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Abstract

The research presented in this thesis reports on experimental investigations into photon-
photon interactions facilitated by strongly interacting microcavity polaritons. We use a highly
flexible fibre Fabry-Pérot microcavity setup to impose photonic-mode confinement of the
polariton mode to create zero-dimensional polariton boxes. The strong optical confinement
afforded by the geometries of the fibre mirror, polariton interactions are effectively enhanced,
introducing significant system nonlinearities noticeable at the single particle level. This
nonlinear behaviour results in the polariton blockade regime where the system can only
support one polariton at a time and observable through the antibunching of the transmitted
photons.

Using the excellent tunability of the fibre microcavity, we probe the lower polariton (LP)
mode from which we measure the photon statistics of the transition. Under pulsed, resonant
excitation, we selectively excite the polariton transition. We observe photon antibunching
of g(2)(0) = 0.93 ± 0.04 which demonstrates the emergence of quantum correlations of
interacting polaritons at the single particle level and the onset of the polariton blockade
regime. Tuning the resonant laser across the polariton transition from red to blue detuning,
we observe the photon statistics change from antibunching to bunching predicted by our
modified polariton blockade model. Fitting of the autocorrelation measurements to this
model, we find a polariton-polariton nonlinearity of ~g0 = 0.020± 0.011 meV·µm2. We also
report on photon antibunching observed in preliminary photon correlation measurements of
confined polaritons under non-resonant excitation.
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1.1 Quantum many-body system of light. A 2D lattice of photonic crystal cav-
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scattering around the defect and the disappearance of the Rayleigh scattering
ring in panel VI. From [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Microcavity architectures for photonic confinement of microcavity polari-
tons. Top left: Micropillar cavity constructed using photolithography to etch
pillars out of planar QWmicrocavities. Photons are confined due to the phys-
ical shape of the micropillar. From [4]. Top right: Mesa structure etched
into the spacer layer of a planar microcavity. The local difference in the
spacer layer creates a potential trap for confined photons. From [5]. Bottom
left: Photonic crystal cavity structure. A photonic band-gap is created by
etching holes in the sample substrate and a cavity is created by the absence
of a hole in the structure or defect site. From [6]. Bottom right: Plasmonic
microcavity structure cross-section using multilayer trench gratings. From
[7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Fibre Fabry-Pérot microcavity. A single mode fibre tip is machined with
a small concave indentation to reduce the mode waist to increase optical
confinement of the microcavity polaritons. The air gap between the QW
sample and fibre allows for in-situ tuning of the cavity energy over a greater
range afforded by other designs. . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Wannier Exciton inside a semiconductor crystal lattice. A bound electron-
hole pair (red electron, blue hole) with a large Bohr radius extending over
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allows propagation through the lattice. . . . . . . . . . . . . . . . . . . . . 10
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2.2 Band structure of GaAs. The six-fold degeneracy of the valance band elec-
trons divides the electron states into 3 pairs of states, heavy hole (HH), light
hole (LH) and split off (SO). The difference in effective masses of the HH and
LH electrons lifts the degeneracy of the HH and LH electron bands for k > 0.
EΓ is the band-gap energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Quantum well exciton. The thick large-energy band-gap GaAs surrounding
the thin, low-energy band-gap InGaAs creates a confinement potential for the
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quantised excitonic states can be optically accessed with typical transition
energies of in our case, near 1.46 eV . . . . . . . . . . . . . . . . . . . . . 12
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2.5 Exciton polariton dispersion curves. Cavity-exciton detuning is ∆ = 0 meV.
The curvature of both upper (blue) and lower-polariton (orange) branches
is inherited from the photonic-dispersion relation. The black dashed lines
denote the bare exciton and photon dispersion relations respectively. . . . . 15

2.6 Zero dimensional polariton dispersion curves. 0D polaritons at a cavity-
exciton detuning is ∆ = 0 meV. The discrete intervals of emission demon-
strated by the green and red ovals for the LP and UP respectively across
momentum space is a result of in-plane confinement of the polaritons. The
orange and blue lines denote the bare (2D) polariton modes and the black
dashed lines are the bare exciton and photon dispersion relations respectively. 16

2.7 Planar microcavity profile. The DBR layers sandwich the cavity layer which
is on the order of a few wavelengths of light. The DBR layers almost com-
pletely reflect light back into the cavity, reducing the cavity loss rate and at
the same time helping to maintain large electric field amplitudes inside the
cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Stopband function for a dielectric DBR. The calculated stopband function
for a DBR with 33 paired layers of Ta2O5/SiO2 at 830nm. The blue curve
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limits the achievable reflectivity (see chapter 3.3). . . . . . . . . . . . . . . 18
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the red solid line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Fibre microcavity with embedded QW. The fibre microcavity design replaces
one of the integrated, semi-conductor DBR mirrors with a machined fibre tip
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on n2(z)|E(z)|2, the electric field (red solid line) reduces within the air gap. 21
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2.12 Polariton excitation ladder. With significant polariton-polariton interac-
tions, the two-polariton state is blue-shifted to higher energies by an amount,
U. If this shift is larger than the polariton linewidth, γLP, the two-polariton
state can no longer be populated as photons resonant (or slightly red detuned)
to the single-polariton state are of insufficient energy (red lines). However,
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2.13 Second order coherence function as a function of laser-polariton detuning.
The three traces are for different cavity-exciton detunings (blue = −5 meV,
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2.15 Second order coherence function at zero time delay g(2)(0) as a function
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2.16 Two-time photon correlation map for pulsed excitation. (a) 35ps laser pulse
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2.17 Second order autocorrelation at zero time delay g(2)(0) as a function of
laser-polariton detuning for pulsed excitation. The solid curves show the
pulsed regime simulations while the dashed curves show the correspond-
ing CW (steady state) regime simulations using the same experimental pa-
rameters for comparison for different cavity-exciton detunings ∆ (blue =
−0.5meV, orange= 0meV, green= 0.4meVand red= 1.1meV)moving across
∆ = 0. Parameters: ~γx = 0.062 meV, ~γc = 0.041 meV, ~ωnl = 0.01 meV,
~ΩR = 1.4 meV, pulse duration = 35 ps and average incident power P = 40 pW. 31
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normalised nonlinear coefficient for pulsed excitation. The solid curves
show the pulsed regime simulations while the dashed curves show the corre-
sponding CW (steady state) regime simulations using the same experimental
parameters for comparison for different cavity-exciton detunings ∆ (blue =
−0.5 meV, orange = 0 meV, green = 0.4 meV and red = 1.1 meV) mov-
ing across ∆ = 0. Parameters: ~γx = 0.062 meV, ~γc = 0.041 meV,
~ΩR = 1.4 meV, ∆LP/γ = −0.875, pulse duration = 35 ps and average
incident power P = 40 pW. . . . . . . . . . . . . . . . . . . . . . . . . . . 32



xviii List of Figures
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3.1 Fibre-basedmicrocavity system schematic. The SM fibre with mirror (yellow
cylinder with mirror on end facet) is brought close to the planar sample to
form a microscale optical cavity. The inset image is a cross section of the
cavity where the blue layers form the fibre DBR mirror and conforms to
the machined concave indentation on the fibre facet. The red layer between
the two grey layers is the QW sample which is followed by the alternating
grey/orange layers which constitute the other mirror which is grown directly
onto the sample. The white curved line is the electric field of the cavity mode.
From [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Microcavity experimental setup. (1) MIRA 900D laser operating in picosec-
ond pulse mode with pulse width duration of 5-6ps at 76.3MHz repetition.
(2) Acton SP2750 spectrometer for pulse modification. (3) Optronis SC-10
streak camera for measuring modified pulse widths. (4) High Finesse WS8-
10 wavemeter for measuring pulse wavelength. (5) Fibre microcavity inside
Liquid Helium dewar (inset) cross-section of fibre microcavity showing sam-
ple and fibre mirror structure. (6) Hanbury Brown and Twiss interferometer
to measure emitted photon statistics of microcavity polaritons. . . . . . . . 37

3.3 Fibre microscope configuration. The fibre mirror is glued vertically into a
Titanium mounting block (trapezoidal piece) using a Silicon V-groove. This
mounting block is situated upon a verticallymovingAttocube nanopositioning
piezo stage. The sample is glued onto a Titanium holder which can move
in the XY plane via two horizontally moving Attocube nanopositioning piezo
stages. The inset shows a magnified view of the fibre mirror as it approaches
the sample. This mounting setup is placed at the end of an approx. 1.5 m
long dipstick which is inserted into an airtight sleeve, establishing a vacuum
inside the sleeve, and is then placed into a liquid Helium dewar. Light is
collected at the top of the dipstick via a collimating lens (inside black square
holder) situated just above the sample. . . . . . . . . . . . . . . . . . . . . 38
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3.4 FIMS experimental setup. This system comprises of two subsystems, the
CO2 laser ablation system and laser interferometry imaging system. The
CO2 laser ablation system starts in the top right corner with the water-cooled
Synrad Firestar v30 CO2 laser. Following the path of the beam left out of
the laser is M0 which is a silicon coated mirror to guide the beam into the
Brewster attenuators. The beam passes through BP1 and BP2 which are the
Brewster attenuators which control beam power and polarisation. The beam
exits BP2 into the beam expander BX which alters the size and position of
the beam waist. The beam then reflects from M1 which is a silicon coated
mirror onto M2 which is a λ/4 reflecting phase retarder for conversion of
linearly polarised light into circularly polarised light. The CO2 beam then
passes through CO2 OBJ which is the aberration free focusing double lens
for beam focusing onto the fibre, with a working distance of 20.5mm. The
laser interferometry imaging system starts in the lower right corner with a
HeNe laser (632.8 nm) coupled into the system with the fibre coupler, FC,
which incorporates a focal screw and polariser for maximum interference
contrast. The beam then impinges on the large fused silica beamsplitter,
BS, used to create the two arms of the interferometer. The split beams are
reflected onto the silver mirrors M3 then M4. The beams travel towards the
beamsplitter/mirror combination. The beams are collected by COBJ which
is a Mitotuyo microscope objective with a 50x magnification. Finally, the
camera is a DSLR Cannon CCD camera for image capture of the fibre facet. 41

3.5 Movable Michaelson interferometer for fibre characterisation. The beam-
splitter along with a mirror is placed on a linear nanopositioning stage to
allow the interferometer to be moved out of the CO2 laser beam path for
ablation. The stage can then be precisely returned to its original position
infront of the fibre to image the fibre indentations for characterisation. . . . 42

3.6 Interferometric fibre image with ROI selection box. A thin rectangular ROI
box is placed over the fringes produced by the indentation. Note the how the
ROI box is parallel to the large fringes on the flat part of the fibre facet. . . 43

3.7 Pixel intensity graph of the interference fringes. The maxima and minima
of the pixel intensity values correspond directly to the respective interference
fringes. The red and green crosses indicate to the user where the programme
has found the position of bright (red) and dark (green) fringes to be. . . . . 43

3.8 Fitted indentation profile. The extracted indentation profile (blue circles) is
fitted with a Gaussian function (red curve). At the centre of the Gaussian,
RoC variation is small and can be approximated to be spherical in this region,
allowing an RoC value to be given to this structure. . . . . . . . . . . . . . 44

3.9 Cavity mode simulation. (a) Schematic cross-section of microcavity with
experimental parameters and sample. (b) Exploded view of the QW sample
layer composition. (c) Simulation of the electric field of the cavity mode. The
bright parts are places of large electric field intensity. . . . . . . . . . . . . 45

3.10 Photoluminescence (PL) under non-resonant excitation at 798 nm. The
signature of the strong coupling regime, the classic avoided crossing with
the two polariton mode branches. Vacuum Rabi splitting 2~ΩR = 2.8 meV.
The red dotted lines show the manual fitting of the polariton modes with
the respective exciton transition and photon/cavity mode. ∆ is the detuning
between the photon and exciton resonant frequencies such that ∆ = ωC − ωX . 47
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3.11 Photoluminescence (PL) under non-resonant excitation at 825 nm. The
black anti-crossing lines are the upper and lower polariton modes. The red
and blue vertical dotted lines show the neutral exciton (X0) and negative
trion (X−1) states. The top spectrum is a slice in this map, taken for a
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1
Introduction

Quantum fluids of light is an actively emerging field of study which explores the concept that,
in certain situations, light could be considered a fluid composed of many particulate photons
that exhibit substantial photon-photon interactions. The very notion of a photonic fluid is at
odds with our usual understanding of light. While this rules out photon fluids in vacuum,
nonlinear optical materials exhibit sizeable photon-photon interactions [9] by mediating them
through interactions between matter excitations. A holy grail both in quantum optics and in
the field of light-based quantumfluids is to engineer these driven-dissipative systems such that
strong quantum correlations between individual photons build up. Sizeable photon-photon
interactions would result in a strongly nonlinear photonic system where a single photon can
change the response of the system, similarly to what has been seen with cold atomic gases
[10, 11]. An array of such strongly nonlinear photonic system arranged in a lattice geometry
constitutes a platform for studying quantum many-body systems of light [12] as shown in
Fig 1.1. This is decidedly interesting since the photonic platform is inherently driven and
dissipative. In particular, the photonic platform could be used to study the rich physics
of the driven-dissipative Bose-Hubbard model [13], quantum phase transitions of light [1],
superfluid to Mott transitions [14], XY spin Hamiltonian physics [15] and for realizing a
so-called Tonks-Girardeau gas of impenetrable photons [16, 17]. Ultimately, the driven-
dissipative nature of the photon fluid would provide a non-equilibrium platform in which
individual particle systems can be controlled and measured. This capability could be used to
simulate realistic many-body systems that involve driven and dissipation mechanisms which
would be the ideal platform for a photonic quantum simulator [18].

While the potential for the study of quantum fluids of light is highly interesting and
appealing, the challenge now faced is finding and developing nonlinear optical material
systems that exhibit sizeable single-photon nonlinearities.
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Figure 1.1: Quantum many-body system of light. A 2D lattice of photonic crystal cavities,
each containing a a nonlinear quantum material, leading to strong, on-site, photon-photon
interactions. The interplay between on-site interactions, U, and the photon hopping, κ
determines the system dynamics. Such a platform was proposed as a quantum simulator for
drive-disspative many-body quantum system. From [1].

Single emitter nonlinear systems

In the search for nonlinear optical material systems with potential of realizing strong single-
photon nonlinearities, it has been recognised that cavity-quantum electrodynamics (cavity-
QED) systems in the so-called strong coupling regime of light and matter hold particular
promise. In systems that are in the strong coupling regime, the new dressed eigenstates
of the system that emerge are a result of the linear coherent coupling between one or more
matter excitations and an optical field which surpasses the dissipative processes in the system.
The new eigenstates are a superposition of the matter excitations and photon states and are
distinctly separated in energy by theVacuumRabi Splitting and can be treated as half light-half
matter quasiparticles known as polaritons. One system in the strong-coupling regime that
has attracted considerable attention and research is Quantum Dots (QD) coupled to photons
inside microcavities. QDs are artificially constructed, semiconductor nanostructures which
behave as a two-level quantum emitter, much like an atom. In strongly coupled single QD
cavity systems, the resulting Jaynes-Cummings energy ladder of cavity-QED is distinctly
anharmonic in structure [19]. The nonlinear structure occurs due the imprinting of the
quantum nature of the QD emitter on the Jaynes-Cummings energy ladder. The inherent
nonlinearity present in the coupled system allows for sizeable photon-photon interactions
to occur at the single photon level, resulting in the so-called photon blockade effect [20].
The photon blockade effect, termed in analogy to the electron blockade effect in condensed
matter physics, occurs when the presence of a single photon produces system nonlinearities
large enough to shift the system transition frequency by an amount larger than the transition
linewidth. This means that a first photon resonant with the fundamental system transition
will block the entrance of a second photon of the same colour into the system due to the
mismatch in energy with the now shifted system transition. The first ever observation of the
photon blockade effect was demonstrated with single atoms coupled to a Fabry-Pérot cavity
[21] in 2005 with the observation of photon antibunching. This was followed by the first
clear demonstration with QDs coupled to photonic crystal (PC) defect cavities in 2012 [22].
Follow-up works using QDs strongly coupled to microcavities have shown ultra-fast optical
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switching [23–26] and polariton transistor behaviour, [27] as well as quantum information
processing techniques using controlled phase gates[28].

As a side note, it is important to mention that photon blockade has also been demonstrated
in the microwave domain using superconducting qubits in stripline resonators [29]. Also, at
the time of writing this thesis, the microwave community has demonstrated the usemicrowave
superconducting circuits to dissipatively stabilise a Mott insulator of photons [30].

Considering the presence of single-photon nonlinearities in QD-cavity systems and the
well established fabrication techniques used to manufacture QDs in solid-state structures,
QDs could be an ideal system for integration into larger lattice geometries to create a strongly
interacting quantumfluid of light platform. However, amajor drawback of such a device based
on self-assembled QDs is the distribution of resonant frequencies and nucleation positions of
individual QDs due to the random nature of the QD growth process. These large variations
limit the easy scalability of QD-cavity systems to coupled lattice systems to create a strongly
interacting quantum fluid of light. While work is continuing on improving the ordering,
positioning and uniformity of QD arrays [31], it is clear that two-dimensional lattices of
coupled quantum cavities based on self-assembled QDs are currently not feasible.

Microcavity Polaritons
Alongside the development of coupled QD-cavity nonlinear systems, quantum well (QW)
exciton polaritons or microcavity polaritons are being studied as a compelling strongly
coupled cavity-QED contender. These systems are the result of the hybridisation of multiple
quantum well (QW) excitons which are bound electron-hole pairs, with a single mode of a
planar optical microcavity [32]. However, unlike QD-cavity systems where photon-photon
interactions occur due to the inherent nonlinear nature of a single quantum emitter, photon-
photon interactions in microcavity polaritons occur through polariton-polariton scattering
mediated by repulsive, contact exchange, exciton-exciton interactions. The exciton mediated
polariton interactions and the small effective mass of microcavity polaritons on the order
of 10−5 me provoked considerable interest in the possibility of Bose-Einstein condensation
(BEC) of microcavity polaritons.

Figure 1.2: Bose-Einstein condensation of microcavity polaritons. Images of the far-field
emission distribution of microcavity polaritons as they condense into the lowest momentum
state, k| | = 0, as excitation power is increased (left to right). From [2].

With the prediction of a microcavity polariton BEC in 1996 [33], it was not until 2006
that the BEC of microcavity polaritons was conclusively demonstrated [2], showing the ac-
cumulation of polaritons into the fundamental energy state in real and momentum space
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resulting from the emergence of long-range coherence shown in Fig 1.2. Here the incoher-
ently injected polariton gas relaxes towards the LP via acoustic-phonon, optical-phonon and
polariton-polariton interaction assisted decay. At the critical density controlled by excitation
power, the polaritons attain a quasi-thermal equilibrium state where the polariton lifetime
is sufficiently long compared to the thermalisation time. However, since this is a driven-
dissipative system, the system is intrinsically non-equilibrium in nature, raising interesting
questions about non-equilibrium quantum fluid physics [34–36].

With the demonstration of microcavity polariton condensates, it was proposed that po-
lariton condensates should exhibit superfluid behavior when encountering an obstacle or
defect [37] using generalised Gross-Pitaevskii equations to describe the resonant driving and
relaxation processes. Experimental validation of these predictions was observed in 2009 with
the demonstration of superfluid flow of microcavity polaritons [3]. In this work, superfluid
flowwas shown by the suppression of real-space disturbances and elimination of the Rayleigh
scattering ring in momentum space of a propagating polariton fluid around a localised defect,
shown in Fig 1.3.

Figure 1.3: Superfluid flow of microcavity polaritons. Experimental images in real space
(I-III) and momentum space (IV-VI) of a polariton fluid flow hitting a localised defect. From
left to right, the columns show increasing polariton density. In panel III, superfluid flow is
established with the suppression of scattering around the defect and the disappearance of the
Rayleigh scattering ring in panel VI. From [3].

In later experiments, hydrodynamic effects associated with polariton superfluid flowwere
observed with the formation of vortex-antivortex pairs [38, 39] and half integer vortices, [40]
as well as dark solitons [41]. However, these quantum fluid effects are the result of the
collective interactions of a large number of coherent polaritons as the interaction between
individual particles is weak. To shift microcavity polaritons into the strongly interacting
photon regime, polariton-polariton interactions must be enhanced such that large system
nonlinearities at the single particle level emerge.

Strongly interacting polaritons
The regime of strongly interacting microcavity polaritons resulting in single-photon non-
linearities was first proposed in 2006 [42] with the so-called polariton blockade effect, so
termed in analogy to the photon blockade effect. In the polariton blockade regime, strong
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polariton-polariton interactions would induce noticeable system nonlinearities such that in-
jection of a single polariton into the systemwould inhibit the injection of subsequent polariton
of the same energy. A microcavity polariton system in the polariton blockade regime would
exhibit sizeable quantum correlations in the form of photon antibunching, similarly to what
has been observed with the photon blockade phenomenon. To achieve the strong polariton
interactions required to induce large system nonlinearities, several ideas were put forward
in the last decade. A recent idea is to use dipolar polaritons in coupled QW structures in
one-dimensional waveguides [43, 44]. In this system, large interactions arise from the long-
range dipole-dipole interactions of indirect excitons rather than exciton contact exchange
interactions. An earlier idea suggested the use of the polariton Feshbach resonance [45]
which seeks to exploit the biexciton Feshbach resonance effect. This requires the tuning
of the cavity energy to bring the two-polariton state in resonance with the biexciton state,
dramatically enhancing the system scattering cross-section similar to what has been observed
with cold atoms [46]. One idea that has drawn extensive activity and interest is the concept of
a photonic dot [42], inspired by the QD nano-structure. The idea of the photonic dot centres
on the creation of very small lateral sizes of the cavity mode. This imposes confinement on
the polariton wavefunction through the photonic component of the polariton rather than the
matter component which is the case with QDs. If this photonic confinement is small enough,
strong polariton-polariton interactions mediated by the excitonic component will occur due
to the shrinking of the effective interparticle distance.

