REFERENCES

Allardice, B. S. (1977). The development of written representations for some mathematical concepts. Journal of Children's Mathematical Behavior, 1(4), 135-148.

Anghileri, J. (1989). An investigation of young children's understanding of multiplication. Educational Studies in Mathematics, 20, 367-385.

Australian Education Council (1990). A National Statement on Mathematics for Australian Schools. Carlton, Vic: Curriculum Corporation.

Australian Education Council (1994). Mathematics - A curriculum profile for Australian schools. Carlton, Vic: Curriculum Corporation.

Baroody, A. J. (1985). Mastery of basic number combinations: Internalisation of relationships or facts. Journal for Research in Mathematics Education, 16(2), 8398.

Baroody, A. J. (1987). Children's mathematical thinking. New York: Teachers College Press.

Baroody, A. J. (1990). How and when should place-value concepts and skills be taught? Journal for Research in Mathematics Education, 21(4), 281-286.
Baroody, A. J., \& Ginsburg, H. P. (1986). The relationship between initial meaningful and mechanical knowledge of arithmetic. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 75-112). Hillsdale, NJ: Lawrence Erlbaum.

Bednarz, N., \& Janvier, B. (1982). The understanding of numeration in primary school. Educational Studies in Mathematics, 13, 33-57.

Bednarz, N., \& Janvier, B. (1985). The use of models in the construction of numeration: the evolution of representations towards an efficient symbolism. In L. Streefland (Ed.), Proceedings of the Ninth Annual Conference of the International Group for the Psychology of Mathematics Education (pp. 283-287). Noordwijkerhout, The Netherlands: PME.
Bednarz, N., \& Janvier, B. (1988). A constructivist approach to numeration in primary school: results of a three year intervention with the same group of children. Educational Studies in Mathematics, 19, 299-331.
Behr, M. J., Harel, G., Post, T., \& Lesh, R. (1994). Units of quantity: A conceptual basis common to additive and multiplicative structures. In G. Harel \& J. Confrey (Eds.),

The development of multiplicative reasoning in learning mathematics (pp. 121176). Albany, NY: State University of New York Press.

Behr, M. J., \& Hiebert J. (1988). Number concepts and operations in the middle grades. Reston, VA: National Council of Teachers of Mathematics. Hillsdale, NJ: Lawrence Erlbaum.

Behr, M. J., Lesh, R., Post, T., \& Silver, E. (1983). Rational number concepts. In R. Lesh, \& M. Landau (Eds.), Acquisition of mathematical concepts and processes (pp. 92127). New York: Academic Press.

Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction up to 100 in Dutch second grades. Journal for Research in Mathematics Education, 24(4), 294-323.

Bell, A., Costello, J., \& Kuchemann, D. (1983). A review of research on mathematical education Part A: Learning and teaching. London: NFER / Nelson.

Bell, A., Swan, M., Onslow, B., Pratt, K., \& Purdy, D. (1986). Diagnostic teaching: Teaching for long term learning. Nottingham, UK: Shell Centre for Mathematical Education.

Bell, G. (1990). Language and counting. Some recent results. Mathematics Education Research Journal, 2(1), 1-14.

Bell, M., \& Burns, J. (1981). Counting and numeration capabilities of primary school children: A preliminary report. In T. Post \& M. P. Roberts (Eds.), Proceedings of the third Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 17-23). Minneapolis: University of Minneapolis.

Bentley, P. A. (1987). Defense of the child's play method for teaching the place value notation concept to elementary and preschool children. ERIC Document 291492.

Bereiter, C. (1968). Arithmetic and mathematics. Belmont, CA: Fearon Publishers.
Bergeron, J. C., \& Herscovics, N. (1990). Psychological aspects of learning early arithmetic. In P. Nesher \& J. Kilpatrick (Eds.), Mathematics and cognition (pp. 3152). Cambridge: Cambridge University Press.

Bideaud, J., Meljac, C., \& Fisher J. (Eds.) (1992). Pathways to number: Children's developing numerical abilities. Hillsdale, NJ: Lawrence Erlbaum.

Bishop, A. (1989). Review of research on visualisation in mathematics education. Focus on Learning Problems in Mathematics, 11(1), 7-15.

Bobis, J. (1991). The effect of instruction on the development of computational estimation strategies, Mathematics Education Research Journal, 3, 17-29.

Bobis, J. (1993). Visualisation and the development of mental computation. In B. Atweh, C. Kanes, M. Carss \& G. Booker (Eds.), Proceedings of the Sixteenth Annual Conference of the Mathematics Education Research Group of Australasia (pp. 117122). Brisbane: Mathematics Education Research Group of Australasia.

Bobis, J. (1996). Visualisation and the development of number sense with Kindergarten children. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 17-33). Adelaide: Australian Association of Mathematics Teachers.

Booker, G., Irons, C., \& Jones, G. (1980). Fostering arithmetic in the primary school: Numeration. Dickson, ACT: Curriculum Development Centre.

Boulton-Lewis, G. (1993a). An assessment of the processing load of some strategies and representations for subtraction used by teachers and young children. Journal of Mathematical Behaviour, 12, 387-409.

Boulton-Lewis, G. (1993b). An analysis of the relation between sequence counting and knowledge of place value in the early years of school. Mathematics Education Research Journal, 5(2), 94-106.

Boulton-Lewis, G. (1996). Representations of place value knowledge and implications for teaching addition and subtraction. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 75-88). Adelaide: Australian Association of Mathematics Teachers.

Boulton-Lewis, G. (1997). Children's strategy use and interpretations of mathematical representations. In H. M. Mansfield, N. A. Pateman, \& N. Bednarz (Eds.), Young children and mathematics: Concepts and their representations (pp. 133-150). Adelaide, SA: Australian Association of Teachers of Mathematics.

Boulton-Lewis, G., \& Halford, G. (1992). The processing loads of young children's and teachers' representations of place value and implications for teaching. Mathematics Education Research Journal, 4(1), 1-23.

Boulton-Lewis, G., Wilss, L., \& Mutch, S. (1996). Representations and strategies for subtraction used by primary school children. Mathematics Education Research Journal, 8(2), 137-152.

Brainerd, C. J. (1978). The stage question in cognitive development theory. The Behavioral and Brain Sciences, 2, 173-213.

Brown, D. L., \& Presmeg, N. C. (1993). Types of imagery used by elementary and secondary school students in mathematical reasoning. In I. Hirabayashi, N. Nohda, K. Shigematsu, \& F. L. Lin (Eds.), Proceedings of the Seventeenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 137-144). Tsukuba, Japan: PME.

Brown D. L., \& Wheatley, G. H. (1989). Relationship between spatial ability and mathematical knowledge. In C. A. Maher, G. A. Goldin \& R. B. Davis (Eds.), Proceedings of the Eleventh Annual Meeting for the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 143148). New Brunswick, NJ: Rutgers University Center for Mathematics, Science and Computer Education.

Brown D. L., \& Wheatley, G. H. (1990). The role of imagery in mathematical reasoning. In G. Booker, P. Cobb \& T. de Mendicutti (Eds.), Proceedings of the Fourteenth Annual Conference of the International Group for the Psychology of Mathematics Education (p. 217). Oaxtapec, Mexico: PME.

Brown, M. L. (1981). Place value and decimals. In K. M. Hart (Ed.), Children's understanding of mathematics: 11-16. London: John Murray.

Brownell, W. A. (1935). Psychological considerations in the learning and teaching of arithmetic. In W. D. Reeve (Ed.), The teaching of arithmetic: The tenth yearbook of the National Council of Teachers of Mathematics (pp. 1-31). New York: Teachers College, Columbia University.

Bruner, J. (1962). The process of education. Cambridge, MA: Harvard University Press.
Burns, M. (1989). Teaching for understanding. In P. R. Trafton \& A. P. Shulte (Eds.), New directions for elementary school mathematics. Reston, VA: NCTM.

Carpenter, T. P., (1986). Conceptual knowledge as a foundation for procedural knowledge. In J. Hiebert (ED.), Conceptual and procedural knowledge: The case of mathematics (pp. 113-132). Hillsdale, NJ: Lawrence Erlbaum.
Carpenter, T. P., Ansell, E., Franke, K. L., Fennema, E., \& Weisbeck, L. (1993). Models of problem solving: a study of kindergarten children's problem solving processes. Journal for Research in Mathematics Education, 24, 428-441.

Carpenter, T. P., Coburn, T., Reys, R., \& Wilson, J. (1978). Results from the first mathematics assessment of the National Assessment of Educational Progress. Reston, VA: NCTM.

Carpenter, T. P., Corbitt, M., Kepner, H., Lindquist, M., \& Reys, R. (1981). Results from the second mathematics assessment of the National Assessment of Educational Progress. Reston, VA: NCTM.

Carpenter, T. P., \& Fennema, E. (1990). Developing understanding of multi-digit operations. In K. Fuson, and T. P. Carpenter (Eds.), Learning and teaching place value and multidigit addition and subtraction (pp. 43-50). Report of a Conference, Madison, WI: Wisconsin Center for Education Research, University of WisconsinMadison.

Carpenter, T. P., \& Fennema, E. (1992).Cognitively guided instruction: Building on the knowledge of students and teachers. International Journal of Educational Research, 17, 457-470.

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C., \& Loef, M. (1989). Using knowledge of children's mathematics thinking in classroom teaching: An experimental study. American Educational Research Journal, 26, 499-531.

Carpenter, T. P., Fennema, E., \& Romberg, T (Eds.) (1993). Rational numbers: An integration of research. Hillsdale, NJ: Lawrence Erlbaum.
Carpenter, T. P., Hiebert, J., \& Moser, J. M. (1982). Cognitive development and children's verbal arithmetic problems. Journal for Research in Mathematics Education, 13, 83-98.

Carpenter, T. P., \& Moser,. J. M. (1983).The acquisition of addition and subtraction concepts. In R. Lesh \& M. Landau (Eds.), Acquisition of mathematical concepts and processes (pp. 7-44). New York: Academic Press.

Carpenter, T. P., \& Moser,. J. M. (1984).The acquisition of addition and subtraction concepts in grades one through three. Journal for Research in Mathematics Education, 15(3), 179-203.

Carpenter, T. P., Moser, J. M., \& Romberg, T. (Eds.) (1982). Addition and subtraction: A cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum.

Carraher, T. N. (1985). The decimal system: understanding and notation. In L. Streefland (Ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 288-303). Utrecht: Research Group on

Mathematics Education and Educational Computer Centre, State University of Utrecht.

Carraher, T. N., Carraher, D. W., \& Schliemann, A. D. (1985). Mathematics in the streets and in school. British Journal of Developmental Psychology, 3, 21-29.
Carraher, T. N., Carraher, D. W., \& Schliemann, A. D. (1987). Written and oral mathematics. Journal for Research in Mathematics Education, 18(2), 83-97.

Carraher, T. N., \& Schliemann, A. D. (1990). Knowledge of the numeration system among pre-schoolers. In L. P. Steffe \& T. Woods (Eds.), Transforming children's mathematics education, (pp. 135-141). Hillsdale, NJ: Lawrence Erlbaum.
Clark, F. B., \& Kamii, C. (1996). Identification of multiplicative thinking in children in grades 1-5. Journal for Research in Mathematics Education, 27(1), 41-51.

Clements, D., \& Callahan, L. (1983). Number or prenumber foundational experiences for young children: Must we choose? Arithmetic Teacher, 31(3), 34-37.

Clements, M. A. (1982). Visual imagery and school mathematics. For the Learning of Mathematics, 2(3), 33-39.

Cobb, P. (1987). Information-processing psychology and mathematics education - A constructivist perspective. Journal of Mathematical Behaviour, 6, 3-40.

Cobb, P. (1988). The tension between theories of learning and instruction in mathematics education. Educational Psychologist, 23, 2, 87-103.

Cobb, P. (1991). Reconstructing elementary school mathematics. Focus on Learning Problems in Mathematics, 13, 2, 1-28.

Cobb, P. (1996). Supporting young children's development of mathematical power. Paper presented at the Eighth International Congress on Mathematical Education, University of Seville, Spain.

Cobb, P., \& Bauersfeld, H. (Eds.) (1995). The emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale, NJ: Lawrence Erlbaum.
Cobb, P., Boufi, A., McClain, K., \& Whitenack, J. (1995). Reflective discourse and collective reflection. In W. Atweh \& S. Flavel (Eds.), Proceedings of the Eighteenth Annual Conference of the Mathematics Education Research Group of Australasia. Darwin, NT: MERGA.

Cobb, P., Jaworski, B., \& Presmeg, N. (1996). Emergent and sociocultural views of mathematical activity. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer
(Eds.), Theories of mathematical learning, (pp. 3-20). Mahwah, NJ: Lawrence Erlbaum.

Cobb, P., \& Merkel, G. (1989). Thinking strategies: Teaching arithmetic through problem solving. In P. Trafton (Ed.), New directions for elementary school mathematics. Reston, VA: National Council of Teachers of Mathematics.

Cobb, P., Perlwitz, M., \& Underwood, D. (1996). Constructivism and activity theory: A consideration of their similarities and differences as they relate to mathematics education. In H. Mansfield, N. Pateman, and N. Bednarz (Eds.), Mathematics for tomorrow's children: International perspectives on curriculum. Dordrecht: Kluwer Academic Publications.

Cobb, P., \& Steffe, L. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14, 83-94.

Cobb, P., \& Wheatley, G. (1988). Children's initial understandings of ten. Focus on Learning Problems in Mathematics, 10, 3, 1-28.

Cobb, P., Wood, T., \& Yackel, E. (1990). Classrooms as learning environments for teachers and researchers. In R. B. Davis, C. A. Maher, \& N. Noddings (Eds.), Constructivist views on the teaching and learning of mathematics (pp. 125-146). Reston, VA: National Council of Teachers of Mathematics.

Cobb, P., Yackel, E., \& Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23 (1), 2-33.

Cockcroft, W. H. (1986). Mathematics counts. London: HMSO.
Confrey, J. (1985). Towards a framework for constructivist construction. Proceedings of the Ninth International Conference for the Psychology of Mathematics Education (pp. 477-483). Utrecht: Research Group on Mathematics Education and Educational Computer Centre, State University of Utrecht.

Confrey, J. (1991). Learning to Listen: A Student's Understanding of Powers of Ten. In von Glasersfeld, E. (Ed.), Radical Constructivism in Mathematics Education, 111138. Dordrecht: Kluwer Academic Publishers.

Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach to multiplication and exponential functions. In G. Harel \& J. Confrey (Eds.), The development of multiplicative reasoning in learning mathematics (pp. 291-330). Albany, NY: State University of New York Press.

Confrey, J., \& Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26, 135-164.

Confrey, J., \& Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26, 66-86.

Cooper, T. J., Heirdsfield, A., \& Irons, C. (1993). Mental computation strategies for addition and subtraction algorithms. In B. Atweh, C. Kanes, N. Carss, \& G. Booker (Eds.), Contexts in mathematics education, Proceedings of the Sixteenth Annual Conference of the Mathematics Education Research Group of Australasia (pp. 197200). Brisbane: Mathematics Education Research Group of Australasia.

Cooper, T. J., Heirdsfield, A., \& Irons, C. (1995). Year 2 and 3 children's strategies for mental addition and subtraction. In B. Atweh \& S. Flavel (Eds.), Galtha, Proceedings of the Eighteenth Annual Conference of the Mathematics Education Research Group of Australasia (pp. 195-202). Darwin: Mathematics Education Research Group of Australasia.

Cooper, T. J., Heirdsfield, A., \& Irons, C. (1996). Children's mental strategies for addition and subtraction word problems. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 147-162). Adelaide: Australian Association of Mathematics Teachers.

Curriculum Corporation (1997). Draft numeracy standards. Canberra: Benchmark Project, Curriculum Corporation.

Daintith, J., \& Nelson, R. D. (Eds.) (1989). The Penguin dictionary of mathematics. London: Penguin.

Davis, R. B. (1983). Complex mathematical cognition. In P. Ginsburg (Ed.), The development of mathematical thinking, (pp. 254-290). New York: Academic Press.

Davis, R. B. (1984). Learning mathematics: The cognitive science approach to mathematics education. London: Croom Helm.

Davis, R. B. (1990). Discovery learning and constructivism. In R. B. Davis, C. A. Maher, \& N. Noddings (Eds.), Constructivist views on the teaching and learning of mathematics, (pp. 93-122). Reston, VA: National Council of Teachers of Mathematics.

