tasks (Place Value Tasks 2,3,10,15 and 16). It can be seen that there was greater difficulty 

experienced by children with explaining a meaning for the zero as a place holder than any of 

the other tasks. Whereas success on Tasks 2,10,15 and 16 increased for children through 

the grades, success on Task 3 (meaning for the zero as a place holder) decreased to only 

42% for Grade 6 children. 

7.2.5 Regrouping and mental computation tasks 

Various research studies (Baroody, 1985; Beishuizen, 1993; Cooper, Heirdsfield & Irons, 
1996; Heirdsfield, 1995; Mcintosh, 19%; Thornton, 1978,1990) have shown that children 
use a variety of strategies in mental computation. Cooper, Heirdsfield and Irons (1996) 
reported that children used a variety of strategies and that these strategies changed across the 
interviews in the two year longitudinal study of 104 children starting at the beginning of 
Grade 2 (6 interviews). When solving 2-digit computation with regrouping, right to left 
separation overtook left to right separation or aggregation as the most successful strategies 
used by the children; aggregation strategies were seldom used. 

For Regrouping Tasks 4, 5,7, 10 and 11 in the present study, separation strategies were 
generally prefened over aggregation strategies. However, a substantial number of children 
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in Grades 4 and 5 used aggregation strategies, including both right to left and left to right 
progressions. Unlike earlier studies which used verbal or written questions (Beishuizen, 
1993; Cobb & Merkel, 1989; Cobb & Wheatley, 1988; Lindquist, 1989; Reys, Reys, 
Nohda, & Emori, 1995), or word problems (Carraher, Carraher & Schliemann, 1985; 
Cooper, Heirdsfield & Irons, 1996; Heirdsfield & Cooper, 1995), this present study 
required children to use a physical model for at least one of the numbers in the computation 
which could have encouraged some children to use aggregation. This meant that children 
focussed on one number and split the other in order to combine (or separate) the numbers. 

7.2.6 Structure tasks 

Children's progression to using two-digit numbers involves the new dimension of place 
value and is the start of the development of an understanding of number as part of a system. 
Whereas 'one' had been the basis of an unitary counting sequence now 'ten' is also an 
iterable unit (Fuson, 1990a, b; Jones, Thornton & Putt, 1994; Steffe & Cobb, 1988). As 
the number of digits increase the 'powers of ten' also become iterable units in the system. 
Although many studies (as outlined earlier in this chapter), have investigated grouping, 
regrouping and place value as related to two- and three-digit numbers there has not been a 
sufficient focus on how this system is consistent and infinitely extendable. The linguistic 
complexity of the numeration system for English-speaking students has been well 
documented (Fuson, 1990b; Labinowicz, 1985; Kamii & Livingston, 1994) and 
comparisons made with that of other language groups (Bell, 1990; Fuson & Kwon, 1992; 
Miura, Okamoto, Kim, Steere & Fayol, 1993). The development of understanding the 
numeration system is a complex process involving the construction of multiunit conceptual 
structures (Fuson, 1990a, b; Labinowicz, 1985; Kamii & Livingston, 1994; Steffe & Cobb, 
1988) and the formation of connections between these structures and the corresponding 
symbols. 

It was found that at Grades 2 and 3 there were a substantial number of children (50% and 
32% respectively) who were not successful in recognising and using groupings of ten to 
quantify a collection (Structure Tasks 14,15 and 16). Bednarz and Janvier (1988) reported 
a higher percentages of Grade 3 children (39% and 41% in two classes) than in this present 
study, not seeing the use for the marked groupings of ten from their control groups in a 
comparative teaching experiment. However, only 4% of their teaching experiment group 
(twenty three Grade 3 children) were unable to solve successfully the pertinence of grouping 
task after 3 years of participating in the class with a constructivist teaching approach. They 
also reported that 30% of the experimental group were unable to recognise and used two 
forms of grouping compared with none of the control groups. This compares with 16% of 
the Grade 3 sample in this present study who were unable to recognise and used two forms 
of grouping. Almost half of the Grade 3 children could recognise the pattern of hundreds in 
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an array of dots (Figure A.6, Appendix A) and 21% could use the multiplicative structure as 

represented in the array to quantify the dots. For example, these children recognised the 

pattern of hundreds, counted these as multiunits in tens or recognised the relationship to a 

pattern of thousands, and then counted to give ten thousand. This shows how some Grade 3 

children have developed an intuitive understanding of the way ten thousand is structured as 

ten to the power of four. 

7.3 SUMMARY 

It appears from this present study that many children in Grades 1 to 6 are familiar with 

concrete materials used to represent grouping of numbers, but still rely on unitary counting. 

They may show good performance on 2-digit calculations, but generally use poor methods 

and cannot extend their success to numbers with larger numbers of digits. There is in 

general a weak awareness of structure and, in particular, of the multiplicative nature of this 

structure. Nevertheless, some children acquire a good understanding of place value and 

develop their own efficient strategies spontaneously, confirming many similar findings 

among younger children (e.g., Cooper, Heirdsfield & Irons, 1995). 

The results emphasise the importance of units and multiunits (units of more than one) in 

understanding the structure of the numeration system. The way that children deal with the 

units of one and ten influences their understanding of larger numbers (Cobb & Wheatley, 

1988; Steffe & Cobb, 1988). A child who uses ten as a singleton unit might be able to recite 

the decade numbers (i.e., skip count in tens) but makes no sense of the increments of ten; the 

units of one and ten co-exist but are not coordinated. Only children who can coordinate the 

units and various multiunits can use these units in mental strategies for operations on larger 

numbers. 

In the present study, there were a substantial number of children in Grades 2 and 3 who 

were not successful in recognising and using groupings of ten to quantify a collection of 

objects. Bednarz and Janvier (1988) report a similar high percentage in regular Grade 3 

classes. Children will also not realise that multiunits are related and can be exchanged if they 

do not understand the abstract properties of quantity (Davidov, 1982), one of the conceptual 

underpinnings of multiplication. In a recent study, Clark and Kamii (19%) reported that 

although some children develop multiplicative thinking as early as Grade 2, most children 

still cannot demonstrate consistent thinking in Grade 5. The present study confirms these 

results. A substantial minority (about 20%) of the Grade 3 students had developed such an 

intuitive understanding of powers of ten that they could use the recursive multiplicative 

structure of the array of 10,000 dots to count the number of dots successfully. But by Grade 

6, there was still a significant number who could not even count 10 groups of 10 groups of 

10. 
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Children do not appear to make the connections between the key elements of the structure of 

the number system. The ideas of partitioning and grouping, the additive and multiplicative 

relations, the conceptualisation of place value and the conventions of notation are all basic to 

the structure of the number system. Most Grade 6 children have not made the connections 

between these elements which enables the generation of multiunits by the recursive relation 

of 'grouping by tens' and the corresponding generation of the notation system. 

The following chapter will provide an in-depth descriptive analysis of children's 

representations of the number sequence 1-100 (Structure Task 1). 
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CHAPTER 8 


CHILDREN'S REPRESENTATIONS AND STRUCTURAL 

DEVELOPMENT OF THE COUNTING SEQUENCE 1-100 


It will be recalled from Chapter 1, that this thesis is primarily concerned with children's 

understanding of the structure of the numeration system and how critical aspects of counting 

and grouping relate to the base ten structure. Children's proficiency with using the counting 

sequence depends on their awareness of the patterns within this sequence. As discussed in 

Chapter 3, Rubin and Russell (1992) considered using multiples of ten and one hundred as 

key landmarks in the number system. The overall structure is a recursive structure based on 

the pattern of tens within the sequence 1 to 100. That is, at the next level of structure, we 

have the pattern of hundreds within the sequence 1 to 1000, and so the system extends by 

building on the powers of ten. 

This chapter presents an in-depth, descriptive analysis of children's representations of the 

number sequence 1-100. It will be recalled that this was one of the tasks administered in the 

pilot study, and because the subjects produced a range of very rich and unconventional 

imagistic responses, it was considered important to include this task in the main study. The 

task was also administered to a sample of Grade 4 to 6 high ability children in an exploratory 

study which investigated links between their understanding of the numeration system and 

their representations of this number sequence (Thomas & Mulligan, 1995). Analysis of data 

from both samples was carried out in order to explore how the children structured their 

representations of 1-100 in developing understanding of numeration. Before discussing this 

analysis, a report is made of pilot classroom-based work carried out by the researcher which 

explored how a group of Grade 2 children conceptualised the pattern of tens in the counting 

sequence 1 to 100. 

8.1 BACKGROUND 


It will be recalled from Chapter 3 that using ten as an abstract composite unit is critical to 

children's understanding of the number system (Cobb & Wheatley, 1988; Steffe & Cobb, 

1988). The discussion of research identified that many children have difficulty using more 

than one grouping of number when counting (Denvir & Brown, 1986a, b), and that they 

often do not understand the structure of tens and hundreds (Thompson, 1982a, b). It is 

apparent that the numeration units of ten and one hundred are each constructed separately. 

Also children's ability to correctly read and write numerals and to name the number of tens 

or hundreds in a numeral have little relationship to their knowledge of these numeration 
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units. Thompson states that a shortcoming of his study was that there was no consideration 

of how children might construct a general understanding of whole number numeration. He 

went on to reflect that at some point children might establish an operational routine for 

creating numeration units "so that the need for an elaborate construction of each succeeding 

numeration unit is obviated" (p. 324). 

The importance of imagery in the construction of mathematical meaning has been 

investigated by various researchers (Brown & Presmeg, 1993; Brown & Wheatley, 1990; 

Presmeg, 1992; Reynolds & Wheatley, 1992; Thompson, 1996; Wheatley & Brown, 1994). 

Imagery is much more than the creation of mental pictures. Piaget and Inhelder (1967) 

distinguished three types of images: images associated with the creation of objects; images 

recording the process and outcomes of actions, and images that support reasoning. Pirie and 

Kieren (1992, 1994) suggest that the act of imagining itself influences our images. 

Thompson (1996) asserts that "mathematical reasoning at all levels is firmly grounded in 

imagery" (p. 267). Thompson further suggests that the two aspects of imagery that have a 

significant influence on the development of mathematical reasoning are a child's immediate 

understandings of an action or situation, and his or her development of mental operations. It 

is suggested that "internal, imagistic representation is essential to virtually all mathematical 

insight and understanding... interactions with external, imagistic representations are 

important to facilitating the construction of powerful internal imagistic systems in students" 

(Goldin & Kaput, 1996, p. 415). The role of dynamic imagery in mathematical reasoning 

has also received much attention (Presmeg, 1992; Brown & Wheatley, 1990; Thomas & 

Mulligan, 1995). 

