Developing *Ophiostoma floccosum* as a novel expression system

Caiyan Wu

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Chemistry and Biomolecular Sciences Division of Environmental and Life Sciences Macquarie University, Australia March, 2007

Table of contents

Abstract

Declaration

List of publications

Abbreviations

Acknowledgements

Chapter 1 Introduction

1.1	Filame	Filamentous fungi as sources for enzymes and metabolites		
	1.1.1	Fungal proteinases		
		1.1.1.1 Applications of proteinases in industry	14	
		1.1.1.2 Trifunctional probe for capturing the secreted proteinases	14	
	1.1.2	Fungal amylases		
		1.1.2.1 Applications of amylases in industry	16	
		1.1.2.2 The structure of fungal α -amylase and glucoamylase	16	
		1.1.2.3 Regulation of the expression of <i>Aspergillus</i> α -amylase and		
		glucoamylase	17	
1.2	The se	The secretory pathway of filamentous fungi		
	1.2.1	Protein quality control		
	1.2	2.1.1 Unfolded protein response	20	
	1.2	2.1.2 ER-associated degradation	22	
1.3	The fil	The filamentous fungus Ophiostoma		
	1.3.1	Dimorphism of Ophiostoma spp.		
	1.3.2	Growth of Ophiostoma in wood		
	1.3.3	Enzymes secreted by Ophiostoma		
	1.3.4	Applications of Ophiostoma in industry		
	1.3.5	Ophiostoma as a potential expression host	30	
1.4	Requirements for the development of a novel expression system			
	1.4.1	Strategies for strain and yield improvement in filamentous fungi	31	

