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CHAPTER 1: INTRODUCTION 

1.1 Chapter Outline 

This chapter provides the context for the research together with the objectives, motivation, 

research questions, significance, outcomes, methodology, and thesis organisation. 

Please note that a glossary is provided at the end of this thesis (page 277) to assist with the 

acronyms and jargon used. 

1.2 Context 

For many different types of data, and in many different domains a simple keyword search 

using popular search engine technology can produce volumes of false positive hits.  The 

ordering of search hits may be based on metrics such as statistical click-through rates, or 

anchor text5 that is inappropriate or more troublesome still, context-sensitive leading to false 

positives and false negatives.  According to one recent study (Gully and Signorini, January 

2005)6, there are over 11.5 billion web pages in the publically-indexable Internet.  Given the 

size and complexity of some domains popular search engines provide a shoe that simply can’t 

fit all. 

The problem of too many false-positives is exacerbated when users try to use simple keyword 

search algorithms to search numeric data.  Popular search engines lend themselves to straight 

keyword searching but at this time they are unable to effectively locate and prioritise relevant 

answers in problem spaces dominated by complex functionally derived, context dependent 

and / or numeric attributes7.    Search appliances typically do not close-the-loop on system 

searches and hence build no expertise in the accuracy of context sensitive query hits.  Their 

ability to learn the relevance of search results in relation to the search context is minimal. 

                                                 

5 For a definition of Anchor Text, please see the glossary (page 277). 

6 http://www.cs.uiowa.edu/~asignori/web-size/  

7 For example, if you search for “3” in Google, the search results give you dates including the number 3, 

companies whose names include the number 3, promotional material including the number 3, but nothing about 

the number 3 itself.  The context in which you were searching for the number 3 is obviously vital in determining 

the most appropriate search result. 
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Similarly, data mining techniques allow question-answer indexes to be developed in mature 

domains where unambiguous domain models have already been constructed, and a large 

dataset of pre-classified question-answer pairs are available.  But for previously unchartered 

real-time functionally complex, repetitive and evolving problem domains, static and off-the-

shelf computer-driven search and data mining techniques demand significant and often 

prohibitive levels of customisation and manual refinement (Dunham, 2003). 

For these types of problem domains, manual, customised and ongoing knowledge acquisition 

from real humans of the attributes of the domain (the domain model), the conditions that map 

cases to classifications in the domain (the matching criteria), together with the classifications 

and their associated conclusions, is needed. An approach is needed that can be customised to 

the domain and data at hand to provide much richer context specific pattern matching. 

The knowledge acquisition techniques of Single Classification Ripple Down Rules (SCRDR) 

(Compton and Jansen, 1989) and Multiple Classification Ripple Down Rules (MCRDR) 

(Kang, Compton and Preston, 1995) (described in detail in Chapter 4 on page 40) have 

previously been applied with reported success as single-user result-interpretation indexing 

techniques in numerous domains8, and perhaps most notably in the pathology domain 

(Edwards, 1996) (Compton et al. 2005).   

MCRDR has also been previously applied to the help-desk domain, but only as a single-user 

keyword-based index for web-based documents (Kim, 2003) (Kang et al., 1996).  (Further 

description of these implementations is provided in section 4.3.2.3 on page 58.) 

From this experience, it was conjectured that the SCRDR and MCRDR techniques might be 

useful in improving the effectiveness and efficiency of problem-solution matching and hence 

trouble-shooting in support centres operating in previously unchartered real-time functionally 

complex repetitive and evolving problem domains.   

The last 15 years have seen globally explosive growth in support-centres providing help and 

service-desk functions:  advising customers, answering queries, and resolving customer 

problems.  A primary objective for support-centres is to learn how to solve technical problems 

with minimal heartache (for the sake of the customer), headache (for the sake of the staff), 
                                                 

8 Ripple Down Rules (RDR) has been studied in numerous domains, including Pathology, Email sorting, Flight 

Control, Chess, Traffic Light Control, VLSI Channel Routing, Help-desk, and RoboCup. 
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and resources (for the sake of the business).  The ability to find relevant solutions in the 

Information and Communications Technology (ICT) support domain is notoriously difficult 

due amongst other things to the lack of anchor text, and the presence of numeric data (e.g. 

hexadecimal error codes) and industry specific jargon (such as version codes) that resists 

plain text keyword searching. 

The support centre problem domain would offer new challenges for MCRDR compared to 

some of the previously studied domains: evolving cases, evolving solutions, multiple 

contributors to the evolving knowledge, and a need for real-time responsiveness in the 

knowledge based system (KBS).  The Sydney-based support centre of a 24x7 follow-the-sun9 

global support operation of HTG, a large multi-national corporation operating in the ICT 

industry therefore provided a suitable environment in which to conduct the research.   

HTG has sales channels in more than 50 countries and annual revenues of ~$US 10 billion.  It 

is one of the world’s 10 largest ICT companies as measured by market capitalisation, and it 

employs more than 25,000 staff globally.  The trouble-shooting environment at HTG was 

characterised by approximately 5000 incoming problem cases per 24 hour period around the 

globe.  Around 1000 of these were cryptic and repetitive computer-encoded cases.  Much of 

the trouble-shooting know-how was stored in people’s heads, which was problematic since 

the organisation suffered ongoing staff turnover.  As well, written information required to 

solve the incoming problems was scattered across numerous and diverse locations. 

1.3 Objectives and Motivation 

The aim of the research was to: 

Develop a knowledge acquisition approach that will facilitate the capture and 

recall of problem solving know-how, in an environment where problems and their 

solutions are continuously evolving, and where a distributed group of 

stakeholders can both contribute to and benefit from the acquired knowledge.   
                                                 

9 "24x7 follow-the-sun" is an industry term that refers to an alliance of support centres around the globe handing 

over to each-other e.g. every 6-8 hours so that employees can work in daylight hours while customers can be 

supported around the clock.    For example, after 6 hours of operation a support centre in Sydney hands over to 

India, that hands over to Ireland 6 hours later, that hands over to East Coast USA after another 6 hours, that 

hands over to Sydney after a further 6 hours, after which the handover cycle repeats itself.  
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This aim was motivated by a desire to improve the quality and consistency of solutions 

together with the speed of solution recall, and hence the effectiveness and efficiency of 

trouble-shooting. 

A sub-goal of this research was to explore the possibilities to adapt SCRDR and / or MCRDR 

to the support centre context, and to design, prototype and test a software blueprint that could 

assist with problem solving in previously unchartered, repetitious and complex problem 

domains. 

A further sub-goal was to develop an approach that would be flexible enough to support 

collaborative trouble-shooting and classification in other domains such as botany, zoology, 

biology, chemistry, pathology, geology, and financial markets. 

1.4 Research Questions 

The questions answered by this research10 are shown in Table 1.  The location of the 

corresponding research answers is also shown.  

                                                 

10 These research questions were constructed retrospectively to improve the presentation of this thesis. 
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Table 1: Research Questions 

Research Question Answer Location 

Q1. What does the HTG support centre environment 
tell us about the nature of trouble-shooting? Chapter 2, page 13. 

Q2. What are some of the problems with existing 
knowledge management approaches in domains 
such as the ICT support centre? 

Chapter 3, page 30. 

Q3. What literature and technologies are relevant to a 
collaborative MCRDR-based troubleshooting 
approach? 

Chapter 5, page 64. 

Q4. How can MCRDR be adapted to a real-time 
environment where problems and their solutions 
are continuously evolving, and where a 
distributed group of stakeholders can both 
contribute to and benefit from the acquired 
knowledge? 

Introduction 

        - Chapter 6, page 79. 

Top Level Design  

        - Chapter 9, page 161.   

Detailed Design  

        - Chapter 11, page 176.   

Proposed Design Enhancements  

        - Chapter 13, page 242. 

Q5. What is the expected trajectory of the case-
driven acquisition of classification knowledge? Chapter 7, page 92. 

Q6. Why take a hybrid case-based and rule-based 
approach to Knowledge Acquisition? Chapter 8, page 133. 

1.5 Significance 

As discussed later on in section 5.2 (page 66), the cooperative work offered by Richards 

(1998) and (Beydoun et. al, March 2005) and (Beydoun et. al 2007) takes separately created 

KBSs from independently operating experts modelling identical domains and merges them, 

for example on a weekly or daily basis.  In contrast, the collaborative work offered in this 

thesis allows experts to concurrently negotiate and build an expert system together, while 

being informed of each-others present viewpoints.  This research is significant because it 

extends the previous Ripple Down Rules (RDR) techniques to offer a novel knowledge 

representation and Knowledge Acquisition (KA) algorithm that supports both the bottom-up 
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case-driven and top-down11 rule-driven concurrent collaborative acquisition of the domain 

model and case-classification matching criteria.  For the first time, collaborative MCRDR (C-

MCRDR12) is offered.  In this research, a C-MCRDR prototype system was proposed, 

designed, prototyped and tested. 

As well, a mathematical model has been developed (Chapter 7, page 92) that allows 

predictions to be made for the stochastically expected knowledge acquisition trajectories of 

case-driven classification systems.  The derived case-driven KA model is relevant to the case-

driven acquisition of classification knowledge for example in Artificial Intelligence, Machine 

Learning, Data Mining, Expert Systems, Ripple Down Rules, Group Decision Support 

Systems, Collaborative Tagging, Folksomonies13, and Case-Based Reasoning (CBR) systems.  

The case-driven KA model offers important predictions for the trajectories presented in 

previous machine-learnt and case-based KA simulations for SCRDR and MCRDR as 

discussed in (Compton, Preston and Kang, 1995), (Kang, Lee, Kim, Preston and Compton, 

1998), and (Cao and Compton, 2005 and 2006) as well as the tag-acquisition trajectories 

discovered by (Goldman and Huberman, 2005, p4) for folksomonies.  Further related work 

that may be informed by this research is discussed in section 7.1 (page 92). 

                                                 

11 In this thesis, the term “top-down” knowledge acquisition refers to the process of human users adding rules 

directly to a rule tree, without needing to refer to cases.  The term “bottom-up” knowledge acquisition refers to 

human users adding rules on the basis of a specific case on hand, in a manner that does not necessitate the user to 

peruse the rule tree, for example by allowing the user to create new RuleNodes that are relative to existing 

RuleNodes in the system.  Please see the Glossary (page 277) for a definition of the term RuleNode. 

12 The collaboration techniques proposed in this thesis apply equally to SCRDR or any of the other RDR 

alternatives, for example those mentioned later on in section 4.4 (page 60).  Hence the terms C-SCRDR, C-RDR 

and C-NRDR are also proposed by this research. 

13 Collaborative Tagging systems and Folksomonies are described in section 5.4 (page 72). 
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1.6 Outcomes 

As mentioned in the synopsis for this thesis, outcomes from this research include: 

1. A review of the trouble-shooting environment at HTG, showing that trouble-shooting 

know-how includes the ability to configure (i.e. work-up) a case, classify it, and locate its 

relevant solution. 

2. The derivation of a stochastic model that explains and provides predictive formulas for 

Case-driven Knowledge Acquisition as in Single Classification Ripple Down Rules 

(SCRDR) systems14, Multiple Classification Ripple Down Rules (MCRDR) systems15, 

and Collaborative Tagging Systems such as Folksomonies16. 

3. A knowledge representation and knowledge acquisition technique known as 7Cs that 

supports the Collaborative  Configuration and Classification of a stream of incoming 

problem Cases via a set of ConditionNodes linked to their Classes and associated 

Conclusions. 

In the author’s opinion, the most important of these three main outcomes is outcome 2: the 

stochastic case-driven KA model presented in Chapter 7 (page 92). 

1.7 Methodology 

The following seven research instruments have been used to direct this study: literature 

review, case study, interview, survey, mathematical derivation, software prototyping, and 

software user-trial.  The support centre offered a suitable case study in which the more 

general problems associated with collaborative trouble-shooting in a dynamic problem 

domain could be studied. 

Numerous interviews were conducted together with a major survey of the support centre to 

determine the nature of the trouble-shooting organisation, tasks, processes, and workflow (the 

                                                 

14 (Compton and Jansen, 1989). 

15 (Kang, Compton and Preston, 1995) 

16 For a discussion of Collaborative Tagging systems and Folksomonies see section 5.4 (page 72) and Vander 

Wal (2005) . 
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ethics approval reference number at Macquarie University is HE25FEB2005-D03895).  The 

results of the interviews and survey are reported in Chapter 2 and Appendix A. 

A technology and literature review was conducted17.   The results of the literature review are 

reported in Chapters 3, 4, and 5. 

An interview was also arranged with the chief technology officer at Pacific Knowledge 

Systems (PKS) to learn from their experiences in deploying the Multiple Classification Ripple 

Down Rules (MCRDR) technology in the pathology domain.  Results of this interview are 

included in Appendix G. 

A predictive stochastic model was developed for the rule-driven versus case-driven transfer of 

classification knowledge.  This model is presented in Chapter 7 and some of the implications 

are discussed in Chapter 8. 

A large part of the research effort was spent in developing prototype software for the support 

centre, and following a recursive Plan-Do-Check-Act (PDCA) improvement cycle (Deming, 

1989) to make the best possible fit between the needs of the support centre and my software 

solution.  A final patent application was the net result of these efforts (U.S. Patent application 

PCT/AU2005/001087).  The top-level design, problem context, detailed design, 

implementation, trial and validation of the prototype are reported in Chapters 9 though to 12. 

The methodology applied has some parallels with the CRISP-DM18 (Cross Industry Standard 

Process for Data Mining) KDD (Knowledge Discovery in Databases) model.  CRISP-DM 

contains the following steps: business understanding, data understanding, data preparation, 

modelling, and evaluation deployment (Dunham, 2003 p19).  The steps involved can be 

summarised as the 5As: assess, access, analyse, act, and automate. 

1.8 Thesis Organisation 

The remainder of this thesis is organised as follows19: 
                                                 

17 A review of vendor offerings for the support centre was also conducted, but it is not reported on in this thesis. 

18 www.crisp-dm.org  

19 For the executive reader and in the author’s opinion, the most relevant chapter to the thesis topic is Chapter 5, 

the most interesting is Chapter 7, the most controversial is Chapter 8, the most enlightening is Chapter 11, and 

the most promising is Chapter 12. 
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Chapter 2: The HTG Support Centre Environment 

Documents the findings of the observations, interviews and surveys conducted at the support 

centre. 

Chapter 3: Other KM Approaches 

Provides a review of other KM approaches relevant to the main research question. 

Chapter 4: Ripple Down Rules 

Provides a detailed review of the RDR literature. 

Chapter 5: Collaboration Features and Trends 

Argues a case for including support for collaboration in the RDR approach. 

Chapter 6: Adapting MCRDR 

Describes the limitations of the conventional MCRDR framework that surface when we 

migrate the algorithm to the support centre domain. 

Chapter 7: A Model of Knowledge Transfer 

Provides a predictive model for case-driven and rule-driven knowledge transfer. 

Chapter 8: Hybrid Case and Rule-driven KA 

Discusses the design implications of the model derived in the previous chapter. 

Chapter 9: 7Cs Top Level Design 

Documents the top-level design of the proposed 7Cs solution for the support centre, and for 

trouble-shooting more generally. 

Chapter 10: The Dial-Home Problem Context 

Provides a description of the target problem domain for the FastFIX software trial.  Please 

note that FastFIX is the name of the prototype software developed in this thesis in order to 

trial the 7Cs design concept. 

Chapter 11: The 7Cs and FastFIX Design Core 

Documents the detailed design of the 7Cs prototype system and presents the implemented 

FastFIX software prototype. 
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Chapter 12: Results of the FastFIX Trial 

Analyses the results of the FastFIX software trial in light of previous RDR evaluations and 

the model presented. 

Chapter 13: Design Enhancements 

Documents ways in which this design might be enhanced in the future. 

Chapter 14: Summary and Conclusions 

Provides a summary and conclusions for this research. 

Other Sections 

A glossary is provided to allow easy-lookup for any acronyms and jargon used herein.  This is 

followed by a list of publications resulting from this research, details of the patent filed, 

details of the innovation award received, and a reference list.  Finally, the following 

Appendices are provided: 

Appendix A – Trouble-shooting Survey 

The complete results of the HTG trouble-shooting survey are provided. 

Appendix B – Sample CaseDB20 Case 

Demonstrates a sample problem case from HTG. 

Appendix C – System Requirements 

Documents the broader system requirements for the proposed trouble-shooting system. 

Appendix D – Concepts from the Literature 

Includes key concepts from the Artificial Intelligence and Knowledge Acquisition fields. 

Appendix E – Tacit Knowledge 

Provides interpretations of the term “tacit knowledge” relevant to this research. 

                                                 

20 CaseDB is an alias for HTG’s case tracking software. 
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Appendix F – Ontologies 

Provides a discussion of the support for collaboration in present day Ontology editors. 

Appendix G – Transcript of PKS Interview 

Details the interview arranged with PKS to discuss the experiences they had implementing 

MCRDR in the pathology domain. 

Appendix H – About Anchor Text 

Describes the importance of anchor text to popular search engines as reported by CSIRO’s 

Panoptic search engine project. 

Appendix I – Folksomonies 

Reviews two examples of folksomonies: del.icio.us and flickr.com. 

Appendix J – Wikipedia versus Britannica 

Provides a summary of Wikipedia’s rise and dominance over Encyclopaedia Britannica in the 

last decade. 

Appendix K – Semantic Web Languages 

Summarises some of the languages promoted by present day semantic web approaches. 

Appendix L – DARPA Knowledge Sharing 

Provides a brief literature review of the DARPA Knowledge Sharing Effort. 

Appendix M – The FastFIX Prototype Shell 

Documents the application framework within which the 7Cs prototype system was built. 

Appendix N – Acquired RuleNodes 

Provides a list of RuleNodes acquired during the FastFIX software trial. 

Appendix O – 7Cs Implementation Enhancements 

Documents some of the implementation enhancements recommended for future embodiments 

of the 7Cs system. 
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Appendix P – Limitations of MCRDR – An Example 

Presents a KBS example that illustrates a number of the limitations of conventional MCRDR. 

Appendix Q – Rough Knowledge 

Discusses the process of knowledge transfer where some of the knowledge is false, 

speculative or unknown. 

Appendix R – RuleNode Relationships 

Discusses some of the RuleNode relationships that could be managed in a future case- and 

rule- driven (C.A.R.D) 7Cs system. 

1.9 Chapter Summary 

This chapter has introduced the context for the research together with the objectives, 

motivation, research questions, significance, outcomes, methodology, and thesis organisation. 

The next chapter provides a review of the support centre environment in which the research 

was based. 
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CHAPTER 2: THE HTG SUPPORT CENTRE ENVIRONMENT 

2.1 Chapter Outline 

This chapter addresses the following research question: 

Q1. What does the HTG support centre environment tell us  

about the nature of trouble-shooting? 

The findings of the interviews, observations and a survey conducted at the HTG Sydney-

based support centre are presented.  The findings highlight the knowledge management issues 

faced by trouble-shooters, the nature of trouble-shooting in general, and the design constraints 

that a new trouble-shooting information systems approach would need to satisfy within the 

context of HTG.   

Recalling from section 1.3 on page 3 that the aim of the research was to: 

develop a knowledge acquisition approach that will facilitate the capture and 

recall of problem solving know-how, in an environment where problems and their 

solutions are continuously evolving, and where a distributed group of 

stakeholders can both contribute to and benefit from the acquired knowledge; 

for the purpose of this thesis, the HTG support centre provides a case study that offers 

insights to the problem solving (i.e. trouble-shooting) process in general. While sections C.3 

to C.10  (commencing on page 392) in Appendix C discuss some of the relevant support 

centre literature, the focus of this thesis was not to survey support centres.  Rather, the focus 

was to help trouble-shooters in any problem domain quickly and accurately locate solutions. 

In summary, as a result of the interviews, observations and survey presented in this chapter, it 

was found that trouble-shooting includes the ability to configure (i.e. work-up) a case, classify 

it, and locate its relevant solution.    Problem solving appeared to follow a case-configuration-

classification-conclusion cycle21.  As well, multiple classifications could apply to a problem, 

                                                 

21 Problem solving as a classification and configuration problem has previously been discussed in (Clancey, 

1984) and (Clancey, 1985).  Richards (1998a, p26) discusses types of problems, as does Breuker (1994).  

Breuker’s eight problem types fall into two broad categories which he calls synthesis and analysis.  These are 
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and several different solutions may need to be tried.  It was found that problem solving at the 

HTG support centre required diverse types and sources of knowledge, and that much of the 

case-configuration-classification-conclusion knowledge was not shared, but rather stored in 

the minds of individual experts. 

2.2 Business Context 

As mentioned previously (section 1.2, page 1), HTG’s support centre experiences upward of 

5,000 customer problem cases per day globally.  20% of these cases arrive in the form of 

cryptic error codes in hexadecimal format automatically emailed from errant equipment to the 

support centre’s case tracking software in the form of “dial-homes”.  The nature of HTG’s 

dial-home problem cases is described in more detail in Chapter 10 (commencing on page 169) 

and an example problem case is provided in Appendix B (commencing on page 387). 

At HTG, non dial-home cases (4,000 per day) each take on average 2 hours to solve.  The 

estimated direct labour cost of solving the non dial-home problems is more than $105 million 

per annum.  In contrast, dial-home cases (1,000 per day) each take on average 15 mins to 

solve.  The estimated direct labour cost of automatically solving the dial-home problems is 

approximately $3.3 million per annum.  In fact the whole support operation includes its own 

support staff, infrastructure and management - approximately 4,800 staff, and HTG’s cost of 

services as a whole are the order of $US1 billion per annum (2004 Annual Report). 

Obviously even a small percentage saving in the labour required by the support centre would 

have a significant impact on HTG’s profitability, not to mention the flow on benefits for 

customers.   

With better information about the types of problems being experienced by the customer, HTG 

could also strengthen the performance and reputation of its products and services. 

2.3 Health Check Interviews 

To better appreciate the issues facing knowledge-workers at the HTG support centre, 

interviews were conducted with experienced trouble-shooters and management at HTG, and 

                                                                                                                                                         

more commonly known as construction and classification.  Configuration is one particular type of construction 

problem, for example the Sisyphus elevator problem (see http://ksi.cpsc.ucalgary.ca/KAW/Sisyphus/).   
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the operational issues facing them were discussed.  The day-to-day activities of support staff 

were also observed and some of the training available to new hires was undertaken. The 

outcome of the interviews, observations, training sessions and active participation was a 

(commercial in confidence) “Health-Check” report that I wrote (24th July, 2003) to document 

the current situation. This report was reviewed by HTG and formed the basis of the 7Cs and 

FastFIX22 system design goals. 

2.3.1 Types of Knowledge 

During the health check interviews, it was found that trouble-shooting personnel were relying 

on at least four disparate sources of (explicit) knowledge when solving problems23: 

• Engineering Knowledge: How does the product work? 

• Operational Knowledge: How do you use it? 

• Interoperability Knowledge: How does the product interact with third party products? 

• Problem Solving Knowledge: How do you fix it? 

As well, it was found that the trouble-shooting process required personnel to use a great deal 

of unspoken (tacit24) problem solving knowledge, including: 

• Problem Determination Knowledge i.e. what is the class of problem on-hand? 

• Search Location Knowledge i.e. where should I search for a solution? 

• and the Search Criteria to be applied i.e. what parameters should I use in my search 

for a solution? 

It appeared that the capture of this explicit and, perhaps more importantly, tacit problem-

solving knowledge was missing from case and solution tracking vendor software. 

                                                 

22 As mentioned in section 1.8 (page 8) and in the glossary (page 277), FastFIX is the name of the prototype 

software developed in this thesis in order to trial the 7Cs design concept.  The 7Cs and FastFIX top level design 

are presented in Chapter 9 (page 161), and the FastFIX detailed design is presented in Chapter 11 (page 176). 

23 Of some relevance is the problem types identified by Hayes-Roth et. al (1983) referred to by Clancey (1985, 

p29). 

24 For a discussion of tacit knowledge, see Gourlay’s (2002) references to Polanyi (1958), Nonaka and Taceuchi 

(1995) and Appendix E (page 404). 
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2.3.2 Complexity and Changeability 

During the health check interviews, it was found that the following factors appeared to 

contribute to the complexity of problems coming into the support centre25: 

• Technology Convergence – many technologies coming together into integrated multi-

function solutions. 

• Vendor Divergence – many vendors providing solutions in the same technical space but 

with different and sometimes conflicting interface requirements. 

• Product Evolution – iterative software and hardware product releases leading to multiple 

layers of potential problems and solutions. 

• Knowledge Evolution – greater human understanding of the problem domain with the 

passage of time. 

• Conflicting Expert Opinion – conflicting views on how to solve a wide range of problems 

possibly as a result of there being no one person with expertise across all the necessary 

domains. 

These factors were creating a complex and dynamic knowledge milieu, and a seemingly 

endless search space for solutions. 

On the upside however, a large percentage of the problems appeared to be repetitive, even if 

only in terms of the background knowledge required to solve that particular class of problem, 

allowing for the possibility of solution re-use.  The repetition rate for problem cases at HTG is 

discussed further in section 2.4 (commencing on page 17). 

2.3.3 Sources of Knowledge 

It was also found that: 

• Much of the knowledge was stored in people's heads rather than explicitly documented 

in technical references. 

                                                 

25 Some of this text appears in (Vazey & Richards, 2005b). 
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• Existing documentation often missed the necessary detail or was ambiguous, and a 

significant amount of technical product information was cryptic at best, coming in the 

form of abbreviated slides, videos, or emails. 

• Personal relationships were extensively and often exclusively relied upon to source 

basic product information from fragmented silos of knowledge scattered throughout 

the company. 

2.3.4 Employee, Customer and Business Impact 

In the worst case, the impact of these fragmented knowledge networks appeared to be a poor 

level of knowledge re-use resulting in: 

• Increased frustration; 

• Duplication of effort; 

• Slower problem resolution; 

• Inconsistent customer responses; 

• Customer dissatisfaction; and 

• Overall organisational inefficiency.   

High staff turnover rates were both an outcome and a contributing factor.  

2.4 Observations 

2.4.1 Incumbent Knowledge Systems – CaseDB and SolutionDB 

In the last 10-20 years, information systems at support centres have been dominated by Case 

Tracking solutions, recording case information such as:  Who raised the call? What is the 

product in question? What operating system is being used? Which engineer is the problem 

assigned to? etc etc.  The purpose of such Case Tracking solutions is to allow management 

and staff to track the progress of customer problems as they pass through the customer service 

organisation.  At the time of this research26, the HTG support organisation was using 

                                                 

26 Research at the HTG support centre was conducted from July 2003 to December 2005.  Thesis write-up was 

commenced in December 2005 and a complete draft thesis was submitted for review in May 2006.  Submission 

of the final thesis was delayed by several factors including protracted negotiations to protect the commercial 



 Chapter 2: The HTG Support Centre Environment 

Submitted January 27, 2007 18 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

CaseDB27 as its case tracking system.  An assessment of CaseDB’s fitness for purpose is 

provided in the responses to survey questions in Appendix A (commencing on page 352, with 

specific comments commencing on page 354). 

At HTG cases could be machine generated e.g. with problem equipment ringing or emailing 

through the problem tickets.  They could also be entered directly by customers, for example 

via a user-driven web interface.  The more traditional scenario was where the problem case 

originated with a front-line customer service officer taking the first call. 

As is typical at support centres, at HTG the problem case / ticket passes through several states 

in which it moved between workers at various levels in the organization, for example from 

machine-generated, web-created, or front-line customer service personnel (state := new) to 

first or second tier customer service or technical support personnel (state := assigned then 

opened then resolved) then on to a team leader or even back to the customer (state := closed). 

The last 5-10 years have seen the introduction of vendor software that captures solutions, 

turning the trouble-shooting task at support centres into one of searching and matching a 

database of known solutions.  At the time of this research, the HTG support organisation was 

using SolutionDB28 as its solution storage / knowledge management system.  An assessment 

of SolutionDB’s fitness for purpose is provided in the responses to survey questions in 

Appendix A (commencing on page 358, with specific comments commencing on page 360). 

When SolutionDB was introduced, it was reported to have significantly reduced the problem 

resolution times through application of Consortium for Service Innovation (CSI)29 Knowledge 
                                                                                                                                                         

confidentiality of HTG in the written work, and some major last minute funding issues (fortunately resolved).  

The welcome arrival of our third beautiful baby Jasmin was a fabulous blessing in the middle of all that! 

27 CaseDB is an alias for HTG’s case tracking software.  In October 2001 the CaseDB business was acquired.  

The acquiring company does not promote CaseDB as a continuing product. 

28 SolutionDB is an alias for HTG’s solution tracking i.e. knowledge repository software.  In November 2004 the 

SolutionDB business was acquired.  The acquiring company does not promote SolutionDB as a continuing 

product.  SolutionDB is used by approximately 200 staff in HTG’s Asia Pacific Support Group alone (data 

provided with thanks to Julie Gibson). 

29 The CSI is a non-profit alliance of customer service organizations that are working together to solve industry-

wide support centre challenges.  HTG is a member of the Consortium for Service Innovation (CSI) and is 

committed to the Knowledge-Centred Support (KCS) initiative. 
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Management principles.  The Knowledge Centreed Support (KCS)30 initiative at HTG was 

working to make even more effective and efficient use of the intellectual capital represented 

by SolutionDB. 

Significant organisational inertia was locked up in CaseDB and SolutionDB at HTG, 

particularly in regard to culture, training, metrics and management reporting31.  If someone 

were able to find or design a better case tracking and problem solving information system, 

integration to the workflow in HTG’s support organisation and the management of such a 

sizeable change would be a major hurdle. 

2.4.2 Problems with Incumbent Systems 

While attending a SolutionDB training course for KCS coaches, the participants’ comments 

about SolutionDB and CaseDB were recorded, together with the sharing of trouble-shooting 

knowledge at HTG.  Participants identified a number of problems with the incumbent 

systems: 

• Both CaseDB and SolutionDB were extremely slow in HTG Sydney and consequently 

very frustrating for users; 

• The case tracking CaseDB tool was not searchable at all so that past cases that might be 

similar to the current case could not be easily found or referred to; and 

• The search engine for the SolutionDB knowledge base only allowed a subset of the fields 

to be searched; it returned too many irrelevant false positive hits; there was no boolean or 

free text search facility; the globally used ontology was dependent on the local culture; 

and there was no forum for resolving differences in the meaning of terms, hence searching 

                                                 

30 KCS is a vision sponsored by the CSI (2004) for creating knowledge that empowers the business.  The idea is 

to capture the solutions generated by the customer support process, and make them available for reuse 

throughout the support organization. In theory, this allows the support organisation to harness and leverage the 

knowledge of its employees and customers to improve both quality and efficiency, and scale the business, while 

effectively managing costs and resources. 

31 As an example of this organisational inertia, both CaseDB and SolutionDB have been acquired by other 

businesses in the last 5 years.  Although the acquirers no longer promote CaseDB or SolutionDB to their new 

clients and are scaling back their support for these products, at the time of this research HTG had not transitioned 

to new product offerings either from the acquiring businesses or from their competitors.   
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with a particular setting in one field might ambiguously exclude solutions that should 

have been included.   

Because the system was so slow, users were reluctant to search SolutionDB for solutions, they 

were reluctant to create new solutions, and they were reluctant to link their CaseDB cases to 

existing SolutionDB solutions.  Fortunately the performance issues have been addressed to 

some degree in the last 2.5 years and these last three problems have to some extent subsided. 

As well, users complained that there were many duplicate solutions as well as junk solutions.  

A working group was set up to address this problem by scrubbing the knowledge base and 

vetting all new solutions.  This activity provided a significant improvement to the credibility 

and effectiveness of SolutionDB as a knowledge storage solution. 

Finally, it was highlighted that throughout the organisation, many different and incompatible 

case tracking and knowledge management solutions were used.  Whereas the support centre 

used SolutionDB and CaseDB, engineering used SolverDB32 and REMEDY33, and others 

within the organisation used DDTS34.  Restricted access and know-how meant that there was 

very limited cross-divisional learning between different functional groups within the same 

organisation for the same classes of problem. 

2.4.3 The Knowledge Gap 

There was a large gap into which knowledge was falling in the HTG support centre workflow.  

As discussed previously, incoming cases were tracked in the CaseDB, and solutions were 

(sometimes) stored in SolutionDB.  The separation between these two types of vendor 

offerings was creating significant workflow inefficiency for the support centre. 

Firstly, many of the problem attributes captured at the problem tracking stage, were exactly 

the attributes required to recognise that the user had a particular class of problem on hand, and 

consequently that a particular type of solution will apply.  The double handling of these 

                                                 

32 SolverDB is an alias for the solution tracking tool used by HTG’s Engineering group. 

33 Remedy is another solution tracking tool – see http://www.remedy.com/solutions/servicemgmt/help_desk.htm  

34 DDTS can be used as both a case and solution tracking tool – see http://www-

306.ibm.com/software/awdtools/clearddts/version4-7.html  
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attributes on entry to CaseDB, and again in SolutionDB, left significant room for error, and 

resulted in significant frustration for support centre personnel. 

Secondly, the time consuming process of re-discovering the right set of questions to “work up 

the case” and hence identify the problem on hand, and the time consuming process of re-

discovering where and how to search for a solution, appeared to be repeated many times 

across the global support organisation.  Trouble-shooters had great difficulty in identifying the 

problem on hand, and finding a relevant solution.   

The problem solving expertise i.e. the reasons an expert classifies a case a certain way, were 

seldom being articulated and shared at the HTG support centre.  This same problem was 

observed a decade ago in the pathology domain – “experts manually interpreting reports are 

not usually called upon to identify the exact features of the data that led them to their 

conclusions” (Edwards, 1996, p114). 

2.4.4 Time to Fix Repeat Incidents 

A brief analysis was undertaken by Jim Mullins at HTG to determine whether the same types 

of problems were seen multiple times, and if so, the time taken to solve those problems on 

each repeat occurrence.  As shown in Figure 1 (courtesy of Jim Mullins), a number of 

solutions (labelled A-G) were captured, documented and stored in the SolutionDB 

knowledge-base.  The figure shows a count of the number of problem cases where these 

solutions were used, and how many hours it took for each case to be resolved (y-axis).   

For instance, Problem C, took about 30 hours to solve, but once it was solved in the first 

instance, it took virtually no time to solve again. In contrast, Problem B took around 24 hours 

to solve the first time, no time the second time, but the five (5) subsequent incidents took at 

least as long as the first incident. Although both staff and client availability influence this 

data, on the whole the data indicates that even though the previous solution has been stored in 

SolutionDB, the knowledge was lost and needed to be rediscovered repeatedly. 

In the first few weeks of the research at HTG, the most common feedback regarding 

SolutionDB was as follows: 

“We can’t find old solutions, even the ones we created ourselves!” 

(This is further supported by the response to survey question 61 in Appendix A, on page 369.) 
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Figure 1: Time taken in hours to solve the same problem seen in multiple incidents. 

Data Source: “Solution Reuse Value Analysis” from KCS Coach Training 
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2.5 Support Centre Survey 

2.5.1 Survey Design 

To examine further what the health check interviews and observations indicated, a 

comprehensive survey of the HTG Sydney Support Centre was conducted.  The survey had 

the following goals: 

1. To determine the current tools and techniques for resolving customer problems; 

2. To examine the pros and cons of the current work practice; and 

3. To examine future opportunities for improving the trouble-shooting process. 

The survey contained two parts: Part A included 67 questions and took participants on 

average 50 minutes to complete and Part B included 11 questions and took participants on 

average 5 minutes to complete.  A summary of the results to the 78 questions is provided in 

the text that follows.  Please refer to Appendix A (commencing on p 305) for the complete 

results of this survey. 

Hours to

resolution 
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The products supported by the call centre were divided into two different product groupings: 

Product Group A and Product Group B. As well, there were two levels of support: Level One 

Support which attempts to solve the problem quickly at the time of the call or within the first 

few hours; and Level Two Support who takes over problems that could not be solved by 

Level One within a reasonable time.  

There were 18 respondents in Survey Part A, and 20 respondents in Survey Part B as 

described in Appendix A Questions 1-7 (page 306).  The study covered support staff from 

both support levels and both product groupings, resulting in 4 groups as shown in Table 2. 

Table 2: Number of surveyed Support Staff in Survey Part A 

No. Survey Participants Product Group A Product Group B 

Level One 4 5 

Level Two 7 2 

 

Table 3 and Table 4 show the average industry and company experience of the surveyed 

support staff.  

Table 3: Average Industry Experience of surveyed Support Staff 

 Industry Experience Self-assessed Industry Experience 

relevant to HTG role. 

Level One 7 years 4 years 

Level Two 12 years 11 years 

Table 4: Average Company Experience of surveyed Support Staff 

Average Company Experience Product Group A Product Group B 

Level One 10 months 2.5 years 

Level Two 4 years 4 years 
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2.5.2 Summary of Survey Results 

In support of the idea that knowledge re-use is worth pursing in the support centre, on 

average, survey respondents thought that: 

• 64% of customer problems assigned to them had been previously seen by themselves or 

others i.e. they were repeat problems (see question 14, p 318). 

• 76% of customer problems assigned to them would be seen again by themselves or others 

within the organisation (see question 15, p 319). 

From this we can deduce that: 

• around 12% of problems were “first-time” problems that would reoccur, so there is a 

steady flow of new types of problems coming in. 

• 24% of problems had never been seen before, and would probably never be seen again, 

but even for these problems, guided and context relevant top-level trouble-shooting 

information could either support a quicker time to resolution, or at a minimum indicate 

that a solution was not yet known35. 

Additionally: 

• 81% of solutions applied by Level 1 respondents are replicated solutions whereas 44% of 

solutions created and applied by Level 2 respondents are replicated solutions i.e. someone 

has conceived of this solution before (see question 16, p 321). 

• When a customer problem was assigned to them, in 67% of cases trouble-shooters would 

not know the solution straight away and would need to refer to other sources of 

information to solve the case (see question 17, p 322). 

• Respondents would involve their team-mates or others in 43% of the problem cases 

assigned to them (see question 12, p 315).  As well, communications (see question 24 on 

page 331 and question 28 on page 334), meetings (see question 25 on page 332) and 

collaborative processes (see question 26 on page 332) were identified as important 

components of the trouble-shooting process. 