Based on the idea that the relationship between different forms of representation can be seen 

through the presentation and solution of arithmetic facts (Dehaene & Cohen, 1995), Gray, 

Pitta and Tall have studied the role of imagery in basic number processing. They conclude 

that qualitatively different outcomes arise from numerical processing because children 

concentrate on different objects of thought or different aspects of the objects. Children 

choose what imagery to create from concrete and mental activity and it is suggested that this 

not only has consequences for the quality of the actions that follow but also affects the 

quality of the object which dominates the child's imagery (Gray & Pitta, 19%; Gray & Tall, 

1991, 1994; Pitta & Gray, 19%). While this notion is important in terms of the data 

reported here, these studies were not available at the time, and so did not influence the 

analysis that was carried out. 
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8.2 EXPLORATORY STUDY 

An exploration of children's visualisation of the number sequence 1-100 began with a 
classroom study on investigating how the pattern of tens within the counting sequence was 
conceptualised. This exploratory study was part of a program of professional development 
for practising teachers from one Catholic Primary School in country New South Wales. 
Children's work samples and anecdotal records were collected in order to evaluate 
mathematical understanding. These classroom recordings were used as evidence of 
understanding in numeration and focussed on identifying representations that children used 
to show the pattern of tens in the counting numbers. A class of Grade 2 children were asked 
to think about the pattern of tens in the numbers 1 to 100. They were then asked to draw a 
picture of what they saw. All children in the class participated in the study. The 
representations that children used influenced the researcher's thinking about the significance 
of children's representations in their conceptualisation of the structure of the number system. 
The following three drawings illustrate how the researcher was able to infer aspects of the 
children's understanding of number from their external representations. 

Emilie (Figure 8.1) showed the multiples of ten, each illustrated with tally marks. The 
pattern of tens is interpreted as counting by tens and each multiple of ten is illustrated with 
the appropriate number of tally marks which were meticulously counted and recorded. 
Although Emilie was familiar with the multiples of ten she used unitary counting in her 
recording. There is no notion of 'units often' within the recording. 
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Figure 8.1 Emilie (Grade 2) 

Evan (Figure 8.2) showed the 'add ten' relationship in a sequence of number sentences 
which elaborated each of the vertically recorded multiples of ten. The pattern of tens was 
shown with this quite sophisticated sequence of number sentences, each one showing a 
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connection between consecutive multiples of ten. In attempting to illustrate an 'adding ten' 
relationship for 100, the last number in the sequence, Evan incorrectly made an increment of 
another hundred to give two hundred. In contrast Victoria (Figure 8.3) related her imagery 
to classroom experiences of drawing arrays, although she actually showed 7 rows of 9 
blocks in a grid. Victoria illustrated the pattern of tens as a nine by seven array which 
showed a sense of 9 groupings (columns) of groupings of 7 (rows). This grid pattern 
relates to classroom experiences with the hundred square but without accuracy in drawing 
units of ten. 
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Figure 83 Victoria (Grade 2) Figure 82 Evan (Grade 2) 

These representations of the pattern of tens show diversity in children's thinking about the 
way ten becomes an iterable unit within the counting sequence. The external representations 
which are drawn and explained reflect a variety of ways that children 'see' grouping in equal 
lots of ten as part of the number sequence. It should be noted though, that the majority of 
the class did not illustrate the pattern of tens in their recordings, with many children not 
giving any recordings. It is inferred that these children did not have any imagery to describe 
pattern within the number sequence and either said there was no pattern or recorded part of 
the unitary number sequence. 

Because of the richness of the drawings produced by some of these young children, it was 
deemed useful to include this visualisation task in a larger Pilot Study (Chapter 4). Further, 
as described in Chapter S, the cross-sectional study also included visualisation tasks for the 
number sequences 1-100 and 1-1000. A range of visualisation tasks was also included in 
another related study incorporating a teaching program for groups of high ability children 
attending enrichment classes. 
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From the initial analysis of the Pilot Study data, it was considered that the analyses of 
children's representations could be based on the model for children's problem-solving 
competency structures proposed by Goldin (1983, 1987, 1988, 1992a, b). After 
preliminary coding and discussion about the representations of numbers 1-100 in terms of 
pictorial, ikonic, notational and structural aspects, the researcher discussed this analysis with 
Professor Gerald Goldin of Rutgers University in July 1993. Following his advice, the 
analysis of representations remained essentially in these categories, however it was 
considered important to distinguish between internal and external representations. In 
particular, the imagery given in the children's responses was able to be explained in terms of 
external signs from which inferences could be made about internal imagistic systems of 
representation. Goldin's model for children's problem-solving competency structures is 
further described in the next section. 

83 ANALYSES OF CHILDREN'S REPRESENTATIONS OF THE 
NUMBER SEQUENCE 1-100 

The analysis is based essentially on a model for children's problem-solving competency 
structures proposed by Goldin (1987,1988,1992a, b). However the methods of analysing 
imagery in numerical representations integrates aspects used by other researchers (Brown & 
Presmeg, 1993; Brown & Wheatley, 1989, 1990; Mason, 1992; Pirie & Kieren, 1994; 
Presmeg, 1986a, b). Although these researchers analyse data from different perspectives, 
they agree that imagery, in a variety of forms, plays a critical role in developing mathematical 
understanding. Research associated with children's representations has been discussed in 
Chapter 3 but will be summarised here to preview the discussion. 

Goldin's model distinguishes cognitive representational systems internal to problem solvers 

(a theoretical construct to describe the child's inner cognitive processing) from (external) task 

variables and task structures (Goldin & McClintock, 1984). This model is intended to help 

organise and explain observations of student actions, drawings and descriptions, or 

explanations, rather than to be a model of the mind (Goldin & Kaput, 1996). The construct 

of representation enables the description of what children can and cannot do; it helps the 

analysis of structural properties in mathematics and the effects due to the media in which 

external configurations are embodied. "One of the major challenges that theories of 

mathematics learning based on representation should address is that of modelling (the) 

constructive process, understanding the characteristics of external and internal 

representations that affect it, and facilitating its effective occurrence in students" (Goldin & 

Kaput, 1996, p. 409). 

Goldin further proposed that learning goals should be formulated in terms of the kind of 

internal systems of representation that support powerful problem solving. For example, 
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children are expected to 'internalise' our base-ten system of numeration and the associated 
processes for operations. They are expected to generalise and extend these understandings 
and processes to decimal fraction and algebraic systems. In order to do this, Goldin asserted 
that children need to develop powerful imagistic, heuristic and affective systems. The 
purpose of mathematical education is "to develop broad, powerful cognitive systems that can 
enable the student to grapple with new situations as they arise, to represent them internally in 
a variety of ways, and to think mathematically by making use of the representations" 
(Goldin, 1992b, p. 83). Goldin proposed that these internal systems develop through the 
three main stages of: inventive-semiotic; structural development, and autonomous stages. 
Children's cognitive structural development of numeration can be described by this model. 

In the structural development of the number system, the system of representing units (l's) 

must serve to drive the representation of assemblages partitioned into groupings of ten. The 

"ten", while still remaining ten ones, becomes an iterable "unit often". Similarly a system of 

"hundreds" is later constructed on the system on tens, and so forth (recursively). Children's 

conceptual structures for number words are now "multiunit conceptual structures in which 

the meanings or referents of the number words are collections of entities ... or a collection of 

collections of objects" (Fuson, 1990a, p. 273). This process is not just a verbal or 

notational one; the role of imagery in it is essential. 

Several other researchers (Mason, 1992; Pirie & Kieren, 1994; Presmeg, 1986) have also 

emphasised the importance of imagery and the development of imagistic systems. When 

analysing the role of imagery in the development of children's conceptual understandings, 

Presmeg (1986) identified five main types of visual imagery used by students: 

(i) concrete, pictorial imagery (pictures in the mind); 

(ii) pattern imagery depicting pure relationships; 

(iii) memory images of formulae; 

(iv) kinaesthetic imagery involving muscular activity, and 

(v) dynamic (moving) imagery. 

In describing how children use spatial stimulus, Mason (1992) distinguished between 

images that are eidetic (fully formed from something presented), and those that are 

constructed (i.e. built up from other images). The meaning-constructing process continues as 

the 'mental picture' is described, drawn, compared and discussed. He suggests that for 

students to access images they must actively process them, "looking through" rather than 

"looking at" the "mental screen", regardless of the mode of external representation. Imagery 

is also an important aspect of Pirie and Kieren's (1994) model for the growth of 

mathematical understanding. They describe 'image making' and 'image having' as early 

levels of understanding which can be observed. 'Image making', is the development of 
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mental representations from initial learning experiences. At the next level of 'image having' 
a learner is able to manipulate and use the image in mathematical thinking. 

Personal visuo-spatial representations of number (number-forms) were described long ago 
by Galton (1880). Seron, Pesenti, Noel, Deloche & Cornet (1993) suggest that the number-
form is a more accomplished development of a general disposition of people to encode 
numbers in a visual way. They conclude that number-forms are used to code the number 
sequence, and that the function (if it exists) of this phenomenon should be examined in 
number and calculation processing. Dehaene (1993) further proposed a functional model of 
number processing. This triple-code model assumes that there are three categories of mental 
representations in which number can be manipulated in the human brain. The first is a visual 
arabic number form, in which numbers are represented as strings of digits on an internal 
visuo-spatial scratchpad. Second there is a verbal word frame, in which numbers are 
represented as syntactically organised sequence of words. The meaning of numbers is 
represented only in the third category of the model, the analogical magnitude representation. 
Here the quantity or magnitude associated with a given number is retrieved and can be put in 
relation with other numerical quantities. 

The studies of students' representations cited above, indicate consistently that students use 
imagery in the construction of mathematical meaning. With a theoretical base provided by 
these researchers, we next describe the study and some of its outcomes. The observations of 
child actions are interpreted with respect to the developing theoretical model for mathematical 
learning and problem solving based on characterisitics of representations. The children's 
structural development of numeration is examined through their spontaneous representations 
of the counting sequence. 

8.4 METHOD 

8.4.1 Sample 

Data presented in this chapter are selected from children's responses in the pilot study and 
main cross-sectional study. As well, some examples are drawn from a high ability sample 
consisting of 92 children from Grades 3-6, assessed by teachers for participation in a 
Program for Gifted and Talented students from 84 country and city schools in NSW. The 
children were participants in a mathematics enrichment program conducted by the researcher 
over five two day workshops over a three year period. The workshops were conducted on 
weekends in May 1992, February, July and October, 1993, and May 1994. All the students 
were selected by classroom teachers on the basis that they were high achievers in 
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mathematics within their school. Students were interested in participating in the workshops 
and displayed positive attitudes to mathematics learning. 