1.4.1.2 Molecular approaches to improve the yields of recombinant proteins in filamentous fungi 32 1.4.2 Consideration in the construction of expression vectors 34 1.4.2.1 Fungal promoters 34 1.4.2.1 Fungal promoters 34 1.4.2.1 Fungal promoters 34 1.4.2.1 The inducible glaA gene promoter from A. niger var. awamori 35 1.4.2.1.2 Taka-amylase A (taaG2) gene promoter from A. oryzae 37 1.4.2.1.3 The gpdA and amdS gene promoters of Aspergillus spp. 37 1.4.2.2 Selection markers 38 1.4.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture	1.4.1.1 UV mutagenesis to improve the secretion ability of the					
proteins in filamentous fungi 32 1.4.2 Consideration in the construction of expression vectors 34 1.4.2.1 Fungal promoters 34 1.4.2.1 Fungal promoters 34 1.4.2.1.1 The inducible glaA gene promoter from 35 1.4.2.1.2 Taka-amylase A (taaG2) gene promoter from 35 1.4.2.1.3 The gpdA and amdS gene promoters of 37 1.4.2.2 Selection markers 38 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable sel				expression	n host	31
1.4.2 Consideration in the construction of expression vectors 34 1.4.2.1 Fungal promoters 34 1.4.2.1 Fungal promoters 34 1.4.2.1.1 The inducible glaA gene promoter from 35 1.4.2.1.2 Taka-amylase A (taaG2) gene promoter from 35 1.4.2.1.3 The gpdA and amdS gene promoters of 37 1.4.2.1.3 The gpdA and amdS gene promoters of 39 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 5			1.4.1.2	Molecular	approaches to improve the yields of recombinant	
1.4.2.1 Fungal promoters 34 1.4.2.1.1 The inducible glaA gene promoter from 35 1.4.2.1.2 Taka-amylase A (taaG2) gene promoter from 35 1.4.2.1.3 The gpdA and amdS gene promoters of 37 1.4.2.1.3 The gpdA and amdS gene promoters of 38 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4 The fluorescent protein DsRed 46 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiot				proteins in	filamentous fungi	32
1.4.2.1.1 The inducible glaA gene promoter from 35 1.4.2.1.2 Taka-amylase A (taaG2) gene promoter from 35 1.4.2.1.2 Taka-amylase A (taaG2) gene promoter from 37 1.4.2.1.3 The gpdA and amdS gene promoters of 37 1.4.2.2 Selection markers 38 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51		1.4.2	Consideration in the construction of expression vectors			34
A. niger var. awamori 35 1.4.2.1.2 Taka-amylase A (<i>taaG2</i>) gene promoter from A. oryzae 37 1.4.2.1.3 The gpdA and amdS gene promoters of Aspergillus spp. 37 1.4.2.2 Selection markers 38 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.4.4.2 Thermostable xylanase B 46 1.4.4.2 Thermostable xylanase B 46 1.4.4.2 Thermostable sylanase B 46 1.4.4.2 Thermostable sylanase B 46 1.4.4.2 Thermostable sylanase B 46 1.4.4.3 Selection of culture media 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51			1.4.2.1	Fungal pro	moters	34
1.4.2.1.2 Taka-amylase A (taaG2) gene promoter from 37 A. oryzae 37 1.4.2.1.3 The gpdA and amdS gene promoters of 37 Aspergillus spp. 37 1.4.2.2 Selection markers 38 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51				1.4.2.1.1	The inducible <i>glaA</i> gene promoter from	
A. oryzae 37 1.4.2.1.3 The gpdA and amdS gene promoters of Aspergillus spp. 37 1.4.2.2 Selection markers 38 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51					A. niger var. awamori	35
1.4.2.1.3The gpdA and amdS gene promoters of Aspergillus spp.371.4.2.2Selection markers381.4.2.3Effects of proteolysis on foreign protein yields391.4.3Transformation of filamentous fungi401.4.3.1Methods of transforatiom401.4.3.2Transformation approaches applied to Ophiostoma431.4.4Reporter genes441.4.4.1The fluorescent protein DsRed461.4.2.2Thermostable xylanase B461.5Aims47Chapter 2Materials and methods482.1Selection of culture media482.2Proteinase assays using fluorescent substrates492.3Choice of suitable selection markers512.3.1Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics51				1.4.2.1.2	Taka-amylase A (taaG2) gene promoter from	
Aspergillus spp. 37 1.4.2.2 Selection markers 38 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3.1 Methods of transforatiom 40 1.4.3.2 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51					A. oryzae	37
1.4.2.2 Selection markers 38 1.4.2.3 Effects of proteolysis on foreign protein yields 39 1.4.3 Transformation of filamentous fungi 40 1.4.3 Transformation approaches applied to Ophiostoma 43 1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51				1.4.2.1.3	The gpdA and amdS gene promoters of	
1.4.2.3 Effects of proteolysis on foreign protein yields391.4.3 Transformation of filamentous fungi401.4.3.1 Methods of transforatiom401.4.3.2 Transformation approaches applied to Ophiostoma431.4.4Reporter genes441.4.4.1 The fluorescent protein DsRed461.4.4.2 Thermostable xylanase B461.5 Aims47Chapter 2 Materials and methods2.1 Selection of culture media482.2 Proteinase assays using fluorescent substrates492.3 Choice of suitable selection markers512.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics51					Aspergillus spp.	37
1.4.3Transformation of filamentous fungi401.4.3.1Methods of transforatiom401.4.3.2Transformation approaches applied to Ophiostoma431.4.4Reporter genes441.4.4.1The fluorescent protein DsRed461.4.4.2Thermostable xylanase B461.5Aims47Chapter 2Materials and methods2.1Selection of culture media482.2Proteinase assays using fluorescent substrates492.3Choice of suitable selection markers512.3.1Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics51			1.4.2.2	Selection n	narkers	38
1.4.3.1Methods of transforation401.4.3.2Transformation approaches applied to Ophiostoma431.4.3.2Transformation approaches applied to Ophiostoma431.4.4Reporter genes441.4.4.1The fluorescent protein DsRed461.4.4.2Thermostable xylanase B461.5Aims47Chapter 2Materials and methods2.1Selection of culture media482.2Proteinase assays using fluorescent substrates492.3Choice of suitable selection markers512.3.1Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics51			1.4.2.3	Effects of p	proteolysis on foreign protein yields	39
1.4.3.2Transformation approaches applied to Ophiostoma431.4.4Reporter genes441.4.4.1The fluorescent protein DsRed461.4.4.2Thermostable xylanase B461.5Aims47Chapter 2Materials and methods482.1Selection of culture media482.2Proteinase assays using fluorescent substrates492.3Choice of suitable selection markers512.3.1Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics51		1.4.3	Transfo	rmation of f	ilamentous fungi	40
1.4.4 Reporter genes 44 1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51			1.4.3.1	Methods of	ftransforatiom	40
1.4.4.1 The fluorescent protein DsRed 46 1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51			1.4.3.2	Transforma	ation approaches applied to Ophiostoma	43
1.4.4.2 Thermostable xylanase B 46 1.5 Aims 47 Chapter 2 Materials and methods 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51		1.4.4	Reporter genes 4			44
1.5 Aims 47 Chapter 2 Materials and methods 48 2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51			1.4.4.1	The fluores	scent protein DsRed	46
Chapter 2Materials and methods482.1Selection of culture media482.2Proteinase assays using fluorescent substrates492.3Choice of suitable selection markers512.3.1Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics51			1.4.4.2	Thermostal	ble xylanase B	46
2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51	1.5	Aims				47
2.1 Selection of culture media 48 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51						
2.11 Selection of culture mean 49 2.2 Proteinase assays using fluorescent substrates 49 2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51	Char	oter 2	Materials and methods			48
2.3 Choice of suitable selection markers 51 2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51	2.1	Selectio	on of cult	ture media		48
2.3.1 Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different antibiotics 51	2.2	Protein	ase assa	ys using flu	orescent substrates	49
antibiotics 51	2.3	Choice	of suital	ble selection	markers	51
		2.3.1	Sensitivity of the parental strain J2026 and mutant MQ.5.1 to different			t
2.3.2 Capability of <i>Ophiostoma</i> to utilize acetamide as a sole nitrogen source 52			antibiot	ics		51
		2.3.2	Capabil	ity of <i>Ophio</i>	stoma to utilize acetamide as a sole nitrogen source	e 52