Figure 1.4: Microcavity architectures for photonic confinement of microcavity polaritons.
Top left: Micropillar cavity constructed using photolithography to etch pillars out of planar
QW microcavities. Photons are confined due to the physical shape of the micropillar. From
[4]. Top right: Mesa structure etched into the spacer layer of a planar microcavity. The
local difference in the spacer layer creates a potential trap for confined photons. From [5].
Bottom left: Photonic crystal cavity structure. A photonic band-gap is created by etching
holes in the sample substrate and a cavity is created by the absence of a hole in the structure
or defect site. From [6]. Bottom right: Plasmonic microcavity structure cross-section using
multilayer trench gratings. From [7].
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The resulting non-trivial quantum correlations could be then further enhanced by coupling
the nonlinear system to another microcavity, creating Mach-Zender interferometer, leading
to a quantum interference phenomenon, the so-called unconventional polariton blockade
effect [47]. If strongly interacting polaritons could be achieved in a photonic dot microcavity
system, the high uniformity of the QW structure could be used to place several identical
photonic dot cavity systems on the same sample, coupled by hopping photons, providing
an ideal platform for creating a scalable platform for studying strongly interacting quantum
fluids of light.

The stipulation of photonic confinement on the polariton wavefunction necessitates the
careful engineering of the cavity mode to have a mode waist size approaching the µ-scale.
For this purpose, several integrated microcavity architectures have been developed to study
confined polaritons such as mesa structures [5]; which are etched into the spacer layer of a
planar microcavity where the local difference in the spacer layer creates a potential trap for
confined photons, micropillars; [4] constructed using photolithography to etch pillars out of
planar QW microcavities where the photons are confined due to the physical shape of the
micropillar, photonic-crystal cavities [48]; where a photonic band-gap is created by etching
holes in the sample substrate and a cavity is created by the absence of a hole in the structure
or defect site, and finally, plasmonic structures [49]; which use multilayer trench gratings.
These integrated microcavity architectures are shown in Fig 1.4. However, the polariton
blockade phenomenon has not yet been observed in these systems as they typically suffer
increased losses and reduced coupling as the lateral dimensions of the cavity approach the
µ-scale.

Figure 1.5: Fibre Fabry-Pérot microcavity. A single mode fibre tip is machined with a
small concave indentation to reduce the mode waist to increase optical confinement of the
microcavity polaritons. The air gap between the QW sample and fibre allows for in-situ
tuning of the cavity energy over a greater range afforded by other designs.

A more recent microcavity architecture that has become available is a flexible, semi-
integrated Fabry Pérot fibre microcavity platform [50, 51] that allows in situ tuning of the
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cavity length and hence the polariton energy and lifetime, as shown in Fig 1.5. Already, these
microcavity platforms have been shown to exhibit equal if not better quality factors than their
integrated counterparts in confined microcavity polariton systems [8]. The added benefits of
open-accessibility and fabrication control over the fibre mirror geometries presents an ideal
experimental platform for studying microcavity polaritons. In this thesis, we use a fibre-
based microcavity polariton system to allow the study of polariton interactions of optically
confined polaritons. In doing so, we observe for the first time, in parallel with a group at ETH
Zürich [52] - the emergence of quantum correlations from strongly interacting microcavity
polaritons, which is the main result of this thesis.

Scope of this thesis
This thesis is structured in the following way:

In Chapter 2, the theoretical background of QW excitons strongly coupled to the mode
of an optical microcavity is presented, with the inclusion of discussions on exciton-exciton
interactions. Important information about Fabry-Pérot microcavities is given with discussion
on cavity engineering to introduce optical confinement of microcavity polaritons. Finally,
the concept of polariton-polariton interactions and their role in the polariton blockade effect
is discussed. A model of the system dynamics is presented from which simulation results
of expected photon correlations in both CW and pulsed pumping regimes are derived using
experimental parameters.

Chapter 3 presents the QW microcavity setup based on a fibre microcavity An overview
of the fibre mirror fabrication and characterisation process is given. Photoluminescence (PL)
measurements of microcavity polaritons are given showing the presence of the negative trion
state. This is followed by resonant measurements of the lower polariton (LP) branch which
include lifetime and lineshape measurements of the LP mode with a discussion on the impact
of the trion state on the system dynamics. Finally, a calibration technique for determining the
zero delay time (ZDT) of the Hanbury-Brown and Twiss (HBT) inteferometer is presented
and its importance to photon correlation measurements is discussed.

Our main findings of emerging quantum correlations from optically confined, interacting
microcavity polaritons under resonant excitation are presented in Chapter 4. Photon cor-
relation measurements taken scanning the resonant excitation laser across the LP transition
are quantitatively analysed with respect to the system dynamics model presented in Chapter
2. Also included is a detailed explanation of the second-order correlation function analysis
protocol used, with emphasis on the sensitivity of the results on the analysis parameters.

Chapter 5 presents preliminary results on the observation of quantum correlations from
microcavity polaritons under non-resonant excitation. A work-in-progress model for the
observed correlations is discussed and the possible implications of the existence of a large,
incoherent exciton reservoir are presented.

Finally, Chapter 6 concludes this thesis with an outlook for future work.
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2
Semicondutor Quantum Well Polaritons

In this chapter, the theoretical frame work of microcavity polaritons and the interactions
that can occur between them is presented. In Section 2.1, the exciton quasi-particle is
introduced along with a discussion on interactions between particles. With the concept
of excitons and interparticle interactions established, Section 2.2 describes the underlying
physics of microcavity polaritons as well as an introduction into Fabry-Pérot microcavities
and designs used for studying microcavity polaritons, specifically with regards to optically
confined systems. Section 2.3 gives a definition of the different photon statistics that can be
used to characterise microcavity polariton systems. Finally, Section 2.4 discusses polariton-
polariton interactions in reference to the polariton blockade regime. Also in this section,
theoretical simulations of an interacting polariton system are given.

2.1 Excitons
In our most basic understanding of semiconductor materials, the highest valence electron
band is completely occupied while the lowest conduction electron band is vacant. These
bands are separated in energy, the so-called ‘band-gap’ energy, Eg, which is the energy
required for an electron transition into the conduction band. Once an electron is excited to
the conduction band, it effectively leaves behind a positive ‘hole’ in the valence band. While
transitions between the valence and conduction band can not occur for free electrons with
energies less than Eg, electron-hole pairs can form bound (Rydberg) states due to Coulomb
attraction called excitons, which lie just below the energy band-gap. These quasi-particles
have wave-functions analogous to hydrogen atoms. However, the exciton Bohr radius aX
is larger than its atomic counter-parts and can extend over several lattice sites due to their
low effective mass and large dielectric constant (ε = 12.9 for GaAs) of the semiconductor
material. The energy levels of these excitons can be given by a modified Rydberg equation
[53]:

En = Eg −
e2

8πεaxn2 +
~2k2

2 (me + mh)
(2.1)
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where n is the principle quantum number, me and mh are the electron and hole effective
masses, e is the electron charge, ε is the appropriate dielectric constant and ax is the exciton
Bohr radius:

ax =
4π~2ε

e2µ
(2.2)

µ =
memh

me + mh
. (2.3)

Excitons decay by radiative recombination, whereby the electron relaxes back into the cor-
responding hole in the valence band. As a result of this process, a photon is emitted equal
to the binding energy plus the band-gap energy of the exciton. Excitons are classified into
two categories; Frankel excitons and Wannier excitons. Frenkel excitons are characterised by
tightly bound excitons with a very small Bohr radius, typically confined to one lattice site.

Wannier excitons on the other hand are weakly bound excitons with a large Bohr radius
that can extend over several lattice sites (see Fig 2.1) and are found typically in inorganic
semiconductor crystals. Unlike Frenkel excitons, Wannier excitons are relatively free to move
around the lattice with typical diffusion lengths of up to several micrometers.

Figure 2.1: Wannier Exciton inside a semiconductor crystal lattice. A bound electron-hole
pair (red electron, blue hole) with a large Bohr radius extending over several lattice sites
(black dots). The non-localised nature of these excitons allows propagation through the
lattice.

The energy structure for these excitons can be understood by studying the band energy
structure of bulk semiconductor material. For convenience and relevance, GaAs will be
focused upon. At the band-gap edge, the electrons in the conduction band at the lowest
energy has an s-like structure and is two-fold degenerate due to 1/2 spin. The holes at the
highest point in the valence band have a p-like structure which holds a six-fold degeneracy at
the high symmetry Γ-point. Due to spin-orbit coupling, a pair of states are separated from the
others, the so-called spin-orbit or split-off (SO) band, which is shifted to lower energy. The
remaining 4 states are a pair of two-fold spin degenerate states. However, this degeneracy
is lifted for large k values as shown in Fig 2.2. The different curvatures of these two bands
arise from the nearly order of magnitude difference in effective masses of those bands. These
two bands are therefore aptly named the heavy hole (HH) and light hole (LH) valance bands.
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Therefore, there are four transitions available for the creation of excitons due to the spin
degeneracy of the charge carriers. For the case of optical transitions, the difference in total
angular momentum between initial and final states must conserve the total angular momentum
of a photon. Consequently, only two of the states can recombine optically, emitting either
left or right circularly polarised photons and are called bright excitons.

Figure 2.2: Band structure of GaAs. The six-fold degeneracy of the valance band electrons
divides the electron states into 3 pairs of states, heavy hole (HH), light hole (LH) and split
off (SO). The difference in effective masses of the HH and LH electrons lifts the degeneracy
of the HH and LH electron bands for k > 0. EΓ is the band-gap energy.

2.1.1 Quantum Well Excitons
Quantum wells (QW) are two dimensional planar nanostructures, designed to alter the elec-
tronic properties of semiconductors. A QW consists of a layer of a low-energy band-gap
semiconductor material such as InGaAs, sandwiched between high-energy band-gap mate-
rials such as GaAs. Typically grown using the molecular beam epitaxy (MBE) technique
which allows layers of material to be deposited one atomic layer at a time, the thickness of the
low-energy band-gap material is designed and grown to be close to the exciton Bohr radius
aX ∼ 10 nm, creating an effective potential well in the growth direction. This means that
electrons and holes as well as excitons created in the low-energy band-gap material will be
confined in the growth direction, however, their in-plane momentum is unaffected.

The confinement of excitons considerably affects the exciton energy structure as the width
of the confinement potential approaches the same order as the exciton spatial wavefunction.
In this situation, the energy structure of excitons can be established by direct numerical
solutions to the three-dimensional Schrödinger equation (SE) for the excitons [54]. This
process is somewhat simplified in regards to the degenerate HH and LH valence bands as
this degeneracy is lifted due to the dependence of the Hamiltonian on the effective masses of
the particles, which can therefore be separated. Solutions to the SE give a quantised energy
ladder for electrons and holes in which energy level spacing (and hence for QW thicknesses
comparable to or smaller than ax), the exciton binding energy is dictated by the QW width.
A diagram of the energy level structure of QW excitons is shown in Fig 2.3. This means,
exciton binding energies can be tuned by varying the width of the QW layer with increasing
binding energies for smaller widths.
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Figure 2.3: Quantum well exciton. The thick large-energy band-gap GaAs surrounding the
thin, low-energy band-gap InGaAs creates a confinement potential for the electron and hole
states, in the growth direction, z, of the QW. The resulting quantised excitonic states can be
optically accessed with typical transition energies of in our case, near 1.46 eV

2.1.2 Exciton-Exciton Interaction

Excitons can be viewed as composite bosons which comprise of two fermionic particles
which give the exciton its integer spin. The bosonic nature of excitons suggests that excitons
can form a Bose gas/condensate which has been theoretically predicted [55] and investigated
experimentally [56]. However, while excitons appear to be bosons by way of their integer
spin, they cannot be treated as true elementary bosons due to their composite nature despite
several attempts to do so in the past [57–59]. This means that interactions between excitons
occur through Coulombic interactions of the charge carriers.

Coulombic interactions acts through two main processes. The first process is direct
Coulomb scattering that arises from electron-electron, hole-hole and electron-hole Coulomb
potentials. The second process is an exchange scattering which acts at short ranges as the
exciton’s constituent particles come into contact with each other, or more accurately, their
wave functions begin to overlap. In work presented in [60] as well as [61], it is shown that
in the limit as the transferred exciton wave-vector approaches zero, the contribution from the
direct Coulomb scattering also approaches zero, while the contribution from the exchange
scattering attains its maximum value. This clearly demonstrates that for excitons with small
in-plane wave-vectors, the fermionic exchange scattering dominates over the static Coulomb
scattering and is thus the driving mechanism for exciton interactions.

Recently, large dipole-dipole interactions between indirect excitons [44] have been shown
to rival, if not exceed, the exchange scattering [43]. Indirect excitons are formed in multi-
QW systems, whereby the electron and hole are in adjacent QWs rather than the same QW
for direct exciton, and which has been the focus of our discussions in this thesis. Through
spatially stretching the exciton over multiple QWs by applying a voltage across the QW
layers, a large dipole is formed. This means that several indirect excitons can interact through



2.2 Microcavity Polaritons 13

direct dipole-dipole interactions over larger ranges, providing an appealing alternative to the
short range exchange scattering approach. The Coulomb exchange scattering is the dominant
mechanism behind polariton-polariton interactions presented later in this thesis.

2.2 Microcavity Polaritons
Microcavity polaritons are half-light/half-matter quasi-particles resulting from the coherent,
linear coupling or, strong coupling, of photons with semiconductor excitons. First theorised
in 1958 by Hopfield [62], polaritons were initially demonstrated as the normal mode coupling
between an optical field and bulk semiconductor excitons. Due to the translational symmetry
of bulk semiconductors, this imposes that momentum is conserved in all directions which
allows the polariton free movement in any direction. Polaritons remained firmly in the realm
of bulk semiconductors until significant advancements in semi-conductor growth technology
were developed. In 1992, these advancements came to fruition with the first observation
of vacuum Rabi splitting by Weisbuch et.al. [32] of QW excitons coupled to a Fabry-Pérot
microcavity mode. With this one dimensional confinement of the polariton, the polariton
field had become quantised along the growth direction of the QW structure, as the transla-
tional symmetry is now broken. With the ability to address discrete polariton transitions,
microcavity polaritons have become the testbed for exploring quantum fluids of light with
remarkable results, such as polariton BEC [2] and polariton superfluidity [63] having been
observed.

2.2.1 Exciton Polaritons
When describing polaritons and their physical origins, it is the easiest to view the coupling of
N excitons to cavity photons as a sequence of several absorption and emission events. Initially,
a photon is absorbed ,creating an exciton. After a short time, this exciton recombines, emitting
a cavity photon which is reflected by the cavity mirrors and has a high probability to be re-
absorbed by the QW, starting the process again. This exchange of energy between exciton and
cavity photon mode is given by the Rabi frequency, ΩR. If this exchange between the cavity
and photons occurs at a much faster rate than any decay mechanisms of the system, then the
system is said to be in the strong coupling regime, allowing the creation of polaritons: the
bound state of photons and excitons. This cycle of coherent exchange between cavity mode
photons and excitons can be described by using the exciton equation of motion Hamiltonian
in the Rotating Wave Approximation (RWA) in the presence of a photon field. Using the
Bose exciton operators, the Hamiltonian of the couple exciton and photon mode becomes:

Ĥ =
∑

k

~ωC(k)â†k âk +
∑

k

~ωX(k)b̂†k b̂k +
∑

k

~ΩR(k)
(
b̂†k âk − â†k b̂k

)
(2.4)

where ωC and ωX are the photon and exciton resonant frequencies respectively, â†k(âk) and
b̂†k(b̂k) are the photon and exciton creation (annihilation) Bose operators respectively and ΩR
is the Rabi frequency or the collective coupling rate of non-interacting excitons to a cavity
mode. For excitons in QW nanostructures, the excitons are now confined in the growth
direction of the QW structure but still free to move in-plane. The confinement in the growth
direction modifies the exciton wavefunction, enhancing the overlap between the electron and
hole wavefunctions. In this new system, the exciton momentum is not conserved along the
growth axis (z-axis) as the translational invariance of the material is broken along this axis
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Figure 2.4: 2D microcavity with QW. To achieve maximum coupling of the QW excitons to
the cavity mode, the QW is placed at the anti-node of the electric field inside the cavity. The
polariton dispersion curves can be obtained using angle resolved photoluminescence. Image
taken from [2].

due to the QW structure. The Hamiltonian given in Eqn (2.4) can therefore be written in
terms of the in-plane momentum so that k = k | |. With the introduction of 2D excitons, the
Rabi frequency can be written thus:

ΩR =

√
4πωC f2D

Le f f
|φ(ra)| (2.5)

where f2D is the 2D excitonic oscillator strength, Le f f is the effective cavity length, ωc

is the cavity resonant angular frequency and φ(ra) = E(zQW )
Emax

is the normalised electric field
amplitude at the QWposition zQW . The Hamiltonian given in Eqn (2.4), in effect, is described
by two harmonic oscillators coupled with strength ΩR. When the Rabi frequency exceeds
the decay rates of the photons and excitons, the system enters the so-called strong coupling
regime where the photon and exciton states are no longer eigenstates of the system. The
system now forms new eigenstates which are superpositions of photons and excitons which
are called the Upper Polariton (UP) and Lower Polariton (LP) states. These new eigenstates
can be found by applying the Bogoluibov transformation to diagonalise the coupled oscillator
Hamiltonian given in Eqn (2.4) to give:

p̂LP
k = Xk âk + Ck b̂k (2.6)

p̂UP
k = −Ck b̂k + Xk âk, (2.7)

where Xk and Ck are the so-called Hopfield coefficients and represent the photonic fraction
(Ck) and the excitonic fraction (Xk) of the polariton state. The Hopfield coefficients are given
by:

|Xk |2 =
1
2

(
1 +

∆√
∆2 + 4ΩR(k)2

)
(2.8)

|Ck |2 =
1
2

(
1 − ∆√

∆2 + 4ΩR(k)2

)
(2.9)
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where ∆ = ωcav(k) − ωexc(k) is the detuning between the cavity and exciton resonances and
ΩR(k) is the collective coupling rate. The Hamiltonian of the system in the new coupled
basis now writes as:

Ĥpol
k = EUP

k p̂†k p̂k + E LP
k q̂†k q̂k (2.10)

with the eigenenergy dispersion relations for the UP and LP states are given by:

EUP
LP (k) =

1
2

[
EX (k) + EC (k) ± ~

√
∆2 + 4ΩR(k)2

]
. (2.11)

where EX (k) and EC (k) are the bare exciton and cavity dispersion relations respectively. The
polariton states are identified by a distinct energy separation as the cavity resonant energy is
tuned across the exciton transition. This separation attains its maximum value when ∆ = 0
known, as the collective Vacuum Rabi Splitting given by:

∆E = 2~ΩR. (2.12)

The polariton states as a function of cavity-exciton detuning and as a function of in-plane
wavevector is shown in Fig 2.5 as well as the Vacuum Rabi splitting when ωC = ωX .

Figure 2.5: Exciton polariton dispersion curves. Cavity-exciton detuning is ∆ = 0 meV.
The curvature of both upper (blue) and lower-polariton (orange) branches is inherited from
the photonic-dispersion relation. The black dashed lines denote the bare exciton and photon
dispersion relations respectively.

In Fig 2.5, the dispersion curves are smooth and continuous as the in-plane momentum
and hence wavevector, is conserved due to the in-plane symmetry of the QW and thus is
able to have a continuum of in-plane momentum. This is why polaritons in this state are
often referred to as 2D polaritons. However, if confinement of the polariton state could
be imposed on the in-plane axes and full quantum confinement established, momentum
conservation would not be conserved in any direction. As a result, the quantisation of the
in-plane momentum occurs as can be seen in Fig 2.6 where instead of the smooth, continuous
curve seen in Fig 2.5, there are discrete intervals of emission from allowed momenta as the
in-plane wavevector is probed. Polaritons in this state are called zero dimensional polaritons
(0D polaritons).
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Figure 2.6: Zero dimensional polariton dispersion curves. 0D polaritons at a cavity-exciton
detuning is ∆ = 0 meV. The discrete intervals of emission demonstrated by the green and
red ovals for the LP and UP respectively across momentum space is a result of in-plane
confinement of the polaritons. The orange and blue lines denote the bare (2D) polariton
modes and the black dashed lines are the bare exciton and photon dispersion relations
respectively.

From the polariton dispersion, the polariton effective mass is given as the combined mass
of the exciton and photon components which are weighted according to the fraction that each
component has in the polariton state [64]:

1
mLP

=
|X |2
mexc

+
|C |2
mcav

(2.13)

1
mUP

=
|C |2
mexc

+
|X |2
mcav

(2.14)

where X andC are theHopfield coefficients, mexc = 0.082me (inGaAs) is the effective exciton
mass of its centre-of-mass motion and mcav is the effective cavity-photon mass calculated
from the band curvature of photon dispersion inside the microcavity. Eqn (2.13) gives an
effective LPmass in the region of k ∼ 0 ofmLP ∼ 10−4me, whereme is themass of an electron.
The very light effective mass of the polariton in the region of k ∼ 0 has exposed exciton
polaritons as a new and very promising candidate for observing Bose-Einstein condensation
(BEC) in solids. The four orders of magnitude lighter effective mass of the polariton than
bare excitons means that that reaching polariton BEC is significantly easier, as the critical
temperature can four orders of magnitude higher (at the same particle density) and the critical
particle density can be four orders of magnitude lower (for the same temperature) than needed
to reach the equivalent exciton BEC.