8.4.2 The Visualisation Task 

It will be recalled that in one of the visualisation tasks, children were asked to close their 
eyes and to imagine the numbers from one to one hundred. Then they were asked to draw 
die pictures that they saw in their minds. They were also asked to explain the image and 
their drawing. The visualisation task was asked first, prior to other numeration tasks, so that 
responses could not be influenced by representations used by the researcher in other tasks. 
The analyses of the visualisation task in the Blot and Cross-sectional studies are discussed in 
Chapters 4 and 5 respectively. 

8.4.3 Procedure 

Children in each of the three samples were interviewed individually on selected numeration 
and visualisation tasks. Procedures for the Pilot and Cross-sectional studies have been 
described in detail in Chapters 4 and 5 respectively. 

After the high ability sample children had been interviewed individually on the visualisation 
task, they were questioned verbally about their attitudes to learning mathematics. Each child 
was encouraged to draw or explain in writing his or her mental image. If the child did not 
show any array type structural features in their recording, the researcher asked the child to 
think of the numbers from 1-100 in rows and columns, and draw or describe that image. 
Every child made an attempt to explain their thinking and no interviews were terminated. A 
selected set of eight numeration tasks was administered to each group of children at each 
workshop. Each group comprised approximately 15-16 children who were seated 
individually in a random pattern. The children were provided with paper and pencils, and 
told that they could record their thinking and their responses if they chose to do so. From 
the external representations produced by the high ability children, dynamic aspects of their 
internal representation were inferred, and from this in turn some description of the structural 
development of the system that has taken place. 

8.5 ANALYSIS OF CHILDREN'S REPRESENTATIONS 

In order to describe individual representations of number in as much detail as possible, the 
245 interview transcripts from the three samples, together with the external pictorial and 
notational representations produced by the children, were obtained and analysed. The 
external representations were considered with respect to three dimensions as described in 
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Chapter 5. These dimensions are: 
(a) the	 type of representation (pictorial, ikonic and notational), from which 

characteristics of each child's internal imagistic representation were inferred; 
(b) the level of structural development of the number system evidenced in the 

representation, and 
(c) evidence of the static or dynamic nature of the image. 

As stated earlier in this chapter, the discussions with Professor Gerald Goldin in 1993 
affirmed the method of analysis of the data based on the above three dimensions. Intercoder 
reliability was later established by an independent coder. A 3% discrepancy in coding 
representations was found and apparent errors corrected. Professor Goldin also suggested 
that his theory governing the construction of internal systems, through the three main stages 
of inventive-semiotic, structural and autonomous development, might be applied to the 
conceptual development in numeration. Although the data is not longitudinal, it was still 
deemed useful to investigate the data in relation to developing stages. 

In the following sections, children's external representations of the number sequence will be 

analysed according to the type of representation (pictorial, ikonic or notational), structural 

development and the static or dynamic nature of the representations. Further analysis will 

focus on how dynamic imagery in children's representations shows the linear or array 

structure of the numeration system. Finally examples of children's representations are used 

to illustrate cognitive structural development of the numeration system. 

8.6	 DESCRIPTION OF EXTERNAL REPRESENTATIONS OF THE 
NUMBER SEQUENCE 

The external representations of the number sequence were categorised according to three 
dimensions of type of representation, structural development and nature as static or dynamic. 
Examples discussed here are drawn from the pilot study, the cross-sectional sample and 
from the high ability group (see below). 

8.6.1 Types of external representations 

The type of representation was analysed according to whether it was pictorial, ikonic or 
notational. Pictorial recordings were defined as pictures drawn, or oral descriptions of 
objects given by a child, e.g. a drawing of a truck, a dinosaur labelled with the numeral 100, 
a description (with some drawings) of one hundred people each labelled with the numerals 1 
through 100, and a description of one hundred objects lying on the floor. Ikonic recordings 
were defined to include drawings of tally marks, squares, circles or dots that represented the 
counting sequence. Notational recordings were distinguished by the predominant use of 
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numerals drawn in various formations such as a number line, array, 100 cm ruler or vertical 
column. 

Figures 8.4 to 8.7 show the drawings of Anthony (Grade 1), Andrew (Grade 1), Candice 
(Grade 3), and Timothy (Grade 4) respectively. 
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Figure 8.4 Anthony (Grade 1) Figure 8 J Andrew (Grade 1) 
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Figure 8.6 Candice (Grade 3) Figure 8.7 Timothy (Grade 4) 

The truck drawn by Anthony (Figure 8.4), and reported in Chapter 4, reflects the association 
of an image of his dad's truck with the number 100. Anthony's reason for the image 
referred to both "how heavy it is... " and "cause my Dad's truck does a hundred". This 
suggests we can infer an inventive semiotic internal representation relating the truck-image to 
mass and speed. This is highly idiosyncratic, but quite meaningful. Andrew saw a picture 
of 100 shells (Figure 8.5) and explained as he drew, "some were in rows, some were in 
diagonals and some across like that". This was interpreted as an ikonic internal 
representation of number with some evidence of structural development of the number 
system. Analysis of Andrew's protocol showed some partial development of grouping, with 
capability of dealing with three or ten as a unit, but without the recursive capability of 
keeping track of how many units. 

Candice also drew an ikonic representation using squares, with some evidence of developing 
structure. Her internal representation was evoked by her prior experience of using square 
counters, and she attempted to draw these in groups representing the numbers four, five or 
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six. Candice explained that her drawing was "square counters to count with" and further 
evidence showed that she was unable to treat numbers as iterable units. Candice used a 
highly imagistic representation to explain how she saw numbers only "as squares" rather 
than notational symbols. Timothy's representation (Figure 8.7) similarly displayed little 
structure but in this case was notational, focusing on just the one numeral 9. This example 
alone gave insufficient evidence to interpret Timothy's level of structural development. 
However, in other portions of this protocol, Timothy revealed his counting capabilities 
explaining that "his numbers stopped at 9 and this was the biggest number". It is inferred 
from this idiosyncratic example a relatively undeveloped understanding of numeration. 

8.6.2 Structural development of the number system 

The structural development of the number system was inferred from structural elements (i.e. 
grouping, regrouping, partitioning and patterning) found in the recordings of the numbers 1 
to 100. Evidence of emerging structural development of number was found across a range 
of recordings. There were a number of cases where children showed no evidence of 
structure and these were typified by drawings showing a single object, a random pattern of 
dots or a single numeral. Emerging structure was typified by numerals organised in a 
counting sequence, recorded continuously in a horizontal, vertical, curved or spiral 
formation. Children showing evidence of a more developed multiplicative system recorded a 
multiple counting sequence, and marks or pictures in a partial or complete ten-by-ten array 
structure. 

Figures 8.8 to 8.11 show the drawings of Warren (Grade 2), Joshua (Grade 2), Cassie 

(Grade 4) and Kimberley (Grade 2) respectively. 
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Figure 8.8 Warren (Grade 2) Figure 89 Joshua (Grade 2) 
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Figure 8.10 Cassie (Grade 4) Figure 8.11 Kimberley (Grade 2) 

213 Children's Representations 



Warren, and Joshua (Figures 8.8,8.9) produced horizontal, linear structured representations 

of numbers. Warren's picture of a line of marks was ikonic, whereas Joshua used 

conventional notation writing the counting sequence of numerals counting-back from 100. 

Warren's ikonic representation was related to his concentration on counting "by ones" with 

the marks representing his internal process of counting on by ones. Further evidence from 

Warren's protocol revealed his ability to count in threes, but his mental image of this 

remained ikonic rather than seeing numerals. In contrast, Joshua was able to elaborate on his 

drawing by counting forwards and backwards, grouping in tens and using multiple counting 

efficiently. A high level of structural development is inferred from these examples. Cassie 

(Figure 8.10) wrote the numerals in counting sequence in a spiral configuration initially and 

then became random in sequence and spatial setting. From this is inferred an internal 

representation with a non-conventional structure of the number sequence. The structure in 

Kimberley's recording (Figure 8.11) was more explicit as she saw numbers in groups of 

ten, but could not identify the general structure explaining her drawing as "just circles". 

Figures 8.12 and 8.13 show drawings made by Mellissa and Robert, both from Grade 2. 

Figure 8.12 Mellissa (Grade 2) Figure 8.13 Robert (Grade 2) 

Figure 8.12 shows how Mellissa (imagery previously reported in Chapter 4) drew ten ten-

rods to produce another ikonic representation of grouping in tens. This gives evidence of a 

highly structural imagistic internal representation for the developing numeration system. 

Robert (Figure 8.13) drew a square and subdivided rows of separate squares, each square 

not being aligned to adjacent squares, and then recorded numerals for the numbers in 

squares, 1 to 17 being in the first row. This partial array displays an emerging notational 

structure, but Robert showed further evidence of difficulty with using ten as an iterable unit, 

saying: "you just put the numbers in the boxes as far as you can go ... and you count in 

ones". 
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Figure 8.14 Adrian (Grade 3) 
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Figure 8.15 Caedyn (Grade 4) Figure 8.16 Caedyn (prompted response) 

Adrian (Figures 8.14) produced the sequence of numerals where each numeral moved past 
very quickly and Caedyn (Figure 8.16) produced the numerals in a swirl moving anti
clockwise. When both children were asked to again close their eyes and think of the 
numbers in rows and columns, Adrian said he "couldn't see them in rows because they were 
moving so fast" whereas Caedyn produced an array with the sequence going down in 
columns of ten. Adrian's dynamic visualisation was so dominant that he could not organise 
the numerals as directed whereas it was inferred that Caedyn's internal representation of the 
numeration system involved a structure of ten tens. Caedyn's imagery was more flexible 
and a higher level of structure in the number system available to her can be inferred. 

8.63 Static or dynamic nature of the image 

The static or dynamic nature of the image was defined according to whether the recordings 
and the children's explanations of their representations described fixed or moving (or 
changing) entities. In the cross-sectional sample 3% of the children displayed dynamic 
images of the number sequence and in the sample of high achieving children 10% had 
dynamic images. Examples of dynamic images included numerals flashing one at a time, 
groups of numerals moving around, and numerals rolling down. Figures 8.17, 8.18 and 
8.19 show drawings produced by Nik (Grade 4), Jane (Grade 1) and David (Grade 4). 
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Figure 8.17 Nik (Grade 4) 
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Figure 8.18 Jane (Grade 1) Figure 8.19 David (Grade 4) 

Nik (Grade 4), from the high ability sample, explained that "big thick numbers were flashing 
andflying past, each taking 2 seconds" and indicated that all the numbers would have come 
if he had closed his eyes for long enough. Jane (Figure 8.18) recorded the number sequence 
using conventional notation but explained that she saw the numbers moving in a spiral 
formation "going on forever". Some evidence of a developing system of grouping by tens 
was revealed in her segments of number strings in tens (e.g. 71-80,81-90). David's picture 
(Figure 8.19) showed numerals flashing one at a time, using multiple counting in fives, up 
to 100. This dynamic notational model gave evidence of an emerging structure for the 
system of numeration. The formal notations of Nik, Jane and David were organised 
imagistically in a non-conventional manner. Analysis of their protocols showed that these 
images were highly creative and unrelated to these children's conventional experiences in the 
classroom. 