Davis, R. B. (1992). Understanding "understanding". Journal of Mathematical Behaviour, 11, 225-241.

Davis, R. B. (1996). Cognition, Mathematics, and Education. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer (Eds.), Theories of mathematical learning (pp. 285302). Hillsdale, NJ: Erlbaum.

Davis, R. B., \& Maher, C. A. (1993). What do we do when we "do mathematics"? In R. B. Davis, C. A. Maher, \& N. Noddings, (1990). Constructivist views on the teaching and learning of mathematics. Monograph Number 4, Journal for Research in Mathematics Education. Reston, VA: National Council of Teachers of Mathematics.

Davis, R. B., Maher, C. A., \& Noddings, N. (1990). Constructivist views on the teaching and learning of mathematics. Monograph Number 4, Journal for Research in Mathematics Education. Reston, VA: National Council of Teachers of Mathematics.

Davydov, V. V. (1982). The psychological characteristics of the formation of elementary mathematical operations in children. In T. P. Carpenter, J. M. Moser \& T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective, (pp. 224-238). Hillsdale, NJ: Lawrence Erlbaum.

Davydov, V. V. (1991). A psychological analysis of the operation of multiplication. In L. Steffe (Ed.) \& J. Teller (Trans.), Psychological abilities of primary school children in learning in mathematics (Vol. 6, pp. 9-85). Reston VA: National Council of Teachers of Mathematics.

DeBlois, L., (1996). Une Analyse Conceptuelle De La Numeration De Position Au Primaire. Rescherches en Didactique des Mathematiques, 16 (1), 71-128.

Dehaene, S. (1993). In S. Dehaene (Ed.), Numerical cognition (pp. 1-42). Cambridge, MA: Blackwell.

Dehaene, S., \& Cohen, L., (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1(1), 83-120.

Denvir, B., \& Brown, M. (1986a). Understanding of number concepts in low attaining 7-9 year olds: Part I. Development of descriptive framework and diagnostic instrument. Educational Studies in Mathematics, 17, 15-36.

Denvir, B., \& Brown, M. (1986b). Understanding of number concepts in low attaining 7-9 year olds: Part II. The teaching studies. Educational Studies in Mathematics, 17, 143-164.

Dettori, G., \& Lemut, E., (1995). External representation in arithmetic problem solving. In R. Sutherland \& J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 20-33). Berlin: Springer-Verlag.

Dickson, L., Brown, M., \& Gibson, O. (Eds.) (1984). Children learning mathematics: A teacher's guide to recent research. Eastbourne: Holt, Rinehart and Winston:

Dienes, Z. P. (1960). Building up mathematics. London: Hutchinson Education.
Dienes, Z. P. (1963). An experimental study of mathematics learning. New York: Hutchinson.

Dienes, Z. P. (1964). Mathematics in the primary school. Melbourne: Macmillan.
Dienes, Z. P., \& Golding, E. W. (1971). Approach to modern mathematics. New York: Herder \& Herder.

Donaldson, M. (1978). Children's minds. London: Fontana.
Dorfler, W. (1991). Meaning: Image schemata and protocols. In F. Furinghetti (Ed.) Proceedings of the Fifteenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 17-32). Genoa, Italy: University of Genoa.

Dorfler, W. (1995). Mathematical objects, representations, and images. In R. Sutherland \& J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 82-94). Berlin: Springer-Verlag.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking, (pp. 95-123). Dordrecht, The Netherlands: Kluwer.

English, L. D. (1990a). Children's competence in solving combinations. In L. Steffe \& T. Wood (Eds.), International perspectives on transforming early childhood mathematics education (pp. 174-180). Hillsdale, NJ: Lawrence Erlbaum.

English, L. D. (1990b). Mathematical power in early childhood. The Australian Journal of Early Childhood, 15(1), 37-42.

English, L. D. (1996a).Children's problem posing and problem-solving preferences. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 227-242). Adelaide: Australian Association of Mathematics Teachers.

English, L. D. (1996b). Children's construction of mathematical knowledge in solving novel isomorphic problems in concrete and written form. Journal of Mathematical Behavior, 15, 81-112.

English, L. D. (1997). The development of fifth-grade children's problem-posing abilities. Educational Studies in Mathematics, 34, 183-217.

English, L. D., \& Halford, G. S. (1995). Mathematics education: Models and processes. Mahwah, NJ: Erlbaum.

Ernest, P. (1991a). Constructivism, the psychology of learning, and the nature of mathematics: Some critical issues. In F. Furinghetti (Ed.), Proceedings of the Fifteenth Annual Conference of the International Group for the Psychology of Mathematics Education, (Vol. 2, pp. 25-32). Genoa, Italy: University of Genoa.

Ernest, P. (1991b). The philosophy of mathematics education. New York: Falmer Press.
Ernest, P. (1996a). Varieties of Constructivism: A Framework for Comparison. Theories of Mathematics Education, 335-350.

Ernest, P. (1996b).The revolution in the philosophy of mathematics and its implications for education. In C. Ormell (Ed.), New thinking about the nature of mathematics. Geelong: Deakin University.

Faire, M. (1996). How do teachers' beliefs about learning in mathematics assist number concept formation in young children? In H. Mansfield, N. Pateman, \& N. Bednarz (Eds.), Young children and mathematics: Classroom contexts and curriculum (pp. 79-88). Adelaide: Australian Association of Teachers of Mathematics.

Fennema, E. (1972). Models and mathematics. Arithmetic Teacher, 18, 635-640.
Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., \& Empson, S. B. (1996). A longitudinal study of learning to use children's thinking in mathematics instruction. Journal for Research in Mathematics Education, 27(4), 403-434.

Fennema, E., Carpenter, T. P., \& Peterson, P. L. (1989). Teachers' decision making and cognitively guided instruction: A new paradigm for curriculum development. In N . F. Ellerton \& M. A. (Ken) Clements (Eds.), School mathematics: The challenge to change (pp. 174-187). Geelong, Victoria, Australia: Deakin University Press.

Fennema, E., Carpenter, T. P., \& Lamon, S. (Eds.) (1991). Integrating research on teaching and learning mathematics. Albany, NY: University of New York Press.
Fischbein, E., Deri, M., Nello, M., \& Merina M. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research Mathematics Education, 16 (1), 3-17.

Fischer, K. W. (1980). A theory of cognitive development: the control and construction of hierarchies of skills. Psychological review, 87, 477-531.

Flegg, G. (1983). Numbers: Their history and meaning. Harmondsworth: Penguin.
Forman, E. (1996). Forms of participation in classroom practice: Implications for learning mathematics. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer (Eds.), Theories of mathematical learning (pp. 115-130). Hillsdale, NJ: Erlbaum.

Fuson, K. C., (1982). An analysis of the counting-on solution procedures in addition. In T. P. Carpenter, J. M. Moser, \& T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 67-81). Hillsdale, NJ: Lawrence Erlbaum.

Fuson, K. C. (1986). Roles of representation and verbalization in the teaching of multidigit addition and subtraction. European Journal of Psychology of Education, 1, 35-56.

Fuson, K. C. (1988). Children's counting and concepts of number. New York: SpringerVerlag.
Fuson, K. C. (1990a). Issues in place-value and multidigit addition and subtraction learning and teaching. Journal for Research in Mathematics Education, 21, 4, 273280.

Fuson, K. C. (1990b). Conceptual structures for multiunit numbers: Implications for learning and teaching multidigit addition, subtraction, and place value. Cognition and Instruction, 7, 343-403.

Fuson, K. C. (1992a). Research on whole number addition and subtraction. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 243-275). New York: Macmillan.

Fuson, K. C. (1992b). Research on learning and teaching addition and subtraction of whole numbers. In G. Leinhardt, R. T. Putnam, \& R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 53-187). Hillsdale NJ: Lawrence Erlbaum.

Fuson, K. C., \& Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach for first- and second-grade place value and multidigit addition and subtraction. Journal for Research in Mathematics Education, 21 (3), 180-206.

Fuson, K. C., Fraivillig, J., \& Burghardt, B. (1992). Relationships children construct among English number words, multiunit base-ten blocks, and written multidigit addition. In J. Campbell (Ed.), The nature and origins of mathematical skills (pp. 39-112). Nth Holland: Elsevier Science.

Fuson, K. C., \& Fuson, A. M. (1992). Instruction supporting children's counting-on for addition and counting-up for subtraction. Journal for Research in Mathematics Education, 23, 52-78.

Fuson, K. C., \& Kwon, Y. (1992). Korean children's single-digit addition and subtraction: Numbers structured by ten. Journal for Research in Mathematics Education, 23, 148-165.

Fuson, K. C., Richards, J., \& Briars, D. J. (1982). The acquisition and elaboration of the number word sequence. In C. Brainerd (Ed.), Progress in cognitive development research: Vol. 1. Children's logical and mathematical cognition, (pp. 33-92). New York: Springer Verlag.

Fuson, K. C., Smith, S. T., \& Lo Cicero, A. M. (1997). Supporting Latino first graders' ten-structured thinking in urban classrooms. Journal for Research in Mathematics Education, 28(6), 738-766.

Fuson, K. C., Wearne, D., Hiebert, J., Murray, H., Human, P., Olivier, A., Carpenter, T., \& Fennema, E. (1997). Children's conceptual structures for multidigit numbers and methods of multidigit addition and subtraction. Journal for Research in Mathematics Education, 28(2), 130-162.

Gagne, R. (1965). The conditions of learning and theories of instruction. Harcourt Brace. Galton, F. (1880). Visualised numerals. Nature, 21, 252-256 and 494-495.

Galton, F. (1883). Inquiries into human faculty and its development. London: Macmillan.
Gelman, R., \& Gallistel, R. G. (1978). The child's understanding of number. Cambridge, MA: Harvard University Press.

Ginsburg, H. (1977). Children's arithmetic: The learning process. New York: Van Nostrand.

Ginsburg, H., Kossan, N., Schwartz, R., \& Swanson, D. (1983). In H. Ginsburg (Ed.), The development of mathematical thinking. New York: Academic Press.

Girling, M. (1978). Towards a definition of basic numeracy. Mathematics Teaching, 81, 13-14.

Goldin, G. A. (1983). Levels of language in mathematical problem solving. In J. C. Bergeron \& N. Herscovics (Eds.), Proceedings of the Fifth Annual Meeting for the Psychology of Mathematics Education -North America (Vol. 2, pp. 112-120).

Goldin, G. A. (1987). Cognitive representational systems for mathematical problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 125-145). Hillsdale: NJ: Erlbaum.
Goldin, G. A. (1988). The Development of a model for competence in mathematical problem solving. In A. Borbas, (Ed.), Proceedings of the Twelfih Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 358-368). Veszprem, Hungry: PME.

Goldin, G. A. (1992a). On developing a unified model for the psychology of mathematical learning and problem solving. In W. Geeslin \& K. Graham (Eds.) Proceedings of the Sixteenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 235-261). Durham, New Hampshire: PME.

Goldin, G. A. (1992b). Toward an assessment framework for school mathematics. In R. Lesh \& S. J. Lamon (Eds.), Assessment of authentic performance in school mathematics, (pp. 63-88). Washington, DC: American Association for the advancement of Science.

Goldin, G. A. (1993). Observing mathematical problem solving: perspectives on structured, task-based interviews. In B. Atweh, C. Kanes, M. Carss \& G. Booker (Eds.), Proceedings of the Sixteenth Annual Conference of the Mathematics Education Research Group of Australasia (pp. 303-309). Brisbane, Australia: MERGA.

Goldin, G. A. (1996). Theory of mathematics education: The contributions of constructivism. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer (Eds.), Theories of mathematical learning (pp. 303-306). Hillsdale, NJ: Erlbaum.

Goldin, G. A., DeBellis, V. A., DeWindt-King, A. M., Passantino, C. B., \& Zang R. (1993). Task-based interviews for a longitudinal study of children's mathematical development. In I. Hirabayashi, N. Nohda, K. Shigematsu \& F. L. Lin (Eds.), Proceedings of the Seventeenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 197-203). Tsukuba, Japan: PME.

Goldin, G. A., \& Herscovics, N. (1991a). The conceptual-representational analysis of children's early arithmetic, In R. G. Underhill (Ed.) Proceedings for the Thirteenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 118-125). Blacksburg, Virginia: PME.

Goldin, G. A., \& Herscovics, N. (1991b). Towards a conceptual-representational analysis of the exponential function. In F. Furinghetti (Ed.), Proceeedings of the Fifteenth Annual Conference of the International Group for the Psychology of Mathematics Education (PME) (Vol. 2, pp. 64-71). Genoa, Italy: Dipartimento de Matematica dell'Universita de Genova.

Goldin, G. A., \& Kaput, J. J. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer (Eds.), Theories of mathematical learning (pp. 397-430). Hillsdale, NJ: Erlbaum.

Goldin, G. A., \& McClintock, C. E. (Eds.) (1984). Task variables in mathematical problem solving. Philadelphia: Franklin Institute Press (now Lawrence Erlbaum Associates, Hillsdale, NJ).

Goldin, G. A., \& Passantina, C. B. (1996). A longitudinal study of children's fraction representations and problem-solving behaviour. In L. Puig \& A Gutierrez (Eds.), Proceedings of the Twentieth Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 3-10). Valencia, Spain: PME.

Gravemauer, K. (1994). Educational development and developmental research in mathematics education. Journal for Research in Mathematics Education 25 (5), 443-471.

Gray, E. M. (1991). An analysis of diverging approaches to simple arithmetic: Preference and its consequences. Educational Studies in Mathematics, 22, 551-574.

Gray, E. M., \& Pitta, D. (1996). Number Processing: Qualitative differences in thinking and the role of imagery. In L. Puig and A. Gutierrez. (Eds.), Proceedings of 20th International Conference for the Psychology of Mathematics Education, Vol. 4, pp. 155-162. Valencia: Spain.

Gray, E. M., \& Tall, D. O. (1991). Duality, ambiguity and flexibility in successful mathematical thinking. In F. Furinghetti (Ed.), Proceedings of the Fifteenth International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 72-79). Assisi, Italy.

Gray, E. M., \& Tall, D. O. (1994). Duality, ambiguity and flexibility: A perceptual view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 115-141.
Greeno, J. (1991). Number sense as situated knowing in a conceptual domain. Journal for Research in Mathematics Education, 3, 170-218.

Greeno, J., Riley, M., \& Gelman, R. (1984). Young children's counting and understanding of principles. Cognitive psychology, 16, 94-143.
Halford, G. S. (1992). Analogical reasoning and structural complexity in cognitive development. Human Development, 35, 193-217.
Halford, G. S. (1993). Children's understanding: The development of mental models. Hillsdale, NJ: Lawrence Erlbaum.

Halford, G. S., \& Boulton-Lewis, G. (1992). Value and limitations of analogues in teaching mathematics. In A. Demettriou, M. Shayer, \& A. Efklides (Eds.), NeoPiagetian theories of cognitive development: Implications and applications for education. London: Rutledge.
Harel, G., \& Confrey, J. (Eds.) (1994), The development of multiplicative reasoning in learning mathematics. Albany, NY: State University of New York Press.
Harnisch, D. L. (1983). Item response patterns: Applications for educational practice. Journal of Educational Measurement, 20 (2), 191-206.
Harnisch, D. L. (1987). A multilevel evaluation system using student-problem charts. A paper presented at the Annual Meeting of the American Educational Research Association, Washington, DC. ERIC Document ED288886.

Harnisch, D. L., \& Linn, R. L. (1981). Analysis of item response patterns: questionable test data and dissimilar curriculum practices. Journal of Educational Measurement, 18 (3), 133-146.

Hart K. M. (Ed.) (1981). Children's understanding of mathematics: 11-16. London: John Murray.

Hart, K. M. (1989). There is no connection. In Ernest, P. (Ed.), Mathematics teaching: The state of the art, 138-142. London: Falmer Press.
Heirdsfield, A., \& Cooper, T. (1995). Teaching implications from research on children's mental computation for addition and subtraction. In A. Richards (Ed.), Forging links and integrating resources: Proceedings of the Fifteenth Biennial Conference of the Australian Association of Mathematics Teachers: Adelaide: AAMT.
Hershkowitz, R., \& Markovits, Z. (1992). Conquer mathematics concepts by developing visual thinking, Arithmetic Teacher, 39, (9) 38-41.
Hiebert, J. (1992). Mathematical, cognitive, and instructional analysis of decimal fractions. In G. Leinhardt, R. T. Putnam, \& R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 283-322). Hillsdale NJ: Lawrence Erlbaum.