                                                 

35 The importance of being able to fall back on a layer of higher-level general knowledge when more detailed 

and specific knowledge is missing, is also expressed by Dazeley and Kang (2004, p2). 
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• When asked at what point in time trouble-shooters would try to get help from their team-

mates or others, respondents describing their level of expertise as novice through to senior 

would wait up to 2 hours, whereas those describing their expertise as expert would wait 

from 2-4 hours to up to 2 days depending on the problem area and impact / severity (see 

question 13, page 318). 

The diversity of resources used to solve problems at HTG are described in questions 19-23 

(commencing on page 324).  Table 5 provides an ordering of some of these problem solving 

resources.  

Table 5: Most to least frequently relied upon resources when solving problems 

The mechanism used to generate the linear weightings for the Likert Scale 

applied here is discussed in Appendix A, Question 20 on page 325. 

Resource Weighted Score 
My problem solving skills 84 

My knowledge 83 

Knowledge Base Tool 75 
Discussion with peers 71 

My experience in the field 62 

Internet searching 59 
Engineering presentation documents 57 

Engineering Technical Manuals 57 

Training course handouts 54 

External Corporate Knowledge Bases eg Microsoft, 
Sun 51 

Customer Manuals 50 

Case Tracking Tool 43 

Emails 27 
Level 2 Troubleshooting Documentation 21 

 
Note that these results are consistent with those reported by Shaw and Gaines (2000, p1): 

“developing knowledge-based system involves knowledge acquisition from a diversity of 

sources, often geographically distributed.  The sources include books, papers, manuals, 

videos of expert performance, transcripts of protocols and interviews, and human and 

computer interaction with experts.” 

As well, for at least 48% of the mundane routine repetitive types of problems that had been 

seen before, and that would be seen again, respondents indicated that they would need to refer 
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to other sources of information to solve the problem.  These mundane problems comprised 

64% of the case load! 

In answer to “What are the biggest roadblocks that stop you being effective and efficient in 

your role?” the following responses were received (see question 29, p 335):  

• Training / Knowledge (8 responses);  

• Accessible documentation (6 responses);  

• Solution database (3 responses);  

• Time pressures (3 responses);  

• Escalations - these are where a problem is referred up the trouble-shooting chain for 

example from level 1 support to level 2 support (2 responses);  

• Customer contact (2 responses).  

Despite a comprehensive training program at HTG, training was seen by trouble-shooters to 

be inadequate (see survey question 29 on page 335).  When asked “Have you had all the 

training that you require to perform your trouble-shooting role effectively and efficiently?” 

18% said yes, 23% were undecided and 59% said no  (see question 31a, p 338).  

This prompted me to ask why training was inadequate despite the organisation’s extensive 

training program. The answer appeared to be that the solution space was very complex, 

involving a range of different knowledge types and sources.  What was important to trouble-

shooters was their ability to access the smallest complete set of relevant information that 

would help them solve the problem on hand.  Access to relevant and current technical 

information was particularly problematic (see questions 32a and 32b commencing on page 

341). 

Survey results confirmed that there was a large gap into which knowledge was falling in the 

HTG support centre workflow.  The separation between CaseDB and SolutionDB was 

creating significant workflow inefficiency for the support centre (see question 36a on page 

348, question 36b on page 349, and question 37 on page 350). 

2.5.3 The Nature of Trouble-shooting 

When asked how they actually solve problems, trouble-shooters comprehensively detailed 

their personal processes of gathering information about the case on hand, using that 
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information to classifying the problem, and matching the classified problem to relevant 

solutions.  This matches the case-configuration-classification-conclusion cycle proposed by 

Clancey (1984) and further discussed in (Clancey, 1985, pp 27-29 and pp 49-51).  The 

responses have been summarised as follows (see also Question 11 on page 313): 

1. Find out what the problem is (i.e. classify the problem). Listen and understand the 

customer’s problem, their concerns, and the impact of the problem.  Gather as much 

relevant information as possible.  Asking questions to try to narrow the problem (i.e. 

work-up and configure the problem case). 

2. Review the case including the past efforts of the customer and HTG.  Try to recreate / 

replicate the problem. 

3. Check for known bugs and / or symptoms and / or related issues. 

4. Attack the problem on multiple fronts if possible i.e. be prepared to try several different 

approaches and engage several different resources for information.  Repeat from step 1 as 

needed. 

The responses from the 18 trouble-shooters from two different support levels and product 

groupings at HTG indicated that trouble-shooting includes the ability to configure (i.e. work-

up) a case, classify it, and locate its relevant solution.  As well, multiple classifications may 

be relevant to a problem, and several different solutions may need to be tried36. 

The observation that trouble-shooting includes the ability to configure a case and then classify 

it is not new.  Clancey offers (1984): “the essence of classification problem solving is that the 

solution to a problem is selected from a list of pre-enumerated possible solutions” and that 

construction “involves piecing together a solution”. 

2.6 Requirements Analysis 

In light of the need to satisfy their own, their customers, and their shareholders needs, the 

problem for trouble-shooters at the support centre appeared to be about finding the right 

solution in the right context.  Trouble-shooters were under significant time pressure (see 
                                                 

36 Systems can fail for multiple different reasons, and problems can co-occur.  Hence the troubleshooting domain 

at HTG was a multiple classification problem domain.  An excellent overview of the multitude of ways in which 

systems can fail is provided in Perry (1995). 
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question 38, page 351) to solve problems; they relied on many diverse sources of information 

as well as the trouble-shooting know-how of their peers.  They were constantly challenged by 

an overload of information and a lingering doubt about the appropriateness of a given solution 

to the problem on hand (described in Researcher’s Note 14 on page 332 and supported by 

responses to survey question 51 on page 361). 

The health check interviews, observations, and survey culminated in the development of a set 

of requirements for an improved trouble-shooting software platform.  Although it was beyond 

the scope of this research to address all of these requirements in the proposed prototype 

system and software trial, this requirements list is included in the thesis in Appendix C (page 

390) to demonstrate the broader context in which the knowledge representation and 

knowledge acquisition algorithms (proposed later on) must work. 

2.7 Chapter Summary 

In this chapter, the findings of the interviews, observations and survey at HTG were 

presented.  As well, the requirements for an improved trouble-shooting information system 

were collated and presented in Appendix C. 

In answer to the research question: 

Q1. What does the HTG support centre environment tell us  

about the nature of trouble-shooting? 

the interviews and survey revealed that trouble-shooting in the ICT domain at the HTG 

support centre involves complex problems, requiring a wide span of experience and a wide 

span of knowledge from multiple different and global sources.  At HTG there were limited 

and disparate forums in which trouble-shooters could share that knowledge, for instance in 

training sessions, procedures manuals, on a wide variety of separate and unsearchable Intranet 

sites, or in face-to-face meetings. 

Users found it difficult to find previously created solutions in the organisation’s knowledge 

base.  The domain was jargon rich and many solutions didn’t lend themselves to free text 

keyword searches.  Boolean search was not available in the solution database, and the case-

tracking database had no search facility at all.  Separate parts of the organisation had 

completely separate databases for tracking problems and their solutions. 
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Individual tacit knowledge that was seldom being made explicit and shared with the trouble-

shooting group included: the problem determination, where-to-search and what-to-search-for 

knowledge required for specific problem classes.  There was no workflow mechanism for 

more experienced users to rapidly share problem configuration or classification knowledge 

with their colleagues.  As well, there were limited paper-based guided trouble-shooting 

mechanisms to help novices come up with the right questions that would enable them to 

distinguish the particular class of problem on hand and hence find its solution. 

Although it is difficult to quantify, it seems that at HTG, organisational learning of new 

problem classes was slowed by the existing information dissemination systems and the 

organisation was relatively inelastic37 and unresponsive to new problem classes.  

In summary, as a result of the interviews, observations and survey it was found that trouble-

shooting includes the ability to configure (i.e. work-up) a case, classify it, and locate its 

relevant solution.    Problem solving appeared to follow a case-configuration-classification-

conclusion cycle.  As well, multiple classifications may apply for a problem, and several 

different solutions may need to be tried.  It was found that problem solving required diverse 

types and sources of information, and that much of the case-classification matching 

knowledge was not shared in the support centre, but rather stored in the minds of individual 

experts. 

The next chapter reviews some other KM approaches that have influenced the design of the 

trouble-shooting solution proposed by this research. 

                                                 

37 meaning slow or unable to adapt and learn 
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CHAPTER 3: OTHER KM APPROACHES 

3.1 Chapter Outline 

As previously presented in section 1.3 on page 3, the aim of this research was to: 

Develop a knowledge acquisition approach that will facilitate the capture and 

recall of trouble-shooting know-how, in an environment where problems and their 

solutions are continuously evolving, and where a distributed group of 

stakeholders can both contribute to and benefit from the acquired knowledge.   

Fields of research related to this aim include information retrieval (IR), decision support 

systems (DSS), knowledge discovery in databases (KDD), artificial intelligence (AI), 

machine learning (ML) and data mining (DM).  For the sake of brevity, the description and 

discussion of these research fields has been relegated to Appendix D (commencing on page 

398). 

Many vendors supplying support centre workflow software boast the use of AI, ML and DM 

techniques in their Knowledge Management (KM) product offerings.  Indeed, when 

challenged with the task of improving the effectiveness and efficiency of trouble-shooting at 

HTG, the use of data mining was initially suggested.  In this chapter, some of the reasons why 

traditional DM and hence AI and ML techniques have limited ability to solve the above 

problem are presented. 

Similarly, support centre staff initially suggested the use of a Google-style search engine to 

search HTG’s internal corporate databases.  So in this chapter, some of the problems with 

applying popular search engine technology to the trouble-shooting task are highlighted. 

In years gone by, traditional expert systems, including rule-based and case-based reasoning 

systems have been used for information recall in numerous business and scientific domains.  

More recently, ontologies have been adopted as a way to share, reuse and process domain 

knowledge.  In summary then, this chapter addresses the following research question: 

Q2. What are some of the problems with existing knowledge management  

approaches in domains such as the ICT support centre? 

This chapter adds to the analysis provided in section 2.4 on page 17 of HTG’s incumbent case 

and solution tracking tools. 
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3.2 Data Mining 

The suggested Data Mining (DM) efforts to develop a predictive classification model that 

would link incoming problems to their relevant solutions at HTG by discovering associations 

in the existing databases, and hence provide a platform for searching, would be thwarted by 

numerous problems.  The majority of DM38 techniques require that the exemplar cases be 

described as sets of attribute-values pairs (Dunham, 2003)39.  As well, DM techniques require 

that cost functions be defined that can operate on the attribute-value pairs to determine 

similarity or dissimilarity between the incoming cases and the outgoing problem 

classifications.  What was found at HTG was that neither the case-tracking database nor the 

solution-tracking database contained enough domain knowledge to easily identify the 

important attributes of the case, or allow suitable similarity / dissimilarity measures to be 

developed. 

There were very limited records of which solutions had previously been applied to cases, so 

that supervised learning techniques were impossible.  As for unsupervised learning 

techniques, for the present set of cases it was impossible to come up with a universal 

similarity or dissimilarity measure that would enable clusters of cases and their corresponding 

classifications to be discovered.  As demonstrated in Appendix B (commencing on page 387), 

the case data was numerically rich and functionally complex. 

Efforts to data mine the existing databases would have been unnecessarily confused by the 

errors learnt from the historical training data.  The data that existed fundamentally lacked any 

indication of the attributes or rules that meant that a particular solution should apply to a 

particular class of problem – this data was falling through the gap between the CaseDB case 

tracking and SolutionDB solution tracking databases.  The knowledge of how to get from the 

case on hand, to its solution simply didn’t exist in the databases, and couldn’t be rediscovered.  

Rather, it was tacit knowledge, accumulated and stored in trouble-shooter’s heads, within the 

organisation.  Some interpretations of the term “tacit knowledge” relevant to this research are 

                                                 

38 For those unfamiliar with Data Mining, a brief description has been provided in Appendix D.6, commencing 

on page 400. 
39 Recent advances have begun to allow other representations including trees, graphs and relational 

representations such as first order predicates. 
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provided in Appendix E (commencing on p 404).  More general problems associated with 

data mining are listed in section D.8 on page 403. 

3.3 Popular Search Technologies 

According to Alexa40, the top three Internet sites globally in terms of popularity are Yahoo41, 

MSN42 and Google43 (Alexa, May 2006).  Each site makes a perfect home page by offering an 

Internet search engine plus news portal, and hence provides a launch pad to the modern 

information-at-your-fingertips world.  Several of the staff at the HTG support centre 

suggested that the company install an enterprise search engine, like that marketed by Google, 

inside the support centre’s firewall to assist with solution search.  However, conventional web 

search engines suffer from several problems (adapted from Dunhan, 2003, p41): 

• Abundance – too much information44; 

• Limited coverage – caching and elimination is required to handle the size of the search 

space leading to outdated and possibly incomplete search results; 

• Limited query – most search engines provide access based on only simple keyword 

based searching; and 

• Limited customisation – the desired results are often dependent on the background and 

motivation of the searcher – at this stage customisation based on user profiles or 

historical information is only provided by some of the more advanced search engines. 

As described later on (section 5.3 on page 71) the most valuable information to popular search 

engines is the anchor text45 applied by other independent webmasters on the Internet to refer 

                                                 

40 http://www.alexa.com/site/ds/top_sites?ts_mode=global&lang=none 

41 http://www.yahoo.com/  

42 http://www.msn.com/  

43 http://www.google.com.au/  

44 Many users experience information overload when searching for answers to their questions.  The problem 

isn’t a lack of information, but rather how to find, sort, filter and assimilate the information you need (CSIRO 

website, Jan 2005). 

45 For a definition of Anchor Text, please see the glossary (page 277). 



 Chapter 3: Other KM Approaches 

Submitted January 27, 2007 33 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

to a given website.  Further to this, some of the reasons why current popular search 

approaches (such as Google, Yahoo and MSN) may not work well on their own when 

searching for solutions in the ICT domain are as follows: 

• Anchor-text simply does not exist for enterprise case-tracking and solution-tracking 

databases. 

• The ICT domain is notorious for being jargon-rich and simple keyword searching may not 

be sufficient to locate the relevant information.  A richer grep/sed style pattern matching 

mechanism may be needed, for example to match sequences of hexadecimal error codes, 

or patterns of version number, and at times using strategically placed wildcards.  The 

example case in Appendix B (commencing on page 387) exemplifies this problem. 

• In addition to boolean operators, the search may need to handle numerical operators such 

as <, > etc. 

• The data may already be somewhat structured, and the information abundance problem 

would be greatly alleviated by constraining search queries to within fields provided by the 

existing data structures.  For example a pathology case may contain structured data 

relating to the concentration of certain chemicals, pathogens or hormones in the sample. 

• Custom ontologies may be required to define organisation and domain specific jargon, for 

example that ‘version’ is the same as ‘release’ or ‘edition’ or ‘issue’ but not the same as 

‘iteration’. 

• Current information is needed as real-time data, as opposed to cached, and therefore non-

current data. 

In summary, popular search engines rely on collaboratively constructed anchor-text to index 

their vast search domains.  Currently their usefulness is limited to plain text searching.  When 

it comes to more complex (e.g. numeric) data, a different and richer query mechanism is 

required.  In the trouble-shooting domain, closing the loop between the answers a user is 

searching for, and the quality of the answers retrieved is currently a vital but missing step. 
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3.4 Ontologies 

In recent years, ontologies have been adopted in many business and scientific communities as 

a way to share, reuse and process domain knowledge46.  An ontology describes the concepts 

and relationships that are important in a particular domain, providing a vocabulary for that 

domain as well as the meaning of terms used in the vocabulary47. Ontologies range from 

taxonomies and classifications, database schemas, to fully axiomatized theories. Some 

practical examples of ontology usage are provided in Farquhar et al. (1995b, p29). Tran et. al 

(2006) provide a further insight to the development of ontologies in their work on agent 

oriented software engineering (AOSE), and emphasise that “an ontology should capture 

consensual knowledge that is not restricted to an individual, but is shared and accepted by a 

group” (Tran et. al, 2006, p3). 

Data mining activities in the semantic web have enabled ontologies to be automatically 

discovered in text, however the problem of making the ontologies human readable and usable, 

and hence the problem of acquiring useful ontological knowledge from human experts 

remains. 

Perhaps an even greater problem in ontology usage is how to identify and resolve semantic 

conflicts in disparate knowledge bases, built for similar but different audiences in similar but 

different domains.  A subset of this problem is how to identify and resolve semantic conflicts 

in a shared knowledge base, built for individuals that are collaborating in a shared domain.  

An extension of these collaboration issues is provided in Appendix F (commencing on p 405).  

In section 13.7 on page 261 I describe how the system proposed by this research might be 

used to address this problem in the future. 

Ontologies are great at specifying class attributes, behaviours and relationships, however for 

case-based problem solving a specific focus is required on how to recognise when a particular 

case belongs to a given class in the ontology.  The features used to recognise when an 

instance belongs to a given class are not necessarily the features that you would use to provide 

                                                 

46 see http://protege.stanford.edu/overview/ 

47 See Gruber (1993) and also http://en.wikipedia.org/wiki/Ontology_%28computer_science%29. 
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an ontological definition of that class48.  The fact that species identification is different to 

species classification is well known for instance in the natural sciences49.  Classifications will 

tend to describe the most common properties and behaviours of the class, whereas 

identifications need to handle a range of (polymorphic50 and hence exception related) 

deviations from normal. 

In attempting to match a known case-on-hand with a class in the ontological database, users 

have to make the same mental leaps as trouble-shooters about the nature of the problem on 

hand, where-to-search and what-to-search-for.  As well, users need to know what extra 

information is relevant for them to work-up a case and locate more specific knowledge.  

Identifying the minimum complete set of rules that will allow a user to select the appropriate 

ontological entry (i.e. class) requires a knowledge acquisition activity all of its own. 

3.5 Knowledge Acquisition and Expert Systems 

Knowledge Acquisition (KA) is the process of acquiring knowledge from one or more third 

parties, be it from some individual, from a machine, or from a group of individuals or 

machines.  Clancey (1984, p1) describes several steps in KA including problem selection, 

codification, testing and refinement.  Shaw and Gaines provide the following definition 

(1989): 

“Knowledge acquisition is essentially a negotiation process leading to 

approximations to conceptual structures… adequate for some practical 

purpose…” 

                                                 

48 For example, someone who “swims like a brick” is an instance of a “poor swimmer”, but it is doubtful that the 

subclass “poor swimmer” would have a “swims like a brick” attribute or behaviour in its ontological definition. 

49 For instance, in the biological, botanical, ecological and zoological domains. 

50 Polymorphism is frequently referred to in object oriented knowledge representation systems.  It refers to the 

situation where a child class inherits many of the general properties of a parent class, with some notable and 

specific exceptions.  For example: birds generally fly; penguins are birds; penguins don’t fly.  This example is 

derived from Yao et. al (2005) and is referred to again in section 4.3.2.4 (page 60). 
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Throughout the 1980s the Expert System51 became the repository of accumulated knowledge 

regarding possible error scenarios and how they could be resolved52.  According to Edwards, 

experts are good at filtering out irrelevant information in order to get at the basic issues.  

Expert systems reflect this practice by reasoning with shallow (empirical or heuristic) 

knowledge (Edwards, 1996, p37). 

3.5.1 Conventional Expert Systems  

Conventional expert systems are typically rule-based reasoning (RBR) systems.  Users can 

add RuleNodes directly to the rule tree and (subject to the implementation) even edit, move 

and delete them.  Edwards suggests that in conventional KA systems, the expert attempts to 

reconcile many contexts for a given classification by asking: “what are all the contexts for 

this classification”.  He observes that “de-contextualising knowledge” comes at the expense 

of the local context and hence the usefulness of the accumulated information.  Edwards offers 

the insight that: “conventional expert systems give primacy to the classification, rather than 

the context” (Edwards, 1996, pp 170 - 171).  Hence conventional expert systems suffered 

from such problems as giving poor or wrong advice when queried outside their very narrow 

domain (the brittleness problem53) and the lack of a clearly defined relationship between the 

knowledge in the knowledge base and the problem cases reported (Richards, 1998a). 

As well, conventional single expert systems were not designed to handle the continual 

evolution of knowledge. Thus, KA and its subsequent maintenance became a bottleneck in the 

management and reuse of knowledge (Feigenbaum, 1980).  As described previously (section 

2.3.3 on page 16; section 2.5.2 on page 24; and Appendix A54), the HTG interview and survey 

                                                 

51 The 20 questions website at http://www.20q.com and “guess the dictator or sit-com character” website at 

http://www.smalltime.com/dictator.html are interesting self-learning expert system programs that demonstrate 

the gathering of information from the Internet community using “toy” KA problems (Chklovski, 2001). 

52  This text appears in (Richards and Vazey, 2004) 

53 This is also termed the “closed world” assumption in the RULE-ML / Semantic Web community. 

54 The HTG support centre survey reported in Appendix A showed that trouble-shooters would involve their 

team-mates or others in 43% of the problem cases assigned to them (question 12, p 315).  As well, 

communications (question 24 on page 331 and question 28 on page 334), meetings (question 25 on page 332) 

and collaborative processes (question 26 on page 332) were identified as important components of the trouble-

shooting process.  
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results showed that trouble-shooting knowledge is learned, acquired, generated and consumed 

in a decentralized manner by multiple stakeholders and using multiple sources of 

information55 across the global support organization.  Centralising the control of such 

knowledge through conventional rule based systems or formal ontologies may create greater 

consistency of expression, at the expense of currency, relevance, and accuracy.   

3.5.2 Case-Based Reasoning (CBR) systems 

Case-Based Reasoning (CBR) aims to help users solve problems by adapting previously 

successful solutions to similar problems (Marir and Watson, 1994).  It is a cyclical process 

comprising the four ‘R’s of retrieving the most similar case, reusing the case to attempt to 

solve the problem on hand, revising the proposed solution if necessary, and retaining the new 

solution as a part of a new case (Aamodt and Plaza, 1994).  CBR is appropriate where there is 

no formalized knowledge in the domain or where it is difficult for the expert to express their 

expertise in the format of rules (Kang et. al, 1996). 

CBR requires that useful vectors of attribute-value (A-V) pairs appropriately partition the 

domain.  Hence one of the problems for CBR in new and dynamic domains is that the wise 

selection of A-V pairs to partition the domain is not at all easy, and it is often an ongoing 

process  (Kang, 1995, p53).  Further to this, Pearce at. al. (1992) reported on the use of case-

based reasoning for managing a large case-based library of architectural designs.  The Archie 

system used nearest-neighbour matching and model-based clustering to retrieve cases (p17).  

Hence part of the background knowledge required by Archie was the functions that it could 

apply to the attribute vector of each case to determine its similarity or dissimilarity to other 

cases in the system.  What was learnt was that real-world cases are often incomplete, and that 

this severely limits the usefulness of past cases in making new design decisions (p19).  As 

well, real-world cases are very large – the domain model requires a huge number of attributes 

to be defined, into which the case can and should be decomposed (p19).  Finally, users want 

to see the knowledge in multiple different views, and they want to be able to easily navigate 

between the various views. 

                                                 

55 Many different knowledge resources were used to solve problems (refer to survey questions 19-23, 

commencing on page 324).  Table 5 (page 25) provided a summary of some of these solution resources.   
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Mansar and Marir (2003) suggested the use of a case-based reasoning (CBR) technique for 

Business Process Redesign (BPR).  They highlighted the limitations of the CBR approach: the 

manner in which cases are indexed is not well-defined.  In their BPR example, users were 

manually required to order cases into a case hierarchy that presented as somewhat of a 

maintenance nightmare.  In their proposed system, the manner in which cases were to be 

indexed, and the manner in which similar cases should be identified was undefined. 

As highlighted by Kang (1995, p51), the goal of CBR is not to find knowledge in the 

knowledge base that applies to the present problem, but to find a case similar to the current 

case in a database of cases.  This is significant, since a user may find a similar case, and yet 

find that they are no closer to recognising an appropriate solution. 

As mentioned previously in section 1.3 on page 3, a sub-goal of this research was to explore 

the possibility to adapt Ripple Down Rules (RDR)56 to the support centre context.  Ripple 

Down Rules can be considered as an augmented CBR KA approach that combines the 

strengths of CBR and RBR.  It reduces the indexing and maintenance problem of former CBR 

techniques by providing a mechanism for incrementally acquiring suitable rule-based indexes 

for common classes of cases.  The technique asks experts that are intimately knowledgeable 

of the case context to enter heuristic rules that are used to determine when a conclusion 

applies to a given case.  Amongst others, Beydoun et. al (2007) recognise RDR as a 

framework for ontology acquisition. 

3.6 Chapter Summary 

In answer to the research question: 

Q2. What are some of the problems with existing knowledge management  

approaches in domains such as the ICT support centre? 

and in addition to the analysis provided in section 2.4 on page 17 of HTG’s incumbent case 

and solution tracking tools, this chapter described the numerous problems that exist with data 

mining techniques, popular search engines, ontology and conventional expert system 

approaches to knowledge management in the ICT support centre domain. 

                                                 

56 The family of Ripple Down Rules (RDR) algorithms includes Single Classification (SC) and Multiple 

Classification (MC) RDR. 
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At the commencement of the research there was no suitable domain model for the incoming 

cases, no suitable similarity / dissimilarity measures to determine appropriate classification 

clusters, and no record of the links between different classes of problems and their solutions.  

The missing link seemed to be the capture of relevant and otherwise unspoken trouble-

shooting knowledge from human experts that could be used to guide trouble-shooters in 

quickly working-up their cases, classifying them, and locating the relevant solutions. 

Data Mining (DM), Case Based Reasoning (CBR), and Ripple Down Rules (RDR) techniques 

each require that the user create a model of the domain, comprised of a vector of attributes 

that can be used to identify each case in the system, and a set of functions or rules that can be 

used to determine the similarity or differences between cases in the system.  The advantage 

that RDR proponents claim over the former two methods is the ease with which RDR is able 

to extract this domain and classification knowledge from its users.  RDR is described in 

greater detail in the next chapter. 
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CHAPTER 4: RIPPLE DOWN RULES 

4.1 Chapter Outline 

In this chapter, the Ripple Down Rules (RDR) algorithm and data structure is explored in 

detail, and its main implementations: Single Classification Ripple Down Rules (SCRDR) and 

Multiple Classification Ripple Down Rules (MCRDR) are described along with their 

strengths and limitations. 

4.2 Introduction to RDR 

RDR supports the incremental capture of a set of classification rules in the specific context of 

the case being classified.  The philosophy underpinning RDR is that knowledge is socially 

situated, contextual, continually changing, and emergent (Compton and Jansen 1989).  One 

noteworthy feature of RDR is that it attempts to acquire tacit knowledge (described 

previously in Appendix E, page 404).  In other words it aims to capture otherwise unspoken 

knowledge as domain experts directly interact with cases.  The end result is that heuristic 

knowledge that might have been difficult to articulate without the context of a specific case 

becomes articulated and codified, a process that Nonaka, Takeuchi and Umemoto (1996) refer 

to as externalisation.  

The RDR approach was developed in response to the difficulties associated with acquiring 

and maintaining a rule-based system (Compton and Jansen, 1989). It was observed that 

pathology experts had difficulty describing what they knew but that they were good at looking 

at a case and saying how they would handle it57. When asked why a certain conclusion applies 

in a given situation, an expert generally does not explain how the conclusion was reached but, 

rather, gives a justification for why the conclusion is correct (Compton and Jansen, 1989) 

(Kang, Gambetta, Compton, 1996, p258). The idea is that experts are good at judging cases, 

but not good at providing knowledge in abstract forms (Manago and Kodratoff, 1987; in 

Kang, 1995 p10). 

The RDR approach is based on a situated view of cognition which sees knowledge as 

something made up to fit the situation and always evolving, resulting in the use of cases to 

                                                 

57 Some of this text appears in (Richards and Vazey, 2004). 
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provide context and an exception structure to support local patching of the knowledge58.  This 

view is in keeping with others in the knowledge management field such as Sternberg (1995) 

who uses work-place scenarios to measure tacit knowledge and Stenmark and Lindgren 

(2003) who suggest that knowledge be captured during normal work processes59.  In contrast 

to conventional rule-based-reasoning (RBR) expert systems, it could be said that RDR-based 

systems give primacy to the context, rather than the classification. 

RDR offers the pragmatic realisation that experience-based learning involves asking questions 

on a case-by-case basis about the similarities of and differences between things.  The RDR 

philosophy recognises that humans are amazingly adept, and usually better equipped than 

computers, at recognising whether two cases belong to the same or different classifications, 

and whether a set of conclusions fits a given classification (Compton and Jansen 1989). 

While the need for knowledge engineering expertise to assist with initial modelling of the 

domain is acknowledged, RDR proponents argue that the simplicity of the approach allows 

domain experts to be responsible for entering and maintaining the knowledge (Compton et al 

1991) (Richards, 1998a, p16).  Strengths of RDR include maintenance and validation 

performed directly by the domain expert; and the use of cases to provide context and assist 

knowledge acquisition60. 

4.3 SCRDR and MCRDR 

The RDR structure provides a directed acyclic graph that forms a decision tree where each 

decision node comprises a test of one or more parameters in the incoming case and provides a 

Boolean output. In the case of SCRDR the exception structure allows a single classification to 

be derived for the incoming case; and in the case of MCRDR the exception structure allows 

multiple classifications to be derived for the incoming case. 

The following figure presents a sequence of training cases that illustrate the training of some 

sample RDR knowledge bases.  These training cases have been created for an ICT sample 

domain. 

                                                 

58 Some of this text appears in (Vazey and Richards 2005a). 

59 Some of this text appears in (Vazey and Richards, 2006a). 

60 Some of this text appears in  (Vazey and Richards, 2004). 
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Figure 1: RDR training cases 

 Case 1: 
‘product type’ = ‘product A’ 

Case 2: 
‘product type’ = ‘product A’ 
‘operating system’ = ‘windows’ 

Case 3: 
‘product type’ = ‘product A’ 
‘operating system’ = ‘windows XP’ 
‘software version’  = ‘0.7’ 

Case 4: 
‘product type’ = ‘product A’ 
‘operating system’ = ‘windows XP’ 
‘software version’  = ‘1.9’ 

Case 5: 
‘product type’ = ‘product A’ 
‘operating system’ = ‘windows XP’ 
‘software version’  = ‘2.5’ 

Case 6: 
‘product type’ = ‘product B’ 

Case 7: 
‘product type’ = ‘product A’ 
‘operating system’ = ‘windows XP’ 
‘software version’  = ‘3.1’ 

Case 101: 
‘product type’ = ‘product A’ 
‘operating system’ = ‘windows XP’ 
‘software version’  = ‘2.5’ 

 

4.3.1 Single Classification Ripple Down Rules (SCRDR) 

This subsection details structural and algorithmic aspects of the Single Classification Ripple 

Down Rules (SCRDR) approach.  For the sake of expediency, readers familiar with the 

technical aspects of SCRDR might like to skip forward to section 4.3.1.1 on page 46. 

RDR were first developed to handle single classification tasks. An exception structure in the 

form of a binary tree is used to provide rule pathways (Richards, 1998a, p54). Each RuleNode 

in the tree is associated with a rule, a conclusion, a cornerstone case61, possibly one child 

RuleNode on a true branch, and possibly one child RuleNode on a false branch. 

Figure 2 shows the nomenclature used to illustrate this system.  Using the grammar developed 

by Scheffer (1996), an SCRDR can be defined as the set <r, T, F, cc, x> where r is the rule, T 

is the TRUE branch RuleNode, F is FALSE branch RuleNode, cc is the associated cornerstone 

case, and x is the conclusion.  
                                                 

61 The term cornerstone case was coined by Horn et al. in 1984 to refer to cases that have uniquely forced 

changes to be made to the expert system. 
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Figure 2: SCRDR RuleNode Nomenclature 

 

RuleNode X 
“conclusion x”

rule r

if-not-previous then-if

except-if 

case cc 

RuleNode T 

RuleNode F 

 

When the expert determines that the conclusion at the last TRUE RuleNode is incorrect or 

inappropriate, in other words that it is an invalid conclusion or a misclassification, a child 

RuleNode is added. If the rejected RuleNode’s rule remains TRUE then the child RuleNode is 

attached to the TRUE branch of the rejected RuleNode, otherwise the child RuleNode is 

attached to the FALSE branch of the rejected RuleNode (Richards, 1998a, p54). 

The case that caused the misclassification to be identified is stored in association with the new 

RuleNode and is referred to as the cornerstone case. The purpose of storing the case is to 

remind the user of the context in which that RuleNode was acquired, and thereby provide 

validation of the new rule at the new RuleNode (Richards, 1998a, p54). The new rule must 

distinguish between the new case and the case associated with the RuleNode that gave the 

wrong conclusion (Compton & Jansen 1990). 

In the operation of an SCRDR system, the case is first evaluated against the top-most 

RuleNode.  For each RuleNode, when its rule is satisfied then its TRUE-path exception rule is 

evaluated and its FALSE-path rule is ignored.  In contrast, for each RuleNode, when its rule is 

not satisfied its FALSE-path is followed and its TRUE-path is ignored.  The last TRUE 

RuleNode for the resultant path taken through the rule tree gives the final conclusion for the 

case on hand. 

The following figure presents a sample SCRDR knowledge base.   
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Figure 3: An SCRDR KBS 

RuleNode 0 
“root node”

rule 0: true
if-not-previous then-if  

(FALSE path) 

except-if 
(TRUE path) 

RuleNode 1
“product A”

rule 1: ‘product type’ == ‘product A’ 

RuleNode 6 
“product B” 

rule 6: ‘product type’ == 
‘product B’ 

RuleNode 2 
“product A on windows platform”

rule 2: ‘operating system’ contains ‘win’

RuleNode 3 
“product A on windows platform 

with old software” 

rule 3: ‘software version’ < ‘3.0’ 

RuleNode 4 
“recommended 

upgrade using patch 
4.5.6” 

rule 4: ‘software version’ < ‘2.0’ 
&& ‘software version’ >= ‘1.0’ 

rule 5: ‘software version’ 
>= ‘2.0’ 

RuleNode 5 
“recommended 

upgrade with patch 
7.8.9”

if-not-previous then-if
except-if 

except-if 

except-if 

except-if 

if-not-previous then-if

case 1 

case 2 

case 3 

case 4 

case 5

case 6 

Case 101: 
‘product type’ = ‘product A’ 
‘operating system’ = ‘windows XP’ 
‘software version’  = ‘2.5’ 

 

In the above figure, each RuleNode can be seen as a portion of a pathway that leads from 

itself back to the root RuleNode which is RuleNode 0. The highlighted RuleNode 5 represents 

the last true RuleNode for Case 101 from the set of training cases in Figure 1 on page 42.  

Using Case 101 as an example: 

• Rule 0 evaluates to TRUE for Case 101 so RuleNode 0’s TRUE (except-if) path is 

followed.  On taking that path,  

• Rule 1 evaluates to TRUE, RuleNode 1’s TRUE (except-if) path is followed.  On 

taking that path,  
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• Rule 2 evaluates to TRUE so RuleNode 2’s  TRUE (except-if) path is followed.    On 

taking that path,  

• Rule 3 evaluates to TRUE so RuleNode 3’s  TRUE (except-if) path is followed.    On 

taking that path,  

• Rule 4 evaluates to FALSE so RuleNode 4’s  FALSE (if-not-previous then-if) path is 

followed.    On taking that path,  

• Rule 5 evaluates to TRUE.  RuleNode 5 has no child nodes on either its TRUE or 

FALSE branches, so for Case 101, the final RDR conclusion is a “recommended 

upgrade with patch 7.8.9”. 

The sample SCRDR knowledge base shown in Figure 3 was formed in the following manner: 

• At first the only node in the SCRDR tree was the root node, RuleNode 0, with a rule 

that always returned TRUE, and a null, “root node”, or default62 conclusion.  All cases 

presented to the rule tree would initially satisfy this RuleNode. 

• Case 1 from the set of training cases in Figure 1 on page 42 was presented to the 

SCRDR engine. The expert disagreed with the conclusion from RuleNode 0.  The 

expert offered a new rule, shown as rule 1, and RuleNode 1 was created.  Case 1 

became the cornerstone case for RuleNode 1 since it was the first case that caused 

RuleNode 1 to be created. 

• Case 2 was presented to the SCRDR engine.  After evaluating this case against the 

maturing rule tree, the last TRUE RuleNode for the case was RuleNode 1.  The expert 

disagreed with the conclusion from RuleNode 1.  Not because the conclusion was 

FALSE, but rather because they wanted to provide a different conclusion, and in this 

particular case, a more specific conclusion.  The expert offered a new rule, shown as 

rule 2, and RuleNode 2 was created.  Case 2 became the cornerstone case for 

RuleNode 2. 

                                                 

62 Note that every RuleNode, including the root RuleNode holds the default classification and conclusion for 

cases that satisfy that RuleNode and none of its child RuleNodes. 
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• Case 3 was presented to the SCRDR engine.  After evaluating this case against the 

maturing rule tree, the last TRUE RuleNode for the case was RuleNode 2.  The expert 

was dissatisfied with the conclusion from RuleNode 2.  The expert offered a new rule, 

shown as rule 3, and RuleNode 3 was created.  Case 3 became the cornerstone case for 

RuleNode 3. 

• Case 4 was presented to the SCRDR engine.  After evaluating this case against the 

maturing rule tree, the last TRUE RuleNode for the case was RuleNode 3.  The expert 

was dissatisfied with the conclusion from RuleNode 3.  At that time in the IT support 

organization software patch 4.5.6 had become available for product A running on the 

windows platform with software versions greater than 1.0 and less than 2.0. The 

expert offered a new rule, shown as rule 4, and RuleNode 4 was created.  Case 4 

became the cornerstone case for RuleNode 4. 

• Case 5 was presented to the SCRDR engine. After evaluating this case against the 

maturing rule tree, the last TRUE RuleNode for the case was RuleNode 3.  RuleNode 4 

was not satisfied.  The expert disagreed with the conclusion from RuleNode 3.  The 

expert offered a new rule, shown as rule 5, and RuleNode 5 was created.  Case 5 

became the cornerstone case for RuleNode 5. 