8.6.4 Summary 

Examples of children's representations of the number sequence 1-100 were discussed in 
relation to various descriptive categories. From these external representations evidence was 
shown of internal imagistic representations, structural development of the number system, 
and dynamic imagery. Children who were deemed to show evidence of structural 
development described imagery that reflected a multiples of ten counting sequence or 
pictures/marks/numerals in a ten-by-ten array structure. Sometimes these children (e.g. 
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Caedyn - Figures 8.15 and 8.16) had multiple images available to them and responded 
according to the prompt that might be given. Dynamic imagery often reflected highly 
creative thinking which was unrelated to the children's conventional classroom experiences. 

8.7	 DYNAMIC IMAGERY IN CHILDREN'S REPRESENTATIONS OF 
NUMBER 

Because of the unusual nature of dynamic imagery shown in children's representations, it 
was decided to analyse this data more explicitly. Questions were raised as to whether 
dynamic images are conventional or uniform in nature, and whether children have a range of 
images available. The examples of dynamic imagery are analysed according to whether they 
illustrate linear structure, emerging array structure, array structure or no structure. The 
analysis of the children's dynamic imagery raises questions regarding the nature of the 
imagery (conventional, idiosyncratic or creative) and whether there is a range of imagery 
available. 

8.7.1 Linear structure 

Figure 8.20 shows Clint's initial response to the visualisation task where "the numbers were 

moving around like people" whereas Figure 8.21 shows his response when asked to think of 

the numbers in rows and columns. Evidence of linear structure was demonstrated in Clint's 

external imagery. His initial response showed the linear sequence in a highly creative 

context and his prompted response demonstrated his conventional experiences with arrays 

but in a creative way showing a separation of odd and even numbers. David (Grade 6) 

described a pictorial representation of groupings of objects, 

... as I thought, everything suddenly became more numerous ... like first there was one of everything, 

then there was two of everything and then there were three trees, suns, cats, dogs, people and it kept on 

going. 

Figure 8.22 shows the 6 by 6 grid with numerals following a Fibonacci pattern that David 
drew when prompted to think of numbers in rows and columns. David's initial imagery 
focused on the cardinal aspect of the numbers as they appeared in sequence and the structure 
appearing in the array was creative and individualistic. There was no evidence of a 
numeration structure based on groupings of tens. 
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Figure 821 Clint (Grade 5) Figure 822 David (Grade 6) 

Rosalie (Grade 6) described "a screen moving one number at a time" (Figure 8.23). When 
asked to think of the numbers in rows and columns Rosalie drew a picture of a 10 by 10 grid 
with the numerals 1 to 100 in rows of ten. The initial visualisation was dynamic but this did 

, not suggest advanced structural development. When later prompted to think in rows and 
columns, Rosalie produced a conventional static array image for the number sequence. 
From this it is inferred that she is developing an autonomous structure of numeration. 
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Figure 823 Rosalie (Grade 6) 

Colin (Grade 5) described the numbers moving along a wave like line (Figure 8.24) and 

Christopher (Grade 5) explained: 


/ saw all the numbers from 1 to 100 beaming at me and lighting up like neon signs ... the numbers did 

this in order then disappeared when I opened my eyes ... they were moving around ... then they would 

flash ... once they had done that they disappeared. 

Figures 8.25 and 8.26 show the prompted responses from Colin and Christopher. Colin 

started at the bottom left corner of the grid and then filled in diagonals of increasing size 

moving up to the top right corner and Christopher displayed the numbers backwards from 
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100 to 1 in rows of ten. Both boys gave dynamic linear imagery for the initial 
representations and filled in the ten-by-ten grid in non-conventional ways. 
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Figure 824 Colin (Grade 5) 
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Figure 825 Colin (Grade 5) Figure 826 Christopher (Grade 5) 

Tessa (Grade 5) described the numbers: "walking round in circles ... circles getting bigger 

and bigger" and when prompted to think of the numbers in rows and columns, described 

them "like soldiers marching into rows with ten as the commander" (Figure 8.27). When 

prompted the linear structure was readily changed to dynamic imagery with a tens structure. 
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Figure 827 Tessa (Grade 5) 

The drawing produced by Tim (Rgure 8.28) did not reveal anything about his structure of 
the number system. He explained his image as "3-D numbersflying across in front of my 
eyes in order ... of 1 first ... and 100 last" and this was classified as a linear notational 
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image. When Tim was asked to close his eyes and think of the numbers in rows and 
columns he drew a conventional grid with the numbers 1 to 100 in rows of ten. 

e\ 

Figure 828 Tim (Grade 6) 

Both Tessa and Tim show a developing structure of numeration which is not applied 
consistently in the use of large numbers. Although they have the flexibility to think of the 
numbers in a ten tens structure, can operate successfully with numbers up to one thousand, 
and can rename numbers based on noncanonical representations, they have not made the 
connections which would enable them to consistently work with large numbers. 

8.7.2 Emerging structure 

Michelle (Hgure 8.29) gave an array structure for her initial visualisation of the numbers 1 to 

100. She described the columns of six as "moving up and down" such that she "was getting 

dizzy". Michelle's emerging structure was the sequence of numbers separated into columns 

of six. 
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Figure 829 Michelle (Grade 6) 

Leah saw the sequence of the multiples of ten presented in two columns. This changed to a 
sequence counting by tens from five. Other sequences were men obtained by starting from 
all other one-digit numbers. Leah drew a picture of a tree and explained that "without all the 
features of a tree, there would be no leaves, trunks, branches etc ... without numbers no 
hundreds." The developing autonomous nature of Leah's numeration structure was reflected 
by her understanding of the importance of tens and hundreds in the numeration system. 
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Figure 830 Leah (Grade 6) 

8.7.3 Array Structure 

Figures 8.31 and 8.32 show drawings produced by Renee and Ben. Renee (Grade 5) 
initially recorded a standard array which was as a "board ... moving to the right". Ben 
explained that he "saw ten rows of numbers each containing the set of ten numbers that come 
next in the sequence ... the rows move along to be replaced by the next few." Renee and 
Ben gave dynamic images of the number sequence which were otherwise conventional, 
reflecting their classroom experiences. 
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Figure 831 Renee (Grade 5) Figure 832 Ben (Grade 5) 

In contrast Edward (Figure 8.33 ) who described the numbers as "floating down in rows" 

showed a tens pattern in this initial visualisation. 
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Figure S33 Edward (Grade 6) 

Dario (Figure 8.34) gave an array structure for his initial visualisation of the numbers 1 to 

100. Dario described how he "first saw all the whole numbers ... then ... all the fractions all 

in a line doubling, tripling". Dario's imagery changed from a standard tens array to a further 

tens array based on tenths. 
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Figure 834 Dario (Grade 6) 

8.7.4 No Structure 

Michael (Figure 8.35) and Joel (Figure 8.36) both produced an apparently random cluster of 
numerals moving all over the place, although Joel showed his in the context of a road. 
When both children were asked to again close their eyes and think of the numbers in rows 
and columns, Michael (Figure 8.37) appeared to focus only on numerals, whereas Joel 
(Figure 8.38) produced columns for each decade as troops marching behind the general i.e. 
one hundred. Joel demonstrated a higher level of understanding of the numeration system 
than Michael through his awareness of the ten tens structure in one hundred. 
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F/gwre 837 Michael (Grade 5) Figure 838 Joel (Grade 5) 

Figures 8.39 and 8.40 show that Keryn (Grade 5) used no structure in either the initial or 
prompted visualisations of the numbers 1 to 100. For the initial visualisation she explained 
that "they keep changing from plus to times". When Keryn was given the rows and column 
prompt, she placed the numerals in a grid like formation and then ruled some grid lines but 
did not really have the grid formation available. Michael and Keryn (Figures 8.37 and 8.40 
respectively) demonstrated through their lack of structure (when prompted to think of rows 
and columns) that they had not developed a relational understanding of the numeration 
system. 
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Figure 839 Keryn (Grade 5) Figure 8.40 Keryn, prompted response 

In an analysis of the 77 Grades 5 and 6 children who were in the high ability sample 
(Thomas & Mulligan, 1995) it was found that there was a wider diversity of representations 
of the counting sequence 1-100 displayed than might have been expected, and there was a 
higher percentage of dynamic imagery (30%) than for the average/lower ability children. 

8.7.5 Discussion 

All the examples of representations showing dynamic imagery were made by children 
identified by their teachers as high-achievers in mathematics and with attitudes reflecting self-
confidence in their abilities. Although some of the spontaneous dynamic imagery did not 
reveal the pre-categorised structural characteristics, when the children were prompted, 
varying aspects of structure appeared, often in highly creative ways. For example, Joel 
initially showed no structure in his representations. When prompted to think of the numbers 
in rows and columns, he described the numbers "like soldiers marching in columns" (Figure 
8.38), a highly creative dynamic way of 'seeing' the ten by ten grid. Here a 0 to 99 hundred 
square was formed where the numbers were filled down in columns from 99 in the top left 
cell , one hundred having a dominating position outside the grid as the general. Tessa who 
had an initial linear image of the number sequence, also described a creative dynamic image 
of the array structure (Figure 8.27). Tim and Christopher, who also had initial linear 
images, described more conventional static images of the array structure when prompted. 
These children showed evidence of having access to a variety of internal images and of 
developing relational understanding of the numeration system. This suggests that children 
would benefit from a learning environment which exposes them to a range of representations 
and structures and where they are prompted to think in different ways. 

How does the external imagery produced by children in this visualisation task relate to their 
internal representations of structural features of the numeration system and to the 
construction of relational understanding? It is conjectured that it is possible to infer aspects 
of the child's internal imagistic representations of this structure, from the external 
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representations of the counting sequence 1-100. The resulting internal representations are 
fluid and changing, as evidenced by the transitory nature of imagery as learning occurs. It is 
further suggested that a child will benefit from having available a variety of images for use in 
representing mathematics, so that salient features of particular imagistic representations can 
be drawn on in a variety of situations, and flexibility of thought developed. 

8.8	 ILLUSTRATIVE EVIDENCE FOR COGNITIVE STRUCTURAL 
DEVELOPMENT 

In Sections 8.6 and 8.7 evidence was given of how images can be classified and then 
dynamic images were investigated for structural aspects of the number system. In the 
following section, 'snapshots' of imagery used by children, will be examined for 
developmental features. However, the quality and features of imagery used at any particular 
stage is of more importance in the discussion than the identification of the stage of 
development. The cross-sectional data used is purely illustrative of possible points of 
growth which lead to meaningful understanding of structure within the number sequence. 