2.2.2 Fabry-Pérot Microcavities
A Fabry-Pérot optical cavity constricts or confines light by the use of two highly reflective
mirrors along the optical axis. In between these mirrors, a quantum emitter can be placed
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to interact with the cavity photons. In cavity-QED experiments, the electric field of the
cavity mode must be maximised to ensure the coupling rate between the optical field and
the quantum emitter exceeds the optical and material losses of the system. To fulfill this
requirement, a cavity with a small effective mode volume while maintaining a high Q-factor
is critical. The effective mode volume is defined as the physical size of the cavity mode,
given by:

Ve f f =

∭
d3r |φ(r)|2 = 1

4
w2

0πLe f f (2.15)

where φ(r) is the normalised electric field amplitude, w0 is the cavity mode waist radius, and
Le f f is the effective cavity length. The quality or Q-factor is a dimensionless quantity which
describes effectiveness of the cavity to retain or store energy, given by the equation:

Q =
ν

δν
=

2Le f f ν

c
F (2.16)

where ν is the cavity frequency, δν is the cavity linewidth, Le f f is the effective cavity length,
and F is the cavity finesse which is a measure of the effectiveness of the cavity mirror’s
reflectivity, which is independent of the physical cavity length. The finesse is defined as:

F =
π
√

R
1 − R

(2.17)

where R is the mirror reflectivity. From Eqn (2.16), the Q-factor of a given cavity can be
increased by increasing the physical length component of the effective cavity length Le f f .
However, the coupling between 2D excitons and cavity photons scales as ΩR ∝ 1/

√
Le f f (see

Eqn (2.5)). Therefore, to achieve the large electric fields for a strongly coupled system, an
ultra short cavity length on the order of a few wavelengths of light or increasing the cavity
Finesse is needed. To maintain high Q-factors at short cavity lengths, ultra-high reflectivity
mirrors (R > 99.999%) must be used, corresponding to a large finesse F.

Figure 2.7: Planar microcavity profile. The DBR layers sandwich the cavity layer which is
on the order of a few wavelengths of light. The DBR layers almost completely reflect light
back into the cavity, reducing the cavity loss rate and at the same time helping to maintain
large electric field amplitudes inside the cavity.

The ultra high reflectivitymirrors required for these types of cavities are typically achieved
using dielectric distributed Bragg reflector (DBR) coatings. DBRs are composed of layers
of alternating refractive index dielectric material of thickness d = λ0/4nlayer where λ0 is the
wavelength of light and nlayer is the refractive index for each material. The DBR operates
using the thin film interference principle where some light is reflected from each of the
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low/high refractive index layer interfaces back towards the cavity. While some light is not
reflected back, the successive low/high refractive index layer interface will reflect some of
this light back into the cavity as well, and so on. With the thickness of the layers, d, all the
reflected light will constructively interfere. With enough pairs of these layers, nearly all of
the light is reflected back into the cavity which is shown in Fig 2.7. However, this only occurs
in a window around λ0 known as the stopband as shown in Fig 2.8 and is a function on the
number of paired layers.

Figure 2.8: Stopband function for a dielectric DBR. The calculated stopband function for
a DBR with 33 paired layers of Ta2O5/SiO2 at 830nm. The blue curve shows reflection
efficiency of the cavity. The large high reflectivity window centred at 830nm is know as the
stopband. Increasing the number of layers, in principle, reduces the stopband window and
increases the reflectivity of the cavity. In practice however, residual absorption in the layers
effectively limits the achievable reflectivity (see chapter 3.3).

To reach the strong coupling regime, the QW is placed inside the microcavity such that
it coincides with an anti-node (maximum) of the cavity field. Therefore, the electric field
distribution inside the cavity is crucial to the design of the microcavity. The electric field
distribution can be calculated using the transfer matrix method [65]. From the transfer matrix
simulation of the electric field distribution of a DBR deposited on a fibre tip adjacent to an
air gap as part of a fibre-based microcavity in Fig 2.9, it is obvious that the cavity mode
penetrates substantially into the mirrors. The penetration depth into the DBR for a typical
2D planar microcavity is:

LDBR =
λ

4
n1n2

n2
1 (n1 − n2)

(2.18)

where n1 and n2 are the refractive indices of the DBR layers, n1 > n2 and λ is wavelength of
light. The effective length of the cavity is the sum of the effective optical length of the QW
spacer layer (λ/nSpacer) and the penetration depth of the two mirrors multiplied by the square
QW spacer layer refractive index [8]:

Le f f = n2
Spacer

(
LDBR +

λ

nSpacer
+ LDBR

)
. (2.19)
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Le f f can be substituted into Eqn (2.5) to obtain a value for the Rabi frequency or coupling
strength of the polariton system.

Figure 2.9: Electric field distribution for a dielectric DBR. The electric field distribution for
the DBR. The red line is the DBR profile while the blue is the electric field intensity.

2.2.3 Microcavities for Polaritons
For conducting research into microcavity polaritons, the two-dimensional, fully-integrated,
monolithic, semiconductor microcavity shown in Fig 2.10 is one of the highest quality
and most widely used microcavity designs with Q-factors exceeding 105 while maintaining
small mode volumes1 [66]. The electric field distribution inside the cavity can be precisely
engineered and fabricated using molecular beam epitaxy (MBE) to produce an anti-node or
maximum of the electric field at the QW layer, ensuring the best possible coupling to the QW
excitons (see Fig 2.10). The 2D planarmicrocavity designwas later adapted using lithography
etching to fabricate pillars with diameters on the µm-scale, the so-called micropillar cavity
[67]. The micropillar cavity provides a physical, in-plane constraint of microcavity polaritons
by constricting the exciton wavefunction, furnishing an excellent platform for the study of
confined polariton systems [4]. However, this system typically suffers from enhanced losses
and hence reduced coupling due to scattering losses of polaritons from surface states at
the edges of the micropillar as the lateral dimensions of the cavity approach the µ-scale.
In addition, the wedge like structure of the micropillar cavity critical to the tuning of the
resonant cavity energy provides only a limited tunability the range, restricting the detuning
parameters over which the system can be probed.

1In the case of a microcavity coupled to an ensemble of quantum emitters, the collective Rabi splitting is
independent of spot size ω0, but scales with ∆E ∝ 1/

√
Le f f .
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Figure 2.10: Planar microcavity with embedded QW. The QW layer (yellow) is sandwiched
between two DBR mirrors (alternating dark blue/light blue) which produces a maximum of
the electric field at the QW layer (yellow), shown by the red solid line.

In recent years, open-access, semi-integrated microcavity designs such as fibre-based
[68] and silica plates [69], have been shown to offer the same, if not better capability than
monolithic designs. These open-access designs replace one of integrated semiconductorDBR
mirrors with a completely independent dielectric DBR mirror consisting of paired layers of
Ta2SO5/SiO2 which is applied to a concave indentation etched on the mirror surface. The
hemispherical (or near hemispherical) geometry of the etch indentations provides a strong
optical confinement of the cavity mode which is imprinted into the polariton wavefunction.
With optical confinement rather than physical confinement like that of the micropillar, no
etching of the planar QW is involved and so it does not suffer the same excitonic losses from
cavity side-wall scattering. The open nature of the fibre cavity design also grants independent
movement of the fibre mirror, usually controlled by piezo nanopositioners. This independent
movement allows an in-situ tunability of the cavity resonance without the reduction of
coupling experienced by their monolithic counter-parts and usually, over an extended spectral
range. The small wedge in the layer design of monolithic microcavities used to change the
cavity resonance leads to increased photonic losses and hence, reduction in coupling, as the
photons escape laterally away from the cavity mode. In this thesis, we decided to use the
fibre-based microcavity design which has the concave indentation etched on a cleaved fibre
facet and is coated with a dielectric DBR coating.
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Figure 2.11: Fibre microcavity with embedded QW. The fibre microcavity design replaces
one of the integrated, semi-conductor DBR mirrors with a machined fibre tip with a DBR
mirror coating. Since the electric field distribution is dependent on n2(z)|E(z)|2, the electric
field (red solid line) reduces within the air gap.

The open-accessibility of fibre-based microcavities, while offering greater versatility in
terms of tunability, possess a different electric field distribution to the planar microcavity.
This is a result of the different materials in the fibre DBR coating as well as the presence
of an air gap between the fibre mirror and the QW sample. Unlike Eqn (2.19), one of the
DBR penetration depths for the monolithic cavity must be replaced with an air gap, L, and
the penetration depth for the fibre mirror coating LDBR

Ta2O5/SiO2
[68]:

LDBR
Ta2O5/SiO2

=
λ

4
1

nTa2O5 − nSiO2

(2.20)

where nTa2O5/SiO2 is the refractive index of the respective materials and λ is the optical
thickness of the GaAs spacer layer. LDBR

Ta2O5/SiO2
differs from LDBR because the dielectric

DBR starts with a high-index layer as it is surrounded by air (low refractive index), whereas
the mirror attached to the bottom of the QW spacer layer starts with a low-index layer as it is
surrounded by GaAs. This maintains the low refractive index material on either side of the
QW so a phase mismatch will not occur at the air/fibre DBR interface. The effective length
of the cavity now reads:

Le f f = n2
Spacer

(
LDBR +

λ

nSpacer

)
+ L + LDBR

Ta2O5/SiO2
. (2.21)

Even though the fibre cavity has a longer physical length as compared to monolithic cavities,
it has a comparable effective length, meaning similar coupling strengths can be achieved
with fibre microcavities. With additional information about the fibre mirror and air gap in
the cavity, the standard transfer matrix method can be used to determine the electric field
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distribution inside the fibre microcavity, shown in Fig 2.11. Unlike Fig 2.10, the electric field
distribution in Fig 2.11 differs considerably, mainly due to the air gap. However, an anti-node
of the electric field is present at the QW layer which validates the fibre microcavity as a viable
and powerful alternative microcavity platform for studying confined polariton systems.

2.3 Photon Correlations
In quantum optics, the coherence properties of the state of the photon field are usually
described using the g(n)(δn, δg, τ) coherence functions, which are normalised correlations of
the photon field. The first order coherence function, g(1)(τ), expresses the phase coherence in
time through the normalised, self-correlations of the field amplitude. The phase coherence
can provide insight into interference effects, phase modulation and noise as well as round-trip
phase accumulation within a system. The second order coherence function, g(2)(τ), indicates
the statistical distribution of photons within the field through the normalised, self-correlations
of the field intensity. The statistical distribution of the photons can be categorised into three
classes: Poissonian, super-Poissonian and sub-Poissonian, which refer to the fluctuations
having equal, larger or smaller variation respectively than that of an uncorrelated, coherent
photon state for which the probability of finding N photons in an interval τ is Poissonian.
These photon number distributions are defined using the self or auto-correlation version of
the second order coherence function, given by:

g
(2)
phot (t, t + ∆t) =

〈
â† (t) â† (t + ∆t) â (t + ∆t) â (t)

〉〈
â† (t) â (t)

〉 〈
â† (t + ∆t) â (t + ∆t)

〉 (2.22)

where â† (t) , â (t) are the photon creation and annihilation operators respectively. What this
function denotes is the probability of detecting a photon at time t + ∆t on the condition
that a photon was detected at time t. In most steady state systems, t can be dropped as the
absolute time is arbitrary, leaving just g(2)phot (∆t). For a Poissonian photon distribution state,
g
(2)
phot (∆t) = 1 for all values of ∆t, as the fluctuations are random and therefore the probability

of detecting two photons at any given time interval is equal. This value would occur for a
completely coherent light source such as that of a laser. For a super-Poissonian state, the
larger fluctuations than the Poissonian state means that as ∆t approaches 0, the probability of
detecting two photons becomes more likely. Therefore, we get a value of g(2)phot (0) > 1 and the
photons are said to be ‘bunched’. This value would occur for a completely incoherent light
source such as a candle and is often referred to as ‘thermal light’. For the sub-Poissonian
photon number state, the reduced fluctuations compared to the Poissonian state means that as
∆t approaches 0, the probability of detecting two photons becomes less likely. Therefore, we
get a value of g(2)phot (0) < 1 and the photons are said to be ‘antibunched’. This value less than 1
demonstrates a granular nature of the photon field as the field is now discretised and can only
be interpreted using a quantum definition of light. This means that for values of g(2)phot (0) ≥ 1,
the photon field can be described using classical (semi-classical) definitions of light, while
values g(2)phot (0) < 1 demonstrates the photon field is in a non-trivial, non-classical state which
can be described as quantum in nature or, more commonly, as so-called quantum light.
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2.4 Polariton-Polariton Interaction
When describing microcavity polariton systems, the Hamiltonian given in Eqn (2.4) of two
coupled, linear harmonic oscillators has been used as the photons and excitons are both linear
systems due to their bosonic natures. While this is true for well separated particles, this
description is not complete as was the case for excitons. As the distance between polaritons
approaches the exciton Bohr radius aX ∼ 10 nm, polaritons will begin to interact due to
the exchange-driven Coulomb repulsion of the excitons as explained in Section 2.1.2. This
means that interactions must be included in the linear exciton Hamiltonian, which reads as:

Hp = ~ωX b̂†b̂ + ~ωC â†â + ~g
(
â†b̂ + âb̂†

)
+Ub̂†b̂†b̂b̂ (2.23)

U =
~ωN L

2
(2.24)

where HX X = Ub̂†b̂†b̂b̂ is the exciton-exciton interaction Hamiltonian, U is the exciton-
exciton interaction strength and ωN L is the nonlinear coefficient. A more appropriate defini-
tion of polariton-polariton interactions can be written in the polariton basis. For the lower
polariton branch, the Hamiltonian can be written using the lower polariton operator p̂ for
k = 0 [70]:

H = ~ωLP p̂† p̂ + Hpp (2.25)

Hpp =
1
2

a2
X

A
V pp p̂† p̂† p̂p̂ (2.26)

where Hpp is the polariton interaction term, A = πw2
0 is the polariton mode area, and V pp

is the effective interaction potential due to exciton-exciton interactions. This interaction
potential is described by:

V pp
k,k ′,q =

6e2

εaX
Xk+q Xk ′Xk ′−q Xk + 2

~ΩR

nsata2
x

(��Ck+q
�� Xk ′ + |Ck ′ | Xk−q

)
Xk ′−q Xk (2.27)

where the Xk and Ck are the Hopfield co-efficients defined in Eqns 2.8 and 2.9, and nsat
is the polariton saturation co-efficient [70]. The interaction potential is repulsive in nature.
In regards to the scope and experiments conducted in this thesis, only the first term which
describes direct polariton-polariton interactions is considered and discussed, as the second
saturation term is negligible and can be omitted in our case. The contact interaction potential
has the structure of a Kerr-like, non-linearity of the polariton state [71]. This translates into a
continuous blue-shift in the polariton resonance as the system nonlinearity increases, which
can be accomplished by either increasing the polariton population or by increasing the lateral
polariton confinement. If polariton nonlinearities could be achieved at the single photon level,
sizeable quantum correlations could be induced, enabling microcavity polaritons to become
ideal platforms for studying drive-dissipative quantum fluids of light [72], Hamiltonian
simulations with light [15, 73, 74], and possible realisation of non-trivial, out-of-equilibrium
phase transitions [75, 76].

It is also important to mention that even though the saturation term, nsat , is negligible
and can be omitted in our case, this may not always be so. Very recently, there has been
both theoretical and experimental work exploring the potential extent and effect the exciton
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saturation correction of the polariton interaction potential has on the polariton interaction
strength [77, 78]. Measured polariton-polariton interaction strengths of polariton condensates
[77] has showed interaction strengths larger than predicted values using the contact polariton-
polariton interaction constant. This discrepancy is postulated to result from the effect of
saturation of the exciton oscillator strength which can become significant at large densities
and Rabi splittings (ΩR ≈ polariton binding energy).

2.4.1 Polariton Blockade - Photonic Dot
The polariton interaction in Eqn (2.27) is proportional to the polariton population densities
controlled by either the number of particles or the amount of spatial confinement. In micro-
cavities at low excitation laser intensities corresponding to low polariton densities, polariton-
polariton interactions are typically negligible. As a result, microcavity polariton systems, to a
good approximation, display a linear energy structure making these systems of limited value
to developing quantum fluids of light or integrated quantum devices. However, if polariton-
polariton interactions could be enhanced such that substantial system non-linearities occur at
the few particle level, the presence of a single polariton would inhibit the injection of another
polariton due to the interaction-induced blue-shift of the polariton resonance. In this regime,
the system is said to be in the so-called quantum polariton blockade regime, analogous to the
photon blockade observed with atoms [21], quantum dots [22] and super-conducting devices
[79].

In 2006, Verger et.al. [42] proposed the quantum polariton blockade for microcavity
exciton polaritons with embedded QWs. Here we summarise their findings relevant for our
work. In their paper, they theorised that if the lateral size of the polariton wavefunction could
be confined sufficiently through its photonic component, polariton-polariton interactions, U,
would blue-shift the polariton transition energies to the point where they exceed the polariton
linewidth, γLP. In this event, the presence of one polariton will inhibit the injection of a
second polariton as the two-polariton transition is blue-shifted to higher energies and out of
resonance with the incoming laser-photon energy as illustrated in Fig 2.12. For U >> γLP,
under a CW laser drive tuned at resonance with the LP states, only one polariton is present
in the system at any given time. Therefore, the system could generate a train of single
photons with a repetition interval close to the polariton lifetime. The photon correlations
of the emitted light from the system, defined by the second-order autocorrelation function,
g(2) (∆τ), is expected to exhibit an anti-bunching dip with g(2) (0) < 1. In their treatment
of the microcavity system, Verger et.al. used the exciton Hamiltonian [80, 81] describing
the coupling of QW excitons to planar microcavity photon modes. The Hamiltonian is
simplified by considering only the fundamental ‘photonic dot’ mode due to the large spacing
between confined photon modes. This simplification is completed by taking the exciton
spatial wavefunction to be the same as the photonic dot, φC(x), as each photon mode only
couples strongly to the exciton mode with the same spatial wavefunction. The simplified
effective Hamiltonian reads as:

Ĥe f f =~
[
ωX b̂†b̂ + ωC â†â +ΩR

(
b̂â† + b̂†â

)
+
ωnl

2
b̂†b̂†b̂b̂

− αsatΩR

(
â†b̂†b̂ + b̂†b̂†â

)
b̂ + F0(t)e−iωpt â† + F∗0 (t)e

−ωpt â
]

(2.28)

where â(â†) and b̂(b̂†) are the respective cavity and exciton annihilation (creation) operators
and ΩR is the vacuum Rabi frequency. The parameters of note here are F0(t), which is
the pump laser projection onto the photonic dot mode, αsat =

1
nsat

∫
dx |φC(x)|4 and ωnl =
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Figure 2.12: Polariton excitation ladder. With significant polariton-polariton interactions,
the two-polariton state is blue-shifted to higher energies by an amount, U. If this shift is
larger than the polariton linewidth, γLP, the two-polariton state can no longer be populated
as photons resonant (or slightly red detuned) to the single-polariton state are of insufficient
energy (red lines). However, there is an increased probability for two photon processes to
excite the two photon state with blue detuned photons.

κ
∫

dx |φC(x)|4 are the effective nonlinear coefficients, with nsat the exciton oscillator strength
saturation density and κ is the excitonic loss rate. The saturation coefficient αsat is negligible
in typical type III-V microcavity experiments and is ignored in further considerations. Thus,
ωnl is the dominating nonlinear term that is greatly dependent on the photonic dot confinement
volume. Through study of simple geometries such as a square or cylinder for the photonic
dot or photon cavity modes, the geometric overlap integrals are:∫

square
d3x |φC(x)|4 =

2.25
L2 (2.29)∫

cylinder
d3x |φC(x)|4 =

2.67
(2R)2

(2.30)

where L is the lateral size of the square and R is the radius of a cylinder. Clearly from
integrals above, there is an inverse proportionality between ωnl and the lateral area of cavity
mode, A. In our case, the overlap integral uses a Gaussian geometry:∫

Gaussian
d3x |φC(x)|4 = πω2

0 . (2.31)

To better study the quantum dynamics of the system and apply it to actual experimental
parameters, the Hamiltonian given in Eqn (2.28) is moved into the interaction picture to
remove the bare exciton and photon energies:

Heff = ~∆ωX b̂†b̂ + ~∆ωC â†â + ~ΩR (b̂†â + â†b̂) +Ub̂†b̂†b̂b̂ + ~F(t)(â† + â) (2.32)

where ∆ωC = ωC − ωp, ∆ωX = ωX − ωp, ωC and ωX are the cavity and exciton resonant
frequencies respectively, and F(t) is the applied laser pump of frequency ωp and U =
~ωnl

2 . ∆ωC and ∆ωX can be related to actual experimental parameters such as cavity-exciton
detuning, ∆, and laser pump-lower polariton detuning, ∆LP, by using the following relations:

∆ωC = ∆/2 − ∆LP +

√
Ω2

R + ∆
2/4 (2.33)
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∆ωX = ∆ωC − ∆ (2.34)

F(t) =
√

P(t)γC/~ωp is the dimensionless, time-dependent, photon–field drive with P(t) as
the input power to the cavity mode and γC is the cavity decay rate. To characterise the time
evolution of this system in the presence of dissipation and loss, the master equation for this
system is given using the density matrix of the system, ρ(t), and the homogeneous linewidths
of the photon and excitons respectively, γC and γX :

d ρ̂
dt
=

i
~

[
ρ̂, Ĥeff

]
+
γC

2

(
2â ρ̂â† − â†â ρ̂ − ρ̂â†â

)
+
γX

2

(
2b̂ρ̂b̂† − b̂†b̂ρ̂ − ρ̂b̂†b̂

)
. (2.35)

This master equation can be solved by expanding the density matrix over a Fock basis of the
photon and exciton fields.