Hiebert, J., \& Behr, M. (Eds.)(1988). Number concepts and operations in the middle grades. Hillsdale, NJ: Lawrence Erlbaum.

Hiebert, J., \& Carpenter, T. P. (1992). Learning and teaching with understanding. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning. New York: Macmillan.

Hiebert, J., \& Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case for mathematics (pp. 1-28). Hillsdale, NJ: Lawrence Erlbaum.

Hiebert, J., \& Wearne, D. (1992). Links between teaching and learning place value with understanding in first grade. Journal for Research in Mathematics Education, 23 (2), 98-122.

Hiebert, J., \& Wearne, D. (1996). Instruction, understanding, and skill in multidigit addition and subtraction. Cognition and Instruction, 14(3), 251-283.

Hiebert, J., Wearne, D., \& Taber, (1991). Fourth graders gradual construction of decimal fractions during instruction using different physical representations. Elementary School Journal, 91, 321-341.

Howard, P., Perry, R., \& Conroy, J. (1995). Manipulatives in K-6 mathematics learning and teaching. Paper presented at the Annual Conference of the Australian Association for Research in Education.

Hughes, M. (1986). Children and number. Oxford: Basil Blackwell.
Hunting, R., \& Davis, G. (Eds.) (1991). Early fraction learning. New York: SpringerVerlag.

Inhelder, B., \& Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books.

Inhelder, B., \& Piaget, J. (1964). The early growth of logic. London: Routledge \& Kegan.
Irwin, K. (1996a). Children's understanding of the principles of covariation and compensation in part-whole relationships. Journal for Research in Mathematics Education, 27, 25-40.

Irwin, K. (1996b). Making sense of decimals. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 243-257). Adelaide: Australian Association of Mathematics Teachers.

Janvier, C. (1984). Researchers taking in charge a class: results of a three year project on numeration. In J. M. Moser (Ed.), Proceedings of the sixth Annual Meeting of the

North American Chapter of the International Group for the Psychology of Mathematics Education. Madison: University of Wisconsin.

Janvier, C. (1987). Translation processes in mathematics education. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 2732). Hillsdale, NY: Lawrence Erlbaum.

Janvier, C. (1996). Constructivism and its consequences for training teachers. Theories of Mathematical Learning, 449-466.

Jones, G. A., \& Thornton, C. A.(1993). Children's understanding of place value: A framework for curriculum development and assessment. Young Children, 48(5), 12-18.

Jones, G. A., Thornton, C. A., \& Putt, I. J. (1994). A model for nurturing and assessing multidigit number sense among first grade children. Educational Studies in Mathematics, 27, 117-143.

Jones, G. A., Thornton, C. A., Putt, I. J., Hill, K. M., Mogill, T. A., Rich, B. S., \& Van Zoest, L. R. (1996). Multidigit number sense: A framework for instruction and assessment. Journal for Research in Mathematics Education, 27(3), 310-336.

Kamii, C. K. (1986). Place value: an explanation of its difficulty and educational implications for the primary grades. Journal of Research in Childhood Education, 1(2), 75-86.

Kamii, C. K. (1989). Young children continue to reinvent arithmetic, 2nd Grade. New York: Teachers College Press.

Kamii, C. K., (1990). Constructivism and beginning arithmetic (K-2). In T. Cooney \& C. Hirsch (Eds.), Teaching and learning mathematics in the 1990s (pp. 22-30). Reston, VA: National Council of Teachers of Mathematics.

Kamii, C. K., (1992). Place value: An explanation of its difficulty and educational implications for the primary grades. Journal of Research in Childhood Education, 1(2), 75-86.

Kamii, C. K., \& DeClark, G. (1985). Young children reinvent arithmetic: Implications of Piaget's theory. New York: Teachers College, Columbia University.

Kamii, C. K., \& Joseph, L. (1988). Teaching place value and double-column addition. Arithmetic Teacher, 35, 6, 48-52.

Kamii, C. K., \& Livingston, S. J. (1994). Young children continue to reinvent arithmetic, 3rd Grade. New York: Teachers Coilege Press.

Kamii, M. (1980). Place value: Children's efforts to find a correspondence between digits and numbers of objects. Paper presented at the Tenth Annual Symposium of the Jean Piaget Society, Philadelphia.

Kamii, M. (1982). Children's graphic representation of numerical concepts a developmental study. Doctoral dissertation, Harvard University. University Microfilms International. (No. DA 822 3212).

Kaput, J. (1987). Toward a theory of symbol use in mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics, (pp. 159196). Hillsdale, NJ: Lawrence Erlbaum.

Kieran, C. (1994). Doing and seeing things differently: A 25 -year retrospective of mathematics education research on learning. Journal for Research in Mathematics Education, 25 (6), 583-607.

Kilpatrick, J. (1992). A history of research in mathematics education. In Grouws, D. (Ed.), Handbook of research on mathematics teaching and learning. New York: Macmillan.

Kosslyn, S. M. (1983). Ghosts in the minds machine. York, NY: W. W. Norton.
Kosslyn, S. M., (1980). Image and mind. Cambridge, Mass; Harvard University Press.
Kouba, V. L. (1989). Children's solution strategies for equivalent set multiplication and division word problems. Journal for Research in Mathematics Education, 20, 147158.

Kouba, V. L., Brown, C., Carpenter, T., Lindquist., M., Silver, E., \& Swafford, J. (1988). Results of the Fourth NAEP Assessment of Mathematics: Number, Operations, and Word Problems. Arithmetic Teacher, 35 (8), 14-19.

Krauthausen, G. (1996). The primary mathematics project 'Maths 2000': Curriculum in action. In H. Mansfield, N. Pateman, \& N. Bednarz (Eds.), Young children and mathematics: Classroom contexts and curriculum (pp. 79-88). Adelaide: Australian Association of Teachers of Mathematics.

Kulm, G. (1994). Mathematics assessment: what works in the classroom. San Francisco: Jossey-Bass.

Labinowicz, E. (1985). Learning from children. Menlo Park, CA: Addison-Wesley.
Lamon, S. J. (1993). Ratio and proportion: Connecting content and children's thinking. Journal for Research in Mathematics Education, 24(1), 41-61.

Lamon, S. J. (1994). Ratio and proportion: Cognitive foundations in unitizing and norming. In G. Harel \& J. Confrey (Eds.), The development of multiplicative reasoning in learning mathematics (pp. 89-120). Albany, NY: State University of New York Press.

Lamon, S. J. (1996). The development of unitizing: Its role in children's partitioning strategies. Journal for Research in Mathematics Education, 27(2), 170-193.

Lean, G., \& Clements, M. A. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12, 267-299.

Leder, G. (Ed.) (1992). Assessment and learning of mathematics. Hawthorn: ACER.
Leeson, N., Lindsey, J., \& Doig, B. (1997). Classroom views of number. In B. Doig \& J. Lokan (Eds.), Learning from children: Mathematics from a classroom perspective. ACER Research Monograph 52. Camberwell: Australian Council for Educational Research.

Leinhardt, G., Putman, R. T., \& Hattrup R. A. (1992) (Eds.), The analysis of arithmetic for mathematics teaching (pp. 53-187). Hillsdale NY: Erlbaum.

Lesh, R., \& Lamon, S. (Eds.) (1992). Assessment of authentic performance in school mathematics. Washington, DC: American Association for the Advancement of Science.

Lesh, R., \& Landau, M. (Eds.) (1983). Acquisition of mathematical concepts and processes. New York: Academic Press.

Lesh, R., Post, T., \& Behr, M.(1987). Representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics. Hillsdale, NJ: Lawrence Erlbaum.

Lindguist, M. (1989). Results from the fourth mathematics assessment of the National Assessment of Educational Progress. Reston, VA: National council of Teachers of Mathematics.

Lindguist, M., Brown, C., Carpenter, T., Kouba, V., Silver, E., \& Swafford, J. (1988). Results from the fourth mathematics assessment of the National Assessment of Education Progress. Reston, VA: National Council of Teachers of Mathematics.
Lo, J., \& Watanabe, T. (1993). Conceptual bases of young children's solution strategies of missing value proportional tasks. In I. Hirabayashi, N. Nohda, K. Shigematsu and F. Lin (Eds.), Proceedings of the Seventeenth International Conference for the

Psychology of Mathematics Education (Vol. 3, pp. 162-169). Tsukuba, Japan: PME.

Lokan, J., Ford, P., \& Greenwood, L. (1997). Maths and science on the line: Australian middle primary students' performance in the Third International Mathematics and Science Study. Camberwell: Australian Council for Educational Research.

Luria, A. R. (1969). On the pathology of computational operations. In J. Kilpatrick \& I. Wirszup (Eds.). Soviet studies in the psychology of learning and teaching mathematics, (Vol. 1, pp. 37-73). Chicago: University of Chicago Press.

Madell, R. (1985). Children's natural processes. Arithmetic Teacher, 32(7), 20-22.
Maher, C. A., Davis, R. B. \& Alston, A. (1991). Brian's representation and development of mathematical knowledge: A 4-year study. Journal of Mathematical Behaviour, 10, 163-210.

Maher, C.A., Martino, A., \& Alston, A. (1993). Children's construction of mathematical ideas. In B. Atweh, C. Kanes, M. Carss \& G. Booker, Eds., Proceedings of the Sixteenth Annual Conference of the Mathematics Education Research Group of Australasia. Brisbane: MERGA, 7-39.

Markman, E. (1979). Classes and collections: Conceptual organisation and numerical abilities. Cognitive Psychology, 11, 395-411.

Markovits, Z., \& Hershkowitz, R. (1997). Relative and absolute thinking in visual estimation processes. Educational Studies Mathematics, 32, 29-47.

Markovits, Z., \& Sowder, J. (1994). Developing number sense: An intervention study in Grade 7. Journal for Research in Mathematics Education, 25, 4-29.

Mason, J. (1992). Doing and construing mathematics in screen-space. In B. Southwell, B. Perry, \& K. Owens (Eds.), Proceedings of the Fifteenth Annual Conference of the Mathematics Education Research Group of Australasia (pp. 1-17). Nepean, Australia: University of Western Sydney.

Matthews, J. (1983). A subtraction experiment with six and seven year old children. Educational Studies in Mathematics, 14, 139-154.

McClain, K., \& Cobb, P. (1996)The role of imagery and discourse in supporting the development of mathematical meaning. In L. Puig and A. Gutierrez. (Eds.), Proceedings of 20th International Conference for the Psychology of Mathematics Education, Vol. 3, pp. 353-360. Valencia: Spain.

McIntosh, A. (1996). Mental computation and number sense of Western Australian students. In J. Mulligan \& M. Mitchelmore (Eds.), Childrẹn's number learning (pp. 259-276). Adelaide: Australian Association of Mathematics Teachers.

McIntosh, A., Reys, B., \& Reys, R. (1992). A proposed framework for examining basic number sense. For the Learning of Mathematics, 12(3), 2-8.

Meira, L. (1992). The microevolution of mathematical representations in children's activity. In W. Geeslin and K. Graham (Eds.), Proceedings of the Sixteenth Annual Conference of the International Group for the Psychology of Mathematics Education, (Vol. 2, pp. 96-103). Durham, New Hampshire: PME.
Miura, I., Kim, C. C., Chang, \& Okamoto, Y. (1988). Effects of language characteristics on children's cognitive representation of number: Cross-national comparisons. Child Development, 59, 1445-1450.

Miura, I., Okamoto, Y., Kim, C. C., Steere, M., \& Fayol, M. (1993). First graders' cognitive representation of number and understanding of place value: Crossnational comparisons - France, Japan, Korea, Sweden and the United States. Journal of Educational Psychology, 85(1), 24-30.
Mulhern, G. (1989). Between the ears: Making inferences about internal processes. In B. Greer \& G. Mulhern (Eds.); New directions in mathematics education (pp. 29-62). New York: Rutledge.

Mulligan, J. T. (1991). An analysis of children's solutions to multiplication and division word problems. Unpublished Ph.D. Thesis, Macquarie University.
Mulligan, J. T. (1992a). Children's solutions to multiplication and division word problems: a longitudinal study. Mathematics Education Research Journal, 4 (1), 24-42.
Mulligan, J. T. (1992b). Children's solutions to multiplication and division word problems: a longitudinal study. In W. Geeslin \& K. Graham (Eds.), Proceedings of the Sixteenth Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 144-152). Durham, NH: PME.

Mulligan, J. T. (1995). Challenging children to make mathematical links. In A. Richards (Ed.), Forging Links and Integrating Resources: Proceedings of the 15th Biennial Conference of the Australian Association of Mathematics Teachers (pp. 231-239). Adelaide: AAMT.

Mulligan, J. T., \& Killion, K. (1997). The mechanisms of conceptual development. In H.
Mansfield, N. Pateman, \& N. Bednarz (Eds.), Young children and mathematics: Concepts and their representations (pp. 12-21). Adelaide: AAMT.

Mulligan, J. T., \& Mitchelmore, M. C. (Eds.) (1996a). Children's number. Adelaide: Australian Association of Mathematics Teachers.

Mulligan, J. T., \& Mitchelmore, M. C. (1996b). Children's representations of multiplication and division word problems. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 163-184). Adelaide: Australian Association of Mathematics Teachers.

Mulligan, J. T., \& Mitchellmore M. C. (1997). Young children's intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28 (3), 309-330.

Mulligan, J. T., Mitchelmore, M. C., Outhred, L., \& Bobis, J., (1996). Children's representations and conceptual understanding of number. In P. C. Clarkson (Ed.), Proceedings of the Ninth Annual Conference of the Mathematics Education Research Group of Australasia. (pp. 406-414), Melboume: MERGA

Mulligan, J. T., Mitchelmore, M. C., Outhred, L., \& Russell, S. (1997). Second grader's representations and conceptual understanding of number. In F. Biddulph \& K. Carr (Eds.), Proceedings of the Twentieth Annual Conference of the Mathematics Education Research Group of Australasia (Vol. 2, pp. 361-369), Rotorua, NZ: MERGA

Mulligan, J. T., \& Thomas, N. (1995). Assessing early number learning: Challenges for professional development. In R. Hunting \& G. Fitzsimons (Eds.), Regional collaboration in mathematics education, Proceedings of the International Conference on Mathematical Instruction (pp. 533-543). Melbourne: La Trobe University.

Murray, H., \& Olivier, A. (1989). A model of understanding two-digit numeration and computation. In G. Vergnaud, J. Rogalski, \& M. Artique (Eds.), Proceedings of the Thirteenth Annual Conference of the International Group for the Psychology of Mathematics Education, (Vol., 3, pp. 3-10). Paris: PME.

Murray, H., Olivier, A., \& Human, P. (1992). The development of young children's division strategies. In W. Geeslin \& K. Graham (Eds.), Proceedings of the

Sixteenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol., 2, pp. 252-260). Durham, New Hampshire: PME.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics..

National Council of Teachers of Mathematics. (1995). Assessment standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

National Curriculum (1989). The national curriculum-from policy to practice. London: HMSO

National Research Council. (1989). Everybody counts: A report to the nation on the future of mathematics education. Washington, DC: National Academy Press.

Nesher, P. (1982). Levels of description in the analysis of addition and subtraction word problems. In T. P. Carpenter, J. M. Moser \& T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 25-38). New Jersey: Erlbaum.

Nesher, P. (1992). Solving multiplication word problems. In G. Leinhardt, R. Putnam and R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 189-221). Hillsdale, N J: Lawrence Erlbaum.

Nesher, P., \& Kilpatrick, J. (1990). Mathematics and Cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education. Cambridge: Cambridge University Press.

NSW Department of Education (1989). Mathematics K-6. Sydney: NSW Department of Education.

NSW Department of School Education (1991). Aspects of numeracy - Year 3. (Basic Skills Testing Program prepared by the Australian Council for Educational Research). Sydney: NSW Department of School Education.

Nunes, T. (1996). What is the difference between one, un and yi? In H. Mansfield, N. Pateman, \& N. Bednarz (Eds.), Mathematics for tomorrow's children: International perspectives on curriculum (pp. 177-185). Dordrecht: Kluwer Academic Publications.

Nunes, T., \& Bryant, P. (1996). Children doing mathematics. Oxford, UK: Blackwell.
Nunes, T., Schliemann, A. D., Carraher, D. W., (1993). Street mathematics and school mathematics. New York, Cambridge University Press.