In the SCRDR example given there were several instances where correct conclusions were 

rejected in the training of the SCRDR rule tree to make way for more specific conclusions.  In 

fact, some of the conclusions provided applied concurrently, for example at RuleNode 3 three 

conclusions were in fact appropriate: ‘Product A’, ‘Windows Platform’, and ‘Old Software’.  

This highlights the disadvantage of the SCRDR approach when trying to model real-world 

problems in which multiple classifications apply. 

Note that the depth versus breadth of the SCRDR decision tree depends on the degree of 

overlapping classifications e.g. subsumption or exception style classifications in the chosen 

problem domain, as well as the order in which the cases and corresponding classifications are 

presented. 

4.3.1.1 SCRDR in Pathology: PEIRS 

The first major implementation of SCRDR was the Pathology Expert Interpretive Reporting 

System (PEIRS) that ran in routine operation over the four year period from March 1991 to 
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January 1995, interpreted thousands of cases, and grew to more than 2111 rules.  PEIRS was 

used to add clinically meaningful interpretations and comments to pathology reports at the 

Department of Chemical Pathology at St. Vincents Hospital, Sydney (Kang, 1995, p 34).  As 

well, PEIRS assisted with real-time decision support for test ordering by recommending 

follow-up tests as necessary (Edwards, 1996, pp 19, 157). 

Edwards reports that PEIRS became one of the largest medical expert systems in routine use 

(Edwards, 1996, p i, 96).  After four years of operation, PEIRS covered 12 sub-domains (p 

101) and 800 (20%) of the 4000 reports per week received an interpretation.  At 25 months of 

operation the accuracy was 97% over the domains covered with an average 116 

interpretations per day (p 97).   

PEIRS was implemented in a non-MS Windows computing paradigm on VAX VMS 

(Edwards, 1996, p 87).  A separate PEIRS browser was written as a Hypercard stack for the 

Apple Macintosh to assist with browsing the knowledge base (p98). 

Following a similar trend to that observed in the support centre context over the last 10-15 

years, clinical pathology laboratories have experienced increasing volumes of cases, 

increasing complexity with new tests and new test methods, increasing expectations about the 

quality and appropriateness of interpretation and investigation, and ongoing demand for 

improved efficiencies in expenditure and turnaround times (Edwards, 1996, pp ii, 2, 31) 

(Compton et al. 2005). 

In a similar fashion to help-desk support being offered direct to clients via self-help web-

kiosks on the Internet and thus removing the technician from the customer interaction, there 

has been a trend in pathology towards near-patient point-of-care, removing the pathologist 

entirely from the request-test cycle (Edwards, 1996, p 31). 

PEIRS proved the validity of SCRDR for automating interpretive reporting in clinical 

pathology (Edwards, 1996, p ii).  There was a positive educative effect for laboratory 

scientists involved in report validation and some evidence that PEIRS improved the domain 

knowledge of pathology experts (p 128 - 130).  There was also some evidence that PEIRS 

assisted with diagnosis and management decisions (p 130). 

Edwards and Kang report that PEIRS drastically increased the quality of the output from the 

pathology laboratory, and reduced the load of experts since checking interpretations in a 

report was much easier for staff than composing and adding new interpretations (Edwards, 
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1996, p122, 215) (Kang, 1995 p 34).  The improved quality and completeness of the 

laboratory database through better clinical data was seen to be a useful consequence of the 

PEIRS system (Edwards, 1996, p123).  Note that consistency is seen to be a major contributor 

to quality as perceived by customers, hence the focus on minimising variance in various 

quality control programs (TQM63, Deming64, Six Sigma65 etc). 

The advantages of the RDR paradigm demonstrated by PEIRS appears to be two-fold:  

1. RDR can make it simpler for experts to see the need for (i.e. to conceive of) and to 

construct new RuleNodes by constantly highlighting differences and similarities between 

the current case and cases previously interpreted by the KBS;  

2. Specialisations of more general RuleNodes can be made incrementally, without having to 

re-codify the condition pathway that led to the parent RuleNode.   

In contrast, the restriction to single interpretative comments by SCRDR was seen as the major 

limitation in PEIRS because it necessitated repetitious knowledge acquisition (Edwards, 1996, 

p 177).  To paraphrase, in SCRDR multiple permutations of classifications resulted in a 

combinatorial explosion of concatenated conclusions (Edwards, 1996, pp iv, 133-135)66.  For 

example, in the Arterial Blood Gas domain, there was at least a 7-fold duplication of KA 

(p135).  Multiple Classification Ripple Down Rules (MCRDR) (Kang, Compton and Preston, 

1995; Kang, 1995) made a significant contribution in resolving the repetitious KA problem 

and is described in section 4.3.2 on page 50. 

4.3.1.2 Social Lessons from PEIRS 

In PEIRS, pathology experts were obliged to carefully evaluate each interpretative comment, 

since there was known to be an important incidence of error.  Experts validated all of the 

interpreted reports prior to dispatch and they were held accountable for any errors in the 

                                                 

63 http://en.wikipedia.org/wiki/Total_Quality_Management  

64 http://en.wikipedia.org/wiki/W._Edwards_Deming  

65 http://en.wikipedia.org/wiki/Six_Sigma  

66 What is meant by this is that in SCRDR, N different conclusions could require up to (N^2 –1) separate 

RuleNodes.  For example, conclusions A and B might be represented over 3 different RuleNodes in the system: 

A, B, and AB. 
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interpretations that they approved so that the responsibility for pathology outcomes rested 

fully with the pathologists themselves (Edwards, 1996, pp 91, 129, 140, 197, 215, 221).  

These factors were seen to be the primary reasons for PEIRS success and a new model for 

error management based on human expert validation was derived (pp 222, 224, 236). 

Thus PEIRS acted as a corporate memory, remembering interpretations that had been made in 

previous contexts, and offering them up for re-use in repeated future contexts.  Edwards felt 

that by participating in the feedback process, the clinician’s viewpoint was valued and they 

were able to feel involved in, rather than alienated from the development and evolution of the 

decision support system (p213). 

Critics of PEIRS felt that it would lead to an inevitable decline in clinical skills on behalf of 

the pathologists (Edwards, 1996, p132).  Counter to this view, was the perceived positive 

educative effect (p 128 - 130). 

PEIRS was accepted by pathologists because it permitted extensive use of locally derived 

protocols and customs, which were subject to frequent change (Edwards, 1996, p 165).  

Pathologists frequently disagreed openly with expert opinion stated in the medical literature, 

or by their clinical colleagues (p168).  It was felt that it was highly unlikely that global and 

formal guidelines would ever replace locally derived protocols (p165), and that the 

reconciliation of local with global knowledge was perhaps the most challenging aspect of 

knowledge management (p226).  These findings emphasise the need for large KBSs to 

represent multiple and parallel truths, and to provide a forum in which differences can be 

identified, highlighted, discussed and if appropriate, resolved. 

4.3.1.3 SCRDR and Machine-Learning 

Gaines and Compton (1995) used SCRDR as the underlying data structure for a machine 

learning algorithm known as Induct (see also Gaines, 1989).  They report that its performance 

was similar to that of the well-known C4.5 machine-learning algorithm (Quinlan, 1993).  As 

for other machine learning algorithms, background knowledge was required in the form of 

attributes and suitable selector functions to help distinguish the cases (p8).   

When Induct was run on 9,514 cases from the GARVAN-ES1 data and compared with the 

manually acquired SCRDR database it was found that the total condition clause count for the 

manually acquired SCRDR system was 731, and for the automatically induced SCRDR 

system was 478.  The 550 manually acquired rules had 1.3 clauses on average compared with 
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the 174 induced rules with 2.5 clauses per rule on average.  Gaines and Compton (1995) 

deduced that in the SCRDR framework, experts tended to make a minimum amount of 

differentiation when adding new rules.  This indicates that RDR may tend to create an over-

generalisation bias in the knowledge acquired. 

As well, SCRDR was used as the basis of C4.5 induction in the RDR-C4 system developed by 

Horn (1993, section 11).  Horn notes the ability of inductive reasoning to suggest 

generalisations that human experts might otherwise have difficulty perceiving in a large 

knowledge base (sections 10 and 12).  In section 13.5 (page 256) I describe how induction 

may be used to enhance KA in my proposed 7Cs system. 

4.3.2 Multiple Classification Ripple Down Rules (MCRDR) 

One of the limitations of SCRDR was that it only handled single classification domains.  

Where multiple classifications applied to an incoming case, compound conclusions were 

given that repeated the information provided for individual classifications.  This was seen to 

exponentially increase the knowledge acquisition task since in numerous domains; many 

combinations and permutations of classifications are possible (Kang, 1995, p44).  Given that 

most of the effort was in creating the interpretations in the first place, the repetition of 

interpretation content compromises the ease of system maintenance. 

Multiple Classification Ripple Down Rules (MCRDR)67 was developed to handle 

classification tasks where multiple independent classifications are required (Kang, Compton 

and Preston, 1995; Kang, 1996). In its original conception, MCRDR was implemented as a 

binary tree in which all pathways were evaluated except the true branch pathways of 

RuleNodes that failed to fire (Kang, 1995, p73).  The system was soon modified to be an n-

ary tree (Edwards, 1996, p 177). 

The initial implementation was on an Apple Macintosh System 7 running Hypercard V2.1 

with 4M RAM and 22Mbyte hard disk.  The data file from the Garvan-ES1 domain took up 

about half the size of the hard disk, being some 10-12 Mbyte (Kang, 1995, MCRDR User’s 

                                                 

67 A traditional MCRDR is formally a directed acyclic graph 

http://www.nist.gov/dads/HTML/directAcycGraph.html, as opposed to a decision tree.  This is because some 

definitions of decision trees assume that only one attribute is considered at each node, rather than a set of 

conditions on multiple attributes.  DAG is mentioned in (Dunham, 2003, p28). 
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Manual, p 1).  MCRDR was developed at a time when the Internet was only just starting to 

impact workers outside of the ICT industry.  Computer networking was still a luxury for 

many businesses, and computer-based collaboration was still a rarity.  This history is 

important in so far as it would have limited the functionality conceived, and the capacity of 

system designers to implement it.  These days, we are more limited by our imaginations than 

our ability to implement rich real-time interactive, collaborative and dynamic systems. 

The remainder of this subsection details structural and algorithmic aspects of the Multiple 

Classification Ripple Down Rules (MCRDR) approach.  For the sake of expediency, readers 

familiar with the technical aspects of MCRDR might like to skip forward to section 4.3.2.1 on 

page 57. 

Figure 4 shows the nomenclature used to illustrate this system.  An MCRDR can be defined 

as the set <r,P,C,S,cc,x>, where r is the rule for the RuleNode, P is the parent RuleNode, C is 

the child RuleNode, S is the next sibling RuleNode within the same level of decision list, cc is 

the cornerstone case for the RuleNode, and x is the conclusion. 

Figure 4: MCRDR RuleNode Nomenclature 

 

RuleNode X 
“conclusion x”

rule r

rule C1except-if 

case cc

RuleNode C1 

rule Cn except-if

RuleNode Cn …

…

case Q 
case R 

 

In contrast to SCRDR RuleNodes can have multiple child RuleNodes attached to them.  As 

for SCRDR, processing commences with the root RuleNode.  As processing progresses, if a 

RuleNode evaluates to TRUE then all of its child RuleNodes are evaluated.  If a RuleNode 

evaluates to FALSE then processing on that path through the rule tree stops.  The last TRUE 

rule on each path through the rule tree constitutes the conclusions given. 

The following shows an example MCRDR knowledge base.   
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Figure 5: An MCRDR KBS 

 

RuleNode 0 
“root node”

RuleNode 2 
“windows platform ” 

RuleNode 3 
“old software”

RuleNode 4 
“recommended 

upgrade with patch 
4.5.6” 

rule 4: ‘software version’ < ‘2.0’ 
&& ‘software version’ >= ‘1.0’

and-also-if 

RuleNode 7 
“High level information for the 

windows XP platform is 
available at: 

http://microsoft.com/ 
help/winXP.html” 

rule 7: ‘operating system’ contains ‘XP’ 

rule 2: ‘operating system’  contains ‘win’ 

rule 5: ‘software version’ >= ‘2.0’

RuleNode 1 
“High level information for 
product A is available at: 

http://myintranet/ProductA
.pdf” 

rule 3: (‘software version’ < ‘3.0’) 

rule 1: ‘product type’ == ‘product A’ 

RuleNode 5 
“We recommended that 
you update the software 

using update patch 7.8.9.”

rule 0: true

RuleNode 6 
“product B” 

rule 6: ‘product type’ == ‘product B’ 

except-if 
(TRUE path) 

case 1 

case 3 

case 4 

case 7 

case 6 

case 5

case 2 

Case 101: 
‘product type’ = ‘product A’ 
‘operating system’ = ‘windows XP’ 
‘software version’  = ‘2.5’ 

 

Again, using Case 101 from our set of training cases in Figure 1 on page 42, the highlighted 

RuleNodes 1, 5 and 7 represent the last TRUE RuleNodes in each path through the rule tree, 

and hence they contain the final conclusions for Case 101.  Cases 101 concurrently invokes 

the 3 emboldened classifications in Figure 5 at RuleNodes 1, 5, and 7. Using Case 101 as an 

example: 
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• Rule 0 evaluates to TRUE for Case 101 hence the case must be evaluated against all of 

RuleNode 0’s child RuleNodes68. 

o Rule 1 evaluates to TRUE for Case 101.  RuleNode 1 has no child RuleNodes.  

Therefore the conclusion from RuleNode 1, namely “High level information for 

product A is available at: http://myintranet/ProductA.pdf” applies to Case 101. 

o Rule 2 evaluates to TRUE for Case 101.  RuleNode 2 has a child node.  Therefore 

Case 101 must be evaluated against that child node: 

 Rule 7 evaluates to TRUE for Case 101.  RuleNode 7 has no child nodes.  

Therefore the conclusion from RuleNode 7, namely “High level 

information for the windows XP platform is available at: 

http://microsoft.com/help/winXP.html” applies to Case 101. 

o Rule 3 evaluates to TRUE for Case 101.  RuleNode 3 has two child nodes.  

Therefore Case 101 must be evaluated against those child nodes: 

 Rule 4 evaluates to FALSE for Case 101.  No further processing is required 

for RuleNode 4. 

 Rule 5 evaluates to TRUE for Case 101.  RuleNode 5 has no child nodes.  

Therefore the conclusion from RuleNode 5, namely “We recommended 

that you update the software using update patch 7.8.9.” applies to Case 

101. 

o Rule 6 evaluates to FALSE for Case 101.  No further processing is required for 

RuleNode 6. 

So the multiple conclusions for Case 101 are that: 

• High level information for product A is available at: http://myintranet/ProductA.pdf; 

• High level information for the windows XP platform is available at: 

http://microsoft.com/help/winXP.html; and 

                                                 

68 Conventional MCRDR systems commence with RuleNode 0 offering a NULL classification (Kang, 1995, pp 

32, 60, 73). 
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• We recommended that you update the software using update patch 7.8.9. 

In SCRDR only one cornerstone case is associated with each RuleNode. It is the case that first 

caused that RuleNode to be created. 

In MCRDR however, in addition to the cornerstone case that caused that RuleNode to be 

created, there is a set of Cornerstone cases for a given RuleNode which is comprised of each 

case that caused either the RuleNode, or one of its dependent RuleNodes (e.g. its child, grand-

child, great-grand-child etc) RuleNodes to first be created.  For example, in Figure 5 the set of 

Cornerstone cases for RuleNode 0 would be {1,3,4,5,2,7,6}; the set of Cornerstone cases for 

RuleNode 3 would be {3,4,5}; and the set of Cornerstone cases for RuleNode 2 would be 

{2,7}.  

In conventional MCRDR when the conclusion from a parent RuleNode is rejected, and a new 

alternative RuleNode is being constructed, the set of Cornerstone Cases for the parent 

RuleNode must be determined, and the new rule must distinguish the case on hand from each 

case in the Cornerstone set.  The expert is presented with one cornerstone case at a time. The 

expert constructs a rule to distinguish the new case from the first case presented and then each 

case in the cornerstone list is evaluated to see if it is also distinguished by the new rule 

(Richards, 1998a, p55). If a case is satisfied by the rule the expert must add extra conditions 

to the rule to distinguish this case. This continues until all related cornerstone cases are 

distinguished. 

The MCRDR knowledge base in Figure 5 was formed in the following manner: 

• At first the only node in the MCRDR tree was the root node, RuleNode 0, with a rule 

that always returned TRUE, and a null or “root node” conclusion.  All cases presented 

to the rule tree would satisfy this RuleNode. 

• Case 1 was presented to the MCRDR engine. The expert disagreed with the 

conclusion from RuleNode 0.  The expert offered a new rule, shown as rule 1, and 

RuleNode 1 was created.  Case 1 became the cornerstone case for RuleNode 1 since it 

was the first case that caused RuleNode 1 to be created. 

• Case 2 was presented to the MCRDR engine. The expert agreed with the conclusion 

from RuleNode 1, but the expert wanted to provide an additional conclusion.  The 

expert offered a new rule, shown as rule 2 which differentiated Case 2 from the 
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Cornerstone Case set for RuleNode 0, namely {Case 1}, and RuleNode 2 was created.  

Case 2 became the cornerstone case for RuleNode 2 since it was the first case that 

caused RuleNode 2 to be created. 

• Case 3 was presented to the MCRDR engine. The expert agreed with the conclusions 

from RuleNodes 1 and 2, but the expert wanted to provide an additional conclusion.  

The expert offered a new rule, shown as rule 3 which differentiated Case 3 from the 

Cornerstone Case set for RuleNode 0, namely {Cases 1,2}, and RuleNode 3 was 

created.  Case 3 became the cornerstone case for RuleNode 3 since it was the first case 

that caused RuleNode 3 to be created. 

• Case 4 was presented to the MCRDR engine. The expert agreed with the conclusions 

from RuleNodes 1 and 2, but the expert wanted to reject the conclusion provided at 

RuleNode 3 and provide an exception.  At that time in the IT support organization 

software patch 4.5.6 had become available for software versions greater than 1.0 and 

less than 2.0. The expert offered a new rule, shown as rule 4 which differentiated Case 

4 from the Cornerstone Case set for RuleNode 3, which at that time comprised only of 

{Case 3}, and RuleNode 4 was created.  Case 4 became the cornerstone case for 

RuleNode 4 since it was the first case that caused RuleNode 4 to be created. 

• Case 5 was presented to the MCRDR engine. The expert agreed with the conclusions 

from RuleNodes 1 and 2, but the expert wanted to reject the conclusion provided at 

RuleNode 3 and provide an exception.  At that time in the IT support organization 

software patch 7.8.9 had become available for software versions greater than 2.0 and 

less than 3.0. The expert offered a new rule, shown as rule 5 which differentiated Case 

5 from the Cornerstone Case set for RuleNode 3, which at that time comprised only of 

{Cases 3,4}, and RuleNode 5 was created.  Case 5 became the cornerstone case for 

RuleNode 5 since it was the first case that caused RuleNode 5 to be created. 

• Case 6 was presented to the MCRDR engine. The expert wanted to reject the 

conclusion provided at RuleNode 0 and provide an exception.  The expert offered a 

new rule, shown as rule 6 which differentiated Case 6 from the Cornerstone Case set 

for RuleNode 0, which at that time comprised of {Cases 1,2,3,4,5}, and RuleNode 6 

was created.  Case 6 became the cornerstone case for RuleNode 6 since it was the first 

case that caused RuleNode 6 to be created. 
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• Case 7 was presented to the MCRDR engine. The expert agreed with the conclusions 

from RuleNode 1, but the expert wanted to reject the conclusion provided at RuleNode 

2 and provide an exception.  The expert offered a new rule, shown as rule 7 which 

differentiated Case 7 from the Cornerstone Case set for RuleNode 2, which at that 

time comprised only of {Case 2}, and RuleNode 7 was created.  Case 7 became the 

cornerstone case for RuleNode 7 since it was the first case that caused RuleNode 7 to 

be created. 

In the MCRDR system, if a new case is added to the system, the user can choose to accept a 

given conclusion, or alternatively reject the conclusion by creating a differentiating rule with 

an alternate conclusion. In that case, the following applies:  

• The new rule must be a valid boolean expression, which the MCRDR engine can 

evaluate. 

• The rule for the new RuleNode may optionally be restricted to a single test, e.g. that 

(‘movement’==‘flies’), rather than a conjunction of tests. 

• The new RuleNode must have either a different conclusion, or a different rule 

compared to its sibling RuleNodes. 

• The new RuleNode must test for some feature of the Review Case and must evaluate 

to TRUE for the Review Case. 

In conventional MCRDR systems, new cases could be misclassified in one of three ways: one 

or more of the conclusions are incorrect, one or more conclusions are missing or a 

combination of incorrect and missing. The user could decide to stop an incorrect conclusion 

instead of replacing it with a new conclusion. In conventional MCRDR systems this was 

achieved by adding a stopping RuleNode69 in the same way as adding other types of 

RuleNodes.  The following table shows the three types of misclassifications dealt with in 

conventional MCRDR systems.  As described in this table, the user may decide to stop an 

incorrect conclusion instead of replacing it with a new conclusion. 

                                                 

69 In conventional MCRDR systems, a stopping RuleNode has a “stop” conclusion that prevents that RuleNode 

from being displayed for cases that satisfy the rule conditions of the RuleNode. 



 Chapter 4: Ripple Down Rules 

Submitted January 27, 2007 57 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

Table 6: The three ways in which new RuleNodes correct a knowledge base 

Adapted from Kang (1995, p63). 

Scenario 
Identity 

Wrong Classification Conclusion 
Status 

To correct the KB 

A: Reject Wrong classification to 
be stopped  

Incorrect Add a stopping RuleNode at the end of 
the path to prevent the classification  

B: Replace Wrong classification 
replace by new 
classification 

Incorrect 
and 
Missing 

Add a RuleNode at the end of path to 
give the new classification 

C: New A new independent 
classification  

Missing Add a RuleNode at a higher level to 
give the new classification 

 

The decision of where to add a new rule to the KB is affected by the design of the user 

interface, user preferences and the situation. If rules tend to be added to the top level the 

domain will be covered more rapidly but there may be greater over-generalisation and hence 

false-positive errors.  If rules are added to the end of pathways there may be greater over-

specialisation and hence false-negative errors, and hence the domain coverage will be slower 

(Kang, 1996). 

Note that in MCRDR when a parent RuleNode is live for a given case, it is because the 

ancestor RuleNodes of that parent RuleNode all evaluate to TRUE for that case, and the child 

RuleNodes of that parent RuleNode all evaluate to FALSE for that case.  Hence the condition 

path for that case is equal to the conjunction of the conditions of each of the ancestor 

RuleNodes and the negation of the conditions of each of the child RuleNodes of the given 

RuleNode. 

4.3.2.1 MCRDR and Pathology: PEIRS 

As part of his PhD thesis, Edwards ran trials on an MCRDR engine using the PEIRS data  

(Edwards, 1996, p 193).  He found that while KA took between 30 seconds and 6 minutes in 

the MCRDR system as compared with 30 seconds to three minutes for the SCRDR system, 

the overall time for knowledge base construction was 210 minutes for MCRDR as compared 

with 270 minutes in the SCRDR system.  (In this trial, the new improved TCRDR user 

interface was used for the SCRDR system).  At the conclusion of the comparative KA period 

he found that far fewer KA incidents were required in MCRDR (70 of 262 cases were 

incorrect i.e. 27%) as compared with SCRDR (180 of 262 cases were incorrect i.e. 69%).  
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Hence the faster maturation and greater accuracy of MCRDR for multiple classification 

domains as compared with SCRDR was confirmed. 

4.3.2.2 MCRDR and Pathology: Pacific Knowledge Systems 

Pacific Knowledge Systems (PKS) was founded in 1996 and has found success in 

commercialising MCRDR in the pathology domain.  Their LabWizard KBS assists with 

laboratory disease diagnosis, for example using blood and urine samples (see 

http://www.pks.com.au).  Please refer to Appendix G (commencing on p 408) for the 

transcript of an interview that I arranged with PKS in June 2005. 

Compton et al. have also recently reviewed the MCRDR experience at PKS in the chemical 

pathology domain (Compton at. al. 2006).  They report that at one laboratory over a 29 month 

period over 16,000 rules were added and 6,000,000 cases were interpreted by PKS’s 

LabWizard MCRDR software product.  This particular lab maintains about 19 separate 

knowledge bases, and generates in the order of 300,000 patient reports per month with 80% of 

reports being auto-validated after a 5-month introduction period (presumably using prudence 

techniques as outlined in section 13.8 on page 263), and with a modification rate on generated 

reports of less than 1.5%. 

Laboratories that use LabWizard tend to develop multiple concurrent but separate knowledge 

bases for different sub-domains managed by different experts.  Currently LabWizard does not 

offer support for multiple experts to resolve their classification conflicts within the scope of 

an MCRDR interaction. 

U.S. Patent No. 6,553,361 (issued to Compton, et al. on 22 April 2003) was created with the 

input of PKS staff to provide intellectual property (IP) protection for their LabWizard 

software.  The patented system allowed only one expert to update the system at a time.  Cases, 

and particularly cornerstone cases were static – they mostly contained results from blood and 

tissue samples, or soil samples, and were therefore unchanging.  The focus on the system was 

mostly on generating high volumes of easy to read diagnostic pathology lab reports. 

4.3.2.3 MCRDR and the Help Desk 

MCRDR has been previously explored in the help desk environment (Kim, 2003) and Kang et 

al. (1996).  In her PhD thesis, Kim (2003) applied the concept lattice from Formal Concept 

Analysis (FCA) (Wille, 1992) to generate a browsing structure to assist users in navigating 
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the knowledge base.  These MCRDR help desk implementations were limited to KBS updates 

by a single expert, and the use of simple keyword-based attributes and rules. 

The prototype described by Kang et al. (1996) combined a keyword search with Case-Based 

Reasoning indexing techniques to provide a guided MCRDR interaction that was able to 

quickly steer users to appropriate help information on the Internet70.  As noted by Kang et al. 

(1996) the MCRDR engine has two problems as an information retrieval engine.  The first 

one is the number of conditions that are to be reviewed by the user.  The second one is the 

number of interactions between the user and the system.  The prototype by Kang et al. (1996) 

attempted to minimise this problem by allowing users to apply a keyword search to 

effectively pre-filter the rule tree to only include those cases that satisfied the keyword search 

criteria.  The user could then interact with a minimised MCRDR rule tree to select the 

relevant conclusions and update the knowledge accordingly.  The keyword search data 

effectively became the attribute-value (A-V) data for the search case. 

The prototype described by Kim, Compton, and Kang (1999) extended the Kang et al. (1996) 

prototype by allowing an expert user to also build and maintain the help desk document 

knowledge base by applying keywords to help documents71. 

In contrast to previous MCRDR approaches, including previous approaches to build a system 

for the help-desk domain using MCRDR, in this research it was found that: 

1. Experts in the support centre domain have to define the cases, as well as the rules, and  

2. Input is required from multiple experts to provide the necessary domain coverage.   

In this context, what is meant by defining the cases is that experts need to identify the relevant 

features for cases in the domain, that is, the structure of the domain model, the questions that 

help desk personnel might ask the customer in identifying the nature of the problem, and the 

                                                 

70 Some of this text appears in (Vazey and Richards, 2004). 

71 More recently Park, Kim and Kang (2003, 2004) have been involved with web monitoring that also uses 

keyword and MCRDR to organise document access. 
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conditions under which these questions should be asked (including the order of the presented 

questions)72. 

4.3.2.4 MCRDR and Security Information Analysis 

The use of RDR has been promoted for security information analysis in (Yao et al., 2005).  

That review demonstrates that the RDR approach provides a mechanism for simultaneously 

acquiring both a subsumption and an exception hierarchy.  The subsumption hierarchy is one 

that will be familiar to people that work with ontologies, taxonomies or object oriented (OO) 

modelling tools and languages.  It represents the is-a relationship between a child class and its 

parent e.g. a penguin is-a bird.  In contrast, the exception hierarchy allows simple heuristics 

(rules of thumb) to be gathered that help users quickly classify and derive conclusions for 

cases in a domain by providing exceptions to more general rules.  For example: birds fly, 

except in the case of penguins, emus and ostriches.  It corresponds to polymorphism in Object 

Oriented (OO) modelling. 

4.4 Variations on the RDR theme 

Over the past decade there have been numerous implementations of SCRDR and MCRDR73. 

In general, cases are presented to an expert who accepts a conclusion or creates a new rule 

with the correct conclusion that is attached to the incorrect rule.  An approach to generalising 

RDR has been provided by (Compton, Cao and Kerr, 2004).  Other RDR variations related to 

this research are described below.  Later on in the thesis (section 6.7, page 87) further 

discussion is provided of some of these RDR variations. 

4.4.1 H-RDR 

Heuristic RDR (H-RDR) was proposed by Bekmann (et. al 2004) (Bekmann, 2006). The 

approach combines incremental knowledge acquisition and probabilistic search algorithms, 

such as evolutionary algorithms, to allow a human to develop problem-solvers in new 

                                                 

72 Many thanks to an anonymous PKAW 2006 reviewer of the (Vazey and Richards, 2006b) paper for some of 

these very helpful reflections on the research presented.  The importance of controlling the order of rule 

evaluation is also noted in (Compton, Cao and Kerr, 2004). 

73 Implementations of the RDR variations are noted for example in (Kang, 1995, pp 40, 41), (Richards, 1998a, 

p67), and (Compton, Cao and Kerr, 2004, p2). 
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domains.  The HRDR framework is also referred to as HeurEAKA.  It has recently been 

demonstrated in traffic light optimization, and the optimization of channel routes in VLSI 

design.  Genetic algorithms were applied together with a Bayesian optimization algorithm 

(Bekmann, 2006, p 30). 

4.4.2 R-RDR 

Kang (1995, p132-133) reports on the use of SCRDR for ion chromatography in which an 

inference mechanism was developed that automatically filled in missing values to assist with 

the configuration of the ion chromatography equipment (Mulholland et. al, 1993).  Each sub-

domain was represented in a separate single classification knowledge base, which the 

inference engine would bring together to reason about and hence configure the case at hand 

(personal communication, Richards, 2006).  The mechanism became known as Recursive 

RDR (R-RDR). On each cycle the last true conclusions at the end of each path were returned. 

A heuristic was then used to choose which conclusions to accept.  These were used as inputs 

for the next inference cycle. 

4.4.3 P-RDR 

Possible RDR (P-RDR) considers a subset of the branches used in RDR and reports all last 

true conditions after taking any branches that might possibly be true. One implementation, 

which was an initial and partial solution to the ion chromatography configuration problem, 

combined RRDR with Possible RDR (PRDR) (Mulholland et al 1993).  

PRDR can be difficult to manage as often too many alternatives are provided and it is hard to 

determine the useful ones.  In PEIRS, it was noted that uncertainty was sufficiently 

represented in the wording of conclusions, without requiring any further representation in the 

underlying RDR structure (Edwards, 1996, pp 120-121). 

4.4.4 I-RDR 

Interactive RDR (I-RDR) was previously undertaken for single classification tasks, but the 

ideas were not published74.  In concept, I-RDR allowed an SCRDR system to prompt the user 

for more information when required.  The user was able to enter a value or indicate that the 

value was “unavailable” and the response was added to the case (personal communication, 

                                                 

74 Personal communication, Quoc Thong Le Gia via Debbie Richards (2004). 
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Debbie Richards, 2006).  When changes were made to the temporary case, no matter how 

small, another path could be found through the decision tree when case was re-evaluated.  The 

cases were temporary and were never stored.  Such cases were simply used as a way of 

querying the system in a directed way. Simulation studies were done using the IRDR 

mechanism that yielded poor results and the idea was not pursued.  

4.4.5 N-RDR 

Nested RDR (N-RDR) introduced the concept of intermediate conclusions (Beydoun and 

Hoffman, 1997).  The lack of tools for abstracting specific features to more general features 

was seen as an important limitation in PEIRS (Edwards, 1996, pp 120, 134, 137) and N-RDR 

suggested a solution to this problem.  N-RDR allowed knowledge at different levels of 

abstraction to be captured in separate knowledge bases that the inference engine would bring 

together to reason about the case at hand (personal communication, Richards, 2006).  Drake 

and Beydoun (2000, p76) extended N-RDR to allow the expert to include parameter lists for 

expert-introduced concepts. 

NRDR is suited to single classification problem domains.  However, as noted previously in 

section 2.5.3 (page 26), the troubleshooting domain in the HTG support centre case study was 

a multiple classification domain.  In addition to the changes proposed later in this thesis to 

adapt MCRDR to support collaboration, the shared child RuleNode structure presented in 

section 13.4 (page 245) and the use of the setAttribute() conclusion type (discussed on page 

195) allows the multiple hierachical restricted domains (MHRD) supported by NRDR 

(Beydoun et. al, March 2005) to be supported using the 7Cs (modified MCRDR) approach 

proposed by this research. 

4.4.6 TC-RDR 

Time Course RDR (TC-RDR) was developed by Philip Byrnes-Preston to investigate the 

interpretation of “time course” (temporal) data (Edwards, 1996, p144).  One of the main 

innovations introduced by TCRDR was the ability for users to create and edit functions, 

providing for high-level feature abstractions.  The feature was utilised extensively in PEIRS 

(Edwards, 1996, p154). 
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4.4.7 Rated MCRDR 

Rated MCRDR was proposed by Dazeley and Kang (2004) and offers a way of reducing the 

brittleness of a KBS by identifying when a given case follows an unusual pattern of paths 

through the decision tree, and therefore has a higher risk of interpretative error and the 

subsequent need for knowledge acquisition.  It uses an MCRDR front-end and a neural 

network back-end that provides a numeric confidence rating for combinations of 

classifications.  “When an unusual classification pattern was found then the system provides a 

warning to bring the case to the user’s attention” (Dazeley and Kang, 2004, p11). 

4.5 Chapter Summary 

The main ideas embodied in SCRDR and MCRDR are: KBSs grounded in cases, an exception 

structure, and a simple KA technique designed to be performed by the domain expert that 

encourages the incremental development, maintenance and validation of the knowledge base. 

MCRDR offers an algorithm and data structure for indexing classifications by creating rule 

conditions that examine the attributes of incoming cases.  Hence MCRDR could be used to 

develop an index for support centre solutions i.e. solution classes, on the basis of incoming 

problem cases.  The case-driven approach to acquiring knowledge employed by MCRDR 

could work well in the support centre environment where users continuously pull cases off an 

incoming problem queue and attempt to match them to solutions. 

However, in contrast to previous MCRDR approaches, including previous approaches to build 

a system for the help-desk domain using MCRDR, in this research it was found that: 

1. Experts in the support centre domain have to define the cases, as well as the rules, and  

2. Input is required from multiple experts to provide the necessary domain coverage.   

The next chapter discusses trends in collaborative knowledge acquisition that are relevant to 

the trouble-shooting context. 
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CHAPTER 5: COLLABORATION FEATURES AND TRENDS 

5.1 Chapter Outline 

Recalling from section 1.3 on page 3 that: 

a sub-goal of this research was to explore the possibilities to adapt SCRDR and / 

or MCRDR to the support centre context, and to design, prototype and test a 

software blueprint that could assist with problem solving in previously 

unchartered, repetitious and complex problem domains; 

as described previously (section 3.5.1 on page 36) the HTG interview and survey results 

showed that trouble-shooting knowledge is learned, acquired, generated and consumed in a 

decentralized manner by multiple stakeholders and using multiple sources of information 

across the global support organization.  As a result of previous software development, project 

management and consulting experiences75, I came to the view that RDR needed to support 

collaboration.  Related ideas were presented to HTG in March 2004, and published in (Vazey 

and Richards 2004a) (Richards and Vazey, 2004) (Vazey and Richards, 2004b) and (Vazey 

                                                 

75 At one of the firms (for which I was a Senior Design Engineer from 1993 to 1998) we used Rational Rose’s 

(ne. PureAtria’s) Clearcase collaborative software version control system to manage massive multi-user 

collaborative software development projects across multiple sites in multiple different countries.  At another firm 

(for which I was a Project Manager from 1998 to 2000), we used the GNU open-source CVS product to support 

multi-site multi-user software collaboration.  Both source control solutions had the ability to compare and merge 

shared fragments of source code that were concurrently modified by numerous individuals in the software 

development team.  There was a separation between private user views, and the public system view.  Similarly 

products like DDTS and Lotus Notes supported international collaboration in requirements management and 

defect tracking across multiple and varied sites, cultures and timeframes.  At another firm (for which I was a 

Senior Software Consultant from 2000 to 2001), a multi-user heavily loaded RAM-database client-server 

Internet solution provided for real-time transaction locked database updates by volumes of online concurrent 

users using (amongst other patterns) the model-view-controller design pattern (Burbeck, 1987).  Finally, (while I 

was consulting) at yet another firm in the ICT industry (2001), collaborative project management was achieved 

using the distributed web-based MS Project platform, and collaboration in requirements engineering, design, and 

testing occurred using Wiki’s OpenSource software. Combined with my experiences in botanical classification 

as outlined on page xi, I found compelling reasons to pursue a collaborative classification approach to 

knowledge acquisition. 



 Chapter 5: Collaboration Features and Trends 

Submitted January 27, 2007 65 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

and Richards, 2005a)76.  The collaborative RDR ideas later formed the basis of a PCT patent 

application as described on page 283. 

Since no one person could possibly hold all the answers to incoming problems at the support 

centre, perhaps the most significant limitation with existing SCRDR and MCRDR approaches 

at the time of this research was their inability to support multiple experts in collaboratively 

constructing the knowledge.  As noted by Dr. James Moody in his keynote speech at the very 

recent Macquarie University Innovation Awards (Nov 29, 2006), the ICT revolution has had a 

clear focus on reducing the transaction costs between geographically dispersed people and 

organisations.  In the last 15 years a plethora of collaborative software products have therefore 

emerged.   