2.4	Construction of the expression vectors			52
	2.4.1	Constru	ction of plasmids containing the G418 resistance gene (kan)	
		under g	<i>pdA</i> promoter	54
	2.4.2	Constru	Construction of plasmids containing the hygromycin B resistant	
		gene (<i>hph</i>) under <i>gpdA</i> promoter		
		2.4.2.1	Amplification the gene encoding DsRed and	
			screening functionality of the DsRed protein	55
		2.4.2.2	Insertion of the <i>dsRed</i> gene into the expression	
			vectors pOAMY20-gpdhph and pOAMY11-gpdhph	55
2.5	Funga	l transfor	mation	56
	2.5.1	Biolistic	c transformation	56
2.6	Detect	tion of the	presence of DsRed using fluorescent microscopy	57
Chap	pter 3	Result	s and discussion	58
3.1	Improvement of the secretion ability of O. floccosum strain J2026 (I)			
	3.1.1	Selectio	on of culture medium	58
	3.1.2	Compar	ison of protein secretion between <i>T. reesei</i> wild type QM6a	
		and O. floccosum J2026		
	3.1.3	UV mut	tagenesis to increase protein secretion in O. floccosum J2026	58 59
		3.1.3.1	Analysis of selected mutants from the first round of	
			UV mutagenesis	61
		3.1.3.2	Analysis of selected mutants from the second round	
			UV mutagenesis	64
		3.1.3.3	Analysis of selected mutants from the third round of	
			UV mutagenesis	65
		3.1.3.4	Analysis of selected mutants from the fourth round	
			UV mutagenesis	67
		3.1.3.5	Analysis of selected mutants from the fifth round UV	
			mutagenesis	69
	3.1.4	Summar	ry of the mutagenesis program	71