Using the quantum regression theorem [82], the two-time, second-order coherence func-
tion, G(2)phot(t, t

′) for the photon field can be found thus:

G(2)phot(t, t
′) = Tr

(
â U(t, t′)

[
â ρ(t′)â†

]
â†

)
, (2.36)

with its normalised version given as:

g
(2)
phot(t, t

′) =
Tr

(
â U(t, t′)

[
â ρ(t′)â†

]
â†

)
Tr

(
â ρ(t)â†

)
Tr

(
â ρ(t′)â†

) (2.37)

where U(t, t′) is the evolution super-operator that acts on the density matrix as ρ(t) =
U(t, t′) ρ(t′). With the framework in place to determine the time evolution of the system
along with the accompanying photon statistics, Fig 2.13 gives an example of the second-
order coherence function, g(2)phot(0), as a function of laser detuning from the lower polariton
(LP) resonance for several values of ∆.

It should be noted that the results in Fig 2.13 are obtained numerically solving Eqn (2.35)
for a system under CW laser excitation, in the steady state. However, it is interesting to note
that an analytic solution has also been found for g(2)phot(0) under weak CW, resonant excitation
[83]. This analytic solution reads:

g
(2)
phot(0) =

1 + 4 (∆EL/~κ)2

1 + 4 (∆EL +U)2 /~2κ2
(2.38)

where ∆EL = ~(ωLaser − ωcavity) is the cavity-laser detuning and κ = 1/γ.
In Fig 2.13, the laser frequency is red detuned from the LP resonance, showing g(2)phot(0) <

1, meaning antibunched light. This occurs due to interactions shifting the two-polariton
transition further out of resonance from the pump, reducing the likelihood of exciting of the
higher polariton transition. The second-order correlation function decreases even further in
the same region for increasingly positive ∆ as shown by the three curves in Fig 2.13. This
is due to the increased excitonic content of the polariton mode, leading to more interactions.
However, for excitation frequencies blue-detuned from the polariton resonance, the nonlinear-
ity now enhances the probability of exciting the higher polariton transitions, as the interaction
induced blueshift brings the two-polariton transition into resonance with the pump. As a
result g(2)phot(0) > 1 i.e photon bunching.
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Figure 2.13: Second order coherence function as a function of laser-polariton detuning.
The three traces are for different cavity-exciton detunings (blue = −5 meV, orange = 0 meV
and green = 5 meV) across the polariton avoided crossing. These traces were produced
using the parameters: ~γX = ~γC = 0.1 meV, ~ΩR = 2.5 meV, polariton interaction strength
~ωnl = 0.4 meV, pump field ~F = 0.1 meV and ∆LP = 0.

While the laser-polariton detuning is fundamental to the dynamics of the photon statistics,
the minimum value that g(2)phot(0) can attain for a given ∆ depends crucially on the ratio

U
~γLP

where U = ~ωnl

2 , which compares the strength of the polariton interactions, U, to the
polariton linewidth, ~γLP. This value will give an indication of the energy shift required for
the suppression of the two-polariton transition amplitude.

Figure 2.14: Second order coherence function as a function of normalised nonlinear
coefficient. The three traces are for different cavity-exciton detunings (blue = −5 meV,
orange = 0 meV and green = 5 meV) across the polariton avoided crossing. These traces
were produced using the parameters: ~γX = ~γC = 0.1 meV, ~ΩR = 2.5 meV, ~F = 0.1 meV
and ∆LP = 0.
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In Fig 2.14, the dependence of g(2)phot(0) as a function of
ωnl

γ is illustrated for three different
∆. The best antibunching, as was the case in Fig 2.13, is obtained for increasingly positive
∆, which is expected due to the larger excitonic content of the LP mode. The antibunching
behaviour becomes significant for values of ωnl

γ ≈ 1 which is a result of the reduced overlap
between the two-polariton transition and the pump energy as the transition resonance is
shifted to higher energies by polariton interactions.

Once these ratios are large enough, a value of g(2)phot(0) < 0.5 can be attained, indicating
that the system is emitting single photons and has entered the strong quantum blockade
regime. This would suggest a good system in which to see this effect would be one with a
narrow linewidth LP mode, meaning a very high quality QW sample and also tight optical
confinement as ωnl is inversely proportional to the lateral area of the photonic mode (see Eqn
(2.30)). The physics described in this section occurs at the few particle level such that the
presence of a single particle in the system creates a large, nonlinear response of the system.
This would suggest that the model is only valid for weak excitation of the system. In Fig 2.15,
the value of g(2)phot(0) is shown for normalised incident intensity F/γ. Clearly for low incident
intensities, g(2)phot(0) plateaus as Nph is steadily decreasing. At high intensities, g(2)phot(0)
increases as Nph grows with a linear behaviour which begins to flatten out as g(2)phot(0) → 1.
This supports the validity of this model in the weak excitation regime such that F/γ � 1.

Figure 2.15: Second order coherence function at zero time delay g(2)(0) as a function of
pump power. The blue line shows the intra-cavity photon number and the red line shows the
value of g(2)(0). These traces were produced using the parameters: ~γX = ~γC = 0.1 meV,
~ΩR = 2.5 meV, ~ωnl = 1.0 meV, and ∆LP = 0.

2.4.2 Pulsed Excitation Regime
The Verger et.al. paper gives a detailed analysis of the polariton-polariton interactions in the
steady state under CW excitation. In experiments conducted in this thesis, due to technical
reasons (see section 3.5.3), pulsed excitation is used which necessitates that we understand
the system dynamics under pulsed excitation very well.

In the pulsed regime, the driving photon field (the laser) is time-dependent, which inval-
idates the steady state solutions found in [42] and therefore the full master equation given in
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Eqn (2.35) must be solved. We now solve the two-time correlation g
(2)
phot (t, t

′) given in Eqn
(2.37) over a range of t and t′ values with actual experimental parameters. As the value of the
nonlinear co-efficient is unknown, we use a value of 0.01 meV for the nonlinear coefficient
as a sensible starting point based on the literature [3, 84].

The calculation of the two-time correlation function is performed by treating the Master
equation as a time-dependent matrix differential equation. The Fock basis for the photon
and exciton operators are truncated by limiting the number of excitations in the photon and
exciton modes. Depending on laser power, a range of excitations was found to be an adequate
range in each mode.

Figure 2.16: Two-time photon correlation map for pulsed excitation. (a) 35ps laser pulse
profile for time scale reference. (b) Intra-cavity photon number over the duration of the laser
pulse. (c) the two-time photon correlation, g(2)phot (t, t

′), map for all combinations of t and t′.
The black dotted line indicates g(2)phot (t, t

′). Parameters: ~γx = 0.0621meV, ~γc = 0.0411meV,
~ωnl = 0.01meV, ~ΩR = 1.4meV,∆ = 1.1meV,∆LP/γ = −0.875 and average incident power
P = 15 pW.

In Fig 2.16, graphs (a) and (b) show the input laser pulse (a) and intra-cavity photon
number (b) respectively. The photon number reaches it’smaximumvalue∼30 ps (approximate
cavity lifetime) after the peak of the pulse has occurred. This is due to the build up of photons
inside the cavity which then ‘leak out’ at a rate given by the cavity lifetime, hence the
exponentially decaying tail of the photon number. These two figures, Fig 2.16, graphs (a)
and (b), give an indication of the picosecond timescales when photon correlations change
(Fig 2.16 (c)) relative to the laser pulse profile. Fig 2.16 (c) shows the two-time photon
correlation g

(2)
phot (t, t

′) for the 35 ps pulse shown in graphs (a) and (b). To find a value of
g
(2)
phot (0), we follow a line where t = t′, indicated by the black dotted line. Clearly, the value

of g(2)phot (0) begins to drop as the photon population grows due to the creation of polaritons
in the system. At the maximum photon population, polariton interactions will have attained
their peak strength. Photon correlations, however, have not reached a minimum yet, although
the value is significantly less than 1. As the pulse passes and the system decays, the minimum
value for g(2)phot (0) is achieved, approximately one lifetime after the peak photon number is



30 Semicondutor Quantum Well Polaritons

reached. It must be stated that the value of g(2)phot (0) in the dark blue region of graph (c)
will remain at this value at longer times, even as photons in the system diminish. This is
counter-intuitive to what might normally be expected where the value of g(2)phot (0) should
converge to 1 at longer timescales. This would be expected for CW excitation as the cavity
is constantly replenished with photons, thus correlations on short time scales dominate over
long time scale correlations. As such, this dark blue region could lead to the conclusion that
this region is a numerical artifact in the simulation. However, we believe this simulation to
be accurate and faithful representation of the system we are studying under pulsed excitation.
This view can be taken as nearly all the photons that enter the cavity from the short laser
pulses interact nonlinearly via polariton interactions, acquiring correlations, before leaking
out of the cavity (see Fig 2.16 (a) and (b)). As the photons decay out of the cavity, the photons
that left the cavity are still correlated with those that remain as they were initially correlated.
Therefore, correlations will exist for arbitrarily long time periods, thus, g(2)phot (t, t

′) will be
sub-Poissonian for arbitrarily large |t − t′|. Importantly, however, the photon numbers used
to calculate the correlation drops exponentially (see Eqn (2.22)) where both the numerator
and denominator are dropping exponentially. This makes looking at correlations at ultra long
timescales impractical as they are impossible to measure.

The simulations in Fig 2.16 show that non-trivial photon correlations can be achieved
within the range of our experimental parameters. However, the simulations only show the
pure system dynamics, not as actual measurements of the emitted photons. This is because
measurements of the emitted photons do not truly find g

(2)
phot(t, t

′) as defined in Eqn (2.37)
within each laser pulse. This is due to the inadequate time-resolution of the detection
electronics typically used to measure photon, in our case, the Hanbury-Brown and Twiss
(HBT) interferometer (this point is explained in more detail in section 3.5.3). Briefly,
the Hanbury-Brown and Twiss interferometer uses a 50/50 beamsplitter to split the emitted
photons into two separate channels which are then detected using two avalanche photo-diodes
(APD) and the detection events are correlated. Ideally, one APD would be used, however, the
detection repetition rate is far too slow to properly sample the photon stream and would give
erroneous results. Two detectors are therefore used to alleviate this problem. However, even
with two detectors, the dynamics of some experimental systems occur at smaller timescales
than the overall system can resolve. This is the case in our experiments where individual
pulses cannot be resolved. This means that over many pulses, all possible coincidences
between t and t′ are recorded and binned together as there is no information about when the
photons are emitted within the pulse. Therefore, to give a theoretical model which can be
directly compared to the experiment, we integrate over all possible combinations of t and t′

within the duration of each pulse which is then normalised to the total incident photon flux
[85]:

g
(2)
phot(0) =

2
∫ T

−T
dt1

∫ T

−T
dt2 G(2)(t1, t2)∫ T

−T
dt1

∫ T

−T
dt2 I(t1)I(t2)

(2.39)

where the limits of the integral (-T, T) define the full duration of each pulse and I(t) =
Tr

[
ρ(t) â†â

]
is the average photon flux from each detector at time t. This has the effect of

averaging over the entirety of Fig 2.16 (c), leading to larger values of g(2)phot (0) than is actually
present.
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Given the revised definition of g(2)phot (0) of Eqn (2.39), realistic values of the photon
statistics can be simulated. Fig 2.17, Fig 2.18 and Fig 2.19 show the value of g(2)phot (0) as
a function of laser detuning for various ∆’s, g(2)phot (0) as a function of interaction strength
and g

(2)
phot (0) as a function of incident pump power, respectively. Each graph also shows the

equivalent steady state (CW) simulations (dotted lines) for the same experimental parameters.
Clearly, the pulsed scenario produces values of g(2)phot (0) closer to 1 than the CW scenario in
all cases which would be at least partly due to the averaging over g(2)phot (t, t

′) as a result of the
time-resolution of the detectors. Other factors contributing to this outcome could be from the
spectral overlap between the laser pulse and the polariton transition for the given parameters
which could see an increased probability of exciting the two-polariton manifold.

Figure 2.17: Second order autocorrelation at zero time delay g(2)(0) as a function of
laser-polariton detuning for pulsed excitation. The solid curves show the pulsed regime
simulations while the dashed curves show the corresponding CW (steady state) regime
simulations using the same experimental parameters for comparison for different cavity-
exciton detunings ∆ (blue = −0.5 meV, orange = 0 meV, green = 0.4 meV and red = 1.1 meV)
moving across ∆ = 0. Parameters: ~γx = 0.062 meV, ~γc = 0.041 meV, ~ωnl = 0.01 meV,
~ΩR = 1.4 meV, pulse duration = 35 ps and average incident power P = 40 pW.

In Fig 2.17, the pulsed simulations demonstrate that the best antibunching values of
g
(2)
phot (0) are obtained for increasingly positive ∆’s, which is consistent with the increasing

excitonic fraction of the LP mode and what is seen in Fig 2.13. When compared to the steady
state simulations, the maximum and minimum values of the pulsed simulations are shifted
further away from the LP mode resonance while the the value of g(2)phot (0) returns to 1 much
closer to the LP resonance. This a result of the spectral overlap of the laser pulse and the LP
linewidth, which is explained in more detail later in section 3.5.3 of this thesis.
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Figure 2.18: Second order autocorrelation at zero time delay g(2)(0) as a function of
normalised nonlinear coefficient for pulsed excitation. The solid curves show the pulsed
regime simulations while the dashed curves show the corresponding CW (steady state) regime
simulations using the same experimental parameters for comparison for different cavity-
exciton detunings ∆ (blue = −0.5 meV, orange = 0 meV, green = 0.4 meV and red = 1.1 meV)
moving across ∆ = 0. Parameters: ~γx = 0.062 meV, ~γc = 0.041 meV, ~ΩR = 1.4 meV,
∆LP/γ = −0.875, pulse duration = 35 ps and average incident power P = 40 pW.

As was established in Fig 2.14, antibunching values decrease in the pulse case for in-
creasing system nonlinearity (see Fig 2.18). This is expected as the two-polariton transition
is shifted to higher energies reducing the overlap of the excitation laser and the two-polariton
transition, thus reducing the probability of exciting the higher state.

Figure 2.19: Second order autocorrelation at zero time delay g(2)(0) as a function of nor-
malised average incident pump power for pulsed excitation. Parameters: ~γx = 0.062 meV,
~γc = 0.041 meV, ~ΩR = 1.4 meV, ~ωnl = 0.01 meV, ∆ = 1.1 meV, ∆LP/γ = −0.875 and
pulse duration = 35 ps.
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The steady state simulations show a substantial difference in antibunching behaviour,
with this difference increasing for more positive ∆’s. This is a result of the monochromatic
excitation in the steady state scenario which will mean a small energy shift is required before
the two-polariton transition is out of resonance with the excitation energy.

In Fig 2.19, the value of g(2)phot (0), while still displaying antibunching, is very weakly
dependent on the excitation power. This is even the case with the steady state simulations,
albeit at lower values. This is in contrast to what is seen in Fig 2.15 in the same region,
although the dependence is still relatively small. However, this power dependence in Fig 2.15
dramatically increases at high excitation powers. To show the comparison between the CW
and pulsed cases in Fig 2.19, the normalised average incident power F is used which in the
pulsed case is defined as,

F =
√
κ
√

Navg (2.40)

where κ is the cavity decay rate and Navg is the average number of photons arriving at the
cavity per second.
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3
Experimental Methods

This chapter describes the experimental and technical requirements for the results presented
in chapter 4. An overview of the entire experimental setup is given in section 3.1 with a de-
tailed description of the fibre cavity microscope. Section 3.2 outlines the fabrication process
and analysis of the fibre microcavity mirrors used in the main experiment. This is followed
with a cavity mode simulation of the electric field distribution of the microcavity system in
Section 3.3. To characterise the polariton system, sections 3.4 and 3.5 present the Photolumi-
nescence spectroscopy and resonant spectroscopy of the microcavity polaritons respectively,
and their respective implications. To conclude, section 3.6 discusses a technique developed
to improve the zero delay time calibration of a Hanbury-Brown and Twiss interferometer
which has been published in [86]. Other parts of this section have been publish in Nature
Materials [87] as part of the supplementary information.

To achieve the polariton blockade regime with microcavity polaritons, strong photonic
lateral confinement of the polaritonwavefunction is prescribed. This requirement necessitates
careful engineering of the microcavity design to deliver cavity qualities such as small mode
volumes while retaining high cavity Q-factors. In our experiments, we implement a Fabry-
Pérot fibre microcavity, to introduce tight, optical confinement of polaritons to study strong
polariton-polariton interactions.

A fibre-based microcavity is a semi-integrated cavity which replaces one of the semicon-
ductor mirrors of a planar, QW microcavity with a concave, dielectric mirror recessed into a
cleaved fibre tip as illustrated in Fig 3.1. In this thesis, we chose a fibre-based microcavity as
the fibre component of the cavity allows lateral confinement of the polariton mode through
the geometry of the machined concave indentation. This is accomplished while retaining
excellent optical qualities such as high Finesse and Q-factors [50], without incurring sig-
nificant polariton losses as is generally found in other designs such as micropillars [4] and
mesa structures [5]. As the fibre components are independent of the QW substrate, the cavity
length, which determines the polariton energy and lifetime, can be tuned over an extended
range without largely changing the cavity spot size on the QW sample. Moreover, the concave
mirror recess on the fibre tip can be custom machined using CO2 laser ablation techniques
to produce small radius of curvature (RoC) structures necessary to provide small cavity spot
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Figure 3.1: Fibre-based microcavity system schematic. The SM fibre with mirror (yellow
cylinder with mirror on end facet) is brought close to the planar sample to form a microscale
optical cavity. The inset image is a cross section of the cavity where the blue layers form the
fibre DBR mirror and conforms to the machined concave indentation on the fibre facet. The
red layer between the two grey layers is the QW sample which is followed by the alternating
grey/orange layers which constitute the other mirror which is grown directly onto the sample.
The white curved line is the electric field of the cavity mode. From [8].

sizes.
In the past, the Fabry-Pérot fibre microcavity was employed to study confined polariton

structures [8], however, the optical confinement proved insufficient to reach the regime of
polariton blockade. In our setup, we improve upon the work performed in [8] to realise
strongly interaction polaritons at the single particle level.

3.1 Experimental Setup - Overview
To perform measurements of the second order correlation function of the light emitted from
the microcavity polariton system for signs of antibunched light, we adopted an experimental
setup as illustrated in Fig 3.2. To excite the polariton system, we used a MIRA 900D laser
from Coherent Inc. (Fig 3.2 (1)) in picosecond pulse mode to create laser pulses resonant to
the LP mode with ∼6 ps width at a repetition rate of 76.3 MHz. However, due to the slow
photon detector response as compared to the polariton lifetime, the ability to collect accurate
statistics becomes a significant problem. To improve this situation, a modified resonant laser
pulse was used to increase the pulse width approximately to the polariton lifetime (∼35 ps)
to better match the detector response. To alter the laser pulse width, we used a laser pulse-
shaping system (Fig 3.2 (2)) which included an Acton SP2750 spectrometer from Princeton
Instruments. A more detailed explanation of the modified laser pulse and its role in this
experiment is discussed later in (see section 3.5.3 of this thesis.

To be able to characterise the resonant laser pulse widths and centre wavelength in real-
time, an Optronis SC-10 streak camera (Fig 3.2 (3)) and a HighFinesse GmbH WS8-10
wavelength meter (Fig 3.2 (4)) were used respectively.

The fibre cavity microscope with the QW sample (Fig 3.2 (5), see section 3.1.1) was
placed in a liquid Helium bath and the sample illuminated with the modified laser pulses,
near-resonant to the LP mode.
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Figure 3.2: Microcavity experimental setup. (1) MIRA 900D laser operating in picosecond
pulse mode with pulse width duration of 5-6ps at 76.3MHz repetition. (2) Acton SP2750
spectrometer for pulse modification. (3) Optronis SC-10 streak camera for measuring mod-
ified pulse widths. (4) High Finesse WS8-10 wavemeter for measuring pulse wavelength.
(5) Fibre microcavity inside Liquid Helium dewar (inset) cross-section of fibre microcavity
showing sample and fibre mirror structure. (6) Hanbury Brown and Twiss interferometer to
measure emitted photon statistics of microcavity polaritons.

Finally, the transmitted light from the fibre cavity microscope is collected and the photon
statistics are measured using a standard Hanbury-Brown and Twiss interferometer (Fig 3.2
(6)). The Avalanche Photo-Diodes (APDs) used are the SPCM-AQR-14 from PerkinElmer
Inc. with ≈100 cps dark count rate and '40% quantum efficiency at 830 nm. The PicoQuant
PicoHarp 300 TCSPCmodule was used to provide electronic correlation analysis of the APD
signals to build a raw histogram of the total photon coincidences.
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3.1.1 Fibre Cavity Microscope
At the core of the our system, there are two critical components; the fibre mirror and QW
sample substrate (Fig 3.2 (5) inset). The optical fibre we chose for the fibre mirrors are
single mode (SM), copper jacketed fibres with an operating range of 800-900 nm with a
mode field diameter of 6 µm ± 0.5 µm. These fibres were sourced from IVG Fiber Ltd,
Canada. The concave impressions on the fibre facet were machined using CO2 laser ablation
performed with our home-built Fibre Imaging and Machining System (FIMS). The details
of this machining process and setup as well as the analysis of the geometries is explained in
section 3.2. The RoC at the centre of the concave impression of the fibre mirror used in these
experiments was R = 13 µm with a depth of 1.3 µm which gave a calculated cavity mode
waist of ω0 = 1.16 µm. The machined fibre is coated with a dielectric DBR consisting of 33
paired layers of Tantalite (Ta2O5) and Silicon dioxide (SiO2) with the centre wavelength of
the stopband at 830 nm.