Olivier, A., Murray, H., \& Human, P. (1990). Building on young children's mathematical knowledge. In G. Booker, P. Cobb, \& T. N. Mendicuti (Eds.), Proceedings of the Fourteenth Annual Conference of the International Group for the Psychology of Mathematics Education, (Vol. 3, pp. 297-304). Oaxtapec, Mexico: PME.

Opper, S. (1977). Piaget's clinical method The Journal of Children's Mathematical Behavior, Spring, 90-107.

Outhred, L. (1993). The development in young children of concepts of rectangular area measurement. Unpublished Ph.D. Thesis, Macquarie University.

Outhred, L. (1996). Children's drawings of multiplicative structures: Cartesian product and area. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 185-202). Adelaide: Australian Association of Mathematics Teachers.

Outhred, L., \& Mitchelmore, M. (1992). Representation of area: A pictorial perspective. In W. Geeslin and K. Graham (Eds.), Proceedings of the Sixteenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol., 2, pp. 252-260). Durham, New Hampshire: PME.

Payne, J. N., \& Rathmell, E. C. (1975). Number and numeration. In J. N. Payne (Ed.), Mathematics learning in early childhood. Washington, DC: National Council of Teachers of Mathematics.

Pengelly, H. (Mathematical learning beyond the activity. In L. P. Steffe \& T. Wood, (1990) (Eds.), Transforming children's mathematics education: International perspectives, (pp. 357-376). Hillsdale, NJ: Lawrence Erlbaum.

Pennington, B., Wallach, L., \& Wallach, M. (1980). Nonconservers use and understanding of number and arithmetic. Genetic Psychology Monographs, 101, 231-243.

Peters, S. (1997). The relationship between the place value understanding of seven-yearold children and the strategies that they use to solve written addition problems. In F. Biddulph \& K. Carr (Eds.), Proceedings of the Twentieth Annual Conference of the Mathematics Education Research Group of Australasia (pp. 397-405). Aotearoa: MERGA.

Piaget, J. (1952). The child's conception of number (C. Gattegno \& F. M. Hodgson, Trans.). London: Routledge \& Kegan Paul.

Piaget, J. (1970). Genetic epistemology. New York: Columbia University Press.
Piaget, J. (1971). Science of education and the psychology of the child. New York: Viking Press.

Piaget, J. (1972). The principles of genetic epistemology (W. Mays, Trans.). London: Routledge \& Kegan Paul.

Piaget, J., \& Inhelder, B. (1967). The child's conception of space. New York, NY: W. W. Norton.

Piaget, J., \& Inhelder, B. (1971). Mental imagery in the child,. New York, Basic.
Pirie, S., \& Kieren, T. (1992). Watching Sandy's understanding grow. Journal of Mathematical Behaviour, 11, 243-257.
Pirie, S., \& Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it? In P. Cobb (Ed.), Learning mathematics: Constructivist and interactionist theories of mathematical development (pp. 61-86). Dordrecht: Kluwer.

Pitta, D., \& Gray, E., (1996). Nouns, adjectives and images in elementary mathematics. In L. Puig \& A. Gutierrez (Eds.), Proceedings of Twentieth Annual Conference of the International Group for the Psychology of Mathematics Education, (Vol. 3, pp. 3542). Valencia, Spain: PME.

Poirier, L., \& Bacon, L. (1996). Interactions between children in mathematics class: An example concerning the concept of number. In H. Mansfield, N. Pateman, \& N. Bednarz (Eds.), Mathematics for tomorrows young children: International perspectives on curriculum (pp. 166-176). Dordrecht, The Netherlands: Kluwer Academic.
Presmeg, N. C. (1986a). Visualisation in high school mathematics. For the Learning of Mathematics, 6(3), 42-46.

Presmeg, N. C. (1986b). Visualisation and mathematical giftedness. Educational Studies in Mathematics, 17, 297-311.

Presmeg, N. C. (1989). Visualisation in multicultural mathematics classrooms. Focus on Learning Problems in Mathematics, 11 (1), 17-24.
Presmeg, N. C. (1992). Prototypes, metaphors, metonymies and imaginative rationality in High School Mathematics. Educational Studies in Mathematics, 23, 595-610.

Rasch, (1980). Probabilistic models for some intelligence and attainment tests. Chicago, IL: University of Chicago Press.

Rathmell, E. C. (1972). The effects of multibase grouping and early or late introduction of base representations on the mastery learning of base and place value numeration
in grade one. Doctoral Dissertation, University of Michigan. Ann Arbor, MI: UMI, Bell \& Howell.

Rathmell, E. C. \& Huinker, D. M. (1989). Using part-whole language to help children represent and solve word problems. In P. R. Trafton \& A. P. Shulte (Eds.), New directions for elementary school mathematics. Reston: National Council of Teachers of Mathematics.

Resnick, L. (1982). Syntax and semantics in learning to subtract. In T. P. Carpenter, J. M. Moser, \& T. Romberg, (Eds.) (1982). Addition and subtraction: A cognitive perspective (pp. 136-155). Hillsdale, NJ: Lawrence Erlbaum.

Resnick, L. (1983a). A developmental theory of number understanding. In H. Ginsburg (Ed.), The development of mathematical thinking (pp. 109-151). New York: Academic Press.

Resnick, L. (1983b).Towards a cognitive theory of instruction. In S. G. Paris, G. M. Olson, \& W. H. Stevenson (Eds.), Learning and motivation in the classroom (pp. 5-38). Hillsdale, NJ: Erlbaum.

Resnick, L. (1989). Treating mathematics as an ill-structured discipline. In R. I. Charles \& E. A. Silver (Eds.), The teaching and assessing of mathematical problem solving, (pp. 32-60). Hillsdale, NJ/Reston, VA: Erlbaum/National Council of Teachers of Mathematics.

Resnick, L. (1992). From protoquantities to operators: Building mathematical competence on a fountain of everyday experience. In G. Leinhardt, R. Putnam, \& R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 373-429). Hillsdale, NJ: Lawrence Erlbaum.

Resnick, L., Bill, V., \& Lesgold, S. (1992). Developing thinking abilities in arithmetic class. In A. Demetriou, M. Shayer, \& A. Efklides (Eds.), Neo-Piagetian theories of cognitive development, (pp. 210-230). London: Routledge.

Resnick, L., \& Ford, W. (1981). The psychology of mathematics for instruction. Hillsdale, NJ: Lawrence Erlbaum.

Resnick, L., \& Omanson, S. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.), Advances in instructional psychology (Vol., 3. pp. 41-95). Hillsdale, NJ: Lawrence Erlbaum.

Resnick, L., Wang, M. C., \& Kaplan, J. (1973).Task analysis in curriculum design: a hierarchically sequenced introductory mathematics curriculum. Journal of Applied Behavior Analysis, 6, 679-710.

Reuille-Irons R., \& Irons, C. (1989). Language experiences: a base for problem solving. In P. R. Trafton \& A. P. Shulte (Eds.), New directions for elementary school mathematics. Reston: National Council of Teachers of Mathematics.

Reynolds, A (1993). Imaging in children's mathematical activity. Doctoral dissertation, Florida State University, Tallahassee, FL. UMI Dissertation Services.

Reynolds, A., \& Wheatley, G (1992). The elaboration of images in the process of mathematics meaning making. In W. Geeslin \& K. Graham (Eds.), Proceedings of the Sixteenth International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 242-249), Durham NH: Program Committee.

Reynolds, A., \& Wheatley, G. H. (1994). Children's symbolizing of their mathematical constructions. In J. Matos (Ed.), Proceedings of the Eighteenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. IV, pp. 113-120). Lisbon, Portugal: PME.

Reys, B. J., Reys, R. E., Nohda, N., \& Emori, H. (1995). Mental computation performances and strategy use of Japanese students in grades 2, 4, 6 and 8. Journal for Research in Mathematics Education, 26(4), 304-326.

Riley, M. S., Greeno, J. G., \& Heller, J. I. (1983). Development of children's ability in arithmetic.. In H. P. Ginsburg (Ed.), The Development of Mathematical Thinking (pp. 153-196). New York: Academic Press.

Romberg, T. A. (Ed.) (1992). Mathematical assessment and evaluation: Imperatives for mathematics educators. Albany, NY: State University of New York Press.

Romberg, T. A., \& Carpenter, T. P. (1986). Research on teaching and learning mathematics: Two disciplines of scientific inquiry. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd Ed.) New York: Macmillan.

Ross, S. H. (1986). The development of children's place-value numeration concepts in grades two through five. Paper presented at the 67th annual meeting of the American Educational Research Association, San Francisco. (ED 273 482)

Ross, S. H. (1989a). Children's interpretations of two-digit numerals: face value or place value? Paper presented at the annual meeting of the 70th American Educational Research Association, San Francisco.
Ross, S. H. (1989b). Parts, wholes, and place value: A developmental view. Arithmetic Teacher, 36 (6), 47-51.

Ross, S. H. (1990). Children's acquisition of place-value numeration concepts: The roles of cognitive development and instruction. Focus on Learning Problems in Mathematics, 12 (1), 1-17.

Rubin, A., \& Russell, S. (1992). Children's developing concepts of landmarks in the number system. In W. Geeslin \& K. Graham (Eds.), Proceedings of the Sixteenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, p. 136). Durham, NH: PME.
Sammons, K., Kobett, E., Heiss, J. \& Fennell, F. (1992). Linking instruction and assessment in the mathematics classroom. Arithmetic Teacher, 39, 6, 11-16.

Sastre, G., \& Moreno, M. (1976). Representation graphiguede la quantite. Bulletin de psychologie de l'Universite de Paris, 30, 346-355.
Sato, T. (1975). The construction and interpretation of S-P tables. Tokyo: Meiji Tosho.
Scales, D. (1992). The appraisal of a proposal to change an existing curriculum sequence for the introduction of two-place numeration. Ph.D., La Trobe University.

Schaeffer, B., Eggleston, V. H., \& Scott, J. L. (1974). Number development in young children. Cognitive Psychology, 6, 357-379.

Seron, X., Pesenti, M., Noel, M., Deloche, G., \& Cornet, J. (1993). Images of number, or "When 98 is upper left and 6 sky blue". In S. Dehaene (Ed.), Numerical Cognition (pp. 159-197). Cambridge, MA: Blackwell.

Sfard, A. (1989). Transition from operational to structural conception: The notion of function revisited. In G. Vergnaud, J. Rogalski, \& M. Artigue (Eds.), Proceedings for the Thirteenth International Conference for the Psychology of Mathematics Education (pp. 151-158). Paris, France.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.

Shuard, H., Walsh, A., Goodwin, J., \& Worcester, V. (1991). Calculators, children and mathematics. London: Simon \& Schuster.

Shulman, L. S. (1988). Disciplines of inquiry in education: An overview. In R. M. Jaeger (Ed.), Complementary methods for research in education (pp. 3-20). Washington, DC: American Educational Research Association.

Sierink, T., \& Watson, J. (1990). Children's understanding of place value. Paper presented at the Mathematics Education Research Group of Australasia Conference, Hobart.

Sinclair, A., Garin, A., \& Tieche-Christinat, C. (1992). Constructing and understanding of place value in numerical notation. European Journal of Psychology of Education, 7 (3), 191-207.

Sinclair, A., \& Scheuer, N. (1993). Understanding the written number system: 6 year-olds in Argentiaand Switzerland. Educational studies in Mathematics, 24, 199-221.

Sinclair, H., \& Sinclair, A. (1986). Children's mastery of written numerals and the construction of basic number concepts. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 59-74). Hillsdale, NJ: Lawrence Erlbaum.

Skemp, R. R. (1971). The psychology of learning mathematics. London: Penguin.
Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.

Skemp, R. R. (1979). Intelligence, learning and action. London: Wiley.
Smith, R. F. (1973). Diagnosis of pupil performance on place value tasks. The Arithmetic Teacher, 20, 403-408.

Sowder, J. T. (1988). Mental computation and number comparison: Their roles in the development of number sense and computational estimation. In J. Hiebert \& M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 182-197). Reston, VA: National Council of Teachers of Mathematics.

Sowder J. T. (1988). Mental computation and number comparison: their roles in the development of number sense and computational estimation. In J. Hiebert \& M. Behr (Eds.), Number Concepts and Operations in the Middle Grades. Reston, VA: NCTM, 1988.

Sowder J. T. (1989). Setting a research agenda. Reston, VA: National Council of Teachers of Mathematics.

Sowder J. T. (1992). Making sense of numbers in school mathematics. In G. Leinhardt, R. Putnam, \& R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 1-51). Hillsdale, NJ: Lawrence Erlbaum.

Sowell E. (1989). Effects of manipulative materials in mathematics. Journal for Research in Mathematics Education, 20(5), 498-505.

Starkey, P., \& Cooper, R. (1980). Perception of numbers by human infants. Science, 210, 1033-1034.

Steffe, L. P. (1983). Children's algorithms as schemes. Educational Studies in Mathematics, 14, 109-125.

Steffe, L. P. (1988). Children's construction of number sequences and multiplying schemes. In J. Hiebert \& M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 119-141). Hillsdale, NJ: Lawrence Erlbaum.

Steffe, L. P. (1991a). Epistemological foundations of mathematical experience. New York: Springer-Verlag.

Steffe, L. P. (1991b). The constructivist teaching experiment: illustrations and implications. In E, von Glasersfeld (Ed.), Radical constructivism in mathematics education, 177-194.

Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning and Individual Differences, 4, 259-309.

Steffe, L. P. (1994). Children's multiplying schemes. In G. Harel \& J. Confrey (Eds.), The development of multiplicative reasoning in learning mathematics (pp. 121-176). Albany, NY: State University of New York Press.

Steffe, L. P., \& Cobb, P (1988). Construction of arithmetical meanings and strategies. New York: Springer-Verlag.

Steffe, L. P., \& Johnson, D. C. (1971). Problem solving performance of first-grade children. Journal for Research in Mathematics Education, 2, 50-64.

Steffe, L. P., Nesher, P., Cobb, P., Goldin, G., \& Greer, B. (1996) (Eds.), Theories of mathematical learning. Mahwah, NJ: Lawrence Erlbaum.

Steffe, L. P., Thompson, P., \& Richards, J. (1982). Children's counting in arithmetical problem solving. In T. P. Carpenter, J. M. Moser, \& T. A. Romberg. (Eds.) (1982). Addition and subtraction: A cognitive perspective (pp. 83-96). Hillsdale, NJ: Lawrence Erlbaum

Steffe, L. P., von Glasersfeld, E., Richards, J., \& Cobb, P (1983). Children's counting types: Philosophy, theory, and application. New York: Springer-Verlag.

Steffe, L. P., \& Wiegel, H. G. (1996). On the Nature of a Model of Mathematical Learning. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer (Eds.), Theories of mathematical learning (pp. 477-498). Mahwah, NJ: Lawrence Erlbaum.

Steffe L. P., \& Wood, T. (1990) (Eds.), Transforming children's mathematics education: International perspectives. Hillsdale, NJ: Lawrence Erlbaum.

Stern C. (1949). Children discover arithmetic: An introduction to structural arithmetic. New York: Harper \& Row.

Sutherland R., \& Mason, J. (Eds.) (1995). Exploring mental imagery with computers in mathematics education. New York: Springer.

Swan, M. (1983). The meaning and use of decimals: Calculator- based diagnostic tests and teaching materials. University of Nottingham: Shell Centre for Mathematical Education.

Swan, M. (1990). Becoming numerate: developing conceptual structures. In S. Willis (Ed.), Being numerate: What counts. Hawthorn, Vic.: ACER.

Switzer, D. M., \& Connell, M. L. (1990). Practical applications of student response analysis. Journal of Educational Measurement, 9 (2), 15-18.

Tall, D. (1995). Visual organisers for formal mathematics. In R. Sutherland \& J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education. (pp. 52-70). London: Springer.
Thomas, N. (1992). An analysis of children's understanding of numeration. In B. Southwell, B. Perry, \& K. Owens (Eds.), Proceedings of the Fifteenth Annual Conference of the Mathematics Education Research Group of Australasia. (pp. 521-540). University of Western Sydney, Nepean: MERGA.

Thomas, N. (1996). Understanding the number system. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 89-106). Adelaide: Australian Association of Mathematics Teachers.