In the SCRDR-based PEIRS system, all reports that were misinterpreted by the system were 

given to a single expert to add new rules to the system (Kang, 1995, p39).  Further, as 

described in section G.10 (page 411), at the time of this research only one person at a time 

could build the rules in PKS’s MCRDR-based LabWizard product.  There was no mechanism 

for multiple people to simultaneously add rules to the same knowledge base.  Each sub-

domain was codified and maintained in a discrete single-user knowledge base.  The prevailing 

single-expert paradigm at the time of this research was also reflected in the definition of a 

KBS by (Compton, Cao and Kerr, 2004, p2) as a system in which rules “are added to capture 

the preferences and beliefs of the owner/supervisor/teacher of the system in some sort of 

knowledge acquisition process”77.  As discussed previously (section 3.4 on page 34), the lack 

of support for collaboration was shared by state-of-the-art ontology KBSs.  Hence the 

problem of collaborative MCRDR knowledge base construction was one of the main 

limitations addressed by this research. 

This chapter addresses the following research question: 

Q3. What literature and technologies are relevant to a collaborative  

MCRDR-based troubleshooting approach? 

                                                 

76 A list of publications arising from this research is provided on page 281.  Many thanks to Debbie Richards for 

much appreciated work on the co-authored papers. 

77 It is interesting to note that further on in (Compton, Cao and Kerr, 2004, p3) “the philosophical arguments for 

why an (individual) expert can never be relied on” by (Compton and Edwards, 1990) are referenced. 
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Findings from CSIRO’s Panoptic search engine project are presented (section 5.3, page 71), 

showing that anchor text – the text that webmasters use to label their links to others’ websites 

– provides by far the best correlation with search terms that people use when attempting to 

locate websites using popular search engines like Google. 

New age collaborative web platforms like blog sites, web forums, and folksomonies 

demonstrate the enormous will and capacity of users from disparate walks of life to 

communicate and collaborate.  Wikipedia is an outstanding example of this phenomenon.  In 

this chapter these technologies are described, and the relationship between folksomonies, 

Wikipedia and the anchor text phenomenon harnessed by popular search engines is 

highlighted. 

The anchor text analogy is used to suggest the collaborative use of rule-based anchor text to 

tag problem classes for the support centre, and thereby to provide an index from problem 

cases to their relevant solutions. 

5.2 Collaboration and Conflict 

As mentioned previously, at the time of this research, previous RDR systems had only ever 

supported one person at a time updating the RuleNodes in the rule tree.  Although work had 

been done in trying to resolve conflicting knowledge models by comparing Formal Concept 

Analysis (FCA) (Wille, 1992) and (Ganter and Wille, 1999) representations of classifications 

and rules collected using the MCRDR approach (Richards, 1998a, Chapter 6, pp 181 – 209), 

there had been no support for multiple experts to collaboratively resolve their classification or 

conclusion conflicts inside the scope of a set of SCRDR or MCRDR interactions.  No 

mechanisms had been developed to support the inline conflict resolution required when 

acquiring knowledge from multiple and possibly conflicting sources of expertise.   

This thesis supports collaboration by multiple experts in concurrently acquiring and 

negotiating knowledge representations in a shared domain.  In contrast, and similar to the 

approach taken by Richards (1998a) during the course of this thesis, Beydoun et. al (March 

2005) studied the merging of separately created NRDR KBSs from independently operating 

experts that modelled identical domains.  They refer to their work as cooperative, as opposed 

to collaborative.  A discussion of the differences between these two terms was provided in 

section 1.5 (page 5).  In support of this thesis, (Beydoun et. al, 2005, p48) argue that ‘a 

coherent collective experience is a better reflection of “reality”’ than the experience of 
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disparate individuals and that “a state of consensus between experts reflects a mature model, 

which is consistent with the world as perceived by the collection of these experts”   

In separate cooperative work, virtual surfing trails are captured from multiple web surfers in a 

given topic area that can be shared by peers in that topic area using FCA (Beydoun et. al, 

2007).  In that paper, they argue that “it is of high interest to learn from colleagues of the 

same community because of common interests and aims” (Beydoun et. al, 2007, p3)78. 

Almost a generation ago, Shaw and Gaines articulated the importance of seeking input from 

multiple experts when attempting to elicit knowledge about a domain (1989, p1): 

“in many domains… expertise is… distributed over many experts, and the purpose 

of the system is to bring it together… the use of multiple-experts… is an attractive 

technique to prevent individual experts…(from)  failing to fully explore and 

express their conceptual domains”. 

As well, they note that (p21): 

“in the initial phases of knowledge acquisition, highlighting gross similarities and 

differences is itself valuable in promoting directed discussion among experts… 

that can lead to the exposure of more subtle relationships” 

Easterbrook (1991, pp 6, 11) highlights that conflict in both interpretations (inputs) and goals 

(outputs) is an inevitable feature of group interaction, knowledge elicitation, and system 

design; and it has a useful role in facilitating change and producing higher quality group 

decisions as it involves questioning and evaluating received wisdom.  He highlights that 

avoidance is only one strategy for dealing with conflict (pp 1-2) and he suggests that (p13): 

“The first problem for conflict resolution is to recognise that a conflict exists”. 

Conflict is also discussed by Zondag and Lodder (2005, p5) who note that goal incongruity is 

mostly of a perceived nature, and that any information exchange to improve the level of 

objective and reliable information that each party holds about the other party’s goals is likely 

                                                 

78 Note that with reasonable computational delays in mind, an FCA approach to knowledge viewing could be 

applied at any time in the 7Cs approach proposed by this research, for either the public knowledge view shared 

by the expert group, or the private knowledge views of individual experts. 
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to reduce the conflict.  Further, examples of terminological and interpretational conflict are 

highlighted by Hakimpour et al. (2001). 

The analysis by Shaw and Gaines (1989) highlights that consensual agreement is only one of 

many significant outcomes from the involvement of multiple experts since experts may 

legitimately have different terminologies for the same domain concept; they may be operating 

out of different conceptual frameworks; they may be operating from different perspectives 

within the same conceptual framework; and they may choose to describe things at different 

levels of abstraction.   

Figure 6 reproduced from Shaw and Gaines (1989, p3) shows the 4 different relations that can 

result from the different distinctions (attributes) and terms used by two or more different 

experts operating in the same domain, namely: consensus, correspondence, conflict, and 

contrast. 

Figure 6: Consensus, conflict, correspondence, and contrast among experts 

 
Reproduced from Shaw and Gaines (1989, p3) 

with the kind permission of Brian Gaines. 

As a result of these different terminologies and distinctions, Shaw and Gaines argue that 

support for the coexistence of a variety of corresponding concepts will increase the usability 

of the expert system (1989, p5). 

Easterbrook (1991, pp 12, 13) notes that a good conflict resolution approach will emphasise 

an appropriate level of communication between the different parties: increased 

communication leads to decreased conflict up to a certain level, but too much communication 
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can lead to increased conflict, therefore a balance must be struck between encouraging 

communication and devoting appropriate amounts of effort to resolving the differences.  It is 

only worthwhile entering the conflict resolution process when the differences between 

viewpoints matter.  He goes on to develop a scale for the severity of the conflict ranging from 

non-interference where merging or co-existence provides a simple solution, to mutually 

exclusive where the two different viewpoints cannot continue to co-exist and must be resolved 

(pp 21, 22).  In the system proposed further on in this research, the shared child RuleNode 

structure (described in section 13.4 on page 245), supports the co-existence of multiple 

concurrent truths demanded by multiple experts operating within the same KBS.   

As well, two users may wish to view conclusions at a RuleNode at different levels of 

abstraction.  This issue is highlighted by Golder and Huberman (2005) in reference to 

collaborative tagging systems (described later in section 5.4 on page 72), where users perform 

a significant amount of tagging for personal use, rather than public benefit, and where users 

display very different desires for specificity versus generality in the tags that they apply.  In 

the PEIRS system different categories of comment or conclusion were required relating to 

pattern identification, clinical abstraction, and advice (Edwards, 1996, pp 77 – 78).  In my 

proposed system, maintaining multiple conclusions for each RuleNude, and allowing the user 

to configure the types or levels of conclusions they wish to see in their output view should 

help to resolve this problem.  We return to this issue in the example provided in Appendix R 

(page 485). 

When multiple experts are involved, the problem of redundancy and duplication is 

particularly likely to arise in conventional MCRDR systems that provide rules with only 

conjunctions (ANDs) rather than ORs (Kang, 1995, p66) since alternate pathways to the same 

conclusion can only be represented by physically separate pathways.  In contrast, the use of 

ORs in the rule conditions, together with the use of the shared child RuleNode structure in the 

system proposed by this research, will alleviate this problem. 

Where the conflict is important enough not to be avoided, Easterbrook (1991) advocates that a 

project will be enhanced by handling the conflict in more direct ways.  In the system proposed 

by this research, the tracking of live versus registered case-RuleNode associations (described 

in section 11.7 on page 210) supports the conflict resolution required when either partially-

interfering or mutually exclusive viewpoints arise from multiple experts operating within the 
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same KBS.  Similar to ideas subsequently presented in (Beydoun et. al, 2005, pp 66, 68) the 

‘integrated (i.e. “live”) model… comes to represent a consensus between models provided 

(i.e. “registered”) by different experts’.  Both works are based on the idea that “internal 

inconsistencies in a cooperative modelling process are mainly a signal of incompleteness of 

the evolved model”. 

Easterbrook (1991, p4) refers to three broad types of conflict resolution identified by Strauss 

(1978): collaborative (co-operative) methods that include education and negotiation; 

competitive methods that include combat, coercion, and competition; and third party methods 

that include arbitration and appeals to authority.  In Figure 7, Easterbrook adds two other 

broad types of conflict resolution identified by Thomas (1976): sharing (compromise) and 

avoidance (neglect).  The 5 different types of conflict resolution are plotted according to the 

desire to satisfy another party’s concern, and the desire to satisfy one’s own concern. 

Figure 7: Behavioural modes of tackling conflict with (in brackets) the outcome sought in 

each mode. 

 

Reproduced from Easterbrook (1991, p6) 

with the kind permission of Steve Easterbrook. 

From Figure 7 we can see that in a collaborative conflict resolution approach, participants 

seek to understand their differences and achieve a mutually beneficial solution (Easterbrook, 

1991, p6).  It is appropriate where participant’s insights and commitment are important and 

need to be merged rather than compromised.  The educative component of collaborative 

conflict resolution allows experts to gain a better understanding of the problem, better 
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understand each-other’s viewpoints, and possibly reformulate the problem so that it 

disappears or becomes unimportant (Easterbrook, 1991, p4). 

Easterbrook (1991, p3) highlights some of the problems of conflict avoidance: conflicts get 

suppressed; a single perspective gets adopted at the cost of alternative perspectives; the 

suppression eventually leads to dissatisfaction and may result in the withdrawal of 

participants; and the participants will maintain different understandings which may cause 

ongoing confusion.  If resolution of the conflict occurs it will occur outside the framework of 

the method and will therefore be untraceable, making important rationales undetectable, and 

important decisions irreproducible. 

5.3 Collaboratively Generated Anchor Text 

Panoptic79 is an enterprise search appliance, developed by CSIRO and the Australian National 

University (ANU), designed to dramatically improve the effectiveness of information 

retrieval for an organisation’s customers and staff.  In his “Enterprise Search and Metadata” 

presentation at the Macquarie University HCSNet Summer School (Dec 13-14, 2005, 

Sydney), David Hawking from the CSIRO provided some important insights into the search 

algorithms used by popular search engines such as Google, Yahoo and MSN. 

Hawking described how the Panoptic project found that the most valuable information to 

popular web search engines and enterprise search appliances alike, was the anchor text 

information applied by other independent webmasters on the Internet to refer to a given 

website. 

For example in HTML the anchor reference: 

<a href=”http://www.lookatme.com.au/here.html”>Look At Me</a> 

applies the anchor text: Look At Me to refer to the website shown.   

It was Amatay (1998, p3) who originally noted the importance of anchor text to Internet 

searching.  Amatay found that the anchor text used by others to refer to a given web page has 

a very strong correlation with the search text users apply when searching for that web page.  

According to David Hawking (personal communication, 2005) Panoptic’s findings 

                                                 

79 http://www.csiro.au/csiro/content/standard/pps6f,,.html  



 Chapter 5: Collaboration Features and Trends 

Submitted January 27, 2007 72 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

corroborate with Steve Robertson’s findings80 (then at City University, London).  Robertson 

found that as far an anchor text is concerned: less common query words are more 

discriminating81; the more occurrences of a query word the better; and that shorter documents 

are preferred by users and should therefore be preferred by the search algorithm.  Further 

findings from CSIRO’s Panoptic project regarding the importance of anchor text to 

information retrieval algorithms is presented in Appendix H (commencing on p 414). 

5.4 Folksomonies 

A collective attempt to solve the findability82 problem (presented by web forums, blogs83 and 

the Internet in general) and to simulate the anchortext phenomena (discovered by Amatay, 

and harnessed by Panoptic and others), without requiring users to create their own web pages, 

has been the folksomony84, also known as collaborative tagging or tagsomony. 

Collaborative Tagging describes the process by which many users add metadata in the form of 

keywords (i.e. anchor-text) to shared content.  Traditionally such categorising or indexing was 

performed by some authority, such as a librarian, or else derived from the material provided 

by document authors.  Collaborative tagging is well suited to situations where either there is 

nobody in the librarian role or there is simply too much content for a single authority to 

classify (such as on the web, and in the support centre trouble-shooting context), and there is 

no way of deriving suitable classification indexes from the material itself (Golder and 

Huberman, 2005). 

Folksomonies or tagsomonies offer an attempt to improve the findability of websites, 

including blog and web-forum entries.  The term ”folksomony”85 was first coined by Thomas 

                                                 

80 leading to the Okapi BM25 formula 

81 This also correlates with the Inverse Document Frequency (IDF) measure mentioned in Appendix D in 

relation to information retrieval. 

82 It has been estimated that the world’s total store of knowledge is doubling every four years or less. Today’s 

problem is not so much one of searchability, but rather findability82, a term coined by Peter Morville (2005).   

83 for a good blog definition see: http://help.blogger.com/bin/answer.py?answer=36&topic=16  

84 http://en.wikipedia.org/wiki/Folksonomy  

85 http://vanderwal.net/essays/051130/folksonomy.pdf  
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Vander Wal86 (2005) to describe forums in which people can tag objects (web pages, photos, 

videos, podcasts, etc., essentially anything that is Internet addressable) using their own 

vocabulary so that it is easy for them to re-find that information again.  Tags are a form of 

keyword metadata (i.e. anchor-text), designed to help make Internet content more findable. 

Vander Wal describes folksonomies as a social phenomena, since at least for broad87 

folksomonies, others that use the same vocabulary are able to find the object as well.  He 

offers del.icio.us and flickr as examples of broad versus narrow folksomonies and notes that 

folksonomies work wonderfully for individuals trying to re-find their own information, but 

they work best for groups of users when the tags used to describe objects are part of a 

common vocabulary.  Other popular examples of folksomonies include furl88 and shadows89.  

A brief review of del.icio.us and flickr is provided in Appendix I (commencing on p 415). 

Clay Shirky90 (2003) explains how the freedom of choice for users forms a power law 

distribution for both tag popularity in broad folksomonies as well as web page popularity in 

general, that fits the 80/20 rule and a power law probability distribution91 first identified by 

economist Vilfredo Pareto (1906) in regard to wealth distribution.  Further discussion of this 

phenomenon is provided in section 7.2.6 (page 118). 

Based on the success of the folksomony paradigm and the findings of a number of researchers 

including CSIRO’s Panoptic project discussed earlier, it seemed plausible that a knowledge 

management system that relies on some form of article tagging by multiple users could be 

created to increase the findability of knowledge articles in the system for both individuals, and 

groups.  These tags need not be restricted to simple keywords, but rather they could contain 

more complex expressions of rule conditions satisfied by the items being tagged, such as the 

                                                 

86 http://vanderwal.net/  

87 for a discussion of broad (multi-user, multi-tag) versus narrow (single-user and/or single-tag) folksonomies see 

http://www.personalinfocloud.com/2005/02/explaining_and_.html  

88 http://furl.net/  

89 http://shadows.com  

90 http://www.shirky.com/writings/powerlaw_weblog.html  

91 http://en.wikipedia.org/wiki/Pareto_distribution  
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rule conditions in RuleNodes that are used to tag classifications in an MCRDR-based data 

structure.  

Table 7 on page 74 summarises the analogy that this research draws between Folksomonies, 

Anchor text, and a Collaborative MCRDR approach, which in the tradition of RDR variations 

is referred to here as C-MCRDR. 

Table 7: Analogy between Folksomonies, Anchor text, and C-MCRDR 

Approach Who does the 
tagging? 

Tag with 
what? 

Why? Search with 
what? 

Folksomony Folksomony 
members. 

Anchor Text 
Webmasters across 
the Internet 
community. 

Natural 
Language 
or Plain 
text 
Keywords 

These keywords 
provide a match 
with the keywords 
or natural language 
that searchers use to 
locate the selected 
Internet resource 
e.g. website. 

Keywords or 
natural language 
search text. 

Collaborative 
MCRDR  
(C-MCRDR) 

Members of the 
collaborative MCRDR 
community. 

Rule 
Conditions

These rule 
conditions provide a 
match on the semi-
structured case data 
that searchers use to 
locate the selected 
Internet resource 
e.g. website. 

Semi-structured 
cases. 

 

5.5 Wikipedia 

Wikipedia92 is a collaborative knowledge acquisition phenomenon that has gathered truly 

remarkable momentum.  Started by Jimmy Wales in 2001, Wikipedia defines a Wiki as the 

collaborative software and resultant web forum that allows users to add content to a website 

and in addition, to collaboratively edit it.  The Internet, and indeed Wikipedia, lets millions of 

people collaborate in creating, linking (organising), and refining knowledge.  Wikis and 

Wikipedia provide a radical extension to the blog, web forum, and folksomony paradigm.  

                                                 

92 http://wikipedia.org/ 
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Further to this, Völkel et al. (2006) provide a recent discussion of Wikipedia (Völkel et al., 

2006 p2) in which modifications are suggested to enhance its semantic searchability. 

At an invited talk at OOPSLA / WikiSym in Oct 2005, Wales referred to the Wikipedia 

phenomenon as the “free culture revolution” (Wales, 2005)93.  At http://wikipedia.org, when 

anyone in the public Internet community (including you and me) feels that a particular topic 

requires content, they are able to insert the topic into the knowledge base, and generate the 

content.  With more than 5 million articles in more than 200 different languages94 it is a 

community project to create a global encyclopaedia spanning every topic in every language.  

Already it provides a phenomenal resource in areas of history, science, engineering, the arts, 

politics, and society. 

The Wiki philosophy (Cunningham and Leuf, 2001) reflects the belief that most times, 

knowledge (i.e. true or false knowledge) is better out in public than kept in private.  With 

Wiki, an unwritten assessment has been made that private knowledge is of much less value 

than public knowledge, even when that knowledge is false, since publicly amendable 

knowledge that is false is more likely to be corrected than false private knowledge.  By 

providing a collaborative forum for knowledge acquisition, knowledge conflicts are resolved 

more rapidly than such conflicts might otherwise be, and useful knowledge acquisition is 

more likely to occur.  This correlates with the views of Zondag and Lodder (2005, p5) 

expressed earlier (section 5.2, page 66). 

The Encyclopaedia Britannica and Wikipedia story summarised in Appendix J (commencing 

on p 417) tells of a revolution in knowledge management bought about by the ubiquitous 

Internetworking of computers and a massive leap in faith about the desire and ability of 

humans to collaborate and communicate.  It demands a fundamental change in our beliefs 

about the scope and possibilities of collaborative knowledge acquisition, storage, and re-use.  

The story highlights the present demand for knowledge to be findable, elastic, current and 

relevant.  It highlights the importance of drawing on a number of experts to contribute the 

knowledge dynamically. 

                                                 

93 The international symposium on Wiki’s is described at http://www.wikisym.org/.  Coverage of OOPSLA 2005 

talk has been provided at: http://wiki.cs.uiuc.edu/OOPSLA05/Wikipedia+in+the+Free+Culture+Revolution 

94 http://en.wikipedia.org/wiki/Wikipedia  
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While there has been controversy over and criticisms of the wiki approach95, an important 

observation is that the approach lets multiple experts learn from, contribute to and refine the 

knowledge presented.  It lets users continuously contribute to the best of their knowledge, so 

that the best knowledge of all users is the one that persists.   

Finally, in Wikipedia, not only is the knowledge itself changing, but also the anchortext 

referring to that knowledge, and referred by that knowledge. 

5.6 The Semantic Web 

In the last several years the effort of the Semantic Web community to develop approaches96 

that allow mature ontologies to be built, distributed and interchanged, has provided key 

developments in the area of knowledge representation, reasoning, and visualisation.  A 

summary of some of the semantic web languages is provided in Appendix K (commencing on 

p 419).  As described in Appendix K, the Web Ontology Language: OWL (which builds on 

the XML-based RDF language) allows content in the semantic web to be collaboratively 

indexed by a distributed community of Internet users.  Hence advocates for the semantic web 

are currently attempting to augment the anchor-text phenomenon used by popular search 

engines and the anchor-text phenomenon promoted as tags in folksomonies to provide a more 

context rich index for Internet addressable knowledge.   

On a different angle, Beydoun et. al (2007) offer a novel approach to evolving a semantic web 

using social navigation – as mentioned earlier, they capture virtual surfing trails from 

cooperating web surfers.  They too provide a review of the semantic web and the 

collaborative ontology literature (Beydoun et. al, 2007, p2). 

                                                 

95 http://en.wikipedia.org/wiki/Wikipedia#Criticism_and_controversy  

96 The main effort of current research in knowledge representation is providing theories and systems for 

expressing structured knowledge and for accessing and reasoning with it. Description Logics (see 

http://www.cse.unsw.edu.au/~cs4418/Lectures/dlnotes/description-logics.pdf) are currently considered by the 

International Knowledge Representation and Reasoning community (see http://www.kr.org/KR2006/) to be the 

most important knowledge representation formalism unifying and giving a logical basis to the traditions of 

Frame-based systems, Semantic Networks, KL-ONE-like languages, Object-Oriented representations, Semantic 

data models, and Type systems (http://dl.kr.org/, April 2006).  For information about inference in description 

logics, and the Tableaux Algorithm see (Baader and Sattler, 2000) (Baader and Nutt, 2003). 
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5.7 Chapter Summary 

The chapter began by recalling that troubleshooting in the ICT support centre domain requires 

wide spans of knowledge from multiple and sometimes conflicting sources of knowledge.  In 

answer to the research question: 

Q3. What literature and technologies are relevant to a collaborative  

MCRDR-based troubleshooting approach? 

a review of literature relevant to collaboration in knowledge-based systems discussed the 

conflict resolution issues relevant to a multi-user approach.   

The chapter went on to explore recent technology trends in “new age” web-based 

collaborative knowledge acquisition.  Trends in the use of Anchor-text and Folksomonies 

together with current Semantic Web approaches indicate that it is possible to create a KBS 

that relies on some form of article tagging by multiple users to increase the findability of 

knowledge for both individuals, and groups.  The review of Wikipedia indicates that it is 

possible to create a KBS that lets multiple users concurrently and incrementally contribute to 

the best of their knowledge, so that in general, the best knowledge of all users is the one that 

persists. 

As discussed previously (section 4.2 on page 40), the philosophy underpinning RDR is that 

knowledge is socially situated, contextual, continually changing, and emergent (Compton and 

Jansen 1989).  In brief, knowledge as something made up to fit the given context.  Given that 

knowledge is socially situated, and that people themselves form part of the context in which 

the knowledge is to be captured and reused, it seems natural that a Collaborative MCRDR (C-

MCRDR) approach, as proposed by this research, should emerge.   

Based on the analysis of solution retrieval problems facing the support centre described in 

Chapter 2, and as described in Chapters 3 and 4, it appeared that the MCRDR paradigm could 

provide a useful platform on which to base a KBS for the support centre.  However, the 

MCRDR structure and algorithm would need to be significantly extended to allow multiple 

experts to update the knowledge base, and to facilitate the acquisition of knowledge from 

possibly conflicting sources of expertise.  The system would need to support collaborative 

case and problem definition; problem determination and classification; and solution 

definition. 
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Allowing multiple experts to collaborate and resolve their classification conflicts within an 

MCRDR framework could provide the benefits of a Wikipedia-style collaborative KA forum.  

The aim would be to create a KA forum where multiple experts can contribute to the best of 

their knowledge, so that the best of everybody’s knowledge is the one that persists.  As noted 

by (Beydoun et. al, 2005, p65) “a state of convergence between experts … is assumed to 

reflect the world more accurately”. 

Hence a solution could be developed that is analogous to the Folksomony idea where multiple 

users tag cases with lexical symbols meaningful to both themselves and their colleagues.  This 

would parallel the anchor-text phenomenon exploited by popular search engines.  As shown 

in Table 7 on page 74, in a multi-expert MCRDR paradigm, the tags would be comprised of 

rule conditions that can be used to classify incoming problem cases and link them to relevant 

solutions.  Separate “truths” i.e. separate viewpoints would need to be maintained in the KBS 

– the private viewpoints of individual contributors, as well as the combined overall and public 

viewpoint of the group.  

The next chapter provides further review of conventional MCRDR systems in light of a multi-

user problem-solving context. 
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CHAPTER 6: ADAPTING MCRDR 

6.1 Chapter Outline 

The PEIRS trials (Edwards, 1996), the early LabWizard trials (Edwards, 1996), and PKS’s 

implementation of LabWizard at the time of this research (see section G.10 on page 411) 

targeted problem domains with the following characteristics97,98: 

• The cases came from the outside world – they were the results of pathology lab tests 

taken on blood and urine samples.  The KBS could not change these results, but the 

KBS could conclude that the combination of results looked peculiar and the lab should 

check them.  In summary, the cases were unchanging. 

• Only one expert was called upon to update the knowledge at a time.   

• It was felt that few errors were made, possibly because the domain had been mapped 

several times previously, and the characteristics of the domain were well-known99. 

• Redundant knowledge wasn’t a big a problem since cases were generally processed 

offline and in batch mode i.e. in a non real-time environment.  On-demand one-off 

case-specific interpretations could be made as an exception, rather than as a rule. 

                                                 

97 In the PEIRS trial reported by Edwards, cases in the form of laboratory test results were sometimes created 

with errors, and needed correction (Edwards 1996, p92).  However, the patient records referred to were on a 

totally separate and previously established laboratory information system and could not therefore be modified.  

As well, new domain knowledge would sometimes come to hand, requiring that existing knowledge be corrected 

(Edwards 1996, p163). 

Because PEIRS was experimental, it was allowed only very limited interaction with the LIS.  Once a case or its 

associated knowledge had been corrected, the interpretive comment previously associated with the case would 

become invalid.  So in PEIRS, immediately after printing interpreted cases, an erase program was automatically 

executed to remove comment codes from all of the cases that had been printed.  This was inconvenient because 

the interpretations for all cases would be erased and they wouldn’t be available online for others to see (Edwards 

1996, p 122, 131). 

98 Many thanks to an anonymous PKAW 2006 reviewer of the (Vazey and Richards, 2006b) paper for some of 

these very helpful reflections on the research presented. 

99 In fact, even the pathology domain continues to evolve as new sub-domains and knowledge come to hand. 
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Similarly in the NRDR work (Beydoun and Hoffman, 1997) (described in section 4.4.5 on 

page 62), the case was the chess game so far – the KBS could not change the history of the 

game; only one expert was required to update the KBS, and processing was done offline. 

Clearly these previous RDR systems dealt with different sorts of cases in a structurally 

different domain to that being dealt with by this research.  The troubleshooting domain 

reported in Chapter 2 introduces new challenges for the MCRDR algorithm100: 

• Cases may be constructed on the fly (by multiple different experts) as information 

about the nature of the problem comes to hand. 

• Many experts are needed to create the knowledge (i.e. the conditions, classifications 

and conclusions) in order to maximise coverage of the domain, and the completeness 

of the knowledge base.  No one expert holds all the requisite information. 

• The uncertain nature of cases and RuleNodes means that the edit of Cases, RuleNodes, 

and their associations needs to be supported, both as the KBS is built and during 

routine operation. 

• The KBS needs to be efficient (and hence compact) so that it can support the rapid 

real-time responsiveness required by users. 

Hence this chapter begins to address the following research question: 

Q4. How can MCRDR be adapted to a real-time environment where problems and their 

solutions are continuously evolving, and where a distributed group of stakeholders can both 

contribute to and benefit from the acquired knowledge? 

The chapter provides an introduction to the ways in which this research has adapted the 

MCRDR algorithm initially developed by Kang (1995) to the trouble-shooting context in the 

support centre domain. 

                                                 

100 Relatively recent work by (Wada et al., 2002) and (Yoshida et al., 2002, 2004) adapts SCRDR to a different 

novel problem domain.  The work proposes the combining of KA from human experts with inductive learning 

from labelled data.  A facility to delete RuleNodes is also suggested. 
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6.2 Support Centre Challenges for MCRDR 

The support-centre environment has a number of properties that collectively present new 

challenges for the MCRDR algorithm101: 

• The system needs to deal with numerous cases - in the order of 5000 per day globally; 

• The volume of cases being dealt with means that the workflow must inherently deal 

daily with decentralised system maintenance and knowledge acquisition – hence 

multiple users will use and update the system, but a limited subset of privileged users 

may need to approve their updates; 

• Initial problem descriptions are sparse – the case definition matures as customer 

service personnel interact with the customer and work the case - multiple users may 

need to describe the cases through an interactive question-answer interface to the 

system that will assign the relevant A-V pairs to the case; 

• While most cases are resolved promptly, a number of cases are open for days or even 

weeks; 

• Problem receipt and resolution is asynchronous since there is a time delay between 

when the system receives a problem case, and when a customer service representative 

can attend to it; 

• The system must interact with a legacy ticketing system and legacy knowledge base; 

• Archived cases and the conclusions registered to them need to be available for several 

years (perhaps 10 years for some cases) into the future; 

• Old cases/ old conclusions may be edited; 

• The granularity of conclusions may vary widely and conclusions that are web links 

may expire; 

• Very many attributes will exist and vary across cases and new attributes will 

frequently need to be added; 

                                                 

101 Some of this text appears in (Vazey and Richards, 2005a). 
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• The range of values possible for those attributes may be very large and the 

dependencies between these attribute-value (A-V) pairs may be very strong. For 

example, issues may span multiple systems, platforms, vendors, versions, etc. 

• The proposed system will not have control over the referred case data, which is stored 

in the parent company’s database; 

• The attribute-value (A-V) pairs and rules in my system cannot be simple keywords, 

and simple tests for existence of keywords.  Rather, the attributes may be any type e.g. 

integer, float, string, enumerated type, or free-text; they may be single valued, one of a 

set, or some of a set; and tests may include tests for range such as ‘installation date > 

2001/01/30’; for existence (indicated as ?) such as ‘? patch 3.6.5’; for containment e.g. 

‘case description contains machine generated’ or for equivalence e.g. ‘version == 3.2’. 

• The system needs to fit smoothly into the workflow of a bustling call centre – 

expediency, efficiency and accuracy will be key to the system’s success. 

The remainder of this chapter proposes some novel modifications to the MCRDR approach in 

support of these domain characteristics. 

6.3 Supporting Case Change 

Users in the support centre domain have to define the cases, as well as the rules  (described 

previously in section 4.3.2.3 on page 58).  In a changing and uncertain domain, MCRDR 

cases, including cornerstone cases, may be constructed with numerous errors or omissions, 

particularly by novice users, but also by experienced users. 

Cases may require change during knowledge building, as well as during routine use.  In the 

support centre environment, the knowledge evolution – knowledge building cycle would be 

ongoing, even for previously chartered sub-domains102. 

At this point, the terms live and registered need to be introduced.  In the proposed system, 

when a RuleNode is live it means that this RuleNode is the last TRUE RuleNode for this case 

                                                 

102 Although in mature knowledge sub-domains, the KBS administrators may decide to restrict access to some 

RuleNodes via the user profile and RuleNode approval mechanism – this feature in the 7Cs system proposed 

later in the thesis (Chapters 9, 11, and 13) is discussed in Appendix O.1 on page 451. 
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in one of the paths through the rule tree and hence it represents one of the current 

classifications for the case on hand.  In contrast, when a RuleNode is registered it means that 

at some time in the past a user acknowledged and hence registered that the RuleNode was live 

for the current case.  This separation between live and registered RuleNodes was presented to 

HTG (Vazey, March 2004) as well as in (Vazey and Richards, 2004a), and it later formed the 

basis of the US patent application described on page 283. 

In the system proposed by this research, the modification, addition and deletion of attribute 

data for cases already seen and evaluated by the knowledge base is supported.  The same case 

is re-evaluated by the KBS, and by tracking the difference between RuleNodes previously 

registered to the case, and RuleNodes currently live for the case, a change history is 

maintained showing how the classifications and hence conclusions of the case have evolved 

over time. 

6.4 Supporting Cornerstone Substitution 

Conventional SCRDR systems only recorded one cornerstone case per RuleNode, being the 

case that caused that RuleNode to first be created103.  As discussed previously in section 4.3.2 

on page 54 and also in (Richards, 1998a, p55) and (Kang et al., 1995, p5, p10), in MCRDR 

systems the set of Cornerstone cases for a RuleNode is comprised of all the Cornerstone cases 

for that RuleNode and its dependent RuleNodes.   

If a cornerstone case changes, then it may not be relevant to keep it as the Cornerstone case 

for that node.  Since cases could not be changed, conventional MCRDR systems did not 

provide a mechanism for substituting cornerstone cases in this situation, or for tracking the 

changes to existing cases, and monitoring the effect of those changes.  Further to this Gaines 

(1993) suggested that all cases could be kept in the system to improve KA. 

In the system proposed by this research, after knowledge evolution occurs, if there is another 

case that would now make a better and more representative Cornerstone case for a given 

RuleNode, then that case is substituted as the new Cornerstone case at that RuleNode.  (Note 

that at the time of substitution, this case need not be a cornerstone case for any RuleNode in 

                                                 

103 In this thesis, the conventional SCRDR definition of the term “cornerstone case” is used.  Please refer to the 

glossary on page 277 for further clarification. 
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the system – it’s just a case that is currently live (and possibly also registered) for that 

RuleNode.) 

6.5 Tracking Case drop-throughs 

As a KBS is updated with new knowledge (including changes to RuleNodes, rule conditions, 

classifications and / or conclusions), the KBS can change in such a way that a case previously 

evaluated by that KBS will now arrive at different conclusions.  The term “case drop-through” 

refers to the specific scenario where a case that used to be live for a parent RuleNode, stops 

being live for that node, and becomes live for the child RuleNode instead.  For those 

unfamiliar with the case drop-through terminology, an example of the problems of case drop-

through is provided in Appendix P (page 468). 

Edwards (1996, p88) highlighted the case drop-through problem in conventional SCRDR and 

noted the potential to corrupt the KBS.  Similarly, Kang (1995, p50) identified the situation 

where knowledge needs to be changed in such a fashion that a cornerstone case for an existing 

RuleNode will drop-through to a new child RuleNode.  Kang also suggested that if absolutely 

necessary, the rules suggested by the MCRDR difference list for the new RuleNode could be 

overridden (Kang, 1995, p65).  However the strategy for deciding the replacement 

cornerstone case for the parent RuleNode once its cornerstone case has dropped-through, and 

for determining the cornerstone case at the new child RuleNode was not fully explored (Kang, 

1995, p67). 

Chklovski (2001, p15) highlights that successful knowledge acquisition has to be transparent 

rather than opaque.  He argues that it should be possible to understand why a system did what 

it did, to see the impact of contributions, and to correct the behaviour of the system. Similarly 

Beydoun et. al (2005, p64) argue that “internal inconsistencies, or clashes between 

components of a model, are a reflection of its incompleteness”. 

Hence in the system proposed by this research, a robust and transparent strategy is provided to 

handle the case drop-through scenario (described later in section 11.7 on page 210).  By 

maintaining a separate record of the live and registered104 case-RuleNode associations, a 

difference list can be formed that highlights situations where case drop-through has occurred.  

                                                 

104 If required, please refer to the glossary on page 277. 



 Chapter 6: Adapting MCRDR 

Submitted January 27, 2007 85 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

This strategy supports verification and validation105 of the KBS.  For example, when case 

drop-through occurs case-Rulenode associations that were previously live and registered will 

suddenly no longer be live, but they will still be still registered.  This difference between the 

live and registered case-RuleNode associations provides an additional and previously 

untracked knowledge acquisition opportunity for users so that KA can occur much more 

rapidly (for some examples, see Figure 109 on page 433 and Figure 110 on page 434).  Later 

on when the knowledge base is more mature, cases can be untracked (described in Appendix 

O.4 on page 454) so that unnecessary notifications are eliminated. 

Kang, Gambetta and Compton (1996, p264) showed that for the GARVAN-ES1 data, the 

machine-detectable error introduced to cases already seen by a single-expert SCRDR system 

was 2% at the commencement of KA.  It declined thereafter to the same size as the final error 

on unseen cases (less than 0.5%).  The machine-detectable errors resulted from 

misclassifications and was caused by over-generalisations, under-generalisations, or 

omissions in the immature (but evolving) knowledge base.  Similar results were reported in 

(Compton, 2000).  However, the human-detectable-error might be much greater than the 

machine-detectable error.  The human-detectable-error may include additional errors such as 

over- and under- generalisations not detected by machine interpretation of the cases seen thus 

far, poor quality or inconsistent classifications or interpretations, references to irrelevant 

attributes, unresolved conflicts between differing expert opinion, and partial or complete 

replications in the knowledge base (Gaines, 1989, p1).  Tracking classifications for past cases 

can highlight even more of these human-detectable-errors by highlighting previously 

undetected situations where case drop-through occurs.   

In a multi-expert system, the benefit of tracking classifications for past cases may be even 

greater than for a single-expert system since the differences in expert opinion will be 

discovered and communicated much more rapidly.  Multiple experts will allow more sub-

domains to be covered, more broadly, and the benefit will be repeated for each new sub-

domain added to the KBS. 