As discussed in Chapter 3, many researchers have used the constructs of external and 
internal representation to describe the growth of mathematical learning and problem solving 
(Goldin, 1992a; Goldin & Kaput, 1996; Vergnaud, 1996). The premise is that a child's 
cognitive structural development is determined by the construction of internal systems of 
representation. Powerful internal representations of mathematical ideas or concepts develop 
through a complex transformation process which has been summarised by Goldin as having 
three main stages: inventive-semi otic; structural development; and autonomous. This model 
has been applied to conceptual development of early number (Goldin & Herscovics, 1991a), 
the exponential function (Goldin & Herscovics, 1991b), and multiplication and division 
(Mulligan & Mitchelmore, 1996). 

On the basis of the analysis of the data described in this chapter so far, it appears that the 
further the representational system has developed structurally, the more coherent and well
organised is the external representation of the numeration system, and the more competent 
the child is numerically. This section will examine further, aspects of children's 
representation that develop and change at various points. Figures 8.41 to 8.47 provide 
examples of how the imagery the children produced is interpreted as evidence for cognitive 
structural development associated with various stages of development of their internal 
representations of numeration. 
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8.8.1 Evidence of inventive-semiotic stage 

In the semiotic stage objects and ideas are labelled or named. The new characters, which are 
created, are used to symbolise aspects of prior representational systems. 

Figure 8.41 Andre (Grade 3) Figure 8.42 Magnus (Grade 3): 

Evidence for the Inventive Semiotic Stage of Construction 

Magnus drew a dinosaur with the number 100 on its back. This pictorial representation 
appears to reflect the association of the number 'one hundred1 with something large, an early 
semiotic act. There is no indication of a counting sequence, but rather a focus on the part of 
the question most significant to the child; at least one aspect of the child's semantic content of 
'one hundred' (size) is represented visually here. Andre drew idiosyncratic figures for each 
of the numbers 1 to 10, saying that "one faded, then two came - the people and animals 
moving around". In this pictorial representation, evidence was found not only of inventive 
'meaning' assigned to numerical symbols, but of an emerging awareness of sequence. (The 
drawing is restricted to the part of number sequence with which Andre is familiar, as 
evidenced by his performance on other tasks). Other examples that might show evidence for 
inventive-semiotic constructions are provided earlier in this chapter by Anthony (Figure 8.4), 
Timothy (Figure 8.7), Michael (Figures 8.35 and 8.37), and Keryn (Figures 8.39 and 
8.40). 

8.8.2 Evidence of Structural Development Stage 

During the stage of structural development, children use the symbolisation of the previous 
stage and prior representational systems as a template for the development of the new 
system. "Over time the new characters and configurations become no longer discrete, 
unrelated entities, but part of a larger structure (which is the new representational system)" 
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(Goldin & Kaput, 1996, p. 424). Patterns in the numeration system are obtained by 
reasoning from earlier additive, multiplicative and notational systems of representation. 

Fig. 8.43 shows Naomi's drawing of ten columns of ten circles. It is inferred from this 
ikonic representation that Naomi is developing some structure to her internal representation 
of the number sequence. It is a reasonable conjecture that her external representation has 
been driven by concrete experiences of grouping objects into tens, leading to the internal, 
imagistic capability of representing such groupings. 

Figure 8.43 Naomi (Grade 3) Figure 8.44 Summer (Grade 3) 

Evidence for the Structural Development Stage of Construction 

Summer's notational representation (Figure 8.44) also seems to display an attempt to fit the 

known linear sequence into an array structure. Groupings in the rows appear to relate to 

Summer's notion of the prominent numbers up to twenty, and we detect some semblance of 

decades. 

Both Naomi and Summer thus show evidence of structural development in their internal 
representational systems for the number sequence. Naomi represents objects as units, while 
Summer represents numerals, and they have used different scaffolds (groups of tens, and 
linear sequence) in their respective visualisations. Further examples of children showing 
evidence of structural development are given earlier in this chapter. Although there appears 
little evidence of structure in the drawing produced by Andrew (Figure 8.5) and Candice 
(Figure 8.6), their explanations indicate elements of structural development. The imagery 
used by Cassie (Figure 8.10), David (Figure 8.19), and Michelle (Figure 8.29) show non-
conventional structure of the number sequence. Linear structure is displayed in the imagery 
of Warren (Figure 8.8) and Joshua (Figure 8.9). The linear structures of Clint (Figure 
8.20), Rosalie (Figure 8.23), and Colin (Figure 8.24) all displayed elements of an array 
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structure when prompted to think of rows and columns. Kimberley (Figure 8.11) and 
Mellissa (Figure 8.12) produced ikonic grouping structure, although Kimberley was unable 
to verbalise the groupings of ten that she used. Tessa (Figure 827) and Tim (Figure 8.28) 
initially described linear structures which, when prompted, changed to a conventional 
hundred square, showing a non-consistent application of the tens structure. 

8.83 Evidence of autonomous stage 

The construction of autonomous representations and the quality of the relationships between 
formal configurations or symbols and other internal representations lead to meaningful 
understanding in mathematics. Relationships exist within the representational system 
created, and between systems, both internal and external. The new representational system 
now stands separate from the systems from which it was built, and can itself be used as a 
template for the development of other representational systems. 
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Figure 8.45 Cassie (Grade 4) 

Evidence for Advanced Stage of Structural Development 

Cassie (Figure 8.45) drew an array with the number sequence in rows of ten. She could 
describe the notational representation as, "a hundred is ten rows of ten". It is inferred that 
Cassie's internal representation involves both the notion of sequence and the idea of 
groupings by ten, including iteration of that idea relating to the notational system. Edward 
(Figure 8.46) also showed an array structure in his spontaneous imagery for the numbers 1 
to 100. When Edward was further asked to show the patterns of ten in the numbers, he too 
described one hundred as ten tens (Figure 8.47). 
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Figure 8.46 Edward (Grade 6) Figure 8.47 Edward (Grade 6) 


Evidence for Advanced Stage of Structural Development 


From the children's performance on other tasks in the study, there is evidence that Cassie 
and Edward are able to interpret numerical representations in a variety of contexts, so that as 
structured systems of internal, cognitive representation, they can reasonably be considered to 
have reached an autonomous stage of development. Other examples of evidence for 
developing autonomous constructions are provided earlier in this chapter by Leah (Figure 
8.30), Renee (Figure 8.31), Ben (Figure 8.32), and Dario (Figure 8.34). Although Leah 
did not use an array structure, she used a variety of skip counting patterns and displayed a 
notion of a hundred as a unit. It could possibly be inferred that Leah is developing an 
autonomous numeration structure. On the other hand, the autonomous nature of the 
structure described by Dario is much clearer, as it is applied to a further tens array based on 
tenths. 

8.8.4 Discussion 

In order to conceptualise the structure of the number sequence 1-100, it is necessary during 
the semiotic and structural development stages to build imagistic configurations of the 
sequence, initially identifying or naming elements of the sequence with an image. The 
images of Andre (Figure 8.41) and Magnus (Figure 8.42) are symptomatic of the numbers 1 
to 100, showing what is important to each of these children. During the stage of structural 
development, children are using external representations of the sequence which they come in 
contact with and other internal representational systems available to them, such as those 
associated with concrete materials, the number line, and the hundred square. The images 
they draw and describe are built up from the instructional situations involving concrete, 
semantic, and notational models. As these internal structures of the number sequence are 
developing, children's external representations may show invented imagery and 
unconventional detail. The examples of imagery of Naomi (Figure 8.43) and Summer 
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(Figure 8.44) have been created by the children in response to their concrete and notational 
experiences but, it is conjectured that, as yet, connections between iterable units of ten and 
skip counting in tens have not been formed. Evidence for an autonomous stage of 
development is shown by the notational imagery of Cassie (Figure 8.45) and Edward 
(Figure 8.46 and 8.47) where a hundred is described as ten groupings of ten and shown in a 
formation that illustrates the pattern within the number sequence. The internal representation 
of the number sequence 1-100 which is inferred for these children, provides a powerful 
system available for processing number operations. The method of mental calculation for a 
4-digit subtraction, explained by Edward (Figure 8.48), illustrates how he 'powerfully' uses 
the structure of number to solve the problem. 
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Figure 8.48 Edward's explanation of mental subtraction 

The formal symbolic system of representation for the number sequence 1-100, is the first 
'landmark' in internalising the base-ten system of numeration and the associated procedural 
rules for the operations on whole numbers. This can then be extended and generalised to 
larger numbers, decimal, fractional, and algebraic systems of formal representation. The 
internal representation of the number sequence is 'powerful' when it has applicability in a 
wide range of context, when it has 'meaning' in relation to many different other 
representations. Goldin (1987, 1992a) also stresses the importance of the associated 
heuristic systems of planning and decision making for effective problem solving and the 
development of powerful affect. 

Data taken in just one or two interviews do not permit the tracing of the process of structural 
development, i.e. the construction of internal representational systems, in individual 
children. But the variations observed across different children strongly suggests that such 
systems are not fully developed at any one time, but are built up over time. Previously 
developed representations may serve to provide students with a framework (scaffolding, or 

230 Children's Representations 



template) on which new, meaningful representational configurations can be fit (new 
knowledge), and new cognitive structures built. During the many steps that occur in the 

structural development stage of the numeration system, it is believed that the variety and 

meaningfulness ofthe images facilitates passage to an autonomous representational system 

of number. While the representations may be constructed in response to specific tasks, 
conceptual understanding of numeration must involve many experiences with the 
representation of numerical ideas, across many different tasks, with meaningful semantic 
relationships among them. It is postulated that it is the building up of flexible internal 
representational systems that is important, and that the learner has to make the connections 
inherent in her/his experiences in order for these constructions to take place. 

8.9 IMAGERY AND THE LEARNING PROCESS 


From the analysis of data described in this chapter, it appears that the active processing of 
images plays an important part in the development of the child's understanding of 
numeration. It is inferred that the examples shown here, revealed each child's unique internal 
constructions of the number sequence at a particular time. Since images are built up from 
words, notations, and other images, the representations do not become autonomous until the 
idea makes sense to the child. That is, numeration can be used itself as a tool in mental 
thinking, flexibly and independently of any particular image. To facilitate this, children's 
mental images should be described, drawn, compared and discussed. As their internal 
structures are developing, the children's external representations, both static and dynamic, 
may not correspond to conventional mathematics, or be uniform in nature from one child to 
the next. They should be expected to reflect each child's unique internal constructions at that 
time. Such a range of available images is important; the images being constructed so that an 
internal representation system that 'works' can be built up. Gray and Pitta (1996) suggest 
that when children do not develop internal representations, it is because they only create and 
utilise mental images which support their procedural thinking. It is further suggested that 
"mental manipulation with these objects places such strain on the limits of the child's 
working memory that it impinges against the continuing compression required for 
'constructive abstraction' and the development of perceptual thinking" (Gray & Pitta, 1996, 
p. 3-36). Thus the teaching/learning situation needs to provide opportunities for children to 
develop and represent structurally meaningful mathematics. 