Thomas, N., \& Donaldson, P. (1995). Year 7 mathematics recovery program. In A. Richards (Ed.), Forging links and integrating resources: Proceedings of the Fifteenth Biennial Conference of the Australian Association of Mathematics Teachers: Adelaide: AAMT.

Thomas, N., \& Mulligan, J. T. (1994). Dynamic imagery in children's representations of number. In B. Bell, B. Wright, N. Leeson, \& J. Geake (Eds.), Challenges in mathematics education: Constraints on construction, Proceedings of the Seventeenth Annual Conference of the Mathematics Education Research Group of Australasia (pp. 607-615). Lismore: Mathematics Education Research Group of Australasia.

Thomas, N., \& Mulligan, J. (1995). Dynamic imagery in children's representations of number. Mathematics Education Research Journal, 7(1), 5-25.

Thomas, N., Mulligan, J., \& Goldin, G. A. (1994). Children's representation of the counting sequence 1-100: Study and theoretical interpretation. In J. Matos (Ed.), Proceedings of the Eighteenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. II, pp. 1-8). Lisbon, Portugal: PME.

Thomas, N., Mulligan, J. T., \& Goldin, G. A. (1996). Children's representation of the counting sequence 1-100: Cognitive Structural Development. In L. Puig \& A. Gutierrez (Eds.), Proceedings of the Twentieth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 307-314). Valencia, Spain: PME.

Thompson, A. G., Philipp, R. A., Thompson, P. W., \& Boyd, B. A. (1994). Calculational and conceptual orientations in teaching mathematics. In D. B. Aichele (Ed.), Professional development for teachers of mathematics (pp. 79-92). Reston, VA: National Council of Teachers of Mathematics.

Thompson, I. (1997) (Ed.). Teaching and learning early number. Buckingham: open University Press.

Thompson, P. W. (1982a). A theoretical framework for understanding young children's concepts of whole number numeration. Doctoral Dissertation, University of Georgia. Ann Arbor, MI: UMI, Bell \& Howell.

Thompson, P. W. (1982b). Children's schemas in solving problems involving whole number numeration. Paper presented at the annual meeting of the American Educational Research Association, New York, March 1982.

Thompson, P. W. (1985). Experience, problem solving, and learning mathematics: considerations in developing mathematics curricula. In E. Silver (Ed.), Teaching
and learning mathematical problem solving: Multiple research perspectives. Hillsdale: Lawrence Erlbaum.

Thompson, P. W. (1991). To experience is to conceptualize: A discussion of epistemology and experience. In L. P. Steffe (Ed.), Epistemological foundations of mathematical experience (pp. 260-281). New York: Springer-Verlag.

Thompson, P. W. (1992). Notations, conventions, and constraints: Contributions to effective uses of concrete materials in elementary mathematics. Journal for Research in Mathematics Education, 23(2), 123-147.

Thompson, P. W. (1993). Quantitative reasoning, complexity, and additive structures. Educational Studies in Mathematics, 25, 165-208.

Thompson, P. W. (1996). Imagery and the Development of Mathematical Reasoning. In L. Steffe, P. Nesher, P. Cobb, G. Goldin \& B. Greer (Eds.), Theories of mathematical learning (pp. 267-284). Mahwah, NJ: Lawrence Erlbaum Associates.

Thornton, C. (1978). Emphasizing thinking strategies in basic fact instruction. Journal for Research in Mathematics Education, 9, 214-227.

Thornton, C. (1989). Look ahead activities spark success in addition and subtraction number-fact learning. Arithmetic Teacher, April, 8-11.
Thornton, C. (1990). Strategies for learning the basic facts. In J. Payne (Ed.), Teaching and learning mathematics for the young child. Reston, VA: National Council of Teachers of Mathematics.

Thornton, C., \& Jones, G. (1994). Computation sense. In C. Thornton \& N. Bley (Eds.), Windows of opportunity: Mathematics for students with special needs (pp. 205227). Reston, VA: National Council of Teachers of Mathematics.

Thornton, C., Jones, G., \& Neal, J. (1995). The 100s chart: A stepping stone to mental mathematics. Teaching Children Mathematics, 1, 480-483.

Treffers, A. (1991). Meeting innumeracy at primary school. Educational Studies in Mathematics, 22, 333-352.

Underhill R. (1972). Teaching elementary school mathematics. Columbus: Charles Merrill.

Van Engen, H. (1947). Place value and the number system. In G. T. Buswell, Arithmetic, Supplementary Educational Monograph, No. 64. Chicago: University of Chicago Press.
van Hiele, P. (1986). Structure and insight: A theory of mathematics education. Orlando: Academic Press.

Van Oers, 1996. Learning mathematics as meaningful activity. In P. Nesher, L. Steffe, P. Cobb, G. Goldin, \& B. Greer (Eds.), Theories of mathematical learning (pp. 91114). Hillsdale, NJ: Erlbaum.

Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In T. P. Carpenter, J. M. Moser, \& T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 3559). New Jersey: Erlbaum.

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh \& M. Landau (Eds.), Acquisitions of mathematics concepts and procedures (pp. 127-174). New York: Academic Press.

Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert \& M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 141-161). New York: Lawrence Erlbaum.

Vergnaud, G. (1994). Multiplicative conceptual field: What and why? In G. Harel \& J. Confrey (Eds.), The development of multiplicative reasoning in learning mathematics (pp. 41-59). Albany, NY: State University of New York Press

Vergnaud, G. (1996). The theory of conceptual fields. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer (Eds.), Theories of mathematical learning (pp. 219-240). Mahwah, NJ: Lawrence Erlbaum.

Verschaffel, L., \& De Corte, E. (1996). Number and arithmetic. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick, \& C. Laborde (Eds.), International handbook of mathematical education (pp. 99-137). Dordrecht: Kluwer Academic Press.

Voigt, J. (1996). Negotiation of mathematical meaning in classroom processes: Social interaction and learning mathematics. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer (Eds.), Theories of mathematical learning (pp. 21-50). Mahwah, NJ: Lawrence Erlbaum.
von Glasersfeld, E. (1987). Learning as a constructive activity. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics, 3-18. Hillsdale, NJ: Lawrence Erlbaum.
von Glasersfeld, E. (1996). Aspects of radical constructivism and its educational recommendations. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, \& B. Greer (Eds.),

Theories of mathematical learning (pp. 307-314). Mahwah, NJ: Lawrence Erlbaum.
von Glasersfeld, E., \& Kelly M. (1983). On the concepts of period, phase, stage, and level. Human Development, 25, 125-160.

Vygotsky, L. S. (1978). Mind and society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

Walker, D. F. (1992). Methodological issues in curriculum research. In P. Jackson (Ed.), Handbook of research on curriculum (pp. 89-118). New York: Macmillan.

Watanabe, T. (1991). Coordination of units: An investigation of second grade children's pre-rational number concepts. Doctoral Dissertation, Florida State University. Ann Arbor, MI: UMI, Bell \& Howell.

Watanabe, T. (1994). Children's notions of units and mathematical knowledge. In J. Matos (Ed.), Proceedings of the Eighteenth Annual Conference of the International Group for the Psychology of Mathematics Education (pp. 361-368). Lisbon, Portugal: PME.

Watanabe, T. (1995). Coordination of units and understanding of simple fractions: Case studies. Mathematics Education Research Journal, 7, 2, 160-175.

Wearne, D., \& Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction: Testing a local theory using decimal numbers. Journal for Research in Mathematics Education, 19, 371-384.

Wheatley, G., \& Brown, D. (1994). The construction and re-presentation of images in mathematical activity. In J. Matos (Ed.), Proceedings of the Eighteenth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. III, p.81). Lisbon, Portugal: PME.

Wheatley, G., \& Reynolds, A. (1996). The construction of abstract units in geometric and numeric settings. Educational Studies in Mathematics, 30, 67-83.

Willis, S. (Ed.) (1990). Being Numerate: What Counts. Hawthorn, Vic.: ACER.
Wright, R. J. (1990). Interactive communication: Constraints and possibilities. In L. P. Steffe, \& T. Wood (Eds.), Transforming children's mathematics education: International perspectives (pp. 235-2430. Hillsdale, NJ: Lawrence Erlbaum.

Wright, R. J. (1991a). The role of counting in children's numerical development. The Australian Journal of Early Childhood, 16(2), 43-48.

Wright, R. J. (1991b). What number knowledge is possessed by children entering the kindergarten year of school? The Mathematics Education Research Journal, 3(1), 1-16.

Wright, R. J. (1992a). Intervention in young children's arithmetical learning: The development of a research-based mathematics recovery program. Paper presented at the joint conference of the Australian and New Zealand Association for Research in Education, Geelong, Victoria.
Wright, R. J. (1992b). Number topics in early childhood mathematics curricula: historical background, dilemmas, and possible solutions. The Australian Journal of Education, 36(2), 125-142.

Wright, R. J. (1994a). A study of numerical development in the first year of school. Educational Studies in Mathematics, 26, 25-44.

Wright, R. J. (1994b). Mathematics in the lower primary years: A research-based perspective on curricula and teaching practice. Mathematics Education Research Journal, 6, 23-36.

Wright, R. J. (1996). Problem-centred mathematics in the first year of school. In J. Mulligan \& M. Mitchelmore (Eds.), Children's number learning (pp. 163-184). Adelaide: Australian Association of Mathematics Teachers.

APPENDIX A

Pilot Study Interview Record Form

Name:
School:
Grade:
Teacher:

Protocols	
1 Close your eyes. I want you to imagine the numbers from 1 to 100. Can you see a picture of these numbers? Open your eyes. Draw a picture of what you saw.	
2 Display 8 (5) shells. How many shells are there here? Place out 4 (3) shells which are screened from view. There are $12(8)$ shells altogether. How many are hidden? Smaller numbers given to K and Grade 1 children.	
3 Display a collection of ten counters. How many shells are there here? (10) Hide 3 shells. How many shells are under my hand?	
4 After establishing how many shells remain when 3 are hidden (from initial collection of 10) Task 3. Can you give me any other numbers that add to give 10 ?	
$\begin{aligned} & 5 \text { Can you count by tens? Count by } \\ & \text { tens as far as you can. } \end{aligned}$	
6 Give the same amount of lollies to each Lego person. We are to use all the lollies. (12 lollies shared between 3 people).	

7 a) I am going to give you some shells. I want you to put these shells on the plates so that there is the same number of shells on each plate (26 shells with 6 plates). How many shells are on each plate? How many shells are there here altogether? Write down that number. b) After putting shells on the plates so that there is the same number of shells on each plate (26 shells with 6 plates) and establishing that there are 4 shells on each plate (7a): Count these shells by fours.	
8 How many groups of 4? How many left over? The digit in the ones place is circled and the child asked: Does this part have anything to do with how many shells you have? The digit in the tens place is circled and the question repeated.	
9 Show a roll of 10 lollies (transparent). How many lollies are in this roll? Show 4 opaque rolls, each containing 10 sweets. How many lollies are in this roll? How many lollies are in all these rolls? 1 roll and 5 loose sweets are displayed. How many lollies?	
104 rolls and 3 loose sweets are displayed. How many lollies are here altogether?	
114 rolls and 3 loose sweets are displayed (Task 10) Write down the number (43). The digit in the ones place is circled and the child asked: Does this part have anything to do with how many lollies you have? The digit in the tens place is circled and the question repeated.	
12 If you added 8 lollies to your collection there, how many lollies would you have altogether? Assess whether child counts by ones and then trades or uses ten as a unit in the trade.	
13 Show a picture 8 rolls and 6 separate lollies. How many lollies in this roll? How many lollies altogether? (Figure A.1)	

14 Show me five groups of three shells (jar of shells provided).	
15 Using the display of shells from Task 14. Count the shells by threes.	
16 a) See if you can think aloud as you do this next question. There are 12 children with 4 children sitting at each table. How many tables are needed? Give opportunity to draw picture or use material. b) Provide 12 Lego people and 5 trucks made out of Lego blocks. There are 12 Lego people and some trucks. 4 people go to work in each truck. How many trucks are needed?	
17 Show a long: How many does this show? Show a long and 2 shorts: How many does this show? From a set of Dienes block representations of ones (only 40 provided), tens and hundreds the child was asked to: use these counting blocks to build 52 .	
18 Children who were successful with Task 17 were asked if they could find another way to represent 52. Can you draw a picture to show how the blocks represent 52.	
1952 represented by a non-standard grouping of Dienes blocks (Task 18) Can you write in numbers how the blocks represent 52 . Digit correspondence task. The digit in the ones place is circled and the child asked: Does this part have anything to do with how many blocksyou have? The digit in the tens place is circled and the question repeated.	
20 Tens task - a board to which is affixed a sequence of Dienes longs and shorts is gradually uncovered and each time the cover is pulled back to show more material the child is asked: how many are there now? $10,14,34,38,41,51,53,73$	

21 Show a 7 and a 9 pattern board (twos pattern). How many dots are here? Show the 7 board. How many dots are here? Show the 9 board. How many dots are there altogether? (Figure A.2)	
223 rolls (opaque coverings) and 7 separate lollies are visible, the child is told 25 lollies are hidden beneath the cloth and asked to find how many lollies there are altogether.	
23 Show 32 represented by three rolls and two separate lollies. Get respondant to close eyes and then hide one roll and five lollies under tin i.e. show 17. How many lollies are hidden under here?	
24 Write the number one hundred and three. Write the number one hundred and eleven	
25 Show an array of ten by six planes. Can you tell me quickly how many planes are here? (Figure A.3)	
26 Show a roll of ten lollies: How many lollies are here? Show a bag of ten rolls: How many lollies are here?	
27 Show 2 bags, 1 roll, 4 separate lollies - all transparent coverings. How many lollies are there altogether? Write down the number of lollies.	
28 Show 2 bags, 1 roll, 4 separate lollies - all transparent coverings. How many lollies are there altogether? Write down the number of lollies (Task 28). Digit correspondence task. The digit in the ones place is circled and the child asked: Does this part have anything to do with how many lollies you have? The digits in the tens and hundreds places are circled and the question repeated each time.	*
29 Show 3 bags, 12 rolls, 5 separate lollies - all opaque coverings. How many lollies are there altogether?	

30 Digit correspondence task for display used in Task 29. The digit in the ones place is circled and the child asked: Does this part have anything to do with how many lollies you have? The digits in the tens and hundreds places are circled and the question repeated each time.	
31 Show 143 represented by one bag, four rolls and three separate lollies (opaque coverings). Get respondent to close eyes and then hide 9 rolls, and the 7 lollies under tin i.e. show 46. How many lollies are hidden under here?	
32 Child presented with a picture of 143 marks randomly drawn. Can you tell me quickly how many marks there are drawn there?	
33 I am going to do the same thing later with a friend who will be here after you. Could you do something so that, when I show him the sheet, he will be able to tell me very quickly how many marks there are? What did you do? Now can you tell me quickly how many marks there are? How do you know that?	
34 Look at what the friend who came before you did (grouping of groupings is shown). What do you think of it? Can we see quickly how many marks there are? Suppose you have a younger brother / sister who you are going to help with his/her counting. How would you explain the easy way to count those marks. (Figure A.4)	
35 Show a label with the expiry date 'use by 01 August' and ask: What is this number? What does the nought do? (Figure A.5)	
36 Show a place value chart and place numeral cards for numbers ' 1 ' and ' 13 ' in the tens and ones places. What does this mean? What is another name for this number? Is there any other way of writing this?	

37	Provide a box of unifix cubes. In our number system, we always make groups of ten. If we made a make-believe number system where all our groupings were
based on 5, then we would group	
these cubes together to make	
towers of 5. Here are some	
towers of 5. How many towers	
would we group together ?	
(Show some Dienes blocks. Here	
we have some shorts, longs and	
flats. How many towers do we	
put together to form a flat?)	

Figure A.1: Rolls and lollies for Task13

Figure A.2: 7 and 9 pattern boards for Task 21

Figure A.3: Array of ten by six planes for Task 25

Figure A.4: Picture of 143 marks with groupings shown for Task 34 (Bednarz \& Janvier, 1988, p. 310)

Figure A.5: Label with expiry date for Task 35

Figure A.6: Array of $\mathbf{1 0 0 0 0}$ dots for Task 41

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

Figure A.7: Hundred Square for Task 42

APPENDIX B

MAIN STUDY RESULTS

Counting tasks

C1 Addition task
5 shells are hidden under one container and 7 shells hidden under another.
There are 5 shells here and 7 shells here.
How many shells are there altogether? (shells available if required)
Table B.1: Task Response Categories by Grade Level

	Grade		
	$\mathrm{n}=18$	$\mathrm{n}=22$	$\mathrm{n}=18$
Response Categories	K	1	2
0 Guess or no answer	15	5	1
11 Counting all concrete	0	6	3
12 Counting all abstract	1	2	1
2 Counting-on from 5 concretely	0	3	4
3 Counting-on from 7 concretely	1	1	3
4 Counting-on from smaller no. / abstract	0	2	0
5 Counting-on from larger no. / abstract	0	1	3
6 Relate to known fact (doubles), builds ten or	1	2	3
known addition fact.			