The second crucial component, the QW sample substrate, consists of a molecular beam
epitaxy (MBE) grown Al0.95Ga0.05As-Al0.1Ga0.9As DBR of 45 paired layers with a single
In0.04Ga0.96As QW layer sandwiched by two GaAs layers on top. The exciton wavelength is
λX ≈ 838 nm.

Figure 3.3: Fibre microscope configuration. The fibre mirror is glued vertically into a
Titanium mounting block (trapezoidal piece) using a Silicon V-groove. This mounting block
is situated upon a vertically moving Attocube nanopositioning piezo stage. The sample is
glued onto a Titanium holder which can move in the XY plane via two horizontally moving
Attocube nanopositioning piezo stages. The inset shows a magnified view of the fibre mirror
as it approaches the sample. This mounting setup is placed at the end of an approx. 1.5 m
long dipstick which is inserted into an airtight sleeve, establishing a vacuum inside the sleeve,
and is then placed into a liquid Helium dewar. Light is collected at the top of the dipstick via
a collimating lens (inside black square holder) situated just above the sample.

Moving out from the fibre mirror and QW sample, these components are mounted on
linear, slip-stick, piezo actuated nano-positioning stages with resistive position readout from
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Attocube systems AG. These nano-positioning stages from Attocube were chosen as they
can be operated at cryogenic temperatures as well as offer position adjustment with sub-nm
resolution using the Attocube ANC-300 controller hardware. This fine position adjustment
is crucial for precisely controlling the microcavity length, allowing detailed probing of the
polariton modes. The sub-nm adjustments can be easily controlled by applying a voltage
between 0 - 150 V with a resolution of 0.001 V to give a total travel range of 1.5 µm. For
coarse positioning, the slip-stick stepping feature provided a travel range of 5 mm. In the
case of our experiment, the fibre mirror tip was mounted facing upwards on a single Attocube
ANPz-101 vertical positioning stage via a specially designed, two-piece Titanium mounting
block as shown in Fig 3.3.

The fibre is glued to the top block which has a trapezoidal/L-bar shape by way of a silicon
V-groove from OzOptics Ltd. The fibre is allowed to protrude approximately the diameter
of the fibre (∼125 µm) out from the v-groove and Titanium holder which shown in Fig 3.3
(inset). This has the main benefit of keeping the fibre tip clear of the holder so that it can
be brought as close as possible, if not in contact, with the QW sample without interference,
thus allowing the shortest cavity possible. This is evident in Fig 3.3 (inset) by mirror image
of the fibre tip on the QW sample showing their very close proximity to each other. Clearly,
the fibre could be moved even closer to the sample without impedance. Also, by keeping the
protrusion length of the fibre tip to this length, the fibre tip remains rigid and does not act
like a pendulum, significantly reducing the effects of vibrations on the cavity mode.

The QW sample is glued to a Titanium sample holder so that the sample is facing
downwards to the upward facing fibre mirror. The sample holder is directly mounted to
two, stacked Attocube ANPx101/RES horizontal positioning stages with travel directions
orthogonal to each other. The orthogonal directions of the two stages allow x and ymovement
of the QW sample relative to the fibre mirror. The fibre mirror and QW sample on their
respective nano-positioning stages are housed in a small Titanium cylinder, suspended at the
end of a long cryogenic dipstick.

The dipstick is inserted into a sleeve, vacuum pumped to remove air and moisture from
the system and then filled with Helium gas to a pressure of 27 mbar for efficient heat exchange
with the liquid Helium bath. The dipstick is then placed into a stand-alone, 90 litre liquid
Helium dewar which will keep the system at T≈4K for 3-4 weeks. A home-built, sound-
proof box along with a vibration-absorbing platform is used to insulate the dewar from the
lab environment and to eliminate mechanical and acoustic vibrations, which effect the cavity
length stability.

To provide a laser pump input to the cavity, a P3-830A-FC-5 SM fibre from Thorlabs was
guided through the top of the dipstick through a Teflon pressure feedthrough and spliced to the
free end of the cavity fibre. After the laser light has passed through themicrocavity system, the
transmitted light from the cavity is then collected through a small, wedge-shaped (to eliminate
secondary reflections) window and coupled into a SM optical fibre via a breadboard mounted
directly to the top of the dipstick.



40 Experimental Methods

3.2 Fabry Pérot Fibre Microcavity Fabrication
The fibre mirror structures used in our experiment were manufactured with a system we
developed to machine large numbers of fibres with RoCs as small as 10 µm. At the heart
of this system, we use a 10.6 µm, CO2 laser ablation system equipped with an in-situ
laser interferometry characterisation capability, ideal for increasing productivity as well as
reducing the handling of fibres.

A CO2 laser system is used in this machining process as 10.6 µm light is readily absorbed
within the first few micron of fused silica due to side band absorption from the asymmetrical
stretching of the Si-O-Si mode at 9.3 µm. Laser parameters such as beam waist, power and
pulse duration, must be carefully chosen and very well controlled to ensure that evaporation
of material takes place to create uniform structures. With evaporation of material also comes
a smoothing effect due to surface tension which aids in reducing surface roughness, crucial
for high finesse mirror surfaces, with achievable root-mean-square (rms) surface roughness
reduced down to 0.2 nm [88].

3.2.1 Fibre Imaging and Machining System - FIMS
The layout of the FIMS system is illustrated in Fig 3.4. The FIMS setup is split into two distinct
systems which converge on the fibre facet via a miniaturised Michaelson interferometer on a
movable nanopositioning stage as shown in Fig 3.5. The first system is the CO2 laser ablation
system used to remove material from the fibre facet to create the concave impressions, while
the second system is a laser interferometry imaging system for characterising the concave
impressions (see section 3.2.2). The laser ablation system uses the Synrad Firestar v30,
water-cooled CO2 laser producing 30 W, horizontally polarised, 10.6 µm laser radiation. As
mentioned above, to control the ablation process to create indentations of the desired RoC
with low surface roughness, the laser parameter such as power, beamwaist and pulse duration
must be characterised and finely controlled.

Laser power, is controlled by two coupled, water-cooled, ZnSe coated, Brewster window
attenuators supplied byULOOpticswhich operate using theBrewster angle principlewhereby
the transmission of the beam is dependent on the incident polarisation. While the Brewster
attenuators perform the role of controlling laser power, they also control the laser polarisation.
This is crucial for converting the linear polarisation of the laser beam into circularly polarised
light using a λ/4 reflecting phase retarder plate. Circularly polarised light produces better
results, as there is higher absorption and less reflection by the material than linearly polarised
light. The two Brewster attenuators thus enable the polarisation of the laser to be rotated to
the correct orientation needed for the phase retarder.

The beam waist is controlled through the use of a CO2 beam expander attached to the
end of the Brewster attenuators along with an aberration corrected, aspheric double focusing
lens assembly with a short, 24 mm working distance to focus the beam after the expander.
The beam expander increases the beam diameter to nearly fill the focusing lens to maximise
the benefit of the lens to produce the smallest possible beam waist on the order of the
diffraction limit. The aberration free lens also ensures a distortion free laser profile for
uniform impressions on the fibre.
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Figure 3.4: FIMS experimental setup. This system comprises of two subsystems, the CO2
laser ablation system and laser interferometry imaging system. TheCO2 laser ablation system
starts in the top right corner with the water-cooled Synrad Firestar v30 CO2 laser. Following
the path of the beam left out of the laser is M0 which is a silicon coated mirror to guide the
beam into the Brewster attenuators. The beam passes through BP1 and BP2 which are the
Brewster attenuators which control beam power and polarisation. The beam exits BP2 into
the beam expander BX which alters the size and position of the beam waist. The beam then
reflects from M1 which is a silicon coated mirror onto M2 which is a λ/4 reflecting phase
retarder for conversion of linearly polarised light into circularly polarised light. The CO2
beam then passes throughCO2 OBJwhich is the aberration free focusing double lens for beam
focusing onto the fibre, with a working distance of 20.5mm. The laser interferometry imaging
system starts in the lower right corner with a HeNe laser (632.8 nm) coupled into the system
with the fibre coupler, FC, which incorporates a focal screw and polariser for maximum
interference contrast. The beam then impinges on the large fused silica beamsplitter, BS,
used to create the two arms of the interferometer. The split beams are reflected onto the
silver mirrors M3 then M4. The beams travel towards the beamsplitter/mirror combination.
The beams are collected by COBJ which is a Mitotuyo microscope objective with a 50x
magnification. Finally, the camera is a DSLR Cannon CCD camera for image capture of the
fibre facet.

Finally, the pulse duration is controlled by the application of voltage to the laser RF
controller which directly stimulates the CO2 gases. A digital signal generator generates a
single square wave pulse of set duration to the laser via the RF controller. Pulse durations
as small as 100 µs could be measured. With pulse duration, power, and beam waist control,
indentation characteristics such as ROC and depth can be altered to meet desired applications;
in our case, the smallest possible RoC.
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Figure 3.5: MovableMichaelson interferometer for fibre characterisation. The beamsplitter
along with a mirror is placed on a linear nanopositioning stage to allow the interferometer to
bemoved out of theCO2 laser beampath for ablation. The stage can then be precisely returned
to its original position infront of the fibre to image the fibre indentations for characterisation.

3.2.2 Fibre Indentation Analysis
As an integral part of the FIMS, a laser interferometry imaging system provided an in-situ
ability to characterise the fibre impressions. This imaging system was integrated by miniatur-
ising a Michaelson inteferometer by placing a beamsplitter and mirror on a nanopositioning
stage (see Fig 3.5), which could be moved out the incident CO2 beam path when laser abla-
tion was taking place. After the laser ablation, the nanopositioning stage could be precisely
returned to its initial position from which an interferometric image of the fibre facet could
be taken, an example of which is shown in Fig 3.6. With this image of the fibre facet, a
pixel analysis could be performed to extract the laser ablated impression dimensions, such as
radius of curvature (RoC) and depth.

The pixel analysis of the interfermetric image was carried out using a custom Python
programme using the Python Imaging Library know as pillow or PIL module for image
importation, Pyqtgraphmodule for the GUI and ROI selection of the image, PeakUtils module
for finding local maxima and minima values of the pixel intensity in the ROI selection, and
finally, the Lmfit module for the Gaussian laser profile fitting of the impression profile.

With the interferometric image of the fibre facet loaded into the Python program, a pixel
scale conversion was performed by placing and adjusting a large circular ROI selection area
that corresponded to the circumference of the fibre tip. The diameter of the fibre (125 µm)
could be divided by the diameter of the circular ROI given in number of pixels to give a pixel
scale which is applied to the fitted Gaussian laser profile. Next a rectangular ROI box can be
placed over the indentation site as shown in Fig 3.6.
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Figure 3.6: Interferometric fibre image with ROI selection box. A thin rectangular ROI box
is placed over the fringes produced by the indentation. Note the how the ROI box is parallel
to the large fringes on the flat part of the fibre facet.

It was found that rotating the ROI box to approximately parallel the large fringes on
the flat parts of the fibre removed unwanted fringes from consideration by the programme.
While the position and the sizing of the ROI box is taking place, a real-time graph of the
pixel intensity is displayed (see Fig 3.7) showing the maxima and minima values of the pixel
intensity, which greatly assists in ensuring the entire profile is captured.

Figure 3.7: Pixel intensity graph of the interference fringes. The maxima and minima of
the pixel intensity values correspond directly to the respective interference fringes. The red
and green crosses indicate to the user where the programme has found the position of bright
(red) and dark (green) fringes to be.
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Using this pixel intensity graph, the user can visually determine if the programme has
detected the fringes correctly. If this is not the case, the user can increase the width of the ROI
to increase the number of pixel rows over which it can average to attain a smoother profile,
thus making it easier for the programme to detect the peaks. A smoothing algorithm is also
built into the programme and can be increased in strength to again smooth the profile. For the
most accurate simulation of the profile, the ROI width and smoothing algorithm use should
be kept to a minimum, however, image quality sometimes necessitates that these methods be
used.

Figure 3.8: Fitted indentation profile. The extracted indentation profile (blue circles) is
fitted with a Gaussian function (red curve). At the centre of the Gaussian, RoC variation is
small and can be approximated to be spherical in this region, allowing an RoC value to be
given to this structure.

With the correct positioning and sizing of the ROI box, and the correct selection of the
maxima and minima fringes, the programme now has an array of pixel positions spanning
the width of the concave indentation. The programme then produces a second array of the
depth of each of the points based on the λ/4 (λ = wavelength of light) spacing between
successive maxima and minima fringes. It should be noted a spacing λ/4 is used rather than
a λ/2 spacing because the total optical path length is twice the distance between the fibre
facet and the beamsplitter in our setup. The data is then fitted with a Gaussian function as
shown by the red curve in Fig 3.8 as the ablated structures, to a good approximation, are
near Gaussian in shape due to the laser mode profile [89]. The user can then determine the
validity of the fitting and if needed, restart the entire process over. From the fitted Gaussian
function and since the RoC variation at the centre of the Gaussian profile is small, a spherical
approximation can be used to give an RoC for the mirror given by:

R =
σ

A
(3.1)

where σ is the standard deviation and A is the depth of the structure. The results of the RoC
and the depth fitting values are given in pixels as we have only worked in these units. These
values can now be multiplied by the pixel scale found at the outset to give values in µm.
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With this analysis programme, the RoC of the fibre mirrors can be ascertained within an
error of ±2 µm and the depth within ±0.2 µm. However, the image quality could, in some
cases, interfere with making reliable estimations.

3.3 Cavity Mode Simulation with InGaAs Quantum Well
Sample

The cavitymode simulations in this sectionwere performed byGillesNogues of theUniversity
of Grenoble Alpes, CNRS, Grenoble INP and Institut Néel, Grenoble, France in collaboration
for the Nature Materials paper [87] published on this research.

The cavity mode is of great importance in these experiments as its shape directly affects
the dynamics of the polariton system. The goal with the fibre mirror used in the experiments
presented in this thesis was to have the smallest possible RoC impression to produce the
smallest cavity mode waist, and hence mode volume, to maximise polariton interactions.
Sincewe could not directlymeasure themodewaist and directly calculate the lowest transverse
cavity and hence polariton mode shape, we used the physical parameters of the fibre mirror,
mirror coatings and QW sample to perform numerical simulations of Maxwell’s equations,
using the finite element software COM-SOL.

Figure 3.9: Cavity mode simulation. (a) Schematic cross-section of microcavity with exper-
imental parameters and sample. (b) Exploded view of the QW sample layer composition.
(c) Simulation of the electric field of the cavity mode. The bright parts are places of large
electric field intensity.

To begin, we assumed a circular symmetry around the axis z of the optical fiber. Taking
into account the expected symmetries of the mode, the calculation is carried out in the r, z
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plane, with r ≥ 0, and only for the in-plane components of the electric field E = (Er, Ez).
The simulation’s geometry is shown in Fig 3.9 (a). The origin of the r, z space is taken at the
interface between the MBE grown sample and the vacuum. Calculations are limited to the
space defined by 0 ≤ r ≤ rmax and −zmin ≤ z ≤ zmax, with rmax =10 µm and zmin and zmax
large enough so as to fully encompass the bottom and top DBR reflectors and a small portion
of GaAs substrate and SiO2 fiber. Before the top and bottom boundaries, a 300 nm-thick,
perfectly matched layer is used in order to absorb any outgoing wave without reflection. As a
consequence, one assumes a boundary condition E = 0 for r = rmax, z = zmax and z = −zmin.
On the z axis, one assumes Ez = 0 (perfect electric conductor).

For the fiber DBR, we assumed that the coating is made of successive layers deposited
by a directional method. As a consequence, each interface is a replica of the initial profile
etched on the fiber. The etched profile is measured to be of Gaussian form, which is what we
use in the simulation; the interface between the final dielectric layer and the vacuum is taken
as:

h(r) = hfiber + ρ × e
−

r2

2w2
m .

Interferometric measurements of the fiber profile yield ρ = 1.3 µm and a radius of curvature
R ' 13 µm at r = 0. Thus one has wm =

√
ρ × R = 4.11 µm. The low temperature refraction

indices for AlxGa1−xAs, Ta2O5 and SiO2 are taken from Refs. [90, 91] and [92] respectively.
The QW background index of refraction is assumed to be that of GaAs. This assumption has
a negligible influence on the mode shape in real space.

The software searches for field eigenmodes of the form E = Ê (r, z)e−iωct for the above
described structurewhereωc is in the vicinity ofωX = EX/~. The calculated eigenfrequencies
ωc are complex numbers whose imaginary part reflects the losses of the corresponding mode.
A fundamental transverse mode is found withωc ' ωX for hfiber = 205 nm in good agreement
with the experiments. Its Q factor ∼ 30000, which is limited by the absorption in the Ta2O5
layers and its value, would be closer to the experimental value if one considers the absorption
in the GaAs layers. Fig 3.9 (c) shows a 2D-map of its intensity distribution I(r, z) in the
region of interest. As expected, it presents an antinode at the QW layer (arrow). The intensity
I(z = zQW, r) agrees with a Gaussian function I0e−2r2/ω2

0 over several orders of magnitude,
with ω0 = 1.17 µm.

3.4 Photoluminescence Spectroscopy

3.4.1 Photoluminescence of Microcavity Polaritons

Characterisation of the polariton modes is performed by recording the photoluminescence
(PL) spectra of the microcavity emissions while changing the cavity length, hence, cavity-
exciton detuning under non-resonant, CW laser excitation. In the experiment, the cavity
length was precisely controlled by moving the fibre mirror closer to/further away from the
QW sample by way of an Attocube ANPz-101 piezo nanopositioning stage. The sub-nm
movement of the fibre mirror and hence cavity length allows a high resolution ‘scan’ of the
microcavity system as the energy of the fundamental mode of the cavity is swept across
the excitonic transition. The spectra are capture using a Princeton Instruments, Acton
SP2750 spectrometer with a 1500 grooves/mm reflective holographic grating and PIXIS
100F, 1340x100 pixel CCD camera.
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In Fig 3.10, the PL map for the polariton states is shown where the system is excited with
a 798 nm CW laser (EL = 1.55 eV) at approximately 1 mW incident power. The polariton
modes are manually fitted using a coupled harmonic oscillator model with a characteristic
anti-crossing observed at resonance between the cavity and exciton and a vacuum Rabi
splitting of 2~ΩR = 2.8 meV. The bare exciton transition (X0) is at 1480 meV.

The pump laser was also tuned to 825 nm (EL = 1.50 eV) to move the pump laser away
from the GaAs absorption edge (see section 3.4.2). Fig 3.11 shows the PL map for this laser
pump wavelength.

Figure 3.10: Photoluminescence (PL) under non-resonant excitation at 798 nm. The
signature of the strong coupling regime, the classic avoided crossing with the two polariton
mode branches. Vacuum Rabi splitting 2~ΩR = 2.8 meV. The red dotted lines show the
manual fitting of the polariton modes with the respective exciton transition and photon/cavity
mode. ∆ is the detuning between the photon and exciton resonant frequencies such that
∆ = ωC − ωX .

While the bare exciton transition at 1480 meV is evident, there is second emission peak
1.2 meV red-detuned from the bare exciton which is weakly coupled to the cavity mode. A
similar feature has been reported before in fibre based cavity experiments [93], and owing
to its spectral characteristics, we attribute this feature with the negative trion state (X−1)
[94]. This statement is consistent with the fact that optical excitation of ionized carbon
acceptors in GaAs occurs around 1.496 eV (828.7nm), providing free electrons to the QW
that enable the direct excitation of the trion state [95]. Therefore, if the system is pumped
at energies approaching 1.496 eV, more free electrons from the ionized carbon acceptors are
created, leading to greater emission from the trion state. The presence of this trion state



48 Experimental Methods

will be crucial for understanding any results of our correlation measurements, as this state
is an energy-dependent source of loss and decoherence for polaritons, which is explained in
chapter 4.

Figure 3.11: Photoluminescence (PL) under non-resonant excitation at 825 nm. The black
anti-crossing lines are the upper and lower polariton modes. The red and blue vertical dotted
lines show the neutral exciton (X0) and negative trion (X−1) states. The top spectrum is a
slice in this map, taken for a slightly negative detuning, shown by the red solid line. The X−1

state is found ∼1.2 meV red detuned from the neutral exciton state.

3.4.2 Photoluminescence through Excitation
Preliminary PL mapping of the polariton system was taken under CW laser excitation at
825 nm to avoid absorption in the GaAs while maintaining distance from the bare exciton
transition. However, at this excitation wavelength, the X−1 trion state is populated due to the
availability of free electrons in the QW. While the presence of the trion state is interesting to
observe (as the presence of this state in this system is unexpected), this would have serious
repercussions for non-resonant measurements of the system as the trion state is a source for
losses and thus affects system dynamics. Therefore, photoluminescence spectroscopy through
excitation (PLE) measurements were performed to observe the lower polariton emission
dependence on the excitation wavelength in an effort to identify the internal sample carrier
dynamics and search for an excitation condition which does not populate the trion state.

The PLEmeasurements were conducted using a computer-controlled, SolsTiS 3000 SRX,
Ti:Sapph, CW laser with wavemeter connectivity and tuned in 0.5 nm increments, over a
wavelength range of 780-830 nm. Ideally for this measurement, power stabilisation would
be used to normalise the measured spectra. However, the power drop without stabilisation is
smooth and constant within this region with only a few percent difference between maximum
and minimum power values. Therefore, a constant drop can be applied locally to this



3.5 Resonant Transmission of Microcavity Polaritons 49

wavelength range and so no power stabilisation is used for this measurement. The cavity was
kept at a constant length at a near resonance with the bare exciton transition. The spectra at
each wavelength was recorded on a Princeton instruments Acton SP2750 spectrometer. The
PLE results are displayed in Fig 3.12.