                                                 

105 For a discussion of verification and validation with Ripple Down Rules, see (Kang, Gambetta, and Compton, 

1996). 
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6.6 Direct Edit Facility 

In previously tackled domains such as pathology, it was felt that experts populating RDR 

KBSs were unlikely to make repeated errors.  For example: 

“It should be noted that we are supposedly dealing with experts so that it makes 

little sense to speculate about the possibility of repeated gross errors of 

expertise.” (Kang, Gambetta, Compton, 1996, p261).  

Frequent (human and / or machine detectable) error possibly was not a problem with the 

SCRDR or MCRDR implementations of PEIRS since the system was only ever maintained by 

a single user (Glenn Edwards), and that user already had significant experience in codifying a 

large part of the chosen problem domain (Thyroid diseases).  Edwards was codifying the 

thyroid domain back in 1984 with GARVAN-ES1 so that domain provided mature 

codification territory during his later RDR trials (Edwards, 1995 p 15). 

In contrast, in the support centre domain where the domain knowledge is uncertain and 

changing, this research found that repeated gross errors were frequent.  In the software trial of 

the 7Cs system proposed by this research, out of 172 case creations, a further 139 case edits 

were required, and out of 107 RuleNode creations a further 141 RuleNode edits were required 

(Table 21 on page 224). 

The frequency of error is obviously dependent on the nature of the problem domain, the data 

collected for that domain, and the knowledge and experience of the experts codifying the 

domain.  For population of a knowledge base by a group of human users who make spelling 

mistakes as well as logical and classification errors in a previously unchartered problem 

domain106, the number of errors and subsequent case drop-throughs over time could be very 

significant.  For example, Easterbrook (1991, p2) highlights that conflicts can and do arise 

from a thin spread of application domain knowledge; fluctuating and conflicting 

requirements; and breakdowns in communication and co-ordination.  He refers to these 

scenarios in the context of software engineering, but it is clear that they apply to knowledge 

elicitation in many different domains.  Similarly, Horn (1993) refers to the work of Lientz and 

Swanson (1980) suggesting three major maintenance categories for expert systems: corrective 
                                                 

106 or alternatively by a group of users without any expertise as simulated by (Compton, P., Preston, P. and Kang, 

1995)  
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maintenance that deal with “bug fixes”; adaptive maintenance that deals with our changing 

world; and perfective maintenance that deals with changing user requirements.  Van Vliet 

(1999) adds preventative maintenance. 

The SCRDR evaluation by Compton, Preston and Kang (1995) referred to by Compton 

(2000) used machine-learning techniques to construct knowledge bases using data from the 

Irvine Data Repository (Chess, Tictactoe, and Garvan) and then used those learnt knowledge 

bases as the gold master in acquiring knowledge. However, the Irvine data sets have 

incomplete case data, and possibly classification errors as well.  For example see the comment 

"Plenty of missing data" for the "Thyroid Disease Database" at 

http://www.ics.uci.edu/~mlearn/MLSummary.html.  Without human expert input it is really 

impossible to estimate the volume of errors and subsequent case drop-throughs that might 

occur if the resultant knowledge bases were corrected. 

In the support centre domain, since this was the first time that the knowledge was being 

acquired, it seems reasonable to expect that errors would occur.  The most effective and 

efficient strategy for managing these errors wasn’t necessarily to patch (in the case of over-

generalisation errors) or duplicate (in the case of over-specialisation errors) that segment of 

the rule tree.  User trials indicated that users want and need to be able to edit all aspects of the 

KBS, including cases, conditions, classifications and conclusions (see section 12.10 on page 

237).  As well, users need the KBS to be able to highlight inconsistencies that occur in the 

case drop-through scenario, and inform affected participants in response, so as to maintain 

and promote integrity over the knowledge.  For related work on reasoning in the presence of 

conflicts and inconsistencies, see the work of Cheung on paraconsistent reasoning as reported 

by Bauer (2005). 

6.7 Supporting Case Construction / Configuration 

In the support centre domain, this research found (section 2.5.3 on page 26), that the expert 

needs to first “work-up” or build a case through an iterative process of fetching and recording 

more and more case detail.  As discussed previously (section 4.4.4in page 61), I-RDR was 

intended to be a query mechanism.  It was not concerned with the acquisition or maintenance 

of cases or rules.  As well, R-RDR was intended as a computer-driven configuration 

mechanism (section 4.4.2, page 61).  But the ability for a human user to “work-up” a case that 

changes over time and becomes part of the system was not supported in conventional 
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MCRDR systems.  The system proposed in this research significantly aids this process by 

supporting case configuration using an interactive and recursive multiple classification 

approach. 

Edwards (1996, p18, 38) refers to Szolovitz’s suggestion that MYCIN107, one of the earliest 

medical expert systems, demonstrated that complex flowcharts could be reproduced by a 

vastly smaller handful of rules and a simple recursive algorithm.  Hence the ability to work-up 

a case can be seen as the ability to recursively answer questions in a complex workflow, and 

re-evaluate the case to discover new paths through the flowchart. 

In the proposed system, interactive and recursive MCRDR functionality (IR-MCRDR) is 

provided so that one or more of the evaluated classifications for a case may have one or more 

conclusions that are requests for the user to more precisely specify the case by entering 

additional case data, or directives to the KBS to construct (i.e. set) additional case data.  Once 

this data has been provided the case will be re-evaluated against the rule tree.  On re-

evaluation of that modified case it is possible that another path will be found through the rule 

tree and that the case will fetch a new set of conclusions.  Some of those new conclusions may 

again be requests for additional case data.  Boose et al. (1992, p2-4) described the process of 

building up a solution from component pieces as synthesis i.e. generative or constructive; as 

opposed to just analysis which they say involves identifying sets of objects based on their 

features.  Hence, this may appear to the user as a process of guided case construction and 

guided classification or problem determination through the multiple classification KBS. 

6.8 No Notification of changes to the Knowledge. 

As discussed previously in section 6.5 (page 84) , in a dynamic knowledge environment 

where the knowledge-base can move and change, over time a case may satisfy different rule 

conditions, and hence it will fetch different classifications and conclusions.  In conventional 

MCRDR systems, the notion of registering the case-RuleNode associations did not exist and 

thus the live versus registered status of the associations was never recorded or tracked. 

                                                 

107 MYCIN was an expert system developed for diagnosing acute meningitis and recommending appropriate 

antibiotic therapy. 
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As well, conventional MCRDR systems didn’t allow cases to be “Tracked” in the sense that 

they don’t automatically re-evaluate the conclusions for cases when the knowledge base 

changes.  Conventional MCRDR systems allowed a case to be evaluated against the 

knowledge base, and the conclusions determined.  But then the case was “let-go”.  There is no 

automated process by which a party interested in that case can be notified when the 

knowledge in the rule tree moves on in such a fashion that the case is now fetching a new set 

of conclusions.  The value of keeping a history related to cases is further demonstrated in the 

example provided in Appendix P on page 468.   

In the proposed system, users can be automatically notified whenever knowledge of interest to 

them changes. 

As discussed in section 6.5 (page 84), when case drop-throughs occur case-Rulenode 

associations that were previously live and registered108 may no longer be live, but they will 

still be registered.  This difference between the live and registered case-RuleNode 

associations provides an additional and previously untracked knowledge acquisition 

opportunity for users so that KA can occur much more rapidly.  Users could register their 

interest in particular RuleNodes or cases in the system, for example all items previously 

created and/or edited by that user, or all items dependent on a particular RuleNode in the 

KBS.  Then when a relevant case-RuleNode association changes, the user can be 

automatically notified that a new KA opportunity has arisen e.g. via email or SMS.  The 

consequent KA could involve registering new case-RuleNode associations or unregistering 

old case-RuleNode associations for a case, modifying the conditions under which the affected 

RuleNodes will fire, changing the classification labels or conclusions at the relevant 

RuleNodes, or modifying the affected cases. 

6.9 Lost links between General and more Specific Classifications 

In conventional MCRDR, if a user wanted the KBS to present the conclusions of a more 

general RuleNode, together with the conclusions of a more specific RuleNode for a given 

case, then two separate and possibly somewhat duplicated paths would be required in the 

                                                 

108 If required, please refer to the glossary on page 277. 
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decision tree in order to allow the two different classifications to both fire for that case109.  

This approach has two shortcomings: the relationship between the more general superclass 

and the more specific subclass is lost, and in many cases, redundant knowledge will be stored.  

While redundant knowledge may not have been a significant problem in the pathology 

domain where processing of cases was done in batch mode, in the support centre problem 

domain, the KBS needs to be compact and efficient so that it can support the rapid real-time 

responsiveness required by users. 

Hence, in the proposed system, users can assign labels to classifications and users can create 

links from child nodes to more general parent nodes using these labels110.  In that way, the 

conclusions of more general parent and other nodes can be referenced and/or reproduced at 

RuleNodes that additionally offer more specific conclusions.  In the proposed system, this is 

done by a refer() function as described later in section 11.3.6 on page 193. 

6.10 Chapter Summary 

In this chapter, enhancements to the MCRDR approach were suggested in order to begin 

answering the following research question: 

Q4. How can MCRDR be adapted to a real-time environment where problems and their 

solutions are continuously evolving, and where a distributed group of stakeholders can both 

contribute to and benefit from the acquired knowledge? 

The need to support users in their collaborative configuration (construction) and update of 

Cases and RuleNodes (including the conditions, classifications and conclusions) in the 

support centre problem domain was presented.   

                                                 

109 For example, if a rule node concludes that the case represents problem class A and the expert wishes to say 

the case more specifically represents problem class A.1, then the user must add a new rule higher up the tree 

with possibly several duplicate rule conditions to conclude that the case is also type A.1. This is because in 

conventional MCRDR the conclusions on parent nodes are always over-ridden by TRUE child nodes.  

110 Although N-RDR (previously discussed in section 4.4.5 on page 62) (Beydoun and Hoffman, 1997) allowed 

rule conditions to be use the intermediate classifications provided in separate knowledge bases, the mechanism 

did not allow classification labels to be referenced and displayed in the conclusions at RuleNodes elsewhere in 

the decision tree. 
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As well, the concepts of live versus registered RuleNodes were introduced, together with the 

concept of tracking these case-RuleNode associations as the knowledge evolves.  As the 

knowledge base evolves, the benefits of separating the live versus registered views of the 

knowledge include the ability to: 

1. Notify collaborating users of changes to the knowledge base that might affect them, 

2. Support the users with a more responsive real-time KBS by using a background 

processing mode to keep the knowledge up to date, and 

3. Maintain relevant cornerstone cases, for example when case drop-through occurs. 

Finally, the refer() function was introduced so that more specific RuleNodes need not 

duplicate information provided at more general RuleNodes, and so that separate paths are not 

required through the decision tree to arrive at the separate but related classifications. 

Later on and in further response to the above research question, the top-level design, detailed 

design, implementation and software trial of the proposed 7Cs system are presented.  

However, before looking further at how this research question has been addressed, the next 

chapter takes a look at case-driven and rule-driven KA in general.  A mathematical model is 

derived showing the expected probabilistic trajectory of knowledge acquisition in a case-

driven knowledge acquisition (KA) paradigm.  This is compared with the expected trajectory 

in rule-driven KA paradigm in order to provide some fundamental insights into case-driven 

KA, and emphasise the benefits of a hybrid case-driven and rule-driven KA approach. 
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CHAPTER 7: A MODEL OF KNOWLEDGE TRANSFER 

7.1 Chapter Outline 

This chapter addresses the following research question: 

Q5. What is the expected trajectory of the case-driven  

acquisition of classification knowledge? 

As discussed previously (section 3.5.1, page 36), conventional rule-based expert systems give 

primacy to the classification, rather than the context (Edwards, 1996, pp 170 - 171) whereas 

case-based KA systems like RDR give primacy to the context, rather than the classification 

(section 4.2, page 40).  Further to this, bottom-up case-driven KA is compared with top-down 

rule-driven KA, and a stochastic model for case-driven KA is derived.  The derived model 

provides a formula that allows predictions to be made about the rate of case-driven KA.  The 

derived formulas have recently been published in (Vazey, 2006a) and some of the derivations 

have been published in (Vazey, 2006b). 

The mathematical model supports the view that for optimal knowledge transfer, a hybrid case-

driven and rule-driven KA approach is required.  The value and importance of a hybrid case-

driven and rule-driven approach to KA is explored further in Chapter 8 (page 133). 

The derived model is relevant to Case-Driven Knowledge Acquisition (CDKA) for example 

in Artificial Intelligence, Machine Learning, Data Mining, Expert Systems, Ripple Down 

Rules, Group Decision Support Systems, Collaborative Tagging, Folksomonies, and Case-

Based Reasoning (CBR) systems.  The case-driven KA trajectory111 reflects the natural 

slowing of knowledge exchange in an environment where a finite set of classes is mapped to 

the incoming search criteria or semi-structured cases by keywords or rule conditions as in 

Table 7 (page 74).  The case-driven KA model offers important predictions for the trajectories 

presented in previous machine-learnt and case-based KA simulations for SCRDR and 

MCRDR as discussed in (Compton, Preston and Kang, 1995), (Kang, Lee, Kim, Preston and 

Compton, 1998), and (Cao and Compton, 2005 and 2006) as well as the tag-acquisition 

                                                 

111 In this context, the term “trajectory” means the graphical depiction of the number of classes acquired in 

relation to the number of cases seen by the KA system. 
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trajectories discovered by (Goldman and Huberman, 2005, p4) for folksomonies.  A separate 

and loosely related approach at modelling the maturity of incremental cooperative (as 

opposed to collaborative) KA was provided by (Beydoun et. al, 2005).  Another loosely 

related approach known as Rated MCRDR (section 4.4.7 on page 63) uses a neural network 

back-end to identify inadequacies in a knowledge base for a given case (Dazeley and Kang, 

2004, Figure 4, p10). 

As noted by Beydoun, Kwok and Hoffman (2000, p3): “empirical RDR research dwarfs 

formal and theoretical analysis of the methodology”.  In the future, it is hoped that the case-

driven KA model presented in this chapter will allow the performance of different KA 

approaches to be fairly compared, and the effect of purely random case-driven KA data 

recognised. 

7.2 An Analysis of Case-driven Knowledge Acquisition 

As mentioned earlier (section 3.5, page 35), KA is the process of acquiring knowledge from 

one or more third parties, be it from some individual or a machine, or from a group of 

individuals or machines.  In this section we look at different types of knowledge.   

One type of knowledge that can be acquired is class knowledge, including the conditions 

under which the class should be applied, the classification label for the class, and any 

conclusions associated with that classification112.  Knowledge in the form of classes can be 

acquired directly as top-down generalised classes, or as bottom-up experience-based classes 

derived by examining specific cases.  In this example, the acquired classes could apply 

matching keywords or rule conditions as in Table 7 (page 74) to map the incoming search 

criteria or semi-structured cases to their resultant classifications.  The acquired classes that 

include the (keyword or rule condition) tags form an index between cases and their 

corresponding classifications. 

7.2.1 SCRDR and MCRDR 

In the evaluation of SCRDR by (Compton, P., Preston, P. and Kang, 1995), the case-driven 

acquisition of knowledge by multiple experts was simulated using 3 domains; 3 machine 

                                                 

112 Other knowledge discussed later in the conclusions to the thesis includes the knowledge of relationships 

between classes. 
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learning algorithms; 3 simulated levels of expertise; and 6 randomizations, resulting in more 

than 180 result sets. Subsets of the Chess, TicTacToe, and Garvan Thyroid datasets from the 

Irvine data repository113 were used. Similar experiments were performed in the evaluation of 

MCRDR by (Kang, Lee, Kim, Preston and Compton, 1998).  Related and more recent 

simulations have been performed by (Cao and Compton, 2005 and 2006). When normalized, 

each of the result sets display similarly shaped trajectories for the number of RuleNodes (i.e. 

classes) acquired, and for the number of errors remaining in the KBS compared to the number 

of cases seen. Some of the results from Kang et al. (1998) are reproduced in Figure 8. 

In Figure 8, the left-hand column demonstrates the trajectory of a machine-learnt SCRDR 

system across the three different knowledge domains, whilst the right-hand column of the 

figure demonstrates the trajectory of an MCRDR system across the same domains114. 

Referring to Figure 8, the x-axis shows the number of cases seen as a percentage of the total 

number of cases available, and the y-axis shows the number of RuleNodes acquired.  Each of 

the result sets display trajectories that correspond with the expected case-driven KA and error 

trajectories derived herein. 

                                                 

113 http://www.ics.uci.edu/~mlearn/MLRepository.html  

114 From Kang et al. (1998), but not critical to this discussion, the first test set ('Total') uses all the conditions in 

the Induct rule trace. The second test set ('Partial') uses only one condition from the intersection of the Induct 

rule trace and the difference list.  As a minor refinement, since the order in which Induct selects conditions may 

effect the outcome, two extremes of selecting the single condition from the top ('Partial II') or bottom ('Partial I') 

of the rule trace were used. 
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Figure 8: SCRDR and MCRDR rules acquired versus cases seen 

 

Reproduced from Kang, Lee, Kim, Preston and Compton (1998) 

with the kind permission of Byeong Kang. 

 

7.2.2 Collaborative Tagging 

As described previously (section 5.4, page 72), Collaborative Tagging, also known as 

Folksomony, describes the process by which many users add metadata in the form of 

keywords (i.e. anchor-text) to shared content (Golder and Huberman, 2005). 

In Figure 9, two users with very different tag-usage patterns are tagging novel websites (i.e. 

bookmarks) on a website-by-website (i.e. case-by-case) basis (x-axis).  As they bookmark 

more websites (x-axis), the number of novel tags (i.e. novel classes) that they use (y-axis) 

increases in the monotonically increasing but slowing case-driven KA manner.   
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Figure 9: Two extreme users’ (#575, #635) tag growth.  As they add more bookmarks, the 

number of tags they use increases, but at very different rates. 

 

Reproduced from Golder and Huberman (2005, p4) 

With the kind permission of Scott Golder and Bernado Huberman. 

 

Obviously user #575 is much more specific with the tags that he or she applies to their 

bookmarks than user #635.  As noted previously (section 5.2 on page 69), the repetitive 

versus novel nature of cases depends on the level of specificity demanded by users (Golder 

and Huberman, 2005, section 2.1)115.  When the domain is first being constructed, the demand 

for differentiation may be weak, but as the domain matures, the demand for differentiation 

may become stronger as experts start to require greater specificity. Since learning can involve 

a process of moving from the general to the specific, and then back to the general116, the total 

possible amount of classes that can be acquired by the KBS, and hence the repetitive nature of 

cases may even be seen to change over time, depending on the users’ changing and individual 

needs.  As noted by Compton, Preston and Kang (1995, p1), “clearly any study using experts 
                                                 

115 For instance one user might classify a corgi and a terrier both as dogs, and another user may classify them 

separately as a corgi and a terrier.  

116 Note that from an induction point of view, learning is a process of moving from the specific (instance) to the 

general (concept). 
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needs to take into account the variability between experts as well as the difficulty of repeat 

experiments on the same experts, whereby they become more expert at contributing to a 

Knowledge Based System (KBS)”. 

With these human factors in mind, this chapter hypothesises that the rate of usage of tags (and 

hence classes) in SCRDR, MCRDR, folksomonies and tagsomonies corroborates with the 

case-driven KA trajectory predicted herein.  Later (section 7.2.5, page 112) we will see that 

when more than one class is acquired per case (as in MCRDR systems), the x-axis shrinks in 

linear proportion as described in (Vazey, 2006) so that even more rapid acquisition of the 

classification knowledge occurs. 

7.2.3 The Nature of Knowledge 

Knowledge transfer involves at least two parties and includes the codification, transmission, 

reception and consequent storage of the knowledge in question.  In a case-based knowledge 

acquisition system, if some of the incoming cases are repetitive exemplars for identical 

classes, these cases will not present a new KA opportunity for the KBS and they will appear 

as repeats.  The concept of the “number of pieces of knowledge” or nuggets of knowledge 

required to cover a domain is identified in Compton (2000, p7, paragraph 3).  As well, (Cao 

and Compton, 2006, p2) highlight that the minimum number of rules required to model a 

domain is given by the number of non-overlapping i.e. mutually exclusive classifications in 

that domain.  In this research, a nugget of knowledge is referred to as a class.   

Typically a class will include the conditions under which cases will be true for that class, 

optionally the class or classification name(s), and the corresponding conclusions for that 

classification117.  A class may also optionally include references to other classes.  This is 

illustrated in Figure 10 on page 98. 

                                                 

117 For conventional classification problems, in the past there hasn’t been a separation between the classification 

and its related conclusions, and it has generally been accepted that the class label is the conclusion.  However, in 

this thesis a different approach is taken since in practice, a classification may fetch multiple different 

conclusions, and those conclusions may be reused in combination or separately by other classifications in the 

same system.  For example, consider medical practice where several different diagnoses share a common 

treatment, and where some of these diagnoses may simultaneously demand other treatments as well. 
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As indicated in the previous section the number of classes depends on how abstract or specific 

one is in describing the domain. 

Figure 10: Relationship between Classes, Classifications, Conditions and Conclusions 

 

class 
  classification 

labels 

  conclusions 

  rule conditions 

  
other 

classes 

 

In the proposed 7Cs system (described in more detail in Chapter 9, page 161), the class is 

represented by a RuleNode118 located in a condition mesh that is comprised of the following: 

one or more representative Cases for that RuleNode (and not the dependent RuleNodes), the 

Rule Conditions (i.e. the tag conditions) that determine the Boolean outcome of the 

RuleNode, the Classifications119 represented by that RuleNode, and the Conclusions for those 

Classifications. Rather than using a tree structure, in the proposed system a condition mesh is 

used that is analogous to a neural network (as discussed in Appendix D.7 on page 401, and 

                                                 

118 There are as many classes in the system as there are RuleNodes.  This is because each class includes not only 

the classification(s) represented by that class, but the means of identification for that class i.e. the associated rule 

conditions.  Where a classification is repeated multiple times but under different rule conditions in the condition 

mesh e.g. in RuleNodes A1, A2, and A3, these separate RuleNodes can be combined via a shared child RuleNode 

e.g. A to form a superclass that represents the conjunction of rule conditions of the subclass RuleNodes.  This is 

explained further in section 13.4 (page 245). 

119 The classifications referred to at a RuleNode might include the target classification as well as any (inherited) 

ancestor classifications. 
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section 13.4 on page 247)120.  Hence there may be multiple paths through the KA system to 

the same RuleNode. In the proposed system, the location of each RuleNode is therefore 

specified relative to multiple parent and multiple child RuleNodes.   

In a folksomony the class represents the keyword-based tag that can be used to locate a 

relevant Internet resource.  This analogy was previously discussed in Table 7 (page 74). 

In SCRDR and MCRDR systems, the class is a RuleNode located in a decision tree that is 

comprised of a rule, a conclusion, and a representative case for that RuleNode known as the 

cornerstone case.  As mentioned previously, in MCRDR a cornerstone case list for a 

RuleNode is derived using the cornerstone cases of all of its dependent RuleNodes.  Since 

there is only one path to each RuleNode in these KA systems, the location of each RuleNode 

is specified relative to its sole parent RuleNode and its sibling RuleNodes (Chapter 4, page 

40). 

In human learning the class may represent one or more neurons or perceptrons and their 

location relative to other neurons in the same network.  For a deeper discussion of the inter-

relationship between neurons in the cerebral cortex of humans, and the proposed 

Recommendation Architecture (in which missing attribute values become implied) see 

Coward (2005).  Alternatively, a nugget of knowledge might also represent the characteristics 

and location of abstractions in some high-level taxonomy, ontology or schema. For a 

description of schemas in human learning see Cooper (1998, section 3)121. 

                                                 

120 The 7Cs structure is analogous to a neural network since there are multiple possible inputs per case in the 

form of attribute-value pairs; multiple outputs in the form of classifications; and a mesh of RuleNode layers 

hidden from the read-only view of most users that permits each node to have multiple parent and child nodes 

with (in general) an acyclic evaluative flow through RuleNodes in the decision mesh; where the RuleNodes 

provide evaluative weights according to their rule conditions. 

121 Schemas are relevant to this research because they include high-level (and hence default) classifications and 

their conclusions, as well as low-level specific classifications and their conclusions.  Note that figuratively 

speaking, in separating the wolves from the sheep in a schema or for example in an RDR, CBR, Data-Mining, or 

AI applications, it is just as important to know what a wolf is, as it is to know what a wolf isn’t.  Hence schema’s 

can be regular decision trees that include exception conditions. 
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7.2.4 A Single Classification Case-driven Equal Frequency KA Example 

Let’s examine a case-driven knowledge acquisition scenario where cases are being mapped to 

just one class at a time (for example, as in an SCRDR system).  Note that we begin by 

assuming that all the knowledge being transferred is true.  (At a later stage, the reader can 

refer to Appendix Q on page 473 to see how the formulas change when some of the 

knowledge is false, speculative or unknown.) 

Say that the target knowledge domain will be comprised of m classes that correctly map the 

incoming cases to their representative classifications and hence conclusions.  In this study, N 

= 1000 cases were randomly generated122, each comprising just one of m = 100 different 

classes.  The m different classes were represented with equal frequency.  For single 

classification case-driven KA as in SCRDR systems, each novel class represents a new 

RuleNode in the decision tree. 

The number of times a case with a novel class was seen was cumulatively counted and the 

number of novel classes seen versus the number of cases seen was plotted123.  Table 8 (page 

101) illustrates the example and Figure 11 (page 102) shows the Actual trajectories for 5 

independent case-driven KA scenarios, together with the Expected trajectory, and the Best 

Case straight-line trajectory for m = 100. 

                                                 

122 In practice, and as discussed later on, users may self-select their cases in such a fashion that the order of 

presentation of classes to the KBS is not entirely random.  In that case, KA may occur more rapidly than 

predicted by the single classification case-driven KA trajectory derived here.  Many thanks to an anonymous 

reviewer of the Vazey(2006) paper for these comments. 

123 In previous research such as (Compton, P., Preston, P. and Kang, 1995), (Kang, Lee, Kim, Preston and 

Compton, 1998), (Compton, 2000), (Dazeley and Kang, 2004) and (Cao and Compton, 2005 and 2006), the 

process of matching cases to classifications been referred to as “simulating expertise”.  
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Table 8: Cumulative count of novel classes acquired in a Single Classification KA study 

(Note: Data for the first 12 cases is displayed for a 100-class KA domain) 

Case ID 
   

(1-1000) 

Random 
class ID 

(1 – 100) 

Number of times this class 
has been seen so far. 

At this point, is 
the class novel? 

(1 = yes, 0 = no) 

Cumulative count of novel 
classes acquired 

(<=100) 

1 49 1 1 1 

2 22 1 1 2 

3 14 1 1 3 

4 18 1 1 4 

5 20 1 1 5 

6 84 1 1 6 

7 49 2 0 6 

8 83 1 1 7 

9 4 1 1 8 

10 31 1 1 9 

11 20 2 0 9 

12 6 1 1 10 

… … … … … 

 

Every time newly generated random data is used a slightly different KA trajectory results with 

varying quantum KA steps. For instance on one draw, the system might fetch 50 consecutive 

cases all being exemplars for the same class, whereas on another draw the system might fetch 

50 consecutive cases all being exemplars for novel classes.  The varying trajectories represent 

the stochastic nature of the randomised incoming case data and correspond with the case-

driven SCRDR KA trajectories shown in Figure 8 (page 95).  
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Figure 11: Expected, Actual and Best-Case Case-Driven KA trajectories. 

 

In the next section a derivation is provided of the formula for the probabilistically expected 

case-driven KA trajectory for a randomised incoming stream of cases that is being mapped to 

a finite set of known and equally frequent classes. This trajectory is the smooth monotonically 

increasing and rapidly slowing asymptotic curved line shown in Figure 11.   

(In contrast, in section 7.2.6 on page 118 the trajectory that one can expect to see when 

acquiring classes that occur with unequal frequency is derived.) 

7.2.4.1 Classes Acquired as function of Cases Seen 

The aim of this section is to prove the following theorem: 
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Theorem 1: The expected number of classes Kn that will be acquired after n cases by a 

single classification case-driven KA system is given by: 

Kn = n – (1/m * Σ(i = 1 to n) Ki-1) 

where: 

n is the number of cases seen; 

Kn is the number of classes accumulated after n cases and K0 = 0 and K1 = 1; and 

m is the total number of classes in the domain. 

This theorem was used to construct the expected equal frequency single classification KA 

trajectory shown in the Figure 11 on page 102. 

Proof 1: Proof of Theorem 1 

Let the expected total number of classes acquired after the first case be K1 and the incremental 

amount of knowledge acquired between the zero and first case be ΔK1.  For an initially empty 

knowledge base (i.e. K0 = 0), and for case-driven KA the first case drawn will always be an 

exemplar for a novel class, hence the amount of knowledge acquired after one case will be: 

K1 = ΔK1 = m/m = 1 

where: 

m is the total number of classes in the domain. 

The probability of the second case being novel depends on whether or not it is an exemplar 

for a previously seen class. 

Since there are m classes to be acquired, and K1 classes have already been acquired, the 

second case will be an exemplar for a novel class with a probability of (m-K1)/m. 

Alternatively, the second case will be an exemplar for a class that is already known with a 

probability of K1/m.  

Using the weighted sum of probabilities the expected amount of classes acquired on the 

second case will therefore be: 

ΔK2 = (m-K1)/m * 1 + K1/m * 0 = (m-K1)/m 

where K2 = ΔK2 + K1 



 Chapter 7: A Model of Knowledge Transfer 

Submitted January 27, 2007 104 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

Continuing along these lines we get: 

ΔK3 = (m-K2)/m * 1 + K2/m * 0 = (m-K2)/m 

where K3 = ΔK3 + K2 

By induction for case i we get: 

ΔKi = (m-Ki-1)/m * 1 + Ki-1/m * 0 = (m-Ki-1)/m 

where Ki = ΔKi + Ki-1 

(Equation 1) 

Hence from (Equation 1) the expected number of classes that will be acquired after case n will 

be the sum of all the classes acquired for that and all previously seen cases hence: 

Kn = Σ(i = 1 to n) ΔKi = Σ(i = 1 to n) (m - Ki-1)/m 

= Σ(i = 1 to n) (1 - Ki-1 / m) 

= (Σ(i = 1 to n) 1) – (Σ(i = 1 to n) Ki-1 / m) 

therefore: 

Kn = n – (1/m * Σ(i = 1 to n) Ki-1) 

(Equation 2) 

QED.  (Equation 2) results in Theorem 1. 

 

7.2.4.2 Cases Seen as function of Classes Acquired 

The aim of this section is to prove the following theorem: 
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Theorem 2: The expected number of cases required to acquire K of m classes in a single 

classification case-driven KA system is given by: 

nK = Σ (i = 1 to K) [(m-(i-1))/m) * Σ(p = 1 to ∞) {p * ((i-1)/m)^(p-1)}] 

where: 

n is the number of cases required; 

K is the amount of classes to be accumulated; and 

m is the total number of classes in the domain. 

Theorem 2 provides a method for discovering the expected number of cases that would be 

required to acquire a portion of the m classes in a given equal frequency single classification 

domain. However its formula is computationally more expensive than the reciprocal formula 

in Theorem 1 since it involves a complex summation of an infinite number of terms. This 

reflects the asymptotic nature of the expected trajectory.  Depending on the number of classes 

to be acquired K, for K < m it is possible to trade-off the accuracy of the solution with the 

number of terms used in Theorem 2. 

Proof 2: Proof of Theorem 2 

In order to determine the number of cases required to acquire a given number of unique 

classes, the KA state transitions were represented in a data flow diagram (DFD).  In Figure 12 

(page 106), the circles represent the state of knowing the indicated class and the paths show 

the probability of either returning to that state when a repeat exemplar is seen, or of moving to 

the next state when a novel exemplar is seen124. 

In a single classification case-driven KA system, there are different ways in which the KBS 

can transition from knowing Class (y-1) to knowing Class (y). When the next case is an 

exemplar for a novel class the KBS will transition directly from Class (y-1) to Class (y). But 

when the next and possibly subsequent cases are exemplars for known classes they appear as 

                                                 

124 Anonymous reviewers of the Vazey(2006) EKAW submission and a submission to the SGAI AI-UK 2006 

conference likened this work to a random walk or Markov chain.  It has been left for future researchers to 

investigate this link. 
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repeats to the KBS. Any number of repeats could occur before the KBS transitions to the next 

knowledge state. 

Figure 12: Acquiring Classes on the basis of Cases 

 

 

Let the expected total number of cases n that needs to be seen before Class 1 is acquired be n1 

and the expected number of cases that needs to be seen to move from zero classes to Class 1 

be Δn1. In that case: 

n1 = Δn1 = m/m = 1 

In other words, we expect that only one case needs to be seen before Class 1 is acquired. 

From Figure 12, the chance that only one case needs to be seen to move from Class 1 to Class 

2 is given by: (m-1)/m.  The chance that two cases will need to be seen to move from Class 1 

to Class 2 is given by: (m-1)/m * (1/m) and so on. 

Therefore the expected number of cases Δn2 that needs to be seen to move from Class 1 to 

Class 2 will be given by the weighted sum of the probabilities of moving between Class 1 and 

Class 2 with zero or more repeat exemplar cases being seen between these two classes.  

Hence: 

Δn2 = 1 * (m-1)/m  

+ 2 * (m-1)/m * (1/m) 

+ 3 * (m-1)/m * (1/m)^2… 

+ j * (m-1)/m * (1/m)^(j-1)… and so on 



 Chapter 7: A Model of Knowledge Transfer 

Submitted January 27, 2007 107 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

Where j represents the jth term in which (j-1) repeat exemplars are seen before the given class 

is acquired, hence: 

Δn2 = (m-1)/m * [1 + 2 * (1/m) + 3 * (1/m)^2 + … + j * (1/m)^(j-1) + …] 

Note that the expected total number of cases n that needs to be seen before Class 2 is acquired 

will be n2 = Δn2 + n1. 

Continuing along these lines we get the expected number of cases that needs to be seen to 

move from Class 2 to Class 3 i.e. Δn3: 

Δn3 = (m-2)/m * [1 + 2 * (2/m) + 3 * (2/m)^2 + … + j * (2/m)^(j-1) + …] 

Where the expected total number of cases n that needs to be seen before Class 3 is acquired is 

n3 = Δn3 + n2 

By induction we get: 

Δni = (m-(i-1))/m) * 

[1 + 2 * ((i-1)/m) 

+ 3 * ((i-1)/m)^2 + … 

+ j * ((i-1)/m)^(j-1) + … and so on] 

Hence: 

Δni = (m-(i-1))/m) * Σ(p = 1 to ∞) p * ((i-1)/m)^(p-1) 

where ni = Δni + ni-1 

(Equation 3) 

The number of classes that will be acquired after case n will be the sum of all the classes 

acquired for that and all previously seen cases.  Hence from (Equation 3) the expected number 

of cases that needs to be seen to acquire K of m classes in total is: 

nK = Σ (i = 1 to K) Δni 

therefore: 
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nK = Σ (i = 1 to K) [(m-(i-1))/m) * Σ(p = 1 to ∞) {p * ((i-1)/m)^(p-1)}] 

(Equation 4) 

QED.  (Equation 4) results in Theorem 2. 

 

7.2.4.3 Distribution about the Expected KA Trajectory 

For the sake of discussion, after some number y < m of m classes have been acquired in a KA 

system, two things can happen:  

1. A case that represents a novel class is received and the KA process achieves the  

(y + 1) th class; or  

2. Some number Δx of cases that each map to some existing class in the system are 

received .  Such cases are referred to here as repeats. 

For example, after the 1st case is seen, the 1st class is acquired.  Then Δx1 = 0 or more repeat 

cases will occur, until the 2nd class is acquired, then Δx2 = 0 or more repeat cases will occur, 

until the 3rd class is acquired, and so on...  The total number of repeat cases seen so far will be 

the sum of all the repeat cases experienced in-between the novel cases and hence class 

acquisitions. 

In order to examine the probabilistic distribution of the number of cases that need to be seen 

to acquire a given number of classes, the matrix in Table 9 (page 109) shows the probability 

of being at a given class y after a given number of repeat cases x for an m = 10 class system.  

The matrix is constructed by recognizing that the probability Pyx of having acquired y classes 

having seen x repeat cases is given by:  

1. the probability P(y-1)(x) of having acquired only (y-1) classes after x repeats over the 

duration of the KA task, followed by (and hence multiplied by) the probability Py0 of 

achieving the yth class on the next case; plus  

2. the probability Py(x-1) of having acquired y classes with (x-1) repeats followed by (and 

hence multiplied by) the probability P01 of yet another repeat being received at class y. 

This can be expressed as follows: 

Pyx = P(y-1)(x) * Py0 + Py(x-1) * P01 
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Note from Figure 12 on page 106 that the probability Py0 of achieving the yth class is given by 

(m-(y-1))/m.  Also from this figure, the probability P01 of yet another repeat is given by y/m.  

Hence: 

Pyx = P(y-1)(x) * (m-(y-1))/m + Py(x-1) * y/m 

(Equation 5) 

Table 9: An example KA probability matrix for a 10 class system 

  classes (y) 
 1 2 3 4 5 6 7 8 9 10 

0 1.00 0.90 0.72 0.50 0.30 0.15 0.06 0.02 0.00 0.00 
1 0.10 0.27 0.43 0.50 0.45 0.32 0.17 0.07 0.02 0.00 
2 0.01 0.06 0.18 0.33 0.42 0.40 0.28 0.14 0.04 0.01 
3 0.00 0.01 0.06 0.18 0.32 0.40 0.36 0.22 0.08 0.01 
4 0.00 0.00 0.02 0.09 0.21 0.35 0.39 0.29 0.13 0.03 
5 0.00 0.00 0.01 0.04 0.13 0.27 0.38 0.34 0.19 0.05 
6 0.00 0.00 0.00 0.02 0.07 0.20 0.35 0.38 0.24 0.07 
7 0.00 0.00 0.00 0.01 0.04 0.14 0.30 0.39 0.30 0.10 
8 0.00 0.00 0.00 0.00 0.02 0.10 0.25 0.39 0.35 0.13 
9 0.00 0.00 0.00 0.00 0.01 0.06 0.20 0.37 0.39 0.17 

10 0.00 0.00 0.00 0.00 0.01 0.04 0.16 0.34 0.42 0.21 
11 0.00 0.00 0.00 0.00 0.00 0.03 0.12 0.31 0.44 0.26 
12 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.28 0.45 0.30 
13 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.24 0.45 0.35 
14 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.21 0.45 0.39 
15 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.18 0.44 0.44 
16 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.15 0.42 0.48 
17 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.13 0.41 0.52 
18 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.39 0.56 
19 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.37 0.59 

re
pe

at
s 

(x
) 

20 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.34 0.63 

Please note: This table has been truncated at 20 repetitions. 