8.10 SUMMARY 

The purpose of the analysis presented in this chapter was to describe in detail children's 
internal representations of the number sequence 1-100, and to investigate examples of 
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imagery to support this. From the external representations produced by the children, aspects 

of their internal representation have been inferred, and from this in turn, the structural 

development of the system that has taken place has been described. In general, a wider 

diversity of representations of the counting sequence 1-100 than might have been expected 

were found. This diversity occurred at each grade level, and across all samples. Evidence 

was found that the children's internal representations of numbers are highly imagistic, and 

that their imagistic configurations embody structural development of the number system to 

widely varying extents, and often in unconventional ways. Instances in which the formal 

notational symbols are organised imagistically were seen, as in Jane's spiral (Figure 8.18) 

and David's flashing numerals (Figure 8.19). 

Those children with dynamic visualisations were shown to have higher achievement on the 

numeration tasks than those with static visualisations (Thomas & Mulligan, 1995). What 

might be important here is the unconventional, creative nature of the visualisations rather 

than just that the image is dynamic or static. It should be noted that other responses might 

have occurred if the children had been prompted in other ways, for example, to imagine 

moving numbers, or to group the numbers in tens. Also, other representations may have 

been available to the children, with just one of several possible internal image configurations 

having been selected for recording or elaboration. Thus, only a partial description of each 

child's internal representational capabilities can be inferred. 

Many questions are raised but unanswered. Why do some children have the capability of 

spontaneously visualising the counting sequence in a dynamic way? Can static external 

representations represent ('carry the meaning') of dynamic internal representations? Further 

research is needed to shed light on how children construct their personal numeration 

systems, and how they structure them over time. On the basis of this present data, it is 

hypothesised that the further-developed the structure of a child's internal representational 

system for the counting numbers (e.g., kinaesthetic, auditory, or visual/spatial representation 

of the counting sequence that embodies grouping-by-tens) is, the more coherent and well

organised will be the child's externally-produced representations, and the wider will be its 

range of numerical understandings (Thomas & Mulligan, 1995). 

The analysis of children's visualisation of the number sequence 1-100 gives some insight 

into these children's cognitive structural development of many aspects of mathematics. 

Understanding how children construct an independent internal representation of one aspect 

of the numeration system which can be used efficiently and flexibly, and interrelates 

effectively with other systems, is critical. The use of culturally provided conventional 

systems like the Hindu-Arabic Numeration system depends upon children constructing these 

powerful autonomous internal representations. Examples of imagery provided in this 

chapter have given 'snapshots' of the developmental stages that it is suggested children may 
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progress through. It is through the kind of close observation of children's external 
representations and their use of imagery, used in this thesis, that further insights into how an 
understanding of the structure of the numeration system can be achieved. 
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CHAPTER 9 


CONCLUSIONS AND IMPLICATIONS 


The research problem investigated in this thesis focussed on children's understanding of the 
structure of the numeration system. A purpose of the study was to analyse key aspects of 
the numeration system and to determine which of these aspects were critical in assessing 
children's acquisition of structure. Several research questions were addressed concerning 
how children acquire and relate key aspects of the numeration system. What strategies do 
children use in solving numeration tasks involving the elements of counting, grouping, and 
structuring place value? How are critical aspects of counting and grouping related to 
understanding the base ten structure of the numeration system? These questions are critical 
because children need structural flexibility in counting and grouping in order to operate 
meaningfully with the number system. The role of visualisation of the counting sequence 
was also examined in view of children's representations of the numeration system. 

Four interrelated perspectives on research on children's understanding of mathematical 
concepts and processes were considered; a constructivist, developmental, cognitive, and a 
representational approach. The constructivist perspective employed throughout the study 
highlighted children's use of mathematical strategies and these were explored through task-
based interviews. Another important focus was the role of children's representations of 
counting and grouping in developing structural understanding of numeration. 

Researchers such as Bednarz and Janvier (1982; 1988), Boulton-Lewis (1993), Jones et al. 
(1996), Sinclair, Garin, and Tieche-Christinat (1992), and Thompson (1982a) have at 
different times called for further research into children's understanding of numeration. This 
present study was formulated in 1992 and aimed to amplify and extend the work of these 
researchers, particularly investigating the way children generalise the properties of multiunit 
numbers within the numeration system. 

The study was designed as a broad exploratory investigation: the main study employing task-
based interviews of a cross-sectional sample of 126 children across Grades K to 6. 
Additionally, a study of children's visualisation of the counting sequence 1-100 was 
included in the pilot and main study. A follow-up study of 92 high ability children was 
conducted to provide further evidence of children's representations of the counting sequence. 
This analysis was undertaken within the context of Goidin's (1987,1988,1992) model for 
children's problem-solving competency structures. The overall design of the study allowed 
the researcher to gain some new evidence about how children relate key aspects of the 
numeration system. 
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This concluding chapter discusses the main findings of the study and the implications for 
further research, teaching and learning. Limitations of the research are outlined in the early 
section of die chapter but are discussed more thoroughly in terms of the recommendations 
for research, and teaching and learning. 

9.1 CONCLUSIONS 

In view of the research questions described in Chapter 1 and the analysis of results, the 
conclusions will be described under two main headings: 

(i) children's understanding of the structure of the numeration system, and 

(ii) children's representations of numeration. 

The first part of the discussion will draw some tentative conclusions based on the results in 
Chapter 6 and on the analysis presented in Chapter 7 of the strategies children use in solving 
numeration tasks involving key elements of counting, grouping, and structuring place 
value. The critical aspects of counting and grouping are discussed in relation to 
understanding the base ten structure of the numeration system. 

The second aspect will discuss the analysis of children's representations of their visualisation 
of the number sequence 1-100 presented in Chapter 8. Children's external representations of 
die number sequence were analysed according to the type of representation (pictorial, ikonic 
or notational), the type of structural development, and die static or dynamic nature of die 
representations. Examples of children's representations were used to illustrate some aspects 
of die children's structural development of die numeration system. The conclusions drawn 
address the research questions concerning the key aspects of children's developing 
understanding of die numeration system and the role of imagery in facilitating structural 
flexibility when operating meaningfully witii number. 

9.1.1 Children's Understanding of the System of Numeration 

The study showed that the majority of children across Grades 1-6 recognised and used 
concrete materials to represent grouping of numbers, could identify place values of digits in 
numerals, and could successfully carry out algorithmic procedures. However, many relied 
on unitary counting in mental calculations and they did not necessarily use structured 
materials meaningfully. Children may have shown good performance on 2-digit mental 
calculations, but generally the use of unitary counting methods prevailed and so many 
children could not extend their successful use of small numbers to larger numbers. There 
was, in general, a weak awareness of structure and, in particular, of die multiplicative nature 
of mis structure. It appears from die data that additive relationships within the number 
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system are better understood and used than multiplicative relationships. The lack of 
conceptual understanding of the tens and hundreds structure of number means that the 
knowledge of ones, tens and hundreds that exists is not connected and so ability to work 
with larger numbers is restricted. On the other hand, some young children acquired 
elements of understanding of place value, represented number in ways that reflected elements 
of structure and developed their own efficient mental strategies. 

In the present study, children's counting abilities were shown to be of fundamental 
importance to developing understanding of the number system. By the end of Grade 2, most 
children still had a strong reliance on rhythmic counting but other children had developed 
double counting skills. For Grade 5 and 6 children mere was little discernible progress with 
rhythmic or double counting. At Grade 2 the majority of children (61%) were undertaking 
mental calculations using unitary counting methods for tasks involving 1-digit numbers. At 
Grade 4 there were still 11% of children using counting-on by ones in Regrouping Task 1 
and 33% of Grade 5 children using unitary counting in Regrouping Task 2, both tasks 
involving addition of a 1-digit number. The results of the number sense tasks also showed 
that children in Grades 2 and 3 exhibited low performance on using the part-whole 
relationships with ten and one hundred. 

The importance of units and multiunits (units of more than one) in understanding the 
structure of the numeration system was emphasised by the results of this present study. The 
way that children deal with the units of one and ten influences their understanding of larger 
numbers (Cobb & Wheatley, 1988; Steffe & Cobb, 1988). A child who uses ten as a 
singleton unit might be able to recite the decade numbers (i.e., skip count in tens) but makes 
no sense of the increments of ten — me units of one and ten co-exist but are not coordinated. 
The results of mis study show that 22% of Grade 5 children could not deal with two 
different units simultaneously in Grouping Task 7. Approximately a third of Grade 6 
children could not successfully add two 2-digit numbers mentally, where the first number 
was represented with pregrouped material (regrouping Task 7). A further third of the Grade 
6 children used counting or separation strategies. The existence of a significant number of 
children using counting and separation strategies could be explained by their strategies 
reflecting classroom instruction that commonly emphasises unitary counting in the early 
years and written procedures for algorithms in the later grades. 

In the present study, mere was a substantial number of students in Grades 2 and 3 (50% and 
32% respectively) who were not successful in recognising and using groupings of ten to 
quantify a collection of objects (Structure Task 15). Bednarz and Janvier (1988) reported a 
similar high percentage in regular Grade 3 classes. This result is important because only 
children who can coordinate units and various multiunits and have a sense of numbers in 
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relation to the nearest decade or century are able to use mental strategies for operations on 

larger numbers. 

It appears that many children can only recognise numbers in terms of additive properties 

rather than a combination of additive and multiplicative properties. Many children in this 

study did not realise that multiunits are related through multiplication or that they can be 

exchanged. In a recent study, Clark and Kamii (19%) reported that although some children 

develop multiplicative thinking as early as Grade 2, most children still could not demonstrate 

consistent multiplicative thinking in Grade S. The present study confirms these results. A 

substantial minority (about 20%) of the Grade 3 students had developed such an intuitive 

understanding of powers of ten that they could use the recursive multiplicative structure of 

the array of 10,000 dots to count the number of dots successfully. By Grade 6, however, 

there was still a significant number who could not even count 10 groups of 10 groups of 10 

(10 x 10 x 10). 

Many children were shown not to have developed a basic knowledge of the numeration 

system outside the ones to thousands range by the end of Grade 6. As Dienes blocks are 

used widely in New South Wales classrooms, it seems that there might be a connection 

between children's limited number knowledge and their experiences with the standard 

representations and interpretations of the blocks., Boulton-Lewis (1992) argued that concrete 

materials are only useful if "children clearly recognize the correspondence between the 

structure of the material and the structure of the concept" (p. 21). Although it was not a 

specific focus of this study, it appears that children who are familiar with Dienes blocks may 

have a limited understanding of the structure inherent in the blocks. Hence any use of the 

blocks to represent larger numbers may lead to greatly increased processing loads for the 

children. 