Figure 3.12: Photoluminescence through Excitation (PLE) of the LP mode. The main
graph shows individual spectra taken at increasing laser excitation wavelengths (front to
back). The inset graph shows the same graph as a 2D intensity graph. The two ‘windows’
of emission at 1.557 eV and 1.506 eV are evident with a considerable difference in emitted
intensity due to the GaAs absorption edge at 1.589 eV. Note the two peaks present are most
likely due to birefringence in the GaAs.

Clearly from Fig 3.12, there are two distinct ’windows’ of emission from the lower
polariton, one centred around 1.557 eV and the other around 1.506 eV. There is also a
considerable difference in intensity of emission, mostly likely due to the 1.557 eV window
being located close to the GaAs absorption edge. Due to a breaking of the circular symmetry
of the system which can be mainly attributed to the birefringence of GaAs, the fundamental
transverse mode of the cavity is split into two linearly cross-polarised modes, which is why
two peaks are present in the polariton transmission. Note the slight blueshift in the lower
polariton resonance is most likely due to the small laser power increase as the laser nears its
peak wavelength emission.

With a second excitation window available, PL mapping at 1.553 eV yielded classic
polariton modes without the presence of the trion state and so this wavelength was used for
all subsequent PL mapping measurements. While it is beneficial to remove the trion presence
for these PL measurements, the low signal intensity creates problems with low power, non-
resonant excitation of the system for photon correlation measurements. This is due to the low
excitation regime the system as to not saturate the polariton transition to achieve nonlinear
behaviour at the few particle level, as well as the ability of the APD detectors to register such
a low photon flux emitted from the cavity.

3.5 Resonant Transmission of Microcavity Polaritons
In the PL and PLEmeasurements of the polariton transition, the presence of theX−1 trion state
aswell as polarisation splitting of the polaritonmodes is shown. These features raise questions
as to their impact to the system dynamics which could introduce additional sources for losses
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as well as add an uncorrelated optical signals to the photon correlation measurement. In order
to characterise these features, resonant transmission measurements of the LP lineshape and
lifetimes are taken. The resonant nature of these measurement excludes the influence of any
carrier relaxation processes, leaving the bare LP mode unperturbed. These measurements
are also necessary for experimental considerations as they will enable an accurate map of the
laser parameters needed for photon correlations.

3.5.1 Resonant Laser Spectroscopy - Polariton Lineshape

Having chosen the detunings to best probe the LPmode for signatures of quantumcorrelations,
resonant laser spectroscopy of the LP polariton resonance was performed at each detuning.
Thismeasurementwas carried out by sweeping thewavelength of aCW,wavelength stabilised,
M-Squared SolsTIS 3000 SRX laser across the LP resonance at a fixed cavity length and the
average transmission recorded on a SPCM-AQRH-14 APD from Excelitas. The transmission
intensity is normalised to the input power. With the ability to lock the wavelength of the laser
reliably to ±1 pm, a higher resolution spectra of the LP resonance can be observed more than
can be afforded by using the spectrometer on hand which has a resolution of 25 pm. Fig 3.13
displays the resonant spectra for ∆ = 0.07, 0.52, 0.83, 1.05 meV.

Figure 3.13: Resonant laser scans of the LP mode. Each graph shows the LP lineshape as
the detuning is swept across from negative to positive (top to bottom). Due to birefringence,
the LP mode is polarisation split which is indicated by the double Lorentzian fit (dark blue
and grey). The third broad Lorentzian fit (light blue) is added to demonstrate the contribution
from the X−1 trion state. The red line shows the total fit of all these contributions to the the
data (black dots). Since the LP intensity decreases for more positive detunings, some of the
graphs have been magnified to show the relevant detail denoted by the x2 and x5.
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In all four traces, the LP resonance exhibits a double-peak structure which correspond
to the two polarization-split polariton modes πX and πY shown by the double Lorentzian
fitting. The splitting of these polarisation modes is of the order of 0.09 meV and decreases
for increasing ∆ as it is of photonic origin. Note that in this energy range, the linewidth of
both LP modes increases from w 0.06 meV to w 0.11 meV as the detuning gets more positive
and the low energy tail of the neutral exciton density of states starts to perturb these modes.
A third broad and shallow Lorentzian peak (light blue) is added to the fit which reflects the
presence of the X−1 trion state and shows the increasing contribution of this state as the
detuning increases. The increasing trion contribution strongly increases the loss in photon
number which makes the choice of experimental parameters crucial for reliable correlation
measurements.

3.5.2 Resonant Polariton Lifetime
To complete the characterisation of the system and quantify the trion state impact on the
system, lifetime measurements of the LP mode are taken at several cavity-exciton detunings.
Thesemeasurements use the ring-down spectroscopy techniquewhereby a pulsed laser source
resonantly excites the system. During the periods of no excitation, the polaritons eventually
recombines (decays), leaking light out of the system which is exponential in time. This
light is collected by an APD which bins the arrival time of the photons. For this type of
measurement to work properly, laser excitation parameters must be chosen in advance such
that the pulse width is shorter than the expected system lifetime and the period between
pulses (repetition rate) is significantly longer than the expected system lifetime. This ensures
that the laser illumination diminishes rapidly leaving the system to decay naturally as well
as giving enough time for the system to completely decay. In our measurements, we use a
MIRA 900 pulsed laser with a pulse width of 3-5 ps and a 76.3 MHz repetition rate which
corresponds to a ∼13 ns gap between pulses. The emitted photons are recorded on a streak
camera from OptoScope from Optronis GmbH with 2 ps time resolution.

Figure 3.14: Trion contribution to LP lifetime. Resonant lifetime traces of the LP mode
at two different detunings. Trace 1O shows a monoexponential decay for detunings far red
detuned from the trion resonance. Trace 2O shows a biexponential decay near the trion
resonance, where a second fast decay is introduced by the loss mechanism mediated by the
trion state.

When the LP mode is far red detuned with respect to the trion resonance, the polariton
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decay is monoexponential in time, which is shown in trace 1O of Fig 3.14. This behaviour
is consistent with the bare cavity lifetime and excitonic fraction at this detuning. To remain
consistent, it is expected that the LP lifetime will increase as the detuning is swept across
∆ = 0, as is shown by the dotted black line in Fig 3.15. However, this behaviour is only
observed to ∆ ≈ 1 where the lifetime starts to decrease rapidly as the detuning approaches the
trion resonance at ∆ ≈ 0.6 meV, as shown in Fig 3.15. This early departure from the expected
trend is attributed to an additional loss channel to the system brought on by the trion state,
exceeding the cavity loss channel by nearly a factor of 2 at the trion resonance [96]. This
additional trion loss channel modifies the LP decay, becoming biexponential in nature, which
can be seen in trace 2O of Fig 3.14. This differs from that observed Fig 3.11 where the trion
state and the nearby carbon acceptors are both excited directly from the resonant laser rather
than indirectly by way of free electrons from ionized carbon acceptors under non-resonant
excitation.

The fast part of the biexponential decay curve corresponds to the LP effective decay
with τLP = 8 ps which includes both the cavity decay and irreversible loss into the large
trionic density of states. The slowly decaying exponential tail of the LP mode arises from
re-emission of the trion state into the polariton mode with a characteristic time of τX ≈ 65 ps.

Figure 3.15: Resonant LP lifetimes as a function of detuning. The lifetimes are fitted to the
neutral exciton X0 (black dotted line) and trion X−1 (red solid line) decay rates, indicating a
large contribution from the trion state. Inset: Spectra of the LP mode showing the presence
of the X−1 state red detuned from the neutral exciton.

To support this claim of a large, trion mediated loss channel, we model the LP decay
time, τLP, as the sum of two energy dependent contributions, thus:

1
τLP (ELP)

=
1 − |CX (ELP) |2

τC
+ |CX (ELP) |2γT (ELP) (3.2)

where CX (ELP) is the excitonic Hopfield coefficient and τC is the bare cavity lifetime.
While the first term describes the polariton loss through the cavity mirrors, the second term,
γT (ELP), describes the irreversible polariton loss from elastic scattering into the trion density
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of states at the polariton energy ELP. For simplicity, we assume a Gaussian shape for γT such
that:

γT = S exp

(
−(ELP − EX − EB)2

2σ2
T

)
(3.3)

where S is the scattering rate, EX − EB is the trion transition energy defined as the neutral
exciton minus the binding energy and σT is the trion linewidth. Substituting the relevant
system parameters into Eqn (3.3) and leaving S as a free parameter, we see good agreement
with this model given by the solid red line in Fig 3.15 with S = 0.134 ps−1.

The identification andmodeling of this additional trion loss channel in the system compels
the creation of an effective excitonic lifetime given as:

1
τ

e f f
X

= τT . (3.4)

Here we identify γX = γT which encapsulates all excitonic sources of loss which can be
implemented as part of themaster equationmodel described in chapter 3, to fit to experimental
data.

3.5.3 Modified Resonant Laser Pulses for Photon Correlations
In order to measure photon statistics of the emitted photon stream from our microcavity sys-
tem, we used the widely accepted Hanbury-Brown and Twiss (HBT) interferometry technique
[97] (see section 3.6). This technique relies on two avalanche photo-diode (APD) detectors
to sample the emitted photon stream, creating a correlated signal between the two detectors.
While this HBT technique is highly accurate and robust due to the excellent time resolution
of current APDs, if the dynamics of the experimental system occur at a timescale comparable
or faster than the detector response time, the ‘physics’ is occurring faster than our detectors
can observe. This poses a significant issue for collecting accurate correlation information. In
the case of a microcavity polariton system, polariton lifetimes range up to only a few 10’s of
picoseconds which presents a problem even for the best APD based HBT systems with overall
time resolution of ∼ 65ps. In an effort to overcome this technical limitation in our system,
we elected to use pulsed laser excitation with a modified pulse width which approximately
matches or is longer than the polariton lifetime.

Modification of the pulse width has a two-fold benefit; firstly, the larger pulse width more
closely matches the HBT system time response, improving the quality of the measurement.
Secondly, the effectiveness of the blockade effect is increased as the spectral bandwidth of
the pulse now shrinks below the nonlinear energy shift imparted by polariton interactions,
reducing the possibility of exciting the two-polariton state. In fact, a larger pulse duration than
the lifetime is of even greater benefit, as shown in Fig 3.16, as the larger pulse width moves
the peak g(2) (0) antibunching into the region where there is better signal (i.e. more counts
due to being near resonance), enhancing the signal to noise ratio of the measurement. The
first benefit, however, became irrelevant for our measurements as the low quantum efficiency
of the APDs we hoped to use did not provide sufficient count rates at very low pump powers
(<100 pw), which necessitated using higher QE APDs at the cost of a considerably lower
time resolution.
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Figure 3.16: Effect of excitation pulse width on g(2) (0). Simulations of g(2) (0) as a
function of ∆LP for different pulse widths. Simulation parameters: ∆ =1.1 meV, τLP =7.8 ps,
ωnl =0.01 meV.

The modified laser pulses are initially produced from a MIRA 900, Ti:sapphire laser
source with the centre wavelength matched to the wavelength under investigation. In Fig 3.17,
the unmodified pulsed laser beam is passed through a Acton SP2750 grating spectrometer
from Princeton Instruments with the entrance slit fully open, spatially expanding the spectral

Figure 3.17: Pulse modification setup. A variable diameter iris alters the effective NA of
incoming pulsed laser beam (1) which enters a grating spectrometer (2), spatially expanding
the frequency components of the pulse. The output from the spectrometer is coupled into a
fibre (4) which acts as pinhole for spectral filtering. The modified pulse is measured for both
pulse duration and centre wavelength using a streak camera (5) and a wavemeter (6).
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components of the laser pulses. The grating is positioned to be centre on the centrewavelength
of the input beam. The spatially expanded pulse exits the spectrometer, again with the exit slit
fully open, where the beam is guided and coupled into a single mode optical fibre (Thorlabs
P3-830A-FC-5). The optical fibre acts as a pinhole, spectrally filtering the pulse. To gain the
ability to vary the pulse width of the beam, we place a variable iris just before the entrance
to the spectrometer. Placing an iris here allows us to change the effective numerical aperture
(NA) of the beam entering the spectrometer. This will change the effectiveness of the grating
inside the spectrometer as the beam covers different amounts of the grating, translating into
a beam which has different spatial sizes.

Figure 3.18: Pulse width characterisation. Temporal profiles of the modified laser pulses.
There is some slight distortion of the pulse profile in the 30-40ps range, however this can be
corrected in real time by using the continuous run function on the streak camera and fine
tuning the fibre coupling.

This means that at the optical fibre, different spectral bandwidths will be coupled into
the fibre. After the pulse is coupled into the fibre, the modified pulse is sent to an Optronis
SC-10 streak camera to verify the pulse width in real time, and a HighFinesse GmbH WS8-
10 wavelength meter to verify the wavelength. Fig 3.18 shows the streak camera temporal
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profiles of pulses achieved using this technique with pulse durations (using FWHM of pulse
profiles) of ≈16-50 ps. Comparing this range of pulse widths with the polariton lifetimes in
Fig 3.15, this technique can reach pulse durations at least double the duration of the longest
polariton lifetime.

3.6 Photon Correlation Measurement Calibration
To observe microcavity polaritons dynamics, we look to the photons that leak out of the
cavity since the polariton mode is imprinted onto the photonic mode. This means that the
emitted light stream will experience photon number fluctuations which can be directly traced
back to the dynamics happening inside the microcavity polariton system. To characterise
these fluctuations and determine the photon state leaking out of the cavity, the statistics of the
photon stream are measured and analysed. In most cases, there are three different categories
of photon statistics which compare the variation of the states photon number distribution to a
Poissonian photon number distribution. These states are called Poissonian, super-Poissonian
and sub-Poissonian, which refer to the fluctuations having equal, larger or smaller variation
than that of an uncorrelated, coherent photon state.

To experimentally observe the photon statistics, we must have some way of recording the
arrival times of the emitted photons. We accomplished this by using the celebrated Hanbury
Brown and Twiss interferometry technique [97] which has become the standard method for
measuring photon statistics. This technique employs a 50/50 beamsplitter to split the photon
stream into two branches which are guided onto two separate APD detectors operating in the
photon counting mode. Specialist electronics are used to measure the time between detection
events so that one APD starts the timer and the other APD stops the timer. The time period
or delay of the coincidences of detection are binned accordingly in values of absolute time
delay, with only the APD time resolution and electronic jitter limiting the minimum detection
window and hence, precision.

3.6.1 Optical Cross-talk Calibration
The HBT interferometry technique is a straight forward and robust technique for measuring
photon statistics by photon correlation. In order to extract useful information from this
measurement by means of the second order correlation function at ∆t = 0 or g(2) (0), the
coincidence counts at or near ∆t = 0 is compared to coincidence counts for ∆t → ±∞. To
ensure that this can occur within the limitations of the equipment, an electronic delay by
means of a long co-axial cable leading from the APD to the correlation electronics is used
in the ‘stop’ channel of the setup. This delay provides an ‘offset’ in absolute time delay to
∆t = 0 such that ∆t < 0 coincident values can be recorded. If this was not the case, ∆t = 0
and the first time bin of the correlation histogram would coincide which would mean the
loss information about ∆t < 0 as the electronics only measure positive absolute time delays.
Therefore, in order to make a definite statement about the photon statistics and analyse the
coincidence histogrammeasurements, this offset or zero delay time (ZDT) must be accurately
calibrated. While it is possible to use a calibrated light source that exhibits strong photon
correlations i.e. bunched or antibunched light, these items would not be readily available in
most labs at the wavelengths of interest. Lasers are unsuitable for this calibration due to their
coherent nature and flat correlation function. However, we develop an alternate means of
calibrating the ZDT using optical crosstalk between the APD devices used in our HBT setup.
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In APD devices, following the initial absorption of a photon in the active area of the APD,
photon re-emission from theAPD can occur due to an effect known as afterglow or breakdown
flash in the APD [98]. These re-emitted photons can lead to false detection events commonly
known as optical cross-talk, which can lead to an inaccurate statistics of the photon stream
which is clearly an undesirable situation. In recent years, the problem of optical cross-talk
has been studied in detail to develop a complete understanding of the origins and propagation
of this phenomenon in APD arrays [99]. Based on these studies, several new APD chip
designs were developed to reduce optical cross-talk such as trenches [100], absorbing filter
layers [101] and back illumination [102], with varying degrees of success. However, for the
most part, a typical quantum optics lab will be equipped with off-the-shelf silicon APDs that
have little or no in-built cross-talk reduction which means active steps have to be taken on
the experimental side to calibrate [103] and suppress this unwanted side-effect. However,
we show that with careful engineering of the optical cross-talk, this effect can be made into
a useful tool for determining the ZDT in HBT interferometers by placing a mirror on the
fourth, unused port of the 50/50 beamsplitter in the HBT setup, the so-called ‘vacuum port’.
Inserting a mirror in the ‘vacuum’ port significantly enhances the optical cross-talk, allowing
for straight forward identification of the ZDT. This mirror can then be blocked, leaving the
setup ready to measure, providing an in-situ and non-invasive means of calibrating the zero
delay time.

Figure 3.19: Optical cross-talk calibration of the ZDT experimental setup. Free-space
optics (a) and fiber-based (b) HBT interferometers. A retro-reflecting extra mirror is placed
in the free ‘vacuum’ port in both of the interferometric setups. The mirrors reflect any
secondary emission from the APDs (blue arrows) back into the detection arms. The extra
pellicle beamsplitter and CCD camera (near green arrow) in the right hand detection arm of
(a) is used for alignment purposes only.

To demonstrate the versatility of this newmethod, the HBT interferometer was operated in
the two most common ways: as a free space optics setup and as a fibre configuration as shown
in Fig 3.19. The mirror placed in the ‘vacuum’ port of the beamsplitter directs otherwise
lost photons from secondary emission events within the APDs back into the detection arms
of the interferometer where they can be re-detected. This leads to ‘fake’ coincidences which
are displaced from the ZDT by the travel time required to go from one APD to the other.
Due to the symmetry of the system, two cross-correlation peaks appear symmetrically around
the ZDT, making it straight forward to identify the ZDT. In the case of free-space optics,
alignment of the mirror in the ‘vacuum’ port was achieved using a low power laser, an
extra beamsplitter and a CCD, as shown in Fig 3.19 (a). The CCD is used to overlap the
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reflections from the APD front and the extra mirror. Once the ZDT is found, the extra mirror
in the beamsplitter ‘vacuum’ port can simply be blocked (or removed) without disturbing the
calibration of the system.

Figure 3.20: Free optics HBT photon correlations with optical cross-talk. Raw photon
correlation data in the free optics HBT configuration in both pulsed (a) and CW (b) laser
operation. The upper traces of both (a) and (b) correspond to having the extra ‘vacuum’
port mirror while the bottom traces do not. In the upper traces of both (a) and (b) two sets
of additional cross-talk peaks appear at ∼3 ns (A, A′) and ∼6 ns (B, B′) delay (positive and
negative) from the main peak. They correspond to the time of flight of approximately 1 m
between the two detectors. These peaks vanish in the bottom plots of (a) and (b) when the
extra mirror is removed.

In the experiments, we used two types of silicon APDs: one pair from ID Quantique
(ID-100) with a detection efficiency of 18% at 700 nm, a time resolution of 40 ps and a
dark count rate of less than 5 Hz, and the other pair from Perkin Elmer (SPCM-AQ4C) with
a detection efficiency of 49% at 805 nm, a time resolution of 350 ps and an average dark
count rate of 500 Hz. In the fibre-based set-up, we used a 50/50 fibre coupler as beamsplitter
and a fiber-based mirror plugged to the fourth port of the fibre coupler (Figure 3.19 (b)).
Four different lasers provided the light for the experiment: a pulsed Ti3+:Sapphire laser
(Coherent MIRA, laser 1) with pulse width < 3 ps at a repetition rate of 76 MHz, a CW
Ti3+:Sapphire laser (MSquared SOLSTIS, laser 2) at 750 nm, a pulsed Ti3+:Sapphire laser
(Coherent Chameleon,laser 3) with pulse width 140 fs at a repetition rate of 80 MHz, and
finally a CW diode laser (Toptica DL 100 Pro design, laser 4) at 805 nm. The correlator
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box (time-to-amplitude converter) is from PicoQuant (PicoHarp 300) and has a nominal time
resolution of 25 ps.

Fig 3.20 (a) shows the raw histogram data taken with the ID Quantique ID-100 APDs,
Laser 1 as the light source and in free-space optics configuration. The upper trace (pulsed
plus mirror) corresponds to the photon correlation data with enhanced cross talk due to the
extra mirror in the fourth port of the beamsplitter. For reference, the lower trace (pulsed) was
taken without the extra mirror. In both cases, the widths of the coincidence peaks is limited
by the time resolution of the APDs and can be fit by a Gaussian peak with approximately 70 ps
width, corresponding to

√
2 of the individual APD time resolution. Besides the dominant

Gaussian peak, a secondary exponential tail due to APD bias switching [104] is visible. The
secondary tail is caused by photons, which penetrate the depletion layer in the semiconductor
diode and generate photons in the neutral regions nearby [105].