 

This matrix shows the distribution of actual KA trajectories about the expected trajectory for 

an m = 10 class system for the situation where repeat exemplars are drawn up to 20 times 

between each class.  Figure 13 on page 110 graphs the distribution of KA probabilities for 

Table 9.  From the table, we can see that for a 10 class system, the probability of achieving 7 

classes with only 4 repeats is 0.39 which is the same as the probability of achieving 6 classes 
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with only 4 repeats (0.35) multiplied by the probability of achieving the 7th class (10-(7-1))/10 

plus the probability of achieving 7 classes with only 3 repeats (0.36) multiplied by the 

probability of yet another repeat 7/10. 

Figure 13: An example KA probability graph for a 10 class system 

 

From Table 9 and Figure 13 it becomes clear that the probability of repeats is relatively low 

and almost zero in the early stages of KA (only two decimal places are shown but the values 

are actually non-zero), but as more classes are achieved, the probability of repeats and the 

variance of the number of repeats becomes much higher.  In the example provided, for the 5th 

through to the 9th class acquisition, the probability of repeats peaks and then decreases with 

the number of repeats seen.  For the final class acquisition, the probability of repeats actually 
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increases, and the variance in the number of cases required to achieve the final class is 

infinite, reflecting the asymptotic nature of case-driven KA. 

An interesting property of the theoretical matrix that one can create is that the probabilities on 

the “diagonals”125 add to 1.  For example if you have seen 3 cases, you’ve either seen 1 novel 

exemplar and 2 repeats, 2 novel exemplars and 1 repeat, or 3 novel exemplars.  (Please note 

that the matrix in Table 9 has been truncated at 20 repetitions simply so that it can fit on the 

page.)  

Table 9, and Figure 13 also indicate that the number of terms required for a useful level of 

solution accuracy in Theorem 2 increases significantly with the number of classes acquired.  

This can be observed in Table 9 by noticing for instance that at two decimal places, to 

estimate the number of cases needed to acquire 3 classes requires that at least 5 repeat cases 

be considered, but to estimate the number of cases needed to acquire 6 classes requires that at 

least 14 repeat cases be considered. 

7.2.4.4 Likelihood of the Best Case 

Note that in an optimal (manual or machine learning) KA scenario one could argue that all of 

the knowledge would be acquired up front126.  In that way the knowledge base would be 

prepared for all future scenarios in advance, and in the case of manual KA, experts wouldn’t 

have to put up with the tedious review of repeat exemplar cases while offering their 

knowledge for novel exemplar cases.  By this logic, each new case would optimally represent 

a unique class and the best-case KA trajectory would be a straight line as shown in Figure 11 

on page 102127. 

                                                 

125 In this context the term “diagonal” is taken to mean moving right by one cell and up by one cell across the 

matrix. 

126 As well, optimally the knowledge base would acquire the most useful knowledge first e.g. knowledge that is 

most likely to be reused, and which will provide the most useful advice.  We return to this point in section 7.2.6 

on page 118. 

127 Although repetitive review of repeat exemplar cases for the same class can be seen as non-optimal in terms of 

the amount of user interaction required, where cases are repetitive, statistics can be gathered as to the number of 

times a particular class is represented and these statistics may help to improve the credibility of the acquired 

class data. 
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From Figure 12 on page 106, the likelihood of achieving the best case (shortest path) KA 

trajectory using a case-driven KA method is given by: 

PBestCase = m! / m^m 

(Equation 6)128 

Hence for large m the best case KA outcome is extremely rare129. 

7.2.5 Generalising to Multiple Classification KA systems 

Where cases are mapped to more than one class in a case-driven KA system, it is possible that 

more than one class will be acquired for a given exemplar case. 

In order to examine the multiple-classification case-driven KA process 3 sets of data were 

created, each with N = 1000 randomly generated cases.  Cases in the first set of data were 

each mapped to one of m = 100 different classes.  Cases in the second set of data were each 

mapped to two of m = 100 different classes.  Cases in the third set of data were each mapped 

to three of m = 100 different classes.  The m different classes were randomly distributed and 

occurred with equal frequency in each example.  Note that for multiple classification case-

driven KA as in MCRDR systems, each novel class represents a new RuleNode in the 

decision tree. 

The number of novel classes versus the number of cases seen was cumulatively counted and 

plotted.  Table 10 (page 113) illustrates the example.  For a 1 class system, only novel classes 

in the first column were counted.  For a 2 class system, novel classes in the first two columns 

were counted.  Finally, for a 3 class system, novel classes in all 3 columns were counted.  The 

cumulative number of novel classes seen in each of the 3 different KA systems is shown in 

the last three columns of the table.  Figure 14 (page 114) shows the expected and actual 

trajectories for a KA system with m = 100 classes and N = 1000 cases in which 1, 2, and 3 

classes are mapped to each case. 

                                                 

128 Note that in (Equation 6) ! means factorial i.e. m! = [m * (m-1) * (m-2) *…* 2 * 1] and ^ means to the power 

of. 

129 An anonymous reviewer of the Vazey(2006) EKAW submission suggested that users may not be really 

interested in reaching the asymptote itself, but getting there sufficiently closely (say 90%, reminiscent of 

Simon’s satisficing notion).  It is left to future researchers to investigate this further. 
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Table 10: Cumulative count of novel classes acquired in a Multiple Classification KA study 

(Note: Data for the first 12 cases is displayed for a 100-class KA domain) 

Case ID 
   

(1-1000) 

First 

Random 
class ID 

(1 – 100) 

Second

Random 
class ID

(1 – 100)

Third 

Random 
class ID 

(1 – 100)

1 class system

Cumulative 
count of novel 

classes 
acquired 

(<=100) 

2 class system 

Cumulative 
count of novel 

classes 
acquired 

(<=100) 

3 class system 

Cumulative 
count of novel 

classes 
acquired 

(<=100) 

1 87 2 7 1 2 3 

2 8 32 76 2 4 6 

3 41 39 59 3 6 9 

4 21 64 1 4 8 12 

5 15 79 32 5 10 14 

6 35 42 24 6 12 17 

7 35 84 80 6 13 19 

8 46 17 26 7 15 22 

9 61 19 61 8 17 23 

10 7 38 60 9 19 25 

11 56 88 10 10 21 28 

12 76 4 14 11 23 30 

… … … …   … 
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Figure 14: Expected and Actual Multi-Class Case-Driven KA trajectories. 

 

7.2.5.1 Classes Acquired as function of Cases Seen 

The aim of this section is to prove the following theorem: 

Theorem 3: The expected number of classes Kn that will be acquired after n cases in a case-

driven KA system where c classes are acquired per case is given by: 

Kn = Kn-1/c + (m-Kn-1/c)/m 

where: 

n is the number of cases seen; 

Kn is the number of classes accumulated after n cases and K0 = 0 and K1/c = 1;  

c is the number of classes acquired per case; and 

m is the total number of classes in the domain. 

This theorem was used to construct the expected equal frequency multiple classification KA 

trajectories shown in the Figure 14 on page 114. 
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Proof 3: Proof of Theorem 3 

From (Equation 1, page 104), the probabilistically expected number of classes Kn that will be 

acquired after n cases by a single classification case-driven KBS is given by: 

Ki = Ki-1 + ΔKi    

where: 

ΔKi = (m-Ki-1)/m * 1 + Ki-1/m * 0 = (m-Ki-1) / m 

hence: 

Ki = Ki-1 + (m-Ki-1) / m 

(Equation 7) 

By analogy, in a domain in which the number of classifications obtained per case is c, we 

notice that every (1/c) cases, the expected amount of knowledge obtained is: 

ΔK(i/c) = (m - K(i/c) – (1/c)) / m 

Continuing this analogy, in generalising (Equation 7) we get: 

K(i/c) = K(i/c) - (1/c) + ΔK(i/c) 

K(i/c) = K(i/c) - (1/c) + (m - K(i/c) - (1/c)) / m 

and hence: 

Kn = Kn - (1/c) + (m-Kn - (1/c)) / m 

(Equation 8) 

QED.  (Equation 8) results in Theorem 3. 

 

As an example, let’s apply Theorem 3 to a domain where two classifications are obtained per 

case.  In that case, we get: 

Kn = Kn-1/2 + (m-Kn-1/2)/m      and 

Kn-1/2 = Kn-1 + (m-Kn-1)/m 

Hence, the probabilistically expected number of classes Kn that will be acquired after n cases 

by a bi-classification case-driven KBS is given by: 
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Kn = Kn-1 + (m-Kn-1)/m + (m-(Kn-1+(m-Kn-1)/m))/m 

(Equation 9) 

This equation was used to graph the expected trajectory for the bi-classification domain in 

Figure 14 and it provides a very good correlation with the corresponding experimental data 

shown in the figure. 

In a different example, applying Theorem 3 to a domain where three classifications are 

obtained per case gives: 

Kn = Kn-1/3 + (m-Kn-1/3)/m      and 

Kn-1/3 = Kn-2/3 + (m-Kn-2/3)/m      and 

Kn-2/3 = Kn-1 + (m-Kn-1)/m 

Hence the probabilistically expected number of classes Kn that will be acquired after n cases 

by a tri-classification case-driven KBS is given by: 

Kn = Kn-1 + (m-Kn-1)/m + (m-(Kn-1+(m-Kn-1)/m))/m + 

                  (m-(Kn-1 + (m-Kn-1)/m + (m-(Kn-1+(m-Kn-1)/m))/m))/m 

(Equation 10) 

This equation was used to graph the expected trajectory for the tri-classification domain in 

Figure 14 and it provides a very good correlation with the corresponding experimental data 

shown in the figure. 

7.2.5.2 Cases Seen as function of Classes Acquired 

Since more than one class may occur for each exemplar case in a multiple classification KA 

system, we can expect that its case-driven KA trajectory would rise faster than in an single 

classification KA system i.e. less cases need to be seen before the same level of knowledge is 

acquired.  As indicated by the following theorem, it turns out that this corresponds to a linear 

shrinking of the x-axis in proportion to the number of classes acquired per case.   
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Theorem 4: The expected number of cases required to acquire K of m classes in a case-

driven KA system where c classes are acquired per case is given by: 

nK = 1/c Σ (i = 1 to K) [(m-(i-1))/m) * Σ(p = 1 to ∞) {p * ((i-1)/m)^(p-1)}] 

where: 

n is the number of cases required; 

K is the amount of classes to be accumulated; 

c is the number of classes acquired per case; and 

m is the total number of classes in the domain. 

 

For example, in Figure 14, 80% of the classes are achieved after 158 cases for a uni- 

classification system, after 79 cases for a bi- classification system (2 * 79 = 158), and after 53 

whole cases for a tri-classification system (3 * 53 = 159). 

The simulations conducted for the Chess, TicTacToe and Garvan130 domains (Kang, 1995, pp 

94 – 95, 105-107), it was observed that the variance of the output at all levels of expertise was 

greater for SCRDR than for MCRDR (pp 95, 109, 127).  At that time, it was conjectured that 

the use of multiple cornerstone cases in MCRDR, and the ability for users to chose the 

location of MCRDR rules so that they were less likely to be hidden away in local contexts, 

produced a more robust system less affected by the order of cases.  This research indicates 

that one of the reasons131 why there is a difference in variability is because MCRDR can 

                                                 

130 Note that even though the chess and TicTacToe domains were only bi-conclusion domains, new cases could 

still fetch multiple classifications.  This is clearly demonstrated in (Kang, 1995, p 108, p115) where the number 

of cornerstone cases included in the difference list and hence the number of dependent RuleNodes per RuleNode 

was up to 12, and 10 respectively for the Chess and Tic-Tac-Toe domains.  For these bi-conclusion domains, the 

fetching of multiple classifications could be due to overlapping sibling RuleNodes offering identical conclusions.  

See also (Kang, 1995, p 65).  In section 8.3.10 on page 155, we also note that very little depth in the rule tree 

was acquired in these two test domains. 

131 This is just one of many other reasons why there is a difference in variability between Kang;s SCRDR and 

MCRDR results.  Some of the other factors are discussed in section 7.3.1 (page 124) and section 7.6 (page 129) 

of the thesis. 
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acquire multiple classes for each case seen, and hence it needs to see fewer cases, with lesser 

overall variance (in linear proportion to the number of classes acquired per case), to acquire 

the same number of novel classes. 

Note that in a real-life multiple classification scenarios, certain combinations of classes may 

be more likely to co-occur than others.  The next section offeres a discussion for classes that 

occur with different frequencies in single classification domains. 

7.2.6 Classes occurring with different frequencies 

In many domains, including the ICT support centre domain, the classes being acquired do not 

occur with equal frequency across the cases seen.  For example, at the support centre, 60% of 

the problems may occur because of problem type A, 30% because of problem type B, 5% 

because of problem type C and so on, with the remaining 5% being of various different types. 

A further example is provided by the PEIRS SCRDR data.  After 25 months of PEIRS 

operation, 37% of the interpretations were for thyroid function tests (TFTs), 43% for arterial 

blood gases (ABGs), and 20% for other tests (Edwards, 1996, p97).  At completion of the 

trial, the number of RuleNodes acquired were 33% for TFTs, 49% for ABGs and 18% for 

other tests (p101).  So the ratio of TFT Cases to TFT RuleNodes was more than for ABG 

Cases to ABG RuleNodes, reflecting that the multiple classification ABG domain was more 

complex to translate into the SCRDR data structure than the simpler single classification TFT 

domain.  This is further supported by Edwards (pp 104 - 105). 

To model the situation where the classes being acquired do not occur with equal frequency 

across the cases seen N = 1000 cases were constructed each comprising one of m = 100 

different classes.  The first m1 = 20% of the m different classes were represented in r1 = 80% 

of the cases.  The last m2 = 80% of the m different classes were represented in only r2 = 20% 

of the cases.   This modelled the well-known Pareto132 80/20 distribution.  As noted in section 

5.4 (page 72), tags used in broad folksomonies also tend to follow the Pareto power-law 

distribution, as does the popularity of web pages more generally.  The cases were sorted so 

that the order of classes represented by them was completely random.   

                                                 

132 http://en.wikipedia.org/wiki/Pareto_principle  
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Again, a cumulative count was made of the number of times a case with a novel integer was 

seen and the number of novel classes seen versus the number of cases seen was plotted.  

Figure 15 shows the Best Case, Actual and Expected trajectories of the randomly generated 

case data for m = 100 for the single classification equal frequency class example and for this 

unequal (Pareto) frequency class example.  The component parts of the expected Pareto 

trajectory are also shown.  From this figure we can see that the total rate of knowledge 

acquisition for a domain with a Pareto style distribution is much slower than for an equal 

frequency problem domain. 

Figure 15: An example showing KA for classes with both equal and different frequencies 

 

As we see in Figure 15, although the total KA is much slower for a Pareto-style distribution, 

the most frequently demanded knowledge is generally acquired first, and the least frequently 

demanded knowledge is generally acquired last.  Hence the variation of frequencies between 

the classes acquired is unlikely to reduce the effectiveness of case-driven KA as a KA 

mechanism.  In fact, in many domains knowledge acquired for the highest volume problems 

has the best potential to save on labour costs and is therefore of top priority.  As noted by 
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(Beydoun et. al, 2005, p52), “the real performance of the conceptual model depends on 

instances with frequent occurrence, more than instances of rare occurrence”.  

As shown in the following theorem, the formula for the expected trajectory for data that 

occurs with different frequencies is given by summing (Equation 1) across each of the 

different sub-domains represented by the data, in proportion to the actual knowledge gain 

achieved in acquiring a class in that sub-domain.   

Theorem 5: The expected number of classes Kn  that will be acquired after n cases in a 

case-driven KA system with knowledge sub-domains M1 through to Mj is given by: 

Kn = Kn-1 + ΔKn        where 

ΔKn = ∑1 to j (mj-Kj,n-1)/mj * rj  and 

where: 

n is the number of cases seen; 

Kj,n is the number of classes accumulated in sub-domain Mj after n cases, and if Mj is a 

single classification domain,  Kj,0 = rj ; 

mj is the total number of classes in sub-domain Mj. 

 

So in the dual sub-domain example, we get: 

ΔKi = (20-K1,i-1)/20 * 0.8 + (80-K2,i-1)/80 * 0.2 

where K1,0 = 0.8 and K2,0 = 0.2 

 

Note that unequal frequency classes affect the rate at which accuracy can be achieved in the 

KBS.  Figure 15 shows that in the Pareto example, 100% accuracy for 80% cases was 

achieved by about 150 cases.  However, since these cases only represent 20% of the possible 

classes i.e. RuleNodes, the total knowledge acquired by the system was still only around 50% 

at that point in time. 
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It has previously been conjectured that as the traditional knowledge bases grow, the 

knowledge acquisition bottleneck133 worsens because of the inherent difficulty knowledge 

engineers have in dealing with such systems.  Data from the GARVAN-ES1 system has often 

been given as an example of this knowledge acquisition bottleneck (Compton and Jansen, 

1989) (Edwards, 1996, p51) and used to justify an SCRDR or MCRDR approach.  For 

example, in the Garvan-ES1 introduced in 1984 and reported by Compton (Compton and 

Jansen, 1989, p6) and Kang (1995, p15) a doubling in size of the knowledge base was 

required to take the accuracy from 96.4% to 99.7% (see also Kang, Gambetta, Compton, 

1996, p258).   

But what if the GARVAN-ES1 cases displayed an uneven distribution of classes as modelled 

here?  In fact, Kang, Gambetta and Compton (1996, p263) report that 77.3% of GARVAN-

ES1 cases had the default classification, indicating a very uneven class distribution indeed. 

In Figure 15, after ~150 cases have been seen by the system, and after just 40 classes have 

been acquired, 20/20 = 100% accuracy is achieved for 80% of the cases, whereas only ~25/80 

= 31.25% accuracy is achieved for 20% of the cases.  This gives a weighted average accuracy 

of (1 * 0.8 + 0.3125 * 0.2) = 86% after just 45 RuleNodes. In this example, due to the 

infrequency of 20% of the classes, the knowledge base must more than double in size to 

achieve the last 14% accuracy at 100 RuleNodes, irrespective of whether a SCRDR, MCRDR 

or traditional Expert System structure is used. 

From this analysis, the rate of accumulation of classes or RuleNodes, and hence the rate of 

improvement in system accuracy may have more to do with the probabilistic properties of 

random and unevenly represented classes, than it has to do with the particular case-driven 

knowledge acquisition paradigm used. 

7.2.7 Multiple Parties Transferring Knowledge 

If multiple parties are randomly transferring knowledge to the KBS we can model their 

contribution as a round-robin contribution on the basis of cases seen. In that case the 

combined KA trajectory for all users will corroborate the expected trajectories presented thus 

far, but for each individual user, the knowledge acquired as a function of the cases seen by 
                                                 

133 The knowledge acquisition bottleneck is a term coined by Feigenbaum (1980) as discussed in (Edwards, 

1996, p50).  Further discussion is provided in section 8.3.4 (page 145). 
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that particular user will be much more rapid since other users are contributing to the same 

KBS and the user will need to see fewer cases for the same amount of knowledge gain.  

More specifically, the expected incremental amount of knowledge ΔKi that will be acquired 

for a given user after each case will be affected by total amount of knowledge contributed by 

all users up until that point Ki-1 where i is the total number of cases seen by the whole KBS 

rather than just by that individual.  If users contribute classes that occur with different 

frequencies we can extend the Pareto analysis provided earlier to model their individual and 

combined contributions. 

7.2.8 Sticky Knowledge 

The analysis thus far has assumed that knowledge is sticky i.e. once it has been transferred 

and received it is also stored and the KA process will not work to deplete the knowledge 

accumulated thus far. This assumption may or may not hold depending on the particular KA 

scenario. 

7.2.9 Remaining Error 

Let KError n refer to the difference between the amount of knowledge Kn acquired after n cases, 

and the maximum amount of knowledge that could be acquired m. Hence the remaining error 

KError n is as follows: 

KError n = m – Kn 

(Equation 11) 

where Kn is given for example by Theorem 1, Theorem 3, or Equation 11. 

7.2.10 Inclusion of New Sub-domains 

Note that as new sub-domains are included to the KBS, the total number of classes (m) that 

may be acquired will be increased, and the shape of the case-driven trajectory will change to 

reflect the additional knowledge.  This is demonstrated in Figure 16 (page 123) after case (n = 

600). 



 Chapter 7: A Model of Knowledge Transfer 

Submitted January 27, 2007 123 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

Figure 16: Inclusion of a new sub-domain 

 

7.2.11 Upward drift in the domain size 

An upward drift in the size of the domain may also occur for example, if a user’s demand for 

specificity versus generality in the classifications increases.  This refinement effect may be 

the factor contributing to the upward drift of the case-driven Folksomony KA trajectories 

presented in Figure 9 (page 96).  Another example in the upward drift of knowledge that can 

be acquired and used in a domain is given in (Beydoun et. al 2007, p8) and is attributed to 

users learning from each-other as the system captures and conveys more knowledge.  Dazeley 

and Kang (2004, p4) also note the importance of capturing inter-RuleNode relationships.  The 

reflexive nature of learning is discussed further in section 7.5 (page 128). 

7.2.12 Imperfect knowledge 

For the interested reader, a discussion of how the derived KA models change when the 

knowledge being transferred is false, speculative or unknown is provided in Appendix Q on 

page 473.  In that appendix, reference is also made to the work of Compton (2000), and (Cao 

and Compton, 2005, 2006) in simulating the affect of overgeneralisation and 
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overspecialisation errors on SCRDR, Flat RDR and Composite Rule KA trajectories in the 

presence or absence of cornerstone cases and taxonomic hierarchy.  Cao and Compton’s 

simulation work was also previously discussed in section 8.3.8 (page 151) and 8.3.9 (page 

153). 

7.3 Review of Past Experimental Data 

7.3.1 Simulated Expertise 

Three different types of simulated experts were used by Compton, Preston and Kang (1995) to 

evaluate the transfer of knowledge by a simulated expert from a machine learnt KBS to an 

SCRDR KBS. The smartest expert (S1) made an informed decision about the rules it should 

add to the SCRDR decision tree based on the intersection of a difference list generated by 

comparing the wrongly classified case with the case that was initially used to create the 

incumbent RuleNode, and up to 4 of the conditions derived in the machine-learnt knowledge-

base134. In contrast, the moderately smart expert (S2) took an over-generalization bias leading 

to excessive false-positives, and the dumbest expert (D) took an over-specialization bias 

leading to excessive false-negatives. 

The researchers found that S1 produced the smallest knowledge bases, whereas S2 and D 

produced the largest knowledge bases. The model presented herein readily explains these 

results since the amount of knowledge encoded for any one case by the smartest expert S1 

was at least 4 times that of the moderate expert S2. This corresponds to a fewer classes in the 

domain (m) for the smartest expert S1 as compared to the moderately smart expert S2. As 

well, the dumbest expert D was so biased to over-specialization that a separate class could 

have been created for every case with a unique combination of attributes. 

                                                 

134 Kang, Compton and Preston (1995) found that for the smartest expert, selecting 4 conditions gave the entire 

intersection of a classification in nearly all cases and on average, only 2-3 rules needed to be satisfied by a case 

in order to reach the correct solution.  Further, Compton (2005) refers to experience with SCRDR systems 

(Compton and Edwards et al 1991) in PEIRS where the average depth of the decision tree is 2-3 rules and the 

maximum is 6134.  A corresponding statement for search engines would be that most people can find what they 

want using 2-3 keywords, with a maximum of 4-6 depending on the nature of the search domain.  Naturally this 

result is very data dependent, but for a number of domains, for example in general when searching Google, it 

seems to be a good rule of thumb. 
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This research shows that the differences in the trajectories observed across the different 

domains, experts and machine-learnt knowledge bases in Compton, Preston and Kang (1995) 

and Kang et al. (1998) can be explained by: 

• the chosen machine learning algorithm, and its over- or under-specialisation bias (e.g. 

S1, S2 or D) which affects the number of possible classes m in the domain; 

• the preference for generality or specificity in the classes applied; 

• the type of frequency distribution of the represented classes; 

• the number of different RuleNodes / classifications / classes acquired per case; 

• the amount of errors in the case attributes and the classifications in the raw data that 

may result in extra (wrong) classes and hence a larger number of possible classes m in 

the domain; and 

• the number of cases available to the learning algorithm (n). 

7.3.2 MCRDR Performance 

Kang, Compton and Preston (1995) evaluated the performance of the MCRDR algorithm in 

the pathology domain.  The basic findings were that as the expert system sees more and more 

cases over its lifetime: 

• the rate in which new rules need to be added to the system rapidly declines,  

• the rate at which conclusions presented to the user need refinement rapidly declines, 

• the corresponding error rate in which wrong conclusions (solutions) are presented to 

users drastically declines, and 

• the corresponding rate at which correct solutions are presented to users rapidly 

increases. 

The case-driven KA model provided herein predicts that each of the above observations will 

occur simply on the basis of case-driven KA via an incoming stream of randomised repetitive 

cases.  No underlying KBS data structure is assumed. 

Perhaps a more interesting result was that over the lifetime of the MCRDR system, the 

number of cases that users needed to compare the current case with when formulating a new 

rule and conclusion flattened out and thereafter remained steady (Kang, 1995, pp 111-115).  



 Chapter 7: A Model of Knowledge Transfer 

Submitted January 27, 2007 126 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

This research hypothesises that the case-driven acquisition of cornerstone cases per RuleNode 

in conventional MCRDR systems also follows the probabilistically expected case-driven KA 

trajectory derived herein.   

The reason is that in conventional MCRDR systems, every dependent RuleNode has just one 

cornerstone case, and the cornerstone case list for the parent RuleNode is comprised of the 

cornerstone cases of all its dependent RuleNodes.  Just as the acquisition of RuleNodes in the 

entire rule tree in conventional MCRDR systems follows the trajectory predicted by Theorem 

1, the acquisition of RuleNodes in any sub-tree and hence sub-domain in conventional 

MCRDR systems will also follow the trajectory predicted by Theorem 1.  Given the one-to-

one correspondence between the cornerstone case and its RuleNode, the number of 

cornerstone cases in the derived cornerstone case list that users need to compare the current 

case with when formulating a new rule and conclusion will also follow the same trajectory, 

flattening out as the knowledge domain is mapped, and then remaining steady. 

7.3.3 Merging separately created NRDR conceptual frameworks 

As mentioned in section 5.2 (page 66), during the course of this thesis, Beydoun et. al (March 

2005) studied the merging of separately created NRDR KBSs from independently operating 

experts that modelled identical domains.  In Fig. 3.3 (Beydoun et. al, 2005, p53) present a 

graph that is aimed at representing the coverage(r) i.e. the probability that a randomly drawn 

case will be properly classified by a given KBS as a function of the number of classes in that 

KBS, where the KBS is built by integrating a series of smaller KBSs built by independent 

experts representing the same problem domain.  In Fig 3.4 (Beydoun et. al, 2005, p53) present 

a corresponding graph that is aimed at representing the probability of inconsistencies in a 

given domain.  In contrast, this chapter indicates that the coverage and error depends on the 

number of classes in the domain (m) together with the number of classes already acquired 

(Kn).  Further to these graphs, the threshold tolerance ε used in theorems 4.1 and 6.1 of 

(Beydoun et. al, 2005, p53) appears to be modelled as a constant.  In contrast, this research 

finds that a KBS can benefit from contributions by multiple experts, regardless of the 

magnitude of their differences.  Multiple perspectives can co-exist in the 7Cs system proposed 

by this research (described later in Chapter 9 on page 161 and beyond). 
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7.3.4 Hypothesis Testing 

The Kolmogorov-Smirnov (K-S) one-sample test allows a test of goodness of fit to be made 

between a set of independent observed scores and some specified theoretical distribution 

(Siegel, 1956 p47).  It determines whether the scores in the sample can reasonably be thought 

to have come from a population having the theoretical distribution135.   

In the case-driven KA scenario the probability of subsequent cases representing a KA 

opportunity depends on the cases that have previously been seen and consequently the 

cumulative classes acquired.  Hence in the case-driven KA scenario samples are not 

independent of each other.  Personal communication with Prof. Malcolm Hudson and Prof. 

Jun Ma in the School of Statistics at Macquarie University indicates that a modified 

Kolmogorov-Smirnov (K-S) one-sample test may be useful in determining whether observed 

case-driven KA data fits the “gold standard” trajectories derived herein.   

Unfortunately I was unable to obtain access to the raw data from the machine learnt SCRDR 

and MCRDR studies referred to herein.  As well, my research has been focussed more on 

human-driven KA rather than machine-driven KA.  Hence this task has been left for future 

researchers. 

7.4 An Analysis of Rule-driven (RD) Knowledge Acquisition 

As might be reasonably expected, top-down rule-driven KA (RDKA) forms a completely 

different knowledge acquisition trajectory than bottom-up case-driven KA.  Top-down rule-

driven KA refers to the situation (as in Conventional Expert Systems discussed previously in 

section 3.5.1 on page 36) in which users can add RuleNodes directly to the rule tree as well as 

edit, move and delete them.  Top-down rule-driven KA can be used for instance to establish 

the background knowledge or ground rules in a knowledge domain or sub-domain, or to edit 

the existing knowledge. 

With this type of knowledge exchange, a party knows some fact that it wants to tell the KBS 

irrespective of the number of cases seen thus far. The only limitation on the KBS’s ability to 

receive this knowledge is its receptivity to new information, and the knowledge giver’s ability 

to suitably codify the information for K. 

                                                 

135 Thanks to (my associate academic supervisor) Lee Flax for these insights. 
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There is no slowing effect for top-down rule-based knowledge exchange, so if the conduit 

between the information giver and receiver is flawless, the expected incremental knowledge 

trajectory would be a straight line, with a one-to-one correspondence between the number of 

classes presented, and the number of classes acquired by the KBS. 

7.5 Discussion and Implications 

In the case-driven KA model presented, when one party first attempts to teach another party 

there can be a good deal of learning momentum. This varies according to the first party’s will 

and capacity to teach, and the second party’s will and capacity to learn. It will also depend on 

the granularity of the knowledge exchanged, e.g. what each party sees as being worthy of new 

classifications or otherwise.  As time goes on, if the first party is not teaching anything new, 

and as the second party continues to learn everything that the first party has to teach them on 

the basis of incoming randomised repetitive cases, the velocity of learning for the second 

party will slow dramatically. Before that point, a party who wants to learn all that there is to 

learn in a given domain would be well-advised to seek alternate sources of knowledge. 

As noted in section 7.2.11 (page 123), learning has a reflexive effect. The act of learning 

changes the learner’s perceptual framework and this in turn changes how and what the learner 

can learn in the future. For a discussion of this feature of learning see Cooper (1998, section 

3). As shown in this chapter the act of learning also changes the rate at which the learner can 

learn in the future.  This is particularly important when there is an uneven distribution in the 

frequency of novel experiences. 

As highlighted by Compton and Jansen (1989), many philosophers have considered the 

context-dependent and socially-situated nature of knowledge. We all walk in different shoes, 

have different experiences, and therefore have different knowledge. In the past, ESs only 

allowed one expert to teach them at a time – although multiple experts could sequentially add 

knowledge to the ESs, there was no facility for multiple experts to concurrently and 

collaboratively teach the KBS, and no mechanism for multiple experts to discover and resolve 

their classification conflicts. Since experts have different experiences with different 

frequencies, and different perceptions, preferences, biases, and aptitudes, it would be well-

advised to draw on the rich pool of expertise offered by multiple experts in a given domain.  

The net result will be a summation of the case-driven and rule-driven KA trajectories offered 

by multiple experts. The case-driven KA model presented herein highlights the slowing 
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nature of case-driven knowledge exchange and calls for a more collaborative multi-expert 

teaching and learning paradigm. 

One complexity is that often experts have different presentation needs for the knowledge.  

Another complexity is that often experts disagree! To solve this latter problem, what is 

needed is a forum in which experts can resolve their expert conflicts.  As discussed previously 

(section 5.5, page 74), what we are beginning to realize with successes like Wikipedia 

(http://www.wikipedia.org) is that humans are incredibly good at knowing when they have 

something to offer, and when they should take a back seat. Experts are often very good at 

self-selecting the areas in which they can offer expertise and they are often quite willing to 

work through the knowledge negotiation process with other experts. 

As more experts are involved in the process, more true knowledge can be accumulated, more 

false knowledge eliminated, more speculative knowledge confirmed or denied, the burden of 

populating the KBS diluted, and incoming cases can be dealt with sooner and more 

accurately.  Where experts self-select the cases and rules that they contribute, the overall rate 

of learning by the KBS may be significantly accelerated. 

As discussed in the next chapter, this model shows that parties can benefit from both top-

down and bottom-up approaches to KA. A rule-driven KA system, in which users can add 

RuleNodes directly to the rule tree as well as edit, move and delete them, allows users to enter 

top-down general knowledge, background knowledge, or ground rules in an order and manner 

that makes sense to them.  It allows experts to anticipate problems and share them in advance 

with novices; edit and correct over-generalisation or over-specialisation errors; and optimise 

the knowledge structure to enhance system performance.  In contrast, a case-driven KA 

mechanism like SCRDR or MCRDR allows relative knowledge to be entered in the context of 

specific cases.  A hybrid Case- And Rule-Driven (C.A.R.D.) approach can offer the best of 

both of these approaches. 

7.6 Chapter Summary 

This chapter has addressed the following research question: 

Q5. What is the expected trajectory of the case-driven  

acquisition of classification knowledge? 
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With the relevant human factors in mind as previously described in section 7.2.2 (page 95), 

this chapter hypothesises that the rate of usage of tags (and hence classes) in SCRDR, 

MCRDR, folksomonies and tagsomonies corroborates with the case-driven KA trajectories 

predicted herein.  Whereas rule-driven KA can be expected to follow a linear trajectory with 

respect to the incoming classes, case-driven KA can be expected to follow a monotonically 

increasing and rapidly slowing asymptotic trajectory with respect to the incoming cases136.  If 

the number of classifications occurring in the domain is dynamic and increasing, an upward 

drift in the case-driven KA trajectory is expected. 

Theorems 1 and 2 present the formulas for the expected number of classes that will be 

acquired as a function of the number of cases seen, and the expected number of cases seen as 

a function of the number of classes acquired in single classification systems.  Section 7.2.5 

(page 112) demonstrated how these formulas change when multiple classifications are 

acquired per case, and the more general Theorems 3 and 4 were presented.  Section 7.2.6( 

page 118) demonstrated how the formulas change when the classes occur with unequal 

frequencies across the sample cases and Theorem 5 was presented.  Finally, Section 7.2.7 

(page 121) described what happens when multiple parties contribute to the knowledge base.  

In all cases, the case-driven KA trajectory is asymptotic such that in the expected KA 

trajectory 100% of knowledge is seldom if ever acquired.  Mathematically, for large domains 

i.e. with large (m), transition to the final class in Figure 12 (page 106) is extremely unlikely 

since the probability of transitioning to the last class is miniscule compared to the probability 

that any number of multiple repeat cases will be seen.   

Although the derived formulas and theorems will be useful in some contexts, the insights that 

the model provides to case-driven KA in general are probably of greater significance.  The 

case-driven KA model offers important predictions for the trajectories presented in previous 

machine-learnt and case-based KA simulations for SCRDR and MCRDR as discussed in 

(Compton, Preston and Kang, 1995), (Kang, Lee, Kim, Preston and Compton, 1998), and 

                                                 

136 In terms of human learning, since much of our life learning is on the basis of experience, perhaps this is why 

we learn so much so quickly as children, but appear to “slow down” and “become set in our ways” as we 

approach old age. We can shift this perception by continuously seeking new references and new inputs as life 

goes on.  Further to this, it would be interesting to compare the case-driven KA curves with learning curves in 

neural networks and genetic algorithms or other biological systems and evolutionary algorithms. 
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(Cao and Compton, 2005 and 2006) as well as the tag-acquisition trajectories discovered by 

(Goldman and Huberman, 2005, p4) for folksomonies.  The differences in the observed 

trajectories can be explained by: 

• the number of possible classes (m) in the domain; 

• the number of classes acquired per case (c); 

• the type of frequency distribution of the represented classes; 

• the number of cases available to the learning algorithm (n); 

• changing user preference for generality or specificity in the set of classes acquired 

which will affect (m); 

• any over-specialisation bias which will serve to increase (m); 

• any over-generalisation bias which may also serve to increase (m).  (In RDR systems 

this will occur if additional stopping rather than subsumption classes are acquired137); 

and 

• the amount of errors in the case attributes and the classifications in the raw data that 

may result in extra (wrong) classes and hence a larger number of possible classes (m) 

in the domain. 

This research also hypothesises that the case-driven acquisition of cornerstone cases per 

RuleNode in conventional MCRDR systems will follow the probabilistically expected case-

driven KA trajectory derived herein (section 7.3.2, page 125).   

One of the key performance criteria for KA methods is the amount of system interaction 

required of users. Obviously, designers of KA systems want to achieve the best exchange for 

the least mouse clicks, key presses and mental strain on behalf of the user. So an interesting 

question is: “What is the minimum number of classes required to represent a given domain?”, 

and in terms of accuracy and efficiency, “How much better or worse do different KA 

algorithms perform?”. 