C2 Missing addend task. Display 8 shells. How many shells are there here?
Place out 4 shells which are screened from view. There are 12 shells altogether. How many are hidden?
Table B.2: Task Response Categories by Grade Level

	Grade		
Response Categories	$\mathrm{n}=18$	$\mathrm{n}=22$	$\mathrm{n}=18$
0	Guess or no answer	K	1

C3 Removed item task
Display a collection of ten shells. How many shells are there here?
Hide 3 shells. How many shells are under my hand?
Table B.3: Task Response Categories by Grade Level

	Grade		
Response Categories	$\mathrm{n}=18$	$\mathrm{n}=22$	$\mathrm{n}=18$
0 Guess or no answer	K	1	2
1 Counting all	1	8	
2 Counting-on / concrete (fingers)	1	7	7
3 Counting-on / abstract		3	4
4 Known addition fact (builds ten).	1	4	7

Number sense task

N1 Can you give me any other numbers that add to give 10?
Table B.4: Task Response Categories by Grade Level

	Grade		
Response Categories	$\mathrm{n}=18$	$\mathrm{n}=22$	$\mathrm{n}=18$
0 Guess or no answer.	K	1	2
1 Calculates at least two further combinations.	2	9	1
2 Recalls at least two further combinations.	2	5	5

Grouping partitioning tasks - partitioning into equivalent groups

G1 Give the same amount of lollies to each Lego person. We are to use all the lollies. (12 lollies shared between 3 people).
G2 How many lollies did each Lego person get?
Table B.5: Task Response Categories by Grade Level

	Grade		
Response Descriptions	$\mathrm{n}=18$	1	2
0 Unsuccessful	K		
1 One to one dealing	12		
2 Many to one dealing	4		
1 Counts each group	6		
2 Counts only one group	6		
3 Knows answer	6		

G3 I am going to give you some shells.
I want you to put these shells in the plates so that there is the same number of shells on each plate (26 shells with 6 plates).

Table B.6: Task Response Categories by Grade Level

	Grade			
Response Descriptions	$\mathrm{n}=22$	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$
	2	3	4	
01 One to one dealing, distributed all objects.	2	1		
02 Many to one dealing, est. too large, unable to	3		1	
solve or distributed all objects.	7	10	9	9
1 One to one dealing, acknowledged the remainder	7	6	7	7
21 Many to one dealing, more than one deal,	7	6		
remainder acknowledged.	3	1	2	2

P1 Place value task

Digit correspondence task with 26 (displayed as 6 groups of 4 and 2 left over).
How many groups of 4?
How many left over?
The digit in the ones place is circled and the child asked:
Does this part have anything to do with how many shells you have?
The digit in the tens place is circled and the question repeated.

Table B.7: Task Response Categories by Grade Level

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \multicolumn{5}{|c|}{Grade} \\
\hline Response Descriptions \& \[
\begin{gathered}
\mathrm{n}=18 \\
\mathrm{~K}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{n}=22 \\
1
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{n}=18 \\
2
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{n}=19 \\
3
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{n}=18 \\
4 \\
\hline
\end{gathered}
\] \\
\hline \begin{tabular}{l}
00 No meaning assigned to digits ('don't know', gave an insufficient explanation, unable to write numeral correctly). \\
01 Associates the ones digit with the number of groups and the tens digit with the number of shells left over (the 2 in 26 stands for the two shells and/or the 6 in 26 stands for the six plates). 02 Digits interpreted by their face values. \\
1 Digits interpreted correctly by their total values (twenty or two tens and six ones).
\end{tabular} \& 11
7 \& 21 \& 2

13
3 \& 1

10
8 \& 1

4
13

\hline
\end{tabular}

G4 Lauren has planted 20 cabbages. There are 4 equal rows. How many cabbages are in each row?
Table B.8: Task Response Categories by Grade Level

	Grade		
	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$
Response Descriptions	3	4	5
0 No response	1	2	
1 Concrete / pictorial modelling	1	2	
2 Visualize and partition into 4 equal groups			
3 Double count fours	3	2	
4 Estimate / check	1		
5 Relate to division fact / mult.	13	12	

Skip counting tasks

C4 Count by tens
Table B.9: Task Response Categories by Grade Level

	Grade			
	$\mathrm{n}=18$	$\mathrm{n}=22$	$\mathrm{n}=18$	$\mathrm{n}=19$
Response Descriptions	K	1	2	3
0 Not able to count by tens.	15	1		
1	Counts to 90	2	5	
2	Counts to 100		5	2
3	Counts beyond 100	1	11	16

G5 Show me six groups of three shells (jar of shells provided).
Cover the shells with a cloth.
C5 Multiple counting groups of three
Count the shells by threes. (If unable to count the shells then uncover them and repeat question).

Table B.10: Task Response Categories by Grade Level

	Grade						
Response Descriptions	$\begin{gathered} \mathrm{n}=18 \\ \mathrm{~K} \end{gathered}$	$\mathrm{n}=22$	$\begin{gathered} n=18 \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{n}=18 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} n=18 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 6 \end{gathered}$
Unable to form 6 groups of three 00 unable to form groups 01 made groups of 3 02 made group(s) of 6 03 made 3 groups of 6 1 Formed 6 groups of three.	$\begin{aligned} & 1 \\ & 5 \\ & 5 \\ & 2 \\ & 5 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 2 \\ 3 \\ 15 \\ \hline \end{gathered}$	18	$\begin{gathered} 1 \\ 18 \\ \hline \end{gathered}$			
0 Counts by ones or multiple counts, concrete (uncovered). 1 Rhythmic counting in groups (using fingers). 2 Rhythmic counting in groups beyond 18 (numerical composite), abstract (covered). 3 Rhythmic counting in groups (numerical composite), abstract (covered) with concrete double count (fingers). 4 Double counting, concrete (fingers). 5 Double counting (abstract). 6 Multiple count, used multiplication.	17	$\begin{aligned} & 7 \\ & 4 \\ & 7 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 1 \\ & 8 \\ & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \\ & 2 \\ & 4 \\ & 4 \\ & 3 \\ & 1 \end{aligned}$	2 1 3 4 8	$\begin{gathered} 1 \\ 2 \\ 4 \\ 4 \\ 1 \\ 10 \end{gathered}$	$\begin{gathered} 1 \\ 3 \\ 3 \\ 12 \\ \hline \end{gathered}$

G6 Grouping Quotition tasks - double counting

a) See if you can think aloud as you do this next question.

There are 12 children with 4 children sitting at each table.
How many tables are needed?
Give opportunity to draw picture.
If unsuccessful then ask b).
b) There are 12 Lego people and some trucks.

4 people go in each truck.
How many trucks are needed?
Table B.11: Task Response Categories by Grade Level

	Grade				
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=22$	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$
0 Not able to solve problem (meaningful concrete	10	10			
model).					
11 With materials - concrete	8	4	1		
12 Drawing pictures - concrete		6	9	2	2
13 Counting fingers (marks)- concrete		2	2	3	2
2 Building up groups of 4 mentally until 12		2	5	6	
(double count).					
3 Taking away groups of 4 - build down.			1		
4 Known multiplication / division facts.				2	9

G7 Abstract property of quantity task

You are collecting stickers. You can trade 2 small stickers for a large sticker. How many large stickers are worth the same as 3 large stickers and 4 small stickers?

Table B.12: Task Response Categories by Grade Level

	Grade				
Response Descriptions	$n=22$	$n=18$	$n=19$	$n=18$	$n=18$
00 Not able to solve problem or guessed.	8		3		
01 Deals with only one unit of measure - answer 3		2	1		
big stickers.					
02 Deals with only one unit of measure (2 or 7).	9	11	7	5	4
1Unit of measure is arbitrary - deals with two units similtaneously (5).	4	5	8	13	14

P2/P3 Zero as a place holder

Child shown a milk carton with "use by 01 August" stamped on it (Appendix A, Figure A.5) and asked what number " 01 " was and why.
What is this number?
What does the nought do?
Table B.13: Task Response Categories by Grade Level

	Grade					
Response Descriptions	$\mathrm{n}=22$	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
01 Unsure of meaning.	1	2	3	4	5	6
02 Ten.	7	9			1	
1 One, first.	9		2	1		
0 No meaning given to zero	6	9	17	17	17	19
1 Meaning as no tens	21	16	13	10	9	11

Structure tasks

S1 Imagery of numbers task

Close your eyes. I want you to imagine the numbers from 1 to 100. Can you see a picture of these numbers? Open your eyes.
Draw a picture of what you saw.
Table B.14: Task Response Categories by Grade Level

	Grade						
Response Descriptions	$\begin{gathered} \mathrm{n}=18 \\ \mathrm{~K} \end{gathered}$	$\mathrm{n}=22$ 1	$\begin{gathered} \mathrm{n}=18 \\ 2 \end{gathered}$	n=19 3	$\begin{gathered} \mathrm{n}=18 \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{n}=18 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 6 \end{gathered}$
0 No picture	9	5		1			
101 Picture (\$ sign, house, dog)	2	3	2		1	1	1
102 Pictures or marks - no pattern	1						
103 Numerals - random, 1 \& 100 or single numeral	5	6		4	5	3	7
203 No structure, dynamic, numeric.		1	1		1		
111 Partially linear, static, concrete.				1	1		
112 Partially linear, static, ikonic.							
113 Numerals - linear, partial sequence	1			2		3	1
213 Partially linear, dynamic, numeric.				1			
121 Linear, static, concrete.						1	
122 Pictures or marks - linear, linear.							
123 Numerals - sequenced in a square / circle pattem,		2	4	4	4	4	4
Numerals - linear (1 -100), static.							
223 Linear, dynamic, numeric.					1		
133 Numerals - multiple count (tens, twos), static.			4		1		
233 Numerals moving, multiple count (in a circle,							
flashing).							
141 Partial array, static, concrete.							
142 Pictures or marks - groups of tens, static, ikonic.							
143 Arrays - pictures or numerals, not 10 by 10,		5	4	2	3	4	
Numerical expression (10*10)							
243 Partial array, dynamic, numeric.							
152 Arrays - pictures, 10 by 10.							
153 Arrays - numerals, 10 by 10.			3	4	1	2	6
253 Arrays, dynamic, numeric.							

Groupings of ten tasks

Show a roll of 10 lollies (transparent).

How many lollies are in this roll?

Show an opaque roll, containing 10 sweets.
How many lollies, do you think, are in this roll?
If the response is not ten then say that there are ten lollies in the roll the same as there are in this roll (the transparent roll).
G8 1 roll (opague) and 5 loose sweets are displayed.
How many lollies?
If response involves counting-on from ten in ones then the following question is asked.
G9 4 rolls (opague) and 3 loose sweets are displayed.
How many lollies are here altogether?

Table B.15: Task Response Categories by Grade Level for Tasks G8 and G9

	Grade				
Response Descriptions	$\begin{gathered} \mathrm{n}=18 \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} \mathrm{n}=22 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{n}=18 \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 3 \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$
00 Guess or unable to count (15).	2				
01 Counts the package as one.	2				
02 Counts in ones, guessing number in package.	7	2			
1 Counts in ones, correct number in package.	4	2			
2 Counts-on from 10 in ones.	3	11	8	9	
3 Counts 5 - ten and five makes 15		6	10	10	18
00 Guess or unable to count (43).	9	1			
01 Counts singles as tens		2			
02 Counts each package as one.		1			
03 Counts in ones, guessing number in each package.	7	4			
04 Counts in tens and in ones without coordination.		2			
1 Counts in ones, correct number in each package.	1				
2 Counts-on from 10 in ones.	1	5	7	5	9
3 Counts in tens and in ones with coordination.			2	1	
4 Counted-on from 40 by ones		7	9	13	9
5 Uses multiple of tens / knows answer.					

Regrouping

R1 Mental addition
If you added 8 lollies to your collection there, how many lollies would you have altogether?
Assess whether child counts by ones and then trades or uses ten as a unit in the trade.
Table B.16: Task Response Categories by Grade Level for Task R1

	Grade			
	$\mathrm{n}=22$	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$
Response Descriptions	1	2	3	4
0 Counts without coordination, incorrect result.	11	2	1	1
1 Counts-on from 43 by ones.	8	11	6	2
2 Counts-on from 48 by ones.	1	1	2	
3 Adds the ones together and then regroups.	1	1	8	9
41 Adds ten and takes away 2, bridges tens.				1
42 Builds ten, adds-on from 43 / 48.	1	3	2	5

G10 Count out 37 paddle pop sticks as 3 tens and 7 ones.
Here are 3 bundles of ten sticks and 1,2,3,4,5,6,7 extra sticks.
How many sticks are there altogether?

- are the groups of ten used?

Table B.17: Task Response Categories by Grade Level for Task G10

	Grade				
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=22$	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$
00 Attempted to count all by ones	K	1	2	3	4
01 Counts ones as tens	14	7			.
02 Counts tens as ones	1	2			\cdot
1 Counts tens and ones	1				
2 Counts-on from 30 by ones.	2	6	5	1	
3 Gives answer.		2	1	1	

Regrouping tasks - ones and tens

G11 From a collection of shells packaged in bags (tens) and as loose shells (ones, only 40 provided).
I have packaged these shells into bags in order to make it easier to count them.
How many do you think I have put in each bag?
G12 The child is then asked: show me 52 shells.
R2 Addition with concrete material
Use the shells to make the number which is 9 larger.
Children who were successful with the above task were asked if they could find another way to show 61.

Table B.18: Task Response Categories by Grade Level for Tasks G11, G12 and R2

	Grade				
Response Descriptions	$\mathrm{n}=22$	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$
0 Suggested number other than ten.	1	2	3	4	5
1 Suggested ten.	18	11	13	8	6
00 Unable to show 52	4	7	6	10	12
01 Attempt to count separate shells.	6				
1 Counted 5 bags and 2 shells.	8	1	1		
00 Unable to add 9	8	17	18	18	18
01 Added 9 bags	7	2			
1 Added 9 shells.					1
2 Added 1 bag and took away 1 shell.	13	13	11	10	5
0 Unable to give a second representation.	2	3	8	8	12
1 Gave a second representation.		1	1	2	3

Application tasks

C6/C7/C8 How many twenty cent coins are there in \$1?
How many twenty cent coins are there in \$3?
How many twenty cent coins are there in $\$ 10$?
Table B.19: Task Response Categories by Grade Level for Tasks C6, C7 and C8

	Grade				
Response Descriptions	$\begin{gathered} n=22 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}=18 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 3 \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{n}=18 \\ 5 \\ \hline \end{gathered}$
00 guesses or unable to solve.	14	5	1		
01 multiple count but found difficulty keeping track	2	1	1		
1 Double count to find answer (concrete)	4	4	5	3	
2 Double count to find answer (abstract)			3	1	1
3 Knows answer.	2	8	9	14	17
0 Unable to find answer	16	11	4	1	
1 Double count 20,40,.. \$3.			1		1
2 Relates to no. in \$1, double count ($5,10,15, .$.$) .$	3	6	5	4	5
3 Uses relationship of quantities (mult., repeated addition).	3	1	5	7	6
4 Knows answer / uses division.			4	6	6
0 Unable to find no. of 20 c coins in \$10	20	17	11	4	8
1 Relates to no. in \$1, double count	2	1	4	5	1
2 Relates to no. in \$1, multiplication, knows answer / uses division.			4	9	9

N2 / N3 What is the change from \$1 if something cost 64c?
Write down $64 \mathrm{c}+36 \mathrm{c}=\$ 1$
Can you write down 2 other combinations that make \$1?
Table B.20: Task Response Categories by Grade Level for Grades N2 and N3

	Grade			
Response Descriptions	$n=18$	$n=19$	$\mathrm{n}=18$	$\mathrm{n}=18$
00 guesses or unable to solve	2	3	4	5
01 46c	16	10	2	3
$1 \quad 36 \mathrm{c}$	2	4	4	2
0 Unable		5	12	13
1 Addition expression for \$1	18	14	9	7

N4 / N5 How many centimetres in 1 metre?
If you cut 5 cm off a metre length of ribbon, how much ribbon is left?
Write down $0.05+0.95=1$
Can you write down another combination that make 1 metre?