Both plots of Fig 3.20 (a) are almost identical, except for the appearance of four small
additional peaks around the ZDT peak in the case of the extra mirror. The first pair of peaks,
labeled as A and A′, are ∼3 ns away from the main peak. The time delay difference depends
on the time of flight between the two detectors, and nicely coincides with the approximately
1 m traveling distance between both APDs. The second pair of peaks, labeled as B and
B′, correspond to double the delay time and are associated with multi-emission/reflection of
secondary photons. The presence of these four small peaks indicates efficient enhancement
of cross-talk between the APDs due to the presence of the additional mirror. The appearance
of the cross-talk therefore allows for the clear identification of the main peak representing the
zero delay time of our specific HBT setup.

The histogram in Fig 3.20 (b) was recorded using the CW laser 2 in free-space optics
configuration. As before, the lower trace shows the coincidences with the conventional HBT
setup, while the extra mirror is present in the top trace. As before, the extra mirror causes
four additional small peaks to appear around the ZDT. Both measurements demonstrate that
the additional mirror leads to significantly enhanced optical cross-talk, which can be used to
calibrate the zero delay time in a HBT-based photon correlation experiment. All histogram
plots in Fig 3.20 were taken over a 10→12 hour time period with ≈1000 cps in each APD
channel. Increasing the laser power will reduce the significance of the cross-talk coincidences
compared to ‘real’ coincidences from actual laser photons and will therefore suppress the
cross-talk signal. This is due to the fact that the number of secondary photon emissions in
APDs is determined by the bias voltage [106] and not on the incoming photon number.

Although many experiments use free-space optics for HBT experiments due to minimal
photon losses, in some circumstances it is desirable to use fibre-based photon correlation set-
ups, in order to, for example, improve filtering efficiency in fibre-based confocal microscopy
experiments [107]. The beamsplitter and ‘vacuum’-port mirror in the free-space setup can
be replaced by fibre beamsplitters and fibre-based mirrors which can be bought off the shelf
and are real ‘plug-and-play’ devices. Our cross-talk technique can be easily adapted to such
a fibre-based HBT, as Fig 3.21 (a) and 3.21 (b) demonstrate. These are autocorrelation data
taken with Lasers 3 and 4. All histogram plots in Fig 3.21 were taken over a 1 hour time
period with ≈ 4000 cps in each APD channel. Again, we see peaks appear at approximately
±30 ns from the ZDT in the upper traces of Figs 3.21 (a) and 3.21 (b), when the mirror is
present. As before, these peaks disappear when the extra mirror is removed. In both cases,
the cross-talk peaks are located at considerably longer delay and are considerably broader
compared to those found in Figs 3.20 (a) and 3.20 (b).
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Figure 3.21: Fibre based HBT photon correlations with optical cross-talk. Raw photon-
autocorrelation data in the fibre-based HBT configuration for both pulsed (a) and CW (b)
laser operation. The upper traces of (a) and (b) were taken with the extra ‘vacuum’ port
mirror present while for the lower traces the mirror was removed. The upper traces of (a)
and (b) show peaks A, A′ ∼30 ns away from the main peak. This corresponds to the in-fiber
time-of-flight between the two detectors and an effective fiber length of approximately 2 x 3 m
(entire optical path of the reflected light). These peaks vanish in the lower traces of panels
(a) and (b) with the extra mirror removed.

We attribute this to the longer optical path (total light travel in the fiber is 6 m, with
refractive index n∼1.463) in combination with the strong dispersion in the fibers. This results
in a slower group velocity of the wave packet and longer time of flight, shifting the peaks
further away in time from the zero delay. The width is likely to result from optical dispersion
of the wavelength components of the Si-APD secondary emission, and potentially from the
presence of additional nonlinear processes present in the fibre.

In our experiment, the calibration of the ZDT is critical, as the expected antibunching
signal is in the region of only a few percent. If the ZDT is not clearly and precisely known, later
analysis of the correlation histogram will become impossible as it will be unclear where the
antibunching signal actually occurs in time, and therefore comparison with the uncorrelated
signal cannot be performed as is necessary for calculating g(2)(0).



4
Quantum-correlated photons from
semiconductor cavity polaritons

In this chapter, photon correlation measurements of optically confined quantum well polari-
tons in two microcavities are presented and analysed. We observe small but distinct photon
antibunching which is a result of strongly interacting microcavity polaritons. The analysis
protocols for the second order autocorrelation function analysis is also included to provide
a clear understanding on the determination of g(2)(0) with its errors and fitting confidence
of numerical models to experimental trends. The findings presented in this chapter are pub-
lished in Nature Materials [87].

In order to observe the anticipated polariton blockade regime in our fibre-based microcavity
system, resonant photon correlations will be performed using the standard Hanbury-Brown
and Twiss interferometer technique. In order to improve our ability to observe the polariton
blockade, the microcavity polariton parameter measurements and parameters presented in
Chpt 3 give us important information about the behaviour of the polariton system. From this
information, it is clear that the polarisation splitting of the polariton mode and the negative
trion state will play an important role in any resonant photon correlation measurements.

4.1 Photon Correlation of Optically Confined Microcavity
Polaritons

4.1.1 Photon Correlation Measurements
We carried out a first set of correlation measurements for three different cavity-exciton
detunings ∆’s. At each ∆, we took data for five different laser detunings (∆LP’s), where
∆LP = 0 corresponds to the laser at resonance with the πX polariton mode an uncertainty
imposed by the resolution of spectrometer used to modify the laser pulses ∼ 45 meV . While
we tried to excite predominantly the πX mode, the polarisation was not monitored and
actively corrected during correlation measurements. We note, though, that in an independent
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characterisation measurement, we found the polarisation to be stable over hours. For each
pair (∆LP, ∆), a raw coincidence trace like the one shown in Fig 4.1 is obtained.

Figure 4.1: Antibunched raw coincidence data and integrated coincidences histogram.
Upper panel: Extended coincidence counts histogram for the raw data. The mean peak value
is indicated by a dotted black line. Lower panel: Integrated coincidences histogram (blue
bars) extracted from the raw data by following the analysis protocol described in section 4.1.3.
The mean integrated value is indicated by the dotted green line.

A zoomed-in version of the full scale trace shown in Fig 4.1 is presented in Fig 4.2
(d). The arrow in Fig 4.2 (d) indicates the position of the zero-delay peak that contains the
quantum correlations of the system which is used to extract g(2)(τ = 0). The immediate
neighboring peaks are neglected in the analysis since they exhibit bunching due to APD
crosstalk (see section 3.6.1). All other peaks being far apart in time (n × 13 ns) constitute a
reference of purely uncorrelated detection events. From raw traces such as this one, g(2)(0) as
well as its 1σ confidence interval is extracted (see section 4.1.3). The result of this analysis
for the fifteen pairs (∆LP,∆) is shown in Fig 4.2 (a)-(c).

The experimental plots of g(2)(0,∆LP) obtained in this way exhibit substantial deviations
from the uncorrelated baseline g(2)(0) = 1. Consistently, and in line with the theoretical
expectation, g(2)(0,∆LP) is mostly smaller than 1 for negative ∆LP and larger than 1 for
positive ∆LP. These deviations from 1 reflect the presence of additional quantum correlations
generated by transmission through the fiber-cavity polariton system. However, for some of
the data points (in particular Fig 4.2 (c)), the deviations are not in line with theoretical
expectations from the single-mode polariton blockade model.

In order to get a quantitative understanding of our data, we use the theoreticalmodel in Eqn
(2.39) to perform numerical simulations, taking into account our experimental parameters, the
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Figure 4.2: Quantum correlated photons with cavity-exciton detuning. (a)-(c) Photon
autocorrelation data g(2)(0) for three different cavity-exciton detunings ∆ = 0.14 (a), 0.83 (b)
and 1.11 meV (c). At each ∆, we measure g(2)(0) for five different laser detunings, ∆LP. Each
subfigure contains three subpanels, with the top panel showing the corresponding resonant
laser scan. The bottom panel displays the corresponding correlation data (black dots) along
with the calculation from the single-mode theory (two lines corresponding to upper and lower
bounds of the interaction strength). The middle panel contains a plot of the transmission
fraction T̃ . This parameter gives an indication of the perturbation of the mode of interest,
πx through the presence of the orthogonally polarized polariton mode πy and the trion
resonance. Both are expected to lead to a significant deviation of the measured g(2)(0) from
the single-mode theory. Hence, only regions with large T̃ are expected to give correlation data
that are close to the expected theory values. In subfigure (c) only the data point (i) around
zero detuning ∆LP shows negligible influence from πy and the trion resonance. It exhibits
antibunching around g(2)(0) = 0.93 ± 0.04, with the corresponding raw data displayed in
subfigure (d). The dip at zero time delay is clearly visible both in the raw correlation trace
and the integrated coincidences plot.

pulsed nature of the excitation, and the experimental integration over all possible correlation
times. Including a quantitative description of how photon correlations are affected by the trion
resonance or the neighboring polariton mode πY would require new theoretical developments
that clearly go beyond the scope of this thesis. Instead, in order to make sense of the
comparison between experiment and theory, we determine the range of validity of the model.
To do so, we define T̃(∆LP) = TX(∆LP)/[TX(∆LP) + TY (∆LP) + TX−1(∆LP)] which quantifies
the fraction of transmitted laser light explained by the πX polariton mode alone. It estimates
the amount of perturbation this mode is subject to for a given ∆LP, due to its spectral overlap
with the other perturbing transitions. TX(∆LP), TY (∆LP), and TX−1(∆LP) are the contributions
to the transmission spectra of the πX and πY polariton modes, and of the trion resonance
respectively, determined from the transmission measurements. Hence, T̃ equal to 1 means
that the πX polariton mode is unperturbed. For this ideal case, we expect the best possible
agreement with the single-mode theory. The smaller T̃ , the more the πX polariton mode is
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perturbed, and the more the experiment is expected to depart from the single-mode theoretical
expectation.

The resulting T̃(∆LP) is shown as middle panels in Figs 4.2 (a)-(c) and Fig 4.3 (a). In
addition, it is also underlaid as a color map with the measured g(2)(0) data points in the lowest
panels of Figs. 4.2 (a)-(c) and Fig 4.3 (a). Interestingly, data points lying in high values of T̃
(light areas) exhibit a very good quantitative agreement with the theoretical expectation. This
is the case for example of most points close to resonance (∆LP ' 0), where a trend towards
antibunching is visible.

Figure 4.3: Polariton-Polariton interaction constant. (a) Correlation data near cavity-
exciton resonance. The top panel contains the corresponding resonant transmission laser
scan while the middle panel shows the calculated transmission fraction T̃ . The bottom panel
displays g(2)(0) as a function of laser detuning ∆LP from the position of the LP πx-resonance
for a cavity-exciton detuning of ∆ = 0.07 meV. Except for the two rightmost points which
are heavily influenced by the πy mode, all other data points are from almost pure πx-mode
photons. (b) Example raw correlation traces from the two points (ii) and (iii) in subfigure (a).
(c) Coefficient of determination R2 of the data fit with the theoretical model versus interaction
parameter ~g. The most likely value is ~g0 = 0.020 ± 0.011 meV·µm2.

The point labeled (i) in Fig 4.2 (c) is particularly interesting as it benefits both from a good
T̃ , a large excitonic fraction, and ∆LP ≈ 0, a situation in favor of the strongest antibunching
among all data points. Despite this, the measurement uncertainty remains rather large and
the perturbation is non-zero (T̃ = 0.65), so that it is hard to infer the actual value of g(2)(0)
we would find in an ideal measurement, and in absence of perturbation from the trion.

Points lying in low T̃ areas on average exhibit an excess of bunching as compared to
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the theory. This is particularly clear for the three leftmost points in Fig 4.2 (c), for which
the perturbation is mostly due to interaction with the trion resonance. This trend is actually
expected, as coupling with the trion transition, and in particular re-emission through the
polariton mode, will generate classical noise of thermal origin (mediated by trion-phonon
or trion-free charges interaction). When the perturbation comes from the neighboring cross
polarized polaritonmode, the influence on g(2)(0) seems less dramatic (compare, for example,
the two rightmost points in Fig 4.2 (a) and Fig 4.2 (b)). This also makes sense as a polariton
mode is much shorter lived and much less coupled to thermal noise mediated by phonons
or free charges. In this case, the polariton-polariton correlations are largely lost due to
a loss of the single mode character of the polariton modes and thus an effective loss of
the interaction strength. We thus see that our entire data-set can be qualitatively, and to
some extent quantitatively, explained by polariton-interaction mediated correlations that are
significantly altered by the presence of unwanted transitions, namely, the trion resonance and
the cross-polarised polariton mode.

For the final measurement, we therefore attempted to optimize themicrocavity parameters
such that T̃ is as large as possible over a broad window of ∆LP. This situation is met for a
detuning ∆ = 0.07 meV, for which the polarization split polariton modes are well separated,
and the trion resonance lies far away on the blue side of the polariton mode. The results are
shown in Fig 4.3 (a) (bottom panel), together with the transmission spectrum (top panel) and
T̃(∆LP) (middle panel). The results are consistent with our previous analysis: the rightmost
points that approach the trion resonance as well as the πY polariton mode exhibit a slight
excess of bunching (which lies within the error bars). The left side points, which are very well
protected from the sources of perturbation, are well in-line with the theoretical prediction.
The leftmost point being strongly detuned from the polariton mode has weak transmission
and thus suffers from a low count number, which is reflected by its extremely large error
bar. The raw coincidence traces for points labeled (ii: g(2)(0) = 0.98 ± 0.04) and (iii:
g(2)(0) = 1.06±0.04) are shown in Fig 4.3 (b) as an illustration of the kind of raw correlation
traces obtained for a high photon number.

Owing to a better signal-to-noise, we take advantage of this latter data-set to estimate
quantitatively the strength of the polariton-polariton nonlinearity, by comparing it with our
model. The best fit is obtained for a confinement-enhanced exciton-exciton interaction
constant ~ωN L = 0.018 ± 0.010 meV. The calculated g(2)(0,∆LP) for this central value is
shown as the solid line in Fig 4.3 (a). For this fitting procedure, we have excluded the two
rightmost points at large positive ∆LP since, as explained above, they have a low T̃ and are
thus not expected to fit the theory.

To obtain amore generic polariton-polariton interaction strength ~g it is necessary to scale
~ωN L by the mode overlap between the photonic cavity mode and the exciton wavefunction
using the Gaussian mode waist size of w0 = 1.17 µm calculated in section 3.3. In this case,
~g = ~ωN L |Cx |4πw2

0, using the scaling area πw2
0. With an excitonic fraction |Cx |2 = 51%

this analysis yields ~g0 = 0.020± 0.011 meV·µm2. The confidence of this value is illustrated
by the plot in Fig 4.3 (c) that shows the coefficient of determination R2(~g) of the theoretical
fit to our data. R2(~g) exhibits a clear maximum for g = g0, as well as a peaked structure from
which the uncertainty iswell-defined. Ourmeasurement returns an exciton-exciton interaction
strength ~κ = 0.076± 0.042 meV·µm2, which is in good agreement with previously reported
values in literature [3, 84, 108] and also is in good agreement with the value determined in a
similar measurement by the ETH Quantum Photonics group[109].
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4.1.2 Photon correlation measurement in a second cavity

We carried out a second set of photon correlation measurements in a second fiber cavity with
different cavity parameters. While the radius of curvature for this cavity was similar to the
previous one, the cavity lifetime of 8.3 ps was significantly shorter than for the other cavity.
Fig 4.4 (a) displays the low-temperature photoluminescence (PL) map as a function of cavity
detuning (∆), obtained under non-resonant excitation (at EL = 1.55 eV). The characteristic
avoided crossing of the excitonic and photonic modes was observed, producing the Lower
Polariton (LP) and Upper Polariton (UP) dressed states. We find a vacuum Rabi splitting of
2~ΩR = 3.04 meV, with slightly higher QW exciton energy (EX = 1480.65 meV) than in the
spot studied in section 4.1.1.

Figure 4.4: Optical characterisation and photon correlation measurement in a second fiber
cavity. (a) Low-temperature photoluminescence (PL) map as a function of cavity detuning
(∆). (b) Experimental LP linewidth (γE xp) (blue filled circles) and the calculated LP radiative
linewidth (γRad) (black filled squares) as a function of ∆. (c) Evolution of the figure of merit
ρ0 as a function of ∆. In both (b) and (c) figures ∆ = −0.45 meV (redish shadow) shows the
best signal-to-noise ratio for the photon correlation measurements. (d) Measured resonant
transmission spectra of the the πX LP transition (black dots), and Lorentzian fitting to both
linear LP transitions (bluish shadows). The red continuous line represents the cumulative fit.
(e)Photon correlationmeasurements as a function of laser detuning (∆LP) for∆ = −0.45meV
and two excitation powers: 700 pW (open circles) and 200 pW (filled circles).

In order to evaluate the best ∆ to carry out photon correlation measurements and to
minimize the effect of the trion transition, we measured resonant transmission spectra in the
close vicinity of ∆ = 0. Fig 4.4 (b) displays the evolution of the experimental LP linewidth
(γE xp) (blue filled circles) and the calculated LP radiative linewidth (γRad) (black filled
squares) as a function of ∆. As displayed, at ∆ ' −0.45 meV both quantities start to diverge
as a consequence of the losses produced by the scattering with the trion transition.
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As a second control parameter, we calculated the following figure of merit ρ0:

ρ0 =
|CX |4

√
R0

γE xp
× fP; fP =

γRad

γE xp
; R0 =

R2
Det

θ
(4.1)

where RDet is the detector count rate and θ is the pulsed laser frequency. ρ0 thereforemeasures
the detector count rate versus the polariton linewidth promising the best signal-to-noise ratio
for themeasurements at its maximumvalue. Fig 4.4 (c) shows the evolution of ρ0 as a function
of ∆, with ∆ = −0.45 meV corresponding to the position of its maximum. As both direct
linewidth and ρ0 criteria coincide, we have performed photon correlation measurements as a
function of laser detuning (∆LP) for ∆ = −0.45 meV and two excitation powers. Fig 4.4 (e)
shows the measured g(2)(0) value when scanning the low energy tail of the πX LP transition
(Fig 4.4 (d)) with the excitation laser. Here we use two different average excitation powers:
700 pW (open circles) and 200 pW (filled circles). When using high excitation power, all
measurements return g(2)(0) ≥ 1. However, when the excitation power is reduced to 200 pW,
we find a clear minimum g(2)(0) = 0.984 ± 0.014 < 1 at ∆LP ' −0.05 meV. Due to the low
count rate at this power, the integration time for this single data point was 96 hours. The
result from our polariton-model simulations with ~ωN L = 0.018 meV is shown as continuous
orange line.

The loss of antibunching statistics with higher excitation power is in line with the theo-
retical prediction of Verger et al.[42], and coincides with the results presented by Delteil et
al.[109], with their data following a very similar trend to the one observed here.

4.1.3 Second order correlation function analysis protocol
The avalanche photodetectors (APDs) that we used in this experiment have a time resolution
of '350 ps. Since the polariton dynamics under resonant excitation is < 40 ps, we can
reasonably assume that the correlations between two photons delayed by this timescale are
equally spread over the whole measured zero-delay coincidence peak. On the other hand,
it also means that since the other coincidence peaks are separated by an integer multiple
of 13 ns (laser repetition period), they cannot feature any polariton correlations. Fig 4.1
shows an extended raw two-photon coincidences histogram and the corresponding integrated
coincidences histogram for our strongest antibunching in Fig 4.2 (c) of data point (i). Given
the rather small contrast of the antibunching and the overall noise in the data, a careful
statistical analysis is needed.

In order to maximize the statistical significance of our data, we chose to truncate the data
of the zero delay peaks (centered at bin zero) at time bins ±W , and hence reject the far edges
of the peaks which contain more dark coincidence counts from the APDs than actual signal.
To determine the optimal W , we modeled the coincidence counts in each time bin j as being
the sum of the signal Sj , the statistical noise related to the number of counts uncertainty and
the dark coincidence counts. As a result, the sum of the zero delay coincidences reads:

A0 =

W∑
j=−W

Sj, (4.2)
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and the corresponding signal-to-noise as:

SNR(W) =

W∑
j=−W

Sj√
W∑

j=−W
Sj + (2W + 1)SD

, (4.3)

where SD is the number of dark coincidence counts which is a constant over all bins (whether
it is due to dark/dark, dark/signal or signal/dark coincidences).

Figure 4.5: Typical zero-delay raw coincidences peak. The FWHM of the zero-delay peak
is 0.6 ns, with a maximum of 95 coincidence counts. Dark coincidence counts from the
detectors are delay independent, and amount here to 0.5 counts on average (Inset).

The signal-to-noise function (Eqn (4.3)) exhibits a maximum that depends on these
parameters. Fig 4.5 shows a typical raw zero delay correlation peak. A dark count of
SD = 0.5 counts per bin is found, and the Gaussian best fit of the peak exhibits a full
width at half maximum of 600 ps and an amplitude of 95 counts in the central bin. With
these parameters the largest signal-to-noise ratio is achieved for a truncation window of
2W = 896 ps full width.

g(2)(0) = A0
〈A〉 is then determined as the ratio of the sum of the counts in the zero delay peak

within the truncation window (A0) and the average sum of the counts in the uncorrelated peaks
within the same truncation window (〈A〉). The experimental uncertainty on A0 is derived
from the measured standard deviation σ of Ak , the sum of the counts in the peak k (also
truncated) where k runs over every peak of uncorrelated events (300 peaks in total). Then,
according to the central limit theorem, the uncertainty over 〈A〉 is given by ε(〈A〉) = σ/

√
Np,

where Np = 300 is the number of peaks of uncorrelated events. We have also included two
more corrections: subtraction of the noise correlations from the APD dark counts [110] and
the compensation of the slow long delay decay caused by the finite efficiency of the detectors
and by the count rate of the APDs. Fig 4.6 shows the g(2)(0) values obtained and their error
bars after applying this method. It corresponds to Fig 4.3 (a) in section 4.1.1.
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Figure 4.6: Extracted second order autocorrelation function at zero time delay. g(2)(0)
values extracted following the analysis protocol described.