                                                 

137 Stopping RuleNodes in conventional MCRDR systems were explained on page 56. 
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From this research, I hypothesise that the most rapid and robust knowledge acquisition in a 

KBS will occur where knowledge is acquired from multiple experts who self-select their 

cases according to their expertise138; where experts are able to resolve their classification 

conflicts in a common forum as new cases arise; where experts have significantly different 

experience, perspectives, and therefore knowledge; and where the teaching-learning fit 

between the giver and receiver of the knowledge, and the accuracy of knowledge transfer is 

optimised (further discussion is provided in Appendix Q, page 473). In that case, both the rate 

and quantity of knowledge transfer can be expected to exceed the rate and quantity of 

knowledge transfer from a single expert.  As well, the model of knowledge transfer presented 

herein calls for a hybrid case-based and rule-based approach to knowledge acquisition.  A 

hybrid approach can be used to prepare for errors before they occur, minimise the cost of 

correcting errors, and enhance the overall performance of the system. 

The next chapter reviews past assertions about the need for knowledge engineering (KE) in 

RDR systems, and advocates a collaborative hybrid case-driven and rule-driven KA approach.

                                                 

138 The different perspectives from different experts can be considered to increase the number of possible 

classifications (m) in the domain. 
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CHAPTER 8: HYBRID CASE AND RULE-DRIVEN KA 

8.1 Chapter Outline 

This chapter answers the following research question: 

Q6. Why take a hybrid case-based and rule-based approach to Knowledge Acquisition? 

In the first part of this chapter, the level of Knowledge Engineering (KE) expertise demanded 

by conventional RDR systems is reviewed.  In the light of the KE expertise already required 

by conventional RDR systems, the second part of the chapter presents the reasons why a 

hybrid Case And Rule Driven (C.A.R.D.) approach to KA should be taken, rather than a case-

only KA approach. 

In the past, proponents of the SCRDR (Compton et al. 1989) and MCRDR (Kang et al. 1995) 

approaches have asserted that they don’t need a knowledge engineer or knowledge 

engineering (KE) expertise (Kang, 1995 pp ii, 50) (Edwards, 1996, pp 223 – 224, 230) (Kang, 

Gambetta, Compton, 1996, pp 257, 261) (Richards, 1998a, p16)139 (Beydoun, Kwok, 

Hoffman, 2000) (Preston, Edwards and Compton, 1994).   However, both multiple and single 

classification RDR systems require that users:  

1. Create and maintain a model of the target domain;  

2. Translate cases into a form that lends itself to computer interpretation;  

3. Abstract rule conditions into re-usable higher level functions; 

4. Define rules;  

5. Decide on rule location;  

6. Optionally construct and re-use intermediate conclusions; and  

7. Optionally maintain prudence profiles at each RuleNode in the system.   

                                                 

139 Richards has expressed the view (personal communication, 2006) that in traditional KBS, KE involved 

techniques such as protocol analysis, structured interviews, card sorts, laddered grids etc to uncover the 

knowledge from the expert, followed by a translation of the knowledge into a model represented in logic or some 

other formalisation. Richards has subsequently argued that RDR allows the domain expert to become the 

knowledge engineer.  This view has recently been supported by (Beydoun et. al, March 2005, p48). 
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Although the need for a knowledge engineer or analyst of some kind to set up the initial RDR 

domain model has been previously acknowledged (Kang, 1995, p25, p138) for dynamic target 

domains, the above KE activities are required on an ongoing basis.  Despite the advantages of 

the bottom-up case-driven RDR approach, the problem of mapping an infinite and continuous 

stream of (probably) analogue human perceptions, interpretations and hence knowledge140 

into a discrete representation suitable for computer interpretation still remains.  For example, 

it took 2-3 person weeks for a domain expert and a software engineer (the author) to develop 

just one of the functions used in the MCRDR-based support centre software trial reported in 

this thesis (section 12.3, page 225). 

This chapter argues that if we acknowledge that KE is a fundamental requirement, even in the 

simplified world of RDR, it opens up the possibility of a much more efficient paradigm for 

knowledge acquisition (KA).  Acknowledging the role and importance of top-down rule-

based KA, even in a bottom-up case-driven world141, will unlock the real power behind the 

RDR paradigm: the ability to acquire relative knowledge, in context142. 

8.2 Does RDR Require Knowledge Engineering Expertise? 

8.2.1 Modelling the domain 

SCRDR and MCRDR encourage knowledge to be maintained whilst the KBS is in routine use 

by allowing the user to compare the current case against one or more reference cases most 

relevant to the knowledge context under review, and allowing the user to differentiate the 

current case from the exemplar cases for known classes.  This procedure has its roots in 

geometric triangulation143 and the personal construct psychology introduced by Kelly (1955).  

Kelly’s idea was that users could compare a current case with two others, determine which 

other case the present case is more similar to and alternatively more different from, and 
                                                 

140 Further discussion of these ideas is provided in Appendix E (page 404). 

141 Please see the Glossary (page 277) for a definition of the terms top-down and bottom-up. 

142 Thanks to an anonymous PKAW 2006 reviewer who commented that in their view the main contribution of 

RDR is in separating knowledge engineering tasks and domain expert's tasks, rather than in reducing the 

knowledge engineering effort.  The reviewer agreed that RDR requires more knowledge engineering than the 

amount indicated by past RDR literature. 

143 and hence trigonometry as applied to geographic surveying. 
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articulate and codify the reasons for the observed similarity and differences.  Kelly’s insights 

resulted in the repertory grid method that was further enhanced by Shaw and Gaines (1989, 

1993, 2000).  In MCRDR a similar comparison process is used to discover and define the 

features that distinguish a new case from one or more existing cases in the system.   

In order for new features to be discovered and defined, new attributes and new values for 

those attributes need to be constantly added to the MCRDR system as it evolves.   The need to 

create and record new attributes and values for incoming cases becomes particularly apparent 

when the conclusions for a current case differ from the conclusions being presented by the 

system, yet the case exhibits no relevant features that distinguish it from the exemplar cases 

for the RuleNodes being presented (Kang, 1995 pp 21, 66, 78).  Edwards showed that the 

evolution of domain knowledge, and of the domain itself, was a prominent and sustained 

feature of PEIRS operation (Edwards, 1996, pp v, 105, 140, 196-197). 

Defining suitable attributes and their values is a knowledge engineering function, sometimes 

referred to as domain modelling.  As noted by Kang (1995, p25, p138), “a knowledge 

engineer or analyst of some kind will be required in setting up the initial domain model”.  

However in dynamic knowledge environments domain modelling will be an ongoing KE 

process that is rarely complete (Kang, 1995, pp 1, 142).  Kang reports that pathologists at St. 

Vincents quite independently decided that PEIRS would never be complete, but rather that it 

would keep changing as both chemical pathology and its clinical use continue to evolve 

(Kang, 1995, p49).   

Motoda (1993, p66) highlights the difficulties associated with modelling knowledge domains: 

“deciding how to partition the knowledge is a problem… which representations to use for 

which types of knowledge is also a fundamental and often difficult decision: the mapping from 

knowledge to representation is generally not clear-cut”.  

As well, Shaw’s study of different experts using KSS0 (1988) suggests that experts organise 

their knowledge of the same domain quite differently from each other, and the same expert is 

likely to vary his or her knowledge organization on repeat experiments.  Hence the attribute-

value vectors that map out the selected knowledge domain can be expected to change and 

mature over time in any RDR system targeted at a dynamic knowledge domain. 
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8.2.2 Capturing Cases 

Edwards reported that the main limiting factor of PEIRS was not its technical ability to 

represent or reason with knowledge.  Rather, most conflict related to the system’s access to 

the same case information as was known to the pathologist (Edwards, 1996, p140).  In other 

words, a knowledge acquisition and knowledge engineering exercise was required to codify 

the incoming case in such a way that the expert engine could derive useful and accurate 

interpretations for it. 

8.2.3 Defining rule conditions and defining higher level functions 

Horn (1993, section 12) notes that: “often it is not clear what combination of discriminating 

attributes should be chosen to create a rule.”  The difference lists provided in both SCRDR 

and MCRDR were aimed at simplifying this process for users, however Horn adds that: “…as 

many of these attributes are experimental, they can superficially appear to be discriminating 

variables and make the rule base unnecessarily complex.” 

In PEIRS it was found that cases could not simply be differentiated on the basis of their 

attributes, but rather that functions needed to be built to facilitate case differentiation.  New 

expertise was required to correctly use the function building syntax, and to apply built 

functions to define suitable rule conditions (Edwards, 1996, p94).  The complexity of 

conceiving of and building functions was seen to be one of the obstacles to comprehensive 

data interpretation (p144).  As noted in the evaluation of PEIRS, derived values for functions 

did not appear in the difference lists, so valid rule conditions typically had to be created rather 

than simply selected (Edwards, 1996, p144).  Depending on the domain, this expertise could 

be quite specialised.  As mentioned previously, it took more than 2 person weeks for a domain 

expert and a software engineer (the author) to develop just one of the functions used in the 

software trial reported in this thesis (section 12.3, page 225). 

In addition to this, Edwards (1996, p154) noted that users could be called upon to conceive of 

potentially complex expressions unaided, and it he perceived that some pathologists might be 

uncomfortable with the task.  Since most pathologists have a good grounding in mathematics 

and statistics he felt that it was unlikely to be a major problem, and that user interface training 

would help users rise to the challenge.   
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Clearly the tasks of formulating rules by differentiating cases; and defining and reusing 

functions are part and parcel of engineering the knowledge to provide a conditional index 

between cases and the classes that represent them.   

8.2.4 Locating RuleNodes 

MCRDR requires that users decide on both the location and the composition of rules (Kang, 

1995, pp ii, 50, 62) a task that is not always trivial (Edwards, 1996, pp 181 – 182, 194).  

Although the MCRDR system provides hints as to candidate locations for RuleNodes, the 

final decision still rests with the user (Kang, 1995, pp 20, 62).  Constructing rules, and 

deciding on their location is a knowledge engineering task.  Picking the wrong location for 

RuleNodes leads to over-generalisation and/or over-specialisation and hence to false positive 

and/or false negative errors. 

8.2.5 N-RDR 

As mentioned earlier in section 4.4.5 on page 62, the lack of tools for abstracting specific 

features to more general features was seen as an important limitation in PEIRS (Edwards, 

1996, pp 120, 134, 137).  N-RDR was an extension of RDR that introduced the concept of 

intermediate conclusions and allowed such conclusions to be re-used in rule conditions 

elsewhere in the decision tree (Beydoun and Hoffman, 1997).  However, as noted by Drake 

and Beydoun (2000, p73): “additional complications in the knowledge acquisition process 

(are) required to apply these approaches.  These complications may add extra burden on the 

expert during the knowledge acquisition process.”   

For example with N-RDR, users need to: 

1. restrict their solution to the case at hand (Drake and Beydoun, 2000, p85)  

2. decide which concepts in the hierarchy to modify (Drake and Beydoun, 2000, p87); 

and  

3. decide whether to change the definition of concepts or reconsider the parameters 

passed.   

At the limit of user KE capabilities, Drake and Beydoun (p87) offer the following last resort: 

“we maintain that on occasions when these decisions overwhelm experts during the 

knowledge acquisition process, they can always revert to using propositional (as opposed to 
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predicate) conditions”.  It is obvious from this analysis that N-RDR can demand a high level 

of KE skill of its users. 

8.2.6 Prudence 

Edwards advocated that error in KBSs should be predicted and actively managed (1996, 

p197) and as a result of his experience with PEIRS, he introduced the concept of prudence in 

RDR systems (pp i, vi, 198, 211).  Feature Exception Prudence (FEP) involves managing a 

context profile at every RuleNode in the KBS to record the set of permissible cases at that 

RuleNode based on the history of cases seen by that RuleNode and validated by a human 

expert.  The user needs to selectively filter those features that may be relevant to each 

RuleNode context.  In the examples that Edwards provided, only numeric attributes with 

values falling into known ranges were subjected to FEP (p204).  But for more text-based 

attributes, the user may need to derive their own functional measure of the similarity and 

dissimilarity between the values seen at different cases for the same attribute.  Obviously the 

knowledge engineering required by Prudence strategies requires a high level of KBS 

understanding and skill. 

Similarly, significant knowledge engineering effort would be required to tune the neural 

network in the Rated MCRDR system proposed by Dazeley and Kang (2004, p3) to identify 

cases that follow an unusual pattern of paths through the decision tree, and hence present as 

likely candidates for error and subsequent knowledge acquisition to occur. 

8.2.7 The size and complexity of the KE and KA task is user and domain dependent 

Hence although knowledge engineers may not need to be explicitly hired into the KE role in 

RDR implementations, because of the need to:  

1. Create and maintain a model of the target domain;  

2. Translate cases into a form that lends itself to computer interpretation;  

3. Abstract rule conditions into re-usable higher level functions; 

4. Define rules;  

5. Decide on rule location;  

6. Optionally construct and re-use intermediate conclusions; and  

7. Optionally maintain prudence profiles at each RuleNode in the system.   
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KE is an ongoing requirement, even in the simplified case-driven KA world of RDR.  Apart 

from obvious human factors, including the: 

1. experience; 

2. capability; and  

3. capacity (including the availability) 

of people assigned to the KA task, the size and complexity of the KE and KA task depends on 

the nature of the domain for which RDR or any other expert system144 is being implemented, 

including: 

1. The number of cases in the domain; 

2. The number of classifications in the domain; 

3. The availability of computer parse-able case data; 

4. The number of attributes in the domain; 

5. The dependency relationships between attributes; 

6. The complexity of the ongoing case parameterisation task; 

7. The nature of the structural points of differentiation available in the case data and 

hence the complexity of abstracting functions to represent classifications in the 

domain; 

8. The complexity of specifying the rule conditions; 

9. The amount of subsumptive overlap (and hence the dependency) of classifications in 

the domain;  

10. The amount of polymorphic overlap of classifications in the domain (and hence the 

amount of exception conditions required);  

11. The type and volume of other inter-class relationships that need to be represented; 

                                                 

144 These issues are consistent with some of the problems experienced when applying ML and DM techniques in 

some problem domains as discussed in Appendix D.8 on page 403. 
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12. The number of different user views that need to be represented in the acquired 

knowledge;  

13. The importance and urgency of correctness and hence of validation and verification; 

and  

14. The changeability of the problem domain. 

Finally, the characteristics of both the domain and the users will affect the propensity for KA 

errors to be made, the ease with which these errors can be corrected, and the importance and 

urgency of correcting such errors145. 

8.3 The Call for Hybrid Case And Rule Driven System 

8.3.1 An over-emphasis on incremental KA and case-driven difference lists 

Previous case-driven KA systems like SCRDR and MCRDR did not allow any edits to be 

made to the decision tree, and only allowed knowledge to be acquired on the basis of cases 

seen by a single expert (see also Horn, 1993, section 6).  With RDR, updates to the knowledge 

base involve strictly incremental case-motivated additions of RuleNodes (Kang, 1995, pp 58, 

70) (Dazeley and Kang, 2004).  In PEIRS for instance, typographical or conceptual errors in 

RuleNode expressions could only be corrected with the use of “fall-through” rules (Edwards, 

1996, p119, 207).  As recalled by (Beydoun et. al, March 2005, p50) “rules are never deleted 

or modified”; as highlighted by (Compton, P., Preston, P. and Kang 1995, p3, in past RDR 

systems, “rules are never removed or corrected, only added”; and as assumed by (Compton, 

Cao and Kerr, 2004, p2), “we cannot edit the rule” and “we hypothesise that there can be no 

advantage in carrying out these tasks in an implicit way by editing the knowledge base.  

Rather, there is a risk of introducing other errors in such editing”. 

In his PhD thesis, Kang commented that case-based reasoning (CBR) is motivated by the idea 

that in conventional KBS, too much emphasis was placed on knowledge and he suggests that 

in CBR, too much emphasis is placed on cases (Kang, 1995, p56).  In contrast, from the 

research reported in this thesis, it appears that conventional SCRDR and MCRDR systems 

have placed too much emphasis on incremental KA through cornerstone cases and case-
                                                 

145 The ease with which errors can be corrected in conventional RDR systems is discussed further in section 

8.3.9 (page 153). 
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driven differences lists (pp 134 – 135).  As noted by Kelly, Gaines, Compton, Kang, Beydoun 

et al., ongoing refinement by differentiating cases can be very useful.  However, in the PKS 

experience (Appendix G.12, page 411) difference lists were rarely used since most users 

know what conditions they want to apply without needing to see a difference list.  As well, the 

comparison of cornerstone cases via difference lists is only useful if the human user can 

cognitively make that comparison i.e. the similarities and differences between the attribute 

data must be able to be determined on the fly by the user.  Difference lists are much more 

useful for structured case data rather than loosely structured case data.  When the case 

attribute-value pairs are strongly structured, or when functions are being used to pre-process 

the cases and produce intelligible (human readable) attribute data, difference lists will be 

more human readable than when the case data is only loosely structured and functions are 

being applied at the RuleNodes themselves.   

The use of hypothetical cases to drive KA has been common in RDR systems where 

essentially one begins with either a situation (a case) or a rule (a partial case) in their mind 

rather than a case in the real world (personal communication, Richards, 2006).  Since rules are 

case conditions, the distinction between rule conditions and the cases that they aim to 

represent is sometimes not so great – the user may only collect as much of the case as is 

needed to define that particular RuleNode.  Through the software trial of the system proposed 

by this research and reported in Chapter 12 (page 223), we will see that users can be very 

capable of dealing with a hybrid top-down rule-driven and bottom-up case-driven KA 

paradigm. 

From these observations and experiences, it appears that humans have a richer capability to 

understand, abstract and express the knowledge derived from case differences than either 

SCRDR or MCRDR has given them credit for, and MCRDR systems have a greater need for 

this type of knowledge engineering expertise than perhaps previously acknowledged.   

In the previous section we saw that depending on the target domain, RDR can already demand 

significant Knowledge Engineering skills from its users.  Farquhar et al. (1995b) have 

previously argued that the growing popularity of object systems (languages, databases, 

CORBA etc) has substantially widened the group of people comfortable with working in an 
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object-oriented frame-based146 and hence rule-based paradigm.  As well, Cooper provides 

relevant insights into the real limitations of human capacity through Cognitive Load Theory  

(1998).  In particular, he highlights the importance of not exceeding the working memory 

capacity of your users.   

Beydoun, Kwok and Hoffman (2000) report: “the strength of the (RDR) approach is that 

rules are never corrected or changed because corrections are contained in rules added on to 

the end”.  In contrast, this research proposes that the strength of the RDR approach is its 

ability to acquire relative knowledge i.e. knowledge that uses an existing and recognised 

subsumption or exception hierarchy147 to minimise the complexity of the elicited rule 

conditions; in the context of specific exemplar cases. 

In the past, Compton, P., Preston, P. and Kang (1995) have asserted that: “For an expert to 

build a decision tree, he or she must think about the whole domain in selecting an attribute to 

go at the top of the tree.  With RDR the expert is asked simply to justify their conclusion in 

context in the same way as in normal human discourse”.  In contrast, this research indicates a 

middle ground in which some experts are very comfortable working in both a hybrid rule-

driven and case-driven paradigm.  By separately tracking the live versus registered case-

RuleNode associations, and hence allowing users to delay the resolution of knowledge 

inconsistencies created by case drop-down scenarios (discussed previously in section 6.5, 

page 84), experts at most need to consider the context of a given RuleNode when editing it, as 

opposed to the entire problem domain. 

8.3.2 Solving the MCRDR Repetition problem 

Although MCRDR made significant headway in solving the repetition problem that occurred 

when SCRDR was applied to multiple classification problem domains, it too suffered from 

problems of repetition where identical classifications were served up from multiple different 

locations in the decision tree148.  Apart from identical pathways being repeated in different 

                                                 

146 Minsky introduced the concept of frame-based systems (Minsky, 1975). 

147 The use of RDR in acquiring both subsumption and exception hierarchies was discussed in section 4.3.2.4 

(page 60). 

148 The MCRDR repetition problem is also discussed in sections 8.3.10 (page 155) and 13.4 (page 245).  
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orders, identical classifications could be arrived as a result of different heuristics (personal 

communication, Richards, 2007).   

Edwards showed that as the MCRDR PEIRS knowledge base grew, the mean MCRDR rule 

trace generated per case also grew (pp 190-191), indicating that the average replication in the 

MCRDR worsened in proportion to the number of cases seen by the system, and hence in 

concert with the amount of knowledge acquired.  After 262 cases, the MCRDR PEIRS system 

contained 22 conclusions and 77% of them appeared in more than one RuleNode in the 

knowledge base (p191).  Further to this, in Kang’s machine-learnt studies (Kang, 1995, p80), 

no cost was considered as regards the repetition of conclusions i.e. interpretations across the 

system.   

When MCRDR is translated to a problem domain in which users need their cases evaluated in 

real-time, the negative impact on the responsiveness of the system could be significant.  As 

well, since the KA of interpretations was the most time-consuming KA task of all in PEIRS 

(Kang, 1995, p40), repetition can be viewed as a significant KA and maintenance problem in 

conventional MCRDR systems.   

The problem of identical classifications being arrived at through different heuristics is 

particularly likely to arise in conventional MCRDR systems that provide rules with only 

conjunctions (ANDs) rather than ORs (Kang, 1995, p66) since alternate pathways to the same 

conclusion can only be represented by physically separate pathways149. 

PKS went on to develop comprehensive post-processing strategies to deal with the MCRDR 

repetition problem (Appendix G.12, page 411), and Beydoun, Kwok and Hoffman (2000) 

derived incremental KA strategies to solve the generalised RDR repetition problem by 

promoting order independence in the purely random case-driven KA RDR world.  Rather than 

applying these extra knowledge engineering strategies, an alternative that could result in more 

rapid KA would be to allow users to perform top-down rule-driven KA.  Users would be able 

to add, edit and delete attributes, cases and RuleNodes (including their classification labels 

and their conclusions); and move RuleNodes.  This would allow users to eliminate redundant 

RuleNodes, and expand the rule conditions at RuleNodes to make them more accurately 

                                                 

149 In contrast, the use of ORs in the rule conditions, and the use of the shared child RuleNode structure (section 

13.4page 245) in the system proposed by this research, will alleviate this problem. 
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represent their corresponding classifications.  Users could perform these additional tasks as 

best fits the situation while being informed as desired by the current case context, by the 

relationship between existing RuleNodes, and by reference cases currently indexed by the 

system150. 

Drake and Beydoun (2000, p83) suggest that: “the key strength of the RDR knowledge 

acquisition framework is that the resultant knowledge base can be easily modified.  This has 

reasons: firstly the cause of failure of an RDR knowledge base is automatically determined.  

Secondly, newly added rules do not impact past seen cases.”  While this may have been true 

for NRDR implementations in which case drop-downs were not permitted, as discussed 

previously (section 6.5, page 84), newly added rules did impact past seen cases even in 

conventional SCRDR and MCRDR systems.  It’s just that the impact was never tracked.  In 

the system proposed by this research, the validation and verification of knowledge is 

continuously supported by a separation between the live and registered case-RuleNode 

associations that enables the impact of knowledge evolution on past cases of interest to be 

tracked151, and (optionally) after a passage of time, the relevant knowledge corrected. 

8.3.3 Lessons from PKS 

In our interview with Lindsay Peters, the Chief Technology Officer of Pacific Knowledge 

Systems (PKS) we learnt that in practice a dual case-based and rule-based approach was 

needed for users working with the MCRDR knowledge base.  In that interview, the following 

specific comments were made (see Appendix G.12 on page 411): 

1. The knowledge base needs to have a balance between being unstructured and 

structured. 

2. Incorrect rules are never changed since “rules are cheap”.  However PKS is looking at 

relaxing those conditions. 

                                                 

150 Allowing users to combine RuleNodes with shared child RuleNodes will also help solve the MCRDR 

repetition problem.  This approach is presented later on in section 13.4 (page 245). 

151 Case tracking was introduced in section 6.5 (page 84).  Further information about case tracking is provided in 

Appendix O.4 (page 454). 
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3. Difference lists are rarely used since most users know what conditions they want to 

apply without needing to see a difference list. 

The first point implies that a degree of top-down rule-based knowledge engineering is 

required in order to maintain a suitable structure in the KBS.  It also implies that some top-

down rule-driven KA did occur. 

The second point indicates that at that time PKS was considering making RuleNodes editable. 

As mentioned earlier, the third point indicates that users are often comfortable with entering 

rules using top-of-the-head knowledge, rather than solely relying on bottom-up knowledge 

driven purely by the differences between cases. 

8.3.4 Reducing the scope and span of RuleNodes in order to ease the codification task 

Edwards (1996, p128) quotes Jackson (1990) in suggesting that in conventional expert 

systems, knowledge engineers could only add between two and five rules per day.  Edwards 

and others have previously conjectured that as the traditional knowledge bases grow, the 

knowledge acquisition bottleneck worsens because of the inherent difficulty knowledge 

engineers have in dealing with such systems.  According to Richards (personal 

communication, 2006), conventional expert systems attempted to capture global knowledge 

that is valid in all situations.  Hence in conventional expert systems it could take people hours 

to work out what changes would be needed across the knowledge base to ensure the new rule 

being added didn’t make the existing knowledge inconsistent.  A complex network of 

pathways, involving a combination of intermediate and final RuleNodes might be used, so it 

wasn’t always clear how changing one node might affect other pathways.  Users might have 

had 10 rules to add, but to ensure no errors crept in they might need to spend 2-5 days.  To 

address this problem approaches such as the use of Truth Maintenance Systems were 

developed to identify and resolve inconsistencies. 

In retrospect, it seems that the KA bottleneck resulted from complicated coupling and 

dependencies between RuleNodes and cases.  RuleNodes were used to perfectly represent 

their classifications, without redundancy or duplication in the decision tree152.  The 

                                                 

152 For example, the set (A1, A2, A3) could have been represented by a single RuleNode (A) in conventional 

expert systems, but by three separate RuleNodes in RDR. 
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complexity of the rule conditions at each RuleNode and the number of cases affected by 

changes to each RuleNode would have been much greater in conventional KBSs where users 

aimed at zero redundancy, and hence more "perfect" RuleNodes with a much wider scope and 

span153.  Since the impact on all affected cases was to be dealt with at the time that the 

RuleNode was added rather than at some more convenient time in the future, the task of 

adding each new RuleNode could have been very laborious and the complexity of that task 

could be prohibitive154. 

Compton and Jansen have previously claimed that the major feature of ripple down rules is 

that they can be added to a knowledge base far faster than conventional rules since the rules 

are added without modification, and only in a local context155 (1989, p12).  They claim that 

“it is not too difficult to add 10 rules per hour in contrast to the often mentioned industry 

figure of 2 rules per day”.  RDR allows knowledge to be acquired in an ad-hoc fashion.  

Redundancy and duplication of classifications and hence conclusions in the decision tree is 

permitted and frequent, even in MCRDR systems.  The acquisition of rule conditions relative 

to ancestor RuleNodes means that the rule conditions at RuleNodes can be simplified and 

each RuleNode can affect only a handful of cases compared with the more “perfect” 

RuleNodes referred to in the Jackson (1990) example. 

This thesis advocates that the real benefit of RDR is the ability to acquire relative knowledge, 

in context.  There is no evidence that it’s any faster working from a top-down or bottom-up 

perspective per se.  The process of constructing the rule and its interpretation is the same.  It’s 

just that it is easier to see the need for and conceive of rules when the KA is grounded in 

cases.  As well, it is easier to construct rules within a subsumption or exception hierarchy in 

which the ancestor rule path can be easily inherited, and the scope and span of each RuleNode 

is significantly reduced.  Apart from the presence of a relative case and RuleNode context, the 

actual codification task of the RuleNode conditions is identical in both conventional rule-
                                                 

153 Scope refers to the set of cases classified by the RuleNode (see Beydoun et. al, 2005, p52), where-as span 

refers to the set of cases dependent on the RuleNode and its child RuleNodes.  In (Beydoun, Kwok and Hoffman, 

2000, p4) span is defined as the domain. 

154 As mentioned previously, Cooper highlights the importance of not exceeding the working memory capacity 

of your users through Cognitive Load Theory  (1998).  

155 In RDR, the context is local relative to a possibly much wider subsumption or exception hierarchy. 
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based expert systems, and RDR case-based expert systems.  The main difference is the scope 

and span of each RuleNode, and hence the complexity of the rule conditions at the RuleNode 

and the number of cases affected by it. 

8.3.5 The rate of KA declines naturally in case-driven KA systems 

In Chapter 7 a predictive stochastic model for case-driven KA was derived that showed that it 

is very unlikely that a system that only uses case-driven KA in a large problem domain156 will 

ever achieve complete knowledge.  The mathematical model calls for a hybrid case-driven 

and rule-driven KA system.  As discussed previously (sections 7.5 on page 128, and  7.6 on 

page 129), a hybrid approach can be used to prepare for errors before they occur, minimise 

the cost of correcting errors, and enhance the overall performance of the system. 

The analysis in section 7.2.6 (page 118) showed that the rate of accumulation of RuleNodes 

and hence the rate of improvement in system accuracy is impacted by the KA properties of 

random and unevenly represented classes.  For domains with a large number of classes (m), 

the case-driven KA trajectory is asymptotic such that in the expected KA trajectory 100% 

knowledge is seldom if ever acquired.  Mathematically, for large domains, acquisition of the 

final class is extremely unlikely since the probability of seeing an exemplar case for that 

novel class is miniscule compared to the probability that multiple exemplar cases for 

previously seen classes will present themselves.  The variance about the expected number of 

cases required to achieve the last few nuggets of knowledge is enormous. 

The expert maintaining PEIRS was reported to take 2-3 minutes on average to add a new rule 

in the SCRDR system (Kang, 1995, p129) (Edwards, 1996, p193).  Once the need for a rule 

was perceived, the major problem for staff was not in creating the rules, but in deciding on the 

classification, its wording, and the most helpful form of interpretation to provide (Kang, 1995, 

pp 40, 129).  Kang reports that the conditions to be selected were always obvious, since they 

were the reason the expert recognised that the conclusion was wrong.  But after 25 months of 

operation, only 3.3 rules an average were added to PEIRS each day (Edwards, 1996, p97).  

Hence the type of software strategy employed to add rules to the knowledge base is not the 

only factor that contributes to the rate of KA.   

                                                 

156 i.e. a domain with a large number of classes to be acquired (m). 
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The rate at which new rules can be added to the KBS also depends on users seeing the need 

for rules in the first place.  Obviously, as a KBS matures to more closely represent the chosen 

problem domain, the frequency with which new rules need to be created will decline.  As a 

further example, after 29 months of operation of the LabWizard MCRDR software at PKS, 

the rate of rule addition across the 19 different sub-domains subsided from a peak of 1 hour 

per day to less than 20 minutes per day.  In 2005 generally it was taking a minute or two to 

add a new rule implying that only 10 to 20 rules per day were being added to the 16,000 

RuleNode system (Compton et al. 2005). 

As noted by Horn (1993, see his abstract), “the manual acquisition of rules using monotonic 

maintenance methods, such as ripple down rules, can be laborious”.  In contrast, and as 

discussed in section 7.5 (page 128), a hybrid Case And Rule Driven (C.A.R.D.) approach 

allows users to enter top-down general knowledge, background knowledge, or ground rules in 

an order and manner that makes sense to them.  It allows experts to anticipate problems and 

share them in advance with novices, as well as edit and correct over-generalisation or over-

specialisation errors, and optimise the knowledge structure to enhance system performance.  

The manner in which the system proposed by this research supports a C.A.R.D. approach  is 

described later on in Chapters 9 and 11 (for an example of the Rule Tree view in which one 

can edit and move RuleNodes, see Figure 40 on page 219).  The reasoning mechanism that 

allow this to occur and that protects the knowledge system against an inconsistencies is 

described later in section 11.7 (page 210 ). 

For example, Horn (1993) notes that: “It is sometimes possible that a more simple and 

general rule can replace a number of overly specific rules.  These simpler rules, not only 

reduce the size of the knowledge base, but can improve the accuracy of the system and 

improve comprehension.”  The KA model derived in Chapter 7, indicates that such 

fundamental improvements to the KBS will be most easily and rapidly acquired in a top-down 

rule-driven manner. 

8.3.6 Ground Rules versus Experience based knowledge 

In their evaluation of simulated expertise, Compton, P., Preston, P. and Kang (1995) report 

their belief that “eventually all knowledge acquisition reduces to asking an expert, at least 

implicitly, to deal with cases”.  This seems to be a reasonable conclusion for the end-game 

acquisition of knowledge in a given domain, but this research has found that it doesn’t reflect 
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the reality during the start-game.  For example, in PEIRS the first 198 rules were added off-

line in a top-down manner while interfacing problems were sorted out (Kang, 1995, p 34-35) 

(Edwards, 1996, p89).  Similarly, in the support centre MCRDR trial reported by this research 

(section 12.9.4 on page 236), the first 21 RuleNodes were most expediently added in a top-

down rule-driven manner.  As well, as noted in section 8.3.3 (page 144) it was found that PKS 

needed to structure their MCRDR knowledge base in a top-down manner.  Therefore while 

cases are necessary to test a system, this thesis argues that RuleNodes are useful on their own 

in characterising a system.  To improve the human-computer interaction experience, users 

should therefore be able to add RuleNodes in a top-down manner.  The reciprocacy between 

the case and RuleNode views discussed later on in section 13.2 (page 242), and the “look-

ahead” feature proposed in section 12.12 (page 239) can be used to inform and warn users of 

the likely impact (if any) of their proposed top-down RuleNode changes. 

In their study of crisis management ontologies to assist with scenario analysis and decision 

making in the military, Cohen et al. (1999) showed that the availability of prior knowledge 

i.e. background knowledge or ground rules accelerated the construction of KBSs.  They 

showed that prior knowledge in imported ontologies accounted for a roughly constant rate 

(60-66%) of reuse, irrespective of who had developed the imported ontologies.  They noted 

that the real advantage of these ontologies comes from helping knowledge engineers organise 

their knowledge bases along sound ontological lines.  The researchers noted that one of the 

additional benefits of background knowledge in ontologies is the recognition and creation of 

subclasses that inherit and augment the axiomatic behaviour of their parent classes. 

When starting to learn in any domain, the age-old concept of ground rules is relevant where 

ground rules are for example, “a common set of agreed standards in some process… that 

allow meaningful dialogue to proceed with the aim of minimizing conflict”157.  Ground rules 

can comprise the codified rules of the game.  The design implication is that in order to capture 

both the case-independent ground-rules, and the case-dependent refinement rules, the system 

needs to handle user interaction in both a top-down rule-driven and a bottom-up case-driven 

manner. 

                                                 

157 http://en.wikipedia.org/wiki/Ground_rules (Jan 2006) 
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8.3.7 Lessons from DMQL 

The Data Mining Query Language (DMQL) offers some further insights to case-based versus 

rule-based knowledge acquisition.  DMQL has been proposed to augment traditional SQL 

functions with those found in OLAP (online analytic processing) and data mining applications 

(Dunham, 2003, p18).  DMQL allows access to background knowledge for data mining, such 

as concept hierarchies.  The heart of the DMQL statement is the rule specification portion, 

which notably contains the following different three types of rules: 

• characteristic rules – these include the conditions satisfied by almost all the records in 

a target class 

• discriminate rules – these include the conditions that differentiate the target class from 

other classes 

• classification rules – these are the conditions that are used to define a particular 

classification for the data. 

For example, in the MCRDR rule tree in Figure 17, the rule A (at RuleNode A) is an example 

of a characteristic rule because in includes the conditions satisfied by all the other RuleNodes 

and hence records classified by the decision tree.  The rule D (at RuleNode D) is an example 

of a discriminate rule because it includes the conditions that differentiate the target class from 

other classes.  An example of a classification rule is (A and B and D) which is comprised of 

the following characteristic rules (A and B) and discriminate rule (D).  

Figure 17: Characteristic versus Discriminate versus Classification Rules 
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Both characteristic and discriminate rules can be acquired via top-down or bottom-up KA 

methods.  However, there may be a case for arguing that purely characteristic rules are more 

easily acquired via top-down rule-driven KA methods, whereas purely discriminate rules are 

more easily acquired via bottom-up case-driven KA methods.  For rules that are both 

characteristic and discriminate, both KA approaches can work. 

8.3.8 The Nature of Classification Errors 

Compton (2000) shows that errors occur in RDR systems.  He provides an analysis of the 

types of errors that experts make in building KBSs and together with (Cao and Compton, 

2005, 2006) expert error is reduced to that of: 

1. Over-generalisation resulting in false positives i.e. some cases are inappropriately 

included in the classifications.  Over-generalisation can be quantified in terms of 

sensitivity.  The intuitive response to an over-generalisation is to add rule conditions. 

2. Over-specialisation resulting in false negatives i.e. some cases are inappropriately 

excluded from the classifications.  Over-specialisation can be quantified in terms of 

specificity.  The intuitive response to an over-specialisation is to remove rule 

conditions. 

Gaines has previously highlighted the problem of false positives and false negatives in his 

presentation of the Induct machine-learning algorithm (1989, p2).  Figure 18 reproduces his 

universe of entities E, with the target predicate Q and set of possible test predicates S. 

Figure 18: Problem of empirical induction 

 

Reproduced from Gaines (1989, p1)  

with the kind permission of Brian Gaines. 
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Previous SCRDR and MCRDR implementations do not allow RuleNodes to be edited (Kang, 

Gambetta, Compton, 1996, p260) and therefore changed so if an over-generalisation error 

occurred towards the top of the rule tree, the entire sub-tree could require patching with 

exception rules, which could be a very costly knowledge acquisition exercise.  In contrast, if 

an over-specialisation error had occurred towards the top of the rule tree, the entire sub-tree 

might require duplication, which again could be a very costly knowledge acquisition exercise. 

In conventional SCRDR and MCRDR, it was thought that the integrity of the knowledge base 

would be maintained by constraining the expert to create valid rules (Kang, 1995, p24, 55).  

For example Beydoun, Kwok and Hoffman (2000) offer the following viewpoint about the 

knowledge elicited by the RDR case-driven paradigm: “Corrections entered by the expert are 

always guaranteed to be valid, because of the way conditions of new rules are chosen”.  

However this doesn’t take account of the fact that if one is to avoid over- and under-

generalisation errors, the classification and hence conclusions provided at any given 

RuleNode must exactly match the rule conditions represented by that RuleNode.   