Proteinase profiles in the culture supernatants of the wild type strain J2026						
and sev	veral key	mutants	72			
3.2.1	Activity	y-based identification of secreted serine proteinases of the				
	filament	tous fungus Ophiostoma (II)	76			
3.2.2	Summar	ry	78			
Isolation and characterization of the α -amylase gene (<i>amy1</i>) from MQ.5.1			78			
3.3.1	Summar	ry	81			
Construction of <i>amy1</i> expression vectors (I, III)			83			
3.4.1	Screenin	ng of suitable selection markers for O. floccosum				
	transfor	mation	83			
3.4.2	Transformation of plasmids containing kan, amdS and hph into		84			
	O. floccosum					
	3.4.2.1	Biolistic transformation of J2026 and MQ.5.1	84			
	3.4.2.2	Biolistic transformation of <i>amy1</i> expression vectors into				
		O. floccosum MQ.5.1	88			
	3.4.2.3	Protoplast transformation of MQ.5.1 with plasmids pAN7-1				
		and pRLM _{EX} 30	89			
3.4.3	Summa	ry	91			
3.5 Testing t		the expression system using a fluorescent protein (DsRed) as a				
reporte	er		91			
3.5.1	Summar	ry	93			
Expres	sion of th	he thermostable xylanase B in O. floccosum MQ.5.1 (III)	94			
3.6.1	Summar	ry	97			
Chapter 4 Conclusion and future aspects		usion and future aspects	98			
ences			100			
cations	I. II and	d III	124			
	and sev 3.2.1 3.2.2 Isolatio 3.3.1 Constr 3.4.1 3.4.2 3.4.2 3.4.2 3.4.3 Testing reporte 3.5.1 Expres 3.6.1 ter 4 ences	and several key 3.2.1 Activity filamen 3.2.2 Summa Isolation and ch 3.3.1 Summa Construction of 3.4.1 Screenin transfor 3.4.2 Transfor 0. flocce 3.4.2.1 3.4.2.1 3.4.2.2 3.4.2.1 3.4.2.2 3.4.2.3 3.4.2.3 3.4.2.3 3.4.3 Summa Testing the expansion reporter 3.5.1 Summa Expression of th 3.6.1 Summa ter 4 Conclu	 and several key mutants 3.2.1 Activity-based identification of secreted serine proteinases of the filamentous fungus <i>Ophiostoma</i> (II) 3.2.2 Summary Isolation and characterization of the <i>a</i>-amylase gene (<i>amy1</i>) from MQ.5.1 3.3.1 Summary Construction of <i>amy1</i> expression vectors (I, III) 3.4.1 Screening of suitable selection markers for <i>O. floccosum</i> transformation 3.4.2 Transformation of plasmids containing <i>kan</i>, <i>amdS</i> and <i>hph</i> into <i>O. floccosum</i> 3.4.2.1 Biolistic transformation of J2026 and MQ.5.1 3.4.2.2 Biolistic transformation of <i>amy1</i> expression vectors into <i>O. floccosum</i> MQ.5.1 3.4.2.3 Protoplast transformation of MQ.5.1 with plasmids pAN7-1 and pRLM_{EX}30 3.4.3 Summary Testing the expression system using a fluorescent protein (DsRed) as a reporter 3.5.1 Summary Expression of the thermostable xylanase B in <i>O. floccosum</i> MQ.5.1 (III) 3.6.1 Summary 			

Abstract

Ophiostoma spp. belong to the *Ophiostomataceae* family, a large group of ascomycetes, which are the most frequent blue stain fungi isolated from stained wood. Most *Ophiostoma* species do not compromise the strength properties of wood, but do reduce the aesthetic quality of timber and therefore decrease the economic value of lumber. Some albino variants of *O. floccosum* and *O. piliferum* have been used as biological control agents to prevent blue staining. This successful whole organism approach plus the added capability of extracellular protein secretion makes *Ophiostoma* spp. attractive for industrial application. In addition, *Ophiostoma* produces only a small range of abundantly secreted proteins in liquid culture, which can facilitate downstream purification of any recombinant gene product introduced into the system. Genes encoding efficiently secreted proteins provide a potential source for strong promoters for high-level gene expression. These characteristics provide an excellent starting point for the development of a novel expression system.

In this study, UV-mutagenesis was applied to improve protein secretion in *Ophiostoma floccosum*. Amylase activity was used as an indicator for enhanced protein secretion after repeated rounds of mutagenic treatment. Several mutants of *O. floccosum* derived by UV mutagenesis were isolated and the total amount of secreted protein was increased by 4 to 6 times. The amylase activity in the culture supernatant of the best mutant (MQ.5.1) was increased by more than 240-fold compared to the initial parental strain. At the same time, the amount of total secreted protein was about six times greater to that of the parental strain. Proteinase profiles in the culture supernatants of several key mutants were characterized for the future matching of an expression host with a particular gene product. N-terminal sequencing of the five dominant proteins separated by SDS-PAGE from the culture supernatant was conducted. Two of the proteins identified were subtilisin-like proteinases and one was a pepsin-like proteinase. In addition, one protein was isolated by Genomic Walking PCR using primers based on the α -amylase amino acid sequence. The amplified fragment contained the entire gene encoding α -amylase (*amy1*) and its regulatory

sequences. Analysis showed that multiple transcripts were generated from the single α -amylase gene locus.

A series of expression vectors containing the α -amylase regulatory sequences and partial *amy1* gene were constructed. Several selection markers were screened and the *hph* gene conferring hygromycin resistance under the regulation of the *Aspergillus nidulans gpd* promoter was chosen and inserted into the *amy1* expression vectors. The gene encoding a red fluorescent protein DsRed-E5 was used as a reporter gene to test the expression system using mutant MQ.5.1 as host. However, no transformants were obtained by either biolistic transformation or protoplast transformation. Subsequently, an alternative strategy was developed using a thermostable xylanase B as a reporter. Thermostable xylanase activity was detected in the culture supernatants of several transformants. Production of xylanase by transformant SS41 which exhibited high secreted xylanase activity was investigated. Xylanase activity in the culture supernatant of SS41 was visualized by a zymogram gel assay. Two active proteins with molecular masses of around 27 and 30 kDa, which were larger than the predicted *Mr* of 25 kDa were detected. This is the first report describing successful expression of a recombinant thermostable bacterial enzyme in *Ophiostoma*.