Figure 4.7: Sensitivity of the result on the analysis parameters. Values obtained for g(2)(0)
(at ∆LP) = -0.010 meV and +0.037 meV in Fig 4.6), from analysis of the raw data, using W
= {0.512,0.832,1.216,1.600} ns, and np = {300, 100,30,10} peaks.
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In order to check the robustness of our method, we analysed two values of g(2)(0) (∆LP =
-0.010 meV and +0.037 meV in Fig 4.6), as a function of W and Np, for W = 0.512 ns, 0.832
ns, 1.216 ns and 1.600 ns, and np = 300, 100, 30 and 10 peaks. Fig 4.7 shows the result: As
expected, accounting for the maximum number of peaks, plus a truncation width W chosen
within this time interval maximises the signal to noise ratio. Fig 4.8 shows raw photon
correlation measurement, for both laser detunings until 11 consecutive correlated pulses.

Figure 4.8: Raw photon correlation histograms. (i) Raw photon correlation histogram from
main text Figure 4.b with laser detuning ∆LP = -0.010 meV until 11 consecutive correlated
pulses. (ii) Raw photon correlation histogram from main text Figure 4.b with laser detuning
∆LP = +0.037 meV until 11 consecutive correlated pulses. Arrows indicate the position of
the zero delay peak.

In summary, we have demonstrated the first indications of the quantum polariton blockade
regime by the presence of small but distinct photon antibunching in a single QWmicrocavity
system. Through the use of semi-integrated, fibre microcavities which tightly confine polari-
ton through its photonic component, different cavity-exciton detunings of the lower polariton
state could be studied. At each of these cavity-exciton detunings, several energies across the
polariton transition were selected with a resonant modified pulsed laser with a pulse width
approximately matching the polariton lifetime, with the photon correlations measured at each
energy. At a cavity-exciton detuning of 1.11 meV, our best antibunching value of g(2)(0) =
0.93 ± 0.04 is achieved. To quantify and understand the dynamics occurring in the confined
polariton system, numerical simulations of the experimental system are performed taking
into account the pulsed nature of the excitation, and the experimental integration over all
possible correlation times. These simulations are fitted to the experimental results, yielding
and exciton-exciton interaction constant of ~ωN L = 0.018 ± 0.010 meV, and exciton-exciton
interaction strength of ~κ = 0.076 ± 0.042 meV·µm2 and a polariton-polariton interaction
strength of ~g0 = 0.020 ± 0.011 meV·µm2. These photon correlation measurements were
repeated in a second cavity, with similar findings to those found in the first measurements,
however, with reduced uncertainty in the measurements, validating these results.



5
Emerging quantum correlations of
non-resonantly excited polaritons

In this chapter, preliminary results on the observation of quantum correlations from non-
resonantly driven microcavity polaritons are presented. In order to give an explanation of the
observed correlations, a work-in-progress model for the system dynamics is introduced. It
must be emphasised that the results presented in this chapter are still preliminary and subject
to further investigation.

In the paper initially describing the polariton blockade regime [42], all discussions and
simulations were given with resonant excitation of the LP transition. What was not discussed
in this paper was the prospect of using non-resonant excitation of the system to create single
photons. For QDs strongly coupled to photonic crystal cavities, quantum correlated photons
can be easily produced by off-resonant pumping [111]. The strong nonlinear nature of the
QD itself takes care of the discrete excitation nature of the system. For confined cavity
polaritons with their relatively weak nonlinearity, the excitation through the reservoir is not
one-by-one. This raises the question whether incoherent excitation can be used at all to
create antibunched photons from LP polaritons. However, it turns out that by using a narrow-
band optical filter it seems possible to get quantum correlated photons under off-resonant
excitation. It seems that the filter in combination with the polariton-polariton interactions
leads to sizeable quantum correlations - here we present preliminary photon correlation data
under non-resonant excitation and a corresponding Master equation model that captures the
relevant features. While the effect seems to be there, more measurements and more careful
modelling are currently under way.

5.1 Photon correlations of spectrally filtered polariton
photoluminescence

In order to intuitively understand the potential occurrence of quantum correlations from our
off-resonantly driven polariton system, it is worth having a look into the case of the biexciton
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cascade in QDs. The typical cross-correlation function for the QD biexciton cascade [112]
exhibits both antibunching and bunching. While the cross-correlation function is recorded as
a function of delay time, it does contain a mapping between color and antibunching/bunching
behavior. This idea is illustrated in Fig 5.1. In Fig 5.1 (a), the QD exciton-biexciton ladder
for the neutral exciton is shown. Under two-photon excitation, the system exhibits a cascade
effect as the biexciton decays into the neutral exciton state first, and from there down to the
ground state. If the photoluminescence is spectrally filtered (∆LP = ωX0 − ω f ilter) and the
biexciton and exciton photons are used as a start/stop signal for two-colour cross-correlations,
one obtains the typical antibunching/bunching signature for the biexciton cascade. This two-
colour cross-correlation tells much about the system: If a red (biexciton) photon is detected
first, it means that the biexciton has decayed and there is a high probability that a blue photon
from the exciton decaywill follow quickly thereafter. This implies that red (biexciton) photons
are associated with bunching. If a blue (exciton) photon is detected first, the biexciton has
likely already decayed and the system will need to be re-excited again. This results in a delay
till the next red photon can be detected. Hence for blue (exciton) photons, antibunching will
occur. The mapping between photon color and antibunching/bunching behavior is possible
due to the fact that the QD system is highly nonlinear and the exciton/biexciton energies are
well separated. Note that if the biexciton had higher energy than the exciton, the mapping
between photon statistics and color would be reversed.

Figure 5.1: Biexciton cascade with two-colour correlations. (a) The biexciton cascade with
two-colour correlations where ∆LP = ωLP −ω f ilter . Note in this graph frequency is used, but
in reality, this is actually g(2)(τ) as a function of delay time. With the spectrometer providing
the spatial filtering of the photoluminescence, bunching will occur on the red side of the
neutral exciton transition, and antibunching on the blue side for the two-colour correlation
shown in the graph on the RHS of (a). (b) Polariton cascade with a monochromatic filter with
centre frequency ω f ilter . Due to the cascade nature of the process, photon antibunching is
expected on the red-detuned of the neutral exciton, and photon bunching on the blue-detuned
side.
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In principle, a similar cascading behavior should be observable for a polariton cascade.
However, the polariton excitation ladder nonlinearity is weak, unlike the biexciton cascade
- hence efficient photon filtering for cross-correlation measurements is not possible. Yet,
as it turns out, by using a narrow-band filter and autocorrelation measurements, a similar
antibunching/bunching behavior can be observed. The following hypothetical situation is
illustrated in Fig 5.1 (b): here the energy ladder consists of the two-polariton and one-
polariton state with the two transition energies only weakly separated. Now imagine that a
photon red detuned from the LP transition is detected. Clearly, the probability of this photon
coming from the lower of the two transitions in the cascade is higher. Therefore, a red photon
indicates that the system is projected into the ground state and needs to be re-excited before
another photon can be seen. Thus, a red photon leads to antibunching. The reverse is true
for a blue photon; detecting a blue photon enhances the probability that this photon has been
emitted on the higher lying transition. Hence the probability of seeing another photon right
after from the lower transition is enhanced and the system exhibits bunching. Hence, relative
to the LP resonance, we expect photons from the red side (∆LP < 0) to exhibit antibunching,
and blue photons (∆LP > 0) to exhibit bunching (similar to what is seen in resonant excitation
in the blockade case). In the experiment, we isolate photons according to their colour using
a narrow-band optical filter. It is important to note that the selective filtering of photons to
perform autocorrelation measurements of the LP resonance does not give immediately the
same information about the system as the two-colour cross-correlation measurement used
for the biexciton cascade. This is due to the mapping between delay time, photon energy
and photon statistics behaviour [113]. In the case of autocorrelations measurements, only a
single photon energy is measured in a given measurement, so some information about the
system is not present. However, if the narrow-band optical filter is moved over several photon
energies across the LP resonance, the same information about the system i.e. photon energy
and photon statistics can be reconstructed.

Figure 5.2: Non-resonant g(2)(0) measurements as a function of filter-polariton detuning.
Measurements were taken at a cavity-exciton detuning of δ = 0.94 meV and show clear signs
of antibunching when the filter is red detuned from the centre of the polariton transition.
Photon bunching is also present when the filter is blue detuned, following similar behaviour
to the resonant measurements.
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In order tomeasure photon correlations for non-resonantly excitedmicrocavity polaritons,
a similar setup was used as shown previously in Fig 3.2 with one key difference: now,
spectral selection of the LP transition is done by filtering the emitted light from the cavity,
rather than by resonantly exciting the LP transition. The spectral filtering is required as
the photoluminescence light emitted by the cavity spans the entire LP transition due to the
population of higher lying polariton states (see Fig 5.3). To perform the spectral filtering,
we placed the Acton SP2750 spectrometer (previously used for laser pulse shaping) into the
detection path of the experiment, before the HBT interferometer. Laser pulse shaping is no
longer necessary as the LP mode is not directly excited and so spectral matching of the LP
linewidth is not required. With the filtering afforded by the spectrometer that we are using
(∼25 pm), the LP mode can be selectively probed across the transition by changing the angle
of the grating inside the spectrometer.

With the altered experimental setup, we performed photon correlations across the the
LP transition at a cavity-exciton detuning of δ = 0.94 meV and excited with a pulsed laser
with centre wavelength of 1.553 eV, with a pulse width of ∼6 ps. The resulting integrated
coincidence plot of the photon correlation measurements is shown in Fig 5.2.

Clearly, there are deviations from the uncorrelated baseline of g(2)(0) =1 with g(2)(0)<1
shown for negative values of ∆LP and larger than 1 for ∆LP ≥0. Interestingly, the non-trivial
correlations indicate similar behaviour as was observed for the resonant measurements in
chapter 4, with an antibunching of g(2)(0) = 0.93 ± 0.06. Error bars are calculated in the
same way as was described in section 4.1.3. The quantum correlations observed in Fig 5.2
add validity to the hypothesis that quantum correlations can be observed under non-resonant
excitation conditions. With no theoretical model available to quantify our results, no analysis
could be performed on them. However, we have started to develop a theoretical model to
describe our findings, with particular emphasis on the role of the exciton reservoir.
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5.2 Spectrally filtered polariton photoluminescence

Figure 5.3: Spectrally filtered photoluminescence. From left to right: the pump laser excites
an incoherent long-lived excitonic population dubbed the ‘excitonic reservoir’. This reservoir
induces upward transitions in the polaritonic anharmonic excitation ladder. Downward
transitions correspond to the emission of a photon in the detection channel. The emitted
photons are frequency selected by a narrow band filter of transmission spectrum T(ω − ωF)
prior to photodetection. L(t) is the pulsed laser excitation, <nr> is the expectation value of
the reservoir population, γr is the reservoir linewidth, γ is the polariton emission rate and g
is the polariton-polariton interaction constant.

In the work already presented in this thesis, polaritons are generated directly using a pulsed
laser with a photon energy resonant with the polariton transition. If the excitation laser
is changed to a higher photon energy, an incoherent population of long-lived excitons are
formed, the so-called excitonic reservoir. The reservoir feeds the polariton states by in-
coherent, inelastic scattering via either phonons or mutual collisions as shown in Fig 5.3.
With significant polariton-polariton interactions, the polariton transition energy blueshifts
for increasing polariton number as more polaritons contribute to the interaction strength.
The photoluminescence light that leaks out of the microcavity polariton system incorporates
photons from all these transitions. If the PL light is passed through a narrow spectral filter
with transmission spectrum T(ω −ωF), then due to the interactions that couple the emission
frequency with the polariton number, the filter will increase or decrease the probability of
detecting a photon.

Provided that the spectral filter linewidth γF is considerably smaller than the polariton
emission linewidth, γF � γLP, non-trivial photon correlations are expected after the filter
depending on the detuning of the filter with respect to the peak of the polariton emission
and the features of the reservoir-cavity dynamics. This behaviour resembles that of Eqn 2.38
where the probability of photon detection increases as the cavity-laser detuning becomes
positive. This is due to the driving laser approaching the two-photon resonance of the cavity.
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The probability of exciting the two-photon resonance increases further as the linewidths of
the single and two-photon transition begin to overlap. However, in this case, it is the single
polariton and two-polariton transitions that overlap, as explained in Fig 5.1 (b).

In order to model the system theoretically in the off-resonant excitation regime, a Master
equation approach is taken. In this particular Master equation, two Lindblad terms are used.
The first one describes the polariton losses by photon leakage out of the cavity:

L̂ = γ
(
bρb† − 1

2
b†bρ − 1

2
ρb†b

)
(5.1)

Here, γ is the polariton linewidth, ρ is the intracavity polariton density matrix, and b†, b
are the polariton creation and annihilation operators. The other Lindblad term describes
polariton pumping through the reservoir:

L̂p (nr) = γrnr

(
b†ρb − 1

2
bb†ρ − 1

2
ρbb†

)
(5.2)

where nr(t) is the time-dependent exciton reservoir population and γr is the reservoir
linewidth. The Master equation for the system is then:

Ûρ = − i
~
[H, ρ] + L̂ + L̂r (nr) (5.3)

where H is the polariton Hamiltonian given in Eqn (2.25). In the simplest case, the exciton
reservoir dynamics reads:

Ûnr = L(t) − γrnr (n̄ + 1) (5.4)
Here, L(t) = L0δ(t) is the pulsed laser excitation of the reservoir. It must be emphasised that
the exact influence of the exciton reservoir is yet unclear at the time of writing this thesis.
Nonetheless, several important questions can be asked: What is the magnitude of the noise
induced by the reservoir?

Figure 5.4: Quantum events for microcavity polaritons under non-resonant excitation.
There are four possible events for the system to evolve in a time interval t + dt. K̂det involves
a photon emission from the system which passes through the filter and is detected. K̂no det

involves an emission event, but the photon either is rejected by the filter or is not detected due
to the quantum efficiency of the detector. K̂ pump involves the injection of a polariton into the
system. Finally, K̂no jump describes a no emission event. All these possibilities describe the
system dynamics when placed in the Master equation.
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How large are the effective polariton-polariton interactions in the presence of the exciton
reservoir and what are the reservoir contributions to the observed photon correlations? The
answers to these questions determine the approach for simulating the system properly. For
now, the simplest description is used for the reservoir to give an initial point from which to
conduct further investigation and development of theory.

To find the corresponding photon statistics, the system is represented using four possible
events that can occur in the system, which are described by so-called Kraus operators which
define the probabilities of a certain event happening in a time interval t + dt. These events
are graphically shown in Fig 5.4.

The first event is the emission of a photon which passes through the filter and is detected
(K̂det). The second event is the emission of a photon which is not detected either due to
rejection by the spectral filter or due to the finite efficiency of the detectors (K̂no det). Thirdly,
no photon emission occurs (K̂no jump) and finally, the addition of a polariton in the cavity from
the reservoir (K̂ pump). These events defined by the Kraus operators can be used to ‘unravel’
the Master equation to yield the hidden dynamics of the system. The explicit formulation of
the Kraus operators have not been included in this thesis as this theoretical work is outside
the scope of this thesis and is still under active investigation.

With the Master equation given in Eqn (5.3), numerical simulations were carried out
using experimental parameters which are shown in Fig 5.5.

Figure 5.5: g(2)(0) under non-resonant excitation as a function of filter frequency-LP
detuning. g(2)(0) becomes antibunched on the red detuned side of the transition and bunched
on the blue detuned side. This behaviour resembles what has been observed previously with
the system under resonant excitation. Parameters: ωnl = 12 µeV, input power = 12 pW,
pulsewidth = 40 ps.

Comparing these simulations to Fig 5.2, g(2)(0) follows the same trend as the filter
frequency is scanned across the polariton transition. This is consistent with Eqn (2.38) where
the position of the filter acts in the same way as the frequency selection with a resonant laser.
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If the frequency selection is made on the lower energy (red detuned) side of the transition of
the one-polariton state, there is a reduced probability of the detection of a photon. On the
high energy (blue detuned) side, especially if the two-polariton linewidth is large, there is an
increased probability of the detection of a photon.

It is clear that more simulations and deeper modelling are required to fully develop the
concepts presented here, with emphasis on the contribution and role of the exciton reservoir
on the system dynamics.
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Conclusion

This thesis has reported the emergence of quantum correlations from a confined, fibre-based,
microcavity polariton system under resonant excitation. Our results clearly demonstrate that
the quantum regime for polariton-polariton interactions is achievable. Our results act as a
door opener to a new field of research previously unattainable: quantum polaritonics. In
this new field, concepts and ideas such as all-photonic quantum simulators which can model
complex many-body systems seem potentially possible, with far reaching implications for
the future. Yet, while we have opened the door to the field of quantum polaritonics with
our work, we have only begun to scratch the surface. To move this new field forward and
much deeper into the strongly interacting regime, improvements and advances in photonics,
materials and excitonic engineering are needed.

Our fiber cavity approach introduces strong polariton-polariton interactions through tight
optical confinement. This idea can be further expanded by continued engineering of the
photonic part of the polariton wavefunction to increase confinement and thus, interactions.
An immediate course of action that can be undertaken is to produce fibre mirrors with
smaller radii of curvature. While CO2 laser ablation does produce mirrors with exceptional
smoothness and RoCs on the order of ∼5-10 µm [51], to reach smaller RoCs, focused ion
beam (FIB) milling could be used instead. RoCs less than 5 µm on fibres might be possible,
as has been demonstrated with silica substrates [69]. Another idea that is being investigated
at the time of writing this thesis is the use of etched lenses on the surface layer of the QW
sample. Through the extension of the top GaAs capping layer on top of the QW, lenses
can be etched onto the surface using FIB techniques. Matching the ROC of the lens to the
fiber mirror ROC should lead to significantly tighter mode confinement by increasing the
effective NA of the cavity mode. In the ideal case, the effective mode area at the position of
the quantum well should be reduced by a factor n2 ≈ 13. Further, photonic crystal cavities
(PCC) could be used to increase photonic confinement. These structures afford good optical
quality and extremely small mode volumes. They have been used in the past with multiple
QW samples [48]. However, one serious issue with photonic crystal cavities is the fact that
the etched holes lead to increased polariton losses.

On the material engineering side, we found in our experiments that the QW sample
presumably had too many DBR layers, which increased the chance of photon absorption.
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While a higher number of layers increases the cavity finesse and Q-factor in theory, the
increased number of layers likely reduced the photon count rate at the APDs, greatly reducing
the efficiency of our correlation measurements. In the future, QW samples with less DBR
layerswill facilitate increased signal to theAPDs, decreasing the integration time and enabling
much faster integration, thereby also reducing the impact of drifts in the system. The QW
linewidth is also another avenue for improvement. Our present sample is not at the limit of
what is technically possible. If the QW is narrow enough compared to the collective vacuum
Rabi splitting, then QW disorder can be largely eliminated, leading to a narrowing of the LP
resonance which in turn should allow for a stronger blockade effect.

While GaAs has the strongest exciton nonlinearity of any known semiconductor system,
other materials might open a different avenue for realising strong photon-photon interactions.
In particular, the 2D transition metal dichalcogenide (TMD), mono-layer materials such as
Molybdenum Disulfide (MoS2) or Tungsten Diselenide (WSe2) could provide a material
platform in this direction [114]. While the excitons in these materials are extremely tightly
bound and therefore have comparatively small interaction constants, the strong excitonic
effects might lend themselves to excitonic engineering approaches, i.e. exploring excitonic
resonances (biexciton) or higher-lying bound exciton complexes (Rydberg states) [115].

Another approach to excitonic engineering is provided by the use of indirect excitons to
achieve the polariton blockade regime [43, 44]. The use of indirect excitons that have large
dipole moments shows great promise; the double QW samples needed to create them could,
in principle, be readily placed inside our existing fibre cavities. An alternative approach
for enhancing interactions could also be the Feshbach blockade effect that exploits the QW
biexciton state. In principle, our tunable fibre microcavities are ideal for observing this effect
[45], however, GaAs might not be the best material to observe the effect, as opposed to the
TMDs.

Another idea for producing antibunched light from a weakly nonlinear material system
was put forward a few years ago. The idea is to use the phenomenon of quantum interference
in the so-called unconventional polariton blockade [47]. In this proposal, the polaritons in
adjacent cavities can tunnel between the cavities with a small nonlinearity present in one of
them. The coupling between the cavities produces a quantum interference effect leading to
polariton blockade. Unconventional blockade has been demonstrated for microwave systems
and for QDs but not yet for polaritons. As part of the initial batch of fibre mirrors made
for the work presented in this thesis, several multi-indentation fibres were also produced. It
is speculated that the multiple indentations in close proximity to each other could provide a
suitable platform to test the unconventional blockade concept. However, at time of writing
this thesis, the corresponding experiments have yet to be performed.

In the last chapter of this thesis, correlation measurements showed that quantum cor-
relations can in principle be achieved using non-resonant excitation of polaritons. Further
investigation is clearly indicated both theoretically and experimentally. At the time of writing
this thesis, efforts are already underway to improve the accuracy and linewidth of the filter by
using fibre Bragg gratings (FBG)which can be precisely tuned and have a narrow transmission
spectrum. In addition, the group recently acquired superconducting single-photon detectors
(SSPDs) from Single Quantum with > 90% quantum efficiency and a time-resolution of
around 14 ps. This should enable much faster integration and direct access to quantum
correlations on short timescales and will clearly be a game changer for all the experiments
planned.
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