For example, in a conventional SCRDR or MCRDR system one can validly say in the 

decision tree: “if it swims, it’s a fish”.  But this is obviously an over-generalisation since most 

mammals also swim, and they are not fish.  It could be a very onerous task for a user to 

provide exceptions to the fish RuleNode for every incoming subclass of swimming mammal 

seen by the system, not to mention pointless if the user recognised their error and they were 

willing and able to edit the fish RuleNode to more accurately specify its rule condition. 

In conventional MCRDR, a strategy that tends to add rules at the top of the rule tree will 

cover the domain more rapidly, but with a greater likelihood of over-generalisation errors 

(Kang, 1995, p63).  In contrast, a strategy that tends to add rules at the bottom of the rule tree 

will cover the domain more slowly, and with a greater likelihood of over-specialisation errors.  

Kang (1995) suggested the two alternate strategies of asking a user to either (i) select the 

important data used in reaching a conclusion, or else (ii) delete the irrelevant data.  If the 

selected data satisfies an existing pathway in the decision tree, the system places the new 

RuleNode at the location that the selected conditions reach down to158. 

                                                 

158 Kang (1995, p64) notes that the performance of his proposed approach to incremental RuleNode acquisition 

in MCRDR was not fully evaluated. 
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Rather than focussing entirely on the rule conditions and placement of RuleNodes in the 

decision tree, a greater focus on the nature of the classifications relative to their condition 

paths may improve the effectiveness of KA in MCRDR systems.  Clearly whether a 

RuleNode is too general or too specific depends not just on its rule conditions, but on the 

classification it aims to represent by those rule conditions.  In the ideal scenario, the set of 

conditions given by the rule path for each RuleNode, and the classifications given at the 

RuleNode, will be increasingly aligned to each-other by experts refining any or all of the 

knowledge (including either the rule conditions, the RuleNode location, or the classifications 

and conclusions) as the knowledge base evolves.  As we will see later (section 12.2, page 

223), in the support centre software trial conducted by this research, when given the 

opportunity, users relied heavily on facilities to edit and change RuleNodes, including their 

rule conditions, classifications and conclusions, in order to improve the knowledge 

represented by the expert system. 

8.3.9 The Cost of Correcting Errors 

In the SCRDR simulations developed by Compton (2000), the relative cost of errors was not 

developed and a simplifying assumption was made that all errors are equal (Compton, 2000, 

p5 paragraph 3).  The same assumption was made for the simulations reported in (Cao and 

Compton, 2005, p3 paragraph 3) for SCRDR, Flat RDR159 and KA via the Composite Rules 

framework160.  No formal study has been made of the relative costs of overgeneralisation and 

overspecialisation errors made at different levels in a multi-level MCRDR decision tree.  

However, it is conceptually clear that the cost of correcting errors using only local patching is 

greater for rules at the top of a multi-level MCRDR decision tree, than for errors lower down 

in the decision tree, purely because of the volume of cases incorrectly classified as a result of 

these errors in the case of over-generalisation, and because of the volume of sub-tree 

RuleNodes and hence Cases inappropriately excluded by these errors in the case of over-

specialisation.  It can be inferred from the results of (Cao and Compton, 2006) that adding a 

taxonomic structure in the decision tree will result in more rapid domain coverage for a 

                                                 

159 Flat RDR is an implementation using an MCRDR decision tree with depth < 2. 

160 Note that the simulations offered in (Cao and Compton, 2006) relied on a subset of the simulation framework 

described in (Cao and Compton, 2005) where Flat RDR was applied to a single classification problem domain. 
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simulated expert with overspecialisation and overgeneralisation error rates of up to 30%.  

Hence as previously discussed in section 8.3.6 (on page 148), allowing a multi-level 

taxonomic structure as provided by conventional multi-level MCRDR is shown to be an 

important component of KA systems. 

Compton notes that the type of error that is more acceptable will vary with the domain 

(Compton, 2000, p6 paragraph 2).  Those simulations (Compton, 2000) emphasised the 

impact of over-generalisations which easily lend themselves to augmentation further down in 

the decision tree, and they discarded the impact of over-specialisation errors, which obviously 

can be very costly in terms of knowledge acquisition for well-developed sub-trees (Compton, 

2000, p12 paragraph 2).  This position was possibly taken since, as discussed previously in 

section 4.3.1.3 on page 49, RDR users tend to differentiate cases using the least number of 

rule conditions, resulting in an over-generalisation bias in the knowledge acquired. 

The simulation study by (Cao and Compton, 2005, p7 paragraph 2) found that the occurrence 

of overgeneralisation errors created more error overall in SCRDR, Flat RDR, and Composite 

Rules knowledge bases, than the occurrence of overspecialisation errors.  In the case of Flat 

RDR and Composite RDR there was no depth in the resultant rule trees, so the cost impact of 

an overspecialisation error is far less than in an MCRDR implementation where an 

overspecialisation error can occur at a RuleNode with many dependent RuleNodes, for 

example towards the top of a multi-level decision tree. 

The simulation study by (Cao and Compton, 2006) again used Flat RDR (as opposed to multi-

level conventional MCRDR) and studied the impact of a taxonomic hierarchy and the use of 

cornerstone cases in the presence of both overspecialisation and overgeneralisation errors.  

Over-specialisation errors are quite likely to occur in dynamic knowledge environments such 

as the ICT domain, where several if not many of the incumbent rules in the decision tree refer 

specifically to current systems e.g. software or hardware versions in order to differentiate 

these systems from their legacy counterparts.  When future systems comprising e.g. future 

software or hardware releases are deployed, existing RuleNodes which perhaps should still 

fire may not, for example when the software or hardware versions identified at existing 

RuleNodes have not anticipated the new release. 

In the ICT trouble-shooting domain, both types of errors can have a significant impact.  The 

false positive over-generalisation errors can lead to errors of seismic proportion if the wrong 
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solution is implemented for a given case, for example causing loss of data, legal liability, 

and/or undue system downtime at a customer site.  Similarly, the false negative over-

specialisation errors will mean that the trouble-shooter does not find the appropriate solution 

and an excessively long time-to-resolution for the customer may result. 

8.3.10 Performance implications of System Compactness and Balance 

In their use of simulated experts in evaluating knowledge based systems using subsets of the 

Chess, TicTacToe, and Garvan datasets in the Irvine data repository, Compton, P., Preston, P. 

and Kang (1995) found that for the smartest expert, selecting 4 conditions gave the entire 

intersection of a classification in nearly all cases.  As well, they found that on average, only 2-

3 rules needed to be satisfied by a case in order to reach the correct solution.  The researchers 

concluded that their results did not indicate “any pressing need to reorganise the KB”, and 

provided that “a conclusion from this work is that the effort that is put into trying to organise 

knowledge into an optimal model is often unnecessary”.  However, the Chess and TicTacToe 

domains were both bi-conclusion domains and the strategy employed to add RuleNodes to the 

KBS favoured RuleNodes being added at the topmost level (Kang, 1995, p84).  Hence a flat 

rule tree was possibly generated with a typical depth of 2 RuleNodes, with the first level 

covering all the instances where one of the two possible conclusions would be achieved with 

stopping nodes at the second level to manage the exceptions.  It seems likely that bi-

conclusion domains like Chess and TicTacToe constructed in this manner are unlikely to 

generate any significant depth in the acquired rule tree. 

In contrast, Kang reports that at a point where the SCRDR-based PEIRS system had over 

2110 rules, rule paths had an average of 4-5 RuleNodes per pathway, and a maximum of 19 

RuleNodes, where each RuleNode had an average 1-2 conditions with a maximum of 6 

conditions (Kang, 1995, p36).  Rules were restricted to conjunctions of conditions.  This 

reveals significant depth in the condition paths of the acquired knowledge base.  Note 

however that this would have been exacerbated by the problem of trying to represent a 

multiple classification problem domain (arterial blood gases in pathology testing) using a 

single classification RDR framework.   
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As can be reasonably expected161, the datasets used by the Compton, P., Preston, P. and Kang 

(1995) simulations included only a subset of all possible cases, and resulted in a finite subset 

of RuleNodes with limited domain coverage.  For example, the Chess KA simulations 

resulted in a worst-case (“dumb” expert) maximum of 90 RuleNodes; the TicTacToe 

simulation resulted in less than 200 RuleNodes; and finally the Garvan simulation resulted in 

less than 1300 RuleNodes.  Less RuleNodes were achieved for the simulated experts with 

higher competence.  As well, 60% of the acquired RuleNodes were stopping RuleNodes for 

all 4 trials involving the Garvan thyroid domain, and 40-60% of RuleNodes were stopping 

RuleNodes for the chess and TicTacToe domain (1995, Kang, pp 117-119). 

As discussed previously in section 2.2 (page 14), and as we shall see later in section 10.1 

(page 169), the support centre context targeted by this research required that up to 5,000 cases 

per day be handled, and that multiple permutations of more than 10,000 different hexadecimal 

error codes and resultant classifications be responded to.  Past assertions about the 

unimportance of balance and compactness of the decision tree appear therefore to have been 

made in the context of experiments and simulations that used a relatively small selection of 

datasets.  New challenges arise when faced with the performance demands in the support 

centre context.   

As well, and as discussed previously (section 8.3.2, page 142), although MCRDR 

significantly reduced the repetition problems experienced when SCRDR was used in multiple 

classification domains, repetition was still a significant problem, even in conventional 

MCRDR systems. 

In Kang’s machine learning evaluation (Kang, 1995) there was no systematic KA strategy to 

seek out a subsumption hierarchy for the acquired classifications.  Instead, for the modelled 

novice and moderate experts a systematic over-generalisation bias was introduced by placing 

all new RuleNodes at the top of the rule tree (Kang, 1995, p84).  While it has been shown that 

MCRDR is better than SCRDR at ensuring that under-generalisation and hence the repetition 

of classifications and conclusions does not occur (Kang, 1995, p104), MCRDR systems that 

fail to take advantage of an accurate subsumption hierarchy afforded by taxonomic domains 

                                                 

161 Note that for infinite domains, cases can only ever be a brittle representation of reality.  The presented cases 

will only ever be a subset of the cases that can occur in reality. 
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mean that interpretations may not be fully referenced and reused in the system.  Depending on 

the domain, this can lead to a much heavier maintenance load for users. 

Compactness and balance become critically important where the cases are to be evaluated 

against the decision tree in real time, for example as in an interactive and recursive 

implementation.  After his experience with PEIRS, Edwards (1996, pp 138, 185, 194) 

concluded: “response time will be an important issue for real-time interactive systems”, and 

“top level rules need to evaluate all cornerstone cases in the system.  This can slow the 

maintenance task considerably.  The extent of this problem with very large knowledge bases 

needs to be explored.”.  Hence, the size of the decision tree and the number of cases that it 

must handle will determine the significance of the properties of compactness and balance.A 

system providing multi-user real-time evaluation of cases against the knowledge base cannot 

afford to keep users waiting.  According to one human computer interaction (HCI) study, a 

tolerable user wait time is about 2 seconds (Nah, 2004).  Users will wait somewhat longer if 

there is feedback that something is happening.  Given the delays inherent in network based 

communication, albeit on a private network or via the public Internet, it seems intuitive that a 

system with in excess of 1000 RuleNodes might need some degree of decision tree 

subsumption and / or balancing in order to maintain transaction integrity whilst providing for 

general system availability, and providing a response time to networked users in the order of 2 

seconds. 

According to the PKS experience (Appendix G.7, page 410), conventional MCRDR 

knowledge bases with thousands of rules can process 50 cases per second i.e. 0.02 seconds 

per case.  Therefore for n users, each with 1 case being concurrently processed by the same 

system in real-time, this translates to a waiting time of n * 0.02 seconds.  If you have 100 

concurrent users evaluating cases using a conventional RDR approach, your wait time would 

already be more than 2 seconds.   

In addition to this, the PKS experience offered that when making changes to the knowledge 

base, 4 transactions per second were possible.  So for every concurrent case or RuleNode 

write, concurrent users of a hypothetical reasonably sized conventional RDR system could 

expect a further 0.25 second delay.  Recall the need for users to work-up their cases, and the 

dynamic nature of the knowledge being captured.  Finally, consider the inherent delays 

associated with a globally accessible real-time client-server solution that needs to share an 
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already busy corporate network.  (In contrast, PKS’s LabWizard product processes the vast 

majority of its cases off-line in batch mode.)  It would seem that because of the added delays 

involved new strategies are needed to deal with multiple users concurrently evaluating cases 

against and writing to an RDR system in real-time. 

In the system proposed by this research, a preliminary population of the decision tree with all 

of the available equipment error codes gave rise to in excess of 10,000 RuleNodes.  Given 

that the system is required to handle up to 5000 cases per day, and be viewed by at least 

hundreds of concurrent users, and possibly thousands, decision tree compactness and balance 

are obviously important factors.  If top-down rule-driven KA can more rapidly solve problems 

of redundancy and imbalance, then it makes sense to embrace and combine it with bottom-up 

case-driven KA. 

8.4 Chapter Summary 

In answer to the research question: 

Q6. Why take a hybrid case-based and rule-based approach to Knowledge Acquisition? 

In the first half of this chapter, it was shown that both multiple and single classification RDR 

systems can require significant knowledge engineering efforts depending on the nature of the 

problem domain, for example to dynamically create and maintain a model of the target 

domain; translate cases into a form that lends itself to computer interpretation; define rules 

and abstract conditions into re-usable higher level functions; decide on rule location; 

optionally construct and re-use intermediate conclusions; and optionally maintain prudence 

profiles at each RuleNode in the system.  The characteristics of the domain, and the users will 

determine the ease with which knowledge can be acquired, even for RDR based expert 

systems. 

In the second half of this chapter, it was argued that a hybrid case-based and rule-based 

approach is justified when users possess characteristic and / or background knowledge that is 

ready to share in a top-down rule-based form.  This top-down rule-based knowledge can be 

used to prepare for errors before they occur, minimise the cost of correcting errors, and 

enhance the responsiveness and completeness of the KBS.  Previously (Compton, Cao and 

Kerr, 2004, p2) have asserted that: “the only possible way of characterising, testing or 

evaluating a knowledge base is via a set of cases”; that “the testing is only as good as the case 
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available”; and that “regardless of the quality of cases, they are the only way of 

characterising the system”162.  In contrast, this thesis argues that while cases are necessary to 

test a system, RuleNodes are sufficient on their own to characterise a system, even those that 

have been added in a top-down manner without any specific reference to a case.  This 

research concurs with the arguments put forward by (Beydoun et. al, 2005, p48) and 

previously described in section 5.2 (page 66) that a state of consensus between experts 

reflects a mature model.  Consensus can be built with specific and current cases in mind, or 

with future anticipated cases in mind.  It can also be built with general classifications and 

rules in mind.  In other words, consensus can be reached regardless of whether the model is 

built in a top-down, bottom-up, or hybrid manner.   

Whereas conventional rule-based expert systems may have given primacy to the classification 

(section 3.5.1, page 36), and RDR-based expert systems gave primacy to the context-

dependent case, the 7Cs approach proposed by this research gives primacy to the context-

dependent consensus between the multiple agents or users who use the system163.  The insight 

is that the context of knowledge depends not only on cases, but also on the experts who use 

that knowledge. 

Consensus can be achieved by several different conflict resolution mechanisms, for example 

voting or negotiating164.  In the proposed 7Cs system negotiation is supported by separating 

the public (live) and private (registered) views of KA participants as described previously in 

section 6.5 (page 84) and encouraging users to resolve any inconsistencies that crop up 

between their private view of the knowledge, and the shared public view of the knowledge.  

Voting is supported by maintaining a count of the number of cases registered by users for a 

given RuleNode.  A comparison between the voting and negotiation strategies is left for 

future researchers, but the end result of consensus and hence validation and verification is 
                                                 

162 Later on in (Compton, Cao and Kerr, 2004, 9) the authors note that they are not yet able to prove the 

conjecture that all knowledge acquisition can be reduced to correcting and adding to the knowledge, using only 

the two relations of sequence and correction. 

163 Shaw and Gaines (1989) identified consensus as one of several outcomes of conflict as previously shown in 

Figure 6 (page 68). 

164 Many thanks to an anonymous Computer Supported Cooperative Work in Design (CSCWD) reviewer (2007) 

for the comments about voting versus negotiating in building consensus. 
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supported through the notion of approved RuleNodes as described later in Appendix O.5 

(page 456). 

It was beyond the scope of this thesis to perform user trials in a variety of different problem 

domains to quantitatively determine how each of the dimensions outlined in section 8.2.7 

138) together with a top-down or bottom-up KA paradigm really affects the size and 

complexity of the KE and KA task and therefore the usability and functional effectiveness of 

the resultant expert system.  This task is left for future researchers to study in much greater 

depth. 

This chapter has argued that acknowledging the role and importance of top-down rule-based 

KA, even in a bottom-up case-driven world, can unlock the real power behind the RDR 

paradigm: the ability to acquire relative knowledge, in context.  The system proposed by this 

research allows for the creation, editing, and deletion of attributes, cases, and RuleNodes; as 

well as the relocation of RuleNodes in the decision tree.  Significantly, the recording and 

maintenance of the live and previously registered case-RuleNode associations allows the 

impact of both top-down rule-based and bottom-up case-based KA to be identified and 

reported, and it allows knowledge inconsistencies to be dealt at the user’s discretion and 

convenience. 

The next chapter presents the top-level design of the proposed 7Cs system. 
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CHAPTER 9: 7CS TOP LEVEL DESIGN 

9.1 Chapter Outline 

Recalling from section 1.3 on page 3 that: 

a further sub-goal (of this research) was to develop an approach that would be 

flexible enough to support collaborative trouble-shooting and classification in 

other domains such as botany, zoology, biology, chemistry, pathology, geology, 

and financial markets; 

this chapter presents top-level conceptual representations of the proposed system.  A novel 

7Cs model is offered that supports the Collaborative Classification and Configuration of a 

stream of incoming Cases via a relational structure of ConditionNodes, Classes and 

Conclusions (hence 7Cs).   

The 7Cs model stretches the MCRDR algorithm to encompass collaborative classification and 

offers a very lightweight information broker that can act as an index to knowledge resources 

across an organisation’s Intranet and / or across the broader Internet.  A key feature provided 

by the 7Cs model in support of collaboration is the separation between the live case-RuleNode 

associations that represent the current global truth calculated and recorded by the 7Cs expert 

system (i.e. the knowledge base), and the registered case-RuleNode associations that 

represent the current truths of individual contributors to the expert system. 

The 7Cs model has been demonstrated and tested as part of this research via a prototype 

system known as FastFIX.  The detailed design for the FastFIX prototype is presented later in 

Chapter 11 on page 176, and its web-based application shell is described in Appendix M 

(page 424). 

9.2 7Cs Condition Mesh 

In the proposed 7Cs structure, each parent ConditionNode (i.e. RuleNode) may have multiple 

child ConditionNodes, and each child ConditionNode may have multiple parents.  A parent 

node with multiple child nodes supports both a subsumption and a polymorphic exception 

hierarchy; whereas a child node with multiple parent nodes supports the notion of multiple 

inheritances, as in Frame-based or Object Oriented class-based domain modelling systems.  

Kang (1995, p62) has previously highlighted the importance of allowing classifications to be 
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re-used so that the system can identify when two or more identical classifications are 

produced, and report on just one of them.  In the 7Cs model, identical classifications being 

served up in different parts of the same condition (i.e. rule) mesh would warrant the use of a 

shared child ConditionNode.  This feature is described in section 13.4 on page 245. 

In the 7Cs system there is an N-to-N165 relationship between Cases and their live and/or 

registered ConditionNodes; an N-to-N relationship between the ConditionNodes and the 

Classifications that they represent166; and an N-to-N relationship between the resultant 

Classifications and their Conclusions.  Both the live public view, and the registered individual 

(and possibly private) views of the current case-RuleNode associations are maintained by the 

7Cs system.  The case-RuleNode associations can therefore be in several different states for 

one or more users: just live, both live and registered, or just registered.  Figure 19 shows an 

entity relationship diagram for the system.  These concepts are explained in more detail later 

on (sections 11.3.1 and 11.3.2 commencing on page 184). 

Figure 19: 7Cs Entity Relationship Diagram 
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165 This is a standard nomenclature in relational database design.  For example, the N-to-N relationship between 

Cases and their ConditionNodes means that for every case, there can be multiple ConditionNodes, and for every 

ConditionNode, there can be multiple cases. 

166 As noted previously (section 7.2.3 on page 97), notionally the mapping between a ConditionNode and the 

Class that it represents is 1 to 1.  In practice it may also be worthwhile to refer to the relevant superclasses at the 

ConditionNode.  This is discussed further in section 11.3.6 (page 193). 
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An example 7Cs condition mesh is displayed in Figure 20 (the example applies equally well 

to a live or a registered view of case-RuleNode associations).  As shown in Figure 20, a Case 

can evaluate to TRUE for multiple Condition paths in the condition mesh, hence a Case can 

fetch multiple Classifications, where each Classification may be linked to multiple 

Conclusions.  As well, Conclusions can be reused across multiple Classifications, and those 

Classifications may be reused across Condition paths, and across multiple Cases.  Note that in 

Figure 20 only a subset of classifications and conclusions are shown for ConditionNodes 6, 7, 

and 8 and for simplicity links to the classifications and conclusions at other ConditionNodes 

have not been included in the figure.  Further examples of how this structure is useful will 

become apparent through the remainder of this thesis.  Examples include Figure 53 on page 

247 and Figure 54 on page 253. 

Figure 20: 7Cs Condition Mesh 
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The 7Cs system allows knowledge workers in any domain to collaboratively refine and 

expand a topic using an expert systems approach by consistently asking users to confirm, add 

to, or refine the knowledge presented, typically within the context of a current case.  In the 

system, Attributes, Cases, Conditions, Classifications, and Conclusions can each be the 

subject of Collaborative editing. 

The system goes beyond the collaborative capture of solution knowledge, to promote the 

collaborative capture and re-use of tacit problem solving knowledge, including classification 

and problem determination knowledge.  The approach adopted does this by capturing and 

sharing the questions that experts ask themselves when classifying incoming cases.   

The system significantly extends the Multiple Classification Ripple Down Rules (MCRDR) 

algorithm.  For example, new data structures and algorithms are presented to facilitate conflict 

resolution between multiple sources of expertise and to allow experts to more effectively 

collaborate in building up a knowledge base and condition mesh.  The detailed design of the 

core system is described in Chapter 11 (commencing on page 176).  Enhancements to this 

core design are described in Chapter 13 (commencing on page 242). 

9.3 7Cs Data Flow Diagram 

The top-level Data Flow Diagram (DFD) of the 7Cs software architecture is shown in Figure 

21.  Input arrives in the form of Cases.  The cases are parameterised via attribute-value pairs 

that identify the case.  The user is guided to interact with the case recursively to expand its 

attribute list and thereby configure it to make it explicit enough for the system to identify 

useful classifications for it. This is similar to the process of working up a case in diagnostic 

professions such as medicine. As the right questions are asked and more information comes to 

light the case develops to an extent that a decision regarding the best course of action can be 

made. 

The system identifies classifications for a case by evaluating its attributes against multiple 

paths of sequential rule nodes in the condition mesh as exemplified by Figure 20.  The case 

will be found by the system to fit with one or more classifications according to the current 

condition mesh.  The system will offer the user one or more conclusions for each 

classification that the case complies with. 



 Chapter 9: 7Cs Top Level Design 

Submitted January 27, 2007 165 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

The user will be asked to confirm or deny the presented classifications and their conclusions.  

Where a given classification is rejected, the user is asked to modify the set of attributes for the 

case so that it fetches a different classification; edit the classification or its conclusions, or the 

conditions under which that classification is invoked; or stop an existing ConditionNode and / 

or add a new ConditionNode in the condition mesh in order to reflect the new classification 

and its conclusions. 

Figure 21: A 7Cs Top-level DFD 
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In Figure 21 the human’s tasks include: problem parameterisation, condition articulation, 

classification articulation, conclusion articulation and selection of the presented classifications 

and conclusions; and the computer’s tasks include the indexation of conditions, cases, 

classifications, and conclusions.   
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Obviously it is vital to the success of the tool that it actually gets used – the more it is used, 

the more useful it will prove to be.  In this vein, multiple users can dynamically update the 

knowledge. 

9.4 Legacy Problem Ticketing System and Knowledge Base 

Support centres have made and continue to make enormous investments in evaluating and 

purchasing workflow software.  Quite separate from the financial investment in software is 

the investment in organizational learning - “the way we do things around here”.  This extends 

beyond the training of front-line personnel to an investment in custom reports and metrics to 

assist in performance management of the support centre. 

Through the use of hyperlinks (i.e. web-based URIs), the 7Cs model can be used to index 

cases or solutions in any Intranet or Internet addressable legacy case tracking, solution 

tracking or other workflow system that the support centre may have already invested in. 

9.5 Applicability – Solution Space 

In addition to the ICT support centre domain, the 7Cs design lends itself more generally to 

knowledge domains where users rely on heuristics to form classifications, and where users 

apply some subset of a reusable set of conclusions depending on the given classification.   

In order to achieve a fit with the 7Cs solution, the following pre-condition must be satisfied: 

1. The problem must be worth solving i.e. the cost of solving the problem must be less than 

the cost of replacing the broken unit.  For example, suitable problem domains could have: 

• heavy / installed / expensive plant or equipment 

• expensive and / or critical infrastructure such as that provided by the utilities, for 

example: electricity, gas, water, phone, Internet, or traffic control. 

As well, the solution will potentially be of benefit in any of the following situations: 

2. Wherever complex problems need repetitively to be solved.  For example: 

• support centres, call centres, help desks  

• computer / software / hardware – support / upgrade / compatibility 

• motor / plant / heavy vehicle – mechanics / diagnostic repairers 



 Chapter 9: 7Cs Top Level Design 

Submitted January 27, 2007 167 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

• health / medical / pathology – diagnosis and prescription 

• law, tax, lending, fraud 

3. Wherever trouble-shooters find it difficult or require expert knowledge to identify the type 

of problem on hand.  For example: 

• trouble-shooting computing problems in an ICT support centre 

• trouble-shooting problems in an aeroplane 

• trouble-shooting problems in a mining drag-line / loader or other vehicle 

4. Wherever trouble-shooters find it difficult to know where to search for information.  For 

example: 

• because there are multiple and sometimes conflicting sources of information 

• because the appropriate place to search for the information depends on the search 

context 

5. Wherever data exists in the form of cases, and custom searches on the individual fields of 

those cases may be effective in reducing the number of false positives returned by a 

standard search engine.  For example: 

• sifting through hex dumps of error codes produced by faulty software 

• numerical data e.g. blood sugar levels in pathology, needing logical tests such as <, >, 

!=, <=, >= etc 

• time series or sequential data e.g. animal or plant or organism growth rates 

• data that requires custom pattern matching, for example supporting wildcards in 

special places. 

6. Wherever there are multiple experts with conflicting opinions about how best to identify 

and solve a problem. 

• Most experts conflict with each other!  This system provides a mechanism for 

highlighting the conflicting cases, and it allows experts to pick out features of a case 

that differentiate it from past cases and determine that it needs a different solution. 
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7. Whenever there is a group of users in disparate locations that can benefit from sharing 

their problem determination, taxonomy, ontology, or classification know-how.  Example 

domains include: botany, zoology, biology, chemistry, pathology, geology, technical 

analysis in financial markets, and of course trouble-shooting client problems or resolving 

customer enquiries for example in a support or call centre. 

9.6 Chapter Summary 

A key feature provided by the 7Cs model in support of collaboration is the separation between 

the live case-RuleNode associations that represent the current global truth calculated and 

recorded by the 7Cs expert system (i.e. the knowledge base), and the registered case-

RuleNode associations that represent the current truths of individual contributors to the expert 

system.  In Chapters 11 and 12 we shall see how tracking the difference between live and 

registered case-RuleNode associations provides for conflict resolution and hence additional 

knowledge acquisition opportunities, since users can be spontaneously notified of changes to 

the knowledge base that will affect their past and future decisions. 

As well, the 7Cs model lets users collaboratively share the questions they ask themselves 

when working-up their cases.  Contributors are collectively guided by their peers in the 

problem determination and hence the case configuration process. 

In summary, the 7Cs system lets: 

• humans do what humans do best: comparative analysis, problem classification, 

decision making, and solution generalisation; and  

• computers do what computers do best: massive and light-speed indexing, repetitive 

question-answering, significant number crunching to infer solutions, data 

manipulations to reveal knowledge gaps, and presentation of knowledge structures 

with multiple views in multiple different and useful ways. 

This chapter has presented some top-level concepts for the proposed 7Cs system.   

The next chapter describes the specific problem domain explored in the FastFIX software 

trial.
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CHAPTER 10: THE DIAL-HOME PROBLEM CONTEXT 

10.1 Chapter Outline 

As described previously (Chapter 2), the HTG support centre provides a case study that offers 

insights to the problem solving process in general.  For example, the observations, interview 

and survey at the HTG support centre confirmed that troubleshooting involves a process of 

classification and configuration (section 2.5.3 on page 26). 

As implied by section D.1 on page 398, information retrieval techniques require that 

similarity and dissimilarity measures be calculable between items in the search space in order 

to optimise both the precision and recall of the information retrieved.  Similarly, as described 

in section 3.6 on page 38, Data Mining (DM), Case Based Reasoning (CBR), and Ripple 

Down Rules (RDR) techniques each require that the user create a model of the domain, 

comprised of a vector of attributes that can be used to identify each case in the system, and a 

set of functions or rules that can be used to determine the similarity and dissimilarity between 

cases in the search space. 

This chapter describes the nature of the problem cases being experienced by the HTG support 

centre in their Hardware Support Lab (HSL).  The study of this specific problem context has 

provided the motivation for the more general 7Cs design and FastFIX implementation as 

described in Chapters 11 and 13.  What we will observe in this problem space is that the 

similarity and dissimilarity measures between problem cases cannot be discovered by 

observing or mining the available data alone.  Rather, this case-based classification 

knowledge needs to be acquired from human experts. 

10.2 Problem Scope 

As mentioned previously, at the time of this research the HTG support organisation was 

experiencing upward of 5,000 problem cases per day globally.  20% of these cases were 

arriving in the form of cryptic error codes in hexadecimal format automatically emailed from 

errant equipment to the support centre’s case tracking software in the form of “dial-homes”.  

The remaining 80% of cases were being raised by customers via a support site on the Internet, 

or by phoning up HTG’s customer service desk. 
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In the last few months of the project, the Sydney-based support group decided to focus the 

attentions of this research on its dial-home problems167.  The dial-home cases were handled 

by a part of the organisation known as the Hardware Support Lab (HSL).  When the 

equipment experienced errors, depending on the seriousness and frequency of those errors an 

error filtering system inside the equipment would determine whether or not to dial-home and 

report the errors.  Incoming dial-home cases were stored in the CaseDB case tracking system 

and automatically assigned to a set of incoming case queues to be handled by personnel in the 

HSL.  If additional dial-homes subsequently came in from the same unit of equipment they 

were added to the (possibly open) unresolved CaseDB case. 

Dial-home cases were made up of up to 10,000 different hexadecimal error codes.  Much rote-

learnt and experience-based memory work was required on the part of experts to interpret 

them.  It was felt by several trouble-shooters in the HTG support centre that an expert systems 

approach could offer a significant improvement to the process of interpreting and acting on 

the dial-home cases. 

An example case is shown in Appendix B (commencing on p 387).  This case is comprised of 

two separate dial-home events labelled as dh1 and dh2.  As can be seen in the last few 

paragraphs of the case, the case was handled by 11 different support centre personnel and 

took almost 10 days to be resolved (I have obfuscated the user names to avoid identification 

of the individuals).  Much of the problem solving activity occurred within the first 2-3 days.  

Hardware Support engineers reported that dial-home cases take on average approximately 15 

minutes to solve. 

10.3 Dial-home System Overview 

The first stage in the system design for the FastFIX dial-home project was to parse the 

incoming cases and capture important parameters that could be used to determine the class of 

problem on hand.  Given the critical importance of the CaseDB database to HTG globally, I 

was unable to get data-level read or write access to it.  Unfortunately I was also unable to get 

read or write access to a replica database.  However a web-based interface to CaseDB had 

been implemented that trouble-shooters across the company were able to access. 
                                                 

167 Many thanks to Stephen Wright, Kieran McGee, Chris Bunting, and Colin Berrell for focussing the project in 

the area of dial-home cases, and for providing resources for the related FastFIX software trial. 
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In response, an HTG colleague168 developed some prototype software that he named the Dial-

Home Advisor (DHA).  The DHA scraped HTML code from the web interface to CaseDB, 

summarised the important details of any given CaseDB case and passed them to FastFIX for 

each dial-home in that CaseDB Case.  It also gave an initial human readable interpretation of 

the hexadecimal error codes in the dial-home.  The following figure shows the resulting chain 

of software used to gather, manipulate and communicate the dial-home case-data. 

Figure 22: Flow of Case information from the equipment to FastFIX 
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The DHA was implemented in Perl / CGI and could be accessed via a website by trouble-

shooters in the HSL.  Trouble-shooters simply entered the identity number of the CaseDB 

Case to the DHA and then for each dial-home included in the case, they were directed to the 

FastFIX system and its conclusions. 

The following figure shows a screenshot from the FastFIX system of the first dial-home for 

CaseDB Case ID 13315712 as shown in Appendix B (commencing on p 387). 

                                                 

168 Many thanks to Chris Bunting at HTG for generous assistance with understanding the nature of the HTG dial-

home problems, and for conceiving of and developing the necessary DHA interface software. 



 Chapter 10: The Dial-Home Problem Context 

Submitted January 27, 2007 172 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

Figure 23: Case Data for FastFIX ID 1: CaseDB ID 13315712 – Dial Home 1 

 

For the CaseDB Case and dial-home shown in shown in Figure 23, the parameters passed to 

FastFIX by the DHA included the identity of the CaseDB Case, the identity of the dial-home, 

and a summary of the error signatures for the dial-home.   

The ability to have more than one dial-home linked by the same CaseDB ID is similar to the 

ability in PEIRS to have more than one specimen or test result linked to the same patient ID.  

In PEIRS, interpretations could be made both for the individual test results, or for the 

combined suite of test results for a given patient (Edwards, 1996, pp 81, 100). 

As mentioned earlier, there were up to 10,000 different valid error codes.  The meaning of the 

error code format for HTG dial-home cases is as shown in Table 11. 
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Table 11: Meaning of the LL.CCSS.mm error code format for dial-home cases  

'LL' The general error code category. 
'CC' The 1-byte context code which could be 

the identity of the channel/scsi command 
or the utility/test that was running when 
the error occurred, or something else 
depending on the nature of the error. 

'SS' The 1-byte symptom code, ie the main 
classification of the error. 

'mm' The modifier which gives a more specific 
definition of the error and is primarily for 
engineering use. 

 

In addition, each error code could be seen on one or more of 10 different types of hardware 

“directors”.  The following table shows the different types of hardware directors: 

Table 12: Available director types 

'RA'  Escon RDF Director 
'FA'  Fibre Host Adaptor 
'EF'  Ficon Host Adaptor 
'EA'  Escon Adaptor 
'RF'  Fibre RDF Director 
'EFLINK'  EF Link Processor 
'RE'  GIGE RDF Director. 
'SE'  iSCSI GIGE Host Adaptor 
'DA'  Disk Adaptor 
'SW'  MSWindowsSimulator 

 

As well, the error codes could have one or more qualifying sense bytes attached to them, each 

with their own unique values. 

For example in the FastFIX rule syntax, XX.FF56.XX:S12=01&S13=02:DA refers to an error 

code that matches XX.FF56.XX where X means ‘don’t care’ and can be any hexadecimal 

character (0-9 or A-F); S12=01 means that sense byte 12 has a value of 0x01; S13=02 means 

that sense byte 13 has a value of 0x02, and DA means that the error occurred on a DA type 

hardware director. 

In contrast to the parameters passed from the DHA to FastFIX, the hardware version and the 

software version shown in Figure 23 on page 172 had to be manually supplied by the trouble-
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shooter by editing the case.  At the time of deployment there were 7 different versions of 

hardware in the field, and many more different software versions. 

From the above description, the following characteristics of the dial-home problem domain 

become clear: 

• there was a huge number of possible permutations and combinations of error; 

• there was a high reliance on memory and knowledge from a wide variety of experts 

and sources; 

• a good deal of parameterised case data was already available for incoming cases; 

• much of the data was numeric, and the data lent itself to complex numeric and string-

based evaluations; 

• the data did not lend itself to simple keyword searches; and 

• several of the parameters pertinent to solving the case needed to be manually supplied. 

As well as this and perhaps most significantly: 

1. there was a high repetition rate for certain classes of problem which meant that 

automating the trouble-shooting process for those problem classes would be very 

worthwhile for the HSL and for HTG more generally. 

The numeric and non-searchable properties of the dial-home data are similar to the properties 

of the pathology data reported by Edwards in PEIRS (1996, p69). 

10.4 Chapter Summary 

Information retrieval (IR) and Artificial Intelligence (AI) techniques require that similarity 

and dissimilarity measures be calculable between cases in the search space.  These techniques 

require a model of the domain, comprised of a vector of attributes that can be used to identify 

the cases, and a set of functions or rules that can be used to determine the similarity and 

dissimilarity between the cases.  What we find in the HTG HSL case study is that the 

similarity and dissimilarity of problem cases cannot be determined by observing the available 

data alone.  Rather, this case-based classification and configuration knowledge needs to be 

acquired from human experts. 
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Although the HTG HSL case study has motivated the design of the 7Cs solution proposed in 

this thesis, 7Cs has more general applicability.  7Cs was designed to address information 

retrieval problems in any case-based problem domain where classification and configuration 

knowledge needs to be acquired from one or more human experts, or users.  The acquired 

configuration knowledge is used to work-up the problem cases, and the acquired classification 

knowledge is used to calculate the similarity and dissimilarity between them.  This guides 

users in their retrieval of information in that problem domain, automates the information 

retrieval process, and improves the precision and recall of the information retrieved. 

The next chapter presents the detailed design of the 7Cs and FastFIX system.   