Table B.21: Task Response Categories by Grade Level for Tasks N4 and N5

	Grade		
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
0 Unable	4	5	6
1 Subtract to give 95 cm	2		1
0 Unable	5	18	18
1Decimal number sentence given for combinations of 1	13	5	4

Ten as an abstract composite unit

Assess whether child can coordinate counting by tens and ones i.e. ten as an abstract composite unit.
G13 Uncovering tens task - a board to which is affixed a sequence of Dienes longs and shorts is gradually uncovered and each time the cover is pulled back to show more material the child is asked: "how many are there now?"
$10,14,34,41,51,53,73$
Table B.22: Task Response Categories by Grade Level for Task G13

	Grade			
Response Descriptions	$\begin{gathered} n=22 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{n}=18 \\ 2 \end{gathered}$	$\begin{gathered} n=19 \\ 3 \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$
01 Attempts to count all by ones - counts tens by ones (sometimes unsucessfully).	10	4		1
02 Restarts to count-on from ten all by ones or count tens and ones.	1	1	1	
03 Miscounted on tens as ones.				
04 Miscounted on ones as tens.				1
05 Start with ten and count-on by ones. 1 Does not count-on, restarts and collects units	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	6	8	
of the same rank together.				
2 Counts-on by tens and ones as appropriate.	2	7	10	16

R3 / N6 Show a 6 and a 9 pattern board (Appendix A, Figure A.2).
How many dots are there altogether?
Table B.23: Task Response Categories by Grade Level for R3 and N6

	Grade				
Response Descriptions	$\begin{gathered} \mathrm{n}=18 \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} n=22 \\ 1 \end{gathered}$	$\begin{gathered} n=18 \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$
0 Unsuccessful		3			
1 Count all by ones.		12	4	1	1
21 Count-on from 6 by ones.		3	5		1
22 Count-on from 9 by ones.		3	4	6	4
23 Count-on from 9 by threes.			1	1	
31 Subitize patterns in both numbers and add by partitioning and combining the numbers -			3	9	8
compensation, bridging tens. 32 Add 10, take away one.		1	1	1	3
33 Double and add (or subtract)				1	
0 Unsuccessful 1 Uses ten pattern.		21 1	14 4	$\begin{gathered} 8 \\ 11 \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 12 \\ & \hline \end{aligned}$

Counting tasks - tens and ones

R4 Addition task
Show 3 rolls and 7 separate lollies.
How many lollies are here?
There are 25 lollies hidden under this tub.
How many lollies are there altogether?

Table B.24: Task Response Categories by Grade Level for Task R4

	Grade			
Response Descriptions	$\begin{gathered} \mathrm{n}=18 \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 3 \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$	$\begin{gathered} n=18 \\ 5 \end{gathered}$
00 Unable or unwilling to calculate total mentally.	9	2	2	2
02 Attempts to collect units of the same rank	2	1		1
03 Attempts to count-on by ones	1			
04 Attempts to count-on from 25 or 37 by tens and ones	1	1		
05 Attempts to break number up into parts and use bridging tens				1
11 Counts-on from 37 by ones			1	
21 Counts-on 5 by ones from 37 and then adds 20.			1	
22 Counts by tens (or collects tens), adds 5 or 7 , and then counts-on by ones.		4		1
23 Counts-on from 37 by tens and ones starting in the	1	2	4	
middle of a decade - ten as an abstract composite unit. 24 Adds 5 to 37 and then 20 more			1	3
31 Adds ones forming 10 and 2, then adds 2 to 30 and			1	
counts-on by tens				
32 Adds units of the same rank - abstract collectable	2	7	3	7
33 Written algorithm mentally			3	3
4 Breaks up numbers into parts in order to facilitate	2	2	2	
the addition process, use compensation or bridging tens - a number is a numerical whole and units of tens and ones at the same time.				

R5 Missing addend task

A collection of rolls and separate lollies is visible (e.g. 1 rolls and 8 separate lollies), a child is told how many lollies there are in all e.g. 64, and asked to find how many lollies are hidden.

Table B.25: Task Response Categories by Grade Level for Task R5

	Grade		
Response Descriptions	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$
00 Unable to calculate mentally	3	4	5
01 Attempts written algorithm mentally	5	6	2
02 Attempts subtracting tens and then ones	1	2	
03 Attempts building-up (tens and part tens)	1		3
04 Attempts to build-up, counts by ones	5	1	1
05 Attempt counting back	1	1	1
1 Written algorithm mentally			
21 Builds-up, mult. of ten or counts by tens and ones	2	2	1
22 Builds-up, counts by tens and part tens	2		3
31 Counts-back by ones			
32 Counts-back by tens and ones	1		
33 Counts-back by tens and part tens		4	7
4 Subtract 20, add 2			

N7 / R6 Regrouping tasks - ones and tens

16
$+9$
115
Is this a reasonable answer? Why?
What should the answer be?

Table B.26: Task Response Categories by Grade Level for Tasks N7 and R6

	Grade				
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
0 Yes	2	3	4	5	6
1 Estimation to give no (too big, * instead of +)	17	11	1		
2 Mental calculation to give no		11	6	10	6
0 Attempts to count-on / count all.	3	2			
1 Counts-on to find answer	12	4			1
2 Uses written algorithm mentally	1	9	9	12	16
3 Adds ten, take away one / bridges ten / knows	1	4	7	6	2
answer					

3-digit numerals

P4/P5/P6/P7/P8/P9 Write down the number one hundred and three.
Write down the number one hundred and eleven.
1008
3 tenths
14 hundredths
601040
Table B.27: Task Response Categories by Grade Level for P4, P5, P6, P7, P8, and P9

	Grade				
	Wrote numeral correctly	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$
P4	103	2	3	4	5
P5	111	14	18	18	18
P6 1008	11	18	18	18	
P7	0.3	8	16	16	18
P8	0.14			3	8
P9	601040			1	6

P10 Show 431 recorded on the screen of a calculator and 31 on a card.
How can you change the calculator number to this number on the card?
Table B.28: Task Response Categories by Grade Level for P10

	Grade			
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$
O0 Guess or unable	2	3	4	5
O1 Subtract 4	1	1	1	1
O2 Subtract 40	9	4	2	2
1 Subtract 400	1	1		

G14 Use of tens structure in counting

Assess intuitive use of ten in counting when a ten by six array of pictures is presented.
Show an array of ten by six planes.
Can you tell me quickly how many planes are here?
Table B.29: Task Response Categories by Grade Level for G14

	Grade				
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=22$	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$
01 Attempts to count all by ones.	18	17	7	1	
02 Attempts to count by sixes.			2		
1 Counts by tens, repeated addition.		5	8	3	4
2 Uses multiplication.		0	1	15	14

S2 Ones, tens and hundreds structure
Show a roll of ten lollies: How many lollies are here?
Show a bag of ten rolls: How many lollies are here?
Show 2 bags, 4 roll, 5 separate lollies - all transparent coverings.
How many lollies are there altogether?
Write down the number of lollies.
Table B.30: Task Response Categories by Grade Level for S2

	Grade			
Response Descriptions	2	3	4	5
00 Attempts to count by ones or no response.	1			
01 Counts tens as hundreds.				
02 Attempts to count tens and ones	2		1	
03 Attempts to count from 200 by ones	3	1		
1 Counts all by tens and ones.				
21 Counts by hundreds, tens and ones	2			
22 Counts-on from 200 by tens and ones.	2	6		3
23 Establishes number of hundreds, tens and ones	4	3	2	4
and immediately gives total.	4	9	15	11

S3/R7 Ones, tens and hundreds structure

Show 245 represented by bags, roll, and separate lollies.
Add to these sweets so that the number of lollies is ten more. How many lollies have we got? Add to these sweets so that the number of lollies is $\mathbf{9 8}$ more. How many lollies have we got now?

Table B_31: Task Response Categories by Grade Level for S3 and R8

\left.| | Grade | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Response Descriptions | 2 | 3 | 4 | 5 | 6 |
| 00 Unable or adds ten by counting-on by 1's. | 7 | 1 | 1 | | |
| 01 Counts all to find ten more. | 1 | | | | |
| 1 Adds ten. | | | 18 | 17 | 18 |
| 00 Unable / guesses / unwilling | 19 | | | | |
| 01 Attempts written algorithm mentally. | | 1 | 4 | 5 | 2 |
| 02 Attempts to start at 240, 245 or 290 and adds or | | | | | |
| counts by tens and ones. | | | | | |$\right)$

Structure tasks - non-proportional representations

S4/S5 Coloured counters are assigned values ie a red counter is worth 10 blue counters and a yellow counter is worth 10 red counters. Other coloured counters are available.
These counters are each given different values. If we say that these red counters are each worth 10 blue counters. Each yellow counter is worth 10 red counters.
If each blue counter is worth 1, use as few of the counters as possible to show the number 246.
Explain how you would use counters to show the number 1246.

Table B.32: Task Response Categories by Grade Level for S4 and S5

	Grade	
Response Descriptions		$\mathrm{n}=19$
00 Unable		4
01 Showed 246 blue counters		3
02 Showed 20y, 4r, and 6b.		12
1 Showed 2y, 4r, and 6b.		13
00 No response	1	
01 Showed $100 \mathrm{y}, 20 \mathrm{r}$, and 46b.	4	
1 Showed $12 \mathrm{y}, 4 \mathrm{r}$, and 6 b.		1

Place value and regrouping tasks

P11/P12/R8 Spike abacus question.
Put these labels on the abacus (ones, tens and hundreds).
How would you use this abacus to show the number 234 ?
Add 98 to your number on the abacus.
Table B.33: Task Response Categories by Grade Level for P11, P12 and R8
$\left.\begin{array}{|l|c|c|}\hline & \text { Grade } \\ \hline \text { Response Descriptions }\end{array} \quad \begin{array}{c}\mathrm{n}=19 \\ \hline 0 \text { Labelled abacus in reverse order } \\ 1 \text { Labelled abacus correctly }\end{array}\right)$

One hundred as a composite unit

S6/N8/N9 Show a hundred square (0 to 99) (Appendix A, Figure A.7).
Can you find 84 ?
What do you add onto 84 to make 100 .
Can you give me another combination which make 100?
Can you make up any combinations which make 1000?
Table B.34: Task Response Categories by Grade Level for S6, N8 and N9

	Grade				
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
00 Unsucessfully	2	3	4	5	6
01 Gives 26 as answer	10	2	1	2	
02 Counts-on by ones using 100 square (15)	2	1	3		
1 Counts-on by ones using 100 square (16)	4	2	1	1	
2 Calculates ten and six from 100 square	2	1	4	3	4
3 Knows answer.		5	1	1	1
0 Unsuccessful	17	9	6	2	1
1 Makes a combination of 100 other than	1	10	12	16	18
involving zeros or single digit numbers					
0 Unsuccessful	18	17	12	8	10
1 Makes a combination of 1000 other involving		2	6	10	9
zeros or single digit numbers					

G15 Hundreds task - a board to which is affixed a sequence of Dienes longs and shorts is gradually uncovered and each time the cover is pulled back to show more material the child is asked: "how many are there now?"
$100,120,40,200,6,104,30$
Table B.35: Task Response Categories by Grade Level for G15

	Grade				
	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
Response Descriptions	2	3	4	5	6
00 Unable	5	3			
01 Counts tens as ones		1			
02Attempts to count-on by hundreds, tens and ones.		6	5	1	2
03 Attempts to restart each time	1		1	1	
1 Restarts to count hundreds, tens and/or ones.	5	1		2	
2 Counts-on by hundreds, tens and ones.	2	8	12	14	17

R9 Regrouping - tens and hundreds

Show 3 bags, 12 rolls, 5 separate lollies - all opaque coverings.
How many lollies are there altogether?
Digit correspondence task.
Table B.36: Task Response Categories by Grade Level for R9

	Grade			
Response Descriptions	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
00 Attempts to count by ones or no response.	3	4	5	6
01 Counts tens as hundreds.	1			
11 Counts all by tens and ones.				
12 Counts-on from 300 by tens and ones.				
13 Establishes number of hundreds, tens and ones				
and immediately gives total.	15	18	18	19

P13 Digit correspondence task (425)
Table B.37: Task Response Categories by Grade Level for P13

	Grade				
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
00 No meaning assigned to digits ('don't know', gave an insufficient explanation, unable to write numeral correctly).					
01 Digits interpreted by their face values. 02 Digits interpreted correctly by their total values	9	12	2	3	
$\left.\begin{array}{l}\text { - 4 bags. } \\ \text { 1 } \begin{array}{l}\text { Digits interpreted correctly by their total values } \\ \text { - four hundred, } 4 \text { hundreds, } 40 \text { tens. }\end{array}\end{array}\right) 9$	7	16	15	19	

Use of the hundred square

Assess how a number's location on the hundred square is found. What use is made of the pattern of tens.
Show a hundred square (0 to 99) (Appendix A, Figure A.7).
Show me 36 on this 100 square.
S7 Show me how you can get ten more than 36 quickly from the hundred square.
S8 Can you show me ten less than 49?
S9 Can you show me nine more than 67?

Table B_38: Task Response Categories by Grade Level for S7, S8 and S9

	Grade				
Response Descriptions	$\begin{gathered} n=18 \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$	$\begin{gathered} n=18 \\ 5 \end{gathered}$	$\begin{gathered} n=19 \\ 6 \end{gathered}$
00 Guess or no answer	4			1	
01 Attempts to count-on by ones to get second number (addition).	2				
1 Counts-on by ones to get second number as a result of addition. 2 Uses pattern of tens (addition).	2 10	6	18	2 15	9
00 Guess or no answer	4			1	
01 Attempts to count-back by ones to get second number (subtraction).	2	2		1	
1 Counts-back by ones to get second number as a result of subtraction.	2 10	5	1	1	19
2 Uses pattern of tens (subtraction).	10	12	17	15	19
00 Attempts to count-on by ones	7	3		2	1
01 Attempts to add 10, subtract 1 ("1 down, 1 back")					
1 Counts-on by ones	7	8	6	4	2
21 Adds 3 to 70 and then 6 more (bridges ten)			1	2	1
22 Calculates (7 plus 9 and adds to 60)					1
23 Uses pattern of tens, ten more / one less	4	7	11	10	14

Groupings of groupings - extending the system

In our lolly factory we make lollies like this one. We package groups of ten lollies into rolls like these.
Then we package ten rolls into a bag like this.
S10 When we have lots of bags we want to package them into boxes so that it will be easy to count them.
How many bags would you put in a box?
When we have lots of boxes we want to package them into cases or crates so they can be transported to the shops. How many boxes would you put in a case?
S11 How many lollies are there in a box?
S12 If we had 3 lollies, 5 rolls, 7 bags, 1 box and 4 cases, how many lollies would there be altogether?
Show this written.
S13 If we had a case of lollies and sold 1468, how many lollies would be left?
Table B.39: Task Response Categories by Grade Level for S10, S11, S12 and S13

	Grade			
Response Descriptions	$\begin{gathered} n=19 \\ 3 \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$	$\begin{gathered} n=18 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 6 \end{gathered}$
0 Suggested numbers other than 10	13	11	12	15
1 Suggested 10 bags \& 10 boxes	6	4	6	4
00 Unable	5		1	
01 Incorrect no. of lollies in a box	4	9	5	6
11000 lollies in a box	10	9	12	13
0 Unable / quesses	15	11	7	5
1 Calculates 753 lollies	3	1	1	1
2 Calculates 1753 lollies	1	1	4	2
3 Calculates 41753 lollies		1	3	6
4 Recognises 41753 lollies		4	3	5
1 Mentally finds missing addend.				2

Counting tasks - ones, tens and hundreds

R10 Missing addend task
Show 46 represented by four rolls and six separate lollies (opaque coverings).
There are 143 lollies altogether. How many lollies are hidden under here?