Children appear to have had little experience recognising or using arrays. There was over a 

third of Grade 6 children who could not use their recognition of die pattern of hundreds in an 

array of dots to quantify the whole collection (Structure Task 22). Many children did not 

know how to use recognised groups of one hundred objects to quantify a collection of 10 

000 objects. They did not make the connection that there was a need for equal grouping or 

multiplication in order to quantify the collection. 

The idea that the numeration system is additive in the simplest way (multi-digits represent the 

total of the face value of the digits) is very strong among Grade 1 children (95 5%) and 

persists with some children until Grade 4 (22%) and probably beyond (Place Value Task 1). 

A surprisingly large number of children (61% in Grade 2 through to 31% in Grade 6) was 

not able to suggest grouping by tens as a means of quantifying a collection (Structure Task 
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14). Many children seem slow to grasp these basic elements of grouping tens, formation of 
multiunits and the way the position of digits plays a role in terms of quantity. 

The item response analysis reported in Chapter 6 demonstrated the lack of progress generally 
made by children on many tasks over the Grades 4 to 6. The difficulties that children 
experience with understanding the structure of the number system was further highlighted by 
the decline in performance shown by Grade 6 children when counting using groups of 10 x 
10 (Task 15), repeated use of groupings of 10 (Task 10), suggesting the use of 10 groups of 
ten (Task 14), and interpreting zero as a place holder (Place Value Task 3). 

The results presented in this thesis show that understanding of numeration develops slowly 
over the Kindergarten to Grade 6 period and that very few children are able to generalise the 
multiplicative structure of the system. There is evidence of the use of abstract counting 
strategies by some Kindergarten children, but the performance on counting tasks in the 
upper grades is still poor for many children. Although the performance on the estimation 
task was consistently good across the grades, there was lower than expected performance on 
many number sense tasks because of a high reliance on counting strategies rather than 
pattern and holistic strategies. Although there was good performance on using grouping in 
quantifying and building grouped material, there were indications that children did not 
understand the significance of ten in the number system. This understanding is critical to 
their further development of understanding and use of the numeration system. 

Multiunits are constructed by the recursive grouping by tens and this process is linked to 
repeated multiplication and the growth of powers of ten. The results of the present study 
show that many children are unable to use the structure of the numeration system effectively. 
The study highlights the difficulties mat primary school children have in understanding the 
complex nature of the number system. Children do not understand the multiplicative 
relationships within the system that are the basis of place value structure and the patterns in 
the counting sequence. Children can count and group in tens but do not relate these 
processes to a base ten structure. 
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9.1.2 Children's Representations of Number 

From the analysis of children's representations as reported in Chapter 8, it appears that the 
active processing of images plays an important part in the development of the child's 
understanding of numeration. Children's images of the structure of the numeration system 
involve recognition of the patterns of powers of ten, the additive and multiplicative relations 
between components of a number when conceptualised in terms of the powers of ten, and 
the related place value notational system. 

From the drawings and notations of counting 1-100 produced by the children, aspects of 
their internal representations have been inferred. A wider diversity of representations of the 
counting sequence 1-100 than might have been expected were found. This diversity 
occurred at each grade level, and across both samples. Evidence was found that the 
children's internal representations of numbers are highly imagistic, and that their imagistic 
configurations embody structural development of the number system to widely varying 
extents, and often in unconventional ways. 

Children's representations of the counting sequence were found to be an indication of their 
developing structure of the numeration system. Although children from Grades 2 to 6 
showed no increase in the use of structure through the grades, the stages of structural 
development as proposed by Goldin (1992) were found to be useful in describing the 
differences between individual children. Initially children described imagery that focussed 
on a particular number (e.g. 100) or the numbers 1 to 9. In this semiotic stage objects and 
ideas are labeled or named. Following this, some notion of structural development is given 
by attempts to form the known linear sequence into some form of groupings (such as an 
array) with either pictures or numerals. Evidence of an autonomous stage is given when 
children describe imagery showing the tens structure and are able to discuss and interpret 
numerical representations in a variety of contexts. 

The study shows that the conceptualisation of the number sequence 1 to 100 is the first 
'landmark' in internalising the base-ten system of numeration. It is asserted that during the 
semiotic and structural development stages it is necessary to build imagistic configurations of 
the sequence. Since images are built up from words, notations, and other images, the 
representations of number may not become autonomous until key aspects of numeration 
makes sense. That is, numeration can be used itself as a tool in mental thinking, flexibly and 
independendy of any particular image. To facilitate this, children's mental images should be 
described, drawn, compared and discussed. As their internal structures are developing, the 
children's external representations, both static and dynamic, may not correspond to 
conventional mathematics or be uniform in nature from one child to the next. They should 
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be expected to reflect each child's unique internal constructions at that time. Such a range of 
available images is healthy; the images are constructed so that an internal representational 
system can be built up for that child that 'works'. Thus the teaching/learning situation needs 
to provide opportunities for children to develop and represent structurally meaningful 
mathematics. 

While children's representations may be constructed in response to specific tasks, conceptual 
understanding of numeration must involve many experiences with the representation of 
numerical ideas, and across many different tasks, with meaningful semantic relationships 
among them. It is postulated that it is the building up of flexible internal representational 
systems that is important, and that the learner has to make the connections inherent in her/his 
experiences in order for these constructions to take place. It appears from the analysis of 
data in this study that the further the representational system has developed structurally, the 
more coherent and well-organised is the external representation of the numeration system, 
and the more competent the child is numerically. 

On the basis of data presented in Chapter 8, several research papers have been developed in 
collaboration with Professor Gerald Goldin (Thomas & Mulligan, 1995; Thomas, Mulligan, 
& Goldin, 1994; Thomas, Mulligan, & Goldin, 1996). From this work there is evidence 
that the further-developed the structure of a child's internal representational system for the 
counting numbers (e.g., kinaesthetic, auditory, or visual/spatial representation of the 
counting sequence that embodies grouping-by-tens), the more coherent and well-organised 
will be the child's externally-produced representations, and the wider will be their range of 
numerical understandings. Further research is needed to shed light on how children 
construct their personal numeration systems, and how they structure them over time. 

9.2 LIMITATIONS OF THE CROSS-SECTIONAL STUDY 

Limitations of the cross-sectional study are discussed in terms of methodology and relate to 
data collection, the sample, classification schemes for strategy use and interview procedures. 
At the time of formulating the study, cross-sectional data collection for Grades K - 6 was 
considered appropriate to gain a broad picture of children's understanding of the number 
system. However, there is still a need for longitudinal data to show children's development 
of numeration over a number of years because patterns of growth in key processes need to 
be monitored. Also, the study did not take into account the effects of the particular 
instruction that children received across the seven classes in each of the eight schools. The 
types of experiences that children may have had with various concrete materials could 
influence the ways that they responded to the tasks. Also, the eight schools may not be 
typical of schools generally in Australia. There were also limitations in a study of this type 
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on the length of time taken for each interview and the number of interviews that could be 
undertaken. 

Chapter 8 provided many examples of children's representations of number as part of this 

exploratory and descriptive study. Although the study involved large numbers of children, it 

was not designed or intended as a controlled experiment permitting immediate generalisation. 

The methods of inferring aspects of children's internal representations from their externally 

produced representations are still exploratory, and future studies will need to be subject to 

further tests of validity and inter-researcher reliability. Further, data taken in just one or two 

interviews does not allow tracing the process of construction of internal representational 

systems in individual children. Longitudinal studies are needed to trace the development of 

numerical representations more systematically. 

In spite of these limitations, there is growing evidence in this study that structural aspects of 

numeration associated with number sequences, groupings by tens, recursive grouping and 

equal grouping structures are critical for understanding the structure of the numeration 

system. Also the analysis of representations shows that understanding of the number system 

is reflected by children's visualisations of the number sequence. 

93 IMPLICATIONS FOR FUTURE RESEARCH 


While this study has extended our understanding of children's lack of structure in terms of 

the numeration system, several considerations for further research are advanced. These are 

discussed in terms of: (i) the research methodology; (ii) children's variations and 

inconsistencies in performance across grades; (iii) further exploration of the use children 

make of imagery in the construction of numerical relationships, and (iv) investigation of 

children's representational systems including the affective domain. 

The cross-sectional study employed task-based interviewing as an effective method of 

determining children's solution strategies and why the strategies were used. Although this 

method was time consuming, a more thorough analysis of children's developing 

understanding of the numeration system was ascertained than would have been possible with 

paper and pencil tests, or procedures using whole class testing. It is therefore suggested that 

further studies should employ task-based interviewing given the wealth and clarity of the 

information that was obtained in this study. This could be conducted using smaller samples 

as case studies over a period of time, now that a knowledge base about how children develop 

understanding of the numeration system is becoming more coherent. 

As discussed in the limitations of the study, the range of task objectives and structures was 

suitable and adequate for children in the age range used. However, there is scope for far 
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wider use of tasks probing visualisation of number properties, for example, asking children 
what they visualise between zero and one, or the values of the positions in a numeral (place 
value). There is more research needed to ascertain how children's visualisations reflect their 
internal representations of numeration (Gray & Pitta, 1996). 

Since data analysis was completed for the present study two related studies have been 
conducted and longitudinal data are presently being analysed. A study at Rutgers University 
involves the mathematical development of 22 children in Grades 3-6 from New Jersey. 
Task-based interview data were gathered during 1992-94, and are presently being analysed 
(Goldin & Passantino, 1996). At Macquarie University a study involving 120 Australian 
children in Grades 2-3 is analysing children's construction of numerical relationships 
(Mulligan, Mitchelmore, Outhred & Bobis, 1996; Mulligan, Mitchelmore, Outhred & 
Russell, 1997). It is anticipated that these studies will shed further light on key aspects of 
the numeration system, clarifying how children's internal systems of representation develop. 

9.4 IMPLICATIONS FOR TEACHING AND CURRICULUM 

9.4.1 Implications for teaching and curricula 

In the present study, it was found that children have difficulties with using numeration as a 
number system and this could be a result of limited instructional experiences. Common 
teaching practice focusses on the numbers 1 to 1000 (the limits of the usual representations 
with Dienes blocks) and algorithm-related techniques using place values separately. There is 
an emphasis in instruction on multiplication procedures, but children are not sufficiently 
exposed to the range of meanings of multiplication and division in various contexts. 
Multiplication and division need to be more closely linked, and more experiences bringing 
out the recursive nature of repeated groupings need to be provided. 