Declaration

The research presented in this thesis is original work conducted between March 2003 and November 2006 by the author. This material has not been submitted as part of the requirement for any other degree or course to any other institution. To the best of my knowledge it contains no material previously published or written by any other person except where due reference is made in the text.

Caiyan Wu

List of publications

This thesis is based on the following articles, referred to in the text by the Roman numerals given below. In addition, some unpublished results are presented.

- I Caiyan Wu, Junior Te'o, Robeta Farrell, Peter Bergquist and Helena Nevalainen (2006) Improvement of the secretion of extracellular proteins and isolation and characterization of the amylase I (*amy1*) gene from *Ophiostoma floccosum*. Gene 384: 96-103.
- II Caiyan Wu, Qiang Xu, Fei Liu and Helena Nevalainen (2007) Activity-based identification of secreted serine proteases of the filamentous fungus *Ophiostoma*. Accepted by Biotechnology Letters, DOI 10.1007/s10529-007-9333-6.
- III Caiyan Wu, Junior Te'o, Peter Bergquist and Helena Nevalainen (2007)
 Expression of a thermostable bacterial xylanase in the filamentous fungus
 Ophiostoma floccosum. Submitted to Letters in Applied Microbiology in July
 2007.

Abbreviations

Abbreviations frequently used in the text are:			
bp	Base pair		
DIG	Digoxigenin		
DNA	Deoxyribonucleic acid		
dNTP	Deoxynucleotide triphosphate		
DsRed	Red fluorescent protein		
EDTA	Ethylenediamine-tetra-acetic acid		
ERAD	Endoplasmic reticulum associated degradation		
GWPCR	Genomic walking PCR		
Kb	Kilobase pair		
kDa	Kilo Dalton		
MCS	Multiple cloning site		
min	Minute		
Mr	Molecular weight		
PCR	Polymerase chain reaction		
PDA	Potato dextrose agar		
PEG	Polyethylene glycol		
RLM-RACE	RNA ligase mediated rapid amplification of cDNA ends		
RNA	Ribonucleic acid		
S	Second		
SBD	Starch binding domain		
SDS-PAGE	Sodium dodecyl sulphate polyacrylamide gel		
	electrophoresis		
SSF	Solid state fermentation		
TSS	Transcription starting site		
UPR	Unfolded protein response		
UV	Ultraviolet		
v/v	Volume per volume		
w/v	Weight per volume		

Acknowledgements

This work was carried out at the EDGE lab in the department of Chemistry and Biomolecular Sciences of Macquarie University. Accomplishment of this project involved a lot of people's advice, support and friendship.

I would like to thank my supervisors Professor Helena Nevalainen, Dr. Junior Te'o and Professor Peter Bergquist for their direction, time, patience, valuable advice and continuous support during these years and for providing me with this good opportunity to work in a fantastic lab with excellent facilities and a supportive working atmosphere.

I warmly thank Dr. Natalie Curach for her kind advice, technical assistance and valuable hints concerning molecular technologies, and Hong Yu, Liisa Kautto, Jasmine Grinyer and Bruno Salles for their friendship and help during this study. I would also like to thank all the EDGE lab members for creating a pleasant and stimulating working environment. Many thanks to Roberta Farrell for providing the fungal strain. Artur Sawicki is acknowledged for his help in an attempt to purify *Ophiostoma* α -amylase.

I am grateful to Dr. Fei Liu for her comments and direction for the identification of a specific secreted proteinase in the culture medium of *Ophiostoma floccosum* MQ.1.2 and Qiang Xu for her collaboration and discussion of this subproject included in this study.

I am grateful to Professor Merja Penttilä and Dr. Markku Saloheimo for their time and valuable advice and comments in an attempt to solve the problems occurred during transformation of *Ophiostoma floccosum*. It was of great help in relation to modification of the protocols.

I deeply thank my parents Zhiguo Wu and Guirong Zhao for supporting me to pursue my studies overseas and their non-stopping love and encouragement. Finally, I sincerely thank my husband Jun Yang for his love, patience and encouragement.