Table B.40: Task Response Categories by Grade Level for R10

	Grade		
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
00 No response, only written or unsuccessful.	8	4	5
01 Attempt written algorithm mentally		2	
02 Attempts to build-up, bridge ten/hundred	3		1
03 Attempt to take away	2	1	
04 Attempts comparison (103)		3	2
1 Building up, bridging tens/hundred	2	3	1
2 Takes away to find addend (43 then 3, 6 then	3	4	6
40 or 40 then 3 then 3)			
$3 \quad$ Compares 46 (or 146) and 143 (3 less than		1	4
100 or add 100 take away 3)			

R11 Missing addend task
Show 122 represented by one bag, two rolls and two lollies (opaque coverings).
There are 300 lollies altogether.
How many lollies are hidden under here?
Table B.41: Task Response Categories by Grade Level for R11

	Grade		
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
00 No response, only written or unsuccessful.	10	2	3
01 Attempt to count-on from 122 by tens and	1	1	
ones, build-up			
02 Attempts written algorithm mentally		2	1
03 Attempts to take away		1	
04 Attempt to build-up, bridge tens/hundreds	3	5	4
1 Adds, bridges 200 - building up.	4	5	6
2 Takes away to find addend.		2	4
$3 \quad$ Relates to $150+150$ (compensation)			1

Groupings of groupings

Determine pertinence of grouping and the significance of associated writing.
Responses: no need for grouping - either guess or count by ones; group to count quickly, recount the collection after grouping; use one order of groupings and sees that writing is a code that is directly associated with these groupings; use a grouping of groupings.

S14 Child presented with a picture of 144 marks randomly drawn.
Can you guess how many marks there are drawn there?
I am going to do the same thing later with a friend who will be here after you. Could you do something so that, when I show him /her the sheet, he /she will be able to tell me very quickly how many marks there are?
What would you do?
S15 Look what someone did for you (grouping of groupings is shown). What do you think of it?
Can you now count how many marks there are? (Appendix A, Figure A.4)
S16 If the red circle is not mentioned then the following questions are asked.
Can you explain what the red circle does?
Can you now count a quicker way?

Table B.42: Task Response Categories by Grade Level for S14, S15 and S16

	Grade				
Response Descriptions	$\begin{gathered} \mathrm{n}=18 \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 3 \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$	$\begin{gathered} n=18 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 6 \end{gathered}$
00 No suggestions to help another person, labelling each mark or dividing in half.	10	6	2	3	5
01 Suggests grouping by a number other than ten.	1	3	6	4	1
1 Suggests grouping by tens.	7	10	10	9	12
2 Suggests grouping tens and ten groups of tens.				2	1
00 Does not recognize and use tens when shown what a friend had done.					
01 Recognizes but does not use successfully the groupings of tens.	5	4		1	
1 Recognizes and uses the groupings of tens.	9	10	15	9	11
2 Recognizes and uses the groupings of tens and hundreds that were made by another person.		3	3	8	8
0 No recognition of meaning 1 Suggests ten groups of ten or 100	$\begin{aligned} & 9 \\ & 9 \\ & \hline \end{aligned}$	$\begin{array}{r} 6 \\ 13 \end{array}$	$\begin{gathered} \hline 3 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 16 \\ \hline \end{gathered}$	19

Compensation tasks - 2-digit numbers
 N10 What is sixty-five plus sixty-five?

Explain how you got that answer.
N11 Now think aloud while you do $66+64$.
N12 Now think aloud while you do $55+75$.
Table B.43: Task Response Categories by Grade Level for N10, N11 and N12

	Grade			
	$\mathrm{n}=19$	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
Response Descriptions	3	4	5	6
0 Unable	5	1	1	1
1 Found answer to $65+65$	14	17	17	18
1 Relates by compensation of ones.	5	8	7	12
1 Relates by compensation of tens.	2	2	3	6

Renaming numbers

Show a place value chart (ones, tens and hundreds) and digit cards for numbers 0 to 19.
Show the ' 1 card' in each of the place value positions and ask what is the value of each of the positions.
P14 Show the ' 1 card' in each of the three positions to the left and right of the labelled positions and ask for the values.

P15 Place the cards "1" and "13" in the tens and ones places and ask for the meaning of this. What is another name for this number?
Is there any other way of writing this?

Table B.44: Task Response Categories by Grade Level for P14 and P15

	Grade			
Response Descriptions	$\begin{gathered} \mathrm{n}=19 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} n=18 \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{n}=18 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 6 \end{gathered}$
0 Not able	6	1		
1 Rec . of thousands place.	13	11	6	4
2 Rec. of places from thousands to ten thousands.			3	1
3 Rec. of places from thousands to h. thousands.			1	
4 Rec . of places from thousands to millions.		2	2	1
5 Rec. of places, tenths and thousands.		1		
6 Rec. of places, tenths, and from thousands to millions.				1
7 Rec . of places, hundredths, tenths and thousands.		1		1
8 Rec. of places, hundredths, tenths to ten thousands.		1	2	2
9 Rec. of places to thousandths and to ten thousands.			1	1
10 Rec. of places to hundredths and to millions			2	3
11 Rec. of places to thousandths and to millions		1	1	5
00 One ten and 13 ones, unable to give further meaning.	5	2	3	
01 Meaning as 11.3			1	
02 Meaning as 113.	3	2	2	3
03 Meaning as 14	1	1		
1 Meaning as 23.	10	13	12	16

Show a place value chart (ones to hundred millions) with 2 shells in the hundreds place, 3 shells in the tens place and 4 shells in the ones place.
What number does this show and why?
R12 Add 98 to the number on the place value chart.
S17 Use the shells to make the number which is 100 times larger (multiply by 100).
Table B.45: Task Response Categories by Grade Level for R12 and S17

	Grade	
Response Descriptions	$\begin{gathered} n=18 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 6 \end{gathered}$
1 Represents 234 on the place value chart.		19
00 Unable		1
01 Adds 7 and 6 shells to the tens and ones spaces resp. (only ten allowed in each space)		1
02 Makes up to 8 shells in ones and 9 shells in tens place (add 4 and 6 resp)		1
03 Adds 8 shells to the ones place and 9 shells to tens place.		7
1 Adds 8 shells to the ones place, 9 shells to tens place and regroups.		3
2 Adds 1 to tens, takes 2 from ones and adds 1 to hundreds, takes lfrom tens.		
3 Adds one shell to hundreds place and takes 2 from ones place.		6
00 Unable or just say add noughts		9
01 Replace the shells with 2,3 and 4 shells in the thousands, hundreds and tens spaces		
02 Move shells 1 space to the left		1
03 Move shells 3 spaces to the left		1
1 Puts 2,3 \& 4 shells on ten thousands, thousands and hundreds places and removes previous shells.		2
		6

P16 Numerals - 4-digits and more

Show 286349 displayed on the screen of a calculator and 206349 on a card.
How can we change the calculator number to this number on the card?

Table B.46: Task Response Categories by Grade Level for P16

	Grade		
Response Descriptions	$n=18$	$n=18$	$n=19$
00 Not able	4	5	6
01 Subtract 8.	3	1	
02 Subtract another incorrect number.	3	3	1
1 Subtract 80000.	3	3	4

S18 Imagery of numbers task

Assess whether the mental picture of the numbers 1 to 100 is a single mental number line or a matrix of coordinated horizontal and vertical mental number lines.
Close your eyes. I want you to imagine the numbers from 1 to 1000. Can you see a picture of these numbers?
Open your eyes.
Draw a picture of what you saw.
Table B.47: Task Response Categories by Grade Level for S18

	Grade		
Response Descriptions	$\mathrm{n}=18$ 4	$\begin{gathered} \mathrm{n}=18 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{n}=19 \\ 6 \end{gathered}$
0 No picture			1
101 Picture (\$ sign, house, dog)			1
102 Pictures or marks - no pattern		1	1
103 Numerals - random, 1, 100 \& 1000 / single numeral	5	1	5
203 No structure, dynamic, numeric.			
111 Partially linear, static, concrete.			
112 Partially linear, static, ikonic.			
113 Numerals - linear, partial sequence		2	1
213 Partially linear, dynamic, numeric.			1
121 Linear, static, concrete.		1	
122 Pictures or marks - linear, linear.			
123 Numerals - sequenced in a square / circle pattern,	3	6	1
Numerals - linear ($1-1000$), static.			
223 Linear, dynamic, numeric.	1		
133 Numerals - multiple count (hundreds, tens, twos), static.	2		
233 Numerals moving, multiple count (in a circle,			
flashing).			
141 Partial array, static, concrete.			
142 Pictures or marks - groups of tens, static, ikonic.			
143 Arrays - pictures or numerals, not 10 by 100,	1	2	2
Numerical expression (10*100)			
243 Partial array, dynamic, numeric.			
152 Arrays - pictures, 10 by 100.	1		
153 Arrays - numerals, 10 by 100.	5	5	6
253 Arrays, dynamic, numeric.			

Two responses missing from Year 4, Bowen PS
One response missing from Year 5, BowenPS

Rules for extending the system

S19 Provide a box of unifix cubes.
In our number system, we always make groups of ten.
Show some Dienes blocks.
Here we have some shorts, longs and flats.
Discussion of using the blocks to represent the values of the positions of digits in numerals.
This short shows the value of the digits in this position (ones). This long shows the value of the digits in this position (tens). This flat shows the value of the digits in this position (hundreds).
If we made a make-believe number system where all our groupings were based on 5 , then how would we group these cubes?
Here are some towers of 5 .
How would we group these towers?
How many towers do we put together to form a wall?

S20 How would the grouping pattern continue?"
Show an unlabelled place value chart.
What would be the values of these positions in our new number system?
Table B.48: Task Response Categories by Grade Level for S19 and S20

	Grade	
Response Descriptions	$\mathrm{n}=18$	$\mathrm{n}=19$
010	10 towers $/ 10$ walls	
02	Various numbers given	
03	20	
03	towers $/ 10$ walls or 2 towers (make tens) /	2
10	9	3
1	5 towers $/ 5$ walls.	4
1 Extension of system	2	

S21 Working with groupings of groupings

A mum buys lollies for a birthday party. She wraps them in rolls like this one (showing a sample of a roll) and puts the roll in bags like this one (showing a sample of a bag) in order to give some to the children. She has some lollies over.
Mum has this many at the beginning (drawings are shown - 234).
She gives away this many (another drawing is shown 178).
How many bags, rolls and loose lollies does she have left?
Table B.49: Task Response Categories by Grade Level for S 21

	Grade		
	$\mathrm{n}=18$	$\mathrm{n}=18$	$\mathrm{n}=19$
Response Descriptions	4	5	6
00 Guess / written only / no answer	12	6	6
011 bag, no rolls, no lollies		1	
02 Attempt written algorithm in head	1		1
03 Subtracted small number from larger number for each article (ans. 144)		2	
04 Attempt subtraction of bags, rolls and loose	3	1	4
lollies with regrouping			
05 Attempt building-up			1
06 Attempt compensation.			1
1 Used written algorithm mentally			2
2 Subtract multiples of hundreds, tens and part tens		3	1
3 Proceeded from the picture and mentally opened	2	3	1
bags and rolls.			
4 Build-up, bridging 200		2	
5 Compare, relate to 200, compensation.			2

S22 Use of groupings of groupings in counting
Assess use of groupings of tens, hundreds and thousands when quantifying large collections.
Show an array of 100×100 dots (Appendix A, Figure A.6).
Can you tell me how many dots are here?

Table B.50: Task Response Categories by Grade Level for S22

	Grade			
Response Descriptions	$\begin{gathered} n=19 \\ 3 \end{gathered}$	$\mathrm{n}=18$ 4	$\mathrm{n}=18$ 5	n=19 6
00 Guesses or unable.	3	1	1	
01 Attempts to count by ones.				
02 Attempt to muitiply 1000 by 1000				
03 Counts down and across and attempts to multiply.	5	1	1	
04 Attempts to establish pattern of hundreds but calls them tens.	2			
05 Determines the patterns of hundreds and	2	4	1	3
unsucessfully attempts to count by hundreds.				
06 Determines the patterns of thousands and	3	4	5	2
unsucessfully attempts to mult. or count by thousands.				
07 Determines the patterns of hundreds, counts 10 down,		5	5	2
10 across and guesses or attempts to multiply				
1 Determines pattern of hundreds, counts 10 by 10 and multiplies to give $\mathbf{1 0 0 0 0}$			2	
2 Determines the patterns of hundreds and counts by hundreds to give 10000.				
3 Determines the patterns of hundreds, counts to give the thousand pattern and then counts or mult. to give 10	4	2	3	8
000.				
4 Multiplies 100 by 100		1		4

Extension of the place value system
Show some base-ten numeration blocks.
If this block (a little) has a value of 1 .
What is the value of this block (long)?
What is the value of this block (flat)?
What is the value of this block (block)?
S23 What is the next value?
S24 If the answer is not correct give the answer as 10000.
What would a model of 10000 look like?
S25 If this block (a little) has a value of 100, what is the value of this block (flat)?
What would the model of 100000 look like?
S26 If this block (big) has a value of 1, what is the value of this long?

Table B.51: Task Response Categories by Grade Level for S23, S24, S25 and S26

APPENDIX C

Operational Definitions

Base ten place value: a power of ten is associated with each position in a numeral.

Builds ten or bridges ten: partitions one of the numbers so that the other number can be built up (or down) to ten.

Counting (rational): recitation of number words is coordinated with the conceptual production of an item which may be perceptural, figurative or abstract.

Counting all: counting each item by ones.

Counting on: counting on from a given number by ones or in equal groups.

Double counting: counting all or skip counting with a simultaneous count of the number of groups at the same time, e.g. "one, two, three (one); ... four, five, six (two); ... " or "three (one), six (two), nine (three), ...".

External representations: physically embodied, observable configurations of the number system such as actions, words, pictures and symbols (Goldin \& Kaput, 1996).

Imagery: creation of images, classically viewed as internalised perception.

Imaging: construction, representation and transformation of the image (Kosslyn, 1980).

Imagistic: based on mental images.

Internal representations: configurations that are encoded by the human brain and nervous system (mental configurations). Must be inferred from observation.

Multiple counting: counting equal groups of items, total related to multiplication.

Place value: each position in a numeral has a value.

Relate to known double: using a known double to find another fact.

Representations: produced by imagery processes and abstract representational systems.

Rhythmic counting: counting by ones but in a particular pattern which emphasises the multiples of a particular number.

Rote counting: recitation of number words in order.

Skip counting: reciting the count of multiples of a particular number (not intervening numbers).

Subitise: the ability to ascribe a number instantaneously to a pattern of objects.

Ten as an abstract composite unit: A cognitive construct used to characterise a child's view of ten as a single entity and a unit composed of $\mathbf{1 0}$ ones.

Ten as a numerical composite: a cognitive construct used to characterise a child's view of ten as a composite of 10 ones, as opposed to one single entity or unit of ten.

Using a known addition fact: retrieving an addition fact automatically with no apparent counting.

Visual imagery: mental images with a strong visual component, internal representations corresponding to diagrams, pictures.

APPENDIX D

Letters of Consent for Research

Letter to Principals
Letter to Teachers
Questionaire for Teachers
Letter to Parents

CHARLES STURT U N I V E R S I T Y
 MITCHELL

7 September 1992

Abstract

Dear Principal, I am currently undertaking doctoral research in mathematics education through Macquarie University. This research involves a cross-sectional study that will contribute to our knowledge about how young children understand numeration. It is anticipated that this study will be carried out in Western Region public schools, and Mr lain McPherson has given his support to the project. I am requesting your cooperation by allowing this research to be conducted in your school.

The first stage of the study would require the teachers to complete the short questionnaire that I have included. Following this, a sample of children from Kindergarten to Year 6 classes will be randomly chosen. I will then interview each child for a period of approximately 40 minutes where they will be asked to solve some mathematical problems. This procedure will only occur with the permission of the class teacher, the parents and the child involved. Parents, teachers and children will all be informed about the study and they maintain the right to refuse participation if they wish.

Interviewing will be conducted during fourth term, 1992. It is also essential to interview the teachers regarding content being taught, at the time of the interviews. However, I would like to indicate that the study is in no way assessing the peformance of the class teachers involved. Every effort will be made to interview at times convenient for all those concerned. All information obtained will remain confidential and the anonymity of the school will be preserved. Should you require any further information I am happy to meet with you or provide a detailed account of the study.

If you are willing to allow this research to be conducted in your school I am requesting that you invite the teachers to participate by completing the questionnaire attached. Thank you for your cooperation in this matter

Yours faithfully,

Noel Thomas
Lecturer in Mathematics Education