Simply asking for die expanded form of numbers, as so often happens in class exercises, is 
not sufficient to develop the necessary understanding of structure. The grouping and 
regrouping tasks showed that many children have not constructed the system of tens out of 
the system of ones and then the system of hundreds out of die system of tens, and so on. 
Many children could not extend the structure or produce it in the structure tasks, and were 
unable to construct the structure of 10 x 10 x 10 x 10 as 100 x 100 or 1000 x 10. There 
was also some evidence that they could not partition numbers meaningfully into components 
based on place values. More investigation is needed of how children naturally group and 
partition numbers. Ten is a natural grouping number for children but one hundred is not. It 
appears that children have a natural affinity for grouping in fives and tens (fingers), but 
when the system needs to be extended they do not readily use the recursive process of 

243 Conclusions and Implications 



grouping of groupings. Furthermore it seems that children cannot visualise the extension of 
the numeration system, that is, they are not able to generate the next multiunit through 
multiplying or dividing by ten. 

At the time that children are being taught place value of hundreds and thousands, they should 
also be acquiring and relating multiplicative skills to multiunit values in the numeration 
system - but the focus of instruction is on addition and subtraction algorithms. Place values 
as multiunits need to be constructed through using multiplication by 10 as a recursive 
relation. Children may be learning multiplication and division tables but are not necessarily 
learning how to extend the grouping structure of the numeration system. If we have 
evidence that children in Grade 3 do not have an equal grouping structure for multiplication 
and division, then we can explain their lack of understanding of the base ten structure which 
requires groupings of groupings of groupings of ten. This recursive structure is far more 
difficult to imagine or represent than simple equivalent groups, which can be readily 
represented using repeated addition (Mulligan & Mitchelmore, 1997). 

If place value is just learned as assigned values for the positions and not as a multiplicative 
relationship (Rubin & Russell, 1992), then the learning of place value is compartmentalised. 
Multiplication is related to partitioning - the need to partition numbers into equal groups. In 
dealing with the numeration system it is necessary to partition one hundred into ten groups of 
ten as well as a thousand into ten groups of a hundred. Therefore it is asserted that the basis 
of developing the structure of numeration should be on multiplicative grouping structures 
and not only on counting strategies that relate to computation. 

Could it be that there is too much emphasis in the early years on addition and not sufficient 
on multiplication as it relates to partitioning and grouping? The focus of the work with 
Dienes blocks is usually on addition and subtraction and not on equal groupings. The 
problem is also that Dienes blocks are structured to easily reflect the values of ones, tens, 
hundreds and thousands; in order to use them to extend the system, one needs to rename the 
pieces or to build extra, imaginary pieces. This is not commonly done in classrooms. 
Students must see concrete embodiments (like Dienes blocks) and the notational system as a 
reflection of each other (Thompson, 1992). This raises the question, of whether children 
should do addition and subtraction with Dienes blocks, as well as learning written 
algorithms, before multiplicative groupings. Perhaps young children need to experience 
more activities that use multiplicative structures, for example, groupings of groupings 
leading to the notion of powers. 

On the basis of the analysis of representations, children might be encouraged to construct 
images of the numeration system and to represent these images (Wheatley & Brown, 1994). 
This might be encouraged at the same time as they are counting, grouping, adding, 
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multiplying, regrouping, and using place value, zero as a place holder and powers of ten. 
Through this process, children build up a sense of numbers being part of a consistent and 
infinitely extendable system that can be represented using their own internal system. 

Children's understanding of the elegance and power of the structure of the Hindu-Arabic 
numeration system must contribute greatly to their efficient use of number. An appreciation 
of the power of the base ten system develops over an extended time as children construct an 
understanding and the system eventually becomes transparent. The base ten structured 
numeration system is multiplicative, using powers of ten as multiunits of the system. This 
successive repetition of the process of forming ever larger place values for each multiunit is 
then reflected in both the verbal and notational structures of number. A child's competence 
with counting, using equivalent groups and regrouping is the basis of multiplicative 
structures, and for working with units and multiunits. Research reported in this chapter 
shows that many young children need more active help in developing an adequate 
understanding of the structure of the numeration system. 

Many researchers have pointed out that teaching practices do not take account of children's 
ways of understanding their experiences in the classroom. "Shortcomings of traditional place 
value instruction are that it focuses only on the cardinal aspects of one ten, two tens, etc. and 
completely overlooks the relationship between the system of tens and that of ones ... " 
(Kamii, 1986, p. 84). This present study shows that instruction also overlooks the 
relationship between the system of hundreds and that of tens; that the multiplicative structure 
of the number system needs to be addressed in curricula and instruction. Fuson (1990a) 
argues that certain characteristics of textbooks "contribute to the failure of U.S. children to 
build adequate multiunit conceptual structures" (p. 274). Bednarz and Janvier (1986, p. 23) 
assert that traditional teaching, by ignoring the sources of errors, frequently consolidate or 
accentuate cognitive difficulties. Teaching practices need to take account of what children 
know. 

As discussed in Chapters 2 and 3, a multidigit number-sense framework was developed by 
Jones, Thornton, and Putt (1994) and extended by Jones et al. (1996). The framework 
enables multidigit number learning to be traced across five levels of thinking: pre-place value; 
initial place value; developing place value; extended place value, and essential place value. 
Level 5 requires that number sense be demonstrated through flexible approaches to mental 
calculations involving 3-digit numbers. On the basis of this present study it is suggested that 
the framework should be extended to include a level which is characterised by the movement 
from flexible use of numbers up to 1000 to an awareness that this same flexibility can be 
applied to larger numbers. This can be attributed to the recursive way that further multiunit 
values and the associated place values are incorporated into the number system. It is argued 
that this Level 6 (system place value) would incorporate the constructs of counting, 
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partitioning, grouping and number relations as a system. Counting on or counting back by 
any power of ten and partitioning larger numbers would be possible because of awareness of 
the generalised number system. The multiplicative recursive process of generating the 
multiunit values, and hence the values of position in numerals as movement is made to the 
left, would be the basis of regrouping and renaming representations for larger numbers. 
Ordering and estimation involving larger numbers would then be possible because of the 
awareness of the structure of number. 

Further research is needed investigating children's structural development of the numeration 
system. With the extension of the framework for nurturing and assessing multiunit number 
sense (Jones et al., 1996) beyond 4-digit numbers, an instructional program could be 
planned and implemented in class settings to investigate how children might construct 
numeration as a generalised system. 

9.4.2 Implications for assessment 

Analysis of the task-based interview data in this present study has highlighted the complexity 
of the process of understanding children's thinking. Pencil and paper tests give only an 
indication of possible difficulties that children might be experiencing. Clinical assessment is 
a process of finding out how children are constructing mathematical concepts and processes. 
It is not enough for teachers to simply observe children's responses; it is essential to know 
what to look for and then how to interpret this information in the context of the child's 
developing range of ideas. 

The questions on early numeration described in this present study attempt to capture the 
processes that children go through in developing an understanding of the number system. 
Furthermore, the assessment of children's spontaneous and idiosyncratic mathematical ideas 
can reveal the limits of their cognitive capabilities that may otherwise never be detected. 
There are implications for the role of task-based interviews in classroom assessment 
practices and how assessment might be integrated into the teaching/learning program. 
Assessment must provide accurate descriptions of individual children's representations, 
concepts and processes, and problem-solving methods, whether they are partially or fully 
developed. It should also be "reflective, allowing the student not only to grapple with 
mathematical discovery and conceptual constructions but to reflect on these processes" 
(Goldin, 1993, p. 82). Children's self-descriptions of their mathematics and how they use 
their mathematics in the context of life experiences is a critical part of this process. 

There is a growing body of research that shows how children construct and represent 
mathematical ideas in their own way. As well, it is known that children interact as they 
contribute mathematics to the learning situation. The real challenge for professionals is how 
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to interpret and make sense of children's own mathematical ideas in order to help them 
further develop their understandings. 

The results of the present study highlight the importance of children developing arithmetical 
strategies (Wright, 1991a, b) in the first years of schooling. The Count Me in Too 

Numeracy Project (NSW Department of School Education, 1997) being conducted in 160 
New South Wales schools provides a learning framework for developing children's mental 
arithmetical strategies which are based on counting skills. The results of the present study 
supports the increased emphasis on counting and decade related strategies mat are being used 
in this Project. 

Some aspects of the approach used in this present study have been implemented in an 
assessment program for children bridging the transition from primary to secondary 
schooling. The Year 7 Mathematics Recovery Program (Thomas & Donaldson, 1995) was 
developed to cater for the needs of Grade 7 children with difficulties using place value and 
multidigit numbers. This program for children entering secondary school is designed to: 

(i) identify students who are having difficulties with numeration; 
(ii) carry out 1:1 diagnostic testing with the identified students, and 
(iii) structure recovery teaching packages which suggest appropriate activities and 

direction for instruction in understanding the number system using on-site teachers. 
The initial project involved CSV - Mitchell teacher education staff, Year 4 BEd students, and 
staff and Year 7 students at three local high schools. It was designed and implemented in a 
fully collaborative manner with all non-student members having input in the design and 
implementation of the assessment phase. However, there was only limited success in 
implementing the follow-up teaching phase. The Year 7 Mathematics Recovery Program is 
continuing with further focus on die teaching phase. This program has demonstrated how 
individual task-based assessment can be used effectively to program appropriate work for 
children entering secondary school who have problems in understanding numeration. 

The results of this study have highlighted the importance of task-based interviews in 
classroom assessment practices. Although national and state-based initiatives in assessment 
are becoming more focussed on standards and achievement of outcomes as shown by the 
National Mathematics Profiles (Australian Education Council, 1993) and the National 
Numeracy Benchmarks (Curriculum Corporation, 1997) there is a recognition of the 
importance of clinical assessment and teacher judgement in gaining explicit and systematic 
assessment information (Mulligan & Thomas, 1995). While paper and pencil testing in 
numeracy may be inevitable given current government priorities, the need for appropriate 
alternative forms of assessment has been recognised by education authorities. 
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9.5 CONCLUSION 

In conclusion, this study has focussed attention on the key aspects of children's 

understanding of the numeration system. Conclusions drawn from this research provide 

more insight into the complexities of children's developing understanding of the 

multiplicative recursive structure of the numeration system. It appears that children do not 

develop sufficient understanding of numeration as a system; what is needed is for children to 

make the connections between the range of representations for multiunit numbers being 

used. Key components of counting, partitioning, grouping and number relations, and the 

visualisation of structure need to be considered more critically. Strategies that children use to 

solve numeration tasks are too often based on unitary counting and very few Grade 6 

children are able to use the holistic strategies that derive from the structure of the number 

system. Children's representations of counting frequently reflects a lack of structure, 

grouping is not sufficiently linked to the formation of multiunits, and additive rather than 

multiplicative relations dominate the interpretation of multidigit numbers. Further research 

might focus on a more holistic approach to investigating children's mathematical processes. 
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